Phase Equilibria and Ionic Solvation in the Lithium Tetrafluoroborate-Dimethylsulfoxide System
NASA Astrophysics Data System (ADS)
Gafurov, M. M.; Kirillov, S. A.; Gorobets, M. I.; Rabadanov, K. Sh.; Ataev, M. B.; Tretyakov, D. O.; Aydemirov, K. M.
2015-01-01
The phase diagram and electrical conductivity isotherms for the lithium tetrafluoroborate (LiBF4)-dimethylsulfoxide (DMSO) system and Raman spectra of DMSO and the LiBF4-DMSO solution were studied. Spectroscopic signatures of a H-bond between DMSO and BF4 - ions were found. The bonds of Li+ ions to the solvent were stronger than the bonds in DMSO dimers because formation of the solvate destroyed dimeric DMSO molecules. The τω values for DMSO molecules in the Li+-ion solvate shell of the LiBF4-DMSO system were similar to those for associated solvent molecules.
Dimethyl sulfoxide reductase activity by anaerobically grown Escherichia coli HB101.
Bilous, P T; Weiner, J H
1985-01-01
Escherichia coli grew anaerobically on a minimal medium with glycerol as the carbon and energy source and dimethyl sulfoxide (DMSO) as the terminal electron acceptor. DMSO reductase activity, measured with an artificial electron donor (reduced benzyl viologen), was preferentially associated with the membrane fraction (77 +/- 10% total cellular activity). A Km for DMSO reduction of 170 +/- 60 microM was determined for the membrane-bound activity. Methyl viologen, reduced flavin mononucleotide, and reduced flavin adenine dinucleotide also served as electron donors for DMSO reduction. Methionine sulfoxide, a DMSO analog, could substitute for DMSO in both the growth medium and in the benzyl viologen assay. DMSO reductase activity was present in cells grown anaerobically on DMSO but was repressed by the presence of nitrate or by aerobic growth. Anaerobic growth on DMSO coinduced nitrate, fumarate, and and trimethylamine-N-oxide reductase activities. The requirement of a molybdenum cofactor for DMSO reduction was suggested by the inhibition of growth and a 60% reduction in DMSO reductase activity in the presence of 10 mM sodium tungstate. Furthermore, chlorate-resistant mutants chlA, chlB, chlE, and chlG were unable to grow anaerobically on DMSO. DMSO reduction appears to be under the control of the fnr gene. PMID:3888958
Choi, Ae Ran; Kim, Min-Sik; Kang, Sung Gyun; Lee, Hyun Sook
2016-01-01
A variety of microbes grow by respiration with dimethyl sulfoxide (DMSO) as an electron acceptor, and several distinct DMSO respiratory systems, consisting of electron carriers and a terminal DMSO reductase, have been characterized. The heterotrophic growth of a hyperthermophilic archaeon Thermococcus onnurineus NA1 was enhanced by the addition of DMSO, but the archaeon was not capable of reducing DMSO to DMS directly using a DMSO reductase. Instead, the archaeon reduced DMSO via a cysteine-cystine redox shuttle through a mechanism whereby cystine is microbially reduced to cysteine, which is then reoxidized by DMSO reduction. A thioredoxin reductase-protein disulfide oxidoreductase redox couple was identified to have intracellular cystine-reducing activity, permitting recycle of cysteine. This study presents the first example of DMSO reduction via an electron shuttle. Several Thermococcales species also exhibited enhanced growth coupled with DMSO reduction, probably by disposing of excess reducing power rather than conserving energy.
Transcriptional regulation of dimethyl sulfoxide respiration in a haloarchaeon, Haloferax volcanii.
Qi, Qiuzi; Ito, Yoshiyasu; Yoshimatsu, Katsuhiko; Fujiwara, Taketomo
2016-01-01
The halophilic euryarchaeon Haloferax volcanii can grow anaerobically by DMSO respiration. DMSO reductase was induced by DMSO respiration not only under anaerobic growth conditions but also in denitrifying cells of H. volcanii. Deletion of the dmsR gene, encoding a putative regulator for the DMSO reductase, resulted in the loss of anaerobic growth by DMSO respiration. Reporter experiments revealed that only the anaerobic condition was essential for transcription of the dmsEABCD genes encoding DMSO reductase and that transcription was enhanced threefold by supplementation of DMSO. In the ∆dmsR mutant, transcription of the dmsEABCD genes induced by the anaerobic condition was not enhanced by DMSO, suggesting that DmsR is a DMSO-responsive regulator. Transcriptions of the dmsR and mgd genes for Mo-bisMGD biosynthesis were regulated in the same manner as the dmsEABCD genes. These results suggest that the genetic regulation of DMSO respiration in H. volcanii is controlled by at least two systems: one is the DMSO-responsive DmsR, and the other is an unknown anaerobic regulator.
Local structure of dilute aqueous DMSO solutions, as seen from molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Idrissi, Abdenacer; Marekha, Bogdan A.; Barj, Mohammed; Miannay, François Alexandre; Takamuku, Toshiyuki; Raptis, Vasilios; Samios, Jannis; Jedlovszky, Pál
2017-06-01
The information about the structure of dimethyl sulfoxide (DMSO)-water mixtures at relatively low DMSO mole fractions is an important step in order to understand their cryoprotective properties as well as the solvation process of proteins and amino acids. Classical MD simulations, using the potential model combination that best reproduces the free energy of mixing of these compounds, are used to analyze the local structure of DMSO-water mixtures at DMSO mole fractions below 0.2. Significant changes in the local structure of DMSO are observed around the DMSO mole fraction of 0.1. The array of evidence, based on the cluster and the metric and topological parameters of the Voronoi polyhedra distributions, indicates that these changes are associated with the simultaneous increase of the number of DMSO-water and decrease of water-water hydrogen bonds with increasing DMSO concentration. The inversion between the dominance of these two types of H-bonds occurs around XDMSO = 0.1, above which the DMSO-DMSO interactions also start playing an important role. In other words, below the DMSO mole fraction of 0.1, DMSO molecules are mainly solvated by water molecules, while above it, their solvation shell consists of a mixture of water and DMSO. The trigonal, tetrahedral, and trigonal bipyramidal distributions of water shift to lower corresponding order parameter values indicating the loosening of these orientations. Adding DMSO does not affect the hydrogen bonding between a reference water molecule and its first neighbor hydrogen bonded water molecules, while it increases the bent hydrogen bond geometry involving the second ones. The close-packed local structure of the third, fourth, and fifth water neighbors also is reinforced. In accordance with previous theoretical and experimental data, the hydrogen bonding between water and the first, the second, and the third DMSO neighbors is stronger than that with its corresponding water neighbors. At a given DMSO mole fraction, the behavior of the intensity of the high orientational order parameter values indicates that water molecules are more ordered in the vicinity of the hydrophilic group while their structure is close-packed near the hydrophobic group of DMSO.
Effect of dimethyl sulfoxide on inhibition of post-ovariectomy osteopenia in rats.
Tamjidipoor, Ahmad; Tavafi, Majid; Ahmadvand, Hasan
2013-01-01
There is increasing evidence that oxidative stress, due to estrogen deficiency, leads to osteopenia. In this study, dimethyl sulfoxide (DMSO), an antioxidant solvent, was used against post-ovariectomy osteopenia (PO) in rats. Forty female rats were divided into 5 groups randomly as follows: Sham, control group; OVX, ovariectomized group; DMSO1, ovariectomized injected DMSO (0.5 ml/kg/d ip); DMSO2, ovariectomized injected DMSO (1 ml/kg/day ip) and DMSO3, ovariectomized injected DMSO (2 ml/kg/d ip). DMSO therapy started 1 week after ovariectomy and continued for 13 weeks. After 13th weeks, sera were prepared, and then L4 vertebrae and right tibial bones rinsed in fixative. Serum bone alkaline phosphatase (BALP), osteocalcin, pyridinoline, malondialdehyde (MDA) and glutathione (GSH) were measured. Trabecular volume density, trabecular and cortex thickness were estimated. Osteoclast and osteoblast numbers were counted morphometrically. The data were analyzed by ANOVA and then post hoc Tukey test at p < 0.05. The increase of pyridinoline and decrease of BALP in DMSO injected groups were inhibited compared with OVX group (p < 0.05). In DMSO injected groups, decrease of bone density, trabecular volume density, thickness of trabecular and tibial cortex were inhibited compared with OVX group (p < 0.05). MDA decreased significantly in DMSO injected groups compared with OVX group. Osteoclast number decreased in DMSO injected groups compared with OVX group (p < 0.05). Osteoblast number did not show significant change in DMSO groups compared with OVX group. In conclusion, DMSO ameliorates PO through decrease of osteoclast number, osteoclast inhibition and osteoblast activation. These effects may probably be mediated via antioxidant property of DMSO.
Raghavan, Rahul; Cheriyamundath, Sanith; Madassery, Joseph
2015-01-01
Objectives: To investigate the effect of DMSO on cisplatin induced cytotoxicity (invitro) against K562 (Human mylogenous leukemia) cell line and to study the cisplatin-DMSO adduct formation using UV-spectrophotometer. Materials and methods: Effect of DMSO on the cytotoxicity of cisplatin was studied in K562 (Chronic mylogenous leukemia) cell line by MTT assay. Cisplatin-DMSO adduct formation was studied by continuously monitoring the increase in absorption peaks for 30 minutes using UV-spectrophotometer. Results: 0.1-0.3% DMSO markedly reduced the cytotoxic activity of cisplatin in K562 cells. Cisplatin-DMSO adduct formation was detected using UV-spectrophotometer. Continuous increase in UV absorbance between 250nm-290nm was observed when cisplatin (0.5mg/ml) and DMSO (10%) were mixed. Conclusion: Present study revealed that DMSO inactivates the cytotoxicity of cisplatin. Cisplatin-DMSO mixture showed increased absorbance at 250-290nm. Therefore, using DMSO in invitro assays might result in misinterpretation of actual efficacy of drugs. PMID:26069372
Raghavan, Rahul; Cheriyamundath, Sanith; Madassery, Joseph
2015-01-01
To investigate the effect of DMSO on cisplatin induced cytotoxicity (invitro) against K562 (Human mylogenous leukemia) cell line and to study the cisplatin-DMSO adduct formation using UV-spectrophotometer. Effect of DMSO on the cytotoxicity of cisplatin was studied in K562 (Chronic mylogenous leukemia) cell line by MTT assay. Cisplatin-DMSO adduct formation was studied by continuously monitoring the increase in absorption peaks for 30 minutes using UV-spectrophotometer. 0.1-0.3% DMSO markedly reduced the cytotoxic activity of cisplatin in K562 cells. Cisplatin-DMSO adduct formation was detected using UV-spectrophotometer. Continuous increase in UV absorbance between 250nm-290nm was observed when cisplatin (0.5mg/ml) and DMSO (10%) were mixed. Present study revealed that DMSO inactivates the cytotoxicity of cisplatin. Cisplatin-DMSO mixture showed increased absorbance at 250-290nm. Therefore, using DMSO in invitro assays might result in misinterpretation of actual efficacy of drugs.
Behavioural effects of dimethyl sulfoxide (DMSO): changes in sleep architecture in rats.
Cavas, María; Beltrán, David; Navarro, José F
2005-07-04
Dimethyl sulfoxide (DMSO) is an efficient solvent for water-insoluble compounds, widely used in biological studies and as a vehicle for drug therapy, but few data on its neurotoxic or behavioural effects is available. The aim of this work is to explore DMSO's effects upon sleep/wake states. Twenty male rats were sterotaxically prepared for polysomnography. Four concentrations of DMSO (5%, 10%, 15%, and 20%, in saline) were examined. DMSO or saline were administered intraperitoneally at the beginning of the light period. Three hours of polygraphic recording were evaluated for stages of vigilance after treatment. Sleep/wake parameters and EEG power spectral analyses during sleep were investigated. Results show no significant effect after 5% or 10% DMSO treatment. DMSO 15% increased mean episode duration of light slow wave sleep (SWS), decreasing mean episode duration of deep SWS and of quiet wake (QW). DMSO 20% increased light SWS enhancing number of episodes, while decreased deep SWS mean episode duration. EEG power spectra of sigma and delta activity were also affected by DMSO. Therefore, DMSO at 15% and 20% affects sleep architecture in rats, increasing light SWS and reducing deep SWS. Being aware of DMSO behavioural effects seems important since experimental artefacts caused by DMSO can lead to the erroneous interpretation of results.
Tjäderhane, Leo; Mehtälä, Pekka; Scaffa, Polliana; Vidal, Cristina; Pääkkönen, Virve; Breschi, Lorenzo; Hebling, Josimeri; Tay, Franklin R; Nascimento, Fabio D; Pashley, David H; Carrilho, Marcela R
2013-10-01
The objective was to examine the effect of a solvent dimethyl sulfoxide (DMSO) on resin-dentin bond durability, as well as potential functional mechanisms behind the effect. Microtensile bond strength (μTBS) was evaluated in extracted human teeth in two separate experiments. Dentin specimens were acid-etched and assigned to pre-treatment with 0.5mM (0.004%) DMSO as additional primer for 30s and to controls with water pre-treatment. Two-step etch-and-rinse adhesive (Scotchbond 1XT, 3M ESPE) was applied and resin composite build-ups were created. Specimens were immediately tested for μTBS or stored in artificial saliva for 6 and 12 months prior to testing. Additional immediate and 6-month specimens were examined for interfacial nanoleakage analysis under SEM. Matrix metalloproteinase (MMP) inhibition by DMSO was examined with gelatin zymography. Demineralized dentin disks were incubated in 100% DMSO to observe the optical clearing effect. The use of 0.5mM DMSO had no effect on immediate bond strength or nanoleakage. In controls, μTBS decreased significantly after storage, but increased significantly in DMSO-treated group. The control group had significantly lower μTBS than DMSO-group after 6 and 12 months. DMSO also eliminated the increase in nanoleakage seen in controls. 5% and higher DMSO concentrations significantly inhibited the gelatinases. DMSO induced optical clearing effect demonstrating collagen dissociation. DMSO as a solvent may be useful in improving the preservation of long-term dentin-adhesive bond strength. The effect may relate to dentinal enzyme inhibition or improved wetting of collagen by adhesives. The collagen dissociation required much higher DMSO concentrations than the 0.5mM DMSO used for bonding. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
IR Spectroscopy of Ethylene Glycol Solutions of Dimethylsulfoxide
NASA Astrophysics Data System (ADS)
Kononova, E. G.; Rodnikova, M. N.; Solonina, I. A.; Sirotkin, D. A.
2018-07-01
Features of ethylene glycol (EG) solutions of dimethylsulfoxide (DMSO) with low and moderate concentrations (from 2 to 50 mol % of DMSO) are studied by IR spectroscopy on a Bruker Tensor 37 FT-IR spectrometer in the wavenumber range of 400 to 4000 cm-1. The main monitored bands are the S=O stretching vibration band of DMSO (1057 cm-1) and the C-O (1086 and 1041 cm-1) and O-H (3350 cm-1) stretching vibration bands of EG. The obtained data show complex DMSO · 2EG to be present in all solutions with the studied concentrations due to formation of H-bonds between the S=O group of DMSO and the OH group of EG. In the concentration range of 6 to 25 mol % DMSO, the OH stretching vibration of EG is found to be broadened (by up to 70 cm-1), suggesting the strengthening of hydrogen bonds in the spatial network of the system due to the solvophobic effect of DMSO molecules and the formation of DMSO · 2EG. Starting from 25 mol % DMSO, narrowing of the OH stretching vibration is noted, and the bands of free DMSO appear along with the DMSO · 2EG complex, suggesting microseparation in the investigated system. At 50 mol % DMSO, the amounts of free and bound species in the system became comparable.
Hibernation-Based Therapy to Improve Survival of Severe Blood Loss
2013-10-01
NOTES 14. ABSTRACT The purpose of these experiments was to find the most effective concentration of melatonin /DMSO that could be administered in...conjunction with 4M BHB. Three concentrations were tested, 43mM Melatonin /20% DMSO, 4.3mM Melatonin /2% DMSO and 0.43mM Melatonin /2% DMSO. It was...found that 43mM Melatonin /20% DMSO given in conjunction with 4M BHB was the most effective concentration. This concentration, 43mM Melatonin /20% DMSO
Dimethyl Sulfoxide (DMSO) Produces Widespread Apoptosis in the Developing Central Nervous System
Hanslick, Jennifer L.; Lau, Karen; Noguchi, Kevin K.; Olney, John W.; Zorumski, Charles F.; Mennerick, Steven; Farber, Nuri B.
2009-01-01
Dimethyl sulfoxide (DMSO) is a solvent that is routinely used as a cryopreservative in allogous bone marrow and organ transplantion. We exposed C57Bl/6 mice of varying postnatal ages (P0–P30) to DMSO in order to study whether DMSO could produce apoptotic degeneration in the developing CNS. DMSO produced widespread apoptosis in the developing mouse brain at all ages tested. Damage was greatest at P7. Significant elevations above the background rate of apoptosis occurred at the lowest dose tested, 0.3 ml/kg. In an in vitro rat hippocampal culture preparation, DMSO produced neuronal loss at concentrations of 0.5% and 1.0%. The ability of DMSO to damage neurons in dissociated cultures indicates that the toxicity likely results from a direct cellular effect. Because children, who undergo bone marrow transplantation, are routinely exposed to DMSO at doses higher than 0.3 ml/kg, there is concern that DMSO might be producing similar damage in human children. PMID:19100327
Xiong, Lei; Jian, Huahua
2017-01-01
ABSTRACT Dimethyl sulfoxide (DMSO) acts as a substantial sink for dimethyl sulfide (DMS) in deep waters and is therefore considered a potential electron acceptor supporting abyssal ecosystems. Shewanella piezotolerans WP3 was isolated from west Pacific deep-sea sediments, and two functional DMSO respiratory subsystems are essential for maximum growth of WP3 under in situ conditions (4°C/20 MPa). However, the relationship between these two subsystems and the electron transport pathway underlying DMSO reduction by WP3 remain unknown. In this study, both DMSO reductases (type I and type VI) in WP3 were found to be functionally independent despite their close evolutionary relationship. Moreover, immunogold labeling of DMSO reductase subunits revealed that the type I DMSO reductase was localized on the outer leaflet of the outer membrane, whereas the type VI DMSO reductase was located within the periplasmic space. CymA, a cytoplasmic membrane-bound tetraheme c-type cytochrome, served as a preferential electron transport protein for the type I and type VI DMSO reductases, in which type VI accepted electrons from CymA in a DmsE- and DmsF-independent manner. Based on these results, we proposed a core electron transport model of DMSO reduction in the deep-sea bacterium S. piezotolerans WP3. These results collectively suggest that the possession of two sets of DMSO reductases with distinct subcellular localizations may be an adaptive strategy for WP3 to achieve maximum DMSO utilization in deep-sea environments. IMPORTANCE As the dominant methylated sulfur compound in deep oceanic water, dimethyl sulfoxide (DMSO) has been suggested to play an important role in the marine biogeochemical cycle of the volatile anti-greenhouse gas dimethyl sulfide (DMS). Two sets of DMSO respiratory systems in the deep-sea bacterium Shewanella piezotolerans WP3 have previously been identified to mediate DMSO reduction under in situ conditions (4°C/20 MPa). Here, we report that the two DMSO reductases (type I and type VI) in WP3 have distinct subcellular localizations, in which type I DMSO reductase is localized to the exterior surface of the outer membrane and type VI DMSO reductase resides in the periplasmic space. A core electron transport model of DMSO reduction in WP3 was constructed based on genetic and physiological data. These results will contribute to a comprehensive understanding of the adaptation mechanisms of anaerobic respiratory systems in benthic microorganisms. PMID:28687647
Characterization of damaged skin by impedance spectroscopy: chemical damage by dimethyl sulfoxide.
White, Erick A; Orazem, Mark E; Bunge, Annette L
2013-10-01
To relate changes in the electrochemical impedance spectra to the progression and mechanism of skin damage arising from exposure to dimethyl sulfoxide (DMSO). Electrochemical impedance spectra measured before and after human cadaver skin was treated with neat DMSO or phosphate buffered saline (control) for 1 h or less were compared with electrical circuit models representing two contrasting theories describing the progression of DMSO damage. Flux of a model lipophilic compound (p-chloronitrobenzene) was also measured. The impedance spectra collected before and after 1 h treatment with DMSO were consistent with a single circuit model; whereas, the spectra collected after DMSO exposure for 0.25 h were consistent with the model circuits observed before and after DMSO treatment for 1 h combined in series. DMSO treatments did not significantly change the flux of p-chloronitrobenzene compared to control. Impedance measurements of human skin exposed to DMSO for less than about 0.5 h were consistent with the presence of two layers: one damaged irreversibly and one unchanged. The thickness of the damaged layer increased proportional to the square-root of treatment time until about 0.5 h, when DMSO affected the entire stratum corneum. Irreversible DMSO damage altered the lipophilic permeation pathway minimally.
Elisia, Ingrid; Nakamura, Hisae; Lam, Vivian; Hofs, Elyse; Cederberg, Rachel; Cait, Jessica; Hughes, Michael R.; Lee, Leora; Jia, William; Adomat, Hans H.; Guns, Emma S.; McNagny, Kelly M.; Samudio, Ismael; Krystal, Gerald
2016-01-01
Dimethyl sulfoxide (DMSO) is currently used as an alternative treatment for various inflammatory conditions as well as for cancer. Despite its widespread use, there is a paucity of data regarding its safety and efficacy as well as its mechanism of action in human cells. Herein, we demonstrate that DMSO has ex-vivo anti-inflammatory activity using Escherichia coli- (E. coli) and herpes simplex virus-1 (HSV-1)-stimulated whole human blood. Specifically, we found that between 0.5%– 2%, DMSO significantly suppressed the expression of many pro-inflammatory cytokines/chemokines and prostaglandin E2 (PGE2). However, a significant reduction in monocyte viability was also observed at 2% DMSO, suggesting a narrow window of efficacy. Anti-inflammatory concentrations of DMSO suppressed E. coli-induced ERK1/2, p38, JNK and Akt phosphorylation, suggesting DMSO acts on these signaling pathways to suppress inflammatory cytokine/chemokine production. Although DMSO induces the differentiation of B16/F10 melanoma cells in vitro, topical administration of DMSO to mice subcutaneously implanted with B16 melanoma cells was ineffective at reducing tumor growth, DMSO was also found to block mouse macrophages from polarizing to either an M1- or an M2-phenotype, which may contribute to its inability to slow tumor growth. Topical administration of DMSO, however, significantly mitigated K/BxN serum-induced arthritis in mice, and this was associated with reduced levels of pro-inflammatory cytokines in the joints and white blood cell levels in the blood. Thus, while we cannot confirm the efficacy of DMSO as an anti-cancer agent, the use of DMSO in arthritis warrants further investigation to ascertain its therapeutic potential. PMID:27031833
Kim, Sun J; Jung, Young S; Yoon, Mi Y; Kim, Young C
2007-01-01
The effects of dimethylsulfoxide (DMSO) on the metabolism and toxicity of chlorinated methanes were examined. Male mice were treated with DMSO (1, 2.5 or 5 ml kg(-1), i.p.) prior to challenge with dichloromethane (CH(2)Cl(2)) or carbon tetrachloride (CCl(4)). Blood carboxyhemoglobin elevation resulting from metabolic conversion of CH(2)Cl(2) to carbon monoxide was inhibited dose-dependently by DMSO pretreatment. The elevation of serum aspartate aminotransferase, alanine aminotransferase and sorbitol dehydrogenase activities induced by CCl(4) (0.1 mmol kg(-1)) was not changed in mice pretreated with DMSO at 1 ml kg(-1), but depressed significantly at a greater dose of DMSO. However, DMSO failed to alter the hepatotoxicity of CCl(4) injected at a dose of 0.2 mmol kg(-1). DMSO induced the microsomal p-nitrophenol hydroxylase and p-nitroanisole O-demethylase activities as early as 2 h following the treatment. Microsomal disposition of CH(2)Cl(2) and CCl(4) was measured using a vial equilibration technique. The disappearance of CH(2)Cl(2) was inhibited competitively by addition of DMSO. But DMSO did not affect the metabolic degradation of CCl(4). The results indicate that DMSO has multiple effects on metabolism and toxicity of xenobiotics. DMSO induces the hepatic metabolizing activity mediated by CYP2E1, but the presence of this solvent in the enzyme site may inhibit directly the enzymatic interaction with a substrate. The toxicological significance of DMSO-induced effects on such an interaction may be variable depending on the properties of each substrate. The invulnerability of CCl(4) metabolism to the effects of DMSO appears to be related to its high affinity for the lipophilic CYP enzyme site. Copyright 2006 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsuzuki, M.; Hagiwara, I.; Shiraishi, N.
1980-12-01
Graft copolymerization of styrene onto cellulose was studied in a homogeneous system (SO/sub 2/(liquid)- diethylamine (DEA)-dimethyl sulfoxide (DMSO) medium)) by ..gamma..-ray mutual irradiation technique. At the same time, homopolymerization of styrene was also examined separately in DMSO, SO/sub 2/-DMSO, DEA-DMSO, and SO/sub 2/-DEA-DMSO media by the same technique. Polymerization of styrene hardly occurs on concentrations above 10 mole SO/sub 2/-DEA complex per mole glucose unit. Maximum percent grafting was obtained in concentrations of 4 mole, after which it decreased rapidly. Total conversion and percent grafting increased with the irradiation time. The value (=0.55) of the slope of the total conversionmore » rate plotted against the dose was only a little higher than the 1/2 which was expected from normal kinetics. No retardation in homopolymerization of styrene in DMSO, SO/sub 2/-DMSO, and DEA-DMSO was evident, while the retardation of homopolymerization in the SO/sub 2/-DEA-DMSO medium was measurable. Sulfur atoms were detected in the polymers obtained in both of SO/sub 2/-DMSO and SO/sub 2/-DEA-DMSO solutions. All of the molecular weights of polymers obtained in the present experiment were very low (3.9 x 10/sup 3/-1.75 x 10/sup 4/).« less
Pyrolytic synthesis and luminescence of porous lanthanide Eu-MOF.
Jin, Guangya; Liu, Zhijian; Sun, Hongfa; Tian, Zhiyong
2016-02-01
A lanthanide metal coordination polymer [Eu2(BDC)3(DMSO)(H2O)] was synthesized by the reaction of europium oxide with benzene-1,3-dicarboxylic acid (H2BDC) in a mixed solution of dimethyl sulfoxide (DMSO) and water under hydrothermal conditions. The crystal structure of Eu2(BDC)3(DMSO)(H2O) was characterized by X-ray diffraction (XRD). Thermo-gravimetric analysis of Eu2(BDC)3(DMSO)(H2O) indicated that coordinated DMSO and H2O molecules could be removed to create Eu2(BDC)3(DMSO)(H2O)-py with permanent microporosity, which was also verified by powder XRD (PXRD) and elemental analysis. Both Eu2(BDC)3(DMSO)(H2O) and Eu2(BDC)3(DMSO)(H2O)-py showed mainly Eu-based luminescence and had characteristic emissions in the range 550-700 nm. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Kannan, P. P.; Karthick, N. K.; Mahendraprabu, A.; Shanmugam, R.; Elangovan, A.; Arivazhagan, G.
2017-07-01
FTIR spectra of neat acetonitrile (AN), dimethyl sulphoxide (DMSO) and their binary solutions at various mole fractions have been recorded at room temperature. Theoretical calculations have also been carried out on acetonitrile (monomer, dimer), dimethyl sulphoxide (monomer, dimer) and AN - DMSO complex molecules. 1:2 (AN:DMSO) and 2:1 complexation through the red shifting (AN) C - H ⋯ O = S(DMSO) and blue shifting (DMSO) C - H ⋯ N ≡ C(AN) hydrogen bonds has been identified. The experimental and theoretical studies favour the presence of both the monomer and dimer in liquid AN, but only closed dimers in DMSO. The dipole-dipole interactions existed in AN and DMSO dimers disappear in the complex molecules. Partial π bond between S and O atoms, and three lone pair of electrons on oxygen atom of DMSO have been noticed theoretically.
Inhibition of differentiation and function of osteoclasts by dimethyl sulfoxide (DMSO).
Yang, Chunxi; Madhu, Vedavathi; Thomas, Candace; Yang, Xinlin; Du, Xeujun; Dighe, Abhijit S; Cui, Quanjun
2015-12-01
Dimethyl sulfoxide (DMSO) is an FDA-approved organosulfur solvent that is reported to have therapeutic value in osteoarthritis and osteopenia. DMSO is used as a cryoprotectant for the cryopreservation of bone grafts and mesenchymal stem cells which are later used for bone repair. It is also used as a solvent in the preparation of various scaffolds used for bone tissue engineering purposes. DMSO has been reported to inhibit osteoclast formation in vitro but the mechanism involved has remained elusive. We investigated the effect of DMSO on osteoclast differentiation and function using a conventional model system of RAW 264.7 cells. The differentiation of RAW 264.7 cells was induced by adding 50 ng/ml RANKL and the effect of DMSO (0.01 and 1% v/v) on RANKL-induced osteoclastogenesis was investigated. Addition of 1% DMSO significantly inhibited RANKL-induced formation of TRAP+, multinucleated, mature osteoclasts and osteoclast late-stage precursors (c-Kit(-) c-Fms(+) Mac-1(+) RANK(+)). While DMSO did not inhibit proliferation per se, it did inhibit the effect of RANKL on proliferation of RAW 264.7 cells. Key genes related to osteoclast function (TRAP, Integrin αVβ3, Cathepsin K and MMP9) were significantly down-regulated by DMSO. RANKL-induced expression of RANK gene was significantly reduced in the presence of DMSO. Our data, and reports from other investigators, that DMSO enhances osteoblastic differentiation of mesenchymal stem cells and also prevents bone loss in ovarietcomized rats, suggest that DMSO has tremendous potential in the treatment of osteoporosis and bone diseases arising from uncontrolled activities of the osteoclasts.
Kuchlyan, Jagannath; Banik, Debasis; Roy, Arpita; Kundu, Niloy; Sarkar, Nilmoni
2014-12-04
In this article we have investigated intermolecular excited-state proton transfer (ESPT) of firefly's chromophore D-luciferin in DMSO-water binary mixtures using steady-state and time-resolved fluorescence spectroscopy. The unusual behavior of DMSO-water binary mixture as reported by Bagchi et al. (J. Phys. Chem. B 2010, 114, 12875-12882) was also found using D-luciferin as intermolecular ESPT probe. The binary mixture has given evidence of its anomalous nature at low mole fractions of DMSO (below XD = 0.4) in our systematic investigation. Upon excitation of neutral D-luciferin molecule, dual fluorescence emissions (protonated and deprotonated form) are observed in DMSO-water binary mixture. A clear isoemissive point in the time-resolved area normalized emission spectra further indicates two emissive species in the excited state of D-luciferin in DMSO-water binary mixture. DMSO-water binary mixtures of different compositions are fascinating hydrogen bonding systems. Therefore, we have observed unusual changes in the fluorescence emission intensity, fluorescence quantum yield, and fluorescence lifetime of more hydrogen bonding sensitive anionic form of D-luciferin in low DMSO content of DMSO-water binary mixture.
Dimethyl sulfoxide inhibits NLRP3 inflammasome activation.
Ahn, Huijeong; Kim, Jeeyoung; Jeung, Eui-Bae; Lee, Geun-Shik
2014-04-01
Dimethyl sulfoxide (DMSO) is an amphipathic molecule that is commonly/widely used as a solvent for biological compounds. In addition, DMSO has been studied as a medication for the treatment of inflammation, cystitis, and arthritis. Based on the anti-inflammatory characteristics of DMSO, we elucidated the effects of DMSO on activation of inflammasomes, which are cytoplasmic multi-protein complexes that mediate the maturation of interleukin (IL)-1β by activating caspase-1 (Casp1). In the present study, we prove that DMSO attenuated IL-1β maturation, Casp1 activity, and ASC pyroptosome formation via NLRP3 inflammasome activators. Further, NLRC4 and AIM2 inflammasome activity were not affected, suggesting that DMSO is a selective inhibitor of the NLRP3 inflammasomes. The anti-inflammatory effect of DMSO was further confirmed in animal, LPS-endotoxin sepsis and inflammatory bowel disease models. In addition, DMSO inhibited LPS-mediating IL-1s transcription. Taken together, DMSO shows anti-inflammatory characteristics, attenuates NLRP3 inflammasome activation, and mediates inhibition of IL-1s transcription. Crown Copyright © 2013. Published by Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Dabkowska, Aleksandra P.; Foglia, Fabrizia; Lawrence, M. Jayne; Lorenz, Christian D.; McLain, Sylvia E.
2011-12-01
The solution structure of the phosphocholine (PC) head group in 1,2-dipropionyl-sn-glycero-3-phosphocholine (C3-PC) in 30 mol. % dimethylsulfoxide (DMSO)-water solutions has been determined by using neutron diffraction enhanced with isotopic substitution in combination with computer simulation techniques. By investigating the atomic scale hydration structure around the PC head group, a unique description of the displacement of water molecules by DMSO molecules is detailed around various locations of the head group. Specifically, DMSO molecules were found to be the most prevalent around the onium portion of the head group, with the dipoles of the DMSO molecules being aligned where the negatively charged oxygen can interact strongly with the positively charged lipid group. The phosphate group is also partially dehydrated by the presence of the DMSO molecules. However, around this group the bulkier positive end of the DMSO dipole is interacting with negatively charged groups of the lipid head group, the DMSO layer shows no obvious ordering as it cannot form hydrogen bonds with the oxygen atoms in the PO4 group such as water molecules can. Interestingly, DMSO-water contacts have also increased in the presence of the lipid molecule relative to DMSO-water contacts observed in pure DMSO/water solutions at similar concentrations.
Xiong, Xiaoqin; Luo, Si; Wu, Benli; Wang, Jianwei
2017-02-01
Dimethyl sulfoxide (DMSO), a widely used carrier solvent, can be toxic to test organisms and has species-specific sensitivity. In this study, the developmental toxicity and stress protein responses of DMSO to rare minnow (Gobiocypris rarus) and zebrafish (Danio rerio) with two tests were compared in the early life stage. In the first test, fertilized eggs were exposed to 0%, 0.0001%, 0.001%, 0.01%, 0.1%, 1.0%, 1.5%, and 2.0% v/v of DMSO until 3 days post hatching. In the second test, larvae from 0 to 8 d were exposed to 2% DMSO until 4 days. Our results showed that DMSO was toxic to rare minnow and zebrafish on multiple indexes, and the no-observed-effect concentrations of DMSO in both species were 1.0% and 0.001% for developmental toxicity analysis and stress protein analysis, respectively. Furthermore, rare minnow larvae were more sensitive than zebrafish to DMSO for spinal malformation. The sensitive period for induction of spinal malformation by DMSO was 0-7 d after hatch (dah) for rare minnow and 0-4 dah for zebrafish. Together, these results will provide support to the use of DMSO in ecotoxicological studies using rare minnow and will contribute to a better understanding of the toxicity of DMSO.
Zhang, Chen; Deng, Yuanying; Dai, Hongmei; Zhou, Wenjuan; Tian, Jing; Bing, Guoying; Zhao, Lingling
2017-01-01
Dimethyl sulfoxide (DMSO) is a widely used solvent and vehicle for in vivo and in vitro administration of test compounds. Effects of DMSO independent of the test compound, such as in studies examining morphological plasticity or neurotoxic responses, may lead to spurious results. To investigate effects of DMSO concentration ([DMSO]) on morphology and survival of primary cultured neurons and astrocytes. Primary cultured neurons and astrocytes were treated with 0.25%-10.00% [DMSO] for 12-48h. Viable cell number and morphology were compared to untreated cultures using the CCK-8 assay and phase-contrast microscopy. Expression levels of the neuronal marker NeuN and astrocyte marker glial fibrillary acidic protein (GFAP) were determined by immunofluorescence and western blotting. A [DMSO]≤0.50% had no effect on neuronal number or NeuN expression up to 24h, while ≥1.00% induced a progressive and dramatic loss of both viability and NeuN expression even after 12h. Brief (12h) exposure to ≤1.00% DMSO had no effect on astrocytes survival or GFAP expression, while ≥5.00% significantly reduced both at all exposure durations. In contrast to neurons, exposure to 0.50% and 1.00% DMSO for 24 or 48h enhanced astrocytes proliferation and GFAP expression. Astrocytic processes were maintained at 0.50% and 1.00% DMSO, while neurons exhibited marked neurite retraction at ≥0.50%. A [DMSO]≥0.5% markedly disrupts neuronal morphology and reduces viability, even after brief exposure. In astrocytes, 0.50% and 1.00% DMSO appear to induce reactive gliosis. For treatment of neural cells, [DMSO] should be ≤0.25% to obviate spurious vehicle effects. Copyright © 2016 Elsevier Inc. All rights reserved.
Stape, Thiago Henrique Scarabello; Tezvergil-Mutluay, Arzu; Mutluay, Mustafa Murat; Martins, Luís Roberto Marcondes; do Prado, Rosana Leal; Pizi, Eliane Cristina Gava; Tjäderhane, Leo
2016-12-01
To examine the feasibility of dimethyl sulfoxide (DMSO) incorporation into relatively hydrophilic resins as a new potential method to improve the durability of resin-dentin bonds. Six experimental light-curing BisGMA/HEMA resins solvated in ethanol and DMSO with increasing concentrations of DMSO (0, 0.5, 1, 2, 4 and 10wt%) were prepared. The degree of conversion (DC) was evaluated by Fourier Transform Infrared Spectroscopy (n=8); water sorption (Wsp) and water solubility (Wso) were gravimetrically assessed (n=10); and flexural strength (FS) and elastic modulus (E) were determined by a three-point bending flexural test (n=10). Flat dentin surfaces on sound third molars (n=10/group) were bonded with resins containing 0, 2, 4 and 10wt% DMSO used as a two-step etch-and-rinse system. Dentin microtensile bond strength was determined at 24h and after two-year aging in artificial saliva at 37°C. DMSO significantly affected Wsp (p=0.0006), DC, Wso, FS, and E (p<0.0001). In general, the resins' mechanical/physical properties were not affected by 2% or lower DMSO incorporation. Incorporation of 4% or higher DMSO content significantly increased DC, Wsp and Wso, but 2% or higher DMSO concentrations significantly reduced FS and E. No influence on immediate dentin bond strength occurred up to 4% DMSO incorporation. While 4% or higher DMSO concentrations impaired bond strength over time, the resin containing 2% DMSO presented significant higher dentin bond strength compared to the control resin after two year-aging. The use of DMSO as a new solvent in adhesive dentistry improves dentin bonding of relatively hydrophilic resins over time. 2% DMSO incorporation in BisGMA/HEMA resins should be sufficient to reduce bond strength loss without compromising polymer mechanical strength and physical properties. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Shuai; Liu, Qinfu; Cheng, Hongfei; Gao, Feng; Liu, Cun; Teppen, Brian J
2018-01-01
Intercalation is the promising strategy to expand the interlayer region of kaolinite for their further applications. Herein, the adaptive biasing force (ABF) accelerated molecular dynamics simulations were performed to calculate the free energies involved in the kaolinite intercalation by dimethyl sulfoxide (DMSO). Additionally, the classical all atom molecular dynamics simulations were carried out to calculate the interfacial interactions between kaolinite interlayer surfaces and DMSO with the aim at exploring the underlying force that drives the DMSO to enter the interlayer space. The results showed that the favorable interaction of DMSO with both kaolinite interlayer octahedral surface and tetrahedral surface can help in introducing DMSO enter kaolinite interlayer. The hydroxyl groups on octahedral surface functioned as H-donors attracting the S=O groups of DMSO through hydrogen bonding interaction. The tetrahedral surface featuring hydrophobic property attracted the methyl groups of DMSO through hydrophobic interaction. The results provided a detailed picture of the energetics and interlayer structure of kaolinite-DMSO intercalate.
Fukushima, Toshikazu; Whang, Liang-Ming; Chen, Po-Chun; Putri, Dyah Wulandari; Chang, Ming-Yu; Wu, Yi-Ju; Lee, Ya-Ching
2013-08-01
This study investigated the linkage between performance of two full-scale membrane bioreactor (MBR) systems treating thin-film transistor liquid crystal display (TFT-LCD) wastewater and the population dynamics of dimethylsulfoxide (DMSO)/dimethylsulfide (DMS) degrading bacteria. High DMSO degradation efficiencies were achieved in both MBRs, while the levels of nitrification inhibition due to DMS production from DMSO degradation were different in the two MBRs. The results of real-time PCR targeting on DMSO/DMS degrading populations, including Hyphomicrobium and Thiobacillus spp., indicated that a higher DMSO oxidation efficiency occurred at a higher Hyphomicrobium spp. abundance in the systems, suggesting that Hyphomicrobium spp. may be more important for complete DMSO oxidation to sulfate compared with Thiobacillus spp. Furthermore, Thiobacillus spp. was more abundant during poor nitrification, while Hyphomicrobium spp. was more abundant during good nitrification. It is suggested that microbial population of DMSO/DMS degrading bacteria is closely linking to both DMSO/DMS degradation efficiency and nitrification performance. Copyright © 2013 Elsevier Ltd. All rights reserved.
Molecular dynamics simulations of a DMSO/water mixture using the AMBER force field.
Stachura, Slawomir S; Malajczuk, Chris J; Mancera, Ricardo L
2018-06-25
Due to its protective properties of biological samples at low temperatures and under desiccation, dimethyl sulfoxide (DMSO) in aqueous solutions has been studied widely by many experimental approaches and molecular dynamics (MD) simulations. In the case of the latter, AMBER is among the most commonly used force fields for simulations of biomolecular systems; however, the parameters for DMSO published by Fox and Kollman in 1998 have only been tested for pure liquid DMSO. We have conducted an MD simulation study of DMSO in a water mixture and computed several structural and dynamical properties such as of the mean density, self-diffusion coefficient, hydrogen bonding and DMSO and water ordering. The AMBER force field of DMSO is seen to reproduce well most of the experimental properties of DMSO in water, with the mixture displaying strong and specific water ordering, as observed in experiments and multiple other MD simulations with other non-polarizable force fields. Graphical abstract Hydration structure within hydrogen-bonding distance around a DMSOmolecule.
Griebler, Christian; Slezak, Doris
2001-01-01
A new method to determine microbial (bacterial and fungal) activity in various freshwater habitats is described. Based on microbial reduction of dimethyl sulfoxide (DMSO) to dimethyl sulfide (DMS), our DMSO reduction method allows measurement of the respiratory activity in interstitial water, as well as in the water column. DMSO is added to water samples at a concentration (0.75% [vol/vol] or 106 mM) high enough to compete with other naturally occurring electron acceptors, as determined with oxygen and nitrate, without stimulating or inhibiting microbial activity. Addition of NaN3, KCN, and formaldehyde, as well as autoclaving, inhibited the production of DMS, which proves that the reduction of DMSO is a biotic process. DMSO reduction is readily detectable via the formation of DMS even at low microbial activities. All water samples showed significant DMSO reduction over several hours. Microbially reduced DMSO is recovered in the form of DMS from water samples by a purge and trap system and is quantified by gas chromatography and detection with a flame photometric detector. The DMSO reduction method was compared with other methods commonly used for assessment of microbial activity. DMSO reduction activity correlated well with bacterial production in predator-free batch cultures. Cell-production-specific DMSO reduction rates did not differ significantly in batch cultures with different nutrient regimes but were different in different growth phases. Overall, a cell-production-specific DMSO reduction rate of 1.26 × 10−17 ± 0.12 × 10−17 mol of DMS per produced cell (mean ± standard error; R2 = 0.78) was calculated. We suggest that the relationship of DMSO reduction rates to thymidine and leucine incorporation is linear (the R2 values ranged from 0.783 to 0.944), whereas there is an exponential relationship between DMSO reduction rates and glucose uptake, as well as incorporation (the R2 values ranged from 0.821 to 0.931). Based on our results, we conclude that the DMSO reduction method is a nonradioactive alternative to other methods commonly used to assess microbial activity. PMID:11133433
Griebler, C; Slezak, D
2001-01-01
A new method to determine microbial (bacterial and fungal) activity in various freshwater habitats is described. Based on microbial reduction of dimethyl sulfoxide (DMSO) to dimethyl sulfide (DMS), our DMSO reduction method allows measurement of the respiratory activity in interstitial water, as well as in the water column. DMSO is added to water samples at a concentration (0.75% [vol/vol] or 106 mM) high enough to compete with other naturally occurring electron acceptors, as determined with oxygen and nitrate, without stimulating or inhibiting microbial activity. Addition of NaN(3), KCN, and formaldehyde, as well as autoclaving, inhibited the production of DMS, which proves that the reduction of DMSO is a biotic process. DMSO reduction is readily detectable via the formation of DMS even at low microbial activities. All water samples showed significant DMSO reduction over several hours. Microbially reduced DMSO is recovered in the form of DMS from water samples by a purge and trap system and is quantified by gas chromatography and detection with a flame photometric detector. The DMSO reduction method was compared with other methods commonly used for assessment of microbial activity. DMSO reduction activity correlated well with bacterial production in predator-free batch cultures. Cell-production-specific DMSO reduction rates did not differ significantly in batch cultures with different nutrient regimes but were different in different growth phases. Overall, a cell-production-specific DMSO reduction rate of 1.26 x 10(-17) +/- 0. 12 x 10(-17) mol of DMS per produced cell (mean +/- standard error; R(2) = 0.78) was calculated. We suggest that the relationship of DMSO reduction rates to thymidine and leucine incorporation is linear (the R(2) values ranged from 0.783 to 0.944), whereas there is an exponential relationship between DMSO reduction rates and glucose uptake, as well as incorporation (the R(2) values ranged from 0.821 to 0.931). Based on our results, we conclude that the DMSO reduction method is a nonradioactive alternative to other methods commonly used to assess microbial activity.
Man, Wang; Ming, Ding; Fang, Du; Chao, Liang; Jing, Cang
2014-06-01
The antioxidant property of dimethyl sulfoxide (DMSO) was formerly attributed to its direct effects. Our former study showed that DMSO is able to induce heme oxygenase-1 (HO-1) expression in endothelial cells, which is a potent antioxidant enzyme. In this study, we hypothesized that the antioxidant effects of DMSO in cardiomyocytes are mediated or partially mediated by increased HO-1 expression. Therefore, we investigated whether DMSO exerts protective effects against H2 O2 -induced oxidative damage in cardiomyocytes, and whether HO-1 is involved in DMSO-imparted protective effects, and we also explore the underlying mechanism of DMSO-induced HO-1 expression. Our study demonstrated that DMSO pretreatment showed a cytoprotective effect against H2 O2 -induced oxidative damage (impaired cell viability, increased apopototic cells rate and caspase-3 level, and increased release of LDH and CK) and this process is partially mediated by HO-1 upregulation. Furthermore, our data showed that the activation of p38 MAPK and Nrf2 translocation are involved in the HO-1 upregulation induced by DMSO. This study reports for the first time that the cytoprotective effect of DMSO in cardiomyocytes is partially mediated by HO-1, which may further explain the mechanisms by which DMSO exerts cardioprotection on H2 O2 injury. J. Cell. Biochem. 115: 1159-1165, 2014. © 2013 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.
Potential Use of Dimethyl Sulfoxide in Treatment of Infections Caused by Pseudomonas aeruginosa
Guo, Qiao; Wu, Qiaolian; Bai, Dangdang; Liu, Yang; Chen, Lin; Jin, Sheng; Wu, Yuting
2016-01-01
Dimethyl sulfoxide (DMSO) is commonly used as a solvent to dissolve water-insoluble drugs or other test samples in both in vivo and in vitro experiments. It was observed during our experiment that DMSO at noninhibitory concentrations could significantly inhibit pyocyanin production in the human pathogen Pseudomonas aeruginosa. Pyocyanin is an important pathogenic factor whose production is controlled by a cell density-dependent quorum-sensing (QS) system. Investigation of the effect of DMSO on QS showed that DMSO has significant QS antagonistic activities and concentrations of DMSO in the micromolar range attenuated a battery of QS-controlled virulence factors, including rhamnolipid, elastase, and LasA protease production and biofilm formation. Further study indicated that DMSO inhibition of biofilm formation and pyocyanin production was attained by reducing the level of production of an autoinducer molecule of the rhl QS system, N-butanoyl-l-homoserine lactone (C4-HSL). In a mouse model of a burn wound infection with P. aeruginosa, treatment with DMSO significantly decreased mouse mortality compared with that for mice in the control group. The capacity of DMSO to attenuate the pathogenicity of P. aeruginosa points to the potential use of DMSO as an antipathogenic agent for the treatment of P. aeruginosa infection. As a commonly used solvent, however, DMSO's impact on bacterial virulence calls for cautionary attention in its usage in biological, medicinal, and clinical studies. PMID:27645245
de Ménorval, Marie-Amélie; Mir, Lluis M; Fernández, M Laura; Reigada, Ramon
2012-01-01
Dimethyl sulfoxide (DMSO) has been known to enhance cell membrane permeability of drugs or DNA. Molecular dynamics (MD) simulations with single-component lipid bilayers predicted the existence of three regimes of action of DMSO: membrane loosening, pore formation and bilayer collapse. We show here that these modes of action are also reproduced in the presence of cholesterol in the bilayer, and we provide a description at the atomic detail of the DMSO-mediated process of pore formation in cholesterol-containing lipid membranes. We also successfully explore the applicability of DMSO to promote plasma membrane permeability to water, calcium ions (Ca(2+)) and Yo-Pro-1 iodide (Yo-Pro-1) in living cell membranes. The experimental results on cells in culture can be easily explained according to the three expected regimes: in the presence of low doses of DMSO, the membrane of the cells exhibits undulations but no permeability increase can be detected, while at intermediate DMSO concentrations cells are permeabilized to water and calcium but not to larger molecules as Yo-Pro-1. These two behaviors can be associated to the MD-predicted consequences of the effects of the DMSO at low and intermediate DMSO concentrations. At larger DMSO concentrations, permeabilization is larger, as even Yo-Pro-1 can enter the cells as predicted by the DMSO-induced membrane-destructuring effects described in the MD simulations.
de Ménorval, Marie-Amélie; Mir, Lluis M.; Fernández, M. Laura; Reigada, Ramon
2012-01-01
Dimethyl sulfoxide (DMSO) has been known to enhance cell membrane permeability of drugs or DNA. Molecular dynamics (MD) simulations with single-component lipid bilayers predicted the existence of three regimes of action of DMSO: membrane loosening, pore formation and bilayer collapse. We show here that these modes of action are also reproduced in the presence of cholesterol in the bilayer, and we provide a description at the atomic detail of the DMSO-mediated process of pore formation in cholesterol-containing lipid membranes. We also successfully explore the applicability of DMSO to promote plasma membrane permeability to water, calcium ions (Ca2+) and Yo-Pro-1 iodide (Yo-Pro-1) in living cell membranes. The experimental results on cells in culture can be easily explained according to the three expected regimes: in the presence of low doses of DMSO, the membrane of the cells exhibits undulations but no permeability increase can be detected, while at intermediate DMSO concentrations cells are permeabilized to water and calcium but not to larger molecules as Yo-Pro-1. These two behaviors can be associated to the MD-predicted consequences of the effects of the DMSO at low and intermediate DMSO concentrations. At larger DMSO concentrations, permeabilization is larger, as even Yo-Pro-1 can enter the cells as predicted by the DMSO-induced membrane-destructuring effects described in the MD simulations. PMID:22848583
Dimethyl sulfoxide induces oxidative stress in the yeast Saccharomyces cerevisiae.
Sadowska-Bartosz, Izabela; Pączka, Aleksandra; Mołoń, Mateusz; Bartosz, Grzegorz
2013-12-01
Dimethyl sulfoxide (DMSO) is used as a cryoprotectant for the preservation of cells, including yeast, and as a solvent for chemical compounds. We report that DMSO induces oxidative stress in the yeast. Saccharomyces cerevisiae wt strain EG-103 and its mutants Δsod1, Δsod2, and Δsod1 Δsod2 were used. Yeast were subjected to the action of 1-14% DMSO for 1 h at 28 °C. DMSO induced a concentration-dependent inhibition of yeast growth, the effect being more pronounced for mutants devoid of SOD (especially Δsod1 Δsod2). Cell viability was compromised. DMSO-concentration-dependent activity loss of succinate dehydrogenase, a FeS enzyme sensitive to oxidative stress, was observed. DMSO enhanced formation of reactive oxygen species, estimated with dihydroethidine in a concentration-dependent manner, the effect being again more pronounced in mutants devoid of superoxide dismutases. The content of cellular glutathione was increased with increasing DMSO concentrations, which may represent a compensatory response. Membrane fluidity, estimated by fluorescence polarization of DPH, was decreased by DMSO. These results demonstrate that DMSO, although generally considered to be antioxidant, induces oxidative stress in yeast cells. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Thermal Sensitivity and Dimethyl Sulfoxide (DMSO).
Takeda, Kotaro; Pokorski, Mieczyslaw; Okada, Yasumasa
2016-01-01
Dimethyl sulfoxide (DMSO) is commonly used as a solvent for hydrophobic substances, but the compound's innate bioactivity is an area of limited understanding. In this investigation we seek to determine the analgesic potential of DMSO. We addressed the issue by assessing the perception of thermal pain stimulus, using a 55 °C hotplate design, in conscious mice. The latency of withdrawal behaviors over a range of incremental accumulative intraperitoneal DMSO doses (0.5-15.5 g/kg) in the same mouse was taken as a measure of thermal endurance. The findings were that the latency, on average, amounted to 15-30 s and it differed inappreciably between the sequential DMSO conditions. Nor was it different from the pre-DMSO control conditions. Thus, DMSO did not influence the cutaneous thermal pain perception. The findings do not lend support to those literature reports that point to the plausible antinociceptive potential of DMSO as one of a plethora of its innate bioactivities. However, the findings concern the mouse's footpad nociceptors which have specific morphology and stimulus transduction pathways, which cannot exclude DMSO's antinociceptive influence on other types of pain or in other types of skin. Complex and as yet unresolved neural mechanisms of perception of cutaneous noxious heat stimulus should be further explored with alternative experimental designs.
Effects of DMSO and glycerol additives on the property of polyamide reverse osmosis membrane.
Wu, Fengjing; Liu, Xiaojuan; Au, Chaktong
2016-10-01
The polyamide reverse osmosis (RO) membranes were prepared through interfacial polymerization of m-phenylenediamine (MPD) and trimesoyl chloride (TMC). The use of dimethyl sulfoxide (DMSO) and glycerol as additives for the formation of thin-film composite (TFC) was investigated. We studied the effect of DMSO and glycerol addition on membrane property and RO performance. Microscopic morphology was examined by atomic force microscopy and scanning electron microscopy. The surface hydrophilicity was characterized on the basis of water contact angle and surface solid-liquid interfacial free energy (-ΔG SL ). Water flux and salt rejection ability of the membranes prepared with or without the additives were evaluated by cross-flow RO tests. The results reveal that the addition of DMSO and glycerol strongly influences the property of the TFC RO membrane. Compared to the MPD/TMC membrane fabricated without DMSO and glycerol, the MPD/TMC/DMSO/glycerol membrane has a rougher surface and is more hydrophilic, showing smaller water contact angle and larger -ΔG SL value. Without decrease in salt rejection ability, the MPD/TMC/DMSO/glycerol membrane shows water flux significantly larger than that of the MPD/TMC membrane. The unique property of the MPD/TMC/DMSO/glycerol membrane is attributed to the cooperative effect of DMSO and glycerol on membrane structure during the interfacial polymerization process.
Potential Use of Dimethyl Sulfoxide in Treatment of Infections Caused by Pseudomonas aeruginosa.
Guo, Qiao; Wu, Qiaolian; Bai, Dangdang; Liu, Yang; Chen, Lin; Jin, Sheng; Wu, Yuting; Duan, Kangmin
2016-12-01
Dimethyl sulfoxide (DMSO) is commonly used as a solvent to dissolve water-insoluble drugs or other test samples in both in vivo and in vitro experiments. It was observed during our experiment that DMSO at noninhibitory concentrations could significantly inhibit pyocyanin production in the human pathogen Pseudomonas aeruginosa Pyocyanin is an important pathogenic factor whose production is controlled by a cell density-dependent quorum-sensing (QS) system. Investigation of the effect of DMSO on QS showed that DMSO has significant QS antagonistic activities and concentrations of DMSO in the micromolar range attenuated a battery of QS-controlled virulence factors, including rhamnolipid, elastase, and LasA protease production and biofilm formation. Further study indicated that DMSO inhibition of biofilm formation and pyocyanin production was attained by reducing the level of production of an autoinducer molecule of the rhl QS system, N-butanoyl-l-homoserine lactone (C 4 -HSL). In a mouse model of a burn wound infection with P. aeruginosa, treatment with DMSO significantly decreased mouse mortality compared with that for mice in the control group. The capacity of DMSO to attenuate the pathogenicity of P. aeruginosa points to the potential use of DMSO as an antipathogenic agent for the treatment of P. aeruginosa infection. As a commonly used solvent, however, DMSO's impact on bacterial virulence calls for cautionary attention in its usage in biological, medicinal, and clinical studies. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Li, Xuan; Wang, Yan-Kui; Song, Zhi-Qiang; Du, Zhi-Qiang; Yang, Cai-Xia
2016-01-01
Meiotic maturation of mammalian oocytes is a precisely orchestrated and complex process. Dimethyl sulfoxide (DMSO), a widely used solvent, drug, and cryoprotectant, is capable of disturbing asymmetric cytokinesis of oocyte meiosis in mice. However, in pigs, DMSO's effect on oocyte meiosis still remains unknown. We aimed to evaluate if DMSO treatment will affect porcine oocyte meiosis and the underlying molecular changes as well. Interestingly, we did not observe the formation of the large first polar body and symmetric division for porcine oocytes treated with DMSO, contrary to findings reported in mice. 3% DMSO treatment could inhibit cumulus expansion, increase nuclear abnormality, disturb spindle organization, decrease reactive oxygen species level, and elevate mitochondrial membrane potential of porcine oocytes. There was no effect on germinal vesicle breakdown rate regardless of DMSO concentration. 3% DMSO treatment did not affect expression of genes involved in spindle organization (Bub1 and Mad2) and apoptosis (NF-κB, Pten, Bcl2, Caspase3 and Caspase9), however, it significantly decreased expression levels of pluripotency genes (Oct4, Sox2 and Lin28) in mature oocytes. Therefore, we demonstrated that disturbed cumulus expansion, chromosome alignment, spindle organization and pluripotency gene expression could be responsible for DMSO-induced porcine oocyte meiotic arrest and the lower capacity of subsequent embryo development. Our results provide new insights on DMSO's effect on porcine oocyte meiosis and raise safety concerns over DMSO's usage on female reproduction in both farm animals and humans.
DMSO Induces Dehydration near Lipid Membrane Surfaces
Cheng, Chi-Yuan; Song, Jinsuk; Pas, Jolien; Meijer, Lenny H.H.; Han, Songi
2015-01-01
Dimethyl sulfoxide (DMSO) has been broadly used in biology as a cosolvent, a cryoprotectant, and an enhancer of membrane permeability, leading to the general assumption that DMSO-induced structural changes in cell membranes and their hydration water play important functional roles. Although the effects of DMSO on the membrane structure and the headgroup dehydration have been extensively studied, the mechanism by which DMSO invokes its effect on lipid membranes and the direct role of water in this process are unresolved. By directly probing the translational water diffusivity near unconfined lipid vesicle surfaces, the lipid headgroup mobility, and the repeat distances in multilamellar vesicles, we found that DMSO exclusively weakens the surface water network near the lipid membrane at a bulk DMSO mole fraction (XDMSO) of <0.1, regardless of the lipid composition and the lipid phase. Specifically, DMSO was found to effectively destabilize the hydration water structure at the lipid membrane surface at XDMSO <0.1, lower the energetic barrier to dehydrate this surface water, whose displacement otherwise requires a higher activation energy, consequently yielding compressed interbilayer distances in multilamellar vesicles at equilibrium with unaltered bilayer thicknesses. At XDMSO >0.1, DMSO enters the lipid interface and restricts the lipid headgroup motion. We postulate that DMSO acts as an efficient cryoprotectant even at low concentrations by exclusively disrupting the water network near the lipid membrane surface, weakening the cohesion between water and adhesion of water to the lipid headgroups, and so mitigating the stress induced by the volume change of water during freeze-thaw. PMID:26200868
Jarocha, Danuta; Zuba-Surma, Ewa; Majka, Marcin
2016-01-01
Cryopreservation of bone marrow (BM), mobilized peripheral blood (mPB), and cord blood (CB) hematopoietic stem/progenitor cells (HSPCs) is a routine procedure before transplantation. The most commonly used cryoprotectant for HSPCs is dimethyl sulfoxide (DMSO). The objective of this study was to evaluate the influence of DMSO on surface receptor expression and chemotactic activities of HSPCs. We found that 10 min of incubation of human mononuclear cells (MNCs) with 10% DMSO significantly increases the percentage of CXCR4(+), CD38(+), and CD34(+) cells, resulting in an increase of CD34(+), CD34(+)CXCR4(+), and CD34(+)CXCR4(+)CD38(-) subpopulations. Furthermore, DMSO significantly increased chemotactic responsiveness of MNCs and CXCR4(+) human hematopoietic Jurkat cell line to a stromal cell-derived factor-1 (SDF-1) gradient. Furthermore, we demonstrated enhanced chemotaxis of human clonogenic progenitor cells to an SDF-1 gradient, which suggests that DMSO directly enhances the chemotactic responsiveness of early human progenitors. DMSO preincubation also caused lower internalization of the CXCR4 receptor. In parallel experiments, we found that approximately 30% more of DMSO-preincubated human CD45(+) and CD45(+)CD34(+) cells homed to the mouse BM 24 h after transplantation in comparison to control cells. Finally, we demonstrated considerably higher (25 days) survival of mice transplanted with DMSO-exposed MNCs than those transplanted with the control cells. We show in this study an unexpected beneficial influence of DMSO on HSPC homing and suggest that a short priming with DMSO before transplantation could be considered a new strategy to enhance cell homing and engraftment.
Wang, Chi-Chung; Lin, Sheng-Yi; Lai, Yi-Hua; Liu, Ya-Jung; Hsu, Yuan-Lin; Chen, Jeremy J. W.
2012-01-01
Background Dimethyl sulfoxide (DMSO) is an amphipathic molecule that displays a diversity of antitumor activities. Previous studies have demonstrated that DMSO can modulate AP-1 activity and lead to cell cycle arrest at the G1 phase. HLJ1 is a newly identified tumor and invasion suppressor that inhibits tumorigenesis and cancer metastasis. Its transcriptional activity is regulated by the transcription factor AP-1. However, the effects of DMSO on HLJ1 are still unknown. In the present study, we investigate the antitumor effects of DMSO through HLJ1 induction and demonstrate the mechanisms involved. Methods and Findings Low-HLJ1-expressing highly invasive CL1–5 lung adenocarcinoma cells were treated with various concentrations of DMSO. We found that DMSO can significantly inhibit cancer cell invasion, migration, proliferation, and colony formation capabilities through upregulation of HLJ1 in a concentration-dependent manner, whereas ethanol has no effect. In addition, the HLJ1 promoter and enhancer reporter assay revealed that DMSO transcriptionally upregulates HLJ1 expression through an AP-1 site within the HLJ1 enhancer. The AP-1 subfamily members JunD and JunB were significantly upregulated by DMSO in a concentration-dependent manner. Furthermore, pretreatment with DMSO led to a significant increase in the percentage of UV-induced apoptotic cells. Conclusions Our results suggest that DMSO may be an important stimulator of the tumor suppressor protein HLJ1 through AP-1 activation in highly invasive lung adenocarcinoma cells. Targeted induction of HLJ1 represents a promising approach for cancer therapy, which also implied that DMSO may serve as a potential lead compound or coordinated ligand for the development of novel anticancer drugs. PMID:22529897
Effect of dimethyl sulfoxide on dentin collagen.
Mehtälä, P; Pashley, D H; Tjäderhane, L
2017-08-01
Infiltration of adhesive on dentin matrix depends on interaction of surface and adhesive. Interaction depends on dentin wettability, which can be enhanced either by increasing dentin surface energy or lowering the surface energy of adhesive. The objective was to examine the effect of dimethyl sulfoxide (DMSO) on demineralized dentin wettability and dentin organic matrix expansion. Acid-etched human dentin was used for sessile drop contact angle measurement to test surface wetting on 1-5% DMSO-treated demineralized dentin surface, and linear variable differential transformer (LVDT) to measure expansion/shrinkage of dentinal matrix. DMSO-water binary liquids were examined for surface tension changes through concentrations from 0 to 100% DMSO. Kruskal-Wallis and Mann-Whitney tests were used to test the differences in dentin wettability, expansion and shrinkage, and Spearman test to test the correlation between DMSO concentration and water surface tension. The level of significance was p<0.05. Pretreatment with 1-5% DMSO caused statistically significant concentration-dependent increase in wetting: the immediate contact angles decreased by 11.8% and 46.6% and 60s contact angles by 9.5% and 47.4% with 1% and 5% DMSO, respectively. DMSO-water mixtures concentration-dependently expanded demineralized dentin samples less than pure water, except with high (≥80%) DMSO concentrations which expanded demineralized dentin more than water. Drying times of LVDT samples increased significantly with the use of DMSO. Increased dentin wettability may explain the previously demonstrated increase in adhesive penetration with DMSO-treated dentin, and together with the expansion of collagen matrix after drying may also explain previously observed increase in dentin adhesive bonding. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Morris, Curly; de Wreede, Liesbeth; Scholten, Marijke; Brand, Ronald; van Biezen, Anja; Sureda, Anna; Dickmeiss, Ebbe; Trneny, Marek; Apperley, Jane; Chiusolo, Patrizia; van Imhoff, Gustaaf W; Lenhoff, Stig; Martinelli, Giovanni; Hentrich, Marcus; Pabst, Thomas; Onida, Francesco; Quinn, Michael; Kroger, Nicolaus; de Witte, Theo; Ruutu, Tapani
2014-10-01
Dimethyl sulfoxide (DMSO) is essential for the preservation of liquid nitrogen-frozen stem cells, but is associated with toxicity in the transplant recipient. In this prospective noninterventional study, we describe the use of DMSO in 64 European Blood and Marrow Transplant Group centers undertaking autologous transplantation on patients with myeloma and lymphoma and analyze side effects after return of DMSO-preserved stem cells. While the majority of centers continue to use 10% DMSO, a significant proportion either use lower concentrations, mostly 5 or 7.5%, or wash cells before infusion (some for selected patients only). In contrast, the median dose of DMSO given (20 mL) was much less than the upper limit set by the same institutions (70 mL). In an accompanying statistical analysis of side effects noted after return of DMSO-preserved stem cells, we show that patients in the highest quartile receiving DMSO (mL and mL/kg body weight) had significantly more side effects attributed to DMSO, although this effect was not observed if DMSO was calculated as mL/min. Dividing the myeloma and lymphoma patients each into two equal groups by age we were able to confirm this result in all but young myeloma patients in whom an inversion of the odds ratio was seen, possibly related to the higher dose of melphalan received by young myeloma patients. We suggest better standardization of preservation method with reduced DMSO concentration and attention to the dose of DMSO received by patients could help reduce the toxicity and morbidity of the transplant procedure. © 2014 AABB.
Roy, Susmita; Bagchi, Biman
2013-07-21
Experimental and simulation studies have uncovered at least two anomalous concentration regimes in water-dimethyl sulfoxide (DMSO) binary mixture whose precise origin has remained a subject of debate. In order to facilitate time domain experimental investigation of the dynamics of such binary mixtures, we explore strength or extent of influence of these anomalies in dipolar solvation dynamics by carrying out long molecular dynamics simulations over a wide range of DMSO concentration. The solvation time correlation function so calculated indeed displays strong composition dependent anomalies, reflected in pronounced non-exponential kinetics and non-monotonous composition dependence of the average solvation time constant. In particular, we find remarkable slow-down in the solvation dynamics around 10%-20% and 35%-50% mole percentage. We investigate microscopic origin of these two anomalies. The population distribution analyses of different structural morphology elucidate that these two slowing down are reflections of intriguing structural transformations in water-DMSO mixture. The structural transformations themselves can be explained in terms of a change in the relative coordination number of DMSO and water molecules, from 1DMSO:2H2O to 1H2O:1DMSO and 1H2O:2DMSO complex formation. Thus, while the emergence of first slow down (at 15% DMSO mole percentage) is due to the percolation among DMSO molecules supported by the water molecules (whose percolating network remains largely unaffected), the 2nd anomaly (centered on 40%-50%) is due to the formation of the network structure where the unit of 1DMSO:1H2O and 2DMSO:1H2O dominates to give rise to rich dynamical features. Through an analysis of partial solvation dynamics an interesting negative cross-correlation between water and DMSO is observed that makes an important contribution to relaxation at intermediate to longer times.
Preferential solvatation of human serum albumin in dimethylsulfoxide-H2O binary solution
NASA Astrophysics Data System (ADS)
Grigoryan, K. R.
2009-12-01
The preferential solvatation of human serum albumin (HSA) in dimethylsulfoxide (DMSO) aqueous solutions were studied using the densitometry method. It has been shown that at DMSO low concentrations HSA undergoes to preferential hydration, but at DMSO higher concentrations preferential binding of DMSO molecules to protein occurs. It has been estimated that DMSO exhibits stabilizing/destabilizing effect on HSA structure which is explained in terms of hydration/solvatation of protein, on the one hand, and the medium structure enhancement/disruption around the protein molecule, on the other hand.
Cryopreservation of American kestrel semen with dimethylsulfoxide
Gee, G.F.; Morrell, C.A.; Franson, J. Christian; Pattee, Oliver H.
1993-01-01
Semen samples from 15 male American Kestrels (Falco sparverius) were frozen in dimethyl sulfoxide (DMSO). The semen was thawed 1-14 mo later and used to inseminate six females during three breeding seasons. Kestrels inseminated with thawed semen containing 4% DMSO produced only infertile eggs (N = 14). Kestrels inseminated with thawed semen containing 6%, 8%, or 10% DMSO produced fertile eggs (N = 14) and live chicks (N = 6). Progressive motility of spermatozoa in thawed semen containing 10% DMSO was less (44 ? 6%) than in thawed semen containing 6% (62 ? 10%) or 8% (61 ? 1%) DMSO.
In situ DMSO hydration measurements of HTS compound libraries.
Ellson, R; Stearns, R; Mutz, M; Brown, C; Browning, B; Harris, D; Qureshi, S; Shieh, J; Wold, D
2005-09-01
Compounds used in high throughput screening (HTS) are typically dissolved in DMSO. These solutions are stored automation-friendly racks of wells or tubes. DMSO is hygroscopic and quickly absorbs water from the atmosphere. When present in DMSO compound solutions, water can accelerate degradation and precipitation. Understanding DMSO hydration in an HTS compound library can improve storage and screening methods by managing the impact of water on compound stability. A non-destructive, acoustic method compatible with HTS has been developed to measure water content in DMSO solutions. Performance of this acoustic method was compared with an optical technique and found to be in good agreement. The accuracy and precision of acoustic measurements was shown to be under 3% over the tested range of DMSO solutions (0% to 35% water by volume) and insensitive to the presence of HTS compounds at typical storage concentrations. Time course studies of hydration for wells in 384-well and 1536-well microplates were performed. Well geometry, fluid volume, well position and atmospheric conditions were all factors in hydration rate. High rates of hydration were seen in lower-volume fills, higher-density multi-well plates and when there was a large differential between the humidity of the lab and the water content of the DMSO. For example, a 1536-well microplate filled with 2microL of 100% DMSO exposed for one hour to a laboratory environment with approximately 40% relative humidity will absorb over 6% water by volume. Understanding DMSO hydration rates as well as the ability to reverse library hydration are important steps towards managing stability and availability of compound libraries.
Almeida, K G; Oliveira, R J; Dourado, D M; Filho, E A; Fernandes, W S; Souza, A S; Araújo, F H S
2015-12-28
This study investigated the effects of hyperbaric oxygen therapy (HBOT) and dimethyl sulfoxide (DMSO) in tissue necrosis, genotoxicity, and cell apoptosis. Random skin flaps were made in 50 male Wistar rats, randomly divided into the following groups. Control group (CT), wherein a rectangular skin section (2 x 8 cm) was dissected from the dorsal muscle layer, preserving the cranial vessels, lifted, and refixed to the bed; distilled water (DW) group, in which DW was injected into the distal half of the skin flap; DMSO group, wherein 5% DMSO was injected; HBOT group, comprising animals treated only with HBOT; and HBOT + DMSO group, comprising animals treated with 100% oxygen at 2.5 atmospheres absolute for 1 h, 2 h after the experiment, daily for 10 consecutive days. A skinflap specimen investigated by microscopy. The percentage of necrosis was not significantly different between groups. The cell viability index was significantly different between groups (P < 0.001): 87.40% (CT), 86.20% (DW), 84.60% (DMSO), 86.60% (DMSO + HBO), and 91% (HBO) (P < 0.001), as was the cell apoptosis index of 12.60 (CT), 12.00 (DW), 15.40 (DMSO), 9.00 (HBO), and 12.00 (DMSO + HBO) (P < 0.001). The genotoxicity test revealed the percentage of cells with DNA damage to be 22.80 (CT), 22.60 (DW), 26.00 (DMSO), 8.80 (DMSO + HBO), and 7.20 (HBO) (P < 0.001). Although the necrotic area was not different between groups, there was a significant reduction in the cellular DNA damage and apoptosis index in the HBOT group.
Diapause Prevention Effect of Bombyx mori by Dimethyl Sulfoxide
Yamamoto, Takayuki; Mase, Keisuke; Sawada, Hiroshi
2013-01-01
HCl treatment has been, for about 80 years, the primary method for the prevention of entry into embryonic diapauses of Bombyx mori. This is because no method is as effective as the HCl treatment. In this study, we discovered that dimethyl sulfoxide (DMSO) prevented entry into the diapause of the silkworm, Bombyx mori. The effect of diapause prevention was 78% as a result of treatment with 100% DMSO concentration, and the effect was comparable to that of the HCl treatment. In contrast, in the case of non-diapause eggs, hatchability was decreased by DMSO in a concentration-dependent manner. The effect of DMSO was restricted within 24 hours after oviposition of diapause eggs, and the critical period was slightly shorter than the effective period of the HCl treatment. DMSO analogs, such as dimethyl formamide (DMF) and dimethyl sulfide (DMS), did little preventive effect against the diapause. Furthermore, we also investigated the permeation effects of chemical compounds by DMSO. When treated with an inhibitor of protein kinase CK2 (CK2) dissolved in DMSO, the prevention rate of the diapause was less than 40%. This means that the inhibition effect by the CK2 inhibitor was the inhibition of embryonic development after diapause prevention by DMSO. These data suggest that DMSO has the effects of preventing from entering into the diapause and permeation of chemicals into diapause eggs. PMID:23675522
Wang, Chuan; Xiao, Ran; Cao, Yi-Lin; Yin, Hong-Yu
2017-09-09
Cryopreservation provides an effective technique to maintain the functional properties of human adipose-derived stem cells (ASCs). Dimethylsulfoxide (DMSO) and fetal bovine serum (FBS) are frequently used as cryoprotectants for this purpose. However, the use of DMSO can result in adverse effects and toxic reactions and FBS can introduce risks of viral, prion, zoonose contaminations and evoke immune responses after injection. It is therefore crucial to reduce DMSO concentrations and use serum-free solution in the cryopreservation process. Human platelet lysate (PL) is a promising candidate for use as an alternative to DMSO and FBS. Therefore, in this study, with an aim to identify a cryoprotective agent for ASC cryopreservation, we determined the viability, proliferation potential, phenotype, and differentiation potential of fresh ASCs and ASCs cryopreserved using different combinations of three cryoprotective agents: fetal bovine serum (FBS), dimethylsulfoxide (DMSO), and human platelet lysate (PL). The viability of the ASCs cryopreserved with 90% FBS and 10% DMSO, 95% FBS and 5% DMSO, and 97% PL and 3% DMSO was >80%, and the proliferation potentials, cell phenotypes, and differentiation potentials of these groups were similar to those of fresh ASCs. Together, our findings suggest that a combination of 97% PL and 3% DMSO is an ideal cryoprotective agent for the efficient cryopreservation of human ASCs. Copyright © 2017 Elsevier Inc. All rights reserved.
Factors affecting degradation of dimethyl sulfoxide (DMSO) by fluidized-bed Fenton process.
Bellotindos, Luzvisminda M; Lu, Meng-Hsuan; Methatham, Thanakorn; Lu, Ming-Chun
2014-12-01
In this study, the target compound is dimethyl sulfoxide (DMSO), which is used as a photoresist stripping solvent in the semiconductor and thin-film transistor liquid crystal display (TFT-LCD) manufacturing processes. The effects of the operating parameters (pH, Fe(2+) and H2O2 concentrations) on the degradation of DMSO in the fluidized-bed Fenton process were examined. This study used the Box-Behnken design (BBD) to investigate the optimum conditions of DMSO degradation. The highest DMSO removal was 98 % for pH 3, when the H2O2 to Fe(2+) molar ratio was 12. At pH 2 and 4, the highest DMSO removal was 82 %, when the H2O2 to Fe(2+) molar ratio was 6.5. The correlation of DMSO removal showed that the effect of the parameters on DMSO removal followed the order Fe(2+) > H2O2 > pH. From the BBD prediction, the optimum conditions were pH 3, 5 mM of Fe(2+), and 60 mM of H2O2. The difference between the experimental value (98 %) and the predicted value (96 %) was not significant. The removal efficiencies of DMSO, chemical oxygen demand (COD), total organic carbon (TOC), and iron in the fluidized-bed Fenton process were higher than those in the traditional Fenton process.
Kanno, H; Kajiwara, K; Miyata, K
2010-05-21
Supercooling behavior of aqueous dimethylsulfoxide (DMSO) solution was investigated as a function of DMSO concentration and at high pressures. A linear relationship was observed for T(H) (homogeneous ice nucleation temperature) and T(m) (melting temperature) for the supercooling of aqueous DMSO solution at normal pressure. Analysis of the DTA (differential thermal analysis) traces for homogeneous ice crystallization in the bottom region of the T(H) curve for a DMSO solution of R=20 (R: moles of water/moles of DMSO) at high pressures supported the contention that the second critical point (SCP) of liquid water should exist at P(c2)= approximately 200 MPa and at T(c2)<-100 degrees C (P(c2): pressure of SCP, T(c2): temperature of SCP). The presence of two T(H) peaks for DMSO solutions (R=15, 12, and 10) suggests that phase separation occurs in aqueous DMSO solution (R
NASA Astrophysics Data System (ADS)
Kanno, H.; Kajiwara, K.; Miyata, K.
2010-05-01
Supercooling behavior of aqueous dimethylsulfoxide (DMSO) solution was investigated as a function of DMSO concentration and at high pressures. A linear relationship was observed for TH (homogeneous ice nucleation temperature) and Tm (melting temperature) for the supercooling of aqueous DMSO solution at normal pressure. Analysis of the DTA (differential thermal analysis) traces for homogeneous ice crystallization in the bottom region of the TH curve for a DMSO solution of R =20 (R: moles of water/moles of DMSO) at high pressures supported the contention that the second critical point (SCP) of liquid water should exist at Pc2=˜200 MPa and at Tc2<-100 °C (Pc2: pressure of SCP, Tc2: temperature of SCP). The presence of two TH peaks for DMSO solutions (R =15, 12, and 10) suggests that phase separation occurs in aqueous DMSO solution (R ≤15) at high pressures and low temperatures (<-90 °C). The pressure dependence of the two TH curves for DMSO solutions of R =10 and 12 indicates that the two phase-separated components in the DMSO solution of R =10 have different liquid water structures [LDL-like and HDL-like structures (LDL: low-density liquid water, HDL: high-density liquid water)] in the pressure range of 120-230 MPa.
Dimethyl sulfoxide damages mitochondrial integrity and membrane potential in cultured astrocytes.
Yuan, Chan; Gao, Junying; Guo, Jichao; Bai, Lei; Marshall, Charles; Cai, Zhiyou; Wang, Linmei; Xiao, Ming
2014-01-01
Dimethyl sulfoxide (DMSO) is a polar organic solvent that is used to dissolve neuroprotective or neurotoxic agents in neuroscience research. However, DMSO itself also has pharmacological and pathological effects on the nervous system. Astrocytes play a central role in maintaining brain homeostasis, but the effect and mechanism of DMSO on astrocytes has not been studied. The present study showed that exposure of astrocyte cultures to 1% DMSO for 24 h did not significantly affect cell survival, but decreased cell viability and glial glutamate transporter expression, and caused mitochondrial swelling, membrane potential impairment and reactive oxygen species production, and subsequent cytochrome c release and caspase-3 activation. DMSO at concentrations of 5% significantly inhibited cell variability and promoted apoptosis of astrocytes, accompanied with more severe mitochondrial damage. These results suggest that mitochondrial impairment is a primary event in DMSO-induced astrocyte toxicity. The potential cytotoxic effects on astrocytes need to be carefully considered during investigating neuroprotective or neurotoxic effects of hydrophobic agents dissolved by DMSO.
Dimethyl Sulfoxide Damages Mitochondrial Integrity and Membrane Potential in Cultured Astrocytes
Yuan, Chan; Gao, Junying; Guo, Jichao; Bai, Lei; Marshall, Charles; Cai, Zhiyou; Wang, Linmei; Xiao, Ming
2014-01-01
Dimethyl sulfoxide (DMSO) is a polar organic solvent that is used to dissolve neuroprotective or neurotoxic agents in neuroscience research. However, DMSO itself also has pharmacological and pathological effects on the nervous system. Astrocytes play a central role in maintaining brain homeostasis, but the effect and mechanism of DMSO on astrocytes has not been studied. The present study showed that exposure of astrocyte cultures to 1% DMSO for 24 h did not significantly affect cell survival, but decreased cell viability and glial glutamate transporter expression, and caused mitochondrial swelling, membrane potential impairment and reactive oxygen species production, and subsequent cytochrome c release and caspase-3 activation. DMSO at concentrations of 5% significantly inhibited cell variability and promoted apoptosis of astrocytes, accompanied with more severe mitochondrial damage. These results suggest that mitochondrial impairment is a primary event in DMSO-induced astrocyte toxicity. The potential cytotoxic effects on astrocytes need to be carefully considered during investigating neuroprotective or neurotoxic effects of hydrophobic agents dissolved by DMSO. PMID:25238609
Cevallos, Ana María; Herrera, Juliana; López-Villaseñor, Imelda; Hernández, Roberto
2017-01-01
Trypanosoma cruzi is the etiological agent of Chagas disease. Epimastigote forms of T. cruzi can be readily cultured in axenic conditions. Ethanol and dimethyl sulfoxide (DMSO) are commonly used solvents employed as vehicles for hydrophobic compounds. In order to produce a reference plot of solvent dependent growth inhibition for T. cruzi research, the growth of epimastigotes was analyzed in the presence of different concentrations of ethanol (0.1–4.0%) and DMSO (0.5–7.5%). The ability of the parasites to resume growth after removal of these solvents was also examined. As expected, both ethanol and DMSO produced a dose-dependent inhibition of cellular growth. Parasites could recover normal growth after 9 days in up to 2% ethanol or 5% DMSO. Since DMSO was better tolerated than ethanol, it is thus recommended to prefer DMSO over ethanol in the case of a similar solubility of a given compound. PMID:28285511
Robie, Richard A.; Hemingway, Bruce S.
1991-01-01
The heat capacities of kaolinite (7 to 380 K) and of dimethyl sulfoxide (DMSO) intercalated kaolinite (20 to 310 K) were measured by adiabatically shielded calorimetry. The third law entropy of kaolinite, S°298, is 200.9 ± 0.5 J ⋅ mol-1 ⋅ K-1.The "melting point" of the DMSO in the intercalate, 288.0 ± 0.2 K, is 3.7 K lower than that of pure DMSO, 291.67 K. The heat capacity of DMSO in the intercalate above 290 K is approximately 5.2 J ⋅ mol-1 ⋅ K-1 smaller than that of pure liquid DMSO at the same temperature.
Şimşek, Ece; Aydemir, Esra Arslan; İmir, Nilüfer; Koçak, Orhan; Kuruoğlu, Aykut; Fışkın, Kayahan
2015-10-01
Dimethyl sulfoxide (DMSO) is widely used in biological research as a general solvent. While it has been previously demonstrated that DMSO possesses a wide range of pharmacological effects, there is no published work regarding the effects of DMSO on pro-angiogenic factor levels. This study was designed to investigate the possible effects of DMSO on the levels of three pro-angiogenic factors released from HeLa cells in vitro. Cells were treated with two different and previously determined concentrations of DMSO. The cytotoxic effects of DMSO concentrations on HeLa cells were determined via MTT. Survival rates of DMSO-treated cells were determined by Invitrogen live/dead viability/cytotoxicity kit and trypan blue exclusion assay. Changes in the pro-angiogenic levels in media were evaluated by Cayman's Substance P Enzyme Immunoassay ELISA kit. Vascular endothelial growth factor ELISA kit and interferon gamma ELISA kit for substance P, VEGF and IFNγ respectively. Changes in substance P levels were corrected by standard western blotting. Changes in VEGF and IFNγ levels were corrected both by western blot and real time PCR. Treatment with 1.4 μM DMSO caused a time-dependent inhibition of cell proliferation at 24, 48 and 72 h. 1.4 μM DMSO caused a significant reduction in VEGF levels at 72 h of incubation and sharp increases in IFNγ levels at both 48 and 72 h of incubation. According to real time PCR analyses, DMSO (1.4 μM) exhibited an inhibitory effect on VEGF but acted as an augmenter of IFNγ release on HeLa cells in vitro. This is the first report showing that the general solvent DMSO suppressed HeLa cell proliferation, decreased the levels of two pro-angiogenic factors (substance P and VEGF) and increased the release of an anti-angiogenic factor IFNγ in vitro. Copyright © 2015 Elsevier Ltd. All rights reserved.
van der Mark, Vincent A; Rudi de Waart, D; Shevchenko, Valery; Elferink, Ronald P J Oude; Chamuleau, Robert A F M; Hoekstra, Ruurdtje
2017-01-01
Dimethylsulfoxide (DMSO) induces cellular differentiation and expression of drug metabolic enzymes in the human liver cell line HepaRG; however, DMSO also induces cell death and interferes with cellular activities. The aim of this study was to examine whether overexpression of the constitutive androstane receptor (CAR, NR1I3), the nuclear receptor controlling various drug metabolism genes, would sufficiently promote differentiation and drug metabolism in HepaRG cells, optionally without using DMSO. By stable lentiviral overexpression of CAR, HepaRG cultures were less affected by DMSO in total protein content and obtained increased resistance to acetaminophen- and amiodarone-induced cell death. Transcript levels of CAR target genes were significantly increased in HepaRG-CAR cultures without DMSO, resulting in increased activities of cytochrome P450 (P450) enzymes and bilirubin conjugation to levels equal or surpassing those of HepaRG cells cultured with DMSO. Unexpectedly, CAR overexpression also increased the activities of non-CAR target P450s, as well as albumin production. In combination with DMSO treatment, CAR overexpression further increased transcript levels and activities of CAR targets. Induction of CYP1A2 and CYP2B6 remained unchanged, whereas CYP3A4 was reduced. Moreover, the metabolism of low-clearance compounds warfarin and prednisolone was increased. In conclusion, CAR overexpression creates a more physiologically relevant environment for studies on hepatic (drug) metabolism and differentiation in HepaRG cells without the utilization of DMSO. DMSO still may be applied to accomplish higher drug metabolism, required for sensitive assays, such as low-clearance studies and identification of (rare) metabolites, whereas reduced total protein content after DMSO culture is diminished by CAR overexpression. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
Kais, B; Schneider, K E; Keiter, S; Henn, K; Ackermann, C; Braunbeck, T
2013-09-15
Since 2007, when REACH came into force, the fish embryo test has received increasing attention as a potential alternative for the acute fish test. Due to its low toxicity and the ability to permeate biological membranes without significant damage to their structural integrity, dimethyl sulfoxide (DMSO) is a commonly used solvent in the fish embryo test. Little is known, however, about the membrane penetration properties of DMSO, the impact of different concentrations of DMSO on the potential barrier function of the zebrafish chorion and on changes in the uptake of chemicals into the embryo. Therefore, in the present study, the fluorescent dyes fluorescein (mol wt 332; Pow 3.4) and 2,7-dichlorofluorescein (mol wt 401; Pow 4.7), both substances with limited water solubility, were used to visualize the uptake into the egg as well as the accumulation in the embryo of the zebrafish depending on different concentrations of DMSO. The distribution of fluorescein within the egg compartments varied with DMSO concentration: When dissolved in 0.01% DMSO, fluorescein did not pass the chorion. In contrast, concentrations ≥ 0.1% DMSO increasingly facilitated the uptake into the perivitelline space. In contrast, the uptake of 2,7-dichlorofluorescein was not substantially increased with rising DMSO concentrations, indicating the importance of factors other than the solvent (e.g. mol wt). With respect to the fish embryo test, results indicate that DMSO may be used without complications as a solvent, however, only at a maximum concentration of 0.01% (0.1 mL/L) as already indicated in the OECD difficult substances paper (OECD, 2000). Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Gu-Jiun; Sytwu, Huey-Kang; Yu, Jyh-Cherng
Type 1 diabetes mellitus (T1D) is caused by the destruction of insulin-producing β cells in pancreatic islets by autoimmune T cells. Islet transplantation has been established as an effective therapeutic strategy for T1D. However, the survival of islet grafts can be disrupted by recurrent autoimmunity. Dimethyl sulfoxide (DMSO) is a solvent for organic and inorganic substances and an organ-conserving agent used in solid organ transplantations. DMSO also exerts anti-inflammatory, reactive oxygen species scavenger and immunomodulatory effects and therefore exhibits therapeutic potential for the treatment of several human inflammatory diseases. In this study, we investigated the therapeutic potential of DMSO inmore » the inhibition of autoimmunity. We treated an animal model of islet transplantation (NOD mice) with DMSO. The survival of the syngeneic islet grafts was significantly prolonged. The population numbers of CD8, DC and Th1 cells were decreased, and regulatory T (Treg) cell numbers were increased in recipients. The expression levels of IFN-γ and proliferation of T cells were also reduced following DMSO treatment. Furthermore, the differentiation of Treg cells from naive CD4 T cells was significantly increased in the in vitro study. Our results demonstrate for the first time that in vivo DMSO treatment suppresses spontaneous diabetes and autoimmune recurrence in NOD mice by inhibiting the Th1 immune response and inducing the differentiation of Treg cells. - Highlights: • We report a therapeutic potential of DMSO in autoimmune diabetes. • DMSO exhibits an immune modulatory effect. • DMSO treatment increases regulatory T cell differentiation. • The increase in STAT5 signaling pathway explains the effect of DMSO in Tregs.« less
Dimethyl Sulfoxide Induces Both Direct and Indirect Tau Hyperphosphorylation
Julien, Carl; Marcouiller, François; Bretteville, Alexis; El Khoury, Noura B.; Baillargeon, Joanie; Hébert, Sébastien S.; Planel, Emmanuel
2012-01-01
Dimethyl sulfoxide (DMSO) is widely used as a solvent or vehicle for biological studies, and for treatment of specific disorders, including traumatic brain injury and several forms of amyloidosis. As Alzheimer’s disease (AD) brains are characterized by deposits of β-amyloid peptides, it has been suggested that DMSO could be used as a treatment for this devastating disease. AD brains are also characterized by aggregates of hyperphosphorylated tau protein, but the effect of DMSO on tau phosphorylation is unknown. We thus investigated the impact of DMSO on tau phosphorylation in vitro and in vivo. One hour following intraperitoneal administration of 1 or 2 ml/kg DMSO in mice, no change was observed in tau phosphorylation. However, at 4 ml/kg, tau was hyperphosphorylated at AT8 (Ser202/Thr205), PHF-1 (Ser396/Ser404) and AT180 (Thr231) epitopes. At this dose, we also noticed that the animals were hypothermic. When the mice were maintained normothermic, the effect of 4 ml/kg DMSO on tau hyperphosphorylation was prevented. On the other hand, in SH-SY5Y cells, 0.1% DMSO induced tau hyperphosphorylation at AT8 and AT180 phosphoepitopes in normothermic conditions. Globally, these findings demonstrate that DMSO can induce tau hyperphosphorylation indirectly via hypothermia in vivo, and directly in vitro. These data should caution researchers working with DMSO as it can induce artifactual results both in vivo and in vitro. PMID:22768202
Endothelium-Dependent and -Independent Vasodilator Effects of Dimethyl Sulfoxide in Rat Aorta.
Kaneda, Takeharu; Sasaki, Noriyasu; Urakawa, Norimoto; Shimizu, Kazumasa
2016-01-01
This study examined the mechanism of vasorelaxation induced by dimethyl sulfoxide (DMSO) in endothelium-intact and -denuded rat aorta. DMSO (0.1-3%) inhibited phenylephrine (PE, 1 μmol/l)-induced contraction in a dose-dependent manner. However, this relaxation was lower in the absence of the endothelium. Increase in DMSO-induced relaxation in the presence of the endothelium was attenuated by preincubation in L-NG-nitroarginine methyl ester (L-NAME, 100 μmol/l) and by the removal of the endothelium. In the aorta with endothelium, DMSO (3%) and CCh (3 μmol/l) increased cGMP contents, significantly and L-NAME (100 μmol/l) inhibited the DMSO-induced increases of cGMP. In fura 2-loaded endothelium-denuded aorta, cumulative application of DMSO (1-3%) inhibited PE-induced muscle tension; however, this application did not affect the [Ca2+]i level. In PE-precontracted endothelium-denuded aorta, relaxation responses to fasudil were significantly less in the presence of DMSO compared to the control. These results suggest that DMSO causes relaxation by increasing the cGMP content in correlation with the release of NO from endothelial cells and by decreasing the Ca2+ sensitivity of contractile elements partly via inhibiting Rho-kinase in rat aorta. © 2016 S. Karger AG, Basel.
The Permeability Enhancing Mechanism of DMSO in Ceramide Bilayers Simulated by Molecular Dynamics
Notman, Rebecca; den Otter, Wouter K.; Noro, Massimo G.; Briels, W. J.; Anwar, Jamshed
2007-01-01
The lipids of the topmost layer of the skin, the stratum corneum, represent the primary barrier to molecules penetrating the skin. One approach to overcoming this barrier for the purpose of delivery of active molecules into or via the skin is to employ chemical permeability enhancers, such as dimethylsulfoxide (DMSO). How these molecules exert their effect at the molecular level is not understood. We have investigated the interaction of DMSO with gel-phase bilayers of ceramide 2, the predominant lipid in the stratum corneum, by means of molecular dynamics simulations. The simulations satisfactorily reproduce the phase behavior and the known structural parameters of ceramide 2 bilayers in water. The effect of DMSO on the gel-phase bilayers was investigated at various concentrations over the range 0.0−0.6 mol fraction DMSO. The DMSO molecules accumulate in the headgroup region and weaken the lateral forces between the ceramides. At high concentrations of DMSO (≥0.4 mol fraction), the ceramide bilayers undergo a phase transition from the gel phase to the liquid crystalline phase. The liquid-crystalline phase of ceramides is expected to be markedly more permeable to solutes than the gel phase. The results are consistent with the experimental evidence that high concentrations of DMSO fluidize the stratum corneum lipids and enhance permeability. PMID:17513383
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Bin; Xu, Wu; Yan, Pengfei
The conventional DMSO-based electrolyte (1 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in DMSO) is unstable against the Li metal anode and therefore cannot be used directly in practical Li-O2 batteries. Here, we demonstrate that a highly concentrated electrolyte based on LiTFSI in DMSO (with a molar ratio of 1:3) can greatly improve the stability of the Li metal anode against DMSO and significantly improve the cycling stability of Li-O2 batteries. This highly concentrated electrolyte contains no free DMSO solvent molecules, but only complexes of (TFSI–)a-Li+-(DMSO)b (where a + b = 4), and thus enhances their stability with Li metal anodes. In addition,more » such salt-solvent complexes have higher Gibbs activation energy barriers than the free DMSO solvent molecules, indicating improved stability of the electrolyte against the attack of superoxide radical anions. Therefore, the stability of this highly concentrated electrolyte at both Li metal anodes and carbon-based air electrodes has been greatly enhanced, resulting in improved cyclic stability of Li-O2 batteries. The fundamental stability of the electrolyte with free-solvent against the chemical and electrochemical reactions can also be used to enhance the stability of other electrochemical systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Mingfu; Lau, Kah Chun; Ren, Xiaodi
Alkali metal-oxygen batteries are of great interests for energy storage because of their unparalleled theoretical energy densities. Particularly attractive is the emerging Na-O 2 battery because of the formation of superoxide as the discharge product. Dimethyl sulfoxide (DMSO) is a promising solvent for this battery but its instability towards Na makes it impractical in the Na-O 2 battery. Here in this paper, we report the enhanced stability of Na in DMSO solutions containing concentrated sodium trifluoromethanesulfonimide (NaTFSI) salts (>3molkg -1). Raman spectra of NaTFSI/DMSO electrolytes and abinitio molecular dynamics simulation reveal the Na + solvation number in DMSO and themore » formation of Na(DMSO) 3(TFSI)-like solvation structure. The majority of DMSO molecules solvating Na + in concentrated solutions reduces the available free DMSO molecules that can react with Na and renders the TFSI anion decomposition, which protects Na from reacting with the electrolyte. Using these concentrated electrolytes, Na-O 2 batteries can be cycled forming sodium superoxide (NaO 2) as the sole discharge product with improved long cycle life, highlighting the beneficial role of concentrated electrolytes for Na-based batteries.« less
NASA Astrophysics Data System (ADS)
Dabkowska, Aleksandra P.; Lawrence, M. Jayne; McLain, Sylvia E.; Lorenz, Christian D.
2013-01-01
Molecular dynamics simulations are used to provide a detailed investigation of the hydrogen bond networks around the phosphatidylcholine (PC) head group in 1,2-dipropionyl-sn-glycero-3-phosphocholine in pure water, 10 mol.% and 30 mol.% dimethylsulfoxide (DMSO)-water solutions. Specifically, it is observed that DMSO replaces those water molecules that are within the first solvation shell of the choline, phosphate and ester groups of the PC head group, but are not hydrogen-bonded to the group. The effect of the presence of DMSO on the hydrogen bond network around the PC head groups of the lipid changes with the concentration of DMSO. In comparison to the hydrogen bond network observed in the pure water system, the number of hydrogen-bonded chains of solvent molecules increases slightly for the 10 mol.% DMSO system, while, in the 30 mol.% DMSO system, the number of hydrogen-bonded chains of solvent molecules decreases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asmis, Lars; Tanner, Felix C.; Center for Integrative Human Physiology, University of Zuerich, Zuerich
2010-01-22
Background: DMSO is routinely infused together with hematopoietic cells in patients undergoing myeloablative therapy and was recently found to inhibit smooth muscle cells proliferation and arterial thrombus formation in the mouse by preventing tissue factor (TF), a key activator of the coagulation cascade. This study was designed to investigate whether DMSO prevents platelet activation and thus, whether it may represent an interesting agent to be used on drug eluting stents. Methods and results: Human venous blood from healthy volunteers was collected in citrated tubes and platelet activation was studied by cone and platelet analyzer (CPA) and rapid-platelet-function-assay (RPFA). CPA analysismore » showed that DMSO-treated platelets exhibit a lower adherence in response to shear stress (-15.54 {+-} 0.9427%, n = 5, P < 0.0001 versus control). Additionally, aggregometry studies revealed that DMSO-treated, arachidonate-stimulated platelets had an increased lag phase (18.0% {+-} 4.031, n = 9, P = 0.0004 versus control) as well as a decreased maximal aggregation (-6.388 {+-} 2.212%, n = 6, P = 0.0162 versus control). Inhibitory action of DMSO could be rescued by exogenous thromboxane A2 and was mediated, at least in part, by COX-1 inhibition. Conclusions: Clinically relevant concentrations of DMSO impair platelet activation by a thromboxane A2-dependent, COX-1-mediated effect. This finding may be crucial for the previously reported anti-thrombotic property displayed by DMSO. Our findings support a role for DMSO as a novel drug to prevent not only proliferation, but also thrombotic complications of drug eluting stents.« less
Casiraghi, Antonella; Ardovino, Paola; Minghetti, Paola; Botta, Cinzia; Gattini, Arrigo; Montanari, Luisa
2007-07-01
The topical treatment with dimethyl sulfoxide (DMSO) and/or alpha-tocopherol (alpha-T) is widely used in order to prevent the local complications of extravasation of cytostatic drugs and protect patients against skin ulceration. Till now, DMSO and alpha-T have been mainly used in solution. The goal of this study was to formulate semisolid preparations for cutaneous application differing in the hydrophilic and lipophilic properties and containing DMSO and alpha-T in combination. With respect to solutions, the use of semisolid preparations containing DMSO and alpha-T could be advantageous in patients having extravasation as DMSO and alpha-T can remain in contact with the skin over an extended period of time. As a consequence, the action of the active principles can be limited specifically on the injured skin area, reducing the cutaneous irritative effects of DMSO. The following types of semisolid formulations containing 50% m/m DMSO and 2.5% m/m alpha-T were prepared: hydrophilic ointment, o/w emulsion, hydrophilic gel and lipophilic gel. The ex vivo skin permeation of DMSO and alpha-T was evaluated by using modified Franz's diffusion cells and human stratum corneum and epidermis (SCE) as a membrane. The permeated and retained amounts of DMSO and alpha-T were determined. The oleogel preparation, the hydrophilic gel and the o/w emulsion were uniform in colour and aspect, without any evidences of phase separation over the period of the study. Hydrophilic ointments were discarded as they showed phase separation after 12 h. All formulations had a different behaviour in terms of skin permeability. In particular, hydrogel and o/w emulsion showed the best control on the drug release considering the interactions of the vehicle components with the SCE and the drugs partition between the vehicle and the SCE. The DMSO permeated amount after 24 h was 4.1 mg/cm(2) for hydrogel and 2.5 mg/cm(2) for emulsion while the permeated amount of pure DMSO after 24 h was 47.5 mg/cm(2). Therefore, aiming to reduce side effects after the topical application of the antidotes DMSO and alpha-T, these results suggested that hydrogel and o/w emulsion could be considered the most promising formulations for further clinical evaluations in managing of extravasation of anthracyclines.
Nagahara, Yukitoshi; Sekine, Hiroaki; Otaki, Mari; Hayashi, Masakazu; Murase, Norio
2016-02-01
Animal cells are generally cryopreserved in cryovials in a cell suspension state containing 5%-10% v/v dimethyl sulfoxide (DMSO) used as a cryoprotective agent. However, cryopreservation of cells in an attached state has not been intensively studied, and the effective freezing solution remains unknown. Here we determined the suitable DMSO concentration for the cryopreservation of human hepatoma HepG2 cells attached to glass and polydimethylsiloxane (PDMS) matrices coated with poly-l-lysine. With the use of the glass matrix, the rate of cell adhesion increased with the DMSO concentration up to 30% v/v in the freezing solution. In contrast, the cell-adhesion rate remained constant in the case of the PDMS matrix irrespective of the DMSO concentration between 10% v/v and 30% v/v. The viability of post-thawed cells attached to glass or PDMS matrix was also investigated. The viability was highest at the DMSO concentration of 20% v/v in the freezing solution. The DMSO concentration of 30% v/v, however, had a cytotoxic effect on the cell viability. Thus, the 20% v/v DMSO concentration was found to be most suitable for the cryopreservation of HepG2 cells in the attached state. This dose is high compared to the DMSO concentration used for the cryopreservation of cells in the suspended state. Copyright © 2015 Elsevier Inc. All rights reserved.
de Abreu Costa, Lucas; Henrique Fernandes Ottoni, Marcelo; Dos Santos, Michaelle Geralda; Meireles, Agnes Batista; Gomes de Almeida, Valéria; de Fátima Pereira, Wagner; Alves de Avelar-Freitas, Bethânia; Eustáquio Alvim Brito-Melo, Gustavo
2017-11-10
Dimethylsulfoxide (DMSO) is an amphipathic molecule composed of a polar domain characterized by the sulfinyl and two nonpolar methyl groups, for this reason it is able to solubilize polar and nonpolar substances and transpose hydrophobic barriers. DMSO is widely used to solubilize drugs of therapeutic applications and studies indicated that 10% v/v concentration did not modify culture viability when used to treat human peripheral blood mononuclear cells (PBMC). However, some DMSO concentrations could influence lymphocyte activation and present anti-inflammatory effects. Therefore, the objective of this study was to evaluate the effect of DMSO on lymphocyte activation parameters. Cell viability analysis, proliferation, and cytokine production were performed on PBMC from six healthy subjects by flow cytometry. The results indicated that 2.5% v/v DMSO concentrations did not modify lymphocytes viability. DMSO at 1% and 2% v/v concentrations reduced the relative proliferation index of lymphocytes and at 5% and 10% v/v concentrations reduced the percentage of total lymphocytes, cluster of differentiation 4⁺ (CD4⁺) T lymphocytes and CD8⁺ T lymphocytes interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α) and interleukin-2 (IL-2) producers. Thus, it was concluded that DMSO has an in vitro anti-inflammatory effect by reducing lymphocyte activation demonstrated with proliferation reduction and the decrease of cytokine production.
Respiratory Toxicity of Dimethyl Sulfoxide.
Takeda, Kotaro; Pokorski, Mieczyslaw; Sato, Yutaka; Oyamada, Yoshitaka; Okada, Yasumasa
2016-01-01
Dimethyl sulfoxide (DMSO) is one of the most commonly used solvents for hydrophobic substances in biological experiments. In addition, the compound exhibits a plethora of bioactivities, which makes it of potential pharmacological use of its own. The influence on respiration, and thus on arterial blood oxygenation, of DMSO is unclear, contentious, and an area of limited study. Thus, in the present investigation we set out to determine the influence on lung ventilation of cumulated doses of DMSO in the amount of 0.5, 1.5, 3.5, 7.5, and 15.5 g/kg; each dose given intraperitoneally at 1 h interval in conscious mice. Ventilation and its responses to 7 % hypoxia (N(2) balanced) were recorded in a whole body plethsymograph. We demonstrate a dose-dependent inhibitory effect of DMSO on lung ventilation and its hypoxic responsiveness, driven mostly by changes in the tidal component. The maximum safe dose of DMSO devoid of meaningful consequences for respiratory function was 3.5 g/kg. The dose of 7.5 g/kg of DMSO significantly dampened respiration, with yet well preserved hyperventilatory response to hypoxia. The highest dose of 15.5 g/kg severely impaired ventilation and its responses. The study delineates the safety profile of DMSO regarding the respiratory function which is essential for maintaining proper tissue oxygenation. Caution should be exercised concerning dose concentration of DMSO.
Dimethyl Sulfoxide Attenuates Acute Lung Injury Induced by Hemorrhagic Shock/Resuscitation in Rats.
Tsung, Yu-Chi; Chung, Chih-Yang; Wan, Hung-Chieh; Chang, Ya-Ying; Shih, Ping-Cheng; Hsu, Han-Shui; Kao, Ming-Chang; Huang, Chun-Jen
2017-04-01
Inflammation following hemorrhagic shock/resuscitation (HS/RES) induces acute lung injury (ALI). Dimethyl sulfoxide (DMSO) possesses anti-inflammatory and antioxidative capacities. We sought to clarify whether DMSO could attenuate ALI induced by HS/RES. Male Sprague-Dawley rats were allocated to receive either a sham operation, sham plus DMSO, HS/RES, or HS/RES plus DMSO, and these were denoted as the Sham, Sham + DMSO, HS/RES, or HS/RES + DMSO group, respectively (n = 12 in each group). HS/RES was achieved by drawing blood to lower mean arterial pressure (40-45 mmHg for 60 min) followed by reinfusion with shed blood/saline mixtures. All rats received an intravenous injection of normal saline or DMSO immediately before resuscitation or at matching points relative to the sham groups. Arterial blood gas and histological assays (including histopathology, neutrophil infiltration, and lung water content) confirmed that HS/RES induced ALI. Significant increases in pulmonary expression of tumor necrosis factor-α (TNF-α), malondialdehyde, nuclear factor-kappa B (NF-κB), inducible nitric oxide synthase (iNOS), and cyclooxygenase 2 (COX-2) confirmed that HS/RES induced pulmonary inflammation and oxidative stress. DMSO significantly attenuated the pulmonary inflammation and ALI induced by HS/RES. The mechanisms for this may involve reducing inflammation and oxidative stress through inhibition of pulmonary NF-κB, TNF-α, iNOS, and COX-2 expression.
Self-assembly of a chiral lipid gelator controlled by solvent and speed of gelation.
Xue, Pengchong; Lu, Ran; Yang, Xinchun; Zhao, Li; Xu, Defang; Liu, Yan; Zhang, Hanzhuang; Nomoto, Hiroyuki; Takafuji, Makoto; Ihara, Hirotaka
2009-09-28
Glutamine derivative 1 with two-photon absorbing units has been synthesized and was found to show gelation ability in some solvents. Its self-assembly in the gel phase could be controlled by the solvent and speed of gelation. For example, in DMSO the organogelator self-assembled into H-aggregates with weak exciton coupling between the aromatic moieties. On the other hand, in DMSO/diphenyl ether (1:9, v/v) the molecules formed 1D aggregates, but with strong exciton coupling due to the small distance between the chromophores. Moreover, the formation of these two kinds of aggregates could be adjusted by the ratio of DMSO to diphenyl ether. In DMSO/toluene, DMSO/butanol, DMSO/butyl acetate, and DMSO/acetic acid systems similar results were observed. Therefore, conversion of the packing model occurs irrespective of the nature of the solvent. Notably, a unique sign inversion in the CD spectra could be realized by controlling the speed of gelation in the DMSO/diphenyl ether (1:9, v/v) system. It was found that a low speed of gelation induces the gelator to adopt a packing model with strong pi-pi interactions between the aromatic units. Moreover, the gels, when excited at 800 nm, emit strong green fluorescence and the quantum chemical calculations suggest that intramolecular charge transfer leads to two-photon absorption of the gelator molecule.
Miersch, L; Rüffer, T; Schlesinger, M; Lang, H; Mehring, M
2012-09-03
Hydrolysis of Bi(NO(3))(3) in aqueous solution gave crystals of the novel compounds [Bi(6)O(4)(OH)(4)(NO(3))(5)(H(2)O)](NO(3)) (1) and [Bi(6)O(4)(OH)(4)(NO(3))(6)(H(2)O)(2)]·H(2)O (2) among the series of hexanuclear bismuth oxido nitrates. Compounds 1 and 2 both crystallize in the monoclinic space group P2(1)/n but show significant differences in their lattice parameters: 1, a = 9.2516(6) Å, b = 13.4298(9) Å, c = 17.8471(14) Å, β = 94.531(6)°, V = 2210.5(3) Å(3); 2, a = 9.0149(3) Å, b = 16.9298(4) Å, c = 15.6864(4) Å, β = 90.129(3)°, V = 2394.06(12) Å(3). Variation of the conditions for partial hydrolysis of Bi(NO(3))(3) gave bismuth oxido nitrates of even higher nuclearity, [{Bi(38)O(45)(NO(3))(24)(DMSO)(26)}·4DMSO][{Bi(38)O(45)(NO(3))(24)(DMSO)(24)}·4DMSO] (3) and [{Bi(38)O(45)(NO(3))(24)(DMSO)(26)}·2DMSO][{Bi(38)O(45)(NO(3))(24)(DMSO)(24)}·0.5DMSO] (5), upon crystallization from DMSO. Bismuth oxido clusters 3 and 5 crystallize in the triclinic space group P1 both with two crystallographically independent molecules in the asymmetric unit. The following lattice parameters are observed: 3, a = 20.3804(10) Å, b = 20.3871(9) Å, c = 34.9715(15) Å, α = 76.657(4)°, β = 73.479(4)°, γ = 60.228(5)°, V = 12021.7(9) Å(3); 5, a = 20.0329(4) Å, b = 20.0601(4) Å, c = 34.3532(6) Å, α = 90.196(1)°, β = 91.344(2)°, γ = 119.370(2)°, V = 12025.8(4) Å(3). Differences in the number of DMSO molecules (coordinated and noncoordinated) and ligand (nitrate, DMSO) coordination modes are observed.
Dimeric molecular association of dimethyl sulfoxide in solutions of nonpolar liquids.
Shikata, Toshiyuki; Sugimoto, Natsuki
2012-01-26
Although many vibrational spectroscopic studies using infrared (IR) absorption and Raman scattering (RS) techniques revealed that dimethyl sulfoxide (DMSO) forms intermolecular dimeric associations in the pure liquid state and in solutions, the results of a number of dielectric relaxation studies did not clearly show the presence of such dimers. Recently, we found the presence of dimeric DMSO associations in not only the pure liquid but also in solutions of nonpolar solvents, such as tetrachloromethane (CCl(4)) and benzene (Bz), using dielectric relaxation (DR) techniques, which ranged from 50 MHz to 50 GHz at 25 °C. The dimeric DMSO associations cause a slow dielectric relaxation process with a relaxation time of ca. 23 ps for solutions in CCl(4) (ca. 17 ps in Bz) due to the dissociation into monomeric DMSO molecules, while the other fast relaxation is caused by monomeric DMSO molecules with a relaxation time of ca. 5.0 ps (ca. 5.5 ps in Bz) at 25 °C. A comparison of DR and vibrational spectroscopic data for DMSO solutions demonstrated that the concentration dependence of the relative magnitude of the slow and fast DR strength corresponds well to the two IR and RS bands assigned to the vibrational stretching modes of the sulfoxide groups (S═O) of the dimeric associations and the monomeric DMSO molecules, respectively. Moreover, the concentrations of the dimeric associations ([DIM]) and monomeric DMSO molecules ([MON]) were governed by a chemical equilibrium and an equilibrium constant (K(d) = [DIM](2)[MON](-1)) that was markedly dependent on the concentration of DMSO and the solvent species (K(d) = 2.5 ± 0.5 M(-1) and 0.7 ± 0.1 M(-1) in dilute CCl(4) and Bz solutions, respectively, and dramatically increased to 20-40 M(-1) in pure DMSO at 25 °C).
Concentrated Electrolyte for the Sodium-Oxygen Battery: Solvation Structure and Improved Cycle Life.
He, Mingfu; Lau, Kah Chun; Ren, Xiaodi; Xiao, Neng; McCulloch, William D; Curtiss, Larry A; Wu, Yiying
2016-12-05
Alkali metal-oxygen batteries are of great interests for energy storage because of their unparalleled theoretical energy densities. Particularly attractive is the emerging Na-O 2 battery because of the formation of superoxide as the discharge product. Dimethyl sulfoxide (DMSO) is a promising solvent for this battery but its instability towards Na makes it impractical in the Na-O 2 battery. Herein we report the enhanced stability of Na in DMSO solutions containing concentrated sodium trifluoromethanesulfonimide (NaTFSI) salts (>3 mol kg -1 ). Raman spectra of NaTFSI/DMSO electrolytes and ab initio molecular dynamics simulation reveal the Na + solvation number in DMSO and the formation of Na(DMSO) 3 (TFSI)-like solvation structure. The majority of DMSO molecules solvating Na + in concentrated solutions reduces the available free DMSO molecules that can react with Na and renders the TFSI anion decomposition, which protects Na from reacting with the electrolyte. Using these concentrated electrolytes, Na-O 2 batteries can be cycled forming sodium superoxide (NaO 2 ) as the sole discharge product with improved long cycle life, highlighting the beneficial role of concentrated electrolytes for Na-based batteries. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Study of the effect of DMSO on VOS odour production in a wastewater plant.
Cheng, X; Peterkin, E D; Burlingame, G A
2007-01-01
Odours caused by volatile organic sulphides (VOS) have a history spanning over 20 years for Philadelphia's Northeast Water Pollution Control Plant (NEWPCP). A "canned corn" type of odour has caused residential complaints. Traditional odour control approaches based on hydrogen sulphide failed. This study confirmed that dimethyl sulphoxide (DMSO) from a chemical facility was the dominant cause of the "canned corn" nuisance odour in the form of dimethyl sulphide (DMS). During a discharge, DMSO concentrations up to 12 mg/L were found in the influent of the NEWPCP. Each DMSO concentration peak induced a DMS peak. DMS concentrations increased from less than 50 microg/L to 6 mg/L with a corresponding decrease in DMSO. Approximately 79% of DMSO from the primary sedimentation influent was passed to the effluent, and to downstream processes, such as the aeration tanks where the DMS was volatilised by the aeration. The DMS partial pressure in ambient air of NEWPCP can be between 0.03 and 0.18 x 10(-3) atm during a DMSO discharge. From the above information, the potential of VOS production is estimated and a practical plan for remediation can be designed.
Concentrated Electrolyte for the Sodium-Oxygen Battery: Solvation Structure and Improved Cycle Life
He, Mingfu; Lau, Kah Chun; Ren, Xiaodi; ...
2016-11-03
Alkali metal-oxygen batteries are of great interests for energy storage because of their unparalleled theoretical energy densities. Particularly attractive is the emerging Na-O 2 battery because of the formation of superoxide as the discharge product. Dimethyl sulfoxide (DMSO) is a promising solvent for this battery but its instability towards Na makes it impractical in the Na-O 2 battery. Here in this paper, we report the enhanced stability of Na in DMSO solutions containing concentrated sodium trifluoromethanesulfonimide (NaTFSI) salts (>3molkg -1). Raman spectra of NaTFSI/DMSO electrolytes and abinitio molecular dynamics simulation reveal the Na + solvation number in DMSO and themore » formation of Na(DMSO) 3(TFSI)-like solvation structure. The majority of DMSO molecules solvating Na + in concentrated solutions reduces the available free DMSO molecules that can react with Na and renders the TFSI anion decomposition, which protects Na from reacting with the electrolyte. Using these concentrated electrolytes, Na-O 2 batteries can be cycled forming sodium superoxide (NaO 2) as the sole discharge product with improved long cycle life, highlighting the beneficial role of concentrated electrolytes for Na-based batteries.« less
Dimethyl Sulfoxide Protects Escherichia coli from Rapid Antimicrobial-Mediated Killing
Mi, Hongfei; Wang, Dai; Xue, Yunxin; Zhang, Zhi; Hong, Yuzhi; Drlica, Karl
2016-01-01
The contribution of reactive oxygen species (ROS) to antimicrobial lethality was examined by treating Escherichia coli with dimethyl sulfoxide (DMSO), an antioxidant solvent frequently used in antimicrobial studies. DMSO inhibited killing by ampicillin, kanamycin, and two quinolones and had little effect on MICs. DMSO-mediated protection correlated with decreased ROS accumulation and provided evidence for ROS-mediated programmed cell death. These data support the contribution of ROS to antimicrobial lethality and suggest caution when using DMSO-dissolved antimicrobials for short-time killing assays. PMID:27246776
The role of dimethyl sulfoxide (DMSO) in ex-vivo examination of human skin burn injury treatment
NASA Astrophysics Data System (ADS)
Pielesz, Anna; Gawłowski, Andrzej; Biniaś, Dorota; Bobiński, Rafał; Kawecki, Marek; Klama-Baryła, Agnieszka; Kitala, Diana; Łabuś, Wojciech; Glik, Justyna; Paluch, Jadwiga
2018-05-01
Dimethyl sulfoxide (DMSO) is one of the most versatile solvents in biological science, therefore it is frequently used as a solvent in biological studies and as a vehicle for drug therapy. DMSO readily penetrates, diffuses through biological membranes and ipso facto increases fluidity of liposomal membranes modelling stratum corneum. Thermal injury is associated with the appearance of lipid peroxidation products in the burned skin. The influence of DMSO on protein structure and stability is concentration and temperature dependant. The aim of this study was to assess the impact of DMSO on human burn wounds and examine the interactions between DMSO and skin surface. The real problem in burn treatment is hypoalbuminemia. At the level of the laboratory studies there was an attempt at answering the question of whether the DMSO will modify the standard serum solution. In the case of the incubation of skin fragments in 1%-100% DMSO, the following findings were reported: modification of the serum, appearance of low molecular weight oligomer bands, disappearance of albumin bands or reconstruction of native serum bands during incubation in antioxidant solutions. The result of the modification is also the exposure of FTIR 1603 and 1046 cm-1 bands observed in frozen serum solutions. In the case of modification of the burned skin by DMSO solutions or antioxidants - frequency shifts, an increase in the intensity of amide I band as well as the appearance of the 1601 cm-1 band can be specific biomarkers of the tissue regeneration process. In this study the areas 1780-1580 cm-1 and 1418-1250 cm-1 on the Raman spectra are particularly rich in spectral information.
Effects of Dimethyl Sulfoxide on Surface Water near Phospholipid Bilayers.
Lee, Yuno; Pincus, Philip A; Hyeon, Changbong
2016-12-06
Despite much effort to probe the properties of dimethyl sulfoxide (DMSO) solution, the effects of DMSO on water, especially near plasma membrane surfaces, still remain elusive. By performing molecular dynamics simulations at varying DMSO concentrations (X DMSO ), we study how DMSO affects structural and dynamical properties of water in the vicinity of phospholipid bilayers. As proposed by a number of experiments, our simulations confirm that DMSO induces dehydration from bilayer surfaces and disrupts the H-bond structure of water. However, DMSO-enhanced water diffusivity at solvent-bilayer interfaces, an intriguing discovery reported by a spin-label measurement, is not confirmed in our simulations. To resolve this discrepancy, we examine the location of the spin label (Tempo) relative to the solvent-bilayer interface. In accord with the evidence in the literature, our simulations, which explicitly model Tempo-phosphatidylcholine, find that the Tempo moiety is equilibrated at ∼8-10 Å below the bilayer surface. Furthermore, the DMSO-enhanced surface-water diffusion is confirmed only when water diffusion is analyzed around the Tempo moiety that is immersed below the bilayer surface, which implies that the experimentally detected signal of water using Tempo stems from the interior of bilayers, not from the interface. Our analysis finds that the increase of water diffusion below the bilayer surface is coupled to the increase of area per lipid with an increasing X DMSO (≲10mol%). Underscoring the hydrophobic nature of the Tempo moiety, our study calls for careful re-evaluation of the use of Tempo in measurements on lipid bilayer surfaces. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Dimethyl sulfoxide (DMSO) as a potential contrast agent for brain tumors.
Delgado-Goñi, T; Martín-Sitjar, J; Simões, R V; Acosta, M; Lope-Piedrafita, S; Arús, C
2013-02-01
Dimethyl sulfoxide (DMSO) is commonly used in preclinical studies of animal models of high-grade glioma as a solvent for chemotherapeutic agents. A strong DMSO signal was detected by single-voxel MRS in the brain of three C57BL/6 control mice during a pilot study of DMSO tolerance after intragastric administration. This led us to investigate the accumulation and wash-out kinetics of DMSO in both normal brain parenchyma (n=3 control mice) by single-voxel MRS, and in 12 GL261 glioblastomas (GBMs) by single-voxel MRS (n=3) and MRSI (n=9). DMSO accumulated differently in each tissue type, reaching its highest concentration in tumors: 6.18 ± 0.85 µmol/g water, 1.5-fold higher than in control mouse brain (p<0.05). A faster wash-out was detected in normal brain parenchyma with respect to GBM tissue: half-lives of 2.06 ± 0.58 and 4.57 ± 1.15 h, respectively. MRSI maps of time-course DMSO changes revealed clear hotspots of differential spatial accumulation in GL261 tumors. Additional MRSI studies with four mice bearing oligodendrogliomas (ODs) revealed similar results as in GBM tumors. The lack of T(1) contrast enhancement post-gadolinium (gadopentetate dimeglumine, Gd-DTPA) in control mouse brain and mice with ODs suggested that DMSO was fully able to cross the intact blood-brain barrier in both normal brain parenchyma and in low-grade tumors. Our results indicate a potential role for DMSO as a contrast agent for brain tumor detection, even in those tumors 'invisible' to standard gadolinium-enhanced MRI, and possibly for monitoring heterogeneities associated with progression or with therapeutic response. Copyright © 2012 John Wiley & Sons, Ltd.
The role of dimethyl sulfoxide (DMSO) in ex-vivo examination of human skin burn injury treatment.
Pielesz, Anna; Gawłowski, Andrzej; Biniaś, Dorota; Bobiński, Rafał; Kawecki, Marek; Klama-Baryła, Agnieszka; Kitala, Diana; Łabuś, Wojciech; Glik, Justyna; Paluch, Jadwiga
2018-05-05
Dimethyl sulfoxide (DMSO) is one of the most versatile solvents in biological science, therefore it is frequently used as a solvent in biological studies and as a vehicle for drug therapy. DMSO readily penetrates, diffuses through biological membranes and ipso facto increases fluidity of liposomal membranes modelling stratum corneum. Thermal injury is associated with the appearance of lipid peroxidation products in the burned skin. The influence of DMSO on protein structure and stability is concentration and temperature dependant. The aim of this study was to assess the impact of DMSO on human burn wounds and examine the interactions between DMSO and skin surface. The real problem in burn treatment is hypoalbuminemia. At the level of the laboratory studies there was an attempt at answering the question of whether the DMSO will modify the standard serum solution. In the case of the incubation of skin fragments in 1%-100% DMSO, the following findings were reported: modification of the serum, appearance of low molecular weight oligomer bands, disappearance of albumin bands or reconstruction of native serum bands during incubation in antioxidant solutions. The result of the modification is also the exposure of FTIR 1603 and 1046cm -1 bands observed in frozen serum solutions. In the case of modification of the burned skin by DMSO solutions or antioxidants - frequency shifts, an increase in the intensity of amide I band as well as the appearance of the 1601cm -1 band can be specific biomarkers of the tissue regeneration process. In this study the areas 1780-1580cm -1 and 1418-1250cm -1 on the Raman spectra are particularly rich in spectral information. Copyright © 2018 Elsevier B.V. All rights reserved.
Dentin bond optimization using the dimethyl sulfoxide-wet bonding strategy: A 2-year in vitro study.
Stape, Thiago Henrique Scarabello; Tjäderhane, Leo; Tezvergil-Mutluay, Arzu; Yanikian, Cristiane Rumi Fujiwara; Szesz, Anna Luiza; Loguercio, Alessandro Dourado; Martins, Luís Roberto Marcondes
2016-12-01
This study evaluated a new approach, named dimethyl sulfoxide (DMSO)-wet bonding, to produce more desirable long-term prospects for the ultrafine interactions between synthetic polymeric biomaterials and the inherently hydrated dentin substrate. Sound third molars were randomly restored with/without DMSO pretreatment using a total-etch (Scocthbond Multipurpose: SBMP) and a self-etch (Clearfil SE Bond: CF) adhesive systems. Restored teeth (n=10)/group were sectioned into sticks and submitted to different analyses: micro-Raman determined the degree of conversion inside the hybrid layer (DC); resin-dentin microtensile bond strength and fracture pattern analysis at 24h, 1year and 2 years of aging; and nanoleakage evaluation at 24h and 2 years. DMSO-wet bonding produced significantly higher 24h bond strengths for SBMP that were sustained over the two-year period, with significantly less adhesive failures. Similarly, DMSO-treated CF samples presented significantly higher bond strength than untreated samples at two years. Both adhesives had significant less adhesive failures at 2 years with DMSO. DMSO had no effect on DC of SBMP, but significantly increased the DC of CF. DMSO-treated SBMP samples presented reduced silver uptake compared to untreated samples after aging. Biomodification of the dentin substrate by the proposed strategy using DMSO is a suitable approach to produce more durable hybrid layers with superior ability to withstand hydrolytic degradation over time. Although the active role of DMSO on dentin bond improvement may vary according to monomer composition, its use seems to be effective on both self-etch and etch-and-rinse bonding mechanisms. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Stevens, An-Sofie; Pirotte, Nicky; Plusquin, Michelle; Willems, Maxime; Neyens, Thomas; Artois, Tom; Smeets, Karen
2015-03-01
To investigate hydrophobic test compounds in toxicological studies, solvents like dimethylsulfoxide (DMSO) are inevitable. However, using these solvents, the interpretation of test compound-induced responses can be biased. DMSO concentration guidelines are available, but are mostly based on acute exposures involving one specific toxicity endpoint. Hence, to avoid solvent-toxicant interference, we use multiple chronic test endpoints for additional interpretation of DMSO concentrations and propose a statistical model to assess possible synergistic, antagonistic or additive effects of test compounds and their solvents. In this study, the effects of both short- (1 day) and long-term (2 weeks) exposures to low DMSO concentrations (up to 1000 µl l(-1) ) were studied in the planarian Schmidtea mediterranea. We measured different biological levels in both fully developed and developing animals. In a long-term exposure set-up, a concentration of 500 µl l(-1) DMSO interfered with processes on different biological levels, e.g. behaviour, stem cell proliferation and gene expression profiles. After short exposure times, 500 µl l(-1) DMSO only affected motility, whereas the most significant changes on different parameters were observed at a concentration of 1000 µl l(-1) DMSO. As small sensitivity differences exist between biological levels and developmental stages, we advise the use of this solvent in concentrations below 500 µl l(-1) in this organism. In the second part of our study, we propose a statistical approach to account for solvent-toxicant interactions and discuss full-scale solvent toxicity studies. In conclusion, we reassessed DMSO concentration limits for different experimental endpoints in the planarian S. mediterranea. Copyright © 2014 John Wiley & Sons, Ltd.
Zhang, Lilin; Liu, Ningning; Ma, Xiao; Jiang, Linghuo
2013-03-01
In the present study, we have identified 339 dimethyl sulfoxide (DMSO)-sensitive and nine DMSO-tolerant gene mutations in Saccharomyces cerevisiae through a functional genomics approach. Twelve of these identified DMSO-sensitive mutations are of genes involved in the general control of gene expression mediated by the SWR1 complex and the RNA polymerase II mediator complex, whereas 71 of them are of genes involved in the protein trafficking and vacuolar sorting processes. In addition, twelve of these DMSO-sensitive mutations are of genes involved in the cell wall integrity (CWI) and its regulation. DMSO-tolerant mutations are of genes mainly involved in the metabolism and the gene expression control. Therefore, the transcriptional control machinery, the CWI and its regulation as well as the protein trafficking and sorting process play critical roles in the DMSO detoxification in yeast cells. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Isaeva, V. A.; Sharnin, V. A.
2018-02-01
Enthalpies of the protonation of glycine in water‒dimethylsulfoxide (DMSO) mixed solvents are determined calorimetrically in the range of DMSO mole fractions of 0.0 to 0.9, at T = 298.15 K and an ionic strength μ = 0.3 (NaClO4). It is established that the protonation of glycine becomes more exothermic with an increasing mole fraction of DMSO, and the enthalpies of resolvation of glycine and glycinium ions in water‒DMSO solvent mixtures are calculated. It is shown that the small changes in the enthalpy of protonation observed at low mole fractions of DMSO are caused by the contributions from the solvation of proton and protonated glycine cancelling each other out. The enthalpy term of the Gibbs energy of the reaction leading to the formation of glycinium ion is estimated along with the enthalpy of resolvation of the reacting species in the water‒DMSO mixed solvent.
Enami, Shinichi; Sakamoto, Yosuke; Hara, Keiichiro; Osada, Kazuo; Hoffmann, Michael R; Colussi, Agustín J
2016-02-16
The oxidation of biogenic dimethyl sulfide (DMS) emissions is a global source of cloud condensation nuclei. The amounts of the nucleating H2SO4(g) species produced in such process, however, remain uncertain. Hydrophobic DMS is mostly oxidized in the gas phase into H2SO4(g) + DMSO(g) (dimethyl sulfoxide), whereas water-soluble DMSO is oxidized into H2SO4(g) in the gas phase and into SO4(2-) + MeSO3(-) (methanesulfonate) on water surfaces. R = MeSO3(-)/(non-sea-salt SO4(2-)) ratios would therefore gauge both the strength of DMS sources and the extent of DMSO heterogeneous oxidation if Rhet = MeSO3(-)/SO4(2-) for DMSO(aq) + ·OH(g) were known. Here, we report that Rhet = 2.7, a value obtained from online electrospray mass spectra of DMSO(aq) + ·OH(g) reaction products that quantifies the MeSO3(-) produced in DMSO heterogeneous oxidation on aqueous aerosols for the first time. On this basis, the inverse R dependence on particle radius in size-segregated aerosol collected over Syowa station and Southern oceans is shown to be consistent with the competition between DMSO gas-phase oxidation and its mass accommodation followed by oxidation on aqueous droplets. Geographical R variations are thus associated with variable contributions of the heterogeneous pathway to DMSO atmospheric oxidation, which increase with the specific surface area of local aerosols.
Schrader, Alex M.; Donaldson, Stephen H.; Song, Jinsuk; Cheng, Chi-Yuan; Lee, Dong Woog; Han, Songi; Israelachvili, Jacob N.
2015-01-01
Dimethyl sulfoxide (DMSO) is a common solvent and biological additive possessing well-known utility in cellular cryoprotection and lipid membrane permeabilization, but the governing mechanisms at membrane interfaces remain poorly understood. Many studies have focused on DMSO–lipid interactions and the subsequent effects on membrane-phase behavior, but explanations often rely on qualitative notions of DMSO-induced dehydration of lipid head groups. In this work, surface forces measurements between gel-phase dipalmitoylphosphatidylcholine membranes in DMSO–water mixtures quantify the hydration- and solvation-length scales with angstrom resolution as a function of DMSO concentration from 0 mol% to 20 mol%. DMSO causes a drastic decrease in the range of the steric hydration repulsion, leading to an increase in adhesion at a much-reduced intermembrane distance. Pulsed field gradient NMR of the phosphatidylcholine (PC) head group analogs, dimethyl phosphate and tetramethylammonium ions, shows that the ion hydrodynamic radius decreases with increasing DMSO concentration up to 10 mol% DMSO. The complementary measurements indicate that, at concentrations below 10 mol%, the primary effect of DMSO is to decrease the solvated volume of the PC head group and that, from 10 mol% to 20 mol%, DMSO acts to gradually collapse head groups down onto the surface and suppress their thermal motion. This work shows a connection between surface forces, head group conformation and dynamics, and surface water diffusion, with important implications for soft matter and colloidal systems. PMID:26261313
Bratsos, Ioannis; Simonin, Camilla; Zangrando, Ennio; Gianferrara, Teresa; Bergamo, Alberta; Alessio, Enzo
2011-10-07
The Ru(II) complex fac-[RuCl(dmso-S)(3)(dmso-O)(2)][PF(6)] (P2) was found to be an excellent precursor for the facile preparation in high yield of half sandwich-type compounds of the general formula fac-[RuCl(dmso-S)(3)(N)(2)][PF(6)] (e.g. (N)(2) = 1,2-diaminoethane (en, 4), trans-1,2-diaminocyclohexane (dach, 5), or 2 NH(3) (6)). Neutral half sandwich-type compounds of the general formula fac-[RuCl(dmso-S)(3)(N-O)] where N-O is an anionic chelating ligand (e.g. N-O = picolinate (pic, 7)) are best prepared from the universal Ru(II)-dmso precursor cis-[RuCl(2)(dmso)(4)] (P1). These complexes, that were fully characterized in solution and in the solid state, are structurally similar to the anticancer organometallic compounds [Ru(η(6)-arene)(chel)Cl][PF(6)](n) but, in place of a face-capping arene, have the fac-Ru(dmso-S)(3) fragment. In contrast to what observed for the corresponding arene compounds, that rapidly hydrolyze the Cl ligand upon dissolution in water, compounds 4-6 are very stable and inert in aqueous solution. Probably their inertness is the reason why they showed no significant cytotoxicity against the MDA-MB-231 cancer cell line.
NASA Astrophysics Data System (ADS)
Grazhdan, K. V.; Gamov, G. A.; Dushina, S. V.; Sharnin, V. A.
2012-04-01
The heat effects of nicotinamide protonation in water-dimethylsulfoxide (DMSO) solutions over the concentration range 0-0.75 DMSO mole fractions were determined calorimetrically at 25.00 ± 0.01°C and ionic strength 0.25 (NaClO4). Changes in the enthalpy of protonation as the content of DMSO increased were found to be described by an S-shaped curve. This curve shape was caused by the dynamics of reagent solvation contributions as the concentration of DMSO grew with the predominance of the nicotinamide solvation contribution.
About the solubility of reduced SWCNT in DMSO
NASA Astrophysics Data System (ADS)
Guan, Jingwen; Martinez-Rubi, Yadienka; Dénommée, Stéphane; Ruth, Dean; Kingston, Christopher T.; Daroszewska, Malgosia; Barnes, Michael; Simard, Benoit
2009-06-01
Single-walled carbon nanotubes (SWCNT) have been reduced with sodium naphthalide in THF. The reduced SWCNT are not only soluble in dimethylsulfoxide (DMSO) to form a stable solution/suspension, but also react spontaneously at room temperature with DMSO to evolve hydrocarbon gases and are converted into functionalized SWCNT. The degree of functionalization is about 2C% and the addends are mainly methyl and small oxygen-containing hydrocarbons. The functionalized SWCNT are apparently more soluble and stable in DMSO solution. It may open a new era for further processing and applications.
Dimethyl Sulfoxide Protects Escherichia coli from Rapid Antimicrobial-Mediated Killing.
Mi, Hongfei; Wang, Dai; Xue, Yunxin; Zhang, Zhi; Niu, Jianjun; Hong, Yuzhi; Drlica, Karl; Zhao, Xilin
2016-08-01
The contribution of reactive oxygen species (ROS) to antimicrobial lethality was examined by treating Escherichia coli with dimethyl sulfoxide (DMSO), an antioxidant solvent frequently used in antimicrobial studies. DMSO inhibited killing by ampicillin, kanamycin, and two quinolones and had little effect on MICs. DMSO-mediated protection correlated with decreased ROS accumulation and provided evidence for ROS-mediated programmed cell death. These data support the contribution of ROS to antimicrobial lethality and suggest caution when using DMSO-dissolved antimicrobials for short-time killing assays. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Investigation on the structure of liquid N-methylformamide-dimethylsulfoxide mixtures
NASA Astrophysics Data System (ADS)
Cordeiro, João M. M.; Soper, Alan K.
2011-03-01
The structures of liquid mixtures of N-methylformamide (NMF) and dimethyl sulfoxide (DMSO) at two concentrations (80% and 50% NMF) are investigated using a combination of neutron diffraction augmented with isotopic substitution and empirical potential structure refinement simulations. The results indicate that the NMF and DMSO molecules are hydrogen-bonded to one another with a preference for NMF-DMSO hydrogen bonding, compared to the NMF-NMF ones. The liquid is orientationally structured as a consequence of these hydrogen bonds between molecules. NMF-DMSO dimers are very stable species in the bulk of the mixture. The structure of the dimers is such that the angle between the molecular dipole moments is around 60°. The NMF molecules are well solvated in DMSO with potential implications for peptides solvation in this solvent.
NASA Astrophysics Data System (ADS)
Slavic, Marija; Djordjevic, Aleksandar; Radojicic, Ratko; Milovanovic, Slobodan; Orescanin-Dusic, Zorana; Rakocevic, Zlatko; Spasic, Mihajlo B.; Blagojevic, Dusko
2013-05-01
Dimethyl sulfoxide (DMSO) is a widely used solvent and cryoprotectant that can cause impaired blood flow, reduction in intracranial pressure, tissue edema, inflammatory reactions, inhibition of vascular smooth muscle cell migration and proliferation, processes which can lead to atherosclerosis of the coronary, peripheral and cerebral circulation. Although the adverse effects are rare when DMSO is administered in clinically established concentrations, there is no safe antagonist for an overdose. In this work, we treated isolated spontaneous and calcium-induced contractile active rat uteri (Wistar, virgo intacta), with DMSO and fullerenol C60(OH)24 nanoparticle (FNP) in DMSO. FNP is a water-soluble derivative of fullerene C60. Its size is a 1.1 nm in diameter and is a very promising candidate for a drug carrier in nanomedicine. FNP also displays free radical scavenging activity. DMSO decreased both spontaneous and calcium-induced contractions. In contrast, FNP only decreased spontaneous contraction. FNP decreased copper-zinc superoxide dismutase activity and prevented the DMSO-induced increase in glutathione reductase activity. Atomic force microscopy detected that FNP aggregated with calcium ions. Our results indicate that FNP has properties that make it a good candidate to be a modulator of DMSO activity which could minimize side effects of the latter.
NASA Astrophysics Data System (ADS)
Sumiyoshi, Takashi; Fujiyoshi, Ryoko; Katagiri, Miho; Sawamura, Sadashi
2007-05-01
Dimethylsulfoxide (DMSO)-Br complexes were generated by pulse radiolysis of DMSO/bromomethane mixtures and the formation mechanism and spectral characteristics of the formed complexes were investigated in detail. The rate constant for the reaction of bromine atoms with DMSO and the extinction coefficient of the complex were obtained to be 4.6×10 9 M -1 s -1 and 6300 M -1 cm -1 at the absorption maximum of 430 nm. Rate constants for the reaction of bromine atoms with a series of alcohols were determined in CBrCl 3 solutions applying a competitive kinetic method using the DMSO-Br complex as the reference system. The obtained rate constants were ˜10 8 M -1 s -1, one or two orders larger than those reported for highly polar solvents. Rate constants of DMSO-Br complexes with alcohols were determined to be ˜ 10 7 M -1 s -1. A comparison of the reactivities of Br atoms and DMSO-Br complexes with those of chlorine atoms and chlorine atom complexes which are ascribed to hydrogen abstracting reactants strongly indicates that hydrogen abstraction from alcohols is not the rate determining step in the case of Br atoms and DMSO-Br complexes.
Cheng, Yuan-Yuan; Li, Bing-Bing; Li, Dao-Bo; Chen, Jie-Jie; Li, Wen-Wei; Tong, Zhong-Hua; Wu, Chao; Yu, Han-Qing
2013-01-01
The dissimilatory metal reducing bacterium Shewanella oneidensis MR-1, known for its capacity of reducing iron and manganese oxides, has great environmental impacts. The iron oxides reducing process is affected by the coexistence of alternative electron acceptors in the environment, while investigation into it is limited so far. In this work, the impact of dimethyl sulphoxide (DMSO), a ubiquitous chemical in marine environment, on the reduction of hydrous ferric oxide (HFO) by S. oneidensis MR-1 was investigated. Results show that DMSO promoted HFO reduction by both wild type and ΔdmsE, but had no effect on the HFO reduction by ΔdmsB, indicating that such a promotion was dependent on the DMSO respiration. With the DMSO dosing, the levels of extracellular flavins and omcA expression were significantly increased in WT and further increased in ΔdmsE. Bioelectrochemical analysis show that DMSO also promoted the extracellular electron transfer of WT and ΔdmsE. These results demonstrate that DMSO could stimulate the HFO reduction through metabolic and genetic regulation in S. oneidensis MR-1, rather than compete for electrons with HFO. This may provide a potential respiratory pathway to enhance the microbial electron flows for environmental and engineering applications. PMID:24244312
NASA Astrophysics Data System (ADS)
Warloe, Trond; Peng, Qian; Heyerdahl, Helen; Moan, Johan; Steen, Harald B.; Giercksky, Karl-Erik
1995-03-01
Seven hundred sixty three basal cell carcinomas (BCCs) in 122 patients were treated by photodynamic therapy by 5-aminolevulinic acid (ALA) in cream topically applied, either alone, in combination with dimethyl sulphoxide (DMSO) and ethylenediaminetetraacetic acid disodium salt (EDTA), or with DMSO as a pretreatment. After 3 hours cream exposure 40 - 200 Joules/cm2 of 630 nm laser light was given. Fluorescence imaging of biopsies showed highly improved ALA penetration depth and doubled ALA-induced porphyrin production using DMSO/EDTA. Treatment response was recorded after 3 months. After a single treatment 90% of 393 superficial lesions responded completely, independent of using DMSO/EDTA. In 363 nodulo-ulcerative lesions the complete response rate increased from 67% to above 90% with DMSO/EDTA for lesions less than 2 mm thickness and from 34% to about 50% for lesions thicker than 2 mm. Recurrence rate observed during a follow-up period longer than 12 months was 2 - 5%. PDT of superficial thin BCCs with ALA-induced porphyrins and DMSO/EDTA equals surgery and radiotherapy with respect to cure rate and recurrence. Cosmetic results of ALA-based PDT seemed to be better than those after other therapies. In patients with the nevoid BCC syndrome the complete response rate after PDT was far lower.
Biological treatment of thin-film transistor liquid crystal display (TFT-LCD) wastewater.
Lei, C N; Whang, L M; Lin, H L
2008-01-01
The amount of pollutants produced during manufacturing processes of TFT-LCD (thin-film transistor liquid crystal display) substantially increases due to an increasing production of the opto-electronic industry in Taiwan. The total amount of wastewater from TFT-LCD manufacturing plants is expected to exceed 200,000 CMD in the near future. Typically, organic solvents used in TFT-LCD manufacturing processes account for more than 33% of the total TFT-LCD wastewater. The main components of these organic solvents are composed of the stripper (dimethyl sulphoxide (DMSO) and monoethanolamine (MEA)), developer (tetra-methyl ammonium hydroxide (TMAH)) and chelating agents. These compounds are recognized as non-or slow-biodegradable organic compounds and little information is available regarding their biological treatability. In this study, the performance of an A/O SBR (anoxic/oxic sequencing batch reactor) treating synthetic TFT-LCD wastewater was evaluated. The long-term experimental results indicated that the A/O SBR was able to achieve stable and satisfactory removal performance for DMSO, MEA and TMAH at influent concentrations of 430, 800, and 190 mg/L, respectively. The removal efficiencies for all three compounds examined were more than 99%. In addition, batch tests were conducted to study the degradation kinetics of DMSO, MEA, and TMAH under aerobic, anoxic, and anaerobic conditions, respectively. The organic substrate of batch tests conducted included 400 mg/L of DMSO, 250 mg/L of MEA, and 120 mg/L of TMAH. For DMSO, specific DMSO degradation rates under aerobic and anoxic conditions were both lower than 4 mg DMSO/g VSS-hr. Under anaerobic conditions, the specific DMSO degradation rate was estimated to be 14 mg DMSO/g VSS-hr, which was much higher than those obtained under aerobic and anoxic conditions. The optimum specific MEA and TMAH degradation rates were obtained under aerobic conditions with values of 26.5 mg MEA/g VSS-hr and 17.3 mg TMAH/g VSS-hr, respectively. Compared to aerobic conditions, anaerobic biodegradation of MEA and TMAH was much less significant with values of 5.6 mg MEA/g VSS-hr and 0 mg TMAH/g VSS-hr, respectively. In summary, biological treatment of TFT-LCD wastewater containing DMSO, MEA, and TMAH is feasible, but appropriate conditions for optimum biodegradation of DMSO, MEA, and TMAH are crucial and require carefully operational consideration. Copyright IWA Publishing 2008.
Determination of residual dimethylsulfoxide in cryopreserved cardiovascular allografts.
Díaz Rodríguez, R; Van Hoeck, B; De Gelas, S; Blancke, F; Ngakam, R; Bogaerts, K; Jashari, R
2017-06-01
Dimethylsulfoxide (DMSO) is a solvent which protects the structure of allografts during the cryopreservation and thawing process. However, several toxic effects of DMSO in patients after transplantation of cryopreserved allografts have been described. The aim of this study is to determine the residual DMSO in the cardiovascular allografts after thawing and preparation of cryopreserved allografts for clinical application following guidelines of the European Pharmacopoeia for DMSO detection. Four types of EHB allografts (aortic valve-AV, pulmonary valve-PV, descending thoracic aorta-DA, and femoral artery-FA) are cryopreserved using as cryoprotecting solution a 10% of DMSO in medium 199. Sampling is carried out after thawing, after DMSO dilution and after delay of 30 min from final dilution (estimated delay until allograft implantation). After progressive thawing in sterile water bath at 37-42 °C (duration of about 20 min), DMSO dilution is carried out by adding consecutively 33, 66 and 200 mL of saline. Finally, tissues are transferred into 200 mL of a new physiologic solution. Allograft samples are analysed for determination of the residual DSMO concentration using a validated Gas Chromatography analysis. Femoral arteries showed the most important DMSO reduction after the estimated delay: 92.97% of decrease in the cryoprotectant final amount while a final reduction of 72.30, 72.04 and 76.29% in DMSO content for AV, PV and DA, was found, respectively. The residual DMSO in the allografts at the moment of implantation represents a final dose of 1.95, 1.06, 1.74 and 0.26 mg kg -1 in AV, PV, DA and FA, respectively, for men, and 2.43, 1.33, 2.17 and 0.33 mg kg -1 for same tissues for women (average weight of 75 kg in men, and 60 kg in women). These results are seriously below the maximum recommended dose of 1 g DMSO kg -1 (Regan et al. in Transfusion 50:2670-2675, 2010) of weight of the patient guaranteeing the safety and quality of allografts.
The effect of dimethyl sulfoxide on hepatic differentiation of mesenchymal stem cells.
Alizadeh, Effat; Zarghami, Nosratollah; Eslaminejad, Mohamadreza Baghaban; Akbarzadeh, Abolfazl; Barzegar, Abolfazl; Mohammadi, Seyed Abolghasem
2016-01-01
Adipose tissue-derived mesenchymal stem cells (AT-MSCs) are suitable choices in autologous stem cell treatment of liver-associated diseases due to their hepatic differentiation potential. Dimethyl sulfoxide (DMSO) is an amphipathic molecule with potential of delivering both lipophilic and hydrophilic agents into cells, also a common cryoprotectant for freezing of the cells. DMSO was used in some protocols for induction of AT-MSCs towards hepatocyte like cells. However, the effect of DMSO on hepatogenic differentiation of AT-MSCs were not surveyed, previously. In the present study, we aimed at evaluation of the effect of DMSO on differentiation of AT-MSCs into hepatic lineage. We isolated mesenchymal stem cells (MSCs) from adipose tissue, and then verifies multi-potency and surface markers of AT-MSCs . Isolated AT-MSCs randomly dispensed in four groups including Group 1: HGF treated, 2: HGF+ DMSO treated, 3: HGF+ DMSO+ OSM treated, and group control for a period of 3 weeks in the expansion medium without serum; EGF and bFGF were also included in the first days of inductions. The morphologic changes during induction period was observed with microscopy. The secretion of albumin (ALB) of the differentiating MSCs was investigated using ELISA, and urea production was evaluated using colorimetric assay. The qRT-PCR was performed for quantitation of hepatocyte marker genes including AFP, ALB, CK18, HNF4a, and HNF6. The glycogen storage of differentiated cells was visualized by periodic-acid Schiff‘s staining. The results demonstrate that DMSO speeds up hepatic differentiation of AT-MSCs characterized by rapid changes in morphology; higher expression of hepatic marker gene (ALB) in both mRNA and protein level (P < 0.05); also increased transcriptional levels of other liver genes including CK18, HNF4a, and HNF6 (P < 0.01); and moreover, greater percentage of glycogen storage(p < 0.05) in DMSO-treated groups. DMSO catalyzes hepatic differentiation; therefore, using DMSO for acceleration of the hepatogenic protocols of AT-MSCs appears advantageous.
Castro, Simone Vieira; de Carvalho, Adeline Andrade; da Silva, Cleidson Manoel Gomes; Faustino, Luciana Rocha; Campello, Cláudio Cabral; Lucci, Carolina Madeira; Báo, Sônia Nair; de Figueiredo, José Ricardo; Rodrigues, Ana Paula Ribeiro
2011-11-01
Goat ovarian cortex fragments were subjected to slow freezing in the presence of various solutions containing intracellular cryoprotectants, including 1.0 M ethylene glycol (EG), propanediol (PROH), or dimethyl sulfoxide (DMSO), with or without sucrose and/or fetal calf serum (FCS). Histological examination revealed that only the DMSO-containing solutions were able to maintain a follicular ultrastructure similar to the morphology observed in the fresh control. Therefore, fragments previously cryopreserved in DMSO solutions (with and without sucrose and/or FCS) were cultured in vitro for 48 h and then subjected to viability, histological, and ultrastructural analysis. No significant differences were observed among the percentages of morphologically normal follicles in cryopreserved ovarian tissue before in vitro culture (DMSO: 62.5%; DMSO + sucrose: 68.3%; DMSO + FCS: 60.0%; DMSO + sucrose + FCS: 60.0%) and after culture (DMSO: 60.8%; DMSO + sucrose: 64.2%; DMSO + FCS: 70.8%; DMSO + sucrose + FCS: 55.0%). Following in vitro culture, the viability analysis showed that only the freezing solution containing DMSO and FCS (75.6%) maintained a percentage of viable follicles similar to that observed after culture without cryopreservation (89.3%). As determined by ultrastructural analysis, morphologically normal preantral follicles were detected in the fresh control and in fragments cultured before and after cryopreservation with DMSO and FCS. Thus, a freezing solution containing DMSO and FCS, under the experimental conditions tested here, guaranteed the maintenance of viability and follicular ultrastructure after short-term in vitro culture.
Clejan, S; Dotson, R S; Wolf, E W; Corb, M P; Ide, C F
1996-04-10
Quantitative changes in the lipid second messenger diacylglycerol (DAG) were studied in the rat neuroblastoma N1E-115 following exposure to the differentiating agent dimethylsulfoxide (DMSO). Relatively high basal levels of DAG are present in these cells, and addition of 2% DMSO elicited a biphasic increase in DAG levels, dependent on the presence of extracellular Ca2+. Exposure to DMSO also elicited a rapid increase in inositol phosphate and a slight increase in phosphatidic acid (PA), trailing that of DAG. The molecular species (MS) of DAG were analyzed. Within 60 s of DMSO application there were transient increases of DAG representative of phosphatidylinositol (PI) hydrolysis. At longer intervals, more DAG originated from phosphatidylcholine. The MS composition of newly formed PA resembled that of PI and native DAG. Inhibition studies indicated that DAG is formed in the DMSO-treated cells by phospholipases C and that PA formed later is a result of DAG phosphorylation and not activity of phospholipase D (PLD). Undifferentiated cells exhibited an active PLD pathway. In contrast, PLD in DMSO-differentiated cells was not active. In examining the involvement of the sphingomyelin pathway, DMSO exposure was found to increase ceramide levels with a concomitant decrease in sphingomyelin. Addition of the exogenous, soluble analog C6-ceramide to undifferentiated cells resulted in dramatic reductions in DAG and PA levels and PLD activity. These results indicate that DMSO treatment inactivates PLD while activating phospholipases C and the sphingomyelin pathway, suggesting a "switch" between signal transduction pathways in the undifferentiated and differentiated states of N1E-115.
Bentur, Ohad S; Chernichovski, Tamara; Ingbir, Merav; Weinstein, Talia; Schwartz, Idit F
2016-10-01
Dimethyl sulfoxide (DMSO) is a solvent that is commonly used in medicine. Conflicting data exist as to its effects on endothelial function. Endothelial cell dysfunction (ECD) is characterized by decreased endothelial nitric oxide synthase (eNOS) activity. Cationic amino acid transporter-1 (CAT-1), the specific arginine transporter for eNOS, has been shown to modulate eNOS activity. We hypothesize that DMSO inhibits eNOS activity through modulation of its selective arginine supplier CAT-1. We studied the effect of DMSO on arginine transport, NO2/NO3 generation as an index of NO production, as well as CAT-1 and Protein Kinase C alpha (PKC-α) (CAT-1 inhibitor) protein expression in human umbilical vein endothelial cell cultures (HUVECs). DMSO 2.5% and 3.5% (v/v) significantly attenuated arginine transport, a phenomenon which was prevented by co-incubation with l-arginine (1 mM). The aforementioned findings were accompanied by a decrease in NO2/NO3 generation. DMSO significantly increased the abundance of phosphorylated CAT-1 (the inactive form) and phosphorylated PKC-α protein, an effect that was attenuated by l-arginine. GO 6976 (PKC-α antagonist) prevented the decrease in arginine transport caused by DMSO. DMSO also induced profound transient morphological changes in HUVECs' structure but these were not related to its effect on arginine transport. In conclusion, DMSO inhibits NO generation by endothelial cells through modulation of CAT-1 activity. Copyright © 2016 Elsevier Inc. All rights reserved.
DMSO, Hobby Shops and the FDA: The Diffusion of a Health Policy Dilemma.
ERIC Educational Resources Information Center
Weinstock, Edward; Davis, Phillip
1985-01-01
Despite being banned by the FDA, DMSO (dimethyl sulfoxide) usage has spread rapidly among arthritic victims and weekend athletes. This study looked at current and past users to learn how they discovered DMSO, their reactions to buying an illegal drug, and possible implications for public health policy. (MT)
1983-08-01
slight deepening of the rugae or light hyperemia of circumeorneal blood vessels), or obvious swelling of the eyelids accompanied by severe...I Markedly deepened rugae , congestion, swelling, moderate circumcorneal hyperemia or injection, any of these or any combination thereof, iris still
Schroeder, Marshall A; Kumar, Nitin; Pearse, Alexander J; Liu, Chanyuan; Lee, Sang Bok; Rubloff, Gary W; Leung, Kevin; Noked, Malachi
2015-06-03
One of the greatest obstacles for the realization of the nonaqueous Li-O2 battery is finding a solvent that is chemically and electrochemically stable under cell operating conditions. Dimethyl sulfoxide (DMSO) is an attractive candidate for rechargeable Li-O2 battery studies; however, there is still significant controversy regarding its stability on the Li-O2 cathode surface. We performed multiple experiments (in situ XPS, FTIR, Raman, and XRD) which assess the stability of the DMSO-Li2O2 interface and report perspectives on previously published studies. Our electrochemical experiments show long-term stable cycling of a DMSO-based operating Li-O2 cell with a platinum@carbon nanotube core-shell cathode fabricated via atomic layer deposition, specifically with >45 cycles of 40 h of discharge per cycle. This work is complemented by density functional theory calculations of DMSO degradation pathways on Li2O2. Both experimental and theoretical evidence strongly suggests that DMSO is chemically and electrochemically stable on the surface of Li2O2 under the reported operating conditions.
Structural properties of glucose-dimethylsulfoxide solutions probed by Raman spectroscopy
NASA Astrophysics Data System (ADS)
Paolantoni, Marco; Gallina, Maria Elena; Sassi, Paola; Morresi, Assunta
2009-04-01
Raman spectroscopy was employed to achieve a molecular level description of solvation properties in glucose-dimethylsulfoxide (DMSO) solutions. The analysis of Raman spectra confirms the importance of the dipole-dipole interaction in determining structural properties of pure DMSO; the overall intermolecular structure is maintained in the whole 20-75 °C temperature range investigated. The blueshift of the CH stretching modes observed at higher temperatures points out that CH3⋯O contacts contribute to the cohesive energy of the DMSO liquid system. The addition of glucose perturbs the intermolecular ordering of DMSO owing to the formation of stable solute-solvent hydrogen bonds. The average number of OH⋯OS contacts (3.2±0.3) and their corresponding energy (˜20 kJ/mol) were estimated. Besides, the concentration dependence of the CH stretching bands and the behavior of the noncoincidence effect on the SO band, suggest that the dipole-dipole and CH3⋯O interactions among DMSO molecules are disfavored within the glucose solvation layer. These findings contribute to improve our understanding about the microscopic origin of solvent properties of DMSO toward more complex biomolecular systems.
Gibbs energies of transferring triglycine from water into H2O-DMSO solvent
NASA Astrophysics Data System (ADS)
Usacheva, T. R.; Kuz'mina, K. I.; Lan, Pham Thi; Kuz'mina, I. A.; Sharnin, V. A.
2014-08-01
The Gibbs energies of transferring triglycine (3Gly, glycyl-glycyl-glycine) from water into mixtures of water with dimethyl sulfoxide (χDMSO = 0.05, 0.10, and 0.15 mole fractions) at 298.15 K are determined from the interphase distribution. An increased dimethyl sulfoxide (DMSO) concentration in the solvent slightly raises the positive values of Δtr G ○(3Gly), possibly indicating the formation of more stable 3Gly-H2O solvated complexes than ones of 3Gly-DMSO. It is shown that the change in the Gibbs energy of transfer of 3Gly is determined by the enthalpy component. The relationship of 3Gly and 18-crown-6 ether (18C6) solvation's contributions to the change in the Gibbs energy of [3Gly18C6] molecular complex formation in H2O-DMSO solvents is analyzed, and the key role of 3Gly solvation's contribution to the change in the stability of [3Gly18C6] upon moving from H2O to mixtures with DMSO is revealed.
NASA Astrophysics Data System (ADS)
Kudo, Norio; Ataka, Mitsuo; Sasaki, Hiroshi; Muramatsu, Tomonari; Katsura, Tatsuo; Tanokura, Masaru
1996-10-01
Proteinase A from Aspergillus niger var. macrosporus is a non-pepsin-type acid proteinase with an extremely low isoelectric point (pI 3.3). The protein is crystallized from ammonium sulfate solutions of pH lower than 4. The crystallization is affected by the presence of dimethylsulfoxide (DMSO). We have studied the phase diagram of the crystallization of proteinase A in the absence and presence of DMSO, to clarify crystallization at such an extremely low pH and to study the effects of DMSO. The results indicate that the logarithm of protein solubility is a rectilinear function of ammonium sulfate concentration in both the absence and presence of DMSO. DMSO definitely lowers the solubility at relatively low concentrations of ammonium sulfate, but had little effect on protein solubility at higher concentrations of ammonium sulfate.
NASA Astrophysics Data System (ADS)
Cordeiro, João M. M.; Soper, Alan K.
2013-01-01
The solvation of N-methylformamide (NMF) by dimethylsulfoxide (DMSO) in a 20% NMF/DMSO liquid mixture is investigated using a combination of neutron diffraction augmented with isotopic substitution and Monte Carlo simulations. The aim is to investigate the solute-solvent interactions and the structure of the solution. The results point to the formation of a hydrogen bond (H-bond) between the H bonded to the N of the amine group of NMF and the O of DMSO particularly strong when compared with other H-bonded liquids. Moreover, a second cooperative H-bond is identified with the S atom of DMSO. As a consequence of these H-bonds, molecules of NMF and DMSO are rather rigidly connected, establishing very stable dimmers in the mixture and very well organized first and second solvation shells.
Phase Diagram of the Ethylene Glycol-Dimethylsulfoxide System
NASA Astrophysics Data System (ADS)
Solonina, I. A.; Rodnikova, M. N.; Kiselev, M. R.; Khoroshilov, A. V.; Shirokova, E. V.
2018-05-01
The phase diagram of ethylene glycol (EG)-dimethylsulfoxide (DMSO) system is studied in the temperature range of +25 to -140°C via differential scanning calorimetry. It is established that the EG-DMSO system is characterized by strong overcooling of the liquid phase, a glass transition at -125°C, and the formation of a compound with the composition of DMSO · 2EG. This composition has a melting temperature of -60°C, which is close to those of neighboring eutectics (-75 and -70°C). A drop in the baseline was observed in the temperature range of 8 to -5°C at DMSO concentrations of 5-50 mol %, indicating the existence of a phase separation area in the investigated system. The obtained data is compared to the literature data on the H2O-DMSO phase diagram.
Use of hollow fiber membrane filtration for the removal of DMSO from platelet concentrates.
Arnaud, F; Kapnik, E; Meryman, H T
2003-05-01
It has been hypothesized that, in addition to freezing injury, some damage to platelets may result from the cell packing that occurs during removal of the cryoprotectant. This study examined DMSO removal by fluid exchange across hollow-fiber (HF) filters as an alternative to centrifugation. The DMSO solution with or without cell suspension was passed once through the filter. The optimum exchange during unloading of DMSO was determined by varying the flow rates in the external and internal compartments of the HF filter. Initially, buffered solutions of a 5% DMSO solution in the absence of platelets were pumped into the fibers and exchanged against PBS. The residual DMSO was determined by osmometry. The exchange of DMSO across the membrane was flow dependent and also influenced by the chemical nature of the HF fibers. No protocol using a reasonable rate flow through the fibers removed more than 95% of the DMSO in a single pass. The optimum protocol was achieved with polysynthane fibers with an internal flow rate of approximately 20 mi/min and an external flow rate of 100 ml/min. Subsequently, frozen/thawed platelet concentrates in DMSO were washed using centrifugation and compared to the HF filtration method. Platelet quality was assayed by flow cytometry, cell count, morphology and osmotic stress test. Both filtration and centrifugal washing techniques resulted in comparable morphological scores and numbers of discoid cells. When agents reducing platelet activation were added, platelet quality was improved after washing by either technique. The lower platelet osmotic response with HF filtration than with centrifugation while using activation inhibitors was attributed to the remaining amount of the inhibitors. All other parameters tested were similar. The expression of CD62P was equivalent with both techniques, and centrifugation did not activate platelets more than filtration contrary to what was originally anticipated. In conclusion, platelet quality was comparable after washing by either technique but hollow fiber filtration does remove cryoprotectant more rapidly than does centrifugation.
Vapochromic Behaviour of M[Au(CN)2]2-Based Coordination Polymers (M = Co, Ni)
Lefebvre, Julie; Korčok, Jasmine L.; Katz, Michael J.; Leznoff, Daniel B.
2012-01-01
A series of M[Au(CN)2]2(analyte)x coordination polymers (M = Co, Ni; analyte = dimethylsulfoxide (DMSO), N,N-dimethylformamide (DMF), pyridine; x = 2 or 4) was prepared and characterized. Addition of analyte vapours to solid M(μ-OH2)[Au(CN)2]2 yielded visible vapochromic responses for M = Co but not M = Ni; the IR νCN spectral region changed in every case. A single crystal structure of Zn[Au(CN)2]2(DMSO)2 revealed a corrugated 2-D layer structure with cis-DMSO units. Reacting a Ni(II) salt and K[Au(CN)2] in DMSO yielded the isostructural Ni[Au(CN)2]2(DMSO)2 product. Co[Au(CN)2]2(DMSO)2 and M[Au(CN)2]2(DMF)2 (M = Co, Ni) complexes have flat 2-D square-grid layer structures with trans-bound DMSO or DMF units; they are formed via vapour absorption by solid M(μ-OH2)[Au(CN)2]2 and from DMSO or DMF solution synthesis. Co[Au(CN)2]2(pyridine)4 is generated via vapour absorption by Co(μ-OH2)[Au(CN)2]2; the analogous Ni complex is synthesized by immersion of Ni(μ-OH2)[Au(CN)2]2 in 4% aqueous pyridine. Similar immersion of Co(μ-OH2)[Au(CN)2]2 yielded Co[Au(CN)2]2(pyridine)2, which has a flat 2-D square-grid structure with trans-pyridine units. Absorption of pyridine vapour by solid Ni(μ-OH2)[Au(CN)2]2 was incomplete, generating a mixture of pyridine-bound complexes. Analyte-free Co[Au(CN)2]2 was prepared by dehydration of Co(μ-OH2)[Au(CN)2]2 at 145 °C; it has a 3-D diamondoid-type structure and absorbs DMSO, DMF and pyridine to give the same materials as by vapour absorption from the hydrate. PMID:22737031
NASA Astrophysics Data System (ADS)
Koussi-Daoud, S.; Pellegrin, Y.; Odobel, F.; Viana, B.; Pauporté, T.
2017-02-01
We have investigated the preparation of NiO layers by cathodic electrodeposition in various organic-based solvents, namely ethanol, dimethyl sulfoxide (DMSO), DMSO/2 vol.% H2O and DMSO/25 vol.% H2O mixtures. The layers were formed from the electrochemical reduction of nickel nitrate precursor. We show that, depending on the solvent used, various nickel compounds were deposited. In the case of ethanol, a transparent precursor layer was obtained that was transformed into NiO after an annealing treatment at 300°C. For DMSO and DMSO with 2 volume % of H2O, adherent, well-covering, mesoporous and rather thick NiO layers were obtained after an annealing treatment at 450°C. These layers, after growth, contained nickel oxide or hydroxide, metallic nickel and DMSO. The solvent acted as a blowing agent, being included in the deposit and giving rise to a mesoporous film after its elimination by thermal annealing. These porous layers of p-type oxide have been successfully sensitized by a push-pull dye (P1 dye) and showed photocurrent generation and an open circuit voltage (Voc) up to 167 mV in p-type dye-sensitized solar cells (p-DSSCs). For DMSO with 25 volume % of H2O, the deposited layers contained more metallic nickel and were dense even after annealing. They were unsuitable in p-DSSCs.
Effects of dimethyl sulfoxide on asymmetric division and cytokinesis in mouse oocytes.
Zhou, Dongjie; Shen, Xinghui; Gu, Yanli; Zhang, Na; Li, Tong; Wu, Xi; Lei, Lei
2014-06-21
Dimethyl sulfoxide (DMSO) is used extensively as a permeable cryoprotectant and is a common solvent utilized for several water-insoluble substances. DMSO has various biological and pharmacological activities; however, the effect of DMSO on mouse oocyte meiotic maturation remains unknown. In DMSO-treated oocytes, we observed abnormal MII oocytes that contained large polar bodies, including 2-cell-like MII oocytes, during in vitro maturation. Oocyte polarization did not occur, due to the absence of actin cap formation and spindle migration. These features are among the primary causes of abnormal symmetric division; however, analysis of the mRNA expression levels of genes related to asymmetric division revealed no significant difference in the expression of these factors between the 3% DMSO-treated group and the control group. After each "blastomere" of the 2-cell-like MII stage oocytes was injected by one sperm head respectively, the oocytes still possessed the ability to extrude the second polar body from each "blastomere" and to begin cleavage. However, MII oocytes with large polar bodies developed to the blastocyst stage after intracytoplasmic sperm injection (ICSI). Furthermore, other permeable cryoprotectants, such as ethylene glycol and glycerol, also caused asymmetric division failure. Permeable cryoprotectants, such as DMSO, ethylene glycol, and glycerol, affect asymmetric division. DMSO disrupts cytokinesis completion by inhibiting cortical reorganization and polarization. Oocytes that undergo symmetric division maintain the ability to begin cleavage after ICSI.
Cytotoxicity of dimethyl sulfoxide (DMSO) in direct contact with odontoblast-like cells.
Hebling, J; Bianchi, L; Basso, F G; Scheffel, D L; Soares, D G; Carrilho, M R O; Pashley, D H; Tjäderhane, L; de Souza Costa, C A
2015-04-01
To evaluate the cytotoxicity of dimethyl sulfoxide (DMSO) on the repair-related activity of cultured odontoblast-like MDPC-23 cells. Solutions with different concentrations of DMSO (0.05, 0.1, 0.3, 0.5 and 1.0 mM), diluted in culture medium (DMEM), were placed in contact with MDPC-23 cells (5 × 104 cells/cm(2)) for 24 h. Eight replicates (n = 8) were prepared for each solutions for the following methods of analysis: violet crystal dye for cell adhesion (CA), quantification of total protein (TP), alizarin red for mineralization nodules formation (MN) and cell death by necrosis (flow cytometry); while twelve replicates (n = 12) were prepared for viable cell number (Trypan Blue) and cell viability (MTT assay). Data were analyzed by ANOVA and Tukey or Kruskal-Wallis and Mann-Whitney's tests (p < 0.05). Cell viability, adhesion and percentage of cell death by necrosis were not affected by DMSO at any concentration, with no statistical significant difference among the groups. A significant reduction in total protein production was observed for 0.5 and 1.0 mM of DMSO compared to the control while increased mineralized nodules formation was seen only for 1.0 mM DMSO. DMSO caused no or minor cytotoxic effects on the pulp tissue repair-related activity of odontoblast-like cells. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Visible light catalyzed methylsulfoxidation of (het)aryl diazonium salts using DMSO.
Pramanik, Mukund M D; Rastogi, Namrata
2016-06-30
The visible light catalyzed methylsulfoxidation of (het)aryl diazonium salts using DMSO is illustrated. This is the first example of DMSO being used as the source of the methylsulfinyl group. The procedure tolerates a wide range of functional groups on (het)aryl diazonium salts and provides aryl methyl sulfoxides in excellent yields under mild reaction conditions.
Carr, Russell L.; Nail, Carole A.
2008-01-01
Chlorpyrifos (CPS) is widely used in agricultural settings and residue analysis has suggested that children in agricultural communities are at risk of exposure. This has resulted in a large amount of literature investigating the potential for CPS-induced developmental neurotoxic effects. Two developmental routes of administration of CPS are orally in corn oil at a rate of 0.5 ml/kg and subcutaneously in dimethyl sulfoxide (DMSO) at a rate of 1.0 ml/kg. For comparison between these methods, rat pups were exposed daily from days 10 to 16 to CPS (5 mg/kg) either orally dissolved in corn oil or subcutaneously dissolved in DMSO, both at rates of either 0.5 or 1.0 ml/kg. A representative vehicle/route group was present for each treatment. Both the low and high volume CPS in DMSO subcutaneous groups were lower than that of the low and high volume CPS in oil oral groups. At 4 h following the final administration, serum carboxylesterase was inhibited > 90% with all treatments. For cholinesterase activity in the cerebellum, medulla-pons, forebrain, and hindbrain, and serum, inhibition in the CPS-oil groups was similar and inhibition in the CPS-DMSO groups was similar. However, significantly greater inhibition was present in the high volume CPS-DMSO group as compared to the CPS-oil groups. Inhibition in the low volume CPS-DMSO group was generally between that in the CPS-oil groups and the high volume CPS-DMSO group. These data suggest that using DMSO as a vehicle for CPS may alter the level of brain ChE inhibition. PMID:18703558
Hydrogen-bonding interactions between a nitrile-based functional ionic liquid and DMSO
NASA Astrophysics Data System (ADS)
Zheng, Yan-Zhen; Zhou, Yu; Deng, Geng; Yu, Zhi-Wu
2016-11-01
Task-specific ionic liquids (TSILs) have been introduced by incorporating additional functional groups in the cation or anion to impart specific properties or reactivates. In this work, the hydrogen-bonding interactions between a nitrile-functional TSIL 1-propylnitrile-3-methylimidazolium tetrafluoroborate ([PCNMIM][BF4]) and dimethyl sulphoxide (DMSO) were investigated in detail by attenuated total reflection infrared spectroscopy (ATR-IR), combined with hydrogen nuclear magnetic resonance (1H NMR) and density functional theory calculations (DFT). It was found that, first, introducing a nitrile group into the alkyl chain does not change the main interaction site in the cation. It is still the C2 hydrogen. So the v(C2-H) is more sensitive to the environmental change and can be used as an indicator of the environments change of IL. Second, the wavenumber shift changes of v(C2-H) have two turning points (xDMSO ≈ 0.6 and 0.9), dividing the dilution process into three stages. Combined with the calculation results, the dilution process is identified as: From larger ion clusters to smaller ion clusters (xDMSO < 0.6), then to ion pairs (0.6
Namba, Daryan R.; Ma, Garret; Samad, Idris; Ding, Dacheng; Pandian, Vinciya; Powell, Jonathan D.; Horton, Maureen R.; Hillel, Alexander T.
2015-01-01
Objective To determine if rapamycin inhibits the growth, function, and metabolism of human laryngotracheal stenosis (LTS)–derived fibroblasts. Study Design Controlled in vitro study. Setting Tertiary care hospital in a research university. Subjects and Methods Fibroblasts isolated from biopsies of 5 patients with laryngotracheal stenosis were cultured. Cell proliferation, histology, gene expression, and cellular metabolism of LTS-derived fibroblasts were assessed in 4 conditions: (1) fibroblast growth medium, (2) fibroblast growth medium with dimethylsulfoxide (DMSO), (3) fibroblast growth medium with 10−10 M (low-dose) rapamycin dissolved in DMSO, and (4) fibroblast growth medium with 10−9 M (high-dose) rapamycin dissolved in DMSO. Results The LTS fibroblast count and DNA concentration were reduced after treatment with high-dose rapamycin compared to DMSO (P = .0007) and normal (P = .0007) controls. Collagen I expression decreased after treatment with high-dose rapamycin versus control (P = .0051) and DMSO (P = .0093) controls. Maximal respiration decreased to 68.6 pMoles of oxygen/min/10 mg/protein from 96.9 for DMSO (P = .0002) and 97.0 for normal (P = .0022) controls. Adenosine triphosphate (ATP) production decreased to 66.8 pMoles from 88.1 for DMSO (P = .0006) and 83.3 for normal (P = .0003) controls. Basal respiration decreased to 78.6 pMoles from 108 for DMSO (P = .0002) and 101 for normal (P = .0014) controls. Conclusions Rapamycin demonstrated an anti-fibroblast effect by significantly reducing the proliferation, metabolism, and collagen deposition of human LTS fibroblast in vitro. Rapamycin significantly decreased oxidative phosphorylation of LTS fibroblasts, suggesting at a potential mechanism for the reduced proliferation and differentiation. Furthermore, rapamycin’s anti-fibroblast effects indicate a promising adjuvant therapy for the treatment of laryngotracheal stenosis. PMID:25754184
Hyun, Soo-Wang; Kim, Bo-Ram; Hyun, Sung-Ae; Seo, Joung-Wook
2017-09-01
Recently, electrophysiological activity has been effectively measured in human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to predict drug-induced arrhythmia. Dimethyl sulfoxide (DMSO) and ethanol have been used as diluting agents in many experiments. However, the maximum DMSO and ethanol concentrations that can be effectively used in the measurement of electrophysiological parameters in hiPSC-CMs-based patch clamp and multi-electrode array (MEA) have not been fully elucidated. We investigated the effects of varying concentrations of DMSO and ethanol used as diluting agents on several electrophysiological parameters in hiPSC-CMs using patch clamp and MEA. Both DMSO and ethanol at concentrations>1% in external solution resulted in osmolality >400mOsmol/kg, but pH was not affected by either agent. Neither DMSO nor ethanol led to cell death at the concentrations examined. However, resting membrane potential, action potential amplitude, action potential duration at 90% and 40%, and corrected field potential duration were decreased significantly at 1% ethanol concentration. DMSO at 1% also significantly decreased the sodium spike amplitude. In addition, the waveform of action potential and field potential was recorded as irregular at 3% concentrations of both DMSO and ethanol. Concentrations of up to 0.3% of either agent did not affect osmolality, pH, cell death, or electrophysiological parameters in hiPSC-CMs. Our findings suggest that 0.3% is the maximum concentration at which DMSO or ethanol should be used for dilution purposes in hiPSC-CMs-based patch clamp and MEA. Copyright © 2017 Elsevier Inc. All rights reserved.
Roy, Susmita; Bagchi, Biman
2013-04-25
Unfolding of a protein often proceeds through partial unfolded intermediate states (PUIS). PUIS have been detected in several experimental and simulation studies. However, complete analyses of transitions between different PUIS and the unfolding trajectory are sparse. To understand such dynamical processes, we study chemical unfolding of a small protein, chicken villin head piece (HP-36), in aqueous dimethyl sulfoxide (DMSO) solution. We carry out molecular dynamics simulations at various solution compositions under ambient conditions. In each concentration, the initial step of unfolding involves separation of two adjacent native contacts, between phenyl alanine residues (11-18 and 7-18). This first step induces, under appropriate conditions, subsequent separation among other hydrophobic contacts, signifying a high degree of cooperativity in the unfolding process. The observed sequence of structural changes in HP-36 on increasing DMSO concentration and the observed sequence of PUIS, are in approximate agreement with earlier simulation results (in pure water) and experimental observations on unfolding of HP-36. Peculiar to water-DMSO mixture, an intervening structural transformation (around 15% of DMSO) in the binary mixture solvent retards the progression of unfolding as composition is increased. This is reflected in a remarkable nonmonotonic composition dependence of RMSD, radius of gyration and the fraction of native contacts. At 30% mole fraction of DMSO, we find the extended randomly coiled structure of the unfolded protein. The molecular mechanism of DMSO induced unfolding process is attributed to the initial preferential solvation of the hydrophobic side chain atoms through the methyl groups of DMSO, followed by the hydrogen bonding of the oxygen atom of DMSO to the exposed backbone NH groups of HP-36.
Svalgaard, Jesper Dyrendom; Haastrup, Eva Kannik; Reckzeh, Kristian; Holst, Bjørn; Glovinski, Peter Viktor; Gørløv, Jette Sønderskov; Hansen, Morten Bagge; Moench, Kim Theilgaard; Clausen, Christian; Fischer-Nielsen, Anne
2016-05-01
Cryopreserved hematopoietic stem cell products are widely used for certain hematologic malignancies. Dimethyl sulfoxide (DMSO) is the most widely used cryoprotective agent (CPA) today, but due to indications of cellular toxicity, changes of the cellular epigenetic state, and patient-related side effects, there is an increasing demand for DMSO-free alternatives. We therefore investigated whether Pentaisomaltose (PIM), a low-molecular-weight carbohydrate (1 kDa), can be used for cryopreservation of peripheral blood stem cells, more specifically hematopoietic progenitor cell apheresis (HPC(A)) product. We cryopreserved patient or donor HPC(A) products using 10% DMSO or 16% PIM and quantified the recovery of CD34+ cells and CD34+ subpopulations by multicolor flow cytometry. In addition, we compared the frequency of HPCs after DMSO and PIM cryopreservation using the colony-forming cells (CFCs) assay. The mean CD34+ cell recovery was 56.3 ± 23.7% (11.4%-97.3%) and 58.2 ± 10.0% (45.7%-76.9%) for 10% DMSO and 16% PIM, respectively. The distribution of CD34+ cell subpopulations was similar when comparing DMSO or PIM as CPA. CFC assay showed mean colony numbers of 70.7 ± 25.4 (range, 37.8-115.5) and 67.7 ± 15.7 (range, 48-86) for 10% DMSO and 16% PIM, respectively. Our findings demonstrate that PIM cryopreservation of HPC(A) products provides recovery of CD34+ cells, CD34+ subpopulations, and CFCs similar to that of DMSO cryopreservation and therefore may have the potential to be used for cryopreservation of peripheral blood stem cells. © 2016 The Authors Transfusion published by Wiley Periodicals, Inc. on behalf of AABB.
NASA Astrophysics Data System (ADS)
Lukes, Petr; Clupek, Martin; Babicky, Vaclav; Sisrova, Irena; Janda, Vaclav
2011-06-01
The effects of tungsten material used as a high-voltage needle electrode on the production of hydrogen peroxide and the degradation of dimethylsulfoxide (DMSO) caused by a pulsed corona discharge in water were investigated. A reactor of needle-plate electrode geometry was used. The erosion of the tungsten electrodes by the discharge was evaluated. The yields of H2O2 production and the decomposition of DMSO by the discharge, which were obtained using the tungsten electrodes, were compared with those determined for titanium electrodes. The electrode erosion increased significantly with an increase in the solution conductivity. A large fraction (50-70%) of the eroded tungsten electrode material was released into the solution in dissolved form as tungstate WO_4^{2-} ions. A correlation between the amount of eroded tungsten material released into the solution and the chemical effects induced by the discharge was determined. Lower yields of H2O2 and a higher degradation of DMSO by the discharge were obtained using the tungsten electrodes than were determined using titanium electrodes. Tungstate ions were shown to play a dominant role in the decomposition of H2O2, which was produced by the discharge using a tungsten electrode. The higher degradation of DMSO that was determined for tungsten was attributed to the tungstate-catalyzed oxidation of DMSO by H2O2, in addition to the oxidation of DMSO by OH radicals. Such a mechanism was supported by the detection of degradation by-products of DMSO (methanesulfonate, sulfate and dimethyl sulfone). The catalytic role of tungstate ions in the plasmachemical activity of the discharge generated using a tungsten electrode was also demonstrated on a pH-dependent decomposition of H2O2 and DMSO.
NASA Astrophysics Data System (ADS)
Mandal, Anuvab; Singh, Param Jeet; Shastri, Aparna; Sunanda, K.; Jagatap, B. N.
2015-05-01
Photoabsorption and photodissociation studies of dimethyl sulphoxide and its deuterated isotopologue (DMSO-h6 and DMSO-d6) are performed using synchrotron radiation in the 35,000-80,000 cm-1 region. In the photoabsorption spectrum, Rydberg series converging to the first three ionization potentials of DMSO at 9.1, 10.1 and 12.3 eV corresponding to removal of an electron from the highest three occupied molecular orbitals (14a‧, 7a″ and 13a‧) are observed. Based on a quantum defect analysis, Rydberg series assignments are extended to higher members as compared to earlier works and a few ambiguities in earlier assignments are clarified. Analysis is aided by quantum chemical calculations using the DFT and TDDFT methodologies. Vibronic structures observed in the spectrum of DMSO-h6 in the regions 7.7-8.1 eV and 8.1-8.8 eV are attributed to the transitions 7a″→4p at 7.862 eV and 14a‧→6s/4d at 8.182 eV, respectively. Photoabsorption spectra of DMSO-h6 and -d6 recorded using a broad band incident radiation show prominent peaks, which are identified and assigned to electronic and vibronic transitions of the SO radical. This provides a direct confirmation of the fact that DMSO preferentially dissociates into CH3 and SO upon UV-VUV excitation, as proposed in earlier photodissociation studies. An extended vibronic band system associated with the e1Π-X3Σ- transition of the SO radical is identified and assigned. The complete VUV photoabsorption spectrum of DMSO-d6 is also reported here for the first time.
Mizuoka, Koichiro; Kim, Seong-Yun; Hasegawa, Miki; Hoshi, Toshihiko; Uchiyama, Gunzo; Ikeda, Yasuhisa
2003-02-24
To examine properties of pentavalent uranium, U(V), we have carried out electrochemical and spectroelectrochemical studies on UO(2)(saloph)L [saloph = N,N'-disalicylidene-o-phenylenediaminate, L = dimethyl sulfoxide (DMSO) or N,N-dimethylformamide (DMF)]. The electrochemical reactions of UO(2)(saloph)L complexes in L were found to occur quasireversibly. The reduction processes of UO(2)(saloph)L complexes were followed spectroelectrochemically by using an optical transparent thin layer electrode cell. It was found that the absorption spectra measured at the applied potentials from 0 to -1.650 V versus ferrocene/ferrocenium ion redox couple (Fc/Fc(+)) for UO(2)(saloph)DMSO in DMSO have clear isosbestic points and that the evaluated electron stoichiometry equals 1.08. These results indicate that the reduction product of UO(2)(saloph)DMSO is [U(V)O(2)(saloph)DMSO](-), which is considerably stable in DMSO. Furthermore, it was clarified that the absorption spectrum of the [U(V)O(2)(saloph)DMSO](-) complex has a very small molar absorptivity in the visible region and characteristic absorption bands due to the 5f(1) orbital at around 750 and 900 nm. For UO(2)(saloph)DMF in DMF, the clear isosbestic points were not observed in the similar spectral changes. It is proposed that the UO(2)(saloph)DMF complex is reduced to [U(V)O(2)(saloph)DMF](-) accompanied by the dissociation of DMF as a successive reaction. The formal redox potentials of UO(2)(saloph)L in L (E(0), vs Fc/Fc(+)) for U(VI)/U(V) couple were determined to be -1.550 V for L = DMSO and -1.626 V for L = DMF.
Say No to DMSO: Dimethylsulfoxide Inactivates Cisplatin, Carboplatin and Other Platinum Complexes
Hall, Matthew D.; Telma, Katherine A.; Chang, Ki-Eun; Lee, Tobie D.; Madigan, James P.; Lloyd, John R.; Goldlust, Ian S.; Hoeschele, James D.; Gottesman, Michael M.
2014-01-01
The platinum drugs cisplatin, carboplatin and oxaliplatin are highly utilized in the clinic and as a consequence are extensively studied in the laboratory setting. In this study, we examined the literature and found a significant number of studies (11 - 34%) in prominent cancer journals utilizing cisplatin dissolved in dimethylsulfoxide (DMSO). However, dissolving cisplatin in DMSO for laboratory-based studies results in ligand displacement and changes the structure of the complex. We examined the effect of DMSO on platinum complexes, including cisplatin, carboplatin and oxaliplatin, finding that DMSO reacted with the complexes, inhibited their cytotoxicity and their ability to initiate cell death. These results render a substantial portion of the literature on cisplatin uninterpretable. Raising awareness of this significant issue in the cancer biology community is critical, and we make recommendations on appropriate solvation of platinum drugs for research. PMID:24812268
Das, Dipak Kumar; Patra, Animesh; Mitra, Rajib Kumar
2016-09-01
We report the changes in the hydration dynamics around a model protein hen egg white lysozyme (HEWL) in water-dimethyl sulfoxide (DMSO) binary mixture using THz time domain spectroscopy (TTDS) technique. DMSO molecules get preferentially solvated at the protein surface, as indicated by circular dichroism (CD) and Fourier transform infrared (FTIR) study in the mid-infrared region, resulting in a conformational change in the protein, which consequently modifies the associated hydration dynamics. As a control we also study the collective hydration dynamics of water-DMSO binary mixture and it is found that it follows a non-ideal behavior owing to the formation of DMSO-water clusters. It is observed that the cooperative dynamics of water at the protein surface does follow the DMSO-mediated conformational modulation of the protein. Copyright © 2016 Elsevier B.V. All rights reserved.
Raman spectroscopic analysis of the interaction between squaric acid and dimethylsulfoxide
NASA Astrophysics Data System (ADS)
Georgopoulos, Stéfanos L.; Edwards, Howell G. M.; de Oliveira, Luiz Fernando C.
2013-07-01
The investigation of solutions of squaric acid in dimethylsulfoxide (DMSO) by Raman spectroscopy has facilitated the observation of the presence of different species derived from squaric acid such as the squarate dianion in solutions of 0.3 M and 0.5 M concentration and the hydrogen-squarate ion in solution concentrations greater than 2.0 M. The method described by Alía and coworkers was used to calculate the two pK values corresponding to the ions produced by squaric acid interacting with DMSO: the hydrogen squarate (pK1 = 0.80) ion and the squarate dianion (pK2 = 0.84). From the spectroscopic data it has been also possible to determine the complex formation between associated squaric acid/DMSO in the proportion squaric acid 1:1 DMSO in which the associated squaric acid is hydrogen-bonded to the S atom in the DMSO structure.
A high selective anion colorimetric sensor based on salicylaldehyde for fluoride in aqueous media.
Li, Jianwei; Lin, Hai; Cai, Zunsheng; Lin, Huakuan
2009-06-01
A new and simple salicylaldehyde-based sensor 1 designed for fluoride sensing has been investigated in DMSO and even in the 9/1 DMSO/H(2)O (v/v) mixtures. The affinity constants of receptor 1 for anionic species in the 9/1 DMSO/H(2)O (v/v) reveal that it is sensitive to F. Also, the color changes induced by anions can provide a way of detection by 'naked-eye'. These result can be substantiated by the spectrum changes upon the addition of 25equiv. anions to 1 in the 9/1 DMSO/H(2)O solution. The further insights to the nature of interactions between the sensor 1 and F(-) were investigated by (1)H NMR titration experiments in 9/1 DMSO-d(6)/H(2)O (v/v). In addition, the proposed binding mode between 1 and F(-) was suggested.
NASA Astrophysics Data System (ADS)
Zhao, Chengxiao; Bai, Binglian; Wang, Haitao; Qu, Songnan; Xiao, Guanjun; Tian, Taiji; Li, Min
2013-04-01
A bi-1,3,4-oxadiazole derivative (BOXDH-T12) showed intramolecular charge transition at concentrations lower than 1 × 10-5 mol/L. The self-assembling behaviors of BOXDH-T12 depended on solvents that it self-assembled into H-aggregates in alcohols and slipped packing aggregates in DMSO. FTIR, 1H NMR and TGA results revealed that strong gelator-gelator hydrogen bonding interaction induced H-aggregation of BOXDH-T12 in alcohols and the interactions between DMSO and BOXDH-T12 molecules caused a slipped stacking. BOXDH-T12 can gel the mixtures of DMSO and ethanol through a cooperative effect of the hydrogen bonding, van der Waals interaction and π-π stacking forces, furthermore, helical ribbons could be observed in DMSO/ethanol due to DMSO molecule interacting. In alcohols, solvophobic/solvophilic effect plays a critical role in gelation behaviors.
Neurotoxicity Associated With Dimethyl Sulfoxide Used in Allogeneic Stem Cell Transplantation.
Ataseven, Eda; Tüfekçi, Özlem; Yilmaz, Şebnem; Güleryüz, Handan; Ören, Hale
2017-07-01
Dimethyl sulfoxide (DMSO) is a cryoprotective agent used in storage of frozen stem cells in stem cell transplantation. Central nervous system side effects of DMSO such as epileptic seizures, stroke, transient global amnesia, and temporary leucoencephalopathy are rarely seen. Here, we report a pediatric patient who developed seizures after DMSO-cryopreserved stem cell infusion and whose magnetic resonance imaging of the brain demonstrated parietal and occipital focal cortical T2-signal intensity increase. DMSO toxicity should be kept in mind in patients who received cryopreserved stem cell infusion and magnetic resonance imaging may be helpful in differential diagnosis of central nervous system involvement.
Cytotoxic effects of dimethyl sulphoxide (DMSO) on cochlear organotypic cultures
Qi, Weidong; Ding, Dalian; Salvi*, Richard J.
2008-01-01
The amphipathic molecule dimethyl sulphoxide (DMSO) is a solvent often used to dissolve compounds applied to the inner ear; however, little is known about its potential cytotoxic side effects. To address this question, we applied 0.1 to 6% DMSO for 24 h to cochlear organotypic cultures from postnatal day 3 rats and examined its cytotoxic effects. DMSO concentrations of 0.1% and 0.25% caused little or no damage. However, concentrations between 0.5 and 6% resulted in stereocilia damage, hair cell swelling and a dose-dependent loss of hair cells. Hair cell damage began in the basal turn of the cochlea and spread towards the apex with increasing concentration. Surprisingly, DMSO-induced damage was greater for inner hair cells than outer hair cell whereas nearby supporting cells were largely unaffected. Most hair cell death was associated with nuclear shrinkage and fragmentation, morphological features consistent with apoptosis. DMSO treatment induced TUNEL positive staining in many hair cells and activated both initiator caspase-9 and caspase-8 and executioner caspase-3; this suggests that apoptosis is initiated by both intrinsic mitochondrial and extrinsic membrane cell death signaling pathways. PMID:18207679
Use of dimethyl sulfoxide (DMSO) in radiation therapy (in German)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glaser, F.H.
1973-01-01
The present clinical examinstion deals with the possible use of DMSO in rsdiation therapy. DMSO was applied to 30 patients, 8 times in radiogenic subcutaneous fibroses, 13 times in contracted scars and keloids, 3 times in cases of induratio penis plastica, and 6 times as vehicle substsnce for tamor cell sensitization with vitamin A in the radiation therapy of skin metastases sfter mamma carcinoma. The results confirm the value of a DMSO treatment of subcutaneous fibroses following highly dosed percutaneous radiation therapy, especially in cases with a radiological ulcer. In keloids of scars a clear effect could be achieved withoutmore » exceptions also in those csses showing only insufficient regression tendency to a preceded rsdiation therapy. The results of irradiation in cases with I.p.p., however, did not show any convincing improvement by a DMSO treatment. A new field of application is opened for the indiation therapy of recurrences and metastases in the area of the skin by sensitization of these cutaneous tumor infiltrates by vitamin A in connection with DMSO as vehicle substance so that a curative regression can be locally obtained by relatively low radiation doses. (auth)« less
Li, Xuan; Wang, Yan-Kui; Song, Zhi-Qiang; Du, Zhi-Qiang; Yang, Cai-Xia
2016-01-01
Meiotic maturation of mammalian oocytes is a precisely orchestrated and complex process. Dimethyl sulfoxide (DMSO), a widely used solvent, drug, and cryoprotectant, is capable of disturbing asymmetric cytokinesis of oocyte meiosis in mice. However, in pigs, DMSO’s effect on oocyte meiosis still remains unknown. We aimed to evaluate if DMSO treatment will affect porcine oocyte meiosis and the underlying molecular changes as well. Interestingly, we did not observe the formation of the large first polar body and symmetric division for porcine oocytes treated with DMSO, contrary to findings reported in mice. 3% DMSO treatment could inhibit cumulus expansion, increase nuclear abnormality, disturb spindle organization, decrease reactive oxygen species level, and elevate mitochondrial membrane potential of porcine oocytes. There was no effect on germinal vesicle breakdown rate regardless of DMSO concentration. 3% DMSO treatment did not affect expression of genes involved in spindle organization (Bub1 and Mad2) and apoptosis (NF-κB, Pten, Bcl2, Caspase3 and Caspase9), however, it significantly decreased expression levels of pluripotency genes (Oct4, Sox2 and Lin28) in mature oocytes. Therefore, we demonstrated that disturbed cumulus expansion, chromosome alignment, spindle organization and pluripotency gene expression could be responsible for DMSO-induced porcine oocyte meiotic arrest and the lower capacity of subsequent embryo development. Our results provide new insights on DMSO’s effect on porcine oocyte meiosis and raise safety concerns over DMSO’s usage on female reproduction in both farm animals and humans. PMID:27348312
Qiu, Zhifang; Mishra, Anuja; Li, Miao; Farnsworth, Steven L; Guerra, Bernadette; Lanford, Robert E; Hornsby, Peter J
2015-07-01
The marmoset is an important nonhuman primate model for regenerative medicine. For experimental autologous cell therapy based on induced pluripotent (iPS) cells in the marmoset, cells must be able to undergo robust and reliable directed differentiation that will not require customization for each specific iPS cell clone. When marmoset iPS cells were aggregated in a hanging drop format for 3 days, followed by exposure to dual SMAD inhibitors and retinoic acid in monolayer culture for 3 days, we found substantial variability in the response of different iPS cell clones. However, when clones were pretreated with 0.05-2% dimethyl sulfoxide (DMSO) for 24 hours, all clones showed a very similar maximal response to the directed differentiation scheme. Peak responses were observed at 0.5% DMSO in two clones and at 1% DMSO in a third clone. When patterns of gene expression were examined by microarray analysis, hierarchical clustering showed very similar responses in all 3 clones when they were pretreated with optimal DMSO concentrations. The change in phenotype following exposure to DMSO and the 6 day hanging drop/monolayer treatment was confirmed by immunocytochemistry. Analysis of DNA content in DMSO-exposed cells indicated that it is unlikely that DMSO acts by causing cells to exit from the cell cycle. This approach should be generally valuable in the directed neural differentiation of pluripotent cells for experimental cell therapy. Copyright © 2015. Published by Elsevier B.V.
Effects of dimethyl sulfoxide on asymmetric division and cytokinesis in mouse oocytes
2014-01-01
Background Dimethyl sulfoxide (DMSO) is used extensively as a permeable cryoprotectant and is a common solvent utilized for several water-insoluble substances. DMSO has various biological and pharmacological activities; however, the effect of DMSO on mouse oocyte meiotic maturation remains unknown. Results In DMSO-treated oocytes, we observed abnormal MII oocytes that contained large polar bodies, including 2-cell–like MII oocytes, during in vitro maturation. Oocyte polarization did not occur, due to the absence of actin cap formation and spindle migration. These features are among the primary causes of abnormal symmetric division; however, analysis of the mRNA expression levels of genes related to asymmetric division revealed no significant difference in the expression of these factors between the 3% DMSO-treated group and the control group. After each “blastomere” of the 2-cell–like MII stage oocytes was injected by one sperm head respectively, the oocytes still possessed the ability to extrude the second polar body from each “blastomere” and to begin cleavage. However, MII oocytes with large polar bodies developed to the blastocyst stage after intracytoplasmic sperm injection (ICSI). Furthermore, other permeable cryoprotectants, such as ethylene glycol and glycerol, also caused asymmetric division failure. Conclusion Permeable cryoprotectants, such as DMSO, ethylene glycol, and glycerol, affect asymmetric division. DMSO disrupts cytokinesis completion by inhibiting cortical reorganization and polarization. Oocytes that undergo symmetric division maintain the ability to begin cleavage after ICSI. PMID:24953160
Fry, L J; Querol, S; Gomez, S G; McArdle, S; Rees, R; Madrigal, J A
2015-08-01
Advantages of using cord blood (CB) over other sources of haematopoietic progenitor cells, such as bone marrow, include the ability to cryopreserve and bank the samples until requested for a transplant. Cryopreservation requires the addition of a cryoprotectant to prevent the formation of intracellular ice during freezing. Dimethyl sulphoxide (DMSO) is commonly used at a concentration of 10% (v/v); however, there is evidence to suggest this chemical is toxic to cells as well as to patients after infusion. The toxic effects of DMSO were assessed through cell viability and in vitro functional assays in fresh and post-thaw CB samples before determining the maximum exposure time and optimal concentration for cryopreservation. A dose-dependent toxicity of DMSO was observed in fresh samples with 40% removing all viable and functional haematopoietic progenitor cells (HPC). In fresh and post-thaw analysis, minimal toxic effect was observed when cryopreservation was delayed for up to 1 h after 10% DMSO addition. After thawing, DMSO washout was superior to dilution or unmanipulated when maintained for long periods (advantage observed 1 h after thawing). Finally, the optimum concentration for cryopreserving CB was found to be 7.5 to 10% with detrimental effects observed outside of this range. These results support the use of 7.5-10% as the optimal DMSO concentration and the maximum exposure time should be limited to <1 h prior to freezing and 30 min post-thaw. © 2015 International Society of Blood Transfusion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schrader, Alex M.; Cheng, Chi-Yuan; Israelachvili, Jacob N.
2016-07-28
Glycerol and dimethyl sulfoxide (DMSO) are commonly used cryoprotectants in cellular systems, but due to the challenges of measuring the properties of surface-bound solvent, fundamental questions remain regarding the concentration, interactions, and conformation of these solutes at lipid membrane surfaces. We measured the surface water diffusivity at gel-phase dipalmitoylphosphatidylcholine (DPPC) bilayer surfaces in aqueous solutions containing ≤7.5 mol. % of DMSO or glycerol using Overhauser dynamic nuclear polarization. We found that glycerol similarly affects the diffusivity of water near the bilayer surface and that in the bulk solution (within 20%), while DMSO substantially increases the diffusivity of surface water relativemore » to bulk water. We compare these measurements of water dynamics with those of equilibrium forces between DPPC bilayers in the same solvent mixtures. DMSO greatly decreases the range and magnitude of the repulsive forces between the bilayers, whereas glycerol increases it. We propose that the differences in hydrogen bonding capability of the two solutes leads DMSO to dehydrate the lipid head groups, while glycerol affects surface hydration only as much as it affects the bulk water properties. The results suggest that the mechanism of the two most common cryoprotectants must be fundamentally different: in the case of DMSO by decoupling the solvent from the lipid surface, and in the case of glycerol by altering the hydrogen bond structure and intermolecular cohesion of the global solvent, as manifested by increased solvent viscosity.« less
Structural and computational study of 1,2,4-triazolin-5-thione derivative and its DMSO solvate
NASA Astrophysics Data System (ADS)
Dybała, Izabela; Wawrzycka-Gorczyca, Irena; Struga, Marta
2017-11-01
The solid state structure of 3-(4-phenyl-5-oxo-1,2,4-triazolin-1-ylmethyl)-4-cyclohexyl-1,2,4-triazolin-5-thione (1) was characterized by FT-IR and X-ray diffraction experiment. Additionally, molecular and crystal structure of its DMSO solvate (1DMSO) has been determined by X-ray diffraction method. The influence of DMSO molecules incorporation to the crystal lattice on geometry of triazolin-5-thione derivative molecule and crystal packing was analyzed. Non-covalent bonds within the crystals are additionally visualized by determination of Hirshfeld surfaces. According to results of conformational analysis in gas, molecule of triazolin-5-thione derivative adopts the lowest energy conformation in 1DMSO crystal. The crystal structure of 1 and 1DMSO were compared with previously described structurally similar compounds, in which the cyclohexyl substituent was replaced by aromatic one (phenyl/methoxyphenyl). Very interesting differences in molecules association were found by comparing the crystal structures of 1 and 1DMSO with their, mentioned above, aromatic derivatives. Interesting properties of triazolin-5-thione derivatives are connected with their π-electron delocalization effects, thus aromaticity of heterocyclic fragments has been investigated by means of the HOMA index. Comparison of aromaticity calculations results with association tendency of molecules shows that triazolin-5-one fragments reach higher aromaticity when nitrogen atom from this moiety acts as a donor in strong Nsbnd H⋯N hydrogen bonds.
Kashino, Genro; Liu, Yong; Suzuki, Minoru; Masunaga, Shin-ichiro; Kinashi, Yuko; Ono, Koji; Tano, Keizo; Watanabe, Masami
2010-01-01
The radioprotective effects of dimethyl sulfoxide (DMSO) have been known for many years, and the suppression of hydroxyl (OH) radicals induced by ionizing radiation has been thought to be the main cause of this effect. However, the DMSO concentration used was very high, and might be toxic, in earlier studies. In the present study, we administered a lower, non-toxic concentration (0.5%, i.e., 64 mM) of DMSO before irradiation and examined its radioprotective effects. Colony formation assay and micronucleus assay showed significant radioprotective effects in CHO, but not in xrs5, which is defective in the repair function of DNA double-strand breaks. The levels of phosphorylated H2AX and the formation of 53BP1 foci 15 minutes after irradiation, which might reflect initial DNA double-strand breaks, in DMSO-treated CHO cells were similar to those in non-treated cells, suggesting that the radioprotective effects were not attributable to the suppression of general indirect action in the lower concentration of DMSO. On the other hand, 2 hours after irradiation, the average number of 53BP1 foci, which might reflect residual DNA double-strand breaks, was significantly decreased in DMSO-treated CHO cells compared to non-treated cells. The results indicated that low concentration of DMSO exerts radioprotective effects through the facilitation of DNA double-strand break repair rather than through the suppression of indirect action.
NASA Astrophysics Data System (ADS)
del Valle, Daniela A.; Kieber, David J.; Toole, Dierdre A.; Bisgrove, John; Kiene, Ronald P.
2009-02-01
Dimethylsulfoxide (DMSO) is an important degradation product of the climate-influencing gas dimethylsulfide (DMS). In the Ross Sea, Antarctica, dissolved DMSO (DMSOd) concentrations exhibited substantial seasonal and vertical variations. Surface water DMSOd concentrations in pre-bloom waters were very low (<1 nM) but increased rapidly up to 41 nM during the spring Phaeocystis antarctica bloom (late November). Increases in DMSOd concentrations lagged by several days increases in DMS concentrations. Although DMSOd concentrations reached relatively high levels during the spring bloom, concentrations were generally higher (36.3-60.6 nM) during summer (January), even though phytoplankton biomass and DMS concentrations had decreased by that time. During both seasons, DMSOd concentrations were substantially higher within the surface mixed layer than below it. DMSOd production from biological DMS consumption (BDMSC) was higher during late November (3.4-5.2 nM d -1) than during the summer (0.7-2.4 nM d -1); therefore, production via BDMSC alone could not explain the higher DMSOd concentrations encountered during the summer. Mixed layer-integrated DMSOd production from BDMSC was 2.5-13.7 times greater than production from dissolved DMS photolysis during the P. antarctica bloom, while photolysis contributed 1.3 times more DMSO than BDMSC before the bloom. The DMSO yield from BDMSC was consistently higher within the upper mixed layer than at depths below. Experimental incubations with water from the mixed layer showed that exposure to full spectrum sunlight for 72 h caused an increase in the DMSO yield whereas exposure to only photosynthetically active radiation did not. This suggests that ultraviolet radiation is a potential factor shifting the fate of biologically consumed DMS toward DMSO. In general, the highest DMSO yields from BDMSC were in samples with slow biological DMS turnover, whereas fast turnover favored sulfate rather than DMSO as a major end-product. This study provides the first detailed information about DMSOd distribution and production in the Ross Sea and points to DMSOd as an important biological and photochemical degradation product of DMS and a major reservoir of methylated sulfur in these polar surface waters.
Lee, Inhwa; Kim, Gun Woo; Yang, Minyang; Kim, Taek-Soo
2016-01-13
Conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) has attracted significant attention as a hole transport and electrode layer that substitutes metal electrodes in flexible organic devices. However, its weak cohesion critically limits the reliable integration of PSS in flexible electronics, which highlights the importance of further investigation of the cohesion of PSS. Furthermore, the electrical conductivity of PSS is insufficient for high current-carrying devices such as organic photovoltaics (OPVs) and organic light emitting diodes (OLEDs). In this study, we improve the cohesion and electrical conductivity through adding dimethyl sulfoxide (DMSO), and we demonstrate the significant changes in the properties that are dependent on the wt % of DMSO. In particular, with the addition of 3 wt % DMSO, the maximum enhancements for cohesion and electrical conductivity are observed where the values increase by 470% and 6050%, respectively, due to the inter-PEDOT bridging mechanism. Furthermore, when OLED devices using the PSS films are fabricated using the 3 wt % DMSO, the display exhibits 18% increased current efficiency.
Matsumoto, Shigekiyo; Shingu, Chihiro; Koga, Hironori; Hagiwara, Satoshi; Iwasaka, Hideo; Noguchi, Takayuki; Yokoi, Isao
2010-07-01
Electron spin resonance (ESR)-silent ascorbate solutions generate a detectable, likely concentration-dependent signal of ascorbyl free radicals (AFR) immediately upon addition of a molar excess of dimethyl sulfoxide (DMSO). We aimed to perform quantitative ESR analysis of AFR in real time after addition of DMSO (AFR/DMSO) to evaluate ascorbate concentrations in fresh hippocampus or plasma following systemic administration of kainate in mice. Use of a special tissue-type quartz cell allowed immediate detection of AFR/DMSO ESR spectra in fresh tissues from mice. AFR/DMSO content was increased significantly in fresh hippocampus or plasma obtained during kainate-induced seizures of mice, reaching maximum levels at 90 min after intraperitoneal administration of 50 mg/kg kainic acid. This suggests that oxidative injury of the hippocampus resulted from the accumulation of large amounts of ascorbic acid in the brain after kainic acid administration. AFR/DMSO content measured on an ESR spectrometer can be used for real-time evaluation of ascorbate content in fresh tissue. Due to the simplicity, good performance, low cost and real-time monitoring of ascorbate, this method may be applied to clinical research and treatment in the future.
The Effect of Dimethyl Sulfoxide on Supercoiled DNA Relaxation Catalyzed by Type I Topoisomerases
Lv, Bei; Dai, Yunjia; Liu, Ju; Zhuge, Qiang; Li, Dawei
2015-01-01
The effects of dimethyl sulfoxide (DMSO) on supercoiled plasmid DNA relaxation catalyzed by two typical type I topoisomerases were investigated in our studies. It is shown that DMSO in a low concentration (less than 20%, v/v) can induce a dose-related enhancement of the relaxation efficiency of Escherichia coli topoisomerase I (type IA). Conversely, obvious inhibitory effect on the activity of calf thymus topoisomerase I (type IB) was observed when the same concentration of DMSO is used. In addition, our studies demonstrate that 20% DMSO has an ability to reduce the inhibitory effect on EcTopo I, which was induced by double-stranded oligodeoxyribonucleotides while the same effect cannot be found in the case of CtTopo I. Moreover, our AFM examinations suggested that DMSO can change the conformation of negatively supercoiled plasmid by creating some locally loose regions in DNA molecules. Combining all the lines of evidence, we proposed that DMSO enhanced EcTopo I relaxation activity by (1) increasing the single-stranded DNA regions for the activities of EcTopo I in the early and middle stages of the reaction and (2) preventing the formation of double-stranded DNA-enzyme complex in the later stage, which can elevate the effective concentration of the topoisomerase in the reaction solution. PMID:26682217
NASA Astrophysics Data System (ADS)
Togasaki, Norihiro; Momma, Toshiyuki; Osaka, Tetsuya
2016-03-01
Stable charge-discharge cycling behavior for a lithium metal anode in a dimethylsulfoxide (DMSO)-based electrolyte is strongly desired of lithium-oxygen batteries, because the Li anode is rapidly exhausted as a result of side reactions during cycling in the DMSO solution. Herein, we report a novel electrolyte design for enhancing the cycling performance of Li anodes by using a highly concentrated DMSO-based electrolyte with a specific Li salt. Lithium nitrate (LiNO3), which forms an inorganic compound (Li2O) instead of a soluble product (Li2S) on a lithium surface, exhibits a >20% higher coulombic efficiency than lithium bis(trifluoromethanesulfonyl)imide, lithium bis(fluorosulfonyl)imide, and lithium perchlorate, regardless of the loading current density. Moreover, the stable cycling of Li anodes in DMSO-based electrolytes depends critically on the salt concentration. The highly concentrated electrolyte 4.0 M LiNO3/DMSO displays enhanced and stable cycling performance comparable to that of carbonate-based electrolytes, which had not previously been achieved. We suppose this enhancement is due to the absence of free DMSO solvent in the electrolyte and the promotion of the desolvation of Li ions on the solid electrolyte interphase surface, both being consequences of the unique structure of the electrolyte.
Lei, Chin-Nan; Whang, Liang-Ming; Chen, Po-Chun
2010-09-01
The amount of pollutants produced during manufacturing processes of thin-film transistor liquid crystal display (TFT-LCD) substantially increases due to an increasing production of the opto-electronic industry in Taiwan. This study presents the treatment performance of one aerobic and one anoxic/oxic (A/O) sequencing batch reactors (SBRs) treating synthetic TFT-LCD wastewater containing dimethyl sulfoxide (DMSO), monoethanolamine (MEA), and tetra-methyl ammonium hydroxide (TMAH). The long-term monitoring results for the aerobic and A/O SBRs demonstrate that stable biodegradation of DMSO, MEA, and TMAH can be achieved without any considerably adverse impacts. The ammonium released during MEA and TMAH degradation can also be completely oxidized to nitrate through nitrification in both SBRs. Batch studies on biodegradation rates for DMSO, MEA, and TMAH under anaerobic, anoxic, and aerobic conditions indicate that effective MEA degradation can be easily achieved under all three conditions examined, while efficient DMSO and TMAH degradation can be attained only under anaerobic and aerobic conditions, respectively. The potential odor problem caused by the formation of malodorous dimethyl sulfide from DMSO degradation under anaerobic conditions, however, requires insightful consideration in treating DMSO-containing wastewater. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Venkataramanan, Natarajan Sathiyamoorthy; Suvitha, Ambigapathy; Kawazoe, Yoshiyuki
2017-11-01
This study aims to cast light on the physico-chemical nature and energetics of interactions between the nucleobases and water/DMSO molecules which occurs through the non-conventional CH⋯O/N-H bonds using a comprehensive quantum-chemical approach. The computed interaction energies do not show any appreciable change for all the nucleobase-solvent complexes, conforming the experimental findings on the hydration enthalpies. Compared to water, DMSO form complexes with high interaction energies. The quantitative molecular electrostatic potentials display a charge transfer during the complexation. NBO analysis shows the nucleobase-DMSO complexes, have higher stabilization energy values than the nucleobase-water complexes. AIM analysis illustrates that the in the nucleobase-DMSO complexes, SO⋯H-N type interaction have strongest hydrogen bond strength with high E HB values. Furthermore, the Laplacian of electron density and total electron density were negative indicating the partial covalent nature of bonding in these systems, while the other bonds are classified as noncovalent interactions. EDA analysis indicates, the electrostatic interaction is more pronounced in the case of nucleobase-water complexes, while the dispersion contribution is more dominant in nucleobase-DMSO complexes. NCI-RDG analysis proves the existence of strong hydrogen bonding in nucleobase-DMSO complex, which supports the AIM results. Copyright © 2017 Elsevier Inc. All rights reserved.
Neklasova, N Iu; Sharinov, G M; Vinokurov, V L; Skrynditsa, G M
2006-01-01
to study the efficacy of dimethyl sulfoxide ((DMSO) at different concentrations in preventing radiation-induced rectal and urinary bladder damages in patients with cervix uteri cancer (CUC). combined radiation therapy (RT) was performed in 807 patients with CUC. In the control group (n = 221), RT was made, without applying radio-modified agents. An hour prior to a session of intracavitary irradiation, 10% DMSO solution was instilled into the rectum and urinary bladder in 113 patients and applications of metronidazole (MN) dissolved in 100% DSMO were made in 473 patients. Teleradiotherapy was performed, by using megavolt irradiation sources in the conventional fractionation mode; the total focal dose (TFD) was increased up to 40-46 Gy. Intracavitary irradiation was carried out on "AGAT-V" and "AGAT-VU" devices once weekly; the single focal dose in point A was 7 Gy; TFD was 49-56 Gy. 10% DMSO instillations reduced the incidence of late radiation-induced damages to the rectum and urinary bladder. In the control group, the incidence of these conditions was 19.0 and 9.5%, respectively; with the use of 10% DMSO, that was 8.8 and 7.1%. Applications of MN dissolved in 100% DMSO reduced the incidence of late radiation-induced damages to 1.7%. Local application of DMSO is a method for preventing late radiation-induced damages to the rectum and urinary bladder in patients with CUC. When the concentration of DMSO is increased, its preventive effect increases.
Protein Conformation and Supercharging with DMSO from Aqueous Solution
NASA Astrophysics Data System (ADS)
Sterling, Harry J.; Prell, James S.; Cassou, Catherine A.; Williams, Evan R.
2011-07-01
The efficacy of dimethyl sulfoxide (DMSO) as a supercharging reagent for protein ions formed by electrospray ionization from aqueous solution and the mechanism for supercharging were investigated. Addition of small amounts of DMSO to aqueous solutions containing hen egg white lysozyme or equine myoglobin results in a lowering of charge, whereas a significant increase in charge occurs at higher concentrations. Results from both near-UV circular dichroism spectroscopy and solution-phase hydrogen/deuterium exchange mass spectrometry indicate that DMSO causes a compaction of the native structure of these proteins at low concentration, but significant unfolding occurs at ~63% and ~43% DMSO for lysozyme and myoglobin, respectively. The DMSO concentrations required to denature these two proteins in bulk solution are ~3-5 times higher than the concentrations required for the onset of supercharging, consistent with a significantly increased concentration of this high boiling point supercharging reagent in the ESI droplet as preferential evaporation of water occurs. DMSO is slightly more basic than m-nitrobenzyl alcohol and sulfolane, two other supercharging reagents, based on calculated proton affinity and gas-phase basicity values both at the B3LYP and MP2 levels of theory, and all three of these supercharging reagents are significantly more basic than water. These results provide additional evidence that the origin of supercharging from aqueous solution is the result of chemical and/or thermal denaturation that occurs in the ESI droplet as the concentration of these supercharging reagents increases, and that proton transfer reactivity does not play a significant role in the charge enhancement observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, J.S.; Llewellyn, G.C.
The LD50 (7 d) for aflatoxin B/sub 1/ (AFB/sub 1/) in CD-1 neonate mice (3.1 g; 5 d of age) was determined to be 13.3 mg/kg. The vehicle was dimethyl sulfoxide (DMSO), given intraperitoneally, at 0.01 ml/animal (7 mg/kg). The solvent was nontoxic and caused no significant change in body weight in animals during an 11-d experimental period (17 d of age). Aflatoxin B/sub 1/ at 5.0 mg/kg and above caused reduced body weight gain. DMSO animals had a mean loss of more than 17% of the radiolabel over a 9-d period. Aflatoxin treatments reversed the DMSO loss of /supmore » 54/Mn in a concentration-related fashion, and generally, AFB/sub 1/ caused a conservation of the radioisotope. The radiolabel was redistributed into the following organs/tissues: liver > brain > bone > muscle = lungs > blood. Aflatoxin-treated animals showed a twofold increase of radiolabel in the liver as compared to controls. The DMSO itself failed to influence /sup 54/Mn influx into the liver. In general, control neonate mice, by 17 d of age, were retaining and redistributing the /sup 54/MnCl/sub 2/ and had not reached the time for sudden emergence of excretion common in rodents. DMSO was found not to be the most satisfactory solvent to use in the administration of aflatoxins, especially when manganese metabolism is being studied. Generally, both DMSO and AFB/sub 1/ influenced radiomanganese distribution, DMSO having a substantial influence. 27 references, 3 figures, 2 tables.« less
Zhao, Joan L.; Wu, Yubo; Johnson, John M.
2011-01-01
We hypothesized that nitric oxide activation of soluble guanylyl cyclase (sGC) participates in cutaneous vasodilation during whole body heat stress and local skin warming. We examined the effects of the sGC inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), on reflex skin blood flow responses to whole body heat stress and on nonreflex responses to increased local skin temperature. Blood flow was monitored by laser-Doppler flowmetry, and blood pressure by Finapres to calculate cutaneous vascular conductance (CVC). Intradermal microdialysis was used to treat one site with 1 mM ODQ in 2% DMSO and Ringer, a second site with 2% DMSO in Ringer, and a third site received Ringer. In protocol 1, after a period of normothermia, whole body heat stress was induced. In protocol 2, local heating units warmed local skin temperature from 34 to 41°C to cause local vasodilation. In protocol 1, in normothermia, CVC did not differ among sites [ODQ, 15 ± 3% maximum CVC (CVCmax); DMSO, 14 ± 3% CVCmax; Ringer, 17 ± 6% CVCmax; P > 0.05]. During heat stress, ODQ attenuated CVC increases (ODQ, 54 ± 4% CVCmax; DMSO, 64 ± 4% CVCmax; Ringer, 63 ± 4% CVCmax; P < 0.05, ODQ vs. DMSO or Ringer). In protocol 2, at 34°C local temperature, CVC did not differ among sites (ODQ, 17 ± 2% CVCmax; DMSO, 18 ± 4% CVCmax; Ringer, 18 ± 3% CVCmax; P > 0.05). ODQ attenuated CVC increases at 41°C local temperature (ODQ, 54 ± 5% CVCmax; DMSO, 86 ± 4% CVCmax; Ringer, 90 ± 2% CVCmax; P < 0.05 ODQ vs. DMSO or Ringer). sGC participates in neurogenic active vasodilation during heat stress and in the local response to direct skin warming. PMID:21292837
Cervigni, Mauro; Sommariva, Monica; Tenaglia, Raffaele; Porru, Daniele; Ostardo, Edoardo; Giammò, Alessandro; Trevisan, Silvia; Frangione, Valeria; Ciani, Oriana; Tarricone, Rosanna; Pappagallo, Giovanni L
2017-04-01
Intravesical instillation of hyaluronic acid (HA) plus chondroitin sulfate (CS) in women with bladder pain syndrome/interstitial cystitis (BPS/IC) has shown promising results. This study compared the efficacy, safety, and costs of intravesical HA/CS (Ialuril ® , IBSA) to dimethyl sulfoxide (DMSO). Randomized, open-label, multicenter study involving 110 women with BPS/IC. The allocation ratio (HA/CS:DMSO) was 2:1. Thirteen weekly instillations of HA (1.6%)/CS (2.0%) or 50% DMSO were given. Patients were evaluated at 3 (end-of-treatment) and 6 months. Primary endpoint was reduction in pain intensity at 6 months by visual analogue scale (VAS) versus baseline. Secondary efficacy measurements were quality of life and economic analyses. A significant reduction in pain intensity was observed at 6 months in both treatment groups versus baseline (P < 0.0001) in the intention-to-treat population. Treatment with HA/CS resulted in a greater reduction in pain intensity at 6 months compared with DMSO for the per-protocol population (mean VAS reduction 44.77 ± 25.07 vs. 28.89 ± 31.14, respectively; P = 0.0186). There were no significant differences between treatment groups in secondary outcomes. At least one adverse event was reported in 14.86% and 30.56% of patients in the HA/CS and DMSO groups, respectively. There were significantly fewer treatment-related adverse events for HA/CS versus DMSO (1.35% vs. 22.22%; P = 0.001). Considering direct healthcare costs, the incremental cost-effectiveness ratio of HA/CS versus DMSO fell between 3735€/quality-adjusted life years (QALY) and 8003€/QALY. Treatment with HA/CS appears to be as effective as DMSO with a potentially more favorable safety profile. Both treatments increased health-related quality of life, while HA/CS showed a more acceptable cost-effectiveness profile. © 2016 Wiley Periodicals, Inc.
Kwak, Kyungwon; Rosenfeld, Daniel E; Chung, Jean K; Fayer, Michael D
2008-11-06
Hydrogen bonds formed between C-H and various hydrogen bond acceptors play important roles in the structure of proteins and organic crystals, and the mechanisms of C-H bond cleavage reactions. Chloroform, a C-H hydrogen bond donor, can form weak hydrogen-bonded complexes with acetone and with dimethylsulfoxide (DMSO). When chloroform is dissolved in a mixed solvent consisting of acetone and DMSO, both types of hydrogen-bonded complexes exist. The two complexes, chloroform-acetone and chloroform-DMSO, are in equilibrium, and they rapidly interconvert by chloroform exchanging hydrogen bond acceptors. This fast hydrogen bond acceptor substitution reaction is probed using ultrafast two-dimensional infrared (2D-IR) vibrational echo chemical exchange spectroscopy. Deuterated chloroform is used in the experiments, and the 2D-IR spectrum of the C-D stretching mode is measured. The chemical exchange of the chloroform hydrogen bonding partners is tracked by observing the time-dependent growth of off-diagonal peaks in the 2D-IR spectra. The measured substitution rate is 1/30 ps for an acetone molecule to replace a DMSO molecule in a chloroform-DMSO complex and 1/45 ps for a DMSO molecule to replace an acetone molecule in a chloroform-acetone complex. Free chloroform exists in the mixed solvent, and it acts as a reactive intermediate in the substitution reaction, analogous to a SN1 type reaction. From the measured rates and the equilibrium concentrations of acetone and DMSO, the dissociation rates for the chloroform-DMSO and chloroform-acetone complexes are found to be 1/24 ps and 1/5.5 ps, respectively. The difference between the measured rate for the complete substitution reaction and the rate for complex dissociation corresponds to the diffusion limited rate. The estimated diffusion limited rate agrees well with the result from a Smoluchowski treatment of diffusive reactions.
Studies on Biological Actions of Dimethyl Sulfoxide in Familial Amyloidosis,
Dimethyl sulfoxide (DMSO) had not been regarded as a therapeutic drug against amyloidosis until 1974 when Osserman and Isobe administered it for the...first time in six cases of primary amyloidosis . In 1973, we described an outline of the second largest concentration of familial amyloid...DMSO administration to patients with primary and familial amyloidosis from both clinical and biochemical viewpoints and in vitro effects of DMSO on extracted amyloid fibril proteins.
NASA Astrophysics Data System (ADS)
Lumata, Lloyd; Kovacs, Zoltan; Malloy, Craig; Sherry, A. Dean; Merritt, Matthew
2011-03-01
Dimethyl sulfoxide (DMSO) can effectively form a glassy matrix necessary for dynamic nuclear polarization (DNP) experiments. We tested the effects of 13C enrichment in DMSO on DNP of [1-13C]pyruvate doped with trityl radical OX063Me. We found that the polarization build-up time τ of pyruvate in 13C-labeled DMSO glassing solution is twice as fast as the unenriched DMSO while the nuclear magnetic resonance enhancement was unchanged. This indicates that 13C-13C spin diffusion is a limiting factor in the kinetics of DNP in this system, but it has a minimal effect on the absolute value of polarization achievable for the target.
NASA Astrophysics Data System (ADS)
Lumata, Lloyd; Kovacs, Zoltan; Malloy, Craig; Sherry, A. Dean; Merritt, Matthew
2011-03-01
Dimethyl sulfoxide (DMSO) can effectively form a glassy matrix necessary for dynamic nuclear polarization (DNP) experiments. We tested the effects of 13C enrichment in DMSO on DNP of [1-13C]pyruvate doped with trityl radical OX063Me. We found that the polarization build-up time τ of pyruvate in 13C-labeled DMSO glassing solution is twice as fast as the unenriched DMSO while the nuclear magnetic resonance enhancement was unchanged. This indicates that 13C-13C spin diffusion is a limiting factor in the kinetics of DNP in this system, but it has a minimal effect on the absolute value of polarization achievable for the target.
Stape, Thiago Henrique Scarabello; Tjäderhane, Leo; Abuna, Gabriel; Sinhoreti, Mário Alexandre Coelho; Martins, Luís Roberto Marcondes; Tezvergil-Mutluay, Arzu
2018-04-13
To determine whether bonding effectiveness and hybrid layer integrity on acid-etched dehydrated dentin would be comparable to the conventional wet-bonding technique through new dentin biomodification approaches using dimethyl sulfoxide (DMSO). Etched dentin surfaces from extracted sound molars were randomly bonded in wet or dry conditions (30s air drying) with DMSO/ethanol or DMSO/H 2 O as pretreatments using a simplified (Scotchbond Universal Adhesive, 3M ESPE: SU) and a multi-step (Adper Scotchbond Multi-Purpose, 3M ESPE: SBMP) etch-and-rinse adhesives. Untreated dentin surfaces served as control. Bonded teeth (n=8) were stored in distilled water for 24h and sectioned into resin-dentin beams (0.8mm 2 ) for microtensile bond strength test and quantitative interfacial nanoleakage analysis (n=8) under SEM. Additional teeth (n=2) were prepared for micropermeability assessment by CFLSM under simulated pulpar pressure (20cm H 2 O) using 5mM fluorescein as a tracer. Microtensile data was analyzed by 3-way ANOVA followed by Tukey Test and nanoleakage by Kruskal-Wallis and Dunn-Bonferroni multiple comparison test (α=0.05). While dry-bonding of SBMP produced significantly lower bond strengths than wet-bonding (p<0.05), DMSO/H 2 O and DMSO/ethanol produced significantly higher bond strengths for SBMP irrespective of dentin condition (p<0.05). SU presented significantly higher nanoleakage levels (p<0.05) and micropermeability than SBMP. Improvement in hybrid layer integrity occurred for SBMP and SU for both pretreatments, albeit most pronouncedly for DMSO/ethanol regardless of dentin moisture. DMSO pretreatments may be used as a new suitable strategy to improve bonding of water-based adhesives to demineralized air-dried dentin beyond conventional wet-bonding. Less porous resin-dentin interfaces with higher bond strengths on air-dried etched dentin were achieved; nonetheless, overall efficiency varied according to DMSO's co-solvent and adhesive type. DMSO pretreatments permit etched dentin to be air-dried before hybridization facilitating residual water removal and thus improving bonding effectiveness. This challenges the current paradigm of wet-bonding requirement for the etch-and-rinse approach creating new possibilities to enhance the clinical longevity of resin-dentin interfaces. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.
Dimethyl sulfoxide inhibits zymosan-induced intestinal inflammation and barrier dysfunction
Li, Yu-Meng; Wang, Hai-Bin; Zheng, Jin-Guang; Bai, Xiao-Dong; Zhao, Zeng-Kai; Li, Jing-Yuan; Hu, Sen
2015-01-01
AIM: To investigate whether dimethyl sulfoxide (DMSO) inhibits gut inflammation and barrier dysfunction following zymosan-induced systemic inflammatory response syndrome and multiple organ dysfunction syndrome. METHODS: Sprague-Dawley rats were randomly divided into four groups: sham with administration of normal saline (SS group); sham with administration of DMSO (SD group); zymosan with administration of normal saline (ZS group); and zymosan with administration of DMSO (ZD group). Each group contained three subgroups according to 4 h, 8 h, and 24 h after surgery. At 4 h, 8 h, and 24 h after intraperitoneal injection of zymosan (750 mg/kg), the levels of intestinal inflammatory cytokines [tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-10] and oxides (myeloperoxidase, malonaldehyde, and superoxide dismutase) were examined. The levels of diamine oxidase (DAO) in plasma and intestinal mucosal blood flow (IMBF) were determined. Intestinal injury was also evaluated using an intestinal histological score and apoptosis of intestinal epithelial cells was determined by deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The intestinal epithelial tight junction protein, ZO-1, was observed by immunofluorescence. RESULTS: DMSO decreased TNF-α and increased IL-10 levels in the intestine compared with the ZS group at the corresponding time points. The activity of intestinal myeloperoxidase in the ZS group was higher than that in the ZD group 24 h after zymosan administration (P < 0.05). DMSO decreased the content of malondialdehyde (MDA) and increased the activity of superoxide dehydrogenase (SOD) 24 h after zymosan administration. The IMBF was lowest at 24 h and was 49.34% and 58.26% in the ZS group and ZD group, respectively (P < 0.05). DMSO alleviated injury in intestinal villi, and the gut injury score was significantly lower than the ZS group (3.6 ± 0.2 vs 4.2 ± 0.3, P < 0.05). DMSO decreased the level of DAO in plasma compared with the ZS group (65.1 ± 4.7 U/L vs 81.1 ± 5.0 U/L, P < 0.05). DMSO significantly preserved ZO-1 protein expression and localization 24 h after zymosan administration. The TUNEL analysis indicated that the number of apoptotic intestinal cells in the ZS group was much higher than the ZD group (P < 0.05). CONCLUSION: DMSO inhibited intestinal cytokines and protected against zymosan-induced gut barrier dysfunction. PMID:26478676
Dimethyl sulfoxide inhibits zymosan-induced intestinal inflammation and barrier dysfunction.
Li, Yu-Meng; Wang, Hai-Bin; Zheng, Jin-Guang; Bai, Xiao-Dong; Zhao, Zeng-Kai; Li, Jing-Yuan; Hu, Sen
2015-10-14
To investigate whether dimethyl sulfoxide (DMSO) inhibits gut inflammation and barrier dysfunction following zymosan-induced systemic inflammatory response syndrome and multiple organ dysfunction syndrome. Sprague-Dawley rats were randomly divided into four groups: sham with administration of normal saline (SS group); sham with administration of DMSO (SD group); zymosan with administration of normal saline (ZS group); and zymosan with administration of DMSO (ZD group). Each group contained three subgroups according to 4 h, 8 h, and 24 h after surgery. At 4 h, 8 h, and 24 h after intraperitoneal injection of zymosan (750 mg/kg), the levels of intestinal inflammatory cytokines [tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-10] and oxides (myeloperoxidase, malonaldehyde, and superoxide dismutase) were examined. The levels of diamine oxidase (DAO) in plasma and intestinal mucosal blood flow (IMBF) were determined. Intestinal injury was also evaluated using an intestinal histological score and apoptosis of intestinal epithelial cells was determined by deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The intestinal epithelial tight junction protein, ZO-1, was observed by immunofluorescence. DMSO decreased TNF-α and increased IL-10 levels in the intestine compared with the ZS group at the corresponding time points. The activity of intestinal myeloperoxidase in the ZS group was higher than that in the ZD group 24 h after zymosan administration (P < 0.05). DMSO decreased the content of malondialdehyde (MDA) and increased the activity of superoxide dehydrogenase (SOD) 24 h after zymosan administration. The IMBF was lowest at 24 h and was 49.34% and 58.26% in the ZS group and ZD group, respectively (P < 0.05). DMSO alleviated injury in intestinal villi, and the gut injury score was significantly lower than the ZS group (3.6 ± 0.2 vs 4.2 ± 0.3, P < 0.05). DMSO decreased the level of DAO in plasma compared with the ZS group (65.1 ± 4.7 U/L vs 81.1 ± 5.0 U/L, P < 0.05). DMSO significantly preserved ZO-1 protein expression and localization 24 h after zymosan administration. The TUNEL analysis indicated that the number of apoptotic intestinal cells in the ZS group was much higher than the ZD group (P < 0.05). DMSO inhibited intestinal cytokines and protected against zymosan-induced gut barrier dysfunction.
Naaldijk, Yahaira; Johnson, Adiv A; Friedrich-Stöckigt, Annett; Stolzing, Alexandra
2016-12-01
Preservation of human skin fibroblasts and keratinocytes is essential for the creation of skin tissue banks. For successful cryopreservation of cells, selection of an appropriate cryoprotectant agent (CPA) is imperative. The aim of this study was to identify CPAs that minimize toxic effects and allow for the preservation of human fibroblasts and keratinocytes in suspension and in monolayers. We cryopreserved human fibroblasts and keratinocytes with different CPAs and compared them to fresh, unfrozen cells. Cells were frozen in the presence and absence of hydroxyethyl starch (HES) or dimethyl sulfoxide (DMSO), the latter of which is a commonly used CPA known to exert toxic effects on cells. Cell numbers were counted immediately post-thaw as well as three days after thawing. Cellular structures were analyzed and counted by labeling nuclei, mitochondria, and actin filaments. We found that successful cryopreservation of suspended or adherent keratinocytes can be accomplished with a 10% HES or a 5% HES, 5% DMSO solution. Cell viability of fibroblasts cryopreserved in suspension was maintained with 10% HES or 5% HES, 5% DMSO solutions. Adherent, cryopreserved fibroblasts were successfully maintained with a 5% HES, 5% DMSO solution. We conclude that skin tissue cells can be effectively cryopreserved by substituting all or a portion of DMSO with HES. Given that DMSO is the most commonly used CPA and is believed to be more toxic than HES, these findings are of clinical significance for tissue-based replacement therapies. Therapies that require the use of keratinocyte and fibroblast cells, such as those aimed at treating skin wounds or skin burns, may be optimized by substituting a portion or all of DMSO with HES during cryopreservation protocols.
A new discussion of the cutaneous vascular reactivity in sensitive skin: A sub-group of SS?
Chen, S Y; Yin, J; Wang, X M; Liu, Y Q; Gao, Y R; Liu, X P
2018-02-02
Sensitive skin (SS) seems not to be a one-dimensional condition and many scholars concentrate on skin barrier disruption or sensorineural change, but few focus on its increased vascular reactivity. This study explored the possibility of using the different selection methods and measurement methods to verify a high vascular reactivity in SS without an impaired cutaneous barrier function. Sixty "self-perceived sensitive skin" volunteers were enlisted and each one completed three kinds of screening tests: assess cutaneous sensory using questionnaire survey and Lactic Acid Sting Test (LAST); assess barrier function using Sodium lauryl sulphate (SLS) skin irritation test and assess cutaneous vascular reactivity using 98% DMSO test and non-invasive measurement. Volunteers were divided into different groups based on response to SLS. The DMSO clinical score and the biophysical parameters obtained by non-invasive measurement were subsequently analysed. (1) The positive correlations could be seen between sum LAST score and sum DMSO score regardless of the observation time; (2) The biological parameters (CBF、a*values and L* values) are all keeping with DMSO score; (3) If the participants were divided into SLS reactors and non-reactors, a composition ratio of DMSO score was significant difference in these two groups and in SLS non-reactors, there were still seven participants showed high reaction to DMSO. There is a sub-group of SS for characteristics of a high vascular reactivity without an impaired cutaneous barrier function. The DMSO test and novel non-invasive measurements which are conducive to assess cutaneous vascular reactivity, combined with SLS skin irritation test could help us to screen this kind of SS. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Nature of bonding and cooperativity in linear DMSO clusters: A DFT, AIM and NCI analysis.
Venkataramanan, Natarajan Sathiyamoorthy; Suvitha, Ambigapathy
2018-05-01
This study aims to cast light on the nature of interactions and cooperativity that exists in linear dimethyl sulfoxide (DMSO) clusters using dispersion corrected density functional theory. In the linear DMSO, DMSO molecules in the middle of the clusters are bound strongly than at the terminal. The plot of the total binding energy of the clusters vs the cluster size and mean polarizabilities vs cluster size shows an excellent linearity demonstrating the presence of cooperativity effect. The computed incremental binding energy of the clusters remains nearly constant, implying that DMSO addition at the terminal site can happen to form an infinite chain. In the linear clusters, two σ-hole at the terminal DMSO molecules were found and the value on it was found to increase with the increase in cluster size. The quantum theory of atoms in molecules topography shows the existence of hydrogen and SO⋯S type in linear tetramer and larger clusters. In the dimer and trimer SO⋯OS type of interaction exists. In 2D non-covalent interactions plot, additional peaks in the regions which contribute to the stabilization of the clusters were observed and it splits in the trimer and intensifies in the larger clusters. In the trimer and larger clusters in addition to the blue patches due to hydrogen bonds, additional, light blue patches were seen between the hydrogen atom of the methyl groups and the sulphur atom of the nearby DMSO molecule. Thus, in addition to the strong H-bonds, strong electrostatic interactions between the sulphur atom and methyl hydrogens exists in the linear clusters. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Love,J.; Elliott, T.; Das, G. C.; Hammond, D. K.; Schwarzkopf, R. J.; Jones, L. B.; Baker, T. L.
2006-01-01
Dimethyl sulfoxide (DMSO) has been used as a standard cryopreservative agent for mammalian cell culture; however, prolonged exposure of thawed cells to DMSO can alter cell growth. While DMSO is easily eliminated in ground-based experiments, removal of DMSO in flight-based experiments is more difficult due to various on-orbit constraints. Failure of cryopreservation is due to a number of factors, including intracellular ice formation, solute effect, and apoptotic cell death following thawing. One objective of this study is to identify and characterize an alternative cryopreservative that could be used on the International Space Station (ISS). We systematically screened for potential permeating and non-permeating agents using a human colorectal carcinoma cell line, MIP-101. Cells were suspended in cryopreservation solution and frozen either following a two-step procedure involving initial cooling at -1 C/min overnight followed by storage in liquid nitrogen (LN2) vapor, or by freezing cells directly in the LN2 vapor phase at -10 C/min. Ability to preserve cellular function after one cycle of freeze-thawing was assessed by the recovery of viable cells in short and long-term cell culture experiments. Results showed that permeating preservatives glycerol (G) and ethylene glycol (EG) had an efficacy (80-110%) comparable to, if not better than, 7.5% DMSO; but, propylene glycol (PG) had a somewhat lesser efficacy. Among the non-permeating preservatives, trehalose, raffinose, and dextran exhibited significant protective effect (50-80%) relative to that offered by 7.5% DMSO, but at -10 C and not at -1 C/min cooling rate. Preliminary data thus suggest that a combination of permeating and non-permeating agents may have improved efficacy as a cryoprotectant and serve as an alternate to DMSO for experimentation on ISS.
Iaffaldano, N; Di Iorio, M; Miranda, M; Zaniboni, L; Manchisi, A; Cerolini, S
2016-04-01
1. This study was designed to identify a suitable protocol for freezing turkey semen in straws exposed to nitrogen vapour by examining the effects of dimethylacetamide (DMA) or dimethylsulfoxide (DMSO) as cryoprotectant (CPA), CPA concentration, freezing rate and thawing rate on in vitro post-thaw semen quality. 2. Pooled semen samples were diluted 1:1 (v:v) with a freezing extender composed of Tselutin diluent containing DMA or DMSO to give final concentrations of 8% or 18% DMA and 4% or 10% DMSO. The semen was packaged in 0.25 ml plastic straws and frozen at different heights above the liquid nitrogen (LN2) surface (1, 5 and 10 cm) for 10 min. Semen samples were thawed at 4°C for 5 min or at 50°C for 10 s. After thawing, sperm motility, viability and osmotic tolerance were determined. 3. Cryosurvival of turkey sperm was affected by DMSO concentration. Freezing rate affected the motility of sperm cryopreserved using both CPAs, while thawing rates showed an effect on the motility of sperm cryopreserved using DMA and on the viability of sperm cryopreserved using DMSO. Significant interactions between freezing rate × thawing rate on sperm viability in the DMA protocol were found. 4. The most effective freezing protocol was the use of 18% DMA or 10% DMSO with freezing 10 cm above the LN2 surface and a thawing temperature of 50°C. An efficient protocol for turkey semen would improve prospects for sperm cryobanks and the commercial use of frozen turkey semen.
The Development of an In Vitro Assay for the Prospective Determination of Aspirin Sensitivity.
Westphal, Erica S; Wisniewski, Caitlin; Rainka, Michelle; Smith, Nicholas M; Bates, Vernice; Gengo, Fran M
2018-05-18
Aspirin remains the standard for stroke prophylaxis. However, as many as 20%-25% of patients may fail to show a full response to aspirin. Ideally, patients who are resistant to aspirin could be identified, then receive an increased dose of aspirin or be changed to an alternative therapy more efficiently. We have developed an in vitro assay that may make this possible. Healthy volunteers (n = 13) between 18 and 50 years of age were tested for both ex vivo and in vivo responses to aspirin. Dimethyl sulfoxide (DMSO) was selected as the solvent for aspirin in the assay. DMSO can exhibit antiplatelet effects, necessitating the use of a concentration low enough to avoid such antiplatelet effects. Blood samples were tested against DMSO 0%, 0.05%, 0.5%, and 1% w/v with and without aspirin 0, 50, and 100 μM. The effects of both agents were measured via whole-blood aggregometry. A 3-dimensional response model described the data well, quantifying the combinatorial effect of DMSO and aspirin on platelet aggregation. Across all participants, baseline aggregation stimulated with collagen 1 μM or arachidonate 0.5 mM was approximately 18 and 13 Ω, respectively. The response model showed that 0.05% DMSO with 100 μM aspirin would provide platelet aggregation of 3.4 Ω. A DMSO concentration of 0.05% in the absence of aspirin would result in no discernable effects on platelet aggregation (17.7 Ω). Overall, the use of 100 μM of aspirin in 0.05% DMSO provides a robust method to test for ex vivo inhibition of platelet aggregation. © 2018, The American College of Clinical Pharmacology.
Cha, Soo Kyung; Kim, Bo Yeun; Kim, Mi Kyung; Kim, You Shin; Lee, Woo Sik
2011-01-01
Objective The objectives of this study were to analyze efficacy of immature and mature mouse oocytes after vitrification and warming by applying various combinations of cryoprotectants (CPAs) and/or super-rapid cooling using slush nitrogen (SN2). Methods Four-week old ICR female mice were superovulated for GV- and MII-stage oocytes. Experimental groups were divided into two groups. Ethylene glycol (EG) only group: pre-equilibrated with 1.5 M EG for 2.5 minutes and then equilibrated with 5.5 M EG and 1.0 M sucrose for 20 seconds. EG+dimethylsulfoxide (DMSO) group: pre-equilibrated with 1.3 M EG+1.1 M DMSO for 2.5 minutes and equilibrated with 2.7 M EG+2.1 M DMSO+0.5 M sucrose for 20 seconds. The oocytes were loaded onto grids and plunged into SN2 or liquid nitrogen (LN2). Stored oocytes were warmed by a five-step method, and then their survival, maturation, cleavage, and developmental rates were observed. Results The EG only and EG+DMSO groups showed no significant difference in survival of immature oocytes vitrified after warming. However, maturation and cleavage rates after conventional insemination were greater in the EG only group than in the EG+DMSO group. In mature oocytes, survival, cleavage, and blastocyst formation rates after warming showed no significant difference when EG only or EG+DMSO was applied. Furthermore, cleavage and blastocyst formation rates of MII oocytes vitrified using SN2 were increased in both the EG only and EG+DMSO groups. Conclusion A combination of CPAs in oocyte cryopreservation could be formulated according to the oocyte stage. In addition, SN2 may improve the efficiency of vitrification by reducing cryoinjury. PMID:22384414
Kilincaslan, Huseyin; Karatepe, Hande Ozgun; Sarac, Fatma; Olgac, Vakur; Kemik, Ahu Sarbay; Gedik, Ahmet Hakan; Uysal, Omer
2014-10-01
The aim of this study was to investigate the effects of dimethyl sulfoxide (DMSO) on stricture formation in corrosive esophageal burns. A total of 21 male rats were divided equally into three groups. In Group 1 (burn) and Group 2 (burn + DMSO) burns were induced in the distal esophagi with a 30% NaOH solution. In Group 3 (control), a saline solution was applied to the esophageal lumen. In Group 2, DMSO was administered intraperitoneally (3 mg/kg) 15 minutes after the burn was induced and then every 24 hours for 7 days. All rats were humanely killed at the end of Day 22. Distal esophagi were harvested for analysis. The stenosis index (SI) and histopathologic damage score were evaluated in addition to malondialdehyde (MDA), myeloperoxidase (MPO), nitric oxide (NO), tumor necrosis factor alpha (TNF-α), and interleukin-6 (IL-6) levels. DMSO significantly decreased the levels of MDA, NO, TNF-α, and IL-6 in the rats with burned esophagi. Furthermore, the SI and histopathologic scores decreased significantly in the burn + DMSO group relative to the burn group (p < 0.05). Our results suggest that DMSO can decrease the occurrence of stricture formation and could represent a beneficial alternative therapy for the treatment of corrosive esophagitis. Georg Thieme Verlag KG Stuttgart · New York.
Najafi, Abouzar; Daghigh-Kia, Hossein; Dodaran, Hossein Vaseghi; Mehdipour, Mahdieh; Alvarez-Rodriguez, Manuel
2017-02-01
The aim of this study was to evaluate the effects of glycerol, ethylene glycol or DMSO in a soybean lecithin extender for freezing ram semen. In this study, 20 ejaculates were collected from four Ghezel rams and diluted with soybean lecithin extender with glycerol (7%), ethylene glycol (3%, 5% and 7%) or DMSO (3%, 5% and 7%). Sperm motility (CASA), membrane integrity (HOS test), viability, total abnormality, mitochondrial activity (Rhodamine 123) and apoptotic features (Annexin V/Propidium iodide) were assessed after thawing. There was no significant difference between glycerol and ethylene glycol at different concentrations (3% and 5%) regarding sperm total and progressive motility, viability, and membrane integrity. The least percentages of mitochondrial functionality were observed in samples frozen with all different DMSO concentrations tested (P<0.05). Moreover, the percentage of post-thawed dead sperm was the greatest for all the DMSO concentrations compared with other groups (P<0.05). Thus, DMSO had an adverse effect on the post thaw ram sperm parameters. In contrast, ethylene glycol could be a desirable substitute of glycerol in the freezing extender, in view of similar results obtained in post-thaw quality of ram semen cryopreserved in a soybean lecithin extender. We propose that glycerol in a soybean lecithin based extender could be replaced by ethylene glycol at 3% or 5% concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.
Takis, Panteleimon G; Papavasileiou, Konstantinos D; Peristeras, Loukas D; Boulougouris, Georgios C; Melissas, Vasilios S; Troganis, Anastassios N
2017-05-31
Dimethyl sulfoxide (DMSO) has a significant, multi-faceted role in medicine, pharmacy, and biology as well as in biophysical chemistry and catalysis. Its physical properties and impact on biomolecular structures still attract major scientific interest, especially the interactions of DMSO with biomolecular functional groups. In the present study, we shed light on the "isolated" carboxylic (-COOH) and amide (-NH) interactions in neat DMSO via 1 H NMR studies along with extensive theoretical approaches, i.e. molecular dynamics (MD) simulations, density functional theory (DFT), and ab initio calculations, applied on model compounds (i.e. acetic and benzoic acid, ethyl acetamidocyanoacetate). Both experimental and theoretical results show excellent agreement, thereby permitting the calculation of the association constants between the studied compounds and DMSO molecules. Our coupled MD simulations, DFT and ab initio calculations, and NMR spectroscopy results indicated that complex formation is entropically driven and DMSO molecules undergo multiple strong interactions with the studied molecules, particularly with the -COOH groups. The combined experimental and theoretical techniques unraveled the interactions of DMSO with the most abundant functional groups of peptides (i.e. peptide bonds, side chain and terminal carboxyl groups) in high detail, providing significant insights on the underlying thermodynamics driving these interactions. Moreover, the developed methodology for the analysis of the simulation results could serve as a template for future thermodynamic and kinetic studies of similar systems.
Effects of intravenous dimethyl sulfoxide on ischemia evolution in a rat permanent occlusion model
Bardutzky, Juergen; Meng, Xianjun; Bouley, James; Duong, Timothy Q; Ratan, Rajiv; Fisher, Marc
2010-01-01
Dimethyl sulfoxide (DMSO) has a variety of biological actions that suggest efficacy as a neuroprotectant. We (1) tested the neuroprotective potential of DMSO at different time windows on infarct size using 2,3,5-triphenyltetrazolium staining and (2) investigated the effects of DMSO on ischemia evolution using quantitative diffusion and perfusion imaging in a permanent middle cerebral artery occlusion (MCAO) model in rats. In experiment 1, DMSO treatment (1.5 g/kg intravenously over 3 h) reduced infarct volume 24 h after MCAO by 65% (P<0.00001) when initiated 20 h before MCAO, by 44% (P=0.0006) when initiated 1 h after MCAO, and by 17% (P=0.11) when started 2 h after MCAO. Significant infarct reduction was also observed after a 3-day survival in animals treated 1 h after MCAO (P=0.005). In experiment 2, treatment was initiated 1 h after MCAO and maps for cerebral blood flow (CBF) and apparent diffusion coefficient (ADC) were acquired before treatment and then every 30 mins up to 4 h. Cerebral blood flow characteristics and CBF-derived lesion volumes did not differ between treated and untreated animals, whereas the ADC-derived lesion volume essentially stopped progressing during DMSO treatment, resulting in a persistent diffusion/perfusion mismatch. This effect was mainly observed in the cortex. Our data suggest that DMSO represents an interesting candidate for acute stroke treatment. PMID:15744247
Uribe, Phillip M; Mueller, Melissa A; Gleichman, Julia S; Kramer, Matthew D; Wang, Qi; Sibrian-Vazquez, Martha; Strongin, Robert M; Steyger, Peter S; Cotanche, Douglas A; Matsui, Jonathan I
2013-01-01
Inner ear sensory hair cells die following exposure to aminoglycoside antibiotics or chemotherapeutics like cisplatin, leading to permanent auditory and/or balance deficits in humans. Zebrafish (Danio rerio) are used to study drug-induced sensory hair cell death since their hair cells are similar in structure and function to those found in humans. We developed a cisplatin dose-response curve using a transgenic line of zebrafish that expresses membrane-targeted green fluorescent protein under the control of the Brn3c promoter/enhancer. Recently, several small molecule screens have been conducted using zebrafish to identify potential pharmacological agents that could be used to protect sensory hair cells in the presence of ototoxic drugs. Dimethyl sulfoxide (DMSO) is typically used as a solvent for many pharmacological agents in sensory hair cell cytotoxicity assays. Serendipitously, we found that DMSO potentiated the effects of cisplatin and killed more sensory hair cells than treatment with cisplatin alone. Yet, DMSO alone did not kill hair cells. We did not observe the synergistic effects of DMSO with the ototoxic aminoglycoside antibiotic neomycin. Cisplatin treatment with other commonly used organic solvents (i.e. ethanol, methanol, and polyethylene glycol 400) also did not result in increased cell death compared to cisplatin treatment alone. Thus, caution should be exercised when interpreting data generated from small molecule screens since many compounds are dissolved in DMSO.
Gleichman, Julia S.; Kramer, Matthew D.; Wang, Qi; Sibrian-Vazquez, Martha; Strongin, Robert M.; Steyger, Peter S.; Cotanche, Douglas A.; Matsui, Jonathan I.
2013-01-01
Inner ear sensory hair cells die following exposure to aminoglycoside antibiotics or chemotherapeutics like cisplatin, leading to permanent auditory and/or balance deficits in humans. Zebrafish (Danio rerio) are used to study drug-induced sensory hair cell death since their hair cells are similar in structure and function to those found in humans. We developed a cisplatin dose-response curve using a transgenic line of zebrafish that expresses membrane-targeted green fluorescent protein under the control of the Brn3c promoter/enhancer. Recently, several small molecule screens have been conducted using zebrafish to identify potential pharmacological agents that could be used to protect sensory hair cells in the presence of ototoxic drugs. Dimethyl sulfoxide (DMSO) is typically used as a solvent for many pharmacological agents in sensory hair cell cytotoxicity assays. Serendipitously, we found that DMSO potentiated the effects of cisplatin and killed more sensory hair cells than treatment with cisplatin alone. Yet, DMSO alone did not kill hair cells. We did not observe the synergistic effects of DMSO with the ototoxic aminoglycoside antibiotic neomycin. Cisplatin treatment with other commonly used organic solvents (i.e. ethanol, methanol, and polyethylene glycol 400) also did not result in increased cell death compared to cisplatin treatment alone. Thus, caution should be exercised when interpreting data generated from small molecule screens since many compounds are dissolved in DMSO. PMID:23383324
Chen, Shuang Y; Wang, Xue M; Liu, Yan Q; Gao, Yan R; Liu, Xiao P; Li, Shu Y; Dong, Ya Q
2014-03-01
Dimethyl sulfoxide (DMSO) has been suggested as a traditional chemical probe for assessing skin susceptibility and barrier function. The purpose of this study was to determine the role of DMSO test for the evaluation of unusual skin angioneurotic reaction and epidermal permeability. Thirty healthy volunteers were exposed to 98% DMSO on the flexor forearm skin for three exposure durations (5 min, 10 min and 15 min). Clinical visual score and biological physical parameters were obtained. The volunteers were divided into two groups according to the clinical visual scoring. The skin parameters were subsequently analyzed. There was a significant correlation between clinical visual score and biological physical parameters. The skin color parameters (a*, oxyhemoglobin, erythema and melanin index) and blood flow values were significant between two groups regardless of duration of DMSO exposure, and a significant difference between density values could also be detected if we regrouped the volunteers according to the sting-producing score. Our results also suggested there was no correlation between questionnaire score and clinical visual score or other parameters. Application of 98% DMSO for 10 min combined with a* (at 30 min) and blood flow (at 10 min) values could help us to identify persons with a hyper-angionerotic reaction to chemical stimulus. The penetrative activity of DMSO correlated with the thickness of the individual's skin.
Adsorption of HMF from water/DMSO solutions onto hydrophobic zeolites: experiment and simulation.
Xiong, Ruichang; León, Marta; Nikolakis, Vladimiros; Sandler, Stanley I; Vlachos, Dionisios G
2014-01-01
The adsorption of 5-hydroxymethylfurfural (HMF), DMSO, and water from binary and ternary mixtures in hydrophobic silicalite-1 and dealuminated Y (DAY) zeolites at ambient conditions was studied by experiments and molecular modeling. HMF and DMSO adsorption isotherms were measured and compared to those calculated using a combination of grand canonical Monte Carlo and expanded ensemble (GCMC-EE) simulations. A method based on GCMC-EE simulations for dilute solutions combined with the Redlich-Kister (RK) expansion (GCMC-EE-RK) is introduced to calculate the isotherms over a wide range of concentrations. The simulations, using literature force fields, are in reasonable agreement with experimental data. In HMF/water binary mixtures, large-pore hydrophobic zeolites are much more effective for HMF adsorption but less selective because large pores allow water adsorption because of H2 O-HMF attraction. In ternary HMF/DMSO/water mixtures, HMF loading decreases with increasing DMSO fraction, rendering the separation of HMF from water/DMSO mixtures by adsorption difficult. The ratio of the energetic interaction in the zeolite to the solvation free energy is a key factor in controlling separation from liquid mixtures. Overall, our findings could have an impact on the separation and catalytic conversion of HMF and the rational design of nanoporous adsorbents for liquid-phase separations in biomass processing. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yoshiba, Kazuto; Dobashi, Toshiaki; Ulset, Ann-Sissel T; Christensen, Bjørn E
2018-06-18
Carboxylated schizophyllan ("sclerox") is a chemically modified polysaccharide obtained by partial periodate oxidation and subsequent chlorite oxidation of schizophyllan, a water-soluble neutral polysaccharide having a β-1,3-linked glucan backbone and a β-1,6-linked d-glucose residue side chain at every third residue of the main chain. The triple helix of schizophyllan in water has a cooperative order-disorder transition associated with the side chains. The transition is strongly affected by the presence (mole fraction) of dimethylsulfoxide (DMSO). In the present study, the solvent effects on the order-disorder transition of sclerox with different degrees of carboxylation (DS) in water-DMSO mixtures were investigated with differential scanning calorimetry and optical rotation. The transition temperature ( T r ) and transition enthalpy (Δ H r ) strongly depended on the mole fraction of DMSO ( x D ). Data were further analyzed with the statistical theory for the linear cooperative transition, taking into account the solvent effect, where DMSO molecules are selectively associated with the unmodified side chains. The modified side chain does not contribute to the transition; hence, Δ H r decreases with increasing DS. The dependence of T r on the DMSO content becomes weaker than that for unmodified schizophyllan. The theoretical analyses indicated that the number of sites binding with the DMSO molecule and the successive ordered sequence of the ordered unit of the triple helix are changed by carboxylation.
Lidbury, Ian; Kröber, Eileen; Zhang, Zhidong; Zhu, Yijun; Murrell, J Colin; Chen, Yin; Schäfer, Hendrik
2016-09-01
The volatile organosulfur compound, dimethylsulfide (DMS), plays an important role in climate regulation and global sulfur biogeochemical cycles. Microbial oxidation of DMS to dimethylsulfoxide (DMSO) represents a major sink of DMS in surface seawater, yet the underlying molecular mechanisms and key microbial taxa involved are not known. Here, we reveal that Ruegeria pomeroyi, a model marine heterotrophic bacterium, can oxidize DMS to DMSO using trimethylamine monooxygenase (Tmm). Purified Tmm oxidizes DMS to DMSO at a 1:1 ratio. Mutagenesis of the tmm gene in R. pomeroyi completely abolished DMS oxidation and subsequent DMSO formation. Expression of Tmm and DMS oxidation in R. pomeroyi is methylamine-dependent and regulated at the post-transcriptional level. Considering that Tmm is present in approximately 20% of bacterial cells inhabiting marine surface waters, particularly the marine Roseobacter clade and the SAR11 clade, our observations contribute to a mechanistic understanding of biological DMSO production in surface seawater. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Kaczor, Agnieszka; Proniewicz, Leonard M.
2004-10-01
The 1H and 13C NMR spectra of acetohydroxamic (aha) and oxalodihydroxamic (oxha) acids were measured in DMSO- d6 solution. The atoms chemical shifts of chosen stable entgegen and zusammen conformers of monomeric acids were computed along with some clusters of the compounds with the solvent molecules [B3LYP/6-311++G(d,p), GIAO]. The latter were proposed to explain the differences between the theoretical and experimental resonances of the protons of the N-H and O-H groups. The computed chemical shifts of aha-(DMSO) 2 and oxha-(DMSO) 2 models are in good agreement with experimental data proving that the compounds existing in solution form aggregates with DMSO. The acids are H-bonded via all the labile protons to the oxygen atoms of the solvent molecules. aha exists in the zusammen and entgegen (relative to C-N bond) forms with the relative intensities of 8:1 while the sole z, E, z-conformers (notation refers to C-N, C-C and C-N bonds, respectively) were found for oxha.
Altered Hepa1-6 cells by dimethyl sulfoxide (DMSO)-treatment induce anti-tumor immunity in vivo.
Jiang, Zhengyu; Zhang, Hongxia; Wang, Ye; Yu, Bin; Wang, Chen; Liu, Changcheng; Lu, Juan; Chen, Fei; Wang, Minjun; Yu, Xinlu; Lin, Jiahao; Pan, Xinghua; Wang, Pin; Zhu, Haiying
2016-02-23
Cancer immunotherapy is the use of the immune system to treat cancer. Our current research proposed an optional strategy of activating immune system involving in cancer immunotherapy. When being treated with 2% DMSO in culture medium, Hepa1-6 cells showed depressed proliferation with no significant apoptosis or decreased viability. D-hep cells, Hepa1-6 cells treated with DMSO for 7 days, could restore to the higher proliferation rate in DMSO-free medium, but alteration of gene expression profile was irreversible. Interestingly, tumors from D-hep cells, not Hepa1-6 cells, regressed in wild-type C57BL/6 mice whereas D-hep cells exhibited similar tumorigenesis as Hep1-6 cells in immunodeficient mice. As expected, additional Hepa1-6 cells failed to form tumors in the D-hep-C57 mice in which D-hep cells were eliminated. Further research confirmed that D-hep-C57 mice established anti-tumor immunity against Hepa1-6 cells. Our research proposed viable tumor cells with altered biological features by DMSO-treatment could induce anti-tumor immunity in vivo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleinheinz, G.T.; St. John, W.P.
A study was conducted to develop a rapid and reliable method for the collection and incorporation of biofiltration air samples containing volatile organic compounds (VOCs) into the Microtox toxicity testing system. To date, no method exists for this type of assay. A constant stream of VOCs was generated by air stripping compounds from a complex mixture of petroleum hydrocarbons (PHCs). Samples were collected on coconut charcoal ORBO tubes and the VOCs extracted with methylene chloride. The compounds extracted were then solvent exchanged into dimethyl sulfoxide (DMSO) under gaseous nitrogen. The resulting DMSO extract was directly incorporated into the Microtox toxicitymore » testing system. In order to determine the efficiency of the solvent exchange, the VOCs in the DMSO extract were then extracted into hexane and subsequently analyzed using gas chromatography (GC) with a flame ionization detector (FID). It was determined that all but the most volatile VOCs could be effectively transferred from the ORBO tubes to DMSO for Microtox testing. Potential trace amounts of residual methylene chloride in the DMSO extracts showed no adverse effects in the Microtox system when compared to control samples.« less
NASA Astrophysics Data System (ADS)
Boyle, A. J.; Weems, A. C.; Hasan, S. M.; Nash, L. D.; Monroe, M. B. B.; Maitland, D. J.
2016-07-01
Solvent exposure has been investigated to trigger actuation of shape memory polymers (SMPs) as an alternative to direct heating. This study aimed to investigate the feasibility of using dimethyl sulfoxide (DMSO) and ethanol (EtOH) to stimulate polyurethane-based SMP foam actuation and the required solvent concentrations in water for rapid actuation of hydrophobic SMP foams. SMP foams exhibited decreased T g when submerged in DMSO and EtOH when compared to water submersion. Kinetic DMA experiments showed minimal or no relaxation for all SMP foams in water within 30 min, while SMP foams submerged in EtOH exhibited rapid relaxation within 1 min of submersion. SMP foams expanded rapidly in high concentrations of DMSO and EtOH solutions, where complete recovery over 30 min was observed in DMSO concentrations greater than 90% and in EtOH concentrations greater than 20%. This study demonstrates that both DMSO and EtOH are effective at triggering volume recovery of polyurethane-based SMP foams, including in aqueous environments, and provides promise for use of this actuation technique in various applications.
Magnetic Resonance Imaging of Polymeric Drug Delivery Systems in Breast Cancer Solid Tumors
2006-07-01
isothiocyanatobenzyl-1,4,7,10 tetraazacyclododecane-1,4,7,10 tetraacetic acid (p-SCN-Bz-DOTA) in dry dimethylsulfoxide ( DMSO ). The p-SCN-Bz-DOTA was...acetone / DMSO using AIBN as the initiator. The ratio of monomers: initiator: solvent in the feed were kept constant at 12.5: 0.6: 86.9 (weight...aminopropylmethacrylamide) (APMA) with p-isothiocyanatobenzyl-1,4,7,10 tetraazacyclododecane-1,4,7,10 tetraacetic acid (p-SCN-Bz-DOTA) in dry dimethylsulfoxide ( DMSO
NASA Astrophysics Data System (ADS)
Mamyrbekova, A. K.
2013-03-01
Physicochemical properties (density, dynamic viscosity, refraction index) of the DMSO-Cu(NO3)2 · 3H2O system are studied in the concentration range of 0.01-2 M at 298 K. The refraction index of a solution of copper(II) nitrate in dimethylsulfoxide (DMSO) is measured at 288-318 K. The excess and partial molar volumes of the solvent and dissolved substance are calculated analytically.
Ludwig, C U; Stoll, H R; Obrist, R; Obrecht, J P
1987-03-01
Accidental subcutaneous extravasation of several antineoplastic agents may provoke skin ulcerations for which there has been no simple and effective treatment. Since January 1983 we have treated all patients in our institution sustaining extravasation by a cytotoxic drug with a combination of DMSO and alpha-Tocopherole. During the first 48 hr after extravasation a mixture of 10% alpha-Tocopherole acetate and 90% DMSO was topically applied. The bandage was changed every 12 hr. So far eight patients with extravasation of an anthracycline or Mitomycin were treated on this protocol. No skin ulceration, functional or neurovascular impairment occurred in any of these patients. The only toxic effect observed by this treatment was a minor skin irritation. The combination of DMSO and alpha-Tocopherole seems to prevent skin ulceration induced by anthracyclines and Mitomycin.
Metal Organic Framework Micro/Nanopillars of Cu(BTC)·3H₂O and Zn(ADC)·DMSO.
Kojtari, Arben; Ji, Hai-Feng
2015-04-09
In this work, we report the optical and thermal properties of Cu(BTC)·3H₂O (BTC = 1,3,5-benzenetricarboxylic acid) and Zn(ADC)·DMSO (ADC = 9,10- anthracenedicarboxylic acid, DMSO = dimethyl sulfoxide) metal-organic frameworks (MOFs) micro/nanopillars. The morphologies of MOFs on surfaces are most in the form of micro/nanopillars that were vertically oriented on the surface. The size and morphology of the pillars depend on the evaporation time, concentration, solvent, substrate, and starting volume of solutions. The crystal structures of the nanopillars and micropillars are the same, confirmed by powder XRD. Zn(ADC)·DMSO pillars have a strong blue fluorescence. Most of ADC in the pillars are in the form of monomers, which is different from ADC in the solid powder.
Verdanova, Martina; Pytlik, Robert
2014-01-01
A reliable, cryoprotective, xeno-free medium suitable for different cell types is highly desirable in regenerative medicine. There is danger of infection or allergic reaction with the use of fetal bovine serum (FBS), making it problematic for medical applications. The aim of the present study was to develop an FBS-free cryoprotective medium for human mesenchymal stromal cells (hMSCs; primary cells) and immortalized human osteoblasts (SAOS-2 cell line). Furthermore, we endeavored to eliminate or reduce the presence of dimethyl sulfoxide (DMSO) in the medium. Sericin, a sticky protein derived from the silkworm cocoon, was investigated as a substitute for FBS and DMSO in the freezing medium. Cell viability (24 hours after thawing, both hMSC and SAOS-2) and colony-forming ability (2 weeks after thawing, only for hMSCs) were both determined. The FBS-free medium with 1% sericin in 10% DMSO was found to be a suitable freezing medium for primary hMSCs, in contrast to immortalized human osteoblasts. Surprisingly, the storage of hMSCs in a cultivation medium with only 10% DMSO also provided satisfactory results. Any drop in DMSO concentration led to significantly worse survival of cells, with little improvement in hMSC survival in the presence of sericin. Thus, sericin may substitute for FBS in the freezing medium for primary hMSCs, but cannot substitute for DMSO. PMID:24749876
Lin, Gu-Jiun; Sytwu, Huey-Kang; Yu, Jyh-Cherng; Chen, Yuan-Wu; Kuo, Yu-Liang; Yu, Chiao-Chi; Chang, Hao-Ming; Chan, De-Chuan; Huang, Shing-Hwa
2015-01-15
Type 1 diabetes mellitus (T1D) is caused by the destruction of insulin-producing β cells in pancreatic islets by autoimmune T cells. Islet transplantation has been established as an effective therapeutic strategy for T1D. However, the survival of islet grafts can be disrupted by recurrent autoimmunity. Dimethyl sulfoxide (DMSO) is a solvent for organic and inorganic substances and an organ-conserving agent used in solid organ transplantations. DMSO also exerts anti-inflammatory, reactive oxygen species scavenger and immunomodulatory effects and therefore exhibits therapeutic potential for the treatment of several human inflammatory diseases. In this study, we investigated the therapeutic potential of DMSO in the inhibition of autoimmunity. We treated an animal model of islet transplantation (NOD mice) with DMSO. The survival of the syngeneic islet grafts was significantly prolonged. The population numbers of CD8, DC and Th1 cells were decreased, and regulatory T (Treg) cell numbers were increased in recipients. The expression levels of IFN-γ and proliferation of T cells were also reduced following DMSO treatment. Furthermore, the differentiation of Treg cells from naive CD4 T cells was significantly increased in the in vitro study. Our results demonstrate for the first time that in vivo DMSO treatment suppresses spontaneous diabetes and autoimmune recurrence in NOD mice by inhibiting the Th1 immune response and inducing the differentiation of Treg cells. Copyright © 2014. Published by Elsevier Inc.
[Permeability of isolated rat hepatocyte plasma membranes for molecules of dimethyl sulfoxide].
Kuleshova, L G; Gordienko, E A; Kovalenko, I F
2014-01-01
We have studied permeability of isolated rat hepatocyte membranes for molecules of dimethyl sulfoxide (DMSO) at different hypertonicity of a cryoprotective medium. The permeability coefficient of hepatocyte membranes κ1 for DMSO molecules was shown to be the differential function of osmotic pressure between a cell and an extracellular medium. Ten-fold augmentation of DMSO concentration in the cryoprotective medium causes the decrease of permeability coefficients κ1 probably associated with the increased viscosity in membrane-adjacent liquid layers as well as partial limitations appeared as a result of change in cell membrane shape after hepatocyte dehydration. We have found out that in aqueous solutions of NaCl (2246 mOsm/l) and DMSO (2250 mOsm/l) the filtration coefficient L(p) in the presence of a penetrating cryoprotectant (L(pDMSO) = (4.45 ± 0.04) x 10(-14) m3/Ns) is 3 orders lower compared to the case with electrolyte (L(pNaCl) = (2.25 ± 0.25) x 10(-11) m3/Ns). This phenomenon is stipulated by the cross impact of flows of a cryoprotectant and water at the stage of cell dehydration. Pronounced lipophilicity of DMSO, geometric parameters of its molecule as well as the presence of large aqueous pores in rat hepatocyte membranes allow of suggesting the availability of two ways of penetrating this cryoprotectant into the cells by non-specific diffusion through membrane lipid areas and hydrophilic channels.
NASA Astrophysics Data System (ADS)
Rahman, Sk. Mustafizur; Majhi, Sullip Kumar; Suzuki, Toru; Strussmann, Carlos Augusto; Watanabe, Manabu
Cryopreservation of fish eggs and embryos is a highly desired tool to promote aquaculture production and fisheries resource management, but it is still not technically feasible. The failure to develop successful cryopreservation protocols for fish embryos is largely attributed to poor cryoprotectant permeability. The purpose of this study was to test the effectiveness of CaCl2 to enhance cryoprotectant uptake by fish embryos. In this study, embryos (somites and tail elongation stages) of Japanese whiting Sillago japonica were exposed to 10 and 15% dimethyl sulfoxide (DMSO) in artificial sea water (ASW) or a solution of 0.125M CaCl2 in distilled water for 20 min at 24°C. The toxicity of all solutions was estimated from the hatching rates of the embryos and High Performance Liquid Chromatography was used to determine the amount of DMSO taken up during impregnation. The results showed that DMSO incorporation into the embryos was greatly (›50%) enhanced in the presence of CaCl2 compared to ASW. CaCl2 itself was not toxic to the embryos but, probably as a result of the enhanced DMSO uptake, caused decreases in survival of about 14-44% relative to ASW. Somites stage embryos were more tolerant than tail elongation ones to DMSO both as ASW and CaCl2 solutions. The use of CaCl2 as a vehicle for DMSO impregnation could be a promising aid for the successful cryopreservation of fish embryos.
NASA Astrophysics Data System (ADS)
Mishra, Lallan; Dubey, Santosh Kumar
2007-10-01
N,N'-Bis(4-ferrocenyl)- p-phenylene/octamethylene-diimines (L 1/L 2) and a representative Ru(II) complex [Ru(DMSO) 2Cl 2L 1]·2H 2O were prepared and characterized which showed many fold enhancement in their luminescence in alkaline dimethylsulfoxide (DMSO) solution. Spectral and electrochemical properties of these compounds have been studied. Microstructure (SEM) of L 1 and its complex showed single-phase porous material of crystal size ˜1 μm.
Hydrogen bonding donation of N-methylformamide with dimethylsulfoxide and water
NASA Astrophysics Data System (ADS)
Borges, Alexandre; Cordeiro, João M. M.
2013-04-01
20% N-methylformamide (NMF) mixtures with water and with dimethylsulfoxide (DMSO) have been studied. A comparison between the hydrogen bonding (H-bond) donation of N-methylformamide with both solvents in the mixtures is presented. Results of radial distribution functions, pair distribution energies, molecular dipole moment correlation, and geometry of the H-bonded species in each case are shown. The results indicate that the NMF - solvent H-bond is significantly stronger with DMSO than with water. The solvation shell is best organized in the DMSO mixture than in the aqueous one.
Rosen, Christian B; Hansen, Dennis J; Gothelf, Kurt V
2013-12-07
Fluoride detection through hydrogen bonding or deprotonation is most commonly achieved using amide, urea or pyrrole derivatives. The sensor molecules are often complex constructs and several synthetic steps are required for their preparation. Here we report the discovery that simple arylaldoximes have remarkable properties as fluoride anion sensors, providing distinct colorimetric or fluorescent readouts, depending on the structure of the arylaldoxime. The oximes showed exceptional selectivity towards fluoride over other typical anions, and low detection limits for fluoride in both DMSO and DMSO-water mixtures were obtained.
NASA Astrophysics Data System (ADS)
Novikov, A. N.; Doronin, Ya. I.; Rakhmanova, P. A.
2018-07-01
The heat capacities and volumes of dimethylsulfoxide (DMSO) solutions of barium and cadmium iodides at 298.15 K were measured by calorimetry and densimetry. The standard partial molar heat capacities \\bar C_{p,2}^° and volumes \\bar V2^° of BaI2 and CdI2 in DMSO were calculated. The standard heat capacities \\bar C_{p,i}^° and volumes \\bar {V}i^° of barium and cadmium ions in DMSO at 298.15 K were determined.
NASA Astrophysics Data System (ADS)
Yu, Zhang-Yu; Liu, Tao; Guo, Dao-Jun; Liu, Yong-Jun; Liu, Cheng-Bu
2010-12-01
The microenvironmental effect of dimethyl sulfoxide (DMSO) on adrenaline was studied by several approaches including the cyclic voltammetry (CV) of adrenaline at a platinum electrode in acid aqueous solution, the chemical shift of 1H nuclear magnetic resonance ( 1H NMR) of adrenaline, and the change of diffusion coefficient of adrenaline. The experimental results demonstrated that DMSO has significant microenvironmental effect on adrenaline, which was confirmed by the density functional theory (DFT) study on the hydrogen bond (H-bond) complexes of adrenaline with water and DMSO.
Tanley, Simon W M; Schreurs, Antoine M M; Kroon-Batenburg, Loes M J; Helliwell, John R
2012-11-01
The anticancer complexes cisplatin and carboplatin are known to bind to both the Nδ and the Nℇ atoms of His15 of hen egg-white lysozyme (HEWL) in the presence of dimethyl sulfoxide (DMSO). However, neither binds in aqueous media after 4 d of crystallization and crystal growth, suggesting that DMSO facilitates cisplatin/carboplatin binding to the N atoms of His15 by an unknown mechanism. Crystals of HEWL cocrystallized with cisplatin in both aqueous and DMSO media, of HEWL cocrystallized with carboplatin in DMSO medium and of HEWL cocrystallized with cisplatin and N-acetylglucosamine (NAG) in DMSO medium were stored for between seven and 15 months. X-ray diffraction studies of these crystals were carried out on a Bruker APEX II home-source diffractometer at room temperature. Room-temperature X-ray diffraction data collection removed the need for cryoprotectants to be used, ruling out any effect that the cryoprotectants might have had on binding to the protein. Both cisplatin and carboplatin still bind to both the Nδ and Nℇ atoms of His15 in DMSO media as expected, but more detail for the cyclobutanedicarboxylate (CBDC) moiety of carboplatin was observed at the Nℇ binding site. However, two molecules of cisplatin were now observed to be bound to His15 in aqueous conditions. The platinum peak positions were identified using anomalous difference electron-density maps as a cross-check with Fo-Fc OMIT electron-density maps. The occupancies of each binding site were calculated using SHELXTL. These results show that over time cisplatin binds to both N atoms of His15 of HEWL in aqueous media, whereas this binding is speeded up in the presence of DMSO. The implication of cisplatin binding to proteins after a prolonged period of time is an important consideration for the length of treatment in patients who are given cisplatin.
Petzuch, Barbara; Groll, Nicola; Schwarz, Michael; Braeuning, Albert
2015-11-01
Various exogenous compounds, for example, the drugs bupropione and propofol, but also various cytostatics, are metabolized in the liver by the enzyme cytochrome P450 (P450) CYP2B6. Transcription from the CYP2B6 gene is regulated mainly via the transcription factors constitutive androstane receptor (CAR) and pregnane-X-receptor (PXR). Most hepatic cell lines express no or only low levels of CYP2B6 because of loss of these two regulators. Dimethyl sulfoxide (DMSO) is frequently used in liver cell cultivation and is thought to affect the expression of various P450 isoforms by inducing or preserving cellular differentiation. We studied the effects of up to 1.5% of DMSO as cell culture medium supplement on P450 expression in hepatocarcinoma cells from line HC-AFW1. DMSO did not induce differentiation of the HC-AFW1 cell line, as demonstrated by unaltered levels of selected mRNA markers important for hepatocyte differentiation, and also by the lack of a DMSO effect on a broader spectrum of P450s. By contrast, CYP2B6 mRNA was strongly induced by DMSO. This process was independent of CAR or PXR activation. Interestingly, elevated transcription of CYP2B6 was accompanied by a simultaneous induction of early growth response 1 (EGR1), a transcription factor known to influence the expression of CYP2B6. Expression of wild-type EGR1 or of a truncated, dominant-negative EGR1 mutant was able to mimic or attenuate the DMSO effect, respectively. These findings demonstrate that EGR1 is involved in the regulation of CYP2B6 by DMSO in HC-AFW1 cells. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Cathy; Allum, Allison J.; Aizawa, Yasushi
Glyceryl glucoside (GG, α-D-glucosyglycerol) is a natural glycerol derivative found in alcoholic drinks. Recently GG has been used as an alternative for glycerol in cosmetic products. However, the safety of using GG is still unclear. Currently, dimethyl sulfoxide (DMSO) and glycerol are wildly used in cryopreservation. Despite GG being a derivative of glycerol, the ability of GG in cryopreservation is still unknown. By using a system of Chinese Hamster Ovary cells (CHO), A549 cells and AG1522 cells, the study examined the cryoprotective effects of DMSO, glycerol and GG. Cytotoxic and genotoxic responses induced by the three chemicals were also investigated with CHOmore » to determine the safety of GG for cosmetic products. Our data suggests that GG has great cryopresearvation ability in the concentration of 30%–40% (v/v). For cytotoxic studies, DMSO showed the highest cytotoxicity above 3% (v/v) in cell doubling time delay among three chemicals. For the acute cytotoxicity with trypan blue dye exclusion assay, GG showed stronger cell killing effect within 24 h above 4% (v/v). For the continuous cytotoxicity with colony formation assay for 7 days, DMSO showed significantly reduced clonogenic ability above 2%. In genotoxicity studies, CHO treated with glycerol at 2% concentration induced three times higher frequencies of sister chromatid exchange (SCE) than background levels. GG did not induce significant amounts of SCE compared to background. Micronuclei formation was equally observed in the 2% and above concentrations of glycerol and GG. Our data showed that GG has significant effects on cryopreservation compared to DMSO. Glycerol and GG have similar cytotoxicity effects to CHO, but glycerol induced genotoxic responses in the same concentration. Therefore, we conclude that GG may be a safer alternative compound to glycerol in cosmetic products and safer alternative to DMSO in cryopreservation. -- Highlights: •Glyceryl Glucoside is low cytotoxicity and genotoxicity. •Glyceryl Glucoside is better cyroprotective agent than glycerol. •Glycerol has higher genotoxicity than Glyceryl Glucoside. •DMSO has higher cytotoxicity than Glyceryl Glucoside.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perera, Aurélien; Mazighi, Redha
Computer simulation studies of aqueous dimethyl sulfoxyde (DMSO) mixtures show micro-heterogeneous structures, just like aqueous alcohol mixtures. However, there is a marked difference in the aggregate structure of water between the two types of systems. While water molecules form multiconnected globular clusters in alcohols, we report herein that the typical water aggregates in aqueous DMSO mixtures are linear, favouring a 2 hydrogen bond structure per water molecule, and for all DMSO mole fractions ranging from 0.1 to 0.9. This linear-aggregate structure produces a particular signature in the water site-site structure factors, in the form of a pre-peak at k ≈more » 0.2–0.8 Å{sup −1}, depending on DMSO concentration. This pre-peak is either absent in other aqueous mixtures, such as aqueous methanol mixtures, or very difficult to see through computer simulations, such as in aqueous-t-butanol mixtures. This difference in the topology of the aggregates explains why the Kirkwood-Buff integrals of aqueous-DMSO mixture look nearly ideal, in contrast with those of aqueous alcohol mixtures, suggesting a connection between the shape of the water aggregates, its fluctuations, and the concentration fluctuations. In order to further study this discrepancy between aqueous DMSO and aqueous alcohol mixture, two models of pseudo-DMSO are introduced, where the size of the sulfur atom is increased by a factor 1.6 and 1.7, respectively, hence increasing the hydrophobicity of the molecule. The study shows that these mixtures become closer to the emulsion type seen in aqueous alcohol mixtures, with more globular clustering of the water molecules, long range domain oscillations in the water-water correlations and increased water-water Kirkwood-Buff integrals. It demonstrates that the local ordering of the water molecules is influenced by the nature of the solute molecules, with very different consequences for structural properties and related thermodynamic quantities. This study illustrates the unique plasticity of water in presence of different types of solutes.« less
NASA Astrophysics Data System (ADS)
Vettegren', V. I.; Machalaba, N. N.; Zharov, V. B.; Kulik, V. B.; Savitskii, A. V.
2011-06-01
The mechanism of solidifying a solution of polyacrylonitrile (PAN) in dimethylsulfoxide (DMSO) into which ethylene glycol is added is studied by the method of Raman spectroscopy. In the absence of ethylene glycol, DMSO molecules produce dipole-dipole bonds to PAN molecules. Upon adding ethylene glycol, DMSO molecules form hydrogen bonds with it and a line at 1000 cm-1 appears in the Raman spectrum, which is assigned to the valence vibrations of S=O bonds involved in the hydrogen bonds. After DMSO is removed, ethylene glycol molecules produce hydrogen bonds with two neighboring PAN molecules, giving rise to a band at 2264 cm-1, which is assigned to the valence vibrations of C≡N bonds involved in these hydrogen bonds. A high-viscosity gel consisting of PAN molecules arises in which these molecules are bonded to each other through ethylene glycol molecules.
LaSala, Paul R.; Han, Xiang-Yang; Rolston, Kenneth V.; Kontoyiannis, Dimitrios P.
2012-01-01
Effective skin antisepsis is of central importance in the prevention of wound infections, colonization of medical devices, and nosocomial transmission of microorganisms. Current antiseptics have a suboptimal efficacy resulting in substantial infectious morbidity, mortality, and increased health care costs. Here, we introduce an in vitro method for antiseptic testing and a novel alcohol-based antiseptic containing 4 to 5% of the polar aprotic solvent dimethyl sulfoxide (DMSO). The DMSO-containing antiseptic resulted in a 1- to 2-log enhanced killing of Staphylococcus epidermidis and other microbes in vitro compared to the same antiseptic without DMSO. In a prospective clinical validation, blood culture contamination rates were reduced from 3.04% for 70% isopropanol–1% iodine (control antiseptic) to 1.04% for 70% isopropanol–1% iodine–5% DMSO (P < 0.01). Our results predict that improved skin antisepsis is possible using new formulations of antiseptics containing strongly polarized but nonionizing (polar aprotic) solvents. PMID:22378911
Misuri, Livia; Cappiello, Mario; Balestri, Francesco; Moschini, Roberta; Barracco, Vito; Mura, Umberto; Del-Corso, Antonella
2017-12-01
Aldose reductase (AR) is an enzyme devoted to cell detoxification and at the same time is strongly involved in the aetiology of secondary diabetic complications and the amplification of inflammatory phenomena. AR is subjected to intense inhibition studies and dimethyl sulfoxide (DMSO) is often present in the assay mixture to keep the inhibitors in solution. DMSO was revealed to act as a weak but well detectable AR differential inhibitor, acting as a competitive inhibitor of the L-idose reduction, as a mixed type of non-competitive inhibitor of HNE reduction and being inactive towards 3-glutathionyl-4-hydroxynonanal transformation. A kinetic model of DMSO action with respect to differently acting inhibitors was analysed. Three AR inhibitors, namely the flavonoids neohesperidin dihydrochalcone, rutin and phloretin, were used to evaluate the effects of DMSO on the inhibition studies on the reduction of L-idose and HNE.
NASA Astrophysics Data System (ADS)
Klemenkova, Z. S.; Novskova, T. A.; Lyashchenko, A. K.
2008-04-01
The IR absorption spectra of aqueous solutions of dimethylsulfoxide (DMSO) with concentrations from 100% H2O to 100% DMSO were recorded over the frequency range 50-500 cm-1. The absorption spectra were described using the theoretical scheme of hindered rotators. A model was developed according to which orientation relaxation in solution was related to separate rotations of H2O and DMSO molecules through fixed small and (or) large angles in a unified network of H-bonds consisting of several subsystems ordered to various degrees. The calculated absorption spectra were in agreement with the experimental data in the far IR region. Elementary motions of molecules were found to slow down in the passage from pure dimethylsulfoxide to its aqueous solutions. The special features of the hydrophilic and hydrophobic hydration of DMSO polar and nonpolar groups were considered.
Structural and energetic properties of La3+ in water/DMSO mixtures
NASA Astrophysics Data System (ADS)
Montagna, Maria; Spezia, Riccardo; Bodo, Enrico
2017-11-01
By using molecular dynamics based on a custom polarizable force field, we have studied the solvation of La3+ in an equimolar mixture of dimethylsulfoxide (DMSO) with water. An extended structural analysis has been performed to provide a complete picture of the physical properties at the basis of the interaction of La3+ with both solvents. Through our simulations we found that, very likely, the first solvation shell in the mixture is not unlike the one found in pure water or pure DMSO and contains 9 solvent molecules. We have also found that the solvation is preferentially due to DMSO molecules with the water initially present in first shell quickly leaving to the bulk. The dehydration process of the first shell has been analyzed by both plain MD simulations and a constrained dynamics approach; the free energy profiles for the extraction of water from first shell have also been computed.
Le, Alexander M; Lee, Michelle; Su, Chen; Zou, Anthony; Wang, Jing
2014-11-01
Novel analgesics that do not suppress the respiratory drive are urgently needed. Glutamate signaling through α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors plays important roles in central pain circuits. AMPAkines augment AMPA receptor function and have been shown to stimulate the respiratory drive to oppose opioid-induced hypoventilation. However, their role in chronic pain states remains unknown. The authors studied AMPAkines (CX546 and CX516) in rat spared nerve injury (SNI) model of neuropathic pain and Complete Freund's Adjuvant (CFA) model of inflammatory pain. They measured the effect of AMPAkines on mechanical and cold allodynia. They also evaluated their effect on depressive symptoms of pain using the forced swim test, as time of immobility on this test has been used as a measure for behavioral despair, a feature of depression. The authors found that CX546, compared with dimethyl sulfoxide (DMSO) control, reduced both mechanical and sensory allodynia in SNI (DMSO group, n = 9; CX546 group, n = 11) and CFA models (both DMSO and CX546 groups, n = 9). They found that CX546, compared with control, also reduced depressive symptoms of pain by decreasing immobility on the forced swim test in both SNI (both DMSO and CX546 groups, n = 8) and CFA models (both DMSO and CX546 groups, n = 10). Finally, they found that CX516, compared with control, also reduced mechanical and cold allodynia in the SNI model (both DMSO and CX516 groups, n = 10). AMPAkines alleviate pain hypersensitivity as well as depression-like behavior associated with long-lasting nerve injury and inflammatory insult.
Replacement of serum with ocular fluid for cryopreservation of immature testes.
Pothana, Lavanya; Devi, Lalitha; Venna, Naresh Kumar; Pentakota, Niharika; Varma, Vivek Phani; Jose, Jedy; Goel, Sandeep
2016-12-01
Cryopreservation of immature testis is a feasible approach for germplasm preservation of male animals. Combinations of dimethyl sulfoxide (DMSO) and foetal bovine serum (FBS) are used for testis cryopreservation. However, an alternative to FBS is needed, because FBS is expensive. Buffalo ocular fluid (BuOF), a slaughter house by-product, could be an economical option. The objective of the present study was to assess whether BuOF can replace FBS for cryopreservation of immature mouse (Mus musculus), rat (Rattus norvegicus), and buffalo (Bubalus bubalis) testes. Results showed that rodent and buffalo testes frozen in DMSO (10% for rodents and 20% for buffalo) with 20% FBS or BuOF had similar numbers of viable and DNA-damaged cells (P > 0.05). The expression of cell proliferation- (PCNA) and apoptosis-specific proteins (Annexin V and BAX/BCL2 ratio) were also comparable in mouse and buffalo testes frozen in DMSO with FBS or BuOF (P > 0.05). Interestingly, rat testis frozen in DMSO with BuOF had lower expression of Annexin V protein than testis frozen in DMSO with FBS (P < 0.05). The percentage of meiotic germ cells (pachytene-stage spermatocytes) in xenografts from testis frozen either in DMSO with BuOF or FBS did not significantly differ in rats or buffalo (P > 0.05). These findings provide evidence that BuOF has potential to replace FBS for cryopreservation of immature rodent and buffalo testis. Further investigation is needed to explore whether BuOF can replace FBS for testis cryopreservation of other species. Copyright © 2016 Elsevier Inc. All rights reserved.
Purgel, Mihály; Maliarik, Mikhail; Glaser, Julius; Platas-Iglesias, Carlos; Persson, Ingmar; Tóth, Imre
2011-07-04
The structure and bonding of a new Pt-Tl bonded complex formed in dimethylsulfoxide (dmso), (CN)(4)Pt-Tl(dmso)(5)(+), have been studied by multinuclear NMR and UV-vis spectroscopies, and EXAFS measurements in combination with density functional theory (DFT) and time dependent density functional theory (TDDFT) calculations. This complex is formed following the equilibrium reaction Pt(CN)(4)(2-) + Tl(dmso)(6)(3+) ⇆ (CN)(4)Pt-Tl(dmso)(5)(+) + dmso. The stability constant of the Pt-Tl bonded species, as determined using (13)C NMR spectroscopy, amounts to log K = 2.9 ± 0.2. The (NC)(4)Pt-Tl(dmso)(5)(+) species constitutes the first example of a Pt-Tl bonded cyanide complex in which the sixth coordination position around Pt (in trans with respect to the Tl atom) is not occupied. The spectral parameters confirm the formation of the metal-metal bond, but differ substantially from those measured earlier in aqueous solution for complexes (CN)(5)Pt-Tl(CN)(n)(H(2)O)(x)(n-) (n = 0-3). The (205) Tl NMR chemical shift, δ = 75 ppm, is at extraordinary high field, while spin-spin coupling constant, (1)J(Pt-Tl) = 93 kHz, is the largest measured to date for a Pt-Tl bond in the absence of supporting bridging ligands. The absorption spectrum is dominated by two strong absorption bands in the UV region that are assigned to MMCT (Pt → Tl) and LMCT (dmso → Tl) bands, respectively, on the basis of MO and TDDFT calculations. The solution of the complex has a bright yellow color as a result of a shoulder present on the low energy side of the band at 355 nm. The geometry of the (CN)(4)Pt-Tl core can be elucidated from NMR data, but the particular stoichiometry and structure involving the dmso ligands are established by using Tl and Pt L(III)-edge EXAFS measurements. The Pt-Tl bond distance is 2.67(1) Å, the Tl-O bond distance is 2.282(6) Å, and the Pt-C-N entity is linear with Pt-C and Pt···N distances amounting to 1.969(6) and 3.096(6) Å, respectively. Geometry optimizations on the (CN)(4)Pt-Tl(dmso)(5)(+) system by using DFT calculations (B3LYP model) provide bond distances in excellent agreement with the EXAFS data. The four cyanide ligands are located in a square around the Pt atom, while the Tl atom is coordinated in a distorted octahedral fashion with the metal being located 0.40 Å above the equatorial plane described by four oxygen atoms of dmso ligands. The four equatorial Tl-O bonds and the four cyano ligands around the Pt atom are arranged in an alternate geometry. The coordination environment around Pt may be considered as being square pyramidal, where the apical position is occupied by the Tl atom. The optimized geometry of (CN)(4)Pt-Tl(dmso)(5)(+) is asymmetrical (C(1) point group). This low symmetry might be responsible for the unusually large NMR linewidths observed due to intramolecular chemical exchange processes. The nature of the Pt-Tl bond has been studied by MO analysis. The metal-metal bond formation in (CN)(4)Pt-Tl(dmso)(5)(+) can be simply interpreted as the result of a Pt(5d(z(2)))(2) → Tl(6s)(0) donation. This bonding scheme may rationalize the smaller thermodynamic stability of this adduct compared to the related complexes with (CN)(5)Pt-Tl entity, where the linear C-Pt-Tl unit constitutes a very stable bonding system. © 2011 American Chemical Society
Friend leukemia virus transformed cells exposed to microgravity in the presence of DMSO (7-IML-1)
NASA Technical Reports Server (NTRS)
Cogoli, Augusto
1992-01-01
The purpose of this experiment is to study the adaptation of living cells to microgravity. The in vitro transformation of Friend cells by Dimethylsufoxide (DMSO) is a good model for the study of cell differentiation and protein biosynthesis. Cultures of cells will be prepared shortly before launch. Once in space, transformation will be induced by injection of DMSO. One set of cultures will be chemically fixed with glutaraldehyde for electron microscope investigations; another set will be preserved for determining the amount of hemogloben produced and the extent of cell proliferation.
Alastruey-Izquierdo, Ana; Gómez-López, Alicia; Arendrup, Maiken C.; Lass-Florl, Cornelia; Hope, William W.; Perlin, David S.; Rodriguez-Tudela, Juan L.
2012-01-01
Ninety-six strains of Candida, including 29 resistant and 67 susceptible isolates with mutations in the FKS1 and FKS2 genes were tested by the European Committee on Antibiotic Susceptibility Testing EDef 7.1 and 7.2 methodologies to determine the impact on the MIC when water was replaced with dimethyl sulfoxide (DMSO) as the solvent for caspofungin and micafungin. The MICs were significantly lower and the MIC ranges were narrower when DMSO was used as the solvent. The use of DMSO may help to better discriminate between susceptible and resistant populations. PMID:22535988
Alastruey-Izquierdo, Ana; Gómez-López, Alicia; Arendrup, Maiken C; Lass-Florl, Cornelia; Hope, William W; Perlin, David S; Rodriguez-Tudela, Juan L; Cuenca-Estrella, Manuel
2012-07-01
Ninety-six strains of Candida, including 29 resistant and 67 susceptible isolates with mutations in the FKS1 and FKS2 genes were tested by the European Committee on Antibiotic Susceptibility Testing EDef 7.1 and 7.2 methodologies to determine the impact on the MIC when water was replaced with dimethyl sulfoxide (DMSO) as the solvent for caspofungin and micafungin. The MICs were significantly lower and the MIC ranges were narrower when DMSO was used as the solvent. The use of DMSO may help to better discriminate between susceptible and resistant populations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datskovskii, B.M.; Zaks, A.S.; Mitryukovskii, L.S.
1973-01-01
A review of 241 reports published in recent years dealing with various aspects of the effect of dimethylsulphoxide (DMSO) on the skin is presented. Properties of DMSO such as penetrability, transporting capacity, and radioprotective effect are discussed as well as the prospects of the use of the drug in experimental oncology and allergology (in dermatological aspect). Materials on the effect of DMSO on the skin and the results of its use in clinical practice for treatment of sclerodermia, psoriasis, eczema, mycoses, and other diseases are presented. (auth)
Effect of commonly used vehicles on gastrointestinal, renal, and liver function in rats.
Pestel, Sabine; Martin, Hans-Juergen; Maier, Gerd-Michael; Guth, Brian
2006-01-01
Solubility is often a limiting factor when testing new compounds in animal experiments. Various solubilizing agents may be used, but each have their own pharmacological effects. We investigated the effects of selected vehicles having different chemical characteristics on gastrointestinal, renal, and liver function. Rats were treated orally, intravenously or intraperitoneally and gastric emptying, intestinal transit, renal, and liver function were investigated. Gastrointestinal motility was influenced by hydroxyethylcellulose, hydroxypropyl-beta-cyclodextrin (HPbetaCD), HPgammaCD, DMSO, polyethylene glycol 400 (PEG 400), fat emulsion, and the corresponding emulsifier. Liver function was affected by HPbetaCD, HPgammaCD, DMSO, PEG 400, Polysorbate 80, Cremophor RH 40, and fat emulsion. An increase in liver enzymes was observed after PEG 400 and Polysorbate 80. DMSO interfered with clinical chemistry measurements in serum. Urinary function was modified by HPgammaCD, DMSO, PEG 400, and Polysorbate 80, while enhanced urine enzyme excretion was observed after HPbetaCD, HPgammaCD, DMSO, PEG 400, and Polysorbate 80. Most of the investigated vehicles changed gastrointestinal, renal, and/or liver parameters after application of a certain threshold dose for each assay. No "best" vehicle could be identified that may be used in each test system. Thus, vehicles must be selected not only on their chemical characteristics but also on their potential pharmacological activity in a given test system.
NASA Astrophysics Data System (ADS)
Odinokov, A. V.; Leontyev, I. V.; Basilevsky, M. V.; Petrov, N. Ch.
2011-01-01
Potentials of mean force (PMF) are calculated for two model ion pairs in two non-aqueous solvents. Standard non-polarizable molecular dynamics simulation (NPMD) and approximate polarizable simulation (PMD) are implemented and compared as tools for monitoring PMF profiles. For the polar solvent (dimethylsulfoxide, DMSO) the PMF generated in terms of the NPMD reproduces fairly well the refined PMD-PMF profile. For the non-polar solvent (benzene) the conventional NPMD computation proves to be deficient. The validity of the correction found in terms of the approximate PMD approach is verified by its comparison with the result of the explicit PMD computation in benzene. The shapes of the PMF profiles in DMSO and in benzene are quite different. In DMSO, owing to dielectric screening, the PMF presents a flat plot with a shallow minimum positioned in the vicinity of the van der Waals contact of the ion pair. For the benzene case, the observed minimum proves to be unexpectedly deep, which manifests the formation of a tightly-binded contact ion pair. This remarkable effect arises owing to the strong electrostatic interaction that is incompletely screened by a non-polar medium. The PMFs for the binary benzene/DMSO mixtures display intermediate behaviour depending on the DMSO content.
Lee, Chiho; Son, Hyewon; Park, Sungnam
2015-07-21
Two-dimensional infrared (2DIR) spectroscopy, which has been proven to be an excellent experimental method for studying thermally-driven chemical processes, was successfully used to investigate the acid dissociation equilibrium of HN3 in methanol (CH3OH) and dimethyl sulfoxide (DMSO) for the first time. Our 2DIR experimental results indicate that the acid-base equilibrium occurs on picosecond timescales in CH3OH but that it occurs on much longer timescales in DMSO. Our results imply that the different timescales of the acid-base equilibrium originate from different proton transfer mechanisms between the acidic (HN3) and basic (N3(-)) species in CH3OH and DMSO. In CH3OH, the acid-base equilibrium is assisted by the surrounding CH3OH molecules which can directly donate H(+) to N3(-) and accept H(+) from HN3 and the proton migrates through the hydrogen-bonded chain of CH3OH. On the other hand, the acid-base equilibrium in DMSO occurs through the mutual diffusion of HN3 and N3(-) or direct proton transfer. Our 2DIR experimental results corroborate different proton transfer mechanisms in the acid-base equilibrium in protic (CH3OH) and aprotic (DMSO) solvents.
DOT National Transportation Integrated Search
1986-09-01
A standard accelerated weathering test using Dimethyl Sulfoxide (DMSO) was developed to simulate the chemical degradation of basaltic rocks. After a thorough study of the parameters affecting the current procedure, such as container geometry, aggrega...
Pal, Rajarshi; Mamidi, Murali Krishna; Das, Anjan Kumar; Bhonde, Ramesh
2012-04-01
In vitro disease modeling using pluripotent stem cells can be a fast track screening tool for toxicological testing of candidate drug molecules. Dimethyl sulfoxide (DMSO) is one of the most commonly used solvents in drug screening. In the present investigation, we exposed 14- to 21-day-old embryoid bodies (EBs) to three different concentrations of DMSO [0.01% (low dose), 0.1% (medium dose) and 1.0% (high dose)] to identify the safest dose that could effectively be used as solvent. We found that DMSO treatment substantially altered the morphology and attachment of cells in concurrence with a significant reduction in cell viability in a dose-dependent manner. Gene expression studies revealed a selective downregulation of key markers associated with stemness (Oct-4, Sox-2, Nanog and Rex-1); ectoderm (Nestin, TuJ1, NEFH and Keratin-15); mesoderm (HAND-1, MEF-2C, GATA-4 and cardiac-actin); and endoderm (SOX-17, HNF-3β, GATA-6 and albumin), indicating an aberrant and untimely differentiation trajectory. Furthermore, immunocytochemistry, flow cytometry and histological analyses demonstrated substantial decrease in the levels of albumin and CK-18 proteins coupled with a massive reduction in the number of cells positive for PAS staining, implicating reduced deposits of glycogen. Our study advocates for the first time that DMSO exposure not only affects the phenotypic characteristics but also induces significant alteration in gene expression, protein content and functionality of the differentiated hepatic cells. Overall, our experiments warrant that hESC-based assays can provide timely alerts about the outcome of widespread applications of DMSO as drug solvent, cryoprotectant and differentiating agent.
2012-01-01
Background Mesenchymal stem cells (MSCs) are increasingly used as therapeutic agents as well as research tools in regenerative medicine. Development of technologies which allow storing and banking of MSC with minimal loss of cell viability, differentiation capacity, and function is required for clinical and research applications. Cryopreservation is the most effective way to preserve cells long term, but it involves potentially cytotoxic compounds and processing steps. Here, we investigate the effect of decreasing dimethyl sulfoxide (DMSO) concentrations in cryosolution by substituting with hydroxyethyl starch (HES) of different molecular weights using different freezing rates. Post-thaw viability, phenotype and osteogenic differentiation capacity of MSCs were analysed. Results The study confirms that, for rat MSC, cryopreservation effects need to be assessed some time after, rather than immediately after thawing. MSCs cryopreserved with HES maintain their characteristic cell surface marker expression as well as the osteogenic, adipogenic and chondrogenic differentiation potential. HES alone does not provide sufficient cryoprotection for rat MSCs, but provides good cryoprotection in combination with DMSO, permitting the DMSO content to be reduced to 5%. There are indications that such a combination would seem useful not just for the clinical disadvantages of DMSO but also based on a tendency for reduced osteogenic differentiation capacity of rat MSC cryopreserved with high DMSO concentration. HES molecular weight appears to play only a minor role in its capacity to act as a cryopreservation solution for MSC. The use of a ‘straight freeze’ protocol is no less effective in maintaining post-thaw viability of MSC compared to controlled rate freezing methods. Conclusion A 5% DMSO / 5% HES solution cryopreservation solution using a ‘straight freeze’ approach can be recommended for rat MSC. PMID:22889198
Rengifo Valbuena, Carlos Augusto; Ávila Rodríguez, Marco Fidel; Céspedes Rubio, Angel
2013-01-01
Introduction: The pathophysiology of cerebral ischemia is essential for early diagnosis, neurologic recovery, the early onset of drug treatment and the prognosis of ischemic events. Experimental models of cerebral ischemia can be used to evaluate the cellular response phenomena and possible neurological protection by drugs. Objective: To characterize the cellular changes in the neuronal population and astrocytic response by the effect of Dimethyl Sulfoxide (DMSO) on a model of ischemia caused by cerebral embolism. Methods: Twenty Wistar rats were divided into four groups (n= 5). The infarct was induced with α-bovine thrombin (40 NIH/Unit.). The treated group received 90 mg (100 μL) of DMSO in saline (1:1 v/v) intraperitoneally for 5 days; ischemic controls received only NaCl (placebo) and two non-ischemic groups (simulated) received NaCl and DMSO respectively. We evaluated the neuronal (anti-NeuN) and astrocytic immune-reactivity (anti-GFAP). The results were analyzed by densitometry (NIH Image J-Fiji 1.45 software) and analysis of variance (ANOVA) with the Graph pad software (Prism 5). Results: Cerebral embolism induced reproducible and reliable lesions in the cortex and hippocampus (CA1)., similar to those of focal models. DMSO did not reverse the loss of post-ischemia neuronal immune-reactivity, but prevented the morphological damage of neurons, and significantly reduced astrocytic hyperactivity in the somato-sensory cortex and CA1 (p <0.001). Conclusions: The regulatory effect of DMSO on astrocyte hyperreactivity and neuronal-astroglial cytoarchitecture , gives it potential neuroprotective properties for the treatment of thromboembolic cerebral ischemia in the acute phase. PMID:24892319
Nott, Katherine; Brognaux, Alison; Richard, Gaëtan; Laurent, Pascal; Favrelle, Audrey; Jérôme, Christine; Blecker, Christophe; Wathelet, Jean-Paul; Paquot, Michel; Deleu, Magali
2012-01-01
Four co-solvents (dimethylformamide [DMF], formamide, dimethyl sulfoxide [DMSO], and pyridine) were tested with tert-butanol (tBut) to optimize the initial rate (v₀) and yield of mannosyl myristate synthesis by esterification catalyzed by immobilized lipase B from Candida antarctica. Ten percent by volume of DMSO resulted in the best improvement of v₀ and 48-hr yield (respectively 115% and 13% relative gain compared to pure tBut). Use of molecular sieve (5% w/v) enhances the 48-hr yield (55% in tBut/DMSO [9:1, v/v]). Transesterification in tBut/DMSO (9:1, v/v) with vinyl myristate leads to further improvement of v₀ and 48-hr yield: a relative gain of 85% and 65%, respectively, without sieve and 25% and 10%, respectively, with sieve, compared to esterification. No difference in v₀ and 48-hr yield is observed when transesterification is carried out with or without sieve.
Zhu, P; Chen, Y; Wang, L Y; Zhou, M; Zhou, J
2013-02-01
Separation of waste printed circuit boards (WPCBs) has been a bottleneck in WPCBs resource processing. In this study, the separation of WPCBs was performed using dimethyl sulfoxide (DMSO) as a solvent. Various parameters, which included solid to liquid ratio, temperature, WPCB sizes, and time, were studied to understand the separation of WPCBs by dissolving bromine epoxy resin using DMSO. Experimental results showed that the concentration of dissolving the bromine epoxy resin increased with increasing various parameters. The optimum condition of complete separation of WPCBs was solid to liquid ratio of 1:7 and WPCB sizes of 16 mm(2) at 145°C for 60 min. The used DMSO was vapored under the decompression, which obtained the regenerated DMSO and dissolved bromine epoxy resin. This clean and non-polluting technology offers a new way to separate valuable materials from WPCBs and prevent the environmental pollution of waste printed circuit boards effectively. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Xiaochun; Yin, Hang; Li, Hui; Shi, Ying
2017-04-01
DFT and TDDFT methods were carried out to investigate the influences of intramolecular and intermolecular hydrogen bonding on excited state charge transfer for coumarin 343 (C343). Intramolecular hydrogen bonding is formed between carboxylic acid group and carbonyl group in C343 monomer. However, in dimethylsulfoxide (DMSO) solution, DMSO 'opens up' the intramolecular hydrogen bonding and forms solute-solvent intermolecular hydrogen bonded C343-DMSO complex. Analysis of frontier molecular orbitals reveals that intramolecular charge transfer (ICT) occurs in the first excited state both for C343 monomer and complex. The results of optimized geometric structures indicate that the intramolecular hydrogen bonding interaction is strengthened while the intermolecular hydrogen bonding is weakened in excited state, which is confirmed again by monitoring the shifts of characteristic peaks of infrared spectra. We demonstrated that DMSO solvent can not only break the intramolecular hydrogen bonding to form intermolecular hydrogen bonding with C343 but also alter the mechanism of excited state hydrogen bonding strengthening.
Qian, Xianghong; Liu, Dajiang
2014-03-31
The mechanisms and free energy surfaces (FES) for the initial critical steps during proton-catalyzed glucose condensation and dehydration reactions were elucidated in dimethyl sulfoxide (DMSO) using Car-Parrinello molecular dynamics (CPMD) coupled with metadynamics (MTD) simulations. Glucose condensation reaction is initiated by protonation of C1--OH whereas dehydration reaction is initiated by protonation of C2--OH. The mechanisms in DMSO are similar to those in aqueous solution. The DMSO molecules closest to the C1--OH or C2--OH on glucose are directly involved in the reactions and act as proton acceptors during the process. However, the energy barriers are strongly solvent dependent. Moreover, polarization from the long-range electrostatic interaction affects the mechanisms and energetics of glucose reactions. Experimental measurements conducted in various DMSO/Water mixtures also show that energy barriers are solvent dependent in agreement with our theoretical results. Copyright © 2014 Elsevier Ltd. All rights reserved.
Percutaneous absorption of several chemicals, some pesticides included, in the red-winged blackbird
Rogers, J.G.; Cagan, R.H.; Kare, M.R.
1974-01-01
Percutaneous absorption in vivo through the skin of the feet of the red-winged blackbird (Agelaius phoeniceus) has been investigated. Absorption after 18-24 hours exposure to 0.01 M solutions of salicylic acid, caffeine, urea, 2,4-D, dieldrin, diethylstilbesterol, and DDT was measured. Of these, only DDT and diethylstilbesterol were not absorbed to a measurable degree. The solvents ethanol, dimethylsulfoxide (DMSO), and vegetable oil were compared with water in their effects on the absorption ofcaffeine, urea, and salicylic acid. Ethanol, DMSO,and oil each decreased percutaneous absorption of salicylic acid. DMSO increased absorption of caffeine, and ethanol had no effect on it. Neither DMSO nor ethanol affected penetration of urea. Partition coefficients (K) (epidermis/water) were determined for all seven penetrants. Compounds with higher values of K showed lower percutaneous absorption. These findings suggest that K may be useful to predict percutaneous absorption in vivo. It appears unlikely that percutaneous absorption contributes greatly to the body burden of 2,4-D and dieldrin in A. phoeniceus.
Sharafeddin, Farahnaz; Salehi, Raha; Feizi, Negar
2016-09-01
Composite bond to dentin is crucial in many clinical conditions particularly in deep cavities without enamel margins due to insufficient penetration of adhesive into demineralized dentin. The aim of this study was to assess the shear bond strength (SBS) of a methacrylate-based and a silorane-based composite resin to surface and deep dentin after pretreatment with dimethyl sulfoxide (DMSO). Eighty extracted human premolars were randomly divided into two groups of flat occlusal dentin with different cuts as A: surface group (sections just below the dentinoenamel junction (DEJ) and B: deep group (2 mm below DEJ). Each group was randomly assigned to 4 subgroups and their samples were restored with Adper Single bond (ASB) and Filtek Z350 or Silorane system Adhesive (SA) and Filtek P90 composite resins, using a 3×3mm cylindrical plastic mold. following these steps , the subgroups were assigned as SubgroupA 1 : surface dentin+ Silorane System Primer (SSP)+ Silorane System Bonding (SSB)+ P90; Subgroup A 2 : surface dentin+ 37% etchant (E37%) + Adper Single Bond (ASB)+ Z350; Subgroup A 3 : surface dentin+ DMSO+ SSP+ SSB+ P90; Subgroup A 4 : surface dentin+ E37%+ DMSO+ ASB+ Z350; Subgroup B 1 : deep dentin+ SSP+ SSB+ P90; Subgroup B 2 : deep dentin+ E37%+ ASB+ Z350; Subgroup B 3 : deep dentin+ DMSO+ SSP+ SSB+ P90; Subgroup B 4 :dentin +E37% +DMSO +ASB +Z350. The specimens were thermocycled at 5± 2/55± 2°C for 1000 cycles and then tested for SBS. Using DMSO as dentin conditioner increased SBS of ASB to deep dentin (p< 0.001) and SBS of SA to surface dentin (p= 0.003) but had no effect on SBS of SA to deep dentin (p= 1.00). The ability of DMSO to increase SBS of ASB to deep dentin provides a basis for improving bonding of this composite resin in deep cavities.
Preferential Solvation of Silver (I) Bromate in Methanol-Dimethylsulfoxide Mixtures
NASA Astrophysics Data System (ADS)
Janardhanan, S.; Kalidas, C.
1984-06-01
The solubiltiy of silver bromate, the Gibbs transfer energy of Ag+ and BrO3- and the solvent transport number in methanol-dimethyl sulfoxide mixtures are reported. The solubility of silver bromate increases with addition of DMSO. The Gibbs energy of transfer of the silver ion (based on the ferrocene reference method) decreases, while that of the bromate ion becomes slightly negative with the addition of DMSO. The solvent transport number A passes through a maximum (⊿ = 1.0 at XDMSO = 0.65. From these results, it is concluded that the silver ion is preferentially solvated by DMSO whereas the bromate ion shows no preferential solvation.
What is the best cryopreservation protocol for human testicular tissue banking?
Baert, Y; Van Saen, D; Haentjens, P; In't Veld, P; Tournaye, H; Goossens, E
2013-07-01
Is there a better alternative to the conventional cryopreservation protocols for human testicular tissue banking? Uncontrolled slow freezing (USF) using 1.5 M dimethylsulphoxide (DMSO) and 0.15 M sucrose as cryoprotectants appears to be a user-friendly and efficient method for the cryopreservation of human testicular tissue. Currently, time-consuming controlled slow freezing (CSF) protocols that need expensive equipment are commonly used for human testicular tissue banking. USF and vitrification are cryopreservation techniques that were successfully applied in several animal models but need further exploration with human tissue. Fragments (n = 160) of testicular tissue from 14 patients undergoing vasectomy reversal were assigned to a fresh control group or one of the following cryopreservation procedures: CSF using DMSO at a concentration of 0.7 or 1.5 M in the presence (+S) or absence of sucrose (-S), USF using either 0.7 or 1.5 M DMSO combined with sucrose, solid-surface vitrification (SSV) or direct cover vitrification (DCV). Light microscopic evaluations were performed to study apoptosis, germ cell proliferation ability, spermatogonial survival, coherence of the seminiferous epithelium and integrity of the interstitial compartment after cryopreservation. Ultrastructural alterations were studied by scoring cryodamage to four relevant testicular cell types. The USF 1.5 M DMSO + S protocol proved not solely to prevent cell death and to preserve seminiferous epithelial coherence, interstitial compartment integrity, SG and their potential to divide but also protected the testicular cell ultrastructure. A significant reduction in the number of SG per tubule from 21.4 ± 5.6 in control tissue to 4.9 ± 2.1, 8.2 ± 5.4, 11.6 ± 5.1, 8.8 ± 3.9, 12.6 ± 4.4 and 11.7 ± 5.7 was observed after cryopreservation combined with at least one other form of cryoinjury when using CSF 0.7 M DMSO -S, CSF 0.7 M DMSO + S, CSF 1.5 M DMSO + S, USF 0.7 M DMSO + S, SSV and direct cover vitrification (DCV), respectively (P < 0.001). Supplementary research is required to investigate the effect on tissue functionality and to confirm this study's findings using prepubertal tissue. An optimal cryopreservation protocol enhances the chances for successful fertility restoration. USF, being an easy and cost-effective alternative to CSF, would be preferable for laboratories in developing countries or whenever tissue is to be procured from a diseased child at a site distant from the banking facility.
Cosolvent effect on the dynamics of water in aqueous binary mixtures
NASA Astrophysics Data System (ADS)
Zhang, Xia; Zhang, Lu; Jin, Tan; Zhang, Qiang; Zhuang, Wei
2018-04-01
Water rotational dynamics in the mixtures of water and amphiphilic molecules, such as acetone and dimethyl sulfoxide (DMSO), measured by femtosecond infrared, often vary non-monotonically as the amphiphilic molecule's molar fraction changes from 0 to 1. Recent study has attributed the non-ideal water rotation with concentration in DMSO-water mixtures to different microscopic hydrophilic-hydrophobic segregation structure in water-rich and water-poor mixtures. Interestingly, the acetone molecule has very similar molecular structure to DMSO, but the extremum of the water rotational time in the DMSO-water mixtures significantly shifts to lower concentration and the rotation of water is much faster than those in acetone-water mixtures. The simulation results here shows that the non-ideal rotational dynamics of water in both mixtures are due to the frame rotation during the interval of hydrogen bond (HB) switchings. A turnover of the frame rotation with concentration takes place as the structure transition of mixture from the hydrogen bond percolation structure to the hydrophobic percolation structure. The weak acetone-water hydrogen bond strengthens the hydrophobic aggregation and accelerates the relaxation of the hydrogen bond, so that the structure transition takes places at lower concentration and the rotation of water is faster in acetone-water mixture than in DMSO-water mixture. A generally microscopic picture on the mixing effect on the water dynamics in binary aqueous mixtures is presented here.
NASA Astrophysics Data System (ADS)
Vettegren, V. I.; Kulik, V. B.; Savitskii, A. V.; Fetisov, O. I.; Usov, V. V.
2010-05-01
The solidification of a solution of poly(acrylonitrile) (PAN) in dimethylsulfoxide (DMSO) upon introduction of water into the solution is studied by Raman spectroscopy. In the absence of water, DMSO molecules are found to produce dipole-dipole bonds with PAN molecules. Upon the introduction of water, DMSO molecules produce hydrogen bonds with it and bands at 1005 and 1015 cm-1 appear in the Raman spectrum, which are assigned to the valence vibrations of S=O bonds involved in the hydrogen bonds. Simultaneously, water molecules produce hydrogen bonds with PAN molecules: R-C≡N...H-O-H...N≡C-R, where R is the carbon skeleton of a PAN molecule. Accordingly, a band at 2250 cm-1 arises in the Raman spectrum, which is assigned to the valence vibrations of C≡N bonds producing hydrogen bonds with a water molecule. When the water content is low and the DMSO concentration is high, the length of the hydrogen bonds varies in wide limits and the band at 2250 cm-1 is wide. As the water content rises, DMSO molecules come out of PAN, the variation of the hydrogen bond length in it decreases (the band at 2250 cm-1 narrows), and a high-viscosity system (gel) arises that consists of PAN molecules bonded to water molecules via “equally strong” hydrogen bonds.
Smirnov, Vladimir S; Kislenko, Sergey A
2018-01-05
The molecular life of intermediates, namely, O 2 - and Li + , produced during the discharge of aprotic Li-O 2 batteries was investigated by molecular dynamics simulation. This work is of potential interest in the development of new electrolytes for Li-air batteries. We present the results on the structure and stability of the Li + and O 2 - solvation shells and the thermodynamics and kinetics of the ion-association reaction in solvents such as dimethyl sulfoxide (DMSO), dimethoxyethane (DME), and acetonitrile (ACN). The residence time of solvent molecules in the Li + solvation shell increases with the solvent donor number and is 100 times larger in DMSO than in ACN. In DMSO and DME, the Li + ion diffuses with its solvation shell as a whole. On the contrary, in ACN it diffuses as a "bare" ion because of weak solvation. The rate constant for the association of the lithium ion with the superoxide anion in DMSO is two orders of magnitude slower than that in ACN due to fact that the free-energy barrier is 2.5 times larger in DMSO than in ACN. In addition, we show that despite the strong dependence of the Li + shell stability on donor number, the rate of association does not necessarily correlate with this solvent property. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of sulfoxides on the thermal denaturation of hen lysozyme: A calorimetric and Raman study
NASA Astrophysics Data System (ADS)
Torreggiani, A.; Di Foggia, M.; Manco, I.; De Maio, A.; Markarian, S. A.; Bonora, S.
2008-11-01
A multidisciplinary study of the thermal denaturation of lysozyme in the presence of three sulfoxides with different length in hydrocarbon chain (DMSO, DESO, and DPSO) was carried out by means of DSC, Raman spectroscopy, and SDS-PAGE techniques. In particular, the Td and Δ H values obtained from the calorimetric measurements showed that lysozyme is partially unfolded by sulfoxides but most of the conformation holds native state. The sulfoxide denaturing ability increases in the order DPSO > DESO > DMSO. Moreover, only DMSO and DESO have a real effect in preventing the heat-induced inactivation of the protein and their maximum heat-protective ability is reached when the DMSO and DESO amount is ⩾25% w/w. The sulfoxide ability to act as effective protective agents against the heat-induced inactivation was confirmed by the protein analysis. The enzymatic activity, as well as the SDS-PAGE analysis, suggested that DESO, having a low hydrophobic character and a great ability to stabilise the three-dimensional water structure, is the most heat-protective sulfoxide. An accurate evaluation of the heat-induced conformational changes of the lysozyme structure before and after sulfoxide addition was obtained by the analysis of the Raman spectra. The addition of DMSO or DESO in low concentration resulted to sensitively decrease the heat-induced structural modifications of the protein.
USDA-ARS?s Scientific Manuscript database
Homogeneous modification of cellulose with succinic anhydride was performed in tetrabutylammonium acetate (TBAA)/dimethyl sulfoxide (DMSO) mixed solvent. The molar ratio of succinic anhydride (SA) to free hydroxyl groups in the anhydroglucose units (AGU) and TBAA dosage were investigated as paramete...
NASA Astrophysics Data System (ADS)
Brandt, N. N.; Chikishev, A. Yu.; Dolgovskii, V. I.; Lebedenko, S. I.
2007-09-01
The effect of solvent on low-frequency oscillations is studied using an example of the 1,1,2,2-tetrachloroethane (TCE) and 1,1,2,2-tetrabromoethane (TBE) molecules, which exhibit torsional oscillations in the terahertz range. Dimethylsulfoxide (DMSO) and carbon tetrachloride (CTC) are used as solvents. It is demonstrated that a decrease in the concentration of the substance under study in the TBE/CTC, TCE/DMSO, and TCE/CTC mixtures leads to a frequency shift of the low-frequency oscillation. The shift is not observed in the TBE/DMSO mixture but a decrease in the TBE concentration causes significant broadening of the low-frequency line.
Excited-state dynamics of astaxanthin aggregates
NASA Astrophysics Data System (ADS)
Fuciman, Marcel; Durchan, Milan; Šlouf, Václav; Keşan, Gürkan; Polívka, Tomáš
2013-05-01
Astaxanthin forms three types of aggregates in hydrated dimethyl sulfoxide (DMSO). In DMSO/water ratio of 1:1, a red-shifted J-aggregate with maximum at 570 nm is generated, while a ratio of 1:9 produces blue-shifted H-aggregates with peaks at 386 nm (H1) and 460 nm (H2). Monomeric astaxanthin in DMSO has an S1 lifetime of 5.3 ps, but a long-lived (33 ps) S∗ signal was also identified. Aggregation changes the S1 lifetimes to 17 ps (H1), 30 ps (H2), and 14 ps (J). Triplet state of astaxanthin, most likely generated via singlet homofission, was observed in H1 and H2 aggregates.
Hsieh, S D; Yamamoto, R; Saito, K; Iwamoto, Y; Kuzuya, T; Ohba, S; Kobori, S; Saito, K
1987-08-01
A 67-year-old male patient presented with rapid progression of whitening and loss of hair in past 2 months was consulted due to the suspicion of hypothyroidism. He had been told to have cardiomegaly for 3 years. Thyroid function was within normal limit. Prostate biopsy was performed because of prostatic hypertrophy and mild elevation of serum acid phosphatase. Amyloid accumulation was observed in the biopsy specimen. Subsequent skin biopsies revealed the same result. The scalp hair and beard grew and turned to black gradually several months after dimethyl sulfoxide (DMSO) treatment. These findings suggest that some of the manifestation of amyloidosis may respond to DMSO treatment.
Wallace, Victoria M; Dhumal, Nilesh R; Zehentbauer, Florian M; Kim, Hyung J; Kiefer, Johannes
2015-11-19
The infrared and near-infrared spectra of the aqueous solutions of dimethyl sulfoxide are revisited. Experimental and computational vibrational spectra are analyzed and compared. The latter are determined as the Fourier transformation of the velocity autocorrelation function of data obtained from Car-Parrinello molecular dynamics simulations. The experimental absorption spectra are deconvolved, and the excess spectra are determined. The two-dimensional excess contour plot provides a means of visualizing and identifying spectral regions and concentration ranges exhibiting nonideal behavior. In the binary mixtures, the analysis of the SO stretching band provides a semiquantitative picture of the formation and dissociation of hydrogen-bonded DMSO-water complexes. A maximum concentration of these clusters is found in the equimolar mixture. At high DMSO concentration, the formation of rather stable 3DMSO:1water complexes is suggested. The formation of 1DMSO:2water clusters, in which the water oxygen atoms interact with the sulfoxide methyl groups, is proposed as a possible reason for the marked depression of the freezing temperature at the eutectic point.
NASA Astrophysics Data System (ADS)
Banerjee, Saikat; Bagchi, Biman
2013-10-01
In aqueous binary mixtures, amphiphilic solutes such as dimethylsulfoxide (DMSO), ethanol, tert-butyl alcohol (TBA), etc., are known to form aggregates (or large clusters) at small to intermediate solute concentrations. These aggregates are transient in nature. Although the system remains homogeneous on macroscopic length and time scales, the microheterogeneous aggregation may profoundly affect the properties of the mixture in several distinct ways, particularly if the survival times of the aggregates are longer than density relaxation times of the binary liquid. Here we propose a theoretical scheme to quantify the lifetime and thus the stability of these microheterogeneous clusters, and apply the scheme to calculate the same for water-ethanol, water-DMSO, and water-TBA mixtures. We show that the lifetime of these clusters can range from less than a picosecond (ps) for ethanol clusters to few tens of ps for DMSO and TBA clusters. This helps explaining the absence of a strong composition dependent anomaly in water-ethanol mixtures but the presence of the same in water-DMSO and water-TBA mixtures.
Characteristics of Lithium Ions and Superoxide Anions in EMI-TFSI and Dimethyl Sulfoxide.
Jung, Sun-ho; Federici Canova, Filippo; Akagi, Kazuto
2016-01-28
To clarify the microscopic effects of solvents on the formation of the Li(+)-O2(–) process of a Li–O2 battery, we studied the kinetics and thermodynamics of these ions in dimethyl sulfoxide (DMSO) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI-TFSI) using classical molecular dynamics simulation. The force field for ions–solvents interactions was parametrized by force matching first-principles calculations. Despite the solvation energies of the ions are similar in both solvents, their mobility is much higher in DMSO. The free-energy profiles also confirm that the formation and decomposition rates of Li(+)-O2(–) pairs are greater in DMSO than in EMI-TFSI. Our atomistic simulations point out that the strong structuring of EMI-TFSI around the ions is responsible for these differences, and it explains why the LiO2 clusters formed in DMSO during the battery discharge are larger than those in EMI-TFSI. Understanding the origin of such properties is crucial to aid the optimization of electrolytes for Li–O2 batteries.
Francis, Arul Prakash; Ramaprabhu, Sundara; Devasena, Thiyagarajan
2016-01-01
Intravenous route is the best strategy to accomplish fastest and highest delivery of drugs. Hydrophobic drugs like curcumin and its analog exhibit disadvantages like low bioavailability, poor absorption and rapid precipitation on intravenous delivery, all leading to its poor therapeutic value. These can be by-passed by enhancing the dispersity, stability and decreasing the size of the drug by nanotization. Thus, with an intention to deliver bis-demethoxy curcumin analog via intravenous route, we have studied the effect of DMSO, ethanol and acetone on the size, size distribution, stability and yield and identified the best solvent in terms of smallest size, narrow size distribution, more stability and high yield of nano bis-demethoxy curcumin analog (NBDMCA). NBDMCA prepared using DMSO showed the lowest mean particle size cum polydispersity index and highest zeta potential when compared to ethanol and acetone. Hence the DMSO based formulation can provide prolonged action and better efficacy at minimal doses. Thus, the DMSO based NBDMCA can emerge as an ideal therapeutic tool for human use.
The use of spin desalting columns in DMSO-quenched H/D-exchange NMR experiments
Chandak, Mahesh S; Nakamura, Takashi; Takenaka, Toshio; Chaudhuri, Tapan K; Yagi-Utsumi, Maho; Chen, Jin; Kato, Koichi; Kuwajima, Kunihiro
2013-01-01
Dimethylsulfoxide (DMSO)-quenched hydrogen/deuterium (H/D)-exchange is a powerful method to characterize the H/D-exchange behaviors of proteins and protein assemblies, and it is potentially useful for investigating non-protected fast-exchanging amide protons in the unfolded state. However, the method has not been used for studies on fully unfolded proteins in a concentrated denaturant or protein solutions at high salt concentrations. In all of the current DMSO-quenched H/D-exchange studies of proteins so far reported, lyophilization was used to remove D2O from the protein solution, and the lyophilized protein was dissolved in the DMSO solution to quench the H/D exchange reactions and to measure the amide proton signals by two-dimensional nuclear magnetic resonance (2D NMR) spectra. The denaturants or salts remaining after lyophilization thus prevent the measurement of good NMR spectra. In this article, we report that the use of spin desalting columns is a very effective alternative to lyophilization for the medium exchange from the D2O buffer to the DMSO solution. We show that the medium exchange by a spin desalting column takes only about 10 min in contrast to an overnight length of time required for lyophilization, and that the use of spin desalting columns has made it possible to monitor the H/D-exchange behavior of a fully unfolded protein in a concentrated denaturant. We report the results of unfolded ubiquitin in 6.0M guanidinium chloride. PMID:23339068
Picosecond solvation dynamics—A potential viewer of DMSO—Water binary mixtures
NASA Astrophysics Data System (ADS)
Banik, Debasis; Kundu, Niloy; Kuchlyan, Jagannath; Roy, Arpita; Banerjee, Chiranjib; Ghosh, Surajit; Sarkar, Nilmoni
2015-02-01
In this work, we have investigated the composition dependent anomalous behavior of dimethyl sulfoxide (DMSO)-water binary mixture by collecting the ultrafast solvent relaxation response around a well known solvation probe Coumarin 480 (C480) by using a femtosecond fluorescence up-conversion spectrometer. Recent molecular dynamics simulations have predicted two anomalous regions of DMSO-water binary mixture. Particularly, these studies encourage us to investigate the anomalies from experimental background. DMSO-water binary mixture has repeatedly given evidences of its dual anomalous nature in front of our systematic investigation through steady-state and time-resolved measurements. We have calculated average solvation times of C480 by two individual well-known methods, among them first one is spectral-reconstruction method and another one is single-wavelength measurement method. The results of both the methods roughly indicate that solvation time of C480 reaches maxima in the mole fraction of DMSO XD = 0.12-0.17 and XD = 0.27-0.35, respectively. Among them, the second region (XD = 0.27-0.35) is very common as most of the thermodynamic properties exhibit deviation in this range. Most probably, the anomalous solvation trend in this region is fully guided by the shear viscosity of the medium. However, the first region is the most interesting one. In this region due to formation of strongly hydrogen bonded 1DMSO:2H2O complexes, hydration around the probe C480 decreases, as a result of which solvation time increases.
Effect of dimethyl sulfoxide wet-bonding technique on hybrid layer quality and dentin bond strength.
Stape, Thiago Henrique Scarabello; Tjäderhane, Leo; Marques, Marcelo Rocha; Aguiar, Flávio Henrique Baggio; Martins, Luís Roberto Marcondes
2015-06-01
This study examined the effect of a dimethyl sulfoxide (DMSO) wet bonding technique on the resin infiltration depths at the bonded interface and dentin bond strength of different adhesive systems. Flat dentin surfaces of 48 human third molars were treated with 50% DMSO (experimental groups) or with distilled water (controls) before bonding using an etch-and-rinse (SBMP: Scotchbond Multi-Purpose, 3M ESPE) or a self-etch (Clearfil: Clearfil SE Bond, Kuraray) adhesive system. The restored crown segments (n=12/group) were stored in distilled water (24h) and sectioned for interfacial analysis of exposed collagen using Masson's Trichrome staining and for microtensile bond strength testing. The extent of exposed collagen was measured using light microscopy and a histometric analysis software. Failure modes were examined by SEM. Data was analyzed by two-way ANOVA followed by Tukey Test (α=0.05). The interaction of bonding protocol and adhesive system had significant effects on the extension of exposed collagen matrix (p<0.0001) and bond strength (p=0.0091). DMSO-wet bonding significantly reduced the extent of exposed collagen matrix for SBMP and Clearfil (p<0.05). Significant increase in dentin bond strength was observed on DMSO-treated specimens bonded with SBMP (p<0.05), while no differences were observed for Clearfil (p>0.05). DMSO-wet bonding was effective to improve the quality of resin-dentin bonds of the tested etch-and-rinse adhesives by reducing the extent of exposed collagen matrix at the base of the resin-dentin biopolymer. The improved penetration of adhesive monomers is reflected as an increase in the immediate bond strength when the DMSO-wet bonding technique is used with a water-based etch-and-rinse adhesive. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Chung, Wei-Ju; Cui, Yujia; Huang, Feng-Yun J; Tu, Tzu-Hui; Yang, Tzu-Sen; Lo, Jem-Mau; Chiang, Chi-Shiun; Hsu, Ian C
2014-01-01
Radiation therapy for cancer patients works by ionizing damage to nuclear DNA, primarily by creating double-strand breaks (DSB). A major shortcoming of traditional radiation therapy is the set of side effect associated with its long-range interaction with nearby tissues. Low-energy Auger electrons have the advantage of an extremely short effective range, minimizing damage to healthy tissue. Consequently, the isotope ⁹⁹mTc, an Auger electron source, is currently being studied for its beneficial potential in cancer treatment. We examined the dose effect of a pyrene derivative ⁹⁹mTc complex on plasmid DNA by using gel electrophoresis in both aqueous and methanol solutions. In aqueous solutions, the average yield per decay for double-strand breaks is 0.011±0.005 at low dose range, decreasing to 0.0005±0.0003 in the presence of 1 M dimethyl sulfoxide (DMSO). The apparent yield per decay for single-strand breaks (SSB) is 0.04±0.02, decreasing to approximately a fifth with 1 M DMSO. In methanol, the average yield per decay of DSB is 0.54±0.06 and drops to undetectable levels in 2 M DMSO. The SSB yield per decay is 7.2±0.2, changing to 0.4±0.2 in the presence of 2 M DMSO. The 95% decrease in the yield of DSB in DMSO indicates that the main mechanism for DSB formation is through indirect effect, possibly by cooperative binding or clustering of intercalators. In the presence of non-radioactive ligands at a near saturation concentration, where radioactive Tc compounds do not form large clusters, the yield of SSB stays the same while the yield of DSB decreases to the value in DMSO. DSBs generated by ⁹⁹mTc conjugated to intercalators are primarily caused by indirect effects through clustering.
[Naringin reduced polymethylmethacrylate-induced osteolysis in the mouse air sacs model].
Li, Nian-Hu; Xu, Zhan-wang
2015-04-01
To evaluate the influence of naringin on PMMA-induced osteoclastic bone resorption using the mouse air sacs model. Total 48 female Balb/c mices with the age of 8 to 10 weeks were chosen in the study. Air were injected into the back in 32 mices and formed the air sacs, 6 d later, the skulls (originated from other 16 mices) were implanted to the air sacs. Thirty-two animals were divided into naringin treatment group (with 2 concentrations of 150 mg/kg and 30 mg/ kg) , DMSO group and PBS blank group, 8 animals in each group. Polymethylmethacrylate (PMMA) particles were injected into the air sacs in naringin treatment groups and DMSO group so as to irritate inflammatory reaction. Naringin with 2 concentrations of 150 mg/kg and 30 mg/kg were dissolved in DMSO of 0.2 ml, and were injected into air sacs, respectively. In PBS black group, no stimulation with PMMA particles, only injected PBS, and in DMSO group, injected DMSO without naringin. Tartrate resistant acid phosphatase (TRAP), Ca2+ release, modified Masson stain and histological analysis were performed on the 7th day after stimulation. Compared with DMSO group, naringin treatment group's cellular infiltration decreased (P < 0.01); concentration of 150 mg/kg was better than that of concentrations of 30 mg/kg (8.90 ± 1.75 vs 15.23 ± 1.86). Naringin can decrease calcium release in the lavage of the air sacs bone resorption model, especially obvious in naringin with concentration of 150 mg/kg. Naringin can ameliorate the inflammatory reaction and the subsequent bone resorption (including bone collagen loss, TRAP positive cells amount and so on) in air sacs with bone implant and PMMA particles. Naringin with concentration of 150 mg/kg appeared to be an optimal dosage to deliver the therapeutic effects. Naringin inhibits PMMA-induced osteoclastogenesis and ameliorates the PMMA-associated inflammatory reaction and the subsequent bone resorption.
Magnetic Resonance Imaging Assays for Dimethyl Sulfoxide Effect on Cancer Vasculature
Cyran, Clemens C.; Sennino, Barbara; Chaopathomkul, Bundit; Fu, Yanjun; Rogut, Victor; Shames, David M.; Wendland, Michael F.; McDonald, Donald M.; Brasch, Robert C.
2015-01-01
Objectives To evaluate the potential of quantitative assays of vascular characteristics based on dynamic contrast-enhanced magnetic resonance imaging (MRI) using a macromolecular contrast medium (MMCM) to search for and measure effects of dimethyl sulfoxide (DMSO) on cancer vasculature with microscopic correlations. Material and Methods Saline-treated control (n = 8) and DMSO-treated (n = 7) human breast cancer xenografts (MDA-MB-435) in rats were imaged dynamically by MMCM-enhanced MRI using albumin-(Gd-DTPA)27-(biotin)11 (molecular weight approximately 90 kDa), before and after a 1-week, 3-dose treatment course. After the posttreatment MRI examinations, tumors were perfused with lectin and fixative and subsequently stained with RECA-1 and streptavidin for quantitative fluorescent microscopy. Quantitative MRI estimates of cancer microvessel permeability (KPS; µL/ min·100 cm3) and fractional plasma volume (fPV; %) were based on a 2-compartment kinetic model. Fluorescent microscopy yielded estimates of MMCM extravasation and vascular density that were compared to the MRI results. Results DMSO decreased cancer vascular endothelial permeability significantly (P < 0.05) from tumor KPSday0 = 19.3 ± 8.8 µL/min·100 cm3 to KPSday7 = 0 µL/min·100 cm3). KPS values in the saline-treated tumors did not change significantly. The amount of extravasated albumin-Gd-(DTPA)27-(biotin)11, as assayed by a fluorescently labeled streptavidin stain that strongly binds to the biotin tag on the MMCM, was significantly (P < 0.05) lower in the DMSO-treated cancers than in the control cancers (57.7% ± 5.5% vs. 34.2% ± 4.9%). Tumor vascular richness as reflected by the MRI-assayed fPV and by the RECA-1 and lectin-stained microscopy did not change significantly with DMSO or saline treatment. Conclusion Reductions in cancer microvascular leakiness induced by a 7-day course of DMSO could be detected and measured by dynamic MMCM-enhanced MRI and were confirmed by microscopic measurements of the leaked macromolecular agents in the same cancers. Results support the robustness of an MMCM-enhanced MRI approach to the characterization of cancers and providing first evidence for an in vivo effect of DMSO on cancer blood vessels. PMID:18424950
Lopes, Kátia Regina F; Praxedes, Erica Camila G; Campos, Livia B; Bezerra, Marcelo B; Lima, Gabriela L; Saraiva, Márcia Viviane A; Silva, Alexandre R
2018-05-29
The aim of this study was to assess a vitrification protocol for asinine ovarian tissue, to preserve preantral follicles using different cryoprotectant solutions, composed of various concentrations (EG 3 M or 6 M) of dimethyl sulfoxide or ethylene glycol isolate, or as a combination (DMSO 3 M + EG 3 M). Ten pairs of ovaries from Brazilian north-eastern breed jennies were obtained through videolaparoscopy, and cortical fragments were submitted to a solid-surface vitrification (SSV) using each cryoprotectant solution. The ovarian tissue was evaluated for follicular morphology and viability, DNA integrity (TUNEL technique) and the presence of nucleolar organizing regions in granulosa cells (AgNOR technique). After thawing, the percentage of normal preantral follicles was significantly reduced in the vitrified ovarian tissue fragments compared to the fresh control (p < 0.05). When comparing treatments, the use of DMSO 3 M (81.7 ± 37.5%), EG 3 M (83.7 ± 27.4%) and the combination of both DMSO 3 M + EG 3 M (81.8 ± 46.8%) allowed a greater percentage of follicular survival in contrast to DMSO 6 M (69.8 ± 16.5%) and EG 6 M (72.3 ± 18.0%; p < 0.05). When vitrified using the DMSO + EG combination, a higher percentage (62.5 ± 29.1%) of viable follicles (trypan blue) was observed in relation to the other vitrification treatments (p < 0.05). The TUNEL technique identified that all treatments tested showed DNA fragmentation in the follicular cells, except in the case of the DMSO 3 M + EG 3 M treatment. When evaluating the presence of NORs, no significant differences were observed in the amount of NORs between the fresh and vitrified groups using DMSO 3 M + EG 3 M (p > 0.05). We concluded that the combination DMSO 3 M + EG was more efficient for the vitrification of ovarian tissue taken from Equus asinus, allowing adequate preservation of PAFs morphology, viability, DNA integrity and cell proliferative capacity. © 2018 Blackwell Verlag GmbH.
The effect of dimethylsulfoxide on the water transport response of rat hepatocytes during freezing.
Smith, D J; Schulte, M; Bischof, J C
1998-10-01
Successful improvement of cryopreservation protocols for cells in suspension requires knowledge of how such cells respond to the biophysical stresses of freezing (intracellular ice formation, water transport) while in the presence of a cryoprotective agent (CPA). This work investigates the biophysical water transport response in a clinically important cell type--isolated hepatocytes--during freezing in the presence of dimethylsulfoxide (DMSO). Sprague-Dawley rat liver hepatocytes were frozen in Williams E media supplemented with 0, 1, and 2 M DMSO, at rates of 5, 10, and 50 degrees C/min. The water transport was measured by cell volumetric changes as assessed by cryomicroscopy and image analysis. Assuming that water is the only species transported under these conditions, a water transport model of the form dV/dT = f(Lpg([CPA]), ELp([CPA]), T(t)) was curve-fit to the experimental data to obtain the biophysical parameters of water transport--the reference hydraulic permeability (Lpg) and activation energy of water transport (ELp)--for each DMSO concentration. These parameters were estimated two ways: (1) by curve-fitting the model to the average volume of the pooled cell data, and (2) by curve-fitting individual cell volume data and averaging the resulting parameters. The experimental data showed that less dehydration occurs during freezing at a given rate in the presence of DMSO at temperatures between 0 and -10 degrees C. However, dehydration was able to continue at lower temperatures (< -10 degrees C) in the presence of DMSO. The values of Lpg and ELp obtained using the individual cell volume data both decreased from their non-CPA values--4.33 x 10(-13) m3/N-s (2.69 microns/min-atm) and 317 kJ/mol (75.9 kcal/mol), respectively--to 0.873 x 10(-13) m3/N-s (0.542 micron/min-atm) and 137 kJ/mol (32.8 kcal/mol), respectively, in 1 M DMSO and 0.715 x 10(-13) m3/N-s (0.444 micron/min-atm) and 107 kJ/mol (25.7 kcal/mol), respectively, in 2 M DMSO. The trends in the pooled volume values for Lpg and ELp were very similar, but the overall fit was considered worse than for the individual volume parameters. A unique way of presenting the curve-fitting results supports a clear trend of reduction of both biophysical parameters in the presence of DMSO, and no clear trend in cooling rate dependence of the biophysical parameters. In addition, these results suggest that close proximity of the experimental cell volume data to the equilibrium volume curve may significantly reduce the efficiency of the curve-fitting process.
Ping-Ping Xin; Yao-Bing Huang; Chung-Yun Hse; Huai N. Cheng; Chaobo Huang; Hui Pan
2017-01-01
Homogeneous modification of cellulose with succinic anhydride was performed using tetrabutylammonium acetate (TBAA)/dimethyl sulfoxide (DMSO) mixed solvent. The molar ratio of succinic anhydride (SA) to free hydroxyl groups in the anhydroglucose units (AGU), TBAA dosage, reaction temperature, and reaction time were investigated. The highest degree of substitution (DS)...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russina, Olga; Macchiagodena, Marina; Kirchner, Barbara
2015-01-01
Here we report the first structural and dynamic investigation on ethylammonium nitrate, a representative protic Ionic liquid, and dimethylsulfoxide. By using joined x/ray and neutron diffraction, we exploit the EPSR approach to extract structural information at atomistic level. EAN/DMSO turns out to be homogeneous at microscopic scales and indications for the existence of a structural leit motiv with stoichiometric composition 2DMSO:1EAN are found. Dielectric spectroscopy is used to access the relaxation map of the DMSO:EAN = 60:40 mixture. No crystallisation is detected and three relaxation processes could be characterised. Overall this study provides new indications of strict analogies between watermore » and ethylammonium nitrate. (c) 2014 Elsevier B.V. All rights reserved.« less
1,3,4-Thiadiazole-based diamides: Synthesis and complexation properties
NASA Astrophysics Data System (ADS)
Łukasik, Natalia; Luboch, Elżbieta; Chojnacki, Jarosław; Wagner-Wysiecka, Ewa
2017-10-01
Aromatic diamides, derivative of 2,6-pyridinedicarboxylic acid and isophthalic acid, bearing 1,3,4-thiadiazole residue were prepared with satisfactory yields in conventional procedures and microwave stimulated reactions. X-ray structure of N,N‧-bis(1,3,4-thiadiazol-2-yl)-2,6-pyridinedicarboxamide (2) DMSO solvate (2·DMSO) was described. Selective zinc(II), lanthanum(III), terbium(III) and L-tyrosine recognition was found for N,N‧-bis(1,3,4-thiadiazol-2-yl)-2,6-pyridinedicarboxamide in DMSO and its mixture with water. The IDA (Indicator Displacement Assay) system for metal cations sensing was proposed. The binding properties of 2 were compared with newly synthesized N,N‧-bis(1,3,4-thiadiazol-2-yl)-1,3-benzenedicarboxamide 1.
Absorption spectra of PTCDI: A combined UV-Vis and TD-DFT study
NASA Astrophysics Data System (ADS)
Oltean, Mircea; Calborean, Adrian; Mile, George; Vidrighin, Mihai; Iosin, Monica; Leopold, Loredana; Maniu, Dana; Leopold, Nicolae; Chiş, Vasile
2012-11-01
Absorption spectra of PTCDI (3,4,9,10-perylene-tetracarboxylic-diimide) have been investigated in chloroform, N,N'-dimethylformamide (DMF) and dimethylsulfoxide (DMSO). While no signature of assembled PTCDI molecules is observed in chloroform solution, distinct bands assigned to their aggregation have been identified in DMF and DMSO solutions. PTCDI monomers show very similar absorption patterns in chloroform and DMSO solutions. Experimental data, including the vibronic structure of the absorption spectra were explained based on the Franck-Condon approximation and quantum chemical results obtained at PBE0-DCP/6-31+G(d,p) level of theory. Geometry optimization of the first excited state leads to a nice agreement between the calculated adiabatic transition energies and experimental data.
Comparing five simple vascular storage protocols.
van Doormaal, Tristan P C; Sluijs, Jurren H; Vink, Aryan; Tulleken, Cornelis A F; van der Zwan, Albert
2014-11-01
We aim to find a storage protocol for vessels that preserves their dimensional, histologic, and mechanical characteristics to facilitate reproducible anastomosis experiments and microsurgical training with constant quality. We compared stored rabbit aortas, harvested in a slaughterhouse, using five different protocols with fresh controls. Aortas were preserved for 125 d in (1) NaCl 0.9% at -18°C, (2) Roswell Park Memorial Institute 1640 90% with 10% dimethyl sulfoxide (RPMI/DMSO) at -18°C, (3) RPMI/DMSO at -70°C, (4) glycerol 85% at 4°C, and (5) glycerol in stepwise increased concentrations until 85% at 4°C. After preservation, we measured vessel diameter, wall thickness, and Young's Modulus indicating stiffness. Neurosurgeons compared stored vessels with fresh vessels, blinded for preservation subgroup. We performed histologic assessment blinded for preservation subgroup. Fresh rabbit aortas showed a mean diameter of 2.65 ± 0.14 mm, a mean wall thickness of 126 ± 22 μm, and a Young's Modulus of 11.4 ± 2.4 N/mm(2). NaCl 0.9%-preserved aortas showed a significantly increased vessel diameter and decreased stiffness. RPMI/DMSO-preserved aortas showed no significant differences from fresh aortas in dimensions and mechanical characteristics. Glycerol-preserved tissue showed a significant increase in wall thickness, a related significant decrease in diameter, and increase in stiffness. Neurosurgeons regarded RPMI/DMSO tissue as most comparable with fresh tissue. Histologic assessment revealed no differences between the different protocols and fresh control group. Storage of rabbit aortas in RPMI/DMSO most adequately preserves their dimensional and mechanical properties. Copyright © 2014 Elsevier Inc. All rights reserved.
What is measured by hyper-Rayleigh scattering from a liquid?
NASA Astrophysics Data System (ADS)
Rodriquez, Micheal B.; Shelton, David P.
2018-04-01
Polarization and angle dependence of hyper-Rayleigh scattering (HRS) measured for liquid acetonitrile and dimethyl sulfoxide (DMSO) is analyzed in terms of contributions from randomly oriented molecules and additional contributions produced during intermolecular collisions and induced by the electric field of dissolved ions. All three contributions show the effect of long-range correlation, and the correlation functions are determined using the HRS observations combined with the results of molecular dynamics simulations. HRS from acetonitrile is polarized transverse to the scattering vector. This is due to long-range molecular orientation correlation produced by the dipole-dipole interaction, and correlation at distances r > 100 nm must be included to account for the HRS observations. Analysis of the HRS measurements for acetonitrile determines the length scale a = 0.185 nm for the long-range longitudinal and transverse orientation correlation functions BL=-2 BT=a3/r3. Transverse polarized collision-induced HRS is also observed for acetonitrile, indicating long-range correlation of intermolecular modes. Strong longitudinal HRS is induced by the radial electric field of dissolved ions in acetonitrile. For DMSO, the angle between the molecular dipole and the vector part of the first hyperpolarizability tensor is about 100°. As a result, HRS from the randomly oriented molecules in DMSO is nearly unaffected by dipole correlation, and ion-induced HRS is weak. The strong longitudinal polarized HRS observed for DMSO is due to the collision-induced contribution, indicating long-range correlation of intermolecular modes. The HRS observations require correlation that has r-3 long-range asymptotic form, for molecular orientation and for intermolecular vibration and libration, for both acetonitrile and DMSO.
Thermomechanical analysis of freezing-induced cell-fluid-matrix interactions in engineered tissues
Han, Bumsoo; Teo, Ka Yaw; Ghosh, Soham; Dutton, J. Craig; Grinnell, Frederick
2012-01-01
Successful cryopreservation of functional engineered tissues (ETs) is significant to tissue engineering and regenerative medicine, but it is extremely challenging to develop a successful protocol because the effects of cryopreservation parameters on the post-thaw functionality of ETs are not well understood. Particularly, the effects on the microstructure of their extracellular matrix (ECM) have not been well studied, which determines many functional properties of the ETs. In this study, we investigated the effects of two key cryopreservation parameters – i) freezing temperature and corresponding cooling rate; and ii) the concentration of cryoprotective agent (CPA) on the ECM microstructure as well as the cellular viability. Using dermal equivalent as a model ET and DMSO as a model CPA, freezing-induced spatiotemporal deformation and post-thaw ECM microstructure of ETs was characterized while varying the freezing temperature and DMSO concentrations. The spatial distribution of cellular viability and the cellular actin cytoskeleton was also examined. The results showed that the tissue dilatation increased significantly with reduced freezing temperature (i.e., rapid freezing). A maximum limit of tissue deformation was observed for preservation of ECM microstructure, cell viability and cell-matrix adhesion. The dilatation decreased with the use of DMSO, and a freezing temperature dependent threshold concentration of DMSO was observed. The threshold DMSO concentration increased with lowering freezing temperature. In addition, an analysis was performed to delineate thermodynamic and mechanical components of freezing-induced tissue deformation. The results are discussed to establish a mechanistic understanding of freezing-induced cell-fluid-matrix interaction and phase change behavior within ETs in order to improve cryopreservation of ETs. PMID:23246556
Felizardo, V O; Mello, R A; Murgas, L D S; Andrade, E S; Drumond, M M; Rosa, P V
2010-12-01
This study investigated the application of intra- and extra-cellular cryoprotectant combinations on the quality of curimba Prochilodus lineatus semen subjected to cryopreservation. Semen treatments were tested with 8% DMSO or methanol as intracellular cryoprotectant, 5% egg yolk or lactose as extracellular cryoprotectant and 5% BTS. These cryoprotectant combinations are suitable for curimba but have not been tested at the lesser concentrations proposed or in combination with BTS. Semen samples collected from 19 curimbas were diluted into one of four cryoprotectant combinations: DMSO+yolk; DMSO+lactose; methanol+yolk; and methanol+lactose. After dilution, semen samples were cryopreserved in 0.5 mL straws for 10 days in a liquid nitrogen tank. Semen was thawed in a water bath at 60°C for 8s. We evaluated the quality of fresh, diluted (pre-freezing) and post-freezing semen according to sperm motility rate (%) and duration (s). Sperm morphology was also analyzed in thawed semen. Sperm motility rate decreased progressively after dilution and thawing. The motility rate in post-freezing semen was higher in the treatments using DMSO+lactose and methanol+yolk. Sperm motility duration in post-freezing sperm was greater in the treatments using methanol rather than DMSO as intracellular cryoprotectant, irrespective of the extracellular cryoprotectant used. Abnormality frequency in thawed sperm was less in semen treated with egg yolk than with lactose. Thus the use of methanol intracellular cryoprotectant is recommended along with yolk extracellular cryoprotectant in the cryopreservation process for curimba semen. Copyright © 2010 Elsevier B.V. All rights reserved.
Heisel, Kurt A.; Krishnan, V. V.
2014-01-01
The conformational preference of a peptide with three phenylalanine-glycine (FG) repeats from the intrinsically disordered domain of nucleoporin 159 (nup159) from the yeast nucleopore complex (NPC) is studied. Conformational states of this FG-peptide in dimethyl sulfoxide (DMSO), a non-native solvent are first studied. A solvent exchange scheme is designed and performed to understand how the conformational preferences of the peptide are altered as the solvent shifts from DMSO to water. An ensemble of structures of a 19-residue peptide is determined based on 13Cα, 1Hα, and 1HN chemical shifts and with inter-proton distances. An experimental model is then presented where chemical shifts and amide-proton temperature dependence is probed at changing DMSO to water ratios. These co-solvent experiments provide evidence of a conformational change as the fraction of water increases by the stark change in the behavior of amide protons under varied temperature. This investigation provides a NMR based experimental method in the field of intrinsically disordered proteins to realize conformational transitions from a non-native set of structures (in DMSO) to a native set of disordered conformers (in water). PMID:24037535
Yura, Y; Tsujimoto, H; Kusaka, J; Harada, K; Yoshida, H; Sato, M
1995-03-01
To determine whether the local administration of 9,10-dimethyl-1,2-benzanthracene (DMBA) into the hamster maxillary sinus induced carcinoma at the injected site, hamsters were injected with 30 microliters of 0.5% solution of DMBA in dimethyl sulfoxide (DMSO) through the infraorbital foramen into the maxillary sinus once weekly for 10 weeks (Group 2). Another group of hamsters (Group 1) received similar injections of 30 microliters of DMSO only. In a third group of animals (Group 3), a roll of oxycellulose was inserted into the maxillary sinus and 40 microliters of a 2% solution of DMBA in DMSO was injected once. Sinonasal carcinomas were demonstrated in 73% (8/11) of the hamsters in Group 2 and sarcomas were shown in 73% (8/11) of the hamsters in Group 3, as well as some carcinomas. No tumors were seen in the Group 1 hamsters. Histologic examination revealed squamous cell carcinomas arising from the surface epithelium and submucous glands of the nasal cavity and maxillary sinus. These findings indicate that the intrasinal administration of a 0.5% solution of DMBA in DMSO is a reliable method for inducing maxillary sinus cancer.
Chodurek, Ewa; Orchel, Arkadiusz; Orchel, Joanna; Kurkiewicz, Sławomir; Gawlik, Natalia; Dzierżewicz, Zofia; Stępień, Krystyna
2012-01-01
The increase of a skin malignant melanoma (melanoma malignum) incidence in the world has been observed in recent years. The tumour, especially in advanced stadium with metastases, is highly resistant to conventional treatment. One of the strategies is to modulate melanogenesis using chemical compounds. In this study, the processes of differentiation and melanogenesis induced by dimethylsulfoxide (DMSO) in human melanoma cells (A-375) were investigated. Natural melanin isolated from A-375 melanoma cell line treated with 0.3% DMSO was analyzed by pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) method. The products derived from pheomelanin have not been stated in the pyrolytic profile of analyzed melanin. Within all products derived from eumelanins, 1,2-benzenediol has been predominated. It has been shown that in the melanoma cells stimulated with 0.3% and 1% DMSO, the increase of transcriptional activity of the tyrosinase gene took place. It was accompanied by the rise of tyrosinase activity and an accumulation of melanin in the cells. The better knowledge about the structure of melanins can contribute to establish the uniform criteria of malignant melanoma morbidity risk. PMID:22654640
Li, Wenzhe; Fan, Jiandong; Li, Jiangwei; Niu, Guangda; Mai, Yaohua; Wang, Liduo
2016-11-09
Currently, the potential mechanism of the solvent-assisted crystallization for mixed cations perovskite thin film (FA x MA 1-x PbI 3 ) prepared via two-step solution-process still remains obscure. Here, we clarified the molecular-competing-reacted process of NH 2 CH═NH 2 I (FAI) and CH 3 NH 3 I (MAI) with PbI 2 (DMSO) x complex in dimethyl sulfoxide (DMSO) and diethyl ether (DE) catalytic solvent system in the sequential two-step solution-process. The microscopic dynamics was characterized via the characterizations of in situ photoluminescence spectra. In addition, we found that the thermal stability of the perovskite films suffered from the residual solvent with high boiling point, for example, DMSO. The further DE treatment could promote the volatility process of DMSO and accelerate the crystallization process of perovskite films. The highest PCE over 19% with slight hysteresis effect was eventually obtained with a reproducible FA 0.88 MA 0.12 PbI 3 solar cell, which displayed a constant power output within 100 s upon light soaking and stable PCE output within 30 d in the thermal stability test.
NASA Astrophysics Data System (ADS)
do Couto Almeida, J.; Marzano, I. M.; de Paula, F. C. Silva; Pivatto, M.; Lopes, N. P.; de Souza, P. C.; Pavan, F. R.; Formiga, A. L. B.; Pereira-Maia, E. C.; Guerra, W.
2014-10-01
This work reports on the synthesis and characterization of new complexes of the type [MCl(L)DMSO], where L = 4,4,4-trifluoro-1-phenyl-1,3-butanedione (HTPB) or 4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione (HTTA) and M = Pt2+ or Pd2+. These complexes were characterized by elemental analyses, conductivity measurements, FT-IR, UV-Vis, high-resolution mass spectra (HRESIMS) and TG/DTA. In the complexes, the metallic ions bind to β-diketone via the oxygen atoms and to DMSO molecule via sulfur atom. The structures of complexes were optimized and theoretical data showed good agreement with the experimental results. The cytotoxic activity of the compounds was evaluated in a chronic myelogenous leukemia cell line. The platinum complexes were more cytotoxic than the free ligands and carboplatin and are promising candidates for further investigations. As example, the compound [PtCl(TPB)(DMSO)] inhibits the growth of K562 cells with an IC50 value equal to 2.5 μM. Furthermore, microbiological assays against Mycobacterium tuberculosis showed that all complexes exhibit low cytotoxicity against this bacterial strain while the free ligands exhibited MIC values of approximately 10 μg mL-1.
Hasegawa, Yoshihiro; Kanda, Hideki; Miki, Manabu; Masui, Satoru; Yoshio, Yuko; Yamada, Yasushi; Soga, Norihito; Arima, Kiminobu; Sugimura, Yoshiki
2013-10-01
A 48-year-old married woman complaining of macroscopic hematuria and cystitis symptom was admitted to our institute. Flexible cystoscopy revealed many yellowish, nodular masses at the paries posterior of the urinary bladder, and cold-punch biopsy proved it to be amyloidosis. Serum amyloid protein A (SAA) was high, and suggested systemic amyloidosis. Renal biopsy and colon fiberscopy did not reveal any abnormalities. We therefore diagnosed a primary localized amyloidosis of the urinary bladder. Transurethral resection and dimethyl sulfoxide (DMSO) infusion therapy are used to treat amyloidosis of the urinary bladder. However there is no definite cure for amyloidosis of the urinary bladder. Therefore we selected DMSO occlusive dressing technique therapy. After 5 years of therapy, there was no evidence of a recurrence of amyloidosis.
Runge, Roswitha; Oehme, Liane; Kotzerke, Jörg; Freudenberg, Robert
2016-12-01
DNA damage occurs as a consequence of both direct and indirect effects of ionizing radiation. The severity of DNA damage depends on the physical characteristics of the radiation quality, e.g., the linear energy transfer (LET). There are still contrary findings regarding direct or indirect interactions of high-LET emitters with DNA. Our aim is to determine DNA damage and the effect on cellular survival induced by (223)Ra compared to (188)Re and (99m)Tc modulated by the radical scavenger dimethyl sulfoxide (DMSO). Radioactive solutions of (223)Ra, (188)Re, or (99m)Tc were added to either plasmid DNA or to PC Cl3 cells in the absence or presence of DMSO. Following irradiation, single strand breaks (SSB) and double strand breaks (DSB) in plasmid DNA were analyzed by gel electrophoresis. To determine the radiosensitivity of the rat thyroid cell line (PC Cl3), survival curves were performed using the colony formation assay. Exposure to 120 Gy of (223)Ra, (188)Re, or (99m)Tc leads to maximal yields of SSB (80 %) in plasmid DNA. Irradiation with 540 Gy (223)Ra and 500 Gy (188)Re or (99m)Tc induced 40, 28, and 64 % linear plasmid conformations, respectively. DMSO prevented the SSB and DSB in a similar way for all radionuclides. However, with the α-emitter (223)Ra, a low level of DSB could not be prevented by DMSO. Irradiation of PC Cl3 cells with (223)Ra, (188)Re, and (99m)Tc pre-incubated with DMSO revealed enhanced survival fractions (SF) in comparison to treatment without DMSO. Protection factors (PF) were calculated using the fitted survival curves. These factors are 1.23 ± 0.04, 1.20 ± 0.19, and 1.34 ± 0.05 for (223)Ra, (188)Re, and (99m)Tc, respectively. For (223)Ra, as well as for (188)Re and (99m)Tc, dose-dependent radiation effects were found applicable for plasmid DNA and PC Cl3 cells. The radioprotection by DMSO was in the same range for high- and low-LET emitter. Overall, the results indicate the contribution of mainly indirect radiation effects for each of the radionuclides regarding DNA damage and cell survival. In summary, our findings may contribute to fundamental knowledge about the α-particle induced DNA damage.
Chen, Bin; Liu, Da-Lie; Pan, Wen-Yan; Yang, Xiao-Hui; Shou, Jia-Bao; Wu, Ju-Hua; Mao, Qing-Long; Wang, Jia
2014-08-01
The transdermal delivery system (TDS) is able to obtain a systemic therapeutic effect by administration through the skin, which has low side effects and is able to maintain a sustained blood concentration. However, due to the barrier presented by the stratum corneum, numerous drugs have poor percutaneous permeability. Therefore, the improvement of skin permeability is key to TDS. The main method of promoting transdermal absorption is through the usage of penetration enhancers. Dimethyl sulfoxide (DMSO) is a commonly used penetration enhancer, which has anti‑inflammatory analgesic effects and is able to penetrate the skin. Retinoic acid (RA) and lipolanthionine peptide (LP) may also benefit the permeation efficiency of TDS. Therefore, the present study examined the function of DMSO, RA and LP as penetration enhancers in TDS. Firstly, the optimum concentration of DMSO was confirmed by detecting the expression of the LacZ gene in vitro. Secondly, different combinations of LP, RA and DMSO were applied to mouse skin to analyze the penetration enhancer combination with the greatest efficacy. All the animals were divided into five groups: The RA + LP + DMSO + pORF‑LacZ group, the RA + DMSO + pORF‑LacZ group, the LP + DMSO + pORF‑LacZ group, the DMSO + pORF-LacZ group and the control group. Skin was soaked in combinations of LP, RA and DMSO for seven days and then the pORF‑LacZ plasmids were daubed onto the skin once daily three days. On the 11th day, all the animals were sacrificed by cervical dislocation and the skin and blood samples were collected. The blood samples were used to detect the expression of the LacZ gene by quantitative polymerase chain reaction and the skin samples were used to detect the expression of claudin‑4 and zonula occluden‑1 (ZO‑1) proteins by immunohistochemistry and western blot analysis. The results demonstrated that the combination of LP, RA and DMSO exhibited the greatest transdermal delivery efficiency, which verified that RA and LP were able to increase the penetration effects. Following treatment with LP, the symptoms of dermal edema were relieved and the capillaries contracted, which suggested that LP was a safe and effective penetration enhancer able to reduce the side‑effects caused by DMSO. The present study provides a guideline for the synthesis of novel penetration enhancers.
Flooded Cell Permeation Testing of Elastomers
1994-03-01
cured hydrin (EC) elastomer 3. oxide cured neoprene (CR) 4. sulphur cured styrene-butadiene rubber (SBR) 5. sulphur cured nitrile rubber ( NBR ) 6. cured...Road Adelphi, MD 20783-1197 11. SUPPLEMENTARY NOTES Presented at the meeting of the American Chemical Society, Rubber Division, Orlando, Florida, 26 Oct...6 2. Permeation rate-time curve for DMSO through natural rubber ............................... 6 3. Permeation rate-time curve for DMSO through
Tanley, Simon W M; Schreurs, Antoine M M; Kroon-Batenburg, Loes M J; Meredith, Joanne; Prendergast, Richard; Walsh, Danielle; Bryant, Patrick; Levy, Colin; Helliwell, John R
2012-05-01
The anticancer complexes cisplatin and carboplatin target the DNA major groove, forming intrastrand and interstrand cross-links between guanine bases through their N7 atoms, causing distortion of the DNA helix and apoptotic cell death. A major side effect of these drugs is toxicity, which is caused via binding to many proteins in the body. A range of crystallographic studies have been carried out involving the cocrystallization of hen egg-white lysozyme (HEWL) as a test protein with cisplatin and carboplatin in aqueous and dimethyl sulfoxide (DMSO) conditions. Different cryoprotectants, glycerol and Paratone, were used for each of the cisplatin and carboplatin cocrystallization cases, while silicone oil was used for studies involving N-acetylglucosamine (NAG). Both cisplatin and carboplatin do not bind to HEWL in aqueous media on the timescales of the conditions used here, but upon addition of DMSO two molecules of cisplatin or carboplatin bind either side of His15, which is the only His residue in lysozyme and is assumed to be an imidazolyl anion or a chemical resonance moiety, i.e. both imidazole N atoms are chemically reactive. To identify the platinum-peak positions in the 'with DMSO conditions', anomalous scattering maps were calculated as a cross-check with the F(o) - F(c) OMIT maps. Platinum-occupancy σ values were established using three different software programs in each case. The use of EVAL15 to process all of the diffraction data sets provided a consistent platform for a large ensemble of data sets for the various protein and platinum-compound model refinements with REFMAC5 and then SHELXTL. Overall, this extensive set of crystallization and cryoprotectant conditions allowed a systematic evaluation of cisplatin and carboplatin binding to lysozyme as a test protein via detailed X-ray crystal structure characterizations. DMSO is used as a super-solvent for drug delivery as it is deemed to cause no effect upon drug binding. However, these results show that addition of DMSO causes the platinum anticancer drugs to bind to HEWL. This effect should be considered in toxicity assessments of these drugs and perhaps more widely. © 2012 International Union of Crystallography
Dimethyl sulfoxide therapy in bronchiolitis.
Zúñiga, A; Burdach, R; Rubio, S
1975-01-27
The action of a medicinal spray that contains anti-inflammatory and bacterio-static drugs integrated with the penetrating and potentiating agent DMSO has been evaluated clinically in 60 infants with acute respiratory obstruction. A dose of 2 ml of this spray is applied in the posterior pharynx and the tonsil region; 1 to 4 applications are made, according to the clinical evolution of the case. Two groups were chosen at random; 60 patients were paired off, and one of each pair received the treatment with DMSO spray. All the patients received ampicillin (50-100 mg/kg body weight). The following clinical results were observed. First there was an immediate recovery, after an average lapse of 30 min; improvement of sensorial involvement was observed in 80% of the cases, reduction of the intercostal retraction in 75%, reduction of polypnea in 76%, and transformation of the obstructive syndrome into a catarrhal syndrome in 80% (with fluidification of the secretions, which were expelled more easily by the upper air tracts). There was also a deferred or maintenance effect, which evaluated in comparsion with the control group that received similar treatment except for the nebulizations with DMSO spray. A sequential design, based on whether or not it was necessary to use the croupette, demonstrated the superiority of the DMSO spray over the control treatment in the bronchiolar process; in the group treated with DMSO spray it was not necessary to use the croupette. The sequential design based on the effect of this therapy on the general condition and the tabulated clinical factors permitted the inference that the therapeutic responses are more favorable in the group treated with DMSO spray than in the control group. In the sequential design, the line of significance is cut at the fifteenth pair (an error of 0.05 and P equals 0.95%). Since the application is easy, there are no toxic side effects and in view of the favorable results in the clinical evolution of the acute respiratory obstructive processes, we consider the use of this therapeutic spray very useful and beneficial in bronchiolitis.
Nyman, Axel K. G.; Morken, Tora Sund; Vettukattil, Riyas; Brubakk, Ann-Mari; Widerøe, Marius
2017-01-01
Melatonin is a promising neuroprotective agent after perinatal hypoxic-ischemic (HI) brain injury. We used in-vivo 1H magnetic resonance spectroscopy to investigate effects of melatonin treatment on brain metabolism after HI. Postnatal day 7 Sprague-Dawley rats with unilateral HI brain injury were treated with either melatonin 10 mg/kg dissolved in phosphate-buffered saline (PBS) with 5% dimethyl sulfoxide (DMSO) or vehicle (5% DMSO and/or PBS) directly and at 6 hours after HI. 1H MR spectra from the thalamus in the ipsilateral and contralateral hemisphere were acquired 1 day after HI. Our results showed that injured animals had a distinct metabolic profile in the ipsilateral thalamus compared to sham with low concentrations of total creatine, choline, N-acetyl aspartate (NAA), and high concentrations of lipids. A majority of the melatonin-treated animals had a metabolic profile characterized by higher total creatine, choline, NAA and lower lipid levels than other HI animals. When comparing absolute concentrations, melatonin treatment resulted in higher glutamine levels and lower lipid concentrations compared to DMSO treatment as well as higher macromolecule levels compared to PBS treatment day 1 after HI. DMSO treated animals had lower concentrations of glucose, creatine, phosphocholine and macromolecules compared to sham animals. In conclusion, the neuroprotective effects of melatonin were reflected in a more favorable metabolic profile including reduced lipid levels that likely represents reduced cell injury. Neuroprotective effects may also be related to the influence of melatonin on glutamate/glutamine metabolism. The modulatory effects of the solvent DMSO on cerebral energy metabolism might have masked additional beneficial effects of melatonin. PMID:28934366
Daschakraborty, Snehasis
2018-04-07
Glycerol and dimethyl sulphoxide (DMSO) have vital roles in cryoprotection of living cells, tissues, etc. The above action has been directly linked with disruption of hydrogen (H-) bond structure and dynamics of water by these cosolvents at bulk region and around various complex units, such as peptide, amino acid, protein, and lipid membrane. However, the disruption of the local structure of the water solvent around a purely hydrophobic solute is still not studied extensively. The latter is also important in the context of stabilization of protein from cold denaturation. Through all-atom molecular dynamics simulation, we have investigated the comparative effect of glycerol and DMSO on the orientational order of water around a nonpolar solute at -5 °C. A steady reduction of the tetrahedral order of water is observed at bulk (>10 Å distance from the solute) and solute interface (<5.5 Å distance from the solute) with increasing the cosolvent concentration. Contrasting roles of glycerol and DMSO have been evidenced. While DMSO affects the H-bond structure of the interfacial water more than that of the bulk water, glycerol affects the water structure almost uniformly at all regions around the solute. Furthermore, while glycerol helps to retain water molecules at the interface, DMSO significantly reduces the water content in that region. We have put forward a plausible mechanism for these contrasting roles of these cosolvents. The solute-cosolvent hydrophobic-interaction-induced orientational alignment of an interfacial cosolvent molecule determines whether the involvement of the cosolvent molecules in H-bonding with solvent water in the interface is akin to the bulk region or not.
Truong, Lisa; Mandrell, David; Mandrell, Rick; Simonich, Michael; Tanguay, Robert L
2014-07-01
A substantial body of evidence has correlated the human body burdens of some polybrominated diphenyl ether (PBDE) flame retardants with cognitive and other behavioral deficits. Adult zebrafish exhibit testable learning and memory, making them an increasingly attractive model for neurotoxicology. Our goal was to develop a rapid throughput means of identifying the cognitive impact of developmental exposure to flame retardants in the zebrafish model. We exposed embryos from 6h post fertilization to 5 days post fertilization to either PBDE 47 (0.1μM), PBDE 99 (0.1μM) or PBDE 153 (0.1μM), vehicle (0.1% DMSO), or embryo medium (EM). The larvae were grown to adulthood and evaluated for the rate at which they learned an active-avoidance response in an automated shuttle box array. Zebrafish developmentally exposed to PBDE 47 learned the active avoidance paradigm significantly faster than the 0.1% DMSO control fish (P<0.0001), but exhibited significantly poorer performance when retested suggestive of impaired memory retention or altered neuromotor activity. Learning in the PBDE 153 group was not significantly different from the DMSO group. Developmental exposure to 0.1% DMSO impaired adult active avoidance learning relative to the sham group (n=39; P<0.0001). PBDE 99 prevented the DMSO effect, yielding a learning rate not significantly different from the sham group (n=36; P>0.9). Our results underscore the importance of vehicle choice in accurately assessing chemical effects on behavior. Active avoidance response in zebrafish is an effective model of learning that, combined with automated shuttle box testing, will provide a highly efficient platform for evaluating persistent neurotoxic hazard from many chemicals. Copyright © 2014 Elsevier Inc. All rights reserved.
1H NMR spectra part 31: 1H chemical shifts of amides in DMSO solvent.
Abraham, Raymond J; Griffiths, Lee; Perez, Manuel
2014-07-01
The (1)H chemical shifts of 48 amides in DMSO solvent are assigned and presented. The solvent shifts Δδ (DMSO-CDCl3 ) are large (1-2 ppm) for the NH protons but smaller and negative (-0.1 to -0.2 ppm) for close range protons. A selection of the observed solvent shifts is compared with calculated shifts from the present model and from GIAO calculations. Those for the NH protons agree with both calculations, but other solvent shifts such as Δδ(CHO) are not well reproduced by the GIAO calculations. The (1)H chemical shifts of the amides in DMSO were analysed using a functional approach for near ( ≤ 3 bonds removed) protons and the electric field, magnetic anisotropy and steric effect of the amide group for more distant protons. The chemical shifts of the NH protons of acetanilide and benzamide vary linearly with the π density on the αN and βC atoms, respectively. The C=O anisotropy and steric effect are in general little changed from the values in CDCl3. The effects of substituents F, Cl, Me on the NH proton shifts are reproduced. The electric field coefficient for the protons in DMSO is 90% of that in CDCl3. There is no steric effect of the C=O oxygen on the NH proton in an NH…O=C hydrogen bond. The observed deshielding is due to the electric field effect. The calculated chemical shifts agree well with the observed shifts (RMS error of 0.106 ppm for the data set of 257 entries). Copyright © 2014 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Daschakraborty, Snehasis
2018-04-01
Glycerol and dimethyl sulphoxide (DMSO) have vital roles in cryoprotection of living cells, tissues, etc. The above action has been directly linked with disruption of hydrogen (H-) bond structure and dynamics of water by these cosolvents at bulk region and around various complex units, such as peptide, amino acid, protein, and lipid membrane. However, the disruption of the local structure of the water solvent around a purely hydrophobic solute is still not studied extensively. The latter is also important in the context of stabilization of protein from cold denaturation. Through all-atom molecular dynamics simulation, we have investigated the comparative effect of glycerol and DMSO on the orientational order of water around a nonpolar solute at -5 °C. A steady reduction of the tetrahedral order of water is observed at bulk (>10 Å distance from the solute) and solute interface (<5.5 Å distance from the solute) with increasing the cosolvent concentration. Contrasting roles of glycerol and DMSO have been evidenced. While DMSO affects the H-bond structure of the interfacial water more than that of the bulk water, glycerol affects the water structure almost uniformly at all regions around the solute. Furthermore, while glycerol helps to retain water molecules at the interface, DMSO significantly reduces the water content in that region. We have put forward a plausible mechanism for these contrasting roles of these cosolvents. The solute-cosolvent hydrophobic-interaction-induced orientational alignment of an interfacial cosolvent molecule determines whether the involvement of the cosolvent molecules in H-bonding with solvent water in the interface is akin to the bulk region or not.
Jung, Heejun; Kim, Namyoung; Yoon, Minjung
2016-10-01
The main objective of this study was to evaluate the efficacy of an additional cryoprotectant in 10% dimethyl sulfoxide (DMSO) on cryopreserving germ cells from stallions at different reproductive stages. Testicular samples were obtained from pre-pubertal (1-1.5 yr, n=6) and post-pubertal (3-7 yr, n=5) stallions. Germ cells were isolated using a two-enzyme digestion procedure and cryopreserved in minimal essential medium alpha containing 10% fetal bovine serum and 10% DMSO with or without addition of trehalose (50, 100, or 200mM) or polyethylene glycol (PEG, 2.5, 5, or 10%). Viability, cell population, and viable population were assessed after 1 and 3 months of cryopreservation. The viable UTF1-positive population of pre-pubertal stallion germ cells was also measured using immunocytochemistry after 1 and 3 months of cryopreservation. As expected, the viability, cell population, and viable cell population were significantly reduced after 1 and 3 months of cryopreservation. At the pre-pubertal stage, the addition of trehalose or PEG to 10% DMSO did not show any effect on the viability, cell population, viable cell population, or viable UTF1-positive germ cells at either 1 or 3 months after cryopreservation. However, at the post-pubertal stage, the viable population was significantly higher in germ cells that were cryopreserved with 5% or 10% PEG, than in the cells cryopreserved with 10% DMSO only. In conclusion, PEG at 5% or 10% added to 10% DMSO serves as an optimal cryoprotectant agent for the cryopreservation of germ cells from post-pubertal stallions. Copyright © 2016 Elsevier B.V. All rights reserved.
Equine ovarian tissue viability after cryopreservation and in vitro culture.
Gastal, G D A; Aguiar, F L N; Alves, B G; Alves, K A; de Tarso, S G S; Ishak, G M; Cavinder, C A; Feugang, J M; Gastal, E L
2017-07-15
Ovarian tissue cryopreservation allows the preservation of the female fertility potential for an undetermined period. The objectives of this study were to compare the efficiency of cryoprotective agents (CPAs; dimethyl sulfoxide, DMSO; ethylene glycol, EG; and propylene glycol, PROH) using slow-freezing and vitrification methods, and evaluate the viability of cryopreserved equine ovarian tissue after 7 days of culture. Fresh and cryopreserved ovarian fragments were evaluated for preantral follicle morphology, stromal cell density, EGFR, Ki-67, Bax, and Bcl-2 protein expression, and DNA fragmentation. Vitrification with EG had the highest rate of morphologically normal preantral follicles, while DMSO had the lowest (76.1 ± 6.1% and 40.9 ± 14.8%, respectively; P < 0.05). In slow-freezing, despite that DMSO had the highest percentage of morphologically normal follicles (77.7 ± 5.8%), no difference among the CPAs was observed. Fluorescence intensity of EGFR and Ki-67 was greater when vitrification with EG was used. Regardless of the cryopreservation treatment, DMSO had the highest (P < 0.05) Bax/Bcl-2 ratio; however, DNA fragmentation was similar (P > 0.05) among treatments after thawing. After in vitro culture, the percentage of normal follicles was similar (P > 0.05) between slow-freezing and vitrification methods; however, vitrification had greater (P < 0.05) stromal cell density than slow-freezing. In summary, equine ovarian tissue was successfully cryopreserved, increasing the viability of the cells in the ovarian tissue after thawing when using DMSO and EG for slow-freezing and vitrification methods, respectively. Therefore, these results are relevant for fertility preservation programs. Copyright © 2017 Elsevier Inc. All rights reserved.
Graham, Jennifer E; Meola, Dawn M; Kini, Nisha R; Hoffman, Andrew M
2015-06-01
To compare effectiveness of glycerol, dimethyl sulfoxide (DMSO), and hydroxyethyl starch (HES) solutions for cryopreservation of avian RBCs. RBCs from 12 healthy Ameraucana hens (Gallus gallus domesticus). RBCs were stored in 20% (wt/vol) glycerol, 10% (wt/vol) DMSO freezing medium, or various concentrations of HES solution (7.5%, 11.5%, and 20% [wt/vol]) and frozen for 2 months in liquid nitrogen. Cells were then thawed and evaluated by use of cell recovery and saline stability tests, cell staining (7-aminoactinomycin D and annexin V) and flow cytometry, and scanning electron microscopy. Percentage of RBCs recovered was highest for 20% glycerol solution (mean ± SE, 99.71 ± 0.04%) and did not differ significantly from the value for 7.5% HES solution (99.57 ± 0.04%). Mean saline stability of RBCs was highest for 10% DMSO (96.11 ± 0.25%) and did not differ significantly from the value for 20% HES solution (95.74 ± 0.25%). Percentages of cells with 7-aminoactinomycin D staining but without annexin V staining (indicating necrosis or late apoptosis) were lowest for 10% DMSO freezing medium (3%) and 20% glycerol solution (1%) and highest for all HES concentrations (60% to 80%). Scanning electron microscopy revealed severe membrane changes in RBCs cryopreserved in 20% HES solution, compared with membrane appearance in freshly harvested RBCs and RBCs cryopreserved in 10% DMSO freezing medium. Cryopreservation of avian RBCs with HES solution, regardless of HES concentration, resulted in greater degrees of apoptosis and cell death than did cryopreservation with other media. Transfusion with RBCs cryopreserved in HES solution may result in posttransfusion hemolysis in birds.
Sirotkin, Vladimir A; Kuchierskaya, Alexandra A
2017-10-01
We investigated water/organic solvent sorption and residual enzyme activity to simultaneously monitor preferential solvation/hydration of protein macromolecules in the entire range of water content at 25°C. We applied this approach to estimate protein destabilization/stabilization due to the preferential interactions of bovine pancreatic α-chymotrypsin with water-acetone (moderate-strength H-bond acceptor) and water-DMSO (strong H-bond acceptor) mixtures. There are three concentration regimes for the dried α-chymotrypsin. α-Chymotrypsin is preferentially hydrated at high water content. The residual enzyme activity values are close to 100%. At intermediate water content, the dehydrated α-chymotrypsin has a higher affinity for acetone/DMSO than for water. Residual enzyme activity is minimal in this concentration range. The acetone/DMSO molecules are preferentially excluded from the protein surface at the lowest water content, resulting in preferential hydration. The residual catalytic activity in the water-poor acetone is ∼80%, compared with that observed after incubation in pure water. This effect is very small for the water-poor DMSO. Two different schemes are operative for the hydrated enzyme. At high and intermediate water content, α-chymotrypsin exhibits preferential hydration. However, at intermediate water content, in contrast to the dried enzyme, the initially hydrated α-chymotrypsin possesses increased preferential hydration parameters. At low water content, no residual enzyme activity was observed. Preferential binding of DMSO/acetone to α-chymotrypsin was detected. Our data clearly demonstrate that the hydrogen bond accepting ability of organic solvents and the protein hydration level constitute key factors in determining the stability of protein-water-organic solvent systems. © 2017 Wiley Periodicals, Inc.
Balint, B; Ivanović, Z; Petakov, M; Taseski, J; Jovcić, G; Stojanović, N; Milenković, P
1999-03-01
The efficiency of five different cryopreservation protocols (our original controlled-rate and noncontrolled-rate protocols) was evaluated on the basis of the recovery after thawing of very primitive pluripotent hemopoietic stem cells (MRA(CFU-GM), pluripotent progenitors (CFU-Sd12) and committed granulocyte-monocyte progenitors (CFU-GM) in mouse bone marrow. Although the nucleated cell recovery and viability determined immediately after the thawing and washing of the cells were found to be similar, whether controlled-rate or noncontrolled-rate cryopreservation protocols were used, the recovery of MRA(CFU-GM), CFU-Sd12 and CFU-GM varied depending on the type of protocol and the cryoprotector (DMSO) concentrations used. It was shown that the controlled-rate protocol was more efficient, enabling better MRA(CFU-GM), CFU-Sd12 and CFU-GM recovery from frozen samples. The most efficient was the controlled-rate protocol of cryopreservation designed to compensate for the release of fusion heat, which enabled a better survival of CFU-Sd12 and CFU-GM when combined with a lower (5%) DMSO concentration. On the contrary, a satisfactory survival rate of very primitive stem cells (MRA(CFU-GM)) was achieved only when 10% DMSO was included with a five-step protocol of cryopreservation. These results point to adequately used controlled-rate freezing as essential for a highly efficient cryopreservation of some of the categories of hematopoietic stem and progenitor cells. At the same time, it was obvious that a higher DMSO concentration was necessary for the cryopreservation of very primitive stem cells, but not, however, for more mature progenitor cells (CFU-S, CFU-GM). These results imply the existence of a mechanism that decreases the intracellular concentration of DMSO in primitive MRA cells, which is not the case for less primitive progenitors.
Castiñeiras, Alfonso; Fernández-Hermida, Nuria; García-Santos, Isabel; Gómez-Rodríguez, Lourdes
2012-11-21
Octahedral 1:1 Ni(II) and square-planar 1:1 Pd(II) and Pt(II) complexes of formulae [Ni(HAcb4DM)(AcO)(H2O)2]·H2O (1), [Pd(HAcb4DM)Cl]·5H2O (2) and [Pt(HAcb4DM)Cl]·3H2O (3), where H2Acb4DM = 5-acetylbarbituric-4N-dimethylthiosemicarbazone (H2 denoting its two dissociable protons, one enolic and one thiolic), have been synthesized and characterized by elemental analysis and by 1H and 13C NMR, UV-vis, and IR spectroscopy. Crystallisation of compounds 1–3 from DMSO afforded complexes of formulae [Ni(HAcb4DM)2]·2H2O (1a), [Pd(Acb4DM)(DMSO)]·DMSO (2a) and [Pt(Acb4DM)(DMSO)]·DMSO (3a), the molecular and crystal structures of which were determined by X-ray diffractometry. The thiosemicarbazone in 1a coordinates to the metal ions in an ONS-tridentate manner in the O-enolate/S-thione form, but in complexes 2a and 3a the thiosemicarbazone binds Pd(II) or Pt(II) as an ONS-pincer ligand in the O-enolate/S-thiolate form. The 195Pt NMR spectrum of 3 shows a signal at −2950 ppm along with two new signals at −3348 and −2731 ppm, indicating the presence of solvolysis products. The catalytic activity of complex 2a has been explored in aryl–aryl Suzuki cross-coupling reactions. H2Acb4DM and complexes 2 and 3 were screened for in vitro cytotoxicity against a human tumour cell line (HeLa-229), with the clinically employed drug cisplatin as a reference.
Mikolka, P; Mokra, D; Drgova, A; Petras, M; Mokry, J
2012-04-01
In allergic asthma, activated cells produce various substances including reactive oxygen species (ROS). As heterogenic pathophysiology of asthma results to different response to the therapy, testing novel interventions continues. Because of water-insolubility of some potentially beneficial drugs, dimethyl sulfoxide (DMSO) is often used as a solvent. Based on its antioxidant properties, this study evaluated effects of DMSO on mobilization of leukocytes into the lungs, and oxidation processes induced by ovalbumin (OVA)-sensitization in a guinea-pig model of allergic asthma. Guinea-pigs were divided into OVA-sensitized and naive animals. One group of OVA-sensitized animals and one group of naive animals were pretreated with 10% DMSO, the other two groups were given saline. After sacrificing animals, blood samples were taken and total antioxidant status (TAS) in the plasma was determined. Left lungs were saline-lavaged and differential leukocyte count in bronchoalveolar lavage fluid (BAL) was made. Right lung tissue was homogenized, TAS and products of lipid and protein oxidation were determined in the lung homogenate and in isolated mitochondria. OVA-sensitization increased total number of cells and percentages of eosinophils and neutrophils in BAL fluid; increased lipid and protein oxidation in the lung homogenate and mitochondria, and decreased TAS in the lungs and plasma compared with naive animals. However, no differences were observed in DMSO-instilled animals compared to controls. In conclusion, OVA-sensitization increased mobilization of leukocytes into the lungs and elevated production of ROS, accompanied by decrease in TAS. 10% DMSO had no effect on lipid and protein oxidation in a guinea-pig model of allergic asthma.
Wu, Hsing Chieh; Chen, Yu San; Shen, Pin Chun; Shien, Jui Hung; Lee, Long Huw; Chiu, Hua Hsien
2015-01-01
The adjuvant activity of chicken interleukin-12 (chIL-12) protein has been described as similar to that of mammalian IL-12. Recombinant chIL-12 can be produced using several methods, but chIL-12 production in eukaryotic cells is lower than that in prokaryotic cells. Stimulating compounds, such as dimethyl sulfoxide (DMSO), can be added to animal cell cultures to overcome this drawback. In this study, we constructed a cell line, DF1/chIL-12 which stably expressed a fusion protein, chIL-12 and enhanced green fluorescent protein (eGFP) connected by a (G4 S)3 linker sequence. Fusion protein production was increased when cells were cultured in the presence of DMSO. When 1 × 10(6) DF1/chIL-12 cells were inoculated in a T-175 flask containing 30 mL of media, incubated for 15 h, and further cultivated in the presence of 4% DMSO for 48 h, the production of total fusion protein was mostly enhanced compared with the production of total fusion protein by using cell lysates induced with DMSO at other concentrations. The concentrations of the unpurified and purified total fusion proteins in cell lysates were 2,781 ± 2.72 ng mL(-1) and 2,207 ± 3.28 ng mL(-1) , respectively. The recovery rate was 79%. The fusion protein stimulated chicken splenocytes to produce IFN-γ, which was measured using an enzyme-linked immunosorbent assay, in the culture supernatant, indicating that treating DF1/chIL-12 cells with DMSO or producing chIL-12 in a fusion protein form does not have adverse effects on the bioactivity of chIL-12. © 2015 American Institute of Chemical Engineers.
Peng, Feng; Bian, Jing; Peng, Pai; Xiao, Huan; Ren, Jun-Li; Xu, Feng; Sun, Run-Cang
2012-04-25
Delignified Arundo donax was sequentially extracted with DMSO, saturated barium hydroxide, and 1.0 M aqueous NaOH solution. The yields of the soluble fractions were 10.2, 6.7, and 10.0% (w/w), respectively, of the dry Arundo donax materials. The DMSO-, Ba(OH)(2)- and NaOH-soluble hemicellulosic fractions were further fractionated into two subfractions by gradient 50% and 80% saturation ammonium sulfate precipitation, respectively. Monosaccharide, molecular weight, FT-IR, and 1D ((1)H and (13)C) and 2D (HSQC) NMR analysis revealed the differences in structural characteristics and physicochemical properties among the subfractions. The subfractions precipitated with 50% saturation ammonium sulfate had lower arabinose/xylose and glucuronic acid/xylose ratios but had higher molecular weight than those of the subfractions precipitated by 80% saturation ammonium sulfate. FT-IR and NMR analysis revealed that the highly acetylated DMSO-soluble hemicellulosic subfraction (H(D50)) could be precipitated with a relatively lower concentration of 50% saturated ammonium sulfate, and thus the gradient ammonium sulfate precipitation technique could discriminate acetyl and non-acetyl hemicelluloses. It was found that the DMSO-soluble subfraction H(D50) precipitated by 50% saturated ammonium sulfate mainly consisted of poorly substituted O-acetyl arabino-4-O-methylglucurono xylan with terminal units of arabinose linked on position 3 of xylose, 4-O-methylglucuronic acid residues linked on position 2 of the xylan bone, and the acetyl groups (degree of acetylation, 37%) linked on position 2 or 3. The DMSO-soluble subfraction H(D80) precipitated by 80% saturated ammonium sulfate was mainly composed of highly substituted arabino-4-O-methylglucurono xylan and β-d-glucan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamazaki, Etsuo; Fukuda, Hozumi; Shibuya, Hitoshi
The authors investigate the frequency of sister chromatid exchange (SCE) after the addition of gadolinium (Gd)-DTPA to venous blood samples. Venous blood was obtained from nonsmokers. Samples were incubated with Gd-DTPA alone or in combination with mitomycin C, cytarabine, and dimethyl sulfoxide (DMSO), and then evaluated for SCEs. The frequency of SCE increased with the concentration of Gd-DTPA and as each chemotherapeutic agent was added. Sister chromatid exchange frequencies were lower when the blood was treated with a combination of Gd-DTPA and DMSO compared with Gd-DTPA alone. The increase in frequency of SCE seen after the addition of Gd-DTPA wasmore » decreased by the addition of DMSO, indicating the production of hydroxyl radicals. The effect likely is dissociation-related. 14 refs., 6 tabs.« less
Effect of solvent evaporation and coagulation on morphology development of asymmetric membranes
NASA Astrophysics Data System (ADS)
Chandrasekaran, Neelakandan; Kyu, Thein
2008-03-01
Miscibility behavior of blends of amorphous polyamide (PA) and polyvinylpyrrolidone (PVP) was studied in relation to membrane formation. Dimethylsulfoxide (DMSO) and water were used as solvent and non-solvent, respectively. Differential scanning calorimetry and cloud point measurements revealed that the binary PA/PVP blends as well as the ternary PA/PVP/DMSO system were completely miscible at all compositions. However, the addition of non-solvent (water) to this ternary system has led to phase separation. Visual turbidity study was used to establish a ternary liquid-liquid phase diagram of the PA-PVP/DMSO/water system. Scanning Electron Microscopy (SEM) showed the development of finger-like and sponge-like cross sectional morphologies during coagulation. Effects of polymer concentration, PA/PVP blend ratio, solvent/non-solvent quality, and evaporation time on the resulting membrane morphology will be discussed.
Upadhyay, Ganesh; Devi, Th Gomti; Singh, Ranjan K; Singh, A; Alapati, P R
2013-05-15
The isotropic and anisotropic Raman peak frequencies of S=O stretching mode of Dimethyl sulfoxide (DMSO) have been discussed in different chemical and isotopic solvent molecules using different mechanisms. The shifting of peak frequency in further dilution of DMSO with solvent molecule is observed for all solvents. Transition dipole - transition dipole interaction and hydrogen bonding may play a major role in shifting of peak frequencies. The non-coincidence effect (NCE) of DMSO was determined for all the solvents and compared with four theoretical models such as McHale's model, Mirone's modification of McHale's model, Logan's model and Onsager-Fröhlich dielectric continuum model respectively. Most of the theoretical models are largely consistent with our experimental data. Copyright © 2013. Published by Elsevier B.V.
Heating or freezing bone. Effects on angiogenesis induction and growth potential in mice.
Leunig, M; Yuan, F; Berk, D A; Gerweck, L E; Jain, R K
1996-08-01
We have characterized the effect of bone graft treatment by heating or freezing (with or without dimethyl sulfoxide (DMSO)). Tissue culture and dorsal skin-fold chambers in mice were used as sites to quantify the effect on angiogenesis, growth and calcification of neonatal femora. Fresh femora increased in both length and cartilage diameter (calcification in vivo only), but cryopreservation or heating abolished the increase in femoral dimensions. In vivo, femora of all experimental groups elicited an angiogenic response from the host tissue, which was most pronounced for fresh femora, weaker for DMSO-preserved frozen bone and poor for unprotected frozen bone and boiled femora. Freezing in the presence of a cryopreservative (DMSO) was found to preserve the angiogenic potential of frozen bone, whereas unprotected heating or freezing significantly impaired angiogenesis induction and growth potential.
NASA Astrophysics Data System (ADS)
Kuz'mina, I. A.; Volkova, M. A.; Sitnikova, K. A.; Sharnin, V. A.
2014-01-01
Heat effects of dissolution of piperidine (ppd) are measured by calorimetry at 298.15 K over the range of composition of acetonitrile-methanol (AN-MeOH) mixed solvents. Based on the Δsol H ○(ppd)AN-MeOH values obtained using the literature data on Δsol H ○ (ppd) in acetonitrile-dimethylsulfoxide (AN-DMSO) mixed solvents and the vaporization enthalpy of ppd, the enthalpies of solvation of amine in AN-MeOH and AN-DMSO binary mixtures are calculated. A rise in the exothermicity of solvation of piperidine is observed upon the transition from AN to DMSO and MeOH, due mainly to the enhanced solvation of the amino group of ppd as a result of changes in the acid-base properties of the mixed solvent.
Trigo-Mouriño, Pablo; Navarro-Vázquez, Armando; Sánchez-Pedregal, Víctor M
2012-12-01
The dependence of molecular alignment with solvent nature and salt concentration has been investigated for mechanically stretched polyacrylamide copolymer gels. Residual dipolar couplings (RDCs) were recorded for D(2)O, DMSO-d(6), and DMSO-d(6)/D(2)O solutions containing different proportions of the solvents and different sodium chloride concentrations. Alignment tensors were determined by fitting the experimental RDCs to the DFT-computed structure of N-methylcodeinium ion. Analysis of the tensors shows that the degree of alignment decreases with the proportion of DMSO-d(6) as well as with the concentration of sodium chloride, most likely due to enhanced ion-pair aggregation. Furthermore, rotation of the alignment tensor is observed when increasing the salt concentration. Copyright © 2012 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Kołodziej, B.; Morawiak, M.; Kamieński, B.; Schilf, W.
2016-05-01
A new unexpected product of condensation reaction of 1,8-diaminonaphthalene (DAN) and carbonyl compound (here: dehydroacetic acid (dha)) was synthesized. Discussion about the molecular structure of possible products of this reaction was done on the base of NMR studies. The structure of the titled product in both DMSO solution and in the solid state was resolved by analysis of its spectral data (X-ray structure analysis, multinuclear NMR in solution and solid state spectra) and MS measurements. The presented studies provided clear evidence that the titled product exists in diluted DMSO solution as the mixture of two kinetic free ionic species whereas in concentrated DMSO solution as well as in the solid state this system forms associated ionic pairs bonded together by hydrogen bonds.
Acidity in DMSO from the embedded cluster integral equation quantum solvation model.
Heil, Jochen; Tomazic, Daniel; Egbers, Simon; Kast, Stefan M
2014-04-01
The embedded cluster reference interaction site model (EC-RISM) is applied to the prediction of acidity constants of organic molecules in dimethyl sulfoxide (DMSO) solution. EC-RISM is based on a self-consistent treatment of the solute's electronic structure and the solvent's structure by coupling quantum-chemical calculations with three-dimensional (3D) RISM integral equation theory. We compare available DMSO force fields with reference calculations obtained using the polarizable continuum model (PCM). The results are evaluated statistically using two different approaches to eliminating the proton contribution: a linear regression model and an analysis of pK(a) shifts for compound pairs. Suitable levels of theory for the integral equation methodology are benchmarked. The results are further analyzed and illustrated by visualizing solvent site distribution functions and comparing them with an aqueous environment.
Balint, Bela; Vucetić, Dusan; Trajković-Lakić, Zlatija; Petakov, Marijana; Bugarski, Diana; Brajusković, Goran; Taseski, Jovan
2002-01-01
Cryopreservation of platelets is of great interest, since it could extend the shelf life of therapeutic platelet concentrates and facilitate stockpiling and inventory control in blood banking. Despite the use of many cryopreservation procedures the optimal cryopreservation procedure is not defined yet. We have compared the cryopreservation of human platelets by various protocols employing controlled-rate and non-controlled-rate freezing procedures in combination with different concentrations of DMSO (6% and 10%) or 5% DMSO + 6% HES combination. After storage for 1 to 3 months, samples were thawed and analyzed. Measurements included cell recovery, platelet viability according to hypotonic shock response (HSR), platelet aggregation with ADP, morphological and ultrastructural properties of defrozen platelets. Our findings show that the application of our original procedure for controlled-rate freezing consisting of six cooling steps (cooling rate 1 degree C/min) with compensation of released heat of fusion (cooling rate 2 degrees C/min) has significantly influenced the quality of thawed platelets. At the same time, a concentration of 6% DMSO proved to be the most effective. In summary, cryopreservation of human platelets using controlled-rate freezing procedure in combination with lower (6%) DMSO concentration resulted in less damage from freezing and higher recovered function of platelets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jing; Das, Anirban; Assary, Rajeev S.
We report on a combined experimental and theoretical study of the acid catalyzed dehydration of d-fructose in dimethylsulfoxide (DMSO) using; Amberlyst 70, PO 4 3-/niobic acid, and sulfuric acid as catalysts. The reaction has been studied and intermediates characterized using; 13C, 1H, and 17O NMR, and high resolution electrospray ionization mass spectrometry (HR ESI–MS). High level G4MP2 theory calculations are used to understand the thermodynamic landscape for the reaction mechanism in DMSO. We have experimentally identified two key intermediates in the dehydration of fructose to form HMF that were also identified, using theory, as local minima on the potential surfacemore » for reaction. A third intermediate, a species capable of undergoing keto–enol tautomerism, was also experimentally detected. However, it was not possible to experimentally distinguish between the keto and the enol forms. These data with different catalysts are consistent with common intermediates along the reaction pathway from fructose to HMF in DMSO. The role of oxygen in producing acidic species in reactions carried out in DMSO in presence of air is also discussed.« less
Unveiling the mechanism of the promising two-dimensional photoswitch - Hemithioindigo
NASA Astrophysics Data System (ADS)
Li, Donglin; Yang, Yonggang; Li, Chaozheng; Liu, Yufang
2018-07-01
The control of internal molecular motions by outside stimuli is a decisive task in the construction of functional molecules and molecular machines. Light-induced intramolecular rotations of photoswitches have attracted increasing research interests because of the high stability and high reversibility of photoswitches. Recently, Henry et al. reported an unprecedented two-dimensional controlled photoswitch, the hemithioindigo (HTI) derivative Z1, whose single bond rotation in dimethyl sulphoxide (DMSO) solvent and double bond rotation in cyclohexane solvent can be induced by visible light (J. Am. Chem. Soc. 2016, 138, 12,219). Here we investigate the intramolecular rotations of the HTI and Z1 in different polar solvents by time-dependent density functional theory (TDDFT) and Nonadiabatic dynamic simulations. Due to the steric hindrance between methyl and thioindigo fragment, the rotations of Z1 in the excited state are obstructed. Interestingly, the HTI exhibits two distinct rotation paths in DMSO and cyclohexane solvents at about 50 fs. The intermolecular hydrogen bonds between HTI and DMSO play an important role in the rotation of HTI in DMSO solvent. Therefore, the HTI is a more promising two-dimensional photoswitch compared with the Z1. Our finding is thus of fundamental importance to understand the mechanisms of this class of photoswitches and design complex molecular behavior.
Bertelli, G; Gozza, A; Forno, G B; Vidili, M G; Silvestro, S; Venturini, M; Del Mastro, L; Garrone, O; Rosso, R; Dini, D
1995-11-01
To evaluate the activity and tolerability of dimethylsulfoxide (DMSO) in the prevention of soft tissue toxicity after extravasation of cytotoxic drugs. From June 1991 to December 1994, all patients who had an extravasation during intravenous (IV) infusion of cytotoxic drugs in our institution were considered for an open, prospective study of preventive treatment with 99% DMSO, applied topically on the extravasation site every 8 hours for 7 days. Intermittent local cooling (for 1 hour three times daily) on the first 3 days was also used. One hundred forty-four patients with extravasations of doxorubicin (n = 11), epirubicin (n = 46), mitomycin (n = 5), mitoxantrone (n = 13), cisplatin (n = 44), carboplatin (n = 6), ifosfamide (n = 14), and fluorouracil (n = 5) entered the study; 127 were assessable. Only one patient suffered an ulceration. The treatment was well tolerated, with mild local burning and a characteristic breath odor being the only side effects of DMSO application, even in cases in which treatment continued for up to 6 weeks to obtain remission of the symptoms of extravasation. Topical DMSO is an effective and safe antidote that may be used with local cooling after extravasations of vesicant drugs other than those drugs for which standard interventions are defined.
Hu, Li-Xin; Tian, Fei; Martin, Francis L; Ying, Guang-Guo
2017-10-01
Carrier solvents are often used in aquatic toxicity testing for test chemicals with hydrophobic properties. However, the knowledge of solvent effects on test organisms remains limited. The present study aimed to determine the biochemical effects of the 4 common solvents methanol, ethanol, acetone, and dimethyl sulfoxide (DMSO) on 2 test species, Lemna minor and Raphidocelis subcapitata, by applying Fourier transform infrared spectroscopy (FTIR) coupled with multivariate analysis to select appropriate solvents for toxicity testing. The results showed biochemical variations associated with solvent treatments at different doses on test species. From the infrared spectra obtained, the structures of lipid membrane and protein phosphorylation in the test species were found to be sensitive to the solvents. Methanol and ethanol mainly affected the protein secondary structure, whereas acetone and DMSO primarily induced alterations in carbohydrates and proteins in the test species. The FTIR results demonstrated that methanol and ethanol showed higher biochemical alterations in the test species than acetone and DMSO, especially at the high doses (0.1 and 1% v/v). Based on the growth inhibition displayed and FTIR spectroscopy, acetone, and DMSO can be used as carrier solvents in toxicity testing when their doses are lower than 0.1% v/v. Environ Toxicol Chem 2017;36:2631-2639. © 2017 SETAC. © 2017 SETAC.
Low, Ying Wei Ivan; Blasco, Francesca; Vachaspati, Prakash
2016-09-20
Lipophilicity is one of the molecular properties assessed in early drug discovery. Direct measurement of the octanol-water distribution coefficient (logD) requires an analytical method with a large dynamic range or multistep dilutions, as the analyte's concentrations span across several orders of magnitude. In addition, water/buffer and octanol phases which have very different polarity could lead to matrix effects and affect the LC-MS response, leading to erroneous logD values. Most compound libraries use DMSO stocks as it greatly reduces the sample requirement but the presence of DMSO has been shown to underestimate the lipophilicity of the analyte. The present work describes the development of an optimised shake flask logD method using deepwell 96 well plate that addresses the issues related to matrix effects, DMSO concentration and incubation conditions and is also amenable to high throughput. Our results indicate that the equilibrium can be achieved within 30min by flipping the plate on its side while even 0.5% of DMSO is not tolerated in the assay. This study uses the matched matrix concept to minimise the errors in analysing the two phases namely buffer and octanol in LC-MS. Copyright © 2016 Elsevier B.V. All rights reserved.
Nandi, Somen; Parui, Sridip; Halder, Ritaban; Jana, Biman; Bhattacharyya, Kankan
2018-06-01
In this review, we give a brief overview on how the interaction of proteins with ionic liquids, alcohols and dimethyl sulfoxide (DMSO) influences the stability, conformational dynamics and function of proteins/enzymes. We present experimental results obtained from fluorescence correlation spectroscopy on the effect of ionic liquid or alcohol or DMSO on the size (more precisely, the diffusion constant) and conformational dynamics of lysozyme, cytochrome c and human serum albumin in aqueous solution. The interaction of ionic liquid with biomolecules (e.g. protein, DNA etc.) has emerged as a current frontier. We demonstrate that ionic liquids are excellent stabilizers of protein and DNA and, in some cases, cause refolding of a protein already denatured by chemical denaturing agents. We show that in ethanol-water binary mixture, proteins undergo non-monotonic changes in size and dynamics with increasing ethanol content. We also discuss the effect of water-DMSO mixture on the stability of proteins. We demonstrate how large-scale molecular dynamics simulations have revealed the molecular origin of this observed phenomenon and provide a microscopic picture of the immediate environment of the biomolecules. Finally, we describe how favorable interactions of ionic liquids may be utilized for in situ generation of fluorescent gold nano-clusters for imaging a live cell.
1993-04-02
Issues and other environmental Impact concerns r ation: Manufacturing ateIgoJy: Technology Timaame: Near term Imoact of not MTeetln reaulrement...simulation (M&S needs of the defense M&S community. This community is partitioned into five major areas: Education , Training and Military Operations (ETMO...requirements throughout the community. The five DMSO Functional Work Groups ( Education , Training and Military Operations; Research and Development
Three dimensional ink-jet printing of biomaterials using ionic liquids and co-solvents.
Gunasekera, Deshani H A T; Kuek, SzeLee; Hasanaj, Denis; He, Yinfeng; Tuck, Christopher; Croft, Anna K; Wildman, Ricky D
2016-08-15
1-Ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]) and 1-butyl-3-methylimidazolium acetate ([C4C1Im][OAc]) have been used as solvents for the dissolution and ink-jet printing of cellulose from 1.0 to 4.8 wt%, mixed with the co-solvents 1-butanol and DMSO. 1-Butanol and DMSO were used as rheological modifiers to ensure consistent printing, with DMSO in the range of 41-47 wt% producing samples within the printable range of a DIMATIX print-head used (printability parameter < 10) at 55 °C, whilst maintaining cellulose solubility. Regeneration of cellulose from printed samples using water was demonstrated, with the resulting structural changes to the cellulose sample assessed by scanning electron microscopy (SEM) and white light interferometry (WLI). These results indicate the potential of biorenewable materials to be used in the 3D additive manufacture process to generate single-component and composite materials.
NASA Astrophysics Data System (ADS)
Wu, Zhiyan; Huang, Kama
2018-05-01
For the nonlinearly phenomena on the dielectric properties of dimethyl sulfoxide (DMSO)-ethanol mixtures under a low intensity microwave field, we propose a conjecture that there exist some abnormal molecular clusters. To interpret the mechanism of abnormal phenomena and confirm our conjecture about the existence of abnormal molecular clusters, an in-depth investigation about the structure evolutions of (DMSO)m(C2H5OH)n (m = 0-4; n = 0-4; m + n ≤ 4) molecular clusters induced by external electric fields has been given by using density functional theory. The results show that there exist some binary molecular clusters with large cluster radii in mixtures, and some of them are unstable under exposure of electric fields. It implies that the existence of certain abnormal molecular clusters in DMSO-ethanol mixtures results in their abnormality of dielectric properties.
NASA Astrophysics Data System (ADS)
Naumov, V. V.; Kovaleva, Yu. A.; Isaeva, V. A.; Usacheva, T. R.; Sharnin, V. A.
2014-06-01
The heat effects of the complexation reactions of nickel(II) with a glycylglycinate ion in a water-dimethylsulfoxide solvent in a range of compositions of 0.00-0.60 molar parts of dimethylsulfoxide (DMSO) (an ionic strength of 0.1 was maintained using sodium perchlorate) were determined by means of calorimetry at 298.15 K. It is established that the exothermicity of complexation reactions rises by the first two steps and falls upon the addition of a third glycylglycinate anion with an increase in the concentration of DMSO. It is shown that the formation of mono- and bis-glycylglycinate complexes of nickel(II) in a water-DMSO solvent is determined mostly by the enthalpic contribution. It is concluded that the formation of tris-ligand complexes is more associated with the entropic contribution.
NASA Astrophysics Data System (ADS)
Safonova, L. P.; Shmukler, L. E.; Kolker, A. M.
2008-05-01
The integral heats of solution of Bu4NI in dimethylsulfoxide (DMSO) were measured at 298.15, 313.15, and 328.15 K and concentrations from dilute to saturation. The standard enthalpies and heat capacities of solution and solvation of Bu4NI in DMSO at various temperatures and the bar C_p^o (Bu_4 N^ + ) value at 298.15 K were calculated. The obtained and literature data were used to consider the influence of the nature of solvents on Δsol H m (Bu4NI) and of the electrolyte on Δsol H m in dimethylsulfoxide at 298.15 K. The dynamic viscosity and density of the Bu4NI-DMSO system were determined at various concentrations and temperatures. The Eyring equation was used to calculate the activation energy of viscous flow at all the concentrations studied.
NASA Astrophysics Data System (ADS)
Naumov, V. V.; Isaeva, V. A.; Kovaleva, Yu. A.; Sharnin, V. A.
2013-07-01
Stability constants of nickel(II) glycylglycinate complexes in aqueous solutions of dimethylsulfoxide of variable composition (from 0.00 to 0.60 mole fractions DMSO) are determined according to potentiometry at 298.15 K and an ionic strength of 0.1 M (NaClO4). It is determined that with a rise in the concentration of an organic cosolvent in solution, the stability of nickel(II) complexes with glycylglycinate ion on the whole increases, but the log K stability = f( X DMSO) dependences are of a critical character with a maximum of 0.3 mole fractions DMSO. It is demonstrated that the rise in the stability of complexes is related to the destabilization of ligands in the low concentration range of the organic component, while the presence of a maximum is due to the different dynamics of the solvation contributions from reagents during changes in the Gibbs energy of reaction.
Ptaszek, Anna; Ptaszek, Paweł; Dziubiński, Marek; Grzesik, N Mirosław; Liszka-Skoczylas, Marta
2017-01-01
This research study analysed the rheological properties of potato amylose and potato amylopectin in binary solutions of the following water and dimethyl sulfoxide concentrations: 90% DMSO (1), 80% DMSO (2) and 50% DMSO (3), with preparation methodology involving the dissolution at the temperature of 98°C. The studies of dynamic light scattering on the biopolymer coils and the determination of main relaxation times of the solutions were carried out. For the amylose solutions, the fast relaxation phenomena are predominant. The results of the quality tests of the hysteresis loop showed, that the amylose solutions in the solvents (1) and (2) are rheologically stable and shear-thickened. The amylose solutions in solvents (3) reveal oscillatory alterations of viscosity in the time. Amylopectin solutions are characterized by 80% share of slow relaxation phenomena, very low diffusion coefficients and hydrodynamic radii in the range of 2000 nm. The amylopectin solutions are rheologically unstable.
Absorption and emission spectroscopic characterisation of 8-amino-riboflavin
NASA Astrophysics Data System (ADS)
Tyagi, A.; Zirak, P.; Penzkofer, A.; Mathes, T.; Hegemann, P.; Mack, M.; Ghisla, S.
2009-10-01
The flavin dye 8-amino-8-demethyl- D-riboflavin (AF) in the solvents water, DMSO, methanol, and chloroform/DMSO was studied by absorption and fluorescence spectroscopy. The first absorption band is red-shifted compared to riboflavin, and blue-shifted compared to roseoflavin (8-dimethylamino-8-demethyl-D-riboflavin). The fluorescence quantum yield of AF in the studied solvents varies between 20% and 50%. The fluorescence lifetimes were found to be in the 2-5 ns range. AF is well soluble in DMSO, weakly soluble in water and methanol, and practically insoluble in chloroform. The limited solubility causes AF aggregation, which was seen in differences between measured absorption spectra and fluorescence excitation spectra. Light scattering in the dye absorption region is discussed and approximate absorption cross-section spectra are determined from the combined measurement of transmission and fluorescence excitation spectra. The photo-stability of AF was studied by prolonged light exposure. The photo-degradation routes of AF are discussed.
Zhang, Yuping; Jiang, Shimei
2012-09-14
A new and easy-to-prepare gelator based on cyano-substituted amide (BPNIA) was designed and synthesized. BPNIA could form thermoreversible gel in DMSO-H(2)O (v/v, 9 : 1) and ultrasound-stimulated gel in DMSO. FT-IR, UV-vis and XRD spectra indicated that the gelator molecules self-assemble into a fibrous network resulting from the cooperation of intermolecular hydrogen bonding, π-π stacking and cyano interactions. BPNIA can act as a highly selective colorimetric sensor for fluoride in DMSO, overcoming the interference of H(2)PO(4)(-), AcO(-) and other halide anions. The deprotonation of the NH groups is responsible for the dramatic color change from colorless to yellow. Interestingly, the organogel of BPNIA could allow a two channel fluoride response by proton controlled reversible sol-gel transition and color changes.
Jia, Xiujuan; Wang, Tiebang; Bu, Xiaodong; Tu, Qiang; Spencer, Sandra
2006-04-11
A graphite furnace atomic absorption (GFAA) spectrometric method for the determination of ruthenium (Rh) in solid and liquid pharmaceutical compounds has been developed. Samples are dissolved or diluted in dimethyl sulfoxide (DMSO) without any other treatment before they were analyzed by GFAA with a carefully designed heating program to avoid pre-atomization signal loss and to achieve suitable sensitivity. Various inorganic and organic solvents were tested and compared and DMSO was found to be the most suitable. In addition, ruthenium was found to be stable in DMSO for at least 5 days. Spike recoveries ranged from 81 to 100% and the limit of quantitation (LOQ) was determined to be 0.5 microg g(-1) for solid samples or 0.005 microg ml(-1) for liquid samples based a 100-fold dilution. The same set of samples was also analyzed by ICP-MS with a different sample preparation method, and excellent agreement was achieved.
Wyrzykowski, Dariusz; Kloska, Anna; Pranczk, Joanna; Szczepańska, Aneta; Tesmar, Aleksandra; Jacewicz, Dagmara; Pilarski, Bogusław; Chmurzyński, Lech
2015-03-01
The potentiometric and conductometric titration methods have been used to characterize the stability of series of VO(IV)-, Co(II)- and Ni(II)-oxydiacetato complexes in DMSO-water solutions containing 0-50 % (v/v) DMSO. The influence of DMSO as a co-solvent on the stability of the complexes as well as the oxydiacetic acid was evaluated. Furthermore, the reactivity of the complexes towards superoxide free radicals was assessed by employing the nitro blue tetrazolium (NBT) assay. The biological properties of the complexes were investigated in relation to their cytoprotective activity against the oxidative damage generated exogenously by using hydrogen peroxide in the Human Dermal Fibroblasts adult (HDFa) cell line as well as to their antimicrobial activity against the bacteria (Bacillus subtilis, Escherichia coli, Enterococcus faecalis, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis). The relationship between physicochemical and biological properties of the complexes was discussed.
5-Chlorouracil and 5-bromouracil acid-base equilibrium study in water and DMSO by NMR spectroscopy
NASA Astrophysics Data System (ADS)
Abdrakhimova, G. S.; Ovchinnikov, M. Yu; Lobov, A. N.; Spirikhin, L. V.; Khursan, S. L.; Ivanov, S. P.
2018-04-01
Mechanism of 5-chloro- and 5-bromouracil deprotonation in water and dimethyl sulfoxide (DMSO) has been studied by the 13C and 1H NMR spectroscopy. NMR spectra were interpreted using DFT quantum chemical calculations at the CSGT-PCM-TPSSTPSS/6-311+G(d, p) level of theory. It was found that 5-chloro- (5ClU) and 5-bromouracil (5BrU) are present as a mixture of two anionic forms where the deprotonation is realized at the first (N1) and the third (N3) positions of the pyrimidine ring. N1 form is major for water-alkaline [xAN1/xAN3 (5ClU) = 0.65/0.35 and xAN1/xAN3 (5BrU) = 0.72/0.28, x - molar fraction] and the only one for DMSO solution.
Effect of glycerol and dimethyl sulfoxide on the phase behavior of lysozyme: Theory and experiments
NASA Astrophysics Data System (ADS)
Gögelein, Christoph; Wagner, Dana; Cardinaux, Frédéric; Nägele, Gerhard; Egelhaaf, Stefan U.
2012-01-01
Salt, glycerol, and dimethyl sulfoxide (DMSO) are used to modify the properties of protein solutions. We experimentally determined the effect of these additives on the phase behavior of lysozyme solutions. Upon the addition of glycerol and DMSO, the fluid-solid transition and the gas-liquid coexistence curve (binodal) shift to lower temperatures and the gap between them increases. The experimentally observed trends are consistent with our theoretical predictions based on the thermodynamic perturbation theory and the Derjaguin-Landau-Verwey-Overbeek model for the lysozyme-lysozyme pair interactions. The values of the parameters describing the interactions, namely the refractive indices, dielectric constants, Hamaker constant and cut-off length, are extracted from literature or are experimentally determined by independent experiments, including static light scattering, to determine the second virial coefficient. We observe that both, glycerol and DMSO, render the potential more repulsive, while sodium chloride reduces the repulsion.
Casanova, Massimo; Zangrando, Ennio; Munini, Fabio; Iengo, Elisabetta; Alessio, Enzo
2006-11-14
We show here that the new complex fac-[Re(CO)3(dmso-O)3](CF3SO3) (1), efficiently prepared in one step from [ReBr(CO)5] and featuring a broad range of solubility, is, in general, a better precursor for the one-step synthesis of mono- and polynuclear inorganic compounds containing fac-[Re(CO)3]+ fragments compared to the commonly used (NEt4)2fac-[ReBr3(CO)3] and fac-[Re(CO)3(CH3CN)3](Y) (Y = PF6, BF4, ClO4) species. Compound 1 is the first example of a Re(I)-dmso complex structurally characterized and confirms the rule that dmso is always O-bonded when trans to CO. The reactivity of 1 was tested in the one-step preparation of several new and known complexes. The O-bonded sulfoxides of 1 are replaced under mild conditions by tri- (L3) and bidentate ligands (L2) to produce fac-[Re(CO)3(L3)]+ and fac-[Re(CO)3(L2)(dmso-O)]+ compounds, respectively. An excess of monodentate ligands (L) and more forcing conditions are needed to prepare fac-[Re(CO)3(L)3]+ compounds. The new compounds include fac-[Re(CO)3(bipy)(dmso-O)](CF3SO3) (4), that turned out to be an excellent precursor for binding the luminescent fac-[Re(CO)3(bipy)]+ fragment to polytopic ligands for the construction of more elaborate assemblies. One example reported here is the two-step preparation of fac-[{Re(CO)3(bipy)}(mu-4,4'-bipy){Ru(TPP)(CO)}](CF3SO3) (8) (TPP = tetraphenylporphyrin). The X-ray structures of the new compounds 1, 4, of the bis-porphyrin complex fac-[Re(CO)3Cl(4'MPyP)2] (13) (4'MPyP = 5-(4'pyridyl)-10,15,20-triphenylporphyrin), and of the rhenium-cyclophane [{(CO)3Re(mu-OH)2Re(CO)3}2(micro-4,4'-bipy)2] (15), among others, are described. Compound 1 might find useful applications in supramolecular chemistry (metal-mediated assembly of large architectures), in the in situ preparation of stable Re compounds to be used in nuclear medicine, and for the labeling of biomolecules.
The effect of cryoprotectant on kangaroo sperm ultrastructure and mitochondrial function.
McClean, Rhett; Holt, William V; Zee, Yeng Peng; Lisle, Allan; Johnston, Stephen D
2008-12-01
This study examined the effect of cryoprotectants (20% DMSO, a 10% DMSO/10% glycerol mixture, 20% glycerol and 1M sucrose solution) on kangaroo sperm structure and function, along with the effect of varying concentrations of glycerol on sperm mitochondrial function. Eastern grey kangaroo cauda epididymidal spermatozoa were incubated for 10 min at 35 degrees C in each cryoprotectant and the plasma membrane integrity (PMI) and motility assessed using light microscopy. The same samples were fixed for TEM and the ultrastructural integrity of the spermatozoa examined. To investigate the effect of glycerol on the kangaroo sperm mitochondrial function, epididymidal spermatozoa were incubated with JC-1 in Tris-citrate media at 35 degrees C for 20 min in a range of glycerol concentrations (0%, 5%, 10%, 15% and 20%) and the mitochondrial membrane potential (MMP) and plasma membrane integrity determined. As expected, incubation of spermatozoa in 20% glycerol for 10 min resulted in a significant reduction in motility, PMI and ultrastructural integrity. Interestingly, incubation in 20% DMSO resulted in no significant reduction in motility or PMI but a significant loss of structural integrity when compared to the control spermatozoa (0% cryoprotectant). However, 20% DMSO was overall less damaging to sperm ultrastructure than glycerol, a combination of 10% glycerol and 10% DMSO, and sucrose. While all glycerol concentrations had an adverse effect on mitochondrial function, the statistical models presented for the relationship between MMP and glycerol predicted that spermatozoa, when added to 20% glycerol, would lose half of their initial MMP immediately at 35 degrees C and MMP would halve after 19.4 min at 4 degrees C. Models for the relationship between PMI and glycerol predicted that spermatozoa would lose half of their initial PMI after 1.8 min at 35 degrees C and PMI would halve after 21.1 min at 4 degrees C. These results suggest that if glycerol is to be used as a cryoprotectant for kangaroo spermatozoa then it is best administered at 4 degrees C and that mitochondrial function is more sensitive to glycerol than PMI. Future research should be directed at investigating strategies that reduce exposure of spermatozoa to glycerol during processing and that test the cryoprotective properties of 20% DMSO for kangaroo spermatozoa.
Measurement of OH, H2SO4, MSA, NH3 and DMSO Aboard the NASA P-3B Aircraft
NASA Technical Reports Server (NTRS)
Eisele, Fred
2001-01-01
This project involved the installation of a downsized multichannel mass spectrometer instrument on the NASA P-3B aircraft and its subsequent use on the PEM-Tropics B mission. The new instrument performed well, measuring a number of difficult-to-measure compounds and providing much new photochemical and sulfur data as well as possibly uncovering a new nighttime DMSO source. The details of this effort are discussed.
EphB4 Receptor Tyrosine Kinase in Prostate Cancer
2011-09-01
San Diego, La Jolla, CA, USAAbbreviations: MAP kinase, mitogen-activated prote tidylinositol 4,5-bisphosphate; PI(3,4,5)P3, phosphatid PI3K...okadaic acid (MP Biomedicals, 150 μM stock in DMSO), LY294002, PD98059, rapamycin (see previous section), dasatinib (LC Laboratories; 50 μM stock in DMSO...the phosphatase inhibitor tautomycin, which preferentially inhibits PP1 over PP2A. The cells were stimulated and analyzed as in (D). (F) Okadaic acid
2013-12-01
M TIME PPC1 Volume of Spheroid Ctrl (respective media) .2% DMSO 10 uM Free Curcumin 20 uM Free Curcumin 10 uM Tagged Curcumin 20 uM Tagged... Curcumin FIGURE 6 Ctrl media 10uM FC 20uM FC 20uM TC 10uM TC 2% DMSO PC3 t0 Div 8 FIGURE 7 Phospho-p65 NFκB subunit expression decreased In
Zhang, X-G; Li, H; Hu, J-H
2017-11-01
To investigate the effects of different concentrations of various cryoprotectants (CPs) on the cell viability as well as expression of spermatogenesis-related genes, such as CREM, Stra8 and HSP70-2 in frozen-thawed bovine calf testicular tissue, immature bovine (Qinchuan cattle) calf testicular tissue was collected and cryopreserved in the cryomedia containing different concentrations (5%, 10%, 15% and 20%) of the following three CPs: glycerol, ethylene glycol (EG) and dimethyl sulphoxide (DMSO) respectively. After 1 month cryopreservation in liquid nitrogen, cell viability was evaluated using Trypan blue exclusion under a bright-field microscope. The mRNA expression of the three genes was also evaluated using qRT-PCR. The results indicated that different concentrations of glycerol, EG and DMSO in cryomedia during cryopreservation could protect bovine calf testicular tissue in various ways to avoid freezing or cryopreservation-induced expression changes in spermatogenesis-related genes. The highest cell viability and the three spermatogenesis-related genes (CREM, Stra8 and HSP70-2) expression level came from the cryomedia containing glycerol, EG and DMSO at 10% concentration respectively (p < .05). Meanwhile, compared with the other CPs, the frozen-thawed bovine calf testicular tissue treated with 10% DMSO exhibited the highest cell viability and mRNA expression level of the spermatogenesis-related genes (CREM, Stra8 and HSP70-2). © 2017 Blackwell Verlag GmbH.
NASA Astrophysics Data System (ADS)
Usacheva, T. R.; Lan, Pham Thi; Sharnin, V. A.
2014-06-01
The effect of a water-dimethylsulfoxide (DMSO) solvent on the formation of a molecular complex of 18-crown-6 (18C6) with triglycine (diglycylglycine, 3Gly) is studied via calorimetric titration. It is found that switching from water to an H2O-DMSO mixture with DMSO mole fraction of 0.30 is accompanied by a monotonic increase in the stability of [3Gly18C6] complex, from log K ∘ = 1.10 to log K ∘ = 2.44, and an increase in the exothermicity of the reaction of its formation, from -5.9 to -16.9 kJ/mol. It is shown that the [3Gly18C6] complex exhibits enthalpy stabilization with negative values of enthalpy and entropy over the investigated range of H2O-DMSO solvents. Analysis of the reagents' solvation characteristics reveals that the increase in the reaction's exothermicity of transfer is due to differences in the solvation of [3Gly18C6] and 18C6 with a small solvation contribution from 3Gly. It is concluded that the change in the Gibbs energy of the reaction 3Glysolv + 18C6solv ↔ [3Gly18C6]solv is due to differences in the change in the solvation state of the complex and the peptide (Δtr G ∘([3Gly18C6])-Δtr G ∘(3Gly)).
Lv, Jing; Li, Zhenci; She, Shouzhang; Xu, Lixin; Ying, Yanlu
2015-08-01
To evaluate the effects of intrathecal injection of rapamycin on pain threshold and spinal cord glial activation in rats with neuropathic pain. Healthy 30 male Sprague Dawley (SD) rats were randomly divided into six groups (n = 5 in each group): (1) control group without any treatments; (2) chronic constriction injury (CCI) group; (3) Early-rapamycin group with intrathecal injection of rapamycin 4 hours after CCI days; (4) Early-vehicle group with intrathecal injection of DMSO; (5) Late-rapamycin group with intrathecal injection of rapamycin 7 days after CCI; (6) Late-vehicle group with intrathecal injection of DMSO 7 days after CCI. Rapamycin or DMSO was injected for 3 consecutive days. Mechanical and thermal threshold were tested before and after the CCI operation. Lumbar segment of spinal cords was tested for glial fibrillary acidic protein (GFAP) by immunohistochemistry on 14th day after operation. Mechanical and thermal hyperalgesia emerged on fourth day were maintained till fourteenth day after operation. After intrathecal injection of rapamycin 4 hours or 7 days after CCI, mechanical and thermal threshold significantly increased compared to injection of DMSO. The area of GFAP positive and the mean density of GFAP positive area in the dorsal horn of the ipsilateral side greatly increased in rapamycin-treated groups. Intrathecal injection of rapamycin may attenuate CCI-induced hyperalgesia and inhibit the activation of astrocyte.
Chalova, Vesela I; Crandall, Philip G; Ricke, Steven C
2010-04-15
Due to their low solubility in water, oil-based bioactive compounds require dispersion in a surface-active agent or appropriate solvents to ensure maximum contact with microorganisms. These combinations, however, may change their physical and/or chemical characteristics and consequently alter the desired functionality. The objective of this study was to determine the impact of selected dispersing agents, ethanol, dimethyl sulfoxide (DMSO), and Tween-80, on cold-pressed terpeneless (CPT) Valencia orange oil to function as a free radical scavenger and an antimicrobial food additive. When dissolved in ethanol or DMSO, the orange oil fraction had similar minimum inhibitory concentrations (MIC) for Listeria monocytogenes ATCC 19 115 (0.3% and 0.25% v/v respectively), which were significantly lower (P
Aptamer Selection Express: A Novel Method for Rapid Single-Step Selection and Sensing of Aptamers
2008-12-01
sample) was as follows: 5 µL buffer, 2 µL MgCl2, 2.5 µL DMSO, 1 µL betaine , 1 µL each dNTP, 2.5 µL F primer, 2.5 µL R primer, 0.54 µL taq polymerase...and 25.1 µL H2O. Betaine and increased DMSO were added to the master mix to eliminate polymerase jumping during PCR ampli- fication.10 Using the
2012-02-28
dimethylsulfoxide ( DMSO ). When chloroform is dissolved in a mixed solvent consisting of acetone and DMSO , both types of hydrogen bonded complexes exist. The...transition (negative) in the 2D IR spectrum. Also, line shape distortions caused by solvent background absorption and finite pulse durations do not affect...conditions as = 7 1 ps. This is the first direct measurement of hydrogen bond exchange. b. Solute- Solvent Complex Switching Dynamics3 Hydrogen
Vitamin E Succinate as an Adjuvant for Dendritic Cell Based Vaccines
2006-07-01
which is soluble only in organic solvents like sesame oil, dimethylsulfoxide ( DMSO ) or ethanol (1-4), vesiculated α-TOS (Vα-TOS) is hydrophilic and is...mammary tumors, acts as an effective adjuvant. One of the major limitations of using α-TOS is its insolubility in aqueous solvents . Unlike α-TOS...with the long-term use of DMSO or ethanol that are commonly used to solubilize α-TOS for parenteral administration making Vα- TOS better suited for long
NASA Astrophysics Data System (ADS)
Zakharov, A. G.; Voronova, M. I.; Batov, D. V.; Smirnova, K. V.
2011-03-01
The solution of phenol and benzoic acid in water-dimethylsulfoxide (DMSO) and water-acetonitrile (AN) mixtures was studied. As distinct from benzoic acid, the thermodynamic characteristics of solution of phenol sharply change at concentrations corresponding to a change in the character of cluster formation in water-DMSO and water-AN mixtures. Differences in the solvation of phenol and benzoic acid are explained by different mechanisms of the interaction of the solutes with clusters existing in binary mixtures.
2012-02-28
dimethylsulfoxide ( DMSO ). When chloroform is dissolved in a mixed solvent consisting of acetone and DMSO , both types of hydrogen bonded complexes exist. The...transition (negative) in the 2D IR spectrum. Also, line shape distortions caused by solvent background absorption and finite pulse durations do not affect...conditions as = 7 1 ps. This is the first direct measurement of hydrogen bond exchange. b. Solute- Solvent Complex Switching Dynamics3 Hydrogen
Magnetic Resonance Imaging of Polymeric Drug Delivery Systems in Breast Cancer Solid Tumors
2007-07-01
isothiocyanatobenzyl-1,4,7,10 tetraazacyclododecane-1,4,7,10 tetraacetic acid (p-SCN-Bz-DOTA) in dry dimethylsulfoxide ( DMSO ). The p-SCN-Bz-DOTA was reacted at 1.2...APMA- benzyl-DOTA, and MA-GFLG-dox in predetermined molar compositions (Appendix 3, Table 1). All polymerization were carried out in acetone / DMSO ...using AIBN as the initiator. The ratio of monomers: initiator: solvent in the feed were kept constant at 12.5: 0.6: 86.9 (weight %), respectively
1983-06-01
Effects on Isolated Fat Cells. By PAUL B. WIESER ......... 135 Induction of Glohin Gene Expression During Erythroid Cell Differentiation. By RICHARD A...lipolysis and decreases insulin-stimulated glucose oxidation in free while fat cells of rat." It V also enhances heme synthesis in quail embryo yolk sac...metabolism of fat cells. Biochem. Pharma- col. 26: 775-778. 18. TERASAWA. T., Y. MIt RA & R. MASJDA. 1981. The mechanism of the action of DMSO on the
Pt and Pd catalyzed oxidation of Li 2O 2 and DMSO during Li–O 2 battery charging
Gittleson, Forrest S.; Ryu, Won-Hee; Schwab, Mark; ...
2016-01-01
Rechargeable Li-O 2 and Li-air batteries require electrode and electrolyte materials that synergistcally promote long-term cell operation. We investigate the role of noble metals Pt and Pd as catalysts for the Li-O 2 oxidation process and their compatibility with a dimethyl sulfoxide (DMSO) based electrolyte. Lastly, we identify a basis for low potential Li 2O 2 evolution followed by oxidative decomposition of the electrolyte to form carbonate side products.
Huang, You-Zhang; Shen, Jian-Liang; Gong, Li-Zhong; Zheng, Pei-Hao; Liu, Yi; Yin, Wen-Jie; Cen, Jian; Wang, Ning; Zhao, De-Feng
2010-02-01
The aim of this study was to investigate the best method to preserve human bone marrow cells and the effectiveness of long term cryopreservation at -80 degrees C. The human bone marrow cells in 20 samples were firstly frozen by a programmed freezer or -80 degrees C refrigerator, and then were preserved in liquid nitrogen with DMSO-AuP (10% dimethylsulfonamide, 10% autologous plasma) or DMSO-HES-HuA (5% dimethylsulfonamide, 6% hydroxyethyl starch, 4% human serum albumin) as cryoprotectant for 21 to 25 years. They were thawed in 38 degrees C. The cell sample frozen in -80 degrees C refrigerator was frozen at a low frozen speed of 1 degrees C/min which was the same as the programmed freezer before -30 degrees C. Before detection the bone marrow cells were taken from liquid nitrogen and were thawed in 38 degrees C, then the suspension of bone marrow cells was prepared for detection. The cell morphology and recovery rate of erythrocytes, nucleocytes and platelets; the recovery rate of hematopoietic stem progenitors cells, as well as mesenchymal stem cells were determined. The results showed that the protective effectiveness of DMSO-HES-HuA was better than DMSO-AuP. The mature erythrocytes were destroyed lightly [(3.5 +/- 1.5)% versus (12.6 +/- 4.8)%], the hemolysis rate was lower [(3.3 +/- 1.6)% versus (23.1 +/- 5.1)%]. Osmotic fragility of erythrocytes in the former was not changed, but was dropped in the latter. The recovery rates of red cell, platelet, granulocyte-macrophage colony forming units and long term culture-initiating cells were higher in the former than that in the latter [(96.1 +/- 1.8)%, (70.0 +/- 9.5)%, (49.2 +/- 10.9)%, (54.2 +/- 13.8)% versus (76.3 +/- 5.6)%, (52.7 +/- 8.1)%, (43.5 +/- 12.3)%, (47.2 +/- 13.6)% respectively]. With each kind of cryoprotectant or frozen method, the frozen MSC could keep the original growth properties. With the same cryoprotectant and different frozen method, the cryopreservative effectiveness was not different. The influence of the cryoprotectant prescriptions and the frozen methods on the cryopreservative effectiveness was little. It is concluded that the human bone marrow cells with DMSO-AuP or DMSO-HES-HuA as cryoprotectant, frozen by a programmed freezer or -80 degrees C refrigerator, could be then preserved in liquid nitrogen for long time. When the preserving time was as long as 21 to 25 years, the morphology, the recovery rate and the activity of various kinds of cells were still good. The method of freezing by -80 degrees C refrigerator with 5% DMSO-6% HES-4% HuA and preserving in liquid nitrogen would be convenient, cheap and easily-manipulated for preservation of the human bone marrow cells.
NASA Astrophysics Data System (ADS)
Kislenko, S. A.
2018-01-01
The work is focused on the investigation of the effect of solvent and carbon cathode morphology on the performance of Li-air batteries. Molecular dynamics simulation was used to explore the interfacial behavior of the main reactants (O2 and Li+) of the oxygen reduction reaction in high donor number solvent dimethyl sulfoxide (DMSO) at the following carbon surfaces: graphene plane, graphene edge, nanotube. It was shown that the adsorption barrier of O2 molecules decreases in the order graphene plane > nanotube > graphene edge, leading to the fastest adsorption kinetics on graphene edges. Strong solvation of Li+ in DMSO prevents ions adsorption on defect-free graphene planes and nanotubes, which is qualitatively different from low donor number solvents, such as acetonitrile. It can be concluded from these results, that nucleation and growth of discharge products in DMSO is shifted from the surface towards the solvent bulk that, in turn, leads to capacity increase of Li-air batteries.
Jiang, Jingying; Boese, Matthias; Turner, Paul; Wang, Ruikang K
2008-01-01
By use of a Fourier transform infrared (FTIR) spectroscopic imaging technique, we examine the dynamic optical clearing processes occurring in hyperosmotically biocompatible agents penetrating into skin tissue in vitro. The sequential collection of images in a time series provides an opportunity to assess penetration kinetics of dimethyl sulphoxide (DMSO) and glycerol beneath the surface of skin tissue over time. From 2-D IR spectroscopic images and 3-D false color diagrams, we show that glycerol takes at least 30 min to finally penetrate the layer of epidermis, while DMSO can be detected in epidermis after only 4 min of being topically applied over stratum corneum sides of porcine skin. The results demonstrate the potential of a FTIR spectroscopic imaging technique as an analytical tool for the study of dynamic optical clearing effects when the bio-tissue is impregnated by hyperosmotically biocompatible agents such as glycerol and DMSO.
Thermo-kinetics of lipase-catalyzed synthesis of 6-O-glucosyldecanoate.
Gumel, A M; Annuar, M S M; Heidelberg, T; Chisti, Y
2011-10-01
Lipase-catalyzed synthesis of 6-O-glucosyldecanoate from d-glucose and decanoic acid was performed in dimethyl sulfoxide (DMSO), a mixture of DMSO and tert-butanol and tert-butanol alone with a decreasing order of polarity. The highest conversion yield (> 65%) of decanoic acid was obtained in the blended solvent of intermediate polarity mainly because it could dissolve relatively large amounts of both the reactants. The reaction obeyed Michaelis-Menten type of kinetics. The affinity of the enzyme towards the limiting substrate (decanoic acid) was not affected by the polarity of the solvent, but increased significantly with temperature. The esterification reaction was endothermic with activation energy in the range of 60-67 kJ mol⁻¹. Based on the Gibbs energy values, in the solvent blend of DMSO and tert-butanol the position of the equilibrium was shifted more towards the products compared to the position in pure solvents. Monoester of glucose was the main product of the reaction. Copyright © 2011 Elsevier Ltd. All rights reserved.
Gumel, A M; Annuar, M S M; Heidelberg, T
2013-04-01
The effects of organic solvents and their binary mixture in the glucose functionalization of bacterial poly-3-hydroxyalkanoates catalyzed by Lecitase™ Ultra were studied. Equal volume binary mixture of DMSO and chloroform with moderate polarity was more effective for the enzyme catalyzed synthesis of the carbohydrate polymer at ≈38.2 (±0.8)% reactant conversion as compared to the mono-phasic and other binary solvents studied. The apparent reaction rate constant as a function of medium water activity (aw) was observed to increase with increasing solvent polarity, with optimum aw of 0.2, 0.4 and 0.7 (±0.1) observed in hydrophilic DMSO, binary mixture DMSO:isooctane and hydrophobic isooctane, respectively. Molecular sieve loading between 13 to 15gL(-1) (±0.2) and reaction temperature between 40 to 50°C were found optimal. Functionalized PHA polymer showed potential characteristics and biodegradability. Copyright © 2012 Elsevier B.V. All rights reserved.
Oh, Hyuntaek; Yaraghi, Nicholas; Raghavan, Srinivasa R
2015-05-19
Molecular organogelators convert oils into gels by forming self-assembled fibrous networks. Here, we demonstrate that such gelation can be activated by contacting the oil with an immiscible solvent (water). Our gelator is dibenzylidene sorbitol (DBS), which forms a low-viscosity sol when added to toluene containing a small amount of dimethyl sulfoxide (DMSO). Upon contact with water, DMSO partitions into the water, activating gelation of DBS in the toluene. The gel grows from the oil/water interface and slowly envelops the oil phase. We have exploited this effect for the self-repair of oil leaks from underwater tubes. When a DBS/toluene/DMSO solution flows through the tube, it forms a gel selectively at the leak point, thereby plugging the leak and restoring flow. Our approach is reminiscent of wound-sealing via blood-clotting: there also, inactive gelators in blood are activated at the wound site into a fibrous network, thereby plugging the wound and restoring blood flow.
Santiani, A; Evangelista-Vargas, S; Vargas, S; Gallo, S; Ruiz, L; Orozco, V; Rosemberg, M
2017-08-01
The objective was to evaluate the effect of different cryoprotectant agents in the cryopreservation of Peruvian Paso horse semen. Twenty semen samples were collected from five Peruvian Paso horse stallions. Each sample was divided into 12 parts to form the groups: dimethylacetamide (DMA), dimethyl sulfoxide (DMSO), ethylene glycol (EG) and glycerol (GLY), at 3%, 4% and 5%. Samples were frozen using a rate-controlled freezer. Sperm parameters evaluated were motility and viability/acrosomal status. After thawing, progressive motility in DMA group was higher (p < .05) than in DMSO, EG and GLY groups. Similarly, viable acrosome-intact spermatozoa were higher (p < .05) using DMA in comparison with DMSO. No differences were found when comparing concentrations for any of the cryoprotectant agents. In conclusion, DMA seems to be a good cryoprotectant agent for the cryopreservation of Peruvian Paso horse stallion semen. © 2016 Blackwell Verlag GmbH.
Ptaszek, Paweł; Dziubiński, Marek; Grzesik, N. Mirosław; Liszka-Skoczylas, Marta
2017-01-01
This research study analysed the rheological properties of potato amylose and potato amylopectin in binary solutions of the following water and dimethyl sulfoxide concentrations: 90% DMSO (1), 80% DMSO (2) and 50% DMSO (3), with preparation methodology involving the dissolution at the temperature of 98°C. The studies of dynamic light scattering on the biopolymer coils and the determination of main relaxation times of the solutions were carried out. For the amylose solutions, the fast relaxation phenomena are predominant. The results of the quality tests of the hysteresis loop showed, that the amylose solutions in the solvents (1) and (2) are rheologically stable and shear-thickened. The amylose solutions in solvents (3) reveal oscillatory alterations of viscosity in the time. Amylopectin solutions are characterized by 80% share of slow relaxation phenomena, very low diffusion coefficients and hydrodynamic radii in the range of 2000 nm. The amylopectin solutions are rheologically unstable. PMID:28152071
Static and dynamic light scattering studies on dilute polyrotaxane solutions
NASA Astrophysics Data System (ADS)
Kume, Tetsuya; Araki, Jun; Sakai, Yasuhiro; Mayumi, Koichi; Kidowaki, Masatoshi; Yokoyama, Hideaki; Ito, Kohzo
2009-08-01
Static and dynamic light scattering measurements were performed for dilute polyrotaxane solutions in different types of solvent systems, i.e. dimethylacetamide (DMAc) or dimethylformamide (DMF) containing 1-6 wt% lithium chloride (LiCl), 1 M aqueous sodium hydroxide (NaOH) and dimethylsulfoxide (DMSO). No aggregation of the polyrotaxane in DMF/LiCl was confirmed in the present study. Radius of gyration of the dissolved polyrotaxane was largest in NaOHaq., followed by values in amide solvents/LiCl and that in DMSO, and was probably dominated not by Coulombic repulsion but by the mutual affinity between solvent and polyrotaxane. Ratio of radius of gyration to hydrodynamic radius suggested the flexible random-coiled conformation in DMSO and relatively more extended, semi-flexible ones in amide solvents/LiCl and NaOHaq. The obtained values of second virial coefficient and weight average molecular weight seemed to be affected by a potential change in differential refractive index increments, caused by selective macrocationization or ionization.
An approach for prominent enhancement of the quality of konjac flour: dimethyl sulfoxide as medium.
Ye, Ting; Wang, Ling; Xu, Wei; Liu, Jinjin; Wang, Yuntao; Zhu, Kunkun; Wang, Sujuan; Li, Bin; Wang, Chao
2014-01-01
In this paper, an approach to improve several konjac flour (KF) qualities by dimethyl sulfoxide (DMSO) addition using various concentrations at different temperature levels was proposed. Also, various properties of native and refined KF, including transparency, chemical composition and rheological properties have been investigated. The results showed that the KF refined by 75% DMSO achieved 27.7% improvement in transparency, 99.7% removal of starch, 99.4% removal of soluble sugar, and 98.2% removal of protein as well as more satisfactory viscosity stability. In addition, the morphology structure of refined KF showed a significant difference compared with the native one as observed using the SEM, which is promising for further industrial application. Furthermore, the rheological properties of both native and refined konjac sols were studied and the results showed that DMSO refinement is an effective and alternative approach to improve the qualities of KF in many aspects. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zhao, Ming; Guo, Brian; Onakpa, Michael M; Wong, Tiffany; Wakasa, Kyo; Che, Chun-Tao; Warpeha, Katherine
2017-12-22
Broadleaf weeds are very costly for crop growers. Additional herbicidal compounds need to be obtained, especially from natural sources. Extracts of Icacina trichantha were evaluated for responses in germinating seeds and seedlings of rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana). An ethyl acetate fraction of I. trichantha tuber and a diterpenoid constituent, icacinol (1), were found to have impacts on germination and growth of seedlings. The seed germination inhibitory activity on rice was minimal, but significant on Arabidopsis. While rice indicated some growth delay in leaf expansion in the presence of 1, the effects appeared temporary; chlorophyll and anthocyanins were not significantly altered compared to DMSO controls. Rice seedlings attained biomass similar to DMSO controls, and rice grains per panicle were not significantly different from the DMSO controls. On the other hand, Arabidopsis exhibited damage to leaf expansion, reduced chlorophyll, and increased anthocyanins in aerial portions of the seedlings. Icacinol (1) may be a suitable chemical agent to investigate further for the treatment of eudicot weeds.
NASA Astrophysics Data System (ADS)
Dhar, Saurab; Majumder, Tanmoy; Chakraborty, Pinak; Mondal, Suvra Prakash
2018-04-01
Schottky junction ultraviolet (UV) photodetector was fabricated by spin coating a hole conducting polymer, poly 3,4-ethylenedioxythiophene: polystyrene sulfonate (PEDOT:PSS) on hydrothermally grown zinc oxide (ZnO) nanorod arrays. The UV detector performance was significantly improved two step process. Firstly, ZnO nanorods were modified by sensitizing N doped grapheme quantum dots (NGQDs) for better photoresponce behavior. Afterwards, the junction properties as well as photoresponse was enhanced by modifying electrical conductivity of PEDOT:PSS layer with organic solvent (DMSO). Our NGQD decorated ZnO NRs/DMSO-PEDOT:PSS Schottky junction device demonstrated superior external quantum efficiency (EQE ˜ 90063 %) and responsivity (Rλ˜247 A/W) at 340 nm wavelength and -1V external bias. The response and recovery times of the final photodetector device was very fast compared to GQD as well as NGQD modified and pristine ZnO nanorod based detectors.
McGaughey, C; Jensen, J L
1983-03-01
Tumor initiation by topical application of 7,12-dimethylbenz[a]anthracene (DMBA) in dimethyl sulfoxide (DMSO) followed by topical application of retinyl acetate (RA), ethylphenylpropiolate, or acetic acid in DMSO at inflammatory and hyperplasiogenic dose regimens caused the rapid promotion of fibrovascular polyps with dysplastic epithelium in hamster cheek pouch. Such lesions did not occur in control animals initiated with DMBA followed by application of DMSO only, where inflammation was also minimal. At the dose regimen employed, RA caused obvious cytotoxicity and tissue destruction. With EPP and AA, there was no histological evidence of tissue destruction. At dose regimens resulting in minimal inflammation and no apparent cytotoxicity, RA promoted almost no polyps, but a higher yield of other tumor types. Thus, inflammation and/or hyperplasia apparently exerted a strong polyp-promoting and progressive influence. This and other differences between the tumorigenic responses of hamster-pouch mucosa and mouse skin suggest that the former supplement the latter in carcinogenic risk assessment.
Maina, Ndegwa Henry; Pitkänen, Leena; Heikkinen, Sami; Tuomainen, Päivi; Virkki, Liisa; Tenkanen, Maija
2014-01-01
Dilute solutions of various dextran standards, a high-molar mass (HMM) commercial dextran from Leuconostoc spp., and HMM dextrans isolated from Weissella confusa and Leuconostoc citreum were analyzed with high-performance size-exclusion chromatography (HPSEC), asymmetric flow field-flow fractionation (AsFlFFF), and diffusion-ordered NMR spectroscopy (DOSY). HPSEC analyses were performed in aqueous and dimethyl sulfoxide (DMSO) solutions, while only aqueous solutions were utilized in AsFlFFF and DOSY. The study showed that all methods were applicable to dextran analysis, but differences between the aqueous and DMSO-based solutions were obtained for HMM samples. These differences were attributed to the presence of aggregates in aqueous solution that were less prevalent in DMSO. The study showed that DOSY provides an estimate of the size of HMM dextrans, though calibration standards may be required for each experimental set-up. To our knowledge, this is the first study utilizing these three methods in analyzing HMM dextrans. Copyright © 2013 Elsevier Ltd. All rights reserved.
COMDECOM: predicting the lifetime of screening compounds in DMSO solution.
Zitha-Bovens, Emrin; Maas, Peter; Wife, Dick; Tijhuis, Johan; Hu, Qian-Nan; Kleinöder, Thomas; Gasteiger, Johann
2009-06-01
The technological evolution of the 1990s in both combinatorial chemistry and high-throughput screening created the demand for rapid access to the compound deck to support the screening process. The common strategy within the pharmaceutical industry is to store the screening library in DMSO solution. Several studies have shown that a percentage of these compounds decompose in solution, varying from a few percent of the total to a substantial part of the library. In the COMDECOM (COMpound DECOMposition) project, the compound stability of screening compounds in DMSO solution is monitored in an accelerated thermal, hydrolytic, and oxidative decomposition program. A large database with stability data is collected, and from this database, a predictive model is being developed. The aim of this program is to build an algorithm that can flag compounds that are likely to decompose-information that is considered to be of utmost importance (e.g., in the compound acquisition process and when evaluation screening results of library compounds, as well as in the determination of optimal storage conditions).
NASA Astrophysics Data System (ADS)
Sabounchei, Seyyed Javad; Hashemi, Ali; Sedghi, Asieh; Bayat, Mehdi; Akhlaghi Bagherjeri, Fateme; Gable, Robert W.
2017-05-01
Reaction of dimethyl sulfide with 2, 3‧-dibromoacetophenone led to formation of sulfonium salt [Me2SCH2C(O)C6H4-m-Br]Br (1). The resulted sulfonium salt was treated with NaOH and gave the α-keto stabilized sulfur ylide Me2SC(H)C(O)C6H4-m-Br (2). This ligand was reacted with [MCl2(cod)] (M = Pd, Pt; cod = 1,5-cyclooctadiene) to form the new cis- and trans-[MCl2(ylide)2] (M = Pd (cis- and trans-3), Pt (cis- and trans-4)) complexes. Characterization of the obtained compounds was performed by elemental analysis, IR, 1H and 13C NMR. Recrystallization of dichlorobis(ylide) palladium(II) and platinum(II) complexes from DMSO solution yielded the crystalline products, which X-ray diffraction data revealed that the both compounds were crystallized as cis-[MCl2(ylide)(DMSO)] (M = Pd (5), Pt (6)) complexes. Also, a theoretical study on structure and nature of the Msbnd C bonding between the Y ligand (ylide) and [MCl2·DMSO] fragments in [YMCl2·DMSO] (M = Pd, Pt) complexes has been reported via NBO and energy-decomposition analysis (EDA). Furthermore, the palladium catalyzed Suzuki-Miyaura reaction of various aryl chlorides with arylboronic acids was performed. The results showed that the Pd(II) complexes cis- and trans-3 catalyzed efficiently coupling reactions at low catalyst loading and short reaction time.
Effects of strain differences and vehicles on results of local lymph node assays.
Anzai, Takayuki; Ullmann, Ludwig G; Hayashi, Daisuke; Satoh, Tetsuo; Kumazawa, Takeshi; Sato, Keizo
2010-01-01
The Local Lymph Node Assay (LLNA) is now regarded as the worldwide standard. The analysis of accumulated LLNA data reveals that the animal strains and vehicles employed are likely to affect LLNA results. Here we show that an obvious strain difference in the local lymph node response was observed between DMSO-treated CBA/CaOlaHsd and CBA/CaHsdRcc mice. We also show that a vehicle difference in the response was observed when CBA/CaHsdRcc mice were exposed to 6 vehicles; 4:1 v/v acetone/olive oil (AOO), ethanol/water (70% EtOH), N,N-dimethylformamide (DMF), 2-butanone (BN), propylene glycol (PG), and dimethylsulfoxide (DMSO). The dpm/LN level was lowest in the 70% EtOH group and highest in the DMSO group. When alpha-hexylcinnamaldehyde (HCA) was used as a sensitizer for the LLNA, HCA was a weak sensitizer when AOO or DMSO was used as a vehicle, but a moderate sensitizer when the other 4 vehicles were used. This study showed that there are vehicle differences in the local lymph node response (dpm/LN level) in the LLNA and that the sensitization potency of HCA may be classified in different categories when using different vehicles. This suggests that careful consideration should be exercised in selecting a vehicle for the LLNA. A further comprehensive study will be needed to investigate why vehicle differences are observed in the LLNA.
Freezing-induced cellular and membrane dehydration in the presence of cryoprotective agents.
Akhoondi, Maryam; Oldenhof, Harriëtte; Sieme, Harald; Wolkers, Willem F
2012-09-01
FTIR and cryomicroscopy have been used to study mouse embryonic fibroblast cells (3T3) during freezing in the absence and presence of DMSO and glycerol. The results show that cell volume changes as observed by cryomicroscopy typically end at temperatures above -15°C, whereas membrane phase changes may continue until temperatures as low as -30°C. This implies that cellular dehydration precedes dehydration of the bound water surrounding the phospholipid head groups. Both DMSO and glycerol increase the membrane hydraulic permeability at subzero temperature and reduce the activation energy for water transport. Cryoprotective agents facilitate dehydration to continue at low subzero temperatures thereby decreasing the incidence of intracellular ice formation. The increased subzero membrane hydraulic permeability likely plays an important role in the cryoprotective action of DMSO and glycerol. In the presence of DMSO water permeability was found to be greater compared to that in the presence of glycerol. Two temperature regimes were identified in an Arrhenius plot of the membrane hydraulic permeability. The activation energy for water transport at temperature ranging from 0 to -10°C was found to be greater than that below -10°C. The non-linear Arrhenius behavior of Lp has been implemented in the water transport model to simulate cell volume changes during freezing. At a cooling rate of 1°C min(-1), ∼5% of the initial osmotically active water volume is trapped inside the cells at -30°C.
NASA Astrophysics Data System (ADS)
Niazazari, Naser; Zatikyan, Ashkhen L.; Markarian, Shiraz A.
2013-06-01
The hydrogen bonding of 1:1 complexes formed between L-ascorbic acid (LAA) and dimethylsulfoxide (DMSO) has been studied by means of ab initio and density functional theory (DFT) calculations. Solutions of L-ascorbic acid (AA) in dimethylsulfoxide (DMSO) have been studied by means of both FT-IR (4000-220 cm-1) and FT-Raman spectroscopy. Ab initio Hartree-Fock (HF) and DFT methods have been used to determine the structure and energies of stable conformers of various types of L-AA/DMSO complexes in gas phase and solution. The basis sets 6-31++G∗∗ and 6-311+G∗ were used to describe the structure, energy, charges and vibrational frequencies of interacting complexes in the gas phase. The optimized geometric parameters and interaction energies for various complexes at different theories have been estimated. Binding energies have been corrected for basis set superposition error (BSSE) and harmonic vibrational frequencies of the structures have been calculated to obtain the stable forms of the complexes. The self-consistent reaction field (SCRF) has been used to calculate the effect of DMSO as the solvent on the geometry, energy and charges of complexes. The solvent effect has been studied using the Onsager models. It is shown that the polarity of the solvent plays an important role on the structures and relative stabilities of different complexes. The results obtained show that there is a satisfactory correlation between experimental and theoretical predictions.
NASA Astrophysics Data System (ADS)
Almandoz, M. C.; Sancho, M. I.; Blanco, S. E.
2014-01-01
The solvatochromic behavior of sulfamethoxazole (SMX) was investigated using UV-vis spectroscopy and DFT methods in neat and binary solvent mixtures. The spectral shifts of this solute were correlated with the Kamlet and Taft parameters (α, β and π*). Multiple lineal regression analysis indicates that both specific hydrogen-bond interaction and non specific dipolar interaction play an important role in the position of the absorption maxima in neat solvents. The simulated absorption spectra using TD-DFT methods were in good agreement with the experimental ones. Binary mixtures consist of cyclohexane (Cy)-ethanol (EtOH), acetonitrile (ACN)-dimethylsulfoxide (DMSO), ACN-dimethylformamide (DMF), and aqueous mixtures containing as co-solvents DMSO, ACN, EtOH and MeOH. Index of preferential solvation was calculated as a function of solvent composition and non-ideal characteristics are observed in all binary mixtures. In ACN-DMSO and ACN-DMF mixtures, the results show that the solvents with higher polarity and hydrogen bond donor ability interact preferentially with the solute. In binary mixtures containing water, the SMX molecules are solvated by the organic co-solvent (DMSO or EtOH) over the whole composition range. Synergistic effect is observed in the case of ACN-H2O and MeOH-H2O, indicating that at certain concentrations solvents interact to form association complexes, which should be more polar than the individual solvents of the mixture.
Hoffman, Robert M; Kajiura, Satoshi; Cao, Wenluo; Liu, Fang; Amoh, Yasuyuki
2016-01-01
Hair follicles contain nestin-expressing pluripotent stem cells which originate above the bulge area of the follicle, below the sebaceous gland. We have termed these cells hair follicle-associated pluripotent (HAP) stem cells. We have established efficient cryopreservation methods of the hair follicle that maintain the pluripotency of HAP stem cells as well as hair growth. We cryopreserved the whole hair follicle by slow-rate cooling in TC-Protector medium or in DMSO-containing medium and storage in liquid nitrogen or at -80 °C. After thawing and culture of the cryopreserved whisker follicles, growing HAP stem cells formed hair spheres. The hair spheres contained cells that differentiated to neurons, glial cells, and other cell types. The hair spheres derived from slow-cooling cryopreserved hair follicles were as pluripotent as hair spheres from fresh hair follicles. We have also previously demonstrated that cryopreserved mouse whisker hair follicles maintain their hair-growth potential. DMSO better cryopreserved mouse whisker follicles compared to glycerol. DMSO-cryopreserved hair follicles also maintained the HAP stem cells, evidenced by P75 ntr expression. Subcutaneous transplantation of DMSO-cryopreserved hair follicles in nude mice resulted in extensive hair fiber growth over 8 weeks, indicating the functional recovery of hair-shaft growth of cryopreserved hair follicles. HAP stem cells can be used for nerve and spinal-cord repair. This biobanking of hair follicles can allow each patient the potential for their own stem cell use for regenerative medicine or hair transplantation.
Tima, Singkome; Anuchapreeda, Songyot; Ampasavate, Chadarat; Berkland, Cory; Okonogi, Siriporn
2017-05-01
The present study aims to develop a stable polymeric micellar formulation of curcumin (CM) with improved solubility and stability, and that is suitable for clinical applications in leukemia patients. CM-loaded polymeric micelles (CM-micelles) were prepared using poloxamers. The chemical structure of the polymers influenced micellar properties. The best formulation of CM-micelles, namely CM-P407, was obtained from poloxamer 407 at drug to polymer ratio of 1:30 and rehydrated with phosphate buffer solution pH 7.4. CM-P407 exhibited the smallest size of 30.3±1.3nm and highest entrapment efficiency of 88.4±4.1%. When stored at -80°C for 60days, CM-P407 retained high protection of CM and had no significant size change. In comparison with CM solution in dimethyl sulfoxide (CM-DMSO), CM kinetic degradation in both formulations followed a pseudo-first-order reaction, but the half-life of CM in CM-P407 was approx. 200 times longer than in CM-DMSO. Regarding the activity against FLT3 overexpressing EoL-1 leukemic cells, CM-P407 showed higher cytotoxicity than CM-DMSO. Moreover, intracellular uptake to leukemic cells of CM-P407 was 2-3 times greater than that of CM-DMSO. These promising results for CM-P407 will be further investigated in rodents and in clinical studies for leukemia treatment. Copyright © 2017 Elsevier B.V. All rights reserved.
Roles of ikB-alpha Protein Kinases in Activation of NF-kB in Breast Cancer
2005-07-01
observed previously that treatment with the selective pharmacological inhibitors of CK2, apigenin or emodin , inhibited NF-B activity in human breast...mM apigenin or 1–25 mg/ml emodin (both from Sigma Chemical Co.) dissolved in DMSO or similar dilution of DMSO as control. MCF-10F is a human mammary... emodin , or 0.58–1.46 mM CK2-specific peptide substrate RRREEETEEE (Sigma Genosys Inc.) was added to the kinase reaction. Alternatively, recombinant CK2
Inhibition of Estrogen-Induced Growth of Breast Cancer by Targeting Mitrochondrial Oxidants
2007-04-01
expected estradiol induced oxidants production in MCF-7 cells in dose dependent manner (Fig. 1). 0 50 100 150 200 250 300 DMSO 100pg 10ng 100ng...dose dependent manner. This is in agreement with previous findings (Foster et al., 2001). 0 50 100 150 200 250 300 DMSO 100pg/ml 10ng/ml 100ng/ml C...significantly inhibited E2-induced cell growth by as much as 50 % after a 72 h treatment. The reduction of E2-induced cell growth observed with NAC and
Tayu, Masanori; Ishizaki, Takako; Higuchi, Kazuhiro; Kawasaki, Tomomi
2015-04-07
The cross-coupling of tryptamine with substituted aniline to access C3a-nitrogen-linked pyrroloindolines has been developed via the consecutive cyclization of tryptamine with DMSO/Tf2O and the substitution of 3a-pyrroloindolylthionium intermediate with aniline. The use of 2,3-dihydrotryptamine instead of aniline enabled easy access to 3a-(1-indolyl)pyrroloindoline and the concise synthesis of C3a-N1'-linked pyrroloindoline alkaloid (±)-psychotriasine was accomplished.
DMSO/base hydrolysis method for the disposal of high explosives and related energetic materials
Desmare, Gabriel W.; Cates, Dillard M.
2002-05-14
High explosives and related energetic materials are treated via a DMSO/base hydrolysis method which renders them non-explosive and/or non-energetic. For example, high explosives such as 1,3,5,7-tetraaza-1,3,5,7-tetranitrocyclooctane (HMX), 1,3,5-triaza-1,3,5-trinitrocyclohexane (RDX), 2,4,6-trinitrotoluene (TNT), or mixtures thereof, may be dissolved in a polar, aprotic solvent and subsequently hydrolyzed by adding the explosive-containing solution to concentrated aqueous base. Major hydrolysis products typically include nitrite, formate, and nitrous oxide.
Duerr, K; Troeppner, O; Olah, J; Li, J; Zahl, A; Drewello, T; Jux, N; Harvey, J N; Ivanović-Burmazović, I
2012-01-14
The solution behavior of iron(III) and iron(II) complexes of 5(4),10(4),15(4),20(4)-tetra-tert-butyl-5,10,15,20-tetraphenylporphyrin (H(2)tBuTPP) and the reaction with superoxide (KO(2)) in DMSO have been studied in detail. Applying temperature and pressure dependent NMR studies, the thermodynamics of the low-spin/high-spin equilibrium between bis- and mono-DMSO Fe(II) forms have been quantified (K(DMSO) = 0.082 ± 0.002 at 298.2 K, ΔH° = +36 ± 1 kJ mol(-1), ΔS° = +101 ± 4 J K(-1) mol(-1), ΔV° = +16 ± 2 cm(3) mol(-1)). This is a key activation step for substitution and inner-sphere electron transfer. The superoxide binding constant to the iron(II) form of the studied porphyrin complex was found to be (9 ± 0.5) × 10(3) M(-1), and does not change significantly in the presence of the externally added crown ether in DMSO (11 ± 4) × 10(3) M(-1). The rate constants for the superoxide binding (k(on) = (1.30 ± 0.01) × 10(5) M(-1) s(-1)) and release (k(off) = 11.6 ± 0.7 s(-1)) are not affected by the presence of the external crown ether in solution. The resulting iron(II)-superoxide adduct has been characterized (mass spectrometry, EPR, high-pressure UV/Vis spectroscopy) and upon controlled addition of a proton source it regenerates the starting iron(II) complex. Based on DFT calculations, the reaction product without neighboring positive charge has iron(II)-superoxo character in both high-spin side-on and low-spin end-on forms. The results are compared to those obtained for the analogous complex with covalently attached crown ether, and more general conclusions regarding the spin-state equilibrium of iron(II) porphyrins, their reaction with superoxide and the electronic structure of the product species are drawn.
Peláez, J; Bongalhardo, D C; Long, J A
2011-02-01
The carbohydrate-rich zone on the sperm surface is essential for inmunoprotection in the female tract and early gamete interactions. We recently have shown the glycocalyx of chicken sperm to be extensively sialylated and to contain residues of mannose, glucose, galactose, fucose, N-acetyl-galactosamine, N-acetyl-glucosamine, and N-acetyl-lactosamine. Our objective here was to evaluate the effects of 3 different cryopreservation methods on the sperm glycocalyx. Semen from roosters was pooled, diluted, cooled to 5°C, and aliquoted for cryopreservation using 6% dimethylacetamide (DMA), 11% dimethylsulfoxide (DMSO), or 11% glycerol (GOH). For the DMA method, semen was equilibrated for 1 min with cryoprotectant and rapidly frozen by dropping 25-µL aliquots into liquid nitrogen. For the other methods, semen was equilibrated for either 1 min (DMSO) or 20 min (GOH), loaded into straws, and frozen with a programmable freezer. Thawing rates mimicked the freezing rates (e.g., rapid for DMA; moderate for DMSO and GOH). Aliquots of thawed and fresh, unfrozen semen were incubated with 1 of 12 fluorescein isothiocyanate-conjugated lectins and counterstained with propidium iodide, and mean fluorescence intensity (MFI) was assessed by flow cytometry. For each lectin, the MFI of propidium iodide-negative (viable sperm) was compared among the fresh and frozen-thawed treatments (n = 5). For sperm frozen with GOH and DMA, the MFI of most lectins was similar (P > 0.05) to that of fresh sperm, whereas only 5 of 12 lectins were similar between fresh and DMSO-frozen sperm. Sperm from all 3 methods had higher (P < 0.05) MFI for lectins specific for N-acetyl-glucosamine and β-galactose than did fresh sperm. Fewer sperm were damaged (P < 0.001) with GOH than with DMA or DMSO, and membrane integrity was correlated with MFI for 9 of 12 lectins (P < 0.05). These data indicate that surface carbohydrates are altered during cryopreservation, and that cryoprotectant type and freezing-thawing rates affect the degree of modification. Although the glycoconjugates have not yet been identified, it is likely that these cryopreservation-induced changes contribute to the reduced fertility of frozen-thawed chicken semen.
Akhtar, Muhammad T; Mushtaq, Mian Y; Verpoorte, Robert; Richardson, Michael K; Choi, Young H
2016-01-01
Zebrafish is a frequently employed model organism in systems medicine and biomarker discovery. A crosscutting fundamental question, and one that has been overlooked in the field, is the "system-wide" (omics) effects induced in zebrafish by metabolic solvents and culture buffers. Indeed, any bioactivity or toxicity test requires that the target compounds are dissolved in an appropriate nonpolar solvent or aqueous media. It is important to know whether the solvent or the buffer itself has an effect on the zebrafish model organism. We evaluated the effects of two organic carrier solvents used in research with zebrafish, as well as in drug screening: dimethyl sulfoxide (DMSO) and ethanol, and two commonly used aqueous buffers (egg water and Hank's balanced salt solution). The effects of three concentrations (0.01, 0.1, and 1%) of DMSO and ethanol were tested in the 5-day-old zebrafish embryo using proton nuclear magnetic resonance ((1)H NMR) based metabolomics. DMSO (1% and 0.1%, but not 0.01%) exposure significantly decreased the levels of adenosine triphosphate (ATP), betaine, alanine, histidine, lactate, acetate, and creatine (p < 0.05). By contrast, ethanol exposure did not alter the embryos' metabolome at any concentration tested. The two different aqueous media noted above impacted the zebrafish embryo metabolome as evidenced by changes in valine, alanine, lactate, acetate, betaine, glycine, glutamate, adenosine triphosphate, and histidine. These results show that DMSO has greater effects on the embryo metabolome than ethanol, and thus is used with caution as a carrier solvent in zebrafish biomarker research and oral medicine. Moreover, the DMSO concentration should not be higher than 0.01%. Careful attention is also warranted for the use of the buffers egg water and Hank's balanced salt solution in zebrafish. In conclusion, as zebrafish is widely used as a model organism in life sciences, metabolome changes induced by solvents and culture buffers warrant further attention for robust systems science, and precision biomarkers that will stand the test of time.
Chen, Lin; Xie, Xiaoyan; Xi, Jiafei; Lyu, Yang; Tian, Yu; Liu, Daqing; Yue, Wen; Li, Yanhua; Nan, Xue; Li, Siting; Fan, Zeng; Pei, Xuetao
2016-01-01
To discover the techniques for ex vivo generation and cryopreservation of erythroid progenitor cells (EPCs)derived from umbilical cord blood (UCB)mononuclear cells (MNCs). UCB was chosen as the source of EPCs. Erythrocytes were precipitated by hydroxyethyl starch (HES). MNCs were separated by Ficoll density gradient centrifugation. Erythroid progenitor cell were generated from MNC ex vivo in suspension culture supplemented with stem cell growth factor, insulin growth factor, erythropoietin, Fms- liketyrosinekinase ligand, transferrin and dexamethasone. Cell maturation was evaluated by morphologic analysis and CD71/CD235a expression profiling. In vitro induced cells were cryopreserved using different cryopreservation media. The cell survival rate, phenotype and proliferation curves were detected after cell thawing. With the extension of culture time, the total number of cells increased significantly accompanied with the elevation of CD71 and CD235 positive populations. After 14- day inducing, the cells reached to approximately 110 times of the starting number with the cell viability as (88.92±0.95)%. The percentages of cell surface markers were (86.77±9.11)% for CD71 and (64.47±16.67)% for CD71/CD235, respectively. With the extension of inducing time, wright- Giemsa staining showed that the middle erythroblasts appeared mostly at day 10, and the late erythroblasts were seen at day 14. The red pellets were present at day 14, which indicated the more production of hemoglobin. Colony forming assay showed that erythroid colonies at induction day 7 were higher than that for non-induced cells (326.00±97.96vs 61.60±20.03 per 2 000 cells). With the extension of culture time, the number of erythroid colonies decreased. Induced EPCs were preserved with different cryopreservation solutions, in which 10% DMSO were better than 5% DMSO. Additionally, 10% DMSO + 2% HSA showed no different with 10% DMSO + 5% HSA. Combined 50% plasma with 2% HSA was more effective. This non- serum culture media could effectively induced and expanded EPCs, and 10% DMSO + 2% HSA + 50% plasma appeared to be a desirable cryopreservation solution for EPCs from UCB.
Bilyayeva, Olga O; Neshta, Viacheslav V; Golub, Alexander A; Sams-Dodd, Frank
2017-08-01
The purpose of this study was to determine the wound healing effects of Acapsil, a white, odorless powder based on micropore particle technology (MPPT) (Willingsford Ltd, Southampton, UK) by comparing it to Gentaxane (Gentaksan, Borshchagovsky CCP, Kyiv, Ukraine) (polydimethylsiloxane powder with gentamicin antibiotic) and Ioddicerin (Farmak, Kyiv, Ukraine) (iodine with dimethyl sulfoxide [DMSO]). The study included 266 patients with primarily trophic ulcers caused by pancreatic diabetes and venous insufficiency of the lower extremities, carbuncles, phlegmons, infected third- or fourth-degree heat burns, and infiltrations of postoperative wounds. The products were applied once daily to the wound until it was clean (ie, free from necrosis, pus, and fibrinogenous thickenings). The number of days (mean ± standard deviation) to a clean wound was 3.0 ± 0.9 for MPPT (n = 88) compared with 7.0 ± 1.2 and 8.0 ± 1.1 for Gentaxane (n = 90) and iodine/DMSO (n = 88), respectively. Thus, MPPT reduced the time to reach a clean wound by 57% and 62%, respectively. Products were used once daily until a clean wound was reached, which also reflects the number of applications. Days to onset of granulation for MPPT, Gentaxane, and iodine/DMSO were 4.5 ± 0.8, 9.2 ± 1.4, and 10.3 ± 1.5 days, respectively; and days to onset of epithelialization were 7.8 ± 1.1, 14.1 ± 1.9, and 16.4 ± 2.7 days, respectively. Subgroup analysis of patients with diabetic foot and venous leg ulcers found that each of these demonstrated the same pattern of healing as the overall study. The number of hospitalization days was 14.6 ± 5.6 for MPPT, 21.0 ± 10.7 for Gentaxane, and 24.0 ± 7.9 for iodine/DMSO. Compared with Gentaxane, patients receiving MPPT had a 31% reduction in hospitalization duration and a 39% reduction compared with iodine/DMSO. These findings demonstrate that MPPT represents a valuable new approach to wound care.
Petroleum mineral oil refining and evaluation of cancer hazard.
Mackerer, Carl R; Griffis, Larry C; Grabowski, John S; Reitman, Fred A
2003-11-01
Petroleum base oils (petroleum mineral oils) are manufactured from crude oils by vacuum distillation to produce several distillates and a residual oil that are then further refined. Aromatics including alkylated polycyclic aromatic compounds (PAC) are undesirable constituents of base oils because they are deleterious to product performance and are potentially carcinogenic. In modern base oil refining, aromatics are reduced by solvent extraction, catalytic hydrotreating, or hydrocracking. Chronic exposure to poorly refined base oils has the potential to cause skin cancer. A chronic mouse dermal bioassay has been the standard test for estimating carcinogenic potential of mineral oils. The level of alkylated 3-7-ring PAC in raw streams from the vacuum tower must be greatly reduced to render the base oil noncarcinogenic. The processes that can reduce PAC levels are known, but the operating conditions for the processing units (e.g., temperature, pressure, catalyst type, residence time in the unit, unit engineering design, etc.) needed to achieve adequate PAC reduction are refinery specific. Chronic dermal bioassays provide information about whether conditions applied can make a noncarcinogenic oil, but cannot be used to monitor current production for quality control or for conducting research or developing new processes since this test takes at least 78 weeks to conduct. Three short-term, non-animal assays all involving extraction of oil with dimethylsulfoxide (DMSO) have been validated for predicting potential carcinogenic activity of petroleum base oils: a modified Ames assay of a DMSO extract, a gravimetric assay (IP 346) for wt. percent of oil extracted into DMSO, and a GC-FID assay measuring 3-7-ring PAC content in a DMSO extract of oil, expressed as percent of the oil. Extraction with DMSO concentrates PAC in a manner that mimics the extraction method used in the solvent refining of noncarcinogenic oils. The three assays are described, data demonstrating the validation of the assays are shown, and test results of currently manufactured base oils are summarized to illustrate the general lack of cancer hazard for the base oils now being manufactured.
Guo, Lie-Ping; Zhou, Fan; Shi, Hao-Tian; Chen, Hai-Min; Lin, Chen-Hui; Chen, Xiao-Ling; Hou, Jian
2016-10-01
To investigate the effect of metronomic chemotherapy of low dose phosphoramide combined with prednisolone (CP metronomic chemotherapy) on proliferation and apoptosis of RPMI 8226 cells, and to explore its regulating effect on Notch1/NF-κB signaling pathways. Experiment was divided into the DMSO control group, and the phosphoramide mustard (PM) group, the prednisolone group, the phosphoramide mustard plus prednisolone group (the CP group). RPMI 8226 cells were treated with different drugs, CCK-8 method was used to detect cell proliferation, flow cytometry was used to detect the cell cycle and apoptosis, reverse transcription PCR was used to detect Notch1 and NF-κB mRNA expression level. Compared with DMSO control group, RPMI8226 cell proliferation inhibition rate in all the PM, prednisolone and CP groups increased significantly with prolonging of time (r of 0.994,0.996,0.999, respectively, P<0.001). And at the same time, the inhibitory rate of cell proliferation was significantly different; the cell inhibitory rate in PM group was lowest, that in CP group was highgest, that in prednissone group was intermediate (P<0.01). After 48 hours, compared with the DMSO control group, the G 1 /G 0 cell proportion in treatment group increased significantly, S phase cell proportion decreased significantly, especially in PM and CP groups. The G 2 /M phase cell proportion increased in PM group, while reduced in the prednisolone and the CP groups. After 48 hours, compared with the DMSO control group, RPMI 8226 cell apoptosis rate increased as follow: in PM, pre-dnisolone and CP group(P<0.01). After 48 hours, compared with the DMSO control group, Notch1 and NF-κB mRNA expression in the prednisolone, the PM and the CP group decreased significantly(P<0.001). CP metronomic chemotherapy can significantly reduce RPMI 8226 cell proliferation, promote RPMI 8226 cell apoptosis, arrest RPMI 8226 cells mainly in the G 1 /G 0 phase, and significantly reduce Notch1 and NF-κB expression levels. It is suggested that Notch1/NF-κB signaling pathways is involved in CP metronomic chemotherapy for MM.
Solvent effect on the synthesis of clarithromycin: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Duran, Dilek; Aviyente, Viktorya; Baysal, Canan
2004-02-01
Clarithromycin (6- O-methylerythromycin A) is a 14-membered macrolide antibiotic which is active in vitro against clinically important gram-positive and gram-negative bacteria. The selectivity of the methylation of the C-6 OH group is studied on erythromycin A derivatives. To understand the effect of the solvent on the methylation process, detailed molecular dynamics (MD) simulations are performed in pure DMSO, pure THF and DMSO:THF (1:1) mixture by using the anions at the C-6, C-11 and C-12 positions of 2',4''-[ O-bis(TMS)]erythromycin A 9-[ O-(dimethylthexylsilyl)oxime] under the assumption that the anions are stable on the sub-nanosecond time scale. The conformations of the anions are not affected by the presence of the solvent mixture. The radial distribution functions are computed for the distribution of different solvent molecules around the `O-' of the anions. At distances shorter than 5 Å, DMSO molecules are found to cluster around the C-11 anion, whereas the anion at the C-12 position is surrounded by the THF molecules. The anion at the C-6 position is not blocked by the solvent molecules. The results are consistent with the experimental finding that the methylation yield at the latter position is increased in the presence of a DMSO:THF (1:1) solvent mixture. Thus, the effect of the solvent in enhancing the yield during the synthesis is not by changing the conformational properties of the anions, but rather by creating a suitable environment for methylation at the C-6 position.
8-Hydroxyquinoline based push-pull azo dye: Novel colorimetric chemosensor for anion detection
NASA Astrophysics Data System (ADS)
Arslan, Ömer; Aydıner, Burcu; Yalçın, Ergin; Babür, Banu; Seferoğlu, Nurgül; Seferoğlu, Zeynel
2017-12-01
A novel colorimetric chemosensor based on push-pull dye (8HQA) was synthesized and characterized by using IR, 1H/13C NMR and HRMS for the purpose of recognition of anions and cations in DMSO. The absorption maxima of the chemosensor were determined in different solvents. The selectivity and sensitivity of 8HQA to anions were determined with spectrophotometric and 1H NMR titration techniques. The selectivity of 8HQA for studied anions (CN-, F-, Cl-, I-, AcO-, HSO4- and H2PO4-) was determined in DMSO. There is no selectivity between competing anions such as CN-, F- AcO- and H2PO4- at the stoichiometric ratio of 1:1 in UV-vis titrations experiments however, it was observed different color changes upon addition of CN-, F-, AcO- and H2PO4- to the DMSO solution. In addition, the chemosensor showed no colorimetric response for the following anions; Cl-, I- and HSO4- in DMSO. The colorimetric sensing ability of 8HQA was studied in the presence of chloride salts of different cations such as Ca2+, Mg2+, Cu2+, Co2+, Sn2+, Ni2+, Cd2+ and Hg2+. Upon the addition of 4 equiv of each of the cations showed bathochromic shifts except for Ca2+and Cu2+. Interestingly, no selectivity was observed in interaction with metal cations. In addition, the molecular and electronic structures of 8HQA, as well as the molecular complexes of 8HQA, formed with the anions, were obtained theoretically and confirmed by DFT and TD-DFT calculations.
Deng, Fuxue; Lei, Han; Hu, Yunfeng; He, Linjing; Fu, Hang; Feng, Rui; Feng, Panpan; Huang, Wei; Wang, Xi; Chang, Jing
2016-03-01
There are controversial reports about cardiac differentiation potential of mesenchymal stem cells (MSCs), and there is still no well-defined protocol for the induction of cardiac differentiation. The effects of retinoic acid (RA) and dimethyl sulfoxide (DMSO) on the proliferation and differentiation of human fetal liver-derived MSCs (HFMSCs) as well as the pluripotent state induced by 5-azacytidine (5-aza) in vitro were investigated. MSCs were isolated from fetal livers and cultured in accordance with previous reports. Cells were plated and were treated for 24 h by the combination of 5-aza, RA and DMSO in different doses. Different culture conditions were tested in our study, including temperature, oxygen content and medium. Three weeks later, cells were harvested for the certification of cardiac differentiation as well as the pluripotency, which indicated by cardiac markers and Oct4. It was found that the cardiac differentiation was only induced when HFMSCs were treated in the following conditions: in high-dose combination (5-aza 50 μM + RA 10(-1) μM + DMSO 1 %) in cardiac differentiation medium at 37 °C and 20 % O2. The results of immunohistochemistry and quantitative RT-PCR showed that about 40 % of the cells positively expressed Nkx2.5, desmin and cardiac troponin I, as well as Oct4. No beating cells were observed during the period. The combined treatment with RA, DMSO and 5-aza in high-dose could promote HFMSCs to differentiate into cardiomyocyte-like cells and possibly through the change of their pluripotent state.
Cryopreservation of spermatozoa of black marlin, Makaira indica (Teleostei: Istiophoridae).
van der Straten, K M; Leung, L K-P; Rossini, R; Johnston, S D
2006-01-01
As a first step towards the development of a method for the cryopreservation of black marlin spermatozoa, this study investigated the effect of dimethylsulfoxide (DMSO) concentration and pellet size on post-thaw spermatozoal motility. Spermatozoa were recovered from the spermatic duct of testes retrieved post-mortem from four adult black marlin caught in the Coral Sea spawning grounds of Australia. Undiluted spermatozoa were stored on ice for 4 to 10 hours during transport to shore, then evaluated for motility after activation in seawater (1:10 v:v). Spermatozoa were prepared for cryopreservation in pellets by extension (1:3 v:v) in a defined fish Ringer's solution to give two final DMSO concentrations of 2.5% or 5.0%. Diluted spermatozoa were frozen directly on a dry ice block in pellet sizes of either 0.25 ml or 0.50 ml. Frozen pellets were thawed in a water bath at 40 degrees C for 60 seconds and assessed for post-thaw motility following activation in seawater. Spermatozoa recovered within 50 minutes of death and chilled on ice for 4 to 10 hours showed a mean (+/- SEM) motility immediately following activation of 91.6 +/- 7.9%. 50% of the spermatozoa remained motile for approximately 4 to 5 minutes. Following cryopreservation, mean motility declined significantly across all cryoprotectant and pellet size combinations (P < 0.001) but spermatozoa frozen in 2.5% DMSO showed higher motility than those frozen in 5.0% DMSO (P = 0.014). Pellet size had no effect on post-thaw motility (P = 0.179).
Zhao, Yuling; Wang, Jianji; Wang, Huiyong; Li, Zhiyong; Liu, Xiaomin; Zhang, Suojiang
2015-06-04
Recently, some binary ionic liquid (IL)/cosolvent systems have shown better performance than the pure ILs in fields such as CO2 absorption, catalysis, cellulose dissolution, and electrochemistry. However, interactions of ILs with cosolvents are still not well understood at the molecular level. In this work, H2O and DMSO were chosen as the representative protic and aprotic solvents to study the effect of cosolvent nature on solvation of a series of ILs by molecular dynamics simulations and quantum chemistry calculations. The concept of preferential interaction of ions was proposed to describe the interaction of cosolvent with cation and anion of the ILs. By comparing the interaction energies between IL and different cosolvents, it was found that there were significantly preferential interactions of anions of the ILs with water, but the same was not true for the interactions of cations/anions of the ILs with DMSO. Then, a detailed analysis and comparison of the interactions in IL/cosolvent systems, hydrogen bonds between cations and anions of the ILs, and the structure of the first coordination shells of the cations and the anions were performed to reveal the existing state of ions at different molar ratios of the cosolvent to a given IL. Furthermore, a systematic knowledge for the solvation of ions of the ILs in DMSO was given to understand cellulose dissolution in IL/cosolvent systems. The conclusions drawn from this study may provide new insight into the ionic solvation of ILs in cosolvents, and motivate further studies in the related applications.
NASA Astrophysics Data System (ADS)
Ilyas, Syafruddin; Hutahaean, Salomo; Nursal
2018-03-01
The discovery of male contraceptive drugs continues to be pursued, due to the few participation of men associated with the lack of contraceptive options for men. The combination of bitter melon seed methanol extract and DMPA are the options that currently apply to men. Therefore, the use of guinea pigs as experimental animals conducted research using experimental methods with complete randomized design (CRD). There are 4 control groups and 4 treatment groups. The first group, control group of dimethyl sulphoxide (DMSO) for 0 week (K0), The second one, bitter melon seed extract of 50 mg/100g Body Weight/day for 0 week (P0), the third one, control group of dimethyl sulfoxide (DMSO) for 4 weeks (K1), the fourth one, bitter melon seed extract of 50 mg/100g BW/day for 4 weeks + Depot medroxy Progesterone Acetate (P1), the fifth one, control group of dimethyl sulfoxide (DMSO) for 8 weeks (K2), the sixth one, bitter melon seed extract of 50 mg/100g BW/day for 8 weeks + DMPA (P2), the seventh one, control group of dimethyl sulfoxide (DMSO) for 12 weeks (K3), the eighth one, bitter melon seed extract of 50 mg/100g BW/day for 12 weeks + DMPA (P3). Methanol extract of bitter melon seed to decrease the quantity and quality of guinea pig spermatozoa decreased significantly, i.e. viability and normal morphology of spermatozoa (p<0.05).
Treatment outcomes in 3 modes of orthodontic practice.
Poulton, Donald R; Baumrind, Sheldon; Vlaskalic, Vicki
2002-02-01
This study examined differences in pretreatment severity and treatment outcome among orthodontic patients treated in 3 different practice-management modes. Samples of pretreatment (T1) and end of treatment (T2) study casts were selected from traditional private practices (TPP, 3 offices, 81 cases), a dental corporation (COMP, 2 offices, 53 cases), and a dental management service organization (DMSO, 1 office, 36 cases). Orthodontic specialists had treated all patients. Cases were initially selected on a consecutive start basis. From each practice, the first 30 cases satisfying the study criteria were included in the sample. The T1 and T2 study casts were evaluated with the PAR and HLD indexes. The PAR and HLD indexes showed a high level of agreement on T1 cast scores but not on the T2 casts. Mean T1 scores were highest in the COMP cases, followed by the DMSO and the TPP cases. T2 scores were lowest in the TPP cases, followed by the DMSO and the COMP cases. The percentage of PAR score reduction showed that, in all 3 modes, patients were treated to a high standard.
NASA Astrophysics Data System (ADS)
Shanker, Kanne; Rohini, Rondla; Ravinder, Vadde; Reddy, P. Muralidhar; Ho, Yen-Peng
2009-07-01
Reactions of [RuCl 2(DMSO) 4] with some of the biologically active macrocyclic Schiff base ligands containing N 4 and N 2O 2 donor group yielded a number of stable complexes, effecting complete displacement of DMSO groups from the complex. The interaction of tetradentate ligand with [RuCl 2(DMSO) 4] gave neutral complexes of the type [RuCl 2(L)] [where L = tetradentate macrocyclic ligand]. These complexes were characterized by elemental, IR, 1H, 13C NMR, mass, electronic, thermal, molar conductance and magnetic susceptibility measurements. An octahedral geometry has been proposed for all complexes. All the macrocycles and macrocyclic Ru(II) complexes along with existing antibacterial drugs were screened for antibacterial activity against Gram +ve ( Bacillus subtilis, Staphylococcus aureus) and Gram -ve ( Escherichia coli, Klebsiella pneumonia) bacteria. All these compounds were found to be more active when compared to streptomycin and ampicillin. The representative macrocyclic Schiff bases and their complexes were also tested in vitro to evaluate their activity against fungi, namely, Aspergillus flavus and Fusarium species.
Confocal laser scanning microscopy to estimate nanoparticles' human skin penetration in vitro.
Zou, Ying; Celli, Anna; Zhu, Hanjiang; Elmahdy, Akram; Cao, Yachao; Hui, Xiaoying; Maibach, Howard
2017-01-01
With rapid development of nanotechnology, there is increasing interest in nanoparticle (NP) application and its safety and efficacy on human skin. In this study, we utilized confocal laser scanning microscopy to estimate NP skin penetration. Three different-sized polystyrene NPs marked with red fluorescence were applied to human skin, and Calcium Green 5N was used as a counterstain. Dimethyl sulfoxide (DMSO) and ethanol were used as alternative vehicles for NPs. Tape stripping was utilized as a barrier-damaged skin model. Skin biopsies dosed with NPs were incubated at 4°C or 37°C for 24 hours and imaged using confocal laser scanning microscopy. NPs were localized in the stratum corneum (SC) and hair follicles without penetrating the epidermis/dermis. Barrier alteration with tape stripping and change in incubation temperature did not induce deeper penetration. DMSO enhanced NP SC penetration but ethanol did not. Except with DMSO vehicle, these hydrolyzed polystyrene NPs did not penetrate intact or barrier-damaged human "viable" epidermis. For further clinical relevance, in vivo human skin studies and more sensitive analytic chemical methodology are suggested.
Li, Huiling; Ren, Junli; Zhong, Linjie; Sun, Runcang; Liang, Lei
2015-01-01
The conversion of xylose, water-insoluble hemicelluloses (WIH) and water-soluble fraction (WSF) of corncob to furfural was performed using montmorillonite with tin ions (Sn-MMT) containing double acid sites as a solid acid catalyst. The co-existence of Lewis acids and Brønsted acids in Sn-MMT was shown to improve the furfural yield and selectivity. 76.79% furfural yield and 82.45% furfural selectivity were obtained from xylose using Sn-MMT as a catalyst in a biphasic system with 2-s-butylphenol (SBP) as the organic extracting layer and dimethyl sulfoxide (DMSO) as the co-solvent in contact with an aqueous phase saturated with NaCl (SBP/NaCl-DMSO) at 180°C for 30min. Furthermore, Sn-MMT also demonstrated the excellent catalytic performance in the conversion of pentose-rich materials of corncob and 39.56% and 54.15% furfural yields can be directly obtained from WIH and WSF in the SBP/NaCl-DMSO system, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fuse, Hiroyuki; Takimura, Osamu; Murakami, Katsuji; Yamaoka, Yukiho; Omori, Toshio
2000-01-01
Strain DMS-S1 isolated from seawater was able to utilize dimethyl sulfide (DMS) as a sulfur source only in the presence of light in a sulfur-lacking medium. Phylogenetic analysis based on 16S ribosomal DNA genes indicated that the strain was closely related to Marinobacterium georgiense. The strain produced dimethyl sulfoxide (DMSO), which was a main metabolite, and small amounts of formate and formaldehyde when grown on DMS as the sole sulfur source. The cells of the strain grown with succinate as a carbon source were able to use methyl mercaptan or methanesulfonate besides DMS but not DMSO or dimethyl sulfone as a sole sulfur source. DMS was transformed to DMSO primarily at wavelengths between 380 and 480 nm by heat-stable photosensitizers released by the strain. DMS was also degraded to formaldehyde in the presence of light by unidentified heat-stable factors released by the strain, and it appeared that strain DMS-S1 used the degradation products, which should be sulfite, sulfate, or methanesulfonate, as sulfur sources. PMID:11097944
Lohiya, N K; Suthar, R; Khandelwal, A; Goyal, S; Ansari, A S; Manivannan, B
2010-02-01
The functional success of the reversal of vas occlusion by styrene maleic anhydride (RISUG), using the solvent vehicle, Dimethyl Sulphoxide (DMSO), has been investigated. Reversal with DMSO was carried out in Wistar albino rats 90 days after bilateral vas occlusion. The body weight, organ weight, sperm characteristics, fertility test and teratology, including skeletal morphology were evaluated in vas occlusion and reversal animals and in F(1) progenies to assess the functional success of the occlusion and reversal. Body weight, organ weight and the cauda epididymal sperm characteristics of vas occlusion and reversal animals and of F(1) progenies were comparable to control. Ejaculated spermatozoa in the vaginal smear showed detached head/tail, acrosomal damage, bent midpiece, bent tail and morphological aberrations in sperm head after vas occlusion, which returned to normal, 90 days after reversal. Monthly fertility test, post-injection showed 0% fertility, which improved gradually and 100% fertility was achieved 90 days after reversal. The fertility/pregnancy/implantation record and skeletal morphology of the offspring were comparable to control. The results suggest functional success and safety of vas occlusion reversal by DMSO.
Perez-Rea, Daysi; Bergenståhl, Björn; Nilsson, Lars
2016-02-01
In this paper, we investigate whether dissolution in water under autoclaving conditions (140 °C, 20 min) or in dimethyl sulfoxide, DMSO (100 °C, 1 h), is preferable for characterization of amylose. Two types of amylose, potato and maize, were dissolved either in water using an autoclave or in DMSO. On the aqueous solutions obtained, the extent of molecular dissolution of the sample (referred to as the dissolution yield) was determined by enzymatic analysis as well as the molecular properties, such as molar mass and root-mean-square radius, obtained with asymmetrical flow field-flow fractionation coupled to multi-angle light scattering and differential refractive index detection (AF4-MALS-dRI). The results showed that both dissolution methods are efficient at dissolving amylose. However, AF4-MALS-dRI analysis revealed substantial differences. Amylose aqueous solutions obtained by dissolution in DMSO were relatively stable over time, but the dissolution method in autoclave caused some degradation of the molecules, and their solutions display a high tendency to retrograde.
Xin, Ping-Ping; Huang, Yao-Bing; Hse, Chung-Yun; Cheng, Huai N.; Huang, Chaobo; Pan, Hui
2017-01-01
Homogeneous modification of cellulose with succinic anhydride was performed using tetrabutylammonium acetate (TBAA)/dimethyl sulfoxide (DMSO) mixed solvent. The molar ratio of succinic anhydride (SA) to free hydroxyl groups in the anhydroglucose units (AGU), TBAA dosage, reaction temperature, and reaction time were investigated. The highest degree of substitution (DS) value of 1.191 was obtained in a 10 wt% TBAA/DMSO mixed solvent at 60 °C for 60 min, and the molar ratio of SA/AGU was 6/1. The molar ratio of SA/AGU and the TBAA dosage showed a significant influence on the reaction. The succinoylated cellulose was characterized by ATR-FTIR, TGA, XRD, solid state CP/MAS 13C NMR spectroscopy (CP/MAS 13C NMR), and SEM. Moreover, the modified cellulose was applied for the adsorption of Cu2+ and Cd2+, and both the DS values of modified cellulose and pH of the heavy metal ion solutions affected the adsorption capacity of succinylated cellulose. The highest capacity for Cu2+ and Cd2+ adsorption was 42.05 mg/g and 49.0 mg/g, respectively. PMID:28772885
Xin, Ping-Ping; Huang, Yao-Bing; Hse, Chung-Yun; Cheng, Huai N; Huang, Chaobo; Pan, Hui
2017-05-12
Homogeneous modification of cellulose with succinic anhydride was performed using tetrabutylammonium acetate (TBAA)/dimethyl sulfoxide (DMSO) mixed solvent. The molar ratio of succinic anhydride (SA) to free hydroxyl groups in the anhydroglucose units (AGU), TBAA dosage, reaction temperature, and reaction time were investigated. The highest degree of substitution (DS) value of 1.191 was obtained in a 10 wt% TBAA/DMSO mixed solvent at 60 °C for 60 min, and the molar ratio of SA/AGU was 6/1. The molar ratio of SA/AGU and the TBAA dosage showed a significant influence on the reaction. The succinoylated cellulose was characterized by ATR-FTIR, TGA, XRD, solid state CP/MAS 13 C NMR spectroscopy (CP/MAS 13 C NMR), and SEM. Moreover, the modified cellulose was applied for the adsorption of Cu 2+ and Cd 2+ , and both the DS values of modified cellulose and pH of the heavy metal ion solutions affected the adsorption capacity of succinylated cellulose. The highest capacity for Cu 2+ and Cd 2+ adsorption was 42.05 mg/g and 49.0 mg/g, respectively.
Enhance the anti-microorganism activity of cinnamon oil by xanthan gum as emulsifying agent
NASA Astrophysics Data System (ADS)
Lieu, Dong M.; Dang, Thuy T. K.; Nguyen, Huong T.
2018-04-01
The aim of this study was to evaluate the effect of emulsifying agents (tween 20, DMSO (Dimethyl Sulfoxide) and xanthan gum) to inhibit Escherichia coli; Staphylococcus aureus; Saccharomyces cerevisiae and Aspergillus niger by cinnamon oil (Cinnamomum Cassia). Cinnamon oil was added in the emulsifying agents independently: tween 20 (0.3% v/v). DMSO (0.3% v/v) and xanthan gum (0.3% w/v) at different concentrations and evaluated their anti-microorganism activity by agar disk diffusion, mycelial growth inhibition and growth inhibition in liquid phase. The result indicated that, cinnamon oil diluted in different emulsifying agents showed the difference of the anti-microorganism activity, in which DMSO showed the lowest result. Xanthan gum and tween 20 show good stable emulsion. The anti-microorganism effect of cinnamon oil in tween 20 and xanthan gum was not significant difference. However, cinnamon oil in xanthan gum showed anti-microorganism activity better than tween 20 at low concentration in agar disk diffusion. This suggests that, cinnamon oil could be encapsulated by xanthan gum to enhance the anti-microorganism activity.
Cao, Wenluo; Li, Lingna; Tran, Benjamin; Kajiura, Satoshi; Amoh, Yasuyuki; Liu, Fang; Hoffman, Robert M.
2015-01-01
We previously demonstrated that whole hair follicles could be cryopreserved to maintain their stem-cells differentation potential. In the present study, we demonstrated that cryopreserved mouse whisker hair follicles maintain their hair growth potential. DMSO better cryopreserved mouse whisker follicles compared to glycerol. Cryopreserved hair follicles also maintained the hair follicle-associated-pluripotent (HAP) stem cells, evidenced by P75NTR expression. Subcutaneous transplantation of DMSO-cryopreserved hair follicles in nude mice resulted in extensive hair fiber growth over 8 weeks, indicating the functional recovery of hair shaft growth of cryopreserved hair follicles. PMID:26716690
Cao, Wenluo; Li, Lingna; Tran, Benjamin; Kajiura, Satoshi; Amoh, Yasuyuki; Liu, Fang; Hoffman, Robert M
2015-01-01
We previously demonstrated that whole hair follicles could be cryopreserved to maintain their stem-cells differentation potential. In the present study, we demonstrated that cryopreserved mouse whisker hair follicles maintain their hair growth potential. DMSO better cryopreserved mouse whisker follicles compared to glycerol. Cryopreserved hair follicles also maintained the hair follicle-associated-pluripotent (HAP) stem cells, evidenced by P75NTR expression. Subcutaneous transplantation of DMSO-cryopreserved hair follicles in nude mice resulted in extensive hair fiber growth over 8 weeks, indicating the functional recovery of hair shaft growth of cryopreserved hair follicles.
Synthesis and Characterization of Novel Ruthenium(III) Complexes with Histamine
Kljun, Jakob; Petriček, Saša; Žigon, Dušan; Hudej, Rosana; Miklavčič, Damijan; Turel, Iztok
2010-01-01
Novel ruthenium(III) complexes with histamine [RuCl4(dmso-S)(histamineH)] · H2O (1a) and [RuCl4(dmso-S)(histamineH)] (1b) have been prepared and characterized by X-ray structure analysis. Their crystal structures are similar and show a protonated amino group on the side chain of the ligand which is not very common for a simple heterocyclic derivative such as histamine. Biological assays to test the cytotoxicity of the compound 1b combined with electroporation were performed to determine its potential for future medical applications in cancer treatment. PMID:20631838
The Use of Drugs to Reduce Hearing Loss Following Acute Acoustic Trauma
2013-10-15
Src and Ebselen were put into solution using DMSO. Both EDTA and DMSO have anti- oxidant /anti-inflammatory properties. As a result the SOW was modified...P re ss ur e (d B S P L) Driver Pressure (psi) diaphragm: Grafit Clear Acetate Thickness d=0.003 in. -600 -400 -200 0 200 400 600 800 0 50 100 150...A m pl itu de ms -100 0 100 200 300 400 500 600 700 0 0.5 1 1.5 2 Figure 2. Peak pressure of the incident shock wave at the entrance of the 36
NASA Astrophysics Data System (ADS)
Yao, Mingzhen
2011-12-01
Lanthanide based nanomaterials have shown a great potential in various areas such as luminescence imaging, luminescent labels, and detection of cellular functions. Due to the f-f transitions of the metal ion, luminescence of lanthanide ions is characterized by sharp and narrow emissions. In this dissertation lanthanide based nanoparticles such as Ce3+, Eu3+ and other lanthanide ions doped LaF3 were synthesized, their characterization, encapsulation and embedding into hybrid matrix were investigated and some of their biomedical and radiological applications were studied. DMSO is a common solvent which has been used widely for biological applications. LaF3:Ce nanoparticles were synthesized in DMSO and it was found that their fluorescent emission originates from the metal-to-ligand charge-transfer excited states. After conjugation with PpIX and then encapsulation within PLGA, the particles show efficient uptake by cancer cells and great cytotoxicity, which is promising for applications in cancer treatments. However, the emission of Eu3+ in DMSO is totally different from LaF3:Ce, very strong characteristic luminescence is observed but no emissions from metal-to-ligand charge-transfer excited states as observed in LaF3:Ce in DMSO. Besides, it is very interesting to see that the coupling of Eu 3+ with O-H oscillations after water was introduced has an opposite effect on emission peaks at 617 nm and its shoulder peak at 613 nm. As a result, the intensity ratio of these two emissions has a nearly perfect linear dependence on increasing water concentration in Eu-DMSO, which provides a very convenient and valuable method for water determination in DMSO. Ce3+ has been well known as an emitter for radiation detection due to its very short decay lifetime. However, its emission range limited the environment in which the detection system works. Whereas, Quantum dots have high luminescence quantum efficiency but their low stopping power results in very weak scintillation luminescence. Nanocompounds formed with CdTe quantum dots and LaF3:Ce nanoparticles optimize both stopping power and scintillation efficiency based on energy transfer from LaF3:Ce to CdTe. Hybrid matrix materials such as ORMOSIL have superior mechanical properties and a better processability than pure molecular material which could be used as carrier of radiation material. Moreover, embedding a lanthanide complex in a hybrid matrix enhances its thermal stability and luminescence output. LaF3:Ce doped ORMOSIL was synthesized by using two different LaF3:Ce, the nanoparticle doping concentration can reach up to 15.66% while its transparency and luminescent properties were maintained. These materials are very promising for radiation detection.
Bao, Hong-Gang; Zhang, Wei-Ze; Ma, Ling; Li, Tao; Wang, Fei; Chen, Yong-Qing
2013-04-01
To explore the effects of glutamine (Gln) induced heat shock protein 70(Hsp70) overexpression on atrial fibrosis and connexin 43 remodeling in isoprenaline(ISO)treated rats and related mechanisms. Forty male SD rats were randomly divided into five groups (n = 8 each group): control group, DMSO group, ISO 5 mg×kg(-1)×d(-1) group (Fibrosis group), ISO 5 mg×kg(-1)×d(-1) + Ala-Gln 0.75 mg×kg(-1)×d(-1) group (Intervention group) and ISO 5 mg×kg(-1)×d(-1) + QUE 100 mg× kg(-1)×d(-1) + Ala-Gln 0.75 mg×kg(-1)×d(-1) + DMSO group (QUE group).Rats were killed after 7 d. The AngII expression in myocardial tissue was detected by radioimmunoassay; myocardial fibrosis was observed by HE staining.Collagen volume fractions were quantified by Masson staining and as the indicators of atrial fibrosis. The expressions of Hsp70, p-JNK1/2/3, c-Jun and Cx43 were determined with immunohistochemical method. AngII content was similar between the control group [(68.51 ± 10.76) pg/L] and DMSO [(71.47 ± 11.49) pg/L] group (P > 0.05), and significantly increased in fibrosis group [(211.25 ± 49.49) pg/L], intervention group [(185.32 ± 54.85) pg/L] and QUE [(189.90 ± 42.12) pg/L] group (P < 0.01 vs. control group). Atrial fibrosis was significantly higher in the fibrosis group [(29.485 ± 9.966)%] and QUE group [(25.060 ± 8.581)%] but not in the intervention group [(7.861 ± 1.867)%] compared to control group [(6.842 ± 1.674)%] and DMSO group [(7.108 ± 1.343)%]. The expression of Hsp70 was similar among the control group (0.160 ± 0.023), DMSO group (0.163 ± 0.022), fibrosis group (0.166 ± 0.028) and QUE (0.168 ± 0.027) group (P > 0.05) while significantly upregulated in the intervention group (0.215 ± 0.018) (P < 0.01 vs. control group). The expressions of p-JNK1/2/3 and c-Jun were similar between control group (0.151 ± 0.016;0.163 ± 0.022) and DMSO group (0.154 ± 0.021;0.164 ± 0.024)(P > 0.05), while significantly upregulated in fibrosis group (0.202 ± 0.025; 0.254 ± 0.044) and QUE group (0.196 ± 0.024; 0.251 ± 0.027) (P < 0.01 vs. control group) but not in intervention group (0.160 ± 0.025; 0.168 ± 0.024)were not changed obviously (P > 0.05 vs. control group). The content of Cx43 was similar between control group and DMSO group (0.231 ± 0.035 vs. 0.220 ± 0.032, P > 0.05), and was linearly distributed in intercalated disc of the cardiomyocytes, however, the content of Cx43 was significantly reduced (P < 0.01) and the Cx43 distribution was disordered in fibrosis group (0.163 ± 0.013) and QUE group (0.165 ± 0.024), while these changes were not found in intervention group. Glutamine could reduce the atrial fibrosis and Cx43 remodeling in isoprenaline-treated rats by up-regulating Hsp70 and inhibiting JNK signaling pathway activation through down-regulating p-JNK1/2/3 and c-Jun expression.
Boryczka, Stanisław; Jastrzebska, Maria; Bębenek, Ewa; Kusz, Joachim; Zubko, Maciej; Kadela, Monika; Michalik, Ewa
2012-12-01
X-ray diffraction and infrared spectroscopy measurements for the N,N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) solvatomorphs of betulonic acid (BA) were investigated. BA [3-oxolup-20(29)-en-28-oic acid, C(30)H(46)O(3)] exhibits a wide spectrum of biological activities and is considered to be a promising natural agent for the treatment of various cancer diseases. BA as a noncrystalline substance was obtained by oxidation of betulin. Crystal structures and the spectral data allowed analysis of hydrogen bonding (H-bonding), molecular conformation, and crystal packing differences in the solvatomorphs. Crystals of BA solvates were grown from the DMF-acetone (1:10, v/v) and DMSO-water (9:1, v/v) solutions. BA-DMF (1:1) solvate crystallizes in the monoclinic P2(1) space group, Z = 2. The unit cell parameters are as follows: cell lengths a = 13.2458(5) Å, b = 6.6501(2) Å, c = 17.9766(7) Å, and β = 110.513(4)°. BA-DMSO (1:1) solvate crystallizes in the orthorhombic P2(1)2(1)2(1) (Z = 4) space group with the following unit cell parameters: a = 6.6484(4) Å, b = 13.3279(8) Å, and c = 32.6821(19) Å. Conformational analysis of the six-membered rings, cyclopentane ring, and isopropenyl group showed differences in comparison with other betulin derivatives examined earlier. For both solvates, the intermolecular packing arrangement was governed mainly by H-bonds. The shortest H-bonds with D···A distances of 2.604 and 2.657 Å, and almost linear DH···A connection occurred between OH of carboxylic group of BA and oxygen atoms from O=C and O=S groups of DMF and DMSO, respectively. Copyright © 2012 Wiley Periodicals, Inc.
Srivastava, Kinshuk Raj; Kumar, Anil; Goyal, Bhupesh; Durani, Susheel
2011-05-26
The competing interactions folding and unfolding protein structure remain obscure. Using homopolypeptides, we ask if poly-L structure may have a role. We mutate the structure to alternating-L,D stereochemistry and substitute water as the fold-promoting solvent with methanol and dimethyl sulfoxide (DMSO) as the fold-denaturing solvents. Circular dichroism and molecular dynamics established previously that, while both isomers were folded in water, the poly-L isomer was unfolded and alternating-L,D isomer folded in methanol. Nuclear magnetic resonance and molecular dynamics establish now that both isomers are unfolded in DMSO. We calculated energetics of folding-unfolding equilibrium with water and methanol as solvents. We have now calculated interactions of unfolded polypeptide structures with DMSO as solvent. Methanol was found to unfold and water fold poly-L structure as a dielectric. DMSO has now been found to unfold both poly-L and alternating-L,D structures by strong solvation of peptides to disrupt their hydrogen bonds. Accordingly, we propose that while linked peptides fold protein structure with hydrogen bonds they unfold the structure electrostatically due to the stereochemical effect of the poly-L structure. Protein folding to ordering of peptide hydrogen bonds with water as canonical solvent may thus involve two specific and independent solvent effects-one, strong screening of electrostatics of poly-L linked peptides, and two, weak dipolar solvation of peptides. Correspondingly, protein denaturation may involve two independent solvent effects-one, weak dielectric to unfold poly-L structure electrostatically, and two, strong polarity to disrupt peptide hydrogen bonds by solvation of peptides.
Nicoud, Ian B; Clarke, Dominic M; Taber, Greta; Stolowski, Kristin M; Roberge, Sarah E; Song, Melissa K; Mathew, Aby J; Reems, Jo-Anna
2012-09-01
Cryopreservation protocols have remained relatively unchanged since the first umbilical cord blood banking program was established. This study evaluated the preservation efficacy of a novel intracellular-like cryopreservation solution (CryoStor, BioLife Solutions, Inc.), the rate of addition of two cryopreservation solutions to cord blood units (CBUs), and reduced final dimethyl sulfoxide (DMSO) concentration of 5%. Split-sample CBUs were cryopreserved with either an in-house 20% DMSO-based cryopreservation solution or CryoStor CS10 at a rate of 1 mL/min (n = 10; i.e., slow addition) or as a bolus injection (n = 6; i.e., fast addition). Infrared images of exothermic effects of the cryopreservation solutions were monitored relative to the rate of addition. Prefreeze and postthaw colony-forming unit assays, total nucleated cells, and CD34+ cell counts were compared. Maximum temperature excursions observed were less than 6°C, regardless of the rate of solution addition. Fast addition resulted in peak excursions approximately twice that of slow addition but the magnitude and duration were minimal and transient. Slow addition of CryoStor CS10 (i.e., final concentration ≤ 5% DMSO) resulted in significantly better postthaw CD34+ cell recoveries; no other metrics were significantly different. Fast addition of CryoStor resulted in similar postthaw metrics compared to slow addition of the in-house solution. Slow and fast addition of cryopreservation solutions result in mean temperature changes of approximately 3.3 to 4.45°C. Postthaw recoveries with CryoStor were equivalent to or slightly better than with the in-house cryopreservation solution. CryoStor also provides several advantages including reduced processing time, formulation consistency, and reduced DMSO in the frozen product (≤ 5%). © 2012 American Association of Blood Banks.
Ozone Ameliorates Doxorubicine-Induced Skin Necrosis - results from an animal model.
Kesik, Vural; Yuksel, Ramazan; Yigit, Nuri; Saldir, Mehmet; Karabacak, Ercan; Erdem, Galip; Babacan, Oguzhan; Gulgun, Mustafa; Korkmazer, Nadir; Bayrak, Ziya
2016-09-01
Doxorubicin (DXR) extravasation result with serious morbidity like skin ulceration and necrosis. The purpose of this study is to determine the protective effects of ozone, olive oil, dimethyl sulfoxide (DMSO), and coenzyme Q10 in the treatment of DXR-induced skin ulcers on rats. After an intradermal injection of DXR on a basis of an animal extravasation model, the materials were topically applied. The ulcer sizes were measured, and a punch biopsy was taken from the extravasation site in which the skin ulcers formed at the end of the experiment. The samples were analyzed for tumor necrosis factor alpha (TNF-α), interleukin 1-beta (IL1β), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) enzymes, and examined histopathologically. The ulcer sizes clearly decreased in the study groups, including DMSO, olive oil, ozone plus coenzyme Q10, and ozone plus olive oil groups in comparison with the control group with the exception of the coenzyme Q10 group. The malondialdehyde levels were lower in the DMSO, olive oil, ozone plus olive oil, and ozone plus coenzyme Q10 groups than they were in the control group, but they were not significantly different. The TNF-α level was lower in the DMSO, ozone plus olive oil, coenzyme Q10, and ozone plus coenzyme Q10 groups in comparison with the control group. There was no significant change in the SOD, GSH-Px, and IL1β levels in the study groups in comparison with the control and the sham groups. The ozone plus olive oil group could be considered to be an alternate therapy for skin ulcers due to DXR extravasation. © The Author(s) 2015.
Sarder, M Rafiqul Islam; Sarker, M F Monowar; Saha, Shankar K
2012-12-01
This study dealt with the development of cryopreservation protocol for Nandus nandus, which entailed a number of experiments. Sperm was collected by sacrificing males. The collected sperm was suspended in extenders. Activation of sperm motility was evaluated in different osmolalities of NaCl. Motility of sperm decreased as the osmolality of the extender increased and was completely inhibited at almost 319 mOs mol/kg. To evaluate the toxicity of cryoprotectant, sperm was incubated with DMSO, methanol and ethanol at 5%, 10% and 15% concentrations, respectively, for 5-35 min. Five and ten percent of cryoprotectants produced better motility during 5 and 10 min incubation. Sperm incubated with 15% cryoprotectant seemed to be toxic and this concentration was excluded in the subsequent trials. Three extenders, namely, Alsever's solution, egg-yolk citrate and urea egg-yolk and three cryoprotectants, DMSO, methanol and ethanol were employed to preserve the sperm. Alsever's solution with 10% DMSO showed best performance producing 90.0±1.8% and 75.0±2.5% equilibration and post-thaw motility followed by that of 82.5±4.2% and 62.5±5.5% with Alsever's solution plus methanol, respectively. Between two diluents, sperm preserved with Alsever's solution plus DMSO produced highest fertilization (76.7±3.3%) and hatching (43.8±7.9%) while fresh sperm yielded 83.3±6.7% and 64.0±10.4% fertilization and hatching, respectively. The protocol developed through the study can be applied for long-term conservation of genetic materials of the endangered fish N. nandus and the cryopreserved sperm can be used in artificial breeding for generating new individuals. Copyright © 2012 Elsevier Inc. All rights reserved.
Molecular analysis of hprt mutations induced by chromium picolinate in CHO AA8 cells.
Coryell, Virginia H; Stearns, Diane M
2006-11-07
Chromium picolinate (CrPic) is a popular dietary supplement, marketed to the public for weight loss, bodybuilding, and control of blood sugar. Recommendations for long-term use at high dosages have led to questions regarding its safety. Previous studies have reported that CrPic can cause chromosomal aberrations and mutations. The purpose of the current work was to compare the mutagenicity of CrPic as a suspension in acetone versus a solution in DMSO, and to characterize the hprt mutations induced by CrPic in CHO AA8 cells. Treatments of 2% acetone or 2% DMSO alone produced no significant increase in 6-thioguanine (6-TG)-resistant mutants after 48 h exposures. Mutants resistant to 6-TG were generated by exposing cells for 48 h to 80 microg/cm(2) CrPic in acetone or to 1.0mM CrPic in DMSO. CrPic in acetone produced an average induced mutation frequency (MF) of 56 per 10(6) surviving cells relative to acetone solvent. CrPic in acetone was 3.5-fold more mutagenic than CrPic in DMSO, which produced an MF of 16.2. Characterization of 61 total mutations in 48 mutants generated from exposure to CrPic in acetone showed that base substitutions comprised 33% of the mutations, with transversions being predominant; deletions made up 62% of the mutations, with one-exon deletions predominating; and 1-4 bp insertions made up 5% of the characterized mutations. CrPic induced a statistically greater number of deletions and a statistically smaller number of base substitutions than have been measured in spontaneously generated mutants. These data confirm previous studies showing that CrPic is mutagenic, and support the contention that further study is needed to verify the safety of CrPic for human consumption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Chaowei; Reddy, Amitha P.; Simmons, Christopher W.
Microbial communities enriched from diverse environments have shown considerable promise for the targeted discovery of microorganisms and enzymes for bioconversion of lignocellulose to liquid fuels. While preservation of microbial communities is important for commercialization and research, few studies have examined storage conditions ideal for preservation. The goal of this study was to evaluate the impact of preservation method on composition of microbial communities enriched on switchgrass before and after storage. The enrichments were completed in a high-solid and aerobic environment at 55 °C. Community composition was examined for each enrichment to determine when a stable community was achieved. Preservation methodsmore » included cryopreservation with the cryoprotective agents DMSO and glycerol, and cryopreservation without cryoprotective agents. Revived communities were examined for their ability to decompose switchgrass under high-solid and thermophilic conditions. High-throughput 16S rRNA gene sequencing of DNA extracted from enrichment samples showed that the majority of the shift in composition of the switchgrass-degrading community occurred during the initial three 2-week enrichments. Shifts in community structure upon storage occurred in all cryopreserved samples. Storage in liquid nitrogen in the absence of cryoprotectant resulted in variable preservation of dominant microorganisms in enriched samples. Cryopreservation with either DMSO or glycerol provided consistent and equivalent preservation of dominant organisms. In conclusion, a stable switchgrass-degrading microbial community was achieved after three 2-week enrichments. Dominant microorganisms were preserved equally well with DMSO and glycerol. DMSO-preserved communities required more incubation time upon revival to achieve pre-storage activity levels during high-solid thermophilic cultivation on switchgrass. Despite shifts in the community with storage, the samples were active upon revival under thermophilic and high-solid conditions. The results suggest that the presence of microorganisms may be more important than their relative abundance in retaining an active microbial community.« less
NASA Astrophysics Data System (ADS)
Chen, Q.; Breider, T.; Schmidt, J.; Sherwen, T.; Evans, M. J.; Xie, Z.; Quinn, P.; Bates, T. S.; Alexander, B.
2017-12-01
The radiative forcing from marine boundary layer clouds is still highly uncertain, which partly stems from our poor understanding of cloud condensation nuclei (CCN) formation. The oxidation of dimethyl sulfide (DMS) and subsequent chemical evolution of its products (e.g. DMSO) are key processes in CCN formation, but are generally very simplified in large-scale models. Recent research has pointed out the importance of reactive halogens (e.g. BrO and Cl) and multiphase chemistry in the tropospheric sulfur cycle. In this study, we implement a series of sulfur oxidation mechanisms into the GEOS-Chem global chemical transport model, involving both gas-phase and multiphase oxidation of DMS, DMSO, MSIA and MSA, to improve our understanding of the sulfur cycle in the marine troposphere. DMS observations from six locations around the globe and MSA/nssSO42- ratio observations from two ship cruises covering a wide range of latitudes and longitudes are used to assess the model. Preliminary results reveal the important role of BrO for DMS oxidation at high latitudes (up to 50% over Southern Ocean). Oxidation of DMS by Cl radicals is small in the model (within 10% in the marine troposphere), probably due to an underrepresentation of Cl sources. Multiphase chemistry (e.g. oxidation by OH and O3 in cloud droplets) is not important for DMS oxidation but is critical for DMSO oxidation and MSA production and removal. In our model, about half of the DMSO is oxidized in clouds, leading to the formation of MSIA, which is further oxidized to form MSA. Overall, with the addition of reactive halogens and multiphase chemistry, the model is able to better reproduce observations of seasonal variations of DMS and MSA/nssSO42- ratios.
Kravchick, Sergey; Peled, Ronit; Ben-Dor, David; Dorfman, Dov; Kesari, David; Cytron, Shmuel
2005-01-01
To introduce two forms of anesthesia and compare them with standard local anesthesia techniques. A total of 114 consecutive patients underwent prostate needle biopsy. The patients were sequentially randomized to receive different kinds of anesthesia: 2% rectal lidocaine gel, 40% dimethyl sulfoxide (DMSO) with lidocaine, perianal injection of 1% lidocaine, or periprostatic nerve block. Pain perception was separately assessed for probe insertion and biopsies using a visual pain analog score. One-way analysis of variance was used to compare the data scale among the four groups. A linear regression model was used to define the independent variables that predicted the level of pain. The groups were similar in terms of age, prostate-specific antigen levels, digital rectal examination findings, prostate volume, pain tolerance, biopsy time, and number of cores taken. The lowest pain scores for probe insertion were for the perianal injection and DMSO/lidocaine groups (0.89 and 1.38, respectively). The difference between these scores and those for the other two groups was statistically significant (P <0.001). Pain perception during biopsy did not differ significantly among the DMSO/lidocaine, perianal, or periprostatic groups and was greatest in the lidocaine gel group (4.147; P <0.001). We did not observe any statistically significant correlation between the pain level during probe insertion and biopsy and pain tolerance (P = 0.514 and P = 0.788, respectively). The anesthesia type was the strongest single predictor of the pain level during biopsy (P <0.001). The use of 40% DMSO with lidocaine instilled into the rectal vault for 10 minutes avoids any need for injection and is capable of decreasing the discomfort or pain experienced during probe insertion and prostate biopsy comparable to the perianal and periprostatic protocols.
Boybeyi, Ozlem; Bakar, Bulent; Aslan, Mustafa Kemal; Atasoy, Pinar; Kisa, Ucler; Soyer, Tutku
2014-12-01
A thoracic trauma model was designed to evaluate the effect of dimethyl sulfoxide (DMSO) and dexamethasone (DX) on histopathologic and oxidative changes in lung parenchyma seen after pulmonary contusion. Twenty-four Wistar albino rats were included in the study. They were allocated into control (CG, n=6), sham (SG, n=6), DX (DXG, n=6), and DMSO (DMG, n=6) groups. Only a lung biopsy was performed in CG. In the experimental groups, blunt thoracic trauma was induced by dropping a cylindrical metal weight (0.5 kg) through a stainless steel tube onto the right hemithorax from a height of 0.4 m (E=1.96 J). In the SG, 1 mL of physiologic saline was injected intraperitoneally, in the DXG 10 mg/kg of DX was injected intraperitoneally, and in the DMG 1.2 g/mL of DMSO was injected intraperitoneally 15 minutes after trauma. After 6 hours, lung biopsy was performed for histopathologic and oxidative injury markers. Histopathologically, congestion, hemorrhage, neutrophil infiltration, endothelial-nitric oxide synthase (E-NoS), and total pathologic score were significantly higher in SG, DXG, and DMG when compared with CG (p<0.05). Neutrophil infiltration, total pathologic score, and E-NoS were significantly decreased in DMG when compared with SG and DXG (p<0.05). Biochemically, superoxide dismutase (SOD) level was significantly higher in SG, DXG, and DMG than in CG. SOD level was significantly lower in DXG and DMG than in SG (p<0.05). DMSO prevents further injury by decreasing neutrophil infiltration and endothelial injury in lung contusions. DX may have a role in the progression of inflammation but not in preventing the pathologic disruption of pulmonary parenchyma. Georg Thieme Verlag KG Stuttgart · New York.
Radiation-induced double-strand breaks in mammalian DNA: influence of temperature and DMSO.
Elmroth, K; Nygren, J; Erkell, L J; Hultborn, R
2000-11-01
To investigate the effects of subphysiological irradiation temperature (2 28 degrees C) and the influence of the radical scavenger DMSO on the induction of double-strand breaks (DSB) in chromosomal DNA from a human breast cancer cell line (MCF-7) as well as in intact cells. The rejoining of DSB in cells irradiated at 2 degrees C or 37 degrees C was also investigated. Agarose plugs with [14C]thymidine labelled MCF-7 cells were lysed in EDTA-NLS-proteinase-K buffer. The plugs containing chromosomal DNA were irradiated with X-rays under different temperatures and scavenging conditions. Intact MCF-7 cells were irradiated in Petri dishes and plugs were made. The cells were then lysed in EDTA-NLS-proteinase-K buffer. The induction of DSB was studied by constant field gel electrophoresis and expressed as DSB/100/Mbp, calculated from the fraction of activity released into the gel. The induction of DSB in chromosomal DNA was reduced by a decrease in temperature. This protective effect of low temperature was inhibited when the DNA was irradiated in the presence of DMSO. No difference was found when intact cells were irradiated at different temperatures. However, the rapid phase of rejoining was slower in cells irradiated at 37 degrees C than at 2 degrees C. The induction of DSB in naked DNA was reduced by hypothermic irradiation. The temperature had no influence on the induction of DSB in the presence of a high concentration of DMSO, indicating that the temperature effect is mediated via the indirect effects of ionizing radiation. Results are difficult to interpret in intact cells. Rejoining during irradiation at the higher temperature may counteract an increased induction. The difference in rejoining may be interpreted in terms of qualitative differences between breaks induced at the two temperatures.
NASA Astrophysics Data System (ADS)
Wang, Shan; Zhang, Weijia; Ma, Denghao; Jiang, Zhaoyi; Fan, Zhiqiang; Ma, Qiang; Xi, Yilian
2018-01-01
In this paper, the CH3NH3PbI3-xBrx films with various Br-doping contents were successfully prepared by solution processed deposition and followed by annealing process. This method simultaneously modified the morphology and composition of the CH3NH3PbI3 film. The effects of annealing treatment of CH3NH3PbI3-xBrx films under N2 and DMSO conditions on the microstructure of films and photoelectric properties of the solar cells were systematically investigated. The relationship of the component ratio of RBr/I= CH3NH3PbI3-xBrx/CH3NH3PbI3 in the resulting perovskite versus CH3NH3Br concentration also was explored. The results revealed that the CH3NH3PbI3-xBrx films annealed under DMSO exhibited increased grain sizes, enhanced crystallinity, enlarged bandgap and reduced defect density compared with that of the N2 annealing. It also was found that the RBr/I linearly increased in the resulting perovskite with the increased of CH3NH3Br concentration in the methylammonium halide mixture solutions. Furthermore, the photovoltaic performances of devices fabricated using DMSO precursor solvent were worse than that of DMF under N2 annealing atmosphere. When CH3NH3Br concentration was 7.5 mg ml-1, the planar perovskite solar cell based on CH3NH3PbI3-xBrx annealed under DMSO showed the best efficiency of 13.7%.
Investigation of needleless electrospun PAN nanofiber mats
NASA Astrophysics Data System (ADS)
Sabantina, Lilia; Mirasol, José Rodríguez; Cordero, Tomás; Finsterbusch, Karin; Ehrmann, Andrea
2018-04-01
Polyacrylonitrile (PAN) can be spun from a nontoxic solvent (DMSO, dimethyl sulfoxide) and is nevertheless waterproof, opposite to the biopolymers which are spinnable from aqueous solutions. This makes PAN an interesting material for electrospinning nanofiber mats which can be used for diverse biotechnological or medical applications, such as filters, cell growth, wound healing or tissue engineering. On the other hand, PAN is a typical base material for producing carbon nanofibers. Nevertheless, electrospinning PAN necessitates convenient spinning parameters to create nanofibers without too many membranes or agglomerations. Thus we have studied the influence of spinning parameters on the needleless electrospinning process of PAN dissolved in DMSO and the resulting nanofiber mats.
Felizardo, V O; Melo, C C V; Murgas, L D S; Andrade, E S; Navarro, R D; Ftreitas, T F
BACKGROUND: Cryopreserved semen could facilitate procedures during the artificial reproduction in fish. Factors affecting cryopreservation efficiency are important to define efficient protocols. This study investigated the application of cryoprotectants on the quality of piracanjuba fish semen, the sperm concentration required for oocyte fertilization and spermatic activation. We evaluated two intracellular cryoprotectant solutions (DMSO and methanol) and two extracellular cryoprotectant solutions (egg yolk and lactose) to cryopreserved piracanjuba semen. Sperm motility rate, motility duration and spermatic alterations were assessed. The protocol for piracanjuba semen cryopreservation can use solutions including either DMSO or methanol as intracellular cryoprotectant and egg yolk or lactose as extracellular cryoprotectants.
NASA Astrophysics Data System (ADS)
Sharma, Darshna; Kuba, Aman; Thomas, Rini; Ashok Kumar, S. K.; Kuwar, Anil; Choi, Heung-Jin; Sahoo, Suban K.
2016-03-01
Two new Schiff base receptors have been synthesized by condensation of pyridoxal-5-phosphate with 2-aminophenol (L1) or aniline (L2). In DMSO, the receptors showed both chromogenic and 'turn-on' fluorescence responses selectively in the presence of AcO- and F-. However, in mixed DMSO-H2O medium, the receptors showed AcO- selective 'turn-on' fluorescence without any interference from other tested anions including F-. The detection limit for AcO- was found to be 7.37 μM and 22.9 μM using the receptors L1 and L2, respectively.
Yu, Iris K M; Tsang, Daniel C W; Chen, Season S; Wang, Lei; Hunt, Andrew J; Sherwood, James; De Oliveira Vigier, Karine; Jérôme, François; Ok, Yong Sik; Poon, Chi Sun
2017-12-01
Valorisation of bread waste for hydroxymethylfurfural (HMF) synthesis was examined in dimethyl sulfoxide (DMSO)-, tetrahydrofuran (THF)-, acetonitrile (ACN)-, and acetone-water (1:1v/v), under heating at 140°C with SnCl 4 as the catalyst. The overall rate of the process was the fastest in ACN/H 2 O and acetone/H 2 O, followed by DMSO/H 2 O and THF/H 2 O due to the rate-limiting glucose isomerisation. However, the formation of levulinic acid (via rehydration) and humins (via polymerisation) was more significant in ACN/H 2 O and acetone/H 2 O. The constant HMF maxima (26-27mol%) in ACN/H 2 O, acetone/H 2 O, and DMSO/H 2 O indicated that the rates of desirable reactions (starch hydrolysis, glucose isomerisation, and fructose dehydration) relative to undesirable pathways (HMF rehydration and polymerisation) were comparable among these mediums. They also demonstrated higher selectivity towards HMF production over the side reactions than THF/H 2 O. This study differentiated the effects of polar aprotic solvent-water mediums on simultaneous pathways during biomass conversion. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sexton, T J
1975-05-01
Three experiments were conducted to determine the relationship of the method of adding (fraction or bulk) and/or holding temperature (41 degrees, 25 degrees, 10 degrees) of glycerol, dimethylsulfoxide or ethylene glycol to the fertilizing capacity of chicken spermatozoa during cooling. No significant effect on fertility was observed when sperm were washed, suspended without dilution in phosphate buffer or milk and cooled to 15 degrees in 30 min. With phosphate buffer as the medium, fertility was comparable with that of the control only when glycol was maintained at 41 degrees or 25 degrees prior to addition in fractions (3 equal parts at 10 min. intervals). Similar effects were observed when 4% DMSO at 25 degrees was added in bulk after cooling. However, when DMSO was added to sperm suspended in milk, fertility was significantly reduced regardless of treatment. None of the methods were successful in eliminating the contraceptive action of glycerol. The results indicate that a number of in vitro techniques can be used to maintain the fertilizing capacity of chicken spermatozoa in the presence of 4% ethylene glycol or DMSO.
Roy, Susmita; Bagchi, Biman
2014-05-29
Elucidation of possible pathways between folded (native) and unfolded states of a protein is a challenging task, as the intermediates are often hard to detect. Here, we alter the solvent environment in a controlled manner by choosing two different cosolvents of water, urea, and dimethyl sulfoxide (DMSO) and study unfolding of four different proteins to understand the respective sequence of melting by computer simulation methods. We indeed find interesting differences in the sequence of melting of α helices and β sheets in these two solvents. For example, in 8 M urea solution, β-sheet parts of a protein are found to unfold preferentially, followed by the unfolding of α helices. In contrast, 8 M DMSO solution unfolds α helices first, followed by the separation of β sheets for the majority of proteins. Sequence of unfolding events in four different α/β proteins and also in chicken villin head piece (HP-36) both in urea and DMSO solutions demonstrate that the unfolding pathways are determined jointly by relative exposure of polar and nonpolar residues of a protein and the mode of molecular action of a solvent on that protein.
Belarmino, Márcia K D L; Cruz, Vanessa F; Lima, Nathália B D
2014-11-01
MP2/6-31++G(d,p) and DFT B3LYP/6-31++G(d,p) calculations were performed of the structure, binding energies, and vibrational modes of complexes between dimethyl sulfoxide (DMSO) as a proton acceptor and monoprotic linear acids HX (X = F, Cl, CN) as well as monoprotic carboxylic acids HOOCR (R = -H, -CH3, -C6H5) in 1:1 and 1:2 stoichiometric ratios. The results show that two different structures are possible in the 1:2 ratio: in the first, the DMSO molecule interacts with both acid molecules (leading to a "Y" structure); in the second, the DMSO interacts with only one monoprotic acid. The second structure shows a lower stability per hydrogen bond. The spontaneities of the reactions to form the 1:1 and 1:2 complexes are greatly influenced by the X group of the linear acid. With the exception of HCN, all the reactions are spontaneous. In the 1:2 complexes with Y structure, we observed that the hydrogen atoms of the linear acid are coupled in symmetric and asymmetric modes, while this type of coupling is absent from the other 1:2 complexes.
Zang, Hongjun; Yu, Songbai; Yu, Pengfei; Ding, Hongying; Du, Yannan; Yang, Yuchan; Zhang, Yiwen
2017-04-10
Here, N-acetyl-d-glucosamine (GlcNAc), the monomer composing the second most abundant biopolymer, chitin, was efficiently converted into 5-hydroxymethylfurfural (5-HMF) using ionic liquid (IL) catalysts in a water/dimethyl sulfoxide (DMSO) mixture solvent. Various reaction parameters, including reaction temperature and time, DMSO/water mass ratios and catalyst dosage were optimized. A series of ILs with different structures were analyzed to explore their impact on GlcNAc conversion. The substrate scope was expanded from GlcNAc to d-glucosamine, chitin, chitosan and monosaccharides, although 5-HMF yields obtained from polymers and other monosaccharides were generally lower than those from GlcNAc. Moreover, the IL N-methylimidazolium hydrogen sulfate ([Hmim][HSO 4 ]) exhibited the best catalyst performance (64.6% yield) when GlcNAc was dehydrated in a DMSO/water mixture at 180 °C for 6 h without the addition of extra catalysts. To summarize, these results could provide knowledge essential to the production of valuable chemicals that are derived from renewable marine resources and benefit biofuel-related applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Improved Cryopreservation of Human Umbilical Vein Endothelial Cells: A Systematic Approach
NASA Astrophysics Data System (ADS)
Sultani, A. Billal; Marquez-Curtis, Leah A.; Elliott, Janet A. W.; McGann, Locksley E.
2016-10-01
Cryopreservation of human umbilical vein endothelial cells (HUVECs) facilitated their commercial availability for use in vascular biology, tissue engineering and drug delivery research; however, the key variables in HUVEC cryopreservation have not been comprehensively studied. HUVECs are typically cryopreserved by cooling at 1 °C/min in the presence of 10% dimethyl sulfoxide (DMSO). We applied interrupted slow cooling (graded freezing) and interrupted rapid cooling with a hold time (two-step freezing) to identify where in the cooling process cryoinjury to HUVECs occurs. We found that linear cooling at 1 °C/min resulted in higher membrane integrities than linear cooling at 0.2 °C/min or nonlinear two-step freezing. DMSO addition procedures and compositions were also investigated. By combining hydroxyethyl starch with DMSO, HUVEC viability after cryopreservation was improved compared to measured viabilities of commercially available cryopreserved HUVECs and viabilities for HUVEC cryopreservation studies reported in the literature. Furthermore, HUVECs cryopreserved using our improved procedure showed high tube forming capability in a post-thaw angiogenesis assay, a standard indicator of endothelial cell function. As well as presenting superior cryopreservation procedures for HUVECs, the methods developed here can serve as a model to optimize the cryopreservation of other cells.
Fluorescence spectroscopy of Rhodamine 6G: concentration and solvent effects.
Zehentbauer, Florian M; Moretto, Claudia; Stephen, Ryan; Thevar, Thangavel; Gilchrist, John R; Pokrajac, Dubravka; Richard, Katherine L; Kiefer, Johannes
2014-01-01
Rhodamine 6G (R6G), also known as Rhodamine 590, is one of the most frequently used dyes for application in dye lasers and as a fluorescence tracer, e.g., in the area of environmental hydraulics. Knowing the spectroscopic characteristics of the optical emission is key to obtaining high conversion efficiency and measurement accuracy, respectively. In this work, solvent and concentration effects are studied. A series of eight different organic solvents (methanol, ethanol, n-propanol, iso-propanol, n-butanol, n-pentanol, acetone, and dimethyl sulfoxide (DMSO)) are investigated at constant dye concentration. Relatively small changes of the fluorescence spectrum are observed for the different solvents; the highest fluorescence intensity is observed for methanol and lowest for DMSO. The shortest peak wavelength is found in methanol (568 nm) and the longest in DMSO (579 nm). Concentration effects in aqueous R6G solutions are studied over the full concentration range from the solubility limit to highly dilute states. Changing the dye concentration provides tunability between ∼550 nm in the dilute case and ∼620 nm at high concentration, at which point the fluorescence spectrum indicates the formation of R6G aggregates. Copyright © 2013 Elsevier B.V. All rights reserved.
Yu, Kyung O.; Fisher, Jeff W.; Burton, G. Allen; Tillitt, Donald E.
1997-01-01
A rat hepatoma cell line, H4IIE serves as a bioassay tool to assess the potential toxicity of dioxin-like chemicals, including polychlorinated biphenyls (PCB) in environmental samples. PCB exposure to these cells induces cytochrome (CYP) P4501A1 activity in a dose-dependent fashion, thus allowing assessment of mixtures. The objective of this study was to determine the effect of different carriers, dimethyl sulfoxide (DMSO) and isooctane on the concentrations of PCBs in the H411E cells and induction of CYPIA1 activity as measured by ethoxyresorufm O-deethylase (EROD) activity. H4IIE cells were dosed with three micrograms of UL-14C-PCB77/ plate dissolved in DMSO or isooctane, and were harvested at sequential time periods for 4 days. PCB77 concentration and EROD activity were measured in the cells. EROD activity was greater when using DMSO as compared to isooctane, while there was no difference in the distribution of PCB77-derived radioactivities within the cell culture system based upon the carrier solvent used to deliver PCB77.
Robust, sensitive and facile method for detection of F-, CN- and Ac- anions
NASA Astrophysics Data System (ADS)
Madhusudhana Reddy, P.; Hsieh, Shih-Rong; Chen, Jem-Kun; Chang, Chi-Jung; Kang, Jing-Yuan; Chen, Chih-Hsien
2017-11-01
Sensing of F-, CN- and Ac- is important from the viewpoint of both medically and environmentally. Particularly, sensing of the anions in 100% water by a colorimetric chemical sensor is a highly difficult task as water molecules interfere the sensing mechanism. In this regard, sensor R1, having azo and nitrophenyl groups as signaling units and thiourea as a binding site was prepared. This sensor exclusively detected CN- ion over other testing anions in 30% aq. DMSO solution by exhibiting distinct spectral and visual color changes. However, in 15% aq. DMSO solution, R1 exhibited obvious spectral and color changes in response to F-, CN- and Ac-. On the other hand, we have also designed sensor, R2, having same signaling units of R1, but a different binding site of urea group. Surprisingly, in contrast to R1, R2 exhibited obvious spectral and color changes in 5% aq. DMSO solution only. Further, economically viable ;test stripes; were prepared in a facile mode to detect the CN- in 100% aqueous solution. Such stripes can serve as a practical colorimetric probe for ;in the field; detection of the ions and thus avoid additional expensive equipment.
Huang, Jiahe; Liao, Jiexin; Wang, Tao; Sun, Weixiang; Tong, Zhen
2018-03-28
Dopamine-containing hydrogels were synthesized by copolymerization of dopamine methacrylamide (DMA), N,N-dimethylacrylamide (DMAA), and an N,N'-methylenebisacrylamide (BIS) crosslinker in a mixed solvent of water and DMSO. The association of DMA was formed by simply immersing in water to facilely reinforce the hydrogel due to the introduction of the second physical crosslinking. The tensile strength of the hydrogels was increased greatly and regulated in a wide range from 200 kPa to over 2 MPa. The association of DMA was destroyed upon immersing in DMSO. This reversible formation and dissociation of the association structure endowed the hydrogel with shape memory and actuating capabilities. Rapid shape fixing in water and complete shape recovery in DMSO was realized within several minutes. Bioinspired functional soft actuators were designed based on the reversible association and metal ion coordination of DMA, including fast responsive hydrogel tentacles, programable multiple shape change, reversible and versatile painting and writing "hydrogel paper". The facile preparation and strength regulation provide a new way to design novel soft actuators through solvent exchange, and will inspire more complex applications upon combining the association with other properties of mussel inspired dopamine derivatives.
Fukuda, Takeshi; Kurabayashi, Tomokazu; Yamaki, Tatsuki
2016-04-01
A reprecipitation method has been investigated for fabricating colloidal nanoparticles using Eu-complex. Herein, we investigated optical degradation characteristics of (1,10-phenanthroline)tris [4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedionato]europium(III) colloidal nanoparticles, which were embedded into a silica glass film fabricated by a conventional sol-gel process. At first, we tried several types of good solvents for the reprecipitation method, and dimethyl sulfoxide (DMSO) is found to be a suitable solvent for realizing the small diameter and the high long-term stability against the ultraviolet irradiation even though the boing point of DMSO is higher than that of water used as a poor solvent. By optimizing the good solvent and the concentration of Eu-complex, the relative photoluminescence intensity of 0.96 was achieved even though the ultraviolet light was continuously irradiated for 90 min. In addition, the average diameter of 106 nm was achieved when DMSO was used as a good solvent, resulting in the high transmittance at a visible wavelength region. Therefore, we can achieve the transparent emissive thin film with a center wavelength of 612 nm, and the optical degradation was drastically reduced by forming nanoparticles.
Confocal laser scanning microscopy to estimate nanoparticles’ human skin penetration in vitro
Elmahdy, Akram; Cao, Yachao; Hui, Xiaoying; Maibach, Howard
2017-01-01
Objective With rapid development of nanotechnology, there is increasing interest in nanoparticle (NP) application and its safety and efficacy on human skin. In this study, we utilized confocal laser scanning microscopy to estimate NP skin penetration. Methods Three different-sized polystyrene NPs marked with red fluorescence were applied to human skin, and Calcium Green 5N was used as a counterstain. Dimethyl sulfoxide (DMSO) and ethanol were used as alternative vehicles for NPs. Tape stripping was utilized as a barrier-damaged skin model. Skin biopsies dosed with NPs were incubated at 4°C or 37°C for 24 hours and imaged using confocal laser scanning microscopy. Results NPs were localized in the stratum corneum (SC) and hair follicles without penetrating the epidermis/dermis. Barrier alteration with tape stripping and change in incubation temperature did not induce deeper penetration. DMSO enhanced NP SC penetration but ethanol did not. Conclusion Except with DMSO vehicle, these hydrolyzed polystyrene NPs did not penetrate intact or barrier-damaged human “viable” epidermis. For further clinical relevance, in vivo human skin studies and more sensitive analytic chemical methodology are suggested. PMID:29184403
Back, Davi Fernando; de Oliveira, Gelson Manzoni; Lang, Ernesto Schulz
2006-10-01
The vitamin B(6) derivatives 4-pyridoxic acid (anionic) and the Schiff base N,N'-ethylenebis(pyridoxylideneiminato) react with UO(2)(NO(3))(2) * 6H(2)O to give [UO(2)(beta-pyracinide)(2)(H(2)O)] (beta-pyracin=4-pyridoxic acid) and [UO(2)(Pyr(2)en)DMSO]Cl(2)(Pyr(2)en=N,N'-ethylenebis(pyridoxylideneiminato); DMSO=dimethyl sulfoxide). In both compounds the two uranyl oxo ligands set the axis of distorted pentagonal bipyramides. The ability of vitamin B(6) derivatives to react with UO(2)(2+) allowing the chelation of one uranium atom represents a very specific model of assimilation of uranium by living beings. It could also explain the serious damages caused by heavy or radioactive metals like uranium since their complexation "in vivo" by enzymatic systems like pyridoxal phosphate-containing enzymes would lead to a modification of the prosthetic groups of the metalloenzymes with loss of their catalytic activities.
Speeckaert, Gaëlle; Borges, Alberto V; Champenois, Willy; Royer, Colin; Gypens, Nathalie
2018-05-01
The influence of abiotic and biotic variables on the concentration of dimethyl sulfide (DMS), dimethylsulfoniopropionate (DMSP), and dimethylsulfoxide (DMSO), were investigated during an annual cycle in 2016 in the Belgian Coastal Zone (BCZ, North Sea). We reported strong seasonal variations in the concentration of these compounds linked to the phytoplankton succession with high DMS(P,O) producers (mainly Phaeocystis globosa) occurring in spring and low DMS(P,O) producers (various diatoms species) occurring in early spring and autumn. Spatial gradients of DMS and DMSP were related to those of phytoplankton biomass itself related to the inputs of nutrients from the Scheldt estuary. However, the use of a relationship with Chlorophyll-a (Chl-a) concentration is not sufficient to predict DMSP. Accounting for the phytoplankton composition, two different DMSP versus Chl-a correlations could be established, one for diatoms and another one for Phaeocystis colonies. We also reported high nearshore DMSO concentrations uncoupled to Chl-a and DMSP concentrations but linked to high suspended particulate matter (SPM) presumably coming from the Scheldt estuary as indicated by the positive relationship between annual average SPM and salinity. Copyright © 2017 Elsevier B.V. All rights reserved.
Shakeel, Faiyaz; Haq, Nazrul; Alanazi, Fars K; Alsarra, Ibrahim A
2017-05-15
The solubility data of recently launched poorly soluble antipsoriatic drug apremilast (APM) in any mono solvent or cosolvent mixtures with respect to temperature are not available in literature. Hence, in this research work, the solubility of APM in twelve different mono solvents namely "water, methanol, ethanol, isopropanol (IPA), ethylene glycol (EG), propylene glycol (PG), 1-butanol, 2-butanol, ethyl acetate (EA), dimethyl sulfoxide (DMSO), polyethylene glycol-400 (PEG-400) and Transcutol ® " was determined at temperatures "T=298.2K to 318.2K" and pressure "p=0.1 MPa". Eexperimental solubilities of APM in mole fraction were determined by a static equilibrium method using high performance liquid chromatography at 254nm. Experimental solubilities of APM in mole fraction were correlated well with "Van't Hoff and Apelblat models". The solubilities of APM in mole fraction were recorded highest in DMSO (9.91×10 -2 ), followed by EA (2.54×10 -2 ), Transcutol (2.51×10 -2 ), PEG-400 (2.16×10 -2 ),PG (4.01×10 -3 ), EG (1.61×10 -3 ), IPA (4.96×10 -4 ), 1-butanol (4.18×10 -4 ), 2-butanol (3.91×10 -4 ), methanol (2.25×10 -4 ), ethanol (2.20×10 -4 ) and water (1.29×10 -6 ) at "T=318.2K" and similar results were also obtained at each temperature evaluated. The molecular interactions between solute and solvent molecules were evaluated by the determination of activity coefficients. Based on activity coefficients, the higher solute-solvents molecular interactions were recorded in APM-DMSO, APM-EA, APM-Transcutol and APM-PEG-400 in comparison with other combination of solute and solvents. "Apparent standard thermodynamic parameters" of APM indicated an "endothermic and entropy-driven dissolution" of APM in all mono solvents evaluated. Based on these results, APM was proposed as freely soluble in DMSO, EA and Transcutol, sparingly soluble in PEG0-400, slightly soluble in methanol, ethanol, IPA, EG, PG, 1-butanol and 2-butanol and practically insoluble in water. Hence, DMSO, EA and Transcutol were selected as the best solvents and water and ethanol were selected as the anti-solvents for APM. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craig, Zelieann R., E-mail: zelieann@gmail.co; Leslie, Traci C., E-mail: traci.leslie@gmail.co; Hatfield, Kimberly P., E-mail: kpm9786@yahoo.co
Methoxychlor (MXC) is an organochlorine pesticide that reduces fertility in female rodents by decreasing antral follicle numbers and increasing follicular death. MXC is metabolized in the body to mono-hydroxy MXC (mono-OH). Little is known about the effects of mono-OH on the ovary. Thus, this work tested the hypothesis that mono-OH exposure decreases production of 17{beta}-estradiol (E{sub 2}) by cultured mouse antral follicles. Antral follicles were isolated from CD-1 mice (age 35-39 days) and exposed to dimethylsulfoxide (DMSO), or mono-OH (0.1-10 {mu}g/mL) for 96 h. Media and follicles were collected for analysis of sex steroid levels and mRNA expression, respectively. Mono-OHmore » treatment (10 {mu}g/mL) decreased E{sub 2} (DMSO: 3009.72 {+-} 744.99 ng/mL; mono-OH 0.1 {mu}g/mL: 1679.66 {+-} 461.99 ng/mL; 1 {mu}g/mL: 1752.72 {+-} 532.41 ng/mL; 10 {mu}g/mL: 45.89 {+-} 33.83 ng/mL), testosterone (DMSO: 15.43 {+-} 2.86 ng/mL; mono-OH 0.1 {mu}g/mL: 17.17 {+-} 4.71 ng/mL; 1 {mu}g/mL: 13.64 {+-} 3.53 ng/mL; 10 {mu}g/mL: 1.29 {+-} 0.23 ng/mL), androstenedione (DMSO: 1.92 {+-} 0.34 ng/mL; mono-OH 0.1 {mu}g/mL: 1.49 {+-} 0.43 ng/mL; 1 {mu}g/mL: 0.64 {+-} 0.31 ng/mL; 10 {mu}g/mL: 0.12 {+-} 0.06 ng/mL) and progesterone (DMSO: 24.11 {+-} 4.21 ng/mL; mono-OH 0.1 {mu}g/mL: 26.77 {+-} 4.41 ng/mL; 1 {mu}g/mL: 20.90 {+-} 3.75 ng/mL; 10 {mu}g/mL: 9.44 {+-} 2.97 ng/mL) levels. Mono-OH did not alter expression of Star, Hsd3b1, Hsd17b1 and Cyp1b1, but it did reduce levels of Cyp11a1, Cyp17a1 and Cyp19a1 mRNA. Collectively, these data suggest that mono-OH significantly decreases levels of key sex steroid hormones and the expression of enzymes required for steroidogenesis.« less
NASA Astrophysics Data System (ADS)
Upadhyay, K. K.; Upadhyay, Shalini; Kumar, Kamlesh; Prasad, Rajendra
2009-06-01
The 3-Oxo-2-{[4-(thiazol-2-ylsulfamoyl)-phenyl]-hydrazono}-butyric acid ethyl ester (OSPBE) was studied through single crystal structure analysis revealing some interesting supramolecular architectural patterns. The N(3)-N(4) bond length of OSPBE was found to be 1.36 Å matching well with reported N-N bond length in the literature and hence clearly proved that it is the keto form of OSPBE which is stable. Full structural optimization of OSPBE using density functional theory (DFT) at the HCTH407/6-31G ∗∗ level also proved that the keto form of OSPBE is stable. The UV-Vis absorption peaks for OSPBE predicted by the time dependent DFT at B3LYP/6-311G ∗∗ level matched quite well with the experimentally observed UV-Vis bands for OSPBE. The OSPBE was successfully tested as the naked eye sensor for Hg(II) as its chloride salt at the millimolar level in dimethylsulfoxide. A color change from red orange to olive green was observed on addition of 1.0 equiv. of Hg(II) to the 1.0 × 10 -3 M DMSO solution of the chemosensor. The role of DMSO in the sensing process appears to be the crucial one because the intramolecular charge transfer (ICT) band of OSPBE in DMSO observed at 489 nm did not appear in the UV-Vis spectrum of OSPBE in nujol. The UV-Vis and 1H NMR titrations revealed that formation of six membered 1:1 chelate between OSPBE and Hg(II) along with reversible supramolecular association of DMSO with NH at N-2 position in OSPBE may be responsible for its Hg(II) sensing. No sensing for other d 10 metal ions like Zn(II) and Cd(II) were observed with OSPBE under similar conditions. Besides DMSO, some other polar aprotic solvents like DMF and acetone having X dbnd O (where X = C) also produced similar type of color change on the addition of 1.0 equiv. of Hg(II) to their respective 1.0 × 10 -3 M OSPBE solutions. Nevertheless, polar aprotic solvent like acetonitrile not having X dbnd O or non-polar aprotic solvent like chloroform no color change was observed under similar conditions.
Thorp-Greenwood, Flora L.; Ronson, Tanya K.
2015-01-01
The cyclotriveratrylene-type ligands (±)-tris(iso-nicotinoyl)cyclotriguaiacylene L1 (±)-tris(4-pyridylmethyl)cyclotriguaiacylene L2 and (±)-tris{4-(4-pyridyl)benzyl}cyclotriguaiacylene L3 all feature 4-pyridyl donor groups and all form coordination polymers with CuI and/or CuII cations that show a remarkable range of framework topologies and structures. Complex [CuI 4CuII 1.5(L1)3(CN)6]·CN·n(DMF) 1 features a novel 3,4-connected framework of cyano-linked hexagonal metallo-cages. In complexes [Cu3(L2)4(H2O)3]·6(OTf)·n(DMSO) 2 and [Cu2(L3)2Br2(H2O)(DMSO)]·2Br·n(DMSO) 3 capsule-like metallo-cryptophane motifs are formed which linked through their metal vertices into a hexagonal 2D network of (43.123)(42.122) topology or a coordination chain. Complex [Cu2(L1)2(OTf)2(NMP)2(H2O)2]·2(OTf)·2NMP 4 has an interpenetrating 2D 3,4-connected framework of (4.62.8)(62.8)(4.62.82) topology with tubular channels. Complex [Cu(L1)(NCMe)]·BF4·2(CH3CN)·H2O 5 features a 2D network of 63 topology while the CuII analogue [Cu2(L1)2(NMP)(H2O)]·4BF4·12NMP·1.5H2O 6 has an interpenetrating (10,3)-b type structure and complex [Cu2(L2)2Br3(DMSO)]·Br·n(DMSO) 7 has a 2D network of 4.82 topology. Strategies for formation of coordination polymers with hierarchical spaces emerge in this work and complex 2 is shown to absorb fullerene-C60 through soaking the crystals in a toluene solution. PMID:28791086
Ikeda, Kazuhiko; Ohto, Hitoshi; Okuyama, Yoshiki; Yamada-Fujiwara, Minami; Kanamori, Heiwa; Fujiwara, Shin-Ichiro; Muroi, Kazuo; Mori, Takehiko; Kasama, Kinuyo; Iseki, Tohru; Nagamura-Inoue, Tokiko; Fujii, Nobuharu; Ashida, Takashi; Kameda, Kazuaki; Kanda, Junya; Hirose, Asao; Takahashi, Tsutomu; Nagai, Kazuhiro; Minakawa, Keiji; Tanosaki, Ryuji
2018-06-01
Adverse events (AEs) associated with blood transfusions, including component-specific red cell, platelet, and plasma products, have been extensively surveyed. In contrast, surveillance of AEs associated with hematopoietic stem cell (HSC) products in HSC transplantation (HSCT) has been less rigorous, even though HSC products include a diversity of immature and mature hematopoietic cells, substantial plasma, and dimethyl sulfoxide (DMSO) in the case of cryopreserved HSC products. HSC infusion-related AEs have been attributed to DMSO toxicity, but AEs associated with the infusion of noncryopreserved HSC products are not uncommon. To quantify the frequencies, types, and risk factors of HSC infusion-related AEs, we implemented national surveillance for AEs observed within 24 hours after infusion. Herein we report on 1125 HSCTs, including 570 peripheral blood stem cell transplantations (PBSCTs) (290 autologous [auto-] and 280 allogeneic [allo-]), 332 allo-bone marrow transplantations (allo-BMTs) and 223 allo-cord blood transplantations (allo-CBTs). Unexpectedly, incidences of grade ≥ 2 AEs were most frequent in allo-BMTs (37.7%) with no DMSO in any product compared with auto-/allo-PBSCTs (20.9%, P < .001) and allo-CBTs (19.3%, P < .001) typically cryopreserved with DMSO. Hypertension was most often noted in BMTs, whereas nausea/vomiting, fever, and allergic reactions were most frequent in allo-PBSCTs. In a multivariate analysis, a history of transfusion reactions was a risk factor for overall AEs in all HSCTs (odds ratio [OR] = 1.459, P = .045). For grade ≥ 2 AEs in allo-HSCTs, a history of transfusion reactions (OR = 1.551, P = .044) for overall AEs, and high infusion volume (OR = 7.544, P = .005) and allo-PBSCTs (versus BMTs, OR = 9.948, P = .002) for allergic reactions were identified as risk factors. These findings suggest that some factors unrelated to DMSO, such as allo-antigens, contribute to HSC infusion-related AEs. As severe AEs, a total of 117 grade ≥ 3 AEs were reported in 1125 HSCTs, including life-threatening complications in 3 (0.3%) HSCTs: 1 allo-CBT (anaphylaxis) and 2 allo-PBSCTs (hypoxia, kidney injury) with cryopreserved product. Our data show that HSC infusion risks vary by product, can be severe, and should be monitored with the same rigor as modern transfusion hemovigilance programs. Copyright © 2018. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paterniti, D.P.; Francisco, L.W.; Atwood, J.D.
Several new water-soluble iridium(I) complexes were synthesized and their reactivities with small molecules (H{sub 2} or CO) in polar solvents (DMSO or H{sub 2}O) examined. Reaction of H{sub 2} with [Ir(CO)(TPPMS){sub 3}]CF{sub 3}SO{sub 3} (TPPMS = P(C{sub 6}H{sub 5}){sub 2}(m-C{sub 6}H{sub 4}SO{sub 3}K)) in DMSO or H{sub 2}O produces [cis,mer-Ir(CO)(H){sub 2}(TPPMS){sub 3}]CF{sub 3}SO{sub 3}, while the reaction of CO with [Ir(CO)(TPPMS){sub 3}]-CF{sub 3}SO{sub 3} in water yields [Ir(CO){sub 2}(TPPMS){sub 3}]CF{sub 3}SO{sub 3}. Carbonylation of [Ir(CO){sub 2}(TPPMS){sub 3}]ClO{sub 4} in DMSO produces [Ir(CO){sub 3}(TPPMS){sub 2}]ClO{sub 4} and TPPMS; no reaction is observed in H{sub 2}O. Hydrogenation of [Ir(CO){sub 2}(TPPMS){sub 3}]ClO{sub 4}more » in DMSO or H{sub 2}O yields [cis,mer-Ir(CO)(H){sub 2}(TPPMS){sub 3}]ClO{sub 4}, while reaction of H{sub 2} with an aqueous solution of [Ir(CO)(H{sub 2}O)(TPPTS){sub 2}]CF{sub 3}SO{sub 3} produces [Ir(CO)(H{sub 2}O)(H){sub 2}(TPPTS){sub 2}]CF{sub 3}SO{sub 3}. Reaction of trans-Ir(CO)ClL{sub 2} (L = TPPMS or TPPTS) with excess L in H{sub 2}O produces [Ir(CO)L{sub 3}]Cl, while no reaction occurs in DMSO, [Ir(CO){sub 3}(TPPMS){sub 2}]Cl reacts irreversibly with TPPMS in H{sub 2}O to produce [Ir(CO){sub 2}-(TPPMS){sub 3}]Cl.« less
Octahedral d[sup 6] Bis(maleimide) and Bis(maleic anhydride) complexes of molybdenum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Chen-Hsing; Cheng, Chien-Hong; Liao, Fen-Ling
1993-12-08
Mo(CO)[sub 3](CH[sub 3]CN)[sub 3] reacts with 2 equiv of alkene, where the alkene is maleimide (MI), N-phenylmaleimide (PhMI), or N-methylmaleimide, to give the corresponding Mo(CO)[sub 2](alkene)[sub 2](CH[sub 3]CN)[sub 2] complex (1a-c, respectively) in excellent yield. Dissolution of 1 in DMSO led to the substitution of acetonitrile ligands by DMSO to form the corresponding cis bis(DMSO) complexes 2a-c. Addition of 1 equiv of NN to 1 yields MO(CO)[sub 2](alkene)[sub 2](alkene)[sub 2](NN) (NN = en, alkene = PhMI (3b), MeMI (3c); NN = o-phenylenediamine, alkene = PhMI (4)). Treatment of Mo-(CO)[sub 4](NN) (NN = phen or bpy), with 2 equiv of alkenemore » in refluxed acetonitrile for 2 h gave Mo(CO)[sub 2]-(alkene)[sub 2](NN) (NN = phen, alkene = MI (5a), PhMI (5b); NN = bpy, alkene = MI (6a), PhMI (6b)). Treatment of Mo(CO)[sub 3](CH[sub 3]CN)[sub 3] with 2 equiv of maleic anhydride (MA) gave Mo(CO)[sub 2](MA)[sub 2](CH[sub 3]CN)[sub 2] (7). The acetonitrile ligands in 7 were replaced by DMSO molecules to give complex 8 as 7 was dissolved in DMSO. Similarly, the reaction of 7 with a bidentate ligand NN (phen or bpy) gave the substituted product Mo(CO)[sub 2](MA)[sub 2](NN) (9 or 10). The structures and conformations of 1b and 7 were determined by X-ray diffraction. Both molecules adopt an octahedral geometry with mutually perpendicular trans alkene ligands and each alkene ligand eclipses a N-Mo-CO vector. Each PhMI or MA is oriented so that the central nitrogen or oxygen atom points to a carbonyl group. 1b crystallizes in triclinic space group P1. There are three possible conformations for a trans bis(maleimide) or bis(maleic anhydride) complex (I-III). The results of X-ray and NMR studies indicated that the main conformation of complexes 1-10 is I both in the solid state and in solution.« less
Zakaria, Zainul Amiruddin; Kamisan, Farah Hidayah; Omar, Maizatul Hasyima; Mahmood, Nur Diyana; Othman, Fezah; Abdul Hamid, Siti Selina; Abdullah, Muhammad Nazrul Hakim
2017-05-18
The present study investigated the potential of methanolic extract of Dicranopteris linearis (MEDL) leaves to attenuate liver intoxication induced by acetaminophen (APAP) in rats. A group of mice (n = 5) treated orally with a single dose (5000 mg/kg) of MEDL was first subjected to the acute toxicity study using the OECD 420 model. In the hepatoprotective study, six groups of rats (n = 6) were used and each received as follows: Group 1 (normal control; pretreated with 10% DMSO (extract's vehicle) followed by treatment with 10% DMSO (hepatotoxin's vehicle) (10% DMSO +10% DMSO)), Group 2 (hepatotoxic control; 10% DMSO +3 g/kg APAP (hepatotoxin)), Group 3 (positive control; 200 mg/kg silymarin +3 g/kg APAP), Group 4 (50 mg/kg MEDL +3 g/kg APAP), Group 5 (250 mg/kg MEDL +3 g/kg APAP) or Group 6 (500 mg/kg MEDL +3 g/kg APAP). The test solutions pre-treatment were made orally once daily for 7 consecutive days, and 1 h after the last test solutions administration (on Day 7th), the rats were treated with vehicle or APAP. Blood were collected from those treated rats for biochemical analyses, which were then euthanized to collect their liver for endogenous antioxidant enzymes determination and histopathological examination. The extract was also subjected to in vitro anti-inflammatory investigation and, HPLC and GCMS analyses. Pre-treatment of rats (Group 2) with 10% DMSO failed to attenuate the toxic effect of APAP on the liver as seen under the microscopic examination. This observation was supported by the significant (p < 0.05) increased in the level of serum liver enzymes of alanine transaminase (ALT), aspartate transaminase (AST) and alkaline phosphatase (ALP), and significant (p < 0.05) decreased in the activity of endogenous antioxidant enzymes of catalase (CAT) and superoxide dismutase (SOD) in comparison to Group 1. Pre-treatment with MEDL, at all doses, significantly (p < 0.05) reduced the level of ALT and AST while the levels of CAT and SOD was significantly (p < 0.05) restored to their normal value. Histopathological studies showed remarkable improvement in the liver cells architecture with increase in dose of the extract. MEDL also demonstrated a low to none inhibitory activity against the respective LOX- and NO-mediated inflammatory activity. The HPLC and GCMS analyses of MEDL demonstrated the presence of several non-volatile (such as rutin, gallic acid etc.) and volatile (such as methyl palmitate, shikimic acid etc.) bioactive compounds. MEDL exerts hepatoprotective activity against APAP-induced intoxication possibly via its ability to partly activate the endogenous antioxidant system and presence of various volatile and non-volatile bioactive compounds that might act synergistically to enhance the hepatoprotective effect.
Aramid nanofiber-functionalized graphene nanosheets for polymer reinforcement
NASA Astrophysics Data System (ADS)
Fan, Jinchen; Shi, Zixing; Zhang, Lu; Wang, Jialiang; Yin, Jie
2012-10-01
Aramid macroscale fibers, also called Kevlar fibers, exhibit extremely high mechanical performance. Previous studies have demonstrated that bulk aramid macroscale fibers can be effectively split into aramid nanofibers (ANFs) by dissolution in dimethylsulfoxide (DMSO) in the presence of potassium hydroxide (KOH). In this paper, we first introduced the ANFs into the structure of graphene nanosheets through non-covalent functionalization through π-π stacking interactions. Aramid nanofiber-functionalized graphene sheets (ANFGS) were successfully obtained by adding the graphene oxide (GO)/DMSO dispersion into the ANFs/DMSO solution followed by reduction with hydrazine hydrate. The ANFGS, with ANFs absorbed on the surface of the graphene nanosheets, can be easily exfoliated and dispersed in N-methyl-2-pyrrolidone (NMP). Through a combination of these two ultra-strong materials, ANFs and graphene nanosheets (GS), the resultant ANFGS can act as novel nanofillers for polymer reinforcement. We used the ANFGS as an additive for reinforcing the mechanical properties of poly(methyl methacrylate) (PMMA). With a loading of 0.7 wt% of the ANFGS, the tensile strength and Young's modulus of the ANFGS/PMMA composite film approached 63.2 MPa and 3.42 GPa, which are increases of ~84.5% and ~70.6%, respectively. The thermal stabilities of ANFGS/PMMA composite films were improved by the addition of ANFGS. Additionally, the transparencies of the ANFGS/PMMA composite films have a degree of UV-shielding due to the ultraviolet light absorption of the ANFs in the ANFGS.Aramid macroscale fibers, also called Kevlar fibers, exhibit extremely high mechanical performance. Previous studies have demonstrated that bulk aramid macroscale fibers can be effectively split into aramid nanofibers (ANFs) by dissolution in dimethylsulfoxide (DMSO) in the presence of potassium hydroxide (KOH). In this paper, we first introduced the ANFs into the structure of graphene nanosheets through non-covalent functionalization through π-π stacking interactions. Aramid nanofiber-functionalized graphene sheets (ANFGS) were successfully obtained by adding the graphene oxide (GO)/DMSO dispersion into the ANFs/DMSO solution followed by reduction with hydrazine hydrate. The ANFGS, with ANFs absorbed on the surface of the graphene nanosheets, can be easily exfoliated and dispersed in N-methyl-2-pyrrolidone (NMP). Through a combination of these two ultra-strong materials, ANFs and graphene nanosheets (GS), the resultant ANFGS can act as novel nanofillers for polymer reinforcement. We used the ANFGS as an additive for reinforcing the mechanical properties of poly(methyl methacrylate) (PMMA). With a loading of 0.7 wt% of the ANFGS, the tensile strength and Young's modulus of the ANFGS/PMMA composite film approached 63.2 MPa and 3.42 GPa, which are increases of ~84.5% and ~70.6%, respectively. The thermal stabilities of ANFGS/PMMA composite films were improved by the addition of ANFGS. Additionally, the transparencies of the ANFGS/PMMA composite films have a degree of UV-shielding due to the ultraviolet light absorption of the ANFs in the ANFGS. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr31907a
NASA Astrophysics Data System (ADS)
Bosco, Carlos A. C.; Maciel, Glauco S.; Rakov, Nikifor; de Araújo, Cid B.; Acioli, Lúcio H.; Simas, Alfredo M.; Athayde-Filho, Petrônio F.; Miller, Joseph
2007-11-01
The third-order non-linear optical response of mesoionic compounds (MIC) in dimethylsulfoxide (DMSO) and methanol solutions was investigated by use of collinear pump and probe technique with chirp-controlled femtosecond pulses. The experiments allowed the investigation of non-instantaneous nuclear processes and thermal effects induced by two-photon absorption (TPA). We found that the nuclear non-linearity of MIC in DMSO is ˜1/5 the benzene, which was used as a reference material. This result is attributed to the large inertia of MIC to rotation, compared to benzene. The results for MIC in methanol indicate the influence of thermal effects due to TPA.
Mahindrakar, A N; Chandra, S; Shinde, L P
2014-01-01
Solid-phase extraction (SPE) of nine polychlorinated biphenyls (PCBs) from transformer oil samples was evaluated using octadecyl (CI8)-bonded porous silica. The efficiency of SPE of these PCBs was compared with those obtained by solvent extraction with DMSO and hexane. Average recoveries exceeding 95% for these PCBs were obtained via the SPE method using small cartridges containing 100mg of 40 pm CI8-bonded porous silica. The average recovery by solvent extraction with DMSO and hexane exceeded 83%. It was concluded that the recoveries and precision for the solvent extraction of PCBs were poorer than those for the SPE. Copyright © 2013 Elsevier Ltd. All rights reserved.
... Dimethyl Sulfone MSM, DMSO2, Methyl Sulfone, Methyl Sulfonyl Methane, Methyl Sulphonyl Methane, Méthyle Sulfonyle Méthane, Méthyle Sulphonyle Méthane, Méthylsulfonylméthane, Metilsulfonilmentano, ...
Potential application of Chinese traditional medicine (CTM) as enhancer for tissue optical clearing
NASA Astrophysics Data System (ADS)
Chen, Wei; Jiang, Jingying; Wang, Ruikang K.; Xu, Kexin
2009-02-01
Many biocompatible hyperosmotic agents such as dimethyl sulfoxide(DMSO) have been used as enhancers for tissue optical clearing technique. However, previous investigations showed that DMSO can induce bradycardia, respiratory problems, and alterations in blood pressure. Also, DMSO could potentially alter the chemical structure, and hence the functional properties, of cell membranes. In this talk, Borneol among natural and nontoxic CTMs was introduced as new enhancer for optical clearing of porcine skin tissue since it has been widely used as new penetration promoter in the field of trandermial drug delivery system(TDDS) and been proved to be effective. In the first, the spectral characteristics of borneol was obtained and analyzed by Fourier Transformation Infrared (FTIR) spectrophotometer. And further experimental studies were performed to probe if borneol is capable of optical clearing of porcine skin tissue in vitro with near infrared spectroscopy, double integrating-spheres system and Inverse Adding-Doubling(IAD) algorithm. Spectral results show that light penetration depth into skin tissue got the increase. Meanwhile, absorption coefficient and scattering coefficient of porcine skin treated by borneol got the decrease during the permeation of Borneol. Therefore, Borneol could be potentially used as enhancer for tissue optical clearing to improve non-invasive light-based diagnostic and imaging techniques while practically optical application and clinical safety are under consideration.
Nishimura, Chiaki; Dyson, H. Jane; Wright, Peter E.
2005-01-01
Hydrogen/deuterium exchange followed by trapping of the labeled species in the aprotic solvent DMSO has been used to elucidate structure in both the burst-phase molten globule-folding intermediate of apomyoglobin and in an equilibrium intermediate that models the kinetic intermediate. Precise estimates can be made of exchange times in an interrupted exchange-out experiment at pH 4 followed by analysis in DMSO solution, giving extensive sequence-specific information about the structure of the equilibrium intermediate. In addition, the use of DMSO as a solvent for NMR measurements after quench-flow pH-pulse labeling experiments gives a greatly increased data set for the elucidation of the kinetic folding pathway. Interestingly, differences are observed in some regions of apomyoglobin between the equilibrium and kinetic intermediates. These differences are quantitative rather than qualitative; that is, the overall patterns of labeling and secondary structure formation remain similar between the two species. However, local differences are observed, which probably reflect the difference in the solution conditions for the equilibrium experiment (pH 4) vs. the kinetic experiment (pH 6) and the change in the status of the stabilizing hydrogen bond between the side chains of His-24 and His-119. PMID:15769860
Zhu, Ping; Chen, Yan; Wang, Liangyou; Qian, Guangren; Zhang, Wei Jie; Zhou, Ming; Zhou, Jin
2013-03-19
Improved methods are required for the recycling of waste printed circuit boards (WPCBs). In this study, WPCBs (1-1.5 cm(2)) were separated into their components using dimethyl sulfoxide (DMSO) at 60 °C for 45 min and a metallographic microscope was used to verify their delamination. An increased incubation time of 210 min yielded a complete separation of WPCBs into their components, and copper foils and glass fibers were obtained. The separation time decreased with increasing temperature. When the WPCB size was increased to 2-3 cm(2), the temperature required for complete separation increased to 90 °C. When the temperature was increased to 135 °C, liquid photo solder resists could be removed from the copper foil surfaces. The DMSO was regenerated by rotary decompression evaporation, and residues were obtained. Fourier transform infrared spectroscopy (FT-IR), thermal analysis, nuclear magnetic resonance, scanning electron microscopy, and energy-dispersive X-ray spectroscopy were used to verify that these residues were brominated epoxy resins. From FT-IR analysis after the dissolution of brominated epoxy resins in DMSO it was deduced that hydrogen bonding may play an important role in the dissolution mechanism. This novel technology offers a method for separating valuable materials and preventing environmental pollution from WPCBs.
Co-solvent enhanced zinc oxysulfide buffer layers in Kesterite copper zinc tin selenide solar cells.
Steirer, K Xerxes; Garris, Rebekah L; Li, Jian V; Dzara, Michael J; Ndione, Paul F; Ramanathan, Kannan; Repins, Ingrid; Teeter, Glenn; Perkins, Craig L
2015-06-21
A co-solvent, dimethylsulfoxide (DMSO), is added to the aqueous chemical "bath" deposition (CBD) process used to grow ZnOS buffer layers for thin film Cu2ZnSnSe4 (CZTSe) solar cells. Device performance improves markedly as fill factors increase from 0.17 to 0.51 upon the co-solvent addition. X-ray photoelectron spectroscopy (XPS) analyses are presented for quasi-in situ CZTSe/CBD-ZnOS interfaces prepared under an inert atmosphere and yield valence band offsets equal to -1.0 eV for both ZnOS preparations. When combined with optical band gap data, conduction band offsets exceed 1 eV for the water and the water/DMSO solutions. XPS measurements show increased downward band bending in the CZTSe absorber layer when the ZnOS buffer layer is deposited from water only. Admittance spectroscopy data shows that the ZnOS deposited from water increases the built-in potential (Vbi) yet these solar cells perform poorly compared to those made with DMSO added. The band energy offsets imply an alternate form of transport through this junction. Possible mechanisms are discussed, which circumvent the otherwise large conduction band spike between CZTSe and ZnOS, and improve functionality with the low-band gap absorber, CZTSe (Eg = 0.96 eV).
Gel electrolytes with I-/I3- redox mediator based on methylcellulose for dye-sensitized solar cells
NASA Astrophysics Data System (ADS)
Yusof, S. Z.; Woo, H. J.; Careem, M. A.; Arof, A. K.
2018-05-01
A new gel electrolyte comprising methylcellulose (MC), LiBOB and succinonitrile (SN) has been prepared with dimethyl sulfoxide (DMSO) as solvent. The electrolyte with composition 8.73 wt % MC-2.92 wt % LiBOB-1.01 wt % SN-87.34 wt % DMSO exhibits the highest conductivity of 1.18 mS cm-1 at 25 °C. On partially substituting LiBOB with TMAI, the sample designated as TMAI 95 has the highest conducting composition of 8.70 wt % MC-0.14 wt % LiBOB-1.01 wt % SN-2.77 wt % TMAI-0.35 wt % I2-87.03 wt % DMSO. The conductivity is 1.96 mS cm-1. This sample is used to fabricate a dye sensitized photovoltaic cell that converts photons to electricity at an efficiency of 3.46%. The conductivity of this sample has been enhanced to 3.08 mS cm-1 on addition of 1.0 wt % butyl-methyl immidazolium iodide (BMII) ionic liquid and the efficiency of the cell fabricated is 4.63%. Total replacement of LiBOB component in the electrolyte with the same amount of LiI results in a conductivity increase of ∼23.5% and the DSSC exhibits a 5.72% efficiency.
Cryogenic preservation of semen from the Aleutian Canada goose (Branta canadensis leucopareia)
Gee, G.F.; Sexton, T.J.
1990-01-01
Aleutian Canada geese (Branta canadensis leucopareia) were inseminated with frozen-thawed semen containing 6% or 7% dimethylsulfoxide (DMSO) resulting in 32 fertile eggs and 17 goslings; with 7% DMSO, 19 of 31 eggs were fertile. Beltsville Poultry Semen Extender (BPSE), adjusted to 270 ? 30 mOs and 7.5 ? 0.4 pH, was used to dilute semen samples and the DMSO before cryopreservation. About half of the live spermatozoa in the fresh semen (92.9 ? 2.5% live cells, laboratory studies; 87.3 ? 7.3%, insemination trials) survived the freeze-thaw process (46.7 ? 7.8%, laboratory; 33.3 ? 17.8%, insemination trials). Samples of frozen-thawed semen contained a greater percentage of bent spermatozoa (27.1 ? 8.4% of live cells) than fresh semen (14.4 ? 3.0% of live cells). Fecal- and urate-contaminated semen (a common problem when collecting goose semen) reduced the sperm motility score from 3.2 ? 0.6 to 2.7? 0.7 and number of live spermatozoa in frozen-thawed semen from 49 ? 9% to 24 ?18%. Other variables examined that had less of an effect on semen quality included semen extenders, semen holding temperature, dilution and equilibration, relationship between hour of semen collection and level of semen contamination, and the relationship between season and sperm concentration.
NASA Astrophysics Data System (ADS)
Asher, Elizabeth; Dacey, John W.; Ianson, Debby; Peña, Angelica; Tortell, Philippe D.
2017-04-01
Concentrations of dimethylsulfide (DMS), measured in the Subarctic Pacific during summer 2010 and 2011, ranged from ˜1 to 40 nM, while dissolved dimethylsulfoxide (DMSO) concentrations (range 13-23 nM) exceeded those of dissolved dimethyl sulfoniopropionate (DMSP) (range 1.3-8.8 nM). Particulate DMSP dominated the reduced sulfur pool, reaching maximum concentrations of 100 nM. Coastal and off shore waters exhibited similar overall DMS concentration ranges, but sea-air DMS fluxes were lower in the oceanic waters due to lower wind speeds. Surface DMS concentrations showed statistically significant correlations with various hydrographic variables including the upwelling intensity (r2 = 0.52, p < 0.001) and the Chlorophyll a/mixed layer depth ratio (r2 = 0.52, p < 0.001), but these relationships provided little predictive power at small scales. Stable isotope tracer experiments indicated that the DMSP cleavage pathway always exceeded the DMSO reduction pathway as a DMS source, leading to at least 85% more DMS production in each experiment. Gross DMS production rates were positively correlated with the upwelling intensity, while net rates of DMS production were significantly correlated to surface water DMS concentrations. This latter result suggests that our measurements captured dominant processes driving surface DMS accumulation across a coastal-oceanic gradient.
Wen, Yan-Zi; Su, Bi-Xiu; Lyu, Shu-Shen; Hide, Geoff; Lun, Zhao-Rong; Lai, De-Hua
2016-12-01
Trehalose, a non-permeating cryoprotective agent (CPA), has been documented as less toxic and highly efficient at cryopreserving different kinds of cells or organisms. In the present study, trehalose was evaluated for its application in cryopreservation of both Trypanosoma brucei procyclic and bloodstream form cells. The cryopreservation efficiency was determined by the motility of trypanosomes after thawing, as well as a subsequent recovery and infectivity assessment. The viability of trypanosomes from cultivation that were frozen in a serial concentrations of trehalose showed similar results to classical CPAs of glycerol and DMSO. Nevertheless, trypanosomes cryopreserved in 0.2M trehalose showed the best growth characteristic during subsequent cultivation. In addition, CPA cocktails with trehalose and permeating CPA glycerol or DMSO were developed and evaluated. Interestingly, trypanosomes in host (mouse) blood cryopreserved in 0.4M trehalose plus 5% glycerol showed higher infectivity than those preserved in trehalose/DMSO cocktails as well as individually. Further investigations showed that, in comparison with slow freezing at -80°C, flash freezing in liquid nitrogen provided better cryopreservation for bloodstream form cells than slow freezing. In conclusion, trehalose is an easy, safe and efficient CPA for cryopreservation of T. brucei and potentially for other protozoan species and cells. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sasirekha, V.; Vanelle, P.; Terme, T.; Ramakrishnan, V.
2008-12-01
Solvation characteristics of 1,4-dihydroxy-2,3-dimethyl-9,10-anthraquinone ( 1) in pure and binary solvent mixtures have been studied by UV-vis absorption spectroscopy and laser-induced fluorescence techniques. The binary solvent mixtures used as CCl 4 (tetrachloromethane)-DMF ( N, N-dimethylformamide), AN (acetonitrile)-DMSO (dimethylsulfoxide), CHCl 3 (chloroform)-DMSO, CHCl 3-MeOH (methanol), and MeOH-DMSO. The longest wavelength band of 1 has been studied in pure solvents as well as in binary solvent mixtures as a function of the bulk mole fraction. The Vis absorption band maxima show an unusual blue shift with increasing solvent polarity. The emission maxima of 1 show changes with varying the pure solvents and the composition in the case of binary solvent mixtures. Non-ideal solvation characteristics are observed in all binary solvent mixtures. It has been observed that the quantity [ ν-(Xν+Xν)] serves as a measure of the extent of preferential solvation, where ν˜ and X are the position of band maximum in wavenumbers (cm -1) and the bulk mole fraction values, respectively. The preferential solvation parameters local mole fraction ( X2L), solvation index ( δs2), and exchange constant ( k12) are evaluated.
NASA Astrophysics Data System (ADS)
Esenpınar, Aliye Aslı; Durmuş, Mahmut; Bulut, Mustafa
2011-08-01
The non-peripherally ( np-QZnPc) and peripherally ( p-QZnPc) tetrakis-[7-oxo-(3-[(2-diethylaminomethyliodide)ethyl)]-4-methylcoumarin]-phthalocyaninatozinc complexes have been prepared by quaternization of non-peripherally and peripherally tetrakis[7-oxo-(3-[(2-diethylamino)ethyl)]-methylcoumarin] phthalocyaninato zinc complexes with methyliodide in dimethylsulfoxide (DMSO). The new quaternized zinc phthalocyanine complex ( np-QZnPc) has been characterized by elementel analysis, MALDI-TOF, IR and UV-vis spectral data. The photophysical and photochemical properties of the peripherally and non-peripherally quaternized tetrakis-3-[(2-diethylamino)ethyl]-7-oxo-4-methylcoumarin substituted zinc phthalocyanines are reported. The effects of the position of the substituents and the aggregation of the phthalocyanine molecules on the photophysical and photochemical properties are also investigated. General trends are described for photodegradation, singlet oxygen and fluorescence quantum yields, and fluorescence lifetimes for complexes np-ZnPc/ p-ZnPc in DMSO and for complexes np-QZnPc/p-QZnPc in DMSO, phosphate buffered solution (PBS) and PBS+Triton-X 100 solutions. The fluorescence of the tetra-substituted quaternized zinc phthalocyanine complexes ( np-QZnPc/ p-QZnPc) are effectively quenched addition of 1,4-benzoquinone (BQ) and this study also presented the ionic zinc phthalocyanine complexes strongly bind to bovine serum albumin (BSA).
Dimethyl sulfoxide and dimethyl formamide increase lifespan of C. elegans in liquid.
Frankowski, Harald; Alavez, Silvestre; Spilman, Patricia; Mark, Karla A; Nelson, Joel D; Mollahan, Pamela; Rao, Rammohan V; Chen, Sylvia F; Lithgow, Gordon J; Ellerby, H Michael
2013-03-01
Lifespan extension through pharmacological intervention may provide valuable tools to understanding the mechanisms of aging and could uncover new therapeutic approaches for the treatment of age-related disease. Although the nematode Caenorhabditis elegans is well known as a particularly suitable model for genetic manipulations, it has been recently used in a number of pharmacological studies searching for compounds with anti-aging activity. These compound screens are regularly performed in amphipathic solvents like dimethyl sulfoxide (DMSO), the solvent of choice for high-throughput drug screening experiments performed throughout the world. In this work, we report that exposing C. elegans to DMSO in liquid extends lifespan up to 20%. Interestingly, another popular amphipathic solvent, dimethyl formamide (DMF), produces a robust 50% increase in lifespan. These compounds work through a mechanism independent of insulin-like signaling and dietary restriction (DR). Additionally, the mechanism does not involve an increased resistance to free radicals or heat shock suggesting that stress resistance does not play a major role in the lifespan extension elicited by these compounds. Interestingly, we found that DMSO and DMF are able to decrease the paralysis associated with amyloid-β3-42 aggregation, suggesting a role of protein homeostasis for the mechanism elicited by these molecules to increase lifespan. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Carvalho, Margarida; Matos, Mariana; Roca, Christophe; Reis, Maria A M
2014-01-25
Glycerol, a highly abundant byproduct of the biodiesel industry, constitutes today a cheap feedstock for biobased succinic acid (SA) production. Actinobacillus succinogenes is one of the best SA producers. However, glycerol consumption by this biocatalyst is limited because of a redox imbalance during cell growth. The use of an external electron acceptor may improve the metabolism of SA synthesis by A. succinogenes in glycerol. In this study, the effect of dimethylsulfoxide (DMSO), an electron acceptor, on glycerol consumption and SA production by A. succinogenes under controlled fermentation conditions was investigated. Concentrations of DMSO between 1 and 4% (v/v) greatly promoted glycerol consumption and SA production by A. succinogenes. During fed-batch cultivation, SA concentration reached 49.62 g/L, with a product yield of 0.87 gSA/gGLR and a maximum production rate of 2.31 gSA/Lh, the highest values so far reported in the literature for A. succinogenes using glycerol as carbon source. These results show that using DMSO as external electron acceptor significantly promotes glycerol consumption and succinic acid production by A. succinogenes and may be used as a co-substrate, opening new perspectives for the use of glycerol by this biocatalyst. Copyright © 2013 Elsevier B.V. All rights reserved.
Theoretical and experimental NMR studies on muscimol from fly agaric mushroom (Amanita muscaria)
NASA Astrophysics Data System (ADS)
Kupka, Teobald; Wieczorek, Piotr P.
2016-01-01
In this article we report results of combined theoretical and experimental NMR studies on muscimol, the bioactive alkaloid from fly agaric mushroom (Amanita muscaria). The assignment of 1H and 13C NMR spectra of muscimol in DMSO-d6 was supported by additional two-dimensional heteronuclear correlated spectra (2D NMR) and gauge independent atomic orbital (GIAO) NMR calculations using density functional theory (DFT). The effect of solvent in theoretical calculations was included via polarized continuum model (PCM) and the hybrid three-parameter B3LYP density functional in combination with 6-311++G(3df,2pd) basis set enabled calculation of reliable structures of non-ionized (neutral) molecule and its NH and zwitterionic forms in the gas phase, chloroform, DMSO and water. GIAO NMR calculations, using equilibrium and rovibrationally averaged geometry, at B3LYP/6-31G* and B3LYP/aug-cc-pVTZ-J levels of theory provided muscimol nuclear magnetic shieldings. The theoretical proton and carbon chemical shifts were critically compared with experimental NMR spectra measured in DMSO. Our results provide useful information on its structure in solution. We believe that such data could improve the understanding of basic features of muscimol at atomistic level and provide another tool in studies related to GABA analogs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bingsong Lei; Xiaoyuan Deng; Huajiang Wei
2014-12-31
We report our preliminary results on quantification of glucose and dimethyl sulfoxide (DMSO) diffusion in normal and cancerous human bladder tissues in vitro by using a spectral domain optical coherence tomography (SD-OCT). The permeability coefficients (PCs) of a 30% aqueous solution of glucose are found to be (7.92 ± 0.81) × 10{sup -6} cm s{sup -1} and (1.19 ± 0.13) × 10{sup -5} cm s{sup -1} in normal and cancerous bladder tissues, respectively. The PCs of 50% DMSO are calculated to be (8.99 ± 0.93) × 10{sup -6} cm s{sup -1} and (1.43 ± 0.17) × 10{sup -5} cm s{supmore » -1} in normal and cancerous bladder tissues, respectively. The obtained results show a statistically significant difference in permeability of normal and cancerous tissue and indicate that the PC of 50% DMSO is about 1.13-and 1.21-fold higher than that of 30% glucose in normal bladder and cancerous bladder tissues, respectively. Thus, the quantitative measurements with the help of PCs from OCT images can be a potentially powerful method for bladder cancer detection. (optical coherence tomography)« less
Liu, Wei-Zhong; Bordwell, Frederick G.
1996-07-12
The oxidation potentials of 19 nitrogen bases (abbreviated as B: six primary amines, five secondary amines, two tertiary amines, three anilines, pyridine, quinuclidine, and 1,4-diazabicyclo[2,2,2]octane), i.e., E(ox)(B) values in dimethyl sulfoxide (DMSO) and/or acetonitrile (AN), have been measured. Combination of these E(ox)(B) values with the acidity values of the corresponding acids (pK(HB)(+)) in DMSO and/or AN using the equation: BDE(HB)(+) = 1.37pK(HB)(+) + 23.1 E(ox)(B) + C (C equals 59.5 kcal/mol in AN and 73.3 kcal/mol in DMSO) gave estimates of solution phase homolytic bond dissociation energies of H-B(+) bonds. Gas-phase BDE values of H-B(+) bonds were estimated from updated proton affinities (PA) and adiabatic ionization potentials (aIP) using the equation, BDE(HB(+))(g) = PA + aIP - 314 kcal/mol. The BDE(HB)(+) values estimated in AN were found to be 5-11 kcal/mol higher than the corresponding gas phase BDE(HB(+))(g) values. These bond-strengthening effects in solution are interpreted as being due to the greater solvation energy of the HB(+) cation than that of the B(+*) radical cation.
NASA Astrophysics Data System (ADS)
Singh, Ashok K.; Saxena, Gunjan; Dixit, Shivani; Hamidullah; Singh, Sachin K.; Singh, Sudheer K.; Arshad, M.; Konwar, Rituraj
2016-05-01
Four new Ru(II) DMSO complexes with substituted chalcone ligands viz. (E)-1-(2-hydroxyphenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (HL1), (E)-1-(2-hydroxyphenyl)-3-(4-nitrophenyl)prop-2-en-1-one (HL2), (E)-3-(4-(dimethylamino)phenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (HL3) and (E)-1-(2-hydroxyphenyl)-3-(4-Chlorophenyl)prop-2-en-1-one (HL4) have been synthesized, and characterized by micro-analyses, IR, 1H NMR, UV-Vis and ESI-MS and screened for anti-cancer activity against breast cancer cell lines (MCF-7 and MDA MB-231). Compounds HL4 and [Ru(HL1) (O-DMSO)3(S-DMSO)]Cl (M1R) showed significant anti-breast cancer activity as evident from cytotoxicity, morphological and nuclear changes, DNA fragmentation and cell cycle arrest in breast cancer cells. UV-Vis and CD-spectra analysis showed HL4 and M1R interfered with DNA absorption spectra possibly due to DNA binding whereas these compounds were devoid of DNA topoisomerase inhibiting activity. Thus, these Ru(II) compounds have been established as new leads for future optimization by improving anti-cancer potency and safety.
Comparison of Antioxidant Activity and Total Phenol Contents of some Date Seed Varieties from Iran.
Shams Ardekani, Mohammad Reza; Khanavi, Mahnaz; Hajimahmoodi, Mannan; Jahangiri, Maryam; Hadjiakhoondi, Abbas
2010-01-01
The genus Phoenix is one of the most widely cultivated groups of palms around the world. The aim of this study was to determine the antioxidant activity and total phenolic compounds of 14 different varieties of date palm (Phoenix dactylifera L., Arecaceae) seed extracts with 5 solvents [water, methanol, methanol (50%), DMSO, and water: methanol: acetone: formic acid (20:40:40:0.1)]. Ferric reducing antioxidant power assay and Folin-Ciocalteu reagent was used for determination of the antioxidant effect and phenolic content of date seeds. DMSO extract of the "Zahedi" variety had the highest antioxidant effect (37.42 mmol/100 g dry plant) and total phenolic content (3541 mg /100 g dry plant) among these 14 varieties and 5 solvents. There was a significant correlation between the total phenolic content and antioxidant activity (R(2) = 0.791, P < 0.001) of the "Zahedi" variety DMSO extract, which can indicates that polyphenols are the main antioxidants. Iranian date palm seed has a relatively high antioxidant activity due to contribution of phenolic compounds. The present study showed that the Iranian date seeds are strong radical scavengers and can be considered as a good source of natural antioxidants for medicinal and commercial uses.
NASA Astrophysics Data System (ADS)
Judák, Péter; Grainger, Janelle; Goebel, Catrin; Van Eenoo, Peter; Deventer, Koen
2017-08-01
The mobile phase additive (DMSO) has been described as a useful tool to enhance electrospray ionization (ESI) of peptides and proteins. So far, this technique has mainly been used in proteomic/peptide research, and its applicability in a routine clinical laboratory setting (i.e., doping control analysis) has not been described yet. This work provides a simple, easy to implement screening method for the detection of doping relevant small peptides (GHRPs, GnRHs, GHS, and vasopressin-analogues) with molecular weight less than 2 kDa applying DMSO in the mobile phase. The gain in sensitivity was sufficient to inject the urine samples after a 2-fold dilution step omitting a time consuming sample preparation. The employed analytical procedure was validated for the qualitative determination of 36 compounds, including 13 metabolites. The detection limits (LODs) ranged between 50 and 1000 pg/mL and were compliant with the 2 ng/mL minimum detection level required by the World Anti-Doping Agency (WADA) for all the target peptides. To demonstrate the feasibility of the work, urine samples obtained from patients who have been treated with desmopressin or leuprolide and urine samples that have been declared as adverse analytical findings were analyzed.
BMP Induction of Cardiogenesis in P19 Cells Requires Prior Cell-Cell Interaction(s)
ANGELLO, JOHN C.; KAESTNER, STEFANIE; WELIKSON, ROBERT E.; BUSKIN, JEAN N.; HAUSCHKA, STEPHEN D.
2008-01-01
Mouse P19 embryonal carcinoma cells undergo cardiogenesis in response to high density and DMSO. We have derived a clonal subline which undergoes cardiogenesis in response to high density, but without requiring exposure to DMSO. The new subline retains the capacity to differentiate into skeletal muscle and neuronal cells in response to DMSO and retinoic acid. However, upon aggregation, these Oct 4-positive cells, termed P19-SI because they “self-induce” cardiac muscle, exhibit increased mRNAs encoding the mesodermal factor Brachyury, cardiac transcription factors Nkx 2.5 and GATA 4, the transcriptional repressor Msx-1, and cytokines Wnt 3a, Noggin and BMP 4. Exposure of aggregated P19-SI cells to BMP 4, a known inducer of cardiogenesis, accelerates cardiogenesis, as determined by rhythmic beating and myosin staining. However, cardiogenesis is severely inhibited when P19-SI cells are aggregated in the presence of BMP 4. These results demonstrate that cell-cell interaction is required before P19-SI cells can undergo a cardiogenic response to BMP 4. A concurrent increase in the expression of Msx-1 suggests one possible process underlying the inhibition of cardiogenesis. The phenotype of P19-SI cells offers an opportunity to explore new aspects of cardiac induction. PMID:16773658
BMP induction of cardiogenesis in P19 cells requires prior cell-cell interaction(s).
Angello, John C; Kaestner, Stefanie; Welikson, Robert E; Buskin, Jean N; Hauschka, Stephen D
2006-08-01
Mouse P19 embryonal carcinoma cells undergo cardiogenesis in response to high density and DMSO. We have derived a clonal subline that undergoes cardiogenesis in response to high density, but without requiring exposure to DMSO. The new subline retains the capacity to differentiate into skeletal muscle and neuronal cells in response to DMSO and retinoic acid. However, upon aggregation, these Oct 4-positive cells, termed P19-SI because they "self-induce" cardiac muscle, exhibit increased mRNAs encoding the mesodermal factor Brachyury, cardiac transcription factors Nkx 2.5 and GATA 4, the transcriptional repressor Msx-1, and cytokines Wnt 3a, Noggin, and BMP 4. Exposure of aggregated P19-SI cells to BMP 4, a known inducer of cardiogenesis, accelerates cardiogenesis, as determined by rhythmic beating and myosin staining. However, cardiogenesis is severely inhibited when P19-SI cells are aggregated in the presence of BMP 4. These results demonstrate that cell-cell interaction is required before P19-SI cells can undergo a cardiogenic response to BMP 4. A concurrent increase in the expression of Msx-1 suggests one possible process underlying the inhibition of cardiogenesis. The phenotype of P19-SI cells offers an opportunity to explore new aspects of cardiac induction.
Yu, Chaowei; Reddy, Amitha P; Simmons, Christopher W; Simmons, Blake A; Singer, Steven W; VanderGheynst, Jean S
2015-01-01
Microbial communities enriched from diverse environments have shown considerable promise for the targeted discovery of microorganisms and enzymes for bioconversion of lignocellulose to liquid fuels. While preservation of microbial communities is important for commercialization and research, few studies have examined storage conditions ideal for preservation. The goal of this study was to evaluate the impact of preservation method on composition of microbial communities enriched on switchgrass before and after storage. The enrichments were completed in a high-solid and aerobic environment at 55 °C. Community composition was examined for each enrichment to determine when a stable community was achieved. Preservation methods included cryopreservation with the cryoprotective agents DMSO and glycerol, and cryopreservation without cryoprotective agents. Revived communities were examined for their ability to decompose switchgrass under high-solid and thermophilic conditions. High-throughput 16S rRNA gene sequencing of DNA extracted from enrichment samples showed that the majority of the shift in composition of the switchgrass-degrading community occurred during the initial three 2-week enrichments. Shifts in community structure upon storage occurred in all cryopreserved samples. Storage in liquid nitrogen in the absence of cryoprotectant resulted in variable preservation of dominant microorganisms in enriched samples. Cryopreservation with either DMSO or glycerol provided consistent and equivalent preservation of dominant organisms. A stable switchgrass-degrading microbial community was achieved after three 2-week enrichments. Dominant microorganisms were preserved equally well with DMSO and glycerol. DMSO-preserved communities required more incubation time upon revival to achieve pre-storage activity levels during high-solid thermophilic cultivation on switchgrass. Despite shifts in the community with storage, the samples were active upon revival under thermophilic and high-solid conditions. The results suggest that the presence of microorganisms may be more important than their relative abundance in retaining an active microbial community.
Carvalho, Nathalia F; Pliego, Josefredo R
2015-10-28
Absolute single-ion solvation free energy is a very useful property for understanding solution phase chemistry. The real solvation free energy of an ion depends on its interaction with the solvent molecules and on the net potential inside the solute cavity. The tetraphenyl arsonium-tetraphenyl borate (TATB) assumption as well as the cluster-continuum quasichemical theory (CC-QCT) approach for Li(+) solvation allows access to a solvation scale excluding the net potential. We have determined this free energy scale investigating the solvation of the lithium ion in water (H2O), acetonitrile (CH3CN) and dimethyl sulfoxide (DMSO) solvents via the CC-QCT approach. Our calculations at the MP2 and MP4 levels with basis sets up to the QZVPP+diff quality, and including solvation of the clusters and solvent molecules by the dielectric continuum SMD method, predict the solvation free energy of Li(+) as -116.1, -120.6 and -123.6 kcal mol(-1) in H2O, CH3CN and DMSO solvents, respectively (1 mol L(-1) standard state). These values are compatible with the solvation free energy of the proton of -253.4, -253.2 and -261.1 kcal mol(-1) in H2O, CH3CN and DMSO solvents, respectively. Deviations from the experimental TATB scale are only 1.3 kcal mol(-1) in H2O and 1.8 kcal mol(-1) in DMSO solvents. However, in the case of CH3CN, the deviation reaches a value of 9.2 kcal mol(-1). The present study suggests that the experimental TATB scale is inconsistent for CH3CN. A total of 125 values of the solvation free energy of ions in these three solvents were obtained. These new data should be useful for the development of theoretical solvation models.
Mosalkova, Anastasiya P; Voitekhovich, Sergei V; Lyakhov, Alexander S; Ivashkevich, Ludmila S; Lach, Jochen; Kersting, Berthold; Gaponik, Pavel N; Ivashkevich, Oleg A
2013-02-28
For the first time, a representative of the 2,5-disubstituted tetrazoles, namely, 2-tert-butyl-5-(2-pyridyl)-2H-tetrazole (L), has been found to participate in oxidative dissolution of copper powder in homometalic systems Cu0–L–NH4X–DMSO (X = Cl, SCN, ClO4) and heterobimetallic ones Cu0–Mn(OAc)2–L–NH4OAc–Solv (Solv = DMSO, DMF), providing the formation of molecular homometallic complexes [CuL2Cl2] (1), [CuL2(SCN)2] (2), and [CuL2(H2O)](ClO4)2 (3), heterobimetallic complex [Cu2MnL2(OAc)6] (4) from DMF solution and its mixture with complex [Cu2MnL2(OAc)6]·2DMSO (5) from DMSO solution. Free ligand L and complexes 1–4 were characterized by elemental analysis, IR spectroscopy, thermal and X-ray single crystal analyses, whereas complex 5 was characterized by X-ray analysis only. Compounds 1–3 are mononuclear complexes, with chelating coordination mode of L via the tetrazole ring N4 and pyridine ring N7 atoms. Heterobimetallic complexes 4 and 5 possess trinuclear structures, with a linear Cu–Mn–Cu arrangement of the metal atoms, linked by the acetate anions; each copper(II) atom is decorated by a chelating unit of L via the tetrazole ring N1 and pyridine ring N7 atoms in complex 4, and via the N4, N7 atoms in complex 5. Temperature-dependent magnetic susceptibility measurements of complex 4 revealed a weak antiferromagnetic coupling between the paramagnetic copper(II) and manganese(II) ions (J = −2.5 cm(−1), g(Cu) = 2.25 and g(Mn) = 2.01), with magnetic exchange through the acetato bridges.
NASA Astrophysics Data System (ADS)
Kumari, Pratibha; Kaur, Supreet; Sharma, Shobha; Kashyap, Hemant K.
2018-04-01
Modulation of lipid membrane properties due to the permeation of amphiphiles is an important biological process pertaining to many applications in the field of pharmaceutics, toxicology, and biotechnology. Sphingolipids are both structural and functional lipids that constitute an important component of mechanically stable and chemically resistant outer leaflets of plasma membranes. Here, we present an atomistic molecular dynamics simulation study to appreciate the concentration-dependent effects of small amphiphilic molecules, such as ethanol, acetone, and dimethyl sulfoxide (DMSO), on the structure and stability of a fully hydrated homogeneous N-palmitoyl-sphingomyelin (PSM) bilayer. The study reveals an increase in the lateral expansion of the bilayer along with disordering of the hydrophobic lipid tails on increasing the concentration of ethanol. At higher concentrations of ethanol, rupturing of the bilayer is quite evident through the analysis of partial electron density profiles and lipid tail order parameters. For ethanol containing systems, permeation of water molecules in the hydrophobic part of the bilayer is allowed through local defects made due to the entry of ethanol molecules via ethanol-ethanol and ethanol-PSM hydrogen bonds. Moreover, the extent of PSM-PSM hydrogen bonding decreases with increasing ethanol concentration. On the other hand, acetone and DMSO exhibit minimal effects on the stability of the PSM bilayer at their lower concentrations, but at higher concentrations they tend to enhance the stability of the bilayer. The simulated potential of mean force (PMF) profiles for the translocation of the three solutes studied reveal that the free-energy of transfer of an ethanol molecule across the PSM lipid head region is lower than that for acetone and DMSO molecules. However, highest free-energy rise in the core hydrophobic part of the bilayer is observed for the DMSO molecule, whereas the ethanol and acetone PMF profiles show a lower barrier in the hydrophobic region of the bilayer.
Review of in vivo studies of dimethyl sulfoxide cryopreserved platelets.
Slichter, Sherrill J; Jones, Melinh; Ransom, Janet; Gettinger, Irena; Jones, Mary Kay; Christoffel, Todd; Pellham, Esther; Bailey, S Lawrence; Corson, Jill; Bolgiano, Doug
2014-10-01
A literature review was conducted to assess the efficacy and safety of dimethyl sulfoxide (DMSO) cryopreserved platelets for potential military use. In vivo DMSO cryopreserved platelet studies published between 1972 and June of 2013 were reviewed. Assessed were the methods of cryopreservation, posttransfusion platelet responses, prevention or control of bleeding, and adverse events. Using the Department of Defense's preferred 6% DMSO cryopreservation method with centrifugation to remove the DMSO plasma before freezing at -65°C and no postthaw wash, mean radiolabeled platelet recoveries in 32 normal subjects were 33% ± 10% (52% ± 12% of the same subject's fresh platelet recoveries), and survivals were 7.5 ± 1.2 days (89% ± 15% of fresh platelet survivals). Using a variety of methods to freeze autologous platelets from 178 normal subjects, mean radiolabeled platelet recoveries were consistently 39% ± 9%, and survivals, 7.4 ± 1.4 days. More than 3000 cryopreserved platelet transfusions were given to 1334 patients. There were 19 hematology/oncology patient studies, and, in 9, mean 1-hour corrected count increments were 11 100 ± 3600 (range, 5700-15 800) after cryopreserved autologous platelet transfusions. In 5 studies, bleeding times improved after transfusion; in 3, there was either no improvement or a variable response. In 4 studies, there was immediate cessation of bleeding after transfusion; in 3 studies, patients being supported only with cryopreserved platelets had no bleeding. In 1 cardiopulmonary bypass study, cryopreserved platelets resulted in significantly less bleeding vs standard platelets. In 3 trauma studies, cryopreserved platelets were hemostatically effective. No significant adverse events were reported in any study. In summary, cryopreserved platelets have platelet recoveries that are about half of fresh platelets, but survivals are only minimally reduced. The platelets appear hemostatically effective and have no significant adverse events. Copyright © 2014 Elsevier Inc. All rights reserved.
Lim, Yik N; Dwyer, Peter; Murray, Christine; Karmakar, Debjyoti; Rosamilia, Anna; Thomas, Elizabeth
2017-07-01
For decades, intravesical dimethyl sulfoxide (DMSO) cocktail therapy has been used for the treatment of interstitial cystitis/bladder pain syndrome (IC/BPS), but little is known about its long-term efficacy. We aimed to assess the long-term efficacy of intravesical DMSO/heparin/hydrocortisone/bupivacaine therapy in patients with IC/BPS. Patients with IC/BPS from our institutions who underwent this therapy with >2 years follow-up were surveyed with O'Leary-Sant interstitial cystitis symptom and problem index questionnaires before and after therapy. Chart reviews and telephone surveys were then conducted to determine their posttherapy course. Of 68 eligible women, 55 (80.0%) with a median follow-up of 60 months (range 24-142) were surveyed. Their mean age at therapy onset was 44.8 years and their mean body mass index was 26.2 kg/m 2 . There were statistically significant improvements in O'Leary-Sant and pain scores of 23-47% at both 6 weeks and the end of the follow-up period. At the end of the follow-up period, 19 of the 55 women (34.5%) were cured (requiring no further treatment) and 12 (21.8%) were significantly improved (requiring only ongoing oral medication). Univariate and multivariate analyses showed that DMSO treatment failure was more likely in patients with pretreatment day-time urinary frequency more than 15 episodes per day (OR 1.41), nocturia more than two episodes per night (OR 2.47), maximum bladder diary voided volume <200 ml (OR 1.39) and bladder capacity under anaesthesia <500 ml (OR 1.6). At a median follow-up of 60 months, intravesical DMSO cocktail therapy appeared moderately effective for the treatment of IC/BPS. Treatment failure was more frequent in patients with pretreatment symptoms of reduced bladder capacity.
Zeisberger, Steffen M; Schulz, Julia C; Mairhofer, Mario; Ponsaerts, Peter; Wouters, Guy; Doerr, Daniel; Katsen-Globa, Alisa; Ehrbar, Martin; Hescheler, Jurgen; Hoerstrup, Simon P; Zisch, Andreas H; Kolbus, Andrea; Zimmermann, Heiko
2011-01-01
While therapeutic cell transplantations using progenitor cells are increasingly evolving towards phase I and II clinical trials and chemically defined cell culture is established, standardization in biobanking is still in the stage of infancy. In this study, the EU FP6-funded CRYSTAL (CRYo-banking of Stem cells for human Therapeutic AppLication) consortium aimed to validate novel Standard Operating Procedures (SOPs) to perform and validate xeno-free and chemically defined cryopreservation of human progenitor cells and to reduce the amount of the potentially toxic cryoprotectant additive (CPA) dimethyl sulfoxide (DMSO). To achieve this goal, three human adult progenitor and stem cell populations-umbilical cord blood (UCB)-derived erythroid cells (UCB-ECs), UCB-derived endothelial colony forming cells (UCB-ECFCs), and adipose tissue (AT)-derived mesenchymal stromal cells (AT-MSCs)-were cryopreserved in chemically defined medium supplemented with 10% or 5% DMSO. Cell recovery, cell repopulation, and functionality were evaluated postthaw in comparison to cryopreservation in standard fetal bovine serum (FBS)-containing freezing medium. Even with a reduction of the DMSO CPA to 5%, postthaw cell count and viability assays indicated no overall significant difference versus standard cryomedium. Additionally, to compare cellular morphology/membrane integrity and ice crystal formation during cryopreservation, multiphoton laser-scanning cryomicroscopy (cryo-MPLSM) and scanning electron microscopy (SEM) were used. Neither cryo-MPLSM nor SEM indicated differences in membrane integrity for the tested cell populations under various conditions. Moreover, no influence was observed on functional properties of the cells following cryopreservation in chemically defined freezing medium, except for UCB-ECs, which showed a significantly reduced differentiation capacity after cryopreservation in chemically defined medium supplemented with 5% DMSO. In summary, these results demonstrate the feasibility and robustness of standardized xeno-free cryopreservation of different human progenitor cells and encourage their use even more in the field of tissue-engineering and regenerative medicine.
Zilli, Loredana; Beirão, José; Schiavone, Roberta; Herraez, Maria Paz; Gnoni, Antonio; Vilella, Sebastiano
2014-01-01
Cryopreservation induces injuries to fish spermatozoa that in turn affect sperm quality in terms of fertilization ability, motility, DNA and protein integrity and larval survival. To reduce the loss of sperm quality due to freezing-thawing, it is necessary to improve these procedures. In the present study we investigated the ability of two antifreeze proteins (AFPI and AFPIII) to reduce the loss of quality of sea bream spermatozoa due to cryopreservation. To do so, we compared viability, motility, straight-line velocity and curvilinear velocity of fresh and (AFPs)-cryopreserved spermatozoa. AFPIII addition to cryopreservation medium improved viability, motility and straight-line velocity with respect to DMSO or DMSO plus AFPI. To clarify the molecular mechanism(s) underlying these findings, the protein profile of two different cryopreserved sperm domains, flagella and head plasma membranes, was analysed. The protein profiles differed between fresh and frozen-thawed semen and results of the image analysis demonstrated that, after cryopreservation, out of 270 proteins 12 were decreased and 7 were increased in isolated flagella, and out of 150 proteins 6 showed a significant decrease and 4 showed a significant increase in head membranes. Mass spectrometry analysis identified 6 proteins (4 from isolated flagella and 2 present both in flagella and head plasma membranes) within the protein spots affected by the freezing-thawing procedure. 3 out of 4 proteins from isolated flagella were involved in the sperm bioenergetic system. Our results indicate that the ability of AFPIII to protect sea bream sperm quality can be, at least in part, ascribed to reducing changes in the sperm protein profile occurring during the freezing-thawing procedure. Our results clearly demonstrated that AFPIII addition to cryopreservation medium improved the protection against freezing respect to DMSO or DMSO plus AFPI. In addition we propose specific proteins of spermatozoa as markers related to the procedures of fish sperm cryopreservation.
Dijkstra-Tiekstra, Margriet J; Setroikromo, Airies C; Kraan, Marcha; Gkoumassi, Effimia; de Wildt-Eggen, Janny
2014-12-01
Adding dimethyl sulfoxide (DMSO) to hematopoietic progenitor cells (HPCs) causes an exothermic reaction, potentially affecting their viability. The freezing method might also influence this. The aim was to investigate the effect of 1) precooling of DMSO and plasma (D/P) and white blood cell (WBC)-enriched product, 2) DMSO concentration of D/P, 3) freezing program, and 4) storage method on WBC quality. WBC-enriched product without CD34+ cells was used instead of HPCs. This was divided into six or eight portions. D/P (20 or 50%; precooled or room temperature [RT]) was added to the WBC-enriched product (precooled or RT), resulting in 10% DMSO, while monitoring temperature. The product was frozen using controlled-rate freezing ("fast-rate" or "slow-rate") and placed in vapor-phase or liquid nitrogen. After thawing, WBC recovery and viability were determined. Temperature increased most for precooled D/P to precooled WBC-enriched product, without influence of 20 or 50% D/P, but remained for all variations below 30°C. WBC recovery for both freezing programs was more than 95%. Recovery of WBC viability was higher for slow-rate freezing compared to fast-rate freezing (74% vs. 61%; p < 0.05) and also for 50% compared to 20% D/P (two test variations). Effect of precooling D/P or WBC-enriched product and of storage in vapor-phase or liquid nitrogen was marginal. Based on these results, precooling is not necessary. Fifty percent D/P is preferred over 20% D/P. Slow-rate freezing is preferred over fast-rate freezing. For safety reasons storage in vapor-phase nitrogen is preferred over storage in liquid nitrogen. Additional testing using real HPCs might be necessary. © 2014 AABB.
Yu, Chaowei; Reddy, Amitha P.; Simmons, Christopher W.; ...
2015-12-02
Microbial communities enriched from diverse environments have shown considerable promise for the targeted discovery of microorganisms and enzymes for bioconversion of lignocellulose to liquid fuels. While preservation of microbial communities is important for commercialization and research, few studies have examined storage conditions ideal for preservation. The goal of this study was to evaluate the impact of preservation method on composition of microbial communities enriched on switchgrass before and after storage. The enrichments were completed in a high-solid and aerobic environment at 55 °C. Community composition was examined for each enrichment to determine when a stable community was achieved. Preservation methodsmore » included cryopreservation with the cryoprotective agents DMSO and glycerol, and cryopreservation without cryoprotective agents. Revived communities were examined for their ability to decompose switchgrass under high-solid and thermophilic conditions. High-throughput 16S rRNA gene sequencing of DNA extracted from enrichment samples showed that the majority of the shift in composition of the switchgrass-degrading community occurred during the initial three 2-week enrichments. Shifts in community structure upon storage occurred in all cryopreserved samples. Storage in liquid nitrogen in the absence of cryoprotectant resulted in variable preservation of dominant microorganisms in enriched samples. Cryopreservation with either DMSO or glycerol provided consistent and equivalent preservation of dominant organisms. In conclusion, a stable switchgrass-degrading microbial community was achieved after three 2-week enrichments. Dominant microorganisms were preserved equally well with DMSO and glycerol. DMSO-preserved communities required more incubation time upon revival to achieve pre-storage activity levels during high-solid thermophilic cultivation on switchgrass. Despite shifts in the community with storage, the samples were active upon revival under thermophilic and high-solid conditions. The results suggest that the presence of microorganisms may be more important than their relative abundance in retaining an active microbial community.« less
Life of superoxide in aprotic Li-O₂ battery electrolytes: simulated solvent and counter-ion effects.
Scheers, J; Lidberg, D; Sodeyama, K; Futera, Z; Tateyama, Y
2016-04-21
Li-air batteries ideally make use of oxygen from the atmosphere and metallic lithium to reversibly drive the reaction 2Li + O2↔ Li2O2. Conceptually, energy throughput is high and material use is efficient, but practically many material challenges still remain. It is of particular interest to control the electrolyte environment of superoxide (O2*(-)) to promote or hinder specific reaction mechanisms. By combining density functional theory based molecular dynamics (DFT-MD) and DFT simulations we probe the bond length and the electronic properties of O2*(-) in three aprotic solvents - in the presence of Li(+) or the much larger cation alternative tetrabutylammonium (TBA(+)). Contact ion pairs, LiO2*, are favoured over solvent-separated ion pairs in all solvents, but particularly in low permittivity dimethoxyethane (DME), which makes O2*(-) more prone to further reduction. The Li(+)-O2*(-) interactions are dampened in dimethyl sulfoxide (DMSO), in relation to those in DME and propylene carbonate (PC), which is reflected by smaller changes in the electronic properties of O2*(-) in DMSO. The additive TBA(+) offers an alternative, more weakly interacting partner to O2*(-), which makes it easier to remove the unpaired electron and oxidation more feasible. In DMSO, TBA(+) has close to no effect on O2*(-), which behaves as if no cation is present. This is contrasted by a much stronger influence of TBA(+) on O2*(-) in DME - comparable to that of Li(+) in DMSO. An important future goal is to compare and rank the effects of different additives beyond TBA(+). Here, the results of DFT calculations for small-sized cluster models are in qualitative agreement with those of the DFT-MD simulations, which suggests the cluster approach to be a cost-effective alternative to the DFT-MD simulations for a more extensive comparison of additive effects in future studies.
Lv, Mei-Rong; Li, Bin; Wang, Ming-Guang; Meng, Fan-Guo; Yu, Jian-Jun; Guo, Feng; Li, Ye
2017-09-01
The central objective was to identify the role of the PI3K-Akt activation pathway on the neuroprotection of δ-opioid receptor agonist (DADLE) against cerebral ischemia-reperfusion (I/R) injury in a rat model. Fifty-five male Sprague-Dawley (SD) rats were included to establish a middle cerebral artery occlusion (MCAO) model which were then divided into the sham, MCAO, LY294002 (MCAO+DADLE+LY294002 [inhibitor of PI3K-Akt pathway]), DADLE (MCAO+DADLE) and DMSO (MCAO+DADLE+DMSO [dimethyl sulphoxide]) groups. The cerebral infarction (CI) volume and nerve cell apoptosis was determined using TTC and TUNEL staining. Quantitative real-time polymerase chain reaction (qRT-PCR), western blotting and immunohistochemistry staining were applied for the expressions of Bad, Bax, Bcl-2 and cleaved caspase-3. The MCAO group showed higher CI volume, nerve cell apoptosis and cleaved caspase-3 expressions than the DADLE and DMSO groups, which were also higher in the LY294002 group than the DADLE group. Compared with the MCAO group, the mRNA and protein expressions of PI3K and Bcl-2, and the protein expressions of p-Akt and p-Bad were elevated, while the mRNA and protein expressions of Bax were decreased in the DADLE and DMSO groups. Decreased mRNA and protein expressions of PI3K and Bcl-2, reduced protein expressions of p-Akt and p-Bad and elevated mRNA and protein expressions of Bax exhibited in the LY294002 group than the DADLE group. These results indicate that activation of PI3K-Akt pathway promotes the neuroprotection of DADLE against cerebral I/R injury in a rat model by decreasing nerve cells apoptosis. Copyright © 2017. Published by Elsevier Masson SAS.
Wildenberg, Manon E; Duijvestein, Marjolijn; Westera, Liset; van Viegen, Tanja; Buskens, Christianne J; van der Bilt, Jarmila D W; Stitt, Larry; Jairath, Vipul; Feagan, Brian G; Vande Casteele, Niels
2018-06-01
Flow cytometric (FC) analysis of intestinal tissue biopsies requires prompt cell isolation and processing to prevent cell death and generate valid data. We examined the effect of storage conditions prior to cell isolation and FC on viable cell yield and the proportions of immune cell phenotypes from intestinal biopsies. Biopsies (N = 224) from inflamed or non-inflamed ileal and/or colonic tissue from three patients with Crohn's disease were processed and analyzed immediately in duplicate, or stored under different conditions. Cells were isolated and stained for specific markers, followed by FC. Decreased mean live CD45+ cell counts were observed after storage of biopsies at -80 °C dimethyl sulfoxide (DMSO)/citrate buffer compared with immediate processing (1794.3 vs. 19,672.7; p = 0.006]). A non-significant decrease in CD45+ live cell count occurred after storage at -20 °C in DMSO/citrate buffer and cell yield was adequate for subsequent analysis. CD3+ cell proportions were significantly lower after storage at 4 °C in complete medium for 48 h compared with immediate analysis. Mean CD14+ cell proportions were significantly higher after storage of biopsies at -80 °C in DMSO/citrate buffer compared with immediate analysis (2.61% vs. 1.31%, p = 0.007). CD4+, CD8+ and CD4+/CD8+ cell proportions were unaffected by storage condition. Storage of intestinal tissue biopsies at -20 °C in DMSO/citrate buffer for up to 48 h resulted in sufficient viable cell yield for FC analysis without affecting subsequent marker-positive cell proportions. These findings support the potential shipping and storage of intestinal biopsies for centralized FC analysis in multicenter clinical trials. Copyright © 2018 Elsevier B.V. All rights reserved.
Multidimensional free energy surface of unfolding of HP-36: Microscopic origin of ruggedness
NASA Astrophysics Data System (ADS)
Ghosh, Rikhia; Roy, Susmita; Bagchi, Biman
2014-10-01
The protein folding funnel paradigm suggests that folding and unfolding proceed as directed diffusion in a multidimensional free energy surface where a multitude of pathways can be traversed during the protein's sojourn from initial to final state. However, finding even a single pathway, with the detail chronicling of intermediates, is an arduous task. In this work we explore the free energy surface of unfolding pathway through umbrella sampling, for a small globular α-helical protein chicken-villin headpiece (HP-36) when the melting of secondary structures is induced by adding DMSO in aqueous solution. We find that the unfolding proceeds through the initial separation or melting of aggregated hydrophobic core that comprises of three phenylalanine residues (Phe7, Phe11, and Phe18). This separation is accompanied by simultaneous melting of the second helix. Unfolding is found to be a multistage process involving crossing of three consecutive minima and two barriers at the initial stage. At a molecular level, Phe18 is observed to reorient itself towards other hydrophobic grooves to stabilize the intermediate states. We identify the configuration of the intermediates and correlate the intermediates with those obtained in our previous works. We also give an estimate of the barriers for different transition states and observe the softening of the barriers with increasing DMSO concentration. We show that higher concentration of DMSO tunes the unfolding pathway by destabilizing the third minimum and stabilizing the second one, indicating the development of a solvent modified, less rugged pathway. The prime outcome of this work is the demonstration that mixed solvents can profoundly transform the nature of the energy landscape and induce unfolding via a modified route. A successful application of Kramer's rate equation correlating the free energy simulation results shows faster rate of unfolding with increasing DMSO concentration. This work perhaps presents the first systematic theoretical study of the effect of a chemical denaturant on the microscopic free energy surface and rates of unfolding of HP-36.
Taitson, P F; Chami, E; Godinho, H P
2008-05-01
A practical sperm cryopreservation protocol using a dry-shipper and a diluent of simple composition is described for the neotropical fish Leporinus obtusidens (Valenciennes, 1836). The cooling rate of the dry-shipper and its period of useful time, established under laboratory conditions, were respectively 25.7-30.8 degrees C/min (between 0 and -60 degrees C) and 9 days after charging. Sperm donors were selected on the basis of their hyperemic genital papilla and the ability to ooze milt under gentle manual pressure, during the reproductive months of November to January. Milt volume (1.3+/-0.3 mL; n=9 fish), fresh sperm motility rate (93.3+/-2.5%; n=6 fish), and sperm concentration (10.9+/-3.0 x 10(9)spermatozoa/mL of milt) were obtained. The sperm cryopreservation experiments were conducted with the following cryoprotectants (all at 10%, before mixing with milt): dimethyl sulphoxide (DMSO; n=10 fish), methanol (n=6 fish), propanediol (n=6 fish) and ethylene glycol (n=5 fish). Glucose (5%) and hen's egg yolk (10%) made up the diluents containing DMSO, ethylene glycol or propanediol. Milk powder (10%) replaced hen's egg yolk in the diluent containing methanol. Distilled water (up to 100%) completed the diluent solutions. Milt freezing (in 0.5-mL straws) was performed in the dry-shipper after 1:5 (milt:diluent) dilution. Thawed sperm cryopreserved in DMSO-containing diluent and activated by 119 mM NaHCO(3) gave the highest motility rate (62+/-14%). The fertilizing capacity of L. obtusidens sperm was tested using the combination of DMSO-containing diluent as the cryoprotectant and 119 mM NaHCO(3) as the activating solution. Oocytes were obtained from artificial spawning and fertilized with different proportions of spermatozoa. The greatest rate of fertilization (74%) occurred when the ratio of about 112,000 motile spermatozoa:oocyte was used. Thus, a protocol to freeze L. obtusidens sperm can be elaborated as follows. Milt (<1.5 mL fish(-1)) was readily available only in November to January; a simple solution, composed of 10% DMSO (concentration before adding milt), 5% glucose, and 10% hen yolk egg, in distilled water, was used as sperm diluent; cooling rate of 25-30 degrees C/min, yielded in a portable dry-shipper, was adequate to freeze diluted milt (1:5; milt:diluent), in 5-mL straws; about 112,000 thawed motile spermatozoa:oocyte activated by 119 mM NaHCO(3) assured a fertilization rate of 74%.
NASA Astrophysics Data System (ADS)
Zhu, Leize; Yuh, Brian; Schoen, Stefan; Li, Xinpei; Aldighaithir, Mohammed; Richardson, Beau J.; Alamer, Ahmed; Yu, Qiuming
2016-03-01
Binary lead and tin perovskites offer the benefits of narrower band gaps for broader adsorption of solar spectrum and better charge transport for higher photocurrent density. Here, we report the growth of large, smooth crystalline grains of bianry lead and tin triiodide perovskite films via a two-step solution process with thermal plus solvent vapor-assisted thermal annealing. The crystalline SnxPb1-xI2 films formed in the first step served as the templates for the formation of crystalline CH3NH3SnxPb1-xI3 films during the second step interdiffusion of methylammonium iodide (MAI). Followed by dimethylsulfoxide (DMSO) vapor-assisted thermal annealing, small, faceted perovskite grains grew into large, smooth grains via the possible mechanism involving bond breaking and reforming mediated by DMSO solvent molecules. The absorption onset was extended to 950 and 1010 nm for the CH3NH3SnxPb1-xI3 perovskites with x = 0.1 and 0.25, respectively. The highest PCE of 10.25% was achieved from the planar perovskite solar cell with the CH3NH3Sn0.1Pb0.9I3 layer prepared via the thermal plus DMSO vapor-assisted thermal annealing. This research provides a way to control and manipulate film morphology, grain size, and especially the distribution of metal cations in binary metal perovskite layers, which opens an avenue to grow perovskite materials with desired properties to enhance device performance.Binary lead and tin perovskites offer the benefits of narrower band gaps for broader adsorption of solar spectrum and better charge transport for higher photocurrent density. Here, we report the growth of large, smooth crystalline grains of bianry lead and tin triiodide perovskite films via a two-step solution process with thermal plus solvent vapor-assisted thermal annealing. The crystalline SnxPb1-xI2 films formed in the first step served as the templates for the formation of crystalline CH3NH3SnxPb1-xI3 films during the second step interdiffusion of methylammonium iodide (MAI). Followed by dimethylsulfoxide (DMSO) vapor-assisted thermal annealing, small, faceted perovskite grains grew into large, smooth grains via the possible mechanism involving bond breaking and reforming mediated by DMSO solvent molecules. The absorption onset was extended to 950 and 1010 nm for the CH3NH3SnxPb1-xI3 perovskites with x = 0.1 and 0.25, respectively. The highest PCE of 10.25% was achieved from the planar perovskite solar cell with the CH3NH3Sn0.1Pb0.9I3 layer prepared via the thermal plus DMSO vapor-assisted thermal annealing. This research provides a way to control and manipulate film morphology, grain size, and especially the distribution of metal cations in binary metal perovskite layers, which opens an avenue to grow perovskite materials with desired properties to enhance device performance. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00301j
Formation of a Criegee intermediate in the low-temperature oxidation of dimethyl sulfoxide.
Asatryan, Rubik; Bozzelli, Joseph W
2008-04-07
Dimethyl sulfoxide (DMSO) is the major sulfur-containing constituent of the Marine Boundary Layer. It is a significant source of H2SO4 aerosol/particles and methane sulfonic acid via atmospheric oxidation processes, where the mechanism is not established. In this study, several new, low-temperature pathways are revealed in the oxidation of DMSO using CBS-QB3 and G3MP2 multilevel and B3LYP hybrid density functional quantum chemical methods. Unlike analogous hydrocarbon peroxy radicals the chemically activated DMSO peroxy radical, [CH3S(=O)CH2OO*]*, predominantly undergoes simple dissociation to a methylsulfinyl radical CH3S*(=O) and a Criegee intermediate, CH2OO, with the barrier to dissociation 11.3 kcal mol(-1) below the energy of the CH3S(=O)CH2* + O2 reactants. The well depth for addition of O2 to the CH3S(=O)CH2 precursor radical is 29.6 kcal mol(-1) at the CBS-QB3 level of theory. We believe that this reaction may serve an important role in atmospheric photochemical and irradiated biological (oxygen-rich) media where formation of initial radicals is facilitated even at lower temperatures. The Criegee intermediate (carbonyl oxide, peroxymethylene) and sulfinyl radical can further decompose, resulting in additional chain branching. A second reaction channel important for oxidation processes includes formation (via intramolecular H atom transfer) and further decomposition of hydroperoxide methylsulfoxide radical, *CH2S(=O)CH2OOH over a low barrier of activation. The initial H-transfer reaction is similar and common in analogous hydrocarbon radical + O2 reactions; but the subsequent very low (3-6 kcal mol(-1)) barrier (14 kcal mol(-1) below the initial reagents) to beta-scission products is not common in HC systems. The low energy reaction of the hydroperoxide radical is a beta-scission elimination of *CH2S(=O)CH2OOH into the CH2=S=O + CH2O + *OH product set. This beta-scission barrier is low, because of the delocalization of the *CH2 radical center through the -S(=O) group, to the -CH2OOH fragment in the transition state structure. The hydroperoxide methylsulfoxide radical can also decompose via a second reaction channel of intramolecular OH migration, yielding formaldehyde and a sulfur-centered hydroxymethylsulfinyl radical HOCH2S*(=O). The barrier of activation relative to initial reagents is 4.2 kcal mol(-1). Heats of formation for DMSO, DMSO carbon-centered radical and Criegee intermediate are evaluated at 298 K as -35.97 +/- 0.05, 13.0 +/- 0.2 and 25.3 +/- 0.7 kcal mol(-1) respectively using isodesmic reaction analysis. The [CH3S*(=O) + CH2OO] product set is shown to form a van der Waals complex that results in O-atom transfer reaction and the formation of new products CH3SO2* radical and CH2O. Proper orientation of the Criegee intermediate and methylsulfinyl radical, as a pre-stabilized pre-reaction complex, assist the process. The DMSO radical reaction is also compared to that of acetonyl radical.
Fabrication and Characterization of Magnetic Nanowires in Anodic Alumina
NASA Astrophysics Data System (ADS)
Xiao, Z. L.; Han, Y. R.; Wang, H. H.; Welp, U.; Kwok, W. K.; Crabtree, G. W.
2002-03-01
Magnetic nanowires (cobalt, iron and nickel) with diameters down to 20 nm have been fabricated by electrodeposition. Both commercial and home-made anodized aluminum oxide (AAO) membranes with nanochannel arrays were used as templates. The structure and magnetization hysteresis of the specimens with nanowires were investigated with scanning electron microscope (SEM) and superconducting quantum interference device (SQUID), respectively. Growth of nanowires with both aqueous and dimethylsulfoxide (DMSO) solutions was conducted and better quality nanowires were obtained with the organic DMSO solution. The influence of the diameter, the length and the separation of the nanochannels on the magnetization orientation was investigated in detail. Work supported by the US Department of Energy (DOE), BES-Materials Science, Contract No. W-31-109-ENG-38.
One-Pot Conversion of Carbohydrates into Pyrrole-2-carbaldehydes as Sustainable Platform Chemicals.
Adhikary, Nirmal Das; Kwon, Sunjeong; Chung, Wook-Jin; Koo, Sangho
2015-08-07
A practical conversion method of carbohydrates into N-substituted 5-(hydroxymethyl)pyrrole-2-carbaldehydes (pyrralines) was developed by the reaction with primary amines and oxalic acid in DMSO at 90 °C. Further cyclization of the highly functionalized pyrralines afforded the pyrrole-fused poly-heterocyclic compounds as potential intermediates for drugs, food flavors, and functional materials. The mild Maillard variant of carbohydrates and amino esters in heated DMSO with oxalic acid expeditiously produced the pyrrole-2-carbaldehyde skeleton, which can be concisely transformed into the pyrrole alkaloid natural products, 2-benzyl- and 2-methylpyrrolo[1,4]oxazin-3-ones 8 and 9, lobechine 10, and (-)-hanishin 11 in 23-32% overall yields from each carbohydrate.
Study on cryopreservation of Porphyra yezoensis conchocelis
NASA Astrophysics Data System (ADS)
Zhou, Wenjun; Li, Yun; Dai, Jixun
2007-07-01
Cryopreservation of Porphyra yezoensis conchocelis was conducted with cryoprotectants and a proposed pretreatment procedure and thawing methods explored. Six cryoprotectants combined by DMSO with ethylene glycol (EG), propylene glycol (PEG), sorbitol and sucrose were developed. The effect of prefreezing at -40°C or -20°C for different time durations was compared and the thawing methods were screened. It was shown that the cryoprotectant including 10% DMSO with 0.5 molL-1 sorbitol exhibited the optimal effect. The ideal pretreatment was that conchocelis segments were stayed for 20 min at -40°C before stored in liquid nitrogen, and 40°C water bath was proper for quick thawing. The highest recovery rate of cryopreserved P. yezoensis conchocelis reached 89.41%.
A 13C NMR study of the structure of four cinnamic acids and their methyl esters
NASA Astrophysics Data System (ADS)
Silva, A. M. S.; Alkorta, I.; Elguero, J.; Silva, V. L. M.
2001-09-01
The 13C NMR spectra, both in DMSO solution and in the solid state of four cinnamic acids (p-methoxy, p-hydroxy, p-methyl, p-chloro) and their corresponding methyl esters have been recorded. The two main results in the solid state are: (i) the only significant difference between acids and esters chemical shifts concerns the Cdbnd O group which, on average, appears at 173 ppm in the acids and 168 ppm in the esters; (ii) the signals of the ortho and meta carbons both in the acids and the esters are splitted. The two 'anomalies' disappear in DMSO solution. These observations can be rationalized using simple GIAO/B3LYP/6-31G∗ calculations.
Notman, Rebecca; Anwar, Jamshed; Briels, W J; Noro, Massimo G; den Otter, Wouter K
2008-11-15
Transmembrane pore formation is central to many biological processes such as ion transport, cell fusion, and viral infection. Furthermore, pore formation in the ceramide bilayers of the stratum corneum may be an important mechanism by which penetration enhancers such as dimethylsulfoxide (DMSO) weaken the barrier function of the skin. We have used the potential of mean constraint force (PMCF) method to calculate the free energy of pore formation in ceramide bilayers in both the innate gel phase and in the DMSO-induced fluidized state. Our simulations show that the fluid phase bilayers form archetypal water-filled hydrophilic pores similar to those observed in phospholipid bilayers. In contrast, the rigid gel-phase bilayers develop hydrophobic pores. At the relatively small pore diameters studied here, the hydrophobic pores are empty rather than filled with bulk water, suggesting that they do not compromise the barrier function of ceramide membranes. A phenomenological analysis suggests that these vapor pores are stable, below a critical radius, because the penalty of creating water-vapor and tail-vapor interfaces is lower than that of directly exposing the strongly hydrophobic tails to water. The PMCF free energy profile of the vapor pore supports this analysis. The simulations indicate that high DMSO concentrations drastically impair the barrier function of the skin by strongly reducing the free energy required for pore opening.
Notman, Rebecca; Anwar, Jamshed; Briels, W. J.; Noro, Massimo G.; den Otter, Wouter K.
2008-01-01
Transmembrane pore formation is central to many biological processes such as ion transport, cell fusion, and viral infection. Furthermore, pore formation in the ceramide bilayers of the stratum corneum may be an important mechanism by which penetration enhancers such as dimethylsulfoxide (DMSO) weaken the barrier function of the skin. We have used the potential of mean constraint force (PMCF) method to calculate the free energy of pore formation in ceramide bilayers in both the innate gel phase and in the DMSO-induced fluidized state. Our simulations show that the fluid phase bilayers form archetypal water-filled hydrophilic pores similar to those observed in phospholipid bilayers. In contrast, the rigid gel-phase bilayers develop hydrophobic pores. At the relatively small pore diameters studied here, the hydrophobic pores are empty rather than filled with bulk water, suggesting that they do not compromise the barrier function of ceramide membranes. A phenomenological analysis suggests that these vapor pores are stable, below a critical radius, because the penalty of creating water-vapor and tail-vapor interfaces is lower than that of directly exposing the strongly hydrophobic tails to water. The PMCF free energy profile of the vapor pore supports this analysis. The simulations indicate that high DMSO concentrations drastically impair the barrier function of the skin by strongly reducing the free energy required for pore opening. PMID:18708461
Growth-inhibitory effects of the red alga Gelidium amansii on cultured cells.
Chen, Yue-Hwa; Tu, Ching-Jung; Wu, Hsiao-Ting
2004-02-01
The objective of this study was to investigate the effects of Gelidium amansii, an edible red agar cultivated off the northeast coast of Taiwan, on the growth of two lines of cancer cells, murine hepatoma (Hepa-1) and human leukemia (HL-60) cells, as well as a normal cell line, murine embryo fibroblast cells (NIH-3T3). The potential role of G. amansii on the induction of apoptosis was also examined. The results indicated that all extracts from G. amansii, including phosphate-buffered saline (PBS) and methanol extracts from dried algae as well as the dimethyl sulfoxide (DMSO) extract from freeze-dried G. amansii agar, inhibited the growth of Hepa-1 and NIH-3T3 cells, but not the growth of HL-60 cells. Annexin V-positive cells were observed in methanol and DMSO extract-treated, but not PBS extract-treated Hepa-1 and NIH-3T3 cells, suggesting that the lipid-soluble extracts of G. amansii induced apoptosis. In summary, extracts of G. amansii from various preparations exhibited antiproliferative effects on Hepa-1 and NIH-3T3 cells, and apoptosis may play a role in the methanol and DMSO extract-induced inhibitory effects. However, the antiproliferative effects of PBS extracts was not through apoptosis. Moreover, the growth-inhibitory effects of G. amansii were not specific to cancer cells.
Pacheco, Josué; Niks, Dimitri; Hille, Russ
2018-03-01
We have examined the kinetic and spectroscopic properties of a tungsten-substituted form of DMSO reductase from Rhodobacter sphaeroides, an enzyme that normally possesses molybdenum. Partial reduction with sodium dithionite yields a well-resolved W(V) EPR signal of the so-called "high-g split" type that exhibits markedly greater g-anisotropy than the corresponding Mo(V) signal of the native form of the enzyme, with the g values shifted to higher magnetic field by as much as Δg ave = 0.056. Deuteration of the enzyme confirms that the coupled proton is solvent-exchangeable, allowing us to accurately simulate the tungsten hyperfine coupling. Global curve-fitting analysis of UV/vis absorption spectra observed in the course of the reaction of the tungsten-substituted enzyme with sodium dithionite affords a well-defined absorption spectrum for the W(V) species. Surprisingly, the absorption spectrum for this species exhibits significantly larger molar extinction coefficients than either the reduced or the oxidized spectrum. This spectrum, in conjunction with those for fully oxidized W(VI) and fully reduced W(IV) enzyme, has been used to deconvolute the absorption spectra seen in the course of turnover, in the which enzyme is reacted with sodium dithionite and DMSO, demonstrating that the W(V) is an authentic catalytic intermediate that accumulates to approximately 50% of the total enzyme in the steady state.
Siapich, Siarhei A; Akhtar, Isha; Hescheler, Jürgen; Schneider, Toni; Lüke, Matthias
2015-10-01
The model of the isolated and superfused retina provides the opportunity to test drugs and toxins. Some chemicals have to be applied using low concentrations of organic solvents as carriers. Recently, E-/R-type (Cav2.3) and T-type (Cav3.2) voltage-gated Ca(2+) channels were identified as participating in reciprocal inhibitory retinal signaling. Their participation is apparent, when low concentrations of NiCl2 (15 μM) are applied during superfusion leading to an increase of the ERG b-wave amplitude, which is explained by a reduction of amacrine GABA-release onto bipolar neurons. During these investigations, differences were observed for the solvent carrier used. Recording of the transretinal receptor potentials from the isolated bovine retina. The pretreatment of bovine retina with 0.01 % (v/v) dimethylsulfoxide did not impair the NiCl2-mediated increase of the b-wave amplitude, which was 1.31-fold ± 0.03 of initial value (n = 4). However, pretreatment of the retina with the same concentration of ethanol impaired reciprocal signaling (0.96-fold ± 0.05, n = 4). Further, the implicit time of the b-wave was increased, suggesting that ethanol itself but not DMSO may antagonize GABA-receptors. Ethanol itself but not DMSO may block GABA receptors and cause an amplitude increase by itself, so that reciprocal signaling is impaired.
[Distribution of dimethylsulfoxide (DMSO) in the surface water of the Yellow Sea and the Bohai Sea].
Wang, Min; Zhang, Hong-Hai; Yang, Gui-Peng
2013-01-01
The horizontal distributions and diurnal variations of particulate and dissolved dimethylsulfoxide (DMSOp, DMSOd) were studied in the surface water of the Yellow Sea and the Bohai Sea in June, 2011. The determination of DMSO was based on the DMS produced by NaBH4 reduction, which was analyzed using the purge-and-trap technique coupled with gas chromatographic separation and flame photometric detection. The concentrations of DMSOp and DMSOd ranged from 5.43 to 18.35 nmol x L(-1) and from 4.75 to 43.80 nmol x L(-1), respectively, with average values of (11.47 +/- 0.25) nmol x L(-1) and (13.42 +/- 0.58) nmol x L(-1). The results showed that no relationship was found between DMSOp and environmental factors such as chlorophyll a (Chl-a), temperature and salinity, whereas a positive correlation was observed between DMSOp/Chl-a and salinity, indicating that intracellular DMSO could act as a cryo-osmoregulator. A significant relationship was also found between DMSOd and dimethylsulfide (DMS), whereas there was no relationship between DMSOd and DMSOp or DMSOd and bacteria, implying that DMSOd in the surface water was produced mainly through the photochemical oxidation of DMS. In addition, both the DMSOp and DMSOd concentrations exhibited obvious diurnal variations with the higher values in the day time.
Cryopreservation of adult cervid testes.
Pothana, Lavanya; Devi, Lalitha; Goel, Sandeep
2017-02-01
Several species of cervids are currently classified as threatened or endangered due to a rapid decline in their populations. Sperm cryopreservation, in association with assisted reproductive technologies, can find application for the conservation of endangered cervids. In cases of unsuccessful sperm retrieval through other means prior to the death of the animal, adult testis is the only source of sperm. Recovery of viable sperm from adult testes depends on the effective preservation of testicular tissues through optimization of cryopreservation protocols. The present study evaluated combinations of 10% dimethyl sulfoxide (DMSO) with 0% or 80% fetal bovine serum (FBS) and 20% DMSO with 0 or 20% FBS for the cryopreservation of testicular tissues of three adult cervids using uncontrolled slow freezing protocol. The cryopreserved testis was compared to chilled tissue without cryoprotectants. Results revealed that testicular tissues of barking deer cryopreserved in 20% DMSO (D20) had all the analyzed 7 parameters (number of TNP1-, PRM2 and acrosin-expressing cells/tubule and, the number of viable, morphologically normal, acrosome intact, Annexin V-negative sperm) comparable to the chilled testis. However, testicular tissues of sambhar and hog deer cryopreserved only in D20S20 had 5 of 7 parameters comparable to the chilled testis. In conclusion, D20 is acceptable for cryopreservation of barking deer and D20S20 for sambar and hog deer testes. Copyright © 2016 Elsevier Inc. All rights reserved.
Mana Kialengila, Didi; Wolfs, Kris; Bugalama, John; Van Schepdael, Ann; Adams, Erwin
2013-11-08
Determination of volatile organic components (VOC's) is often done by static headspace gas chromatography as this technique is very robust and combines easy sample preparation with good selectivity and low detection limits. This technique is used nowadays in different applications which have in common that they have a dirty matrix which would be problematic in direct injection approaches. Headspace by nature favors the most volatile compounds, avoiding the less volatile to reach the injector and column. As a consequence, determination of a high boiling solvent in a lower boiling matrix becomes challenging. Determination of VOCs like: xylenes, cumene, N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), N,N-dimethylacetamide (DMA), N-methyl-2-pyrrolidone (NMP), 1,3-dimethyl-2-imidazolidinone (DMI), benzyl alcohol (BA) and anisole in water or water soluble products are an interesting example of the arising problems. In this work, a headspace variant called full evaporation technique is worked out and validated for the mentioned solvents. Detection limits below 0.1 μg/vial are reached with RSD values below 10%. Mean recovery values ranged from 92.5 to 110%. The optimized method was applied to determine residual DMSO in a water based cell culture and DMSO and DMA in tetracycline hydrochloride (a water soluble sample). Copyright © 2013 Elsevier B.V. All rights reserved.
Zhu, Ying; Dou, Maowei; Piehowski, Paul D; Liang, Yiran; Wang, Fangjun; Chu, Rosalie K; Chrisler, Will; Smith, Jordan N; Schwarz, Kaitlynn C; Shen, Yufeng; Shukla, Anil K; Moore, Ronald J; Smith, Richard D; Qian, Wei-Jun; Kelly, Ryan T
2018-06-24
Current mass spectrometry (MS)-based proteomics approaches are ineffective for mapping protein expression in tissue sections with high spatial resolution due to the limited overall sensitivity of conventional workflows. Here we report an integrated and automated method to advance spatially resolved proteomics by seamlessly coupling laser capture microdissection (LCM) with a recently developed nanoliter-scale sample preparation system termed nanoPOTS (Nanodroplet Processing in One pot for Trace Samples). The workflow is enabled by prepopulating nanowells with DMSO, which serves as a sacrificial capture liquid for microdissected tissues. The DMSO droplets efficiently collect laser-pressure catapulted LCM tissues as small as 20 µm in diameter with success rates >87%. We also demonstrate that tissue treatment with DMSO can significantly improve proteome coverage, likely due to its ability to dissolve lipids from tissue and enhance protein extraction efficiency. The LCM-nanoPOTS platform was able to identify 180, 695, and 1827 protein groups on average from 12-µm-thick rat brain cortex tissue sections with diameters of 50, 100, and 200 µm, respectively. We also analyzed 100-µm-diameter sections corresponding to 10-18 cells from three different regions of rat brain and comparatively quantified ~1000 proteins, demonstrating the potential utility for high-resolution spatially resolved mapping of protein expression in tissues. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Eliza, M. Y.; Shahruddin, M.; Noormaziah, J.; Rosli, W. D. Wan
2015-06-01
The surplus of Oil Palm is the most galore wastes in Malaysia because it produced about half of the world palm oil production, which contributes a major disposal problem Synthesis from an empty fruit bunch produced products such as Carboxymethyl Cellulose (CMC), could apply in diverse application such as for paper coating, food packaging and most recently, the potential as biomaterials has been revealed. In this study, CMC was prepared by firstly dissolved the bleached pulp from OPEFB in mixture solution of dimethyl sulfoxide(DMSO)/tetrabutylammonium fluoride (TBAF) without any prior chemical modification. It took only 30 minutes to fully dissolve at temperature 60°C before sodium hydroxide (NaOH) were added for activation and monochloroacetateas terrifying agent. The final product is appeared in white powder, which is then will be analyzedby FTIR analysis. FTIR results show peaks appeared at wavenumber between 1609 cm-1 to 1614 cm-1 proved the existence of carboxymethyl groups which substitute OH groups at anhydroglucose(AGU) unit. As a conclusion, mixture solution of DMSO/TBAF is the suitable solvent used for dissolved cellulose before modifying it into CMC with higher Degree of Substitution (DS). Furthermore, the dissolution of the OPEFB bleached pulp was easy, simple and at a faster rate without prior chemical modification at temperature as low as 60°C.
Designing of mouse model: a new approach for studying sulphur mustard-induced skin lesions.
Lomash, Vinay; Deb, Utsab; Rai, Renuka; Jadhav, Sunil E; Vijayaraghavan, R; Pant, S C
2011-08-01
This study was planned to design a mouse model for studying sulphur mustard (SM)-induced skin injury. SM was applied dermally at dose of 5 or 10 mg kg(-1) in polyethyleneglycol-300 (PEG-300) or dimethylsulphoxide (DMSO) or acetone once. The changes in body weight, organ body weight indices (OBWI) and haematological and oxidative stress parameters were investigated over a period of 3-7 days and supported by histopathological observations. Exposure to SM in PEG-300 or DMSO resulted in a significant depletion in body weight, OBWI, hepatic glutathione (GSH) and elevation in hepatic lipid peroxidation, without affecting the blood GSH and hepatic oxidised glutathione (GSSG) levels. Interestingly, no aforesaid change was observed after dermal application of SM diluted in acetone. These biochemical changes were supported by the histological observations, which revealed pronounced toxic effect and damage to liver, kidney and spleen after dermal application of SM diluted in PEG-300 or DMSO. The skin showed similar microscopic changes after dermal application of SM in all the three diluents, however; the severity of lesions was found to be time and dose dependent. It can be concluded that dermal exposure of SM diluted in acetone can be used to mimic SM-induced skin toxicity without systemic toxicity in a mouse model. Copyright © 2010 Elsevier Ltd and ISBI. All rights reserved.
Salehi, Farajollah; Emamzadeh, Rahman; Nazari, Mahboobeh; Rasa, Seyed Mohammad Mahdi
2016-12-01
Renilla luciferase is a sensitive enzyme and has wide applications in biotechnology such as drug screening. Previous studies have tried to show the catalytic residues, nevertheless, the accurate architecture and molecular behavior of its emitter site remains uncharacterized. In this study, the activity of Renilla luciferase, in the presence of two small organic molecules including dimethyl sulfoxide (DMSO) and isopropanol was considered and the structure was studied by circular dichroism (CD) and fluorescence spectroscopy. Moreover, the interaction of small organic molecules with the Renilla luciferase was studied using molecular dynamics simulations. Kinetics studies showed that at low concentration of DMSO (16.6-66mM) and isopropanol (19.3-76mM) the K m changed and a competitive inhibition pattern was observed. Moreover, spectroscopy studies reveled that the changes of activity of Renilla luciferase in the presence of low concentrations of small organic molecules was not associated with structural collapse or severe changes in the enzyme conformation. Molecular dynamics simulations indicated that DMSO and isopropanol, as probing molecules, were both able to bind to the emitter site and remained with the residues of the emitter site. Based on the probing data, the architecture of the emitter site in the "non-binding" model was proposed. Copyright © 2016 Elsevier B.V. All rights reserved.
Alkema, Nicolette G; Tomar, Tushar; Duiker, Evelien W; Jan Meersma, Gert; Klip, Harry; van der Zee, Ate G J; Wisman, G Bea A; de Jong, Steven
2015-10-06
Using patient-derived xenografts (PDXs) for preclinical cancer research demands proper storage of tumour material to facilitate logistics and to reduce the number of animals needed. We successfully established 45 subcutaneous ovarian cancer PDXs, reflecting all histological subtypes, with an overall take rate of 68%. Corresponding cells from mouse replaced human tumour stromal and endothelial cells in second generation PDXs as demonstrated with mouse-specific vimentin and CD31 immunohistochemical staining. For biobanking purposes two cryopreservation methods, a fetal calf serum (FCS)-based (95%v/v) "FCS/DMSO" protocol and a low serum-based (10%v/v) "vitrification" protocol were tested. After primary cryopreservation, tumour take rates were 38% and 67% using either the vitrification or FCS/DMSO-based cryopreservation protocol, respectively. Cryopreserved tumour tissue of established PDXs achieved take rates of 67% and 94%, respectively compared to 91% using fresh PDX tumour tissue. Genotyping analysis showed that no changes in copy number alterations were introduced by any of the biobanking methods. Our results indicate that both protocols can be used for biobanking of ovarian tumour and PDX tissues. However, FCS/DMSO-based cryopreservation is more successful. Moreover, primary engraftment of fresh patient-derived tumours in mice followed by freezing tissue of successfully established PDXs is the preferred way of efficient ovarian cancer PDX biobanking.
Potter, Pamela; Eisenberg, Seth; Cain, Kevin C; Berry, Donna L
2011-01-01
For over 2 decades, oncology nurses at a regional comprehensive cancer center offered sliced oranges to patients during the reinfusion of autologous hematopoietic progenitor cells (HPCs) to relieve symptoms associated with the preservative dimethyl sulfoxide (DMSO). This randomized pilot study examined feasibility and efficacy of sliced orange intervention (OI), orange aromatherapy intervention (OAI), or deep breathing (control) to address unpleasant adverse effects during HPC infusion. Orange intervention sniffed or tasted a quartered orange, OAI sniffed orange aromatherapy, and control took deep breaths. Perceived "symptom intensity" for tickle/cough urge, nausea, retching, and perceived "relief" were measured on 0- to 10-point numerical scales. Sixty of 72 eligible patients consented to participate and were randomized to OI (n = 19), OAI (n = 23), or control (n = 18). Study personnel successfully administered study procedures. Over the course of 2 bags of cells infused, the OI group reported significantly greater relief with the intervention (P = .032). Among participants less than 90 kg, OI group reported significantly lower symptom intensity (P = .012). Results suggest a feasible protocol and potential efficacy of sliced oranges for treating symptoms associated with DMSO-preserved stem cells. Study procedures provide a tested protocol for future studies. Follow-up study is warranted to confirm these findings and evaluate other treatment options. Oranges offer a simple, noninvasive intervention for relieving symptoms associated with DMSO preservative during autologous HPC infusion.
Gonella, Silvia; Berchialla, Paola; Bruno, Benedetto; Di Giulio, Paola
2014-09-01
Nausea and vomiting (NV) related to DMSO affect patients undergoing auto-SCT despite antiemetic measures. Orange flavoring may reduce gastrointestinal symptoms. A multicenter, randomized, three-arm, open-label trial in four Italian large bone marrow transplant centers was conducted to assess the effectiveness of orange aroma in preventing NV related to DMSO. Patients were randomized to orange ice lollies, non-citrus ice lollies, and routine treatment (deep breaths) during reinfusion. Data on NV were collected up to 5 days after infusion; 69/98 patients were randomized: 23 to orange, 21 to non-citrus ice lollies, and 25 to routine treatment. Although 48 h after transplantation no differences were observed in controlled nausea (Numerical Rating Scale (NRS) 0-100, ≤25) or vomiting, significantly fewer patients had no episodes of vomiting, no antiemetic rescue therapy, and no nausea (NRS <5) in the deep breath vs lollies groups (P = 0.017). The intensity of nausea over time differed significantly between ice lollies vs routine care (P = 0.001) groups, but not between the orange and non-citrus groups (P = 0.428). The vasoconstrictive action of ice may prevent NV related to DMSO in the acute phase and reduce the need for rescue antiemetic therapy. Ice lollies offer a simple, noninvasive, and economic means for relieving nausea and vomiting related to this preservative.
Regulation of tyrosine hydroxylase gene expression during differentiation of neuroblastoma cells.
Summerhill, E M; Wood, K; Fishman, M C
1987-07-01
Differentiation of N1E-115 neuroblastoma cells into neuron-like cells, with extension of neurites and acquisition of excitable membranes, can be induced by dimethyl sulfoxide (DMSO). We have found this differentiation to be accompanied by an increase in tyrosine hydroxylase (TH) mRNA, an increase disproportionate to changes in mRNAs for other measured, non-neuron-specific genes. The mRNA increases slowly over several days and falls gradually after removal of DMSO. Nuclear run-on studies suggest that a change in the rate of transcription cannot explain the increase in steady-state mRNA levels. TH mRNA half-life does, however, increase. This suggests that regulation is exerted in this case not at the level of transcription but rather at that of mRNA stability.
NASA Astrophysics Data System (ADS)
Usacheva, T. R.; Kuzmina, I. A.; Sharnin, V. A.; Chernov, I. V.; Matteoli, E.
2012-07-01
Standard thermodynamic parameters (log K o, Δr H o, TΔr S o) of complexing 18-crown-6 ether (18C6) with D,L-alanine (Ala) in mixed water-dimethysulfoxide (H2O-DMSO) solvents are calculated on the basis of calorimetric titration results. A rise in the DMSO concentration in mixed solvent is found to increase stability and increase the exothermicity of the formation of [Ala-18C6] molecular complex. Changes in the reaction energetic are shown to be determined by changes in the solvation state of 18C6 that is the characteristic of the reactions of molecular complex formation between 18C6 and D,L-alanine or glycine in water-organic solvents.
Influence of polar solvents on photovoltaic performance of Monascusred dye-sensitized solar cell
NASA Astrophysics Data System (ADS)
Lee, Jae Wook; Kim, Tae Young; Ko, Hyun Seok; Han, Shin; Lee, Suk-Ho; Park, Kyung Hee
Dye-sensitized solar cells (DSSCs) were assembled using natural dyes extracted from Monascus red pigment as a sensitizer. In this work, we studied the adsorption characteristics for harvesting sunlight and the electrochemical behavior for electron transfer in Monascus red DSSC using different solvents. The effect of polar aprotic and protic solvents including water, ethanol, and dimethylsulfoxide (DMSO) used in the sensitization process was investigated for the improvement in conversion efficiency of a cell. As for the Monascus red dye-sensitized electrode in DMSO solvent, the solar cell yields a short-circuit current density (Jsc) of 1.23 mA/cm2, a photovoltage (Voc) of 0.75 V, and a fill factor of 0.72, corresponding to an energy conversion efficiency (η) of 0.66%.
NASA Astrophysics Data System (ADS)
Ma, Xiaopin; Wang, Xiuyu; Li, Mingxiu; Chen, Tongning; Zhang, Hao; Chen, Qiang; Ding, Bonan; Liu, Yanpeng
2016-06-01
The highly conductive poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films were prepared on porous tantalum pentoxide surface as cathode for polymer tantalum capacitors (PTC). The electrical performances of PTC with PEDOT:PSS films as cathode were optimized by dimethyl sulfoxide (DMSO) bath treatment. With the DMSO-bath treatment of PTC, the equivalent series resistance (ESR) of PTC decreased from 25 mΩ to 9 mΩ. The ultralow ESR led to better capacitance-frequency performance. The device reliability investigation revealed the enhanced environmental stability of PTC. The enhanced performances were attributed to the conductivity improvement of PEDOT:PSS cathode films and the removal of excess PSS from PEDOT:PSS films.
The Role of IL-17 in the Angiogenesis of Rheumatoid Arthritis
2011-07-01
IL-17RC IL-17+ anti-IL-17RA anti-IL-17RC CB EDA F 10 20 30 40 50 60 m ea n n u m b er o f tu b es /w el l PBS bFGF * IgG * anti-IL-17RA anti-IL-17RC...s/ w el l PBS * 50 ng/ml IL-17 DMSO 1 5 M SPM PD * * bFGF 51 51 M LY G Page 9 IL-17 (50ng/ml) plus DMSO (C), IL-17 (50ng/ml) plus LY294002 (5...injection for histological studies. Levels of IL-17 were quantified by ELISA on days 4 and 10 from ankles treated with Ad-IL-17 or Ad-CMV control. Abs and
Chao, Wen-Haur; Lai, Ming-Yi; Pan, Hwai-Tzong; Shiu, Huei-Wen; Chen, Mi-Mi; Chao, Hsiao-Ming
2018-06-22
Presumably, progression of developmental retinal vascular disorders is mainly driven by persistent ischemia/hypoxia. An investigation into vision-threatening retinal ischemia remains important. Our aim was to evaluate, in relation to retinal ischemia, protective effects and mechanisms of Dendrobium nobile Lindley (DNL) and its bibenzyl component moscatilin. The therapeutic mechanisms included evaluations of levels of placental growth factor (PLGF) and Norrie disease protein (NDP). An oxygen glucose deprivation (OGD) model involved cells cultured in DMEM containing 1% O 2 , 94% N 2 and 0 g/L glucose. High intraocular pressure (HIOP)-induced retinal ischemia was created by increasing IOP to 120 mmHg for 60 min in Wistar rats. The methods included electroretinogram (ERG), histopathology, MTT assay and biochemistry. When compared with cells cultured in DMEM containing DMSO (DMSO+DMEM), cells subjected to OGD and pre-administrated with DMSO (DMSO+OGD) showed a significant reduction in the cell viability and NDP expression. Moreover, cells that received OGD and 1 h pre-administration of 0.1 μM moscatilin (Pre-OGD Mos 0.1 μM) showed a significant counteraction of the OGD-induced decreased cell viability. Furthermore, compared with the DMSO+OGD group (44.54 ± 3.15%), there was significant elevated NDP levels in the Pre-OGD Mos 0.1 μM group (108.38 ± 29.33%). Additionally, there were significant ischemic alterations, namely reduced ERG b-wave, less numerous retinal ganglion cells, decreased inner retinal thickness, and reduced/enhanced amacrine's ChAT/Müller's GFAP or vimentin immunolabelings. Moreover, there were significantly increased protein levels of HIF-1α, VEGF, PKM2, RBP2 and, particularly, PLGF (pg/ml; Sham vs. Vehicle: 15.11 ± 1.58 vs. 39.53 ± 5.25). These ischemic effects were significantly altered when 1.0 g/Kg/day DNL (DNL1.0 + I/R or I/R+ DNL1.0) was applied before and/or after ischemia, but not vehicle (Vehicle+I/R). Of novelty and significance, the DNL1.0 action mechanism appears to be similar to that of the anti-PLGF Eylea [PLGF (pg/ml); DNL1.0 vs. Eylea+I/R: 19.93 ± 2.24 vs. 6.44 ± 0.60]. DNL and moscatilin are able to protect against retinal ischemic/hypoxic changes respectively by downregulating PLGF and upregulating NDP. Progression of developmental retinal vascular disorders such as Norrie disease due to persistent ischemia/hypoxia might be thus prevented.
NASA Astrophysics Data System (ADS)
Song, Guixue; Hayes, Michael H. B.; Novotny, Etelvino H.; Simpson, Andre J.
2011-01-01
Humin, the most recalcitrant and abundant organic fraction of soils and of sediments, is a significant contributor to the stable carbon pool in soils and is important for the global carbon budget. It has significant resistance to transformations by microorganisms. Based on the classical operational definition, humin can include any humic-type substance that is not soluble in water at any pH. We demonstrate in this study how sequential exhaustive extractions with 0.1 M sodium hydroxide (NaOH) + 6 M urea, followed by dimethylsulphoxide (DMSO) + 6% ( v/ v) sulphuric acid (H2SO4) solvent systems, can extract 70-80% of the residual materials remaining after prior exhaustive extractions in neutral and aqueous basic media. Solid-state 13C NMR spectra have shown that the components isolated in the base + urea system were compositionally similar to the humic and fulvic acid fractions isolated at pH 12.6 in the aqueous media. The NMR spectra indicated that the major components isolated in the DMSO + H2SO4 medium had aliphatic hydrocarbon associated with carboxyl functionalities and with lesser amounts of carbohydrate and peptide and minor amounts of lignin-derived components. The major components will have significant contributions from long-chain fatty acids, waxes, to cuticular materials. The isolates in the DMSO + H2SO4 medium were compositionally similar to the organic components that resisted solvation and remained associated with the soil clays. It is concluded that the base + urea system released humic and fulvic acids held by hydrogen bonding or by entrapment within the humin matrix. The recalcitrant humin materials extracted in DMSO + H2SO4 are largely biological molecules (from plants and the soil microbial population) that are likely to be protected from degradation by their hydrophobic moieties and by sorption on the soil clays. Thus, the major components of humin do not satisfy the classical definitions for humic substances which emphasise that these arise from microbial or chemical transformations in soils of the components of organic debris.
Tsai, S; Kuit, V; Lin, Z G; Lin, C
2014-01-01
The establishment of coral sperm repositories which retain good post-rewarming viability and fertility play a vital role in species conservation. This study aimed at obtaining baseline information regarding the effects of cryoprotectant agents (CPAs) on gorgonian coral (Junceella juncea and J. fragilis) sperm sacs. The adenosine triphosphate assay was used to determine the energy level of the gorgonian sperm sacs as an indicator of sperm viability after exposure to cryoprotectants. The 'no observed effect concentrations' (NOECs) of methanol, dimethyl sulfoxide (DMSO), polypropylene glycol (PG), ethylene glycol (EG) and glycerol for J. juncea sperm sacs were 3 M, 3 M, 1 M, 2 M and 1 M respectively after 20 min exposure; whilst the NOECs for J. fragilis oocytes were 2 M, 3 M, 1 M, 2 M and 2 M, respectively. Methanol and DMSO had the least impact. PG was the most toxic CPA after 10 min exposure. ATP content of J. juncea and J. fragilis sperm sacs did not differ significantly from the control with incubation times of 10-20 min with 2 M EG. However, ATP content dropped significantly after exposing sperm sacs to 2 M EG for 40 min with average values of 2.34 +/- 0.12 and 1.97 +/- 0.48 microg/ml respectively. ATP content for J. juncea and J. fragilis sperm sacs was significantly decreased to 1.79 +/- 0.31 and 2.40 +/- 0.36 microg/ml after 20 min incubation in 2 M PG when compared to the control with 2.98 +/- 0.16 and 4.14 +/- 0.42 microg/ml respectively. Normalized ATP content for sperm sacs of two different gorgonian coral after incubation in methanol, DMSO, PG, EG and glycerol showed that J. juncea sperm sacs were slightly less tolerant to CPAs compared to J. fragilis sperm sacs. DMSO or methanol can be considered as efficient CPAs for gorgonian sperm sacs cryopreservation. The ATP luminescence assay provided sensitive and rapid quantification of mitochondrial activity in gorgonian coral sperm sacs. The study on the impact of CPA will contribute to the development of a cryopreservation protocol for coral sperm conservation.
NASA Astrophysics Data System (ADS)
Morzyk-Ociepa, Barbara; Szmigiel, Ksenia; Dysz, Karolina; Turowska-Tyrk, Ilona; Michalska, Danuta
2016-11-01
Two new complexes of Cd(II) with an O-deprotonated anion of 5-methoxyindole-2-carboxylic acid (5-MeOI2CA), of the formulas [Cd(5-MeOI2CA)2(H2O)2]n (1) and [Cd3(5-MeOI2CA)6(H2O)4(DMSO)4]ṡ2DMSO (2) were synthesized. In the polymeric complex 1, the 5-MeOI2CA anion acts as a bidentate bridging ligand and the coordination environment around the Cd(II) ion can be described as a distorted octahedron. Single crystal X-ray diffraction analysis of 2 has revealed that this complex is a trimer and it crystallizes in the monoclinic system (space group P21/c with a = 20.3403(4), b = 14.3079(2), c = 15.0603(3) Å, β = 92.4341(17)°, V = 4379.00(14) Å3 and Z = 2). In 2, the 5-MeOI2CA anions act as bidentate bridging and bidentate chelating ligands. The asymmetric unit of 2 contains two crystallographically independent Cd(II) cations. One of the cations is coordinated to six oxygen atoms and shows an octahedral geometry with a rhombic deformation. The other Cd(II) cation adopts a distorted seven-coordinate pentagonal-bipyramidal geometry involving seven oxygen atoms. In 2, the DMSO solvent molecules play a key role in the formation of metal-organic frameworks by filling voids, which are created by the bridging and chelating 5-MeOI2CA anions, the cadmium cations and the other DMSO molecules coordinated to cadmium. Comprehensive theoretical calculations (including the optimized structural parameters, harmonic frequencies and vibrational intensities) were performed for 2 using the B3LYP method with the 6-311++G(d,p)/LanL2DZ basis sets. The infrared and Ramana spectra were measured and a detailed assignment of the experimental spectra of 2 was performed. All cadmium-oxygen stretching vibrations occur in the range below 400 cm-1.
Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d6/pyridine-d5†
Ralph, John
2014-01-01
NMR fingerprinting of the components of finely divided plant cell walls swelled in DMSO has been recently described. Cell wall gels, produced directly in the NMR tube with perdeutero-dimethylsulfoxide, allowed the acquisition of well resolved/dispersed 2D 13C–1H correlated solution-state NMR spectra of the entire array of wall polymers, without the need for component fractionation. That is, without actual solubilization, and without apparent structural modification beyond that inflicted by the ball milling and ultrasonication steps, satisfactorily interpretable spectra can be acquired that reveal compositional and structural details regarding the polysaccharide and lignin components in the wall. Here, the profiling method has been improved by using a mixture of perdeuterated DMSO and pyridine (4:1, v/v). Adding pyridine provided not only easier sample handling because of the better mobility compared to the DMSO-d6-only system but also considerably elevated intensities and improved resolution of the NMR spectra due to the enhanced swelling of the cell walls. This modification therefore provides a more rapid method for comparative structural evaluation of plant cell walls than is currently available. We examined loblolly pine (Pinus taeda, a gymnosperm), aspen (Populus tremuloides, an angiosperm), kenaf (Hibiscus cannabinus, an herbaceous plant), and corn (Zea mays L., a grass, i.e., from the Poaceae family). In principle, lignin composition (notably, the syringyl : guaiacyl : p-hydroxyphenyl ratio) can be quantified without the need for lignin isolation. Correlations for p-coumarate units in the corn sample are readily seen, and a variety of the ferulate correlations are also well resolved; ferulates are important components responsible for cell wall cross-linking in grasses. Polysaccharide anomeric correlations were tentatively assigned for each plant sample based on standard samples and various literature data. With the new potential for chemometric analysis using the 2D NMR fingerprint, this gel-state method may provide the basis for an attractive approach to providing a secondary screen for selecting biomass lines and for optimizing biomass processing and conversion efficiencies. PMID:20090974
Ahad, Abdul; Shakeel, Faiyaz; Alfaifi, Omar Ali; Raish, Mohammad; Ahmad, Ajaz; Al-Jenoobi, Fahad I; Al-Mohizea, Abdullah M
2018-06-10
The purpose of the present study was to determine the solubility of raloxifene hydrochloride (RHCl) in ten solvents: water, ethanol, isopropyl alcohol (IPA), ethylene glycol (EG), propylene glycol (PG), polyethylene glycol-400 (PEG-400), Transcutol, 1-butanol, dimethyl sulfoxide (DMSO), and ethyl acetate (EA) at temperatures of 298.2-323.2 K and a pressure of 0.1 MPa. The solubility data obtained was fitted upon "Apelblat and Van't Hoff" equations. The maximum mole fraction solubility of RHCl was obtained in DMSO (5.02 × 10 -2 at 323.2 K), followed by PEG-400 (5.92 × 10 -3 at 323.2 K), EA (3.11 × 10 -3 at 323.2 K), Transcutol (1.22 × 10 -3 at 323.2 K), PG (2.19 × 10 -4 at 323.2 K), 1-butanol (1.96 × 10 -4 at 323.2 K), IPA (1.47 × 10 -4 at 323.2 K), ethanol (7.90 × 10 -5 at 323.2 K), EG (6.65 × 10 -5 at 323.2 K), and water (3.60 × 10 -5 at 323.2 K). Similar fashions were noticed at each studied temperature. The higher solubility of RHCl in DMSO, PEG-400, EA, and Transcutol was possibly referable to their lower polarity in comparison with water. The molecular interactions between the solute and solvent molecules were estimated by calculating parameters like activity coefficients, and more prominent solute-solvent molecular interactions were noted for RHCl-DMSO, RHCl-EA, and RHCl-PEG-400 in comparison with the other solute-solvent combinations. The outcomes of the "apparent thermodynamic analysis" showed that the dissolution of RHCl was "endothermic, spontaneous and entropy-driven" in all investigated solvents. The obtained solubility data of RHCl in commonly used solvents could be useful in the purification, recrystallization, and dosage form design of the drug. Copyright © 2018 Elsevier B.V. All rights reserved.
2012-01-01
Background As proinflammatory cytokines seem to play a role in discogenic back pain, substances exhibiting anti-inflammatory effects on intervertebral disc cells may be used as minimal-invasive therapeutics for intradiscal/epidural injection. The purpose of this study was to investigate the anti-inflammatory and anti-catabolic potential of curcuma, which has been used in the Indian Ayurvedic medicine to treat multiple ailments for a long time. Methods Human disc cells were treated with IL-1β to induce an inflammatory/catabolic cascade. Different extracts of curcuma as well as curcumin (= a component selected based on results with curcuma extracts and HPLC/MS analysis) were tested for their ability to reduce mRNA expression of proinflammatory cytokines and matrix degrading enzymes after 6 hours (real-time RT-PCR), followed by analysis of typical inflammatory signaling mechanisms such as NF-κB (Western Blot, Transcription Factor Assay), MAP kinases (Western Blot) and Toll-like receptors (real-time RT-PCR). Quantitative data was statistically analyzed using a Mann Whitney U test with a significance level of p < 0.05 (two-tailed). Results Results indicate that the curcuma DMSO extract significantly reduced levels of IL-6, MMP1, MMP3 and MMP13. The DMSO-soluble component curcumin, whose occurrence within the DMSO extract was verified by HPLC/MS, reduced levels of IL-1β, IL-6, IL-8, MMP1, MMP3 and MMP13 and both caused an up-regulation of TNF-α. Pathway analysis indicated that curcumin did not show involvement of NF-κB, but down-regulated TLR2 expression and inhibited the MAP kinase JNK while activating p38 and ERK. Conclusions Based on its anti-inflammatory and anti-catabolic effects, intradiscal injection of curcumin may be an attractive treatment alternative. However, whether the anti-inflammatory properties in vitro lead to analgesia in vivo will need to be confirmed in an appropriate animal model. PMID:22909087
Influence of polar solvents on photovoltaic performance of Monascusred dye-sensitized solar cell.
Lee, Jae Wook; Kim, Tae Young; Ko, Hyun Seok; Han, Shin; Lee, Suk-Ho; Park, Kyung Hee
2014-05-21
Dye-sensitized solar cells (DSSCs) were assembled using natural dyes extracted from Monascus red pigment as a sensitizer. In this work, we studied the adsorption characteristics for harvesting sunlight and the electrochemical behavior for electron transfer in Monascus red DSSC using different solvents. The effect of polar aprotic and protic solvents including water, ethanol, and dimethylsulfoxide (DMSO) used in the sensitization process was investigated for the improvement in conversion efficiency of a cell. As for the Monascus red dye-sensitized electrode in DMSO solvent, the solar cell yields a short-circuit current density (Jsc) of 1.23mA/cm(2), a photovoltage (Voc) of 0.75V, and a fill factor of 0.72, corresponding to an energy conversion efficiency (η) of 0.66%. Copyright © 2014 Elsevier B.V. All rights reserved.
Surfaces wettability and morphology modulation in a fluorene derivative self-assembly system
NASA Astrophysics Data System (ADS)
Cao, Xinhua; Gao, Aiping; Zhao, Na; Yuan, Fangyuan; Liu, Chenxi; Li, Ruru
2016-04-01
A new organogelator based on fluorene derivative (gelator 1) was designed and synthesized. Organogels could be obtained via the self-assembly of the derivative in acetone, toluene, ethyl acetate, hexane, DMSO and petroleum ether. The self-assembly process was thoroughly characterized using field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), UV-vis, FT-IR and the contact angle. Surfaces with different morphologies and wetting properties were formed via the self-assembly of gelator 1 in the six different solvents. Interestingly, a superhydrophobic surface with a contact angle of 150° was obtained from organogel 1 in DMSO and exhibited the lotus-effect. The sliding angle necessary for a water droplet to move on the glass was only 15°. Hydrogen bonding and van der Waals forces were attributed as the main driving forces for gel formation.
Intravesical treatments of bladder pain syndrome/interstitial cystitis.
Neuhaus, Jochen; Schwalenberg, Thilo
2012-12-01
Bladder pain syndrome/interstitial cystitis (BPS/IC) is a disabling chronic condition that affects up to 7% of women in the USA. In men, BPS/IC seems to be less common, but might be underestimated because it can be confused with chronic prostatitis. The aetiology and pathophysiology of BPS/IC are not well understood. Consequently, diagnosis and treatment is challenging and most therapies used to date are off-label. These therapies include bladder instillation with dimethyl sulfoxide (DMSO) and BCG, as well as hyperbaric oxygen therapy. Overall, botulinum neurotoxin A injection, intravesical sodium hyaluronate instillation and DMSO instillation seem to be the best-performing treatments, with response rates of 79%, 76% and 75%, respectively, and can be used effectively as second-line or third-line therapies for BPS/IC. However, additional high-quality randomized controlled trials are necessary to improve the available data.
Chen, Yi-Hui; Sung, Robert; Sung, Kuangsen
2018-04-06
The para-sulfonamide analogue ( p-TsABDI) of a green fluorescent protein (GFP) chromophore was synthesized to mimic the GFP chromophore. Its S 1 excited-state p K a * value in dimethylsulfoxide (DMSO) is -1.5, which is strong enough to partially protonate dipolar aprotic solvents and causes excited-state proton transfer (ESPT), so it can partially mimic the GFP chromophore to further study the ESPT-related photophysics and the blinking phenomenon of GFP. In comparison with 8-hydroxypyrene-1,3,6-trisulfonate (HPTS) (p K a = 7.4, p K a * = 1.3 in water), p-TsABDI (p K a = 6.7, p K a * = -1.5 in DMSO) is a better photoacid for pH-jump studies.
Sng, Li-Hwei; Peh, Justine Woei Ling; Lee Kee, Melody Tai; Ya'akob, Nurhazirah Bte Mohd; Ong, Rick Twee-Hee; Wong, Christopher W; Chee, Cynthia Bin Eng; Wang, Yee Tang
2018-06-08
Accurate and reliable drug susceptibility testing (DST) is essential for the effective treatment and control of tuberculosis. With the increase in drug-resistant organisms, newer and less conventional antimicrobial agents are used for treatment. Recently, we found an unprecedented rise in the number of clofazimine-resistant Mycobacterium tuberculosis isolates in our laboratory. An investigation found that this phenomenon was due to a change in the method of drug preparation. We performed studies to assess the impact of water and dimethyl sulfoxide (DMSO) as a final diluent for clofazimine drug testing. Based on our findings, the use of DMSO as a solvent for M. tuberculosis DST was optimised using the BACTEC MGIT 960 platform. Copyright © 2018 Royal College of Pathologists of Australasia. Published by Elsevier B.V. All rights reserved.
Han, Sungwon; Auger, Christopher; Thomas, Sean C; Beites, Crestina L; Appanna, Vasu D
2014-02-01
The significance of metabolic networks in guiding the fate of the stem cell differentiation is only beginning to emerge. Oxidative metabolism has been suggested to play a major role during this process. Therefore, it is critical to understand the underlying mechanisms of metabolic alterations occurring in stem cells to manipulate the ultimate outcome of these pluripotent cells. Here, using P19 murine embryonal carcinoma cells as a model system, the role of mitochondrial biogenesis and the modulation of metabolic networks during dimethyl sulfoxide (DMSO)-induced differentiation are revealed. Blue native polyacrylamide gel electrophoresis (BN-PAGE) technology aided in profiling key enzymes, such as hexokinase (HK) [EC 2.7.1.1], glucose-6-phosphate isomerase (GPI) [EC 5.3.1.9], pyruvate kinase (PK) [EC 2.7.1.40], Complex I [EC 1.6.5.3], and Complex IV [EC 1.9.3.1], that are involved in the energy budget of the differentiated cells. Mitochondrial adenosine triphosphate (ATP) production was shown to be increased in DMSO-treated cells upon exposure to the tricarboxylic acid (TCA) cycle substrates, such as succinate and malate. The increased mitochondrial activity and biogenesis were further confirmed by immunofluorescence microscopy. Collectively, the results indicate that oxidative energy metabolism and mitochondrial biogenesis were sharply upregulated in DMSO-differentiated P19 cells. This functional metabolic and proteomic study provides further evidence that modulation of mitochondrial energy metabolism is a pivotal component of the cellular differentiation process and may dictate the final destiny of stem cells.
Singh, Vinod P
2008-11-01
This paper describes the preparation of [Cu(bh)2(H2O)2](NO3)2], [Cu(ibh)2(NO3)2], [Cu(ibh)2(H2O)2](NO3)2 and [Cu(iinh)2(NO3)2] (bh = benzoyl hydrazine (C6H5CONHNH2); ibh = isonicotinoyl hydrazine (NC5H4CONHNH2); ibh = isopropanone benzoyl hydrazone (C6H5CONHN=C(CH3)2; iinh = isopropanone isonicotinoyl hydrazone (NC5H4CONHN=C(CH3)2). These copper(II) complexes are characterized by elemental analyses, molar conductances, dehydration studies, ESR, IR and electronic spectral studies. The electronic and ESR spectra indicate that each complex exhibits a six-coordinate tetragonally distorted octahedral geometry in the solid state and in DMSO solution. The ESR spectra of most of the complexes are typically isotropic type at room temperature (300 K) in solid state as well as in DMSO solution. However, all the complexes exhibit invariably axial signals at 77 K in DMSO solution. The trend g(||) > g(perpendicular) > g(e,) observed in all the complexes suggests the presence of an unpaired electron in the d x2-y2 orbital of the Cu(II). The bh and inh ligands bond to Cu(II) through the >C=O and -NH2 groups whereas, ibh and iinh bond through >C=O and >C=N- groups. The IR spectra of bh and ibh complexes also show H-O-H stretching and bending modes of coordinated water.
Moghadami, Sajjad; Jahanshahi, Mehrdad; Sepehri, Hamid; Amini, Hossein
2016-01-28
In the present study, the role of gonadectomy on memory impairment and the density of androgen receptor-immunoreactive neurons in rats' hippocampus as well as the ability of testosterone to compensate of memory and the density of androgen receptors in the hippocampus was evaluated. Adult male rats (except intact-no testosterone group) were bilaterally castrated, and behavioral tests performed 2 weeks later. Animals bilaterally cannulated into lateral ventricles and then received testosterone (10, 40 and 120 µg/0.5 µl DMSO) or vehicle (DMSO; 0.5 µl) for gonadectomized-vehicle group, 30 min before training in water maze test. The androgen receptor-immunoreactive neurons were detected by immunohistochemical technique in the hippocampal areas. In the gonadectomized male rats, a memory deficit was found in Morris water maze test on test day (5th day) after DMSO administration. Gonadectomy decreased density of androgen receptor-immunoreactive neurons in the rats' hippocampus. The treatment with testosterone daily for 5 days attenuated memory deficits induced by gonadectomy. Testosterone also significantly increased the density of androgen receptor-immunoreactive neurons in the hippocampal areas. The intermediate dose of this hormone (40 µg) appeared to have a significant effect on spatial memory and the density of androgen receptor-immunoreactive neurons in gonadectomized rats' hippocampus. The present study suggests that testosterone can compensate memory failure in gonadectomized rats. Also testosterone replacement can compensate the reduction of androgen receptor-immunoreactive neurons density in the rats' hippocampus after gonadectomy.