Science.gov

Sample records for dna affects gene

  1. Factors affecting SFHR gene correction efficiency with single-stranded DNA fragment

    SciTech Connect

    Tsuchiya, Hiroyuki; Harashima, Hideyoshi; Kamiya, Hiroyuki . E-mail: hirokam@pharm.hokudai.ac.jp

    2005-11-04

    A 606-nt single-stranded (ss) DNA fragment, prepared by restriction enzyme digestion of ss phagemid DNA, improves the gene correction efficiency by 12-fold as compared with a PCR fragment, which is the conventional type of fragment used in the small fragment homologous replacement method [H. Tsuchiya, H. Harashima, H. Kamiya, Increased SFHR gene correction efficiency with sense single-stranded DNA, J. Gene Med. 7 (2005) 486-493]. To reveal the characteristic features of this gene correction with the ss DNA fragment, the effects on the gene correction in CHO-K1 cells of the chain length, 5'-phosphate, adenine methylation, and transcription were studied. Moreover, the possibility that the ss DNA fragment is integrated into the target DNA was examined with a radioactively labeled ss DNA fragment. The presence of methylated adenine, but not the 5'-phosphate, enhanced the gene correction efficiency, and the optimal length of the ss DNA fragment ({approx}600 nt) was determined. Transcription of the target gene did not affect the gene correction efficiency. In addition, the target DNA recovered from the transfected CHO-K1 cells was radioactive. The results obtained in this study indicate that length and adenine methylation were important factors affecting the gene correction efficiency, and that the ss DNA fragment was integrated into the double-stranded target DNA.

  2. Low intensity infrared laser affects expression of oxidative DNA repair genes in mitochondria and nucleus

    NASA Astrophysics Data System (ADS)

    Fonseca, A. S.; Magalhães, L. A. G.; Mencalha, A. L.; Geller, M.; Paoli, F.

    2014-11-01

    Practical properties and physical characteristics of low intensity lasers have made possible their application to treat soft tissue diseases. Excitation of intracellular chromophores by red and infrared radiation at low energy fluences with increase of mitochondrial metabolism is the basis of the biostimulation effect but free radicals can be produced. DNA lesions induced by free radicals are repaired by the base excision repair pathway. In this work, we evaluate the expression of POLγ and APEX2 genes related to repair of mitochondrial and nuclear DNA, respectively. Skin and muscle tissue of Wistar rats were exposed to low intensity infrared laser at different fluences. One hour and 24 hours after laser exposure, tissue samples were withdrawn for total RNA extraction, cDNA synthesis, and evaluation of POLγ and APEX2 mRNA expression by real time quantitative polymerase chain reaction. Skin and muscle tissue of Wistar rats exposed to laser radiation show different expression of POLγ and APEX2 mRNA depending of the fluence and time after exposure. Our study suggests that a low intensity infrared laser affects expression of genes involved in repair of oxidative lesions in mitochondrial and nuclear DNA.

  3. Extremely low-frequency electromagnetic fields do not affect DNA damage and gene expression profiles of yeast and human lymphocytes.

    PubMed

    Luceri, Cristina; De Filippo, Carlotta; Giovannelli, Lisa; Blangiardo, Marta; Cavalieri, Duccio; Aglietti, Filippo; Pampaloni, Monica; Andreuccetti, Daniele; Pieri, Lapo; Bambi, Franco; Biggeri, Annibale; Dolara, Piero

    2005-09-01

    We studied the effects of extremely low-frequency (50 Hz) electromagnetic fields (EMFs) on peripheral human blood lymphocytes and DBY747 Saccharomyces cerevisiae. Graded exposure to 50 Hz magnetic flux density was obtained with a Helmholtz coil system set at 1, 10 or 100 microT for 18 h. The effects of EMFs on DNA damage were studied with the single-cell gel electrophoresis assay (comet assay) in lymphocytes. Gene expression profiles of EMF-exposed human and yeast cells were evaluated with DNA microarrays containing 13,971 and 6,212 oligonucleotides, respectively. After exposure to the EMF, we did not observe an increase in the amount of strand breaks or oxidated DNA bases relative to controls or a variation in gene expression profiles. The results suggest that extremely low-frequency EMFs do not induce DNA damage or affect gene expression in these two different eukaryotic cell systems.

  4. Genetic mapping of nth, a gene affecting endonuclease III (thymine glycol-DNA glycosylase) in Escherichia coli K-12.

    PubMed Central

    Weiss, B; Cunningham, R P

    1985-01-01

    The nth gene of Escherichia coli affects the production of endonuclease III, a glycosylase-endonuclease that attacks DNA damaged by oxidizing agents or by ionizing radiation. An nth insertion mutant and a deletion mutant were studied. nth is located between add and tyrS on the linkage map of E. coli K-12 and was 97% linked to tyrS in a transduction with phage P1. PMID:3886628

  5. Physical Factors Affecting Plasmid DNA Compaction in Stearylamine-Containing Nanoemulsions Intended for Gene Delivery

    PubMed Central

    Silva, André Leandro; Júnior, Francisco Alexandrino; Verissimo, Lourena Mafra; Agnez-Lima, Lucymara Fassarella; Egito, Lucila Carmem Monte; de Oliveira, Anselmo Gomes; do Egito, Eryvaldo Socrates Tabosa

    2012-01-01

    Cationic lipids have been used in the development of non-viral gene delivery systems as lipoplexes. Stearylamine, a cationic lipid that presents a primary amine group when in solution, is able to compact genetic material by electrostatic interactions. In dispersed systems such as nanoemulsions this lipid anchors on the oil/water interface confering a positive charge to them. The aim of this work was to evaluate factors that influence DNA compaction in cationic nanoemulsions containing stearylamine. The influence of the stearylamine incorporation phase (water or oil), time of complexation, and different incubation temperatures were studied. The complexation rate was assessed by electrophoresis migration on agarose gel 0.7%, and nanoemulsion and lipoplex characterization was done by Dynamic Light Scattering (DLS). The results demonstrate that the best DNA compaction process occurs after 120 min of complexation, at low temperature (4 ± 1 °C), and after incorporation of the cationic lipid into the aqueous phase. Although the zeta potential of lipoplexes was lower than the results found for basic nanoemulsions, the granulometry did not change. Moreover, it was demonstrated that lipoplexes are suitable vehicles for gene delivery. PMID:24281666

  6. Physical factors affecting plasmid DNA compaction in stearylamine-containing nanoemulsions intended for gene delivery.

    PubMed

    Silva, André Leandro; Alexandrino, Francisco; Verissimo, Lourena Mafra; Agnez-Lima, Lucymara Fassarella; Egito, Lucila Carmem Monte; de Oliveira, Anselmo Gomes; do Egito, Eryvaldo Socrates Tabosa

    2012-06-18

    Cationic lipids have been used in the development of non-viral gene delivery systems as lipoplexes. Stearylamine, a cationic lipid that presents a primary amine group when in solution, is able to compact genetic material by electrostatic interactions. In dispersed systems such as nanoemulsions this lipid anchors on the oil/water interface confering a positive charge to them. The aim of this work was to evaluate factors that influence DNA compaction in cationic nanoemulsions containing stearylamine. The influence of the stearylamine incorporation phase (water or oil), time of complexation, and different incubation temperatures were studied. The complexation rate was assessed by electrophoresis migration on agarose gel 0.7%, and nanoemulsion and lipoplex characterization was done by Dynamic Light Scattering (DLS). The results demonstrate that the best DNA compaction process occurs after 120 min of complexation, at low temperature (4 ± 1 °C), and after incorporation of the cationic lipid into the aqueous phase. Although the zeta potential of lipoplexes was lower than the results found for basic nanoemulsions, the granulometry did not change. Moreover, it was demonstrated that lipoplexes are suitable vehicles for gene delivery.

  7. DNA Methylation of Lipid-Related Genes Affects Blood Lipid Levels

    PubMed Central

    Pfeiffer, Liliane; Wahl, Simone; Pilling, Luke C.; Reischl, Eva; Sandling, Johanna K.; Kunze, Sonja; Holdt, Lesca M.; Kretschmer, Anja; Schramm, Katharina; Adamski, Jerzy; Klopp, Norman; Illig, Thomas; Hedman, Åsa K.; Roden, Michael; Hernandez, Dena G.; Singleton, Andrew B.; Thasler, Wolfgang E.; Grallert, Harald; Gieger, Christian; Herder, Christian; Teupser, Daniel; Meisinger, Christa; Spector, Timothy D.; Kronenberg, Florian; Prokisch, Holger; Melzer, David; Peters, Annette; Deloukas, Panos; Ferrucci, Luigi; Waldenberger, Melanie

    2016-01-01

    Background Epigenetic mechanisms might be involved in the regulation of interindividual lipid level variability and thus may contribute to the cardiovascular risk profile. The aim of this study was to investigate the association between genome-wide DNA methylation and blood lipid levels high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, and total cholesterol. Observed DNA methylation changes were also further analyzed to examine their relationship with previous hospitalized myocardial infarction. Methods and Results Genome-wide DNA methylation patterns were determined in whole blood samples of 1776 subjects of the Cooperative Health Research in the Region of Augsburg F4 cohort using the Infinium HumanMethylation450 BeadChip (Illumina). Ten novel lipid-related CpG sites annotated to various genes including ABCG1, MIR33B/SREBF1, and TNIP1 were identified. CpG cg06500161, located in ABCG1, was associated in opposite directions with both high-density lipoprotein cholesterol (β coefficient=−0.049; P=8.26E-17) and triglyceride levels (β=0.070; P=1.21E-27). Eight associations were confirmed by replication in the Cooperative Health Research in the Region of Augsburg F3 study (n=499) and in the Invecchiare in Chianti, Aging in the Chianti Area study (n=472). Associations between triglyceride levels and SREBF1 and ABCG1 were also found in adipose tissue of the Multiple Tissue Human Expression Resource cohort (n=634). Expression analysis revealed an association between ABCG1 methylation and lipid levels that might be partly mediated by ABCG1 expression. DNA methylation of ABCG1 might also play a role in previous hospitalized myocardial infarction (odds ratio, 1.15; 95% confidence interval=1.06–1.25). Conclusions Epigenetic modifications of the newly identified loci might regulate disturbed blood lipid levels and thus contribute to the development of complex lipid-related diseases. PMID:25583993

  8. Extended in vitro maturation affects gene expression and DNA methylation in bovine oocytes.

    PubMed

    Heinzmann, Julia; Mattern, Felix; Aldag, Patrick; Bernal-Ulloa, Sandra Milena; Schneider, Tamara; Haaf, Thomas; Niemann, Heiner

    2015-10-01

    To mimic post-ovulatory ageing, we have extended the in vitro maturation (IVM) phase to 48 h and examined effects on (i) developmental potential, (ii) expression of a panel of developmentally important genes and (iii) gene-specific epigenetic marks. Results were compared with the 24 h IVM protocol (control) usually employed for bovine oocytes. Cleavage rates and blastocyst yields were significantly reduced in oocytes after extended IVM. No significant differences were observed in the methylation of entire alleles in oocytes for the genes bH19, bSNRPN, bZAR1, bOct4 and bDNMT3A. However, we found differentially methylated CpG sites in the bDNMT3Ls locus in oocytes after extended IVM and in embryos derived from them compared with controls. Moreover, embryos derived from the 48 h matured oocyte group were significantly less methylated at CpG5 and CpG7 compared with the 24 h group. CpG7 was significantly hypermethylated in embryos produced from the control oocytes, but not in oocytes matured for 48 h. Furthermore, methylation for CpG5-CpG8 of bDNMT3Ls was significantly lower in oocytes of the 24 h group compared with embryos derived therefrom, whereas no such difference was found for oocytes and embryos of the in vitro aged group. Expression of most of the selected genes was not affected by duration of IVM. However, transcript abundance for the imprinted gene bIGF2R was significantly reduced in oocytes analyzed after extended IVM compared with control oocytes. Transcript levels for bPRDX1, bDNMT3A and bBCLXL were significantly reduced in 4- to 8-cell embryos derived from in vitro aged oocytes. These results indicate that extended IVM leads to ageing-like alterations and demonstrate that epigenetic mechanisms are critically involved in ageing of bovine oocytes, which warrants further studies into epigenetic mechanisms involved in ageing of female germ cells, including humans.

  9. Disruption of a DNA topoisomerase I gene affects morphogenesis in Arabidopsis.

    PubMed

    Takahashi, Taku; Matsuhara, Shio; Abe, Mitsutomo; Komeda, Yoshibumi

    2002-09-01

    The genesis of phyllotaxis, which often is associated with the Fibonacci series of numbers, is an old unsolved puzzle in plant morphogenesis. Here, we show that disruption of an Arabidopsis topoisomerase (topo) I gene named TOP1alpha affects phyllotaxis and plant architecture. The divergence angles and internode lengths between two successive flowers were more random in the top1alpha mutant than in the wild type. The top1alpha plants sporadically produced multiple flowers from one node, and the number of floral organ primordia often was different. The mutation also caused the twisting of inflorescences and individual flowers and the serration of leaf margins. These morphological abnormalities indicate that TOP1alpha may play a critical role in the maintenance of a regular pattern of organ initiation. The top1alpha mutant transformed with the RNA interference construct for TOP1beta, another topo I gene arrayed tandemly with TOP1alpha, was found to be lethal at young seedling stages, suggesting that topo I activity is essential in plants.

  10. Smoking and polymorphisms in xenobiotic metabolism and DNA repair genes are additive risk factors affecting bladder cancer in Northern Tunisia.

    PubMed

    Rouissi, Kamel; Ouerhani, Slah; Hamrita, Bechr; Bougatef, Karim; Marrakchi, Raja; Cherif, Mohamed; Ben Slama, Mohamed Riadh; Bouzouita, Mohamed; Chebil, Mohamed; Ben Ammar Elgaaied, Amel

    2011-12-01

    Cancer epidemiology has undergone marked development since the nineteen-fifties. One of the most spectacular and specific contributions was the demonstration of the massive effect of smoking and genetic polymorphisms on the occurrence of bladder cancer. The tobacco carcinogens are metabolized by various xenobiotic metabolizing enzymes, such as the super-families of N-acetyltransferases (NAT) and glutathione S-transferases (GST). DNA repair is essential to an individual's ability to respond to damage caused by tobacco carcinogens. Alterations in DNA repair genes may affect cancer risk by influencing individual susceptibility to this environmental exposure. Polymorphisms in NAT2, GST and DNA repair genes alter the ability of these enzymes to metabolize carcinogens or to repair alterations caused by this process. We have conducted a case-control study to assess the role of smoking, slow NAT2 variants, GSTM1 and GSTT1 null, and XPC, XPD, XPG nucleotide excision-repair (NER) genotypes in bladder cancer development in North Tunisia. Taken alone, each gene unless NAT2 did not appear to be a factor affecting bladder cancer susceptibility. For the NAT2 slow acetylator genotypes, the NAT2*5/*7 diplotype was found to have a 7-fold increased risk to develop bladder cancer (OR = 7.14; 95% CI: 1.30-51.41). However, in tobacco consumers, we have shown that Null GSTM1, Wild GSTT1, Slow NAT2, XPC (CC) and XPG (CC) are genetic risk factors for the disease. When combined together in susceptible individuals compared to protected individuals these risk factors give an elevated OR (OR = 61). So, we have shown a strong cumulative effect of tobacco and different combinations of studied genetic risk factors which lead to a great susceptibility to bladder cancer.

  11. Early life adversity and serotonin transporter gene variation interact to affect DNA methylation of the corticotropin-releasing factor gene promoter region in the adult rat brain.

    PubMed

    van der Doelen, Rick H A; Arnoldussen, Ilse A; Ghareh, Hussein; van Och, Liselot; Homberg, Judith R; Kozicz, Tamás

    2015-02-01

    The interaction between childhood maltreatment and the serotonin transporter (5-HTT) gene linked polymorphic region has been associated with increased risk to develop major depression. This Gene × Environment interaction has furthermore been linked with increased levels of anxiety and glucocorticoid release upon exposure to stress. Both endophenotypes are regulated by the neuropeptide corticotropin-releasing factor (CRF) or hormone, which is expressed by the paraventricular nucleus of the hypothalamus, the bed nucleus of the stria terminalis, and the central amygdala (CeA). Therefore, we hypothesized that altered regulation of the expression of CRF in these areas represents a major neurobiological mechanism underlying the interaction of early life stress and 5-HTT gene variation. The programming of gene transcription by Gene × Environment interactions has been proposed to involve epigenetic mechanisms such as DNA methylation. In this study, we report that early life stress and 5-HTT genotype interact to affect DNA methylation of the Crf gene promoter in the CeA of adult male rats. Furthermore, we found that DNA methylation of a specific site in the Crf promoter significantly correlated with CRF mRNA levels in the CeA. Moreover, CeA CRF mRNA levels correlated with stress coping behavior in a learned helplessness paradigm. Together, our findings warrant further investigation of the link of Crf promoter methylation and CRF expression in the CeA with behavioral changes that are relevant for psychopathology.

  12. Melting profiles may affect detection of residual HPV L1 gene DNA fragments in Gardasil®.

    PubMed

    Lee, Sin Hang

    2014-03-01

    Gardasil® is a quadrivalent human papillomavirus (HPV) protein-based vaccine containing genotype-specific L1 capsid proteins of HPV-16, HPV-18, HPV-6 and HPV-11 in the form of virus-like-particles (VLPs) as the active ingredient. The VLPs are produced by a DNA recombinant technology. It is uncertain if the residual HPV L1 gene DNA fragments in the vaccine products are considered contaminants or excipients of the Gardasil® vaccine. Because naked viral DNA fragments, if present in the vaccine, may bind to the insoluble amorphous aluminum hydroxyphosphate sulfate (AAHS) adjuvant which may help deliver the foreign DNA into macrophages, causing unintended pathophysiologic effects, experiments were undertaken to develop tests for HPV L1 gene DNA fragments in the final products of Gardasil® by polymerase chain reaction (PCR) and direct DNA sequencing. The results showed that while the HPV-11 and HPV-18 L1 gene DNA fragments in Gardasil® were readily amplified by the common GP6/MY11 degenerate consensus primers, the HPV-16 L1 gene DNA may need specially designed non-degenerate PCR primers for amplification at different regions of the L1 gene and different stringency conditions for detection. These variable melting profiles of HPV DNA in the insoluble fraction of the Gardasil® vaccine suggest that the HPV DNA fragments are firmly bound to the aluminum AAHS adjuvant. All methods developed for detecting residual HPV DNA in the vaccine Gardasil® for quality assurance must take into consideration the variable melting profiles of the DNA to avoid false negative results.

  13. Variation in DNA repair gene XRCC3 affects susceptibility to astrocytomas and glioblastomas.

    PubMed

    Custódio, A C; Almeida, L O; Pinto, G R; Santos, M J; Almeida, J R W; Clara, C A; Rey, J A; Casartelli, C

    2012-02-10

    The gene XRCC3 (X-ray cross complementing group 3) has the task of repairing damage that occurs when there is recombination between homologous chromosomes. Repair of recombination between homologous chromosomes plays an important role in maintaining genome integrity, although it is known that double-strand breaks are the main inducers of chromosomal aberrations. Changes in the XRCC3 protein lead to an increase in errors in chromosome segregation due to defects in centrosomes, resulting in aneuploidy and other chromosomal aberrations, such as small increases in telomeres. We examined XRCC3 Thr241Met polymorphism using PCR-RFLP in 80 astrocytoma and glioblastoma samples. The individuals of the control group (N = 100) were selected from the general population of the São Paulo State. Odds ratio and 95%CI were calculated using a logistic regression model. Patients who had the allele Met of the XRCC3 Thr241Met polymorphism had a significantly increased risk of tumor development (odds ratio = 3.13; 95% confidence interval = 1.50-6.50). There were no significant differences in overall survival of patients. We suggest that XRCC3 Thr241Met polymorphism is involved in susceptibility for developing astrocytomas and glioblastomas.

  14. Two novel pathogenic mitochondrial DNA mutations affecting organelle number and protein synthesis. Is the tRNA(Leu(UUR)) gene an etiologic hot spot?

    PubMed Central

    Moraes, C T; Ciacci, F; Bonilla, E; Jansen, C; Hirano, M; Rao, N; Lovelace, R E; Rowland, L P; Schon, E A; DiMauro, S

    1993-01-01

    We identified two patients with pathogenic single nucleotide changes in two different mitochondrial tRNA genes: the first mutation in the tRNA(Asn) gene, and the ninth known mutation in the tRNA(Leu(UUR)) gene. The mutation in tRNA(Asn) was associated with isolated ophthalmoplegia, whereas the mutation in tRNA(Leu(UUR)) caused a neurological syndrome resembling MERRF (myoclonus epilepsy and ragged-red fibers) plus optic neuropathy, retinopathy, and diabetes. Both mutations were heteroplasmic, with higher percentages of mutant mtDNA in affected tissues, and undetectable levels in maternal relatives. Analysis of single muscle fibers indicated that morphological and biochemical alterations appeared only when the proportions of mutant mtDNA exceeded 90% of the total cellular mtDNA pool. The high incidence of mutations in the tRNA(Leu(UUR)) gene suggests that this region is an "etiologic hot spot" in mitochondrial disease. Images PMID:8254046

  15. TET1 modulates H4K16 acetylation by controlling auto-acetylation of hMOF to affect gene regulation and DNA repair function

    PubMed Central

    Zhong, Jianing; Li, Xianfeng; Cai, Wanshi; Wang, Yan; Dong, Shanshan; Yang, Jie; Zhang, Jian'an; Wu, Nana; Li, Yuanyuan; Mao, Fengbiao; Zeng, Cheng; Wu, Jinyu; Xu, Xingzhi; Sun, Zhong Sheng

    2017-01-01

    The Ten Eleven Translocation 1 (TET1) protein is a DNA demethylase that regulates gene expression through altering statue of DNA methylation. However, recent studies have demonstrated that TET1 could modulate transcriptional expression independent of its DNA demethylation activity; yet, the detailed mechanisms underlying TET1's role in such transcriptional regulation remain not well understood. Here, we uncovered that Tet1 formed a chromatin complex with histone acetyltransferase Mof and scaffold protein Sin3a in mouse embryonic stem cells by integrative genomic analysis using publicly available ChIP-seq data sets and a series of in vitro biochemical studies in human cell lines. Mechanistically, the TET1 facilitated chromatin affinity and enzymatic activity of hMOF against acetylation of histone H4 at lysine 16 via preventing auto-acetylation of hMOF, to regulate expression of the downstream genes, including DNA repair genes. We found that Tet1 knockout MEF cells exhibited an accumulation of DNA damage and genomic instability and Tet1 deficient mice were more sensitive to x-ray exposure. Taken together, our findings reveal that TET1 forms a complex with hMOF to modulate its function and the level of H4K16Ac ultimately affect gene expression and DNA repair. PMID:27733505

  16. Polymorphisms in metabolism and repair genes affects DNA damage caused by open-cast coal mining exposure.

    PubMed

    Espitia-Pérez, Lyda; Sosa, Milton Quintana; Salcedo-Arteaga, Shirley; León-Mejía, Grethel; Hoyos-Giraldo, Luz Stella; Brango, Hugo; Kvitko, Katia; da Silva, Juliana; Henriques, João A P

    2016-09-15

    Increasing evidence suggest that occupational exposure to open-cast coal mining residues like dust particles, heavy metals and Polycyclic Aromatic Hydrocarbons (PAHs) may cause a wide range of DNA damage and genomic instability that could be associated to initial steps in cancer development and other work-related diseases. The aim of our study was to evaluate if key polymorphisms in metabolism genes CYP1A1Msp1, GSTM1Null, GSTT1Null and DNA repair genes XRCC1Arg194Trp and hOGG1Ser326Cys could modify individual susceptibility to adverse coal exposure effects, considering the DNA damage (Comet assay) and micronucleus formation in lymphocytes (CBMN) and buccal mucosa cells (BMNCyt) as endpoints for genotoxicity. The study population is comprised of 200 healthy male subjects, 100 open-cast coal-mining workers from "El Cerrejón" (world's largest open-cast coal mine located in Guajira - Colombia) and 100 non-exposed referents from general population. The data revealed a significant increase of CBMN frequency in peripheral lymphocytes of occupationally exposed workers carrying the wild-type variant of GSTT1 (+) gene. Exposed subjects carrying GSTT1null polymorphism showed a lower micronucleus frequency compared with their positive counterparts (FR: 0.83; P=0.04), while BMNCyt, frequency and Comet assay parameters in lymphocytes: Damage Index (DI) and percentage of DNA in the tail (Tail % DNA) were significantly higher in exposed workers with the GSTM1Null polymorphism. Other exfoliated buccal mucosa abnormalities related to cell death (Karyorrhexis and Karyolysis) were increased in GSTT/M1Null carriers. Nuclear buds were significantly higher in workers carrying the CYP1A1Msp1 (m1/m2, m2/m2) allele. Moreover, BMNCyt frequency and Comet assay parameters were significantly lower in exposed carriers of XRCC1Arg194Trp (Arg/Trp, Trp/Trp) and hOGG1Ser326Cys (Ser/Cys, Cys/Cys), thereby providing new data to the increasing evidence about the protective role of these polymorphisms

  17. Selective ploidy ablation, a high-throughput plasmid transfer protocol, identifies new genes affecting topoisomerase I–induced DNA damage

    PubMed Central

    Reid, Robert J.D.; González-Barrera, Sergio; Sunjevaric, Ivana; Alvaro, David; Ciccone, Samantha; Wagner, Marisa; Rothstein, Rodney

    2011-01-01

    We have streamlined the process of transferring plasmids into any yeast strain library by developing a novel mating-based, high-throughput method called selective ploidy ablation (SPA). SPA uses a universal plasmid donor strain that contains conditional centromeres on every chromosome. The plasmid-bearing donor is mated to a recipient, followed by removal of all donor-strain chromosomes, producing a haploid strain containing the transferred plasmid. As proof of principle, we used SPA to transfer plasmids containing wild-type and mutant alleles of DNA topoisomerase I (TOP1) into the haploid yeast gene-disruption library. Overexpression of Top1 identified only one sensitive mutation, rpa34, while overexpression of top1-T722A allele, a camptothecin mimetic, identified 190 sensitive gene-disruption strains along with rpa34. In addition to known camptothecin-sensitive strains, this set contained mutations in genes involved in the Rpd3 histone deacetylase complex, the kinetochore, and vesicle trafficking. We further show that mutations in several ESCRT vesicle trafficking components increase Top1 levels, which is dependent on SUMO modification. These findings demonstrate the utility of the SPA technique to introduce plasmids into the haploid gene-disruption library to discover new interacting pathways. PMID:21173034

  18. Coordinate expression of Escherichia coli dnaA and dnaN genes.

    PubMed

    Sako, T; Sakakibara, Y

    1980-01-01

    The defects of temperature-sensitive dnaA and dnaN mutants of Escherichia coli are complemented by a recombinant lambda phage, which carries the bacterial DNA segment composed of two EcoRI segments of 1.0 and 3.3 kilobases. Derivatives of the phage, which have an insertion segment of Tn3 in the dnaA gene, are much less active in expressing the dnaN gene function than the parent phage. The dnaN gene activity was determined as the efficiency of superinfecting phage to suppress loss of the viability of lambda lysogenic dnaN59 cells at the non-permissive temperature. Deletions that include the end of the dnaA gene distal to the dnaN gene also reduce the expression of the dnaN gene function. Deletion and insertion in the dnaN gene do not affect the expression of the dnaA gene function. The expression of the dnaN gene function by the dnaA- dnaN+ phages remains weak upon simultaneous infection with dnaA+ dnaN- phages. Thus the insertion and deletion of the dnaA gene influence in cis the expresion of the dnaN gene. We propose that the dnaA and dnaN genes constitute an operon, where the former is upstream to the latter.

  19. Homologous and homeologous intermolecular gene conversion are not differentially affected by mutations in the DNA damage or the mismatch repair genes RAD1, RAD50, RAD51, RAD52, RAD54, PMS1 and MSH2

    SciTech Connect

    Porter, G.; Westmoreland, J.; Priebe, S.

    1996-06-01

    Mismatch repair (MMR) genes or genes involved in both DNA damage repair and homologous recombination might affect homeologous vs. homologous recombination differentially. Spontaneous mitotic gene conversion between a chromosome and a homologous or homeologous donor sequence (14% diverged) on a single copy plasmid was examined in wild-type Saccharomyces cerevisiae strains and in MMR or DNA damage repair mutants. Homologous recombination in rad51, rad52 and rad54 mutants was considerably reduced, while there was little effect of rad1, rad50, pms1 and msh2 null mutations. DNA divergence resulted in no differential effect on recombination rates in the wild type or the mutants; there was only a five- to 10-fold reduction in homeologous relative to homologous recombination regardless of background. Since DNA divergence is known to affect recombination in some systems, we propose that differences in the role of MMR depends on the mode of recombination and/or the level of divergence. Based on analysis of the recombination breakpoints, there is a minimum of three homologous bases required at a recombination junction. A comparison of Rad{sup +} vs. rad52 strains revealed that while all conversion tracts are continuous, elimination of RAD52 leads to the appearance of a novel class of very short conversion tracts. 67 refs., 5 figs., 4 tabs.

  20. Homologous and Homeologous Intermolecular Gene Conversion Are Not Differentially Affected by Mutations in the DNA Damage or the Mismatch Repair Genes Rad1, Rad50, Rad51, Rad52, Rad54, Pms1 and Msh2

    PubMed Central

    Porter, G.; Westmoreland, J.; Priebe, S.; Resnick, M. A.

    1996-01-01

    Mismatch repair (MMR) genes or genes involved in both DNA damage repair and homologous recombination might affect homeologous vs. homologous recombination differentially. Spontaneous mitotic gene conversion between a chromosome and a homologous or homeologous donor sequence (14% diverged) on a single copy plasmid was examined in wild-type Saccharomyces cerevisiae strains and in MMR or DNA damage repair mutants. Homologous recombination in rad51, rad52 and rad54 mutants was considerably reduced, while there was little effect of rad1, rad50, pms1 and msh2 null mutations. DNA divergence resulted in no differential effect on recombination rates in the wild type or the mutants; there was only a five- to 10-fold reduction in homeologous relative to homologous recombination regardless of background. Since DNA divergence is known to affect recombination in some systems, we propose that differences in the role of MMR depends on the mode of recombination and/or the level of divergence. Based on analysis of the recombination breakpoints, there is a minimum of three homologous bases required at a recombination junction. A comparison of Rad(+) vs. rad52 strains revealed that while all conversion tracts are continuous, elimination of RAD52 leads to the appearance of a novel class of very short conversion tracts. PMID:8725224

  1. Testing the Oncogenic Relevance of Cell Adhesion and Cytosketal Genes Affected by DNA Deletions in Breast Cancer

    DTIC Science & Technology

    2010-07-01

    and hair follicle derived cells as targets for the v-rasHa oncogene in mouse skin carcinogenesis. Carcinogenesis 12, 1119–1124. Wicki, A., Lehembre, F...potential oncogenic significance of genes directly involved in cell adhesion and the cytoskeleton. The aim of this study was therefore to directly test ...expression of candidate cancer genes belonging to the cytoskeletal/cell adhesion category, (2) use these tools to test the oncogenic significance of

  2. A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status

    PubMed Central

    Friso, Simonetta; Choi, Sang-Woon; Girelli, Domenico; Mason, Joel B.; Dolnikowski, Gregory G.; Bagley, Pamela J.; Olivieri, Oliviero; Jacques, Paul F.; Rosenberg, Irwin H.; Corrocher, Roberto; Selhub, Jacob

    2002-01-01

    DNA methylation, an essential epigenetic feature of DNA that modulates gene expression and genomic integrity, is catalyzed by methyltransferases that use the universal methyl donor S-adenosyl-l-methionine. Methylenetetrahydrofolate reductase (MTHFR) catalyzes the synthesis of 5-methyltetrahydrofolate (5-methylTHF), the methyl donor for synthesis of methionine from homocysteine and precursor of S-adenosyl-l-methionine. In the present study we sought to determine the effect of folate status on genomic DNA methylation with an emphasis on the interaction with the common C677T mutation in the MTHFR gene. A liquid chromatography/MS method for the analysis of nucleotide bases was used to assess genomic DNA methylation in peripheral blood mononuclear cell DNA from 105 subjects homozygous for this mutation (T/T) and 187 homozygous for the wild-type (C/C) MTHFR genotype. The results show that genomic DNA methylation directly correlates with folate status and inversely with plasma homocysteine (tHcy) levels (P < 0.01). T/T genotypes had a diminished level of DNA methylation compared with those with the C/C wild-type (32.23 vs.62.24 ng 5-methylcytosine/μg DNA, P < 0.0001). When analyzed according to folate status, however, only the T/T subjects with low levels of folate accounted for the diminished DNA methylation (P < 0.0001). Moreover, in T/T subjects DNA methylation status correlated with the methylated proportion of red blood cell folate and was inversely related to the formylated proportion of red blood cell folates (P < 0.03) that is known to be solely represented in those individuals. These results indicate that the MTHFR C677T polymorphism influences DNA methylation status through an interaction with folate status. PMID:11929966

  3. Chimeric DNA methyltransferases target DNA methylation to specific DNA sequences and repress expression of target genes

    PubMed Central

    Li, Fuyang; Papworth, Monika; Minczuk, Michal; Rohde, Christian; Zhang, Yingying; Ragozin, Sergei; Jeltsch, Albert

    2007-01-01

    Gene silencing by targeted DNA methylation has potential applications in basic research and therapy. To establish targeted methylation in human cell lines, the catalytic domains (CDs) of mouse Dnmt3a and Dnmt3b DNA methyltransferases (MTases) were fused to different DNA binding domains (DBD) of GAL4 and an engineered Cys2His2 zinc finger domain. We demonstrated that (i) Dense DNA methylation can be targeted to specific regions in gene promoters using chimeric DNA MTases. (ii) Site-specific methylation leads to repression of genes controlled by various cellular or viral promoters. (iii) Mutations affecting any of the DBD, MTase or target DNA sequences reduce targeted methylation and gene silencing. (iv) Targeted DNA methylation is effective in repressing Herpes Simplex Virus type 1 (HSV-1) infection in cell culture with the viral titer reduced by at least 18-fold in the presence of an MTase fused to an engineered zinc finger DBD, which binds a single site in the promoter of HSV-1 gene IE175k. In short, we show here that it is possible to direct DNA MTase activity to predetermined sites in DNA, achieve targeted gene silencing in mammalian cell lines and interfere with HSV-1 propagation. PMID:17151075

  4. How the Neanderthal in Your Genes Affects Your Health

    MedlinePlus

    ... medlineplus.gov/news/fullstory_163749.html How the Neanderthal in Your Genes Affects Your Health The DNA ... 23, 2017 THURSDAY, Feb. 23, 2017 (HealthDay News) -- Neanderthals were wiped out about 40,000 years ago, ...

  5. Specific DNA replication mutations affect telomere length in Saccharomyces cerevisiae.

    PubMed Central

    Adams, A K; Holm, C

    1996-01-01

    To investigate the relationship between the DNA replication apparatus and the control of telomere length, we examined the effects of several DNA replication mutations on telomere length in Saccharomyces cerevisiae. We report that a mutation in the structural gene for the large subunit of DNA replication factor C (cdc44/rfc1) causes striking increases in telomere length. A similar effect is seen with mutations in only one other DNA replication gene: the structural gene for DNA polymerase alpha (cdc17/pol1) (M.J. Carson and L. Hartwell, Cell 42:249-257, 1985). For both genes, the telomere elongation phenotype is allele specific and appears to correlate with the penetrance of the mutations. Furthermore, fluorescence-activated cell sorter analysis reveals that those alleles that cause elongation also exhibit a slowing of DNA replication. To determine whether elongation is mediated by telomerase or by slippage of the DNA polymerase, we created cdc17-1 mutants carrying deletions of the gene encoding the RNA component of telomerase (TLC1). cdc17-1 strains that would normally undergo telomere elongation failed to do so in the absence of telomerase activity. This result implies that telomere elongation in cdc17-1 mutants is mediated by the action of telomerase. Since DNA replication involves transfer of the nascent strand from polymerase alpha to replication factor C (T. Tsurimoto and B. Stillman, J. Biol. Chem. 266:1950-1960, 1991; T. Tsurimoto and B. Stillman, J. Biol. Chem. 266:1961-1968, 1991; S. Waga and B. Stillman, Nature [London] 369:207-212, 1994), one possibility is that this step affects the regulation of telomere length. PMID:8756617

  6. The A1555G mutation in the 12S rRNA gene of human mtDNA: recurrent origins and founder events in families affected by sensorineural deafness.

    PubMed

    Torroni, A; Cruciani, F; Rengo, C; Sellitto, D; López-Bigas, N; Rabionet, R; Govea, N; López De Munain, A; Sarduy, M; Romero, L; Villamar, M; del Castillo, I; Moreno, F; Estivill, X; Scozzari, R

    1999-11-01

    The mtDNA variation of 50 Spanish and 4 Cuban families affected by nonsyndromic sensorineural deafness due to the A1555G mutation in the 12S rRNA gene was studied by high-resolution RFLP analysis and sequencing of the control region. Phylogenetic analyses of haplotypes and detailed survey of population controls revealed that the A1555G mutation can be attributed to >/=30 independent mutational events among the 50 Spanish families and that it occurs on mtDNA haplogroups that are common in all European populations. This indicates that the relatively high detection rate of this mutation in Spain is not due to sampling biases or to a single major founder event. Moreover, the distribution of these mutational events on different haplogroups is compatible with a random occurrence of the A1555G mutation and tends to support the conclusion that mtDNA backgrounds do not play a significant role in the expression of the mutation. Overall, these findings appear to indicate that the rare detection of this mutation in other populations is most likely due to inadequacy in patient ascertainment and molecular screening. This probable lack of identification of the A1555G mutation in subjects affected by sensorineural hearing loss implies that their maternally related relatives are not benefiting from presymptomatic detection and information concerning their increased risk of ototoxicity due to aminoglycoside treatments.

  7. The A1555G Mutation in the 12S rRNA Gene of Human mtDNA: Recurrent Origins and Founder Events in Families Affected by Sensorineural Deafness

    PubMed Central

    Torroni, Antonio; Cruciani, Fulvio; Rengo, Chiara; Sellitto, Daniele; López-Bigas, Núria; Rabionet, Raquel; Govea, Nancy; López de Munain, Adolfo; Sarduy, Maritza; Romero, Lourdes; Villamar, Manuela; del Castillo, Ignacio; Moreno, Felipe; Estivill, Xavier; Scozzari, Rosaria

    1999-01-01

    Summary The mtDNA variation of 50 Spanish and 4 Cuban families affected by nonsyndromic sensorineural deafness due to the A1555G mutation in the 12S rRNA gene was studied by high-resolution RFLP analysis and sequencing of the control region. Phylogenetic analyses of haplotypes and detailed survey of population controls revealed that the A1555G mutation can be attributed to ⩾30 independent mutational events among the 50 Spanish families and that it occurs on mtDNA haplogroups that are common in all European populations. This indicates that the relatively high detection rate of this mutation in Spain is not due to sampling biases or to a single major founder event. Moreover, the distribution of these mutational events on different haplogroups is compatible with a random occurrence of the A1555G mutation and tends to support the conclusion that mtDNA backgrounds do not play a significant role in the expression of the mutation. Overall, these findings appear to indicate that the rare detection of this mutation in other populations is most likely due to inadequacy in patient ascertainment and molecular screening. This probable lack of identification of the A1555G mutation in subjects affected by sensorineural hearing loss implies that their maternally related relatives are not benefiting from presymptomatic detection and information concerning their increased risk of ototoxicity due to aminoglycoside treatments. PMID:10521300

  8. Exposure to 3,3',5-triiodothyronine affects histone and RNA polymerase II modifications, but not DNA methylation status, in the regulatory region of the Xenopus laevis thyroid hormone receptor βΑ gene.

    PubMed

    Kasai, Kentaro; Nishiyama, Norihito; Izumi, Yushi; Otsuka, Shunsuke; Ishihara, Akinori; Yamauchi, Kiyoshi

    2015-11-06

    Thyroid hormones (THs) play a critical role in amphibian metamorphosis, during which the TH receptor (TR) gene, thrb, is upregulated in a tissue-specific manner. The Xenopus laevis thrb gene has 3 TH response elements (TREs) in the 5' flanking regulatory region and 1 TRE in the exon b region, around which CpG sites are highly distributed. To clarify whether exposure to 3,3',5-triiodothyronine (T3) affects histone and RNA polymerase II (RNAPII) modifications and the level of DNA methylation in the 5' regulatory region, we conducted reverse transcription-quantitative polymerase chain reaction, bisulfite sequencing and chromatin immunoprecipitation assay using X. laevis cultured cells and premetamorphic tadpoles treated with or without 2 nM T3. Exposure to T3 increased the amount of the thrb transcript, in parallel with enhanced histone H4 acetylation and RNAPII recruitment, and probably phosphorylation of RNAPII at serine 5, in the 5' regulatory and exon b regions. However, the 5' regulatory region remained hypermethylated even with exposure to T3, and there was no significant difference in the methylation status between DNAs from T3-untreated and -treated cultured cells or tadpole tissues. Our results demonstrate that exposure to T3 induced euchromatin-associated epigenetic marks by enhancing histone acetylation and RNAPII recruitment, but not by decreasing the level of DNA methylation, in the 5' regulatory region of the X. laevis thrb gene.

  9. Experimental factors affecting the robustness of DNA methylation analysis

    PubMed Central

    Pharo, Heidi D.; Honne, Hilde; Vedeld, Hege M.; Dahl, Christina; Andresen, Kim; Liestøl, Knut; Jeanmougin, Marine; Guldberg, Per; Lind, Guro E.

    2016-01-01

    Diverging methylation frequencies are often reported for the same locus in the same disease, underscoring the need for limiting technical variability in DNA methylation analyses. We have investigated seven likely sources of variability at different steps of bisulfite PCR-based DNA methylation analyses using a fully automated quantitative methylation-specific PCR setup of six gene promoters across 20 colon cancer cell lines. Based on >15,000 individual PCRs, all tested parameters affected the normalized percent of methylated reference (PMR) differences, with a fourfold varying magnitude. Additionally, large variations were observed across the six genes analyzed. The highest variation was seen using single-copy genes as reference for normalization, followed by different amounts of template in the PCR, different amounts of DNA in the bisulfite reaction, and storage of bisulfite converted samples. Finally, when a highly standardized pipeline was repeated, the difference in PMR value for the same assay in the same cell line was on average limited to five (on a 0–100 scale). In conclusion, a standardized pipeline is essential for consistent methylation results, where parameters are kept constant for all samples. Nevertheless, a certain level of variation in methylation values must be expected, underscoring the need for careful interpretation of data. PMID:27671843

  10. Does inbreeding affect gene expression in birds?

    PubMed

    Hansson, Bengt; Naurin, Sara; Hasselquist, Dennis

    2014-09-01

    Inbreeding increases homozygosity, exposes genome-wide recessive deleterious alleles and often reduces fitness. The physiological and reproductive consequences of inbreeding may be manifested already during gene regulation, but the degree to which inbreeding influences gene expression is unknown in most organisms, including in birds. To evaluate the pattern of inbreeding-affected gene expression over the genome and in relation to sex, we performed a transcriptome-wide gene expression (10 695 genes) study of brain tissue of 10-day-old inbred and outbred, male and female zebra finches. We found significantly lower gene expression in females compared with males at Z-linked genes, confirming that dosage compensation is incomplete in female birds. However, inbreeding did not affect gene expression at autosomal or sex-linked genes, neither in males nor in females. Analyses of single genes again found a clear sex-biased expression at Z-linked genes, whereas only a single gene was significantly affected by inbreeding. The weak effect of inbreeding on gene expression in zebra finches contrasts to the situation, for example, in Drosophila where inbreeding has been found to influence gene expression more generally and at stress-related genes in particular.

  11. Differences in the Ovine HSP90AA1 Gene Expression Rates Caused by Two Linked Polymorphisms at Its Promoter Affect Rams Sperm DNA Fragmentation under Environmental Heat Stress Conditions

    PubMed Central

    González, Carmen; Pérez-Guzmán, M. Dolores; Garde, J. Julián; García-Álvarez, Olga; Maroto-Morales, Alejandro; Calvo, Jorge H.; Serrano, M. Magdalena

    2015-01-01

    Heat shock (HS) is one of the best-studied exogenous cellular stresses. Almost all tissues, cell types, metabolic pathways and biochemical reactions are affected in greater or lesser extent by HS. However, there are some especially thermo sensible cellular types such as the mammalian male germ cells. The present study examined the role of three INDELs in conjunction with the -660G/C polymorphism located at the HSP90AA1 promoter region over the gene expression rate under HS. Specially, the -668insC INDEL, which is very close to the -660G/C transversion, is a good candidate to be implied in the transcriptional regulation of the gene by itself or in a cooperative way with this SNP. Animals carrying the genotype II-668 showed higher transcription rates than those with ID-668 (FC = 3.07) and DD-668 (FC = 3.40) genotypes for samples collected under HS. A linkage between gene expression and sperm DNA fragmentation was also found. When HS conditions were present along or in some stages of the spermatogenesis, alternative genotypes of the -668insC and -660G/C mutations are involved in the effect of HS over sperm DNA fragmentation. Thus, unfavorable genotypes in terms of gene expression induction (ID-668GC-660 and DD-668GG-660) do not produce enough mRNA (stored as messenger ribonucleoprotein particles) and Hsp90α protein to cope with future thermal stress which might occur in posterior stages when transcriptional activity is reduced and cell types and molecular processes are more sensible to heat (spermatocytes in pachytene and spermatids protamination). This would result in the impairment of DNA packaging and the consequent commitment of the events occurring shortly after fertilization and during embryonic development. In the short-term, the assessment of the relationship between sperm DNA fragmentation sensitivity and ram’s fertility will be of interest to a better understanding of the mechanisms of response to HS and its consequences on animal production and

  12. DNA repair genes of mammalian cells

    SciTech Connect

    Thompson, L.H.; Brookman, K.W.; Salazar, E.P.; Fuscoe, J.C.; Weber, C.A.

    1985-09-27

    In the CHO cell line various mutations affecting DNA repair have been obtained. Mutants that belong to five genetic complementation groups for UV sensitivity and resemble the cells from individuals having the cancer-prone genetic disorder xeroderma pigmentosum were previously identified. Each mutant is defective in the incision step of nucleotide excision repair and hypersensitive to bulky DNA lesions. A sixth genetic complementation group for UV sensitivity has now been identified with UV27-1. These UV mutants can be divided into two subgroups; only Groups 2 and 4 are extremely sensitive to mitomycin C and other DNA cross-linking agents. The clear-cut phenotypes of the CHO mutants have allowed us to construct hybrid cells by fusion with human lymphocytes and thereby identify which human chromosomes carry genes that correct the CHO mutations. The first two mutants analyzed, UV20 (excision-repair deficient; UV Group 2) and EM9, which has very high SCE, are both corrected by chromosome 19. 46 refs., 3 figs.

  13. Topological friction strongly affects viral DNA ejection

    PubMed Central

    Marenduzzo, Davide; Micheletti, Cristian; Orlandini, Enzo; Sumners, De Witt

    2013-01-01

    Bacteriophages initiate infection by releasing their double-stranded DNA into the cytosol of their bacterial host. However, what controls and sets the timescales of DNA ejection? Here we provide evidence from stochastic simulations which shows that the topology and organization of DNA packed inside the capsid plays a key role in determining these properties. Even with similar osmotic pressure pushing out the DNA, we find that spatially ordered DNA spools have a much lower effective friction than disordered entangled states. Such spools are only found when the tendency of nearby DNA strands to align locally is accounted for. This topological or conformational friction also depends on DNA knot type in the packing geometry and slows down or arrests the ejection of twist knots and very complex knots. We also find that the family of (2, 2k+1) torus knots unravel gradually by simplifying their topology in a stepwise fashion. Finally, an analysis of DNA trajectories inside the capsid shows that the knots formed throughout the ejection process mirror those found in gel electrophoresis experiments for viral DNA molecules extracted from the capsids. PMID:24272939

  14. Major genes affecting ovulation rate in sheep

    PubMed Central

    2005-01-01

    Research conducted since 1980 in relation to inheritance patterns and DNA testing of major genes for prolificacy has shown that major genes have the potential to significantly increase the reproductive performance of sheep flocks throughout the world. Mutations that increase ovulation rate have been discovered in the BMPR-1B, BMP15 and GDF9 genes, and others are known to exist from the expressed inheritance patterns although the mutations have not yet been located. In the case of BMP15, four different mutations have been discovered but each produces the same phenotype. The modes of inheritance of the different prolificacy genes include autosomal dominant genes with additive effects on ovulation rate (BMPR-1B; Lacaune), autosomal over-dominant genes with infertility in homozygous females (GDF9), X-linked over-dominant genes with infertility in homozygous females (BMP15), and X-linked maternally imprinted genes (FecX2). The size of the effect of one copy of a mutation on ovulation rate ranges from an extra 0.4 ovulations per oestrus for the FecX2 mutation to an extra 1.5 ovulations per oestrus for the BMPR-1B mutation. A commercial DNA testing service enables some of these mutations to be used in genetic improvement programmes based on marker assisted selection. PMID:15601592

  15. Major genes affecting ovulation rate in sheep.

    PubMed

    Davis, George Henry

    2005-01-01

    Research conducted since 1980 in relation to inheritance patterns and DNA testing of major genes for prolificacy has shown that major genes have the potential to significantly increase the reproductive performance of sheep flocks throughout the world. Mutations that increase ovulation rate have been discovered in the BMPR-1B, BMP15 and GDF9 genes, and others are known to exist from the expressed inheritance patterns although the mutations have not yet been located. In the case of BMP15, four different mutations have been discovered but each produces the same phenotype. The modes of inheritance of the different prolificacy genes include autosomal dominant genes with additive effects on ovulation rate (BMPR-1B; Lacaune), autosomal over-dominant genes with infertility in homozygous females (GDF9), X-linked over-dominant genes with infertility in homozygous females (BMP15), and X-linked maternally imprinted genes (FecX2). The size of the effect of one copy of a mutation on ovulation rate ranges from an extra 0.4 ovulations per oestrus for the FecX2 mutation to an extra 1.5 ovulations per oestrus for the BMPR-1B mutation. A commercial DNA testing service enables some of these mutations to be used in genetic improvement programmes based on marker assisted selection.

  16. Different mating-type-regulated genes affect the DNA repair defects of Saccharomyces RAD51, RAD52 and RAD55 mutants.

    PubMed

    Valencia-Burton, Maria; Oki, Masaya; Johnson, Jean; Seier, Tracey A; Kamakaka, Rohinton; Haber, James E

    2006-09-01

    Saccharomyces cerevisiae cells expressing both a- and alpha-mating-type (MAT) genes (termed mating-type heterozygosity) exhibit higher rates of spontaneous recombination and greater radiation resistance than cells expressing only MATa or MATalpha. MAT heterozygosity suppresses recombination defects of four mutations involved in homologous recombination: complete deletions of RAD55 or RAD57, an ATPase-defective Rad51 mutation (rad51-K191R), and a C-terminal truncation of Rad52, rad52-Delta327. We investigated the genetic basis of MAT-dependent suppression of these mutants by deleting genes whose expression is controlled by the Mata1-Matalpha2 repressor and scoring resistance to both campothecin (CPT) and phleomycin. Haploid rad55Delta strains became more damage resistant after deleting genes required for nonhomologous end-joining (NHEJ), a process that is repressed in MATa/MATalpha cells. Surprisingly, NHEJ mutations do not suppress CPT sensitivity of rad51-K191R or rad52-Delta327. However, rad51-K191R is uniquely suppressed by deleting the RME1 gene encoding a repressor of meiosis or its coregulator SIN4; this effect is independent of the meiosis-specific homolog, Dmc1. Sensitivity of rad52-Delta327 to CPT was unexpectedly increased by the MATa/MATalpha-repressed gene YGL193C, emphasizing the complex ways in which MAT regulates homologous recombination. The rad52-Delta327 mutation is suppressed by deleting the prolyl isomerase Fpr3, which is not MAT regulated. rad55Delta is also suppressed by deletion of PST2 and/or YBR052C (RFS1, rad55 suppressor), two members of a three-gene family of flavodoxin-fold proteins that associate in a nonrandom fashion with chromatin. All three recombination-defective mutations are made more sensitive by deletions of Rad6 and of the histone deacetylases Rpd3 and Ume6, although these mutations are not themselves CPT or phleomycin sensitive.

  17. AQUATIC PLANT SPECIATION AFFECTED BY DIVERSIFYING SELECTION OF ORGANELLE DNA REGIONS(1).

    PubMed

    Kato, Syou; Misawa, Kazuharu; Takahashi, Fumio; Sakayama, Hidetoshi; Sano, Satomi; Kosuge, Keiko; Kasai, Fumie; Watanabe, Makoto M; Tanaka, Jiro; Nozaki, Hisayoshi

    2011-10-01

    Many of the genes that control photosynthesis are carried in the chloroplast. These genes differ among species. However, evidence has yet to be reported revealing the involvement of organelle genes in the initial stages of plant speciation. To elucidate the molecular basis of aquatic plant speciation, we focused on the unique plant species Chara braunii C. C. Gmel. that inhabits both shallow and deep freshwater habitats and exhibits habitat-based dimorphism of chloroplast DNA (cpDNA). Here, we examined the "shallow" and "deep" subpopulations of C. braunii using two nuclear DNA (nDNA) markers and cpDNA. Genetic differentiation between the two subpopulations was measured in both nDNA and cpDNA regions, although phylogenetic analyses suggested nuclear gene flow between subpopulations. Neutrality tests based on Tajima's D demonstrated diversifying selection acting on organelle DNA regions. Furthermore, both "shallow" and "deep" haplotypes of cpDNA detected in cultures originating from bottom soils of three deep environments suggested that migration of oospores (dormant zygotes) between the two habitats occurs irrespective of the complete habitat-based dimorphism of cpDNA from field-collected vegetative thalli. Therefore, the two subpopulations are highly selected by their different aquatic habitats and show prezygotic isolation, which represents an initial process of speciation affected by ecologically based divergent selection of organelle genes.

  18. DNA methylation of retrotransposons, DNA transposons and genes in sugar beet (Beta vulgaris L.).

    PubMed

    Zakrzewski, Falk; Schmidt, Martin; Van Lijsebettens, Mieke; Schmidt, Thomas

    2017-03-03

    The methylation of cytosines shapes the epigenetic landscape of plant genomes, coordinates transgenerational epigenetic inheritance, represses activity of transposable elements (TEs), affects gene expression, and, hence, can influence the phenotype. Sugar beet (Beta vulgaris ssp. vulgaris), an important crop that accounts for 30% of the worldwide sugar needs, has a relatively small genome size (758 Mbp) consisting of approximately 485 Mbp repetitive DNA (64%) in particular, satellite DNA, retrotransposons, and DNA transposons. Genome-wide cytosine methylation in the sugar beet genome was studied in leaves and leaf-derived callus with a focus on repetitive sequences, including retrotransposons and DNA transposons, the major groups of repetitive DNA sequences and compared with gene methylation. Genes showed a specific methylation pattern for CG, CHG (H=A, C, and T), and CHH sites, whereas the TE pattern differed, depending on the classes 1 (retrotransposons) and 2 (DNA transposons), respectively. Along genes and TEs, the CG and CHG methylation was higher than that of adjacent genomic regions. In contrast to the relatively low CHH methylation in retrotransposons and genes, the level of CHH methylation in DNA transposons was strongly increased, pointing toward a functional role of asymmetric methylation in DNA transposon silencing. Comparison of genome-wide DNA methylation between sugar beet leaves and callus revealed a differential methylation upon tissue culture. Potential epialleles were hypomethylated (lower methylation) at CG and CHG sites in retrotransposons and genes and hypermethylated (higher methylation) at CHH sites in DNA transposons of callus when compared to leaves. This article is protected by copyright. All rights reserved.

  19. Human DNA repair and recombination genes

    SciTech Connect

    Thompson, L.H.; Weber, C.A.; Jones, N.J.

    1988-09-01

    Several genes involved in mammalian DNA repair pathways were identified by complementation analysis and chromosomal mapping based on hybrid cells. Eight complementation groups of rodent mutants defective in the repair of uv radiation damage are now identified. At least seven of these genes are probably essential for repair and at least six of them control the incision step. The many genes required for repair of DNA cross-linking damage show overlap with those involved in the repair of uv damage, but some of these genes appear to be unique for cross-link repair. Two genes residing on human chromosome 19 were cloned from genomic transformants using a cosmid vector, and near full-length cDNA clones of each gene were isolated and sequenced. Gene ERCC2 efficiently corrects the defect in CHO UV5, a nucleotide excision repair mutant. Gene XRCC1 normalizes repair of strand breaks and the excessive sister chromatid exchange in CHO mutant EM9. ERCC2 shows a remarkable /approximately/52% overall homology at both the amino acid and nucleotide levels with the yeast RAD3 gene. Evidence based on mutation induction frequencies suggests that ERCC2, like RAD3, might also be an essential gene for viability. 100 refs., 4 tabs.

  20. Identification of the dnaA and dnaN gene products of Escherichia coli.

    PubMed

    Yuasa, S; Sakakibara, Y

    1980-01-01

    A specialized transducing lambda phage carrying the dnaN genes of Escherichia coli specifies two proteins of about 41 and 48 kilodaltons (kd). The temperature-sensitive mutations, dnaN59 and dnaA167, were found to result in altered isoelectric points of the 41 and 48 kd proteins, respectively. Thus the dnaN gene product was identified as a weakly acidic 41 and 48 kd protein. The synthesis of the dnaN gene product is greatly reduced by insertion of a transposon Tn3 in the dnaA gene and by deletion in the gene at the distal end to the dnaN gene. Temperature-sensitive dnaA mutations, on the dnaN gene product. These results indicate that the synthesis of the dnaN gene product is dependent on the structural integrity of the dnaA gene.

  1. DNA repair genes in the Megavirales pangenome.

    PubMed

    Blanc-Mathieu, Romain; Ogata, Hiroyuki

    2016-06-01

    The order 'Megavirales' represents a group of eukaryotic viruses with a large genome encoding a few hundred up to two thousand five hundred genes. Several members of Megavirales possess genes involved in major DNA repair pathways. Some of these genes were likely inherited from an ancient virus world and some others were derived from the genomes of their hosts. Here we examine molecular phylogenies of key DNA repair enzymes in light of recent hypotheses on the origin of Megavirales, and propose that the last common ancestors of the individual families of the order Megavirales already possessed DNA repair functions to achieve and maintain a moderately large genome and that this repair capacity gradually increased, in a family-dependent manner, during their recent evolution.

  2. A Promoter Region Mutation Affecting Replication of the Tetrahymena Ribosomal DNA Minichromosome

    PubMed Central

    Gallagher, Renata C.; Blackburn, Elizabeth H.

    1998-01-01

    In the ciliated protozoan Tetrahymena thermophila the ribosomal DNA (rDNA) minichromosome replicates partially under cell cycle control and is also subject to a copy number control mechanism. The relationship between rDNA replication and rRNA gene transcription was investigated by the analysis of replication, transcription, and DNA-protein interactions in a mutant rDNA, the rmm3 rDNA. The rmm3 (for rDNA maturation or maintenance mutant 3) rDNA contains a single-base deletion in the rRNA promoter region, in a phylogenetically conserved sequence element that is repeated in the replication origin region of the rDNA minichromosome. The multicopy rmm3 rDNA minichromosome has a maintenance defect in the presence of a competing rDNA allele in heterozygous cells. No difference in the level of rRNA transcription was found between wild-type and rmm3 strains. However, rmm3 rDNA replicating intermediates exhibited an enhanced pause in the region of the replication origin, roughly 750 bp upstream from the rmm3 mutation. In footprinting of isolated nuclei, the rmm3 rDNA lacked the wild-type dimethyl sulfate (DMS) footprint in the promoter region adjacent to the base change. In addition, a DMS footprint in the origin region was lost in the rmm3 rDNA minichromosome. This is the first reported correlation in this system between an rDNA minichromosome maintenance defect and an altered footprint in the origin region. Our results suggest that a promoter region mutation can affect replication without detectably affecting transcription. We propose a model in which interactions between promoter and origin region complexes facilitate replication and maintenance of the Tetrahymena rDNA minichromosome. PMID:9566921

  3. Ipr gene control of the anti-DNA antibody response.

    PubMed

    Pisetsky, D S; Caster, S A; Roths, J B; Murphy, E D

    1982-05-01

    The influence of the Ipr gene on the anti-DNA antibody response was investigated in MRL and B6 Ipr/Ipr inbred mice, MRL +/+ mice less than a yr of age produced low levels of anti-DNA antibody, whereas older animals of this strain demonstrated levels in some instances comparable to those of the more severely affected MRL Ipr/Ipr mice. This result indicates a tendency to autoreactivity in MRL mice independent of the Ipr gene. To determine whether other mice bearing the Ipr gene would also express autoantibodies, the anti-DNA antibody responses of B6 Ipr/Ipr mice were studied. This strain was development by matings to transfer the Ipr gene into another inbred background and allow evaluation of the action independent of other disturbances of the MRL mice. Mice of this strain produced antibodies to DNA, with female animals displaying significantly higher levels than males. This result demonstrates that the Ipr gene can stimulate autoantibody production in mice other than the MRL strain and does not require abnormalities unique to this background to potentiate autoreactivity.

  4. DNA Methylation of BDNF Gene in Schizophrenia.

    PubMed

    Çöpoğlu, Ümit Sertan; Igci, Mehri; Bozgeyik, Esra; Kokaçya, M Hanifi; İğci, Yusuf Ziya; Dokuyucu, Recep; Ari, Mustafa; Savaş, Haluk A

    2016-02-06

    BACKGROUND Although genetic factors are risk factors for schizophrenia, some environmental factors are thought to be required for the manifestation of disease. Epigenetic mechanisms regulate gene functions without causing a change in the nucleotide sequence of DNA. Brain-derived neurotrophic factor (BDNF) is a neurotrophin that regulates synaptic transmission and plasticity. It has been suggested that BDNF may play a role in the pathophysiology of schizophrenia. It is established that methylation status of the BDNF gene is associated with fear learning, memory, and stressful social interactions. In this study, we aimed to investigate the DNA methylation status of BDNF gene in patients with schizophrenia. MATERIAL AND METHODS The study included 49 patients (33 male and 16 female) with schizophrenia and 65 unrelated healthy controls (46 male and 19 female). Determination of methylation pattern of CpG islands was based on the principle that bisulfite treatment of DNA results in conversion of unmethylated cytosine residues into uracil, whereas methylated cytosine residues remain unmodified. Methylation-specific PCR was performed with primers specific for either methylated or unmethylated DNA. RESULTS There was no significant difference in methylated or un-methylated status for BDNF promoters between schizophrenia patients and controls. The mean duration of illness was significantly lower in the hemi-methylated group compared to the non-methylated group for BDNF gene CpG island-1 in schizophrenia patients. CONCLUSIONS Although there were no differences in BDNF gene methylation status between schizophrenia patients and healthy controls, there was an association between duration of illness and DNA methylation.

  5. DNA Methylation of BDNF Gene in Schizophrenia

    PubMed Central

    Çöpoğlu, Ümit Sertan; İğci, Mehri; Bozgeyik, Esra; Kokaçya, M. Hanifi; İğci, Yusuf Ziya; Dokuyucu, Recep; Arı, Mustafa; Savaş, Haluk A.

    2016-01-01

    Background Although genetic factors are risk factors for schizophrenia, some environmental factors are thought to be required for the manifestation of disease. Epigenetic mechanisms regulate gene functions without causing a change in the nucleotide sequence of DNA. Brain-derived neurotrophic factor (BDNF) is a neurotrophin that regulates synaptic transmission and plasticity. It has been suggested that BDNF may play a role in the pathophysiology of schizophrenia. It is established that methylation status of the BDNF gene is associated with fear learning, memory, and stressful social interactions. In this study, we aimed to investigate the DNA methylation status of BDNF gene in patients with schizophrenia. Material/Methods The study included 49 patients (33 male and 16 female) with schizophrenia and 65 unrelated healthy controls (46 male and 19 female). Determination of methylation pattern of CpG islands was based on the principle that bisulfite treatment of DNA results in conversion of unmethylated cytosine residues into uracil, whereas methylated cytosine residues remain unmodified. Methylation-specific PCR was performed with primers specific for either methylated or unmethylated DNA. Results There was no significant difference in methylated or un-methylated status for BDNF promoters between schizophrenia patients and controls. The mean duration of illness was significantly lower in the hemi-methylated group compared to the non-methylated group for BDNF gene CpG island-1 in schizophrenia patients. Conclusions Although there were no differences in BDNF gene methylation status between schizophrenia patients and healthy controls, there was an association between duration of illness and DNA methylation. PMID:26851233

  6. SERS gene probe for DNA diagnostics

    NASA Astrophysics Data System (ADS)

    Stokes, David L.; Allain, Leonardo R.; Isola, Narayana R.; Vo-Dinh, Tuan

    2003-07-01

    We describe the development of a surface-enhanced Raman scattering gene (SERGen) probe technology for rapid screening for diseases and pathogens through DNA hybridization assays. The technology combines the use of gene probes labeled with SERS-active markers, and nanostructured metallic platforms for inducing the SERS effect. As a result, SERGen-based methods can offer the spectral selectivity and sensitivity of SERS as well as the molecular specificity of DNA sequence hybridization. Furthermore, these new probe s preclude the use of radioactive labels. As illustrated herein, SERGen probes have been used as primers in polymerase chain reaction (PCR) amplifications of specific DNA sequences, hence further boosting the sensitivity of the technology. We also describe several approaches to developing SERS-active DNA assay platforms, addressing the challenges of making the SERGen technology accessible and practical for clinical settings. The usefulness of the SERGen approach has been demonstrated in the detection of HIV, BRCA1 breast cancer, and BAX genes. There is great potential for the use of numerous SERGen probes for multiplexed detection of multiple biological targets.

  7. Brief Guide to Genomics: DNA, Genes and Genomes

    MedlinePlus

    ... guía de genómica A Brief Guide to Genomics DNA, Genes and Genomes Deoxyribonucleic acid (DNA) is the ... and lead to a disease such as cancer. DNA Sequencing Sequencing simply means determining the exact order ...

  8. Cloning of Bacteroides fragilis plasmid genes affecting metronidazole resistance and ultraviolet survival in Escherichia coli

    SciTech Connect

    Wehnert, G.U.; Abratt, V.R.; Goodman, H.J.; Woods, D.R. )

    1990-03-01

    Since reduced metronidazole causes DNA damage, resistance to metronidazole was used as a selection method for the cloning of Bacteroides fragilis genes affecting DNA repair mechanisms in Escherichia coli. Genes from B. fragilis Bf-2 were cloned on a recombinant plasmid pMT100 which made E. coli AB1157 and uvrA, B, and C mutant strains more resistant to metronidazole, but more sensitive to far uv irradiation under aerobic conditions. The loci affecting metronidazole resistance and uv sensitivity were linked and located on a 5-kb DNA fragment which originated from the small 6-kb cryptic plasmid pBFC1 present in B. fragilis Bf-2 cells.

  9. Organization and transcription of the dnaA and dnaN genes of Escherichia coli.

    PubMed

    Sakakibara, Y; Tsukano, H; Sako, T

    1981-01-01

    The locations of the linked dnaA and dnaN genes of Escherichia coli in a specialized transducing lambda phage genome have been determined by electron microscopic heteroduplex analysis, using phages with deletions or insertions in the dnaA or dnaN gene. The transcription initiation sites for the dna genes were also localized by electron microscopic analysis of DNA-RBA heteroduplex molecules formed between the E. coli DNA fragment of the phage genome and the in vitro transcription products of the fragment. The dnaN gene was found to be transcribed in the same direction as the dnaA gene, and predominantly from the promoter of the dnaA gene.

  10. A Limited Number of Globin Genes in Human DNA

    PubMed Central

    Gambino, Roberto; Kacian, Daniel; O'Donnell, Joyce; Ramirez, Francesco; Marks, Paul A.; Bank, Arthur

    1974-01-01

    The number of globin genes in human cells was determined by hybridizing DNA from human spleens to 3H-labeled DNA complementary to human globin mRNA. Assuming the rates of reannealing of complementary DNA and cellular DNA are similar, the extent of hybridization of complementary DNA at various ratios of cellular DNA to complementary DNA indicate that there are fewer than 10 globin gene copies per haploid human genome. An alternative analysis of the data, which introduces no assumptions concerning the relative rates of reaction of complementary DNA and cellular DNA, indicates fewer than 20 globin gene copies are present. DNA isolated from the spleen of a patient with β+ thalassemia contained a number of globin gene copies similar to that of normal DNA. PMID:4530276

  11. TP53 codon 72 polymorphism affects accumulation of mtDNA damage in human cells

    PubMed Central

    Altilia, Serena; Santoro, Aurelia; Malagoli, Davide; Lanzarini, Catia; Álvarez, Josué Adolfo Ballesteros; Galazzo, Gianluca; Porter, Donald Carl; Crocco, Paolina; Rose, Giuseppina; Passarino, Giuseppe; Roninson, Igor Boris; Franceschi, Claudio; Salvioli, Stefano

    2012-01-01

    Human TP53 gene is characterised by a polymorphism at codon 72 leading to an Arginine-to-Proline (R/P) substitution. The two resulting p53 isoforms have a different subcellular localisation after stress (more nuclear or more mitochondrial for the P or R isoform, respectively). p53P72 variant is more efficient than p53R72 in inducing the expression of genes involved in nuclear DNA repair. Since p53 is involved also in mitochondrial DNA (mtDNA) maintenance, we wondered whether these p53 isoforms are associated with different accumulation of mtDNA damage. We observed that cells bearing p53R72 accumulate lower amount of mtDNA damage upon rotenone stress with respect to cells bearing p53P72, and that p53R72 co-localises with polymerase gamma more than p53P72. We also analysed the in vivo accumulation of heteroplasmy in a 300 bp fragment of mtDNA D-loop of 425 aged subjects. We observed that subjects with heteroplasmy higher than 5% are significantly less than expected in the p53R72/R72 group. On the whole, these data suggest that the polymorphism of TP53 at codon 72 affects the accumulation of mtDNA mutations, likely through the different ability of the two p53 isoforms to bind to polymerase gamma, and may contribute to in vivo accumulation of mtDNA mutations. PMID:22289634

  12. A DNA element in the slo gene modulates ethanol tolerance.

    PubMed

    Krishnan, Harish R; Li, Xiaolei; Ghezzi, Alfredo; Atkinson, Nigel S

    2016-03-01

    In Drosophila, the slo gene encodes BK-type Ca(2+)-activated K(+) channels and is involved in producing rapid functional tolerance to sedation with ethanol. Drosophila are ideal for the study of functional ethanol tolerance because the adult does not acquire metabolic ethanol tolerance (Scholz, Ramond, Singh, & Heberlein, 2000). It has been shown that mutations in slo block the capacity to acquire tolerance, that sedation with ethanol vapor induces slo gene expression in the nervous system, and that transgenic induction of slo can phenocopy tolerance (Cowmeadow, Krishnan, & Atkinson, 2005; Cowmeadow et al., 2006). Here we use ethanol-induced histone acetylation to map a DNA regulatory element in the slo transcriptional control region and functionally test the element for a role in producing ethanol tolerance. Histone acetylation is commonly associated with activating transcription factors. We used the chromatin immunoprecipitation assay to map histone acetylation changes following ethanol sedation to identify an ethanol-responsive DNA element. Ethanol sedation induced an increase in histone acetylation over a 60 n DNA element called 6b, which is situated between the two ethanol-responsive neural promoters of the slo gene. Removal of the 6b element from the endogenous slo gene affected the production of functional ethanol tolerance as assayed in an ethanol-vapor recovery from sedation assay. Removal of element 6b extended the period of functional ethanol tolerance from ∼10 days to more than 21 days after a single ethanol-vapor sedation. This study demonstrates that mapping the position of ethanol-induced histone acetylation is an effective way to identify DNA regulatory elements that help to mediate the response of a gene to ethanol. Using this approach, we identified a DNA element, which is conserved among Drosophila species, and which is important for producing a behaviorally relevant ethanol response.

  13. Characterization of the mammalian DNA polymerase gene(s) and enzyme(s). Annual progress report

    SciTech Connect

    Mishra, N.C.

    1995-01-01

    Two Genes for DNA polymerase delta were identified from the wild type Chinese hamster ovary cells. These genes were cloned via RT-PCR from mRNA prepared the Chinese hamster ovary cells using primers specific to conserved sequences of the DNA polymerase {delta} gene. The first gene encodes a PCNA dependent DNA polymerase {delta} gene whereas the second gene encodes a PCNA independent DNA polymerase {delta} gene. Methods were developed to clone these genes in expression vector and host systems. The role of the two genes in DNA replication and repair was determined.

  14. Therapeutic option of plasmid-DNA based gene transfer.

    PubMed

    Taniyama, Yoshiaki; Azuma, Junya; Kunugiza, Yasuo; Iekushi, Kazuma; Rakugi, Hiromi; Morishita, Ryuichi

    2012-01-01

    Gene therapy offers a novel approach for the prevention and treatment of a variety of diseases, but it is not yet a common method in clinical cases because of various problems. Viral vectors show high efficiency of gene transfer, but they have some problems with toxicity and immunity. On the other hand, plasmid deoxyribonucleic acid (DNA)-based gene transfer is very safe, but its efficiency is relatively low. Especially, plasmid DNA gene therapy is used for cardiovascular disease because plasmid DNA transfer is possible for cardiac or skeletal muscle. Clinical angiogenic gene therapy using plasmid DNA gene transfer has been attempted in patients with peripheral artery disease, but a phase III clinical trial did not show sufficient efficiency. In this situation, more efficient plasmid DNA gene transfer is needed all over the world. This review focuses on plasmid DNA gene transfer and its enhancement, including ultrasound with microbubbles, electroporation, hydrodynamic method, gene gun, jet injection, cationic lipids and cationic polymers.

  15. Structural analysis of the dnaA and dnaN genes of Escherichia coli.

    PubMed

    Ohmori, H; Kimura, M; Nagata, T; Sakakibara, Y

    1984-05-01

    The nucleotide sequence of the entire region containing the Escherichia coli dnaA and dnaN genes was determined. Base substitutions by such mutations as dnaA46, dnaA167, dnaN59, and dnaN806 were also identified. Analyses of coding frames, the mutational base substitutions, and other data indicate that dnaN follows dnaA, both have the same orientation, and are separated by only 4 bp. The deduced amino acid sequence specifies Mrs and isoelectric points consistent with those of the previously identified gene products. The transcriptional initiation site of the dnaA gene was assigned by analysis of in vitro RNA products. Examination of the intercistronic sequence and analysis of in vitro transcription supported the notion that the dnaA and dnaN genes constitute a single operon.

  16. Discoordinate gene expression in the dnaA-dnaN operon of Escherichia coli.

    PubMed

    Quiñones, A; Messer, W

    1988-07-01

    The dnaN gene of Escherichia coli encodes the beta-subunit of the DNA polymerase III holoenzyme. Previous work has established that dnaN lies immediately downstream of dnaA and that both genes may be cotranscribed from the dnaA promoters; no promoter for dnaN has been described. We investigated the in vivo regulation of transcription of the dnaN gene by transcriptional fusions to the galK gene, translational fusion to the lacZ gene and S1 mapping analysis. We found that there are at least three dnaN promoters residing entirely in the reading frame of the preceding dnaA gene, and that transcription from these promoters can occur independently of dnaA transcription which, however, extends at least up to dnaN. Furthermore, we found evidence for the inducibility of the dnaN promoters in a dam background under conditions of simultaneously reduced dnaA transcription. These results are consistent with the hypothesis that although dnaA and dnaN are organized in an operon considerable discoordinate transcription can occur, thus uncoupling dnaN and dnaA regulation, when needed.

  17. Marker gene tethering by nucleoporins affects gene expression in plants.

    PubMed

    Smith, Sarah; Galinha, Carla; Desset, Sophie; Tolmie, Frances; Evans, David; Tatout, Christophe; Graumann, Katja

    2015-01-01

    In non-plant systems, chromatin association with the nuclear periphery affects gene expression, where interactions with nuclear envelope proteins can repress and interactions with nucleoporins can enhance transcription. In plants, both hetero- and euchromatin can localize at the nuclear periphery, but the effect of proximity to the nuclear periphery on gene expression remains largely unknown. This study explores the putative function of Seh1 and Nup50a nucleoporins on gene expression by using the Lac Operator / Lac Repressor (LacI-LacO) system adapted to Arabidopsis thaliana. We used LacO fused to the luciferase reporter gene (LacO:Luc) to investigate whether binding of the LacO:Luc transgene to nucleoporin:LacI protein fusions alters luciferase expression. Two separate nucleoporin-LacI-YFP fusions were introduced into single insert, homozygous LacO:Luc Arabidopsis plants. Homozygous plants carrying LacO:Luc and a single insert of either Seh1-LacI-YFP or Nup50a-LacI-YFP were tested for luciferase activity and compared to plants containing LacO:Luc only. Seh1-LacI-YFP increased, while Nup50a-LacI-YFP decreased luciferase activity. Seh1-LacI-YFP accumulated at the nuclear periphery as expected, while Nup50a-LacI-YFP was nucleoplasmic and was not selected for further study. Protein and RNA levels of luciferase were quantified by western blotting and RT-qPCR, respectively. Increased luciferase activity in LacO:Luc+Seh1-LacI-YFP plants was correlated with increased luciferase protein and RNA levels. This change of luciferase expression was abolished by disruption of LacI-LacO binding by treating with IPTG in young seedlings, rosette leaves and inflorescences. This study suggests that association with the nuclear periphery is involved in the regulation of gene expression in plants.

  18. The first determination of DNA sequence of a specific gene.

    PubMed

    Inouye, Masayori

    2016-05-10

    How and when the first DNA sequence of a gene was determined? In 1977, F. Sanger came up with an innovative technology to sequence DNA by using chain terminators, and determined the entire DNA sequence of the 5375-base genome of bacteriophage φX 174 (Sanger et al., 1977). While this Sanger's achievement has been recognized as the first DNA sequencing of genes, we had determined DNA sequence of a gene, albeit a partial sequence, 11 years before the Sanger's DNA sequence (Okada et al., 1966).

  19. Nanoscale structure of protamine/DNA complexes for gene delivery

    NASA Astrophysics Data System (ADS)

    Motta, Simona; Brocca, Paola; Del Favero, Elena; Rondelli, Valeria; Cantù, Laura; Amici, Augusto; Pozzi, Daniela; Caracciolo, Giulio

    2013-02-01

    Understanding the internal packing of gene carriers is a key-factor to realize both gene protection during transport and de-complexation at the delivery site. Here, we investigate the structure of complexes formed by DNA fragments and protamine, applied in gene delivery. We found that complexes are charge- and size-tunable aggregates, depending on the protamine/DNA ratio, hundred nanometers in size. Their compactness and fractal structure depend on the length of the DNA fragments. Accordingly, on the local scale, the sites of protamine/DNA complexation assume different morphologies, seemingly displaying clumping ability for the DNA network only for shorter DNA fragments.

  20. Methods for isolation of cell-free plasma DNA strongly affect DNA yield.

    PubMed

    Fleischhacker, Michael; Schmidt, Bernd; Weickmann, Sabine; Fersching, Debora M I; Leszinski, Gloria S; Siegele, Barbara; Stötzer, Oliver J; Nagel, Dorothea; Holdenrieder, Stefan

    2011-11-20

    Extracellular nucleic acids are present in plasma, serum, and other body fluids and their analysis has gained increasing attention during recent years. Because of the small quantity and highly fragmented nature of cell-free DNA in plasma and serum, a fast, efficient, and reliable isolation method is still a problem and so far there is no agreement on a standardized method. We used spin columns from commercial suppliers (QIAamp DNA Blood Midi Kit from Qiagen; NucleoSpin Kit from Macherey-Nagel; MagNA Pure isolation system from Roche Diagnostics) to isolate DNA from 44 plasma samples in parallel at laboratories in Berlin and Munich. DNA in all samples was quantified by real-time PCR on a LightCycler 480 using three different targets (GAPDH, ß-globin, ERV). The quantities of cell-free DNA for the different isolation methods and genes varied between medians of 1.6 ng/mL and 28.1 ng/mL. This considerable variation of absolute DNA values was mainly caused by the use of different isolation methods (p<0.0001). Comparable results were achieved by the use of the genes GAPDH and ERV while higher values were obtained by use of ß-globin. The laboratory site had only minor influence on DNA yield when manual extraction methods were used.

  1. Transcriptional organization of the dnaN and recF genes of Escherichia coli K-12.

    PubMed

    Armengod, M E; García-Sogo, M; Lambíes, E

    1988-08-25

    The dnaN gene of Escherichia coli determines the beta subunit of DNA polymerase III, a multisubunit enzyme responsible for most of the replicative DNA synthesis. The dnaN gene maps between the dnaA and recF genes. We have characterized the regulatory region of the dnaN gene by screening DNA restriction fragments for promoter activity, S1 mapping of mRNAs, deletion analysis, and in vivo dnaN complementation tests. There are at least three dnaN promoters located in the second half of the dnaA coding region. The one closest to the dnaN structural gene is the weakest, but it provides sufficient dnaN expression for complementation when the gene is present on a multicopy plasmid. Deletion of sequences needed for initiation of dnaN translation or introduction of nonsense codons into dnaN causes reduction of recF expression. However, a deletion inactivating dnaN without changing the reading frame of the gene does not affect expression of the recF gene. These results indicate that the dnaN and recF genes are organized in an operon. We have previously shown the presence of termination signals within the dnaN coding region (Armengod, M.E., and Lambíes, E. (1986) Gene (Amst.) 43, 183-196). Therefore, we propose that the polarity produced by nonsense mutations in dnaN is primarily transcriptional. The uncoupling of transcription and translation of the dnaN gene (when translation is interrupted by premature nonsense codons or by other mechanisms) probably results in transcription termination at termination signals in dnaN.

  2. DNA Topoisomerase Iα Affects the Floral Transition1[OPEN

    PubMed Central

    Gong, Ximing; Shen, Lisha; Peng, Ya Zhi; Gan, Yinbo

    2017-01-01

    DNA topoisomerases modulate DNA topology to maintain chromosome superstructure and genome integrity, which is indispensable for DNA replication and RNA transcription. Their function in plant development still remains largely unknown. Here, we report a hitherto unidentified role of Topoisomerase Iα (TOP1α) in controlling flowering time in Arabidopsis (Arabidopsis thaliana). Loss of function of TOP1α results in early flowering under both long and short days. This is attributed mainly to a decrease in the expression of a central flowering repressor, FLOWERING LOCUS C (FLC), and its close homologs, MADS AFFECTING FLOWERING4 (MAF4) and MAF5, during the floral transition. TOP1α physically binds to the genomic regions of FLC, MAF4, and MAF5 and promotes the association of RNA polymerase II complexes to their transcriptional start sites. These correlate with the changes in histone modifications but do not directly affect nucleosome occupancy at these loci. Our results suggest that TOP1α mediates DNA topology to facilitate the recruitment of RNA polymerase II at FLC, MAF4, and MAF5 in conjunction with histone modifications, thus facilitating the expression of these key flowering repressors to prevent precocious flowering in Arabidopsis. PMID:27837087

  3. Identification of Bicarbonate as a Trigger and Genes Involved with Extracellular DNA Export in Mycobacterial Biofilms.

    PubMed

    Rose, Sasha J; Bermudez, Luiz E

    2016-12-06

    Extracellular DNA (eDNA) is an integral biofilm matrix component of numerous pathogens, including nontuberculous mycobacteria (NTM). Cell lysis is the source of eDNA in certain bacteria, but the source of eDNA remains unidentified for NTM, as well as for other eDNA-containing bacterial species. In this study, conditions affecting eDNA export were examined, and genes involved with the eDNA export mechanism were identified. After a method for monitoring eDNA in real time in undisturbed biofilms was established, different conditions affecting eDNA were investigated. Bicarbonate positively influenced eDNA export in a pH-independent manner in Mycobacterium avium, M. abscessus, and M. chelonae The surface-exposed proteome of M. avium in eDNA-containing biofilms revealed abundant carbonic anhydrases. Chemical inhibition of carbonic anhydrases with ethoxzolamide significantly reduced eDNA export. An unbiased transposon mutant library screen for eDNA export in M. avium identified many severely eDNA-attenuated mutants, including one not expressing a unique FtsK/SpoIIIE-like DNA-transporting pore, two with inactivation of carbonic anhydrases, and nine with inactivation of genes belonging to a unique genomic region, as well as numerous mutants involved in metabolism and energy production. Complementation of nine mutants that included the FtsK/SpoIIIE and carbonic anhydrase significantly restored eDNA export. Interestingly, several attenuated eDNA mutants have mutations in genes encoding proteins that were found with the surface proteomics, and many more mutations are localized in operons potentially encoding surface proteins. Collectively, our data strengthen the evidence of eDNA export being an active mechanism that is activated by the bacterium responding to bicarbonate.

  4. Identification of Bicarbonate as a Trigger and Genes Involved with Extracellular DNA Export in Mycobacterial Biofilms

    PubMed Central

    Rose, Sasha J.

    2016-01-01

    ABSTRACT Extracellular DNA (eDNA) is an integral biofilm matrix component of numerous pathogens, including nontuberculous mycobacteria (NTM). Cell lysis is the source of eDNA in certain bacteria, but the source of eDNA remains unidentified for NTM, as well as for other eDNA-containing bacterial species. In this study, conditions affecting eDNA export were examined, and genes involved with the eDNA export mechanism were identified. After a method for monitoring eDNA in real time in undisturbed biofilms was established, different conditions affecting eDNA were investigated. Bicarbonate positively influenced eDNA export in a pH-independent manner in Mycobacterium avium, M. abscessus, and M. chelonae. The surface-exposed proteome of M. avium in eDNA-containing biofilms revealed abundant carbonic anhydrases. Chemical inhibition of carbonic anhydrases with ethoxzolamide significantly reduced eDNA export. An unbiased transposon mutant library screen for eDNA export in M. avium identified many severely eDNA-attenuated mutants, including one not expressing a unique FtsK/SpoIIIE-like DNA-transporting pore, two with inactivation of carbonic anhydrases, and nine with inactivation of genes belonging to a unique genomic region, as well as numerous mutants involved in metabolism and energy production. Complementation of nine mutants that included the FtsK/SpoIIIE and carbonic anhydrase significantly restored eDNA export. Interestingly, several attenuated eDNA mutants have mutations in genes encoding proteins that were found with the surface proteomics, and many more mutations are localized in operons potentially encoding surface proteins. Collectively, our data strengthen the evidence of eDNA export being an active mechanism that is activated by the bacterium responding to bicarbonate. PMID:27923918

  5. Altered gene expression correlates with DNA structure.

    PubMed

    Kohwi, Y; Kohwi-Shigematsu, T

    1991-12-01

    We examined the participation of triplex DNA structure in gene regulation using a poly(dG)-poly(dC) sequence as a model. We show that a poly(dG)-poly(dC) sequence, which can adopt an intramolecular dG.dG.dC triplex under superhelical strain, strongly augments gene expression when placed 5' to a promoter. The activity of this sequence exhibits a striking length dependency: dG tracts of 27-30 bp augment the expression of a reporter gene to a level comparable to that observed with the polyoma enhancer in mouse LTK- cells, whereas tracts of 35 bp and longer have virtually no effect. A supercoiled plasmid containing a dG tract of 30 bp competes in vivo for a trans-acting factor as revealed by reduction in the reporter gene transcription driven by the (dG)29/promoter of the test plasmid, while dGs of 35 bp and longer in the competition plasmid failed to compete. In purified supercoiled plasmid DNA at a superhelical density of -0.05, dG tracts of 32 bp and longer form a triplex, whereas those of 30 bp and shorter remain double-stranded under a PBS solution. These results suggest that a localized superhelical strain can exist, at least transiently, in mouse LTK- cells, and before being relaxed by topoisomerases this rapidly induces dG tracts of 35 bp and longer to adopt a triplex preventing the factor from binding. Thus, these data suggest that a poly(dG)-poly(dC) sequence can function as a negative regulator by adopting an intramolecular triple helix structure in vivo.

  6. New differentially expressed genes and differential DNA methylation underlying refractory epilepsy

    PubMed Central

    Xu, Tao; Liu, Shiyong; Yuan, Jinxian; Huang, Hao; Qin, Lu; Yang, Hui; Chen, Lifen; Tan, Xinjie; Chen, Yangmei

    2016-01-01

    Epigenetics underlying refractory epilepsy is poorly understood, especially in patients without distinctive genetic alterations. DNA methylation may affect gene expression in epilepsy without affecting DNA sequences. Herein, we analyzed genome-wide DNA methylation and gene expression in brain tissues of 10 patients with refractory epilepsy using methylated DNA immunoprecipitation linked with sequencing and mRNA Sequencing. Diverse distribution of differentially methylated genes was found in X chromosome, while differentially methylated genes appeared rarely in Y chromosome. 62 differentially expressed genes, such as MMP19, AZGP1, DES, and LGR6 were correlated with refractory epilepsy for the first time. Although general trends of differentially enriched gene ontology terms and Kyoto Encyclopedia of Genes and Genome pathways in this study are consistent with previous researches, differences also exist in many specific gene ontology terms and Kyoto Encyclopedia of Genes and Genome pathways. These findings provide a new genome-wide profiling of DNA methylation and gene expression in brain tissues of patients with refractory epilepsy, which may provide a basis for further study on the etiology and mechanisms of refractory epilepsy. PMID:27903967

  7. Replication protein A binds to regulatory elements in yeast DNA repair and DNA metabolism genes.

    PubMed Central

    Singh, K K; Samson, L

    1995-01-01

    Saccharomyces cerevisiae responds to DNA damage by arresting cell cycle progression (thereby preventing the replication and segregation of damaged chromosomes) and by inducing the expression of numerous genes, some of which are involved in DNA repair, DNA replication, and DNA metabolism. Induction of the S. cerevisiae 3-methyladenine DNA glycosylase repair gene (MAG) by DNA-damaging agents requires one upstream activating sequence (UAS) and two upstream repressing sequences (URS1 and URS2) in the MAG promoter. Sequences similar to the MAG URS elements are present in at least 11 other S. cerevisiae DNA repair and metabolism genes. Replication protein A (Rpa) is known as a single-stranded-DNA-binding protein that is involved in the initiation and elongation steps of DNA replication, nucleotide excision repair, and homologous recombination. We now show that the MAG URS1 and URS2 elements form similar double-stranded, sequence-specific, DNA-protein complexes and that both complexes contain Rpa. Moreover, Rpa appears to bind the MAG URS1-like elements found upstream of 11 other DNA repair and DNA metabolism genes. These results lead us to hypothesize that Rpa may be involved in the regulation of a number of DNA repair and DNA metabolism genes. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7761422

  8. [Bioinformatics analysis of DNA demethylase genes in Lonicera japonica Thunb].

    PubMed

    Qi, Lin-jie; Yuan, Yuan; Wu, Chong; Huang, Lu-qi; Chen, Ping

    2015-03-01

    The DNA demethylase genes are widespread in plants. Four DNA demethylase genes (LJDME1, LJDME2, LJDME3 and LJDME4) were obtained from transcriptome dataset of Lonicera japonica Thunb by using bioinformatics methods and the proteins' physicochemical properties they encoded were predicted. The phylogenetic tree showed that the four DNA demethylase genes and Arabidopsis thaliana DME had a close relationship. The result of gene expression model showed that four DNA demethylase genes were different between species. The expression levels of LJDME1 and LJDME2 were even more higher in Lonicera japonica var. chinensis than those in L. japonica. LJDME] and LJDME2 maybe regulate the active compounds of L. japonica. This study aims to lay a foundation for further understanding of the function of DNA demethylase genes in L. japonica.

  9. Induction of DNA damage by deguelin is mediated through reducing DNA repair genes in human non-small cell lung cancer NCI-H460 cells.

    PubMed

    Ji, Bin-Chuan; Yu, Chien-Chih; Yang, Su-Tso; Hsia, Te-Chun; Yang, Jai-Sing; Lai, Kuang-Chi; Ko, Yang-Ching; Lin, Jen-Jyh; Lai, Tung-Yuan; Chung, Jing-Gung

    2012-04-01

    It has been shown that deguelin, one of the compounds of rotenoids from flavonoid family, induced cytotoxic effects through induction of cell cycle arrest and apoptosis in many types of human cancer cell lines, but deguelin-affected DNA damage and repair gene expression (mRNA) are not clarified yet. We investigated the effects of deguelin on DNA damage and associated gene expression in human lung cancer NCI-H460 cells in vitro. DNA damage was assayed by using the comet assay and DNA gel electrophoresis and the results indicated that NCI-H460 cells treated with 0, 50, 250 and 500 nM deguelin led to a longer DNA migration smear based on the single cell electrophoresis and DNA fragmentation occurred based on the examination of DNA gel electrophoresis. DNA damage and repair gene expression (mRNA) were evaluated by using real-time PCR assay and the results indicated that 50 and 250 nM deguelin for a 24-h exposure in NCI-H460 cells, decreased the gene levels of breast cancer 1, early onset (BRCA1), DNA-dependent serine/threonine protein kinase (DNA-PK), O6-methylguanine-DNA methyltransferase (MGMT), p53, ataxia telangiectasia mutated (ATM) and ataxia-telangiectasia and Rad3-related (ATR) mRNA expressions. Collectively, the present study showed that deguelin caused DNA damage and inhibited DNA damage and repair gene expressions, which might be due to deguelin-inhibited cell growth in vitro.

  10. Induction of dnaN and dnaQ gene expression in Escherichia coli by alkylation damage to DNA.

    PubMed Central

    Quiñones, A; Kaasch, J; Kaasch, M; Messer, W

    1989-01-01

    The dnaN and dnaQ genes encode the beta-subunit and the epsilon-subunit of the DNA polymerase III holoenzyme. By transcriptional fusions to the galK gene, translational fusions to lacZ and comparative S1 mapping analysis, we investigated the in-vivo regulation of dnaN and dnaQ. We found that DNA damage caused by the alkylating agent methyl methanesulphonate (MMS) leads to a significant induction in dnaN and dnaQ gene expression suggesting a requirement of increased amounts of at least some DNA polymerase III holoenzyme subunits for recovery from DNA damage caused by MMS. These results are first evidences that subunits of the DNA polymerase III holoenzyme are DNA damage inducible. This MMS induction of dnaN and dnaQ gene expression is unrelated to the adaptive response. It was not observed in lexA and recA mutants which abolish the induction of the SOS response. Images PMID:2656258

  11. Induction of dnaN and dnaQ gene expression in Escherichia coli by alkylation damage to DNA.

    PubMed

    Quiñones, A; Kaasch, J; Kaasch, M; Messer, W

    1989-02-01

    The dnaN and dnaQ genes encode the beta-subunit and the epsilon-subunit of the DNA polymerase III holoenzyme. By transcriptional fusions to the galK gene, translational fusions to lacZ and comparative S1 mapping analysis, we investigated the in-vivo regulation of dnaN and dnaQ. We found that DNA damage caused by the alkylating agent methyl methanesulphonate (MMS) leads to a significant induction in dnaN and dnaQ gene expression suggesting a requirement of increased amounts of at least some DNA polymerase III holoenzyme subunits for recovery from DNA damage caused by MMS. These results are first evidences that subunits of the DNA polymerase III holoenzyme are DNA damage inducible. This MMS induction of dnaN and dnaQ gene expression is unrelated to the adaptive response. It was not observed in lexA and recA mutants which abolish the induction of the SOS response.

  12. Intranuclear DNA density affects chromosome condensation in metazoans.

    PubMed

    Hara, Yuki; Iwabuchi, Mari; Ohsumi, Keita; Kimura, Akatsuki

    2013-08-01

    Chromosome condensation is critical for accurate inheritance of genetic information. The degree of condensation, which is reflected in the size of the condensed chromosomes during mitosis, is not constant. It is differentially regulated in embryonic and somatic cells. In addition to the developmentally programmed regulation of chromosome condensation, there may be adaptive regulation based on spatial parameters such as genomic length or cell size. We propose that chromosome condensation is affected by a spatial parameter called the chromosome amount per nuclear space, or "intranuclear DNA density." Using Caenorhabditis elegans embryos, we show that condensed chromosome sizes vary during early embryogenesis. Of importance, changing DNA content to haploid or polyploid changes the condensed chromosome size, even at the same developmental stage. Condensed chromosome size correlates with interphase nuclear size. Finally, a reduction in nuclear size in a cell-free system from Xenopus laevis eggs resulted in reduced condensed chromosome sizes. These data support the hypothesis that intranuclear DNA density regulates chromosome condensation. This suggests an adaptive mode of chromosome condensation regulation in metazoans.

  13. Isolating human DNA repair genes using rodent-cell mutants

    SciTech Connect

    Thompson, L.H.; Weber, C.A.; Brookman, K.W.; Salazar, E.P.; Stewart, S.A.; Mitchell, D.L.

    1987-03-23

    The DNA repair systems of rodent and human cells appear to be at least as complex genetically as those in lower eukaryotes and bacteria. The use of mutant lines of rodent cells as a means of identifying human repair genes by functional complementation offers a new approach toward studying the role of repair in mutagenesis and carcinogenesis. In each of six cases examined using hybrid cells, specific human chromosomes have been identified that correct CHO cell mutations affecting repair of damage from uv or ionizing radiations. This finding suggests that both the repair genes and proteins may be virtually interchangeable between rodent and human cells. Using cosmid vectors, human repair genes that map to chromosome 19 have cloned as functional sequences: ERCC2 and XRCC1. ERCC1 was found to have homology with the yeast excision repair gene RAD10. Transformants of repair-deficient cell lines carrying the corresponding human gene show efficient correction of repair capacity by all criteria examined. 39 refs., 1 fig., 1 tab.

  14. Plasmid DNA-based gene transfer with ultrasound and microbubbles.

    PubMed

    Taniyama, Yoshiaki; Azuma, Junya; Rakugi, Hiromi; Morishita, Ryuichi

    2011-12-01

    Gene therapy offers a novel approach for the prevention and treatment of a variety of diseases, but it is not yet a common option in the real world because of various problems. Viral vectors show high efficiency of gene transfer, but they have some problems with toxicity and immunity. On the other hand, plasmid DNA-based gene transfer is very safe, but its efficiency is relatively low. Especially, plasmid DNA gene therapy is used for cardiovascular disease because plasmid DNA transfer is possible for cardiac or skeletal muscle. Clinical angiogenic gene therapy using plasmid DNA gene transfer has been attempted in patients with peripheral artery disease, but a Phase III clinical trial did not show sufficient efficiency. Recently, a Phase III clinical trial of hepatocyte growth factor gene therapy in peripheral artery disease (PAD) showed improvement of ischemic ulcers, but it could not salvage limbs from amputation. In addition, a Phase I/II clinical study of fibroblast growth factor gene therapy in PAD extended amputation-free survival, but it seemed to fail in Phase III. In this situation, we and others have developed plasmid DNA-based gene transfer using ultrasound with microbubbles to enhance its efficiency while maintaining safety. Ultrasound-mediated gene transfer has been reported to augment the gene transfer efficiency and select the target organ using cationic microbubble phospholipids which bind negatively charged DNA. Ultrasound with microbubblesis likely to create new therapeutic options inavariety of diseases.

  15. Listeria monocytogenes DNA Glycosylase AdlP Affects Flagellar Motility, Biofilm Formation, Virulence, and Stress Responses

    PubMed Central

    Zhang, Ting; Bae, Dongryeoul

    2016-01-01

    ABSTRACT The temperature-dependent alteration of flagellar motility gene expression is critical for the foodborne pathogen Listeria monocytogenes to respond to a changing environment. In this study, a genetic determinant, L. monocytogenes f2365_0220 (lmof2365_0220), encoding a putative protein that is structurally similar to the Bacillus cereus alkyl base DNA glycosylase (AlkD), was identified. This determinant was involved in the transcriptional repression of flagellar motility genes and was named adlP (encoding an AlkD-like protein [AdlP]). Deletion of adlP activated the expression of flagellar motility genes at 37°C and disrupted the temperature-dependent inhibition of L. monocytogenes motility. The adlP null strains demonstrated decreased survival in murine macrophage-like RAW264.7 cells and less virulence in mice. Furthermore, the deletion of adlP significantly decreased biofilm formation and impaired the survival of bacteria under several stress conditions, including the presence of a DNA alkylation compound (methyl methanesulfonate), an oxidative agent (H2O2), and aminoglycoside antibiotics. Our findings strongly suggest that adlP may encode a bifunctional protein that transcriptionally represses the expression of flagellar motility genes and influences stress responses through its DNA glycosylase activity. IMPORTANCE We discovered a novel protein that we named AlkD-like protein (AdlP). This protein affected flagellar motility, biofilm formation, and virulence. Our data suggest that AdlP may be a bifunctional protein that represses flagellar motility genes and influences stress responses through its DNA glycosylase activity. PMID:27316964

  16. Characterization of DNA methyltransferase and demethylase genes in Fragaria vesca.

    PubMed

    Gu, Tingting; Ren, Shuai; Wang, Yuanhua; Han, Yuhui; Li, Yi

    2016-06-01

    DNA methylation is an epigenetic modification essential for gene regulations in plants, but understanding on how it is involved in fruit development, especially in non-climacteric fleshy fruit, is limited. The diploid woodland strawberry (Fragaria vesca) is an important model for non-climacteric fruit crops. In this study, we identified DNA methyltransferase genes and demethylase genes in Fragaria vesca and other angiosperm species. In accordance with previous studies, our phylogenetic analyses of those DNA methylation modifiers support the clustering of those genes into several classes. Our data indicate that whole-genome duplications and tandem duplications contributed to the expansion of those DNA methylation modifiers in angiosperms. We have further demonstrated that some DNA methylase and demethylase genes reach their highest expression levels in strawberry fleshy fruits when turning from white to red, suggesting that DNA methylation might undergo a dramatic change at the onset of fleshy fruit-ripening process. In addition, we have observed that expression of some DNA demethylase genes increases in response to various abiotic stresses including heat, cold, drought and salinity. Collectively, our study indicates a regulatory role of DNA methylation in the turning stage of non-climacteric fleshy fruit and responses to environment stimuli, and would facilitate functional studies of DNA methylation in the growth and development of non-climacteric fruits.

  17. The structure and duplex context of DNA interstrand crosslinks affects the activity of DNA polymerase η

    PubMed Central

    Roy, Upasana; Mukherjee, Shivam; Sharma, Anjali; Frank, Ekaterina G.; Schärer, Orlando D.

    2016-01-01

    Several important anti-tumor agents form DNA interstrand crosslinks (ICLs), but their clinical efficiency is counteracted by multiple complex DNA repair pathways. All of these pathways require unhooking of the ICL from one strand of a DNA duplex by nucleases, followed by bypass of the unhooked ICL by translesion synthesis (TLS) polymerases. The structures of the unhooked ICLs remain unknown, yet the position of incisions and processing of the unhooked ICLs significantly influence the efficiency and fidelity of bypass by TLS polymerases. We have synthesized a panel of model unhooked nitrogen mustard ICLs to systematically investigate how the state of an unhooked ICL affects pol η activity. We find that duplex distortion induced by a crosslink plays a crucial role in translesion synthesis, and length of the duplex surrounding an unhooked ICL critically affects polymerase efficiency. We report the synthesis of a putative ICL repair intermediate that mimics the complete processing of an unhooked ICL to a single crosslinked nucleotide, and find that it provides only a minimal obstacle for DNA polymerases. Our results raise the possibility that, depending on the structure and extent of processing of an ICL, its bypass may not absolutely require TLS polymerases. PMID:27257072

  18. Integrative analysis of DNA copy number, DNA methylation and gene expression in multiple myeloma reveals alterations related to relapse

    PubMed Central

    Krzeminski, Patryk; Corchete, Luis A.; García, Juan L.; López-Corral, Lucía; Fermiñán, Encarna; García, Eva M.; Martín, Ana A.; Hernández-Rivas, Jesús M.; García-Sanz, Ramón; Miguel, Jesús F. San; Gutiérrez, Norma C.

    2016-01-01

    Multiple myeloma (MM) remains incurable despite the introduction of novel agents, and a relapsing course is observed in most patients. Although the development of genomic technologies has greatly improved our understanding of MM pathogenesis, the mechanisms underlying relapse have been less thoroughly investigated. In this study, an integrative analysis of DNA copy number, DNA methylation and gene expression was conducted in matched diagnosis and relapse samples from MM patients. Overall, the acquisition of abnormalities at relapse was much more frequent than the loss of lesions present at diagnosis, and DNA losses were significantly more frequent in relapse than in diagnosis samples. Interestingly, copy number abnormalities involving more than 100 Mb of DNA at relapse significantly affect the gene expression of these samples, provoking a particular deregulation of the IL-8 pathway. On the other hand, no significant modifications of gene expression were observed in those samples with less than 100 Mb affected by chromosomal changes. Although several statistical approaches were used to identify genes whose abnormal expression at relapse was regulated by methylation, only two genes that were significantly deregulated in relapse samples (SORL1 and GLT1D1) showed a negative correlation between methylation and expression. Further analysis revealed that DNA methylation was involved in regulating SORL1 expression in MM. Finally, relevant changes in gene expression observed in relapse samples, such us downregulation of CD27 and P2RY8, were most likely not preceded by alterations in the corresponding DNA. Taken together, these results suggest that the genomic heterogeneity described at diagnosis remains at relapse. PMID:27811368

  19. Integrative analysis of DNA copy number, DNA methylation and gene expression in multiple myeloma reveals alterations related to relapse.

    PubMed

    Krzeminski, Patryk; Corchete, Luis A; García, Juan L; López-Corral, Lucía; Fermiñán, Encarna; García, Eva M; Martín, Ana A; Hernández-Rivas, Jesús M; García-Sanz, Ramón; San Miguel, Jesús F; Gutiérrez, Norma C

    2016-12-06

    Multiple myeloma (MM) remains incurable despite the introduction of novel agents, and a relapsing course is observed in most patients. Although the development of genomic technologies has greatly improved our understanding of MM pathogenesis, the mechanisms underlying relapse have been less thoroughly investigated. In this study, an integrative analysis of DNA copy number, DNA methylation and gene expression was conducted in matched diagnosis and relapse samples from MM patients. Overall, the acquisition of abnormalities at relapse was much more frequent than the loss of lesions present at diagnosis, and DNA losses were significantly more frequent in relapse than in diagnosis samples. Interestingly, copy number abnormalities involving more than 100 Mb of DNA at relapse significantly affect the gene expression of these samples, provoking a particular deregulation of the IL-8 pathway. On the other hand, no significant modifications of gene expression were observed in those samples with less than 100 Mb affected by chromosomal changes. Although several statistical approaches were used to identify genes whose abnormal expression at relapse was regulated by methylation, only two genes that were significantly deregulated in relapse samples (SORL1 and GLT1D1) showed a negative correlation between methylation and expression. Further analysis revealed that DNA methylation was involved in regulating SORL1 expression in MM. Finally, relevant changes in gene expression observed in relapse samples, such us downregulation of CD27 and P2RY8, were most likely not preceded by alterations in the corresponding DNA. Taken together, these results suggest that the genomic heterogeneity described at diagnosis remains at relapse.

  20. Mitochondrial DNA Damage and its Consequences for Mitochondrial Gene Expression

    PubMed Central

    Cline, Susan D.

    2012-01-01

    How mitochondria process DNA damage and whether a change in the steady-state level of mitochondrial DNA damage (mtDNA) contributes to mitochondrial dysfunction are questions that fuel burgeoning areas of research into aging and disease pathogenesis. Over the past decade, researchers have identified and measured various forms of endogenous and environmental mtDNA damage and have elucidated mtDNA repair pathways. Interestingly, mitochondria do not appear to contain the full range of DNA repair mechanisms that operate in the nucleus, although mtDNA contains types of damage that are targets of each nuclear DNA repair pathway. The reduced repair capacity may, in part, explain the high mutation frequency of the mitochondrial chromosome. Since mtDNA replication is dependent on transcription, mtDNA damage may alter mitochondrial gene expression at three levels: by causing DNA polymerase γ nucleotide incorporation errors leading to mutations, by interfering with the priming of mtDNA replication by the mitochondrial RNA polymerase, or by inducing transcriptional mutagenesis or premature transcript termination. This review summarizes our current knowledge of mtDNA damage, its repair, and its effects on mtDNA integrity and gene expression. PMID:22728831

  1. Mutagens manufactured in fungal culture may affect DNA/RNA of producing fungi.

    PubMed

    Paterson, R R M; Lima, N

    2009-04-01

    Self-produced mutagens in culture by fungi may affect DNA analysis of the same fungi. This has not been considered previously. Many fungi produce numerous mutagenic secondary metabolites (SM) in culture. There is a paradox of growing fungi in media to produce representative DNA which also support mutagenic SM. This is a crucial issue in developing diagnostic and phylogenetic methods, especially for closely-related fungi. For example, idh gene analysis of the patulin metabolic pathway in fungi can be interpreted as producing some false negative and positive results in terms of possession, or nonpossession, of the gene from mutated strains. The most obvious mycotoxins and fungi to consider in this regard are aflatoxins and Aspergillus, as aflatoxins are the most mutagenic natural compounds. Many other fungi and SM are relevant. Conditions to grow fungi have not been selected to inhibit SM production although relevant data exist. In fact, fungi repair damaged nucleic acid (NA) and are capable of removing toxins by employing transporter proteins. These and NA repair mechanisms could be inhibited by secondary metabolites. Mutagenic effects may involve inhibition of DNA stabilizing enzymes. There may be an equivalent situation for bacteria. Researchers need to devise methods to reduce SM for valid protocols. More work on how mutagens affect the NA of producing fungus in vitro is required. The current review assesses the potential seriousness of the situation with selected papers.

  2. DNA affects the composition of lipoplex protein corona: a proteomics approach.

    PubMed

    Capriotti, Anna L; Caracciolo, Giulio; Caruso, Giuseppe; Foglia, Patrizia; Pozzi, Daniela; Samperi, Roberto; Laganà, Aldo

    2011-08-01

    The distribution of drug delivery systems into the body is affected by plasma proteins adsorbed onto their surface. Furthermore, an exact understanding of the structure and morphology of drug carriers is fundamental to understand their role as gene delivery systems. In this work, the adsorption of human plasma proteins bound to cationic liposomes and to their relative DNA lipoplexes was compared. A shotgun proteomics approach based on HPLC coupled to high resolution MS was used for an efficient identification of proteins adsorbed onto liposome and lipoplex surfaces. The distinct pattern of proteins adsorbed helps to better understand the DNA compaction process. The experimental evidence leads us to hypothesize that polyanionic DNA is associated to the lipoplex surface and can interact with basic plasma proteins. Such a finding is in agreement with recent results showing that lipoplexes are multilamellar DNA/lipid domains partially decorated with DNA at their surface. Proteomics experiments showed that the lipoplex corona is rich of biologically relevant proteins such as fibronectin, histones and complement proteins. Our results provide novel insights to understand how lipoplexes activate the immune system and why they are rapidly cleared from the blood stream. The differences in the protein adsorption data detected in the presented experiments could be the basis for the establishment of a correlation between protein adsorption pattern and in vivo fate of intravenously administered nanoparticles and will require some consideration in the future.

  3. Functional cooperation of the dnaE and dnaN gene products in Escherichia coli.

    PubMed Central

    Kuwabara, N; Uchida, H

    1981-01-01

    A system was designed to isolate second-site intergenic suppressors of a thermosensitive mutation of the dnaE gene of Escherichia coli. The dnaE gene codes for the alpha subunit of DNA polymerase III [McHenry, C. S. & Crow, W. (1979) J. Biol. Chem. 254, 1748-1753]. One such suppressor, named sueA77, was finely mapped and found to be located at 82 min on the E. coli chromosome, between dnaA and recF, and within the dnaN gene [Sakakibara, Y. & Mizukami, T. (1980) Mol. Gen. Genet. 178, 541-553]. The dnaN gene codes for the beta subunit of DNA polymerase III holoenzyme [Burgers, P. M. J., Kornberg, A. & Sakakibara, Y. (1981) Proc. Natl. Acad. Sci. USA 78, 5391-5395]. The sueA77 mutation was trans-dominant over its wild-type allele, and it suppressed different thermosensitive mutations of dnaE with different maximal permissive temperature. These properties were interpreted as providing genetic evidence for interaction of the dnaE and dnaN gene products in E. coli. Images PMID:6458043

  4. Functional cooperation of the dnaE and dnaN gene products in Escherichia coli.

    PubMed

    Kuwabara, N; Uchida, H

    1981-09-01

    A system was designed to isolate second-site intergenic suppressors of a thermosensitive mutation of the dnaE gene of Escherichia coli. The dnaE gene codes for the alpha subunit of DNA polymerase III [McHenry, C. S. & Crow, W. (1979) J. Biol. Chem. 254, 1748-1753]. One such suppressor, named sueA77, was finely mapped and found to be located at 82 min on the E. coli chromosome, between dnaA and recF, and within the dnaN gene [Sakakibara, Y. & Mizukami, T. (1980) Mol. Gen. Genet. 178, 541-553]. The dnaN gene codes for the beta subunit of DNA polymerase III holoenzyme [Burgers, P. M. J., Kornberg, A. & Sakakibara, Y. (1981) Proc. Natl. Acad. Sci. USA 78, 5391-5395]. The sueA77 mutation was trans-dominant over its wild-type allele, and it suppressed different thermosensitive mutations of dnaE with different maximal permissive temperature. These properties were interpreted as providing genetic evidence for interaction of the dnaE and dnaN gene products in E. coli.

  5. DNA Methylation is Developmentally Regulated for Genes Essential for Cardiogenesis

    PubMed Central

    Chamberlain, Alyssa A.; Lin, Mingyan; Lister, Rolanda L.; Maslov, Alex A.; Wang, Yidong; Suzuki, Masako; Wu, Bingruo; Greally, John M.; Zheng, Deyou; Zhou, Bin

    2014-01-01

    Background DNA methylation is a major epigenetic mechanism altering gene expression in development and disease. However, its role in the regulation of gene expression during heart development is incompletely understood. The aim of this study is to reveal DNA methylation in mouse embryonic hearts and its role in regulating gene expression during heart development. Methods and Results We performed the genome‐wide DNA methylation profiling of mouse embryonic hearts using methyl‐sensitive, tiny fragment enrichment/massively parallel sequencing to determine methylation levels at ACGT sites. The results showed that while global methylation of 1.64 million ACGT sites in developing hearts remains stable between embryonic day (E) 11.5 and E14.5, a small fraction (2901) of them exhibit differential methylation. Gene Ontology analysis revealed that these sites are enriched at genes involved in heart development. Quantitative real‐time PCR analysis of 350 genes with differential DNA methylation showed that the expression of 181 genes is developmentally regulated, and 79 genes have correlative changes between methylation and expression, including hyaluronan synthase 2 (Has2). Required for heart valve formation, Has2 expression in the developing heart valves is downregulated at E14.5, accompanied with increased DNA methylation in its enhancer. Genetic knockout further showed that the downregulation of Has2 expression is dependent on DNA methyltransferase 3b, which is co‐expressed with Has2 in the forming heart valve region, indicating that the DNA methylation change may contribute to the Has2 enhancer's regulating function. Conclusions DNA methylation is developmentally regulated for genes essential to heart development, and abnormal DNA methylation may contribute to congenital heart disease. PMID:24947998

  6. Methods of Combinatorial Optimization to Reveal Factors Affecting Gene Length

    PubMed Central

    Bolshoy, Alexander; Tatarinova, Tatiana

    2012-01-01

    In this paper we present a novel method for genome ranking according to gene lengths. The main outcomes described in this paper are the following: the formulation of the genome ranking problem, presentation of relevant approaches to solve it, and the demonstration of preliminary results from prokaryotic genomes ordering. Using a subset of prokaryotic genomes, we attempted to uncover factors affecting gene length. We have demonstrated that hyperthermophilic species have shorter genes as compared with mesophilic organisms, which probably means that environmental factors affect gene length. Moreover, these preliminary results show that environmental factors group together in ranking evolutionary distant species. PMID:23300345

  7. Methods of combinatorial optimization to reveal factors affecting gene length.

    PubMed

    Bolshoy, Alexander; Tatarinova, Tatiana

    2012-01-01

    In this paper we present a novel method for genome ranking according to gene lengths. The main outcomes described in this paper are the following: the formulation of the genome ranking problem, presentation of relevant approaches to solve it, and the demonstration of preliminary results from prokaryotic genomes ordering. Using a subset of prokaryotic genomes, we attempted to uncover factors affecting gene length. We have demonstrated that hyperthermophilic species have shorter genes as compared with mesophilic organisms, which probably means that environmental factors affect gene length. Moreover, these preliminary results show that environmental factors group together in ranking evolutionary distant species.

  8. Genome-wide gene expression and DNA methylation differences in abnormally cloned and normally natural mating piglets.

    PubMed

    Zou, C; Fu, Y; Li, C; Liu, H; Li, G; Li, J; Zhang, H; Wu, Y; Li, C

    2016-08-01

    Many studies have proved that DNA methylation can regulate gene expression and further affect skeletal muscle growth and development of pig, whereas the mechanisms of how DNA methylation or gene expression alteration ultimately lead to phenotypical differences between the cloned and natural mating pigs remain elusive. This study aimed to investigate genome-wide gene expression and DNA methylation differences between abnormally cloned and normally natural mating piglets and identify molecular markers related to skeletal muscle growth and development in pig. The DNA methylation and genome-wide gene expression in the two groups of piglets were analysed through methylated DNA immunoprecipitation binding high-throughput sequencing and RNA sequencing respectively. We detected 1493 differentially expressed genes between the two groups, of which 382 genes were also differentially methylated. The results of the integrative analysis between DNA methylation and gene expression revealed that the DNA methylation levels showed a significantly negative and monotonic correlation with gene expression levels around the transcription start site of genes. By contrast, no notable monotonic correlation was observed in other regions. Furthermore, we identified some interesting genes and signalling pathways (e.g. myosin, heavy chain 7 and mammalian target of rapamycin) which possibly play essential roles in skeletal muscle growth and development. The results of this study provide insights into the relationship of DNA methylation with gene expression in newborn piglets and into the mechanisms in abnormally cloned animals through somatic cell nuclear transfer.

  9. Hyperglycemia Differentially Affects Maternal and Fetal DNA Integrity and DNA Damage Response

    PubMed Central

    Moreli, Jusciele B.; Santos, Janine H.; Lorenzon-Ojea, Aline Rodrigues; Corrêa-Silva, Simone; Fortunato, Rodrigo S.; Rocha, Clarissa Ribeiro; Rudge, Marilza V.; Damasceno, Débora C.; Bevilacqua, Estela; Calderon, Iracema M.

    2016-01-01

    Objective: Investigate the DNA damage and its cellular response in blood samples from both mother and the umbilical cord of pregnancies complicated by hyperglycemia. Methods: A total of 144 subjects were divided into 4 groups: normoglycemia (ND; 46 cases), mild gestational hyperglycemia (MGH; 30 cases), gestational diabetes mellitus (GDM; 45 cases) and type-2 diabetes mellitus (DM2; 23 cases). Peripheral blood mononuclear cell (PBMC) isolation and/or leukocytes from whole maternal and umbilical cord blood were obtained from all groups at delivery. Nuclear and mitochondrial DNA damage were measured by gene-specific quantitative PCR, and the expression of mRNA and proteins involved in the base excision repair (BER) pathway were assessed by real-time qPCR and Western blot, respectively. Apoptosis was measured in vitro experiments by caspase 3/7 activity and ATP levels. Results: GDM and DM2 groups were characterized by an increase in oxidative stress biomarkers, an increase in nuclear and mitochondrial DNA damage, and decreased expression of mRNA (APE1, POLβ and FEN1) and proteins (hOGG1, APE1) involved in BER. The levels of hyperglycemia were associated with the in vitro apoptosis pathway. Blood levels of DNA damage in umbilical cord were similar among the groups. Newborns of diabetic mothers had increased expression of BER mRNA (APE1, POLβ and FEN1) and proteins (hOGG1, APE1, POLβ and FEN1). A diabetes-like environment was unable to induce apoptosis in the umbilical cord blood cells. Conclusions: Our data show relevant asymmetry between maternal and fetal blood cell susceptibility to DNA damage and apoptosis induction. Maternal cells seem to be more predisposed to changes in an adverse glucose environment. This may be due to differential ability in upregulating multiple genes involved in the activation of DNA repair response, especially the BER mechanism. However if this study shows a more effective adaptive response by the fetal organism, it also calls for

  10. Modelling Robust Feedback Control Mechanisms That Ensure Reliable Coordination of Histone Gene Expression with DNA Replication

    PubMed Central

    Corrigall, Holly; Ebenhöh, Oliver; Müller, Berndt

    2016-01-01

    Histone proteins are key elements in the packing of eukaryotic DNA into chromosomes. A little understood control system ensures that histone gene expression is balanced with DNA replication so that histone proteins are produced in appropriate amounts. Disturbing or disrupting this system affects genome stability and gene expression, and has detrimental consequences for human development and health. It has been proposed that feedback control involving histone proteins contributes to this regulation and there is evidence implicating cell cycle checkpoint molecules activated when DNA synthesis is impaired in this control. We have developed mathematical models that incorporate these control modes in the form of inhibitory feedback of histone gene expression from free histone proteins, and alternatively a direct link that couples histone RNA synthesis to DNA synthesis. Using our experimental evidence and related published data we provide a simplified description of histone protein synthesis during S phase. Both models reproduce the coordination of histone gene expression with DNA replication during S phase and the down-regulation of histone RNA when DNA synthesis is interrupted, but only the model incorporating histone protein feedback control was able to effectively simulate the coordinate expression of a simplified histone gene family. Our combined theoretical and experimental approach supports the hypothesis that the regulation of histone gene expression involves feedback control. PMID:27798685

  11. Monitoring of dnaK gene expression in Porphyromonas gingivalis by oxygen stress using DNA microarray.

    PubMed

    Araki, Makoto; Hiratsuka, Koichi; Kiyama-Kishikawa, Michiko; Abiko, Yoshimitsu

    2004-06-01

    Porphyromonas gingivalis, a Gram-negative anaerobe associated with adult periodontitis, expresses numerous potential virulence factors. dnaK, a member of the heat shock protein family, functions as a molecular chaperone and plays a role in microbial pathogenicity. However, little is known regarding its gene expression caused by oxygen stress in P. gingivalis. In the present study, a custom-made DNA microarray was designed and used to monitor dnaK gene expression in P. gingivalis caused by oxygen stress. The results demonstrated that dnaK mRNA was up-regulated in a short time, and the DNA microarray results were confirmed by real-time polymerase chain reaction analysis. These findings suggest that oxygen stress stimulates gene expression of dnaK and may have a relationship to the aerotolerance activity of this organism as well as its expression of pathogenesis.

  12. Genes with stable DNA methylation levels show higher evolutionary conservation than genes with fluctuant DNA methylation levels.

    PubMed

    Zhang, Ruijie; Lv, Wenhua; Luan, Meiwei; Zheng, Jiajia; Shi, Miao; Zhu, Hongjie; Li, Jin; Lv, Hongchao; Zhang, Mingming; Shang, Zhenwei; Duan, Lian; Jiang, Yongshuai

    2015-11-24

    Different human genes often exhibit different degrees of stability in their DNA methylation levels between tissues, samples or cell types. This may be related to the evolution of human genome. Thus, we compared the evolutionary conservation between two types of genes: genes with stable DNA methylation levels (SM genes) and genes with fluctuant DNA methylation levels (FM genes). For long-term evolutionary characteristics between species, we compared the percentage of the orthologous genes, evolutionary rate dn/ds and protein sequence identity. We found that the SM genes had greater percentages of the orthologous genes, lower dn/ds, and higher protein sequence identities in all the 21 species. These results indicated that the SM genes were more evolutionarily conserved than the FM genes. For short-term evolutionary characteristics among human populations, we compared the single nucleotide polymorphism (SNP) density, and the linkage disequilibrium (LD) degree in HapMap populations and 1000 genomes project populations. We observed that the SM genes had lower SNP densities, and higher degrees of LD in all the 11 HapMap populations and 13 1000 genomes project populations. These results mean that the SM genes had more stable chromosome genetic structures, and were more conserved than the FM genes.

  13. [Scientific ethics of gene therapy for individuals. The urgency for DNA gene surgery].

    PubMed

    Valenzuela, Carlos Y

    2003-10-01

    Gene therapy for individuals is mainly directed to somatic or germ cells. The present technology aims to insert a DNA segment in the recipient cells. This therapy is useful in Mendelian recessive diseases. There is an ethical moratorium to perform insertion gene therapy in germ cells, because this procedure increases the human genome. Somatic cell gene therapy cures individuals but increases the gene frequency of genetic diseases in the population. This occurs because the descendants of the cured patient should carry his or her "ill" genes. We denots by "DNA gene surgery" the procedure that replaces "ill" nucleotide(s) by healthy one(s) conserving the genome size and the gene context of expression and regulation. Several procedures for gene surgery have been applied to cells and animals. Those based on DNA repair as Chimeric RNA/DNA, one stranded oligonucleotides and tristranded DNA. Those based on DNA recombination with oligo DNA or one stranded DNA, and transposable DNA segments. Gene surgery can be applied to germ cell gene therapy without ethical contraindications. It can cure Mendelian dominant diseases and it can be applied to heterozygotes. It preserves the regulation and expression gene context. If a technical safe procedure is available, the entire mankind could be treated and cured of all the Mendelian diseases, in one generation. Susceptibilities for all diseases could also be treated. The moratorium for research on germ cell gene therapy by gene surgery should be interrupted. Safe gene surgery is a moral imperative for gene therapy of patients and their descendants, for the treatment of dominant genetic diseases and for heterozygous carriers of recessive disorders.

  14. How the gene-patenting race is affecting science

    SciTech Connect

    Wuethrich, B.

    1993-09-04

    Since the National Institutes of Health first filed for patents on thousand fragments of human genes in 1992, many researchers are confronting difficult problems arising at the intersection of science, private enterprise, and the law. At present scientists understand the function of fewer than 1,500 human genes. Decoding all these genes in the goal of the Human Genome Project, sponsored by NIH and DOE. This paper discusses the complex practical, political, ethical, and economic issues involved in describing portions of DNA sequences and the patenting (and ownership) of those sequences.

  15. Visually Relating Gene Expression and in vivo DNA Binding Data

    SciTech Connect

    Huang, Min-Yu; Mackey, Lester; Ker?,; nen, Soile V. E.; Weber, Gunther H.; Jordan, Michael I.; Knowles, David W.; Biggin, Mark D.; Hamann, Bernd

    2011-09-20

    Gene expression and in vivo DNA binding data provide important information for understanding gene regulatory networks: in vivo DNA binding data indicate genomic regions where transcription factors are bound, and expression data show the output resulting from this binding. Thus, there must be functional relationships between these two types of data. While visualization and data analysis tools exist for each data type alone, there is a lack of tools that can easily explore the relationship between them. We propose an approach that uses the average expression driven by multiple of ciscontrol regions to visually relate gene expression and in vivo DNA binding data. We demonstrate the utility of this tool with examples from the network controlling early Drosophila development. The results obtained support the idea that the level of occupancy of a transcription factor on DNA strongly determines the degree to which the factor regulates a target gene, and in some cases also controls whether the regulation is positive or negative.

  16. Higher plant mitochondrial DNA: Genomes, genes, mutants, transcription, translation

    SciTech Connect

    Not Available

    1986-01-01

    This volume contains brief summaries of 63 presentations given at the International Workshop on Higher Plant Mitochondrial DNA. The presentations are organized into topical discussions addressing plant genomes, mitochondrial genes, cytoplasmic male sterility, transcription, translation, plasmids and tissue culture. (DT)

  17. Nutri-epigenomic Studies Related to Neural Tube Defects: Does Folate Affect Neural Tube Closure Via Changes in DNA Methylation?

    PubMed

    Rochtus, Anne; Jansen, Katrien; Van Geet, Chris; Freson, Kathleen

    2015-01-01

    Neural tube defects (NTDs), affecting 1-2 per 1000 pregnancies, are severe congenital malformations that arise from the failure of neurulation during early embryonic development. The methylation hypothesis suggests that folate prevents NTDs by stimulating cellular methylation reactions. Folate is central to the one-carbon metabolism that produces pyrimidines and purines for DNA synthesis and for the generation of the methyldonor S-adenosyl-methionine. This review focuses on the relation between the folate-mediated one-carbon metabolism, DNA methylation and NTDs. Studies will be discussed that investigated global or locus-specific DNA methylation differences in patients with NTDs. Folate deficiency may increase NTD risk by decreasing DNA methylation, but to date, human studies vary widely in study design in terms of analyzing different clinical subtypes of NTDs, using different methylation quantification assays and using DNA isolated from diverse types of tissues. Some studies have focused mainly on global DNA methylation differences while others have quantified specific methylation differences for imprinted genes, transposable elements and DNA repair enzymes. Findings of global DNA hypomethylation and LINE-1 hypomethylation suggest that epigenetic alterations may disrupt neural tube closure. However, current research does not support a linear relation between red blood cell folate concentration and DNA methylation. Further studies are required to better understand the interaction between folate, DNA methylation changes and NTDs.

  18. Plasmid DNA gene therapy by electroporation: principles and recent advances.

    PubMed

    Murakami, Tatsufumi; Sunada, Yoshihide

    2011-12-01

    Simple plasmid DNA injection is a safe and feasible gene transfer method, but it confers low transfection efficiency and transgene expression. This non-viral gene transfer method is enhanced by physical delivery methods, such as electroporation and the use of a gene gun. In vivo electroporation has been rapidly developed over the last two decades to deliver DNA to various tissues or organs. It is generally considered that membrane permeabilization and DNA electrophoresis play important roles in electro-gene transfer. Skeletal muscle is a well characterized target tissue for electroporation, because it is accessible and allows for long-lasting gene expression ( > one year). Skin is also a target tissue because of its accessibility and immunogenicity. Numerous studies have been performed using in vivo electroporation in animal models of disease. Clinical trials of DNA vaccines and immunotherapy for cancer treatment using in vivo electroporation have been initiated in patients with melanoma and prostate cancer. Furthermore, electroporation has been applied to DNA vaccines for infectious diseases to enhance immunogenicity, and the relevant clinical trials have been initiated. The gene gun approach is also being applied for the delivery of DNA vaccines against infectious diseases to the skin. Here, we review recent advances in the mechanism of in vivo electroporation, and summarize the findings of recent preclinical and clinical studies using this technology.

  19. The Slx5-Slx8 complex affects sumoylation of DNA repair proteins and negatively regulates recombination.

    PubMed

    Burgess, Rebecca C; Rahman, Sadia; Lisby, Michael; Rothstein, Rodney; Zhao, Xiaolan

    2007-09-01

    Recombination is important for repairing DNA lesions, yet it can also lead to genomic rearrangements. This process must be regulated, and recently, sumoylation-mediated mechanisms were found to inhibit Rad51-dependent recombination. Here, we report that the absence of the Slx5-Slx8 complex, a newly identified player in the SUMO (small ubiquitin-like modifier) pathway, led to increased Rad51-dependent and Rad51-independent recombination. The increases were most striking during S phase, suggesting an accumulation of DNA lesions during replication. Consistent with this view, Slx8 protein localized to replication centers. In addition, like SUMO E2 mutants, slx8Delta mutants exhibited clonal lethality, which was due to the overamplification of 2 microm, an extrachromosomal plasmid. Interestingly, in both SUMO E2 and slx8Delta mutants, clonal lethality was rescued by deleting genes required for Rad51-independent recombination but not those involved in Rad51-dependent events. These results suggest that sumoylation negatively regulates Rad51-independent recombination, and indeed, the Slx5-Slx8 complex affected the sumoylation of several enzymes involved in early steps of Rad51-independent recombination. We propose that, during replication, the Slx5-Slx8 complex helps prevent DNA lesions that are acted upon by recombination. In addition, the complex inhibits Rad51-independent recombination via modulating the sumoylation of DNA repair proteins.

  20. Characterization of the DNA polymerase gene of human herpesvirus 6.

    PubMed Central

    Teo, I A; Griffin, B E; Jones, M D

    1991-01-01

    The construction of a recombinant bacteriophage lambda library containing overlapping clones covering 155 kbp of the 161-kbp genome of the Ugandan U1102 isolate of human herpesvirus 6 (HHV-6) is described. The use of degenerate-primer polymerase chain reaction allowed the isolation of a DNA probe for the DNA polymerase gene of HHV-6, which was subsequently used to isolate and position the pol gene on the physical map of the viral genome. A 4.4-kbp EcoRI DNA restriction fragment containing the pol gene was isolated and sequenced. The open reading frames flanking the pol gene code for the HHV-6 glycoprotein B gene and the human cytomegalovirus UL53 homolog. This arrangement is different from that seen in the alpha and gamma herpesvirus families, lending further support to the notion that HHV-6 is a member of the beta herpesvirus group. Images PMID:1651403

  1. Analysis of thirteen trinucleotide repeat loci as candidate genes for Schizophrenia and bipolar affective disorder

    SciTech Connect

    Jain, S.; Leggo, J.; Ferguson-Smith, M.A.; Rubinsztein, D.C.

    1996-04-09

    A group of diseases are due to abnormal expansions of trinucleotide repeats. These diseases all affect the nervous system. In addition, they manifest the phenomenon of anticipation, in which the disease tends to present at an earlier age or with greater severity in successive generations. Many additional genes with trinucleotide repeats are believed to be expressed in the human brain. As anticipation has been reported in schizophrenia and bipolar affective disorder, we have examined allele distributions of 13 trinucleotide repeat-containing genes, many novel and all expressed in the brain, in genomic DNA from schizophrenic (n = 20-97) and bipolar affective disorder patients (23-30) and controls (n = 43-146). No evidence was obtained to implicate expanded alleles in these 13 genes as causal factors in these diseases. 26 refs., 1 fig., 2 tabs.

  2. Quantitative DNA Methylation Analysis of Candidate Genes in Cervical Cancer

    PubMed Central

    Siegel, Erin M.; Riggs, Bridget M.; Delmas, Amber L.; Koch, Abby; Hakam, Ardeshir; Brown, Kevin D.

    2015-01-01

    Aberrant DNA methylation has been observed in cervical cancer; however, most studies have used non-quantitative approaches to measure DNA methylation. The objective of this study was to quantify methylation within a select panel of genes previously identified as targets for epigenetic silencing in cervical cancer and to identify genes with elevated methylation that can distinguish cancer from normal cervical tissues. We identified 49 women with invasive squamous cell cancer of the cervix and 22 women with normal cytology specimens. Bisulfite-modified genomic DNA was amplified and quantitative pyrosequencing completed for 10 genes (APC, CCNA, CDH1, CDH13, WIF1, TIMP3, DAPK1, RARB, FHIT, and SLIT2). A Methylation Index was calculated as the mean percent methylation across all CpG sites analyzed per gene (~4-9 CpG site) per sequence. A binary cut-point was defined at >15% methylation. Sensitivity, specificity and area under ROC curve (AUC) of methylation in individual genes or a panel was examined. The median methylation index was significantly higher in cases compared to controls in 8 genes, whereas there was no difference in median methylation for 2 genes. Compared to HPV and age, the combination of DNA methylation level of DAPK1, SLIT2, WIF1 and RARB with HPV and age significantly improved the AUC from 0.79 to 0.99 (95% CI: 0.97–1.00, p-value = 0.003). Pyrosequencing analysis confirmed that several genes are common targets for aberrant methylation in cervical cancer and DNA methylation level of four genes appears to increase specificity to identify cancer compared to HPV detection alone. Alterations in DNA methylation of specific genes in cervical cancers, such as DAPK1, RARB, WIF1, and SLIT2, may also occur early in cervical carcinogenesis and should be evaluated. PMID:25826459

  3. DNA-water interactions distinguish messenger RNA genes from transfer RNA genes.

    PubMed

    Khandelwal, Garima; Jayaram, B

    2012-05-30

    Physicochemical properties of DNA sequences as a guide to developing insights into genome organization has received little attention. Here, we utilize the energetics of DNA to further advance the knowledge on its language at a molecular level. Specifically, we ask the question whether physicochemical properties of different functional units on genomes differ. We extract intramolecular and solvation energies of different DNA base pair steps from a comprehensive set of molecular dynamics simulations. We then investigate the solvation behavior of DNA sequences coding for mRNAs and tRNAs. Distinguishing mRNA genes from tRNA genes is a tricky problem in genome annotation without assumptions on length of DNA and secondary structure of the product of transcription. We find that solvation energetics of DNA behaves as an extremely efficient property in discriminating 2,063,537 genes coding for mRNAs from 56,251 genes coding for tRNAs in all (~1500) completely sequenced prokaryotic genomes.

  4. Integration of amplified differential gene expression (ADGE) and DNA microarray.

    PubMed

    Chen, Zhijian J; Gaté, Laurent; Davis, Warren; Ile, Kristina E; Tew, Kenneth D

    2002-12-01

    Amplified Differential Gene Expression (ADGE) provides a new concept that the ratios of differentially expressed genes are magnified before detection in order to improve both sensitivity and accuracy. This technology is now implemented with integration of DNA reassociation and PCR. The ADGE technique can be used either as a stand-alone method or in series with DNA microarray. ADGE is used in sample preprocessing and DNA microarray is used as a displaying system in the series combination. These two techniques are mutually synergistic: the quadratic magnification of ratios of differential gene expression achieved by ADGE improves the detection sensitivity and accuracy; the PCR amplification of templates enhances the signal intensity and reduces the requirement for large amounts of starting material; the high throughput for DNA microarray is maintained.

  5. A parasitic selfish gene that affects host promiscuity.

    PubMed

    Giraldo-Perez, Paulina; Goddard, Matthew R

    2013-11-07

    Selfish genes demonstrate transmission bias and invade sexual populations despite conferring no benefit to their hosts. While the molecular genetics and evolutionary dynamics of selfish genes are reasonably well characterized, their effects on hosts are not. Homing endonuclease genes (HEGs) are one well-studied family of selfish genes that are assumed to be benign. However, we show that carrying HEGs is costly for Saccharomyces cerevisiae, demonstrating that these genetic elements are not necessarily benign but maybe parasitic. We estimate a selective load of approximately 1-2% in 'natural' niches. The second aspect we examine is the ability of HEGs to affect hosts' sexual behaviour. As all selfish genes critically rely on sex for spread, then any selfish gene correlated with increased host sexuality will enjoy a transmission advantage. While classic parasites are known to manipulate host behaviour, we are not aware of any evidence showing a selfish gene is capable of affecting host promiscuity. The data presented here show a selfish element may increase the propensity of its eukaryote host to undergo sex and along with increased rates of non-Mendelian inheritance, this may counterbalance mitotic selective load and promote spread. Demonstration that selfish genes are correlated with increased promiscuity in eukaryotes connects with ideas suggesting that selfish genes promoted the evolution of sex initially.

  6. Aberrant DNA methylation impacts gene expression and prognosis in breast cancer subtypes.

    PubMed

    Győrffy, Balázs; Bottai, Giulia; Fleischer, Thomas; Munkácsy, Gyöngyi; Budczies, Jan; Paladini, Laura; Børresen-Dale, Anne-Lise; Kristensen, Vessela N; Santarpia, Libero

    2016-01-01

    DNA methylation has a substantial impact on gene expression, affecting the prognosis of breast cancer (BC) patients dependent on molecular subtypes. In this study, we investigated the prognostic relevance of the expression of genes reported as aberrantly methylated, and the link between gene expression and DNA methylation in BC subtypes. The prognostic value of the expression of 144 aberrantly methylated genes was evaluated in ER+/HER2-, HER2+, and ER-/HER2- molecular BC subtypes, in a meta-analysis of two large transcriptomic cohorts of BC patients (n = 1,938 and n = 1,640). The correlation between gene expression and DNA methylation in distinct gene regions was also investigated in an independent dataset of 104 BCs. Survival and Pearson correlation analyses were computed for each gene separately. The expression of 48 genes was significantly associated with BC prognosis (p < 0.05), and 32 of these prognostic genes exhibited a direct expression-methylation correlation. The expression of several immune-related genes, including CD3D and HLA-A, was associated with both relapse-free survival (HR = 0.42, p = 3.5E-06; HR = 0.35, p = 1.7E-08) and overall survival (HR = 0.50, p = 5.5E-04; HR = 0.68, p = 4.5E-02) in ER-/HER2- BCs. On the overall, the distribution of both positive and negative expression-methylation correlation in distinct gene regions have different effects on gene expression and prognosis in BC subtypes. This large-scale meta-analysis allowed the identification of several genes consistently associated with prognosis, whose DNA methylation could represent a promising biomarker for prognostication and clinical stratification of patients with distinct BC subtypes.

  7. Integrative analysis of DNA methylation and gene expression in butyrate-treated CHO cells.

    PubMed

    Wippermann, Anna; Rupp, Oliver; Brinkrolf, Karina; Hoffrogge, Raimund; Noll, Thomas

    2016-11-24

    The cellular mechanisms responsible for the versatile properties of CHO cells as the major production cell line for biopharmaceutical molecules are not entirely understood yet, although several 'omics' data facilitate the understanding of CHO cells and their reactions to environmental conditions. However, genome-wide studies of epigenetic processes such as DNA methylation are still limited. To prove the applicability and usefulness of integrating DNA methylation and gene expression data in a biotechnological context, we exemplarily analyzed the time course of cellular reactions upon butyrate addition in antibody-producing CHO cells by whole-genome bisulfite sequencing and CHO-specific cDNA microarrays. Gene expression and DNA methylation analyses showed that pathways known to be affected by butyrate, including cell cycle and apoptosis, as well as pathways potentially involved in butyrate-induced hyperproductivity such as central energy metabolism and protein biosynthesis were affected. Differentially methylated regions were furthermore found to contain binding-site motifs of specific transcription factors and were hypothesized to represent regulatory regions closely connected to the cellular response to butyrate. Generally, our experiment underlines the benefit of integrating DNA methylation and gene expression data, as it provided potential novel candidate genes for rational cell line development and allowed for new insights into the butyrate effect on CHO cells.

  8. CG gene body DNA methylation changes and evolution of duplicated genes in cassava.

    PubMed

    Wang, Haifeng; Beyene, Getu; Zhai, Jixian; Feng, Suhua; Fahlgren, Noah; Taylor, Nigel J; Bart, Rebecca; Carrington, James C; Jacobsen, Steven E; Ausin, Israel

    2015-11-03

    DNA methylation is important for the regulation of gene expression and the silencing of transposons in plants. Here we present genome-wide methylation patterns at single-base pair resolution for cassava (Manihot esculenta, cultivar TME 7), a crop with a substantial impact in the agriculture of subtropical and tropical regions. On average, DNA methylation levels were higher in all three DNA sequence contexts (CG, CHG, and CHH, where H equals A, T, or C) than those of the most well-studied model plant Arabidopsis thaliana. As in other plants, DNA methylation was found both on transposons and in the transcribed regions (bodies) of many genes. Consistent with these patterns, at least one cassava gene copy of all of the known components of Arabidopsis DNA methylation pathways was identified. Methylation of LTR transposons (GYPSY and COPIA) was found to be unusually high compared with other types of transposons, suggesting that the control of the activity of these two types of transposons may be especially important. Analysis of duplicated gene pairs resulting from whole-genome duplication showed that gene body DNA methylation and gene expression levels have coevolved over short evolutionary time scales, reinforcing the positive relationship between gene body methylation and high levels of gene expression. Duplicated genes with the most divergent gene body methylation and expression patterns were found to have distinct biological functions and may have been under natural or human selection for cassava traits.

  9. CG gene body DNA methylation changes and evolution of duplicated genes in cassava

    PubMed Central

    Wang, Haifeng; Beyene, Getu; Zhai, Jixian; Feng, Suhua; Fahlgren, Noah; Taylor, Nigel J.; Bart, Rebecca; Carrington, James C.; Jacobsen, Steven E.; Ausin, Israel

    2015-01-01

    DNA methylation is important for the regulation of gene expression and the silencing of transposons in plants. Here we present genome-wide methylation patterns at single-base pair resolution for cassava (Manihot esculenta, cultivar TME 7), a crop with a substantial impact in the agriculture of subtropical and tropical regions. On average, DNA methylation levels were higher in all three DNA sequence contexts (CG, CHG, and CHH, where H equals A, T, or C) than those of the most well-studied model plant Arabidopsis thaliana. As in other plants, DNA methylation was found both on transposons and in the transcribed regions (bodies) of many genes. Consistent with these patterns, at least one cassava gene copy of all of the known components of Arabidopsis DNA methylation pathways was identified. Methylation of LTR transposons (GYPSY and COPIA) was found to be unusually high compared with other types of transposons, suggesting that the control of the activity of these two types of transposons may be especially important. Analysis of duplicated gene pairs resulting from whole-genome duplication showed that gene body DNA methylation and gene expression levels have coevolved over short evolutionary time scales, reinforcing the positive relationship between gene body methylation and high levels of gene expression. Duplicated genes with the most divergent gene body methylation and expression patterns were found to have distinct biological functions and may have been under natural or human selection for cassava traits. PMID:26483493

  10. Cloning, sequencing and analysis of dnaK -dnaJ gene cluster of Bacillus megaterium.

    PubMed

    Bao, Fangming; Gong, Lei; Shao, Weilan

    2008-12-01

    The DNA fragment of heat shock genes (hrcA-grpE-dnaK-dnaJ) containing complete hrcA-grpE-dnaK operon and the transcription unit of dnaJ was cloned, sequensed and analyzed from Bacillus megaterium RF5. The sequence of hrcA, grpE and dnaJ were first time reported, and their coding products exibit 60%, 63% and 81% of identities to the homologs of B. subtilis. A sigmaA-type promoter of Gram-positive bacteria (PA1) and a terminator were located upstream of the hrcA and downstream of dnaK, and a Controlling inverted repeat of chaperone expression element (CIRCE) was identified between PA1 and hrcA. Another sigmaA-type promoter (PA2) and a terminator were found upstream and downstream of dnaJ, indicating B. megaterium has a transcription unit containing a single gene dnaJ. The structure of dnaJ transcription unit is more similar to that of Listeria monocytogenes than other species of Bacillus. A partial protein-based phylogenetic tree, derived from Gram-positive bacteria using HrcA sequence, indicated a closer phylogenetic relationship between B. megaterium and Geobacillus species than other two Bacillus species.

  11. Quantifying the Effect of DNA Packaging on Gene Expression Level

    NASA Astrophysics Data System (ADS)

    Kim, Harold

    2010-10-01

    Gene expression, the process by which the genetic code comes alive in the form of proteins, is one of the most important biological processes in living cells, and begins when transcription factors bind to specific DNA sequences in the promoter region upstream of a gene. The relationship between gene expression output and transcription factor input which is termed the gene regulation function is specific to each promoter, and predicting this gene regulation function from the locations of transcription factor binding sites is one of the challenges in biology. In eukaryotic organisms (for example, animals, plants, fungi etc), DNA is highly compacted into nucleosomes, 147-bp segments of DNA tightly wrapped around histone protein core, and therefore, the accessibility of transcription factor binding sites depends on their locations with respect to nucleosomes - sites inside nucleosomes are less accessible than those outside nucleosomes. To understand how transcription factor binding sites contribute to gene expression in a quantitative manner, we obtain gene regulation functions of promoters with various configurations of transcription factor binding sites by using fluorescent protein reporters to measure transcription factor input and gene expression output in single yeast cells. In this talk, I will show that the affinity of a transcription factor binding site inside and outside the nucleosome controls different aspects of the gene regulation function, and explain this finding based on a mass-action kinetic model that includes competition between nucleosomes and transcription factors.

  12. Land use type significantly affects microbial gene transcription in soil.

    PubMed

    Nacke, Heiko; Fischer, Christiane; Thürmer, Andrea; Meinicke, Peter; Daniel, Rolf

    2014-05-01

    Soil microorganisms play an essential role in sustaining biogeochemical processes and cycling of nutrients across different land use types. To gain insights into microbial gene transcription in forest and grassland soil, we isolated mRNA from 32 sampling sites. After sequencing of generated complementary DNA (cDNA), a total of 5,824,229 sequences could be further analyzed. We were able to assign nonribosomal cDNA sequences to all three domains of life. A dominance of bacterial sequences, which were affiliated to 25 different phyla, was found. Bacterial groups capable of aromatic compound degradation such as Phenylobacterium and Burkholderia were detected in significantly higher relative abundance in forest soil than in grassland soil. Accordingly, KEGG pathway categories related to degradation of aromatic ring-containing molecules (e.g., benzoate degradation) were identified in high abundance within forest soil-derived metatranscriptomic datasets. The impact of land use type forest on community composition and activity is evidently to a high degree caused by the presence of wood breakdown products. Correspondingly, bacterial groups known to be involved in lignin degradation and containing ligninolytic genes such as Burkholderia, Bradyrhizobium, and Azospirillum exhibited increased transcriptional activity in forest soil. Higher solar radiation in grassland presumably induced increased transcription of photosynthesis-related genes within this land use type. This is in accordance with high abundance of photosynthetic organisms and plant-infecting viruses in grassland.

  13. Noncatalytic, N-terminal Domains of DNA Polymerase Lambda Affect Its Cellular Localization and DNA Damage Response.

    PubMed

    Stephenson, Anthony A; Taggart, David J; Suo, Zucai

    2017-04-13

    Specialized DNA polymerases, such as DNA polymerase lambda (Polλ), are important players in DNA damage tolerance and repair pathways. Knowing how DNA polymerases are regulated and recruited to sites of DNA damage is imperative to understanding these pathways. Recent work has suggested that Polλ plays a role in several distinct DNA damage tolerance and repair pathways. In this paper, we report previously unknown roles of the N-terminal domains of human Polλ for modulating its involvement in DNA damage tolerance and repair. By using Western blot analysis, fluorescence microscopy, and cell survival assays, we found that the BRCA1 C-terminal (BRCT) and proline/serine-rich (PSR) domains of Polλ affect its cellular localization and DNA damage responses. The nuclear localization signal (NLS) of Polλ was necessary to overcome the impediment of its nuclear localization caused by its BRCT and PSR domains. Induction of DNA damage resulted in recruitment of Polλ to chromatin, which was controlled by its BRCT and PSR domains. In addition, the presence of both domains was required for Polλ-mediated tolerance of oxidative DNA damage but not DNA methylation damage. These findings suggest that the N-terminal domains of Polλ are important for regulating its responses to DNA damage.

  14. Divergence of Gene Body DNA Methylation and Evolution of Plant Duplicate Genes

    PubMed Central

    Wang, Jun; Marowsky, Nicholas C.; Fan, Chuanzhu

    2014-01-01

    It has been shown that gene body DNA methylation is associated with gene expression. However, whether and how deviation of gene body DNA methylation between duplicate genes can influence their divergence remains largely unexplored. Here, we aim to elucidate the potential role of gene body DNA methylation in the fate of duplicate genes. We identified paralogous gene pairs from Arabidopsis and rice (Oryza sativa ssp. japonica) genomes and reprocessed their single-base resolution methylome data. We show that methylation in paralogous genes nonlinearly correlates with several gene properties including exon number/gene length, expression level and mutation rate. Further, we demonstrated that divergence of methylation level and pattern in paralogs indeed positively correlate with their sequence and expression divergences. This result held even after controlling for other confounding factors known to influence the divergence of paralogs. We observed that methylation level divergence might be more relevant to the expression divergence of paralogs than methylation pattern divergence. Finally, we explored the mechanisms that might give rise to the divergence of gene body methylation in paralogs. We found that exonic methylation divergence more closely correlates with expression divergence than intronic methylation divergence. We show that genomic environments (e.g., flanked by transposable elements and repetitive sequences) of paralogs generated by various duplication mechanisms are associated with the methylation divergence of paralogs. Overall, our results suggest that the changes in gene body DNA methylation could provide another avenue for duplicate genes to develop differential expression patterns and undergo different evolutionary fates in plant genomes. PMID:25310342

  15. Suppression of DNA-dependent protein kinase sensitize cells to radiation without affecting DSB repair.

    PubMed

    Gustafsson, Ann-Sofie; Abramenkovs, Andris; Stenerlöw, Bo

    2014-11-01

    Efficient and correct repair of DNA double-strand break (DSB) is critical for cell survival. Defects in the DNA repair may lead to cell death, genomic instability and development of cancer. The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is an essential component of the non-homologous end joining (NHEJ) which is the major DSB repair pathway in mammalian cells. In the present study, by using siRNA against DNA-PKcs in four human cell lines, we examined how low levels of DNA-PKcs affected cellular response to ionizing radiation. Decrease of DNA-PKcs levels by 80-95%, induced by siRNA treatment, lead to extreme radiosensitivity, similar to that seen in cells completely lacking DNA-PKcs and low levels of DNA-PKcs promoted cell accumulation in G2/M phase after irradiation and blocked progression of mitosis. Surprisingly, low levels of DNA-PKcs did not affect the repair capacity and the removal of 53BP1 or γ-H2AX foci and rejoining of DSB appeared normal. This was in strong contrast to cells completely lacking DNA-PKcs and cells treated with the DNA-PKcs inhibitor NU7441, in which DSB repair were severely compromised. This suggests that there are different mechanisms by which loss of DNA-PKcs functions can sensitize cells to ionizing radiation. Further, foci of phosphorylated DNA-PKcs (T2609 and S2056) co-localized with DSB and this was independent of the amount of DNA-PKcs but foci of DNA-PKcs was only seen in siRNA-treated cells. Our study emphasizes on the critical role of DNA-PKcs for maintaining survival after radiation exposure which is uncoupled from its essential function in DSB repair. This could have implications for the development of therapeutic strategies aiming to radiosensitize tumors by affecting the DNA-PKcs function.

  16. Nanoscopic structure of DNA condensed for gene delivery.

    PubMed Central

    Dunlap, D D; Maggi, A; Soria, M R; Monaco, L

    1997-01-01

    Scanning force microscopy was used to examine DNA condensates prepared with varying stoichiometries of lipospermine or polyethylenimine in physiological solution. For the first time, individual DNA strands were clearly visualized in incomplete condensates without drying. Using lipospermine at sub-saturating concentrations, discrete nuclei of condensation were observed often surrounded by folded loops of DNA. Similar packing of DNA loops occurred for polyethylenimine-induced condensation. Increasing the amount of the condensing agent led to the progressive coalescence or aggregation of initial condensation nuclei through folding rather than winding the DNA. At over-saturating charge ratios of the cationic lipid or polymer to DNA, condensates had sizes smaller than or equal to those measured previously in electron micrographs. Polyethylenimine condensates were more compact than lipospermine condensates and both produced more homogeneously compacted plasmids when used in a 2-4-fold charge excess. The size and morphology of the condensates may affect their efficiency in transfection. PMID:9224610

  17. Parameters affecting organization and transfection efficiency of amphiphilic copolymers/DNA carriers.

    PubMed

    Roques, Caroline; Bouchemal, Kawthar; Ponchel, Gilles; Fromes, Yves; Fattal, Elias

    2009-08-19

    Amphiphilic block copolymers are attracting increasing interest in the field of gene therapy, especially for transfection of striated muscles. However, little is known about the parameters affecting their transfection efficiency in vivo. These copolymers can self-assemble as micelles in certain conditions. Since micellization strongly depends on the temperature and ionic content of the preparation medium, the present paper aimed at investigating the influence of these parameters in the context of gene delivery. We first assessed the micellization of pluronic L64 and tetronic 304 at various temperatures in water, saline or Tyrode's salts solution. Pluronic L64 can form micelles at temperatures above 37 degrees C in water or at 37 degrees C in the Tyrode's salts solution, in the range of concentration investigated. For tetronic 304, CMC was found to be far below the concentrations used to transfer DNA. Pluronic L64 interacted with DNA only in the presence of micelles. Moreover, in vivo evaluation demonstrated that significantly improved transfection efficiency was obtained at 37 degrees C in Tyrode's salts solution for pluronic L64 based formulations, compared to 4 degrees C and 20 degrees C. Such differences were not recorded with tetronic 304. Finally, optimized formulations of both tetronic 304 and pluronic L64 were able to mediate efficient transfection in dystrophic muscles.

  18. Genetic variants of the DNA repair genes from Exome Aggregation Consortium (EXAC) database: significance in cancer.

    PubMed

    Das, Raima; Ghosh, Sankar Kumar

    2017-04-01

    DNA repair pathway is a primary defense system that eliminates wide varieties of DNA damage. Any deficiencies in them are likely to cause the chromosomal instability that leads to cell malfunctioning and tumorigenesis. Genetic polymorphisms in DNA repair genes have demonstrated a significant association with cancer risk. Our study attempts to give a glimpse of the overall scenario of the germline polymorphisms in the DNA repair genes by taking into account of the Exome Aggregation Consortium (ExAC) database as well as the Human Gene Mutation Database (HGMD) for evaluating the disease link, particularly in cancer. It has been found that ExAC DNA repair dataset (which consists of 228 DNA repair genes) comprises 30.4% missense, 12.5% dbSNP reported and 3.2% ClinVar significant variants. 27% of all the missense variants has the deleterious SIFT score of 0.00 and 6% variants carrying the most damaging Polyphen-2 score of 1.00, thus affecting the protein structure and function. However, as per HGMD, only a fraction (1.2%) of ExAC DNA repair variants was found to be cancer-related, indicating remaining variants reported in both the databases to be further analyzed. This, in turn, may provide an increased spectrum of the reported cancer linked variants in the DNA repair genes present in ExAC database. Moreover, further in silico functional assay of the identified vital cancer-associated variants, which is essential to get their actual biological significance, may shed some lights in the field of targeted drug development in near future.

  19. Diaphanous gene mutation affects spiral cleavage and chirality in snails

    PubMed Central

    Kuroda, Reiko; Fujikura, Kohei; Abe, Masanori; Hosoiri, Yuji; Asakawa, Shuichi; Shimizu, Miho; Umeda, Shin; Ichikawa, Futaba; Takahashi, Hiromi

    2016-01-01

    L-R (left and right) symmetry breaking during embryogenesis and the establishment of asymmetric body plan are key issues in developmental biology, but the onset including the handedness-determining gene locus still remains unknown. Using pure dextral (DD) and sinistral (dd) strains of the pond snail Lymnaea stagnalis as well as its F2 through to F10 backcrossed lines, the single handedness-determining-gene locus was mapped by genetic linkage analysis, BAC cloning and chromosome walking. We have identified the actin-related diaphanous gene Lsdia1 as the strongest candidate. Although the cDNA and derived amino acid sequences of the tandemly duplicated Lsdia1 and Lsdia2 genes are very similar, we could discriminate the two genes/proteins in our molecular biology experiments. The Lsdia1 gene of the sinistral strain carries a frameshift mutation that abrogates full-length LsDia1 protein expression. In the dextral strain, it is already translated prior to oviposition. Expression of Lsdia1 (only in the dextral strain) and Lsdia2 (in both chirality) decreases after the 1-cell stage, with no asymmetric localization throughout. The evolutionary relationships among body handedness, SD/SI (spiral deformation/spindle inclination) at the third cleavage, and expression of diaphanous proteins are discussed in comparison with three other pond snails (L. peregra, Physa acuta and Indoplanorbis exustus). PMID:27708420

  20. Oligonucleotide-mediated gene repair at DNA level: the potential applications for gene therapy.

    PubMed

    Liu, Chang-Mei; Liu, De-Pei; Liang, Chih-Chuan

    2002-10-01

    Mutations in gene sequence can cause many genetic disorders, and researchers have attempted to develop treatments or cures at the DNA level for these diseases. Several strategies including triple-helix-forming oligonucleotides (TFOs), chimeric RNA/DNA oligonucleotide (RDO), and short single-stranded oligodeoxynucleotide (ODN) have been used to correct the dysfunctional genes in situ in the chromosome. Experimental data from cells and animal models suggest that all these strategies can repair the mutations in situ at DNA level. More effective structures of oligonucleotide, efficient delivery systems, and gene correction efficiency should be improved. Development of these strategies holds great potentials for treatments of genetic defects and other disorders.

  1. Expression of the dnaN and dnaQ genes of Escherichia coli is inducible by mitomycin C.

    PubMed

    Kaasch, M; Kaasch, J; Quiñones, A

    1989-10-01

    The dnaN and dnaQ genes encode the beta subunit and the epsilon subunit of the DNA polymerase III holoenzyme. Using translational fusions to lacZ we found that DNA damage caused by mitomycin C induces expression of the dnaA and dnaQ genes. This induction was not observed in lexA and recA mutants which block the induction of the SOS response, suggesting a relationship between the mechanism(s) of genetic control of DNA polymerase III holoenzyme and the SOS regulatory network. Nevertheless, there is evidence that the mitomycin C induction of dnaN and dnaQ is not a simple lexA-regulated process, because nalidixic acid (an excellent SOS inducer) does not increase dnaN and dnaQ gene expression, and the time course of induction is abnormally slow.

  2. Tudor Nuclease Genes and Programmed DNA Rearrangements in Tetrahymena thermophila▿

    PubMed Central

    Howard-Till, Rachel A.; Yao, Meng-Chao

    2007-01-01

    Proteins containing a Tudor domain and domains homologous to staphylococcal nucleases are found in a number of eukaryotes. These “Tudor nucleases” have been found to be associated with the RNA-induced silencing complex (A. A. Caudy, R. F. Ketting, S. M. Hammond, A. M. Denli, A. M. Bathoorn, B. B. Tops, J. M. Silva, M. M. Myers, G. J. Hannon, and R. H. Plasterk, Nature 425:411-414, 2003). We have identified two Tudor nuclease gene homologs, TTN1 and TTN2, in the ciliate Tetrahymena thermophila, which has two distinct small-RNA pathways. Characterization of single and double KOs of TTN1 and TTN2 shows that neither of these genes is essential for growth or sexual reproduction. Progeny of TTN2 KOs and double knockouts occasionally show minor defects in the small-RNA-guided process of DNA deletion but appear to be normal in hairpin RNA-induced gene silencing, suggesting that Tudor nucleases play only a minor role in RNA interference in Tetrahymena. Previous studies of Tetrahymena have shown that inserted copies of the neo gene from Escherichia coli are often deleted from the developing macronucleus during sexual reproduction (Y. Liu, X. Song, M. A. Gorovsky, and K. M. Karrer, Eukaryot. Cell 4:421-431, 2005; M. C. Yao, P. Fuller, and X. Xi, Science 300:1581-1584, 2003). This transgene deletion phenomenon is hypothesized to be a form of genome defense. Analysis of the Tudor nuclease mutants revealed exceptionally high rates of deletion of the neo transgene at the TTN2 locus but no deletion at the TTN1 locus. When present in the same genome, however, the neo gene is deleted at high rates even at the TTN1 locus, further supporting a role for trans-acting RNA in this process. This deletion is not affected by the presence of the same sequence in the macronucleus, thus providing a counterargument for the role of the macronuclear genome in specifying all sequences for deletion. PMID:17715366

  3. Gene Specific Impedimetric Bacterial DNA Sensor for Rheumatic Heart Disease.

    PubMed

    Singh, Swati; Kaushal, Ankur; Gupta, Sunil; Kumar, Ashok

    2017-03-01

    An impedimetric mga gene specific DNA sensor was developed by immobilization of single stranded DNA probe onto the screen printed modified gold-dendrimer nanohybrid composite electrode for early and rapid detection of S. pyogenes in human throat swab samples causing rheumatic heart disease. Electrochemical impedance response was measured after hybridization with bacterial single stranded genomic DNA (ssG-DNA) with probe. The sensor was found highly specific to S. pyogenes and can detect as low as 0.01 ng ssDNA in 6 µL sample only in 30 min. The nanohybrid sensor was also tested with non-specific pathogens and characterized by FTIR. An early detection of the pathogen S. pyogenes in human can save damage of mitral and aortic heart valves (rheumatic heart disease) by proper medical care.

  4. Emodin, aloe-emodin and rhein induced DNA damage and inhibited DNA repair gene expression in SCC-4 human tongue cancer cells.

    PubMed

    Chen, Ya-Yin; Chiang, Su-Yin; Lin, Jaung-Geng; Yang, Jai-Sing; Ma, Yi-Shih; Liao, Ching-Lung; Lai, Tung-Yuan; Tang, Nou-Ying; Chung, Jing-Gung

    2010-03-01

    In our primary studies, we have shown that emodin, aloe-emodin and rhein induced cytotoxic effects, including cell cycle arrest and apoptosis in SCC-4 human tongue cancer cells. However, details regarding their effects on DNA damage and repair gene expression in SCC-4 cells are not clear. We investigated whether or not emodin, aloe-emodin and rhein induced DNA damage and inhibited DNA repair gene expression in SCC-4 cells. Comet assay (single cell electrophoresis) indicated that incubation of SCC-4 cells with 0, 20, 30 and 40 microM of emodin, 0, 25, 50 and 100 microM of aloe-emodin or rhein led to a longer DNA migration smear (comet tail). This means that all examined agents induced DNA damage in SCC-4 cells and these effects are dose-dependent but emodin is stronger than that of aloe-emodin or rhein. The results from real-time PCR assay demonstrated that 30 microM of emodin or aloe-emodin used for 24 and 48 h treatment in SCC-4 cells significantly inhibited expression of genes associated with DNA damage and repair [ataxia telangiectasia mutated (ATM); ataxia-telangiectasia and Rad3-related (ATR); 14-3-3sigma (14-3-3sigma); breast cancer 1, early onset (BRCA1); and DNA-dependent serine/threonine protein kinase (DNA-PK)]; only rhein suppressed the expression of O(6)-methylguanine-DNA methyltransferase (MGMT) mRNA with 48 h treatment, but had no effect on ATM expression. On 24 h treatment, only aloe-emodin significantly affected ATM expression. These effects may be the vital factors for emodin, aloe-emodin and rhein induction of DNA damage in vitro. In conclusion, these agents induced DNA damage followed by the inhibition of DNA repair-associated gene expressions, including ATM, ATR, 14-3-3sigma, BRCA1, DNA-PK and MGMT in SCC-4 human tongue cancer cells.

  5. Bone mineral density-affecting genes in Africans.

    PubMed Central

    Gong, Gordon; Haynatzki, Gleb; Haynatzka, Vera; Howell, Ryan; Kosoko-Lasaki, Sade; Fu, Yun-Xin; Yu, Fei; Gallagher, John C.; Wilson, M. Roy

    2006-01-01

    BACKGROUND: We have recently reported the role of environmental exposure in the ethnic diversity of bone mineral density (BMD). Potential genetic difference has not been adequately assessed. PURPOSE: To determine allele frequencies of BMD-affecting genes and their association with BMD in Africans. METHODS: Allele frequencies at 18 polymorphic sites in 13 genes that affect BMD in Asians and/or Caucasians were determined in 143 recent immigrants (55 men and 88 women, 18-51 years of age) from sub-Saharan Sudan to the United States. Genetic association studies were performed. RESULTS: Among the 14 single-nucleotide polymorphisms (SNPs), 10 were significantly different in allele frequency between Sudanese and Asians, and 10 between Sudanese and Caucasians. Only the osteocalcin gene was not significantly different in allele frequency among Sudanese, Asians and Caucasians. Allele frequencies in the TGFB, COL1A1 and CSR genes were extremely low (<0.04) in the Sudanese. Frequencies of microsatellite alleles in four genes were significantly different among Sudanese, Asians and Caucasians. SNPs in the VDR and ERalpha genes were associated with BMD and/or BMC (bone mineral content) at several bone sites. CONCLUSIONS: Genetic difference may play a role in the ethnic diversity in BMD and/or BMC. PMID:16895279

  6. DNA uptake sequences in Neisseria gonorrhoeae as intrinsic transcriptional terminators and markers of horizontal gene transfer

    PubMed Central

    Gurung, Neesha

    2016-01-01

    DNA uptake sequences are widespread throughout the Neisseria gonorrhoeae genome. These short, conserved sequences facilitate the exchange of endogenous DNA between members of the genus Neisseria. Often the DNA uptake sequences are present as inverted repeats that are able to form hairpin structures. It has been suggested previously that DNA uptake sequence inverted repeats present 3′ of genes play a role in rho-independent termination and attenuation. However, there is conflicting experimental evidence to support this role. The aim of this study was to determine the role of DNA uptake sequences in transcriptional termination. Both bioinformatics predictions, conducted using TransTermHP, and experimental evidence, from RNA-seq data, were used to determine which inverted repeat DNA uptake sequences are transcriptional terminators and in which direction. Here we show that DNA uptake sequences in the inverted repeat configuration occur in N. gonorrhoeae both where the DNA uptake sequence precedes the inverted version of the sequence and also, albeit less frequently, in reverse order. Due to their symmetrical configuration, inverted repeat DNA uptake sequences can potentially act as bi-directional terminators, therefore affecting transcription on both DNA strands. This work also provides evidence that gaps in DNA uptake sequence density in the gonococcal genome coincide with areas of DNA that are foreign in origin, such as prophage. This study differentiates for the first time, to our knowledge, between DNA uptake sequences that form intrinsic transcriptional terminators and those that do not, providing characteristic features within the flanking inverted repeat that can be identified. PMID:28348864

  7. The nucleotide sequence of the dnaA gene and the first part of the dnaN gene of Escherichia coli K-12.

    PubMed

    Hansen, E B; Hansen, F G; von Meyenburg, K

    1982-11-25

    The nucleotide sequence of the dnaA gene and the first 10% of the dnaN gene was determined. From the nucleotide sequence the amino acid sequence of the dnaA gene product was derived. It is a basic protein of 467 amino acid residues with a molecular weight of 52.5 kD. The expression of the dnaA gene is in the counterclockwise direction like the one of the dnaN gene, for which potential startsites were found.

  8. The nucleotide sequence of the dnaA gene and the first part of the dnaN gene of Escherichia coli K-12.

    PubMed Central

    Hansen, E B; Hansen, F G; von Meyenburg, K

    1982-01-01

    The nucleotide sequence of the dnaA gene and the first 10% of the dnaN gene was determined. From the nucleotide sequence the amino acid sequence of the dnaA gene product was derived. It is a basic protein of 467 amino acid residues with a molecular weight of 52.5 kD. The expression of the dnaA gene is in the counterclockwise direction like the one of the dnaN gene, for which potential startsites were found. PMID:6296774

  9. Alpha-phellandrene-induced DNA damage and affect DNA repair protein expression in WEHI-3 murine leukemia cells in vitro.

    PubMed

    Lin, Jen-Jyh; Wu, Chih-Chung; Hsu, Shu-Chun; Weng, Shu-Wen; Ma, Yi-Shih; Huang, Yi-Ping; Lin, Jaung-Geng; Chung, Jing-Gung

    2015-11-01

    Although there are few reports regarding α-phellandrene (α-PA), a natural compound from Schinus molle L. essential oil, there is no report to show that α-PA induced DNA damage and affected DNA repair associated protein expression. Herein, we investigated the effects of α-PA on DNA damage and repair associated protein expression in murine leukemia cells. Flow cytometric assay was used to measure the effects of α-PA on total cell viability and the results indicated that α-PA induced cell death. Comet assay and 4,6-diamidino-2-phenylindole dihydrochloride staining were used for measuring DNA damage and condensation, respectively, and the results indicated that α-PA induced DNA damage and condensation in a concentration-dependent manner. DNA gel electrophoresis was used to examine the DNA damage and the results showed that α-PA induced DNA damage in WEHI-3 cells. Western blotting assay was used to measure the changes of DNA damage and repair associated protein expression and the results indicated that α-PA increased p-p53, p-H2A.X, 14-3-3-σ, and MDC1 protein expression but inhibited the protein of p53, MGMT, DNA-PK, and BRCA-1.

  10. Reduced rDNA copy number does not affect "competitive" chromosome pairing in XYY males of Drosophila melanogaster.

    PubMed

    Maggert, Keith A

    2014-03-20

    The ribosomal DNA (rDNA) arrays are causal agents in X-Y chromosome pairing in meiosis I of Drosophila males. Despite broad variation in X-linked and Y-linked rDNA copy number, polymorphisms in regulatory/spacer sequences between rRNA genes, and variance in copy number of interrupting R1 and R2 retrotransposable elements, there is little evidence that different rDNA arrays affect pairing efficacy. I investigated whether induced rDNA copy number polymorphisms affect chromosome pairing in a "competitive" situation in which complex pairing configurations were possible using males with XYY constitution. Using a common normal X chromosome, one of two different full-length Y chromosomes, and a third chromosome from a series of otherwise-isogenic rDNA deletions, I detected no differences in X-Y or Y-Y pairing or chromosome segregation frequencies that could not be attributed to random variation alone. This work was performed in the context of an undergraduate teaching program at Texas A&M University, and I discuss the pedagogical utility of this and other such experiments.

  11. Reduced rDNA Copy Number Does Not Affect “Competitive” Chromosome Pairing in XYY Males of Drosophila melanogaster

    PubMed Central

    Maggert, Keith A.

    2014-01-01

    The ribosomal DNA (rDNA) arrays are causal agents in X-Y chromosome pairing in meiosis I of Drosophila males. Despite broad variation in X-linked and Y-linked rDNA copy number, polymorphisms in regulatory/spacer sequences between rRNA genes, and variance in copy number of interrupting R1 and R2 retrotransposable elements, there is little evidence that different rDNA arrays affect pairing efficacy. I investigated whether induced rDNA copy number polymorphisms affect chromosome pairing in a “competitive” situation in which complex pairing configurations were possible using males with XYY constitution. Using a common normal X chromosome, one of two different full-length Y chromosomes, and a third chromosome from a series of otherwise-isogenic rDNA deletions, I detected no differences in X-Y or Y-Y pairing or chromosome segregation frequencies that could not be attributed to random variation alone. This work was performed in the context of an undergraduate teaching program at Texas A&M University, and I discuss the pedagogical utility of this and other such experiments. PMID:24449686

  12. DNA Methylation Occurred around Lowly Expressed Genes of Plastid DNA during Tomato Fruit Development.

    PubMed

    Ngernprasirtsiri, J; Kobayashi, H; Akazawa, T

    1988-09-01

    We have analyzed DNA methylation of plastid DNA from fully ripened red fruits, green mature fruits, and green leaves of tomato (Lycopersicon esculentum var. Firstmore). Essentially identical restriction profiles were obtained between chromoplast and chloroplast DNAs by EcoRI digestion. BstNI/EcoRII and HpaII/MspI are pairs of isoschizomers that can discriminate between methylated and unmethylated DNAs. These endonucleases produced different restriction patterns of plastid DNAs from tomato fruits compared to tomato leaves. Moreover, we have found from Southern blots that methylation was not detected in DNA fragments containing certain genes that are actively expressed in chromoplasts, whereas DNA fragments bearing genes that are barely transcribed in chromoplasts are methylated.

  13. groE genes affect SOS repair in Escherichia coli

    SciTech Connect

    Liu, S.K.; Tessman, I. )

    1990-10-01

    Repair of UV-irradiated bacteriophage in Escherichia coli by Weigle reactivation requires functional recA+ and umuD+C+ genes. When the cells were UV irradiated, the groE heat shock gene products, GroES and GroEL, were needed for at least 50% of the Weigle reactivation of the single-stranded DNA phage S13. Because of repression of the umuDC and recA genes, Weigle reactivation is normally blocked by the lexA3(Ind-) mutation (which creates a noncleavable LexA protein), but it was restored by a combination of a high-copy-number umuD+C+ plasmid and a UV dose that increases groE expression. Maximal reactivation was achieved by elevated amounts of the Umu proteins, which was accomplished in part by UV-induced expression of the groE genes. By increasing the number of copies of the umuD+C+ genes, up to 50% of the normal amount of reactivation of S13 was achieved in an unirradiated recA+ host.

  14. Towards understanding the breast cancer epigenome: a comparison of genome-wide DNA methylation and gene expression data.

    PubMed

    Singhal, Sandeep K; Usmani, Nawaid; Michiels, Stefan; Metzger-Filho, Otto; Saini, Kamal S; Kovalchuk, Olga; Parliament, Matthew

    2016-01-19

    Until recently, an elevated disease risk has been ascribed to a genetic predisposition, however, exciting progress over the past years has discovered alternate elements of inheritance that involve epigenetic regulation. Epigenetic changes are heritably stable alterations that include DNA methylation, histone modifications and RNA-mediated silencing. Aberrant DNA methylation is a common molecular basis for a number of important human diseases, including breast cancer. Changes in DNA methylation profoundly affect global gene expression patterns. What is emerging is a more dynamic and complex association between DNA methylation and gene expression than previously believed. Although many tools have already been developed for analyzing genome-wide gene expression data, tools for analyzing genome-wide DNA methylation have not yet reached the same level of refinement. Here we provide an in-depth analysis of DNA methylation in parallel with gene expression data characteristics and describe the particularities of low-level and high-level analyses of DNA methylation data. Low-level analysis refers to pre-processing of methylation data (i.e. normalization, transformation and filtering), whereas high-level analysis is focused on illustrating the application of the widely used class comparison, class prediction and class discovery methods to DNA methylation data. Furthermore, we investigate the influence of DNA methylation on gene expression by measuring the correlation between the degree of CpG methylation and the level of expression and to explore the pattern of methylation as a function of the promoter region.

  15. Proteasome inhibition enhances resistance to DNA damage via upregulation of Rpn4-dependent DNA repair genes.

    PubMed

    Karpov, Dmitry S; Spasskaya, Daria S; Tutyaeva, Vera V; Mironov, Alexander S; Karpov, Vadim L

    2013-09-17

    The 26S proteasome is an ATP-dependent multi-subunit protease complex and the major regulator of intracellular protein turnover and quality control. However, its role in the DNA damage response is controversial. We addressed this question in yeast by disrupting the transcriptional regulation of the PRE1 proteasomal gene. The mutant strain has decreased proteasome activity and is hyper-resistant to various DNA-damaging agents. We found that Rpn4-target genes MAG1, RAD23, and RAD52 are overexpressed in this strain due to Rpn4 stabilisation. These genes represent three different pathways of base excision, nucleotide excision and double strand break repair by homologous recombination (DSB-HR). Consistently, the proteasome mutant displays increased DSB-HR activity. Our data imply that the proteasome may have a negative role in DNA damage response.

  16. Gene-specific DNA methylation of DNMT3B and MTHFR and colorectal adenoma risk.

    PubMed

    Ho, Vikki; Ashbury, Janet E; Taylor, Sherryl; Vanner, Stephen; King, Will D

    2015-12-01

    DNA methyltransferase 3B (DNMT3B) and methylenetetrahydrofolate reductase (MTHFR) are genes which encode enzymes critical to one-carbon metabolism. Polymorphisms in these genes have been implicated in colorectal cancer etiology; however, epigenetic modifications such as gene-specific DNA methylation also affect gene expression. DNA methylation of DNMT3B and MTHFR was quantified in blood leukocytes using Sequenom EpiTYPER® among 272 participants undergoing a screening colonoscopy. DNA methylation was quantified in 66 and 28CpG sites of DNMT3B and MTHFR respectively, and conceptualized using two approaches. First, measures representing average methylation across all CpG sites were created. Second, unsupervised principal component (PC) analysis was used to identify summary variables representing methylation around the transcription start site and in the gene-coding area for both DNMT3B and MTHFR. Logistic regression was used to compare methylation levels between participants diagnosed with colorectal adenoma(s) versus those with a normal colonoscopy via the estimation of odds ratios (ORs) and 95% confidence intervals (95% CIs) for the risk of colorectal adenomas. No association was observed between average DNA methylation of either DNMT3B or MTHFR and colorectal adenoma risk. For DNMT3B, increasing DNA methylation of CpG sites in the gene-coding area was associated with a higher risk of colorectal adenomas (OR=1.34; 95% CI: 1.01-1.79 per SD). This research provides preliminary evidence that methylation of DNMT3B may have functional significance with respect to colorectal adenomas, precursors to the vast majority of colorectal cancers.

  17. A superfamily of DNA transposons targeting multicopy small RNA genes.

    PubMed

    Kojima, Kenji K; Jurka, Jerzy

    2013-01-01

    Target-specific integration of transposable elements for multicopy genes, such as ribosomal RNA and small nuclear RNA (snRNA) genes, is of great interest because of the relatively harmless nature, stable inheritance and possible application for targeted gene delivery of target-specific transposable elements. To date, such strict target specificity has been observed only among non-LTR retrotransposons. We here report a new superfamily of sequence-specific DNA transposons, designated Dada. Dada encodes a DDE-type transposase that shows a distant similarity to transposases encoded by eukaryotic MuDR, hAT, P and Kolobok transposons, as well as the prokaryotic IS256 insertion element. Dada generates 6-7 bp target site duplications upon insertion. One family of Dada DNA transposons targets a specific site inside the U6 snRNA genes and are found in various fish species, water flea, oyster and polycheate worm. Other target sequences of the Dada transposons are U1 snRNA genes and different tRNA genes. The targets are well conserved in multicopy genes, indicating that copy number and sequence conservation are the primary constraints on the target choice of Dada transposons. Dada also opens a new frontier for target-specific gene delivery application.

  18. Genetic analysis of DNA methylation and gene expression levels in whole blood of healthy human subjects

    PubMed Central

    2012-01-01

    Background The predominant model for regulation of gene expression through DNA methylation is an inverse association in which increased methylation results in decreased gene expression levels. However, recent studies suggest that the relationship between genetic variation, DNA methylation and expression is more complex. Results Systems genetic approaches for examining relationships between gene expression and methylation array data were used to find both negative and positive associations between these levels. A weighted correlation network analysis revealed that i) both transcriptome and methylome are organized in modules, ii) co-expression modules are generally not preserved in the methylation data and vice-versa, and iii) highly significant correlations exist between co-expression and co-methylation modules, suggesting the existence of factors that affect expression and methylation of different modules (i.e., trans effects at the level of modules). We observed that methylation probes associated with expression in cis were more likely to be located outside CpG islands, whereas specificity for CpG island shores was present when methylation, associated with expression, was under local genetic control. A structural equation model based analysis found strong support in particular for a traditional causal model in which gene expression is regulated by genetic variation via DNA methylation instead of gene expression affecting DNA methylation levels. Conclusions Our results provide new insights into the complex mechanisms between genetic markers, epigenetic mechanisms and gene expression. We find strong support for the classical model of genetic variants regulating methylation, which in turn regulates gene expression. Moreover we show that, although the methylation and expression modules differ, they are highly correlated. PMID:23157493

  19. Does varicocelectomy affect DNA fragmentation in infertile patients?

    PubMed Central

    Telli, Onur; Sarici, Hasmet; Kabar, Mucahit; Ozgur, Berat Cem; Resorlu, Berkan; Bozkurt, Selen

    2015-01-01

    Introduction: The aims of this study were to investigate the effect of varicocelectomy on DNA fragmentation index and semen parameters in infertile patients before and after surgical repair of varicocele. Materials and Methods: In this prospective study, 72 men with at least 1-year history of infertility, varicocele and oligospermia were examined. Varicocele sperm samples were classified as normal or pathological according to the 2010 World Health Organization guidelines. The acridine orange test was used to assess the DNA fragmentation index (DFI) preoperatively and postoperatively. Results: DFI decreased significantly after varicocelectomy from 34.5% to 28.2% (P = 0.024). In addition all sperm parameters such as mean sperm count, sperm concentration, progressive motility and sperm morphology significantly increased from 19.5 × 106 to 30.7 × 106, 5.4 × 106/ml to 14.3 × 106/ml, and 19.9% to 31.2% (P < 0.001) and 2.6% to 3.1% (P = 0.017). The study was limited by the loss to follow-up of some patients and unrecorded pregnancy outcome due to short follow-up. Conclusion: Varicocele causes DNA-damage in spermatozoa. We suggest that varicocelectomy improves sperm parameters and decreases DFI. PMID:25878412

  20. Humans and chimpanzees differ in their cellular response to DNA damage and non-coding sequence elements of DNA repair-associated genes.

    PubMed

    Weis, E; Galetzka, D; Herlyn, H; Schneider, E; Haaf, T

    2008-01-01

    both species. Genetic differences in non-coding sequence elements may affect gene regulation in the DNA repair network and thus contribute to species differences in DNA repair and cancer susceptibility.

  1. DNA methylation patterns of protein coding genes and long noncoding RNAs in female schizophrenic patients.

    PubMed

    Liao, Qi; Wang, Yunliang; Cheng, Jia; Dai, Dongjun; Zhou, Xingyu; Zhang, Yuzheng; Gao, Shugui; Duan, Shiwei

    2015-02-01

    Schizophrenia (SCZ) is a complex mental disorder contributed by both genetic and epigenetic factors. Long noncoding RNAs (lncRNAs) was recently found playing an important regulatory role in mental disorders. However, little was known about the DNA methylation of lncRNAs, although numerous SCZ studies have been performed on genetic polymorphisms or epigenetic marks in protein coding genes. We presented a comprehensive genome wide DNA methylation study of both protein coding genes and lncRNAs in female patients with paranoid and undifferentiated SCZ. Using the methyl-CpG binding domain (MBD) protein-enriched genome sequencing (MBD-seq), 8,163 and 764 peaks were identified in paranoid and undifferentiated SCZ, respectively (p < 1 × 10-5). Gene ontology analysis showed that the hypermethylated regions were enriched in the genes related to neuron system and brain for both paranoid and undifferentiated SCZ (p < 0.05). Among these peaks, 121 peaks were located in gene promoter regions that might affect gene expression and influence the SCZ related pathways. Interestingly, DNA methylation of 136 and 23 known lncRNAs in Refseq database were identified in paranoid and undifferentiated SCZ, respectively. In addition, ∼20% of intergenic peaks annotated based on Refseq genes were overlapped with lncRNAs in UCSC and gencode databases. In order to show the results well for most biological researchers, we created an online database to display and visualize the information of DNA methyation peaks in both types of SCZ (http://www.bioinfo.org/scz/scz.htm). Our results showed that the aberrant DNA methylation of lncRNAs might be another important epigenetic factor for SCZ.

  2. DNA Nanotechnology for Precise Control over Drug Delivery and Gene Therapy.

    PubMed

    Angell, Chava; Xie, Sibai; Zhang, Liangfang; Chen, Yi

    2016-03-02

    Nanomedicine has been growing exponentially due to its enhanced drug targeting and reduced drug toxicity. It uses the interactions where nanotechnological components and biological systems communicate with each other to facilitate the delivery performance. At this scale, the physiochemical properties of delivery systems strongly affect their capacities. Among current delivery systems, DNA nanotechnology shows many advantages because of its unprecedented engineering abilities. Through molecular recognition, DNA nanotechnology can be used to construct a variety of nanostructures with precisely controllable size, shape, and surface chemistry, which can be appreciated in the delivery process. In this review, different approaches that are currently used for the construction of DNA nanostructures are reported. Further, the utilization of these DNA nanostructures with the well-defined parameters for the precise control in drug delivery and gene therapy is discussed.

  3. Toxic Diatom Aldehydes Affect Defence Gene Networks in Sea Urchins

    PubMed Central

    Varrella, Stefano; Ruocco, Nadia; Ianora, Adrianna; Bentley, Matt G.; Costantini, Maria

    2016-01-01

    Marine organisms possess a series of cellular strategies to counteract the negative effects of toxic compounds, including the massive reorganization of gene expression networks. Here we report the modulated dose-dependent response of activated genes by diatom polyunsaturated aldehydes (PUAs) in the sea urchin Paracentrotus lividus. PUAs are secondary metabolites deriving from the oxidation of fatty acids, inducing deleterious effects on the reproduction and development of planktonic and benthic organisms that feed on these unicellular algae and with anti-cancer activity. Our previous results showed that PUAs target several genes, implicated in different functional processes in this sea urchin. Using interactomic Ingenuity Pathway Analysis we now show that the genes targeted by PUAs are correlated with four HUB genes, NF-κB, p53, δ-2-catenin and HIF1A, which have not been previously reported for P. lividus. We propose a working model describing hypothetical pathways potentially involved in toxic aldehyde stress response in sea urchins. This represents the first report on gene networks affected by PUAs, opening new perspectives in understanding the cellular mechanisms underlying the response of benthic organisms to diatom exposure. PMID:26914213

  4. Posttranslational arginylation enzyme Ate1 affects DNA mutagenesis by regulating stress response

    PubMed Central

    Kumar, Akhilesh; Birnbaum, Michael D; Patel, Devang M; Morgan, William M; Singh, Jayanti; Barrientos, Antoni; Zhang, Fangliang

    2016-01-01

    Arginyltransferase 1 (Ate1) mediates protein arginylation, a poorly understood protein posttranslational modification (PTM) in eukaryotic cells. Previous evidence suggest a potential involvement of arginylation in stress response and this PTM was traditionally considered anti-apoptotic based on the studies of individual substrates. However, here we found that arginylation promotes cell death and/or growth arrest, depending on the nature and intensity of the stressing factor. Specifically, in yeast, mouse and human cells, deletion or downregulation of the ATE1 gene disrupts typical stress responses by bypassing growth arrest and suppressing cell death events in the presence of disease-related stressing factors, including oxidative, heat, and osmotic stresses, as well as the exposure to heavy metals or radiation. Conversely, in wild-type cells responding to stress, there is an increase of cellular Ate1 protein level and arginylation activity. Furthermore, the increase of Ate1 protein directly promotes cell death in a manner dependent on its arginylation activity. Finally, we found Ate1 to be required to suppress mutation frequency in yeast and mammalian cells during DNA-damaging conditions such as ultraviolet irradiation. Our study clarifies the role of Ate1/arginylation in stress response and provides a new mechanism to explain the link between Ate1 and a variety of diseases including cancer. This is also the first example that the modulation of the global level of a PTM is capable of affecting DNA mutagenesis. PMID:27685622

  5. Persistence of DNA in Carcasses, Slime and Avian Feces May Affect Interpretation of Environmental DNA Data

    PubMed Central

    Merkes, Christopher M.; McCalla, S. Grace; Jensen, Nathan R.; Gaikowski, Mark P.; Amberg, Jon J.

    2014-01-01

    The prevention of non-indigenous aquatic invasive species spreading into new areas is a goal of many resource managers. New techniques have been developed to survey for species that are difficult to capture with conventional gears that involve the detection of their DNA in water samples (eDNA). This technique is currently used to track the invasion of bigheaded carps (silver carp and bighead carp; Hypophthalmichthys molitrix and H. nobilis) in the Chicago Area Waterway System and Upper Mississippi River. In both systems DNA has been detected from silver carp without the capture of a live fish, which has led to some uncertainty about the source of the DNA. The potential contribution to eDNA by vectors and fomites has not been explored. Because barges move from areas with a high abundance of bigheaded carps to areas monitored for the potential presence of silver carp, we used juvenile silver carp to simulate the barge transport of dead bigheaded carp carcasses, slime residue, and predator feces to determine the potential of these sources to supply DNA to uninhabited waters where it could be detected and misinterpreted as indicative of the presence of live bigheaded carp. Our results indicate that all three vectors are feasible sources of detectable eDNA for at least one month after their deposition. This suggests that current monitoring programs must consider alternative vectors of DNA in the environment and consider alternative strategies to minimize the detection of DNA not directly released from live bigheaded carps. PMID:25402206

  6. On the origin and evolutionary consequences of gene body DNA methylation

    PubMed Central

    Bewick, Adam J.; Ji, Lexiang; Niederhuth, Chad E.; Willing, Eva-Maria; Hofmeister, Brigitte T.; Shi, Xiuling; Wang, Li; Lu, Zefu; Rohr, Nicholas A.; Hartwig, Benjamin; Kiefer, Christiane; Deal, Roger B.; Schmutz, Jeremy; Grimwood, Jane; Stroud, Hume; Jacobsen, Steven E.; Schneeberger, Korbinian; Zhang, Xiaoyu; Schmitz, Robert J.

    2016-01-01

    In plants, CG DNA methylation is prevalent in the transcribed regions of many constitutively expressed genes (gene body methylation; gbM), but the origin and function of gbM remain unknown. Here we report the discovery that Eutrema salsugineum has lost gbM from its genome, to our knowledge the first instance for an angiosperm. Of all known DNA methyltransferases, only CHROMOMETHYLASE 3 (CMT3) is missing from E. salsugineum. Identification of an additional angiosperm, Conringia planisiliqua, which independently lost CMT3 and gbM, supports that CMT3 is required for the establishment of gbM. Detailed analyses of gene expression, the histone variant H2A.Z, and various histone modifications in E. salsugineum and in Arabidopsis thaliana epigenetic recombinant inbred lines found no evidence in support of any role for gbM in regulating transcription or affecting the composition and modification of chromatin over evolutionary timescales. PMID:27457936

  7. Characterization of the mammalian DNA polymerase gene(s) and enzyme(s). Annual progress report

    SciTech Connect

    Mishra, N.C.

    1994-01-01

    Consistent with the long term goal of our research to understand the nature of the key enzymes in eukaryotic DNA replication we have characterized the properties of the wild type DNA polymerases of the {alpha}-family and their mutants. We have also provided evidence for the role of aphidicolin in the elongation process of the in vivo DNA replication in eukaryotic cells. We also developed a technology for planned prep from a large numbers of clones for direct screening by size or restriction digestion in order to facilitate our goals to clone the DNA polymerase gene.

  8. Aberrant DNA methylation in 5' regions of DNA methyltransferase genes in aborted bovine clones.

    PubMed

    Liu, Jinghe; Liang, Xingwei; Zhu, Jiaqiao; Wei, Liang; Hou, Yi; Chen, Da-Yuan; Sun, Qing-Yuan

    2008-09-01

    High rate of abortion and developmental abnormalities is thought to be closely associated with inefficient epigenetic reprogramming of the transplanted nuclei during bovine cloning. It is known that one of the important mechanisms for epigenetic reprogramming is DNA methylation. DNA methylation is established and maintained by DNA methyltransferases (DNMTs), therefore, it is postulated that the inefficient epigenetic reprogramming of transplanted nuclei may be due to abnormal expression of DNMTs. Since DNA methylation can strongly inhibit gene expression, aberrant DNA methylation of DNMT genes may disturb gene expression. But presently, it is not clear whether the methylation abnormality of DNMT genes is related to developmental failure of somatic cell nuclear transfer embryos. In our study, we analyzed methylation patterns of the 5' regions of four DNMT genes including Dnmt3a, Dnmt3b, Dnmt1 and Dnmt2 in four aborted bovine clones. Using bisulfite sequencing method, we found that 3 out of 4 aborted bovine clones (AF1, AF2 and AF3) showed either hypermethylation or hypomethylation in the 5' regions of Dnmt3a and Dnmt3b, indicating that Dnmt3a and Dnmt3b genes are not properly reprogrammed. However, the individual AF4 exhibited similar methylation level and pattern to age-matched in vitro fertilized (IVF) fetuses. Besides, we found that the 5' regions of Dnmt1 and Dnmt2 were nearly completely unmethylated in all normal adults, IVF fetuses, sperm and aborted clones. Together, our results suggest that the aberrant methylation of Dnmt3a and Dnmt3b 5' regions is probably associated with the high abortion of bovine clones.

  9. Reference-based gene model prediction on DNA contigs

    SciTech Connect

    Xu, Y.; Uberbacher, E.C.

    1997-01-01

    This paper presents an algorithm for constructing multiple gene models on a set of contigs of a large genomic clone. The algorithm first uses pattern recognition-based methods to locate exons or partial exons in each contig, and then applies protein homology or EST information from the databases, as reference models, to parse the predicted exons into gene models. In the phase of gene model construction, the algorithm uses a unified framework for genes ranging from situation with homologous proteins/ESTs to no homologous protein/EST in the database. By exploiting protein homology or EST information, the algorithm is able to (1) parse exons into multiple gene models over a set of DNA contigs (possibly unoriented and unordered); (2) remove falsely predicted exons; and (3) identify and locate exons missed by the initial exon prediction.

  10. Identification of smut-responsive genes in sugarcane using cDNA-SRAP.

    PubMed

    Huang, N; Zhang, Y Y; Xiao, X H; Huang, L; Wu, Q B; Que, Y X; Xu, L P

    2015-06-18

    Sugarcane smut, caused by the fungus Sporisorium scitamineum, is one of the main diseases that affect sugarcane worldwide. In the present study, the cDNA-SRAP technique was used to identify genes that are likely to be involved in the response of sugarcane to S. scitamineum infection. In total, 21 bands with significant differential expression during cDNA-SRAP analysis were cloned and sequenced. Real-time qPCR confirmation demonstrated that expression of 19 of these 21 differential bands was consistent with the expression observed during cDNA-SRAP analysis, with a deduced false positive rate of 9.5%. Sequence alignment indicated that 18 of 19 differentially expressed genes showed homologies from 19% to 100% to certain genes in GenBank, including the following genes: topoisomerase (EU048780), ethylene insensitive (EU048778), and tetraspanin (EU048770). A real-time qPCR assay showed that during 0-72 h after pathogen infection, expression of the topoisomerase and the ethylene insensitive genes was upregulated, whereas expression of the tetraspanin gene was downregulated, identical to the expression patterns observed under salicylic acid treatment. Therefore, all three genes are thought to play a role during S. scitamineum challenge, but with different functions. To our knowledge, this is the first report on the application of cDNA-SRAP in differential gene expression analysis of sugarcane during a sugarcane-S. scitamineum interaction. The results obtained also contribute to a better understanding of the molecular mechanisms associated with sugarcane-S. scitamineum interactions.

  11. Effect of loss of T-DNA genes on MIA biosynthetic pathway gene regulation and alkaloid accumulation in Catharanthus roseus hairy roots.

    PubMed

    Taneja, Jyoti; Jaggi, Monika; Wankhede, Dhammaprakash Pandhari; Sinha, Alok Krishna

    2010-10-01

    Hairy roots are generated by integration of T-DNA in host plant genome from root inducing (Ri) plasmid of Agrobacterium rhizogenes and have been utilized for production of secondary metabolites in different plant systems. In Catharanthus roseus, hairy roots are known to show different morphologies, growth patterns, and alkaloid contents. It is also known that during transformation, there is a differential loss of a few T-DNA genes. To decipher the effect of loss of T-DNA genes on the various aspects of hairy roots, ten hairy root clones were analyzed for the presence or absence of T-DNA genes and its implications. It was found that the loss of a few ORFs drastically affects the growth and morphological patterns of hairy roots. The absence of T(R)-DNA from hairy roots revealed increased transcript accumulation and higher alkaloid concentrations, whereas callusing among hairy root lines led to decreased transcript and alkaloid accumulation. Significantly higher expression of MIA biosynthetic pathway genes and low abundance of regulator transcripts in hairy root clones in comparison with non-transformed control roots were also observed. This study indicates that it is not only the integration of T-DNA at certain region of host plant genome but also the presence or absence of important ORFs that affects the expression patterns of MIA biosynthetic pathway genes, regulators, and accumulation of specific alkaloids.

  12. Multivalent dendrimer vectors with DNA intercalation motifs for gene delivery.

    PubMed

    Wong, Pamela T; Tang, Kenny; Coulter, Alexa; Tang, Shengzhuang; Baker, James R; Choi, Seok Ki

    2014-11-10

    Poly(amido amine) (PAMAM) dendrimers constitute an important class of nonviral, cationic vectors in gene delivery. Here we report on a new concept for dendrimer vector design based on the incorporation of dual binding motifs: DNA intercalation, and receptor recognition for targeted delivery. We prepared a series of dendrimer conjugates derived from a fifth generation (G5) PAMAM dendrimer, each conjugated with multiple folate (FA) or riboflavin (RF) ligands for cell receptor targeting, and with 3,8-diamino-6-phenylphenanthridinium ("DAPP")-derived ligands for anchoring a DNA payload. Polyplexes of each dendrimer with calf thymus dsDNA were made and characterized by surface plasmon resonance (SPR) spectroscopy, dynamic light scattering (DLS) and zeta potential measurement. These studies provided evidence supporting polyplex formation based on the observation of tight DNA-dendrimer adhesion, and changes in particle size and surface charge upon coincubation. Further SPR studies to investigate the adhesion of the polyplex to a model surface immobilized with folate binding protein (FBP), demonstrated that the DNA payload has only a minimal effect on the receptor binding activity of the polyplex: KD = 0.22 nM for G5(FA)(DAPP) versus 0.98 nM for its polyplex. Finally, we performed in vitro transfection assays to determine the efficiency of conjugate mediated delivery of a luciferase-encoding plasmid into the KB cancer cell line and showed that RF-conjugated dendrimers were 1 to 2 orders of magnitude more effective in enhancing luciferase gene transfection than a plasmid only control. In summary, this study serves as a proof of concept for DNA-ligand intercalation as a motif in the design of multivalent dendrimer vectors for targeted gene delivery.

  13. Polymorphisms in DNA repair genes and associations with cancer risk.

    PubMed

    Goode, Ellen L; Ulrich, Cornelia M; Potter, John D

    2002-12-01

    Common polymorphisms in DNA repair genes may alter protein function and an individual's capacity to repair damaged DNA; deficits in repair capacity may lead to genetic instability and carcinogenesis. To establish our overall understanding of possible in vivo relationships between DNA repair polymorphisms and the development of cancer, we performed a literature review of epidemiological studies that assessed associations between such polymorphisms and risk of cancer. Thirty studies of polymorphisms in OGG1, XRCC1, ERCC1, XPC, XPD, XPF, BRCA2, and XRCC3 were identified in the April 30, 2002 MEDLINE database (National Center for Biotechnology Information. PubMed Database: http://www.ncbi.nlm.nih.gov/entrez). These studies focused on adult glioma, bladder cancer, breast cancer, esophageal cancer, lung cancer, prostate cancer, skin cancer (melanoma and nonmelanoma), squamous cell carcinoma of the head and neck, and stomach cancer. We found that a small proportion of the published studies were large and population-based. Nonetheless, published data were consistent with associations between: (a) the OGG1 S326C variant and increased risk of various types of cancer; (b) the XRCC1 R194W variant and reduced risk of various types of cancer; and (c) the BRCA2 N372H variant and increased risk of breast cancer. Suggestive results were seen for polymorphisms in other genes; however, small sample sizes may have contributed to false-positive or false-negative findings. We conclude that large, well-designed studies of common polymorphisms in DNA repair genes are needed. Such studies may benefit from analysis of multiple genes or polymorphisms and from the consideration of relevant exposures that may influence the likelihood of cancer in the presence of reduced DNA repair capacity.

  14. Development of safe and effective nonviral gene therapy by eliminating CpG motifs from plasmid DNA vector.

    PubMed

    Takahashi, Yuki; Nishikawa, Makiya; Takakura, Yoshinobu

    2012-01-01

    Nonviral gene therapy is expected to become a regular treatment for a variety of difficult-to-treat diseases, such as cancer and virus infection. Plasmid DNA, which is used in most nonviral gene delivery systems, usually contains, unmethylated cytosine-guanine dinucleotides, so called CpG motifs. CpG motifs are recognized by immune cells as a danger signal, leading to an inflammatory response. Such inflammatory responses could affect the safety and effectiveness of nonviral gene therapy. Therefore, reducing the number of CpG motifs in plasmid DNA has been used to increase the potency of plasmid DNA-based gene therapy. Previous studies have demonstrated that CpG reduction can extend the time period of transgene expression from plasmid DNA after in vivo gene transfer. In this review, the biological functions of the CpG motif are briefly summarized. Then, safety issues of nonviral gene therapy are discussed from the viewpoint of the inflammatory response to the CpG motif in plasmid DNA, and the effects of the CpG motif in plasmid DNA on the transgene expression profile of nonviral gene transfer are reviewed.

  15. The study of the relation of DNA repair pathway genes SNPs and the sensitivity to radiotherapy and chemotherapy of NSCLC

    PubMed Central

    Wang, Chunbo; Nie, Huan; Li, Yiqun; Liu, Guiyou; Wang, Xu; Xing, Shijie; Zhang, Liping; Chen, Xin; Chen, Yue; Li, Yu

    2016-01-01

    To analyze the relation between SNPs in DNA repair pathway-related genes and sensitivity of tumor radio-chemotherapy, 26 SNPs in 20 DNA repair genes were genotyped on 176 patients of NSCLC undertaking radio-chemotherapy treatment. In squamous cell carcinoma (SCC), as the rs2228000, rs2228001 (XPC), rs2273953 (TP73), rs2279744 (MDM2), rs2299939 (PTEN) and rs8178085, rs12334811 (DNA-PKcs) affected the sensitivity to chemotherapy, so did the rs8178085, rs12334811 to radiotherapy. Moreover rs344781, rs2273953 and rs12334811 were related with the survival time of SCC. In general, the “good” genotype GG (rs12334811) showed greater efficacy of radio-chemotherapy and MSF (24 months) on SCC. In adenocarcinoma, as the rs2699887 (PIK3), rs12334811 (DNA-PKcs) influenced the sensitivity to chemotherapy, so did the rs2299939, rs2735343 (PTEN) to radiotherapy. And rs402710, rs80270, rs2279744 and rs2909430 impacted the survival time of the adenocarcinoma patients. Both GG (rs2279744) and AG (rs2909430) showed a shorter survival time (MFS = 6). Additionally, some SNPs such as rs2228000, rs2228001 and rs344781 were found to regulate the expression of DNA repair pathway genes through eQTLs dataset analysis. These results indicate that SNPs in DNA repair pathway genes might regulate the expression and affect the DNA damage repair, and thereby impact the efficacy of radio-chemotherapy and the survival time of NSCLC. PMID:27246533

  16. Quantitative expression of candidate genes affecting eggshell color.

    PubMed

    Zheng, Chuanwei; Li, Zesheng; Yang, Ning; Ning, Zhonghua

    2014-05-01

    There are three pigments that affect the color of an eggshell: protoporphyrin, biliverdin and biliverdin-zinc chelate. Protoporphyrin is the main pigment in brown and light-brown eggshells, whereas very little protoporphyrin is found in white eggshells. Eggshell protoporphyrin is derived from the heme formation in birds. Coproporphyrinogen III oxidase (CPOX) and ferrochelatase (FECH) represent rate-limiting enzymes for the heme-biosynthetic pathway. Breast cancer resistance protein (BCRP), feline leukemia virus receptor (FLVCR), and heme-responsive gene-1 (HRG1) serve as primary transporters for both protoporphyrinogen and heme. Finally, four organic anion transporting polypeptide family members (including solute carrier organic anion transporter family, SLCO1C1, SLCO1A2, SLCO1B3 and LOC418189) may affect pigment transport within eggshells. Here we measured gene expression levels in key tissues of egg-producing hens. We analyzed three different types of hens that generated distinct eggshell colors: white, pink or brown. Our data revealed three ways in which eggshell color was genetically influenced. First, high-level expression of CPOX generated more protoporphyrinogen and a brown eggshell color. In contrast, high expression of FECH likely converted more protoporphyrinogen into heme, reduced protoporphyrinogen levels within the eggshell and generated a light color. Second, heme transporters also affected eggshell color. High-level expression of BCRP, HRG1 and FLVCR were associated with brown, white and generally lighter eggshell colors, respectively. Finally, protoporphyrin precipitation also affected eggshell color, as high expression of both SLCO1A2 and SLCO1C1 were associated with brown eggshell color. As such, we have identified seven genes in which expression levels in different tissues were associated with eggshell color.

  17. Persistence of DNA in carcasses, slime and avian feces may affect interpretation of environmental DNA data

    USGS Publications Warehouse

    Merkes, Christopher M.; McCalla, S. Grace; Jensen, Nathan R.; Gaikowski, Mark P.; Amberg, Jon J.

    2014-01-01

    The prevention of non-indigenous aquatic invasive species spreading into new areas is a goal of many resource managers. New techniques have been developed to survey for species that are difficult to capture with conventional gears that involve the detection of their DNA in water samples (eDNA). This technique is currently used to track the invasion of bigheaded carps (silver carp and bighead carp; Hypophthalmichthys molitrix and H. nobilis) in the Chicago Area Waterway System and Upper Mississippi River. In both systems DNA has been detected from silver carp without the capture of a live fish, which has led to some uncertainty about the source of the DNA. The potential contribution to eDNA by vectors and fomites has not been explored. Because barges move from areas with a high abundance of bigheaded carps to areas monitored for the potential presence of silver carp, we used juvenile silver carp to simulate the barge transport of dead bigheaded carp carcasses, slime residue, and predator feces to determine the potential of these sources to supply DNA to uninhabited waters where it could be detected and misinterpreted as indicative of the presence of live bigheaded carp. Our results indicate that all three vectors are feasible sources of detectable eDNA for at least one month after their deposition. This suggests that current monitoring programs must consider alternative vectors of DNA in the environment and consider alternative strategies to minimize the detection of DNA not directly released from live bigheaded carps.

  18. Independent component analysis of Alzheimer's DNA microarray gene expression data

    PubMed Central

    Kong, Wei; Mou, Xiaoyang; Liu, Qingzhong; Chen, Zhongxue; Vanderburg, Charles R; Rogers, Jack T; Huang, Xudong

    2009-01-01

    Background Gene microarray technology is an effective tool to investigate the simultaneous activity of multiple cellular pathways from hundreds to thousands of genes. However, because data in the colossal amounts generated by DNA microarray technology are usually complex, noisy, high-dimensional, and often hindered by low statistical power, their exploitation is difficult. To overcome these problems, two kinds of unsupervised analysis methods for microarray data: principal component analysis (PCA) and independent component analysis (ICA) have been developed to accomplish the task. PCA projects the data into a new space spanned by the principal components that are mutually orthonormal to each other. The constraint of mutual orthogonality and second-order statistics technique within PCA algorithms, however, may not be applied to the biological systems studied. Extracting and characterizing the most informative features of the biological signals, however, require higher-order statistics. Results ICA is one of the unsupervised algorithms that can extract higher-order statistical structures from data and has been applied to DNA microarray gene expression data analysis. We performed FastICA method on DNA microarray gene expression data from Alzheimer's disease (AD) hippocampal tissue samples and consequential gene clustering. Experimental results showed that the ICA method can improve the clustering results of AD samples and identify significant genes. More than 50 significant genes with high expression levels in severe AD were extracted, representing immunity-related protein, metal-related protein, membrane protein, lipoprotein, neuropeptide, cytoskeleton protein, cellular binding protein, and ribosomal protein. Within the aforementioned categories, our method also found 37 significant genes with low expression levels. Moreover, it is worth noting that some oncogenes and phosphorylation-related proteins are expressed in low levels. In comparison to the PCA and support

  19. Benzo[a]pyrene decreases global and gene specific DNA methylation during zebrafish development

    PubMed Central

    Fang, Xiefan; Thornton, Cammi; Scheffler, Brian E.; Willett, Kristine L.

    2013-01-01

    DNA methylation is important for gene regulation and is vulnerable to early-life exposure to environmental contaminants. We found that direct waterborne benzo[a]pyrene (BaP) exposure at 24 μg/L from 2.5 to 96 hours post fertilization (hpf) to zebrafish embryos significantly decreased global cytosine methylation by 44.8% and promoter methylation in vasa by 17%. Consequently, vasa expression was significantly increased by 33%. In contrast, BaP exposure at environmentally relevant concentrations did not change CpG island methylation or gene expression in cancer genes such as ras-association domain family member 1 (rassf1), telomerase reverse transcriptase (tert), c-jun, and c-myca. Similarly, BaP did not change gene expression of DNA methyltransferase 1 (dnmt1) and glycine N-methyltransferase (gnmt). While total DNMT activity was not affected, GNMT enzyme activity was moderately increased. In summary, BaP is an epigenetic modifier for global and gene specific DNA methylation status in zebrafish larvae. PMID:23542452

  20. Relationship of eukaryotic DNA replication to committed gene expression: general theory for gene control.

    PubMed Central

    Villarreal, L P

    1991-01-01

    The historic arguments for the participation of eukaryotic DNA replication in the control of gene expression are reconsidered along with more recent evidence. An earlier view in which gene commitment was achieved with stable chromatin structures which required DNA replication to reset expression potential (D. D. Brown, Cell 37:359-365, 1984) is further considered. The participation of nonspecific stable repressor of gene activity (histones and other chromatin proteins), as previously proposed, is reexamined. The possible function of positive trans-acting factors is now further developed by considering evidence from DNA virus models. It is proposed that these positive factors act to control the initiation of replicon-specific DNA synthesis in the S phase (early or late replication timing). Stable chromatin assembles during replication into potentially active (early S) or inactive (late S) states with prevailing trans-acting factors (early) or repressing factors (late) and may asymmetrically commit daughter templates. This suggests logical schemes for programming differentiation based on replicons and trans-acting initiators. This proposal requires that DNA replication precede major changes in gene commitment. Prior evidence against a role for DNA replication during terminal differentiation is reexamined along with other results from terminal differentiation of lower eukaryotes. This leads to a proposal that DNA replication may yet underlie terminal gene commitment, but that for it to do so there must exist two distinct modes of replication control. In one mode (mitotic replication) replicon initiation is tightly linked to the cell cycle, whereas the other mode (terminal replication) initiation is not cell cycle restricted, is replicon specific, and can lead to a terminally differentiated state. Aberrant control of mitotic and terminal modes of DNA replication may underlie the transformed state. Implications of a replicon basis for chromatin structure-function and

  1. Cytogenetic responses to ionizing radiation exposure of human fibroblasts with knocked-down expressions of various DNA damage signaling genes

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; Rohde, Larry; Wu, Honglu

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have demonstrated that genes with up-regulated expression induced by IR may play important roles in DNA damage sensing, cell cycle checkpoint and chromosomal repair, the relationship between the regulation of gene expression by IR and its impact on cytogenetic responses to ionizing radiation has not been systematically studied. Here, the expression of 25 genes selected based on their transcriptional changes in response to IR or from their known DNA repair roles were individually knocked down by siRNA transfection in human fibroblast cells. Chromosome aberrations (CA) and micronuclei (MN) formation were measured as the cytogenetic endpoints. Our results showed that the yields of MN and/or CA formation were significantly increased by suppressed expression of some of the selected genes in DSB and other DNA repair pathways. Knocked-down expression of other genes showed significant impact on cell cycle progression, possibly because of severe impairment of DNA damage repair. Of these 11 genes that affected the cytogenetic response, 9 were up-regulated in the cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulating the biological consequences after IR. Failure to express these IR-responsive genes, such as by gene mutation, could seriously change the outcome of the post IR scenario and lead to carcinogenesis.

  2. Analysis of Mycobacterium leprae gene expression using DNA microarray.

    PubMed

    Akama, Takeshi; Tanigawa, Kazunari; Kawashima, Akira; Wu, Huhehasi; Ishii, Norihisa; Suzuki, Koichi

    2010-10-01

    Mycobacterium leprae, the causative agent of leprosy, does not grow under in vitro condition, making molecular analysis of this bacterium difficult. For this reason, bacteriological information regarding M. leprae gene function is limited compared with other mycobacterium species. In this study, we performed DNA microarray analysis to clarify the RNA expression profile of the Thai53 strain of M. leprae grown in footpads of hypertensive nude rats (SHR/NCrj-rnu). Of 1605 M. leprae genes, 315 showed signal intensity twofold higher than the median. These genes include Acyl-CoA metabolic enzymes and drug metabolic enzymes, which might be related to the virulence of M. leprae. In addition, consecutive RNA expression profile and in silico analyses enabled identification of possible operons within the M. leprae genome. The present results will shed light on M. leprae gene function and further our understanding of the pathogenesis of leprosy.

  3. How hormone receptor-DNA binding affects nucleosomal DNA: the role of symmetry.

    PubMed Central

    Bishop, T C; Kosztin, D; Schulten, K

    1997-01-01

    Molecular dynamics simulations have been employed to determine the optimal conformation of an estrogen receptor DNA binding domain dimer bound to a consensus response element, ds(AGGTCACAGTGACCT), and to a nonconsensus response element, ds(AGAACACAGTGACCT). The structures simulated were derived from a crystallographic structure and solvated by a sphere (45-A radius) of explicit water and counterions. Long-range electrostatic interactions were accounted for during 100-ps simulations by means of a fast multipole expansion algorithm combined with a multiple time-step scheme in the molecular dynamics package NAMD. The simulations demonstrate that the dimer induces a bent and underwound (10.7 bp/turn) conformation in the DNA. The bending reflects the dyad symmetry of the receptor dimer and can be described as an S-shaped curve in the helical axis of DNA when projected onto a plane. A similar bent and underwound conformation is observed for nucleosomal DNA near the nucleosome's dyad axis that reflects the symmetry of the histone octamer. We propose that when a receptor dimer binds to a nucleosome, the most favorable dimer-DNA and histone-DNA interactions are achieved if the respective symmetry axes are aligned. Such positioning of a receptor dimer over the dyad of nucleosome B in the mouse mammary tumor virus promoter is in agreement with experiment. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 9 FIGURE 11 PMID:9129808

  4. Immunomodulation by mucosal gene transfer using TGF-beta DNA.

    PubMed Central

    Kuklin, N A; Daheshia, M; Chun, S; Rouse, B T

    1998-01-01

    This report evaluates the efficacy of DNA encoding TGF-beta administered mucosally to suppress immunity and modulate the immunoinflammatory response to herpes simplex virus (HSV) infection. A single intranasal administration of an eukaryotic expression vector encoding TGF-beta1 led to expression in the lung and lymphoid tissue. T cell-mediated immune responses to HSV infection were suppressed with this effect persisting as measured by the delayed-type hypersensitivity reaction for at least 7 wk. Treated animals were more susceptible to systemic infection with HSV. Multiple prophylactic mucosal administrations of TGF-beta DNA also suppressed the severity of ocular lesions caused by HSV infection, although no effects on this immunoinflammatory response were evident after therapeutic treatment with TGF-beta DNA. Our results demonstrate that the direct mucosal gene transfer of immunomodulatory cytokines provides a convenient means of modulating immunity and influencing the expression of inflammatory disorders. PMID:9664086

  5. Getting the most from gene delivery by repeated DNA transfections

    NASA Astrophysics Data System (ADS)

    Montani, Maura; Marchini, Cristina; Badillo Pazmay, Gretta Veronica; Andreani, Cristina; Bartolacci, Caterina; Amici, Augusto; Pozzi, Daniela; Caracciolo, Giulio

    2015-06-01

    Intracellular delivery of reporter genes causes cells to be luminescent or fluorescent, this condition being of tremendous relevance in applied physics research. Potential applications range from the study of spatial distribution and dynamics of plasma membrane and cytosolic proteins up to the rational design of nanocarriers for gene therapy. Since efficiency of gene delivery is the main limit in most biophysical studies, versatile methods that can maximize gene expression are urgently needed. Here, we describe a robust methodology based on repeated gene delivery in mammalian cells. We find this procedure to be much more efficient than the more traditional route of gene delivery making it possible to get high-quality data without affecting cell viability. Implications for biophysical investigations are discussed.

  6. Advances in Non-Viral DNA Vectors for Gene Therapy

    PubMed Central

    Hardee, Cinnamon L.; Arévalo-Soliz, Lirio Milenka; Hornstein, Benjamin D.; Zechiedrich, Lynn

    2017-01-01

    Uses of viral vectors have thus far eclipsed uses of non-viral vectors for gene therapy delivery in the clinic. Viral vectors, however, have certain issues involving genome integration, the inability to be delivered repeatedly, and possible host rejection. Fortunately, development of non-viral DNA vectors has progressed steadily, especially in plasmid vector length reduction, now allowing these tools to fill in specifically where viral or other non-viral vectors may not be the best options. In this review, we examine the improvements made to non-viral DNA gene therapy vectors, highlight opportunities for their further development, address therapeutic needs for which their use is the logical choice, and discuss their future expansion into the clinic. PMID:28208635

  7. Evolving DNA motifs to predict GeneChip probe performance

    PubMed Central

    Langdon, WB; Harrison, AP

    2009-01-01

    Background Affymetrix High Density Oligonuclotide Arrays (HDONA) simultaneously measure expression of thousands of genes using millions of probes. We use correlations between measurements for the same gene across 6685 human tissue samples from NCBI's GEO database to indicated the quality of individual HG-U133A probes. Low correlation indicates a poor probe. Results Regular expressions can be automatically created from a Backus-Naur form (BNF) context-free grammar using strongly typed genetic programming. Conclusion The automatically produced motif is better at predicting poor DNA sequences than an existing human generated RE, suggesting runs of Cytosine and Guanine and mixtures should all be avoided. PMID:19298675

  8. Adenovirus with DNA Packaging Gene Mutations Increased Virus Release

    PubMed Central

    Wechman, Stephen L.; Rao, Xiao-Mei; McMasters, Kelly M.; Zhou, Heshan Sam

    2016-01-01

    Adenoviruses (Ads) have been extensively manipulated for the development of cancer selective replication, leading to cancer cell death or oncolysis. Clinical studies using E1-modified oncolytic Ads have shown that this therapeutic platform was safe, but with limited efficacy, indicating the necessity of targeting other viral genes for manipulation. To improve the therapeutic efficacy of oncolytic Ads, we treated the entire Ad genome repeatedly with UV-light and have isolated AdUV which efficiently lyses cancer cells as reported previously (Wechman, S. L. et al. Development of an Oncolytic Adenovirus with Enhanced Spread Ability through Repeated UV Irradiation and Cancer Selection. Viruses 2016, 8, 6). In this report, we show that no mutations were observed in the early genes (E1 or E4) of AdUV while several mutations were observed within the Ad late genes which have structural or viral DNA packaging functions. This study also reported the increased release of AdUV from cancer cells. In this study, we found that AdUV inhibits tumor growth following intratumoral injection. These results indicate the potentially significant role of the viral late genes, in particular the DNA packaging genes, to enhance Ad oncolysis. PMID:27999391

  9. Common risk genes for affective and schizophrenic psychoses.

    PubMed

    Maier, Wolfgang

    2008-06-01

    The familial-genetic relationship between affective and schizophrenic disorders is receiving a re-emergence of interest. The reasons are a series of cross-diagnostic molecular-genetic discoveries: specific alleles in the genes for dysbindin (DTNBP1), neuregulin (NRG1) and DAOA (G72/G30) reveal associations for each of both groups of disorders in the same direction in some but not all reported studies. These findings cannot just be false positives because of confirming metaanalyses. Furthermore there is some pathophysiological support: the mentioned genes are involved in biochemical pathways, which are contributing to both disorders partly in a similar and partly in a different manner. The new levels of evidence enrich the classical continuity/discontinuity debate on the relationship between both groups of disorders.

  10. DNA methylation profiling identifies CG methylation clusters in Arabidopsis genes.

    PubMed

    Tran, Robert K; Henikoff, Jorja G; Zilberman, Daniel; Ditt, Renata F; Jacobsen, Steven E; Henikoff, Steven

    2005-01-26

    Cytosine DNA methylation in vertebrates is widespread, but methylation in plants is found almost exclusively at transposable elements and repetitive DNA. Within regions of methylation, methylcytosines are typically found in CG, CNG, and asymmetric contexts. CG sites are maintained by a plant homolog of mammalian Dnmt1 acting on hemi-methylated DNA after replication. Methylation of CNG and asymmetric sites appears to be maintained at each cell cycle by other mechanisms. We report a new type of DNA methylation in Arabidopsis, dense CG methylation clusters found at scattered sites throughout the genome. These clusters lack non-CG methylation and are preferentially found in genes, although they are relatively deficient toward the 5' end. CG methylation clusters are present in lines derived from different accessions and in mutants that eliminate de novo methylation, indicating that CG methylation clusters are stably maintained at specific sites. Because 5-methylcytosine is mutagenic, the appearance of CG methylation clusters over evolutionary time predicts a genome-wide deficiency of CG dinucleotides and an excess of C(A/T)G trinucleotides within transcribed regions. This is exactly what we find, implying that CG methylation clusters have contributed profoundly to plant gene evolution. We suggest that CG methylation clusters silence cryptic promoters that arise sporadically within transcription units.

  11. Benzo(a)pyrene induces similar gene expression changes in testis of DNA repair proficient and deficient mice

    PubMed Central

    2010-01-01

    Background Benzo [a]pyrene (B[a]P) exposure induces DNA adducts at all stages of spermatogenesis and in testis, and removal of these lesions is less efficient in nucleotide excision repair deficient Xpc-/- mice than in wild type mice. In this study, we investigated by using microarray technology whether compromised DNA repair in Xpc-/- mice may lead to a transcriptional reaction of the testis to cope with increased levels of B[a]P induced DNA damage. Results Two-Way ANOVA revealed only 4 genes differentially expressed between wild type and Xpc-/- mice, and 984 genes between testes of B[a]P treated and untreated mice irrespective of the mouse genotype. However, the level in which these B[a]P regulated genes are expressed differs between Wt and Xpc-/- mice (p = 0.000000141), and were predominantly involved in the regulation of cell cycle, translation, chromatin structure and spermatogenesis, indicating a general stress response. In addition, analysis of cell cycle phase dependent gene expression revealed that expression of genes involved in G1-S and G2-M phase arrest was increased after B[a]P exposure in both genotypes. A slightly higher induction of average gene expression was observed at the G2-M checkpoint in Xpc-/- mice, but this did not reach statistical significance (P = 0.086). Other processes that were expected to have changed by exposure, like apoptosis and DNA repair, were not found to be modulated at the level of gene expression. Conclusion Gene expression in testis of untreated Xpc-/- and wild type mice were very similar, with only 4 genes differentially expressed. Exposure to benzo(a)pyrene affected the expression of genes that are involved in cell cycle regulation in both genotypes, indicating that the presence of unrepaired DNA damage in testis blocks cell proliferation to protect DNA integrity in both DNA repair proficient and deficient animals. PMID:20504355

  12. Associations between DNA methylation and schizophrenia-related intermediate phenotypes - a gene set enrichment analysis.

    PubMed

    Hass, Johanna; Walton, Esther; Wright, Carrie; Beyer, Andreas; Scholz, Markus; Turner, Jessica; Liu, Jingyu; Smolka, Michael N; Roessner, Veit; Sponheim, Scott R; Gollub, Randy L; Calhoun, Vince D; Ehrlich, Stefan

    2015-06-03

    Multiple genetic approaches have identified microRNAs as key effectors in psychiatric disorders as they post-transcriptionally regulate expression of thousands of target genes. However, their role in specific psychiatric diseases remains poorly understood. In addition, epigenetic mechanisms such as DNA methylation, which affect the expression of both microRNAs and coding genes, are critical for our understanding of molecular mechanisms in schizophrenia. Using clinical, imaging, genetic, and epigenetic data of 103 patients with schizophrenia and 111 healthy controls of the Mind Clinical Imaging Consortium (MCIC) study of schizophrenia, we conducted gene set enrichment analysis to identify markers for schizophrenia-associated intermediate phenotypes. Genes were ranked based on the correlation between DNA methylation patterns and each phenotype, and then searched for enrichment in 221 predicted microRNA target gene sets. We found the predicted hsa-miR-219a-5p target gene set to be significantly enriched for genes (EPHA4, PKNOX1, ESR1, among others) whose methylation status is correlated with hippocampal volume independent of disease status. Our results were strengthened by significant associations between hsa-miR-219a-5p target gene methylation patterns and hippocampus-related neuropsychological variables. IPA pathway analysis of the respective predicted hsa-miR-219a-5p target genes revealed associated network functions in behavior and developmental disorders. Altered methylation patterns of predicted hsa-miR-219a-5p target genes are associated with a structural aberration of the brain that has been proposed as a possible biomarker for schizophrenia. The (dys)regulation of microRNA target genes by epigenetic mechanisms may confer additional risk for developing psychiatric symptoms. Further study is needed to understand possible interactions between microRNAs and epigenetic changes and their impact on risk for brain-based disorders such as schizophrenia.

  13. Germline Stem Cell Gene PIWIL2 Mediates DNA Repair through Relaxation of Chromatin

    PubMed Central

    Yin, De-Tao; Wang, Qien; Chen, Li; Liu, Meng-Yao; Han, Chunhua; Yan, Qingtao; Shen, Rulong; He, Gang; Duan, Wenrui; Li, Jian-Jian; Wani, Altaf; Gao, Jian-Xin

    2011-01-01

    DNA damage response (DDR) is an intrinsic barrier of cell to tumorigenesis initiated by genotoxic agents. However, the mechanisms underlying the DDR are not completely understood despite of extensive investigation. Recently, we have reported that ectopic expression of germline stem cell gene PIWIL2 is associated with tumor stem cell development, although the underlying mechanisms are largely unknown. Here we show that PIWIL2 is required for the repair of DNA-damage induced by various types of genotoxic agents. Upon ultraviolet (UV) irradiation, silenced PIWIL2 gene in normal human fibroblasts was transiently activated after treatment with UV light. This activation was associated with DNA repair, because Piwil2-deficienct mouse embryonic fibroblasts (mili-/- MEFs) were defective in cyclobutane pyrimidine dimers (CPD) repair after UV treatment. As a result, the UV-treated mili-/- MEFs were more susceptible to apoptosis, as characterized by increased levels of DNA damage-associated apoptotic proteins, such as active caspase-3, cleaved Poly (ADP-ribose) polymerase (PARP) and Bik. The impaired DNA repair in the mili-/- MEFs was associated with the reductions of histone H3 acetylation and chromatin relaxation, although the DDR pathway downstream chromatin relaxation appeared not to be directly affected by Piwil2. Moreover, guanine–guanine (Pt-[GG]) and double strand break (DSB) repair were also defective in the mili-/- MEFs treated by genotoxic chemicals Cisplatin and ionizing radiation (IR), respectively. The results indicate that Piwil2 can mediate DNA repair through an axis of Piwil2 → histone acetylation → chromatin relaxation upstream DDR pathways. The findings reveal a new role for Piwil2 in DNA repair and suggest that Piwil2 may act as a gatekeeper against DNA damage-mediated tumorigenesis. PMID:22110608

  14. Nonconsensus Protein Binding to Repetitive DNA Sequence Elements Significantly Affects Eukaryotic Genomes

    PubMed Central

    Barber-Zucker, Shiran; Gordân, Raluca; Lukatsky, David B.

    2015-01-01

    Recent genome-wide experiments in different eukaryotic genomes provide an unprecedented view of transcription factor (TF) binding locations and of nucleosome occupancy. These experiments revealed that a large fraction of TF binding events occur in regions where only a small number of specific TF binding sites (TFBSs) have been detected. Furthermore, in vitro protein-DNA binding measurements performed for hundreds of TFs indicate that TFs are bound with wide range of affinities to different DNA sequences that lack known consensus motifs. These observations have thus challenged the classical picture of specific protein-DNA binding and strongly suggest the existence of additional recognition mechanisms that affect protein-DNA binding preferences. We have previously demonstrated that repetitive DNA sequence elements characterized by certain symmetries statistically affect protein-DNA binding preferences. We call this binding mechanism nonconsensus protein-DNA binding in order to emphasize the point that specific consensus TFBSs do not contribute to this effect. In this paper, using the simple statistical mechanics model developed previously, we calculate the nonconsensus protein-DNA binding free energy for the entire C. elegans and D. melanogaster genomes. Using the available chromatin immunoprecipitation followed by sequencing (ChIP-seq) results on TF-DNA binding preferences for ~100 TFs, we show that DNA sequences characterized by low predicted free energy of nonconsensus binding have statistically higher experimental TF occupancy and lower nucleosome occupancy than sequences characterized by high free energy of nonconsensus binding. This is in agreement with our previous analysis performed for the yeast genome. We suggest therefore that nonconsensus protein-DNA binding assists the formation of nucleosome-free regions, as TFs outcompete nucleosomes at genomic locations with enhanced nonconsensus binding. In addition, here we perform a new, large-scale analysis using

  15. Deletion of PLCB1 gene in schizophrenia-affected patients.

    PubMed

    Lo Vasco, Vincenza Rita; Cardinale, Giuseppina; Polonia, Patrizia

    2012-04-01

    A prevalence of 1% in the general population and approximately 50% concordance rate in monozygotic twins was reported for schizophrenia, suggesting that genetic predisposition affecting neurodevelopmental processes might combine with environmental risk factors. A multitude of pathways seems to be involved in the aetiology and/or pathogenesis of schizophrenia, including dopaminergic, serotoninergic, muscarinic and glutamatergic signalling. The phosphoinositide signal transduction system and related phosphoinositide-specific phospholipase C (PI-PLC) enzymes seem to represent a point of convergence in these networking pathways during the development of selected brain regions. The existence of a susceptibility locus on the short arm of chromosome 20 moved us to analyse PLCB1, the gene codifying for PI-PLC β1 enzyme, which maps on 20p12. By using interphase fluorescent in situ hybridization methodology, we found deletions of PLCB1 in orbito-frontal cortex samples of schizophrenia-affected patients.

  16. Deletion of PLCB1 gene in schizophrenia-affected patients

    PubMed Central

    Vasco, Vincenza Rita Lo; Cardinale, Giuseppina; Polonia, Patrizia

    2012-01-01

    Abstract A prevalence of 1% in the general population and approximately 50% concordance rate in monozygotic twins was reported for schizophrenia, suggesting that genetic predisposition affecting neurodevelopmental processes might combine with environmental risk factors. A multitude of pathways seems to be involved in the aetiology and/or pathogenesis of schizophrenia, including dopaminergic, serotoninergic, muscarinic and glutamatergic signalling. The phosphoinositide signal transduction system and related phosphoinositide-specific phospholipase C (PI-PLC) enzymes seem to represent a point of convergence in these networking pathways during the development of selected brain regions. The existence of a susceptibility locus on the short arm of chromosome 20 moved us to analyse PLCB1, the gene codifying for PI-PLC β1 enzyme, which maps on 20p12. By using interphase fluorescent in situ hybridization methodology, we found deletions of PLCB1 in orbito-frontal cortex samples of schizophrenia-affected patients. PMID:22507702

  17. Gene-gun DNA vaccination aggravates respiratory syncytial virus-induced pneumonitis.

    PubMed

    Bartholdy, Christina; Olszewska, Wieslawa; Stryhn, Anette; Thomsen, Allan Randrup; Openshaw, Peter J M

    2004-10-01

    A CD8+ T-cell memory response to respiratory syncytial virus (RSV) was generated by using a DNA vaccine construct encoding the dominant Kd-restricted epitope from the viral transcription anti-terminator protein M2 (M2(82-90)), linked covalently to human beta2-microglobulin (beta2m). Cutaneous gene-gun immunization of BALB/c mice with this construct induced an antigen-specific CD8+ T-cell memory. After intranasal RSV challenge, accelerated CD8+ T-cell responses were observed in pulmonary lymph nodes and virus clearance from the lungs was enhanced. The construct induced weaker CD8+ T-cell responses than those elicited with recombinant vaccinia virus expressing the complete RSV M2 protein, but stronger than those induced by a similar DNA construct without the beta2m gene. DNA vaccination led to enhanced pulmonary disease after RSV challenge, with increased weight loss and cell recruitment to the lung. Depletion of CD8+ T cells reduced, but did not abolish, enhancement of disease. Mice vaccinated with a construct encoding a class I-restricted lymphocytic choriomeningitis virus epitope and beta2m suffered more severe weight loss after RSV infection than unvaccinated RSV-infected mice, although RSV-specific CD8+ T-cell responses were not induced. Thus, in addition to specific CD8+ T cell-mediated immunopathology, gene-gun DNA vaccination causes non-specific enhancement of RSV disease without affecting virus clearance.

  18. Characterization of How DNA Modifications Affect DNA Binding by C2H2 Zinc Finger Proteins

    PubMed Central

    Patel, A.; Hashimoto, H.; Zhang, X.; Cheng, X.

    2016-01-01

    Much is known about vertebrate DNA methylation and oxidation; however, much less is known about how modified cytosine residues within particular sequences are recognized. Among the known methylated DNA-binding domains, the Cys2-His2 zinc finger (ZnF) protein superfamily is the largest with hundreds of members, each containing tandem ZnFs ranging from 3 to >30 fingers. We have begun to biochemically and structurally characterize these ZnFs not only on their sequence specificity but also on their sensitivity to various DNA modifications. Rather than following published methods of refolding insoluble ZnF arrays, we have expressed and purified soluble forms of ZnFs, ranging in size from a tandem array of two to six ZnFs, from seven different proteins. We also describe a fluorescence polarization assay to measure ZnFs affinity with oligonucleotides containing various modifications and our approaches for cocrystallization of ZnFs with oligonucleotides. PMID:27372763

  19. LexA-independent DNA damage-mediated induction of gene expression in Myxococcus xanthus.

    PubMed

    Campoy, Susana; Fontes, Marta; Padmanabhan, S; Cortés, Pilar; Llagostera, Montserrat; Barbé, Jordi

    2003-08-01

    Myxococcus xanthus, a member of the Proteobacteria delta-class, has two independent recA genes, recA1 and recA2, but only recA2 is DNA damage-inducible. The lexA gene has been isolated from M. xanthus by PCR amplification with oligonucleotides designed after sequence identification by tblastn analysis of its genome at the Cereon Microbial Sequence Database. The M. xanthus purified LexA protein is shown to bind specifically to the consensus sequence CTRHAMRYBYGTTCAGS present upstream of lexA and recA2. A degenerate copy of this motif but with important differences can be identified in the region upstream of the recA1 gene. A knock-out lexA(Def) mutant that has been generated does not differ significantly from wild type in morphology, growth rate, light-induced carotenogenesis or development. Using transcriptional lacZ fusions and quantitative RT-PCR analysis, it has been demonstrated that expression of both lexA and recA2 genes is constitutive in the lexA(Def) mutant, whereas the transcription of the DNA damage non-inducible recA1 gene is not affected in this strain. recN and ssb, whose expression in Escherichia coli are LexA-regulated, are induced by DNA damage in the M. xanthus lexA(Def) mutant. These data reveal the existence of different regulatory mechanisms for DNA damage-inducible genes in bacteria belonging to different phyla.

  20. The dnaN gene codes for the beta subunit of DNA polymerase III holoenzyme of escherichia coli.

    PubMed Central

    Burgers, P M; Kornberg, A; Sakakibara, Y

    1981-01-01

    An Escherichia coli mutant, dnaN59, stops DNA synthesis promptly upon a shift to a high temperature; the wild-type dnaN gene carried in a transducing phage encodes a polypeptide of about 41,000 daltons [Sakakibara, Y. & Mizukami, T. (1980) Mol. Gen. Genet. 178, 541-553; Yuasa, S. & Sakakibara, Y. (1980) Mol. Gen. Genet. 180, 267-273]. We now find that the product of dnaN gene is the beta subunit of DNA polymerase III holoenzyme, the principal DNA synthetic multipolypeptide complex in E. coli. The conclusion is based on the following observations: (i) Extracts from dnaN59 cells were defective in phage phi X174 and G4 DNA synthesis after the mutant cells had been exposed to the increased temperature. (ii) The enzymatic defect was overcome by addition of purified beta subunit but not by other subunits of DNA polymerase III holoenzyme or by other replication proteins required for phi X174 DNA synthesis. (iii) Partially purified beta subunit from the dnaN mutant, unlike that from the wild type, was inactive in reconstituting the holoenzyme when mixed with the other purified subunits. (iv) Increased dosage of the dnaN gene provided by a plasmid carrying the gene raised cellular levels of the beta subunit 5- to 6-fold. PMID:6458041

  1. The dnaN gene codes for the beta subunit of DNA polymerase III holoenzyme of escherichia coli.

    PubMed

    Burgers, P M; Kornberg, A; Sakakibara, Y

    1981-09-01

    An Escherichia coli mutant, dnaN59, stops DNA synthesis promptly upon a shift to a high temperature; the wild-type dnaN gene carried in a transducing phage encodes a polypeptide of about 41,000 daltons [Sakakibara, Y. & Mizukami, T. (1980) Mol. Gen. Genet. 178, 541-553; Yuasa, S. & Sakakibara, Y. (1980) Mol. Gen. Genet. 180, 267-273]. We now find that the product of dnaN gene is the beta subunit of DNA polymerase III holoenzyme, the principal DNA synthetic multipolypeptide complex in E. coli. The conclusion is based on the following observations: (i) Extracts from dnaN59 cells were defective in phage phi X174 and G4 DNA synthesis after the mutant cells had been exposed to the increased temperature. (ii) The enzymatic defect was overcome by addition of purified beta subunit but not by other subunits of DNA polymerase III holoenzyme or by other replication proteins required for phi X174 DNA synthesis. (iii) Partially purified beta subunit from the dnaN mutant, unlike that from the wild type, was inactive in reconstituting the holoenzyme when mixed with the other purified subunits. (iv) Increased dosage of the dnaN gene provided by a plasmid carrying the gene raised cellular levels of the beta subunit 5- to 6-fold.

  2. Mapping of bionic array electric field focusing in plasmid DNA-based gene electrotransfer.

    PubMed

    Browne, C J; Pinyon, J L; Housley, D M; Crawford, E N; Lovell, N H; Klugmann, M; Housley, G D

    2016-04-01

    Molecular medicine through gene therapy is challenged to achieve targeted action. This is now possible utilizing bionic electrode arrays for focal delivery of naked (plasmid) DNA via gene electrotransfer. Here, we establish the properties of array-based electroporation affecting targeted gene delivery. An array with eight 300 μm platinum ring electrodes configured as a cochlear implant bionic interface was used to transduce HEK293 cell monolayers with a plasmid-DNA green fluorescent protein (GFP) reporter gene construct. Electroporation parameters were pulse intensity, number, duration, separation and electrode configuration. The latter determined the shape of the electric fields, which were mapped using a voltage probe. Electrode array-based electroporation was found to require ~100 × lower applied voltages for cell transduction than conventional electroporation. This was found to be due to compression of the field lines orthogonal to the array. A circular area of GFP-positive cells was created when the electrodes were ganged together as four adjacent anodes and four cathodes, whereas alternating electrode polarity created a linear area of GFP-positive cells. The refinement of gene delivery parameters was validated in vivo in the guinea pig cochlea. These findings have significant clinical ramifications, where spatiotemporal control of gene expression can be predicted by manipulation of the electric field via current steering at a cellular level.

  3. Rearrangement of Rag-1 recombinase gene in DNA-repair deficient/immunodeficient ``wasted`` mice

    SciTech Connect

    Woloschak, G.E.; Weaver, P.; Churchill, M.; Chang-Liu, C-M.; Libertin, C.R.

    1992-11-01

    Mice recessive for the autosomal gene ``wasted`` (wst) display a disease pattern which includes increased sensitivity to the killing effects of ionizing radiation, immunodeficiency, and neurologic dysfunction. The recent cloning and characterization of recombinase genes (Rag-l/Rag-2) expressed in lymphoid and possibly central nervous system tissues prompted us to examine expression of these genes in DNA repair-deficient/immunodeficient wasted mice. Our results revealed that in thymus tissue, a small Rag-I transcript (1.0 kb) was detected in wst/wst mice that was not evident in thymus from control mice. In wst/{sm_bullet} mice, a two-fold increase in Rag-1 mRNA was evident in thymus tissue. Rag-2 mRNA could only be detected in thymus tissue from wst/{sm_bullet} and not from wst/wst or parental control BCF, mice. Southern blots revealed a rearrangement or deletion within the Rag-1 gene of affected wasted mice that was not evident in known strain-specific parental or littermate controls. These results support the idea that the Rag-1 gene may map at or near the locus for the wasted mutation. In addition, they suggest the importance of recombinase function in normal immune and central nervous system development as well as the potential contribution of this gene family to the normal repair of radiation-induced DNA damage.

  4. Rearrangement of Rag-1 recombinase gene in DNA-repair deficient/immunodeficient wasted'' mice

    SciTech Connect

    Woloschak, G.E.; Weaver, P.; Churchill, M.; Chang-Liu, C-M. ); Libertin, C.R. )

    1992-01-01

    Mice recessive for the autosomal gene wasted'' (wst) display a disease pattern which includes increased sensitivity to the killing effects of ionizing radiation, immunodeficiency, and neurologic dysfunction. The recent cloning and characterization of recombinase genes (Rag-l/Rag-2) expressed in lymphoid and possibly central nervous system tissues prompted us to examine expression of these genes in DNA repair-deficient/immunodeficient wasted mice. Our results revealed that in thymus tissue, a small Rag-I transcript (1.0 kb) was detected in wst/wst mice that was not evident in thymus from control mice. In wst/[sm bullet] mice, a two-fold increase in Rag-1 mRNA was evident in thymus tissue. Rag-2 mRNA could only be detected in thymus tissue from wst/[sm bullet] and not from wst/wst or parental control BCF, mice. Southern blots revealed a rearrangement or deletion within the Rag-1 gene of affected wasted mice that was not evident in known strain-specific parental or littermate controls. These results support the idea that the Rag-1 gene may map at or near the locus for the wasted mutation. In addition, they suggest the importance of recombinase function in normal immune and central nervous system development as well as the potential contribution of this gene family to the normal repair of radiation-induced DNA damage.

  5. Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus

    PubMed Central

    Monier, Adam; Pagarete, António; de Vargas, Colomban; Allen, Michael J.; Read, Betsy; Claverie, Jean-Michel; Ogata, Hiroyuki

    2009-01-01

    Interactions between viruses and phytoplankton, the main primary producers in the oceans, affect global biogeochemical cycles and climate. Recent studies are increasingly revealing possible cases of gene transfers between cyanobacteria and phages, which might have played significant roles in the evolution of cyanobacteria/phage systems. However, little has been documented about the occurrence of horizontal gene transfer in eukaryotic phytoplankton/virus systems. Here we report phylogenetic evidence for the transfer of seven genes involved in the sphingolipid biosynthesis pathway between the cosmopolitan eukaryotic microalga Emiliania huxleyi and its large DNA virus EhV. PCR assays indicate that these genes are prevalent in E. huxleyi and EhV strains isolated from different geographic locations. Patterns of protein and gene sequence conservation support that these genes are functional in both E. huxleyi and EhV. This is the first clear case of horizontal gene transfer of multiple functionally linked enzymes in a eukaryotic phytoplankton–virus system. We examine arguments for the possible direction of the gene transfer. The virus-to-host direction suggests the existence of ancient viruses that controlled the complex metabolic pathway in order to infect primitive eukaryotic cells. In contrast, the host-to-virus direction suggests that the serial acquisition of genes involved in the same metabolic pathway might have been a strategy for the ancestor of EhVs to stay ahead of their closest relatives in the great evolutionary race for survival. PMID:19451591

  6. Search for genes essential for pneumococcal transformation: the RADA DNA repair protein plays a role in genomic recombination of donor DNA.

    PubMed

    Burghout, Peter; Bootsma, Hester J; Kloosterman, Tomas G; Bijlsma, Jetta J E; de Jongh, Christa E; Kuipers, Oscar P; Hermans, Peter W M

    2007-09-01

    We applied a novel negative selection strategy called genomic array footprinting (GAF) to identify genes required for genetic transformation of the gram-positive bacterium Streptococcus pneumoniae. Genome-wide mariner transposon mutant libraries in S. pneumoniae strain R6 were challenged by transformation with an antibiotic resistance cassette and growth in the presence of the corresponding antibiotic. The GAF screen identified the enrichment of mutants in two genes, i.e., hexA and hexB, and the counterselection of mutants in 21 different genes during the challenge. Eight of the counterselected genes were known to be essential for pneumococcal transformation. Four other genes, i.e., radA, comGF, parB, and spr2011, have previously been linked to the competence regulon, and one, spr2014, was located adjacent to the essential competence gene comFA. Directed mutants of seven of the eight remaining genes, i.e., spr0459-spr0460, spr0777, spr0838, spr1259-spr1260, and spr1357, resulted in reduced, albeit modest, transformation rates. No connection to pneumococcal transformation could be made for the eighth gene, which encodes the response regulator RR03. We further demonstrated that the gene encoding the putative DNA repair protein RadA is required for efficient transformation with chromosomal markers, whereas transformation with replicating plasmid DNA was not significantly affected. The radA mutant also displayed an increased sensitivity to treatment with the DNA-damaging agent methyl methanesulfonate. Hence, RadA is considered to have a role in recombination of donor DNA and in DNA damage repair in S. pneumoniae.

  7. A Bacillus subtilis dnaG mutant harbours a mutation in a gene homologous to the dnaN gene of Escherichia coli.

    PubMed

    Ogasawara, N; Moriya, S; Mazza, G; Yoshikawa, H

    1986-01-01

    A dnaG mutation of Bacillus subtilis, dnaG5, was found to be linked closely to recF. We have reported previously that two putative dna genes, 'dnaA' and 'dnaN', highly homologous to Escherichia coli's dnaA and dnaN, respectively, were located adjacent to recF [Ogasawara et al., EMBO J., 4 (1985) 3345-3350]. Transformation by various fragments cloned from the 'dnaA'-recF region of the wild-type cell revealed that a 532-bp AluI fragment containing 5'-portion of the 'dnaN' gene could transform the dnaG5 mutation. The nucleotide (nt) sequence of the same fragment cloned from the mutant cell shows a single nt change in the ORF of 'dnaN' which in turn causes a single amino acid alteration from Gly to Arg. The 'dnaN' gene is now proven to be a dna gene, mutations in which result in instant arrest of chromosomal replication.

  8. Iron nanoparticles significantly affect the in vitro and in vivo expression of Id genes.

    PubMed

    Zou, Jinglu; Wang, Xin; Zhang, Ling; Wang, Jinke

    2015-03-16

    In recent DNA microarray studies, we found that the transcription of the Id3 gene was significantly down-regulated in five cell lines (RAW264.7, Hepa1-6, THP-1, HepG2, and HL7702) treated with two doses (50 and 100 μg/mL) of a DMSA-coated magnetite nanoparticle. Given the regulatory roles of Id genes in the cell cycle, growth, and differentiation, we wanted to do more investigations on the effect of the nanoparticle upon the Id genes. This study detected the expression of Id genes in six cell lines (the above cell lines plus HeLa) treated with the nanoparticle at the same doses using quantitative PCR. The results revealed that the expression of Id genes was significantly affected by the nanoparticle in these cell lines. Under each treatment, the Id3 gene was significantly (p < 0.01) down-regulated in all cell lines, the Id1 gene was significantly down-regulated in all cell lines except the RAW264.7 cells, and the Id2 gene was significantly down-regulated in the HepG2, HL7702, and HeLa cells. Because the Id1, Id2, and Id3 genes were significantly down-regulated in three liver-derived cell lines (Hepa1-6, HepG2, and HL7702) in both microarray and PCR detections, this study then detected the expression of Id genes in the liver tissues of mice that were intravenously injected with the nanoparticle at two doses (2 and 5 mg/kg body weight). The results revealed that the expression of Id1, Id2, and Id3 genes was also significantly down-regulated in the liver tissues under each treatment. Another Id gene, Id4, was also significantly regulated in some cells or liver tissues treated with the nanoparticle. These results reveal that the nanoparticle exerts a significant effect on the in vitro and in vivo expression of Id genes. This study thus provides new insights into the Id-related nanotoxicity of the nanoparticle and the close relationship between the regulation of Id genes and iron.

  9. Activation of endocrine-related gene expression in placental choriocarcinoma cell lines following DNA methylation knock-down.

    PubMed

    Hogg, K; Robinson, W P; Beristain, A G

    2014-07-01

    Increasingly, placental DNA methylation is assessed as a factor in pregnancy-related complications, yet the transcriptional impact of such findings is not always clear. Using a proliferative in vitro placental model, the effect of DNA methylation loss on gene activation was evaluated at a number of genes selected for being differentially methylated in pre-eclampsia-associated placentae in vivo. We aimed to determine whether reduced DNA methylation at specific loci was associated with transcriptional changes at the corresponding gene, thus providing mechanistic underpinnings for previous clinical findings and to assess the degree of transcriptional response amongst our candidate genes. BeWo and JEG3 choriocarcinoma cells were exposed to 1 μM 5-Aza-2'-deoxycytidine (5-Aza-CdR) or vehicle control for 48 h, and re-plated and cultured for a further 72 h in normal media before cells were harvested for RNA and DNA. Bisulphite pyrosequencing confirmed that DNA methylation was reduced by ∼30-50% points at the selected loci studied in both cell lines. Gene activation, measured by qRT-PCR, was highly variable and transcript specific, indicating differential sensitivity to DNA methylation. Most notably, loss of DNA methylation at the leptin (LEP) promoter corresponded to a 200-fold and 40-fold increase in LEP expression in BeWo and JEG3 cells, respectively (P < 0.01). Transcripts of steroidogenic pathway enzymes CYP11A1 and HSD3B1 were up-regulated ∼40-fold in response to 5-Aza-CdR exposure in BeWo cells (P < 0.01). Other transcripts, including aromatase (CYP19), HSD11B2, inhibin (INHBA) and glucocorticoid receptor (NR3C1) were more moderately, although significantly, affected by loss of associated DNA methylation. These data present a mixed effect of DNA methylation changes at selected loci supporting cautionary interpretation of DNA methylation results in the absence of functional data.

  10. Mutation in fucose synthesis gene of Klebsiella pneumoniae affects capsule composition and virulence in mice.

    PubMed

    Pan, Po-Chang; Chen, Hui-Wen; Wu, Po-Kuan; Wu, Yu-Yang; Lin, Chun-Hung; Wu, June H

    2011-02-01

    The emerging pathogenicity of Klebsiella pneumoniae (KP) is evident by the increasing number of clinical cases of liver abscess (LA) due to KP infection. A unique property of KP is its thick mucoid capsule. The bacterial capsule has been found to contain fucose in KP strains causing LA but not in those causing urinary tract infections. The products of the gmd and wcaG genes are responsible for converting mannose to fucose in KP. A KP strain, KpL1, which is known to have a high death rate in infected mice, was mutated by inserting an apramycin-resistance gene into the gmd. The mutant expressed genes upstream and downstream of gmd, but not gmd itself, as determined by reverse transcriptase polymerase chain reaction. The DNA mapping confirmed the disruption of the gmd gene. This mutant decreased its ability to kill infected mice and showed decreased virulence in infected HepG2 cells. Compared with wild-type KpL1, the gmd mutant lost fucose in capsular polysaccharides, increased biofilm formation and interacted more readily with macrophages. The mutant displayed morphological changes with long filament forms and less uniform sizes. The mutation also converted the serotype from K1 of wild-type to K2 and weak K3. The results indicate that disruption of the fucose synthesis gene affected the pathophysiology of this bacterium and may be related to the virulence of this KpL1 strain.

  11. DNA demethylation induced by 5-azacytidine does not affect fragile X expression.

    PubMed Central

    Glover, T W; Coyle-Morris, J; Pearce-Birge, L; Berger, C; Gemmill, R M

    1986-01-01

    Experiments were performed to determine the role of DNA demethylation in fragile X expression. Fragile X positive lymphoblastoid cells were treated with 5-azacytidine and harvested for analysis of fragile X expression both directly following treatment and after a recovery period in the absence of the drug. The effectiveness of 5-azacytidine treatment in inducing DNA demethylation was concurrently monitored by analysis of methylation changes at random autosomal loci in isolated DNA from treated cells. Under conditions where 5-azacytidine was found to inhibit fragile X expression, no DNA demethylation was observed. At the time when demethylation did occur, fragile X expression was not affected. These results strongly indicate that DNA demethylation is not involved in fragile X expression. Images Fig. 1 PMID:2420174

  12. Gene replacement and expression of foreign DNA in mycobacteria.

    PubMed Central

    Husson, R N; James, B E; Young, R A

    1990-01-01

    A system that permits molecular genetic manipulation of mycobacteria was developed on the basis of the yeast paradigm of gene replacement by homologous recombination. A shuttle vector that can replicate autonomously at a high copy number in Escherichia coli but must integrate into homologous DNA for survival in Mycobacterium smegmatis was constructed. The vector contains a ColE1 origin of replication, antibiotic resistance markers for ampicillin and kanamycin, a nutritional marker (pyrF) that allows both positive and negative selection in E. coli and M. smegmatis, and unique restriction sites that permit insertion of foreign DNA. Transformation of mycobacteria with this vector results in integration of its DNA into the genomic pyrF locus by either a single or a double homologous recombination event. With this system, the 65-kilodalton Mycobacterium leprae stress protein antigen was inserted into the M. smegmatis genome and expressed. This gene replacement technology, together with a uniquely useful pyrF marker, should be valuable for investigating mycobacterial pathobiology, for the development of candidate mycobacterial vaccine vehicles, and as a model for the development of molecular genetic systems in other pathogenic microorganisms. Images FIG. 2 FIG. 3 PMID:2153655

  13. DNA.

    ERIC Educational Resources Information Center

    Felsenfeld, Gary

    1985-01-01

    Structural form, bonding scheme, and chromatin structure of and gene-modification experiments with deoxyribonucleic acid (DNA) are described. Indicates that DNA's double helix is variable and also flexible as it interacts with regulatory and other molecules to transfer hereditary messages. (DH)

  14. Paternal benzo[a]pyrene exposure affects gene expression in the early developing mouse embryo.

    PubMed

    Brevik, Asgeir; Lindeman, Birgitte; Rusnakova, Vendula; Olsen, Ann-Karin; Brunborg, Gunnar; Duale, Nur

    2012-09-01

    The health of the offspring depends on the genetic constitution of the parental germ cells. The paternal genome appears to be important; e.g., de novo mutations in some genes seem to arise mostly from the father, whereas epigenetic modifications of DNA and histones are frequent in the paternal gonads. Environmental contaminants which may affect the integrity of the germ cells comprise the polycyclic aromatic hydrocarbon, benzo[a]pyrene (B[a]P). B[a]P has received much attention due to its ubiquitous distribution, its carcinogenic and mutagenic potential, and also effects on reproduction. We conducted an in vitro fertilization (IVF) experiment using sperm cells from B[a]P-exposed male mice to study effects of paternal B[a]P exposure on early gene expression in the developing mouse embryo. Male mice were exposed to a single acute dose of B[a]P (150 mg/kg, ip) 4 days prior to isolation of cauda sperm, followed by IVF of oocytes from unexposed superovulated mice. Gene expression in fertilized zygotes/embryos was determined using reverse transcription-qPCR at the 1-, 2-, 4-, 8-, and blastocyst cell stages of embryo development. We found that paternal B[a]P exposure altered the expression of numerous genes in the developing embryo especially at the blastocyst stage. Some genes were also affected at earlier developmental stages. Embryonic gene expression studies seem useful to identify perturbations of signaling pathways resulting from exposure to contaminants, and can be used to address mechanisms of paternal effects on embryo development.

  15. Gluten affects epithelial differentiation-associated genes in small intestinal mucosa of coeliac patients.

    PubMed

    Juuti-Uusitalo, K; Mäki, M; Kainulainen, H; Isola, J; Kaukinen, K

    2007-11-01

    In coeliac disease gluten induces an immunological reaction in genetically susceptible patients, and influences on epithelial cell proliferation and differentiation in the small-bowel mucosa. Our aim was to find novel genes which operate similarly in epithelial proliferation and differentiation in an epithelial cell differentiation model and in coeliac disease patient small-bowel mucosal biopsy samples. The combination of cDNA microarray data originating from a three-dimensional T84 epithelial cell differentiation model and small-bowel mucosal biopsy samples from untreated and treated coeliac disease patients and healthy controls resulted in 30 genes whose mRNA expression was similarly affected. Nine of 30 were located directly or indirectly in the receptor tyrosine kinase pathway starting from the epithelial growth factor receptor. Removal of gluten from the diet resulted in a reversion in the expression of 29 of the 30 genes in the small-bowel mucosal biopsy samples. Further characterization by blotting and labelling revealed increased epidermal growth factor receptor and beta-catenin protein expression in the small-bowel mucosal epithelium in untreated coeliac disease patients compared to healthy controls and treated coeliac patients. We found 30 genes whose mRNA expression was affected similarly in the epithelial cell differentiation model and in the coeliac disease patient small-bowel mucosal biopsy samples. In particular, those genes involved in the epithelial growth factor-mediated signalling pathways may be involved in epithelial cell differentiation and coeliac disease pathogenesis. The epithelial cell differentiation model is a useful tool for studying gene expression changes in the crypt-villus axis.

  16. Agrobacterium T-DNA integration in Arabidopsis is correlated with DNA sequence compositions that occur frequently in gene promoter regions.

    PubMed

    Schneeberger, Richard G; Zhang, Ke; Tatarinova, Tatiana; Troukhan, Max; Kwok, Shing F; Drais, Josh; Klinger, Kevin; Orejudos, Francis; Macy, Kimberly; Bhakta, Amit; Burns, James; Subramanian, Gopal; Donson, Jonathan; Flavell, Richard; Feldmann, Kenneth A

    2005-10-01

    Mobile insertion elements such as transposons and T-DNA generate useful genetic variation and are important tools for functional genomics studies in plants and animals. The spectrum of mutations obtained in different systems can be highly influenced by target site preferences inherent in the mechanism of DNA integration. We investigated the target site preferences of Agrobacterium T-DNA insertions in the chromosomes of the model plant Arabidopsis thaliana. The relative frequencies of insertions in genic and intergenic regions of the genome were calculated and DNA composition features associated with the insertion site flanking sequences were identified. Insertion frequencies across the genome indicate that T-strand integration is suppressed near centromeres and rDNA loci, progressively increases towards telomeres, and is highly correlated with gene density. At the gene level, T-DNA integration events show a statistically significant preference for insertion in the 5' and 3' flanking regions of protein coding sequences as well as the promoter region of RNA polymerase I transcribed rRNA gene repeats. The increased insertion frequencies in 5' upstream regions compared to coding sequences are positively correlated with gene expression activity and DNA sequence composition. Analysis of the relationship between DNA sequence composition and gene activity further demonstrates that DNA sequences with high CG-skew ratios are consistently correlated with T-DNA insertion site preference and high gene expression. The results demonstrate genomic and gene-specific preferences for T-strand integration and suggest that DNA sequences with a pronounced transition in CG- and AT-skew ratios are preferred targets for T-DNA integration.

  17. Transient gene expression in epidermal cells of plant leaves by biolistic DNA delivery.

    PubMed

    Ueki, Shoko; Magori, Shimpei; Lacroix, Benoît; Citovsky, Vitaly

    2013-01-01

    Transient gene expression is a useful approach for studying the functions of gene products. In the case of plants, Agrobacterium infiltration is a method of choice for transient introduction of genes for many species. However, this technique does not work efficiently in some species, such as Arabidopsis thaliana. Moreover, the infection of Agrobacterium is known to induce dynamic changes in gene expression patterns in the host plants, possibly affecting the function and localization of the proteins to be tested. These problems can be circumvented by biolistic delivery of the genes of interest. Here, we present an optimized protocol for biolistic delivery of plasmid DNA into epidermal cells of plant leaves, which can be easily performed using the Bio-Rad Helios gene gun system. This protocol allows efficient and reproducible transient expression of diverse genes in Arabidopsis, Nicotiana benthamiana and N. tabacum, and is suitable for studies of the biological function and subcellular localization of the gene products directly in planta. The protocol also can be easily adapted to other species by optimizing the delivery gas pressure.

  18. Differential elimination of rDNA genes in bobbed mutants of Drosophila melanogaster.

    PubMed Central

    Terracol, R; Prud'homme, N

    1986-01-01

    In Drosophila melanogaster, the multiply repeated genes encoding 18S and 28S rRNA are located on the X and Y chromosomes. A large percentage of these repeats are interrupted in the 28S region by insertions of two types. We compared the restriction patterns from a subcloned wild-type Oregon R strain to those of spontaneous and ethyl methanesulfonate-induced bobbed mutants. Bobbed mutations were found to be deficiencies that modified the organization of the rDNA locus. Genes without insertions were deleted about twice as often as genes with type I insertions. Type II insertion genes were not decreased in number, except in the mutant having the most bobbed phenotype. Reversion to wild type was associated with an increase in gene copy number, affecting exclusively genes without insertions. One hypothesis which explains these results is the partial clustering of genes by type. The initial deletion could then be due either to an unequal crossover or to loss of material without exchange. Some of our findings indicated that deletion may be associated with an amplification phenomenon, the magnitude of which would be dependent on the amount of clustering of specific gene types at the locus. Images PMID:3023865

  19. Sister chromatid exchange, DNA repair, and single-gene mutation

    SciTech Connect

    Carrano, A.V.; Thompson, L.H.

    1982-01-01

    Sister chromatid exchange (SCE) has been studied in cultured mammalian cells with regard to the nature of the inducing lesion, mutation induction, and factors that modify the observed frequency following mutagen exposure, SCEs can be induced by a wide spectrum of DNA lesions and, for nine agents examined, the frequency of induced SCE is linearly related to induced single-gene mutation. Further, a deficiency in DNA repair may alter the expression of both SCE and mutation in a qualitatively similar manner. The frequency of SCE induced by mitomycin-C is suppressed in heterochromatic relative to euchromatin and, in nondividing lymphocytes, the lesions leading to the formation of SCEs may persist for several months.

  20. Polymorphism of the DNA Base Excision Repair Genes in Keratoconus

    PubMed Central

    Wojcik, Katarzyna A.; Synowiec, Ewelina; Sobierajczyk, Katarzyna; Izdebska, Justyna; Blasiak, Janusz; Szaflik, Jerzy; Szaflik, Jacek P.

    2014-01-01

    Keratoconus (KC) is a degenerative corneal disorder for which the exact pathogenesis is not yet known. Oxidative stress is reported to be associated with this disease. The stress may damage corneal biomolecules, including DNA, and such damage is primarily removed by base excision repair (BER). Variation in genes encoding BER components may influence the effectiveness of corneal cells to cope with oxidative stress. In the present work we genotyped 5 polymorphisms of 4 BER genes in 284 patients and 353 controls. The A/A genotype of the c.–1370T>A polymorphism of the DNA polymerase γ (POLG) gene was associated with increased occurrence of KC, while the A/T genotype was associated with decreased occurrence of KC. The A/G genotype and the A allele of the c.1196A>G polymorphism of the X-ray repair cross-complementing group 1 (XRCC1) were associated with increased, and the G/G genotype and the G allele, with decreased KC occurrence. Also, the C/T and T as well as C/C genotypes and alleles of the c.580C>T polymorphism of the same gene displayed relationship with KC occurrence. Neither the g.46438521G>C polymorphism of the Nei endonuclease VIII-like 1 (NEIL1) nor the c.2285T>C polymorphism of the poly(ADP-ribose) polymerase-1 (PARP-1) was associated with KC. In conclusion, the variability of the XRCC1 and POLG genes may play a role in KC pathogenesis and determine the risk of this disease. PMID:25356504

  1. How Does Guanine-Cytosine Base Pair Affect Excess-Electron Transfer in DNA?

    PubMed

    Lin, Shih-Hsun; Fujitsuka, Mamoru; Majima, Tetsuro

    2015-06-25

    Charge transfer and proton transfer in DNA have attracted wide attention due to their relevance in biological processes and so on. Especially, excess-electron transfer (EET) in DNA has strong relation to DNA repair. However, our understanding on EET in DNA still remains limited. Herein, by using a strongly electron-donating photosensitizer, trimer of 3,4-ethylenedioxythiophene (3E), and an electron acceptor, diphenylacetylene (DPA), two series of functionalized DNA oligomers were synthesized for investigation of EET dynamics in DNA. The transient absorption measurements during femtosecond laser flash photolysis showed that guanine:cytosine (G:C) base pair affects EET dynamics in DNA by two possible mechanisms: the excess-electron quenching by proton transfer with the complementary G after formation of C(•-) and the EET hindrance by inserting a G:C base pair as a potential barrier in consecutive thymines (T's). In the present paper, we provided useful information based on the direct kinetic measurements, which allowed us to discuss EET through oligonucleotides for the investigation of DNA damage/repair.

  2. How-to-Do-It: Recombinant DNA Made Easy II. Gene, Gene, Who's Got the Gene?

    ERIC Educational Resources Information Center

    Thomson, Robert G.

    1989-01-01

    Described is an activity in which students are able to determine that DNA can be transferred between bacteria and should be able to predict the type of DNA transferred. Methods, materials, and results are discussed. (CW)

  3. Organization of gene and non-gene sequences in micronuclear DNA of Oxytricha nova.

    PubMed Central

    Boswell, R E; Jahn, C L; Greslin, A F; Prescott, D M

    1983-01-01

    In order to study the derivation of the macronuclear genome from the micronuclear genome in Oxytricha nova micronuclear DNA was partially digested with EcoRI, size fractionated, and then cloned in the lambda phage Charon 8. Clones were selected a) at random b) by hybridization with macronuclear DNA or c) by hybridization with clones of macronuclear DNA. One group of these clones contains only unique sequence DNA, and all of these had sequences that were homologous to macronuclear sequences. The number of macronuclear genes with sequences homologous to these micronuclear clones indicates that macronuclear sequences are clustered in the micronuclear genome. Many micronuclear clones contain repetitive DNA sequences and hybridize to numerous EcoRI fragments of total micronuclear DNA, yielding similar but non-identical patterns. Some micronuclear clones containing these repetitive sequences also contained unique sequence DNA that hybridized to a macronuclear sequence. These clones define a major interspersed repetitive sequence family in the micronuclear genome that is eliminated during formation of the macronuclear genome. Images PMID:6304639

  4. l-Ornithine affects peripheral clock gene expression in mice

    PubMed Central

    Fukuda, Takafumi; Haraguchi, Atsushi; Kuwahara, Mari; Nakamura, Kaai; Hamaguchi, Yutaro; Ikeda, Yuko; Ishida, Yuko; Wang, Guanying; Shirakawa, Chise; Tanihata, Yoko; Ohara, Kazuaki; Shibata, Shigenobu

    2016-01-01

    The peripheral circadian clock is entrained by factors in the external environment such as scheduled feeding, exercise, and mental and physical stresses. In addition, recent studies in mice demonstrated that some food components have the potential to control the peripheral circadian clock during scheduled feeding, although information about these components remains limited. l-Ornithine is a type of non-protein amino acid that is present in foods and has been reported to have various physiological functions. In human trials, for example, l-ornithine intake improved a subjective index of sleep quality. Here we demonstrate, using an in vivo monitoring system, that repeated oral administration of l-ornithine at an early inactive period in mice induced a phase advance in the rhythm of PER2 expression. By contrast, l-ornithine administration to mouse embryonic fibroblasts did not affect the expression of PER2, indicating that l-ornithine indirectly alters the phase of PER2. l-Ornithine also increased plasma levels of insulin, glucose and glucagon-like peptide-1 alongside mPer2 expression, suggesting that it exerts its effects probably via insulin secretion. Collectively, these findings demonstrate that l-ornithine affects peripheral clock gene expression and may expand the possibilities of L-ornithine as a health food. PMID:27703199

  5. l-Ornithine affects peripheral clock gene expression in mice.

    PubMed

    Fukuda, Takafumi; Haraguchi, Atsushi; Kuwahara, Mari; Nakamura, Kaai; Hamaguchi, Yutaro; Ikeda, Yuko; Ishida, Yuko; Wang, Guanying; Shirakawa, Chise; Tanihata, Yoko; Ohara, Kazuaki; Shibata, Shigenobu

    2016-10-05

    The peripheral circadian clock is entrained by factors in the external environment such as scheduled feeding, exercise, and mental and physical stresses. In addition, recent studies in mice demonstrated that some food components have the potential to control the peripheral circadian clock during scheduled feeding, although information about these components remains limited. l-Ornithine is a type of non-protein amino acid that is present in foods and has been reported to have various physiological functions. In human trials, for example, l-ornithine intake improved a subjective index of sleep quality. Here we demonstrate, using an in vivo monitoring system, that repeated oral administration of l-ornithine at an early inactive period in mice induced a phase advance in the rhythm of PER2 expression. By contrast, l-ornithine administration to mouse embryonic fibroblasts did not affect the expression of PER2, indicating that l-ornithine indirectly alters the phase of PER2. l-Ornithine also increased plasma levels of insulin, glucose and glucagon-like peptide-1 alongside mPer2 expression, suggesting that it exerts its effects probably via insulin secretion. Collectively, these findings demonstrate that l-ornithine affects peripheral clock gene expression and may expand the possibilities of L-ornithine as a health food.

  6. Conservative inheritance of newly synthesized DNA in double-strand break-induced gene conversion.

    PubMed

    Ira, Grzegorz; Satory, Dominik; Haber, James E

    2006-12-01

    To distinguish among possible mechanisms of repair of a double-strand break (DSB) by gene conversion in budding yeast, Saccharomyces cerevisiae, we employed isotope density transfer to analyze budding yeast mating type (MAT) gene switching in G2/M-arrested cells. Both of the newly synthesized DNA strands created during gene conversion are found at the repaired locus, leaving the donor unchanged. These results support suggestions that mitotic DSBs are primarily repaired by a synthesis-dependent strand-annealing mechanism. We also show that the proportion of crossing-over associated with DSB-induced ectopic recombination is not affected by the presence of nonhomologous sequences at one or both ends of the DSB or the presence of additional sequences that must be copied from the donor.

  7. In-depth cDNA library sequencing provides quantitative gene expression profiling in cancer biomarker discovery.

    PubMed

    Yang, Wanling; Ying, Dingge; Lau, Yu-Lung

    2009-06-01

    Quantitative gene expression analysis plays an important role in identifying differentially expressed genes in various pathological states, gene expression regulation and co-regulation, shedding light on gene functions. Although microarray is widely used as a powerful tool in this regard, it is suboptimal quantitatively and unable to detect unknown gene variants. Here we demonstrated effective detection of differential expression and co-regulation of certain genes by expressed sequence tag analysis using a selected subset of cDNA libraries. We discussed the issues of sequencing depth and library preparation, and propose that increased sequencing depth and improved preparation procedures may allow detection of many expression features for less abundant gene variants. With the reduction of sequencing cost and the emerging of new generation sequencing technology, in-depth sequencing of cDNA pools or libraries may represent a better and powerful tool in gene expression profiling and cancer biomarker detection. We also propose using sequence-specific subtraction to remove hundreds of the most abundant housekeeping genes to increase sequencing depth without affecting relative expression ratio of other genes, as transcripts from as few as 300 most abundantly expressed genes constitute about 20% of the total transcriptome. In-depth sequencing also represents a unique advantage of detecting unknown forms of transcripts, such as alternative splicing variants, fusion genes, and regulatory RNAs, as well as detecting mutations and polymorphisms that may play important roles in disease pathogenesis.

  8. Longer resistance of some DNA traits from BT176 maize to gastric juice from gastrointestinal affected patients.

    PubMed

    Ferrini, A M; Mannoni, V; Pontieri, E; Pourshaban, M

    2007-01-01

    The presence of antibiotic resistance marker genes in genetically engineered plants is one of the most controversial issues related to Genetically Modified Organism (GMO)-containing food, raising concern about the possibility that these markers could increase the pool of antibiotic resistance genes. This study investigates the in vitro survival of genes bla and cryIA(b) of maize Bt176 in human gastric juice samples. Five samples of gastric juice were collected from patients affected by gastro-esophageal reflux or celiac disease and three additional samples were obtained by pH modification with NaHCO3. DNA was extracted from maize Bt176 and incubated with samples of gastric juices at different times. The survival of the target traits (bla gene, whole 1914 bp gene cry1A(b), and its 211 bp fragment) was determined using PCR. The stability of the target genes was an inverse function of their lengths in all the samples. Survival in samples from untreated subjects was below the normal physiological time of gastric digestion. On the contrary, survival time in samples from patients under anti-acid drug treatment or in samples whose pH was modified, resulted strongly increased. Our data indicate the possibility that in particular cases the survival time could be so delayed that, as a consequence, some traits of DNA could reach the intestine. In general, this aspect must be considered for vulnerable consumers (people suffering from gastrointestinal diseases related to altered digestive functionality, physiological problems or drug side-effects) in the risk analysis usually referred to healthy subjects.

  9. DNA Sequence Heterogeneity of Campylobacter jejuni CJIE4 Prophages and Expression of Prophage Genes

    PubMed Central

    Clark, Clifford G.; Chong, Patrick M.; McCorrister, Stuart J.; Mabon, Philip; Walker, Matthew; Westmacott, Garrett R.

    2014-01-01

    Campylobacter jejuni carry temperate bacteriophages that can affect the biology or virulence of the host bacterium. Known effects include genomic rearrangements and resistance to DNA transformation. C. jejuni prophage CJIE1 shows sequence variability and variability in the content of morons. Homologs of the CJIE1 prophage enhance both adherence and invasion to cells in culture and increase the expression of a specific subset of bacterial genes. Other C. jejuni temperate phages have so far not been well characterized. In this study we describe investigations into the DNA sequence variability and protein expression in a second prophage, CJIE4. CJIE4 sequences were obtained de novo from DNA sequencing of five C. jejuni isolates, as well as from whole genome sequences submitted to GenBank by other research groups. These CJIE4 DNA sequences were heterogenous, with several different insertions/deletions (indels) in different parts of the prophage genome. Two variants of a 3–4 kb region inserted within CJIE4 had different gene content that distinguished two major conserved CJIE4 prophage families. Additional indels were detected throughout the prophage. Detection of proteins in the five isolates characterized in our laboratory in isobaric Tags for Relative and Absolute Quantitation (iTRAQ) experiments indicated that prophage proteins within each of the two large indel variants were expressed during growth of the bacteria on Mueller Hinton agar plates. These proteins included the extracellular DNase associated with resistance to DNA transformation and prophage repressor proteins. Other proteins associated with known or suspected roles in prophage biology were also expressed from CJIE4, including capsid protein, the phage integrase, and MazF, a type II toxin-antitoxin system protein. Together with the results previously obtained for the CJIE1 prophage these results demonstrate that sequence variability and expression of moron genes are both general properties of temperate

  10. A recent evolutionary change affects a regulatory element in the human FOXP2 gene.

    PubMed

    Maricic, Tomislav; Günther, Viola; Georgiev, Oleg; Gehre, Sabine; Curlin, Marija; Schreiweis, Christiane; Naumann, Ronald; Burbano, Hernán A; Meyer, Matthias; Lalueza-Fox, Carles; de la Rasilla, Marco; Rosas, Antonio; Gajovic, Srecko; Kelso, Janet; Enard, Wolfgang; Schaffner, Walter; Pääbo, Svante

    2013-04-01

    The FOXP2 gene is required for normal development of speech and language. By isolating and sequencing FOXP2 genomic DNA fragments from a 49,000-year-old Iberian Neandertal and 50 present-day humans, we have identified substitutions in the gene shared by all or nearly all present-day humans but absent or polymorphic in Neandertals. One such substitution is localized in intron 8 and affects a binding site for the transcription factor POU3F2, which is highly conserved among vertebrates. We find that the derived allele of this site is less efficient than the ancestral allele in activating transcription from a reporter construct. The derived allele also binds less POU3F2 dimers than POU3F2 monomers compared with the ancestral allele. Because the substitution in the POU3F2 binding site is likely to alter the regulation of FOXP2 expression, and because it is localized in a region of the gene associated with a previously described signal of positive selection, it is a plausible candidate for having caused a recent selective sweep in the FOXP2 gene.

  11. How nanochannel confinement affects the DNA melting transition within the Poland-Scheraga model

    NASA Astrophysics Data System (ADS)

    Reiter-Schad, Michaela; Werner, Erik; Tegenfeldt, Jonas O.; Mehlig, Bernhard; Ambjörnsson, Tobias

    2015-09-01

    When double-stranded DNA molecules are heated, or exposed to denaturing agents, the two strands are separated. The statistical physics of this process has a long history and is commonly described in terms of the Poland-Scheraga (PS) model. Crucial to this model is the configurational entropy for a melted region (compared to the entropy of an intact region of the same size), quantified by the loop factor. In this study, we investigate how confinement affects the DNA melting transition, by using the loop factor for an ideal Gaussian chain. By subsequent numerical solutions of the PS model, we demonstrate that the melting temperature depends on the persistence lengths of single-stranded and double-stranded DNA. For realistic values of the persistence lengths, the melting temperature is predicted to decrease with decreasing channel diameter. We also demonstrate that confinement broadens the melting transition. These general findings hold for the three scenarios investigated: 1. homo-DNA, i.e., identical basepairs along the DNA molecule, 2. random sequence DNA, and 3. "real" DNA, here T4 phage DNA. We show that cases 2 and 3 in general give rise to broader transitions than case 1. Case 3 exhibits a similar phase transition as case 2 provided the random sequence DNA has the same ratio of AT to GC basepairs (A - adenine, T - thymine, G - guanine, C - cytosine). A simple analytical estimate for the shift in melting temperature is provided as a function of nanochannel diameter. For homo-DNA, we also present an analytical prediction of the melting probability as a function of temperature.

  12. "DNA Binding Region" of BRCA1 Affects Genetic Stability through modulating the Intra-S-Phase Checkpoint.

    PubMed

    Masuda, Takaaki; Xu, Xiaoling; Dimitriadis, Emilios K; Lahusen, Tyler; Deng, Chu-Xia

    2016-01-01

    The breast cancer associated gene 1 (BRCA1) contains 3 domains: an N-terminal RING domain with ubiquitin E3 ligase activity, C-terminal BRCT protein interaction domain and a central region. RING and BRCT domains are well characterized, yet the function of the central region remains unclear. In this study, we identified an essential DNA binding region (DBR: 421-701 amino acids) within the central region of human BRCA1, and found that BRCA1 brings DNA together and preferably binds to splayed-arm DNA in a sequence-independent manner. To investigate the biological role of the DBR, we generated mouse ES cells, which lack the DBR (ΔDBR) by using the TALEN method. The ΔDBR cells exhibited decreased survival as compared to the wild type (WT) cells treated with a PARP inhibitor, however they have an intact ability to conduct DNA repair mediated by homologous recombination (HR). The ΔDBR cells continued to incorporate more EdU in the presence of hydroxyurea (HU), which causes replication stress and exhibited reduced viability than the WT cells. Moreover, phosphorylation of CHK1, which regulates the intra-S phase checkpoint, was moderately decreased in ΔDBR cells. These data suggest that DNA binding by BRCA1 affects the stability of DNA replication folks, resulting in weakened intra-S-phase checkpoint control in the ΔDBR cells. The ΔDBR cells also exhibited an increased number of abnormal chromosome structures as compared with WT cells, indicating that the ΔDBR cells have increased genetic instability. Thus, we demonstrated that the DBR of BRCA1 modulates genetic stability through the intra-S-phase checkpoint activated by replication stress.

  13. DNA Binding Region” of BRCA1 Affects Genetic Stability through modulating the Intra-S-Phase Checkpoint

    PubMed Central

    Masuda, Takaaki; Xu, Xiaoling; Dimitriadis, Emilios K.; Lahusen, Tyler; Deng, Chu-Xia

    2016-01-01

    The breast cancer associated gene 1 (BRCA1) contains 3 domains: an N-terminal RING domain with ubiquitin E3 ligase activity, C-terminal BRCT protein interaction domain and a central region. RING and BRCT domains are well characterized, yet the function of the central region remains unclear. In this study, we identified an essential DNA binding region (DBR: 421-701 amino acids) within the central region of human BRCA1, and found that BRCA1 brings DNA together and preferably binds to splayed-arm DNA in a sequence-independent manner. To investigate the biological role of the DBR, we generated mouse ES cells, which lack the DBR (ΔDBR) by using the TALEN method. The ΔDBR cells exhibited decreased survival as compared to the wild type (WT) cells treated with a PARP inhibitor, however they have an intact ability to conduct DNA repair mediated by homologous recombination (HR). The ΔDBR cells continued to incorporate more EdU in the presence of hydroxyurea (HU), which causes replication stress and exhibited reduced viability than the WT cells. Moreover, phosphorylation of CHK1, which regulates the intra-S phase checkpoint, was moderately decreased in ΔDBR cells. These data suggest that DNA binding by BRCA1 affects the stability of DNA replication folks, resulting in weakened intra-S-phase checkpoint control in the ΔDBR cells. The ΔDBR cells also exhibited an increased number of abnormal chromosome structures as compared with WT cells, indicating that the ΔDBR cells have increased genetic instability. Thus, we demonstrated that the DBR of BRCA1 modulates genetic stability through the intra-S-phase checkpoint activated by replication stress. PMID:26884712

  14. Non-small cell lung cancer exhibits transcript overexpression of genes associated with homologous recombination and DNA replication pathways.

    PubMed

    Saviozzi, Silvia; Ceppi, Paolo; Novello, Silvia; Ghio, Paolo; Lo Iacono, Marco; Borasio, Piero; Cambieri, Alberto; Volante, Marco; Papotti, Mauro; Calogero, Raffaele A; Scagliotti, Giorgio V

    2009-04-15

    Genes involved in DNA repair and replication have been recently investigated as predictive markers of response to chemotherapy in non-small cell lung cancer (NSCLC). However, few data on the expression of these genes in tumor compared with corresponding normal lung are available. The aim of this study was to evaluate differential mRNA levels of 22 DNA repair genes of five different DNA repair pathways: direct, base excision, nucleotide excision (NER), double-strand break (DSBR), and postreplicative repair. In addition, six genes involved in DNA replication (REP) and three telomere maintenance genes were investigated. Total RNAs extracted from fresh-frozen tumors and corresponding normal tissues of 50 consecutive chemo-naïve resected NSCLC patients were analyzed. Transcript levels were quantified by real-time PCR. A significant overexpression was detected in 20 of 30 (67%) genes, mostly belonging to DSBR pathways, whereas others (XPA, XPC, and UBE2N; 10%) were significantly underexpressed. For 7 of 30 (23%) genes, mostly belonging to NER pathway, no significant difference between paired tumor and normal samples was observed. Transcript overexpression of DSBR and REP genes was significantly higher in poorly differentiated carcinomas and DSBR levels were higher in men compared with women. The transcriptional overexpression of four genes (XRCC5, TOP3B, TYMS, and UNG) showed significant correlation with a shorter patients' outcome at the univariate, whereas only stage of disease appeared as an independent factor affecting prognosis, as assessed by multivariate analysis. In conclusion, genes belonging to DNA repair/replication pathways are overexpressed in NSCLC and are associated with a more aggressive phenotype.

  15. Study of design parameters affecting the motion of DNA for nanoinjection

    NASA Astrophysics Data System (ADS)

    David, Regis A.; Jensen, Brian D.; Black, Justin L.; Burnett, Sandra H.; Howell, Larry L.

    2012-05-01

    This paper reports the effects of various parameters on the attraction and repulsion of DNA to and from a silicon lance. An understanding of DNA motion is crucial for a new approach to insert DNA, or other foreign microscopic matter, into a living cell. The approach, called nanoinjection, uses electrical forces to attract and repel the desired substance to a micromachined lance designed to pierce the cell membranes. We have developed mathematical models to predict the trajectory of DNA. The mathematical model allows investigation of the attraction/repulsion process by varying specific parameters. We find that the ground electrode placement, lance orientation and lance penetration significantly affect attraction or repulsion efficiency, while the gap, lance direction, lance tip width, lance tip half-angle and lance tip height do not.

  16. GRAIL seeks out genes buried in DNA sequence

    SciTech Connect

    Roberts, L.

    1991-11-08

    When the Human Genome Project achieves its ultimate goal, supposedly around 2005, biologists will have in hand the exact sequence of all 3 billion nucleotides arrayed along the human chromosomes. But they have never been entirely sure how they will read the language of the long string of As, Gs, Ts, and Cs. How will they even be able to pick out the genes, which account for a mere 5% of the genome, from the mass of letters in between Now Edward Ubergacher, a biophysicist-turned-computational-biologist at Oak Ridge National Laboratory, has come one step toward providing an answer: a new artificial intelligence program, called GRAIL, that can pick out the coding regions of genes in a long stretch of sequence data. So far, the Oak Ridge team has analyzed 5 million bases of DNA. One year ago, even 6 months ago, it was virtually impossible to go into human genomic sequence and find genes by computer with any reliability. Now we can go in and find 90% of the genes very quickly. GRAIL can be used on a PC, not a supercomputer, and it provides an answer almost instantly.

  17. DNA methylation affected by male sterile cytoplasm in rice (Oryza sativa L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Male sterile cytoplasm plays an important role in hybrid rice and cytoplasmic effects are sufficiently documented. However, no reports are available on DNA methylation affected by male sterile cytoplasm in hybrid rice. We used a methylation sensitive amplified polymorphism (MSAP) technique to charac...

  18. Ivory identification by DNA profiling of cytochrome b gene.

    PubMed

    Lee, James Chun-I; Hsieh, Hsing-Mei; Huang, Li-Hung; Kuo, Yi-Chen; Wu, Jane-Hong; Chin, Shih-Chien; Lee, An-Hsing; Linacre, Adrian; Tsai, Li-Chin

    2009-03-01

    Ivory can be visually identified in its native form as coming from an elephant species; however, determining from which of the three extant elephant species a section of ivory originates is more problematic. We report on a method that will identify and distinguish the protected and endangered elephant species, Elephas maximus or Loxodonta sp. To identify the species of elephant from ivory products, we developed three groups of nested PCR amplifications within the cytochrome b gene that generate amplification products using highly degraded DNA isolated from confiscated ivory samples dating from 1995. DNA from a total of 382 out of 453 ivory samples were successfully isolated and amplified leading to species identification. All sequences were searched against GenBank and found to match with E. maximus and Loxodonta sp. with at least 99% similarity. The samples that were tested came from eight Asian elephants, 14 African forest elephants (Loxodonta cyclotis), and 360 African savannah elephants (Loxodonta africana). This study demonstrates a high success rate in species identification of ivory by a nested PCR approach within the cytochrome b gene which provides the necessary information for the protection of endangered species conservation.

  19. A High Phosphorus Diet Affects Lipid Metabolism in Rat Liver: A DNA Microarray Analysis

    PubMed Central

    Chun, Sunwoo; Bamba, Takeshi; Suyama, Tatsuya; Ishijima, Tomoko; Fukusaki, Eiichiro; Abe, Keiko; Nakai, Yuji

    2016-01-01

    A high phosphorus (HP) diet causes disorders of renal function, bone metabolism, and vascular function. We previously demonstrated that DNA microarray analysis is an appropriate method to comprehensively evaluate the effects of a HP diet on kidney dysfunction such as calcification, fibrillization, and inflammation. We reported that type IIb sodium-dependent phosphate transporter is significantly up-regulated in this context. In the present study, we performed DNA microarray analysis to investigate the effects of a HP diet on the liver, which plays a pivotal role in energy metabolism. DNA microarray analysis was performed with total RNA isolated from the livers of rats fed a control diet (containing 0.3% phosphorus) or a HP diet (containing 1.2% phosphorus). Gene Ontology analysis of differentially expressed genes (DEGs) revealed that the HP diet induced down-regulation of genes involved in hepatic amino acid catabolism and lipogenesis, while genes related to fatty acid β-oxidation process were up-regulated. Although genes related to fatty acid biosynthesis were down-regulated in HP diet-fed rats, genes important for the elongation and desaturation reactions of omega-3 and -6 fatty acids were up-regulated. Concentrations of hepatic arachidonic acid and eicosapentaenoic acid were increased in HP diet-fed rats. These essential fatty acids activate peroxisome proliferator-activated receptor alpha (PPARα), a transcription factor for fatty acid β-oxidation. Evaluation of the upstream regulators of DEGs using Ingenuity Pathway Analysis indicated that PPARα was activated in the livers of HP diet-fed rats. Furthermore, the serum concentration of fibroblast growth factor 21, a hormone secreted from the liver that promotes fatty acid utilization in adipose tissue as a PPARα target gene, was higher (p = 0.054) in HP diet-fed rats than in control diet-fed rats. These data suggest that a HP diet enhances energy expenditure through the utilization of free fatty acids

  20. The facioscapulohumeral muscular dystrophy (FSHD1) gene affects males more severely and more frequently than females.

    PubMed

    Zatz, M; Marie, S K; Cerqueira, A; Vainzof, M; Pavanello, R C; Passos-Bueno, M R

    1998-05-01

    We investigated 52 families of patients with facioscapulohumeral muscular dystrophy (FSHD1), including 172 patients (104 males and 68 females). Among 273 DNA samples which were analyzed with probe p13E-11, 131 (67 males and 64 females) were shown to carry an EcoRI fragment smaller than 35 kb; 114 among them were examined clinically and neurologically. Results of the present investigation showed that: a) there is no molecular evidence for autosomal or X-linked recessive inheritance of FSHD1; b) an excess of affected males, which is explained by a significantly greater proportion of females than males among asymptomatic cases and a significantly greater proportion of affected sons than daughters observed in the offspring of asymptomatic mothers; c) the penetrance of the FSHD1 gene until age 30 was estimated as 83% for both sexes but was significantly greater for males (95%) than for females (69%); d) new mutations occur significantly more frequently in females than males among somatic/germinal mosaic cases; and e) severely affected cases originated more often through new mutations or were transmitted through maternal than through paternal lines including somatic/germinal mothers. These observations have important implications for understanding the molecular mechanisms responsible for FSHD1 and for genetic and prognostic counseling according to the gender of the affected patient.

  1. Analysis of gene transcription in cells lacking DNA-PK activity.

    PubMed

    Bryntesson, F; Regan, J C; Jeggo, P A; Taccioli, G E; Hubank, M

    2001-08-01

    The DNA-dependent protein kinase (DNA-PK), comprised of the Ku70/Ku80 (now known as G22p1/Xrcc5) heterodimer and the catalytic subunit DNA-PKcs (now known as Prkdc), is required for the nonhomologous end joining (NHEJ) pathway of DNA double-strand break repair. The mechanism of action of DNA-PK remains unclear. We have investigated whether DNA-PK regulates gene transcription in vivo after DNA damage using the subtractive hybridization technique of cDNA representational difference analysis (cDNA RDA). Differential transcription, both radiation-dependent and independent, was detected and confirmed in primary mouse embryo fibroblasts from DNA-PKcs(-/-) and DNA-PKcs(+/+) mice. We present evidence that transcription of the extracellular matrix gene laminin alpha 4 (Lama4) is regulated by DNA-PK in a radiation-independent manner. However, screening of both primary and immortalized DNA-PKcs-deficient cell lines demonstrates that the majority of differences were not consistently dependent on DNA-PK status. Similar results were obtained in experiments using KU mutant hamster cell lines, indicating heterogeneity of transcription between closely related cell lines. Our results suggest that while DNA-PK may be involved in limited gene-specific transcription, it does not play a major role in the transcriptional response to DNA damage.

  2. Association of DNA methylation and monoamine oxidase A gene expression in the brains of different dog breeds.

    PubMed

    Eo, JungWoo; Lee, Hee-Eun; Nam, Gyu-Hwi; Kwon, Yun-Jeong; Choi, Yuri; Choi, Bong-Hwan; Huh, Jae-Won; Kim, Minkyu; Lee, Sang-Eun; Seo, Bohyun; Kim, Heui-Soo

    2016-04-15

    The monoamine oxidase A (MAOA) gene is an important candidate gene for human behavior that encodes an enzyme regulating the metabolism of key neurotransmitters. The regulatory mechanisms of the MAOA gene in dogs are yet to be elucidated. We measured MAOA gene transcription and analyzed the VNTR genotype and methylation status of the gene promoter region in different dog breeds to determine whether MAOA expression is correlated with the MAOA genotype or epigenetic modification in dogs. We found brain-specific expression of the MAOA gene and different transcription levels in different dog breeds including Beagle, Sapsaree, and German shepherd, and also a robust association of the DNA methylation of the gene promoter with mRNA levels. However, the 90 bp tandem repeats that we observed near the transcription start site were not variable, indicating no correlation with canine MAOA activity. These results show that differential DNA methylation in the MAOA promoter region may affect gene expression by modulating promoter activity. Moreover, the distinctive patterns of MAOA expression and DNA methylation may be involved in breed-specific or individual behavioral characteristics, such as aggression, because behavioral phenotypes are related to different physiological and neuroendocrine responses.

  3. A genome-wide study of DNA methylation patterns and gene expression levels in multiple human and chimpanzee tissues.

    PubMed

    Pai, Athma A; Bell, Jordana T; Marioni, John C; Pritchard, Jonathan K; Gilad, Yoav

    2011-02-01

    The modification of DNA by methylation is an important epigenetic mechanism that affects the spatial and temporal regulation of gene expression. Methylation patterns have been described in many contexts within and across a range of species. However, the extent to which changes in methylation might underlie inter-species differences in gene regulation, in particular between humans and other primates, has not yet been studied. To this end, we studied DNA methylation patterns in livers, hearts, and kidneys from multiple humans and chimpanzees, using tissue samples for which genome-wide gene expression data were also available. Using the multi-species gene expression and methylation data for 7,723 genes, we were able to study the role of promoter DNA methylation in the evolution of gene regulation across tissues and species. We found that inter-tissue methylation patterns are often conserved between humans and chimpanzees. However, we also found a large number of gene expression differences between species that might be explained, at least in part, by corresponding differences in methylation levels. In particular, we estimate that, in the tissues we studied, inter-species differences in promoter methylation might underlie as much as 12%-18% of differences in gene expression levels between humans and chimpanzees.

  4. [Gene expression of AAV-ITR ssDNA mini vector in skeletal muscle of mice].

    PubMed

    Zhu, Dongqin; Zhang, Yun; Liu, Xiaomei; Zhang, Chun

    2014-11-01

    AAV-ITR single strand DNA mini vector (AAV-ITR ssDNA mini vector) is a novel gene expression vector based on AAV-ITR. We have shown efficient gene expression of AAV-ITR ssDNA mini vector in HEK 293T. Here, we studied the efficacy of gene expression of AAV-ITR ssDNA mini vector in vivo. We injected the skeletal muscle of ICR mice separately with equal molars of AAV-ITR ssDNA mini vector, ITR mutated AAV-ITR single strand DNA mini vector (AAV-ITRmm ssDNA mutant vector), AAV-ITR dsDNA and pUC57-minivector-GFP, combined with TurboFect. Florescence microscope analysis of skeletal muscle section shows that AAV-ITR ssDNA mini vector had higher expression efficiency and longer expression period. We extracted DNA from the muscle three months after injection and quantified three vectors by Real-time PCR. RT-PCR analysis shows that there were highest copy numbers of AAV-ITR ssDNA mini vector existing in muscle. Stable existing of AAV- TR ssDNA mini vector in muscle could be the molecular basis of long term gene expression of the vector. The results suggest that AAV-ITR ssDNA mini vector might be a promising vector for gene therapy.

  5. Aberrant DNA methylation of WNT pathway genes in the development and progression of CIMP-negative colorectal cancer.

    PubMed

    Galamb, Orsolya; Kalmár, Alexandra; Péterfia, Bálint; Csabai, István; Bodor, András; Ribli, Dezső; Krenács, Tibor; Patai, Árpád V; Wichmann, Barnabás; Barták, Barbara Kinga; Tóth, Kinga; Valcz, Gábor; Spisák, Sándor; Tulassay, Zsolt; Molnár, Béla

    2016-08-02

    The WNT signaling pathway has an essential role in colorectal carcinogenesis and progression, which involves a cascade of genetic and epigenetic changes. We aimed to analyze DNA methylation affecting the WNT pathway genes in colorectal carcinogenesis in promoter and gene body regions using whole methylome analysis in 9 colorectal cancer, 15 adenoma, and 6 normal tumor adjacent tissue (NAT) samples by methyl capture sequencing. Functional methylation was confirmed on 5-aza-2'-deoxycytidine-treated colorectal cancer cell line datasets. In parallel with the DNA methylation analysis, mutations of WNT pathway genes (APC, β-catenin/CTNNB1) were analyzed by 454 sequencing on GS Junior platform. Most differentially methylated CpG sites were localized in gene body regions (95% of WNT pathway genes). In the promoter regions, 33 of the 160 analyzed WNT pathway genes were differentially methylated in colorectal cancer vs. normal, including hypermethylated AXIN2, CHP1, PRICKLE1, SFRP1, SFRP2, SOX17, and hypomethylated CACYBP, CTNNB1, MYC; 44 genes in adenoma vs. NAT; and 41 genes in colorectal cancer vs. adenoma comparisons. Hypermethylation of AXIN2, DKK1, VANGL1, and WNT5A gene promoters was higher, while those of SOX17, PRICKLE1, DAAM2, and MYC was lower in colon carcinoma compared to adenoma. Inverse correlation between expression and methylation was confirmed in 23 genes, including APC, CHP1, PRICKLE1, PSEN1, and SFRP1. Differential methylation affected both canonical and noncanonical WNT pathway genes in colorectal normal-adenoma-carcinoma sequence. Aberrant DNA methylation appears already in adenomas as an early event of colorectal carcinogenesis.

  6. Gene duplication and divergence affecting drug content in Cannabis sativa.

    PubMed

    Weiblen, George D; Wenger, Jonathan P; Craft, Kathleen J; ElSohly, Mahmoud A; Mehmedic, Zlatko; Treiber, Erin L; Marks, M David

    2015-12-01

    Cannabis sativa is an economically important source of durable fibers, nutritious seeds, and psychoactive drugs but few economic plants are so poorly understood genetically. Marijuana and hemp were crossed to evaluate competing models of cannabinoid inheritance and to explain the predominance of tetrahydrocannabinolic acid (THCA) in marijuana compared with cannabidiolic acid (CBDA) in hemp. Individuals in the resulting F2 population were assessed for differential expression of cannabinoid synthase genes and were used in linkage mapping. Genetic markers associated with divergent cannabinoid phenotypes were identified. Although phenotypic segregation and a major quantitative trait locus (QTL) for the THCA/CBDA ratio were consistent with a simple model of codominant alleles at a single locus, the diversity of THCA and CBDA synthase sequences observed in the mapping population, the position of enzyme coding loci on the map, and patterns of expression suggest multiple linked loci. Phylogenetic analysis further suggests a history of duplication and divergence affecting drug content. Marijuana is distinguished from hemp by a nonfunctional CBDA synthase that appears to have been positively selected to enhance psychoactivity. An unlinked QTL for cannabinoid quantity may also have played a role in the recent escalation of drug potency.

  7. Comprehensive gene expression profiling following DNA vaccination of rainbow trout against infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Purcell, Maureen K.; Nichols, Krista M.; Winton, James R.; Kurath, Gael; Thorgaard, Gary H.; Wheeler, Paul; Hansen, John D.; Herwig, Russell P.; Park, Linda K.

    2006-01-01

    The DNA vaccine based on the glycoprotein gene of Infectious hematopoietic necrosis virus induces a non-specific anti-viral immune response and long-term specific immunity against IHNV. This study characterized gene expression responses associated with the early anti-viral response. Homozygous rainbow trout were injected intra-muscularly (I.M.) with vector DNA or the IHNV DNA vaccine. Gene expression in muscle tissue (I.M. site) was evaluated using a 16,008 feature salmon cDNA microarray. Eighty different genes were significantly modulated in the vector DNA group while 910 genes were modulated in the IHNV DNA vaccinate group relative to control group. Quantitative reverse-transcriptase PCR was used to examine expression of selected immune genes at the I.M. site and in other secondary tissues. In the localized response (I.M. site), the magnitudes of gene expression changes were much greater in the vaccinate group relative to the vector DNA group for the majority of genes analyzed. At secondary systemic sites (e.g. gill, kidney and spleen), type I IFN-related genes were up-regulated in only the IHNV DNA vaccinated group. The results presented here suggest that the IHNV DNA vaccine induces up-regulation of the type I IFN system across multiple tissues, which is the functional basis of early anti-viral immunity.

  8. Tandem transcription termination sites in the dnaN gene of Escherichia coli.

    PubMed

    Armengod, M E; García-Sogo, M; Pérez-Roger, I; Macián, F; Navarro-Aviñó, J P

    1991-10-15

    The dnaN gene of Escherichia coli encodes the beta-subunit of DNA polymerase III and maps between the dnaA and recF genes. We demonstrated previously that dnaN and recF constitute a transcriptional unit under control of the dnaN promoters. However, the recF gene has its own promoter region located in the middle of the dnaN structural gene. In this report, we use S1 mapping of mRNAs, transcriptional and translational fusions to the galK and lacZ genes, and in vitro mutagenesis to identify and characterize three tandem transcription termination sites responsible for transcriptional polarity in the dnaN-recF operon. These sites are located in the dnaN gene, downstream from the recF promoter region. Cumulatively, they terminate about 80% of the untranslated transcripts started at the recF promoters. As expected, they do not reduce transcription coming from the dnaN promoters unless dnaN translation was prematurely disrupted by the presence of a nonsense codon. The particular arrangement of regulatory elements (promoters and terminators) in the dnaN-recF region provides an exceptional in vivo system to confirm the latent termination site model of transcriptional polarity. In addition, our results contribute to the understanding of the complex regulation of the dnaA, dnaN, and recF genes. We propose that these three genes constitute an operon and that the terminators described in this work could be used to reduce expression of the distal genes of the operon under circumstances in which the dnaN translation happens to be slowed down.

  9. Gypenosides causes DNA damage and inhibits expression of DNA repair genes of human oral cancer SAS cells.

    PubMed

    Lu, Kung-Wen; Chen, Jung-Chou; Lai, Tung-Yuan; Yang, Jai-Sing; Weng, Shu-Wen; Ma, Yi-Shih; Tang, Nou-Ying; Lu, Pei-Jung; Weng, Jing-Ru; Chung, Jing-Gung

    2010-01-01

    Gypenosides (Gyp) are the major components of Gynostemma pentaphyllum Makino, a Chinese medical plant. Recently, Gyp has been shown to induce cell cycle arrest and apoptosis in many human cancer cell lines. However, there is no available information to address the effects of Gyp on DNA damage and DNA repair-associated gene expression in human oral cancer cells. Therefore, we investigated whether Gyp induced DNA damage and DNA repair gene expression in human oral cancer SAS cells. The results from flow cytometric assay indicated that Gyp-induced cytotoxic effects led to a decrease in the percentage of viable SAS cells. The results from comet assay revealed that the incubation of SAS cells with Gyp led to a longer DNA migration smear (comet tail) when compared with control and this effect was dose-dependent. The results from real-time PCR analysis indicated that treatment of SAS cells with 180 mug/ml of Gyp for 24 h led to a decrease in 14-3-3sigma, DNA-dependent serine/threonine protein kinase (DNAPK), p53, ataxia telangiectasia mutated (ATM), ataxia-telangiectasia and Rad3-related (ATR) and breast cancer gene 1 (BRCA1) mRNA expression. These observations may explain the cell death caused by Gyp in SAS cells. Taken together, Gyp induced DNA damage and inhibited DNA repair-associated gene expressions in human oral cancer SAS cells in vitro.

  10. Functional role of DNA mismatch repair gene PMS2 in prostate cancer cells.

    PubMed

    Fukuhara, Shinichiro; Chang, Inik; Mitsui, Yozo; Chiyomaru, Takeshi; Yamamura, Soichiro; Majid, Shahana; Saini, Sharanjot; Deng, Guoren; Gill, Ankurpreet; Wong, Darryn K; Shiina, Hiroaki; Nonomura, Norio; Lau, Yun-Fai C; Dahiya, Rajvir; Tanaka, Yuichiro

    2015-06-30

    DNA mismatch repair (MMR) enzymes act as proofreading complexes that maintains genomic integrity and MMR-deficient cells show an increased mutation rate. MMR has also been shown to influence cell signaling and the regulation of tumor development. MMR consists of various genes and includes post-meiotic segregation (PMS) 2 which is a vital component of mutL-alpha. In prostate, the functional role of this gene has never been reported and in this study, our aim was to investigate the effect of PMS2 on growth properties of prostate cancer (PCa) cells. Previous studies have shown PMS2 to be deficient in DU145 cells and this lack of expression was confirmed by Western blotting whereas normal prostatic PWR-1E and RWPE-1 cells expressed this gene. PMS2 effects on various growth properties of DU145 were then determined by creating stable gene transfectants. Interestingly, PMS2 caused decreased cell proliferation, migration, invasion, and in vivo growth; and increased apoptosis as compared to vector control. We further analyzed genes affected by PMS2 expression and observe the apoptosis-related TMS1 gene to be significantly upregulated whereas anti-apoptotic BCL2A1 was downregulated. These results demonstrate a functional role for PMS2 to protect against PCa progression by enhancing apoptosis of PCa cells.

  11. Dietary Flavanols Modulate the Transcription of Genes Associated with Cardiovascular Pathology without Changes in Their DNA Methylation State

    PubMed Central

    Boby, Céline; Leroux, Christine; Declerck, Ken; Szarc vel Szic, Katarzyna; Heyninck, Karen; Laukens, Kris; Bizet, Martin; Defrance, Matthieu; Dedeurwaerder, Sarah; Calonne, Emilie; Fuks, Francois; Haegeman, Guy; Haenen, Guido R. M. M.; Bast, Aalt; Weseler, Antje R.

    2014-01-01

    Background In a recent intervention study, the daily supplementation with 200 mg monomeric and oligomeric flavanols (MOF) from grape seeds for 8 weeks revealed a vascular health benefit in male smokers. The objective of the present study was to determine the impact of MOF consumption on the gene expression profile of leukocytes and to assess changes in DNA methylation. Methodology/Principal Findings Gene expression profiles were determined using whole genome microarrays (Agilent) and DNA methylation was assessed using HumanMethylation450 BeadChips (Illumina). MOF significantly modulated the expression of 864 genes. The majority of the affected genes are involved in chemotaxis, cell adhesion, cell infiltration or cytoskeleton organisation, suggesting lower immune cell adhesion to endothelial cells. This was corroborated by in vitro experiments showing that MOF exposure of monocytes attenuates their adhesion to TNF-α-stimulated endothelial cells. Nuclear factor kappa B (NF-κB) reporter gene assays confirmed that MOF decrease the activity of NF-κB. Strong inter-individual variability in the leukocytes' DNA methylation was observed. As a consequence, on group level, changes due to MOF supplementation could not be found. Conclusion Our study revealed that an 8 week daily supplementation with 200 mg MOF modulates the expression of genes associated with cardiovascular disease pathways without major changes of their DNA methylation state. However, strong inter-individual variation in leukocyte DNA methylation may obscure the subtle epigenetic response to dietary flavanols. Despite the lack of significant changes in DNA methylation, the modulation of gene expression appears to contribute to the observed vascular health effect of MOF in humans. PMID:24763279

  12. Changes in mitochondrial DNA alter expression of nuclear encoded genes associated with tumorigenesis

    SciTech Connect

    Jandova, Jana; Janda, Jaroslav; Sligh, James E

    2012-10-15

    We previously reported the presence of a mtDNA mutation hotspot in UV-induced premalignant and malignant skin tumors in hairless mice. We have modeled this change (9821insA) in murine cybrid cells and demonstrated that this alteration in mtDNA associated with mtBALB haplotype can alter the biochemical characteristics of cybrids and subsequently can contribute to significant changes in their behavioral capabilities. This study shows that changes in mtDNA can produce differences in expression levels of specific nuclear-encoded genes, which are capable of triggering the phenotypes such as seen in malignant cells. From a potential list of differentially expressed genes discovered by microarray analysis, we selected MMP-9 and Col1a1 for further studies. Real-time PCR confirmed up-regulation of MMP-9 and down-regulation of Col1a1 in cybrids harboring the mtDNA associated with the skin tumors. These cybrids also showed significantly increased migration and invasion abilities compared to wild type. The non-specific MMP inhibitor, GM6001, was able to inhibit migratory and invasive abilities of the 9821insA cybrids confirming a critical role of MMPs in cellular motility. Nuclear factor-{kappa}B (NF-{kappa}B) is a key transcription factor for production of MMPs. An inhibitor of NF-{kappa}B activation, Bay 11-7082, was able to inhibit the expression of MMP-9 and ultimately decrease migration and invasion of mutant cybrids containing 9821insA. These studies confirm a role of NF-{kappa}B in the regulation of MMP-9 expression and through this regulation modulates the migratory and invasive capabilities of cybrids with mutant mtDNA. Enhanced migration and invasion abilities caused by up-regulated MMP-9 may contribute to the tumorigenic phenotypic characteristics of mutant cybrids. -- Highlights: Black-Right-Pointing-Pointer Cybrids are useful models to study the role of mtDNA changes in cancer development. Black-Right-Pointing-Pointer mtDNA changes affect the expression of nuclear

  13. Cytogenetic and molecular localization of tipE: A gene affecting sodium channels in Drosophila melanogaster

    SciTech Connect

    Feng, G.; Deak, P.; Hall, L.M.

    1995-04-01

    Voltage-sensitive sodium channels play a key role in nerve cells where they are responsible for the increase in sodium permeability during the rising phase of action potentials. In Drosophila melanogaster a subset of temperature-sensitive paralytic mutations affect sodium channel function. One such mutation is temperature-induced paralysis locus E (tipE), which has been shown by electrophysiology and ligand binding studies to reduce sodium channel numbers. Three new {gamma}-ray-induced tipE alleles associated with either visible deletions in 64AB or a translocation breakpoint within 64B2 provide landmarks for positional cloning of tipE. Beginning with the flanking cloned gene Ras2, a 140-kb walk across the translocation breakpoint was completed. Germline transformation using a 42-kb cosmid clone and successively smaller subclones localized the tipE gene within a 7.4-kb genomic DNA segment. Although this chromosome region is rich in transcripts, only three overlapping mRNAs (5.4, 4.4, and 1.7 kb) lie completely within the smallest rescuing construct. The small sizes of the rescuing construct and transcripts suggests that tipE does not encode a standard sodium channel {alpha}-subunit with four homologous repeats. Sequencing these transcripts will elucidate the role of the tipE gene product in sodium channel functional regulation. 55 refs., 4 figs., 2 tabs.

  14. Cytogenetic and molecular localization of tipE: a gene affecting sodium channels in Drosophila melanogaster.

    PubMed

    Feng, G; Deák, P; Kasbekar, D P; Gil, D W; Hall, L M

    1995-04-01

    Voltage-sensitive sodium channels play a key role in nerve cells where they are responsible for the increase in sodium permeability during the rising phase of action potentials. In Drosophila melanogaster a subset of temperature-sensitive paralytic mutations affect sodium channel function. One such mutation is temperature-induced paralysis locus E (tipE), which has been shown by electrophysiology and ligand binding studies to reduce sodium channel numbers. Three new gamma-ray-induced tipE alleles associated with either visible deletions in 64AB or a translocation breakpoint within 64B2 provide landmarks for positional cloning of tipE. Beginning with the flanking cloned gene Ras2, a 140-kb walk across the translocation breakpoint was completed. Germline transformation using a 42-kb cosmid clone and successively smaller subclones localized the tipE gene within a 7.4-kb genomic DNA segment. Although this chromosome region is rich in transcripts, only three overlapping mRNAs (5.4, 4.4, and 1.7 kb) lie completely within the smallest rescuing construct. The small sizes of the rescuing construct and transcripts suggest that tipE does not encode a standard sodium channel alpha-subunit with four homologous repeats. Sequencing these transcripts will elucidate the role of the tipE gene product in sodium channel functional regulation.

  15. Homologous recombination between single-stranded DNA and chromosomal genes in Saccharomyces cerevisiae.

    PubMed Central

    Simon, J R; Moore, P D

    1987-01-01

    Transformation of Saccharomyces cerevisiae strains was examined by using the URA3 and TRP1 genes cloned into M13 vectors in the absence of sequences capable of promoting autonomous replication. These constructs transform S. cerevisiae cells to prototrophy by homologous recombination with the resident mutant gene. Single-stranded DNA was found to transform S. cerevisiae cells at efficiencies greater than that of double-stranded DNA. No conversion of single-stranded transforming DNA into duplex forms could be detected during the transformation process, and we conclude that single-stranded DNA may participate directly in recombination with chromosomal sequences. Transformation with single-stranded DNA gave rise to both gene conversion and reciprocal exchange events. Cotransformation with competing heterologous single-stranded DNA specifically inhibited transformation by single-stranded DNA, suggesting that one of the components in the transformation-recombination process has a preferential affinity for single-stranded DNA. Images PMID:3302673

  16. The nucleotide sequence of the sheep MHC class II DNA gene

    SciTech Connect

    Wright, H.; Redmond, J.; Ballingall, K.T.; Wright, F.

    1995-01-11

    The human MHC class II DNA gene was identified and sequenced by Trowsdale and Kelly. When a molecular map of the HLA-D region became available, it was shown that the HLA-DNA gene was unusual in not having a B gene partner situated within a few kilobases (kb), the nearest B gene being HLA-DPB1. The nearest unpaired B gene is HLA-DOB which is approximately 160 kb telomeric of HLA-DNA. More recently, the mouse MHC class II genes H-20A and H-20B were shown to be equivalent to the HLA-DNA and HLA-DOB genes. Moreover, the mouse genes expressed an MHC class II protein whose tissue distribution was restricted to B cells and epithelial cell of the thymic medulla. No corresponding HLA-DN protein has been reported. 21 refs., 3 figs.

  17. From DNA Copy Number to Gene Expression: Local aberrations, Trisomies and Monosomies

    NASA Astrophysics Data System (ADS)

    Shay, Tal

    The goal of my PhD research was to study the effect of DNA copy number changes on gene expression. DNA copy number aberrations may be local, encompassing several genes, or on the level of an entire chromosome, such as trisomy and monosomy. The main dataset I studied was of Glioblastoma, obtained in the framework of a collaboration, but I worked also with public datasets of cancer and Down's Syndrome. The molecular basis of expression changes in Glioblastoma. Glioblastoma is the most common and aggressive type of primary brain tumors in adults. In collaboration with Prof. Hegi (CHUV, Switzerland), we analyzed a rich Glioblastoma dataset including clinical information, DNA copy number (array CGH) and expression profiles. We explored the correlation between DNA copy number and gene expression at the level of chromosomal arms and local genomic aberrations. We detected known amplification and over expression of oncogenes, as well as deletion and down-regulation of tumor suppressor genes. We exploited that information to map alterations of pathways that are known to be disrupted in Glioblastoma, and tried to characterize samples that have no known alteration in any of the studied pathways. Identifying local DNA aberrations of biological significance. Many types of tumors exhibit chromosomal losses or gains and local amplifications and deletions. A region that is aberrant in many tumors, or whose copy number change is stronger, is more likely to be clinically relevant, and not just a by-product of genetic instability. We developed a novel method that defines and prioritizes aberrations by formalizing these intuitions. The method scores each aberration by the fraction of patients harboring it, its length and its amplitude, and assesses the significance of the score by comparing it to a null distribution obtained by permutations. This approach detects genetic locations that are significantly aberrant, generating a 'genomic aberration profile' for each sample. The 'genomic

  18. The HRDC domain of E. coli RecQ helicase controls single-stranded DNA translocation and double-stranded DNA unwinding rates without affecting mechanoenzymatic coupling.

    PubMed

    Harami, Gábor M; Nagy, Nikolett T; Martina, Máté; Neuman, Keir C; Kovács, Mihály

    2015-06-11

    DNA-restructuring activities of RecQ-family helicases play key roles in genome maintenance. These activities, driven by two tandem RecA-like core domains, are thought to be controlled by accessory DNA-binding elements including the helicase-and-RnaseD-C-terminal (HRDC) domain. The HRDC domain of human Bloom's syndrome (BLM) helicase was shown to interact with the RecA core, raising the possibility that it may affect the coupling between ATP hydrolysis, translocation along single-stranded (ss)DNA and/or unwinding of double-stranded (ds)DNA. Here, we determined how these activities are affected by the abolition of the ssDNA interaction of the HRDC domain or the deletion of the entire domain in E. coli RecQ helicase. Our data show that the HRDC domain suppresses the rate of DNA-activated ATPase activity in parallel with those of ssDNA translocation and dsDNA unwinding, regardless of the ssDNA binding capability of this domain. The HRDC domain does not affect either the processivity of ssDNA translocation or the tight coupling between the ATPase, translocation, and unwinding activities. Thus, the mechanochemical coupling of E. coli RecQ appears to be independent of HRDC-ssDNA and HRDC-RecA core interactions, which may play roles in more specialized functions of the enzyme.

  19. Purkinje Cell Degeneration in pcd Mice Reveals Large Scale Chromatin Reorganization and Gene Silencing Linked to Defective DNA Repair*

    PubMed Central

    Baltanás, Fernando C.; Casafont, Iñigo; Lafarga, Vanesa; Weruaga, Eduardo; Alonso, José R.; Berciano, María T.; Lafarga, Miguel

    2011-01-01

    DNA repair protects neurons against spontaneous or disease-associated DNA damage. Dysfunctions of this mechanism underlie a growing list of neurodegenerative disorders. The Purkinje cell (PC) degeneration mutation causes the loss of nna1 expression and is associated with the postnatal degeneration of PCs. This PC degeneration dramatically affects nuclear architecture and provides an excellent model to elucidate the nuclear mechanisms involved in a whole array of neurodegenerative disorders. We used immunocytochemistry for histone variants and components of the DNA damage response, an in situ transcription assay, and in situ hybridization for telomeres to analyze changes in chromatin architecture and function. We demonstrate that the phosphorylation of H2AX, a DNA damage signal, and the trimethylation of the histone H4K20, a repressive mark, in extensive domains of genome are epigenetic hallmarks of chromatin in degenerating PCs. These histone modifications are associated with a large scale reorganization of chromatin, telomere clustering, and heterochromatin-induced gene silencing, all of them key factors in PC degeneration. Furthermore, ataxia telangiectasia mutated and 53BP1, two components of the DNA repair pathway, fail to be concentrated in the damaged chromatin compartments, even though the expression levels of their coding genes were slightly up-regulated. Although the mechanism by which Nna1 loss of function leads to PC neurodegeneration is undefined, the progressive accumulation of DNA damage in chromosome territories irreversibly compromises global gene transcription and seems to trigger PC degeneration and death. PMID:21700704

  20. Rearrangement of RAG-1 recombinase gene in DNA-repair deficient ``wasted`` mice

    SciTech Connect

    Woloschak, G.E.; Libertin, C.R.; Weaver, P.; Churchill, M.; Chang-Liu, C.M.

    1993-11-01

    Mice recessive for the autosomal gene ``wasted`` wst display a disease pattern which includes increased sensitivity to the killing effects of ionizing radiation, immunodeficiency, and neurologic dysfunction. The recent cloning and characterization of recombinase genes (RAG-l/RAG-2) expressed in lymphoid and possibly central nervous system tissues prompted us to examine expression of these genes in DNA repair-deficient/immunodeficient wasted mice. Our results revealed expression of RAG-1 mRNA in spinal cord (but not brain) of control mice; no expression of RAG-1 mRNA was detected in spinal cord or brain from wst/wst mice or their normal littermates (wst/{center_dot}mice). In thymus tissue, a small RAG-1 transcript (1.0 kb) was detected in wst/wst mice that was not evident in thymus from control mice. In wst/{center_dot}mice, a two-fold increase in RAG-1 mRNA was evident in thymus tissue. RAG-2 mRNA could only be detected in thymus tissue from wst/{center_dot} and not from wst/wst or parental control BCF{sub 1} mice. Southern blots revealed a rearrangement/deletion within the RAG-1 gene of affected wasted mice, not evident in known strain-specific parental or littermate controls. These results support the idea that the RAG-1 gene may map at or near the locus for the wasted mutation. In addition, they suggest the importance of recombinase function in normal immune and central nervous system development as well as the potential contribution of this gene family to the normal repair of radiation-induced DNA damage.

  1. Control of gene editing by manipulation of DNA repair mechanisms.

    PubMed

    Danner, Eric; Bashir, Sanum; Yumlu, Saniye; Wurst, Wolfgang; Wefers, Benedikt; Kühn, Ralf

    2017-04-03

    DNA double-strand breaks (DSBs) are produced intentionally by RNA-guided nucleases to achieve genome editing through DSB repair. These breaks are repaired by one of two main repair pathways, classic non-homologous end joining (c-NHEJ) and homology-directed repair (HDR), the latter being restricted to the S/G2 phases of the cell cycle and notably less frequent. Precise genome editing applications rely on HDR, with the abundant c-NHEJ formed mutations presenting a barrier to achieving high rates of precise sequence modifications. Here, we give an overview of HDR- and c-NHEJ-mediated DSB repair in gene editing and summarize the current efforts to promote HDR over c-NHEJ.

  2. Widespread DNA hypomethylation and differential gene expression in Turner syndrome

    PubMed Central

    Trolle, Christian; Nielsen, Morten Muhlig; Skakkebæk, Anne; Lamy, Philippe; Vang, Søren; Hedegaard, Jakob; Nordentoft, Iver; Ørntoft, Torben Falck; Pedersen, Jakob Skou; Gravholt, Claus Højbjerg

    2016-01-01

    Adults with 45,X monosomy (Turner syndrome) reflect a surviving minority since more than 99% of fetuses with 45,X monosomy die in utero. In adulthood 45,X monosomy is associated with increased morbidity and mortality, although strikingly heterogeneous with some individuals left untouched while others suffer from cardiovascular disease, autoimmune disease and infertility. The present study investigates the leukocyte DNAmethylation profile by using the 450K-Illumina Infinium assay and the leukocyte RNA-expression profile in 45,X monosomy compared with karyotypically normal female and male controls. We present results illustrating that genome wide X-chromosome RNA-expression profile, autosomal DNA-methylation profile, and the X-chromosome methylation profile clearly distinguish Turner syndrome from controls. Our results reveal genome wide hypomethylation with most differentially methylated positions showing a medium level of methylation. Contrary to previous studies, applying a single loci specific analysis at well-defined DNA loci, our results indicate that the hypomethylation extend to repetitive elements. We describe novel candidate genes that could be involved in comorbidity in TS and explain congenital urinary malformations (PRKX), premature ovarian failure (KDM6A), and aortic aneurysm formation (ZFYVE9 and TIMP1). PMID:27687697

  3. Mutations that affect phosphorylation of the adenovirus DNA-binding protein alter its ability to enhance its own synthesis.

    PubMed Central

    Morin, N; Delsert, C; Klessig, D F

    1989-01-01

    The multifunctional adenovirus single-strand DNA-binding protein (DBP) is highly phosphorylated. Its phosphorylation sites are located in the amino-terminal domain of the protein, and its DNA- and RNA-binding activity resides in the carboxy-terminal half of the polypeptide. We have substituted cysteine or alanine for up to 10 of these potential phosphorylation sites by using oligonucleotide-directed mutagenesis. Alteration of one or a few of these sites had little effect on the viability of virus containing the mutated DBP. However, when eight or more sites were altered, viral growth decreased significantly. This suggests that the overall phosphorylation state of the protein was more important than whether any particular site was modified. The reduction in growth correlated with both depressed DNA replication and expression of late genes. This reduction was probably the result of lower DBP accumulation in mutant-infected cells. Interestingly, although the stability of the mutated DBP was not affected, DBP synthesis and the level of its mRNA were depressed 5- to 10-fold for the underphosphorylated protein. These results suggest that DBP enhances its own expression and imply that phosphorylation of the DBP may be important for this function. Similarities to several eucaryotic transcriptional activators, which are composed of negatively charged activating domains and separate binding domains, are discussed. Images PMID:2585602

  4. Determining the effect of DNA methylation on gene expression in cancer cells.

    PubMed

    Lee, Chai-Jin; Evans, Jared; Kim, Kwangsoo; Chae, Heejoon; Kim, Sun

    2014-01-01

    DNA methylation, a DNA modification by adding methyl group to cytosine, has an important role in the regulation of gene expression. DNA methylation is known to be associated with gene transcription by interfering with DNA-binding proteins, such as transcription factors. DNA methylation is closely related to tumorigenesis, and the methylation state of some genes can be used as a biomarker for tumorigenesis. Aberrant DNA methylation of genomic regions, including CpG islands, CpG shores, and first exons, is related to the altered gene expression pattern characteristics of all human cancers. Subheading 1 surveys recent developments on DNA methylation and gene expressions in cancer. Then we provide analysis of DNA methylation and gene expression in 30 breast cancer cell lines representing different tumor phenotypes. This study conducted an integrated analysis to identify the relationship between DNA methylation in various genomic regions and expression levels of downstream genes, using MethylCapseq data (affinity purification followed by next-generation sequencing of eluted DNA) and Affymetrix gene expression microarray data. The goal of this study was to assess genome-wide methylation profiles associated with different molecular subtypes of human breast cancer (luminal, basal A, and basal B) and to comprehensively investigate the effect of DNA methylation on gene expression in breast cancer phenotypes. This showed that methylation of genomic regions near transcription start sites, CpG island, CpG shore, and first exon was strongly associated with gene repression, and the effects of the regions on gene expression patterns were different for different molecular subtypes of breast cancer. The results further indicated that aberrant methylation of specific genomic regions was significantly associated with different breast cancer subtypes.

  5. Non-DBS DNA Repair Genes Regulate Radiation-induced Cytogenetic Damage Repair and Cell Cycle Progression

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Rohde, Larry H.; Emami, Kamal; Casey, Rachael; Wu, Honglu

    2008-01-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in DSB repair, and its impact on cytogenetic responses has not been systematically studied. In the present study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by transfection with small interfering RNA in human fibroblast cells. The purpose of this study is to identify new roles of these selected genes on regulating DSB repair and cell cycle progression , as measured in the micronuclei formation and chromosome aberration. In response to IR, the formation of MN was significantly increased by suppressed expression of 5 genes: Ku70 in the DSB repair pathway, XPA in the NER pathway, RPA1 in the MMR pathway, and RAD17 and RBBP8 in cell cycle control. Knocked-down expression of 4 genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Furthermore, loss of XPA, P21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Most of the 11 genes that affected cytogenetic responses are not known to have clear roles influencing DBS repair. Nine of these 11 genes were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate the biological consequences after IR.

  6. DNA damage and gene therapy of xeroderma pigmentosum, a human DNA repair-deficient disease.

    PubMed

    Dupuy, Aurélie; Sarasin, Alain

    2015-06-01

    Xeroderma pigmentosum (XP) is a genetic disease characterized by hypersensitivity to ultra-violet and a very high risk of skin cancer induction on exposed body sites. This syndrome is caused by germinal mutations on nucleotide excision repair genes. No cure is available for these patients except a complete protection from all types of UV radiations. We reviewed the various techniques to complement or to correct the genetic defect in XP cells. We, particularly, developed the correction of XP-C skin cells using the fidelity of the homologous recombination pathway during repair of double-strand break (DSB) in the presence of XPC wild type sequences. We used engineered nucleases (meganuclease or TALE nuclease) to induce a DSB located at 90 bp of the mutation to be corrected. Expression of specific TALE nuclease in the presence of a repair matrix containing a long stretch of homologous wild type XPC sequences allowed us a successful gene correction of the original TG deletion found in numerous North African XP patients. Some engineered nucleases are sensitive to epigenetic modifications, such as cytosine methylation. In case of methylated sequences to be corrected, modified nucleases or demethylation of the whole genome should be envisaged. Overall, we showed that specifically-designed TALE-nuclease allowed us to correct a 2 bp deletion in the XPC gene leading to patient's cells proficient for DNA repair and showing normal UV-sensitivity. The corrected gene is still in the same position in the human genome and under the regulation of its physiological promoter. This result is a first step toward gene therapy in XP patients.

  7. DNA Methylation of Regulatory Regions of Imprinted Genes at Birth and Its Relation to Infant Temperament

    PubMed Central

    Fuemmeler, Bernard F.; Lee, Chien-Ti; Soubry, Adelheid; Iversen, Edwin S.; Huang, Zhiqing; Murtha, Amy P.; Schildkraut, Joellen M.; Jirtle, Randy L.; Murphy, Susan K.; Hoyo, Cathrine

    2016-01-01

    BACKGROUND DNA methylation of the differentially methylated regions (DMRs) of imprinted genes is relevant to neurodevelopment. METHODS DNA methylation status of the DMRs of nine imprinted genes in umbilical cord blood leukocytes was analyzed in relation to infant behaviors and temperament (n = 158). RESULTS MEG3 DMR levels were positively associated with internalizing (β = 0.15, P = 0.044) and surgency (β = 0.19, P = 0.018) behaviors, after adjusting for birth weight, gender, gestational age at birth, maternal age at delivery, race/ethnicity, education level, smoking status, parity, and a history of anxiety or depression. Higher methylation levels at the intergenic MEG3-IG methylation regions were associated with surgency (β = 0.28, P = 0.0003) and PEG3 was positively related to externalizing (β = 0.20, P = 0.01) and negative affectivity (β = 0.18, P = 0.02). CONCLUSION While the small sample size limits inference, these pilot data support gene-specific associations between epigenetic differences in regulatory regions of imprinted domains at birth and later infant temperament. PMID:27920589

  8. Structure and function of the DNA ligases encoded by the mammalian LIG3 gene.

    PubMed

    Tomkinson, Alan E; Sallmyr, Annahita

    2013-12-01

    Among the mammalian genes encoding DNA ligases (LIG), the LIG3 gene is unique in that it encodes multiple DNA ligase polypeptides with different cellular functions. Notably, this nuclear gene encodes the only mitochondrial DNA ligase and so is essential for this organelle. In the nucleus, there is significant functional redundancy between DNA ligase IIIα and DNA ligase I in excision repair. In addition, DNA ligase IIIα is essential for DNA replication in the absence of the replicative DNA ligase, DNA ligase I. DNA ligase IIIα is a component of an alternative non-homologous end joining (NHEJ) pathway for DNA double-strand break (DSB) repair that is more active when the major DNA ligase IV-dependent pathway is defective. Unlike its other nuclear functions, the role of DNA ligase IIIα in alternative NHEJ is independent of its nuclear partner protein, X-ray repair cross-complementing protein 1 (XRCC1). DNA ligase IIIα is frequently overexpressed in cancer cells, acting as a biomarker for increased dependence upon alternative NHEJ for DSB repair and it is a promising novel therapeutic target.

  9. Beryllium chloride-induced oxidative DNA damage and alteration in the expression patterns of DNA repair-related genes.

    PubMed

    Attia, Sabry M; Harisa, Gamaleldin I; Hassan, Memy H; Bakheet, Saleh A

    2013-09-01

    Beryllium metal has physical properties that make its use essential for very specific applications, such as medical diagnostics, nuclear/fusion reactors and aerospace applications. Because of the widespread human exposure to beryllium metals and the discrepancy of the genotoxic results in the reported literature, detail assessments of the genetic damage of beryllium are warranted. Mice exposed to beryllium chloride at an oral dose of 23mg/kg for seven consecutive days exhibited a significant increase in the level of DNA-strand breaking and micronuclei formation as detected by a bone marrow standard comet assay and micronucleus test. Whereas slight beryllium chloride-induced oxidative DNA damage was detected following formamidopyrimidine DNA glycosylase digestion, digestion with endonuclease III resulted in considerable increases in oxidative DNA damage after the 11.5 and 23mg/kg/day treatment as detected by enzyme-modified comet assays. Increased 8-hydroxydeoxyguanosine was also directly correlated with increased bone marrow micronuclei formation and DNA strand breaks, which further confirm the involvement of oxidative stress in the induction of bone marrow genetic damage after exposure to beryllium chloride. Gene expression analysis on the bone marrow cells from beryllium chloride-exposed mice showed significant alterations in genes associated with DNA damage repair. Therefore, beryllium chloride may cause genetic damage to bone marrow cells due to the oxidative stress and the induced unrepaired DNA damage is probably due to the down-regulation in the expression of DNA repair genes, which may lead to genotoxicity and eventually cause carcinogenicity.

  10. 16S rRNA gene probe quantitates residual host cell DNA in pharmaceutical-grade plasmid DNA.

    PubMed

    Wang, Kai-Yu; Guo, Ying-Jun; Sun, Shu-Han; Shi, Ke; Zhang, Shu; Wang, Kai-Hui; Yi-Zhang; Chen, Zu-Huan

    2006-03-24

    The development and widespread use of DNA-based vaccination against infectious pathogens have been a great triumph of medical science. Quality control of DNA vaccines as biopharmaceutical productions is a problem to solve. Residual genomic DNA of engineering bacteria has been identified as a potential risk factor, so whose level must be controlled under the regulatory standards. We report a dot-blot hybridization method to detect residual host cell DNA in purified DNA vaccines. The assay utilizes PCR amplified and digoxigenin-labeled Escherichia coli 16S rRNA gene as probe. The sensitivity of the dot-blot hybridization assay with E. coli 16S rRNA gene probe was evaluated in comparison with single copy UidR gene probe. The optimized dot-blot hybridization assay had both low background and a suitable sensitivity, detecting 10 pg of residual E. coli DNA. The method is suitable in the routine use of measuring the levels of residual E. coli DNA in the pharmaceutical-grade DNA vaccine.

  11. DNA damage response pathway and replication fork stress during oligonucleotide directed gene editing.

    PubMed

    Bonner, Melissa; Strouse, Bryan; Applegate, Mindy; Livingston, Paula; Kmiec, Eric B

    2012-04-03

    Single-stranded DNA oligonucleotides (ODNs) can be used to direct the exchange of nucleotides in the genome of mammalian cells in a process known as gene editing. Once refined, gene editing should become a viable option for gene therapy and molecular medicine. Gene editing is regulated by a number of DNA recombination and repair pathways whose natural activities often lead to single- and double-stranded DNA breaks. It has been previously shown that introduction of a phosphorotioated ODN, designed to direct a gene-editing event, into cells results in the activation of γH2AX, a well-recognized protein biomarker for double-stranded DNA breakage. Using a single copy, integrated mutant enhanced green fluorescent protein (eGFP) gene as our target, we now demonstrate that several types of ODNs, capable of directing gene editing, also activate the DNA damage response and the post-translational modification of proliferating cell nuclear antigen (PCNA), a signature modification of replication stress. We find that the gene editing reaction itself leads to transient DNA breakage, perhaps through replication fork collapse. Unmodified specific ODNs elicit a lesser degree of replication stress than their chemically modified counterparts, but are also less active in gene editing. Modified phosphothioate oligonucleotides (PTOs) are detrimental irrespective of the DNA sequence. Such collateral damage may prove problematic for proliferation of human cells genetically modified by gene editing.

  12. An increase in negative supercoiling in bacteria reveals topology-reacting gene clusters and a homeostatic response mediated by the DNA topoisomerase I gene

    PubMed Central

    Ferrándiz, María-José; Martín-Galiano, Antonio J.; Arnanz, Cristina; Camacho-Soguero, Isabel; Tirado-Vélez, José-Manuel; de la Campa, Adela G.

    2016-01-01

    We studied the transcriptional response to an increase in DNA supercoiling in Streptococcus pneumoniae by using seconeolitsine, a new topoisomerase I inhibitor. A homeostatic response allowing recovery of supercoiling was observed in cells treated with subinhibitory seconeolitsine concentrations. Supercoiling increases of 40.7% (6 μM) and 72.9% (8 μM) were lowered to 8.5% and 44.1%, respectively. Likewise, drug removal facilitated the recovery of cell viability and DNA-supercoiling. Transcription of topoisomerase I depended on the supercoiling level. Also specific binding of topoisomerase I to the gyrase A gene promoter was detected by chromatin-immunoprecipitation. The transcriptomic response to 8 μM seconeolitsine had two stages. An early stage, associated to an increase in supercoiling, affected 10% of the genome. A late stage, manifested by supercoiling recovery, affected 2% of the genome. Nearly 25% of the early responsive genes formed 12 clusters with a coordinated transcription. Clusters were 6.7–31.4 kb in length and included 9–22 responsive genes. These clusters partially overlapped with those observed under DNA relaxation, suggesting that bacteria manage supercoiling stress using pathways with common components. This is the first report of a coordinated global transcriptomic response that is triggered by an increase in DNA supercoiling in bacteria. PMID:27378778

  13. The constant region affects antigen binding of antibodies to DNA by altering secondary structure.

    PubMed

    Xia, Yumin; Janda, Alena; Eryilmaz, Ertan; Casadevall, Arturo; Putterman, Chaim

    2013-11-01

    We previously demonstrated an important role of the constant region in the pathogenicity of anti-DNA antibodies. To determine the mechanisms by which the constant region affects autoantibody binding, a panel of isotype-switch variants (IgG1, IgG2a, IgG2b) was generated from the murine PL9-11 IgG3 autoantibody. The affinity of the PL9-11 antibody panel for histone was measured by surface plasmon resonance (SPR). Tryptophan fluorescence was used to determine wavelength shifts of the antibody panel upon binding to DNA and histone. Finally, circular dichroism spectroscopy was used to measure changes in secondary structure. SPR analysis revealed significant differences in histone binding affinity between members of the PL9-11 panel. The wavelength shifts of tryptophan fluorescence emission were found to be dependent on the antibody isotype, while circular dichroism analysis determined that changes in antibody secondary structure content differed between isotypes upon antigen binding. Thus, the antigen binding affinity is dependent on the particular constant region expressed. Moreover, the effects of antibody binding to antigen were also constant region dependent. Alteration of secondary structures influenced by constant regions may explain differences in fine specificity of anti-DNA antibodies between antibodies with similar variable regions, as well as cross-reactivity of anti-DNA antibodies with non-DNA antigens.

  14. Diethyl pyrocarbonate reaction with the lactose repressor protein affects both inducer and DNA binding

    SciTech Connect

    Sams, C.F.; Matthews, K.S.

    1988-04-05

    Modification of the lactose repressor protein of Escherichia coli with diethyl pyrocarbonate (DPC) results in decreased inducer binding as well as operator and nonspecific DNA binding. Spectrophotometric measurements indicated a maximum of three histidines per subunit was modified, and quantitation of lysine residues with trinitrobenzenesulfonate revealed the modification of one lysine residue. The loss of DNA binding, both operator and nonspecific, was correlated with histidine modification; removal of the carbethoxy groups from the histidines by hydroxylamine was accompanied by significant recovery of DNA binding function. The presence of inducing sugars during the DPC reaction had no effect on histidine modification or the loss of DNA binding activity. In contrast, inducer binding was not recovered upon reversal of the histidine modification. However, the presence of inducer during reaction protected lysine from reaction and also prevented the decrease in inducer binding; these results indicate that reaction of the lysine residue(s) may correlate to the loss of sugar binding activity. Since no difference in incorporation of radiolabeled carbethoxy was observed following reaction with diethyl pyrocarbonate in the presence or absence of inducer, the reagent appears to function as a catalyst in the modification of the lysine. The formation of an amide bond between the affected lysine and a nearby carboxylic acid moiety provides a possible mechanism for the activity loss. Reaction of the isolated NH2-terminal domain resulted in loss of DNA binding with modification of the single histidine at position 29. Results from the modification of core domain paralleled observations with intact repressor.

  15. CHST11 gene expression and DNA methylation in breast cancer

    PubMed Central

    HERMAN, DAMIR; LEAKEY, TATIANA I.; BEHRENS, ALICE; YAO-BORENGASSER, AIWEI; COONEY, CRAIG A.; JOUSHEGHANY, FARIBA; PHANAVANH, BOUNLEUT; SIEGEL, ERIC R.; SAFAR, A. MAZIN; KOROURIAN, SOHEILA; KIEBER-EMMONS, THOMAS; MONZAVI-KARBASSI, BEHJATOLAH

    2015-01-01

    Our previously published data link P-selectin-reactive chondroitin sulfate structures on the surface of breast cancer cells to metastatic behavior of cells. We have shown that a particular sulfation pattern mediated by the expression of carbohydrate (chondroitin 4) sulfotransferase-11 (CHST11) correlates with P-selectin binding and aggressiveness of human breast cancer cell lines. The present study was performed to evaluate the prognostic value of CHST11 expression and determine whether aberrant DNA methylation controls CHST11 expression in breast cancer. Publicly available datasets were used to examine the association of CHST11 expression to aggressiveness and progression of breast cancer. Methylation status was analyzed using bisulfite genomic sequencing. 5-aza-2′-deoxycytidine (5AzadC) was used for DNA demethylation. Reduced representation bisulfite sequencing was performed in the CpG island of CHST11 with a minimum coverage of 10. Quantitative real-time RT-PCR was employed to confirm the expression profile of CHST11 in breast cancer cell lines. Flow cytometry was also used to confirm the expression of the CHST11 product, chondroitin sulfate A (CS-A). The expression of CHST11 was significantly higher in basal-like and Her2-amplified cell lines compared to luminal cell lines. CHST11 was also highly expressed in cancer tissues compared to normal tissues and the expression levels were significantly associated with tumor progression. We observed very low levels of DNA methylation in a CpG island of CHST11 in basal-like cells but very high levels in the same region in luminal cells. Treatment of MCF7 cells, a luminal cell line with very low expression of CHST11, with 5AzadC increased the expression of CHST11 and its immediate product, CS-A, in a dose-dependent manner. These results suggest that CHST11 may play a direct role in progression of breast cancer and that its expression is controlled by DNA methylation. Therefore, in addition to CHST11 mRNA levels, the

  16. Do DNA Microarrays Tell the Story of Gene Expression?

    PubMed Central

    Rosenfeld, Simon

    2010-01-01

    Poor reproducibility of microarray measurements is a major obstacle to their application as an instrument for clinical diagnostics. In this paper, several aspects of poor reproducibility are analyzed. All of them belong to the category of interpretive weaknesses of DNA microarray technology. First, the attention is drawn to the fact that absence of the information regarding post-transcriptional mRNA stability makes it impossible to evaluate the level of gene activity from the relative mRNA abundances, the quantities available from microarray measurements. Second, irreducible intracellular variability with persistent patterns of stochasticity and burstiness put natural limits to reproducibility. Third, strong interactions within intracellular biomolecular networks make it highly problematic to build a bridge between transcription rates of individual genes and structural fidelity of their genetic codes. For these reasons, the microarray measurements of relative mRNA abundances are more appropriate in laboratory settings as a tool for scientific research, hypotheses generating and producing the leads for subsequent validation through more sophisticated technologies. As to clinical settings, where firm conclusive diagnoses, not the leads for further experimentation, are required, microarrays still have a long way to go until they become a reliable instrument in patient-related decision making. PMID:20628535

  17. Alphavirus vectors: applications for DNA vaccine production and gene expression.

    PubMed

    Lundstrom, K

    2000-01-01

    Replication-deficient alphavirus vectors have been developed for efficient high-level transgene expression. The broad host range of alphaviruses has allowed infection of a wide variety of mammalian cell lines and primary cultures. Particularly, G protein-coupled receptors have been expressed at high levels and subjected to binding and functional studies. Expression in suspension cultures has greatly facilitated production of large quantities of recombinant proteins for structural studies. Injection of recombinant alphavirus vectors into rodent brain resulted in local reporter gene expression. Highly neuron-specific expression was obtained in hippocampal slice cultures in vivo. Additionally, preliminary studies in animal models suggest that alphavirus vectors can be attractive candidates for gene therapy applications. Traditionally alphavirus vectors, either attenuated strains or replication-deficient particles, have been used to elicit efficient immune responses in animals. Recently, the application of alphaviruses has been extended to naked nucleic acids. Injection of DNA as well as RNA vectors has demonstrated efficient antigen production. In many cases, protection against lethal challenges has been obtained after immunization with alphavirus particles or nucleic acid vectors. Alphavirus vectors can therefore be considered as potentially promising vectors for vaccine production.

  18. DNA adenine methylation of sams1 gene in symbiont-bearing Amoeba proteus.

    PubMed

    Jeon, Taeck J

    2008-10-01

    The expression of amoeba sams genes is switched from sams1 to sams2 when amoebae are infected with Legionella jeonii. To elucidate the mechanism for the inactivation of host sams1 gene by endosymbiotic bacteria, methylation states of the sams1 gene of D and xD amoebae was compared in this study. The sams1 gene of amoebae was methylated at an internal adenine residue of GATC site in symbiont-bearing xD amoebae but not in symbiont-free D amoebae, suggesting that the modification might have caused the inactivation of sams1 in xD amoebae. The sams1 gene of xD amoebae was inactivated at the transcriptional level. Analysis of DNA showed that adenine residues in L. jeonii sams were also methylated, implying that L. jeonii bacteria belong to a Dam methylase-positive strain. In addition, both SAM and Met appeared to act as negative regulators for the expression of sams1 whereas the expression of sams2 was not affected in amoebae.

  19. Gene structure, DNA methylation, and imprinted expression of the human SNRPN gene

    SciTech Connect

    Glenn, C.C.; Jong, T.C.; Filbrandt, M.M.

    1996-02-01

    The human SNRPN (small nuclear ribonucleoprotein polypeptide N) gene is one of a gene family that encode proteins involved in pre-mRNA splicing and maps to the smallest deletion region involved in the Prader-Willi syndrome (PWS) within chromosome 15q11-q13. Paternal only expression of SNRPN has previously been demonstrated by use of cell lines from PWS patients (maternal allele only) and Angelman syndrome (AS) patients (paternal allele only). We have characterized two previously unidentified 5{prime} exons of the SNRPN gene and demonstrate that exons -1 and 0 are included in the full-length transcript. This gene is expressed in a wide range of somatic tissues and at high, approximately equal levels in all regions of the brain. Both the first exon of SNRPN (exon -1) and the putative transcription start site are embedded within a CpG island. This CpG island is extensively methylated on the repressed maternal allele and is unmethylated on the expressed paternal allele, in a wide range of fetal and adult somatic cells. This provides a quick and highly reliable diagnostic assay for PWS and AS, which is based on DNA-methylation analysis that has been tested on >100 patients in a variety of tissues. Conversely, several CpG sites {approximately}22 kb downstream of the transcription start site in intron 5 are preferentially methylated on the expressed paternal allele in somatic tissues and male germ cells, whereas these same sites are unmethylated in fetal oocytes. These findings are consistent with a key role for DNA methylation in the imprinted inheritance and subsequent gene expression of the human SNRPN gene. 59 refs., 9 figs., 1 tab.

  20. Dimethylarsinic acid in drinking water changed the morphology of urinary bladder but not the expression of DNA repair genes of bladder transitional epithelium in F344 rats.

    PubMed

    Wang, Amy; Wolf, Douglas C; Sen, Banalata; Knapp, Geremy W; Holladay, Steven D; Huckle, William R; Caceci, Thomas; Robertson, John L

    2009-06-01

    Inorganic arsenic increases urinary bladder transitional cell carcinoma in humans. In F344 rats, dimethylarsinic acid (DMA[V]) increases transitional cell carcinoma. Arsenic-induced inhibition of DNA repair has been reported in cultured cell lines and in lymphocytes of arsenic-exposed humans, but it has not been studied in urinary bladder. Should inhibition of DNA damage repair in transitional epithelium occur, it may contribute to carcinogenesis or cocarcinogenesis. We investigated morphology and expression of DNA repair genes in F344 rat transitional cells following up to 100 ppm DMA(V) in drinking water for four weeks. Mitochondria were very sensitive to DMA(V), and swollen mitochondria appeared to be the main source of vacuoles in the transitional epithelium. Real-time reverse transcriptase polymerase chain reaction (Real-Time RT PCR) showed the mRNA levels of tested DNA repair genes, ataxia telangectasia mutant (ATM), X-ray repair cross-complementing group 1 (XRCC1), excision repair cross-complementing group 3/xeroderma pigmentosum B (ERCC3/XPB), and DNA polymerase beta (Polbeta), were not altered by DMA(V). These data suggested that either DMA(V) does not affect DNA repair in the bladder or DMA(V) affects DNA repair without affecting baseline mRNA levels of repair genes. The possibility remains that DMA(V) may lower damage-induced increases in repair gene expression or cause post-translational modification of repair enzymes.

  1. In vivo treatments with fulvestrant and anastrozole differentially affect gene expression in the rat efferent ductules.

    PubMed

    Gomes, Gisele Renata Oliveira; Yasuhara, Fabiana; Siu, Erica Rosanna; Fernandes, Sheilla Alessandra Ferreira; Avellar, Maria Christina Werneck; Lazari, Maria Fatima Magalhaes; Porto, Catarina Segreti

    2011-01-01

    Estrogen plays a key role in maintaining the morphology and function of the efferent ductules. We previously demonstrated that the antiestrogen fulvestrant markedly affected gene expression in the rat efferent ductules. The mechanism of fulvestrant action to modulate gene expression may involve not only the blockade of ESR1 and ESR2 estrogen receptors, but also the activation of ESR1 and ESR2 when the receptors are tethered to AP-1 or SP1 transcription factors, or the activation of the G protein-coupled estrogen receptor 1. We therefore compared the effects of two strategies to interfere with estrogen action in the rat efferent ductules: treatment with fulvestrant or with the aromatase inhibitor anastrozole. Whereas fulvestrant markedly increased Mmp7 and Spp1, and reduced Nptx1 mRNA levels, no changes were observed with anastrozole. Fulvestrant caused changes in epithelial morphology that were not seen with anastrozole. Fulvestrant shifted MMP7 immunolocalization in the epithelial cells from the supranuclear to the apical region; this effect was less pronounced with anastrozole. In vitro studies of (35)S-methionine incorporation showed that protein release was increased, whereas tissue protein content in the efferent ductules of fulvestrant-treated rats was decreased. Although fulvestrant markedly affected gene expression, no changes were observed on AP-1 and SP1 DNA-binding activity. The blockade of ESRs seems to be the major reason explaining the differences between both treatments. At least some of the effects of fulvestrant appear to result from compensatory mechanisms activated by the dramatic changes caused by ESR1 blockade.

  2. Chromatin remodelling and DNA repair genes are frequently mutated in endometrioid endometrial carcinoma.

    PubMed

    García-Sanz, Pablo; Triviño, Juan Carlos; Mota, Alba; Pérez López, María; Colás, Eva; Rojo-Sebastián, Alejandro; García, Ángel; Gatius, Sonia; Ruiz, María; Prat, Jaime; López-López, Rafael; Abal, Miguel; Gil-Moreno, Antonio; Reventós, Jaume; Matias-Guiu, Xavier; Moreno-Bueno, Gema

    2017-04-01

    In developed countries, endometrial carcinoma is the most common cancer that affects the female genital tract. Endometrial carcinoma is divided into two main histological types, type I or endometrioid and type II or non-endometrioid, each of which have characteristic, although not exclusive, molecular alterations and mutational profiles. Nevertheless, information about the implication and relevance of some of these genes in this disease is lacking. We sought here to identify new recurrently mutated genes in endometrioid cancers that play a role in tumourigenesis and that influence the clinical outcome. We focused on low-grade, non-ultramutated tumours as these tumours have a worse prognosis than the ultramutated POLE-positive endometrioid endometrial carcinomas (EECs). We performed exome-sequencing of 11 EECs with matched normal tissue and subsequently validated 15 candidate genes in 76 samples. For the first time, we show that mutations in chromatin remodelling-related genes (KMT2D, KMT2C, SETD1B and BCOR) and in DNA-repair-related genes (BRCA1, BRCA2, RAD50 and CHD4) are frequent in this subtype of endometrial cancer. The alterations to these genes occurred with frequencies ranging from 35.5% for KMT2D to 10.5% for BRCA1 and BCOR, with some showing a tendency toward co-occurrence (RAD50-KMT2D and RAD50-SETD1B). All these genes harboured specific mutational hotspots. In addition, the mutational status of KMT2C, KMT2D and SETD1B helps to predict the degree of myometrial invasion, a critical prognostic feature. These results highlight the possible implication of these genes in this disease, creating opportunities for new therapeutic approaches.

  3. Clinical characteristics and prognosis of acute myeloid leukemia associated with DNA-methylation regulatory gene mutations

    PubMed Central

    Ryotokuji, Takeshi; Yamaguchi, Hiroki; Ueki, Toshimitsu; Usuki, Kensuke; Kurosawa, Saiko; Kobayashi, Yutaka; Kawata, Eri; Tajika, Kenji; Gomi, Seiji; Kanda, Junya; Kobayashi, Anna; Omori, Ikuko; Marumo, Atsushi; Fujiwara, Yusuke; Yui, Shunsuke; Terada, Kazuki; Fukunaga, Keiko; Hirakawa, Tsuneaki; Arai, Kunihito; Kitano, Tomoaki; Kosaka, Fumiko; Tamai, Hayato; Nakayama, Kazutaka; Wakita, Satoshi; Fukuda, Takahiro; Inokuchi, Koiti

    2016-01-01

    In recent years, it has been reported that the frequency of DNA-methylation regulatory gene mutations – mutations of the genes that regulate gene expression through DNA methylation – is high in acute myeloid leukemia. The objective of the present study was to elucidate the clinical characteristics and prognosis of acute myeloid leukemia with associated DNA-methylation regulatory gene mutation. We studied 308 patients with acute myeloid leukemia. DNA-methylation regulatory gene mutations were observed in 135 of the 308 cases (43.8%). Acute myeloid leukemia associated with a DNA-methylation regulatory gene mutation was more frequent in older patients (P<0.0001) and in patients with intermediate cytogenetic risk (P<0.0001) accompanied by a high white blood cell count (P=0.0032). DNA-methylation regulatory gene mutation was an unfavorable prognostic factor for overall survival in the whole cohort (P=0.0018), in patients aged ≤70 years, in patients with intermediate cytogenetic risk, and in FLT3-ITD-negative patients (P=0.0409). Among the patients with DNA-methylation regulatory gene mutations, 26.7% were found to have two or more such mutations and prognosis worsened with increasing number of mutations. In multivariate analysis DNA-methylation regulatory gene mutation was an independent unfavorable prognostic factor for overall survival (P=0.0424). However, patients with a DNA-methylation regulatory gene mutation who underwent allogeneic stem cell transplantation in first remission had a significantly better prognosis than those who did not undergo such transplantation (P=0.0254). Our study establishes that DNA-methylation regulatory gene mutation is an important unfavorable prognostic factor in acute myeloid leukemia. PMID:27247325

  4. Reporter gene expression in dendritic cells after gene gun administration of plasmid DNA.

    PubMed

    Watkins, Craig; Hopkins, John; Harkiss, Gordon

    2005-07-21

    Dendritic cells (DC) play an integral role in plasmid DNA vaccination. However, the interaction between plasmid DNA and DC in vivo is incompletely understood. In this report, we utilise the sheep pseudoafferent cannulation model to examine the interaction between plasmid DNA encoding enhanced green fluorescent protein (pEGFP) and afferent lymph DC (ALDC) following gene gun administration. The results show that peaks of fluorescent ALDC tended to appear around days 1-4 and 9-13, then erratically thereafter for up to 2 months. Phenotypic analysis showed that EGFP+ ALDC expressed MHC class II, WC6, CD1b, and SIRPalpha markers. Plasmid, detected by PCR, was found in lymph cells and cell-free plasma on a daily basis, and was present variably for up to 2 months. Plasmid was also detected in purified CD1b+ ALDC, but the presence of plasmid did not correlate with EGFP expression by ALDC. Free EGFP in afferent lymph plasma was detectable by luminometry only after three administrations of the plasmid. The results show that gene gun administered pEGFP persisted for extended periods after a single administration, leeching out of skin on a daily basis. The plasmid was associated with both the cellular and fluid components of afferent lymph. EGFP protein appeared in afferent lymph in a pulsatile manner, but associated only with ALDC.

  5. PcG Proteins, DNA Methylation, and Gene Repression by Chromatin Looping

    PubMed Central

    Tiwari, Vijay K; McGarvey, Kelly M; Licchesi, Julien D.F; Ohm, Joyce E; Herman, James G; Schübeler, Dirk; Baylin, Stephen B

    2008-01-01

    Many DNA hypermethylated and epigenetically silenced genes in adult cancers are Polycomb group (PcG) marked in embryonic stem (ES) cells. We show that a large region upstream (∼30 kb) of and extending ∼60 kb around one such gene, GATA-4, is organized—in Tera-2 undifferentiated embryonic carcinoma (EC) cells—in a topologically complex multi-loop conformation that is formed by multiple internal long-range contact regions near areas enriched for EZH2, other PcG proteins, and the signature PcG histone mark, H3K27me3. Small interfering RNA (siRNA)–mediated depletion of EZH2 in undifferentiated Tera-2 cells leads to a significant reduction in the frequency of long-range associations at the GATA-4 locus, seemingly dependent on affecting the H3K27me3 enrichments around those chromatin regions, accompanied by a modest increase in GATA-4 transcription. The chromatin loops completely dissolve, accompanied by loss of PcG proteins and H3K27me3 marks, when Tera-2 cells receive differentiation signals which induce a ∼60-fold increase in GATA-4 expression. In colon cancer cells, however, the frequency of the long-range interactions are increased in a setting where GATA-4 has no basal transcription and the loops encompass multiple, abnormally DNA hypermethylated CpG islands, and the methyl-cytosine binding protein MBD2 is localized to these CpG islands, including ones near the gene promoter. Removing DNA methylation through genetic disruption of DNA methyltransferases (DKO cells) leads to loss of MBD2 occupancy and to a decrease in the frequency of long-range contacts, such that these now more resemble those in undifferentiated Tera-2 cells. Our findings reveal unexpected similarities in higher order chromatin conformation between stem/precursor cells and adult cancers. We also provide novel insight that PcG-occupied and H3K27me3-enriched regions can form chromatin loops and physically interact in cis around a single gene in mammalian cells. The loops associate with a

  6. Locus- and Site-Specific DNA Methylation of 19 kDa Zein Genes in Maize

    PubMed Central

    Li, Xinxin; Miclaus, Mihai; Messing, Joachim

    2016-01-01

    An interesting question in maize development is why only a single zein gene is highly expressed in each of the 19-kDa zein gene clusters (A and B types), z1A2-1 and z1B4, in the immature endosperm. For instance, epigenetic marks could provide a structural difference. Therefore, we investigated the DNA methylation of the arrays of gene copies in both promoter and gene body regions of leaf (non-expressing tissue as a control), normal endosperm, and cultured endosperm. Although we could show that expressed genes have much lower methylation levels in promoter regions than silent ones in both leaf and normal endosperm, there was surprisingly also a difference in the pattern of the z1A and z1B gene clusters. The expression of z1B gene is suppressed by increased DNA methylation and activated with reduced DNA methylation, whereas z1A gene expression is not. DNA methylation in gene coding regions is higher in leaf than in endosperm, whereas no significant difference is observed in gene bodies between expressed and non-expressed gene copies. A median CHG methylation (25–30%) appears to be optimal for gene expression. Moreover, tissue-cultured endosperm can reset the DNA methylation pattern and tissue-specific gene expression. These results reveal that DNA methylation changes of the 19-kDa zein genes is subject to plant development and tissue culture treatment, but varies in different chromosomal locations, indicating that DNA methylation changes do not apply to gene expression in a uniform fashion. Because tissue culture is used to produce transgenic plants, these studies provide new insights into variation of gene expression of integrated sequences. PMID:26741504

  7. Candidate Luminal B Breast Cancer Genes Identified by Genome, Gene Expression and DNA Methylation Profiling

    PubMed Central

    Addou-Klouche, Lynda; Finetti, Pascal; Saade, Marie-Rose; Manai, Marwa; Carbuccia, Nadine; Bekhouche, Ismahane; Letessier, Anne; Charafe-Jauffret, Emmanuelle; Jacquemier, Jocelyne; Spicuglia, Salvatore; de The, Hugues; Viens, Patrice; Bertucci, François; Birnbaum, Daniel; Chaffanet, Max

    2014-01-01

    Breast cancers (BCs) of the luminal B subtype are estrogen receptor-positive (ER+), highly proliferative, resistant to standard therapies and have a poor prognosis. To better understand this subtype we compared DNA copy number aberrations (CNAs), DNA promoter methylation, gene expression profiles, and somatic mutations in nine selected genes, in 32 luminal B tumors with those observed in 156 BCs of the other molecular subtypes. Frequent CNAs included 8p11-p12 and 11q13.1-q13.2 amplifications, 7q11.22-q34, 8q21.12-q24.23, 12p12.3-p13.1, 12q13.11-q24.11, 14q21.1-q23.1, 17q11.1-q25.1, 20q11.23-q13.33 gains and 6q14.1-q24.2, 9p21.3-p24,3, 9q21.2, 18p11.31-p11.32 losses. A total of 237 and 101 luminal B-specific candidate oncogenes and tumor suppressor genes (TSGs) presented a deregulated expression in relation with their CNAs, including 11 genes previously reported associated with endocrine resistance. Interestingly, 88% of the potential TSGs are located within chromosome arm 6q, and seven candidate oncogenes are potential therapeutic targets. A total of 100 candidate oncogenes were validated in a public series of 5,765 BCs and the overexpression of 67 of these was associated with poor survival in luminal tumors. Twenty-four genes presented a deregulated expression in relation with a high DNA methylation level. FOXO3, PIK3CA and TP53 were the most frequent mutated genes among the nine tested. In a meta-analysis of next-generation sequencing data in 875 BCs, KCNB2 mutations were associated with luminal B cases while candidate TSGs MDN1 (6q15) and UTRN (6q24), were mutated in this subtype. In conclusion, we have reported luminal B candidate genes that may play a role in the development and/or hormone resistance of this aggressive subtype. PMID:24416132

  8. Candidate luminal B breast cancer genes identified by genome, gene expression and DNA methylation profiling.

    PubMed

    Cornen, Stéphanie; Guille, Arnaud; Adélaïde, José; Addou-Klouche, Lynda; Finetti, Pascal; Saade, Marie-Rose; Manai, Marwa; Carbuccia, Nadine; Bekhouche, Ismahane; Letessier, Anne; Raynaud, Stéphane; Charafe-Jauffret, Emmanuelle; Jacquemier, Jocelyne; Spicuglia, Salvatore; de The, Hugues; Viens, Patrice; Bertucci, François; Birnbaum, Daniel; Chaffanet, Max

    2014-01-01

    Breast cancers (BCs) of the luminal B subtype are estrogen receptor-positive (ER+), highly proliferative, resistant to standard therapies and have a poor prognosis. To better understand this subtype we compared DNA copy number aberrations (CNAs), DNA promoter methylation, gene expression profiles, and somatic mutations in nine selected genes, in 32 luminal B tumors with those observed in 156 BCs of the other molecular subtypes. Frequent CNAs included 8p11-p12 and 11q13.1-q13.2 amplifications, 7q11.22-q34, 8q21.12-q24.23, 12p12.3-p13.1, 12q13.11-q24.11, 14q21.1-q23.1, 17q11.1-q25.1, 20q11.23-q13.33 gains and 6q14.1-q24.2, 9p21.3-p24,3, 9q21.2, 18p11.31-p11.32 losses. A total of 237 and 101 luminal B-specific candidate oncogenes and tumor suppressor genes (TSGs) presented a deregulated expression in relation with their CNAs, including 11 genes previously reported associated with endocrine resistance. Interestingly, 88% of the potential TSGs are located within chromosome arm 6q, and seven candidate oncogenes are potential therapeutic targets. A total of 100 candidate oncogenes were validated in a public series of 5,765 BCs and the overexpression of 67 of these was associated with poor survival in luminal tumors. Twenty-four genes presented a deregulated expression in relation with a high DNA methylation level. FOXO3, PIK3CA and TP53 were the most frequent mutated genes among the nine tested. In a meta-analysis of next-generation sequencing data in 875 BCs, KCNB2 mutations were associated with luminal B cases while candidate TSGs MDN1 (6q15) and UTRN (6q24), were mutated in this subtype. In conclusion, we have reported luminal B candidate genes that may play a role in the development and/or hormone resistance of this aggressive subtype.

  9. Genes affecting heading date in cocksfoot (Dactylis glomerata)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several genes cause well known effects on heading date in cool-season forages: Vrn1, Constans, and FloweringTime. Vrn1 is a MADs box transcription factor that is induced upon vernalization and necessary for flowering. Constans genes are induced upon long days in cool-season grasses and induce exp...

  10. Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips.

    PubMed

    Kosuri, Sriram; Eroshenko, Nikolai; Leproust, Emily M; Super, Michael; Way, Jeffrey; Li, Jin Billy; Church, George M

    2010-12-01

    Development of cheap, high-throughput and reliable gene synthesis methods will broadly stimulate progress in biology and biotechnology. Currently, the reliance on column-synthesized oligonucleotides as a source of DNA limits further cost reductions in gene synthesis. Oligonucleotides from DNA microchips can reduce costs by at least an order of magnitude, yet efforts to scale their use have been largely unsuccessful owing to the high error rates and complexity of the oligonucleotide mixtures. Here we use high-fidelity DNA microchips, selective oligonucleotide pool amplification, optimized gene assembly protocols and enzymatic error correction to develop a method for highly parallel gene synthesis. We tested our approach by assembling 47 genes, including 42 challenging therapeutic antibody sequences, encoding a total of ∼35 kilobase pairs of DNA. These assemblies were performed from a complex background containing 13,000 oligonucleotides encoding ∼2.5 megabases of DNA, which is at least 50 times larger than in previously published attempts.

  11. Polymorphisms in DNA polymerase γ affect the mtDNA stability and the NRTI-induced mitochondrial toxicity in Saccharomyces cerevisiae

    PubMed Central

    Baruffini, Enrico; Ferrari, Jessica; Dallabona, Cristina; Donnini, Claudia; Lodi, Tiziana

    2015-01-01

    Several pathological mutations have been identified in human POLG gene, encoding for the catalytic subunit of Pol γ, the solely mitochondrial replicase in animals and fungi. However, little is known regarding non-pathological polymorphisms found in this gene. Here we studied, in the yeast model Saccharomyces cerevisiae, eight human polymorphisms. We found that most of them are not neutral but enhanced both mtDNA extended mutability and the accumulation of mtDNA point mutations, either alone or in combination with a pathological mutation. In addition, we found that the presence of some SNPs increased the stavudine and/or zalcitabine-induced mtDNA mutability and instability. PMID:25462018

  12. cDNA macroarray analysis of gene expression in synoviocytes stimulated with TNFalpha.

    PubMed

    Sugiyama, Tomoyasu; Ishii, Shizuko; Yamamoto, Jun ichi; Irie, Ryotaro; Saito, Kaoru; Otuki, Tetsuji; Wakamatsu, Ai; Suzuki, Yuzuru; Hio, Yuri; Ota, Toshio; Nishikawa, Tetsuo; Sugano, Sumio; Masuho, Yasuhiko; Isogai, Takao

    2002-04-24

    Gene expression of synoviocytes stimulated with tumor necrosis factor-alpha (TNFalpha) was studied by macroarray analysis to elucidate the cellular response and identify new biological functions of known and unknown genes. 10035 cDNA clones were used to make cDNA macroarrays of representative genes. Synoviocytes expressed large amounts of fibronectin and collagen mRNA. Statistical analysis of the macroarray data revealed 26 genes, including six new genes, which underwent significant alteration of gene expression in response to TNFalpha stimulation. These findings suggest that the synoviocyte response to TNFalpha stimulation forms the basis of development of various aspects of the pathophysiology of rheumatoid arthritis.

  13. Genome-wide profiling of DNA methylation and gene expression in Crassostrea gigas male gametes

    PubMed Central

    Olson, Claire E.; Roberts, Steven B.

    2014-01-01

    DNA methylation patterns and functions are variable across invertebrate taxa. In order to provide a better understanding of DNA methylation in the Pacific oyster (Crassostrea gigas), we characterized the genome-wide DNA methylation profile in male gamete cells using whole-genome bisulfite sequencing. RNA-Seq analysis was performed to examine the relationship between DNA methylation and transcript expression. Methylation status of over 7.6 million CpG dinucleotides was described with a majority of methylated regions occurring among intragenic regions. Overall, 15% of the CpG dinucleotides were determined to be methylated and the mitochondrial genome lacked DNA methylation. Integrative analysis of DNA methylation and RNA-Seq data revealed a positive association between methylation status, both in gene bodies and putative promoter regions, and expression. This study provides a comprehensive characterization of the distribution of DNA methylation in the oyster male gamete tissue and suggests that DNA methylation is involved in gene regulatory activity. PMID:24987376

  14. Human TOP3: a single-copy gene encoding DNA topoisomerase III.

    PubMed Central

    Hanai, R; Caron, P R; Wang, J C

    1996-01-01

    A human cDNA encoding a protein homologous to the Escherichia coli DNA topoisomerase I subfamily of enzymes has been identified through cloning and sequencing. Expressing the cloned human cDNA in yeast (delta)top1 cells lacking endogenous DNA topoisomerase I yielded an activity in cell extracts that specifically reduces the number of supercoils in a highly negatively supercoiled DNA. On the basis of these results, the human gene containing the cDNA sequence has been denoted TOP3, and the protein it encodes has been denoted DNA topoisomerase III. Screening of a panel of human-rodent somatic hybrids and fluorescence in situ hybridization of cloned TOP3 genomic DNA to metaphase chromosomes indicate that human TOP3 is a single-copy gene located at chromosome 17p11.2-12. Images Fig. 2 PMID:8622991

  15. Systematic Isolation and Characterization of Cadmium Tolerant Genes in Tobacco: A cDNA Library Construction and Screening Approach

    PubMed Central

    Zhang, Mei; Mo, Hui; Sun, Wen; Guo, Yan; Li, Jing

    2016-01-01

    Heavy metal pollution is a major limiting factor that severely affects plant growth worldwide, and the accumulation of heavy metal in the plant may be hazardous to human health. To identify the processes involved in cadmium detoxification, we constructed a cDNA library of tobacco roots acclimated to cadmium (Cd) stress. According to the results of functional screening cDNA library with a yeast Cd-sensitive mutant, ycf1Δ, we obtained a series of candidate genes that were involved in Cd response. Sequence analysis and yeast functional complementation of 24 positive cDNA clones revealed that, in addition to antioxidant genes, genes implicated in abiotic and biotic stress defenses, cellular metabolism, and signal transduction showed Cd detoxification effects in yeast. The real time RT-PCR analyses revealed that some Cd tolerance/ detoxification genes may be able to anticipate in other stresses such as biotic defense and water balance in tobacco. Taken together, our data suggest that plants’ acclimation to Cd stress is a highly complex process associated with broad gene functions. Moreover, our results provide insights into the Cd detoxification mechanisms along with the antioxidant system, defense gene induction, and calcium signal pathway. PMID:27579677

  16. Gene structure, expression, and DNA methylation characteristics of sea cucumber cyclin B gene during aestivation.

    PubMed

    Zhu, Aijun; Chen, Muyan; Zhang, Xiumei; Storey, Kenneth B

    2016-12-05

    The sea cucumber, Apostichopus japonicus, is a good model for studying environmentally-induced aestivation by a marine invertebrate. One of the central requirements of aestivation is the repression of energy-expensive cellular processes such as cell cycle progression. The present study identified the gene structure of the cell cycle regulator, cyclin B, and detected the expression levels of this gene over three stages of the annual aestivation-arousal cycle. Furthermore, the DNA methylation characteristics of cyclin B were analyzed in non-aestivation and deep-aestivation stages of sea cucumbers. We found that the cyclin B promoter contains a CpG island, three CCAAT-boxes and three cell cycle gene homology regions (CHRs). Application of qRT-PCR analysis showed significant downregulation of cyclin B transcript levels during deep-aestivation in comparison with non-aestivation in both intestine and longitudinal muscle, and these returned to basal levels after arousal from aestivation. Methylation analysis of the cyclin B core promoter revealed that its methylation level showed significant differences between non-aestivation and deep-aestivation stages (p<0.05) and interestingly, a positive correlation between Cyclin B transcripts expression and methylation levels of the core promoter was also observed. Our findings suggest that cell cycle progression may be reversibly arrested during aestivation as indicated by the changes in cyclin B expression levels and we propose that DNA methylation is one of the regulatory mechanisms involved in cyclin B transcriptional variation.

  17. Loss of Msp1p in Schizosaccharomyces pombe induces a ROS-dependent nuclear mutator phenotype that affects mitochondrial fission genes.

    PubMed

    Delerue, Thomas; Khosrobakhsh, Farnoosh; Daloyau, Marlène; Emorine, Laurent Jean; Dedieu, Adrien; Herbert, Christopher J; Bonnefoy, Nathalie; Arnauné-Pelloquin, Laetitia; Belenguer, Pascale

    2016-10-01

    Mitochondria continually fuse and divide to dynamically adapt to changes in metabolism and stress. Mitochondrial dynamics are also required for mitochondrial DNA (mtDNA) integrity; however, the underlying reason is not known. In this study, we examined the link between mitochondrial fusion and mtDNA maintenance in Schizosaccharomyces pombe, which cannot survive without mtDNA, by screening for suppressors of the lethality induced by loss of the dynamin-related large GTPase Msp1p. Our findings reveal that inactivation of Msp1p induces a ROS-dependent nuclear mutator phenotype that affects mitochondrial fission genes involved in suppressing mitochondrial fragmentation and mtDNA depletion. This indicates that mitochondrial fusion is crucial for maintaining the integrity of both mitochondrial and nuclear genetic information. Furthermore, our study suggests that the primary roles of Msp1p are to organize mitochondrial membranes, thus making them competent for fusion, and maintain the integrity of mtDNA.

  18. Ancient Out-of-Africa Mitochondrial DNA Variants Associate with Distinct Mitochondrial Gene Expression Patterns

    PubMed Central

    Mishmar, Dan

    2016-01-01

    Mitochondrial DNA (mtDNA) variants have been traditionally used as markers to trace ancient population migrations. Although experiments relying on model organisms and cytoplasmic hybrids, as well as disease association studies, have served to underline the functionality of certain mtDNA SNPs, only little is known of the regulatory impact of ancient mtDNA variants, especially in terms of gene expression. By analyzing RNA-seq data of 454 lymphoblast cell lines from the 1000 Genomes Project, we found that mtDNA variants defining the most common African genetic background, the L haplogroup, exhibit a distinct overall mtDNA gene expression pattern, which was independent of mtDNA copy numbers. Secondly, intra-population analysis revealed subtle, yet significant, expression differences in four tRNA genes. Strikingly, the more prominent African mtDNA gene expression pattern best correlated with the expression of nuclear DNA-encoded RNA-binding proteins, and with SNPs within the mitochondrial RNA-binding proteins PTCD1 and MRPS7. Our results thus support the concept of an ancient regulatory transition of mtDNA-encoded genes as humans left Africa to populate the rest of the world. PMID:27812116

  19. DNA polymerase II is encoded by the DNA damage-inducible dinA gene of Escherichia coli.

    PubMed

    Bonner, C A; Hays, S; McEntee, K; Goodman, M F

    1990-10-01

    The structural gene for DNA polymerase II was cloned by using a synthetic inosine-containing oligonucleotide probe corresponding to 11 amino acids, which were determined by sequencing the amino terminus of the purified protein. The labeled oligonucleotide hybridized specifically to the lambda clone 7H9 from the Kohara collection as well as to plasmid pGW511 containing the SOS-regulated dinA gene. Approximately 1400 base pairs of dinA sequence were determined. The predicted amino-terminal sequence of dinA demonstrated that this gene encoded DNA polymerase II. Sequence analysis of the upstream region localized a LexA binding site overlapping the -35 region of the dinA promoter, and this promoter element was found to be only two nucleotides downstream from the 3' end of the araD gene. These results demonstrate that the gene order is thr-dinA (pol II)-ara-leu on the Escherichia coli chromosome and that the DNA polymerase II structural gene is transcribed in the same direction as the araBAD operon. Based on the analysis of the predicted protein, we have identified a sequence motif Asp-Xaa-Xaa-Ser-Leu-Tyr-Pro-Ser in DNA polymerase II that is highly conserved among a diverse group of DNA polymerases, which include those from humans, yeast, Herpes and vaccinia viruses, and phages T4 and PRD1. The demonstration that DNA polymerase II is a component of the SOS response in E. coli suggests that it plays an important role in DNA repair and/or mutagenesis.

  20. Dnmt3L antagonizes DNA methylation at bivalent promoters and favors DNA methylation at gene bodies in ESCs.

    PubMed

    Neri, Francesco; Krepelova, Anna; Incarnato, Danny; Maldotti, Mara; Parlato, Caterina; Galvagni, Federico; Matarese, Filomena; Stunnenberg, Hendrik G; Oliviero, Salvatore

    2013-09-26

    The de novo DNA methyltransferase 3-like (Dnmt3L) is a catalytically inactive DNA methyltransferase that cooperates with Dnmt3a and Dnmt3b to methylate DNA. Dnmt3L is highly expressed in mouse embryonic stem cells (ESCs), but its function in these cells is unknown. Through genome-wide analysis of Dnmt3L knockdown in ESCs, we found that Dnmt3L is a positive regulator of methylation at the gene bodies of housekeeping genes and, more surprisingly, is also a negative regulator of methylation at promoters of bivalent genes. Dnmt3L is required for the differentiation of ESCs into primordial germ cells (PGCs) through the activation of the homeotic gene Rhox5. We demonstrate that Dnmt3L interacts with the Polycomb PRC2 complex in competition with the DNA methyltransferases Dnmt3a and Dnmt3b to maintain low methylation levels at the H3K27me3 regions. Thus, in ESCs, Dnmt3L counteracts the activity of de novo DNA methylases to maintain hypomethylation at promoters of bivalent developmental genes.

  1. Germline mutations in DNA repair genes may predict neoadjuvant therapy response in triple negative breast patients.

    PubMed

    Spugnesi, Laura; Gabriele, Michele; Scarpitta, Rosa; Tancredi, Mariella; Maresca, Luisa; Gambino, Gaetana; Collavoli, Anita; Aretini, Paolo; Bertolini, Ilaria; Salvadori, Barbara; Landucci, Elisabetta; Fontana, Andrea; Rossetti, Elena; Roncella, Manuela; Naccarato, Giuseppe Antonio; Caligo, Maria Adelaide

    2016-12-01

    Triple negative breast cancers (TNBCs) represent about 15-20% of all breast cancer cases and are characterized by a complex molecular heterogeneity. Some TNBCs exhibit clinical and pathological properties similar to BRCA-mutated tumors, without actually bearing a mutation in BRCA genes. This "BRCAness" phenotype may be explained by germline mutations in other genes involved in DNA repair. Although respond to chemotherapy with alkylating agents, they have a high risk of recurrence and progression. Some studies have shown the efficacy of neoadjuvant therapy in TNBC patients with DNA repair defects, but proper biomarkers of DNA repair deficiency are still needed. Here, we investigated if mutations in DNA repair genes may be correlated with anthracyclines/taxanes neoadjuvant therapy response. DNA from 19 TNBC patients undergoing neoadjuvant therapy were subjected to next generation sequencing of a panel of 24 genes in DNA repair and breast cancer predisposition. In this study, 5 of 19 patients (26%) carried a pathogenic mutation in BRCA1, PALB2, RAD51C and two patients carried a probable pathogenic missense variant. Moreover, VUS (Variants of Unknown Significance) in other genes, predicted to be deleterious by in silico tools, were detected in five patients. Germline mutations in DNA repair genes were found to be associated with the group of TNBC patients who responded to therapy. We conclude that a subgroup of TNBC patients have defects in DNA repair genes, other than BRCA1, and such patients respond favourably to neoadjuvant anthracyclines/taxanes therapy. © 2016 Wiley Periodicals, Inc.

  2. DNA context represents transcription regulation of the gene in mouse embryonic stem cells

    NASA Astrophysics Data System (ADS)

    Ha, Misook; Hong, Soondo

    2016-04-01

    Understanding gene regulatory information in DNA remains a significant challenge in biomedical research. This study presents a computational approach to infer gene regulatory programs from primary DNA sequences. Using DNA around transcription start sites as attributes, our model predicts gene regulation in the gene. We find that H3K27ac around TSS is an informative descriptor of the transcription program in mouse embryonic stem cells. We build a computational model inferring the cell-type-specific H3K27ac signatures in the DNA around TSS. A comparison of embryonic stem cell and liver cell-specific H3K27ac signatures in DNA shows that the H3K27ac signatures in DNA around TSS efficiently distinguish the cell-type specific H3K27ac peaks and the gene regulation. The arrangement of the H3K27ac signatures inferred from the DNA represents the transcription regulation of the gene in mESC. We show that the DNA around transcription start sites is associated with the gene regulatory program by specific interaction with H3K27ac.

  3. DNA context represents transcription regulation of the gene in mouse embryonic stem cells.

    PubMed

    Ha, Misook; Hong, Soondo

    2016-04-14

    Understanding gene regulatory information in DNA remains a significant challenge in biomedical research. This study presents a computational approach to infer gene regulatory programs from primary DNA sequences. Using DNA around transcription start sites as attributes, our model predicts gene regulation in the gene. We find that H3K27ac around TSS is an informative descriptor of the transcription program in mouse embryonic stem cells. We build a computational model inferring the cell-type-specific H3K27ac signatures in the DNA around TSS. A comparison of embryonic stem cell and liver cell-specific H3K27ac signatures in DNA shows that the H3K27ac signatures in DNA around TSS efficiently distinguish the cell-type specific H3K27ac peaks and the gene regulation. The arrangement of the H3K27ac signatures inferred from the DNA represents the transcription regulation of the gene in mESC. We show that the DNA around transcription start sites is associated with the gene regulatory program by specific interaction with H3K27ac.

  4. Interactive effects of ultraviolet-B radiation and pesticide exposure on DNA photo-adduct accumulation and expression of DNA damage and repair genes in Xenopus laevis embryos.

    PubMed

    Yu, Shuangying; Tang, Song; Mayer, Gregory D; Cobb, George P; Maul, Jonathan D

    2015-02-01

    Pesticide use and ultraviolet-B (UVB) radiation have both been suggested to adversely affect amphibians; however, little is known about their interactive effects. One potential adverse interaction could involve pesticide-induced dysregulation of DNA repair pathways, resulting in greater numbers of DNA photo-adducts from UVB exposure. In the present study, we investigated the interactive effects of UVB radiation and two common pesticides (endosulfan and α-cypermethrin) on induction of DNA photo-adducts and expression of DNA damage and repair related genes in African clawed frog (Xenopus laevis) embryos. We examined 13 genes that are, collectively, involved in stress defense, cell cycle arrest, nucleotide excision repair (NER), base excision repair, mismatch repair, DNA repair regulation, and apoptosis. We exposed X. laevis embryos to 0, 25, and 50 μg/L endosulfan or 0, 2.5, and 5.0 μg/L α-cypermethrin for 96 h, with environmentally relevant exposures of UVB radiation during the last 7 h of the 96 h exposure. We measured the amount of cyclobutane pyrimidine dimers (CPDs) and mRNA abundance of the 13 genes among treatments including control, pesticide only, UVB only, and UVB and pesticide co-exposures. Each of the co-exposure scenarios resulted in elevated CPD levels compared to UVB exposure alone, suggesting an inhibitory effect of endosulfan and α-cypermethrin on CPD repair. This is attributed to results indicating that α-cypermethrin and endosulfan reduced mRNA abundance of XPA and HR23B, respectively, to levels that may affect the initial recognition of DNA lesions. In contrast, both pesticides increased transcript abundance of CSA and MUTL. In addition, mRNA abundance of HSP70 and GADD45α were increased by endosulfan and mRNA abundance of XPG was increased by α-cypermethrin. XPC, HR23B, XPG, and GADD45α exhibited elevated mRNA concentrations whereas there was a reduction in MUTL transcript concentrations in UVB-alone treatments. It appeared that even

  5. Diet and Cell Size Both Affect Queen-Worker Differentiation through DNA Methylation in Honey Bees (Apis mellifera, Apidae)

    PubMed Central

    Shi, Yuan Yuan; Huang, Zachary Y.; Zeng, Zhi Jiang; Wang, Zi Long; Wu, Xiao Bo; Yan, Wei Yu

    2011-01-01

    Background Young larvae of the honey bee (Apis mellifera) are totipotent; they can become either queens (reproductives) or workers (largely sterile helpers). DNA methylation has been shown to play an important role in this differentiation. In this study, we examine the contributions of diet and cell size to caste differentiation. Methodology/Principal Findings We measured the activity and gene expression of one key enzyme involved in methylation, Dnmt3; the rates of methylation in the gene dynactin p62; as well as morphological characteristics of adult bees developed either from larvae fed with worker jelly or royal jelly; and larvae raised in either queen or worker cells. We show that both diet type and cell size contributed to the queen-worker differentiation, and that the two factors affected different methylation sites inside the same gene dynactin p62. Conclusions/Significance We confirm previous findings that Dnmt3 plays a critical role in honey bee caste differentiation. Further, we show for the first time that cell size also plays a role in influencing larval development when diet is kept the same. PMID:21541319

  6. Time-dependent RNA degradation affecting cDNA array quality in spontaneous canine tumours sampled using standard surgical procedures.

    PubMed

    Von Euler, Henrik; Khoshnoud, Reza; He, Qimin; Khoshnoud, Aida; Fornander, Tommy; Rutqvist, Lars-Erik; Skog, Sven

    2005-12-01

    Heterogeneous gene expression in tumours and the degradation of RNA when sampling under non-RNAse-free conditions may limit the potential benefit of cDNA array studies. This study examines changes in the integrity of RNA by means of RNA gel electrophoresis at various post-operative intervals on canine mammary tumours (n=10) and malignant lymphoma (n=1). The tumours were cut into pieces (3-5 mm diameter, approximately 50 mg) and kept in tubes without RNAse-free buffer at room temperature. No special precautions were taken to avoid the influences of Rnase; rather, normal surgical procedures were used. We found that total RNA of the mammary tumours started to degrade within 30 min of the operation, and the rate of degradation increased up to 4 h, which was the last time point included in this study. RNA in the lymphoma tumours degraded more rapidly, and was completely degraded at 30 min post-operation. The degradation of mRNA in the mammary tumours, as studied by human cDNA arrays, was heterogeneous, i.e. some mRNA degraded completely, some only partially. This indicates that the mRNA degradation rate varied depending on the type of mRNA. However, since we found that gene expression differs depending on the part of the mammary tumour examined, one cannot exclude that the variation in the mRNA degradation rate may simply reflect heterogeneous gene expression within the tumour. We conclude that RNA integrity is unaffected immediately after sampling under non-RNAse-free conditions; however, the tumour sample should be preserved under RNAse-free conditions within 15 min to avoid RNA degradation. This is a much shorter time interval than previously reported in other similar studies; however, these studies generally treated normal tissue, under which 3-5 h non-RNAse-free conditions have been found not to affect RNA quality.

  7. Major psychological factors affecting acceptance of gene-recombination technology.

    PubMed

    Tanaka, Yutaka

    2004-12-01

    The purpose of this study was to verify the validity of a causal model that was made to predict the acceptance of gene-recombination technology. A structural equation model was used as a causal model. First of all, based on preceding studies, the factors of perceived risk, perceived benefit, and trust were set up as important psychological factors determining acceptance of gene-recombination technology in the structural equation model. An additional factor, "sense of bioethics," which I consider to be important for acceptance of biotechnology, was added to the model. Based on previous studies, trust was set up to have an indirect influence on the acceptance of gene-recombination technology through perceived risk and perceived benefit in the model. Participants were 231 undergraduate students in Japan who answered a questionnaire with a 5-point bipolar scale. The results indicated that the proposed model fits the data well, and showed that acceptance of gene-recombination technology is explained largely by four factors, that is, perceived risk, perceived benefit, trust, and sense of bioethics, whether the technology is applied to plants, animals, or human beings. However, the relative importance of the four factors was found to vary depending on whether the gene-recombination technology was applied to plants, animals, or human beings. Specifically, the factor of sense of bioethics is the most important factor in acceptance of plant gene-recombination technology and animal gene-recombination technology, and the factors of trust and perceived risk are the most important factors in acceptance of human being gene-recombination technology.

  8. Y-chromosomal genes affecting male fertility: A review

    PubMed Central

    Dhanoa, Jasdeep Kaur; Mukhopadhyay, Chandra Sekhar; Arora, Jaspreet Singh

    2016-01-01

    The mammalian sex-chromosomes (X and Y) have evolved from autosomes and are involved in sex determination and reproductive traits. The Y-chromosome is the smallest chromosome that consists of 2-3% of the haploid genome and may contain between 70 and 200 genes. The Y-chromosome plays major role in male fertility and is suitable to study the evolutionary relics, speciation, and male infertility and/or subfertility due to its unique features such as long non-recombining region, abundance of repetitive sequences, and holandric inheritance pattern. During evolution, many holandric genes were deleted. The current review discusses the mammalian holandric genes and their functions. The commonly encountered infertility and/or subfertility problems due to point or gross mutation (deletion) of the Y-chromosomal genes have also been discussed. For example, loss or microdeletion of sex-determining region, Y-linked gene results in XY males that exhibit female characteristics, deletion of RNA binding motif, Y-encoded in azoospermic factor b region results in the arrest of spermatogenesis at meiosis. The holandric genes have been covered for associating the mutations with male factor infertility. PMID:27536043

  9. A subset of herpes simplex virus replication genes induces DNA amplification within the host cell genome

    SciTech Connect

    Heilbronn, R.; zur Hausen, H. )

    1989-09-01

    Herpes simplex virus (HSV) induces DNA amplification of target genes within the host cell chromosome. To characterize the HSV genes that mediate the amplification effect, combinations of cloned DNA fragments covering the entire HSV genome were transiently transfected into simian virus 40 (SV40)-transformed hamster cells. This led to amplification of the integrated SV40 DNA sequences to a degree comparable to that observed after transfection of intact virion DNA. Transfection of combinations of subclones and of human cytomegalovirus immediate-early promoter-driven expression constructs for individual open reading frames led to the identification of sic HSV genes which together were necessary and sufficient for the induction of DNA amplification: UL30 (DNA polymerase), UL29 (major DNA-binding protein), UL5, UL8, UL42, and UL52. All of these genes encode proteins necessary for HSV DNA replication. However, an additional gene coding for an HSV origin-binding protein (UL9) was required for origin-dependent HSV DNA replication but was dispensable for SV40 DNA amplification. The results show that a subset of HSV replication genes is sufficient for the induction of DNA amplification. This opens the possibility that HSV expresses functions sufficient for DNA amplification but separate from those responsible for lytic viral growth. HSV infection may thereby induce DNA amplification within the host cell genome without killing the host by lytic viral growth. This may lead to persistence of a cell with a new genetic phenotype, which would have implications for the pathogenicity of the virus in vivo.

  10. Indication of Horizontal DNA Gene Transfer by Extracellular Vesicles

    PubMed Central

    Speiseder, Thomas; Badbaran, Anita; Reimer, Rudolph; Indenbirken, Daniela; Grundhoff, Adam; Brunswig-Spickenheier, Bärbel; Alawi, Malik; Lange, Claudia

    2016-01-01

    The biological relevance of extracellular vesicles (EV) in intercellular communication has been well established. Thus far, proteins and RNA were described as main cargo. Here, we show that EV released from human bone marrow derived mesenchymal stromal cells (BM-hMSC) also carry high-molecular DNA in addition. Extensive EV characterization revealed this DNA mainly associated with the outer EV membrane and to a smaller degree also inside the EV. Our EV purification protocol secured that DNA is not derived from apoptotic or necrotic cells. To analyze the relevance of EV-associated DNA we lentivirally transduced Arabidopsis thaliana-DNA (A.t.-DNA) as indicator into BM-hMSC and generated EV. Using quantitative polymerase chain reaction (qPCR) techniques we detected high copy numbers of A.t.-DNA in EV. In recipient hMSC incubated with tagged EV for two weeks we identified A.t.-DNA transferred to recipient cells. Investigation of recipient cell DNA using quantitative PCR and verification of PCR-products by sequencing suggested stable integration of A.t.-DNA. In conclusion, for the first time our proof-of-principle experiments point to horizontal DNA transfer into recipient cells via EV. Based on our results we assume that eukaryotic cells are able to exchange genetic information in form of DNA extending the known cargo of EV by genomic DNA. This mechanism might be of relevance in cancer but also during cell evolution and development. PMID:27684368

  11. Dietary fatty acids affect mitochondrial phospholipid compositions and mitochondrial gene expression of rainbow trout liver at different ages.

    PubMed

    Almaida-Pagán, P F; De Santis, C; Rubio-Mejía, O L; Tocher, D R

    2015-01-01

    Mitochondria are among the first responders to various stressors that challenge the homeostasis of cells and organisms. Mitochondrial decay is generally associated with impairment in the organelle bioenergetics function and increased oxidative stress, and it appears that deterioration of mitochondrial inner membrane phospholipids (PL), particularly cardiolipin (CL), and accumulation of mitochondrial DNA (mtDNA) mutations are among the main mechanisms involved in this process. In the present study, liver mitochondrial membrane PL compositions, lipid peroxidation, and mtDNA gene expression were analyzed in rainbow trout fed three diets with the same base formulation but with lipid supplied either by fish oil (FO), rapeseed oil (RO), or high DHA oil (DHA) during 6 weeks. Specifically, two feeding trials were performed using fish from the same population of two ages (1 and 3 years), and PL class compositions of liver mitochondria, fatty acid composition of individual PL classes, TBARS content, and mtDNA expression were determined. Dietary fatty acid composition strongly affected mitochondrial membrane composition from trout liver but observed changes did not fully reflect the diet, particularly when it contained high DHA. The changes were PL specific, CL being particularly resistant to changes in DHA. Some significant differences observed in expression of mtDNA with diet may suggest long-term dietary effects in mitochondrial gene expression which could affect electron transport chain function. All the changes were influenced by fish age, which could be related to the different growth rates observed between 1- and 3-year-old trout but that could also indicate age-related changes in the ability to maintain structural homeostasis of mitochondrial membranes.

  12. DNA sequence templates adjacent nucleosome and ORC sites at gene amplification origins in Drosophila.

    PubMed

    Liu, Jun; Zimmer, Kurt; Rusch, Douglas B; Paranjape, Neha; Podicheti, Ram; Tang, Haixu; Calvi, Brian R

    2015-10-15

    Eukaryotic origins of DNA replication are bound by the origin recognition complex (ORC), which scaffolds assembly of a pre-replicative complex (pre-RC) that is then activated to initiate replication. Both pre-RC assembly and activation are strongly influenced by developmental changes to the epigenome, but molecular mechanisms remain incompletely defined. We have been examining the activation of origins responsible for developmental gene amplification in Drosophila. At a specific time in oogenesis, somatic follicle cells transition from genomic replication to a locus-specific replication from six amplicon origins. Previous evidence indicated that these amplicon origins are activated by nucleosome acetylation, but how this affects origin chromatin is unknown. Here, we examine nucleosome position in follicle cells using micrococcal nuclease digestion with Ilumina sequencing. The results indicate that ORC binding sites and other essential origin sequences are nucleosome-depleted regions (NDRs). Nucleosome position at the amplicons was highly similar among developmental stages during which ORC is or is not bound, indicating that being an NDR is not sufficient to specify ORC binding. Importantly, the data suggest that nucleosomes and ORC have opposite preferences for DNA sequence and structure. We propose that nucleosome hyperacetylation promotes pre-RC assembly onto adjacent DNA sequences that are disfavored by nucleosomes but favored by ORC.

  13. DNA sequence templates adjacent nucleosome and ORC sites at gene amplification origins in Drosophila

    PubMed Central

    Liu, Jun; Zimmer, Kurt; Rusch, Douglas B.; Paranjape, Neha; Podicheti, Ram; Tang, Haixu; Calvi, Brian R.

    2015-01-01

    Eukaryotic origins of DNA replication are bound by the origin recognition complex (ORC), which scaffolds assembly of a pre-replicative complex (pre-RC) that is then activated to initiate replication. Both pre-RC assembly and activation are strongly influenced by developmental changes to the epigenome, but molecular mechanisms remain incompletely defined. We have been examining the activation of origins responsible for developmental gene amplification in Drosophila. At a specific time in oogenesis, somatic follicle cells transition from genomic replication to a locus-specific replication from six amplicon origins. Previous evidence indicated that these amplicon origins are activated by nucleosome acetylation, but how this affects origin chromatin is unknown. Here, we examine nucleosome position in follicle cells using micrococcal nuclease digestion with Ilumina sequencing. The results indicate that ORC binding sites and other essential origin sequences are nucleosome-depleted regions (NDRs). Nucleosome position at the amplicons was highly similar among developmental stages during which ORC is or is not bound, indicating that being an NDR is not sufficient to specify ORC binding. Importantly, the data suggest that nucleosomes and ORC have opposite preferences for DNA sequence and structure. We propose that nucleosome hyperacetylation promotes pre-RC assembly onto adjacent DNA sequences that are disfavored by nucleosomes but favored by ORC. PMID:26227968

  14. Genome Sequencing of Autism-Affected Families Reveals Disruption of Putative Noncoding Regulatory DNA

    PubMed Central

    Turner, Tychele N.; Hormozdiari, Fereydoun; Duyzend, Michael H.; McClymont, Sarah A.; Hook, Paul W.; Iossifov, Ivan; Raja, Archana; Baker, Carl; Hoekzema, Kendra; Stessman, Holly A.; Zody, Michael C.; Nelson, Bradley J.; Huddleston, John; Sandstrom, Richard; Smith, Joshua D.; Hanna, David; Swanson, James M.; Faustman, Elaine M.; Bamshad, Michael J.; Stamatoyannopoulos, John; Nickerson, Deborah A.; McCallion, Andrew S.; Darnell, Robert; Eichler, Evan E.

    2016-01-01

    We performed whole-genome sequencing (WGS) of 208 genomes from 53 families affected by simplex autism. For the majority of these families, no copy-number variant (CNV) or candidate de novo gene-disruptive single-nucleotide variant (SNV) had been detected by microarray or whole-exome sequencing (WES). We integrated multiple CNV and SNV analyses and extensive experimental validation to identify additional candidate mutations in eight families. We report that compared to control individuals, probands showed a significant (p = 0.03) enrichment of de novo and private disruptive mutations within fetal CNS DNase I hypersensitive sites (i.e., putative regulatory regions). This effect was only observed within 50 kb of genes that have been previously associated with autism risk, including genes where dosage sensitivity has already been established by recurrent disruptive de novo protein-coding mutations (ARID1B, SCN2A, NR3C2, PRKCA, and DSCAM). In addition, we provide evidence of gene-disruptive CNVs (in DISC1, WNT7A, RBFOX1, and MBD5), as well as smaller de novo CNVs and exon-specific SNVs missed by exome sequencing in neurodevelopmental genes (e.g., CANX, SAE1, and PIK3CA). Our results suggest that the detection of smaller, often multiple CNVs affecting putative regulatory elements might help explain additional risk of simplex autism. PMID:26749308

  15. Caesium-affected gene expression in Arabidopsis thaliana.

    PubMed

    Sahr, Tobias; Voigt, Gabriele; Paretzke, Herwig G; Schramel, Peter; Ernst, Dieter

    2005-03-01

    * Excessive caesium can be toxic to plants. Here we investigated Cs uptake and caesium-induced gene expression in Arabidopsis thaliana. * Accumulation was measured in plants grown for 5 wk on agar supplemented with nontoxic and up to toxic levels of Cs. Caesium-induced gene expression was studied by suppression-subtractive hybridization (SSH) and RT-PCR. * Caesium accumulated in leaf rosettes dependent upon the external concentration in the growth media, whereas the potassium concentration decreased in rosettes. At a concentration of 850 microM, Cs plants showed reduced development, and withered with an increase in concentration to 1 mM Cs. SSH resulted in the isolation of 73 clones that were differentially expressed at a Cs concentration of 150 microM. Most of the genes identified belong to groups of genes encoding proteins in stress defence, detoxification, transport, homeostasis and general metabolism, and proteins controlling transcription and translation. * The present study identified a number of marker genes for Cs in Arabidopsis grown under nontoxic Cs concentrations, indicating that Cs acts as an abiotic stress factor.

  16. Evolution of viruses by acquisition of cellular RNA or DNA nucleotide sequences and genes: an introduction.

    PubMed

    Becker, Y

    2000-01-01

    The origins of virus evolution may be traced to Archeabacteria since Inouye and Inouye (6) discovered a retroelement with a gene for reverse transcriptase in the bacterial genome and in the satellite, multiple copy single stranded DNA (msDNA) in the soil bacterium Myxococcus xanthus. It was possible (8) to define the evolution of retroelements in eukaryotic cells of plants, insects (gypsy retrovirus) and vertebrates. The replication of RNA viruses in eukaryotic cells allowed for the viral RNA genome to integrate a cellular ubiquitin mRNA, as reported for BVDV (24). Another example is the integration of 28S ribosomal RNA into the hemagglutinin gene of an influenza virus. This change in the hemagglutinin gene led to an increased pathogenicity of the influenza virus (25). In contrast to RNA viruses, DNA viruses had evolved by inserting cDNA molecules derived from mRNA transcripts of cellular genes or foreign viral RNA. It is of interest that the virus acquired cellular genes in the genomes of DNA viruses represent genes that code for proteins that inhibit cellular molecular processes related to HLA class I and II molecules. The other acquired genes are cellular genes that code for cytokines that are capable of inhibiting antigen presentation to T cells by antigen presenting cells (APC) by dendritic Langerhans cells. The acquisition of cellular genes by DNA viruses enhances their pathogenicity by inhibiting the hosts' defense systems.

  17. Transcript RNA supports precise repair of its own DNA gene.

    PubMed

    Keskin, Havva; Meers, Chance; Storici, Francesca

    2016-01-01

    The transfer of genetic information from RNA to DNA is considered an extraordinary process in molecular biology. Despite the fact that cells transcribe abundant amount of RNA with a wide range of functions, it has been difficult to uncover whether RNA can serve as a template for DNA repair and recombination. An increasing number of experimental evidences suggest a direct role of RNA in DNA modification. Recently, we demonstrated that endogenous transcript RNA can serve as a template to repair a DNA double-strand break (DSB), the most harmful DNA lesion, not only indirectly via formation of a DNA copy (cDNA) intermediate, but also directly in a homology driven mechanism in budding yeast. These results point out that the transfer of genetic information from RNA to DNA is more general than previously thought. We found that transcript RNA is more efficient in repairing a DSB in its own DNA (in cis) than in a homologous but ectopic locus (in trans). Here, we summarize current knowledge about the process of RNA-driven DNA repair and recombination, and provide further data in support of our model of DSB repair by transcript RNA in cis. We show that a DSB is precisely repaired predominately by transcript RNA and not by residual cDNA in conditions in which formation of cDNA by reverse transcription is inhibited. Additionally, we demonstrate that defects in ribonuclease (RNase) H stimulate precise DSB repair by homologous RNA or cDNA sequence, and not by homologous DNA sequence carried on a plasmid. These results highlight an antagonistic role of RNase H in RNA-DNA recombination. Ultimately, we discuss several questions that should be addressed to better understand mechanisms and implications of RNA-templated DNA repair and recombination.

  18. Cloning of apoptosis-related genes by representational difference analysis of cDNA.

    PubMed

    Hubank, Michael; Bryntesson, Fredrik; Regan, Jennifer; Schatz, David G

    2004-01-01

    Apoptosis is frequently triggered by events that alter the expression of key target genes. Under these circumstances, the genes involved can be identified by techniques that analyze gene expression. Researchers now have a choice of reliable and effective methods for differential gene expression analysis. Comparative approaches, including gene microarray analysis, serial analysis of gene expression, and differential display provide global information about expression levels. Subtractive approaches like complementary DNA representational difference analysis (cDNA RDA) and suppression subtraction polymerase chain reaction identify a focused set of differentially expressed genes. The most suitable technique to apply depends on individual circumstances. cDNA RDA is particularly useful in nonstandard model organisms for which comprehensive gene microarrays are not available and is best used for the identification of genes with a large difference in expression levels between two populations. The technique involves the generation of amplified mixtures of cDNA fragments that are typically smaller than 1000 base pairs and represent >86% of mRNA species from each starting population. Transcriptional differences between two populations can then be identified by subtraction of cDNA amplicons followed by further polymerase chain reaction amplification. The technique is capable of detecting differences for genes expressed at less than one copy per cell and is achievable using standard laboratory apparatus. cDNA RDA can identify genes not previously described in the database, can detect low abundance transcripts (e.g., from mixed cell populations), and is best applied in experiments where relatively few differentially expressed genes are expected. Here, we describe the application of cDNA RDA to the identification of apoptosis-related genes.

  19. Maternal Betaine Supplementation during Gestation Enhances Expression of mtDNA-Encoded Genes through D-Loop DNA Hypomethylation in the Skeletal Muscle of Newborn Piglets.

    PubMed

    Jia, Yimin; Song, Haogang; Gao, Guichao; Cai, Demin; Yang, Xiaojing; Zhao, Ruqian

    2015-11-25

    Betaine has been widely used in animal and human nutrition to promote muscle growth and performance, yet it remains unknown whether maternal betaine supplementation during gestation affects the metabolic characteristics of neonatal skeletal muscles. In the present study, feeding sows with betaine-supplemented diets throughout gestation significantly upregulated the expression of mtDNA-encoded OXPHOS genes (p < 0.05), including COX1, COX2, and ND5, in the muscle of newborn piglets, which was associated with enhanced mitochondrial COX enzyme activity (p < 0.05). Concurrently, maternal betaine supplementation increased the plasma betaine concentration and muscle expression of methyl transfer enzymes (p < 0.05), BHMT and GNMT, in offspring piglets. Nevertheless, Dnmt3a was downregulated at the level of both mRNA and protein, which was associated with a hypomethylated mtDNA D-loop region (p < 0.05). These results suggest that maternal betaine supplementation during gestation enhances expression of mtDNA-encoded genes through D-loop DNA hypomethylation in the skeletal muscle of newborn piglets.

  20. Paralogue Interference Affects the Dynamics after Gene Duplication.

    PubMed

    Kaltenegger, Elisabeth; Ober, Dietrich

    2015-12-01

    Proteins tend to form homomeric complexes of identical subunits, which act as functional units. By definition, the subunits are encoded from a single genetic locus. When such a gene is duplicated, the gene products are suggested initially to cross-interact when coexpressed, thus resulting in the phenomenon of paralogue interference. In this opinion article, we explore how paralogue interference can shape the fate of a duplicated gene. One important outcome is a prolonged time window in which both copies remain under selection increasing the chance to accumulate mutations and to develop new properties. Thereby, paralogue interference can mediate the coevolution of duplicates and here we illustrate the potential of this phenomenon in light of recent new studies.

  1. Lifespan and Stress Resistance in Drosophila with Overexpressed DNA Repair Genes

    PubMed Central

    Shaposhnikov, Mikhail; Proshkina, Ekaterina; Shilova, Lyubov; Zhavoronkov, Alex; Moskalev, Alexey

    2015-01-01

    DNA repair declines with age and correlates with longevity in many animal species. In this study, we investigated the effects of GAL4-induced overexpression of genes implicated in DNA repair on lifespan and resistance to stress factors in Drosophila melanogaster. Stress factors included hyperthermia, oxidative stress, and starvation. Overexpression was either constitutive or conditional and either ubiquitous or tissue-specific (nervous system). Overexpressed genes included those involved in recognition of DNA damage (homologs of HUS1, CHK2), nucleotide and base excision repair (homologs of XPF, XPC and AP-endonuclease-1), and repair of double-stranded DNA breaks (homologs of BRCA2, XRCC3, KU80 and WRNexo). The overexpression of different DNA repair genes led to both positive and negative effects on lifespan and stress resistance. Effects were dependent on GAL4 driver, stage of induction, sex, and role of the gene in the DNA repair process. While the constitutive/neuron-specific and conditional/ubiquitous overexpression of DNA repair genes negatively impacted lifespan and stress resistance, the constitutive/ubiquitous and conditional/neuron-specific overexpression of Hus1, mnk, mei-9, mus210, and WRNexo had beneficial effects. This study demonstrates for the first time the effects of overexpression of these DNA repair genes on both lifespan and stress resistance in D. melanogaster. PMID:26477511

  2. Expression Profile of DNA Damage Signaling Genes in Proton Exposed Mouse Brain

    NASA Astrophysics Data System (ADS)

    Ramesh, Govindarajan; Wu, Honglu

    Exposure of living systems to radiation results in a wide assortment of lesions, the most signif-icant of is damage to genomic DNA which induce several cellular functions such as cell cycle arrest, repair, apoptosis etc. The radiation induced DNA damage investigation is one of the im-portant area in biology, but still the information available regarding the effects of proton is very limited. In this report, we investigated the differential gene expression pattern of DNA damage signaling genes particularly, damaged DNA binding, repair, cell cycle arrest, checkpoints and apoptosis using quantitative real-time RT-PCR array in proton exposed mouse brain tissues. The expression profiles showed significant changes in DNA damage related genes in 2Gy proton exposed mouse brain tissues as compared with control brain tissues. Furthermore, we also show that significantly increased levels of apoptotic related genes, caspase-3 and 8 activities in these cells, suggesting that in addition to differential expression of DNA damage genes, the alteration of apoptosis related genes may also contribute to the radiation induced DNA damage followed by programmed cell death. In summary, our findings suggest that proton exposed brain tissue undergo severe DNA damage which in turn destabilize the chromatin stability.

  3. DNA Methylation Profiling Reveals Correlation of Differential Methylation Patterns with Gene Expression in Human Epilepsy.

    PubMed

    Wang, Liang; Fu, Xinwei; Peng, Xi; Xiao, Zheng; Li, Zhonggui; Chen, Guojun; Wang, Xuefeng

    2016-05-01

    DNA methylation plays important roles in regulating gene expression and has been reported to be related with epilepsy. This study aimed to define differential DNA methylation patterns in drug-refractory epilepsy patients and to investigate the role of DNA methylation in human epilepsy. We performed DNA methylation profiling in brain tissues from epileptic and control patients via methylated-cytosine DNA immunoprecipitation microarray chip. Differentially methylated loci were validated by bisulfite sequencing PCR, and the messenger RNA (mRNA) levels of candidate genes were evaluated by reverse transcriptase PCR. We found 224 genes that showed differential DNA methylation between epileptic patients and controls. Among the seven candidate genes, three genes (TUBB2B, ATPGD1, and HTR6) showed relative transcriptional regulation by DNA methylation. TUBB2B and ATPGD1 exhibited hypermethylation and decreased mRNA levels, whereas HTR6 displayed hypomethylation and increased mRNA levels in the epileptic samples. Our findings suggest that certain genes become differentially regulated by DNA methylation in human epilepsy.

  4. Chromosomal Bands Affected by Acute Oil Exposure and DNA Repair Errors

    PubMed Central

    Zock, Jan-Paul; Giraldo, Jesús; Pozo-Rodríguez, Francisco; Espinosa, Ana; Rodríguez-Trigo, Gema; Verea, Hector; Castaño-Vinyals, Gemma; Gómez, Federico P.; Antó, Josep M.; Coll, Maria Dolors; Barberà, Joan Albert; Fuster, Carme

    2013-01-01

    Background In a previous study, we showed that individuals who had participated in oil clean-up tasks after the wreckage of the Prestige presented an increase of structural chromosomal alterations two years after the acute exposure had occurred. Other studies have also reported the presence of DNA damage during acute oil exposure, but little is known about the long term persistence of chromosomal alterations, which can be considered as a marker of cancer risk. Objectives We analyzed whether the breakpoints involved in chromosomal damage can help to assess the risk of cancer as well as to investigate their possible association with DNA repair efficiency. Methods Cytogenetic analyses were carried out on the same individuals of our previous study and DNA repair errors were assessed in cultures with aphidicolin. Results Three chromosomal bands, 2q21, 3q27 and 5q31, were most affected by acute oil exposure. The dysfunction in DNA repair mechanisms, expressed as chromosomal damage, was significantly higher in exposed-oil participants than in those not exposed (p= 0.016). Conclusion The present study shows that breaks in 2q21, 3q27 and 5q31 chromosomal bands, which are commonly involved in hematological cancer, could be considered useful genotoxic oil biomarkers. Moreover, breakages in these bands could induce chromosomal instability, which can explain the increased risk of cancer (leukemia and lymphomas) reported in chronically benzene-exposed individuals. In addition, it has been determined that the individuals who participated in clean-up of the oil spill presented an alteration of their DNA repair mechanisms two years after exposure. PMID:24303039

  5. Early Experiences Can Alter Gene Expression and Affect Long-Term Development. Working Paper #10

    ERIC Educational Resources Information Center

    National Scientific Council on the Developing Child, 2010

    2010-01-01

    New scientific research shows that environmental influences can actually affect whether and how genes are expressed. Thus, the old ideas that genes are "set in stone" or that they alone determine development have been disproven. In fact, scientists have discovered that early experiences can determine how genes are turned on and off and even…

  6. The Arabidopsis HOMOLOGY-DEPENDENT GENE SILENCING1 Gene Codes for an S-Adenosyl-l-Homocysteine Hydrolase Required for DNA Methylation-Dependent Gene Silencing

    PubMed Central

    Rocha, Pedro S.C.F.; Sheikh, Mazhar; Melchiorre, Rosalba; Fagard, Mathilde; Boutet, Stéphanie; Loach, Rebecca; Moffatt, Barbara; Wagner, Conrad; Vaucheret, Hervé; Furner, Ian

    2005-01-01

    Genes introduced into higher plant genomes can become silent (gene silencing) and/or cause silencing of homologous genes at unlinked sites (homology-dependent gene silencing or HDG silencing). Mutations of the HOMOLOGY-DEPENDENT GENE SILENCING1 (HOG1) locus relieve transcriptional gene silencing and methylation-dependent HDG silencing and result in genome-wide demethylation. The hog1 mutant plants also grow slowly and have low fertility and reduced seed germination. Three independent mutants of HOG1 were each found to have point mutations at the 3′ end of a gene coding for S-adenosyl-l-homocysteine (SAH) hydrolase, and hog1-1 plants show reduced SAH hydrolase activity. A transposon (hog1-4) and a T-DNA tag (hog1-5) in the HOG1 gene each behaved as zygotic embryo lethal mutants and could not be made homozygous. The results suggest that the homozygous hog1 point mutants are leaky and result in genome demethylation and poor growth and that homozygous insertion mutations result in zygotic lethality. Complementation of the hog1-1 point mutation with a T-DNA containing the gene coding for SAH hydrolase restored gene silencing, HDG silencing, DNA methylation, fast growth, and normal seed viability. The same T-DNA also complemented the zygotic embryo lethal phenotype of the hog1-4 tagged mutant. A model relating the HOG1 gene, DNA methylation, and methylation-dependent HDG silencing is presented. PMID:15659630

  7. Spontaneous Preterm Delivery, Particularly with Reduced Fetal Growth, is Associated with DNA Hypomethylation of Tumor Related Genes

    PubMed Central

    Chen, Xinhua; Bai, Guang; Scholl, Theresa O

    2016-01-01

    Background Preterm delivery and sub-optimal fetal growth are associated with each other and affect both mother and infant. Our aim was to determine (i) whether there are detectable differences in DNA methylation between early and late gestation and (ii) whether changes in DNA methylation from entry are associated with spontaneous preterm delivery with and without reduced fetal growth. Methods We conducted a case-control study nested within a large prospective cohort. Gene specific methylation was measured by Methyl-Profiler PCR Array in a Human Breast Cancer Signature Panel of 24 genes from maternal peripheral leukocytes genomic DNA at entry and 3rd trimester (sampled at 16 and 30 weeks of gestation, respectively). Clonal bisulfite DNA sequencing was performed to confirm the changes in selected genes (CYP1B1, GADD45A and CXCL12). Multivariable analysis was used for data analysis. Results There was significantly decrease in DNA methylation in 15 of 24 genes during the 3rd trimester in cases of spontaneous preterm delivery (n=23) as compared to the controls (n=19) (p<0.05–p<0.01 for each gene). Similar results were observed by bisulfite sequencing for 3 genes. The change in DNA methylation between late and early gestation was significantly different in cases (overall decrease in methylation was −4.0 ± 1.5%) compared to the controls (overall increase in methylation was 12.6 ± 2.19%, p<0.0001). A graded pattern of DNA methylation was observed in 15 genes. Cases who delivered preterm with reduced fetal growth had the lowest level of methylation, cases delivering preterm without reduced fetal growth were next and term controls were highest in methylation (p for trend <0.05 to p<0.01 for each gene). Cases of preterm delivery also had significantly lower dietary choline intake. Conclusions These data suggest that epigenetic modification is associated with an increased risk of spontaneous preterm delivery, spontaneous preterm delivery with reduced fetal growth in

  8. Genetic spell-checking: gene editing using single-stranded DNA oligonucleotides.

    PubMed

    Rivera-Torres, Natalia; Kmiec, Eric B

    2016-02-01

    Single-stranded oligonucleotides (ssODNs) can be used to direct the exchange of a single nucleotide or the repair of a single base within the coding region of a gene in a process that is known, generically, as gene editing. These molecules are composed of either all DNA residues or a mixture of RNA and DNA bases and utilize inherent metabolic functions to execute the genetic alteration within the context of a chromosome. The mechanism of action of gene editing is now being elucidated as well as an understanding of its regulatory circuitry, work that has been particularly important in establishing a foundation for designing effective gene editing strategies in plants. Double-strand DNA breakage and the activation of the DNA damage response pathway play key roles in determining the frequency with which gene editing activity takes place. Cellular regulators respond to such damage and their action impacts the success or failure of a particular nucleotide exchange reaction. A consequence of such activation is the natural slowing of replication fork progression, which naturally creates a more open chromatin configuration, thereby increasing access of the oligonucleotide to the DNA template. Herein, how critical reaction parameters influence the effectiveness of gene editing is discussed. Functional interrelationships between DNA damage, the activation of DNA response pathways and the stalling of replication forks are presented in detail as potential targets for increasing the frequency of gene editing by ssODNs in plants and plant cells.

  9. Chitosan-graft-polyethylenimine/DNA nanoparticles as novel non-viral gene delivery vectors targeting osteoarthritis.

    PubMed

    Lu, Huading; Dai, Yuhu; Lv, Lulu; Zhao, Huiqing

    2014-01-01

    The development of safe and efficient gene carriers is the key to the clinical success of gene therapy. The present study was designed to develop and evaluate the chitosan-graft-polyethylenimine (CP)/DNA nanoparticles as novel non-viral gene vectors for gene therapy of osteoarthritis. The CP/DNA nanoparticles were produced through a complex coacervation of the cationic polymers with pEGFP after grafting chitosan (CS) with a low molecular weight (Mw) PEI (Mw = 1.8 kDa). Particle size and zeta potential were related to the weight ratio of CP:DNA, where decreases in nanoparticle size and increases in surface charge were observed as CP content increased. The buffering capacity of CP was significantly greater than that of CS. The transfection efficiency of CP/DNA nanoparticles was similar with that of the Lipofectamine™ 2000, and significantly higher than that of CS/DNA and PEI (25 kDa)/DNA nanoparticles. The transfection efficiency of the CP/DNA nanoparticles was dependent on the weight ratio of CP:DNA (w/w). The average cell viability after the treatment with CP/DNA nanoparticles was over 90% in both chondrocytes and synoviocytes, which was much higher than that of PEI (25 kDa)/DNA nanoparticles. The CP copolymers efficiently carried the pDNA inside chondrocytes and synoviocytes, and the pDNA was detected entering into nucleus. These results suggest that CP/DNA nanoparticles with improved transfection efficiency and low cytotoxicity might be a safe and efficient non-viral vector for gene delivery to both chondrocytes and synoviocytes.

  10. Microneedle delivery of plasmid DNA to living human skin: formulation coating, skin insertion and gene expression

    PubMed Central

    Pearton, Marc; Saller, Verena; Coulman, Sion A; Gateley, Chris; Anstey, Alexander V; Zarnitsyn, Vladimir; Birchall, James C

    2012-01-01

    Microneedle delivery of nucleic acids, in particular plasmid DNA (pDNA), to the skin represents a potential new approach for the clinical management of genetic skin diseases and cutaneous cancers, and for intracutaneous genetic immunization. In this study excised human skin explants were used to investigate and optimize key parameters that will determine stable and effective microneedle-facilitated pDNA delivery. These include (i) high dose-loading of pDNA onto microneedle surfaces, (ii) stability and functionality of the coated pDNA, (iii) skin penetration capability of pDNA-coated microneedles, and (iv) efficient gene expression in human skin. Optimization of a dip-coating method enabled significant increases in the loading capacity, up to 100 micrograms of pDNA per 5-microneedle array. Coated microneedles were able to reproducibly perforate human skin at low (<1 Newton) insertion forces. The physical stability of the coated pDNA was partially compromised on storage, although this was improved through the addition of saccharide excipients without detriment to the biological functionality of pDNA. The pDNA-coated microneedles facilitated reporter gene expression in viable human skin. The efficiency of gene expression from coated microneedles will depend upon suitable DNA loading, efficient and reproducible skin puncture and rapid in situ dissolution of the plasmid at the site of delivery. PMID:22516089

  11. Age affects gene expression in mouse spermatogonial stem/progenitor cells.

    PubMed

    Kokkinaki, Maria; Lee, Tin-Lap; He, Zuping; Jiang, Jiji; Golestaneh, Nady; Hofmann, Marie-Claude; Chan, Wai-Yee; Dym, Martin

    2010-06-01

    Spermatogenesis in man starts with spermatogonial stem cells (SSCs), and leads to the production of sperm in approximately 64 days, common to old and young men. Sperm from elderly men are functional and able to fertilize eggs and produce offspring, even though daily sperm production is more than 50% lower and damage to sperm DNA is significantly higher in older men than in those who are younger. Our hypothesis is that the SSC/spermatogonial progenitors themselves age. To test this hypothesis, we studied the gene expression profile of mouse SSC/progenitor cells at several ages using microarrays. After sequential enzyme dispersion, we purified the SSC/progenitors with immunomagnetic cell sorting using an antibody to GFRA1, a known SSC/progenitor cell marker. RNA was isolated and used for the in vitro synthesis of amplified and labeled cRNAs that were hybridized to the Affymetrix mouse genome microarrays. The experiments were repeated twice with different cell preparations, and statistically significant results are presented. Quantitative RT-PCR analysis was used to confirm the microarray results. Comparison of four age groups (6 days, 21 days, 60 days, and 8 months old) showed a number of genes that were expressed specifically in the older mice. Two of them (i.e. Icam1 and Selp) have also been shown to mark aging hematopoietic stem cells. On the other hand, the expression levels of the genes encoding the SSC markers Gfra1 and Plzf did not seem to be significantly altered by age, indicating that age affects only certain SSC/progenitor properties.

  12. Autism Associated Haplotype Affects the Regulation of the Homeobox Gene, ENGRAILED 2

    PubMed Central

    Benayed, Rym; Choi, Jiyeon; Matteson, Paul G; Gharani, Neda; Kamdar, Silky; Brzustowicz, Linda M; Millonig, James H

    2009-01-01

    Background Association analysis identified the homeobox transcription factor, ENGRAILED 2 (EN2), as a possible Autism Spectrum Disorder (ASD) susceptibility gene (ASD [MIM 608636]; EN2 [MIM 131310]). The common alleles (underlined) of two intronic SNPs, rs1861972 (A/G) and rs1861973 (C/T), are over-transmitted to affected individuals both singly and as a haplotype in three separate datasets (518 families total, haplotype P=0.00000035). Methods: Further support that EN2 is a possible ASD susceptibility gene requires the identification of a risk allele, a DNA variant that is consistently associated with ASD but is also functional. To identify possible risk alleles, additional association analysis and LD mapping were performed. Candidate polymorphisms were then tested for functional differences by luciferase (luc) reporter transfections and Electrophoretic Mobility Shift Assays (EMSAs). Results: Association analysis of additional EN2 polymorphisms and LD mapping with Hapmap SNPs identified the rs1861972-rs1861973 haplotype as the most appropriate candidate to test for functional differences. Luc reporters for the two common rs1861972-rs1861973 haplotypes (A-C and G-T) were then transfected into human and rat cell lines as well as primary mouse neuronal cultures. In all cases the A-C haplotype resulted in a significant increase in luc levels (P<.005). EMSAs were then performed and nuclear factors bound specifically to the A and C alleles of both SNPs. Conclusions: These data indicate the AC haplotype is functional and together with the association and LD mapping results support EN2 as a likely ASD susceptibility gene and the A-C haplotype as a possible risk allele. PMID:19615670

  13. Genes from Lycopersicon chmielewskii affecting tomato quality during fruit ripening.

    PubMed

    Azanza, F; Kim, D; Tanksley, S D; Juvik, J A

    1995-08-01

    Three chromosomal segments from the wild tomato, L. chmielewskii, introgressed into the L. esculentum genome have been previously mapped to the middle and terminal regions of chromosome 7 (7M, 7T respectively), and to the terminal region of chromosome 10 (10T). The present study was designed to investigate the physiological mechanisms controlled by the 7M and 7T segments on tomato soluble solids (SS) and pH, and their genetic regulation during fruit development. The effects of 7M and 7T were studied in 64 BC2F5 backcross inbred lines (BILs) developed from a cross between LA 1501 (an L. esculentum line containing the 7M and 7T fragments from L. chmielewskii), and VF145B-7879 (a processing cultivar). BILs were classified into four homozygous genotypes with respect to the introgressed segments based on RFLP analysis, and evaluated for fruit chemical characteristics at different harvest stages. Gene(s) in the 7M fragment reduce fruit water uptake during ripening increasing pH, sugars, and SS concentration. Gene(s) in the 7T fragment were found to be associated with higher mature green fruit starch concentration and red ripe fruit weight. Comparisons between tomatoes ripened on or off the vine suggest that the physiological mechanisms influenced by the L. chmielewskii alleles are dependent on the translocation of photosynthates and water during fruit ripening.

  14. Transcription-coupled DNA supercoiling dictates the chromosomal arrangement of bacterial genes

    PubMed Central

    Sobetzko, Patrick

    2016-01-01

    Over the recent decade, the central importance of DNA supercoiling in chromosome organization and global gene regulation of bacteria became more and more visible. With a regulon comprising more than 2000 genes in Escherichia coli, DNA supercoiling is among the most influential regulators of gene expression found in bacteria so far. However, the mechanism creating thousands of diverse temporal gene expression patterns coordinated by DNA supercoiling remains unclear. In this study we show that a specific chromosomal arrangement of genes modulates the local levels of DNA supercoiling at gene promoters via transcription-coupled DNA supercoiling (TCDS) in the model organism E. coli. Our findings provide a consistent explanation for the strong positive coupling of temporal gene expression patterns of neighboring genes. Using comparative genomics we are furthermore able to provide evidence that TCDS is a driving force for the evolution of chromosomal gene arrangement patterns in other Enterobacteriaceae. With the currently available data of promoter supercoiling sensitivity we prove that the same principle is applicable also for the evolutionary distant gram-positive pathogenic bacterium Streptococcus pneumoniae. Moreover, our findings are fully consistent with recent investigations concerning the regulatory impact of TCDS on gene pairs in eukaryots underpinning the broad applicability of our analysis. PMID:26783203

  15. Identification of Yeast Genes Involved in K+ Homeostasis: Loss of Membrane Traffic Genes Affects K+ Uptake

    PubMed Central

    Fell, Gillian L.; Munson, Amanda M.; Croston, Merriah A.; Rosenwald, Anne G.

    2011-01-01

    Using the homozygous diploid Saccharomyces deletion collection, we searched for strains with defects in K+ homeostasis. We identified 156 (of 4653 total) strains unable to grow in the presence of hygromycin B, a phenotype previously shown to be indicative of ion defects. The most abundant group was that with deletions of genes known to encode membrane traffic regulators. Nearly 80% of these membrane traffic defective strains showed defects in uptake of the K+ homolog, 86Rb+. Since Trk1, a plasma membrane protein localized to lipid microdomains, is the major K+ influx transporter, we examined the subcellular localization and Triton-X 100 insolubility of Trk1 in 29 of the traffic mutants. However, few of these showed defects in the steady state levels of Trk1, the localization of Trk1 to the plasma membrane, or the localization of Trk1 to lipid microdomains, and most defects were mild compared to wild-type. Three inositol kinase mutants were also identified, and in contrast, loss of these genes negatively affected Trk1 protein levels. In summary, this work reveals a nexus between K+ homeostasis and membrane traffic, which does not involve traffic of the major influx transporter, Trk1. PMID:22384317

  16. Identification of yeast genes involved in k homeostasis: loss of membrane traffic genes affects k uptake.

    PubMed

    Fell, Gillian L; Munson, Amanda M; Croston, Merriah A; Rosenwald, Anne G

    2011-06-01

    Using the homozygous diploid Saccharomyces deletion collection, we searched for strains with defects in K(+) homeostasis. We identified 156 (of 4653 total) strains unable to grow in the presence of hygromycin B, a phenotype previously shown to be indicative of ion defects. The most abundant group was that with deletions of genes known to encode membrane traffic regulators. Nearly 80% of these membrane traffic defective strains showed defects in uptake of the K(+) homolog, (86)Rb(+). Since Trk1, a plasma membrane protein localized to lipid microdomains, is the major K(+) influx transporter, we examined the subcellular localization and Triton-X 100 insolubility of Trk1 in 29 of the traffic mutants. However, few of these showed defects in the steady state levels of Trk1, the localization of Trk1 to the plasma membrane, or the localization of Trk1 to lipid microdomains, and most defects were mild compared to wild-type. Three inositol kinase mutants were also identified, and in contrast, loss of these genes negatively affected Trk1 protein levels. In summary, this work reveals a nexus between K(+) homeostasis and membrane traffic, which does not involve traffic of the major influx transporter, Trk1.

  17. cDNA microarray analysis of the effect of cantharidin on DNA damage, cell cycle and apoptosis-associated gene expression in NCI-H460 human lung cancer cells in vitro.

    PubMed

    Hsia, Te-Chun; Yu, Chien-Chih; Hsu, Shu-Chun; Tang, Nou-Ying; Lu, Hsu-Feng; Yu, Chun-Shu; Wu, Shin-Hwar; Lin, Jaung-Geng; Chung, Jing-Gung

    2015-07-01

    Cantharidin (CTD) induces cytotoxic effects in different types of human cancer cell; however, to date, there have been no studies on the effects of CTD on gene expression in human lung cancer cells and the potential associated signaling pathways. Therefore, the present study aimed to investigate how CTD affects the expression of key genes and functional pathways of human H460 lung cancer cells using complementary DNA microarray analysis. Human H460 lung cancer cells were cultured for 24 h in the presence or absence of 10 µM CTD; gene expression was then examined using microarray analysis. The results indicated that 8 genes were upregulated > 4-fold, 29 genes were upregulated >3-4-fold and 156 genes were upregulated >2-3-fold. In addition, 1 gene was downregulated >4 fold, 14 genes were downregulated >3-4-fold and 150 genes were downregulated >2-3 fold in H460 cells following exposure to CTD. It was found that CTD affected DNA damage genes, including DNIT3 and GADD45A, which were upregulated 2.26- and 2.60-fold, respectively, as well as DdiT4, which was downregulated 3.14-fold. In addition, the expression of genes associated with the cell cycle progression were altered, including CCND2, CDKL3 and RASA4, which were upregulated 2.72-, 2.19- and 2.72-fold, respectively; however, CDC42EP3 was downregulated 2.16-fold. Furthermore, apoptosis-associated genes were differentially expressed, including CARD6, which was upregulated 3.54-fold. In conclusion, the present study demonstrated that CTD affected the expression of genes associated with DNA damage, cell cycle progression and apoptotic cell death in human lung cancer H460 cells.

  18. Efficient virus-induced gene silencing in plants using a modified geminivirus DNA1 component.

    PubMed

    Huang, Changjun; Xie, Yan; Zhou, Xueping

    2009-04-01

    Virus-induced gene silencing (VIGS) is currently recognized as a powerful reverse genetics tool for application in functional genomics. DNA1, a satellite-like and single-stranded DNA molecule associated with begomoviruses (Family Geminiviridae), has been shown to replicate autonomously but requires the helper virus for its dissemination. We developed a VIGS vector based on the DNA1 component of tobacco curly shoot virus (TbCSV), a monopartite begomovirus, by inserting a multiple cloning site between the replication-associated protein open reading frame and the A-rich region for subsequent insertion of DNA fragments of genes targeted for silencing. When a host gene (sulphur, Su) or transgene (green fluorescent protein, GFP) was inserted into the modified DNA1 vector and co-agroinoculated with TbCSV, efficient silencing of the cognate gene was observed in Nicotiana benthamiana plants. More interestingly, we demonstrated that this modified DNA1 could effectively suppress GFP in transgenic N. benthamiana or endogenous Su in tobacco plants when co-agroinoculated with tomato yellow leaf curl China virus (TYLCCNV), another monopartite begomovirus that does not induce any viral symptoms. A gene-silencing system in Nicotiana spp., Solanum lycopersicum and Petunia hybrida plants was then established using TYLCCNV and the modified DNA1 vector. The system can be used to silence genes involved in meristem and flower development. The modified DNA1 vector was used to silence the AtTOM homologous genes (NbTOM1 and NbTOM3) in N. benthamiana. Silencing of NbTOM1 or NbTOM3 can reduce tobamovirus multiplication to a lower level, and silencing of both genes simultaneously can completely inhibit tobamovirus multiplication. Previous studies have reported that DNA1 is associated with both monopartite and bipartite begomoviruses, as well as curtoviruses. This vector system can therefore be applied for the study, analysis and discovery of gene function in a variety of important crop plants.

  19. Chromosomal localization of the gene encoding the human DNA helicase RECQL and its mouse homologue

    SciTech Connect

    Puranam, K.L.; Kennington, E.; Blackshear, P.J.

    1995-04-10

    We have determined the chromosomal location of the human and mouse genes encoding the RECQL protein, a putative DNA helicase homologous to the bacterial DNA helicase, RecQ. RECQL was localized to human chromosome 12 by analysis of human-rodent somatic cell hybrid DNA, fine mapping of RECQL by fluorescence in situ hybridization revealed its chromosomal location to be 12p11-p12. The corresponding mouse gene, Recql, was mapped to the telomeric end of mouse chromosome 6 by analysis of DNA from an interspecific cross. 19 refs., 2 figs.

  20. Downregulation of Homologous Recombination DNA Repair Genes by HDAC Inhibition in Prostate Cancer Is Mediated through the E2F1 Transcription Factor

    PubMed Central

    Kachhap, Sushant K.; Rosmus, Nadine; Collis, Spencer J.; Kortenhorst, Madeleine S. Q.; Wissing, Michel D.; Hedayati, Mohammad; Shabbeer, Shabana; Mendonca, Janet; Deangelis, Justin; Marchionni, Luigi; Lin, Jianqing; Höti, Naseruddin; Nortier, Johan W. R.; DeWeese, Theodore L.; Hammers, Hans; Carducci, Michael A.

    2010-01-01

    Background Histone deacetylase inhibitors (HDACis) re-express silenced tumor suppressor genes and are currently undergoing clinical trials. Although HDACis have been known to induce gene expression, an equal number of genes are downregulated upon HDAC inhibition. The mechanism behind this downregulation remains unclear. Here we provide evidence that several DNA repair genes are downregulated by HDAC inhibition and provide a mechanism involving the E2F1 transcription factor in the process. Methodology/Principal Findings Applying Analysis of Functional Annotation (AFA) on microarray data of prostate cancer cells treated with HDACis, we found a number of genes of the DNA damage response and repair pathways are downregulated by HDACis. AFA revealed enrichment of homologous recombination (HR) DNA repair genes of the BRCA1 pathway, as well as genes regulated by the E2F1 transcription factor. Prostate cancer cells demonstrated a decreased DNA repair capacity and an increased sensitization to chemical- and radio-DNA damaging agents upon HDAC inhibition. Recruitment of key HR repair proteins to the site of DNA damage, as well as HR repair capacity was compromised upon HDACi treatment. Based on our AFA data, we hypothesized that the E2F transcription factors may play a role in the downregulation of key repair genes upon HDAC inhibition in prostate cancer cells. ChIP analysis and luciferase assays reveal that the downregulation of key repair genes is mediated through decreased recruitment of the E2F1 transcription factor and not through active repression by repressive E2Fs. Conclusions/Significance Our study indicates that several genes in the DNA repair pathway are affected upon HDAC inhibition. Downregulation of the repair genes is on account of a decrease in amount and promoter recruitment of the E2F1 transcription factor. Since HDAC inhibition affects several pathways that could potentially have an impact on DNA repair, compromised DNA repair upon HDAC inhibition could

  1. Transgene-mediated co-suppression of DNA topoisomerase-1 gene in Caenorhabditis elegans.

    PubMed

    Lee, Myon-Hee; Cha, Dong Seok; Mamillapalli, Srivalli Swathi; Kwon, Young Chul; Koo, Hyeon-Sook

    2014-01-01

    Ectopic expression of multi-transgenic copies can result in reduced expression of the transgene and can induce silence of endogenous gene; this process is called as co-suppression. Using a transgene-mediated co-suppression technique, we demonstrated the biological function of DNA topoisomerase-1 (top-1) in C. elegans development. Introduction of full-length top-1 transgene sufficiently induced the co-suppression of endogenous top-1 gene, causing embryonic lethality and abnormal germline development. We also found that the co-suppression of top-1 gene affected morphogenesis, lifespan and larval growth that were not observed in top-1 (RNAi) animals. Strikingly, co-suppression effects were significantly reduced by the elimination of top-1 introns, suggesting that efficient co-suppression may require intron(s) in C. elegans. Sequence analysis revealed that the introns 1 and 2 of top-1 gene possess consensus binding sites for several transcription factors, including MAB-3, LIN-14, TTX-3/CEH-10, CEH-1, and CEH-22. Among them, we examined a genetic link between ceh-22 and top-1. The ceh-22 is partially required for the specification of distal tip cells (DTC), which functions as a stem cell niche in the C. elegans gonad. Intriguingly, top-1 (RNAi) significantly enhanced DTC loss in ceh-22 mutant gonads, indicating that top-1 may play an important role in CEH-22-mediated DTC fate specification. Therefore, our findings suggest that transgene-mediated co-suppression facilitates the silencing of the specific genes and the study of gene function in vivo.

  2. Genome-Wide Screening of Genes Regulated by DNA Methylation in Colon Cancer Development

    PubMed Central

    Galamb, Orsolya; Wichmann, Barna; Sipos, Ferenc; Péterfia, Bálint; Csabai, István; Kovalszky, Ilona; Semsey, Szabolcs; Tulassay, Zsolt; Molnár, Béla

    2012-01-01

    Tumorigenesis is accompanied by changes in the DNA methylation pattern. Our aim was to test a novel approach for identification of transcripts at whole transcript level which are regulated by DNA methylation. Our approach is based on comparison of data obtained from transcriptome profiling of primary human samples and in vitro cell culture models. Epithelial cells were collected by LCM from normal, adenoma, and tumorous colonic samples. Using gene expression analysis, we identified downregulated genes in the tumors compared to normal tissues. In parallel 3000 upregulated genes were determined in HT-29 colon adenocarcinoma cell culture model after DNA demethylation treatment. Of the 2533 transcripts showing reduced expression in the tumorous samples, 154 had increased expression as a result of DNA demethylation treatment. Approximately 2/3 of these genes had decreased expression already in the adenoma samples. Expression of five genes (GCG, NMES-1, LRMP, FAM161B and PTGDR), was validated using RT-PCR. PTGDR showed ambiguous results, therefore it was further studied to verify the extent of DNA methylation and its effect on the protein level. Results confirmed that our approach is suitable for genome-wide screening of genes which are regulated or inactivated by DNA methylation. Activity of these genes possibly interferes with tumor progression, therefore genes identified can be key factors in the formation and in the progression of the disease. PMID:23049694

  3. DNA methylation patterns of protein-coding genes and long non-coding RNAs in males with schizophrenia.

    PubMed

    Liao, Qi; Wang, Yunliang; Cheng, Jia; Dai, Dongjun; Zhou, Xingyu; Zhang, Yuzheng; Li, Jinfeng; Yin, Honglei; Gao, Shugui; Duan, Shiwei

    2015-11-01

    Schizophrenia (SCZ) is one of the most complex mental illnesses affecting ~1% of the population worldwide. SCZ pathogenesis is considered to be a result of genetic as well as epigenetic alterations. Previous studies have aimed to identify the causative genes of SCZ. However, DNA methylation of long non-coding RNAs (lncRNAs) involved in SCZ has not been fully elucidated. In the present study, a comprehensive genome-wide analysis of DNA methylation was conducted using samples from two male patients with paranoid and undifferentiated SCZ, respectively. Methyl-CpG binding domain protein-enriched genome sequencing was used. In the two patients with paranoid and undifferentiated SCZ, 1,397 and 1,437 peaks were identified, respectively. Bioinformatic analysis demonstrated that peaks were enriched in protein-coding genes, which exhibited nervous system and brain functions. A number of these peaks in gene promoter regions may affect gene expression and, therefore, influence SCZ-associated pathways. Furthermore, 7 and 20 lncRNAs, respectively, in the Refseq database were hypermethylated. According to the lncRNA dataset in the NONCODE database, ~30% of intergenic peaks overlapped with novel lncRNA loci. The results of the present study demonstrated that aberrant hypermethylation of lncRNA genes may be an important epigenetic factor associated with SCZ. However, further studies using larger sample sizes are required.

  4. Genetic and Functional Studies of Genes that Regulate DNA-Damage-Induced Cell Death

    DTIC Science & Technology

    2004-11-01

    AD Award Number: DAMD17-01-1-0145 TITLE: Genetic and Functional Studies of Genes that Regulate DNA-damage-induced Cell Death PRINCIPAL INVESTIGATOR...and Functional Studies of Genes that Regulate DAMD17-01-1-0145 DNA-damage-induced Cell Death 6. A UTHOR(S) Zhou Songyang, Ph.D. 7. PERFORMING ORGANIZA...mechanisms of genes that regulate DNA damage induced cell death are much less well studied. We have proposed to establish a genetic system to screen for

  5. Sex and litter effects on anxiety and DNA methylation levels of stress and neurotrophin genes in adolescent rats.

    PubMed

    Kosten, Therese A; Huang, Wen; Nielsen, David A

    2014-04-01

    Maternal care variations associate with DNA methylation of the glucocorticoid receptor gene, Nr3c1, in hippocampus at a nerve-growth factor-inducible protein 1 binding site. Epigenetic regulation of brain-derived neurotrophin factor is affected by early stress. These systems contribute to anxiety and fear. Early stress has sex-dependent effects perhaps reflecting sex differences in maternal care. Altering litter gender composition affects maternal behavior and DNA methylation levels of another gene in hippocampus and nucleus accumbens (NAc). We now test if DNA methylation levels of Nr3c1, Egr1, and Bdnf differ by litter composition or sex. Rats from mixed- or single-sex litters were tested for anxiety and fear on postnatal day 35. Brain tissues were collected and analyzed using direct sequencing methods. Females showed hypermethylation of Nr3c1 of hippocampal DNA and litter composition modified sex effects on methylation of Egr1 in NAc. Few differences were seen for Bdnf. LGC modified some sex differences in behavior.

  6. The quality of sperm preparation medium affects the motility, viability, and DNA integrity of human spermatozoa

    PubMed Central

    Anbari, Fatemeh; Halvaei, Iman; Nabi, Ali; Ghazali, Shahin; Khalili, Mohammad Ali; Johansson, Lars

    2016-01-01

    AIM: The goal was to compare the effects of three different sperm preparation media on sperm motility, viability, and DNA integrity of semen samples from normozoospermic men. METHODS: A total of 15 normozoospermic males were included in the study. The semen analysis (SA) was performed in accordance with the WHO guidelines (2010). After SA, each sample was divided into three aliquots, and swim-up was performed with three different sperm preparation media (Sperm Preparation Media, Origio, Denmark; Ham's F10, Biochrome, Berlin, Germany; and VitaSperm™, Innovative Biotech, Iran). Sperm motility, viability, and DNA fragmentation were evaluated at 0, 1, 2, and 24 h after swim-up. RESULTS: There were no significant differences, at any time intervals, in the total sperm motility between the different sperm preparation media. However, the rate of progressive motility was significantly higher in spermatozoa prepared using the media from Origio in comparison with VitaSperm™ (P = 0.03), whereas no significant difference was found against Ham's F10 medium. No significant differences in sperm viability were seen between the media products. However, 1 h after swim-up, the extent of sperm DNA fragmentation was lower in the medium from Origio versus VitaSperm™ (P = 0.02). CONCLUSIONS: The data showed that the quality of medium for preparation of semen samples from normozoospermic men significantly affects the performance of spermatozoa in assisted conception programs. PMID:28216914

  7. Evolutionary Transition of Promoter and Gene Body DNA Methylation across Invertebrate-Vertebrate Boundary.

    PubMed

    Keller, Thomas E; Han, Priscilla; Yi, Soojin V

    2016-04-01

    Genomes of invertebrates and vertebrates exhibit highly divergent patterns of DNA methylation. Invertebrate genomes tend to be sparsely methylated, and DNA methylation is mostly targeted to a subset of transcription units (gene bodies). In a drastic contrast, vertebrate genomes are generally globally and heavily methylated, punctuated by the limited local hypo-methylation of putative regulatory regions such as promoters. These genomic differences also translate into functional differences in DNA methylation and gene regulation. Although promoter DNA methylation is an important regulatory component of vertebrate gene expression, its role in invertebrate gene regulation has been little explored. Instead, gene body DNA methylation is associated with expression of invertebrate genes. However, the evolutionary steps leading to the differentiation of invertebrate and vertebrate genomic DNA methylation remain unresolved. Here we analyzed experimentally determined DNA methylation maps of several species across the invertebrate-vertebrate boundary, to elucidate how vertebrate gene methylation has evolved. We show that, in contrast to the prevailing idea, a substantial number of promoters in an invertebrate basal chordate Ciona intestinalis are methylated. Moreover, gene expression data indicate significant, epigenomic context-dependent associations between promoter methylation and expression in C. intestinalis. However, there is no evidence that promoter methylation in invertebrate chordate has been evolutionarily maintained across the invertebrate-vertebrate boundary. Rather, body-methylated invertebrate genes preferentially obtain hypo-methylated promoters among vertebrates. Conversely, promoter methylation is preferentially found in lineage- and tissue-specific vertebrate genes. These results provide important insights into the evolutionary origin of epigenetic regulation of vertebrate gene expression.

  8. Apparent Polyploidization after Gamma Irradiation: Pitfalls in the Use of Quantitative Polymerase Chain Reaction (qPCR) for the Estimation of Mitochondrial and Nuclear DNA Gene Copy Numbers

    PubMed Central

    Kam, Winnie W. Y.; Lake, Vanessa; Banos, Connie; Davies, Justin; Banati, Richard

    2013-01-01

    Quantitative polymerase chain reaction (qPCR) has been widely used to quantify changes in gene copy numbers after radiation exposure. Here, we show that gamma irradiation ranging from 10 to 100 Gy of cells and cell-free DNA samples significantly affects the measured qPCR yield, due to radiation-induced fragmentation of the DNA template and, therefore, introduces errors into the estimation of gene copy numbers. The radiation-induced DNA fragmentation and, thus, measured qPCR yield varies with temperature not only in living cells, but also in isolated DNA irradiated under cell-free conditions. In summary, the variability in measured qPCR yield from irradiated samples introduces a significant error into the estimation of both mitochondrial and nuclear gene copy numbers and may give spurious evidence for polyploidization. PMID:23722662

  9. Expression analysis of cytosolic DNA-sensing pathway genes in the intestinal mucosal layer of necrotic enteritis-induced chicken.

    PubMed

    Rengaraj, Deivendran; Truong, Anh Duc; Lee, Sung-Hyen; Lillehoj, Hyun S; Hong, Yeong Ho

    2016-02-01

    Necrotic enteritis (NE) is a serious problem to the poultry farms, which report NE outbreaks more than once per year, as a result of the inappropriate use of antibiotics in the feed. The NE affected bird die rapidly as a result of various pathophysiological complications in the intestine and immune system. Also, several studies have reported that the genes exclusively related to intestine and immune functions are significantly altered in response to NE. In this study, NE was induced in two genetically disparate chicken lines that are resistant (line 6.3) and sensitive (line 7.2) to avian leukosis and Marek's disease. The intestinal mucosal layer was collected from NE-induced and control chickens, and subjected to RNA-sequencing analysis. The involvement of differentially expressed genes in the intestinal mucosal layer of line 6.3 and 7.2 with the immune system-related pathways was investigated. Among the identified immune system-related pathways, a candidate pathway known as chicken cytosolic DNA-sensing pathway (CDS pathway) was selected for further investigation. RNA-sequencing and pathway analysis identified a total of 21 genes that were involved in CDS pathway and differentially expressed in the intestinal mucosal layer of lines 6.3 and 7.2. The expression of CDS pathway genes was further confirmed by real-time qPCR. In the results, a majority of the CDS pathway genes were significantly altered in the NE-induced intestinal mucosal layer from lines 6.3 and 7.2. In conclusion, our study indicate that NE seriously affects several genes involved in innate immune defense and foreign DNA sensing mechanisms in the chicken intestinal mucosal layer. Identifying the immune genes affected by NE could be an important evidence for the protective immune response to NE-causative pathogens.

  10. Retrieval of glycoside hydrolase family 9 cellulase genes from environmental DNA by metagenomic gene specific multi-primer PCR.

    PubMed

    Xiong, Xiaolong; Yin, Xiaopu; Pei, Xiaolin; Jin, Peng; Zhang, Ao; Li, Yan; Gong, Weibo; Wang, Qiuyan

    2012-05-01

    A new method, termed metagenomic gene specific multi-primer PCR (MGSM-PCR), is presented that uses multiple gene specific primers derived from an isolated gene from a constructed metagenomic library rather than degenerate primers designed based on a known enzyme family. The utility of MGSM-PCR was shown by applying it to search for homologues of the glycoside hydrolase family 9 cellulase in metagenomic DNA. The success of the multiplex PCR was verified by visualizing products on an agarose gel following gel electrophoresis. A total of 127 homologous genes were amplified with combinatorial multi-primer reactions from 34 soil DNA samples. Multiple alignments revealed extensive sequence diversity among these captured sequences with sequence identity varying from 26 to 99.7%. These results indicated that significantly diverse homologous genes were indeed readily accessible when using multiple metagenomic gene specific primers.

  11. The physics of protein-DNA interaction networks in the control of gene expression

    NASA Astrophysics Data System (ADS)

    Saiz, Leonor

    2012-05-01

    Protein-DNA interaction networks play a central role in many fundamental cellular processes. In gene regulation, physical interactions and reactions among the molecular components together with the physical properties of DNA control how genes are turned on and off. A key player in all these processes is the inherent flexibility of DNA, which provides an avenue for long-range interactions between distal DNA elements through DNA looping. Such versatility enables multiple interactions and results in additional complexity that is remarkably difficult to address with traditional approaches. This topical review considers recent advances in statistical physics methods to study the assembly of protein-DNA complexes with loops, their effects in the control of gene expression, and their explicit application to the prototypical lac operon genetic system of the E. coli bacterium. In the last decade, it has been shown that the underlying physical properties of DNA looping can actively control transcriptional noise, cell-to-cell variability, and other properties of gene regulation, including the balance between robustness and sensitivity of the induction process. These physical properties are largely dependent on the free energy of DNA looping, which accounts for DNA bending and twisting effects. These new physical methods have also been used in reverse to uncover the actual in vivo free energy of looping double-stranded DNA in living cells, which was not possible with existing experimental techniques. The results obtained for DNA looping by the lac repressor inside the E. coli bacterium showed a more malleable DNA than expected as a result of the interplay of the simultaneous presence of two distinct conformations of looped DNA.

  12. Features of dnaK operon genes of the obligate thermophile Bacillus thermoglucosidasius KP1006.

    PubMed

    Watanabe, K; Iwashiro, T; Suzuki, Y

    2000-04-01

    The dnaK gene was cloned from the obligate thermophile Bacillus thermoglucosidasius KP1006, together with the grpE and dnaJ genes in the same operon. The dnaK, grpE and dnaJ genes showed high identity with those of other bacterial strains, particularly with those of Bacillus stearothermophilus NUB36, despite an extremely low homology for the corresponding total genomic DNA. There were significant differences in the proline content of the DnaK operon proteins which is closely correlated with the thermostability of enzyme proteins. The proline content was higher in the GrpE, DnaK and DnaJ proteins of the thermophilic as opposed to the mesophilic strains. The overexpression of the B. thermoglucosidasius DnaK protein in Escherichia coli MV1184 results in extreme filamentation without inhibition on cell growth. The B. thermoglucosidasius DnaK protein seemed to exclusively disturb septation in E. coli cells which suggests that it interacts with key protein(s) involved in cell septation.

  13. Minicircle DNA Provides Enhanced and Prolonged Transgene Expression Following Airway Gene Transfer

    PubMed Central

    Munye, Mustafa M.; Tagalakis, Aristides D.; Barnes, Josephine L.; Brown, Rachel E.; McAnulty, Robin J.; Howe, Steven J.; Hart, Stephen L.

    2016-01-01

    Gene therapy for cystic fibrosis using non-viral, plasmid-based formulations has been the subject of intensive research for over two decades but a clinically viable product has yet to materialise in large part due to inefficient transgene expression. Minicircle DNA give enhanced and more persistent transgene expression compared to plasmid DNA in a number of organ systems but has not been assessed in the lung. In this study we compared minicircle DNA with plasmid DNA in transfections of airway epithelial cells. In vitro, luciferase gene expression from minicircles was 5–10-fold higher than with plasmid DNA. In eGFP transfections in vitro both the mean fluorescence intensity and percentage of cells transfected was 2–4-fold higher with minicircle DNA. Administration of equimolar amounts of DNA to mouse lungs resulted in a reduced inflammatory response and more persistent transgene expression, with luciferase activity persisting for 2 weeks from minicircle DNA compared to plasmid formulations. Transfection of equal mass amounts of DNA in mouse lungs resulted in a 6-fold increase in transgene expression in addition to more persistent transgene expression. Our findings have clear implications for gene therapy of airway disorders where plasmid DNA transfections have so far proven inefficient in clinical trials. PMID:26975732

  14. DNA capture reveals transoceanic gene flow in endangered river sharks.

    PubMed

    Li, Chenhong; Corrigan, Shannon; Yang, Lei; Straube, Nicolas; Harris, Mark; Hofreiter, Michael; White, William T; Naylor, Gavin J P

    2015-10-27

    For over a hundred years, the "river sharks" of the genus Glyphis were only known from the type specimens of species that had been collected in the 19th century. They were widely considered extinct until populations of Glyphis-like sharks were rediscovered in remote regions of Borneo and Northern Australia at the end of the 20th century. However, the genetic affinities between the newly discovered Glyphis-like populations and the poorly preserved, original museum-type specimens have never been established. Here, we present the first (to our knowledge) fully resolved, complete phylogeny of Glyphis that includes both archival-type specimens and modern material. We used a sensitive DNA hybridization capture method to obtain complete mitochondrial genomes from all of our samples and show that three of the five described river shark species are probably conspecific and widely distributed in Southeast Asia. Furthermore we show that there has been recent gene flow between locations that are separated by large oceanic expanses. Our data strongly suggest marine dispersal in these species, overturning the widely held notion that river sharks are restricted to freshwater. It seems that species in the genus Glyphis are euryhaline with an ecology similar to the bull shark, in which adult individuals live in the ocean while the young grow up in river habitats with reduced predation pressure. Finally, we discovered a previously unidentified species within the genus Glyphis that is deeply divergent from all other lineages, underscoring the current lack of knowledge about the biodiversity and ecology of these mysterious sharks.

  15. DNA capture reveals transoceanic gene flow in endangered river sharks

    PubMed Central

    Li, Chenhong; Corrigan, Shannon; Yang, Lei; Straube, Nicolas; Harris, Mark; Hofreiter, Michael; White, William T.; Naylor, Gavin J. P.

    2015-01-01

    For over a hundred years, the “river sharks” of the genus Glyphis were only known from the type specimens of species that had been collected in the 19th century. They were widely considered extinct until populations of Glyphis-like sharks were rediscovered in remote regions of Borneo and Northern Australia at the end of the 20th century. However, the genetic affinities between the newly discovered Glyphis-like populations and the poorly preserved, original museum-type specimens have never been established. Here, we present the first (to our knowledge) fully resolved, complete phylogeny of Glyphis that includes both archival-type specimens and modern material. We used a sensitive DNA hybridization capture method to obtain complete mitochondrial genomes from all of our samples and show that three of the five described river shark species are probably conspecific and widely distributed in Southeast Asia. Furthermore we show that there has been recent gene flow between locations that are separated by large oceanic expanses. Our data strongly suggest marine dispersal in these species, overturning the widely held notion that river sharks are restricted to freshwater. It seems that species in the genus Glyphis are euryhaline with an ecology similar to the bull shark, in which adult individuals live in the ocean while the young grow up in river habitats with reduced predation pressure. Finally, we discovered a previously unidentified species within the genus Glyphis that is deeply divergent from all other lineages, underscoring the current lack of knowledge about the biodiversity and ecology of these mysterious sharks. PMID:26460025

  16. Nuclear DNA content affects the productivity of conifer forests by altering hydraulic architecture

    NASA Astrophysics Data System (ADS)

    Alday, Josu; Resco de Dios, Víctor

    2014-05-01

    Predictions of future global climate rely on feedbacks between terrestrial vegetation and the global carbon cycle, but the exact mechanisms underlying this relationship are still being discussed. One of the key knowledge gaps lies on the scaling of cellular processes to the ecosystem level. Here we examine whether an under-explored plant trait, inter-specific variation in the bulk amount of DNA in unreplicated somatic cells (2C DNA content), can explain inter-specific variation in the maximum productivity of conifer forests. We expected 2C DNA content to be negatively related to conifer productivity because: 1) it is positively correlated with cell volume (which, in turn, potentially affects structural features such as leaf mass area, a strong predictor of photosynthetic capacity); 2) it is positively correlated with stomatal size (with larger stomata leading to lower overall stomatal conductance and, by extension, lower CO2 uptake); and 3) larger genome sizes may reduce P availability in RNA (which has been hypothesized to slow growth). We present the results of regression and independent contrasts in different monospecific forests encompassing a 52º latitudinal gradient, each being dominated by 1 of 35 different conifer species. Contrary to expectations, we observed a positive correlation between genome size and maximum Gross Primary Productivity (R2 = 0.47) and also between genome size maximum tree height (R2 = 0.27). This correlation was apparently driven by the effects of genome size on stem hydraulics, since 2C DNA was positively correlated with wood density (R2 = 0.40) and also with resistance to cavitation (P50, R2 = 0.28). That is, increased genome sizes have a positive effect on the productivity of conifer forests by affecting the vascular tissues to increase their capacity for water transport. Our results shed a new light on the evolution of the vascular system of conifer forests and how they affect ecosystem productivity, and indicate the potential to

  17. Association, haplotype, and gene-gene interactions of the HPA axis genes with suicidal behaviour in affective disorders.

    PubMed

    Leszczyńska-Rodziewicz, Anna; Szczepankiewicz, Aleksandra; Pawlak, Joanna; Dmitrzak-Weglarz, Monika; Hauser, Joanna

    2013-01-01

    Family twin and adoption studies have noted the heritability of specific biological factors that influence suicidal behaviour. Exposure to stress is one of the factors that strongly contribute to suicide attempts. The biological response to stress involves the hypothalamic-pituitary-adrenal axis (HPA). Therefore, we found it interesting to study polymorphisms of genes involved in the HPA axis (CRHR1, NR3C1, and AVPBR1). The study was performed on 597 patients, 225 of whom had a history of suicide attempts. We did not observe any significant differences in the studied polymorphisms between the group of patients with a history of suicide attempts and the control subjects. Our haplotype analysis of the AVPR1b gene revealed an association between the GCA haplotype and suicide attempts; however, this association was not significant after correcting for multiple testing. We did not observe any other association in haplotype and MDR analysis. We report here a comprehensive analysis of the HPA axis genes and a lack of association for genetic variations regarding the risk of suicide attempts in affective disorder patients. Nonetheless, the inconsistencies with the previously published results indicate the importance of the further investigation of these polymorphisms with respect to the risk of suicide attempts.

  18. Optimization of RNA isolation from Brittle Leaf Disease affected date palm leaves and construction of a subtractive cDNA library.

    PubMed

    Saïdi, Mohammed Najib; Gargouri-Bouzid, Radhia; Rayanni, Mariem; Drira, Noureddine

    2009-01-01

    A simple and efficient method was described here for the isolation of high-quality RNA from date palm leaves affected with Brittle Leaf Disease (BLD) and containing high amount of phenolic compounds. The procedure was based on the use of a non-ionic detergent Nonidet-P40 (NP-40), Polyvinylpyrrolidone (PVP), and beta-mercaptoethanol in the extraction buffer in order to isolate cytoplasmic RNA and to prevent the oxidation of phenolic compounds. This method allowed the isolation of intact RNA, suitable for cDNA synthesis and library construction. Differential screening of the subtractive cDNA library from affected leaf RNA led to the identification of some BLD-induced genes.

  19. The Tip of the Tail Needle Affects the Rate of DNA Delivery by Bacteriophage P22

    PubMed Central

    Leavitt, Justin C.; Gogokhia, Lasha; Gilcrease, Eddie B.; Bhardwaj, Anshul; Cingolani, Gino; Casjens, Sherwood R.

    2013-01-01

    The P22-like bacteriophages have short tails. Their virions bind to their polysaccharide receptors through six trimeric tailspike proteins that surround the tail tip. These short tails also have a trimeric needle protein that extends beyond the tailspikes from the center of the tail tip, in a position that suggests that it should make first contact with the host’s outer membrane during the infection process. The base of the needle serves as a plug that keeps the DNA in the virion, but role of the needle during adsorption and DNA injection is not well understood. Among the P22-like phages are needle types with two completely different C-terminal distal tip domains. In the phage Sf6-type needle, unlike the other P22-type needle, the distal tip folds into a “knob” with a TNF-like fold, similar to the fiber knobs of bacteriophage PRD1 and Adenovirus. The phage HS1 knob is very similar to that of Sf6, and we report here its crystal structure which, like the Sf6 knob, contains three bound L-glutamate molecules. A chimeric P22 phage with a tail needle that contains the HS1 terminal knob efficiently infects the P22 host, Salmonella enterica, suggesting the knob does not confer host specificity. Likewise, mutations that should abrogate the binding of L-glutamate to the needle do not appear to affect virion function, but several different other genetic changes to the tip of the needle slow down potassium release from the host during infection. These findings suggest that the needle plays a role in phage P22 DNA delivery by controlling the kinetics of DNA ejection into the host. PMID:23951045

  20. Network-based characterization and prediction of human DNA repair genes and pathways

    PubMed Central

    Li, Yan-Hui; Zhang, Gai-Gai

    2017-01-01

    Network biology is a useful strategy to understand cell’s functional organization. In this study, for the first time, we successfully introduced network approaches to study properties of human DNA repair genes. Compared with non-DNA repair genes, we found distinguishing features for DNA repair genes: (i) they tend to have higher degrees; (ii) they tend to be located at global network center; (iii) they tend to interact directly with each other. Based on these features, we developed the first algorithm to predict new DNA repair genes. We tested several machine-learning models and found that support vector machine with kernel function of radial basis function (RBF) achieve the best performance, with precision = 0.74 and area under curve (AUC) = 0.96. In the end, we applied the algorithm to predict new DNA repair genes and got 32 new candidates. Literature supporting four of the predictions was found. We believe the network approaches introduced here might open a new avenue to understand DNA repair genes and pathways. The suggested algorithm and the predicted genes might be helpful for scientists in the field. PMID:28368026

  1. Identification, localization, transcription, and sequence analysis of the Choristoneura fumiferana nuclear polyhedrosis virus DNA polymerase gene.

    PubMed

    Liu, J J; Carstens, E B

    1995-06-01

    The location of the Choristoneura fumiferana baculovirus DNA polymerase gene was determined by hybridization analysis using a probe prepared from the previously identified polymerase gene from the Autographa californica multiple nuclear polyhedrosis virus. DNA sequence analysis revealed that the Choristoneura fumiferana baculovirus DNA polymerase gene consists of 2970 base pairs encoding 990 amino acids (114.2 kDa). Transcriptional analysis demonstrated that overlapping transcripts of 3.2 and 4.6 kb, first detected at 6 hr postinfection, potentially coded for the DNA polymerase gene. The major transcription starts sites, identified at 6 hr postinfection, mapped to baculovirus consensus early start sites CGTGCTCA and CAGT. The relatively low level and late initiation of the DNA polymerase gene coupled with our previous data on the temporal control of DNA replication and late gene synthesis (Liu and Carstens, 1993) suggests that the low virulence of the spruce budworm baculovirus may be related to the regulation of its gene expression at the transcriptional level.

  2. Coevolution between Nuclear-Encoded DNA Replication, Recombination, and Repair Genes and Plastid Genome Complexity.

    PubMed

    Zhang, Jin; Ruhlman, Tracey A; Sabir, Jamal S M; Blazier, John Chris; Weng, Mao-Lun; Park, Seongjun; Jansen, Robert K

    2016-02-17

    Disruption of DNA replication, recombination, and repair (DNA-RRR) systems has been hypothesized to cause highly elevated nucleotide substitution rates and genome rearrangements in the plastids of angiosperms, but this theory remains untested. To investigate nuclear-plastid genome (plastome) coevolution in Geraniaceae, four different measures of plastome complexity (rearrangements, repeats, nucleotide insertions/deletions, and substitution rates) were evaluated along with substitution rates of 12 nuclear-encoded, plastid-targeted DNA-RRR genes from 27 Geraniales species. Significant correlations were detected for nonsynonymous (dN) but not synonymous (dS) substitution rates for three DNA-RRR genes (uvrB/C, why1, and gyrA) supporting a role for these genes in accelerated plastid genome evolution in Geraniaceae. Furthermore, correlation between dN of uvrB/C and plastome complexity suggests the presence of nucleotide excision repair system in plastids. Significant correlations were also detected between plastome complexity and 13 of the 90 nuclear-encoded organelle-targeted genes investigated. Comparisons revealed significant acceleration of dN in plastid-targeted genes of Geraniales relative to Brassicales suggesting this correlation may be an artifact of elevated rates in this gene set in Geraniaceae. Correlation between dN of plastid-targeted DNA-RRR genes and plastome complexity supports the hypothesis that the aberrant patterns in angiosperm plastome evolution could be caused by dysfunction in DNA-RRR systems.

  3. Coevolution between Nuclear-Encoded DNA Replication, Recombination, and Repair Genes and Plastid Genome Complexity

    PubMed Central

    Zhang, Jin; Ruhlman, Tracey A.; Sabir, Jamal S. M.; Blazier, John Chris; Weng, Mao-Lun; Park, Seongjun; Jansen, Robert K.

    2016-01-01

    Disruption of DNA replication, recombination, and repair (DNA-RRR) systems has been hypothesized to cause highly elevated nucleotide substitution rates and genome rearrangements in the plastids of angiosperms, but this theory remains untested. To investigate nuclear–plastid genome (plastome) coevolution in Geraniaceae, four different measures of plastome complexity (rearrangements, repeats, nucleotide insertions/deletions, and substitution rates) were evaluated along with substitution rates of 12 nuclear-encoded, plastid-targeted DNA-RRR genes from 27 Geraniales species. Significant correlations were detected for nonsynonymous (dN) but not synonymous (dS) substitution rates for three DNA-RRR genes (uvrB/C, why1, and gyrA) supporting a role for these genes in accelerated plastid genome evolution in Geraniaceae. Furthermore, correlation between dN of uvrB/C and plastome complexity suggests the presence of nucleotide excision repair system in plastids. Significant correlations were also detected between plastome complexity and 13 of the 90 nuclear-encoded organelle-targeted genes investigated. Comparisons revealed significant acceleration of dN in plastid-targeted genes of Geraniales relative to Brassicales suggesting this correlation may be an artifact of elevated rates in this gene set in Geraniaceae. Correlation between dN of plastid-targeted DNA-RRR genes and plastome complexity supports the hypothesis that the aberrant patterns in angiosperm plastome evolution could be caused by dysfunction in DNA-RRR systems. PMID:26893456

  4. Agrobacterium rhizogenes rolB gene affects photosynthesis and chlorophyll content in transgenic tomato (Solanum lycopersicum L.) plants.

    PubMed

    Bettini, Priscilla P; Marvasi, Massimiliano; Fani, Fabiola; Lazzara, Luigi; Cosi, Elena; Melani, Lorenzo; Mauro, Maria Luisa

    2016-10-01

    Insertion of Agrobacterium rhizogenes rolB gene into plant genome affects plant development, hormone balance and defence. However, beside the current research, the overall transcriptional response and gene expression of rolB as a modulator in plant is unknown. Transformed rolB tomato plant (Solanum lycopersicum L.) cultivar Tondino has been used to investigate the differential expression profile. Tomato is a well-known model organism both at the genetic and molecular level, and one of the most important commercial food crops in the world. Through the construction and characterization of a cDNA subtracted library, we have investigated the differential gene expression between transgenic clones of rolB and control tomato and have evaluated genes specifically transcribed in transgenic rolB plants. Among the selected genes, five genes encoding for chlorophyll a/b binding protein, carbonic anhydrase, cytochrome b6/f complex Fe-S subunit, potassium efflux antiporter 3, and chloroplast small heat-shock protein, all involved in chloroplast function, were identified. Measurement of photosynthesis efficiency by the level of three different photosynthetic parameters (Fv/Fm, rETR, NPQ) showed rolB significant increase in non-photochemical quenching and a, b chlorophyll content. Our results point to highlight the role of rolB on plant fitness by improving photosynthesis.

  5. The role of VL gene structural determinants in the fine specificity of anti-DNA antibodies.

    PubMed

    Singh, A K; Gangemi, R M; Barrett, K J

    1994-01-01

    To investigate the structural contribution of the light chain of anti-DNA antibodies to fine specificity, the VKappa genes of two monoclonal anti-DNA antibodies, termed H241 and H102, were cloned and sequenced. H102 and H241 are independently derived from MRL-lpr/lpr mice and differ in their fine specificity: H241 binds dsDNA and normal glomeruli in vitro and deposits in the kidney in vivo, whereas H102 binds only ssDNA and does not deposit in the kidney. Both are encoded by nearly identical VH genes but different N and D regions. Our previous results have demonstrated that the VH gene for H102 and H241 encodes eight other anti-DNA antibodies that also differed in fine specificity. This suggested that the gene product encoded by the VH 102/241 gene, may have intrinsic affinity for DNA, but is unlikely to determine fine specificity or nephritogenicity. In the present study we examined whether the VKappa gene might account for the difference in nephritogenicity. The complete nucleotide and deduced amino acid sequence of VK 102 and VK241 revealed that they are very dissimilar to each other (< 60% homology). VK 241 defined a new member of the VKappa gene family and was moderately homologous to two other VK genes encoding anti-DNA antibodies and to one VK gene encoding an anti-histone antibody all from lupus strains of mice. In addition, sequence diversity in the VK CDR1 region and position 96 of the CDR3 region was observed that may be of significance in determining fine specificity. VK 102 was highly homologous to two other VKappa genes, VKs17.2 and VK C8.5, both encoding anti-DNA antibodies and members of the VK20 gene family. It was striking that all three members of the VK 20 gene family code for DNA reactivity. This suggests that certain VKappa genes may also be used to repeatedly code for anti-DNA reactivity.

  6. Relationship between DNA mismatch repair genes expression, Ku-genes expression and ploidy-related parameters in the progression of pigmented lesions of the skin.

    PubMed

    Korabiowska, Monika; Tscherny, Michael; Stachura, Jerzy; Ruschenburg, Ilka; Cordon-Cardo, Carlos; Brinck, Ulrich

    2002-01-01

    Defects of DNA repair systems in cutaneous tumours are related to DNA mismatch repair genes (MLH1, MSH2, PMS1, PMS2) and Ku70/80 genes involved in double- strand repair. In this study we investigated the statistical relationship between these systems and DNA-ploidy-related parameters in 19 naevus cell naevi, 23 lentigos maligna, 76 primary melanomas and 31 melanoma metastases, applying the correlation coefficient according to Spearman. In naevi significant correlations were found between Ku70/80 gene expression and some ploidy-related parameters. In lentigos, additionally, some significant correlations between the expression of DNA mismatch repair genes were found. Similar results were demonstrated for primary melanomas. In metastases no one significant correlation between DNA mismatch repair genes and Ku-genes was present. We postulate that DNA mismatch repair genes and Ku70/80 genes are functionally independent and that some of them are able to influence ploidy-related parameters.

  7. Identifying Intracellular pDNA Losses From a Model of Nonviral Gene Delivery.

    PubMed

    Martin, Timothy; Wysocki, Beata; Wysocki, Tadeusz; Pannier, Angela

    2015-01-23

    Nonviral gene delivery systems are a type of nano-communication system that transmit plasmid packets (i.e. pDNA packets) that are programmed at the nanoscale to biological systems at the microscopic cellular level. This engineered nano-communication system suffers large pDNA losses during transmission of the genetically encoded information, preventing its use in biotechnological and medical applications. The pDNA losses largely remain uncharacterized, and the ramifications of reducing pDNA loss from newly designed gene delivery systems remain difficult to predict. Here, the pDNA losses during primary and secondary transmission chains were identified utilizing a MATLAB model employing queuing theory simulating delivery of pEGFPLuc transgene to HeLa cells carried by Lipofectamine 2000 nonviral DNA carrier. Minimizing pDNA loss during endosomal escape of the primary transmission process results in increased number of pDNA in the nucleus with increased transfection, but with increased probability of cell death. The number of pDNA copies in the nucleus and the amount of time the pDNAs are in the nucleus directly correlates to improved transfection efficiency. During secondary transmission, pDNAs are degraded during distribution to daughter cells. Reducing pDNA losses improves transfection, but a balance in quantity of nuclear pDNA, mitosis, and toxicity must be considered in order to achieve therapeutically relevant transfection levels.

  8. Sorting through the chaff, nDNA gene trees for phylogenetic inference and hybrid identification of annual sunflowers (Helianthus sect. Helianthus).

    PubMed

    Moody, Michael L; Rieseberg, Loren H

    2012-07-01

    The annual sunflowers (Helianthus sect. Helianthus) present a formidable challenge for phylogenetic inference because of ancient hybrid speciation, recent introgression, and suspected issues with deep coalescence. Here we analyze sequence data from 11 nuclear DNA (nDNA) genes for multiple genotypes of species within the section to (1) reconstruct the phylogeny of this group, (2) explore the utility of nDNA gene trees for detecting hybrid speciation and introgression; and (3) test an empirical method of hybrid identification based on the phylogenetic congruence of nDNA gene trees from tightly linked genes. We uncovered considerable topological heterogeneity among gene trees with or without three previously identified hybrid species included in the analyses, as well as a general lack of reciprocal monophyly of species. Nonetheless, partitioned Bayesian analyses provided strong support for the reciprocal monophyly of all species except H. annuus (0.89 PP), the most widespread and abundant annual sunflower. Previous hypotheses of relationships among taxa were generally strongly supported (1.0 PP), except among taxa typically associated with H. annuus, apparently due to the paraphyly of the latter in all gene trees. While the individual nDNA gene trees provided a useful means for detecting recent hybridization, identification of ancient hybridization was problematic for all ancient hybrid species, even when linkage was considered. We discuss biological factors that affect the efficacy of phylogenetic methods for hybrid identification.

  9. Innovative approaches to the use of polyamines for DNA nanoparticle preparation for gene therapy.

    PubMed

    Vijayanathan, Veena; Agostinelli, Enzo; Thomas, Thresia; Thomas, T J

    2014-03-01

    Advances in genomic technologies, such as next generation sequencing and disease specific gene targeting through anti-sense, anti-gene, siRNA and microRNA approaches require the transport of nucleic acid drugs through the cell membrane. Membrane transport of DNA/RNA drugs is an inefficient process, and the mechanism(s) by which this process occurs is not clear. A pre-requisite for effective transport of DNA and RNA in cells is their condensation to nanoparticles of ~100 nm size. Although viral vectors are effective in gene therapy, the immune response elicited by viral proteins poses a major challenge. Multivalent cations, such as natural polyamines are excellent promoters of DNA/RNA condensation to nanoparticles. During the past 20 years, our laboratory has synthesized and tested several analogs of the natural polyamine, spermine, for their efficacy to provoke DNA condensation to nanoparticles. We determined the thermodynamics of polyamine-mediated DNA condensation, measured the structural specificity effects of polyamine analogs in facilitating the cellular uptake of oligonucleotides, and evaluated the gene silencing activity of DNA nanoparticles in breast cancer cells. Polyamine-complexed oligonucleotides showed a synergistic effect on target gene inhibition at the mRNA level compared to the use of polyamines and oligonucleotides as single agents. Ionic and structural specificity effects were evident in DNA condensation and cellular transportation effects of polyamines. In condensed DNA structures, correlation exists between the attractive and repulsive forces with structurally different polyamines and cobalt hexamine, indicating the existence of a common force in stabilizing the condensed structures. Future studies aimed at defining the mechanism(s) of DNA compaction and structural features of DNA nanoparticles might aid in the development of novel gene delivery vehicles.

  10. Genomic organization and 5{prime}-flanking DNA sequence of the murine stomatin gene (Epb72)

    SciTech Connect

    Gallagher, P.G.; Turetsky, T.; Mentzer, W.C. |

    1996-06-15

    Stomatin is a poorly understood integral membrane protein that is absent from the erythrocyte membranes of many patients with hereditary stomatocytosis. This report describes the cloning of the murine stomatin chromosomal gene, determination of its genomic structure, and characterization of the 5{prime}-flanking genomic DNA sequences. The stomatin gene is encoded by seven exons spread over {approximately}25 kb of genomic DNA. There is no concordance between the exon structure of the stomatin gene and the locations of three domains predicted on the basis of protein structure. Inspection of the 5{prime}-flanking DNA sequences reveals features of a TATA-less housekeeping gene promoter and consensus sequences for a number of potential DNA-binding proteins. 12 refs., 2 figs., 1 tab.

  11. A Bayesian Approach to Joint Modeling of Protein-DNA Binding, Gene Expression and Sequence Data

    PubMed Central

    Xie, Yang; Pan, Wei; Jeong, Kyeong S.; Xiao, Guanghua; Khodursky, Arkady B.

    2012-01-01

    The genome-wide DNA-protein binding data, DNA sequence data and gene expression data represent complementary means to deciphering global and local transcriptional regulatory circuits. Combining these different types of data can not only improve the statistical power, but also provide a more comprehensive picture of gene regulation. In this paper, we propose a novel statistical model to augment proteinDNA binding data with gene expression and DNA sequence data when available. We specify a hierarchical Bayes model and use Markov chain Monte Carlo simulations to draw inferences. Both simulation studies and an analysis of an experimental dataset show that the proposed joint modeling method can significantly improve the specificity and sensitivity of identifying target genes as compared to conventional approaches relying on a single data source. PMID:20049751

  12. SPERM RNA AMPLIFICATION FOR GENE EXPRESSION PROFILING BY DNA MICROARRAY TECHNOLOGY

    EPA Science Inventory

    Sperm RNA Amplification for Gene Expression Profiling by DNA Microarray Technology
    Hongzu Ren, Kary E. Thompson, Judith E. Schmid and David J. Dix, Reproductive Toxicology Division, NHEERL, Office of Research and Development, US Environmental Protection Agency, Research Triang...

  13. [Expression and immunity of multi-HIV B'/C subype genes in replicating DNA vaccines].

    PubMed

    Gao, Ying-ying; Deng, Yao; Qi, Xiang-rong; Zhang, Xiang-min; Meng, Xin; Wang, Hui-juan; Tan, Wen-jie; Ruan, Li

    2010-05-01

    To understand the effect of various gene structures of HIV B'/C subtype on the gene expression and immunity in DNA vaccine, replicating DNA vector pSCK2 was used to construct seven DNA vaccines carrying one or more of HIV B'/C subtype genes: gagpol, gp160 and rtn (rev, tat and nef fusion gene). Immunofluorescence staining indicated that Gag, Gp160, Rev, Tat and Nef could be expressed from the seven DNA vaccines. Stronger expression was observed with the gene in single-gene expression plasmid or with the gene located at upper-IRES in double- or multi-gene expression plasmid. ELISA test showed that Gag induced higher antibody response, but the antibody titers stimulated by Gp160, Pol, or RTN were very low. Both Gag single-gene expression plasmid and Gag-RTN double-gene expression plasmid separately inoculating induced stronger antibody response against Gag than Gag-Gp160 double-gene expression plasmid and Gagpol-Gp160-RTN multi-gene expression plasmid or combined inoculation of Gag and Gp160 single-gene expression plasmids did. ELISPOT detection showed that all the seven DNA vaccines could stimulate cellular immune response against Gag, Pol, Gp160, Tat, and Nef, respectively. Gagpol or Gp160 single-gene expression plasmid separately inoculating stimulated the strongest cellular immune response. Tat and Nef expressed in all the plasmids induced similar immune response. These results indicated that HIV B'/C subtype genes gagpol, gp160 and rtn could be efficiently expressed in the replicating DNA vaccine vector, single-gene expression plasmid had the higher gene expression level and induced stronger immune response; combined immunization of Gagpol and Gp160 had dramatically lower immunity than Gagpol or Gp160 separated immunization did. Immunity of RTN had no difference between combined and separated immunizations. Therefore, in case of immunization with DNA vaccines containing different HIV genes, it is necessary to optimize the combined immunization procedure

  14. Pancreatic Cancer Patient Survival Correlates with DNA Methylation of Pancreas Development Genes

    PubMed Central

    Thompson, Michael J.; Rubbi, Liudmilla; Dawson, David W.; Donahue, Timothy R.; Pellegrini, Matteo

    2015-01-01

    DNA methylation is an epigenetic mark associated with regulation of transcription and genome structure. These markers have been investigated in a variety of cancer settings for their utility in differentiating normal tissue from tumor tissue. Here, we examine the direct correlation between DNA methylation and patient survival. We find that changes in the DNA methylation of key pancreatic developmental genes are strongly associated with patient survival. PMID:26039411

  15. Pancreatic cancer patient survival correlates with DNA methylation of pancreas development genes.

    PubMed

    Thompson, Michael J; Rubbi, Liudmilla; Dawson, David W; Donahue, Timothy R; Pellegrini, Matteo

    2015-01-01

    DNA methylation is an epigenetic mark associated with regulation of transcription and genome structure. These markers have been investigated in a variety of cancer settings for their utility in differentiating normal tissue from tumor tissue. Here, we examine the direct correlation between DNA methylation and patient survival. We find that changes in the DNA methylation of key pancreatic developmental genes are strongly associated with patient survival.

  16. Application of an improved cDNA competition technique to identify prostate cancer-associated gene.

    PubMed

    Rinaldy, A R; Steiner, M S

    1999-11-01

    A technique to improve cDNA library screening was developed by using mixed probes derived from two closely related cDNA populations of high-metastatic MAT-LyLu and low-metastatic AT-1 Dunning R3227 rat prostate cancer sublines. The technique required the generation of a cDNA library from each subline followed by polymerase chain reaction (PCR) amplification of the cDNA insert population. The PCR products derived from the first library were radiolabeled and mixed with an excess amount of PCR products from the second library. The mixture and an excess amount of both the lambda and pBluescript DNA were used as a probe to screen the first cDNA library. This mixed probe (designated the competition probe) differentially cross-hybridized with the plaque lift of the screened first cDNA library. Weak radioactive signals indicated the cross-hybridization of cDNA sequences common to the competition probe mixture and the first cDNA library, whereas strong signals implied unhybridized unique or abundant cDNA sequences in the first cDNA library. The reproducibility of this technique was confirmed by showing that the full-length cDNA clones were associated with the phenotype of the screened first cell line. The isolated clones were characterized as rat nucleolar protein, rat mitochondrial genes coding for 16S and 12S rRNAs, and rat tRNAs specific for valine and phenyl-alanine. This result is consistent with the fact that the first cell line, MAT-LyLu, is metabolically more active than are AT-1 cells because of higher gene dosage or amplification of nucleolar and mitochondrial RNA and its associated genes. Another clone which had a strong signal represented a novel gene associated with the MAT-LyLu cancer phenotype.

  17. The Genomic Impact of DNA CpG Methylation on Gene Expression; Relationships in Prostate Cancer.

    PubMed

    Long, Mark D; Smiraglia, Dominic J; Campbell, Moray J

    2017-02-14

    The process of DNA CpG methylation has been extensively investigated for over 50 years and revealed associations between changing methylation status of CpG islands and gene expression. As a result, DNA CpG methylation is implicated in the control of gene expression in developmental and homeostasis processes, as well as being a cancer-driver mechanism. The development of genome-wide technologies and sophisticated statistical analytical approaches has ushered in an era of widespread analyses, for example in the cancer arena, of the relationships between altered DNA CpG methylation, gene expression, and tumor status. The remarkable increase in the volume of such genomic data, for example, through investigators from the Cancer Genome Atlas (TCGA), has allowed dissection of the relationships between DNA CpG methylation density and distribution, gene expression, and tumor outcome. In this manner, it is now possible to test that the genome-wide correlations are measurable between changes in DNA CpG methylation and gene expression. Perhaps surprisingly is that these associations can only be detected for hundreds, but not thousands, of genes, and the direction of the correlations are both positive and negative. This, perhaps, suggests that CpG methylation events in cancer systems can act as disease drivers but the effects are possibly more restricted than suspected. Additionally, the positive and negative correlations suggest direct and indirect events and an incomplete understanding. Within the prostate cancer TCGA cohort, we examined the relationships between expression of genes that control DNA methylation, known targets of DNA methylation and tumor status. This revealed that genes that control the synthesis of S-adenosyl-l-methionine (SAM) associate with altered expression of DNA methylation targets in a subset of aggressive tumors.

  18. DNA Microarray Analysis of Human Monocytes Early Response Genes upon Infection with Rickettsia rickettsii

    DTIC Science & Technology

    2004-11-15

    DNA Microarray Analysis of Human Monocytes Early Response Genes upon Infection with Rickettsia rickettsii Chien-Chung Chao Rickettsiae Diseases...TITLE AND SUBTITLE DNA Microarray Analysis of Human Monocytes Early Response Genes upon Infection with Rickettsia rickettsii 5a. CONTRACT NUMBER 5b...ANSI Std Z39-18 Rickettsiae • Gram negative coccobacillary bacteria • Obligate intracellular organisms • Arthropod-borne • Cause febrile diseases (mild

  19. The clinical value of aberrant epigenetic changes of DNA damage repair genes in human cancer

    PubMed Central

    Gao, Dan; Herman, James G.; Guo, Mingzhou

    2016-01-01

    The stability and integrity of the human genome are maintained by the DNA damage repair (DDR) system. Unrepaired DNA damage is a major source of potentially mutagenic lesions that drive carcinogenesis. In addition to gene mutation, DNA methylation occurs more frequently in DDR genes in human cancer. Thus, DNA methylation may play more important roles in DNA damage repair genes to drive carcinogenesis. Aberrant methylation patterns in DNA damage repair genes may serve as predictive, diagnostic, prognostic and chemosensitive markers of human cancer. MGMT methylation is a marker for poor prognosis in human glioma, while, MGMT methylation is a sensitive marker of glioma cells to alkylating agents. Aberrant epigenetic changes in DNA damage repair genes may serve as therapeutic targets. Treatment of MLH1-methylated colon cancer cell lines with the demethylating agent 5′-aza-2′-deoxycytidine induces the expression of MLH1 and sensitizes cancer cells to 5-fluorouracil. Synthetic lethality is a more exciting approach in patients with DDR defects. PARP inhibitors are the most effective anticancer reagents in BRCA-deficient cancer cells. PMID:26967246

  20. Alterations in Gene Expression and DNA Methylation during Murine and Human Lung Alveolar Septation

    PubMed Central

    Cuna, Alain; Halloran, Brian; Faye-Petersen, Ona; Kelly, David; Crossman, David K.; Cui, Xiangqin; Pandit, Kusum; Kaminski, Naftali; Bhattacharya, Soumyaroop; Ahmad, Ausaf; Mariani, Thomas J.

    2015-01-01

    DNA methylation, a major epigenetic mechanism, may regulate coordinated expression of multiple genes at specific time points during alveolar septation in lung development. The objective of this study was to identify genes regulated by methylation during normal septation in mice and during disordered septation in bronchopulmonary dysplasia. In mice, newborn lungs (preseptation) and adult lungs (postseptation) were evaluated by microarray analysis of gene expression and immunoprecipitation of methylated DNA followed by sequencing (MeDIP-Seq). In humans, microarray gene expression data were integrated with genome-wide DNA methylation data from bronchopulmonary dysplasia versus preterm and term lung. Genes with reciprocal changes in expression and methylation, suggesting regulation by DNA methylation, were identified. In mice, 95 genes with inverse correlation between expression and methylation during normal septation were identified. In addition to genes known to be important in lung development (Wnt signaling, Angpt2, Sox9, etc.) and its extracellular matrix (Tnc, Eln, etc.), genes involved with immune and antioxidant defense (Stat4, Sod3, Prdx6, etc.) were also observed. In humans, 23 genes were differentially methylated with reciprocal changes in expression in bronchopulmonary dysplasia compared with preterm or term lung. Genes of interest included those involved with detoxifying enzymes (Gstm3) and transforming growth factor-β signaling (bone morphogenetic protein 7 [Bmp7]). In terms of overlap, 20 genes and three pathways methylated during mouse lung development also demonstrated changes in methylation between preterm and term human lung. Changes in methylation correspond to altered expression of a number of genes associated with lung development, suggesting that DNA methylation of these genes may regulate normal and abnormal alveolar septation. PMID:25387348

  1. Hematopoietic gene promoters subjected to a group-combinatorial study of DNA samples: identification of a megakaryocytic selective DNA signature

    PubMed Central

    Hazony, Yehonathan; Lu, Jun; St. Hilaire, Cynthia; Ravid, Katya

    2006-01-01

    Identification of common sub-sequences for a group of functionally related DNA sequences can shed light on the role of such elements in cell-specific gene expression. In the megakaryocytic lineage, no one single unique transcription factor was described as linage specific, raising the possibility that a cluster of gene promoter sequences presents a unique signature. Here, the megakaryocytic gene promoter group, which consists of both human and mouse 5′ non-coding regions, served as a case study. A methodology for group-combinatorial search has been implemented as a customized software platform. It extracts the longest common sequences for a group of related DNA sequences and allows for single gaps of varying length, as well as double- and multiple-gap sequences. The results point to common DNA sequences in a group of genes that is selectively expressed in megakaryocytes, and which does not appear in a large group of control, random and specific sequences. This suggests a role for a combination of these sequences in cell-specific gene expression in the megakaryocytic lineage. The data also point to an intrinsic cross-species difference in the organization of 5′ non-coding sequences within the mammalian genomes. This methodology may be used for the identification of regulatory sequences in other lineages. PMID:16936310

  2. Psychological factors and DNA methylation of genes related to immune/inflammatory system markers: the VA Normative Aging Study

    PubMed Central

    Kim, Daniel; Kubzansky, Laura D; Baccarelli, Andrea; Sparrow, David; Spiro, Avron; Tarantini, Letizia; Cantone, Laura; Vokonas, Pantel; Schwartz, Joel

    2016-01-01

    psychological factors affect DNA methylation of selected genes involved in chronic immune/inflammatory processes and inflammation-related endothelial dysfunction. Such epigenetic changes may represent biological pathways that mediate the effects of psychological factors on CHD. PMID:26733571

  3. Natural selection on coding and noncoding DNA sequences is associated with virulence genes in a plant pathogenic fungus.

    PubMed

    Rech, Gabriel E; Sanz-Martín, José M; Anisimova, Maria; Sukno, Serenella A; Thon, Michael R

    2014-09-04

    Natural selection leaves imprints on DNA, offering the opportunity to identify functionally important regions of the genome. Identifying the genomic regions affected by natural selection within pathogens can aid in the pursuit of effective strategies to control diseases. In this study, we analyzed genome-wide patterns of selection acting on different classes of sequences in a worldwide sample of eight strains of the model plant-pathogenic fungus Colletotrichum graminicola. We found evidence of selective sweeps, balancing selection, and positive selection affecting both protein-coding and noncoding DNA of pathogenicity-related sequences. Genes encoding putative effector proteins and secondary metabolite biosynthetic enzymes show evidence of positive selection acting on the coding sequence, consistent with an Arms Race model of evolution. The 5' untranslated regions (UTRs) of genes coding for effector proteins and genes upregulated during infection show an excess of high-frequency polymorphisms likely the consequence of balancing selection and consistent with the Red Queen hypothesis of evolution acting on these putative regulatory sequences. Based on the findings of this work, we propose that even though adaptive substitutions on coding sequences are important for proteins that interact directly with the host, polymorphisms in the regulatory sequences may confer flexibility of gene expression in the virulence processes of this important plant pathogen.

  4. The regulatory gene areA mediating nitrogen metabolite repression in Aspergillus nidulans. Mutations affecting specificity of gene activation alter a loop residue of a putative zinc finger.

    PubMed Central

    Kudla, B; Caddick, M X; Langdon, T; Martinez-Rossi, N M; Bennett, C F; Sibley, S; Davies, R W; Arst, H N

    1990-01-01

    The regulatory gene areA mediating nitrogen metabolite repression in Aspergillus nidulans has been sequenced and its transcript mapped and orientated. A single ORF can encode a protein of 719 amino acids. A 52 amino acid region including a putative 'zinc finger' strongly resembles putative DNA binding regions of the major regulatory protein of erythroid cells. The derived protein sequence also contains a highly acidic region possibly involved in gene activation and 22 copies of the motif S(T)PXX, abundant in DNA binding proteins. Analysis of chromosomal rearrangements and transformation with deletion clones identified 342 N-terminal and 124 C-terminal residues as inessential and localized a C-terminal region required for nitrogen metabolite repressibility. A -1 frameshift eliminating the inessential 122 C-terminal amino acids is a surprising loss-of-function mutation. Extraordinary basicity of the replacement C terminus might explain its phenotype. Mutant sequencing also identified a polypeptide chain termination and several missense mutations, but most interesting are sequence changes associated with specificity mutations. A mutation elevating expression of some structural genes under areA control whilst reducing or not affecting expression of others is a leucine to valine change in the zinc finger loop. It reverts to a partly reciprocal phenotype by replacing the mutant valine by methionine. Images Fig.2 Fig.4 Fig.5 Fig. 8. Fig. 9. PMID:1970293

  5. Differentially expressed genes in Populus simonii x P. nigra in respnse to NaCl stress using cDNA-AFLP

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salinity is an important environmental factor limiting growth and productivity of plants, and affects almost every aspect of the plant physiology and biochemistry. The objective of this study was to apply cDNA-AFLP and to identify differentially expressed genes in response to NaCl stress vs. no-stre...

  6. Host protein Snapin interacts with human cytomegalovirus pUL130 and affects viral DNA replication.

    PubMed

    Wang, Guili; Ren, Gaowei; Cui, Xin; Lu, Zhitao; Ma, Yanpin; Qi, Ying; Huang, Yujing; Liu, Zhongyang; Sun, Zhengrong; Ruan, Qiang

    2016-06-01

    The interplay between the host and Human cytomegalovirus (HCMV) plays a pivotal role in the outcome of an infection. HCMV growth in endothelial and epithelial cells requires expression of viral proteins UL128, UL130, and UL131 proteins (UL128-131), of which UL130 is the largest gene and the only one that is not interrupted by introns.Mutation of the C terminus of the UL130 protein causes reduced tropism of endothelial cells (EC). However, very few host factors have been identified that interact with the UL130 protein. In this study, HCMV UL130 protein was shown to directly interact with the human protein Snapin in human embryonic kidney HEK293 cells by Yeast two-hybrid screening, in vitro glutathione S-transferase (GST) pull-down, and co-immunoprecipitation. Additionally, heterologous expression of protein UL130 revealed co-localization with Snapin in the cell membrane and cytoplasm of HEK293 cells using fluorescence confocal microscopy. Furthermore, decreasing the level of Snapin via specific small interfering RNAs decreased the number of viral DNA copies and titer inHCMV-infected U373-S cells. Taken together, these results suggest that Snapin, the pUL130 interacting protein, has a role in modulating HCMV DNA synthesis.

  7. Identification of uterine leiomyoma-specific marker genes based on DNA methylation and their clinical application

    PubMed Central

    Sato, Shun; Maekawa, Ryo; Yamagata, Yoshiaki; Tamura, Isao; Lee, Lifa; Okada, Maki; Jozaki, Kosuke; Asada, Hiromi; Tamura, Hiroshi; Sugino, Norihiro

    2016-01-01

    Differential diagnosis of uterine leiomyomas and leiomyosarcomas is needed to determine whether the uterus can be retained. Therefore, biomarkers for uterine leiomyomas, and reliable and objective diagnostic methods have been desired besides the pathological diagnosis. In the present study, we identified 12 genes specific to uterine leiomyomas based on DNA methylation. Using these marker genes specific to uterine leiomyomas, we established a hierarchical clustering system based on the DNA methylation level of the marker genes, which could completely differentiate between uterine leiomyomas and normal myometrium. Furthermore, our hierarchical clustering system completely discriminated uterine cancers and differentiated between uterine leiomyosarcomas and leiomyomas with more than 70% accuracy. In conclusion, this study identified DNA methylation-based marker genes specific to uterine leiomyomas, and our hierarchical clustering system using these marker genes was useful for differential diagnosis of uterine leiomyomas and leiomyosarcomas. PMID:27498619

  8. Immunoglobulin V gene replacement is caused by the intramolecular DNA deletion mechanism.

    PubMed Central

    Usuda, S; Takemori, T; Matsuoka, M; Shirasawa, T; Yoshida, K; Mori, A; Ishizaka, K; Sakano, H

    1992-01-01

    Circular DNA resulting from V gene replacement was studied with an A-MuLV transformed cell line containing ablts. This cell line undergoes V gene replacement at elevated temperatures in the immunoglobulin (Ig) heavy chain (H) gene. Examination of circular DNA revealed that a heptamer-related sequence (TACTGTG) within the coding region of VDJ was joined to the recombination signal sequence (RSS) of a germline VH segment. This provides direct evidence for a intramolecular DNA deletion mechanism for V gene replacement. In the pre-B cell line as well as in in vivo lymphocytes, unusual circular DNAs were found which were structurally similar to the V gene replacement circles. They represented excision products of the deletion type recombination between one complete RSS and a heptamer-like sequence in the Ig H region. PMID:1311252

  9. Transcriptional interference by RNA polymerase III affects expression of the Polr3e gene

    PubMed Central

    Yeganeh, Meghdad; Praz, Viviane; Cousin, Pascal; Hernandez, Nouria

    2017-01-01

    Overlapping gene arrangements can potentially contribute to gene expression regulation. A mammalian interspersed repeat (MIR) nested in antisense orientation within the first intron of the Polr3e gene, encoding an RNA polymerase III (Pol III) subunit, is conserved in mammals and highly occupied by Pol III. Using a fluorescence assay, CRISPR/Cas9-mediated deletion of the MIR in mouse embryonic stem cells, and chromatin immunoprecipitation assays, we show that the MIR affects Polr3e expression through transcriptional interference. Our study reveals a mechanism by which a Pol II gene can be regulated at the transcription elongation level by transcription of an embedded antisense Pol III gene. PMID:28289142

  10. Transcriptional interference by RNA polymerase III affects expression of the Polr3e gene.

    PubMed

    Yeganeh, Meghdad; Praz, Viviane; Cousin, Pascal; Hernandez, Nouria

    2017-02-15

    Overlapping gene arrangements can potentially contribute to gene expression regulation. A mammalian interspersed repeat (MIR) nested in antisense orientation within the first intron of the Polr3e gene, encoding an RNA polymerase III (Pol III) subunit, is conserved in mammals and highly occupied by Pol III. Using a fluorescence assay, CRISPR/Cas9-mediated deletion of the MIR in mouse embryonic stem cells, and chromatin immunoprecipitation assays, we show that the MIR affects Polr3e expression through transcriptional interference. Our study reveals a mechanism by which a Pol II gene can be regulated at the transcription elongation level by transcription of an embedded antisense Pol III gene.

  11. The birth of new genes by RNA- and DNA-mediated duplication during mammalian evolution.

    PubMed

    Jun, Jin; Ryvkin, Paul; Hemphill, Edward; Mandoiu, Ion; Nelson, Craig

    2009-10-01

    Gene duplication has long been recognized as a major force in genome evolution and has recently been recognized as an important source of individual variation. For many years, the origin of functional gene duplicates was assumed to be whole or partial genome duplication events, but recently retrotransposition has also been shown to contribute new functional protein coding genes and siRNA's. In this study, we utilize pseudogenes to recreate more complete gene family histories, and compare the rates of RNA and DNA-mediated duplication and new functional gene formation in five mammalian genomes. We find that RNA-mediated duplication occurs at a much higher and more variable rate than DNA-mediated duplication, and gives rise to many more duplicated sequences over time. We show that, while the chance of RNA-mediated duplicates becoming functional is much lower than that of their DNA-mediated counterparts, the higher rate of retrotransposition leads to nearly equal contributions of new genes by each mechanism. We also find that functional RNA-mediated duplicates are closer to neighboring genes than non-functional RNA-mediated copies, consistent with co-option of regulatory elements at the site of insertion. Overall, new genes derived from DNA and RNA-mediated duplication mechanisms are under similar levels of purifying selective pressure, but have broadly different functions. RNA-mediated duplication gives rise to a diversity of genes but is dominated by the highly expressed genes of RNA metabolic pathways. DNA-mediated duplication can copy regulatory material along with the protein coding region of the gene and often gives rise to classes of genes whose function are dependent on complex regulatory information. This mechanistic difference may in part explain why we find that mammalian protein families tend to evolve by either one mechanism or the other, but rarely by both. Supplementary Material has been provided (see online Supplementary Material at www.liebertonline.com ).

  12. Identification of a Gene Negatively Affecting Antibiotic Production and Morphological Differentiation in Streptomyces coelicolor A3(2)▿

    PubMed Central

    Li, Wencheng; Ying, Xin; Guo, Yuzheng; Yu, Zhen; Zhou, Xiufen; Deng, Zixin; Kieser, Helen; Chater, Keith F.; Tao, Meifeng

    2006-01-01

    SC7A1 is a cosmid with an insert of chromosomal DNA from Streptomyces coelicolor A3(2). Its insertion into the chromosome of S. coelicolor strains caused a duplication of a segment of ca. 40 kb and delayed actinorhodin antibiotic production and sporulation, implying that SC7A1 carried a gene negatively affecting these processes. The subcloning of SC7A1 insert DNA resulted in the identification of the open reading frame SCO5582 as nsdA, a gene negatively affecting Streptomyces differentiation. The disruption of chromosomal nsdA caused the overproduction of spores and of three of four known S. coelicolor antibiotics of quite different chemical types. In at least one case (that of actinorhodin), this was correlated with premature expression of a pathway-specific regulatory gene (actII-orf4), implying that nsdA in the wild-type strain indirectly repressed the expression of the actinorhodin biosynthesis cluster. nsdA expression was up-regulated upon aerial mycelium initiation and was strongest in the aerial mycelium. NsdA has DUF921, a Streptomyces protein domain of unknown function and a conserved SXR site. A site-directed mutation (S458A) in this site in NsdA abolished its function. Blast searching showed that NsdA homologues are present in some Streptomyces genomes. Outside of streptomycetes, NsdA-like proteins have been found in several actinomycetes. The disruption of the nsdA-like gene SCO4114 had no obvious phenotypic effects on S. coelicolor. The nsdA orthologue SAV2652 in S. avermitilis could complement the S. coelicolor nsdA-null mutant phenotype. PMID:17041057

  13. Cationic Liposome-DNA Complexes: From supramolecular assembly toward gene delivery

    NASA Astrophysics Data System (ADS)

    Evans, Heather M.; Ahmad, A.; Ewert, K.; Martin, A.; Safinya, Cr

    2003-03-01

    Cationic liposomes (CL) present a viable alternative to viral delivery of therapeutic DNA and peptides to cells. We complex CL with DNA to deliver foreign DNA (genes) to cells. Typical self-assembly of CL-DNA shown by x-ray diffraction reveals multilamellar lipids with DNA intercalated between the lipid layers, having a DNA interaxial spacing d(DNA)[1]. The length d(DNA) can be tuned at the subnanometer level (from 35 down to 5 angstroms) by control of the membrane charge density and other parameters. Three distinct DNA-DNA interaction regimes were found due to repulsive long-range electrostatic forces, repulsive short-range hydration forces, and a polymer induced attractive depletion force [2-4]. We correlate d(DNA) to transfection in mammalian cells. These compact DNA structures suggest use for high density storage of genetic information, as well as for biological templates. Supported by NSF DMR-0203755, NIH GM59288. 1. J Radler et al, Science 275, 810 (1997). 2. AJ Lin et al, Biophys. J. (in press). 3. K Ewert, A Ahmad, H Evans et al, J. Med. Chem. 45, 5023 (2002). 4. A Martin et al, (submitted).

  14. Hydrogen Peroxide-Dependent DNA Release and Transfer of Antibiotic Resistance Genes in Streptococcus gordonii ▿

    PubMed Central

    Itzek, Andreas; Zheng, Lanyan; Chen, Zhiyun; Merritt, Justin; Kreth, Jens

    2011-01-01

    Certain oral streptococci produce H2O2 under aerobic growth conditions to inhibit competing species like Streptococcus mutans. Additionally, H2O2 production causes the release of extracellular DNA (eDNA). eDNA can participate in several important functions: biofilm formation and cell-cell aggregation are supported by eDNA, while eDNA can serve as a nutrient and as an antimicrobial agent by chelating essential cations. eDNA contains DNA fragments of a size that has the potential to transfer genomic information. By using Streptococcus gordonii as a model organism for streptococcal H2O2 production, H2O2-dependent eDNA release was further investigated. Under defined growth conditions, the eDNA release process was shown to be entirely dependent on H2O2. Chromosomal DNA damage seems to be the intrinsic signal for the release, although only actively growing cells were proficient eDNA donors. Interestingly, the process of eDNA production was found to be coupled with the induction of the S. gordonii natural competence system. Consequently, the production of H2O2 triggered the transfer of antibiotic resistance genes. These results suggest that H2O2 is potentially much more than a simple toxic metabolic by-product; rather, its production could serve as an important environmental signal that facilitates species evolution by transfer of genetic information and an increase in the mutation rate. PMID:21984796

  15. DNA-intercalators Causing Rapid Re-expression of Methylated and Silenced Genes in Cancer Cells

    PubMed Central

    Hossain, M. Zulfiquer; Healey, Megan A.; Lee, Calvin; Poh, Weijie; Yerram, Sashidhar R.; Patel, Kalpesh; Azad, Nilofer S.; Herman, James G.; Kern, Scott E.

    2013-01-01

    Epigenetic inactivation of tumor-suppressor and other regulatory genes plays a critical role in carcinogenesis. Transcriptional silencing is often maintained by DNA methyl transferase (DNMT)-mediated hypermethylation of CpG islands in promoter DNA. Nucleoside analogs including azacytidine and decitabine have been used to inhibit DNMT and re-activate genes, and are clinically used. Their shortcomings include a short half-life and a slow onset of action due to required nucleotide incorporation during DNA replication, which may limit clinical utility. It might be useful to begin to identify lead compounds having novel properties, specifically distinct and fast-acting gene desilencing. We previously identified chemicals augmenting gene expression in multiple reporter systems. We now report that a subset of these compounds that includes quinacrine re-expresses epigenetically silenced genes implicated in carcinogenesis. p16, TFPI2, the cadherins E-cadherin and CDH13, and the secreted frizzle-related proteins (SFRPs) SFRP1 and SFRP5 were desilenced in cancer cell lines. These lead compounds were fast-acting: re-expression occurred by 12-24 hours. Reactivation of silenced genes was accompanied by depletion of DNMT1 at the promoters of activated genes and demethylation of DNA. A model compound, 5175328, induced changes more rapidly than decitabine. These gene desilencing agents belonged to a class of acridine compounds, intercalated into DNA, and inhibited DNMT1 activity in vitro. Although to define the mechanism would be outside the scope of this initial report, this class may re-activate silenced genes in part by intercalating into DNA and subsequently inhibiting full DNMT1 activity. Rapid mechanisms for chemical desilencing of methylated genes therefore exist. PMID:23593653

  16. Alterations of DNA repair genes in the NCI-60 cell lines and their predictive value for anticancer drug activity

    PubMed Central

    Sousa, Fabricio G.; Matuo, Renata; Tang, Sai-Wen; Rajapakse, Vinodh N.; Luna, Augustin; Sander, Chris; Varma, Sudhir; Simon, Paul H.G.; Doroshow, James H.; Reinhold, William C.; Pommier, Yves

    2015-01-01

    Loss of function of DNA repair (DNAR) genes is associated with genomic instability and cancer predisposition; it also makes cancer cells reliant on a reduced set of DNAR pathways to resist DNA-targeted therapy, which remains the core of the anticancer armamentarium. Because the landscape of DNAR defects across numerous types of cancers and its relation with drug activity have not been systematically examined, we took advantage of the unique drug and genomic databases of the US National Cancer Institute cancer cell lines (the NCI-60) to characterize 260 DNAR genes with respect to deleterious mutations and expression down-regulation; 169 genes exhibited a total of 549 function-affecting alterations, with 39 of them scoring as putative knockouts across 31 cell lines. Those mutations were compared to tumor samples from 12 studies of The Cancer Genome Atlas (TCGA) and The Cancer Cell Line Encyclopedia (CCLE). Based on this compendium of alterations, we determined which DNAR genomic alterations predicted drug response for 20,195 compounds present in the NCI-60 drug database. Among 242 DNA damaging agents, 202 showed associations with at least one DNAR genomic signature. In addition to SLFN11, the Fanconi anemia-scaffolding gene SLX4 (FANCP/BTBD12) stood out among the genes most significantly related with DNA synthesis and topoisomerase inhibitors. Depletion and complementation experiments validated the causal relationship between SLX4 defects and sensitivity to raltitrexed and cytarabine in addition to camptothecin. Therefore, we propose new rational uses for existing anticancer drugs based on a comprehensive analysis of DNAR genomic parameters. PMID:25758781

  17. A damage-responsive DNA binding protein regulates transcription of the yeast DNA repair gene PHR1.

    PubMed Central

    Sebastian, J; Sancar, G B

    1991-01-01

    The PHR1 gene of Saccharomyces cerevisiae encodes the DNA repair enzyme photolyase. Transcription of PHR1 increases in response to treatment of cells with 254-nm radiation and chemical agents that damage DNA. We report here the identification of a damage-responsive DNA binding protein, termed photolyase regulatory protein (PRP), and its cognate binding site, termed the PHR1 upstream repression sequence, that together regulate induction of PHR1 transcription after DNA damage. PRP activity, monitored by electrophoretic-mobility-shift assay, was detected in cells during normal growth but disappeared within 30 min after irradiation. Copper-phenanthroline footprinting of PRP-DNA complexes revealed that PRP protects a 39-base-pair region of PHR1 5' flanking sequence beginning 40 base pairs upstream from the coding sequence. A prominent feature of the foot-printed region is a 22-base-pair palindrome. Deletion of the PHR1 upstream repression sequence increased the basal level expression of PHR1 in vivo and decreased induction after exposure of cells to UV radiation or methyl methanesulfonate, whereas insertion of the PRP binding site between the CYC1 upstream activation sequence and "TATA" sequence reduced basal level expression and conferred damage responsiveness upon a reporter gene. Thus these observations establish that PRP is a damage-responsive repressor of PHR1 transcription. Images PMID:1763039

  18. Yeast DNA-repair gene RAD14 encodes a zinc metalloprotein with affinity for ultraviolet-damaged DNA

    SciTech Connect

    Guzder, S.N.; Sung, P.; Prakash, S. ); Prakash, L. )

    1993-06-15

    Xeroderma pigmentosum (XP) patients suffer from a high incidence of skin cancers due to a defect in excision repair of UV light-damaged DNA. Of the seven XP complementation groups, A--G, group A represents a severe and frequent form of the disease. The Saccharomyces cerevisiae RAD14 gene is a homolog of the XP-A correcting (XPAC) gene. Like XP-A cells, rad14-null mutants are defective in the incision step of excision repair of UV-damaged DNA. The authors have purified RAD14 protein to homogeneity from extract of a yeast strain genetically tailored to overexpress RAD14. As determined by atomic emission spectroscopy, RAD14 contains one zinc atom. They also show in vitro that RAD14 binds zinc but does not bind other divalent metal ions. In DNA mobility-shift assays, RAD14 binds specifically to UV-damaged DNA. Removal of cyclobutane pyrimidine dimers from damaged DNA by enzymatic photoreactivation has no effect on binding, strongly suggesting that RAD14 recognizes pyrimidine(6-4)pyrimidone photoproduct sites. These findings indicate that RAD14 functions in damage recognition during excision repair. 37 refs., 4 figs.

  19. Optimized codon usage enhances the expression and immunogenicity of DNA vaccine encoding Taenia solium oncosphere TSOL18 gene.

    PubMed

    Wang, Yuan-Yuan; Chang, Xue-Lian; Tao, Zhi-Yong; Wang, Xiao-Li; Jiao, Yu-Meng; Chen, Yong; Qi, Wen-Juan; Xia, Hui; Yang, Xiao-Di; Sun, Xin; Shen, Ji-Long; Fang, Qiang

    2015-07-01

    Cysticercosis due to larval cysts of Taenia solium, is a serious public health problem affecting humans in numerous regions worldwide. The oncospheral stage-specific TSOL18 antigen is a promising candidate for an anti-cysticercosis vaccine. It has been reported that the immunogenicity of the DNA vaccine may be enhanced through codon optimization of candidate genes. The aim of the present study was to further increase the efficacy of the cysticercosis DNA vaccine; therefore, a codon optimized recombinant expression plasmid pVAX1/TSOL18 was developed in order to enhance expression and immunogenicity of TSOL18. The gene encoding TSOL18 of Taenia solium was optimized, and the resulting opt-TSOL18 gene was amplified and expressed. The results of the present study showed that the codon-optimized TSOL18 gene was successfully expressed in CHO-K1 cells, and immunized mice vaccinated with opt-TSOL18 recombinant expression plasmids demonstrated opt‑TSOL18 expression in muscle fibers, as determined by immunohistochemistry. In addition, the codon-optimized TSOL18 gene produced a significantly greater effect compared with that of TSOL18 and active spleen cells were markedly stimulated in vaccinated mice. 3H-thymidine incorporation was significantly greater in the opt-TSOL18 group compared with that of the TSOL18, pVAX and blank control groups (P<0.01). In conclusion, the eukaryotic expression vector containing the codon-optimized TSOL18 gene was successfully constructed and was confirmed to be expressed in vivo and in vitro. The expression and immunogenicity of the codon-optimized TSOL18 gene were markedly greater compared with that of the un-optimized gene. Therefore, these results may provide the basis for an optimized TSOL18 gene vaccine against cysticercosis.

  20. Identification of nonviable genes affecting touch sensitivity in Caenorhabditis elegans using neuronally enhanced feeding RNA interference.

    PubMed

    Chen, Xiaoyin; Cuadros, Margarete Diaz; Chalfie, Martin

    2015-01-09

    Caenorhabditis elegans senses gentle touch along the body via six touch receptor neurons. Although genetic screens and microarray analyses have identified several genes needed for touch sensitivity, these methods miss pleiotropic genes that are essential for the viability, movement, or fertility of the animals. We used neuronally enhanced feeding RNA interference to screen genes that cause lethality or paralysis when mutated, and we identified 61 such genes affecting touch sensitivity, including five positive controls. We confirmed 18 genes by using available alleles, and further studied one of them, tag-170, now renamed txdc-9. txdc-9 preferentially affects anterior touch response but is needed for tubulin acetylation and microtubule formation in both the anterior and posterior touch receptor neurons. Our results indicate that neuronally enhanced feeding RNA interference screens complement traditional mutageneses by identifying additional nonviable genes needed for specific neuronal functions.

  1. Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield.

    PubMed

    Sanan-Mishra, Neeti; Pham, Xuan Hoi; Sopory, Sudhir K; Tuteja, Narendra

    2005-01-11

    Salt tolerance is an important trait that is required to overcome salinity-induced reduction in plant productivity. We have reported previously the isolation of a pea DNA helicase 45 (PDH45) that exhibits striking homology with the eukaryotic translation initiation factor eIF-4A. Here, we report that PDH45 mRNA is induced in pea seedlings in response to high salt, and its overexpression driven by a constitutive cauliflower mosaic virus-(35)S promoter in tobacco plants confers salinity tolerance, thus suggesting a previously undescribed pathway for manipulating stress tolerance in crop plants. The T(0) transgenic plants showed high levels of PDH45 protein in normal and stress conditions, as compared with WT plants. The T(0) transgenics also showed tolerance to high salinity as tested by a leaf disk senescence assay. The T(1) transgenics were able to grow to maturity and set normal viable seeds under continuous salinity stress without any reduction in plant yield in terms of seed weight. Measurement of Na(+) ions in different parts of the plant showed higher accumulation in the old leaves and negligible accumulation in seeds of T(1) transgenic lines as compared with the WT plants. The possible mechanism of salinity tolerance is discussed. Overexpression of PDH45 provides a possible example of the exploitation of DNA/RNA unwinding pathways for engineering salinity tolerance without affecting yield in crop plants.

  2. Stationary phase induction of dnaN and recF, two genes of Escherichia coli involved in DNA replication and repair.

    PubMed

    Villarroya, M; Pérez-Roger, I; Macián, F; Armengod, M E

    1998-03-16

    The beta subunit of DNA polymerase III holoenzyme, the Escherichia coli chromosomal replicase, is a sliding DNA clamp responsible for tethering the polymerase to DNA and endowing it with high processivity. The gene encoding beta, dnaN, maps between dnaA and recF, which are involved in initiation of DNA replication at oriC and resumption of DNA replication at disrupted replication forks, respectively. In exponentially growing cells, dnaN and recF are expressed predominantly from the dnaA promoters. However, we have found that stationary phase induction of the dnaN promoters drastically changes the expression pattern of the dnaA operon genes. As a striking consequence, synthesis of the beta subunit and RecF protein increases when cell metabolism is slowing down. Such an induction is dependent on the stationary phase sigma factor, RpoS, although the accumulation of this factor alone is not sufficient to activate the dnaN promoters. These promoters are located in DNA regions without static bending, and the -35 hexamer element is essential for their RpoS-dependent induction. Our results suggest that stationary phase-dependent mechanisms have evolved in order to coordinate expression of dnaN and recF independently of the dnaA regulatory region. These mechanisms might be part of a developmental programme aimed at maintaining DNA integrity under stress conditions.

  3. Stationary phase induction of dnaN and recF, two genes of Escherichia coli involved in DNA replication and repair.

    PubMed Central

    Villarroya, M; Pérez-Roger, I; Macián, F; Armengod, M E

    1998-01-01

    The beta subunit of DNA polymerase III holoenzyme, the Escherichia coli chromosomal replicase, is a sliding DNA clamp responsible for tethering the polymerase to DNA and endowing it with high processivity. The gene encoding beta, dnaN, maps between dnaA and recF, which are involved in initiation of DNA replication at oriC and resumption of DNA replication at disrupted replication forks, respectively. In exponentially growing cells, dnaN and recF are expressed predominantly from the dnaA promoters. However, we have found that stationary phase induction of the dnaN promoters drastically changes the expression pattern of the dnaA operon genes. As a striking consequence, synthesis of the beta subunit and RecF protein increases when cell metabolism is slowing down. Such an induction is dependent on the stationary phase sigma factor, RpoS, although the accumulation of this factor alone is not sufficient to activate the dnaN promoters. These promoters are located in DNA regions without static bending, and the -35 hexamer element is essential for their RpoS-dependent induction. Our results suggest that stationary phase-dependent mechanisms have evolved in order to coordinate expression of dnaN and recF independently of the dnaA regulatory region. These mechanisms might be part of a developmental programme aimed at maintaining DNA integrity under stress conditions. PMID:9501104

  4. Translation Start Sequences Affect the Efficiency of Silencing of Agrobacterium tumefaciens T-DNA Oncogenes1

    PubMed Central

    Lee, Hyewon; Humann, Jodi L.; Pitrak, Jennifer S.; Cuperus, Josh T.; Parks, T. Dawn; Whistler, Cheryl A.; Mok, Machteld C.; Ream, L. Walt

    2003-01-01

    Agrobacterium tumefaciens oncogenes cause transformed plant cells to overproduce auxin and cytokinin. Two oncogenes encode enzymes that convert tryptophan to indole-3-acetic acid (auxin): iaaM (tryptophan mono-oxygenase) and iaaH (indole-3-acetamide hydrolase). A third oncogene (ipt) encodes AMP isopentenyl transferase, which produces cytokinin (isopentenyl-AMP). Inactivation of ipt and iaaM (or iaaH) abolishes tumorigenesis. Because adequate means do not exist to control crown gall, we created resistant plants by introducing transgenes designed to elicit posttranscriptional gene silencing (PTGS) of iaaM and ipt. Transgenes that elicit silencing trigger sequence-specific destruction of the inducing RNA and messenger RNAs with related sequences. Although PTGS has proven effective against a variety of target genes, we found that a much higher percentage of transgenic lines silenced iaaM than ipt, suggesting that transgene sequences influenced the effectiveness of PTGS. Sequences required for oncogene silencing included a translation start site. A transgene encoding a translatable sense-strand RNA from the 5′ end of iaaM silenced the iaaM oncogene, but deletion of the translation start site abolished the ability of the transgene to silence iaaM. Silencing A. tumefaciens T-DNA oncogenes is a new and effective method to produce plants resistant to crown gall disease. PMID:12972655

  5. Simulated microgravity influenced the expression of DNA damage repair genes

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Sun, Yeqing; Jiawei, Liu; Wang, Ting

    2016-07-01

    Ionizing radiation and microgravity were considered to be the most important stress factors of space environmental the respective study of the biological effects of the radiation and microgravity carried out earlier, but the interaction of the effects of radiation with microgravity started later, and due to difference of the materials and methods the result of this experiment were not consistent. To further investigate the influence of microgravity on the expression of the radiation damage repair genes, the seed of Arabidopsis (Col) and its gravity-insensitive mutant (PIN2) were exposed to 0.1Gy of the dose of energetic carbon-ion beam radiation (LET = 30KeV / μm), and the germinated seed were than fixed in the 3D random positioning apparatus immediately for a 10-day simulated microgravity. By measuring the deflection angle of root tip and the changes of the expression of Ku70 and RAD51 protein, we investigated the impact of microgravity effect on radiation damage repair systems. The results shown that radiation, microgravity and microgravity with radiation could increase the angle of the root of the Col significantly, but no obvious effect on PIN2 type. The radiation could increase the expression of Ku70 significantly in both Col and PIN2, microgravity does not affect the expression, but the microgravity with radiation could decrease the expression of Ku70. This result shown that the microgravity could influence the radiation damage repair systems in molecular level. Moreover, our findings were important to understand the molecular mechanism of the impact of microgravity effect on radiation damage repair systems in vivo.

  6. DNA sequence, products, and transcriptional pattern of the genes involved in production of the DNA replication inhibitor microcin B17.

    PubMed Central

    Genilloud, O; Moreno, F; Kolter, R

    1989-01-01

    The 3.8-kilobase segment of plasmid DNA that contains the genes required for production of the DNA replication inhibitor microcin B17 was sequenced. The sequence contains four open reading frames which were shown to be translated in vivo by the construction of fusions to lacZ. The location of these open reading frames fits well with the location of the four microcin B17 production genes, mcbABCD, identified previously through genetic complementation. The products of the four genes have been identified, and the observed molecular weights of the proteins agree with those predicted from the nucleotide sequence. The transcription of these genes was studied by using fusions to lacZ and physical mapping of mRNA start sites. Three promoters were identified in this region. The major promoter for all the genes is a growth phase-regulated OmpR-dependent promoter located upstream of mcbA. A second promoter is located within mcbC and is responsible for a low-level basal expression of mcbD. A third promoter, located within mcbD, promotes transcription in the reverse direction starting within mcbD and extending through mcbC. The resulting mRNA appears to be an untranslated antisense transcript that could play a regulatory role in the expression of these genes. Images PMID:2644225

  7. The effect of acute dose charge particle radiation on expression of DNA repair genes in mice.

    PubMed

    Tariq, Muhammad Akram; Soedipe, Ayodotun; Ramesh, Govindarajan; Wu, Honglu; Zhang, Ye; Shishodia, Shishir; Gridley, Daila S; Pourmand, Nader; Jejelowo, Olufisayo

    2011-03-01

    The space radiation environment consists of trapped particle radiation, solar particle radiation, and galactic cosmic radiation (GCR), in which protons are the most abundant particle type. During missions to the moon or to Mars, the constant exposure to GCR and occasional exposure to particles emitted from solar particle events (SPE) are major health concerns for astronauts. Therefore, in order to determine health risks during space missions, an understanding of cellular responses to proton exposure is of primary importance. The expression of DNA repair genes in response to ionizing radiation (X-rays and gamma rays) has been studied, but data on DNA repair in response to protons is lacking. Using qPCR analysis, we investigated changes in gene expression induced by positively charged particles (protons) in four categories (0, 0.1, 1.0, and 2.0 Gy) in nine different DNA repair genes isolated from the testes of irradiated mice. DNA repair genes were selected on the basis of their known functions. These genes include ERCC1 (5' incision subunit, DNA strand break repair), ERCC2/NER (opening DNA around the damage, Nucleotide Excision Repair), XRCC1 (5' incision subunit, DNA strand break repair), XRCC3 (DNA break and cross-link repair), XPA (binds damaged DNA in preincision complex), XPC (damage recognition), ATA or ATM (activates checkpoint signaling upon double strand breaks), MLH1 (post-replicative DNA mismatch repair), and PARP1 (base excision repair). Our results demonstrate that ERCC1, PARP1, and XPA genes showed no change at 0.1 Gy radiation, up-regulation at 1.0 Gy radiation (1.09 fold, 7.32 fold, 0.75 fold, respectively), and a remarkable increase in gene expression at 2.0 Gy radiation (4.83 fold, 57.58 fold and 87.58 fold, respectively). Expression of other genes, including ATM and XRCC3, was unchanged at 0.1 and 1.0 Gy radiation but showed up-regulation at 2.0 Gy radiation (2.64 fold and 2.86 fold, respectively). We were unable to detect gene expression for the

  8. Do all of the neurologic diseases in patients with DNA repair gene mutations result from the accumulation of DNA damage?

    PubMed

    Brooks, P J; Cheng, Tsu-Fan; Cooper, Lori

    2008-06-01

    The classic model for neurodegeneration due to mutations in DNA repair genes holds that DNA damage accumulates in the absence of repair, resulting in the death of neurons. This model was originally put forth to explain the dramatic loss of neurons observed in patients with xeroderma pigmentosum neurologic disease, and is likely to be valid for other neurodegenerative diseases due to mutations in DNA repair genes. However, in trichiothiodystrophy (TTD), Aicardi-Goutières syndrome (AGS), and Cockayne syndrome (CS), abnormal myelin is the most prominent neuropathological feature. Myelin is synthesized by specific types of glial cells called oligodendrocytes. In this review, we focus on new studies that illustrate two disease mechanisms for myelin defects resulting from mutations in DNA repair genes, both of which are fundamentally different than the classic model described above. First, studies using the TTD mouse model indicate that TFIIH acts as a co-activator for thyroid hormone-dependent gene expression in the brain, and that a causative XPD mutation in TTD results in reduction of this co-activator function and a dysregulation of myelin-related gene expression. Second, in AGS, which is caused by mutations in either TREX1 or RNASEH2, recent evidence indicates that failure to degrade nucleic acids produced during S-phase triggers activation of the innate immune system, resulting in myelin defects and calcification of the brain. Strikingly, both myelin defects and brain calcification are both prominent features of CS neurologic disease. The similar neuropathology in CS and AGS seems unlikely to be due to the loss of a common DNA repair function, and based on the evidence in the literature, we propose that vascular abnormalities may be part of the mechanism that is common to both diseases. In summary, while the classic DNA damage accumulation model is applicable to the neuronal death due to defective DNA repair, the myelination defects and brain calcification seem to

  9. Sequence and transcription analysis of the human cytomegalovirus DNA polymerase gene

    SciTech Connect

    Kouzarides, T.; Bankier, A.T.; Satchwell, S.C.; Weston, K.; Tomlinson, P.; Barrell, B.G.

    1987-01-01

    DNA sequence analysis has revealed that the gene coding for the human cytomegalovirus (HCMV) DNA polymerase is present within the long unique region of the virus genome. Identification is based on extensive amino acid homology between the predicted HCMV open reading frame HFLF2 and the DNA polymerase of herpes simplex virus type 1. The authors present here a 5280 base-pair DNA sequence containing the HCMV pol gene, along with the analysis of transcripts encoded within this region. Since HCMV pol also shows homology to the predicted Epstein-Barr virus pol, they were able to analyze the extent of homology between the DNA polymerases of three distantly related herpes viruses, HCMV, Epstein-Barr virus, and herpes simplex virus. The comparison shows that these DNA polymerases exhibit considerable amino acid homology and highlights a number of highly conserved regions; two such regions show homology to sequences within the adenovirus type 2 DNA polymerase. The HCMV pol gene is flanked by open reading frames with homology to those of other herpes viruses; upstream, there is a reading frame homologous to the glycoprotein B gene of herpes simplex virus type I and Epstein-Barr virus, and downstream there is a reading frame homologous to BFLF2 of Epstein-Barr virus.

  10. Gene expression promoted by the SV40 DNA targeting sequence and the hypoxia-responsive element under normoxia and hypoxia.

    PubMed

    Sacramento, C B; Moraes, J Z; Denapolis, P M A; Han, S W

    2010-08-01

    The main objective of the present study was to find suitable DNA-targeting sequences (DTS) for the construction of plasmid vectors to be used to treat ischemic diseases. The well-known Simian virus 40 nuclear DTS (SV40-DTS) and hypoxia-responsive element (HRE) sequences were used to construct plasmid vectors to express the human vascular endothelial growth factor gene (hVEGF). The rate of plasmid nuclear transport and consequent gene expression under normoxia (20% O2) and hypoxia (less than 5% O2) were determined. Plasmids containing the SV40-DTS or HRE sequences were constructed and used to transfect the A293T cell line (a human embryonic kidney cell line) in vitro and mouse skeletal muscle cells in vivo. Plasmid transport to the nucleus was monitored by real-time PCR, and the expression level of the hVEGF gene was measured by ELISA. The in vitro nuclear transport efficiency of the SV40-DTS plasmid was about 50% lower under hypoxia, while the HRE plasmid was about 50% higher under hypoxia. Quantitation of reporter gene expression in vitro and in vivo, under hypoxia and normoxia, confirmed that the SV40-DTS plasmid functioned better under normoxia, while the HRE plasmid was superior under hypoxia. These results indicate that the efficiency of gene expression by plasmids containing DNA binding sequences is affected by the concentration of oxygen in the medium.

  11. Satellite DNA Modulates Gene Expression in the Beetle Tribolium castaneum after Heat Stress.

    PubMed

    Feliciello, Isidoro; Akrap, Ivana; Ugarković, Đurđica

    2015-08-01

    Non-coding repetitive DNAs have been proposed to perform a gene regulatory role, however for tandemly repeated satellite DNA no such role was defined until now. Here we provide the first evidence for a role of satellite DNA in the modulation of gene expression under specific environmental conditions. The major satellite DNA TCAST1 in the beetle Tribolium castaneum is preferentially located within pericentromeric heterochromatin but is also dispersed as single repeats or short arrays in the vicinity of protein-coding genes within euchromatin. Our results show enhanced suppression of activity of TCAST1-associated genes and slower recovery of their activity after long-term heat stress relative to the same genes without associated TCAST1 satellite DNA elements. The level of gene suppression is not influenced by the distance of TCAST1 elements from the associated genes up to 40 kb from the genes' transcription start sites, but it does depend on the copy number of TCAST1 repeats within an element, being stronger for the higher number of copies. The enhanced gene suppression correlates with the enrichment of the repressive histone marks H3K9me2/3 at dispersed TCAST1 elements and their flanking regions as well as with increased expression of TCAST1 satellite DNA. The results reveal transient, RNAi based heterochromatin formation at dispersed TCAST1 repeats and their proximal regions as a mechanism responsible for enhanced silencing of TCAST1-associated genes. Differences in the pattern of distribution of TCAST1 elements contribute to gene expression diversity among T. castaneum strains after long-term heat stress and might have an impact on adaptation to different environmental conditions.

  12. Screening insertion libraries for mutations in many genes simultaneously using DNA microarrays

    PubMed Central

    Mahalingam, Ramamurthy; Fedoroff, Nina

    2001-01-01

    We describe a method to screen pools of DNA from multiple transposon lines for insertions in many genes simultaneously. We use thermal asymmetric interlaced–PCR, a hemispecific PCR amplification protocol that combines nested, insertion-specific primers with degenerate primers, to amplify DNA flanking the transposons. In reconstruction experiments with previously characterized Arabidopsis lines carrying insertions of the maize Dissociation (Ds) transposon, we show that fluorescently labeled, transposon-flanking fragments overlapping ORFs hybridize to cognate expressed sequence tags (ESTs) on a DNA microarray. We further show that insertions can be detected in DNA pools from as many as 100 plants representing different transposon lines and that all of the tested, transposon-disrupted genes whose flanking fragments can be amplified individually also can be detected when amplified from the pool. The ability of a transposon-flanking fragment to hybridize declines rapidly with decreasing homology to the spotted DNA fragment, so that only ESTs with >90% homology to the transposon-disrupted gene exhibit significant cross-hybridization. Because thermal asymmetric interlaced–PCR fragments tend to be short, use of the present method favors recovery of insertions in and near genes. We apply the technique to screening pools of new Ds lines using cDNA microarrays containing ESTs for ≈1,000 stress-induced and -repressed Arabidopsis genes. PMID:11416215

  13. DNA-Binding Kinetics Determines the Mechanism of Noise-Induced Switching in Gene Networks.

    PubMed

    Tse, Margaret J; Chu, Brian K; Roy, Mahua; Read, Elizabeth L

    2015-10-20

    Gene regulatory networks are multistable dynamical systems in which attractor states represent cell phenotypes. Spontaneous, noise-induced transitions between these states are thought to underlie critical cellular processes, including cell developmental fate decisions, phenotypic plasticity in fluctuating environments, and carcinogenesis. As such, there is increasing interest in the development of theoretical and computational approaches that can shed light on the dynamics of these stochastic state transitions in multistable gene networks. We applied a numerical rare-event sampling algorithm to study transition paths of spontaneous noise-induced switching for a ubiquitous gene regulatory network motif, the bistable toggle switch, in which two mutually repressive genes compete for dominant expression. We find that the method can efficiently uncover detailed switching mechanisms that involve fluctuations both in occupancies of DNA regulatory sites and copy numbers of protein products. In addition, we show that the rate parameters governing binding and unbinding of regulatory proteins to DNA strongly influence the switching mechanism. In a regime of slow DNA-binding/unbinding kinetics, spontaneous switching occurs relatively frequently and is driven primarily by fluctuations in DNA-site occupancies. In contrast, in a regime of fast DNA-binding/unbinding kinetics, switching occurs rarely and is driven by fluctuations in levels of expressed protein. Our results demonstrate how spontaneous cell phenotype transitions involve collective behavior of both regulatory proteins and DNA. Computational approaches capable of simulating dynamics over many system variables are thus well suited to exploring dynamic mechanisms in gene networks.

  14. Plasmids containing the gene for DNA polymerase I from Streptococcus pneumoniae

    DOEpatents

    Lacks, S.A.; Martinez, S.; Lopez, P.; Espinosa, M.

    1987-08-28

    A method is disclosed for cloning the gene which encodes a DNA polymerase-exonuclease of /und Streptococcus/ /und pneumoniae/. Plasmid pSM22, the vector containing the pneumococcal polA gene, facilitates the expression of 50-fold greater amounts of the PolI enzyme. 1 fig., 1 tab.

  15. Plasmids containing the gene for DNA polymerase I from Streptococcus pneumoniae

    DOEpatents

    Lacks, S.A.; Martinez, S.; Lopez, P.; Espinosa, M.

    1991-03-26

    A method is disclosed for cloning the gene which encodes a DNA polymerase-exonuclease of Streptococcus pneumoniae. Plasmid pSM22, the vector containing the pneumocccal polA gene, facilitates the expression of 50-fold greater amounts of the PolI enzyme. 1 figure.

  16. Plasimids containing the gene for DNA polymerase I from Streptococcus pneumoniae

    DOEpatents

    Lacks, Sanford A.; Martinez, Susana; Lopez, Paloma; Espinosa, Manuel

    1991-01-01

    A method is disclosed for cloning the gene which encodes a DNA polymerase-exonuclease of Streptococcus pneumoniae. Plasmid pSM22, the vector containing the pneumocccal polA gene, facilitates the expression of 50-fold greater amounts of the PolI enzyme.

  17. Stress and corticosteroids regulate rat hippocampal mitochondrial DNA gene expression via the glucocorticoid receptor

    PubMed Central

    Hunter, Richard G.; Seligsohn, Ma’ayan; Rubin, Todd G.; Griffiths, Brian B.; Ozdemir, Yildirim; Pfaff, Donald W.; Datson, Nicole A.; McEwen, Bruce S.

    2016-01-01

    Glucocorticoids (GCs) are involved in stress and circadian regulation, and produce many actions via the GC receptor (GR), which is classically understood to function as a nuclear transcription factor. However, the nuclear genome is not the only genome in eukaryotic cells. The mitochondria also contain a small circular genome, the mitochondrial DNA (mtDNA), that encodes 13 polypeptides. Recent work has established that, in the brain and other systems, the GR is translocated from the cytosol to the mitochondria and that stress and corticosteroids have a direct influence on mtDNA transcription and mitochondrial physiology. To determine if stress affects mitochondrially transcribed mRNA (mtRNA) expression, we exposed adult male rats to both acute and chronic immobilization stress and examined mtRNA expression using quantitative RT-PCR. We found that acute stress had a main effect on mtRNA expression and that expression of NADH dehydrogenase 1, 3, and 6 (ND-1, ND-3, ND-6) and ATP synthase 6 (ATP-6) genes was significantly down-regulated. Chronic stress induced a significant up-regulation of ND-6 expression. Adrenalectomy abolished acute stress-induced mtRNA regulation, demonstrating GC dependence. ChIP sequencing of GR showed that corticosterone treatment induced a dose-dependent association of the GR with the control region of the mitochondrial genome. These findings demonstrate GR and stress-dependent transcriptional regulation of the mitochondrial genome in vivo and are consistent with previous work linking stress and GCs with changes in the function of brain mitochondria. PMID:27457949

  18. The co-occurrence of mtDNA mutations on different oxidative phosphorylation subunits, not detected by haplogroup analysis, affects human longevity and is population specific.

    PubMed

    Raule, Nicola; Sevini, Federica; Li, Shengting; Barbieri, Annalaura; Tallaro, Federica; Lomartire, Laura; Vianello, Dario; Montesanto, Alberto; Moilanen, Jukka S; Bezrukov, Vladyslav; Blanché, Hélène; Hervonen, Antti; Christensen, Kaare; Deiana, Luca; Gonos, Efstathios S; Kirkwood, Tom B L; Kristensen, Peter; Leon, Alberta; Pelicci, Pier Giuseppe; Poulain, Michel; Rea, Irene M; Remacle, Josè; Robine, Jean Marie; Schreiber, Stefan; Sikora, Ewa; Eline Slagboom, Peternella; Spazzafumo, Liana; Antonietta Stazi, Maria; Toussaint, Olivier; Vaupel, James W; Rose, Giuseppina; Majamaa, Kari; Perola, Markus; Johnson, Thomas E; Bolund, Lars; Yang, Huanming; Passarino, Giuseppe; Franceschi, Claudio

    2014-06-01

    To re-examine the correlation between mtDNA variability and longevity, we examined mtDNAs from samples obtained from over 2200 ultranonagenarians (and an equal number of controls) collected within the framework of the GEHA EU project. The samples were categorized by high-resolution classification, while about 1300 mtDNA molecules (650 ultranonagenarians and an equal number of controls) were completely sequenced. Sequences, unlike standard haplogroup analysis, made possible to evaluate for the first time the cumulative effects of specific, concomitant mtDNA mutations, including those that per se have a low, or very low, impact. In particular, the analysis of the mutations occurring in different OXPHOS complex showed a complex scenario with a different mutation burden in 90+ subjects with respect to controls. These findings suggested that mutations in subunits of the OXPHOS complex I had a beneficial effect on longevity, while the simultaneous presence of mutations in complex I and III (which also occurs in J subhaplogroups involved in LHON) and in complex I and V seemed to be detrimental, likely explaining previous contradictory results. On the whole, our study, which goes beyond haplogroup analysis, suggests that mitochondrial DNA variation does affect human longevity, but its effect is heavily influenced by the interaction between mutations concomitantly occurring on different mtDNA genes.

  19. Development of an ultrasound-responsive and mannose-modified gene carrier for DNA vaccine therapy.

    PubMed

    Un, Keita; Kawakami, Shigeru; Suzuki, Ryo; Maruyama, Kazuo; Yamashita, Fumiyoshi; Hashida, Mitsuru

    2010-10-01

    Development of a gene delivery system to transfer the gene of interest selectively and efficiently into targeted cells is essential for achievement of sufficient therapeutic effects by gene therapy. Here, we succeeded in developing the gene transfection method using ultrasound (US)-responsive and mannose-modified gene carriers, named Man-PEG(2000) bubble lipoplexes. Compared with the conventional lipofection method using mannose-modified carriers, this transfection method using Man-PEG(2000) bubble lipoplexes and US exposure enabled approximately 500-800-fold higher gene expressions in the antigen presenting cells (APCs) selectively in vivo. This enhanced gene expression was contributed by the improvement of delivering efficiency of nucleic acids to the targeted organs, and by the increase of introducing efficiency of nucleic acids into the cytoplasm followed by US exposure. Moreover, high anti-tumor effects were demonstrated by applying this method to DNA vaccine therapy using ovalbumin (OVA)-expressing plasmid DNA (pDNA). This US-responsive and cell-specific gene delivery system can be widely applied to medical treatments such as vaccine therapy and anti-inflammation therapy, which its targeted cells are APCs, and our findings may help in establishing innovative methods for in-vivo gene delivery to overcome the poor introducing efficiency of carriers into cytoplasm which the major obstacle associated with gene delivery by non-viral carriers.

  20. Versatile types of polysaccharide-based supramolecular polycation/pDNA nanoplexes for gene delivery

    NASA Astrophysics Data System (ADS)

    Hu, Yang; Zhao, Nana; Yu, Bingran; Liu, Fusheng; Xu, Fu-Jian

    2014-06-01

    Different polysaccharide-based supramolecular polycations were readily synthesized by assembling multiple β-cyclodextrin-cored star polycations with an adamantane-functionalized dextran via host-guest interaction in the absence or presence of bioreducible linkages. Compared with nanoplexes of the starting star polycation and pDNA, the supramolecular polycation/pDNA nanoplexes exhibited similarly low cytotoxicity, improved cellular internalization and significantly higher gene transfection efficiencies. The incorporation of disulfide linkages imparted the supramolecular polycation/pDNA nanoplexes with the advantage of intracellular bioreducibility, resulting in better gene delivery properties. In addition, the antitumor properties of supramolecular polycation/pDNA nanoplexes were also investigated using a suicide gene therapy system. The present study demonstrates that the proper assembly of cyclodextrin-cored polycations with adamantane-functionalized polysaccharides is an effective strategy for the production of new nanoplex delivery systems.Different polysaccharide-based supramolecular polycations were readily synthesized by assembling multiple β-cyclodextrin-cored star polycations with an adamantane-functionalized dextran via host-guest interaction in the absence or presence of bioreducible linkages. Compared with nanoplexes of the starting star polycation and pDNA, the supramolecular polycation/pDNA nanoplexes exhibited similarly low cytotoxicity, improved cellular internalization and significantly higher gene transfection efficiencies. The incorporation of disulfide linkages imparted the supramolecular polycation/pDNA nanoplexes with the advantage of intracellular bioreducibility, resulting in better gene delivery properties. In addition, the antitumor properties of supramolecular polycation/pDNA nanoplexes were also investigated using a suicide gene therapy system. The present study demonstrates that the proper assembly of cyclodextrin-cored polycations

  1. A functional polymorphism in the reduced folate carrier gene and DNA hypomethylation in mothers of children with autism

    PubMed Central

    James, S. Jill; Melnyk, Stepan; Jernigan, Stefanie; Lehman, Sara; Seidel, Lisa; Gaylor, David .W.; Cleves, Mario A.

    2010-01-01

    The biologic basis of autism is complex and is thought to involve multiple and variable gene-environment interactions. While the logical focus has been on the affected child, the impact of maternal genetics on intrauterine microenvironment during pivotal developmental windows could be substantial. Folate-dependent one carbon metabolism is a highly polymorphic pathway that regulates the distribution of one-carbon derivatives between DNA synthesis (proliferation) and DNA methylation (cell-specific gene expression and differentiation). These pathways are essential to support the programmed shifts between proliferation and differentiation during embryogenesis and organogenesis. Maternal genetic variants that compromise intrauterine availability of folate derivatives could alter fetal cell trajectories and disrupt normal neurodevelopment. In this investigation, the frequency of common functional polymorphisms in the folate pathway was investigated in a large population-based sample of autism case-parent triads. In case-control analysis, a significant increase in the reduced folate carrier (RFC1) G allele frequency was found among case mothers, but not among fathers or affected children. Subsequent log linear analysis of the RFC1 A80G genotype within family trios revealed that the maternal G allele was associated with a significant increase in risk of autism whereas the inherited genotype of the child was not. Further, maternal DNA from the autism mothers was found to be significantly hypomethylated relative to reference control DNA. Metabolic profiling indicated that plasma homocysteine, adenosine, and S-adenosylhomocyteine were significantly elevated among autism mothers consistent with reduced methylation capacity and DNA hypomethylation. Together, these results suggest that the maternal genetics/epigenetics may influence fetal predisposition to autism. PMID:20468076

  2. Effect of irradiation on DNA synthesis, NBN gene expression and chromosomal stability in cells with NBN mutations

    PubMed Central

    Nowak, Jerzy; Świątek-Kościelna, Bogna; Kałużna, Ewelina M.; Rembowska, Jolanta; Dzikiewicz-Krawczyk, Agnieszka; Zawada, Mariola

    2017-01-01

    Introduction The NBN gene product is part of the MRE11/RAD50/NBN complex, which plays an essential role in genomic stability. In the study we try to answer the question what is the effect of irradiation on DNA synthesis, NBN gene expression and chromosomal stability in cells with homozygous c.657-661del, and heterozygous c.657-661del, p.I171V and p.R215W NBN gene mutations. Material and methods Immortalized B-lymphocytes with NBN gene mutations were X-ray irradiated at doses of 1, 2, 5 and 8 Gy/min. Radioresistant DNA synthesis rate and the percentage of cells in phase S was analyzed by 3H thymidine and BrdU incorporation assays. NBN gene expression was quantified by real-time PCR with TaqMan fluorescent probe. Results Increasing the irradiation dose resulted in gradual decrease of 3H thymidine incorporation in all cells, but significantly only in homo- and heterozygous c.657-661del cells (p-values < 0.0001). After irradiation the relative expression of NBN was significantly higher in homozygous c.657-661del and heterozygous p.R215W cells as compared to heterozygous c.657-661del, p.I171V and control cells (p < 0.01). All cells with NBN gene mutations showed significantly higher total number of chromosomal aberrations per metaphase as compared to control cells, with the highest number of aberrations in homozygous c.657-661del cells (p < 0.001). Conclusions The results obtained indicate that homozygous c.657-661del mutation affects cell sensitivity to irradiation. Moreover, homozygous variant is associated with disturbance in the activation of cell cycle checkpoints and with defects in DNA repair. In turn, heterozygous c.657-661del, p.R215W and p.I171V mutations do not substantially alter the radiosensitivity. PMID:28261280

  3. Structures of herpes simplex virus type 1 genes required for replication of virus DNA.

    PubMed Central

    McGeoch, D J; Dalrymple, M A; Dolan, A; McNab, D; Perry, L J; Taylor, P; Challberg, M D

    1988-01-01

    Recently, a method has been developed to identify regions in the genome of herpes simplex virus type 1 (HSV-1) which contain genes required for DNA synthesis from an HSV-1 origin of DNA replication, and seven genomic loci have been identified as representing the necessary and sufficient gene set for such replication (C. A. Wu, N. J. Nelson, D. J. McGeoch, and M. D. Challberg, J. Virol. 62:435-443, 1988). Two of the loci represent the well-known genes for DNA polymerase and major DNA-binding protein, but the remainder had little or no previous characterization. In this report we present the DNA sequences of the five newly identified genes and their deduced transcript organizations and encoded amino acid sequences. These genes were designated UL5, UL8, UL9, UL42, and UL52 and were predicted to encode proteins with molecular weights of, respectively, 99,000, 80,000, 94,000, 51,000, and 114,000. All of these genes had clear counterparts in the genome of the related alphaherpesvirus varicella-zoster virus, but only UL5 and UL52 were detectably conserved in the distantly related gammaherpesvirus Epstein-Barr virus, as judged by amino acid sequence similarity. The sequence of the UL5 protein, and of its counterparts in the other viruses, contained a region closely resembling known ATP-binding sites; this could be indicative, for instance, of a helicase or primase activity. PMID:2826807

  4. Genome duplication and gene loss affect the evolution of heat shock transcription factor genes in legumes.

    PubMed

    Lin, Yongxiang; Cheng, Ying; Jin, Jing; Jin, Xiaolei; Jiang, Haiyang; Yan, Hanwei; Cheng, Beijiu

    2014-01-01

    Whole-genome duplication events (polyploidy events) and gene loss events have played important roles in the evolution of legumes. Here we show that the vast majority of Hsf gene duplications resulted from whole genome duplication events rather than tandem duplication, and significant differences in gene retention exist between species. By searching for intraspecies gene colinearity (microsynteny) and dating the age distributions of duplicated genes, we found that genome duplications accounted for 42 of 46 Hsf-containing segments in Glycine max, while paired segments were rarely identified in Lotus japonicas, Medicago truncatula and Cajanus cajan. However, by comparing interspecies microsynteny, we determined that the great majority of Hsf-containing segments in Lotus japonicas, Medicago truncatula and Cajanus cajan show extensive conservation with the duplicated regions of Glycine max. These segments formed 17 groups of orthologous segments. These results suggest that these regions shared ancient genome duplication with Hsf genes in Glycine max, but more than half of the copies of these genes were lost. On the other hand, the Glycine max Hsf gene family retained approximately 75% and 84% of duplicated genes produced from the ancient genome duplication and recent Glycine-specific genome duplication, respectively. Continuous purifying selection has played a key role in the maintenance of Hsf genes in Glycine max. Expression analysis of the Hsf genes in Lotus japonicus revealed their putative involvement in multiple tissue-/developmental stages and responses to various abiotic stimuli. This study traces the evolution of Hsf genes in legume species and demonstrates that the rates of gene gain and loss are far from equilibrium in different species.

  5. In Ovo injection of betaine affects hepatic cholesterol metabolism through epigenetic gene regulation in newly hatched chicks.

    PubMed

    Hu, Yun; Sun, Qinwei; Li, Xiaoliang; Wang, Min; Cai, Demin; Li, Xi; Zhao, Ruqian

    2015-01-01

    Betaine is reported to regulate hepatic cholesterol metabolism in mammals. Chicken eggs contain considerable amount of betaine, yet it remains unknown whether and how betaine in the egg affects hepatic cholesterol metabolism in chicks. In this study, eggs were injected with betaine at 2.5 mg/egg and the hepatic cholesterol metabolism was investigated in newly hatched chicks. Betaine did not affect body weight or liver weight, but significantly increased the serum concentration (P < 0.05) and the hepatic content (P < 0.01) of cholesterol. Accordingly, the cholesterol biosynthetic enzyme HMGCR was up-regulated (P < 0.05 for both mRNA and protein), while CYP7A1 which converts cholesterol to bile acids was down-regulated (P < 0.05 for mRNA and P = 0.07 for protein). Moreover, hepatic protein content of the sterol-regulatory element binding protein 1 which regulates cholesterol and lipid biosynthesis, and the mRNA abundance of ATP binding cassette sub-family A member 1 (ABCA1) which mediates cholesterol counter transport were significantly (P < 0.05) increased in betaine-treated chicks. Meanwhile, hepatic protein contents of DNA methyltransferases 1 and adenosylhomocysteinase-like 1 were increased (P < 0.05), which was associated with global genomic DNA hypermethylation (P < 0.05) and diminished gene repression mark histone H3 lysine 27 trimethylation (P < 0.05). Furthermore, CpG methylation level on gene promoters was found to be increased (P < 0.05) for CYP7A1 yet decreased (P < 0.05) for ABCA1. These results indicate that in ovo betaine injection regulates hepatic cholesterol metabolism in chicks through epigenetic mechanisms including DNA and histone methylations.

  6. Artificial zinc finger DNA binding domains: versatile tools for genome engineering and modulation of gene expression.

    PubMed

    Hossain, Mir A; Barrow, Joeva J; Shen, Yong; Haq, Md Imdadul; Bungert, Jörg

    2015-11-01

    Genome editing and alteration of gene expression by synthetic DNA binding activities gained a lot of momentum over the last decade. This is due to the development of new DNA binding molecules with enhanced binding specificity. The most commonly used DNA binding modules are zinc fingers (ZFs), TALE-domains, and the RNA component of the CRISPR/Cas9 system. These binding modules are fused or linked to either nucleases that cut the DNA and induce DNA repair processes, or to protein domains that activate or repress transcription of genes close to the targeted site in the genome. This review focuses on the structure, design, and applications of ZF DNA binding domains (ZFDBDs). ZFDBDs are relatively small and have been shown to penetrate the cell membrane without additional tags suggesting that they could be delivered to cells without a DNA or RNA intermediate. Advanced algorithms that are based on extensive knowledge of the mode of ZF/DNA interactions are used to design the amino acid composition of ZFDBDs so that they bind to unique sites in the genome. Off-target binding has been a concern for all synthetic DNA binding molecules. Thus, increasing the specificity and affinity of ZFDBDs will have a significant impact on their use in analytical or therapeutic settings.

  7. Fluoride at non-toxic dose affects odontoblast gene expression in vitro.

    PubMed

    Wurtz, Tilmann; Houari, Sophia; Mauro, Nicole; MacDougall, Mary; Peters, Heiko; Berdal, Ariane

    2008-07-10

    Elevated fluoride intake may lead to local tissue disturbances, known as fluorosis. Towards an understanding of this effect, fluoride-induced molecular responses were analyzed in MO6-G3 cultured odontoblasts cells. NaF at 1mM changed expression of genes implicated in tissue formation and growth, without affecting cell proliferation or inducing stress factor RNAs. Up to 1mM NaF, DNA accumulation was not inhibited, whereas at 3mM, cells detached from their support and did not proliferate. Intracellular structures, characterized by EM, were normal up to 1mM, but at 3mM, necrotic features were evident. No sign of apoptotic transformation appeared at any NaF concentration. Fluoride-sensitive genes were identified by microarray analysis; expression levels of selected RNAs were determined by conventional and real-time RT-PCR. At 1mM fluoride, RNAs encoding the extracellular matrix proteins asporin and fibromodulin, and the cell membrane associated proteins periostin and IMT2A were 10-fold reduced. RNA coding for signaling factor TNF-receptor 9 was diminished to one-third, whereas that for the chemokine Scya-5 was enhanced 2.5-fold. These RNAs are present in vivo in tooth forming cells. This was demonstrated by in situ hybridization and RT-PCR on RNA from dissected tissue samples; for the presence and functioning of fibromodulin in dentin matrix, a more comprehensive study has earlier been performed by others [Goldberg, M., Septier, D., Oldberg, A., Young, M.F., Ameye, L.G., 2006. Fibromodulin deficient mice display impaired collagen fibrillogenesis in predentin as well as altered dentin mineralization and enamel formation. J. Histochem. Cytochem. 54, 525-537]. Expression of most other RNA species, in particular of stress factor coding RNAs, was not altered. It was concluded that fluoride could influence the transcription pattern without inducing cell stress or apoptosis. In odontoblasts in vivo, aberrant expression of these fluoride-sensitive genes may impair the

  8. Impact of DNA vector topology on non-viral gene therapeutic safety and efficacy.

    PubMed

    Sum, Chi H; Wettig, Shawn; Slavcev, Roderick A

    2014-01-01

    Gene therapy continues to grow as an emerging treatment strategy toward numerous diseases. However, such prospects are hindered by the use of viral vectors prompting significant safety concerns along with limitations concerning repeat administrations, size of delivered gene construct, scale-up, high production costs, contamination during production, and lack of desired tissue selectivity. Non-viral gene delivery demonstrates the potential to address the abovementioned limitations, but itself generally suffers from low efficacy. Continuing efforts have been made to develop innovative delivery systems, synthetic gene carriers, and DNA vectors in a concerted attempt to enhance gene delivery suitable for clinical applications. In this review, we focus on the advances in the design of novel DNA vectors catered to enhance transfection and transgene expression and their influences on the efficacy and safety of existing and emerging delivery systems and synthetic vectors for non viral gene delivery.

  9. Genome-wide DNA methylation profiles reveal novel candidate genes associated with meat quality at different age stages in hens

    PubMed Central

    Zhang, Meng; Yan, Feng-Bin; Li, Fang; Jiang, Ke-Ren; Li, Dong-Hua; Han, Rui-Li; Li, Zhuan-Jan; Jiang, Rui-Rui; Liu, Xiao-Jun; Kang, Xiang-Tao; Sun, Gui-Rong

    2017-01-01

    Poultry meat quality is associated with breed, age, tissue and other factors. Many previous studies have focused on distinct breeds; however, little is known regarding the epigenetic regulatory mechanisms in different age stages, such as DNA methylation. Here, we compared the global DNA methylation profiles between juvenile (20 weeks old) and later laying-period (55 weeks old) hens and identified candidate genes related to the development and meat quality of breast muscle using whole-genome bisulfite sequencing. The results showed that the later laying-period hens, which had a higher intramuscular fat (IMF) deposition capacity and water holding capacity (WHC) and less tenderness, exhibited higher global DNA methylation levels than the juvenile hens. A total of 2,714 differentially methylated regions were identified in the present study, which corresponded to 378 differentially methylated genes, mainly affecting muscle development, lipid metabolism, and the ageing process. Hypermethylation of the promoters of the genes ABCA1, COL6A1 and GSTT1L and the resulting transcriptional down-regulation in the later laying-period hens may be the reason for the significant difference in the meat quality between the juvenile and later laying-period hens. These findings contribute to a better understanding of epigenetic regulation in the skeletal muscle development and meat quality of chicken. PMID:28378745

  10. Immortality, but not oncogenic transformation, of primary human cells leads to epigenetic reprogramming of DNA methylation and gene expression.

    PubMed

    Gordon, Katrina; Clouaire, Thomas; Bao, Xun X; Kemp, Sadie E; Xenophontos, Maria; de Las Heras, Jose Ignacio; Stancheva, Irina

    2014-04-01

    Tumourigenic transformation of normal cells into cancer typically involves several steps resulting in acquisition of unlimited growth potential, evasion of apoptosis and non-responsiveness to growth inhibitory signals. Both genetic and epigenetic changes can contribute to cancer development and progression. Given the vast genetic heterogeneity of human cancers and difficulty to monitor cancer-initiating events in vivo, the precise relationship between acquisition of genetic mutations and the temporal progression of epigenetic alterations in transformed cells is largely unclear. Here, we use an in vitro model system to investigate the contribution of cellular immortality and oncogenic transformation of primary human cells to epigenetic reprogramming of DNA methylation and gene expression. Our data demonstrate that extension of replicative life span of the cells is sufficient to induce accumulation of DNA methylation at gene promoters and large-scale changes in gene expression in a time-dependent manner. In contrast, continuous expression of cooperating oncogenes in immortalized cells, although essential for anchorage-independent growth and evasion of apoptosis, does not affect de novo DNA methylation at promoters and induces subtle expression changes. Taken together, these observations imply that cellular immortality promotes epigenetic adaptation to highly proliferative state, whereas transforming oncogenes confer additional properties to transformed human cells.

  11. Ionizing and ultraviolet radiation enhances the efficiency of DNA mediated gene transfer in vitro

    SciTech Connect

    Perez, C.F.

    1984-08-01

    The enhancement effects of ionizing and non-ionizing radiation on the efficiency of DNA mediated gene transfer were studied. Confluent Rat-2 cells were transfected with purified SV40 viral DNA, irradiated with either X-rays or ultraviolet, trypsinized, plated, and assayed for the formation of foci on Rat-2 monolayers. Both ionizing and ultraviolet radiation enhanced the frequency of A-gene transformants/survivor compared to unirradiated transfected cells. These enhancements were non-linear and dose dependent. A recombinant plasmid, pOT-TK5, was constructed that contained the SV40 virus A-gene and the Herpes Simplex virus (HSV) thymidine kinase (TK) gene. Confluent Rat-2 cells transfected with pOT-TK5 DNA and then immediately irradiated with either X-rays or 330 MeV/amu argon particles at the Berkeley Bevalac showed a higher frequency of HAT/sup +/ colonies/survivor than unirradiated transfected cells. Rat-2 cells transfected with the plasmid, pTK2, containing only the HSV TK-gene were enhanced for TK-transformation by both X-rays and ultraviolet radiation. The results demonstrate that radiation enhancement of the efficiency of DNA mediated gene transfer is not explained by increased nuclear uptake of the transfected DNA. Radiation increases the competence of the transfected cell population for genetic transformation. Three models for this increased competence are presented. The targeted integration model, the inducible recombination model, the partition model, and the utilization of DNA mediated gene transfer for DNA repair studies are discussed. 465 references.

  12. Cationized bovine serum albumin as gene carrier: Influence of specific secondary structure on DNA complexibility and gene transfection.

    PubMed

    Du, Jianwei; Li, Bangbang; Zhang, Peng; Wang, Youxiang

    2016-07-01

    In this research, BSA, one of the natural rigid globular proteins with ca. 51% of α-helix secondary structure, was utilized to prepare cationized BSA (cBSA) as gene carrier. Tetraethylenepentamine (TEPA) or polyethylenimine (PEI1800) was grafted to BSA with different grafting levels. Based on the circular dichoism (CD) spectra, all cBSA remained α-helical structure to some degree. This was exciting to endow cBSA with quite different DNA complexibility and cellular biology behavior from the random coiled and flexible polycations such as PEI and poly-l-lysine (PLL). Strangely, the DNA condensability decreased with the increment of TEPA or PEI1800 grafting level. Also, the cBSA could condense DNA effectively to form irregular nanoparticles around 50-200nm above N/P ratio of 10. On account of the excellent hydration of BSA, the cBSA/DNA complexes revealed good colloidal stability under physiological salt condition. Cell culture experiments indicated this BSA-based gene carrier possessed good cellular compatibility. Surprisingly, cBSA/DNA complexes could be uptaken excellently by up to 90% cells. This might be owing to the agitation effect of α-helical structure and the positive potential of these complexes. BSA-PEI1800/DNA complexes with quick endosome escape even had transfection efficiency as high as PEI25k/DNA complexes. Overall, this paper provided us the potential of cBSA as gene carrier and might have some instructions in the design of protein-based gene delivery system.

  13. Folate deficiency facilitates recruitment of upstream binding factor to hot spots of DNA double-strand breaks of rRNA genes and promotes its transcription.

    PubMed

    Xie, Qiu; Li, Caihua; Song, Xiaozhen; Wu, Lihua; Jiang, Qian; Qiu, Zhiyong; Cao, Haiyan; Yu, Kaihui; Wan, Chunlei; Li, Jianting; Yang, Feng; Huang, Zebing; Niu, Bo; Jiang, Zhengwen; Zhang, Ting

    2016-12-06

    The biogenesis of ribosomes in vivo is an essential process for cellular functions. Transcription of ribosomal RNA (rRNA) genes is the rate-limiting step in ribosome biogenesis controlled by environmental conditions. Here, we investigated the role of folate antagonist on changes of DNA double-strand breaks (DSBs) landscape in mouse embryonic stem cells. A significant DSB enhancement was detected in the genome of these cells and a large majority of these DSBs were found in rRNA genes. Furthermore, spontaneous DSBs in cells under folate deficiency conditions were located exclusively within the rRNA gene units, representing a H3K4me1 hallmark. Enrichment H3K4me1 at the hot spots of DSB regions enhanced the recruitment of upstream binding factor (UBF) to rRNA genes, resulting in the increment of rRNA genes transcription. Supplement of folate resulted in a restored UBF binding across DNA breakage sites of rRNA genes, and normal rRNA gene transcription. In samples from neural tube defects (NTDs) with low folate level, up-regulation of rRNA gene transcription was observed, along with aberrant UBF level. Our results present a new view by which alterations in folate levels affects DNA breakage through epigenetic control leading to the regulation of rRNA gene transcription during the early stage of development.

  14. The absence of Ser389 phosphorylation in p53 affects the basal gene expression level of many p53-dependent genes and alters the biphasic response to UV exposure in mouse embryonic fibroblasts.

    PubMed

    Bruins, Wendy; Bruning, Oskar; Jonker, Martijs J; Zwart, Edwin; van der Hoeven, Tessa V; Pennings, Jeroen L A; Rauwerda, Han; de Vries, Annemieke; Breit, Timo M

    2008-03-01

    Phosphorylation is important in p53-mediated DNA damage responses. After UV irradiation, p53 is phosphorylated specifically at murine residue Ser389. Phosphorylation mutant p53.S389A cells and mice show reduced apoptosis and compromised tumor suppression after UV irradiation. We investigated the underlying cellular processes by time-series analysis of UV-induced gene expression responses in wild-type, p53.S389A, and p53(-/-) mouse embryonic fibroblasts. The absence of p53.S389 phosphorylation already causes small endogenous gene expression changes for 2,253, mostly p53-dependent, genes. These genes showed basal gene expression levels intermediate to the wild type and p53(-/-), possibly to readjust the p53 network. Overall, the p53.S389A mutation lifts p53-dependent gene repression to a level similar to that of p53(-/-) but has lesser effect on p53-dependently induced genes. In the wild type, the response of 6,058 genes to UV irradiation was strictly biphasic. The early stress response, from 0 to 3 h, results in the activation of processes to prevent the accumulation of DNA damage in cells, whereas the late response, from 12 to 24 h, relates more to reentering the cell cycle. Although the p53.S389A UV gene response was only subtly changed, many cellular processes were significantly affected. The early response was affected the most, and many cellular processes were phase-specifically lost, gained, or altered, e.g., induction of apoptosis, cell division, and DNA repair, respectively. Altogether, p53.S389 phosphorylation seems essential for many p53 target genes and p53-dependent processes.

  15. Association of DNA Methylation Levels with Tissue-specific Expression of Adipogenic and Lipogenic Genes in Longissimus dorsi Muscle of Korean Cattle.

    PubMed

    Baik, M; Vu, T T T; Piao, M Y; Kang, H J

    2014-10-01

    Epigenetic factors, such as DNA methylation status, may regulate adipogenesis and lipogenesis, thus affecting intramuscular fat (IMF) deposition in longissimus dorsi muscle (LM) of beef cattle. In Korean cattle steers, the LM consists mainly of muscle tissue. However, the LM tissue also contains IMF. We compared the gene expression levels between the IMF and muscle portions of the LM after tissue separation. Real-time polymerase chain reaction analysis showed that the mRNA levels of both adipogenic peroxisome proliferator-activated receptor gamma isoform 1 (PPARG1) and lipogenic fatty acid binding protein 4 (FABP4) were higher (p<0.01) in the IMF than in the muscle portion of the LM. We determined DNA methylation levels of regulatory regions of the PPARG1 and FABP4 genes by pyrosequencing of genomic DNA. DNA methylation levels of two of three CpG sites in the PPARG1 gene promoter region were lower (p<0.05) in the IMF than in the muscle portion of the LM. DNA methylation levels of all five CpG sites from the FABP4 gene promoter region were also lower (p<0.001) in the IMF than in the muscle portion. Thus, mRNA levels of both PPARG1 and FABP4 genes were inversely correlated with DNA methylation levels in regulatory regions of CpG sites of the corresponding gene. Our findings suggest that DNA methylation status regulates tissue-specific expression of adipogenic and lipogenic genes in the IMF and muscle portions of LM tissue in Korean cattle.

  16. Association of DNA Methylation Levels with Tissue-specific Expression of Adipogenic and Lipogenic Genes in Longissimus dorsi Muscle of Korean Cattle

    PubMed Central

    Baik, M.; Vu, T. T. T.; Piao, M. Y.; Kang, H. J.

    2014-01-01

    Epigenetic factors, such as DNA methylation status, may regulate adipogenesis and lipogenesis, thus affecting intramuscular fat (IMF) deposition in longissimus dorsi muscle (LM) of beef cattle. In Korean cattle steers, the LM consists mainly of muscle tissue. However, the LM tissue also contains IMF. We compared the gene expression levels between the IMF and muscle portions of the LM after tissue separation. Real-time polymerase chain reaction analysis showed that the mRNA levels of both adipogenic peroxisome proliferator-activated receptor gamma isoform 1 (PPARG1) and lipogenic fatty acid binding protein 4 (FABP4) were higher (p<0.01) in the IMF than in the muscle portion of the LM. We determined DNA methylation levels of regulatory regions of the PPARG1 and FABP4 genes by pyrosequencing of genomic DNA. DNA methylation levels of two of three CpG sites in the PPARG1 gene promoter region were lower (p<0.05) in the IMF than in the muscle portion of the LM. DNA methylation levels of all five CpG sites from the FABP4 gene promoter region were also lower (p<0.001) in the IMF than in the muscle portion. Thus, mRNA levels of both PPARG1 and FABP4 genes were inversely correlated with DNA methylation levels in regulatory regions of CpG sites of the corresponding gene. Our findings suggest that DNA methylation status regulates tissue-specific expression of adipogenic and lipogenic genes in the IMF and muscle portions of LM tissue in Korean cattle. PMID:25178302

  17. Analysis of Genes, Transcripts, and Proteins via DNA Ligation

    NASA Astrophysics Data System (ADS)

    Conze, Tim; Shetye, Alysha; Tanaka, Yuki; Gu, Jijuan; Larsson, Chatarina; Göransson, Jenny; Tavoosidana, Gholamreza; Söderberg, Ola; Nilsson, Mats; Landegren, Ulf

    2009-07-01

    Analytical reactions in which short DNA strands are used in combination with DNA ligases have proven useful for measuring, decoding, and locating most classes of macromolecules. Given the need to accumulate large amounts of precise molecular information from biological systems in research and in diagnostics, ligation reactions will continue to offer valuable strategies for advanced analytical reactions. Here, we provide a basis for further development of methods by reviewing the history of analytical ligation reactions, discussing the properties of ligation reactions that render them suitable for engineering novel assays, describing a wide range of successful ligase-based assays, and briefly considering future directions.

  18. Isolation and characterization of a plasmid DNA from periodontopathogenic bacterium, Eikenella corrodens 1073, which affects pilus formation and colony morphology.

    PubMed

    Azakami, Hiroyuki; Akimichi, Hiromi; Usui, Masakatsu; Yumoto, Hiromichi; Ebisu, Shigeyuki; Kato, Akio

    2005-05-23

    Eikenella corrodens (Ec) is one of a group of periodontopathogenic bacteria. A plasmid DNA (8.7 kb) isolated from Ec 1073 was designated pMU1. Agarose gel electrophoresis and Southern analysis suggested that pMU1-like plasmids were carried in 2 Ec strains, including 1073, with higher hemagglutination (HA) activity than other strains. We determined the nucleotide sequence of this plasmid and identified 7 ORFs. A homology search revealed that 4 ORFs of pMU1 were homologous to ORFs in pJTPS1, found in a spontaneous avirulent mutant of the phytopathogenic bacterium, Ralstonia solanacearum. pJTPS1 is a putative hypovirulent plasmid, which is thought to control the virulence of R. solanacearum. We also found the ORF to be homologous to the recombinase specific to the type IV pilin gene. We introduced a part of pMU1 into the Ec 23834 strain, which has a pilus structure on its cell surface and forms corroding colonies on solid medium. No pilus structure was observed on the surface of transformants, most of which formed non-corroding colonies. When such transformants (or Ec 1073) were cured of pMU1 with acridine orange, they remained non-foliated and non-corroding. The results suggest that pMU1 might irreversibly affect pilus formation and colony morphology, and might be involved in the pathogenicity and virulence of Ec.

  19. DNA Methylation Affects the Efficiency of Transcription Activator-Like Effector Nucleases-Mediated Genome Editing in Rice

    PubMed Central

    Kaya, Hidetaka; Numa, Hisataka; Nishizawa-Yokoi, Ayako; Toki, Seiichi; Habu, Yoshiki

    2017-01-01

    Genome editing in plants becomes popular since the advent of sequence-specific nucleases (SSNs) that are simple to set up and efficient in various plant species. Although transcription activator-like effector nucleases (TALENs) are one of the most prevalent SSNs and have a potential to provide higher target specificity by their dimeric property, TALENs are sensitive to methylated cytosines that are present not only in transposons but also in active genes in plants. In mammalian cells, the methylation sensitivity of TALENs could be overcome by using a base-recognition module (N∗) that has a higher affinity to methylated cytosine. In contrast to mammals, plants carry DNA methylation at all cytosine contexts (CG, CHG, and CHH, where H represents A, C, or T) with various degrees and effectiveness of N∗ module in genome editing in plants has not been explored. In this study, we designed sets of TALENs with or without N∗ modules and examined their efficiency in genome editing of methylated regions in rice. Although improvement in genome editing efficiency was observed with N∗-TALENs designed to a stably methylated target, another target carrying cytosines with various levels of methylation showed resistance to both normal and N∗-TALENs. The results suggest that variability of cytosine methylation in target regions is an additional factor affecting the genome editing efficiency of TALENs. PMID:28348570

  20. Genome-wide identification of DNA methylation provides insights into the association of gene expression in rice exposed to pesticide atrazine

    PubMed Central

    Lu, Yi Chen; Feng, Sheng Jun; Zhang, Jing Jing; Luo, Fang; Zhang, Shuang; Yang, Hong

    2016-01-01

    Atrazine (ATR) is a pesticide widely used for controlling weeds for crop production. Crop contamination with ATR negatively affects crop growth and development. This study presents the first genome-wide single-base-resolution maps of DNA methylation in ATR-exposed rice. Widespread differences were identified in CG and non-CG methylation marks between the ATR-exposed and ATR-free (control) rice. Most of DNA methyltransferases, histone methyltransferases and DNA demethylase were differentially regulated by ATR. We found more genes hypermethylated than those hypomethylated in the regions of upstream, genebody and downstream under ATR exposure. A stringent group of 674 genes (p < 0.05, two-fold change) with a strong preference of differential expression in ATR-exposed rice was identified. Some of the genes were identified in a subset of loss of function mutants defective in DNA methylation/demethylation. Provision of 5-azacytidine (AZA, inhibitor of DNA methylation) promoted the rice growth and reduced ATR content. By UPLC/Q-TOF-MS/MS, 8 degraded products and 9 conjugates of ATR in AZA-treated rice were characterized. Two of them has been newly identified in this study. Our data show that ATR-induced changes in DNA methylation marks are possibly involved in an epigenetic mechanism associated with activation of specific genes responsible for ATR degradation and detoxification. PMID:26739616

  1. Identification of a novel mutation in the PAX9 gene in a family affected by oligodontia and other dental anomalies.

    PubMed

    Tallón-Walton, Victòria; Manzanares-Céspedes, Maria Cristina; Arte, Sirpa; Carvalho-Lobato, Patricia; Valdivia-Gandur, Ivan; Garcia-Susperregui, Antonio; Ventura, Francesc; Nieminen, Pekka

    2007-12-01

    The objective of the present work was to study the phenotype and the genotype of three generations of a family affected by oligodontia and other dental anomalies. These family members also presented systemic conditions such as hypercholesterolemia, hypothyroidism, diabetes mellitus, scoliosis, and congenital cardiovascular anomalies. Clinical evaluation, panoramic radiographs, and anamnestic data were used for dental analysis. DNA extraction was carried out from gum samples or buccal swabs. A mutation was identified in six subjects across three generations affected by oligodontia, as well as different phenotypical manifestations, both systemic and oral. The previously undescribed PAX9 mutation was observed in the paired box (exon 2); this was a heterozygote transition of C175 to T, implying the change of arginine 59 for a termination codon. These results strongly suggested that the identified mutation was the etiological cause of the oligodontia. However, in two family members affected by both hypodontia and peg-shaped upper lateral incisors, no mutations in the PAX9 and MSX1 genes were identified. This fact underscores the importance that other presently unknown genes and developmental factors have in tooth development and in the etiology of dental anomalies.

  2. Production and characterization of novel recombinant adeno-associated virus replicative-form genomes: a eukaryotic source of DNA for gene transfer.

    PubMed

    Li, Lina; Dimitriadis, Emilios K; Yang, Yu; Li, Juan; Yuan, Zhenhua; Qiao, Chunping; Beley, Cyriaque; Smith, Richard H; Garcia, Luis; Kotin, Robert M

    2013-01-01

    Conventional non-viral gene transfer uses bacterial plasmid DNA containing antibiotic resistance genes, cis-acting bacterial sequence elements, and prokaryotic methylation patterns that may adversely affect transgene expression and vector stability in vivo. Here, we describe novel replicative forms of a eukaryotic vector DNA that consist solely of an expression cassette flanked by adeno-associated virus (AAV) inverted terminal repeats. Extensive structural analyses revealed that this AAV-derived vector DNA consists of linear, duplex molecules with covalently closed ends (termed closed-ended, linear duplex, or "CELiD", DNA). CELiD vectors, produced in Sf9 insect cells, require AAV rep gene expression for amplification. Amounts of CELiD DNA produced from insect cell lines stably transfected with an ITR-flanked transgene exceeded 60 mg per 5 × 10(9) Sf9 cells, and 1-15 mg from a comparable number of parental Sf9 cells in which the transgene was introduced via recombinant baculovirus infection. In mice, systemically delivered CELiD DNA resulted in long-term, stable transgene expression in the liver. CELiD vectors represent a novel eukaryotic alternative to bacterial plasmid DNA.

  3. Stability and functional effectiveness of phosphorothioate modified duplex DNA and synthetic 'mini-genes'.

    PubMed

    Ciafrè, S A; Rinaldi, M; Gasparini, P; Seripa, D; Bisceglia, L; Zelante, L; Farace, M G; Fazio, V M

    1995-10-25

    Several gene transfer techniques that employ 'naked DNA' molecules have recently been developed and numerous gene therapy protocols that make use of 'naked-DNA' have been proposed. We studied the possibility of enhancing the stability of 'naked DNA vectors' and thus also gene transfer and expression efficiencies, by constructing phosphorothioate (PS-) double strand DNA molecules and functional transcription units. We first synthesized short PS-double strand DNA molecules by the annealing of two complementary, 35 nt long, oligonucleotides. The accessibility of DNA modifying enzymes to this molecule was significantly decreased: T4-ligase and kinase activity were respectively reduced up to 1/2 and to 1/6, as compared to the normal phosphodiester molecule. Nucleolytic stability was increased either to purified enzymes (DNase I and Bal31) or to incubations in fresh serum, cell culture medium or in muscle protein extract. Phosphorothioate end-capped complete eukaryotic transcription units (obtained by Taq polymerase amplification with PS-primers) were not significantly protected from nucleolytic attack. On the contrary, synthetic transcription units, 'mini genes', obtained by Taq amplification with 1, 2 or 3 PS-dNTP substitutions, were resistant to DNase I and Bal31 nucleolytic activity. Transcription efficiency, driven by the T7 promoter, was 96.5, 95 and 33.5% (respectively with 1, 2 or 3 substitutions), as compared to the normal phosphodiester molecules.

  4. In vitro gene expression data supporting a DNA non-reactive genotoxic mechanism for ochratoxin A

    SciTech Connect

    Arbillaga, Leire; Lopez de Cerain, Adela . E-mail: acerain@unav.es

    2007-04-15

    Ochratoxin A (OTA) is a mycotoxin often found in cereals and agricultural products. There is unequivocal evidence of renal carcinogenicity of OTA in male rats, although the mechanism of action is unknown. At present, available data support an epigenetic mechanism (DNA non-reactive) resulting from oxidative stress and cytotoxicity, because a direct OTA interaction with DNA has not been demonstrated. Genotoxic mechanism (DNA-reactive vs. DNA non-reactive) may have implications on human risk assessment. Therefore, the aim of the present work was to identify biological pathways modulated by OTA in vitro in a human renal cell line (HK-2) to contribute to the elucidation of the mechanism of OTA toxicity. For that purpose, cells were exposed to 50 {mu}M OTA during 6 and 24 h, and gene expression profiles were analyzed using Affymetrix Human Genome U133 A 2.0 Gene Chips. Under the same experimental conditions, genotoxicity was evaluated by the modified comet assay using FPG and Endo III to detect oxidative DNA damage, and intracellular ROS level by the H{sub 2}DCF assay. After 6 h, with slight cytotoxicity (83% survival), genes involved in mitochondrial electron transport chain were up-regulated; and after 24 h, with a more pronounced cytotoxicity (51% survival), genes implicated in oxidative stress response were also up-regulated. Increase in intracellular ROS level and oxidative DNA damage was evident at both exposure times being more pronounced with high cytotoxicity. On the contrary, up-regulation of genes implicated in DNA damage response, as cell cycle control or apoptosis, was not detected at any exposure time. In conclusion, these results support a DNA non-reactive mechanism of OTA genotoxicity.

  5. A New Class of Quinoline-Based DNA Hypomethylating Agents Reactivates Tumor Suppressor Genes by Blocking DNA Methyltransferase 1 Activity and Inducing Its Degradation

    PubMed Central

    Datta, Jharna; Ghoshal, Kalpana; Denny, William A.; Gamage, Swarna A.; Brooke, Darby G.; Phiasivongsa, Pasit; Redkar, Sanjeev; Jacob, Samson T.

    2010-01-01

    Reactivation of silenced tumor suppressor genes by 5-azacytidine (Vidaza) and its congener 5-aza-2′-deoxycytidine (decitabine) has provided an alternate approach to cancer therapy. We have shown previously that these drugs selectively and rapidly induce degradation of the maintenance DNA methyltransferase (DNMT) 1 by a proteasomal pathway. Because the toxicity of these compounds is largely due to their incorporation into DNA, it is critical to explore novel, nonnucleoside compounds that can effectively reactivate the silenced genes. Here, we report that a quinoline-based compound, designated SGI-1027, inhibits the activity of DNMT1, DNMT3A, and DNMT3B as well M. SssI with comparable IC50 (6–13 µ mol/L) by competing with S-adenosylmethionine in the methylation reaction. Treatment of different cancer cell lines with SGI-1027 resulted in selective degradation of DNMT1 with minimal or no effects on DNMT3A and DNMT3B. At a concentration of 2.5 to 5 µmol/L (similar to that of decitabine), complete degradation of DNMT1 protein was achieved within 24 h without significantly affecting its mRNA level. MG132 blocked SGI-1027–induced depletion of DNMT1, indicating the involvement of proteasomal pathway. Prolonged treatment of RKO cells with SGI-1027 led to demethylation and reexpression of the silenced tumor suppressor genes P16, MLH1, and TIMP3. Further, this compound did not exhibit significant toxicity in a rat hepatoma (H4IIE) cell line. This study provides a novel class of DNA hypomethylating agents that have the potential for use in epigenetic cancer therapy. PMID:19417133

  6. Parental vitamin deficiency affects the embryonic gene expression of immune-, lipid transport- and apolipoprotein genes

    PubMed Central

    Skjærven, Kaja H.; Jakt, Lars Martin; Dahl, John Arne; Espe, Marit; Aanes, Håvard; Hamre, Kristin; Fernandes, Jorge M. O.

    2016-01-01

    World Health Organization is concerned for parental vitamin deficiency and its effect on offspring health. This study examines the effect of a marginally dietary-induced parental one carbon (1-C) micronutrient deficiency on embryonic gene expression using zebrafish. Metabolic profiling revealed a reduced 1-C cycle efficiency in F0 generation. Parental deficiency reduced the fecundity and a total of 364 genes were differentially expressed in the F1 embryos. The upregulated genes (53%) in the deficient group were enriched in biological processes such as immune response and blood coagulation. Several genes encoding enzymes essential for the 1-C cycle and for lipid transport (especially apolipoproteins) were aberrantly expressed. We show that a parental diet deficient in micronutrients disturbs the expression in descendant embryos of genes associated with overall health, and result in inherited aberrations in the 1-C cycle and lipid metabolism. This emphasises the importance of parental micronutrient status for the health of the offspring. PMID:27731423

  7. Parental vitamin deficiency affects the embryonic gene expression of immune-, lipid transport- and apolipoprotein genes

    NASA Astrophysics Data System (ADS)

    Skjærven, Kaja H.; Jakt, Lars Martin; Dahl, John Arne; Espe, Marit; Aanes, Håvard; Hamre, Kristin; Fernandes, Jorge M. O.

    2016-10-01

    World Health Organization is concerned for parental vitamin deficiency and its effect on offspring health. This study examines the effect of a marginally dietary-induced parental one carbon (1-C) micronutrient deficiency on embryonic gene expression using zebrafish. Metabolic profiling revealed a reduced 1-C cycle efficiency in F0 generation. Parental deficiency reduced the fecundity and a total of 364 genes were differentially expressed in the F1 embryos. The upregulated genes (53%) in the deficient group were enriched in biological processes such as immune response and blood coagulation. Several genes encoding enzymes essential for the 1-C cycle and for lipid transport (especially apolipoproteins) were aberrantly expressed. We show that a parental diet deficient in micronutrients disturbs the expression in descendant embryos of genes associated with overall health, and result in inherited aberrations in the 1-C cycle and lipid metabolism. This emphasises the importance of parental micronutrient status for the health of the offspring.

  8. α-Phellandrene alters expression of genes associated with DNA damage, cell cycle, and apoptosis in murine leukemia WEHI-3 cells.

    PubMed

    Lin, Jen-Jyh; Yu, Chien-Chih; Lu, Kung-Wen; Chang, Shu-Jen; Yu, Fu-Shun; Liao, Ching-Lung; Lin, Jaung-Geng; Chung, Jing-Gung

    2014-08-01

    α-phellandrene (α-PA) is a cyclic monoterpene, present in natural plants such as Schinus molle L. α-PA promotes immune responses in mice in vivo. However, there is no available information on whether α-PA affects gene expression in leukemia cells. The present study determined effects of α-PA on expression levels of genes associated with DNA damage, cell cycle and apoptotic cell death in mouse leukemia WEHI-3 cells. WEHI-3 cells were treated with 10 μM α-PA for 24 h, cells were harvested and total RNA was extracted, and gene expression was analyzed by cDNA microarray. Results indicated that α-PA up-regulated 10 genes 4-fold, 13 by over 3-fold and 175 by over 2-fold; 21 genes were down-regulated by over 4-fold, 26 genes by over 3-fold and expression of 204 genes was altered by at leas 2-fold compared with the untreated control cells. DNA damage-associated genes such as DNA damage-inducer transcript 4 and DNA fragmentation factor were up-regulated by 4-fold and over 2-fold, respectively; cell-cycle check point genes such as cyclin G2 and cyclin-dependent kinases inhibitor 2D and IA (p21) were up-regulated by over 3-fold and over 2-fold, respectively; apoptosis-associated genes such as BCL2/adenovirus EIB interacting protein 3, XIAP-associated factor 1, BCL2 modifying factor, caspase-8 and FADD-like apoptosis regulator were over 2-fold up-regulated. Furthermore, DNA damage-associated gene TATA box binding protein was over 4-fold down-regulated, and D19Ertd652c (DNA segment) over 2-fold down-regulated; cell cycle-associated gene cyclin E2 was over 2-fold down-regulated; apoptosis associated gene growth arrest-specific 5 was over 9-fold down-regulated, Gm5426 (ATP synthase) was over 3-fold down-regulated, and death box polypeptide 33 was over 2-fold down-regulated. Based on these observations, α-PA altered gene expression in WEHI-3 cells in vitro.

  9. Detection of Leptospira interrogans DNA and antigen in fixed equine eyes affected with end-stage equine recurrent uveitis.

    PubMed

    Pearce, Jacqueline W; Galle, Laurence E; Kleiboeker, Steve B; Turk, James R; Schommer, Susan K; Dubielizig, Richard R; Mitchell, William J; Moore, Cecil P; Giuliano, Elizabeth A

    2007-11-01

    Equine recurrent uveitis (ERU) is the most frequent cause of blindness in horses worldwide. Leptospira has been implicated as an etiologic agent in some cases of ERU and has been detected in fresh ocular tissues of affected horses. The objective of this study was to determine the presence of Leptospira antigen and DNA in fixed equine ocular tissues affected with end-stage ERU. Sections of eyes from 30 horses were obtained. Controls included 1) 10 normal equine eyes and 2) 10 equine eyes with a nonrecurrent form of uveitis. The experimental group consisted of 10 eyes diagnosed with ERU based on clinical signs and histologic lesions. Sections were subjected to immunohistochemical staining with an array of rabbit anti-Leptospira polyclonal antibodies. DNA extractions were performed b