Double Aneuploidy Detected by Cell-Free DNA Testing and Confirmed by Fetal Tissue Analysis.
Echague, Charlene G; Petersen, Scott M
2016-06-01
Double aneuploidies account for 0.21-2.8% of spontaneous abortions resulting from chromosomal abnormalities. Rarely, cell-free DNA testing detects multiple aneuploidies; however, to discern among maternal, placental, and fetal origin, further evaluation is required. A 49-year-old woman, gravida 5 para 0, underwent cell-free DNA testing at 11 4/7 weeks of gestation, which revealed a fetus that was high risk for trisomies 18 and 21. On ultrasonography at 14 weeks of gestation, she was diagnosed with a missed abortion and underwent surgical management. Fetal and placental tissues were sent for analysis and were positive for trisomies 18 and 21, confirming the results of cell-free DNA testing. Our case highlights the ability of cell-free DNA testing to recognize a double aneuploidy confirmed by fetal tissue analysis.
Fu, Rongxin; Li, Qi; Wang, Ruliang; Xue, Ning; Lin, Xue; Su, Ya; Jiang, Kai; Jin, Xiangyu; Lin, Rongzan; Gan, Wupeng; Lu, Ying; Huang, Guoliang
2018-05-01
Interferometric imaging biosensors are powerful and convenient tools for confirming the existence of DNA monolayer films on silicon microarray platforms. However, their accuracy and sensitivity need further improvement because DNA molecules contribute to an inconspicuous interferometric signal both in thickness and size. Such weaknesses result in poor performance of these biosensors for low DNA content analyses and point mutation tests. In this paper, an interferometric imaging biosensor with weighted spectrum analysis is presented to confirm DNA monolayer films. The interferometric signal of DNA molecules can be extracted and then quantitative detection results for DNA microarrays can be reconstructed. With the proposed strategy, the relative error of thickness detection was reduced from 88.94% to merely 4.15%. The mass sensitivity per unit area of the proposed biosensor reached 20 attograms (ag). Therefore, the sample consumption per unit area of the target DNA content was only 62.5 zeptomoles (zm), with the volume of 0.25 picolitres (pL). Compared with the fluorescence resonance energy transfer (FRET), the measurement veracity of the interferometric imaging biosensor with weighted spectrum analysis is free to the changes in spotting concentration and DNA length. The detection range was more than 1µm. Moreover, single nucleotide mismatch could be pointed out combined with specific DNA ligation. A mutation experiment for lung cancer detection proved the high selectivity and accurate analysis capability of the presented biosensor. Copyright © 2017 Elsevier B.V. All rights reserved.
Genome-wide high-resolution aCGH analysis of gestational choriocarcinomas.
Poaty, Henriette; Coullin, Philippe; Peko, Jean Félix; Dessen, Philippe; Diatta, Ange Lucien; Valent, Alexander; Leguern, Eric; Prévot, Sophie; Gombé-Mbalawa, Charles; Candelier, Jean-Jacques; Picard, Jean-Yves; Bernheim, Alain
2012-01-01
Eleven samples of DNA from choriocarcinomas were studied by high resolution CGH-array 244 K. They were studied after histopathological confirmation of the diagnosis, of the androgenic etiology and after a microsatellite marker analysis confirming the absence of contamination of tumor DNA from maternal DNA. Three cell lines, BeWo, JAR, JEG were also studied by this high resolution pangenomic technique. According to aCGH analysis, the de novo choriocarcinomas exhibited simple chromosomal rearrangements or normal profiles. The cell lines showed various and complex chromosomal aberrations. 23 Minimal Critical Regions were defined that allowed us to list the genes that were potentially implicated. Among them, unusually high numbers of microRNA clusters and imprinted genes were observed.
Sudoyo, Herawati; Widodo, Putut T; Suryadi, Helena; Lie, Yuliana S; Safari, Dodi; Widjajanto, Agung; Kadarmo, D Aji; Hidayat, Soegeng; Marzuki, Sangkot
2008-06-01
We report the strategy that we employed to identify the perpetrator of a suicide car bombing in front of the Australian Embassy in Jakarta, Indonesia, on 9 September 2004. The bomb was so massive that only small tissue pieces of the perpetrator could be recovered, preventing conventional approach to the identification of the bomber, necessitating the introduction of DNA analysis as the primary means for perpetrator identification. Crime scene investigation revealed the trajectory of the bomb blast, which was used to guide the collection of charred tissue fragments of the perpetrator. Mitochondrial DNA analysis was first conducted on 17 tissue fragments, recovered over large areas of the trajectory to, (a) confirm that they are of a common source, i.e. the perpetrator, and thus (b) establish the mtDNA HV1 sequence profile of the perpetrator. The mtDNA of the perpetrator matches that of a maternally related family member of one of four suspects. Standard autosomal STR analysis confirmed the identification. This case is of interest as an illustration of a successful application of DNA analysis as the primary means of disaster perpetrator identification.
Genome-Wide High-Resolution aCGH Analysis of Gestational Choriocarcinomas
Poaty, Henriette; Coullin, Philippe; Peko, Jean Félix; Dessen, Philippe; Diatta, Ange Lucien; Valent, Alexander; Leguern, Eric; Prévot, Sophie; Gombé-Mbalawa, Charles; Candelier, Jean-Jacques; Picard, Jean-Yves; Bernheim, Alain
2012-01-01
Eleven samples of DNA from choriocarcinomas were studied by high resolution CGH-array 244 K. They were studied after histopathological confirmation of the diagnosis, of the androgenic etiology and after a microsatellite marker analysis confirming the absence of contamination of tumor DNA from maternal DNA. Three cell lines, BeWo, JAR, JEG were also studied by this high resolution pangenomic technique. According to aCGH analysis, the de novo choriocarcinomas exhibited simple chromosomal rearrangements or normal profiles. The cell lines showed various and complex chromosomal aberrations. 23 Minimal Critical Regions were defined that allowed us to list the genes that were potentially implicated. Among them, unusually high numbers of microRNA clusters and imprinted genes were observed. PMID:22253721
Norrie disease. Diagnosis of a simplex case by DNA analysis.
Chynn, E W; Walton, D S; Hahn, L B; Dryja, T P
1996-09-01
Norrie disease is a rare, X-linked recessive disorder characterized by congenital blindness due to malformed retinas. We describe a simplex patient who had leukokoria and whose clinical diagnosis was confirmed only after molecular genetics analysis. DNA analysis was also used to determine the carrier status of relatives of the proband.
DNA typing for the identification of old skeletal remains from Korean War victims.
Lee, Hwan Young; Kim, Na Young; Park, Myung Jin; Sim, Jeong Eun; Yang, Woo Ick; Shin, Kyoung-Jin
2010-11-01
The identification of missing casualties of the Korean War (1950-1953) has been performed using mitochondrial DNA (mtDNA) profiles, but recent advances in DNA extraction techniques and approaches using smaller amplicons have significantly increased the possibility of obtaining DNA profiles from highly degraded skeletal remains. Therefore, 21 skeletal remains of Korean War victims and 24 samples from biological relatives of the supposed victims were selected based on circumstantial evidence and/or mtDNA-matching results and were analyzed to confirm the alleged relationship. Cumulative likelihood ratios were obtained from autosomal short tandem repeat, Y-chromosomal STR, and mtDNA-genotyping results, and mainly confirmed the alleged relationship with values over 10⁵. The present analysis emphasizes the value of mini- and Y-STR systems as well as an efficient DNA extraction method in DNA testing for the identification of old skeletal remains. © 2010 American Academy of Forensic Sciences.
Hall, Val; Talbot, P. R.; Stubbs, S. L.; Duerden, B. I.
2001-01-01
Amplified 16S ribosomal DNA (rDNA) restriction analysis (ARDRA), using enzymes HaeIII and HpaII, was applied to 176 fresh and 299 stored clinical isolates of putative Actinomyces spp. referred to the Anaerobe Reference Unit of the Public Health Laboratory Service for confirmation of identity. Results were compared with ARDRA results obtained previously for reference strains and with conventional phenotypic reactions. Identities of some strains were confirmed by analysis of partial 16S rDNA sequences. Of the 475 isolates, 331 (70%) were clearly assigned to recognized Actinomyces species, including 94 isolates assigned to six recently described species. A further 52 isolates in 12 ARDRA profiles were designated as apparently resembling recognized species, and 44 isolates, in 18 novel profiles, were confirmed as members of genera other than Actinomyces. The identities of 48 isolates in nine profiles remain uncertain, and they may represent novel species of Actinomyces. For the majority of species, phenotypic results, published reactions for the species, and ARDRA profiles concurred. However, of 113 stored isolates originally identified as A. meyeri or resembling A. meyeri by phenotypic tests, only 21 were confirmed as A. meyeri by ARDRA; 63 were reassigned as A. turicensis, 7 as other recognized species, and 22 as unidentified actinomycetes. Analyses of incidence and clinical associations of Actinomyces spp. add to the currently sparse knowledge of some recently described species. PMID:11574572
Iwano, Megumi; Che, Fang-Sik; Takayama, Seiji; Fukui, Kiichi; Isogai, Akira
2003-01-01
To elucidate the topological positioning of ribosomal RNA genes (rDNA) and nucleolar structure in three dimensions, we examined the localization of rDNA using in situ hybridization (ISH) analysis by scanning electron microscopy (SEM). The rDNA genes within the three-dimensional architecture of nucleoli were detected on chromatin fibers that connect a thick strand-like structure and a protrusion of rDNA into the inner nuclear hole where the nucleolus is formed. This novel use of ISH together with SEM is useful for the analysis of nucleolar structure in detail. Furthermore, rDNA was detected at the periphery of the fibrillar centers (FCs) of the nucleolus using immuno-gold labeling together with transmission electron microscopy (TEM). In situ hybridization with TEM confirmed that rDNA is naked and thus active in the FCs of nucleoli; ISH with SEM confirmed that rDNA is not covered with ribonucleo proteins at the protruding point and is thus inactive. We also show that the distribution pattern of FCs differs from sample to sample. These results indicate that rDNA is transcribed dynamically in a time- and region-specific manner over the course of the cell cycle.
Schwartz, S; Kohan, M; Pasion, R; Papenhausen, P R; Platt, L D
2018-02-01
Screening via noninvasive prenatal testing (NIPT) involving the analysis of cell-free DNA (cfDNA) from plasma has become readily available to screen for chromosomal and DNA aberrations through maternal blood. This report reviews a laboratory's experience with follow-up of positive NIPT screens for microdeletions. Patients that were screened positive by NIPT for a microdeletion involving 1p, 4p, 5p, 15q, or 22q who underwent diagnostic studies by either chorionic villus sampling or amniocentesis were evaluated. The overall positive predictive value for 349 patients was 9.2%. When a microdeletion was confirmed, 39.3% of the cases had additional abnormal microarray findings. Unrelated abnormal microarray findings were detected in 11.8% of the patients in whom the screen positive microdeletion was not confirmed. Stretches of homozygosity in the microdeletion were frequently associated with a false positive cfDNA microdeletion result. Overall, this report reveals that while cfDNA analysis will screen for microdeletions, the positive predictive value is low; in our series it is 9.2%. Therefore, the patient should be counseled accordingly. Confirmatory diagnostic microarray studies are imperative because of the high percentage of false positives and the frequent additional abnormalities not delineated by cfDNA analysis. © 2018 John Wiley & Sons, Ltd.
Paternity testing in case of brother-sister incest.
Macan, Marijana; Uvodić, Petra; Botica, Vladimir
2003-06-01
We performed a paternity test in a case of incest between brother and sister. DNA from blood samples of the alleged parents and their two children was obtained with Chelex DNA extraction method and quantified with Applied Biosystems QuantiBlot quantitation kit. Polymerase chain reaction (PCR) amplification of DNA samples was performed with AmpFlSTR SGM Plus PCR amplification kit and GenePrint PowerPlex PCR amplification kit. The amplified products were separated and detected by using the Perkin Elmer's ABI PRISM trade mark 310 Genetic Analyser. DNA and data analysis of 17 loci and Amelogenin confirmed the suspicion of brother-sister incest. Since both children had inherited all of the obligate alleles from the alleged father, we could confirm with certainty of 99.999999% that the oldest brother in the family was the biological father of both children. Calculated data showed that even in a case of brother-sister incest, paternity could be proved by the analysis of Amelogenin and 17 DNA loci.
A comprehensive approach to ascertain the binding mode of curcumin with DNA
NASA Astrophysics Data System (ADS)
Haris, P.; Mary, Varughese; Aparna, P.; Dileep, K. V.; Sudarsanakumar, C.
2017-03-01
Curcumin is a natural phytochemical from the rhizoma of Curcuma longa, the popular Indian spice that exhibits a wide range of pharmacological properties like antioxidant, anticancer, anti-inflammatory, antitumor, and antiviral activities. In the published literatures we can see different studies and arguments on the interaction of curcumin with DNA. The intercalative binding, groove binding and no binding of curcumin with DNA were reported. In this context, we conducted a detailed study to understand the mechanism of recognition of dimethylsulfoxide-solubilized curcumin by DNA. The interaction of curcumin with calf thymus DNA (ctDNA) was confirmed by agarose gel electrophoresis. The nature of binding and energetics of interaction were studied by Isothermal Titration Calorimetry (ITC), Differential Scanning Calorimetry (DSC), UV-visible, fluorescence and melting temperature (Tm) analysis. The experimental data were compared with molecular modeling studies. Our investigation confirmed that dimethylsulfoxide-solubilized curcumin binds in the minor groove of the ctDNA without causing significant structural alteration to the DNA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhanjadeo, Madhabi M.; Academy of Scientific and Innovative Research; Nayak, Ashok K.
DNA based self-assembled nanostructures and DNA origami has proven useful for organizing nanomaterials with firm precision. However, for advanced applications like nanoelectronics and photonics, large-scale organization of self-assembled branched DNA (bDNA) into periodic lattices is desired. In this communication for the first time we report a facile method of self-assembly of Y-shaped bDNA nanostructures on the cationic surface of Aluminum (Al) foil to prepare periodic two dimensional (2D) bDNA lattice. Particularly those Y-shaped bDNA structures having smaller overhangs and unable to self-assemble in solution, they are easily assembled on the surface of Al foil in the absence of ligase. Fieldmore » emission scanning electron microscopy (FESEM) analysis shows homogenous distribution of two-dimensional bDNA lattices across the Al foil. When the assembled bDNA structures were recovered from the Al foil and electrophoresed in nPAGE only higher order polymeric bDNA structures were observed without a trace of monomeric structures which confirms the stability and high yield of the bDNA lattices. Therefore, this enzyme-free economic and efficient strategy for developing bDNA lattices can be utilized in assembling various nanomaterials for functional molecular components towards development of DNA based self-assembled nanodevices. - Highlights: • Al foil surface-assisted self-assembly of monomeric structures into larger branched DNA lattice. • FESEM study confirms the uniform distribution of two-dimensional bDNA lattice structures across the surface of Al foil. • Enzyme-free and economic strategy to prepare higher order structures from simpler DNA nanostructures have been confirmed by recovery assay. • Use of well proven sequences for the preparation of pure Y-shaped monomeric DNA nanostructure with high yield.« less
Ho, Sherry Sze Yee; Barrett, Angela; Thadani, Henna; Asibal, Cecille Laureano; Koay, Evelyn Siew-Chuan; Choolani, Mahesh
2015-07-01
Prenatal diagnosis of sex-linked disorders requires invasive procedures, carrying a risk of miscarriage of up to 1%. Cell-free fetal DNA (cffDNA) present in cell-free DNA (cfDNA) from maternal plasma offers a non-invasive source of fetal genetic material for analysis. Detection of Y-chromosome sequences in cfDNA indicates presence of a male fetus; in the absence of a Y-chromosome signal a female fetus is inferred. We aimed to validate the clinical utility of insertion-deletion polymorphisms (INDELs) to confirm presence of a female fetus using cffDNA. Quantitative real-time PCR (qPCR) for the Y-chromosome-specific sequence, SRY, was performed on cfDNA from 82 samples at 6-39 gestational weeks. In samples without detectable SRY, qPCRs for eight INDELs were performed on maternal genomic DNA and cfDNA. Detection of paternally inherited fetal alleles in cfDNA negative for SRY confirmed a female fetus. Fetal sex was correctly determined in 77/82 (93.9%) cfDNA samples. SRY was detected in all 39 samples from male-bearing pregnancies, and none of the 43 female-bearing pregnancies (sensitivity and specificity of SRY qPCR is therefore 100%; 95% CI 91%-100%). Paternally inherited fetal alleles were detected in 38/43 samples with no SRY signal, confirming the presence of a female fetus (INDEL assay sensitivity is therefore 88.4%; 95% CI 74.1%-95.6%). Since paternally inherited fetal INDELs were not used in women bearing male fetuses, the specificity of INDELs cannot be calculated. Five cfDNA samples were negative for both SRY and INDELS. We have validated a non-invasive prenatal test to confirm fetal sex as early as 6 gestational weeks using cffDNA from maternal plasma.
Probing the interaction of the phytochemical 6-gingerol from the spice ginger with DNA.
Haris, Poovvathingal; Mary, Varughese; Sudarsanakumar, Chellappanpillai
2018-07-01
6-Gingerol [5-hydroxy-1-(4-hydroxy-3-methoxyphenyl) decan-3-one], the bio-active ingredient of the popular Indian spice ginger (Zingiber officinale Roscoe), is well-known for its pharmacological and physiological actions. The potent antioxidant, antiemetic, antiulcer, antimicrobial, analgesic, hypoglycemic, antihypertensive, antihyperlipidemic, immunostimulant, anti-inflammatory, cardiotonic, and cancer prevention activities of 6-Gingerol has been investigated and explored. 6-Gingerol is a good candidate for the treatment of various cancers including prostrate, pancreatic, breast, skin, gastrointestinal, pulmonary, and renal cancer. In this study we report for the first time the molecular recognition of 6-Gingerol with calf thymus DNA (ctDNA) through experimental and molecular modeling techniques confirming a minor groove binding mode of 6-Gingerol with ctDNA. Fluorescence and UV-vis spectroscopic studies confirm the complex formation of 6-gingerol with ctDNA. The energetics and thermodynamics of the interaction of 6-Gingerol with ctDNA was explored by Isothermal Titration Calorimetry (ITC) and Differential Scanning Calorimetry (DSC). The ctDNA helix melting upon 6-Gingerol binding was examined by melting temperature T m analysis. Further the electrophoretic mobility shift assay confirms a possible groove binding of 6-Gingerol with ctDNA. Molecular docking and Molecular dynamics (MD) studies provide a detailed understanding on the interaction of 6-Gingerol binding in the minor groove of DNA which supports experimental results. Copyright © 2018. Published by Elsevier B.V.
EMSA Analysis of DNA Binding By Rgg Proteins
LaSarre, Breah; Federle, Michael J.
2016-01-01
In bacteria, interaction of various proteins with DNA is essential for the regulation of specific target gene expression. Electrophoretic mobility shift assay (EMSA) is an in vitro approach allowing for the visualization of these protein-DNA interactions. Rgg proteins comprise a family of transcriptional regulators widespread among the Firmicutes. Some of these proteins function independently to regulate target gene expression, while others have now been demonstrated to function as effectors of cell-to-cell communication, having regulatory activities that are modulated via direct interaction with small signaling peptides. EMSA analysis can be used to assess DNA binding of either type of Rgg protein. EMSA analysis of Rgg protein activity has facilitated in vitro confirmation of regulatory targets, identification of precise DNA binding sites via DNA probe mutagenesis, and characterization of the mechanism by which some cognate signaling peptides modulate Rgg protein function (e.g. interruption of DNA-binding in some cases). PMID:27430004
EMSA Analysis of DNA Binding By Rgg Proteins.
LaSarre, Breah; Federle, Michael J
2013-08-20
In bacteria, interaction of various proteins with DNA is essential for the regulation of specific target gene expression. Electrophoretic mobility shift assay (EMSA) is an in vitro approach allowing for the visualization of these protein-DNA interactions. Rgg proteins comprise a family of transcriptional regulators widespread among the Firmicutes. Some of these proteins function independently to regulate target gene expression, while others have now been demonstrated to function as effectors of cell-to-cell communication, having regulatory activities that are modulated via direct interaction with small signaling peptides. EMSA analysis can be used to assess DNA binding of either type of Rgg protein. EMSA analysis of Rgg protein activity has facilitated in vitro confirmation of regulatory targets, identification of precise DNA binding sites via DNA probe mutagenesis, and characterization of the mechanism by which some cognate signaling peptides modulate Rgg protein function ( e.g. interruption of DNA-binding in some cases).
NASA Astrophysics Data System (ADS)
Tung, Min-Che; Chang, Tien-Yu; Hsu, Bing-Mu; Shen, Shu-Min; Huang, Jen-Te; Kao, Po-Min; Chiu, Yi-Chou; Fan, Cheng-Wei; Huang, Yu-Li
2013-07-01
In this study, we evaluated the presence and amount of Legionella in along a river in Taiwan, and the relations between seasonal distribution of Legionella spp. and geographic characteristics in the watershed were also evaluated. Water samples were pre-treated and analyzed with culture-confirmed and direct DNA extraction methods. For culture-confirmed method, water samples were cultivated through a series of selective media, and candidate colonies were confirmed by PCR. For direct DNA extraction method, direct DNA extraction was performed from pre-treated water samples. The DNA extracts were analyzed with PCR and DNA sequence analysis for species determination, quantitative PCR (qPCR) was performed to quantify Legionella concentration in the water sample. In all, 150 water samples were included in this study, with 73 (48.6%) water samples detected with Legionella spp., and 17 with L. pneumophila. Over 80% Legionella spp. detections were through direct DNA extraction method, but more than 80% L. pneumophila detections were through culture-confirmed method. While detection of Legionella spp. was done with two methods, positive results were found through only one method. Legionella spp. was detected in all seasons with detection rate ranging between 34.3-58.8% and seasonal average concentration from 1.9 × 102 to 7.1 × 103 CFU/L. Most of the L. pneumophila detections were from samples collected in fall (38.2%) and summer (6.0%), which also coincided with increased cases of Legionellosis reported through Center of Disease Control in Taiwan. The high prevalence and concentration of Legionella spp. and L. pneumophila in the surface waters should be further evaluated for potential health risks.
Single-molecule dilution and multiple displacement amplification for molecular haplotyping.
Paul, Philip; Apgar, Josh
2005-04-01
Separate haploid analysis is frequently required for heterozygous genotyping to resolve phase ambiguity or confirm allelic sequence. We demonstrate a technique of single-molecule dilution followed by multiple strand displacement amplification to haplotype polymorphic alleles. Dilution of DNA to haploid equivalency, or a single molecule, is a simple method for separating di-allelic DNA. Strand displacement amplification is a robust method for non-specific DNA expansion that employs random hexamers and phage polymerase Phi29 for double-stranded DNA displacement and primer extension, resulting in high processivity and exceptional product length. Single-molecule dilution was followed by strand displacement amplification to expand separated alleles to microgram quantities of DNA for more efficient haplotype analysis of heterozygous genes.
Gardan, Louis; Stead, David E; Dauga, Catherine; Gillis, Moniek
2003-05-01
Bacterial spot disease of lamb's lettuce [Valerianella locusta (L.) Laterr.] was first observed in fields in 1991. This new bacterial disease is localized in western France in high-technology field production of lamb's lettuce for the preparation of ready-to-use salad. Nineteen strains isolated in 1992 and 1993 from typical black leaf spots of naturally infected lamb's lettuce were characterized and compared with reference strains of Acidovorax and Delftia. The pathogenicity of the 19 strains was confirmed by artificial inoculation. Biochemical and physiological tests, fatty acid profiles, DNA-DNA hybridization and other nucleic acid-based tests were performed. A numerical taxonomic analysis of the 19 lamb's lettuce strains showed a single homogeneous phenon closely related to previously described phytopathogenic taxa of the genus Acidovorax. DNA-DNA hybridization studies showed that the lamb's lettuce strains were 91-100% related to a representative strain, strain CFBP 4730(T), and constituted a discrete DNA hybridization group, indicating that they belong to the same novel species. Results from DNA-rRNA hybridization, 16S rRNA sequence analysis and fatty acid analysis studies confirmed that this novel species belongs to the beta-subclass of the Proteobacteria and, more specifically, to the family Comamonadaceae and the genus Acidovorax. The name Acidovorax valerianellae sp. nov. is proposed for this novel taxon of phytopathogenic bacteria. The type strain is strain CFBP 4730(T) (= NCPPB 4283(T)).
Rosales-Chilama, Mariana; Gongora, Rafael E; Valderrama, Liliana; Jojoa, Jimena; Alexander, Neal; Rubiano, Luisa C; Cossio, Alexandra; Adams, Emily R; Saravia, Nancy G; Gomez, María Adelaida
2015-12-01
The contribution of individuals with subclinical infection to the transmission and endemicity of cutaneous leishmaniasis (CL) is unknown. Immunological evidence of exposure to Leishmania in residents of endemic areas has been the basis for defining the human population with asymptomatic infection. However, parasitological confirmation of subclinical infection is lacking. We investigated the presence and viability of Leishmania in blood and non-invasive mucosal tissue samples from individuals with immunological evidence of subclinical infection in endemic areas for CL caused by Leishmania (Viannia) in Colombia. Detection of Leishmania kDNA was conducted by PCR-Southern Blot, and parasite viability was confirmed by amplification of parasite 7SLRNA gene transcripts. A molecular tool for genetic diversity analysis of parasite populations causing persistent subclinical infection based on PCR amplification and sequence analysis of an 82bp region between kDNA conserved blocks 1 and 2 was developed. Persistent Leishmania infection was demonstrated in 40% (46 of 114) of leishmanin skin test (LST) positive individuals without active disease; parasite viability was established in 59% of these (27 of 46; 24% of total). Parasite burden quantified from circulating blood monocytes, nasal, conjunctival or tonsil mucosal swab samples was comparable, and ranged between 0.2 to 22 parasites per reaction. kDNA sequences were obtained from samples from 2 individuals with asymptomatic infection and from 26 with history of CL, allowing genetic distance analysis that revealed diversity among sequences and clustering within the L. (Viannia) subgenus. Our results provide parasitological confirmation of persistent infection among residents of endemic areas of L. (Viannia) transmission who have experienced asymptomatic infection or recovered from CL, revealing a reservoir of infection that potentially contributes to the endemicity and transmission of disease. kDNA genotyping establishes proof-of-principle of the feasibility of genetic diversity analysis in previously inaccessible and unexplored parasite populations in subclinically infected individuals.
Large mitochondrial DNA deletion in an infant with addison disease.
Duran, Gloria P; Martinez-Aguayo, A; Poggi, H; Lagos, M; Gutierrez, D; Harris, P R
2012-01-01
Mitochondrial diseases are a group of disorders caused by mutations in nuclear DNA or mitochondrial DNA, usually involving multiple organ systems. Primary adrenal insufficiency due to mitochondrial disease is extremely infrequent and has been reported in association with mitochondrial DNA deletion syndromes such as Kearns-Sayre syndrome. To report a 3-year-old boy with Addison disease, congenital glaucoma, chronic pancreatitis, and mitochondrial myopathy due to large mitochondrial DNA deletion. Molecular analysis of mitochondrial DNA samples obtained from peripheral blood, oral mucosa, and muscle tissue. A novel large mitochondrial DNA deletion of 7,372bp was identified involving almost all genes on the big arch of mtDNA. This case reaffirms the association of adrenal insufficiency and mitochondrial DNA deletions and presents new evidence that glaucoma is another manifestation of mitochondrial diseases. Due to the genetic and clinical heterogeneity of mitochondrial disorders, molecular analysis is crucial to confirm diagnosis and to allow accurate genetic counseling.
USDA-ARS?s Scientific Manuscript database
To confirm a hybrid swarm population of Pinus densiflora × P. sylvestris in Jilin, China and to study whether shoot apex morphology of 4-year old seedlings can be correlated with the sequence of a chloroplast DNA simple sequence repeat marker (cpDNA SSR), needles and seeds from P. densiflora, P. syl...
Jaeger, Lauren Hubert; Iñiguez, Alena Mayo
2014-01-01
Paleoparasitology is the science that uses parasitological techniques for diagnosing parasitic diseases in the past. Advances in molecular biology brought new insights into this field allowing the study of archaeological material. However, due to technical limitations a proper diagnosis and confirmation of the presence of parasites is not always possible, especially in scarce and degraded archaeological remains. In this study, we developed a Molecular Paleoparasitological Hybridization (MPH) approach using ancient DNA (aDNA) hybridization to confirm and complement paleoparasitological diagnosis. Eight molecular targets from four helminth parasites were included: Ascaris sp., Trichuris trichiura, Enterobius vermicularis, and Strongyloides stercoralis. The MPH analysis using 18th century human remains from Praça XV cemetery (CPXV), Rio de Janeiro, Brazil, revealed for the first time the presence E. vermicularis aDNA (50%) in archaeological sites of Brazil. Besides, the results confirmed T. trichiura and Ascaris sp. infections. The prevalence of infection by Ascaris sp. and E. vermicularis increased considerably when MPH was applied. However, a lower aDNA detection of T. trichiura (40%) was observed when compared to the diagnosis by paleoparasitological analysis (70%). Therefore, based on these data, we suggest a combination of Paleoparasitological and MPH approaches to verify the real panorama of intestinal parasite infection in human archeological samples. PMID:25162694
Case, Cheryl; Kandola, Kami; Chui, Linda; Li, Vincent; Nix, Nancy; Johnson, Rhonda
2013-01-01
Background Tuberculosis (TB) is an important public health problem in the Northwest Territories (NWT), particularly among Canadian Aboriginal people. Objective To analyse the transmission patterns of tuberculosis among the population living in the NWT, a territorial jurisdiction located within Northern Canada. Methods This population-based retrospective study examined the DNA fingerprints of all laboratory confirmed cases of TB in the NWT, Canada, between 1990 and 2009. An isolate of each lab-confirmed case had genotyping done using IS6110 Restriction Fragment Length Polymorphism. DNA patterns were assigned to each DNA fingerprint, and indistinguishable fingerprints patterns were assigned a cluster. Social network analysis (SNA) was used to examine direct linkages among cases determined through conventional contact tracing (CCT), their DNA fingerprint and home community. Results Of the 225 lab-confirmed cases identified, the study was limited to 195 subjects due to DNA fingerprinting data availability. The mean age of the cases was 43.8 years (±22.6) and 120 (61.5%) males. The Dene (First Nations) encompassed 120 of the cases (87.7%), 8 cases (4.1%) were Inuit, 2 cases (1.0%) were Metis, 7 cases (3.6%) were Immigrants and 1 case had unknown ethnicity. One hundred and eighty six (95.4%) subjects were clustered, resulting in 8 clusters. Trend analysis showed significant relationships between with risk factors for unemployment (p=0.020), geographic location (p≤0.001) and homelessness (p≤0.001). Other significant risk factors included excessive alcohol consumption, prior infection with Mycobacterium tuberculosis and prior contact with a case of TB. Conclusions This study demonstrates how DNA fingerprinting and SNA can be additional epidemiological tools, along with CCT method, to determine transmission patterns of TB. PMID:23671837
Kovács, Endre R; Benko, Mária
2009-03-01
Partial genome characterisation of a novel adenovirus, found recently in organ samples of multiple species of dead birds of prey, was carried out by sequence analysis of PCR-amplified DNA fragments. The virus, named as raptor adenovirus 1 (RAdV-1), has originally been detected by a nested PCR method with consensus primers targeting the adenoviral DNA polymerase gene. Phylogenetic analysis with the deduced amino acid sequence of the small PCR product has implied a new siadenovirus type present in the samples. Since virus isolation attempts remained unsuccessful, further characterisation of this putative novel siadenovirus was carried out with the use of PCR on the infected organ samples. The DNA sequence of the central genome part of RAdV-1, encompassing nine full (pTP, 52K, pIIIa, III, pVII, pX, pVI, hexon, protease) and two partial (DNA polymerase and DBP) genes and exceeding 12 kb pairs in size, was determined. Phylogenetic tree reconstructions, based on several genes, unambiguously confirmed the preliminary classification of RAdV-1 as a new species within the genus Siadenovirus. Further study of RAdV-1 is of interest since it represents a rare adenovirus genus of yet undetermined host origin.
In vitro DNA binding studies of therapeutic and prophylactic drug citral.
Alam, Md Fazle; Varshney, Supriya; Khan, Masood Alam; Laskar, Amaj Ahmed; Younus, Hina
2018-07-01
The study of drug-DNA interactions is of great importance, as it paves the way towards the design of better therapeutic agents. Here, the interaction of DNA with a therapeutic and prophylactic drug citral has been studied. We have attempted to ascertain the mode of binding of citral with calf thymus DNA (Ct-DNA) through various biophysical techniques. Analysis of the UV-visible absorbance spectra and fluorescence spectra indicated the formation of a complex between citral and Ct-DNA. Competitive binding assays with ethidium bromide (EB), acridine orange (AO) and Hoechst 33258 reflected that citral possibly intercalates within the Ct-DNA. These observations were further confirmed by circular dichroism (CD) spectral analysis, viscosity measurements, DNA melting and molecular docking studies. This study is expected to contribute to a better understanding of molecular mechanisms of citral, and design of new drugs in the future. Copyright © 2018 Elsevier B.V. All rights reserved.
DNA methylation biomarkers for head and neck squamous cell carcinoma.
Zhou, Chongchang; Ye, Meng; Ni, Shumin; Li, Qun; Ye, Dong; Li, Jinyun; Shen, Zhishen; Deng, Hongxia
2018-06-21
DNA methylation plays an important role in the etiology and pathogenesis of head and neck squamous cell carcinoma (HNSCC). The current study aimed to identify aberrantly methylated-differentially expressed genes (DEGs) by a comprehensive bioinformatics analysis. In addition, we screened for DEGs affected by DNA methylation modification and further investigated their prognostic values for HNSCC. We included microarray data of DNA methylation (GSE25093 and GSE33202) and gene expression (GSE23036 and GSE58911) from Gene Expression Omnibus. Aberrantly methylated-DEGs were analyzed with R software. The Cancer Genome Atlas (TCGA) RNA sequencing and DNA methylation (Illumina HumanMethylation450) databases were utilized for validation. In total, 27 aberrantly methylated genes accompanied by altered expression were identified. After confirmation by The Cancer Genome Atlas (TCGA) database, 2 hypermethylated-low-expression genes (FAM135B and ZNF610) and 2 hypomethylated-high-expression genes (HOXA9 and DCC) were identified. A receiver operating characteristic (ROC) curve confirmed the diagnostic value of these four methylated genes for HNSCC. Multivariate Cox proportional hazards analysis showed that FAM135B methylation was a favorable independent prognostic biomarker for overall survival of HNSCC patients.
Shimizu, Tokurou; Kitajima, Akira; Nonaka, Keisuke; Yoshioka, Terutaka; Ohta, Satoshi; Goto, Shingo; Toyoda, Atsushi; Fujiyama, Asao; Mochizuki, Takako; Nagasaki, Hideki; Kaminuma, Eli; Nakamura, Yasukazu
2016-01-01
Most indigenous citrus varieties are assumed to be natural hybrids, but their parentage has so far been determined in only a few cases because of their wide genetic diversity and the low transferability of DNA markers. Here we infer the parentage of indigenous citrus varieties using simple sequence repeat and indel markers developed from various citrus genome sequence resources. Parentage tests with 122 known hybrids using the selected DNA markers certify their transferability among those hybrids. Identity tests confirm that most variant strains are selected mutants, but we find four types of kunenbo (Citrus nobilis) and three types of tachibana (Citrus tachibana) for which we suggest different origins. Structure analysis with DNA markers that are in Hardy-Weinberg equilibrium deduce three basic taxa coinciding with the current understanding of citrus ancestors. Genotyping analysis of 101 indigenous citrus varieties with 123 selected DNA markers infers the parentages of 22 indigenous citrus varieties including Satsuma, Temple, and iyo, and single parents of 45 indigenous citrus varieties, including kunenbo, C. ichangensis, and Ichang lemon by allele-sharing and parentage tests. Genotyping analysis of chloroplast and mitochondrial genomes using 11 DNA markers classifies their cytoplasmic genotypes into 18 categories and deduces the combination of seed and pollen parents. Likelihood ratio analysis verifies the inferred parentages with significant scores. The reconstructed genealogy identifies 12 types of varieties consisting of Kishu, kunenbo, yuzu, koji, sour orange, dancy, kobeni mikan, sweet orange, tachibana, Cleopatra, willowleaf mandarin, and pummelo, which have played pivotal roles in the occurrence of these indigenous varieties. The inferred parentage of the indigenous varieties confirms their hybrid origins, as found by recent studies.
Kitajima, Akira; Nonaka, Keisuke; Yoshioka, Terutaka; Ohta, Satoshi; Goto, Shingo; Toyoda, Atsushi; Fujiyama, Asao; Mochizuki, Takako; Nagasaki, Hideki; Kaminuma, Eli; Nakamura, Yasukazu
2016-01-01
Most indigenous citrus varieties are assumed to be natural hybrids, but their parentage has so far been determined in only a few cases because of their wide genetic diversity and the low transferability of DNA markers. Here we infer the parentage of indigenous citrus varieties using simple sequence repeat and indel markers developed from various citrus genome sequence resources. Parentage tests with 122 known hybrids using the selected DNA markers certify their transferability among those hybrids. Identity tests confirm that most variant strains are selected mutants, but we find four types of kunenbo (Citrus nobilis) and three types of tachibana (Citrus tachibana) for which we suggest different origins. Structure analysis with DNA markers that are in Hardy–Weinberg equilibrium deduce three basic taxa coinciding with the current understanding of citrus ancestors. Genotyping analysis of 101 indigenous citrus varieties with 123 selected DNA markers infers the parentages of 22 indigenous citrus varieties including Satsuma, Temple, and iyo, and single parents of 45 indigenous citrus varieties, including kunenbo, C. ichangensis, and Ichang lemon by allele-sharing and parentage tests. Genotyping analysis of chloroplast and mitochondrial genomes using 11 DNA markers classifies their cytoplasmic genotypes into 18 categories and deduces the combination of seed and pollen parents. Likelihood ratio analysis verifies the inferred parentages with significant scores. The reconstructed genealogy identifies 12 types of varieties consisting of Kishu, kunenbo, yuzu, koji, sour orange, dancy, kobeni mikan, sweet orange, tachibana, Cleopatra, willowleaf mandarin, and pummelo, which have played pivotal roles in the occurrence of these indigenous varieties. The inferred parentage of the indigenous varieties confirms their hybrid origins, as found by recent studies. PMID:27902727
Novel epigenetic changes unveiled by monozygotic twins discordant for smoking habits.
Allione, Alessandra; Marcon, Francesca; Fiorito, Giovanni; Guarrera, Simonetta; Siniscalchi, Ester; Zijno, Andrea; Crebelli, Riccardo; Matullo, Giuseppe
2015-01-01
Exposure to cigarette smoking affects the epigenome and could increase the risk of developing diseases such as cancer and cardiovascular disorders. Changes in DNA methylation associated with smoking may help to identify molecular pathways that contribute to disease etiology. Previous studies are not completely concordant in the identification of differentially methylated regions in the DNA of smokers. We performed an epigenome-wide DNA methylation study in a group of monozygotic (MZ) twins discordant for smoking habits to determine the effect of smoking on DNA methylation. As MZ twins are considered genetically identical, this model allowed us to identify smoking-related DNA methylation changes independent from genetic components. We investigated the whole blood genome-wide DNA methylation profiles in 20 MZ twin pairs discordant for smoking habits by using the Illumina HumanMethylation450 BeadChip. We identified 22 CpG sites that were differentially methylated between smoker and non-smoker MZ twins by intra-pair analysis. We confirmed eight loci already described by other groups, located in AHRR, F2RL3, MYOG1 genes, at 2q37.1 and 6p21.33 regions, and also identified several new loci. Moreover, pathway analysis showed an enrichment of genes involved in GTPase regulatory activity. Our study confirmed the evidence of smoking-related DNA methylation changes, emphasizing that well-designed MZ twin models can aid the discovery of novel DNA methylation signals, even in a limited sample population.
Wang, Yongming; Lin, Xiuyun; Dong, Bo; Wang, Yingdian; Liu, Bao
2004-01-01
RAPD (randomly amplified polymorphic DNA) and ISSR (inter-simple sequence repeat) fingerprinting on HpaII/MspI-digested genomic DNA of nine elite japonica rice cultivars implies inter-cultivar DNA methylation polymorphism. Using both DNA fragments isolated from RAPD or ISSR gels and selected low-copy sequences as probes, methylation-sensitive Southern blot analysis confirms the existence of extensive DNA methylation polymorphism in both genes and DNA repeats among the rice cultivars. The cultivar-specific methylation patterns are stably maintained, and can be used as reliable molecular markers. Transcriptional analysis of four selected sequences (RdRP, AC9, HSP90 and MMR) on leaves and roots from normal and 5-azacytidine-treated seedlings of three representative cultivars shows an association between the transcriptional activity of one of the genes, the mismatch repair (MMR) gene, and its CG methylation patterns.
High-Resolution Melting (HRM) of Hypervariable Mitochondrial DNA Regions for Forensic Science.
Dos Santos Rocha, Alípio; de Amorim, Isis Salviano Soares; Simão, Tatiana de Almeida; da Fonseca, Adenilson de Souza; Garrido, Rodrigo Grazinoli; Mencalha, Andre Luiz
2018-03-01
Forensic strategies commonly are proceeding by analysis of short tandem repeats (STRs); however, new additional strategies have been proposed for forensic science. Thus, this article standardized the high-resolution melting (HRM) of DNA for forensic analyzes. For HRM, mitochondrial DNA (mtDNA) from eight individuals were extracted from mucosa swabs by DNAzol reagent, samples were amplified by PCR and submitted to HRM analysis to identify differences in hypervariable (HV) regions I and II. To confirm HRM, all PCR products were DNA sequencing. The data suggest that is possible discriminate DNA from different samples by HRM curves. Also, uncommon dual-dissociation was identified in a single PCR product, increasing HRM analyzes by evaluation of melting peaks. Thus, HRM is accurate and useful to screening small differences in HVI and HVII regions from mtDNA and increase the efficiency of laboratory routines based on forensic genetics. © 2017 American Academy of Forensic Sciences.
Berry, Neil; Jenkins, Adrian; Martin, Javier; Davis, Clare; Wood, David; Schild, Geoffrey; Bottiger, Margareta; Holmes, Harvey; Minor, Philip; Almond, Neil
2005-02-25
Inoculation of live experimental oral poliovirus vaccines (OPV CHAT) during the 1950s in central Africa has been proposed to account for the introduction of HIV into human populations. For this to have occurred, it would have been necessary for chimpanzee rather than macaque kidney epithelial cells to have been included in the preparation of early OPV materials. Theoretically, this could have led to contamination with a progenitor of HIV-1 derived from a related simian immunodeficiency virus of chimpanzees (SIVCPZ). In this article we present further detailed analyses of two samples of OPV, CHAT 10A-11 and CHAT 6039/Yugo, which were used in early human trials of poliovirus vaccination. Recovery of poliovirus by culture techniques confirmed the biological viability of the vaccines and sequence analysis of poliovirus RNA specifically identified the presence of the CHAT strain. Independent nested sets of oligonucleotide primers specific for HIV-1/SIVCPZ and HIV-2/SIVMAC/SIVSM phylogenetic lineages, respectively, indicated no evidence of HIV/SIV RNA in either vaccine preparation, at a sensitivity of 100 RNA equivalents/ml. Analysis of cellular substrate by the amplification of two distinct regions of mitochondrial DNA (D-loop control region and 12S ribosomal sequences) revealed no evidence of chimpanzee cellular sequences. However, this approach positively identified rhesus and cynomolgus macaque DNA for the CHAT 10A-11 and CHAT 6039/Yugo vaccine preparations, respectively. Analysis of multiple clones of mtDNA 12S rDNA indicated a relatively high number of nuclear mitochondrial DNA sequences (numts) in the CHAT 10A-11 material, but confirmed the macaque origin of cellular substrate used in vaccine preparation. These data reinforce earlier findings on this topic providing no evidence to support the contention that poliovirus vaccination was responsible for the introduction of HIV into humans and sparking the AIDS pandemic.
Vartanian, Jean-Pierre; Wain-Hobson, Simon
2002-05-28
Nuclear mtDNA sequences (numts) are a widespread family of paralogs evolving as pseudogenes in chromosomal DNA [Zhang, D. E. & Hewitt, G. M. (1996) TREE 11, 247-251 and Bensasson, D., Zhang, D., Hartl, D. L. & Hewitt, G. M. (2001) TREE 16, 314-321]. When trying to identify the species origin of an unknown DNA sample by way of an mtDNA locus, PCR may amplify both mtDNA and numts. Indeed, occasionally numts dominate confounding attempts at species identification [Bensasson, D., Zhang, D. X. & Hewitt, G. M. (2000) Mol. Biol. Evol. 17, 406-415; Wallace, D. C., et al. (1997) Proc. Natl. Acad. Sci. USA 94, 14900-14905]. Rhesus and cynomolgus macaque mtDNA haplotypes were identified in a study of oral polio vaccine samples dating from the late 1950s [Blancou, P., et al. (2001) Nature (London) 410, 1045-1046]. They were accompanied by a number of putative numts. To confirm that these putative numts were of macaque origin, a library of numts corresponding to a small segment of 12S rDNA locus has been made by using DNA from a Chinese rhesus macaque. A broad distribution was found with up to 30% sequence variation. Phylogenetic analysis showed that the evolutionary trajectories of numts and bona fide mtDNA haplotypes do not overlap with the signal exception of the host species; mtDNA fragments are continually crossing over into the germ line. In the case of divergent mtDNA sequences from old oral polio vaccine samples [Blancou, P., et al. (2001) Nature (London) 410, 1045-1046], all were closely related to numts in the Chinese macaque library.
Substitution of human for horse urine disproves an accusation of doping*.
Díaz, Silvina; Kienast, Mariana E; Villegas-Castagnasso, Egle E; Pena, Natalia L; Manganare, Marcos M; Posik, Diego; Peral-García, Pilar; Giovambattista, Guillermo
2008-09-01
In order to detect switching and/or manipulation of samples, the owner of a stallion asked our lab to perform a DNA test on a positive doping urine sample. The objective was to compare the urine DNA profile versus blood and hair DNA profiles from the same stallion. At first, 10 microsatellite markers were investigated to determine the horse identity. No results were obtained when horse specific markers were typed in the urine sample. In order to confirm the species origin of this sample we analyzed the mitochondrial cytochrome b gene. This analysis from blood and hair samples produced reproducible and clear PCR-RFLP patterns and DNA sequence match with those expected for horse, while the urine sample results were coincident with human. These results allowed us to exclude the urine sample from the questioned stallion and determine its human species origin, confirming the manipulation of urine sample.
Zelck, Ulrike E; Bialek, Ralf; Weiss, Michael
2011-04-01
We genetically characterized pinworms obtained from 37 children from different regions of Germany and established new species-specific molecular diagnostic tools. No ribosomal DNA diversity was found; the phylogenetic position of Enterobius vermicularis within the Oxyurida order and its close relationship to the Ascaridida and Spirurida orders was confirmed.
High-resolution DNA content analysis of microbiopsy samples in oral lichen planus.
Pentenero, M; Monticone, M; Marino, R; Aiello, C; Marchitto, G; Malacarne, D; Giaretti, W; Gandolfo, S; Castagnola, P
2017-04-01
DNA aneuploidy has been reported to be a predictor of poor prognosis in both premalignant and malignant lesions. In oral lichen planus (OLP), this hypothesis remains to be proved. This study aimed to determine the rate of occurrence of DNA aneuploidy in patients with OLP by high-resolution DNA flow cytometry. Patients with OLP were consecutively enrolled. Tissue samples were subdivided for formalin fixation and routine histological assessment and for immediate storage at -20°C for later DNA ploidy analysis, which was performed by DAPI staining of the extracted nuclei and excitation with a UV lamp. The DNA aneuploid sublines were characterized by the DNA Index. A DNA aneuploid status was observed in two of 77 patients with OLP (2.6%). When considering the clinical aspect of the OLP lesions, both DNA aneuploid cases had a reticular clinical aspect. DNA aneuploidy is an uncommon event in OLP and less frequent compared to other non-dysplastic and non-OLP oral potentially malignant disorders. The extremely low rate of DNA aneuploidy could represent an occasional finding or reflect the low rate of malignant transformation observed in patients with OLP even if the real prognostic value of DNA ploidy analysis in patients with OLP remains to be confirmed. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Destabilization of the PCNA trimer mediated by its interaction with the NEIL1 DNA glycosylase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prakash, Aishwarya; Moharana, Kedar; Wallace, Susan S.
The base excision repair (BER) pathway repairs oxidized lesions in the DNA that result from reactive oxygen species generated in cells. If left unrepaired, these damaged DNA bases can disrupt cellular processes such as replication. NEIL1 is one of the 11 human DNA glycosylases that catalyze the first step of the BER pathway, i.e. recognition and excision of DNA lesions. NEIL1 interacts with essential replication proteins such as the ring-shaped homotrimeric proliferating cellular nuclear antigen (PCNA). We isolated a complex formed between NEIL1 and PCNA (±DNA) using size exclusion chromatography (SEC). This interaction was confirmed using native gel electrophoresis andmore » mass spectrometry. Stokes radii measured by SEC hinted that PCNA in complex with NEIL1 (±DNA) was no longer a trimer. Height measurements and images obtained by atomic force microscopy also demonstrated the dissociation of the PCNA homotrimer in the presence of NEIL1 and DNA, while small-angle X-ray scattering analysis confirmed the NEIL1 mediated PCNA trimer dissociation and formation of a 1:1:1 NEIL1-DNA-PCNA(monomer) complex. Furthermore, ab initio shape reconstruction provides insights into the solution structure of this previously unreported complex. Together, these data point to a potential mechanistic switch between replication and BER.« less
Hargreaves, P; Rahman, S; Guthrie, P; Taanman, J W; Leonard, J V; Land, J M; Heales, S J R
2002-02-01
Mitochondrial DNA (mtDNA) depletion syndrome (McKusick 251880) is characterized by a progressive quantitative loss of mtDNA resulting in severe mitochondrial dysfunction. A diagnosis of mtDNA depletion can only be confirmed after Southern blot analysis of affected tissue. Only a limited number of centres have the facilities to offer this service, and this is frequently on an irregular basis. There is therefore a need for a test that can refine sample selection as well as complementing the molecular analysis. In this study we compared the activities of the nuclear-encoded succinate ubiquinone reductase (complex II) to the activities of the combined mitochondrial and nuclear-encoded mitochondrial electron transport chain (ETC) complexes; NADH:ubiquinone reductase (complex I), ubiquinol-cytochrome-c reductase (complex III), and cytochrome-c oxidase (complex IV), in skeletal muscle biopsies from 7 patients with confirmed mtDNA depletion. In one patient there was no evidence of an ETC defect. However, the remaining 6 patients exhibited reduced complex I and IV activities. Five of these patients also displayed reduced complex II-III (succinate:cytochrome-c reductase) activity. Individual measurement of complex II and complex III activities demonstrated normal levels of complex II activity compared to complex III, which was reduced in the 5 biopsies assayed. These findings suggest a possible diagnostic value for the detection of normal levels of complex II activity in conjunction with reduced complex I, III and IV activity in the identification of likely candidates for mtDNA depletion syndrome
Application of environmental DNA analysis to inform invasive fish eradication operations
NASA Astrophysics Data System (ADS)
Davison, Phillip I.; Copp, Gordon H.; Créach, Véronique; Vilizzi, Lorenzo; Britton, J. R.
2017-04-01
Environmental DNA (eDNA) detection of non-native species has considerable potential to inform management decisions, including identifying the need for population control and/or eradication. An invasive species of European concern is the Asian cyprinid fish, topmouth gudgeon ( Pseudorasbora parva) . Here, eDNA analyses were applied at a commercial angling venue in southern England to inform operations aiming to eradicate P. parva, which had only ever been observed in one of the venue's seven unconnected angling ponds. Eradication of P. parva was initially attempted by repeated depletion of the population using fish traps (crayfish traps fitted with 5 mm mesh netting) and the introduction of native predators over a 4-year period. The very low number of P. parva captured following these eradication efforts suggested a possible population crash. Conventional PCR analysis of water samples using species-specific primers was applied to all seven ponds to confirm that P. parva was present in only one pond, that the eradication attempt had indeed failed and that the species' distribution in the pond appeared to be restricted to three bankside locations. The continued presence of P. parva at these locations was confirmed by subsequent trapping. Water samples from an adjacent, unconnected stream were also analysed using the eDNA methodology, but no DNA of P. parva was detected. The results suggest that further management action to eradicate P. parva be focused on the pond shown to contain the isolated P. parva population and thereby eliminate the risk of further dispersal. This study is the first to apply eDNA analysis to assess the efficacy of an eradication attempt and to provide evidence that the species was unlikely to be present in the other ponds, thus reducing the resources needed to control the species.
Application of environmental DNA analysis to inform invasive fish eradication operations.
Davison, Phillip I; Copp, Gordon H; Créach, Véronique; Vilizzi, Lorenzo; Britton, J R
2017-04-01
Environmental DNA (eDNA) detection of non-native species has considerable potential to inform management decisions, including identifying the need for population control and/or eradication. An invasive species of European concern is the Asian cyprinid fish, topmouth gudgeon (Pseudorasbora parva). Here, eDNA analyses were applied at a commercial angling venue in southern England to inform operations aiming to eradicate P. parva, which had only ever been observed in one of the venue's seven unconnected angling ponds. Eradication of P. parva was initially attempted by repeated depletion of the population using fish traps (crayfish traps fitted with 5 mm mesh netting) and the introduction of native predators over a 4-year period. The very low number of P. parva captured following these eradication efforts suggested a possible population crash. Conventional PCR analysis of water samples using species-specific primers was applied to all seven ponds to confirm that P. parva was present in only one pond, that the eradication attempt had indeed failed and that the species' distribution in the pond appeared to be restricted to three bankside locations. The continued presence of P. parva at these locations was confirmed by subsequent trapping. Water samples from an adjacent, unconnected stream were also analysed using the eDNA methodology, but no DNA of P. parva was detected. The results suggest that further management action to eradicate P. parva be focused on the pond shown to contain the isolated P. parva population and thereby eliminate the risk of further dispersal. This study is the first to apply eDNA analysis to assess the efficacy of an eradication attempt and to provide evidence that the species was unlikely to be present in the other ponds, thus reducing the resources needed to control the species.
Kim, Yong-June; Yoon, Hyung-Yoon; Kim, Seon-Kyu; Kim, Young-Won; Kim, Eun-Jung; Kim, Isaac Yi; Kim, Wun-Jae
2011-07-01
Abnormal DNA methylation is associated with many human cancers. The aim of the present study was to identify novel methylation markers in prostate cancer (PCa) by microarray analysis and to test whether these markers could discriminate normal and PCa cells. Microarray-based DNA methylation and gene expression profiling was carried out using a panel of PCa cell lines and a control normal prostate cell line. The methylation status of candidate genes in prostate cell lines was confirmed by real-time reverse transcriptase-PCR, bisulfite sequencing analysis, and treatment with a demethylation agent. DNA methylation and gene expression analysis in 203 human prostate specimens, including 106 PCa and 97 benign prostate hyperplasia (BPH), were carried out. Further validation using microarray gene expression data from the Gene Expression Omnibus (GEO) was carried out. Epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) was identified as a lead candidate methylation marker for PCa. The gene expression level of EFEMP1 was significantly higher in tissue samples from patients with BPH than in those with PCa (P < 0.001). The sensitivity and specificity of EFEMP1 methylation status in discriminating between PCa and BPH reached 95.3% (101 of 106) and 86.6% (84 of 97), respectively. From the GEO data set, we confirmed that the expression level of EFEMP1 was significantly different between PCa and BPH. Genome-wide characterization of DNA methylation profiles enabled the identification of EFEMP1 aberrant methylation patterns in PCa. EFEMP1 might be a useful indicator for the detection of PCa.
Siravegna, Giulia; Geuna, Elena; Mussolin, Benedetta; Crisafulli, Giovanni; Bartolini, Alice; Galizia, Danilo; Casorzo, Laura; Sarotto, Ivana; Scaltriti, Maurizio; Sapino, Anna; Bardelli, Alberto; Montemurro, Filippo
2017-01-01
Background Central nervous system (CNS) involvement contributes to significant morbidity and mortality in patients with human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer (mBC) and represents a major challenge for clinicians. Liquid biopsy of cerebrospinal fluid (CSF)-derived circulating tumour DNA (ctDNA) harbours clinically relevant genomic alterations in patients with CNS metastases and could be effective in tracking tumour evolution. Methods In a HER2-positive mBC patient with brain metastases, we applied droplet digital PCR (ddPCR) and next-generation whole exome sequencing (WES) analysis to measure ctDNA dynamic changes in CSF and plasma collected during treatment. Results Baseline CSF-derived ctDNA analysis revealed TP53 and PIK3CA mutations as well as ERBB2 and cMYC amplification. Post-treatment ctDNA analysis showed decreased markers level in plasma, consistent with extra-CNS disease control, while increased in the CSF, confirming poor treatment benefit in the CNS. Discussion Analysis of ctDNA in the CSF of HER2-positive mBC is feasible and could represent a useful companion for clinical management of brain metastases. PMID:29067216
Lee, Hwan Young; Song, Injee; Ha, Eunho; Cho, Sung-Bae; Yang, Woo Ick; Shin, Kyoung-Jin
2008-01-01
Background For the past few years, scientific controversy has surrounded the large number of errors in forensic and literature mitochondrial DNA (mtDNA) data. However, recent research has shown that using mtDNA phylogeny and referring to known mtDNA haplotypes can be useful for checking the quality of sequence data. Results We developed a Web-based bioinformatics resource "mtDNAmanager" that offers a convenient interface supporting the management and quality analysis of mtDNA sequence data. The mtDNAmanager performs computations on mtDNA control-region sequences to estimate the most-probable mtDNA haplogroups and retrieves similar sequences from a selected database. By the phased designation of the most-probable haplogroups (both expected and estimated haplogroups), mtDNAmanager enables users to systematically detect errors whilst allowing for confirmation of the presence of clear key diagnostic mutations and accompanying mutations. The query tools of mtDNAmanager also facilitate database screening with two options of "match" and "include the queried nucleotide polymorphism". In addition, mtDNAmanager provides Web interfaces for users to manage and analyse their own data in batch mode. Conclusion The mtDNAmanager will provide systematic routines for mtDNA sequence data management and analysis via easily accessible Web interfaces, and thus should be very useful for population, medical and forensic studies that employ mtDNA analysis. mtDNAmanager can be accessed at . PMID:19014619
Zelck, Ulrike E.; Bialek, Ralf; Weiß, Michael
2011-01-01
We genetically characterized pinworms obtained from 37 children from different regions of Germany and established new species-specific molecular diagnostic tools. No ribosomal DNA diversity was found; the phylogenetic position of Enterobius vermicularis within the Oxyurida order and its close relationship to the Ascaridida and Spirurida orders was confirmed. PMID:21248085
Choi, Y; Lim, SY; Jeong, HS; Koo, KA; Sung, SH; Kim, YC
2009-01-01
Background and purpose: We conducted a genome wide gene expression analysis to explore the biological aspects of 15-methoxypinusolidic acid (15-MPA) isolated from Biota orientalis and tried to confirm the suitability of 15-MPA as a therapeutic candidate for CNS injuries focusing on microglia. Experimental approach: Murine microglial BV2 cells were treated with 15-MPA, and their transcriptome was analysed by using oligonucleotide microarrays. Genes differentially expressed upon 15-MPA treatment were selected for RT-PCR (reverse transcription-polymerase chain reaction) analysis to confirm the gene expression. Inhibition of cell proliferation and induction of apoptosis by 15-MPA were examined by bromodeoxyuridine assay, Western blot analysis of poly-ADP-ribose polymerase and flow cytometry. Key results: A total of 514 genes were differentially expressed by 15-MPA treatment. Biological pathway analysis revealed that 15-MPA induced significant changes in expression of genes in the cell cycle pathway. Genes involved in growth arrest and DNA damage [gadd45α, gadd45γ and ddit3 (DNA damage-inducible transcript 3)] and cyclin-dependent kinase inhibitor (cdkn2b) were up-regulated, whereas genes involved in cell cycle progression (ccnd1, ccnd3 and ccne1), DNA replication (mcm4, orc1l and cdc6) and cell proliferation (fos and jun) were down-regulated. RT-PCR analysis for representative genes confirmed the expression levels. 15-MPA significantly reduced bromodeoxyuridine incorporation, increased poly-ADP-ribose polymerase cleavage and the number of apoptotic cells, indicating that 15-MPA induces apoptosis in BV2 cells. Conclusion and implications: 15-MPA induced apoptosis in murine microglial cells, presumably via inhibition of the cell cycle progression. As microglial activation is detrimental in CNS injuries, these data suggest a strong therapeutic potential of 15-MPA. PMID:19466985
Booth, Marsilea Adela; Vogel, Robert; Curran, James M; Harbison, SallyAnn; Travas-Sejdic, Jadranka
2013-07-15
Despite the plethora of DNA sensor platforms available, a portable, sensitive, selective and economic sensor able to rival current fluorescence-based techniques would find use in many applications. In this research, probe oligonucleotide-grafted particles are used to detect target DNA in solution through a resistive pulse nanopore detection technique. Using carbodiimide chemistry, functionalized probe DNA strands are attached to carboxylated dextran-based magnetic particles. Subsequent incubation with complementary target DNA yields a change in surface properties as the two DNA strands hybridize. Particle-by-particle analysis with resistive pulse sensing is performed to detect these changes. A variable pressure method allows identification of changes in the surface charge of particles. As proof-of-principle, we demonstrate that target hybridization is selectively detected at micromolar concentrations (nanomoles of target) using resistive pulse sensing, confirmed by fluorescence and phase analysis light scattering as complementary techniques. The advantages, feasibility and limitations of using resistive pulse sensing for sample analysis are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Narayanaswamy, Nagarjun; Kumar, Manoj; Das, Sadhan; Sharma, Rahul; Samanta, Pralok K.; Pati, Swapan K.; Dhar, Suman K.; Kundu, Tapas K.; Govindaraju, T.
2014-09-01
Sequence-specific recognition of DNA by small turn-on fluorescence probes is a promising tool for bioimaging, bioanalytical and biomedical applications. Here, the authors report a novel cell-permeable and red fluorescent hemicyanine-based thiazole coumarin (TC) probe for DNA recognition, nuclear staining and cell cycle analysis. TC exhibited strong fluorescence enhancement in the presence of DNA containing AT-base pairs, but did not fluoresce with GC sequences, single-stranded DNA, RNA and proteins. The fluorescence staining of HeLa S3 and HEK 293 cells by TC followed by DNase and RNase digestion studies depicted the selective staining of DNA in the nucleus over the cytoplasmic region. Fluorescence-activated cell sorting (FACS) analysis by flow cytometry demonstrated the potential application of TC in cell cycle analysis in HEK 293 cells. Metaphase chromosome and malaria parasite DNA imaging studies further confirmed the in vivo diagnostic and therapeutic applications of probe TC. Probe TC may find multiple applications in fluorescence spectroscopy, diagnostics, bioimaging and molecular and cell biology.
Narayanaswamy, Nagarjun; Kumar, Manoj; Das, Sadhan; Sharma, Rahul; Samanta, Pralok K.; Pati, Swapan K.; Dhar, Suman K.; Kundu, Tapas K.; Govindaraju, T.
2014-01-01
Sequence-specific recognition of DNA by small turn-on fluorescence probes is a promising tool for bioimaging, bioanalytical and biomedical applications. Here, the authors report a novel cell-permeable and red fluorescent hemicyanine-based thiazole coumarin (TC) probe for DNA recognition, nuclear staining and cell cycle analysis. TC exhibited strong fluorescence enhancement in the presence of DNA containing AT-base pairs, but did not fluoresce with GC sequences, single-stranded DNA, RNA and proteins. The fluorescence staining of HeLa S3 and HEK 293 cells by TC followed by DNase and RNase digestion studies depicted the selective staining of DNA in the nucleus over the cytoplasmic region. Fluorescence-activated cell sorting (FACS) analysis by flow cytometry demonstrated the potential application of TC in cell cycle analysis in HEK 293 cells. Metaphase chromosome and malaria parasite DNA imaging studies further confirmed the in vivo diagnostic and therapeutic applications of probe TC. Probe TC may find multiple applications in fluorescence spectroscopy, diagnostics, bioimaging and molecular and cell biology. PMID:25252596
Inskip, Sarah A.; Taylor, G. Michael; Zakrzewski, Sonia R.; Mays, Simon A.; Pike, Alistair W. G.; Llewellyn, Gareth; Williams, Christopher M.; Lee, Oona Y-C; Wu, Houdini H. T.; Minnikin, David E.; Besra, Gurdyal S.; Stewart, Graham R.
2015-01-01
We have examined a 5th to 6th century inhumation from Great Chesterford, Essex, UK. The incomplete remains are those of a young male, aged around 21–35 years at death. The remains show osteological evidence of lepromatous leprosy (LL) and this was confirmed by lipid biomarker analysis and ancient DNA (aDNA) analysis, which provided evidence for both multi-copy and single copy loci from the Mycobacterium leprae genome. Genotyping showed the strain belonged to the 3I lineage, but the Great Chesterford isolate appeared to be ancestral to 3I strains found in later medieval cases in southern Britain and also continental Europe. While a number of contemporaneous cases exist, at present, this case of leprosy is the earliest radiocarbon dated case in Britain confirmed by both aDNA and lipid biomarkers. Importantly, Strontium and Oxygen isotope analysis suggest that the individual is likely to have originated from outside Britain. This potentially sheds light on the origins of the strain in Britain and its subsequent spread to other parts of the world, including the Americas where the 3I lineage of M. leprae is still found in some southern states of America. PMID:25970602
Inskip, Sarah A; Taylor, G Michael; Zakrzewski, Sonia R; Mays, Simon A; Pike, Alistair W G; Llewellyn, Gareth; Williams, Christopher M; Lee, Oona Y-C; Wu, Houdini H T; Minnikin, David E; Besra, Gurdyal S; Stewart, Graham R
2015-01-01
We have examined a 5th to 6th century inhumation from Great Chesterford, Essex, UK. The incomplete remains are those of a young male, aged around 21-35 years at death. The remains show osteological evidence of lepromatous leprosy (LL) and this was confirmed by lipid biomarker analysis and ancient DNA (aDNA) analysis, which provided evidence for both multi-copy and single copy loci from the Mycobacterium leprae genome. Genotyping showed the strain belonged to the 3I lineage, but the Great Chesterford isolate appeared to be ancestral to 3I strains found in later medieval cases in southern Britain and also continental Europe. While a number of contemporaneous cases exist, at present, this case of leprosy is the earliest radiocarbon dated case in Britain confirmed by both aDNA and lipid biomarkers. Importantly, Strontium and Oxygen isotope analysis suggest that the individual is likely to have originated from outside Britain. This potentially sheds light on the origins of the strain in Britain and its subsequent spread to other parts of the world, including the Americas where the 3I lineage of M. leprae is still found in some southern states of America.
Harper, Kathryn A; Meiklejohn, Kelly A; Merritt, Richard T; Walker, Jessica; Fisher, Constance L; Robertson, James M
2018-02-01
Hairs are commonly submitted as evidence to forensic laboratories, but standard nuclear DNA analysis is not always possible. Mitochondria (mt) provide another source of genetic material; however, manual isolation is laborious. In a proof-of-concept study, we assessed pressure cycling technology (PCT; an automated approach that subjects samples to varying cycles of high and low pressure) for extracting mtDNA from single, short hairs without roots. Using three microscopically similar donors, we determined the ideal PCT conditions and compared those yields to those obtained using the traditional manual micro-tissue grinder method. Higher yields were recovered from grinder extracts, but yields from PCT extracts exceeded the requirements for forensic analysis, with the DNA quality confirmed through sequencing. Automated extraction of mtDNA from hairs without roots using PCT could be useful for forensic laboratories processing numerous samples.
Novel 5.712 kb mitochondrial DNA deletion in a patient with Pearson syndrome: a case report.
Park, Joonhong; Ryu, Hyejin; Jang, Woori; Chae, Hyojin; Kim, Myungshin; Kim, Yonggoo; Kim, Jiyeon; Lee, Jae Wook; Chung, Nack-Gyun; Cho, Bin; Suh, Byung Kyu
2015-05-01
Pearson marrow‑pancreas syndrome (PS) is a progressive multi‑organ disorder caused by deletions and duplications of mitochondrial DNA (mtDNA). PS is often fatal in infancy, and the majority of patients with PS succumb to the disease before reaching three‑years‑of‑age, due to septicemia, metabolic acidosis or hepatocellular insufficiency. The present report describes the case of a four‑month‑old infant with severe normocytic normochromic anemia, vacuolization of hematopoietic precursors and metabolic acidosis. After extensive clinical investigation, the patient was diagnosed with PS, which was confirmed by molecular analysis of mtDNA. The molecular analysis detected a novel large‑scale (5.712 kb) deletion spanning nucleotides 8,011 to 13,722 of mtDNA, which lacked direct repeats at the deletion boundaries. The present report is, to the best of our knowledge, the first case reported in South Korea.
Kobayashi, S; Ohgawara, T; Fujiwara, K; Oiyama, I
1991-07-01
Somatic hybrid plants were produced by protoplast fusion of navel orange and 'Murcott' tangor. Hybridity of the plants was confirmed by the restriction endonuclease analysis of nuclear ribosomal DNA. All of the plants (16 clones) were normal, uniform, and had the amphidiploid chromosome number of 36 (2n=2x=18 for each parent). The cpDNA analysis showed that each of the 16 somatic hybrids contained either one parental chloroplast genome or the other. In all cases, the mitochondrial genomes of the regenerated somatic hybrids were of the navel orange type.
Ota, Hiroyuki; Lim, Tae-Kyu; Tanaka, Tsuyoshi; Yoshino, Tomoko; Harada, Manabu; Matsunaga, Tadashi
2006-09-18
A novel, automated system, PNE-1080, equipped with eight automated pestle units and a spectrophotometer was developed for genomic DNA extraction from maize using aminosilane-modified bacterial magnetic particles (BMPs). The use of aminosilane-modified BMPs allowed highly accurate DNA recovery. The (A(260)-A(320)):(A(280)-A(320)) ratio of the extracted DNA was 1.9+/-0.1. The DNA quality was sufficiently pure for PCR analysis. The PNE-1080 offered rapid assay completion (30 min) with high accuracy. Furthermore, the results of real-time PCR confirmed that our proposed method permitted the accurate determination of genetically modified DNA composition and correlated well with results obtained by conventional cetyltrimethylammonium bromide (CTAB)-based methods.
Fernandez, Lorena E.; Koivunen, Marja; Yang, April; Flor-Weiler, Lina; Marrone, Pamela G.
2013-01-01
Isolate A396, a bacterium isolated from a Japanese soil sample demonstrated strong insecticidal and miticidal activities in laboratory bioassays. The isolate was characterized through biochemical methods, fatty acid methyl ester (FAME) analysis, sequencing of 16S rRNA, multilocus sequence typing and analysis, and DNA-DNA hybridization. FAME analysis matched A396 to Burkholderia cenocepacia, but this result was not confirmed by 16S rRNA or DNA-DNA hybridization. 16S rRNA sequencing indicated closest matches with B. glumae and B. plantarii. DNA-DNA hybridization experiments with B. plantarii, B. glumae, B. multivorans, and B. cenocepacia confirmed the low genetic similarity (11.5 to 37.4%) with known members of the genus. PCR-based screening showed that A396 lacks markers associated with members of the B. cepacia complex. Bioassay results indicated two mechanisms of action: through ingestion and contact. The isolate effectively controlled beet armyworms (Spodoptera exigua; BAW) and two-spotted spider mites (Tetranychus urticae; TSSM). In diet overlay bioassays with BAW, 1% to 4% (vol/vol) dilution of the whole-cell broth caused 97% to 100% mortality 4 days postexposure, and leaf disc treatment bioassays attained 75% ± 22% mortality 3 days postexposure. Contact bioassays led to 50% larval mortality, as well as discoloration, stunting, and failure to molt. TSSM mortality reached 93% in treated leaf discs. Activity was maintained in cell-free supernatants and after heat treatment (60°C for 2 h), indicating that a secondary metabolite or excreted thermostable enzyme might be responsible for the activity. Based on these results, we describe the novel species Burkholderia rinojensis, a good candidate for the development of a biocontrol product against insect and mite pests. PMID:24096416
Date, Abhijit A; Srivastava, Deepika; Nagarsenker, Mangal S; Mulherkar, Rita; Panicker, Lata; Aswal, Vinod; Hassan, Puthusserickal A; Steiniger, Frank; Thamm, Jana; Fahr, Alfred
2011-10-01
In the present investigation, the feasibility of fabricating novel self-assembled cationic nanocarriers (LeciPlex) containing cetyltrimethylammonium bromide (CTAB) or didodecyldimethylammonium bromide (DDAB) and soybean lecithin using pharmaceutically acceptable biocompatible solvents such as 2-Pyrrolidone (Soluphor P) and diethyleneglycol monoethyl ether (Transcutol) was established. The interaction between DDAB/CTAB and soybean lecithin in the nanocarriers was confirmed by differential scanning calorimetry and in vitro antimicrobial studies. The positive charge on the nanocarriers was confirmed by zeta potential analysis. Transmission electron microscopy analysis could not reveal sufficient information regarding the internal structure of the nanocarriers, whereas cryotransmission electron microscopy studies indicated that these novel nanocarriers have unilamellar structure. Small-angle neutron scattering studies confirmed interaction of cationic surfactant (DDAB) and lecithin in the nanocarriers and confirmed the presence of unilamellar nanostructures. Various hydrophobic drugs could be encapsulated in the CTAB/DDAB-based lecithin nanocarriers (CTAB-LeciPlex or DDAB-LeciPlex) irrespective of their difference in log p-values. In vitro antimicrobial studies on triclosan-loaded LeciPlex confirmed entrapment of triclosan in the nanocarriers. The ability of CTAB-LeciPlex and DDAB-LeciPlex to condense plasmid DNA was established using agarose gel electrophoresis. DDAB-LeciPlex could successfully transfect pDNA in HEK-293 cells indicating potential in gene delivery.
Hemoglobin Wayne Trait with Incidental Polycythemia.
Ambelil, Manju; Nguyen, Nghia; Dasgupta, Amitava; Risin, Semyon; Wahed, Amer
2017-01-01
Hemoglobinopathies, caused by mutations in the globin genes, are one of the most common inherited disorders. Many of the hemoglobin variants can be identified by hemoglobin analysis using conventional electrophoresis and high performance liquid chromatography; however hemoglobin DNA analysis may be necessary in other cases for confirmation. Here, we report a case of a rare alpha chain hemoglobin variant, hemoglobin Wayne, in a 47-year-old man who presented with secondary polycythemia. Capillary zone electrophoresis and high performance liquid chromatography revealed a significant amount of a hemoglobin variant, which was further confirmed by hemoglobin DNA sequencing as hemoglobin Wayne. Since the patient was not homozygous for hemoglobin Wayne, which is associated with secondary polycythemia, the laboratory diagnosis in this case was critical in ruling out hemoglobinopathy as the etiology of his polycythemia. © 2017 by the Association of Clinical Scientists, Inc.
Surveyor nuclease detection of mutations and polymorphisms of mtDNA in children.
Pilch, Jacek; Asman, Marek; Jamroz, Ewa; Kajor, Maciej; Kotrys-Puchalska, Elżbieta; Goss, Małgorzata; Krzak, Maria; Witecka, Joanna; Gmiński, Jan; Sieroń, Aleksander L
2010-11-01
Mitochondrial encephalomyopathies are complex disorders with wide range of clinical manifestations. Particularly time-consuming is the identification of mutations in mitochondrial DNA. A group of 20 children with clinical manifestations of mitochondrial encephalomyopathies was selected for molecular studies. The aims were (a) to identify mutations in mtDNA isolated from muscle and (b) to verify detected mutations in DNA isolated from blood, in order to assess the utility of a Surveyor nuclease assay kit for patient screening. The most common changes found were polymorphisms, including a few missense mutations altering the amino acid sequence of mitochondrial proteins. In two boys with MELAS (i.e., mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes), a mutation A→G3243 was detected in the tRNALeu gene of mtDNA isolated from muscle and blood. In one boy, the carrier status of his mother was confirmed, based on molecular analysis of DNA isolated from blood. A method using Surveyor nuclease allows systematic screening for small mutations in mtDNA, using as its source blood of the patients and asymptomatic carriers. The method still requires confirmation studying a larger group. In some patients, the use of this method should precede and might limit indications for traumatic muscle and skin biopsy. Copyright © 2010 Elsevier Inc. All rights reserved.
Positive cell-free fetal DNA testing for trisomy 13 reveals confined placental mosaicism.
Hall, April L; Drendel, Holli M; Verbrugge, Jennifer L; Reese, Angela M; Schumacher, Katherine L; Griffith, Christopher B; Weaver, David D; Abernathy, Mary P; Litton, Christian G; Vance, Gail H
2013-09-01
We report on a case in which cell-free fetal DNA was positive for trisomy 13 most likely due to confined placental mosaicism. Cell-free fetal DNA testing analyzes DNA derived from placental trophoblast cells and can lead to incorrect results that are not representative of the fetus. We sought to confirm commercial cell-free fetal DNA testing results by chorionic villus sampling and amniocentesis. These results were followed up by postnatal chromosome analysis of cord blood and placental tissue. First-trimester cell-free fetal DNA test results were positive for trisomy 13. Cytogenetic analysis of chorionic villus sampling yielded a mosaic karyotype of 47,XY,+13[10]/46,XY[12]. G-banded analysis of amniotic fluid was normal, 46,XY. Postnatal cytogenetic analysis of cord blood was normal. Karyotyping of tissues from four quadrants of the placenta demonstrated mosaicism for trisomy 13 in two of the quadrants and a normal karyotype in the other two. Our case illustrates several important aspects of this new testing methodology: that cell-free fetal DNA may not be representative of the fetal karyotype; that follow-up with diagnostic testing of chorionic villus sampling and/or amniotic fluid for abnormal test results should be performed; and that pretest counseling regarding the full benefits, limitations, and possible testing outcomes of cell-free fetal DNA screening is important.
A DNA enzyme with N-glycosylase activity
NASA Technical Reports Server (NTRS)
Sheppard, T. L.; Ordoukhanian, P.; Joyce, G. F.
2000-01-01
In vitro evolution was used to develop a DNA enzyme that catalyzes the site-specific depurination of DNA with a catalytic rate enhancement of about 10(6)-fold. The reaction involves hydrolysis of the N-glycosidic bond of a particular deoxyguanosine residue, leading to DNA strand scission at the apurinic site. The DNA enzyme contains 93 nucleotides and is structurally complex. It has an absolute requirement for a divalent metal cation and exhibits optimal activity at about pH 5. The mechanism of the reaction was confirmed by analysis of the cleavage products by using HPLC and mass spectrometry. The isolation and characterization of an N-glycosylase DNA enzyme demonstrates that single-stranded DNA, like RNA and proteins, can form a complex tertiary structure and catalyze a difficult biochemical transformation. This DNA enzyme provides a new approach for the site-specific cleavage of DNA molecules.
Han, Daehoon; Hong, Jinkee; Kim, Hyun Cheol; Sung, Jong Hwan; Lee, Jong Bum
2013-11-01
Many highly sensitive protein detection techniques have been developed and have played an important role in the analysis of proteins. Herein, we report a novel technique that can detect proteins sensitively and effectively using aptamer-based DNA nanostructures. Thrombin was used as a target protein and aptamer was used to capture fluorescent dye-labeled DNA nanobarcodes or thrombin on a microsphere. The captured DNA nanobarcodes were replaced by a thrombin and aptamer interaction. The detection ability of this approach was confirmed by flow cytometry with different concentrations of thrombin. Our detection method has great potential for rapid and simple protein detection with a variety of aptamers.
Zhou, Jia; Sears, Renee L; Xing, Xiaoyun; Zhang, Bo; Li, Daofeng; Rockweiler, Nicole B; Jang, Hyo Sik; Choudhary, Mayank N K; Lee, Hyung Joo; Lowdon, Rebecca F; Arand, Jason; Tabers, Brianne; Gu, C Charles; Cicero, Theodore J; Wang, Ting
2017-09-12
Uncovering mechanisms of epigenome evolution is an essential step towards understanding the evolution of different cellular phenotypes. While studies have confirmed DNA methylation as a conserved epigenetic mechanism in mammalian development, little is known about the conservation of tissue-specific genome-wide DNA methylation patterns. Using a comparative epigenomics approach, we identified and compared the tissue-specific DNA methylation patterns of rat against those of mouse and human across three shared tissue types. We confirmed that tissue-specific differentially methylated regions are strongly associated with tissue-specific regulatory elements. Comparisons between species revealed that at a minimum 11-37% of tissue-specific DNA methylation patterns are conserved, a phenomenon that we define as epigenetic conservation. Conserved DNA methylation is accompanied by conservation of other epigenetic marks including histone modifications. Although a significant amount of locus-specific methylation is epigenetically conserved, the majority of tissue-specific DNA methylation is not conserved across the species and tissue types that we investigated. Examination of the genetic underpinning of epigenetic conservation suggests that primary sequence conservation is a driving force behind epigenetic conservation. In contrast, evolutionary dynamics of tissue-specific DNA methylation are best explained by the maintenance or turnover of binding sites for important transcription factors. Our study extends the limited literature of comparative epigenomics and suggests a new paradigm for epigenetic conservation without genetic conservation through analysis of transcription factor binding sites.
Genome-Wide Requirements for Resistance to Functionally Distinct DNA-Damaging Agents
Proctor, Michael; Flaherty, Patrick; Jordan, Michael I; Arkin, Adam P; Davis, Ronald W; Nislow, Corey; Giaever, Guri
2005-01-01
The mechanistic and therapeutic differences in the cellular response to DNA-damaging compounds are not completely understood, despite intense study. To expand our knowledge of DNA damage, we assayed the effects of 12 closely related DNA-damaging agents on the complete pool of ~4,700 barcoded homozygous deletion strains of Saccharomyces cerevisiae. In our protocol, deletion strains are pooled together and grown competitively in the presence of compound. Relative strain sensitivity is determined by hybridization of PCR-amplified barcodes to an oligonucleotide array carrying the barcode complements. These screens identified genes in well-characterized DNA-damage-response pathways as well as genes whose role in the DNA-damage response had not been previously established. High-throughput individual growth analysis was used to independently confirm microarray results. Each compound produced a unique genome-wide profile. Analysis of these data allowed us to determine the relative importance of DNA-repair modules for resistance to each of the 12 profiled compounds. Clustering the data for 12 distinct compounds uncovered both known and novel functional interactions that comprise the DNA-damage response and allowed us to define the genetic determinants required for repair of interstrand cross-links. Further genetic analysis allowed determination of epistasis for one of these functional groups. PMID:16121259
de Souza Godinho, Fernanda Marques; Bock, Hugo; Gheno, Tailise Conte; Saraiva-Pereira, Maria Luiza
2012-12-01
Spinal muscular atrophy (SMA) is an autosomal recessive inherited disorder caused by alterations in the survival motor neuron I (SMN1) gene. SMA patients are classified as type I-IV based on severity of symptoms and age of onset. About 95% of SMA cases are caused by the homozygous absence of SMN1 due to gene deletion or conversion into SMN2. PCR-based methods have been widely used in genetic testing for SMA. In this work, we introduce a new approach based on TaqMan(®)real-time PCR for research and diagnostic settings. DNA samples from 100 individuals with clinical signs and symptoms suggestive of SMA were analyzed. Mutant DNA samples as well as controls were confirmed by DNA sequencing. We detected 58 SMA cases (58.0%) by showing deletion of SMN1 exon 7. Considering clinical information available from 56 of them, the patient distribution was 26 (46.4%) SMA type I, 16 (28.6%) SMA type II and 14 (25.0%) SMA type III. Results generated by the new method was confirmed by PCR-RFLP and by DNA sequencing when required. In conclusion, a protocol based on real-time PCR was shown to be effective and specific for molecular analysis of SMA patients.
De Lima Júnior, Nelson Correia; Baptista Gibertone, Tatiana; Malosso, Elaine
2014-09-01
Ganoderma includes species of great economic and ecological importance, but taxonomists judge the current nomenclatural situation as chaotic and poorly studied in the neotropics. From this perspective, phylogenetic analyses inferred from ribosomal DNA sequences have aided the clarification of the genus status. In this study, 14 specimens of Ganoderma and two of Tomophagus collected in Brazil were used for DNA extraction, amplification and sequencing of the ITS and LSU regions (rDNA). The phylogenetic delimitation of six neotropical taxa (G. chalceum, G. multiplicatum, G. orbiforme, G. parvulum, G. aff. oerstedtii and Tomophagus colossus) was determined based on these Brazilian specimens and found to be distinct from the laccate Ganoderma from Asia, Europe, North America and from some specimens from Argentina. Phylogenetic reconstructions confirmed that the laccate Ganoderna is distinct from Tomophagus, although they belong to the same group. The use of taxonomic synonyms Ganoderma subamboinense for G. multiplicatumnz, G. boninense for G. orbiforme and G. chalceum for G. cupreum was not confirmed. However, Ganoderma parvulum was confirmed as the correct name for specimens called G. stipitatu. Furthermore, the name G. hucidumn should be used only for European species. The use of valid published names is proposed according to the specimen geographical distribution, their morphological characteristics and rDNA analysis. 1208. Epub 2014 September 01.
Origin and quantification of circulating DNA in mice with human colorectal cancer xenografts
Thierry, Alain R.; Mouliere, Florent; Gongora, Celine; Ollier, Jeremy; Robert, Bruno; Ychou, Marc; Del Rio, Maguy; Molina, Franck
2010-01-01
Although circulating DNA (ctDNA) could be an attractive tool for early cancer detection, diagnosis, prognosis, monitoring or prediction of response to therapies, knowledge on its origin, form and rate of release is poor and often contradictory. Here, we describe an experimental system to systematically examine these aspects. Nude mice were xenografted with human HT29 or SW620 colorectal carcinoma (CRC) cells and ctDNA was analyzed by Q–PCR with highly specific and sensitive primer sets at different times post-graft. We could discriminate ctDNA from normal (murine) cells and from mutated and non-mutated tumor (human) cells by using species-specific KRAS or PSAT1 primers and by assessing the presence of the BRAF V600E mutation. The concentration of human (mutated and non-mutated) ctDNA increased significantly with tumor growth. Conversely, and differently from previous studies, low, constant level of mouse ctDNA was observed, thus facilitating the study of mutated and non-mutated tumor derived ctDNA. Finally, analysis of ctDNA fragmentation confirmed the predominance of low-size fragments among tumor ctDNA from mice with bigger tumors. Higher ctDNA fragmentation was also observed in plasma samples from three metastatic CRC patients in comparison to healthy individuals. Our data confirm the predominance of mononucleosome-derived fragments in plasma from xenografted animals and, as a consequence, of apoptosis as a source of ctDNA, in particular for tumor-derived ctDNA. Altogether, our results suggest that ctDNA features vary during CRC tumor development and our experimental system might be a useful tool to follow such variations. PMID:20494973
Six consecutive false positive cases from cell-free fetal DNA testing in a single referring centre
Dugo, Nella; Padula, Francesco; Mobili, Luisa; Brizzi, Cristiana; D’Emidio, Laura; Cignini, Pietro; Mesoraca, Alvaro; Bizzoco, Domenico; Cima, Antonella; Giorlandino, Claudio
2014-01-01
Introduction recent studies have proposed the introduction of cell-free fetal DNA testing (NIPT-Non Invasive Prenatal Testing) in routine clinical practice emphasizing its high sensibility and specificity. In any case, false positive and false negative findings may result from placental mosaicism, because cell-free fetal DNA originates mainly from placenta. Case we report six cases of women who underwent chorionic villus sampling (CVS) or amniocentesis to confirm the results from NIPT: two Turner syndromes, two Triple X, one Patau syndrome, one Edward syndrome. Results using classic cytogenetic analysis and, also, Array - Comparative Genomic Hybridization (Array CGH) the karyotype of all 5 fetuses was found to be normal. Conclusion results from NIPT must always be confirmed by invasive prenatal diagnosis. It is mandatory to inform the patient that the CVS and amniocentesis still represent the only form of prenatal diagnostic test available. PMID:25332757
Kavetska, Katarzyna M; Polasik, Daniel; Dzierzba, Emil; Jędrzejczak, Małgorzata; Kalisińska, Elżbieta; Rząd, Izabella
2015-01-01
The aim of the work is to confirm the species differentiation of the nematodes of the Amidostomatidae family: Amidostomoides acutum (Lundahl, 1848) Lomakin, 1991; Amidostomoides monodon (Linstow, 1882) Lomakin, 1991, and Amidostomoides petrovi (Shakhtahtinskaya, 1956) Lomakin, 1991, which still are used in the parasitological literature as synonyms of Amidostomum acutum (Lundahl, 1848). The research material consisted of nematodes isolated from gizzards of dabbling ducks from the north-west of Poland. To confirm the species differentiation, DNA from the nematodes was isolated and approximately 630bp of the 28S rRNA gene were sequenced. The obtained DNA sequences were tabulated and then phylogenetic analysis were conducted using the UPGMA method. The results of the research distinctly diversify the nematodes of the genus Amidostomoides at the DNA level, which together with morphological and ecological differences among them (hosts from different systematic groups) enables to classify them into the separate species.
Lactobacillus nantensis sp. nov., isolated from French wheat sourdough.
Valcheva, Rosica; Ferchichi, Mounir F; Korakli, Maher; Ivanova, Iskra; Gänzle, Michael G; Vogel, Rudi F; Prévost, Hervé; Onno, Bernard; Dousset, Xavier
2006-03-01
A polyphasic taxonomic study of the bacterial flora isolated from traditional French wheat sourdough, using phenotypic characterization and phylogenetic as well as genetic methods, revealed a consistent group of isolates that could not be assigned to any recognized species. These results were confirmed by randomly amplified polymorphic DNA and amplified fragment length polymorphism fingerprinting analyses. Cells were Gram-positive, homofermentative rods. Comparative 16S rRNA gene sequence analysis of the representative strain LP33T indicated that these strains belong to the genus Lactobacillus and that they formed a branch distinct from their closest relatives Lactobacillus farciminis, Lactobacillus alimentarius, Lactobacillus paralimentarius and Lactobacillus mindensis. DNA-DNA reassociation experiments with the three phylogenetically closest Lactobacillus species confirmed that LP33T (= DSM 16982T = CIP 108546T = TMW 1.1265T) represents the type strain of a novel species, for which the name Lactobacillus nantensis sp. nov. is proposed.
Diagnosis of Lung Cancer by Fractal Analysis of Damaged DNA
Namazi, Hamidreza; Kiminezhadmalaie, Mona
2015-01-01
Cancer starts when cells in a part of the body start to grow out of control. In fact cells become cancer cells because of DNA damage. A DNA walk of a genome represents how the frequency of each nucleotide of a pairing nucleotide couple changes locally. In this research in order to study the cancer genes, DNA walk plots of genomes of patients with lung cancer were generated using a program written in MATLAB language. The data so obtained was checked for fractal property by computing the fractal dimension using a program written in MATLAB. Also, the correlation of damaged DNA was studied using the Hurst exponent measure. We have found that the damaged DNA sequences are exhibiting higher degree of fractality and less correlation compared with normal DNA sequences. So we confirmed this method can be used for early detection of lung cancer. The method introduced in this research not only is useful for diagnosis of lung cancer but also can be applied for detection and growth analysis of different types of cancers. PMID:26539245
Yu, Mei-Ying W; Alter, Harvey J; Virata-Theimer, Maria Luisa A; Geng, Yansheng; Ma, Li; Schechterly, Cathy A; Colvin, Camilla A; Luban, Naomi L C
2010-08-01
Extremely high viremic levels of parvovirus B19 (B19V) can be found in acutely infected, but asymptomatic donors. However, reports of transmission by single-donor blood components are rare. In this prospective study, paired donor-recipient samples were used to investigate the transfusion risk. Posttransfusion plasma or blood samples from recipients were tested for B19V DNA by polymerase chain reaction, generally at 4 and 8 weeks, and for anti-B19V immunoglobulin (Ig)G by enzyme immunoassay, at 12 and 24 weeks. To rule out infection unrelated to transfusion, pretransfusion samples and linked donor's samples for each B19V DNA-positive recipient were assayed for B19V DNA and anti-B19V IgG and IgM. To confirm transmission, sequencing and phylogenetic analysis were performed. A total of 14 of 869 (1.6%) recipients were B19V DNA positive, but only 1 of 869 (0.12%; 95% confidence interval, 0.0029%-0.6409%) was negative for B19V DNA and anti-B19V IgG before transfusion and seroconverted posttransfusion. This newly infected patient received 5 × 10(10) IU B19V DNA in one red blood cell (RBC) unit from an acutely infected anti-B19V-negative donor in addition to RBCs from three other donors that cumulatively contained 1320 IU of anti-B19V IgG. DNA sequencing and phylogenetic analysis showed that sequences from the linked donor and recipient were identical (Genotype 1), thus establishing transfusion transmission. The 0.12% transmission rate documented here, although low, could nonetheless result in hundreds or thousands of infections annually in the United States based on calculated confidence limits. Although most would be asymptomatic, some could have severe clinical outcomes, especially in neonates and those with immunocompromised or hemolytic states. © 2010 American Association of Blood Banks.
Chitty, L S; Griffin, D R; Meaney, C; Barrett, A; Khalil, A; Pajkrt, E; Cole, T J
2011-03-01
To improve the prenatal diagnosis of achondroplasia by constructing charts of fetal size, defining frequency of sonographic features and exploring the role of non-invasive molecular diagnosis based on cell-free fetal deoxyribonucleic acid (DNA) in maternal plasma. Data on fetuses with a confirmed diagnosis of achondroplasia were obtained from our databases, records reviewed, sonographic features and measurements determined and charts of fetal size constructed using the LMS (lambda-mu-sigma) method and compared with charts used in normal pregnancies. Cases referred to our regional genetics laboratory for molecular diagnosis using cell-free fetal DNA were identified and results reviewed. Twenty-six cases were scanned in our unit. Fetal size charts showed that femur length was usually on or below the 3(rd) centile by 25 weeks' gestation, and always below the 3(rd) by 30 weeks. Head circumference was above the 50(th) centile, increasing to above the 95(th) when compared with normal for the majority of fetuses. The abdominal circumference was also increased but to a lesser extent. Commonly reported sonographic features were bowing of the femora, frontal bossing, short fingers, a small chest and polyhydramnios. Analysis of cell-free fetal DNA in six pregnancies confirmed the presence of the c.1138G > A mutation in the FGRF3 gene in four cases with achondroplasia, but not the two subsequently found to be growth restricted. These data should improve the accuracy of diagnosis of achondroplasia based on sonographic findings, and have implications for targeted molecular confirmation that can reliably and safely be carried out using cell-free fetal DNA. Copyright © 2011 ISUOG. Published by John Wiley & Sons, Ltd.
Pillay, Pavitra; Taylor, Myra; Zulu, Siphosenkosi G.; Gundersen, Svein G.; Verweij, Jaco J.; Hoekstra, Pytsje; Brienen, Eric A. T.; Kleppa, Elisabeth; Kjetland, Eyrun F.; van Lieshout, Lisette
2014-01-01
Schistosoma haematobium eggs and Schistosoma DNA levels were measured in urine samples from 708 girls recruited from 18 randomly sampled primary schools in South Africa. Microscopic analysis of two 10-mL urine subsamples collected on three consecutive days confirmed high day-to-day variation; 103 (14.5%) girls had positive results at all six examinations, and at least one positive sample was seen in 225 (31.8%) girls. Schistosoma-specific DNA, which was measured in a 200-μL urine subsample by using real-time polymerase chain reaction, was detected in 180 (25.4%) cases, and levels of DNA corresponded significantly with average urine egg excretion. In concordance with microscopic results, polymerase chain reaction results were significantly associated with history of gynecologic symptoms and confirmed highly focal distribution of urogenital schistosomiasis. Parasite-specific DNA detection has a sensitivity comparable to single urine microscopy and could be used as a standardized high-throughput procedure to assess distribution of urogenital schistosomiasis in relatively large study populations by using small sample volumes. PMID:24470560
Composition and immuno-stimulatory properties of extracellular DNA from mouse gut flora.
Qi, Ce; Li, Ya; Yu, Ren-Qiang; Zhou, Sheng-Li; Wang, Xing-Guo; Le, Guo-Wei; Jin, Qing-Zhe; Xiao, Hang; Sun, Jin
2017-11-28
To demonstrate that specific bacteria might release bacterial extracellular DNA (eDNA) to exert immunomodulatory functions in the mouse small intestine. Extracellular DNA was extracted using phosphate buffered saline with 0.5 mmol/L dithiothreitol combined with two phenol extractions. TOTO-1 iodide, a cell-impermeant and high-affinity nucleic acid stain, was used to confirm the existence of eDNA in the mucus layers of the small intestine and colon in healthy Male C57BL/6 mice. Composition difference of eDNA and intracellular DNA (iDNA) of the small intestinal mucus was studied by Illumina sequencing and terminal restriction fragment length polymorphism (T-RFLP). Stimulation of cytokine production by eDNA was studied in RAW264.7 cells in vitro . TOTO-1 iodide staining confirmed existence of eDNA in loose mucus layer of the mouse colon and thin surface mucus layer of the small intestine. Illumina sequencing analysis and T-RFLP revealed that the composition of the eDNA in the small intestinal mucus was significantly different from that of the iDNA of the small intestinal mucus bacteria. Illumina Miseq sequencing showed that the eDNA sequences came mainly from Gram-negative bacteria of Bacteroidales S24-7. By contrast, predominant bacteria of the small intestinal flora comprised Gram-positive bacteria. Both eDNA and iDNA were added to native or lipopolysaccharide-stimulated Raw267.4 macrophages, respectively. The eDNA induced significantly lower tumor necrosis factor-α/interleukin-10 (IL-10) and IL-6/IL-10 ratios than iDNA, suggesting the predominance for maintaining immune homeostasis of the gut. Our results indicated that degraded bacterial genomic DNA was mainly released by Gram-negative bacteria, especially Bacteroidales-S24-7 and Stenotrophomonas genus in gut mucus of mice. They decreased pro-inflammatory activity compared to total gut flora genomic DNA.
Hammond, Elizabeth R; McGillivray, Brent C; Wicker, Sophie M; Peek, John C; Shelling, Andrew N; Stone, Peter; Chamley, Larry W; Cree, Lynsey M
2017-01-01
To characterize nuclear and mitochondrial DNA (mtDNA) in spent culture media from normally developing blastocysts to determine whether it could be used for noninvasive genetic assessment. Prospective embryo cohort study. Academic center and private in vitro fertilization (IVF) clinic. Seventy patients undergoing intracytoplasmic sperm injection (ICSI) and 227 blastocysts. Culture media assessment, artificial blastocoele fluid collapse and DNA analysis using digital polymerase chain reaction (dPCR), long-range PCR, quantitative PCR (qPCR), and DNA fingerprinting. Presence of nuclear and mtDNA in three different commercial culture media from Vitrolife and Irvine Scientific, spent embryo media assessment at the cleavage and blastocyst stages of development, and analysis of the internal media controls for each patient that had been exposed to identical conditions as embryo media but did not come into contact with embryos. Higher levels of nuclear and mtDNA were observed in the culture media that had been exposed to embryos compared with the internal media controls. Nuclear DNA (∼4 copies) and mtDNA (∼600 copies) could be detected in spent media, and the levels increased at the blastocyst stage. No increase in DNA was detected after artificial blastocoele fluid collapse. Mixed sex chromosome DNA was detected. This originated from contamination in the culture media and from maternal (cumulus) cells. Due to the limited amount of template, the presence of embryonic nuclear DNA could not be confirmed by DNA fingerprinting analysis. Currently DNA from culture media cannot be used for genetic assessment because embryo-associated structures release DNA into the culture medium and the DNA is of mixed origin. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Geiss, K T; Abbas, G M; Makaroff, C A
1994-04-01
The mitochondrial gene coding for subunit 4 of the NADH dehydrogenase complex I (nad4) has been isolated and characterized from lettuce, Lactuca sativa. Analysis of nad4 genes in a number of plants by Southern hybridization had previously suggested that the intron content varied between species. Characterization of the lettuce gene confirms this observation. Lettuce nad4 contains two exons and one group IIA intron, whereas previously sequenced nad4 genes from turnip and wheat contain three group IIA introns. Northern analysis identified a transcript of 1600 nucleotides, which represents the mature nad4 mRNA and a primary transcript of 3200 nucleotides. Sequence analysis of lettuce and turnip nad4 cDNAs was used to confirm the intron/exon border sequences and to examine RNA editing patterns. Editing is observed at the 5' and 3' ends of the lettuce transcript, but is absent from sequences that correspond to exons two, three and the 5' end of exon four in turnip and wheat. In contrast, turnip transcripts are highly edited in this region, suggesting that homologous recombination of an edited and spliced cDNA intermediate was involved in the loss of introns two and three from an ancestral lettuce nad4 gene.
USDA-ARS?s Scientific Manuscript database
A new predator of the coffee berry borer, Hypothenemus hampei, was found in the coffee growing area of Kisii in Western Kenya. Field observations, laboratory trials and gut content analysis using molecular tools have confirmed the role of the predatory thrips Karnyothrips flavipes Jones (Phlaeothrip...
Kumar, S; Arul, L; Talwar, D
2010-01-01
We report on generation of marker-free (‘clean DNA’) transgenic rice (Oryza sativa), carrying minimal gene-expression-cassettes of the genes of interest, and evaluation of its resistance to yellow stem borer Scirpophaga incertulas (Lepidoptera: Pyralidae). The transgenic indica rice harbours a translational fusion of 2 different Bacillus thuringiensis (Bt) genes, namely cry1B-1Aa, driven by the green-tissue-specific phosphoenol pyruvate carboxylase (PEPC) promoter. Mature seed-derived calli of an elite indica rice cultivar Pusa Basmati-1 were co-bombarded with gene-expression-cassettes (clean DNA fragments) of the Bt gene and the marker hpt gene, to generate marker-free transgenic rice plants. The clean DNA fragments for bombardment were obtained by restriction digestion and gel extraction. Through biolistic transformation, 67 independent transformants were generated. Transformation frequency reached 3.3%, and 81% of the transgenic plants were co-transformants. Stable integration of the Bt gene was confirmed, and the insert copy number was determined by Southern analysis. Western analysis and ELISA revealed a high level of Bt protein expression in transgenic plants. Progeny analysis confirmed stable inheritance of the Bt gene according to the Mendelian (3:1) ratio. Insect bioassays revealed complete protection of transgenic plants from yellow stem borer infestation. PCR analysis of T2 progeny plants resulted in the recovery of up to 4% marker-free transgenic rice plants.
Navarrete, P; Espejo, R T; Romero, J
2009-04-01
Dominant bacterial microbiota of the gut of juvenile farmed Atlantic salmon was investigated using a combination of molecular approaches. Bacterial community composition from the stomach, the pyloric caeca, and the intestine was assessed by extracting DNA directly from each gut compartment. Temporal temperature gradient gel electrophoresis (TTGE) analysis of 16S ribosomal DNA (rDNA) amplicons showed very similar bacterial compositions throughout the digestive tract. Band sequencing revealed a narrow diversity of species with a dominance of Pseudomonas in the three compartments. However, cloning revealed more diversity among the Pseudomonas sequences. To confirm these results, we analyzed the bacterial community by amplifying the variable 16S-23S rDNA intergenic spacer region (ITS). Similar ITS profiles were observed among gastrointestinal compartments of salmon, confirming the TTGE results. Moreover, the dominant ITS band at 650 bp, identified as Pseudomonas, was observed in the ITS profile from fish collected in two seasons (July 2003 and 2004). In contrast, aerobic culture analysis revealed Shewanella spp. as the most prevalent isolate. This discrepancy was resolved by evaluating 16S rDNA and ITS polymerase chain reaction amplification efficiency from both Shewanella and Pseudomonas isolates. Very similar efficiencies were observed in the two bacteria. Hence, this discrepancy may be explained by preferential cultivation of Shewanella spp. under the experimental conditions. Also, we included analyses of pelleted feed and the water influent to explore environmental influences on the bacterial composition of the gut microbiota. Overall, these results indicate a homogeneous composition of the bacterial community composition along the gastrointestinal tract of reared juvenile salmon. This community is mainly composed of Pseudomonas spp., which could be derived from water influent and may be selectively associated with salmon in this hatchery.
The antiviral defense mechanisms in mandarin fish induced by DNA vaccination against a rhabdovirus.
Chen, Zhong-Yuan; Lei, Xiao-Ying; Zhang, Qi-Ya
2012-06-15
Plasmid DNAs containing Siniperca chuatsi rhabdovirus (SCRV) glycoprotein gene (pcDNA-G) and nucleoprotein gene (pcDNA-N) were constructed, and used to determine the antiviral immune response elicited by DNA vaccination in mandarin fish. In vitro and in vivo expression of the plasmid constructs was confirmed in transfected cells and muscle tissues of vaccinated fish by Western blot, indirect immunofluorescence or RT-PCR analysis. Fish injected with pcDNA-G exhibited protective effect against SCRV challenge with a relative percent survival (RPS) of 77.5%, but no significant protection (RPS of 2.5%) was observed in fish vaccinated with pcDNA-N. Immunohistochemical analysis showed that vaccination with pcDNA-G decreased histological lesions and suppressed the virus replication in fish target organs, e.g. kidney, liver, spleen, gill and heart. Transcriptional analysis further revealed that the expression levels of type I IFN system genes including interferon regulation factor-7 (IRF-7) gene, myxovirus resistance (Mx) gene and virus inhibitory protein (Viperin) gene were strongly up-regulated after injection with pcDNA-G, whereas the level of transcription of immunoglobulin M (IgM) gene did not show a statistically significant change. These results reveal that type I IFN antiviral immune response is rapidly triggered by the plasmid DNA containing rhabdovirus glycoprotein gene in fish, which offers an explanation of molecular mechanisms for DNA vaccination inducing mandarin fish resist to SCRV disease. Copyright © 2011 Elsevier B.V. All rights reserved.
Investigating the epigenetic effects of a prototype smoke-derived carcinogen in human cells.
Tommasi, Stella; Kim, Sang-in; Zhong, Xueyan; Wu, Xiwei; Pfeifer, Gerd P; Besaratinia, Ahmad
2010-05-12
Global loss of DNA methylation and locus/gene-specific gain of DNA methylation are two distinct hallmarks of carcinogenesis. Aberrant DNA methylation is implicated in smoking-related lung cancer. In this study, we have comprehensively investigated the modulation of DNA methylation consequent to chronic exposure to a prototype smoke-derived carcinogen, benzo[a]pyrene diol epoxide (B[a]PDE), in genomic regions of significance in lung cancer, in normal human cells. We have used a pulldown assay for enrichment of the CpG methylated fraction of cellular DNA combined with microarray platforms, followed by extensive validation through conventional bisulfite-based analysis. Here, we demonstrate strikingly similar patterns of DNA methylation in non-transformed B[a]PDE-treated cells vs control using high-throughput microarray-based DNA methylation profiling confirmed by conventional bisulfite-based DNA methylation analysis. The absence of aberrant DNA methylation in our model system within a timeframe that precedes cellular transformation suggests that following carcinogen exposure, other as yet unknown factors (secondary to carcinogen treatment) may help initiate global loss of DNA methylation and region-specific gain of DNA methylation, which can, in turn, contribute to lung cancer development. Unveiling the initiating events that cause aberrant DNA methylation in lung cancer has tremendous public health relevance, as it can help define future strategies for early detection and prevention of this highly lethal disease.
Investigating the Epigenetic Effects of a Prototype Smoke-Derived Carcinogen in Human Cells
Tommasi, Stella; Kim, Sang-in; Zhong, Xueyan; Wu, Xiwei; Pfeifer, Gerd P.; Besaratinia, Ahmad
2010-01-01
Global loss of DNA methylation and locus/gene-specific gain of DNA methylation are two distinct hallmarks of carcinogenesis. Aberrant DNA methylation is implicated in smoking-related lung cancer. In this study, we have comprehensively investigated the modulation of DNA methylation consequent to chronic exposure to a prototype smoke-derived carcinogen, benzo[a]pyrene diol epoxide (B[a]PDE), in genomic regions of significance in lung cancer, in normal human cells. We have used a pulldown assay for enrichment of the CpG methylated fraction of cellular DNA combined with microarray platforms, followed by extensive validation through conventional bisulfite-based analysis. Here, we demonstrate strikingly similar patterns of DNA methylation in non-transformed B[a]PDE-treated cells vs control using high-throughput microarray-based DNA methylation profiling confirmed by conventional bisulfite-based DNA methylation analysis. The absence of aberrant DNA methylation in our model system within a timeframe that precedes cellular transformation suggests that following carcinogen exposure, other as yet unknown factors (secondary to carcinogen treatment) may help initiate global loss of DNA methylation and region-specific gain of DNA methylation, which can, in turn, contribute to lung cancer development. Unveiling the initiating events that cause aberrant DNA methylation in lung cancer has tremendous public health relevance, as it can help define future strategies for early detection and prevention of this highly lethal disease. PMID:20485678
Whole-loop mitochondrial DNA D-loop sequence variability in Egyptian Arabian equine matrilines
Hudson, William
2017-01-01
Background Egyptian Arabian horses have been maintained in a state of genetic isolation for over a hundred years. There is only limited genetic proof that the studbook records of female lines of Egyptian Arabian pedigrees are reliable. This study characterized the mitochondrial DNA (mtDNA) signatures of 126 horses representing 14 matrilines in the Egyptian Agricultural Organization (EAO) horse-breeding program. Findings Analysis of the whole D-loop sequence yielded additional information compared to hypervariable region-1 (HVR1) analysis alone, with 42 polymorphic sites representing ten haplotypes compared to 16 polymorphic sites representing nine haplotypes, respectively. Most EAO haplotypes belonged to ancient haplogroups, suggesting origin from a wide geographical area over many thousands of years, although one haplotype was novel. Conclusions Historical families share haplotypes and some individuals from different strains belonged to the same haplogroup: the classical EAO strain designation is not equivalent to modern monophyletic matrilineal groups. Phylogenetic inference showed that the foundation mares of the historical haplotypes were highly likely to have the same haplotypes as the animals studied (p > 0.998 in all cases), confirming the reliability of EAO studbook records and providing the opportunity for breeders to confirm the ancestry of their horses. PMID:28859174
CdS nanowires formed by chemical synthesis using conjugated single-stranded DNA molecules
NASA Astrophysics Data System (ADS)
Sarangi, S. N.; Sahu, S. N.; Nozaki, S.
2018-03-01
CdS nanowires were successfully grown by chemical synthesis using two conjugated single-stranded (ss) DNA molecules, poly G (30) and poly C (30), as templates. During the early stage of the synthesis with the DNA molecules, the Cd 2+ interacts with Poly G and Poly C and produces the (Cd 2+)-Poly GC complex. As the growth proceeds, it results in nanowires. The structural analysis by grazing angle x-ray diffraction and transmission electron microscopy confirmed the zinc-blende CdS nanowires with the growth direction of <220>. Although the nanowires are well surface-passivated with the DNA molecules, the photoluminescence quenching was caused by the electron transfer from the nanowires to the DNA molecules. The quenching can be used to detect and label the DNAs.
Dubin, Gary; Toussaint, Jean-François; Cassart, Jean-Pol; Howe, Barbara; Boyce, Donna; Friedland, Leonard; Abu-Elyazeed, Remon; Poncelet, Sylviane; Han, Htay Htay; Debrus, Serge
2013-11-01
In January 2010, porcine circovirus type 1 (PCV1) DNA was unexpectedly detected in the oral live-attenuated human rotavirus vaccine, Rotarix (GlaxoSmithKline [GSK] Vaccines) by an academic research team investigating a novel, highly sensitive analysis not routinely used for adventitious agent screening. GSK rapidly initiated an investigation to confirm the source, nature and amount of PCV1 in the vaccine manufacturing process and to assess potential clinical implications of this finding. The investigation also considered the manufacturer's inactivated poliovirus (IPV)-containing vaccines, since poliovirus vaccine strains are propagated using the same cell line as the rotavirus vaccine strain. Results confirmed the presence of PCV1 DNA and low levels of PCV1 viral particles at all stages of the Rotarix manufacturing process. PCV type 2 DNA was not detected at any stage. When tested in human cell lines, productive PCV1 infection was not observed. There was no immunological or clinical evidence of PCV1 infection in infants who had received Rotarix in clinical trials. PCV1 DNA was not detected in the IPV-containing vaccine manufacturing process beyond the purification stage. Retrospective testing confirmed the presence of PCV1 DNA in Rotarix since the initial stages of its development and in vaccine lots used in clinical studies conducted pre- and post-licensure. The acceptable safety profile observed in clinical trials of Rotarix therefore reflects exposure to PCV1 DNA. The investigation into the presence of PCV1 in Rotarix could serve as a model for risk assessment in the event of new technologies identifying adventitious agents in the manufacturing of other vaccines and biological products.
Dubin, Gary; Toussaint, Jean-François; Cassart, Jean-Pol; Howe, Barbara; Boyce, Donna; Friedland, Leonard; Abu-Elyazeed, Remon; Poncelet, Sylviane; Han, Htay Htay; Debrus, Serge
2013-01-01
In January 2010, porcine circovirus type 1 (PCV1) DNA was unexpectedly detected in the oral live-attenuated human rotavirus vaccine, Rotarix™ (GlaxoSmithKline [GSK] Vaccines) by an academic research team investigating a novel, highly sensitive analysis not routinely used for adventitious agent screening. GSK rapidly initiated an investigation to confirm the source, nature and amount of PCV1 in the vaccine manufacturing process and to assess potential clinical implications of this finding. The investigation also considered the manufacturer’s inactivated poliovirus (IPV)-containing vaccines, since poliovirus vaccine strains are propagated using the same cell line as the rotavirus vaccine strain. Results confirmed the presence of PCV1 DNA and low levels of PCV1 viral particles at all stages of the Rotarix™ manufacturing process. PCV type 2 DNA was not detected at any stage. When tested in human cell lines, productive PCV1 infection was not observed. There was no immunological or clinical evidence of PCV1 infection in infants who had received Rotarix™ in clinical trials. PCV1 DNA was not detected in the IPV-containing vaccine manufacturing process beyond the purification stage. Retrospective testing confirmed the presence of PCV1 DNA in Rotarix™ since the initial stages of its development and in vaccine lots used in clinical studies conducted pre- and post-licensure. The acceptable safety profile observed in clinical trials of Rotarix™ therefore reflects exposure to PCV1 DNA. The investigation into the presence of PCV1 in Rotarix™ could serve as a model for risk assessment in the event of new technologies identifying adventitious agents in the manufacturing of other vaccines and biological products. PMID:24056737
2017-10-01
CRISPR Subtask 1A: i) design and produce mammalian expression plasmids encoding the Cas9 protein and specially...duration in SOW: 2017 Q4 – 2018 Q1 Subtask 2A: i) produce mouse myocyte cell lines that have undergone gene disruption via a technique named CRISPR ii...named CRISPR ii) confirm gene disruption and GFP expression iii) select multiple individual clones characterized with quantitative gene
DNA-based cryptographic methods for data hiding in DNA media.
Marwan, Samiha; Shawish, Ahmed; Nagaty, Khaled
2016-12-01
Information security can be achieved using cryptography, steganography or a combination of them, where data is firstly encrypted using any of the available cryptography techniques and then hid into any hiding medium. Recently, the famous genomic DNA has been introduced as a hiding medium, known as DNA steganography, due to its notable ability to hide huge data sets with a high level of randomness and hence security. Despite the numerous cryptography techniques, to our knowledge only the vigenere cipher and the DNA-based playfair cipher have been combined with the DNA steganography, which keeps space for investigation of other techniques and coming up with new improvements. This paper presents a comprehensive analysis between the DNA-based playfair, vigenere, RSA and the AES ciphers, each combined with a DNA hiding technique. The conducted analysis reports the performance diversity of each combined technique in terms of security, speed, hiding capacity in addition to both key size and data size. Moreover, this paper proposes a modification of the current combined DNA-based playfair cipher technique, which makes it not only simple and fast but also provides a significantly higher hiding capacity and security. The conducted extensive experimental studies confirm such outstanding performance in comparison with all the discussed combined techniques. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Dalmasso, Marion; Bolocan, Andrei Sorin; Hernandez, Marta; Kapetanakou, Anastasia E; Kuchta, Tomáš; Manios, Stavros G; Melero, Beatriz; Minarovičová, Jana; Muhterem, Meryem; Nicolau, Anca Ioana; Rovira, Jordi; Skandamis, Panagiotis N; Stessl, Beatrix; Wagner, Martin; Jordan, Kieran; Rodríguez-Lázaro, David
2014-03-01
Analysis for Listeria monocytogenes by ISO11290-1 is time-consuming, entailing two enrichment steps and subsequent plating on agar plates, taking five days without isolate confirmation. The aim of this study was to determine if a polymerase chain reaction (PCR) assay could be used for analysis of the first and second enrichment broths, saving four or two days, respectively. In a comprehensive approach involving six European laboratories, PCR and traditional plating of both enrichment broths from the ISO11290-1 method were compared for the detection of L. monocytogenes in 872 food, raw material and processing environment samples from 13 different dairy and meat food chains. After the first and second enrichments, total DNA was extracted from the enriched cultures and analysed for the presence of L. monocytogenes DNA by PCR. DNA extraction by chaotropic solid-phase extraction (spin column-based silica) combined with real-time PCR (RTi-PCR) was required as it was shown that crude DNA extraction applying sonication lysis and boiling followed by traditional gel-based PCR resulted in fewer positive results than plating. The RTi-PCR results were compared to plating, as defined by the ISO11290-1 method. For first and second enrichments, 90% of the samples gave the same results by RTi-PCR and plating, whatever the RTi-PCR method used. For the samples that gave different results, plating was significantly more accurate for detection of positive samples than RTi-PCR from the first enrichment, but RTi-PCR detected a greater number of positive samples than plating from the second enrichment, regardless of the RTi-PCR method used. RTi-PCR was more accurate for non-food contact surface and food contact surface samples than for food and raw material samples especially from the first enrichment, probably because of sample matrix interference. Even though RTi-PCR analysis of the first enrichment showed less positive results than plating, in outbreak scenarios where a rapid result is required, RTi-PCR could be an efficient way to get a preliminary result to be then confirmed by plating. Using DNA extraction from the second enrichment broth followed by RTi-PCR was reliable and a confirmed result could be obtained in three days, as against seven days by ISO11290-1. Copyright © 2014 Elsevier B.V. All rights reserved.
First report of Rickettsia raoultii and R. slovaca in Melophagus ovinus, the sheep ked.
Liu, Dan; Wang, Yuan-Zhi; Zhang, Huan; Liu, Zhi-Qiang; Wureli, Ha-Zi; Wang, Shi-Wei; Tu, Chang-Chun; Chen, Chuang-Fu
2016-11-25
Melophagus ovinus (Diptera: Hippoboscidae), a hematophagous ectoparasite, is mainly found in Europe, Northwestern Africa, and Asia. This wingless fly infests sheep, rabbits, and red foxes, and causes inflammation, wool loss and skin damage. Furthermore, this parasite has been shown to transmit diseases, and plays a role as a vector. Herein, we investigated the presence of various Rickettsia species in M. ovinus. In this study, a total of 95 sheep keds were collected in Kuqa County and Alaer City southern region of Xinjiang Uygur Autonomous Region, northwestern China. First, collected sheep keds were identified on the species level using morphological keys and molecular methods based on a fragment of the 18S ribosomal DNA gene (18S rDNA). Thereafter, to assess the presence of rickettsial DNA in sheep keds, the DNA of individual samples was screened by PCR based on six Rickettsia-specific gene fragments originating from six genes: the 17-kilodalton antigen gene (17-kDa), 16S rRNA gene (rrs), surface cell antigen 4 gene (sca4), citrate synthase gene (gltA), and outer membrane protein A and B genes (ompA and ompB). The amplified products were confirmed by sequencing and BLAST analysis ( https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome ). According to its morphology and results of molecular analysis, the species was identified as Melophagus ovinus, with 100% identity to M. ovinus from St. Kilda, Australia (FN666411). DNA of Rickettsia spp. were found in 12 M. ovinus samples (12.63%, 12/95). Rickettsia raoultii and R. slovaca were confirmed based on phylogenetic analysis, although the genetic markers of these two rickettsial agents amplified in this study showed molecular diversity. This is the first report of R. raoultii and R. slovaca DNA in M. ovinus. Rickettsia slovaca was found for the first time around the Taklimakan Desert located in China. This finding extends the geographical range of spotted fever group rickettsiae.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choy, F.Y.M.; Wei, C.; Applegarth, D.A.
1994-06-01
Gaucher disease is the most frequent lysosomal lipid storage disease. It results from deficient glucocerebrosidase activity and is transmitted as an autosomal recessive trait. Three clinical forms of Gaucher disease have been described: type 1, non-neuronopathic; type 2, acute neuronopathic; and type 3, subacute neuronopathic. We have sequenced the full length cDNA of the glucocerebrosidase gene and identified an uncommon mutation in nucleotide position 1604 (genoma DNA nucleotide position 6683) from a Gaucher disease patient of Jewish-Polish-Russian descent with type 1 Gaucher disease. It is a G{yields}A transition in exon 11 that results in {sup 496}Arg{yields}{sup 496}His of glucocerebrosidase. Thismore » missense mutation is present in the heterozygous form and creates a new cleavage site for the endonuclease HphI. We have developed a simple method to detect the presence of this mutation by using HphI restriction fragment length polymorphism analysis of glucocerebrosidase genomic DNA or cDNA. The mutation in the other Gaucher allele of this patient is an A{yields}G transition at cDNA nucleotide position 1226 which creates an XhoI cleavage site after PCR mismatch amplification. The presence of this mutation was also confirmed by sequence analysis. Based on previous reports that mutation 1226 is present only in type 1 Gaucher disease and the observation that there is no neurological involvement in this patient, we conclude that our patient with the 1226/1604 genotype is diagnosed as having type 1 Gaucher disease. Since it was also postulated that mutation 1226 in the homozygous form will usually result in a good prognosis, we speculate that the orthopedic complications and the unusual presence of glomerulosclerosis in this patient may be attributable to the mutation at nucleotide 1604. This speculation will require a description of more patients with this mutation for confirmation. 32 refs., 5 figs.« less
Gonçalves, R B; Väisänen, M L; Van Steenbergen, T J; Sundqvist, G; Mouton, C
1999-01-01
Genomic fingerprints from the DNA of 27 strains of Porphyromonas endodontalis from diverse clinical and geographic origins were generated as random amplified polymorphic DNA (RAPD) using the technique of PCR amplification with a single primer of arbitrary sequence. Cluster analysis of the combined RAPD data obtained with three selected 9- or 10-mer-long primers identified 25 distinct RAPD types which clustered as three main groups identifying three genogroups. Genogroups I and II included exclusively P. endodontalis isolates of oral origin, while 7/9 human intestinal strains of genogroup III which linked at a similarity level of 52% constituted the most homogeneous group in our study. Genotypic diversity within P. endodontalis, as shown by RAPD analysis, suggests that the taxon is composed of two oral genogroups and one intestinal genogroup. This hypothesis remains to be confirmed.
Epigenetic Transgenerational Actions of Vinclozolin on Promoter Regions of the Sperm Epigenome
Guerrero-Bosagna, Carlos; Settles, Matthew; Lucker, Ben; Skinner, Michael K.
2010-01-01
Previous observations have demonstrated that embryonic exposure to the endocrine disruptor vinclozolin during gonadal sex determination promotes transgenerational adult onset disease such as male infertility, kidney disease, prostate disease, immune abnormalities and tumor development. The current study investigates genome-wide promoter DNA methylation alterations in the sperm of F3 generation rats whose F0 generation mother was exposed to vinclozolin. A methylated DNA immunoprecipitation with methyl-cytosine antibody followed by a promoter tilling microarray (MeDIP-Chip) procedure was used to identify 52 different regions with statistically significant altered methylation in the sperm promoter epigenome. Mass spectrometry bisulfite analysis was used to map the CpG DNA methylation and 16 differential DNA methylation regions were confirmed, while the remainder could not be analyzed due to bisulfite technical limitations. Analysis of these validated regions identified a consensus DNA sequence (motif) that associated with 75% of the promoters. Interestingly, only 16.8% of a random set of 125 promoters contained this motif. One candidate promoter (Fam111a) was found to be due to a copy number variation (CNV) and not a methylation change, suggesting initial alterations in the germline epigenome may promote genetic abnormalities such as induced CNV in later generations. This study identifies differential DNA methylation sites in promoter regions three generations after the initial exposure and identifies common genome features present in these regions. In addition to primary epimutations, a potential indirect genetic abnormality was identified, and both are postulated to be involved in the epigenetic transgenerational inheritance observed. This study confirms that an environmental agent has the ability to induce epigenetic transgenerational changes in the sperm epigenome. PMID:20927350
Epigenetic transgenerational actions of vinclozolin on promoter regions of the sperm epigenome.
Guerrero-Bosagna, Carlos; Settles, Matthew; Lucker, Ben; Skinner, Michael K
2010-09-30
Previous observations have demonstrated that embryonic exposure to the endocrine disruptor vinclozolin during gonadal sex determination promotes transgenerational adult onset disease such as male infertility, kidney disease, prostate disease, immune abnormalities and tumor development. The current study investigates genome-wide promoter DNA methylation alterations in the sperm of F3 generation rats whose F0 generation mother was exposed to vinclozolin. A methylated DNA immunoprecipitation with methyl-cytosine antibody followed by a promoter tilling microarray (MeDIP-Chip) procedure was used to identify 52 different regions with statistically significant altered methylation in the sperm promoter epigenome. Mass spectrometry bisulfite analysis was used to map the CpG DNA methylation and 16 differential DNA methylation regions were confirmed, while the remainder could not be analyzed due to bisulfite technical limitations. Analysis of these validated regions identified a consensus DNA sequence (motif) that associated with 75% of the promoters. Interestingly, only 16.8% of a random set of 125 promoters contained this motif. One candidate promoter (Fam111a) was found to be due to a copy number variation (CNV) and not a methylation change, suggesting initial alterations in the germline epigenome may promote genetic abnormalities such as induced CNV in later generations. This study identifies differential DNA methylation sites in promoter regions three generations after the initial exposure and identifies common genome features present in these regions. In addition to primary epimutations, a potential indirect genetic abnormality was identified, and both are postulated to be involved in the epigenetic transgenerational inheritance observed. This study confirms that an environmental agent has the ability to induce epigenetic transgenerational changes in the sperm epigenome.
de Vries, Tamar I; Monroe, Glen R; van Belzen, Martine J; van der Lans, Christian A; Savelberg, Sanne Mc; Newman, William G; van Haaften, Gijs; Nievelstein, Rutger A; van Haelst, Mieke M
2016-08-01
Rubinstein-Taybi syndrome (RTS, OMIM 180849) and Filippi syndrome (FLPIS, OMIM 272440) are both rare syndromes, with multiple congenital anomalies and intellectual deficit (MCA/ID). We present a patient with intellectual deficit, short stature, bilateral syndactyly of hands and feet, broad thumbs, ocular abnormalities, and dysmorphic facial features. These clinical features suggest both RTS and FLPIS. Initial DNA analysis of DNA isolated from blood did not identify variants to confirm either of these syndrome diagnoses. Whole-exome sequencing identified a homozygous variant in C9orf173, which was novel at the time of analysis. Further Sanger sequencing analysis of FLPIS cases tested negative for CKAP2L variants did not, however, reveal any further variants. Subsequent analysis using DNA isolated from buccal mucosa revealed a mosaic variant in CREBBP. This report highlights the importance of excluding mosaic variants in patients with a strong but atypical clinical presentation of a MCA/ID syndrome if no disease-causing variants can be detected in DNA isolated from blood samples. As the striking syndactyly observed in the present case is typical for FLPIS, we suggest CREBBP analysis in saliva samples for FLPIS syndrome cases in which no causal CKAP2L variant is detected.
Yarkandi, Naeema H; El-Ghamry, Hoda A; Gaber, Mohamed
2017-06-01
A novel Schiff base ligand, (E)-1-(((1H-benzo[d]imidazol-2-yl)methylimino)methyl)naphthalen-2-ol (HL), has been designed and synthesized in addition to its metal chelates [Co(L) 2 ]·l2H 2 O, [Ni(L)Cl·(H 2 O) 2 ].5H 2 O, [Cu(L)Cl] and [Zn(L)(CH 3 COO)]. The structures of the isolated compounds have been confirmed and identified by means of different spectral and physicochemical techniques including CHN analysis, 1 H & 13 C NMR, mass spectral analysis, molar conductivity measurement, UV-Vis, infrared, magnetic moment in addition to TGA technique. The infrared spectral results ascertained that the ligand acts as monobasic tridentate binding to the metal centers via deprotonated hydroxyl oxygen, azomethine and imidazole nitrogen atoms. The UV-Vis, magnetic susceptibility and molar conductivity data implied octahedral geometry for Co(II) & Ni(II) complexes, tetrahedral for Zn(II) complex and square planar for Cu(II) complex. X-ray structural analysis of Co(II) complex 1 has been reported and discussed. Moreover, the type of interaction between the ligand & its complexes towards salmon sperm DNA (SS-DNA) has been examined by the measurement of absorption spectra and viscosity which confirmed that the ligand and its complexes interact with DNA via intercalation interaction as concluded from the values of binding constants (K b ). Copyright © 2017 Elsevier B.V. All rights reserved.
Blastocentesis: a source of DNA for preimplantation genetic testing. Results from a pilot study.
Gianaroli, Luca; Magli, M Cristina; Pomante, Alessandra; Crivello, Anna M; Cafueri, Giulia; Valerio, Marzia; Ferraretti, Anna P
2014-12-01
To investigate the presence of DNA in blastocyst fluids (BFs) and to estimate whether the chromosomal status predicted by its analysis corresponds with the ploidy condition in trophectoderm (TE) cells, the whole embryo, and that predicted by polar bodies (PBs) or blastomeres. Prospective study. In vitro fertilization unit. Seventeen couples undergoing preimplantation genetic screening with the use of array comparative genomic hybridization on PBs (n = 12) or blastomeres (n = 5). BFs and TE cells were retrieved from 51 blastocysts for separate chromosomal analysis. Presence of DNA in BFs and assessment of the corresponding chromosome condition; correlation with the results in TE cells and those predicted by the analysis done at earlier stages. DNA was detected in 39 BFs (76.5%). In 38 of 39 cases (97.4%) the ploidy condition of BFs was confirmed in TE cells, and the rate of concordance per single chromosome was 96.6% (904/936). In relation to the whole embryo, the ploidy condition corresponded in all cases with a per-chromosome concordance of 98.1%. The testing of PBs and blastomeres had 93.3% and 100% prediction of BF ploidy condition with a concordance per chromosome of 93.5% and 94%, respectively. Blastocentesis could represent an alternative source of material for chromosomal testing, because the BF is highly predictive of the embryo ploidy condition and chromosome content. Our data confirm the relevance of the oocyte and of the early-cleavage embryo in determining the ploidy condition of the resulting blastocyst. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Kanchanaketu, T; Sangduen, N; Toojinda, T; Hongtrakul, V
2012-04-13
Genetic analysis of 56 samples of Jatropha curcas L. collected from Thailand and other countries was performed using the methylation-sensitive amplification polymorphism (MSAP) technique. Nine primer combinations were used to generate MSAP fingerprints. When the data were interpreted as amplified fragment length polymorphism (AFLP) markers, 471 markers were scored. All 56 samples were classified into three major groups: γ-irradiated, non-toxic and toxic accessions. Genetic similarity among the samples was extremely high, ranging from 0.95 to 1.00, which indicated very low genetic diversity in this species. The MSAP fingerprint was further analyzed for DNA methylation polymorphisms. The results revealed differences in the DNA methylation level among the samples. However, the samples collected from saline areas and some species hybrids showed specific DNA methylation patterns. AFLP data were used, together with methylation-sensitive AFLP (MS-AFLP) data, to construct a phylogenetic tree, resulting in higher efficiency to distinguish the samples. This combined analysis separated samples previously grouped in the AFLP analysis. This analysis also distinguished some hybrids. Principal component analysis was also performed; the results confirmed the separation in the phylogenetic tree. Some polymorphic bands, involving both nucleotide and DNA methylation polymorphism, that differed between toxic and non-toxic samples were identified, cloned and sequenced. BLAST analysis of these fragments revealed differences in DNA methylation in some known genes and nucleotide polymorphism in chloroplast DNA. We conclude that MSAP is a powerful technique for the study of genetic diversity for organisms that have a narrow genetic base.
Carelli, Valerio; Achilli, Alessandro; Valentino, Maria Lucia; Rengo, Chiara; Semino, Ornella; Pala, Maria; Olivieri, Anna; Mattiazzi, Marina; Pallotti, Francesco; Carrara, Franco; Zeviani, Massimo; Leuzzi, Vincenzo; Carducci, Carla; Valle, Giorgio; Simionati, Barbara; Mendieta, Luana; Salomao, Solange; Belfort, Rubens; Sadun, Alfredo A; Torroni, Antonio
2006-04-01
The mitochondrial DNA (mtDNA) of 87 index cases with Leber hereditary optic neuropathy (LHON) sequentially diagnosed in Italy, including an extremely large Brazilian family of Italian maternal ancestry, was evaluated in detail. Only seven pairs and three triplets of identical haplotypes were observed, attesting that the large majority of the LHON mutations were due to independent mutational events. Assignment of the mutational events into haplogroups confirmed that J1 and J2 play a role in LHON expression but narrowed the association to the subclades J1c and J2b, thus suggesting that two specific combinations of amino acid changes in the cytochrome b are the cause of the mtDNA background effect and that this may occur at the level of the supercomplex formed by respiratory-chain complexes I and III. The families with identical haplotypes were genealogically reinvestigated, which led to the reconnection into extended pedigrees of three pairs of families, including the Brazilian family with its Italian counterpart. The sequencing of entire mtDNA samples from the reconnected families confirmed the genealogical reconstruction but showed that the Brazilian family was heteroplasmic at two control-region positions. The survey of the two sites in 12 of the Brazilian subjects revealed triplasmy in most cases, but there was no evidence of the tetraplasmy that would be expected in the case of mtDNA recombination.
Guissart, Claire; Debant, Vanessa; Desgeorges, Marie; Bareil, Corinne; Raynal, Caroline; Toga, Caroline; Pritchard, Victoria; Koenig, Michel; Claustres, Mireille; Vincent, Marie-Claire
2015-02-01
Analysis of circulating cell-free fetal DNA (cffDNA) in maternal plasma is very promising for early diagnosis of monogenic diseases. However, this approach is not yet available for routine use and remains technically challenging because of the low concentration of cffDNA, which is swamped by the overwhelming maternal DNA. To make clinical applications more readily accessible, we propose a new approach based on mutant enrichment with 3'-modified oligonucleotides (MEMO) PCR along with real-time PCR to selectively amplify from the maternal blood the paternally inherited fetal allele that is not present in the maternal genome. The first proof of concept of this strategy was displayed for cystic fibrosis by the accuracy of our detection of the p.Gly542* mutation used as the initial developmental model. Subsequently, a retrospective study of plasmas originating from two pregnant women carrying a fetus with private mutation confirmed the effectiveness of our method. We confirmed the presence of cffDNA in the studied samples by the identification of a tri-allelic DNA profile using a miniSTR kit. This new non-invasive prenatal diagnosis test offers numerous advantages over current methods: it is simple, cost effective, time efficient and does not require complex equipment or bioinformatics settings. Moreover, our assays for different private mutations demonstrate the viability of this approach in clinical settings for monogenic disorders.
Finster, K; Coates, J D; Liesack, W; Pfennig, N
1997-07-01
A mesophilic, acetate-oxidizing, sulfur-reducing bacterium, strain NZ27T, was isolated from anoxic mud from a freshwater sulfur spring. The cells were ovoid, motile, and gram negative. In addition to acetate, the strain oxidized pyruvate, succinate, and fumarate. Sulfur flower could be replaced by polysulfide as an electron acceptor. Ferric nitrilotriacetic acid was reduced in the presence of pyruvate; however, this reduction did not sustain growth. These phenotypic characteristics suggested that strain NZ27T is affiliated with the genus Desulfuromonas. A phylogenetic analysis based on the results of comparative 16S ribosomal DNA sequencing confirmed that strain NZ27T belongs to the Desulfuromonas cluster in the recently proposed family "Geobacteracea" in the delta subgroup of the Proteobacteria. In addition, the results of DNA-DNA hybridization studies confirmed that strain NZ27T represents a novel species. Desulfuromonas thiophila, a name tentatively used in previous publication, is the name proposed for strain NZ27T in this paper.
Finster, K.; Coates, J.D.; Liesack, W.; Pfennig, N.
1997-01-01
A mesophilic, acetate-oxidizing, sulfur-reducing bacterium, strain NZ27(T), was isolated from anoxic mud from a freshwater sulfur spring. The cells were ovoid, motile, and gram negative. In addition to acetate, the strain oxidized pyruvate, succinate, and fumarate. Sulfur flower could be replaced by polysulfide as an electron acceptor. Ferric nitrilotriacetic acid was reduced in the presence of pyruvate; however, this reduction did not sustain growth. These phenotypic characteristics suggested that strain NZ27(T) is affiliated with the genus Desulfuromonas. A phylogenetic analysis based on the results of comparative 16S ribosomal DNA sequencing confirmed that strain NZ27(T) belongs to the Desulfuromonas cluster in the recently proposed family 'Geobacteraceae' in the delta subgroup of the Proteobacteria. In addition, the results of DNA-DNA hybridization studies confirmed that strain NZ27(T) represents a novel species. Desulfuromonas thiophila, a name tentatively used in previous publications, is the name proposed for strain NZ27(T) in this paper.
Midorikawa, G E O; Pinheiro, M R R; Vidigal, B S; Arruda, M C; Costa, F F; Pappas, G J; Ribeiro, S G; Freire, F; Miller, R N G
2008-07-01
The aim of this study was to determine the genetic variability in Aspergillus flavus populations from Brazil nut and cashew and develop a polymerase chain reaction (PCR) detection method. Chomatography analysis of 48 isolates identified 36 as aflatoxigenic (75%). One hundred and forty-one DNA bands were generated with 11 random amplified polymorphic DNA (RAPD) primers and analysed via unweighted pair group analysis, using arithmetic means (UPGMA). Isolates grouped according to host, with differentiation of those from A. occidentale also according to geographical origin. Aspergillus flavus-specific PCR primers ASPITSF2 and ASPITSR3 were designed from ribosomal DNA internal transcribed spacers (ITS 1 and 2), and an internal amplification control was developed, to prevent false negative results. Specificity to only A. flavus was confirmed against DNA from additional aspergilli and other fungi. RAPD-based characterization differentiated isolates according to plant host. The PCR primer pair developed showed specificity to A. flavus, with a detection limit of 10 fg. Genetic variability observed in A. flavus isolates from two Brazilian agroecosystems suggested reproductive isolation. The PCR detection method developed for A. flavus represents progress towards multiplex PCR detection of aflatoxigenic and nonaflatoxigenic strains in Hazard Analysis Critical Control Point systems.
Gaines, C.A; Hare, M.P; Beck, S.E; Rosenbaum, H.C
2005-01-01
Right whales (genus: Eubalaena) are among the most endangered mammals, yet their taxonomy and phylogeny have been questioned. A phylogenetic hypothesis based on mitochondrial DNA (mtDNA) variation recently prompted a taxonomic revision, increasing the number of right whale species to three. We critically evaluated this hypothesis using sequence data from 13 nuclear DNA (nuDNA) loci as well as the mtDNA control region. Fixed diagnostic characters among the nuclear markers strongly support the hypothesis of three genetically distinct species, despite the lack of any diagnostic morphological characters. A phylogenetic analysis of all data produced a strict consensus cladogram with strong support at nodes that define each right whale species as well as relationships among species. Results showed very little conflict among the individual partitions as well as congruence between the mtDNA and nuDNA datasets. These data clearly demonstrate the strength of using numerous independent genetic markers during a phylogenetic analysis of closely related species. In evaluating phylogenetic support contributed by individual loci, 11 of the 14 loci provided support for at least one of the nodes of interest to this study. Only a single marker (mtDNA control region) provided support at all four nodes. A study using any single nuclear marker would have failed to support the proposed phylogeny, and a strong phylogenetic hypothesis was only revealed by the simultaneous analysis of many nuclear loci. In addition, nuDNA and mtDNA data provided complementary levels of support at nodes of different evolutionary depth indicating that the combined use of mtDNA and nuDNA data is both practical and desirable. PMID:15846869
Klegarth, A R; Sanders, S A; Gloss, A D; Lane-deGraaf, K E; Jones-Engel, L; Fuentes, A; Hollocher, H
2017-08-01
Cyclical submergence and re-emergence of the Sunda Shelf throughout the Pleistocene served as a dynamic biogeographic landscape, across which long-tailed macaques (Macaca fascicularis) have migrated and evolved. Here, we tested the integrity of the previously reported continental-insular haplotype divide reported among Y and mitochondrial DNA lineages across multiple studies. The continental-insular haplotype divide was tested by heavily sampling wild macaques from two important biogeographic regions within Sundaland: (1) Singapore, the southernmost tip of continental Asia and (2) Bali, Indonesia, the southeastern edge of the Indonesian archipelago, immediately west of Wallace's line. Y DNA was haplotyped for samples from Bali, deep within the Indonesian archipelago. Mitochondrial D-loop from both islands was analyzed against existing data using Maximum Likelihood and Bayesian approaches. We uncovered both "continental" and "insular" Y DNA haplotypes in Bali. Between Singapore and Bali we found 52 unique mitochondrial haplotypes, none of which had been previously described. Phylogenetic analyses confirmed a major haplogroup division within Singapore and identified five new Singapore subclades and two primary subclades in Bali. While we confirmed the continental-insular divide among mtDNA haplotypes, maintenance of both Y DNA haplotypes on Bali, deep within the Indonesian archipelago calls into question the mechanism by which Y DNA diversity has been maintained. It also suggests the continental-insular designation is less appropriate for Y DNA, leading us to propose geographically neutral Y haplotype designations. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Afrin, Shumaila; Rahman, Yusra; Sarwar, Tarique; Husain, Mohammed Amir; Ali, Abad; Shamsuzzaman; Tabish, Mohammad
2017-11-01
Ticlopidine is an anti-platelet drug which belongs to the thienopyridine structural family and exerts its effect by functioning as an ADP receptor inhibitor. Ticlopidine inhibits the expression of TarO gene in S. aureus and may provide protection against MRSA. Groove binding agents are known to disrupt the transcription factor DNA complex and consequently inhibit gene expression. Understanding the mechanism of interaction of ticlopidine with DNA can prove useful in the development of a rational drug designing system. At present, there is no such study on the interaction of anti-platelet drugs with nucleic acids. A series of biophysical experiments were performed to ascertain the binding mode between ticlopidine and calf thymus DNA. UV-visible and fluorescence spectroscopic experiments confirmed the formation of a complex between ticlopidine and calf thymus DNA. Moreover, the values of binding constant were found to be in the range of 103 M- 1, which is indicative of groove binding between ticlopidine and calf thymus DNA. These results were further confirmed by studying the effect of denaturation on double stranded DNA, iodide quenching, viscometric studies, thermal melting profile as well as CD spectral analysis. The thermodynamic profile of the interaction was also determined using isothermal titration calorimetric studies. The reaction was found to be endothermic and the parameters obtained were found to be consistent with those of known groove binders. In silico molecular docking studies further corroborated well with the experimental results.
The value of the first trimester ultrasound in the era of cell free DNA screening.
Rao, Rashmi R; Valderramos, Stephanie G; Silverman, Neil S; Han, Christina S; Platt, Lawrence D
2016-12-01
To describe the clinically relevant findings detected by the first trimester ultrasound (FTU) and to determine the additional value of the FTU compared to cell free DNA (cfDNA) alone. Retrospective cohort study of patients undergoing a FTU at a maternal-fetal medicine referral practice. Fetal, gynecologic, and placental findings detected by ultrasound were analyzed with available cfDNA and diagnostic testing results. A subgroup analysis of positive ultrasound findings and cfDNA results was performed to assess the additional benefit of ultrasound evaluation in FT prenatal screening. There were 1906 FTU between 1 October 2013 and 1 October 2014. CfDNA results were available for 959 (50%) patients. FTU detected: 42 fetal (2.2%), 286 gynecologic (15.0%), and 317 placental (16.6%) findings. CfDNA results were discordant with invasive testing results in 8/61 cases (13%) and with ultrasound findings in 18/42 (42%) cases. There were six false positive and two false negative cfDNA results confirmed by diagnostic testing. Subgroup analysis revealed that cfDNA as the sole method of prenatal screening in the FT would miss 95% of the fetal findings detected with ultrasound. The comprehensive FTU provides valuable clinical information about fetal and maternal anatomy that cannot be detected with cfDNA alone. © 2016 John Wiley & Sons, Ltd. © 2016 John Wiley & Sons, Ltd.
Kunin, Margarita; Dmitrieva, Natalia I; Gallazzini, Morgan; Shen, Rong-Fong; Wang, Guanghui; Burg, Maurice B; Ferraris, Joan D
2010-08-11
Hypertonicity, such as induced by high NaCl, increases the activity of the transcription factor TonEBP/OREBP whose target genes increase osmoprotective organic osmolytes and heat shock proteins. We used mass spectrometry to analyze proteins that coimmunoprecipitate with TonEBP/OREBP in order to identify ones that might contribute to its high NaCl-induced activation. We identified 20 unique peptides from Mediator of DNA Damage Checkpoint 1 (MDC1) with high probability. The identification was confirmed by Western analysis. We used small interfering RNA knockdown of MDC1 to characterize its osmotic function. Knocking down MDC1 reduces high NaCl-induced increases in TonEBP/OREBP transcriptional and transactivating activity, but has no significant effect on its nuclear localization. We confirm six previously known phosphorylation sites in MDC1, but do not find evidence that high NaCl increases phosphorylation of MDC1. It is suggestive that MDC1 acts as a DNA damage response protein since hypertonicity reversibly increases DNA breaks, and other DNA damage response proteins, like ATM, also associate with TonEBP/OREBP and contribute to its activation by hypertonicity. MDC1 associates with TonEBP/OREBP and contributes to high NaCl-induced increase of that factor's transcriptional activity.
Screening DNA chip and event-specific multiplex PCR detection methods for biotech crops.
Lee, Seong-Hun
2014-11-01
There are about 80 biotech crop events that have been approved by safety assessment in Korea. They have been controlled by genetically modified organism (GMO) and living modified organism (LMO) labeling systems. The DNA-based detection method has been used as an efficient scientific management tool. Recently, the multiplex polymerase chain reaction (PCR) and DNA chip have been developed as simultaneous detection methods for several biotech crops' events. The event-specific multiplex PCR method was developed to detect five biotech maize events: MIR604, Event 3272, LY 038, MON 88017 and DAS-59122-7. The specificity was confirmed and the sensitivity was 0.5%. The screening DNA chip was developed from four endogenous genes of soybean, maize, cotton and canola respectively along with two regulatory elements and seven genes: P35S, tNOS, pat, bar, epsps1, epsps2, pmi, cry1Ac and cry3B. The specificity was confirmed and the sensitivity was 0.5% for four crops' 12 events: one soybean, six maize, three cotton and two canola events. The multiplex PCR and DNA chip can be available for screening, gene-specific and event-specific analysis of biotech crops as efficient detection methods by saving on workload and time. © 2014 Society of Chemical Industry. © 2014 Society of Chemical Industry.
INVOLVED IN DE NOVO 2-containing complex involved in RNA-directed DNA methylation in Arabidopsis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ausin, Israel; Greenberg, Maxim V.C.; Simanshu, Dhirendra K.
2012-10-23
At least three pathways control maintenance of DNA cytosine methylation in Arabidopsis thaliana. However, the RNA-directed DNA methylation (RdDM) pathway is solely responsible for establishment of this silencing mark. We previously described INVOLVED IN DE NOVO 2 (IDN2) as being an RNA-binding RdDM component that is required for DNA methylation establishment. In this study, we describe the discovery of two partially redundant proteins that are paralogous to IDN2 and that form a stable complex with IDN2 in vivo. Null mutations in both genes, termed IDN2-LIKE 1 and IDN2-LIKE 2 (IDNL1 and IDNL2), result in a phenotype that mirrors, but doesmore » not further enhance, the idn2 mutant phenotype. Genetic analysis suggests that this complex acts in a step in the downstream portion of the RdDM pathway. We also have performed structural analysis showing that the IDN2 XS domain adopts an RNA recognition motif (RRM) fold. Finally, genome-wide DNA methylation and expression analysis confirms the placement of the IDN proteins in an RdDM pathway that affects DNA methylation and transcriptional control at many sites in the genome. Results from this study identify and describe two unique components of the RdDM machinery, adding to our understanding of DNA methylation control in the Arabidopsis genome.« less
Biosynthesis of silver nanoparticles by a Bacillus sp. of marine origin
NASA Astrophysics Data System (ADS)
Janardhanan, A.; Roshmi, T.; Varghese, Rintu T.; Soniya, E. V.; Mathew, Jyothis; Radhakrishnan, E. K.
2013-04-01
This study was aimed to explore the nanoparticle synthesizing properties of a silver resistant Bacillus sp. isolated from a marine water sample. The 16SrDNA sequence analysis of the isolate proved it as a Bacillus strain. Very interestingly, the isolate was found to have the ability to form intracellular silver nanoparticles at room temperature within 24 hours. This was confirmed by the UV-Vis absorption analysis which showed a peak at 430 nm corresponding to the plasmon absorbance of silver nanoparticles. Further characterization of the nanoparticles was carried out by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analysis. The presence of silver nanoparticles with the size less than 100 nm was confirmed. These particles were found to be extremely stable as confirmed by the TEM analysis after three months of purification. So, the current study is the demonstration of an efficient synthesis of stable silver nanoparticles by a marine Bacillus strain.
Genomic characterization reconfirms the taxonomic status of Lactobacillus parakefiri
TANIZAWA, Yasuhiro; KOBAYASHI, Hisami; KAMINUMA, Eli; SAKAMOTO, Mitsuo; OHKUMA, Moriya; NAKAMURA, Yasukazu; ARITA, Masanori; TOHNO, Masanori
2017-01-01
Whole-genome sequencing was performed for Lactobacillus parakefiri JCM 8573T to confirm its hitherto controversial taxonomic position. Here, we report its first reliable reference genome. Genome-wide metrics, such as average nucleotide identity and digital DNA-DNA hybridization, and phylogenomic analysis based on multiple genes supported its taxonomic status as a distinct species in the genus Lactobacillus. The availability of a reliable genome sequence will aid future investigations on the industrial applications of L. parakefiri in functional foods such as kefir grains. PMID:28748134
Translocation of single-stranded DNA through single-walled carbon nanotubes.
Liu, Haitao; He, Jin; Tang, Jinyao; Liu, Hao; Pang, Pei; Cao, Di; Krstic, Predrag; Joseph, Sony; Lindsay, Stuart; Nuckolls, Colin
2010-01-01
We report the fabrication of devices in which one single-walled carbon nanotube spans a barrier between two fluid reservoirs, enabling direct electrical measurement of ion transport through the tube. A fraction of the tubes pass anomalously high ionic currents. Electrophoretic transport of small single-stranded DNA oligomers through these tubes is marked by large transient increases in ion current and was confirmed by polymerase chain reaction analysis. Each current pulse contains about 10(7) charges, an enormous amplification of the translocated charge. Carbon nanotubes simplify the construction of nanopores, permit new types of electrical measurements, and may open avenues for control of DNA translocation.
Zhao, Ya-E; Xu, Ji-Ru; Hu, Li; Wu, Li-Ping; Wang, Zheng-Hang
2012-05-01
The study for the first time attempted to accomplish 18S ribosomal DNA (rDNA) complete sequence amplification and analysis for three Demodex species (Demodex folliculorum, Demodex brevis and Demodex canis) based on gDNA extraction from individual mites. The mites were treated by DNA Release Additive and Hot Start II DNA Polymerase so as to promote mite disruption and increase PCR specificity. Determination of D. folliculorum gDNA showed that the gDNA yield reached the highest at 1 mite, tending to descend with the increase of mite number. The individual mite gDNA was successfully used for 18S rDNA fragment (about 900 bp) amplification examination. The alignments of 18S rDNA complete sequences of individual mite samples and those of pooled mite samples ( ≥ 1000mites/sample) showed over 97% identities for each species, indicating that the gDNA extracted from a single individual mite was as satisfactory as that from pooled mites for PCR amplification. Further pairwise sequence analyses showed that average divergence, genetic distance, transition/transversion or phylogenetic tree could not effectively identify the three Demodex species, largely due to the differentiation in the D. canis isolates. It can be concluded that the individual Demodex mite gDNA can satisfy the molecular study of Demodex. 18S rDNA complete sequence is suitable for interfamily identification in Cheyletoidea, but whether it is suitable for intrafamily identification cannot be confirmed until the ascertainment of the types of Demodex mites parasitizing in dogs. Copyright © 2012 Elsevier Inc. All rights reserved.
Is it time to sound an alarm about false-positive cell-free DNA testing for fetal aneuploidy?
Mennuti, Michael T; Cherry, Athena M; Morrissette, Jennifer J D; Dugoff, Lorraine
2013-11-01
Testing cell-free DNA (cfDNA) in maternal blood samples has been shown to have very high sensitivity for the detection of fetal aneuploidy with very low false-positive results in high-risk patients who undergo invasive prenatal diagnosis. Recent observation in clinical practice of several cases of positive cfDNA tests for trisomy 18 and trisomy 13, which were not confirmed by cytogenetic testing of the pregnancy, may reflect a limitation of the positive predictive value of this quantitative testing, particularly when it is used to detect rare aneuploidies. Analysis of a larger number of false-positive cases is needed to evaluate whether these observations reflect the positive predictive value that should be expected. Infrequently, mechanisms (such as low percentage mosaicism or confined placental mosaicism) might also lead to positive cfDNA testing that is not concordant with standard prenatal cytogenetic diagnosis. The need to explore these and other possible causes of false-positive cfDNA testing is exemplified by 2 of these cases. Additional evaluation of cfDNA testing in clinical practice and a mechanism for the systematic reporting of false-positive and false-negative cases will be important before this test is offered widely to the general population of low-risk obstetric patients. In the meantime, incorporating information about the positive predictive value in pretest counseling and in clinical laboratory reports is recommended. These experiences reinforce the importance of offering invasive testing to confirm cfDNA results before parental decision-making. Copyright © 2013 Mosby, Inc. All rights reserved.
Rodríguez-Cortez, Virginia C.; del Pino-Molina, Lucia; Rodríguez-Ubreva, Javier; Ciudad, Laura; Gómez-Cabrero, David; Company, Carlos; Urquiza, José M.; Tegnér, Jesper; Rodríguez-Gallego, Carlos; López-Granados, Eduardo; Ballestar, Esteban
2015-01-01
Common variable immunodeficiency (CVID), the most frequent primary immunodeficiency characterized by loss of B-cell function, depends partly on genetic defects, and epigenetic changes are thought to contribute to its aetiology. Here we perform a high-throughput DNA methylation analysis of this disorder using a pair of CVID-discordant MZ twins and show predominant gain of DNA methylation in CVID B cells with respect to those from the healthy sibling in critical B lymphocyte genes, such as PIK3CD, BCL2L1, RPS6KB2, TCF3 and KCNN4. Individual analysis confirms hypermethylation of these genes. Analysis in naive, unswitched and switched memory B cells in a CVID patient cohort shows impaired ability to demethylate and upregulate these genes in transitioning from naive to memory cells in CVID. Our results not only indicate a role for epigenetic alterations in CVID but also identify relevant DNA methylation changes in B cells that could explain the clinical manifestations of CVID individuals. PMID:26081581
Dadzie, Isaac; Xu, Shungao; Ni, Bin; Zhang, Xiaolei; Zhang, Haifang; Sheng, Xiumei; Xu, Huaxi; Huang, Xinxiang
2013-01-01
Antisense RNAs that originate from the complementary strand of protein coding genes are involved in the regulation of gene expression in all domains of life. In bacteria, some of these antisense RNAs are transcriptional noise whiles others play a vital role to adapt the cell to changing environmental conditions. By deep sequencing analysis of transcriptome of Salmonella enterica serovar Typhi, a partial RNA sequence encoded in-cis to the dnaA gene was revealed. Northern blot and RACE analysis confirmed the transcription of this antisense RNA which was expressed mostly in the stationary phase of the bacterial growth and also under iron limitation and osmotic stress. Pulse expression analysis showed that overexpression of the antisense RNA resulted in a significant increase in the mRNA levels of dnaA, which will ultimately enhance their translation. Our findings have revealed that antisense RNA of dnaA is indeed transcribed not merely as a by-product of the cell's transcription machinery but plays a vital role as far as stability of dnaA mRNA is concerned. PMID:23637809
Multiple Origins of a Mitochondrial Mutation Conferring Deafness
Hutchin, T. P.; Cortopassi, G. A.
1997-01-01
A point mutation (1555G) in the smaller ribosomal subunit of the mitochondrial DNA (mtDNA) has been associated with maternally inherited traits of hypersensitivity to streptomycin and sensorineural deafness in a number of families from China, Japan, Israel, and Africa. To determine whether this distribution was the result of a single or multiple mutational events, we carried out genetic distance analysis and phylogenetic analysis of 10 independent mtDNA D-loop sequences from Africa and Asia. The mtDNA sequence diversity was high (2.21%). Phylogenetic analysis assigned 1555G-bearing haplotypes at very divergent points in the human mtDNA evolutionary tree, and the 1555G mutations occur in many cases on race-specific mtDNA haplotypes, both facts are inconsistent with a recent introgression of the mutation into these races. The simplest interpretation of the available data is that there have been multiple origins of the 1555G mutation. The genetic distance among mtDNAs bearing the pathogenic 1555G mutation is much larger than among mtDNAs bearing either evolutionarily neutral or weakly deleterious nucleotide substitutions (such as the 4336G mutation). These results are consistent with the view that pathogenic mtDNA haplotypes such as 1555G arise on disparate mtDNA lineages which because of negative natural selection leave relatively few related descendants. The co-existence of the same mutation with deafness in individuals with very different nuclear and mitochondrial genetic backgrounds confirms the pathogenicity of the 1555G mutation. PMID:9055086
In situ hybridization analysis of human papillomavirus DNA in oral mucosal lesions.
Zeuss, M S; Miller, C S; White, D K
1991-06-01
Commercial biotinylated DNA probes specific for human papillomavirus (HPV) types 6 and 11; 16 and 18; and 31, 33, and 35 were used for in situ hybridization analysis of 105 oral mucosal specimens from 5 cases of verruca vulgaris, 15 cases of condyloma acuminatum, 30 cases of squamous papilloma, 20 cases of hyperkeratosis/acanthosis, 15 cases of epithelial dysplasia, 5 cases of carcinoma in situ, and 15 cases of squamous cell carcinoma. Positive hybridization signals were found in 26 specimens (24.8%). Only HPV-6/11 was detected. HPV DNA occurred significantly more often (p less than 0.005, chi-square analysis) in condyloma acuminatum (100%) and verruca vulgaris (100%) than squamous papilloma (13.3%), hyperkeratotic/acanthotic lesions (10%), and malignant and premalignant lesions (0%). The tongue (19.1%) and labial epithelium (17.1%) were infected most frequently. Nuclear reaction products indicating HPV infection were associated primarily with koilocytes. These results demonstrate the usefulness of commercial biotinylated probes for HPV DNA analysis in routine paraffin-embedded lesion specimens. They confirm HPV involvement in benign lesions of the oral mucosa but fail to associate HPV infection with oral cancer and precancer.
Molecular analysis of sourdough reveals Lactobacillus mindensis sp. nov.
Ehrmann, Matthias A; Müller, Martin R A; Vogel, Rudi F
2003-01-01
Genotypic fingerprinting to analyse the bacterial flora of an industrial sourdough revealed a coherent group of strains which could not be associated with a valid species. Comparative 16S rDNA sequence analysis showed that these strains formed a homogeneous cluster distinct from their closest relatives, Lactobacillus farciminis, Lactobacillus alimentarius and Lactobacillus kimchii. To characterize them further, physiological (sugar fermentation, formation of DL-lactate, hydrolysis of arginine, growth temperature, CO2 production) and chemotaxonomic properties have been determined. The DNA G +C content was 37.5 0.2 mol%. The peptidoglycan was of the lysine-D-iso-asparagine (L-Lys-D-Asp) type. The strains were homofermentative, Gram-positive, catalase-negative, non-spore-forming, non-motile rods. They were found as a major stable component of a rye flour sourdough fermentation. Physiological, biochemical as well as genotypic data suggested them to be a new species of the genus Lactobacillus. This was confirmed by DNA-DNA hybridization of genomic DNA, and the name Lactobacillus mindensis is proposed. The type strain of this species is DSM 14500T (=LMG 21508T).
Naughtin, Monica; Haftek-Terreau, Zofia; Xavier, Johan; Meyer, Sam; Silvain, Maud; Jaszczyszyn, Yan; Levy, Nicolas; Miele, Vincent; Benleulmi, Mohamed Salah; Ruff, Marc; Parissi, Vincent; Vaillant, Cédric; Lavigne, Marc
2015-01-01
Retroviral integrases (INs) catalyse the integration of the reverse transcribed viral DNA into the host cell genome. This process is selective, and chromatin has been proposed to be a major factor regulating this step in the viral life cycle. However, the precise underlying mechanisms are still under investigation. We have developed a new in vitro integration assay using physiologically-relevant, reconstituted genomic acceptor chromatin and high-throughput determination of nucleosome positions and integration sites, in parallel. A quantitative analysis of the resulting data reveals a chromatin-dependent redistribution of the integration sites and establishes a link between integration sites and nucleosome positions. The co-activator LEDGF/p75 enhanced integration but did not modify the integration sites under these conditions. We also conducted an in cellulo genome-wide comparative study of nucleosome positions and human immunodeficiency virus type-1 (HIV-1) integration sites identified experimentally in vivo. These studies confirm a preferential integration in nucleosome-covered regions. Using a DNA mechanical energy model, we show that the physical properties of DNA probed by IN binding are important in determining IN selectivity. These novel in vitro and in vivo approaches confirm that IN has a preference for integration into a nucleosome, and suggest the existence of two levels of IN selectivity. The first depends on the physical properties of the target DNA and notably, the energy required to fit DNA into the IN catalytic pocket. The second depends on the DNA deformation associated with DNA wrapping around a nucleosome. Taken together, these results indicate that HIV-1 IN is a shape-readout DNA binding protein. PMID:26075397
Tarquini, F; Picchiassi, E; Centra, M; Pennacchi, L; Galeone, F; Bini, V; Di Renzo, G C; Coata, G
2015-01-01
CffDNA, from 344 non-smoking, 38 smoking and 33 ex-smoking pregnant women at 11 (+0)-13 (+6) gestational weeks, was extracted and quantified by the multicopy DYS14, as the fetal DNA marker and using the quantitative real-time PCR 7300 detection system. The smoking habit was based on maternal self-report, confirmed by cotinine levels and male fetuses were verified by phenotype at birth. The genders of newborns were compared with DYS14-cffDNA analysis, achieving a 100% diagnostic accuracy of the test. A total of 177 non-smokers, 18 smokers and 22 ex-smoker pregnancies with male fetuses were identified by the cffDNA concentration. Results showed that smoking status was not associated with different amounts of DYS14-cffDNA (p = 0.159), suggesting the possibility of offering cffDNA testing to all pregnant women, even if they are active smokers or ex-smokers, and the test can be unadjusted for smoking status.
Myopathic mtDNA Depletion Syndrome Due to Mutation in TK2 Gene.
Martín-Hernández, Elena; García-Silva, María Teresa; Quijada-Fraile, Pilar; Rodríguez-García, María Elena; Rivera, Henry; Hernández-Laín, Aurelio; Coca-Robinot, David; Fernández-Toral, Joaquín; Arenas, Joaquín; Martín, Miguel A; Martínez-Azorín, Francisco
2017-01-01
Whole-exome sequencing was used to identify the disease gene(s) in a Spanish girl with failure to thrive, muscle weakness, mild facial weakness, elevated creatine kinase, deficiency of mitochondrial complex III and depletion of mtDNA. With whole-exome sequencing data, it was possible to get the whole mtDNA sequencing and discard any pathogenic variant in this genome. The analysis of whole exome uncovered a homozygous pathogenic mutation in thymidine kinase 2 gene ( TK2; NM_004614.4:c.323 C>T, p.T108M). TK2 mutations have been identified mainly in patients with the myopathic form of mtDNA depletion syndromes. This patient presents an atypical TK2-related myopathic form of mtDNA depletion syndromes, because despite having a very low content of mtDNA (<20%), she presents a slower and less severe evolution of the disease. In conclusion, our data confirm the role of TK2 gene in mtDNA depletion syndromes and expanded the phenotypic spectrum.
Zargan, Jamil; Umar, Sadiq; Sajad, Mir; Naime, M; Ali, Shakir; Khan, Haider A
2011-12-01
Venom of some species of scorpions induces apoptosis and arrests proliferation in cancer cells. This is an important property that can be harnessed and can lead to isolation of compounds of therapeutic importance in cancer research. Cytotoxicity was investigated using MTT reduction and confirmed with lactate dehydrogenase release following venom exposure. Apoptosis was evaluated with determination of mitochondrial membrane potential, reactive nitrogen species assay, measurement of Caspase-3 activity and DNA fragmentation analysis. To confirm that venom can inhibit DNA synthesis in proliferating breast cancer cells, immunocytochemical detection of BrdU incorporation was done. Our results demonstrated that venom of Odontobuthus doriae not only induced apoptosis but lead to the inhibition of DNA synthesis in human breast cancer cells (MCF-7). Cell viability decreased with parallel increment of LDH release in dose dependent manner after treatment with varying concentrations of venom. Moreover, venom depleted cellular antioxidants evidenced by depression of GSH and Catalases and concomitantly increased reactive nitrogen intermediates (RNI). These events were related to the depolarization of mitochondria and associated Caspase-3 activation following venom treatment in a concentration dependent manner. Finally, fragmentation of nuclear DNA following venom treatment confirmed the apoptotic property of the said venom. These results suggest that venom of O. doriae can be potential source for the isolation of effective anti-proliferative and apoptotic molecules. Copyright © 2011 Elsevier Ltd. All rights reserved.
Camarena, Lucy R; Glasscock, Bailey K; Daniels, Demi; Ackley, Nicolle; Sciarretta, Marybeth; Seashols-Williams, Sarah J
2017-03-01
Connection of a perpetrator to a sexual assault is best performed through the confirmed presence of semen, thereby proving sexual contact. Evidentiary items can include sanitary napkins or diapers containing superabsorbent polymers (SAPs), complicating spermatozoa visualization and DNA analysis. In this report, we evaluated the impact of SAPS on the current forensic DNA workflow, developing an efficient centrifugal protocol for separating spermatozoa from SAP material. The optimized filtration method was compared to common practices of excising the top layer only, resulting in significantly higher sperm yields when a core sample of the substrate was taken. Direct isolation of the SAP-containing materials without filtering resulted in 20% sample failure; additionally, SAP material was observed in the final eluted DNA samples, causing physical interference. Thus, use of the described centrifugal-filtering method is a simple preliminary step that improves spermatozoa visualization and enables more consistent DNA yields, while also avoiding SAP interference. © 2016 American Academy of Forensic Sciences.
Recovery Based Nanowire Field-Effect Transistor Detection of Pathogenic Avian Influenza DNA
NASA Astrophysics Data System (ADS)
Lin, Chih-Heng; Chu, Chia-Jung; Teng, Kang-Ning; Su, Yi-Jr; Chen, Chii-Dong; Tsai, Li-Chu; Yang, Yuh-Shyong
2012-02-01
Fast and accurate diagnosis is critical in infectious disease surveillance and management. We proposed a DNA recovery system that can easily be adapted to DNA chip or DNA biosensor for fast identification and confirmation of target DNA. This method was based on the re-hybridization of DNA target with a recovery DNA to free the DNA probe. Functionalized silicon nanowire field-effect transistor (SiNW FET) was demonstrated to monitor such specific DNA-DNA interaction using high pathogenic strain virus hemagglutinin 1 (H1) DNA of avian influenza (AI) as target. Specific electric changes were observed in real-time for AI virus DNA sensing and device recovery when nanowire surface of SiNW FET was modified with complementary captured DNA probe. The recovery based SiNW FET biosensor can be further developed for fast identification and further confirmation of a variety of influenza virus strains and other infectious diseases.
Loukanov, Alexandre; Filipov, Chavdar; Lecheva, Marta; Emin, Saim
2015-11-01
The immobilization and stretching of randomly coiled DNA molecules on hydrophobic carbon film is a challenging microscopic technique, which possess various applications, especially for genome sequencing. In this report the pyrenyl nucleus is used as an anchor moiety to acquire higher affinity of double stranded DNA to the graphite surface. DNA and pyrene are joined through a linker composed of four aliphatic methylene groups. For the preparation of pyrene-terminated DNA a multifunctional phosphoramidite monomer compound was designed. It contains pyrenylbutoxy group as an anchor moiety for π-stacking attachment to the carbon film, 2-cyanoethyloxy, and diisopropylamino as coupling groups for conjugation to activated oligonucleotide chain or DNA molecule. This monomer derivative was suitable for incorporation into automated solid-phase DNA synthesis and was attached to the 5' terminus of the DNA chain through a phosphodiester linkage. The successful immobilization and stretching of pyrene-terminated DNA was demonstrated by conventional 100 kV transmission electron microscope. The microscopic analysis confirmed the stretched shape of the negatively charged nucleic acid pieces on the hydrophobic carbon film. © 2015 Wiley Periodicals, Inc.
Soto, Lorena P.; Frizzo, Laureano S.; Bertozzi, Ezequiel; Avataneo, Elizabeth; Sequeira, Gabriel J.; Rosmini, Marcelo R.
2010-01-01
The intestinal microbiota has an influence on the growth and health status of the hosts. This is of particular interest in animals reared using intensive farming practices. Hence, it is necessary to know more about complexity of the beneficial intestinal microbiota. The use of molecular methods has revolutionized microbial identification by improving its quality and effectiveness. The specific aim of the study was to analyze predominant species of Lactobacillus in intestinal microbial ecosystem of young calves. Forty-two lactic acid bacteria (LAB) isolated from intestinal tract of young calves were characterized by: Amplified Ribosomal DNA Restriction Analysis (ARDRA), by using Hae III, Msp I, and Hinf I restriction enzymes, and 16S rDNA gene sequencing. ARDRA screening revealed nine unique patterns among 42 isolates, with the same pattern for 29 of the isolates. Gene fragments of 16S rDNA of 19 strains representing different patterns were sequenced to confirm the identification of these species. These results confirmed that ARDRA is a good tool for identification and discrimination of bacterial species isolated from complex ecosystem and between closely related groups. This paper provides information about the LAB species predominant in intestinal tract of young calves that could provide beneficial effects when administered as probiotic. PMID:20445780
Infrequent transposition of Ac in lettuce, Lactuca sativa.
Yang, C H; Ellis, J G; Michelmore, R W
1993-08-01
The maize transposable element Activator (Ac) is being used to develop a transposon mutagenesis system in lettuce, Lactuca sativa. Two constructs containing the complete Ac from the waxy-m7 locus of maize were introduced into lettuce and monitored for activity using Southern analysis and PCR amplification of the excision site. No transposition of Ac was detected in over 32 transgenic R1 plants, although these constructs were known to provide frequent transposition in other species. Also, no transposition was observed in later generations. In subsequent experiments, transposition was detected in lettuce calli using constructs that allowed selection for excision events. In these constructs, the neomycin phosphotransferase II gene was interrupted by either Ac or Ds. Excision was detected as the ability of callus to grow on kanamycin. Synthesis of the transposase from the cDNA of Ac expressed from the T-DNA 2' promoter resulted in more frequent excision of Ds than was observed with the wild-type Ac. No excision was observed with Ds in the absence of the transposase. The excision events were confirmed by amplification of the excision site by PCR followed by DNA sequencing. Excision and reintegration were also confirmed by Southern analysis. Ac/Ds is therefore capable of transposition in at least calli of lettuce.
Rajasekaran, S; Tangavel, Chitraa; Aiyer, Siddharth N; Nayagam, Sharon Miracle; Raveendran, M; Demonte, Naveen Luke; Subbaiah, Pramela; Kanna, Rishi; Shetty, Ajoy Prasad; Dharmalingam, K
2017-05-01
Proteomic and 16S rDNA analysis of disc tissues obtained in vivo. To address the controversy of infection as an aetiology for disc disorders through protein profiling. There is raging controversy over the presence of bacteria in human lumbar discs in vivo, and if they represent contamination or infection. Proteomics can provide valuable insight by identifying proteins signifying bacterial presence and, also host defence response proteins (HDRPs), which will confirm infection. 22 discs (15-disc herniations (DH), 5-degenerate (DD), 2-normal in MRI (NM) were harvested intraoperatively and immediately snap frozen. Samples were pooled into three groups and proteins extracted were analysed with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Post identification, data analysis was performed using Uniprotdb, Pantherdb, Proteome discoverer and STRING network. Authentication for bacterial presence was performed by PCR amplification of 16S rDNA. LC-MS/MS analysis using Orbitrap showed 1103 proteins in DH group, compared to 394 in NM and 564 in DD. 73 bacterial specific proteins were identified (56 specific for Propionibacterium acnes; 17 for Staphylococcus epidermidis). In addition, 67 infection-specific HDRPs, unique or upregulated, such as Defensin, Lysozyme, Dermcidin, Cathepsin-G, Prolactin-Induced Protein, and Phospholipase-A2, were identified confirming presence of infection. Species-specific primers for P. acnes exhibited amplicons at 946 bp (16S rDNA) and 515 bp (Lipase) confirming presence of P. acnes in both NM discs, 11 of 15 DH discs, and all five DD discs. Bioinformatic search for protein-protein interactions (STRING) documented 169 proteins with close interactions (protein clustering co-efficient 0.7) between host response and degenerative proteins implying that infection may initiate degradation through Ubiquitin C. Our study demonstrates bacterial specific proteins and host defence proteins to infection which strengthen the hypothesis of infection as a possible initiator of disc disease. These results can lead to a paradigm shift in our understanding and management of disc disorders.
Whole-Genome Saliva and Blood DNA Methylation Profiling in Individuals with a Respiratory Allergy
Declerck, Ken; Traen, Sophie; Koppen, Gudrun; Van Camp, Guy; Schoeters, Greet; Vanden Berghe, Wim; De Boever, Patrick
2016-01-01
The etiology of respiratory allergies (RA) can be partly explained by DNA methylation changes caused by adverse environmental and lifestyle factors experienced early in life. Longitudinal, prospective studies can aid in the unravelment of the epigenetic mechanisms involved in the disease development. High compliance rates can be expected in these studies when data is collected using non-invasive and convenient procedures. Saliva is an attractive biofluid to analyze changes in DNA methylation patterns. We investigated in a pilot study the differential methylation in saliva of RA (n = 5) compared to healthy controls (n = 5) using the Illumina Methylation 450K BeadChip platform. We evaluated the results against the results obtained in mononuclear blood cells from the same individuals. Differences in methylation patterns from saliva and mononuclear blood cells were clearly distinguishable (PAdj<0.001 and |Δβ|>0.2), though the methylation status of about 96% of the cg-sites was comparable between peripheral blood mononuclear cells and saliva. When comparing RA cases with healthy controls, the number of differentially methylated sites (DMS) in saliva and blood were 485 and 437 (P<0.05 and |Δβ|>0.1), respectively, of which 216 were in common. The methylation levels of these sites were significantly correlated between blood and saliva. The absolute levels of methylation in blood and saliva were confirmed for 3 selected DMS in the PM20D1, STK32C, and FGFR2 genes using pyrosequencing analysis. The differential methylation could only be confirmed for DMS in PM20D1 and STK32C genes in saliva. We show that saliva can be used for genome-wide methylation analysis and that it is possible to identify DMS when comparing RA cases and healthy controls. The results were replicated in blood cells of the same individuals and confirmed by pyrosequencing analysis. This study provides proof-of-concept for the applicability of saliva-based whole-genome methylation analysis in the field of respiratory allergy. PMID:26999364
Chemale, Gustavo; Paneto, Greiciane Gaburro; Menezes, Meiga Aurea Mendes; de Freitas, Jorge Marcelo; Jacques, Guilherme Silveira; Cicarelli, Regina Maria Barretto; Fagundes, Paulo Roberto
2013-05-01
Mitochondrial DNA (mtDNA) analysis is usually a last resort in routine forensic DNA casework. However, it has become a powerful tool for the analysis of highly degraded samples or samples containing too little or no nuclear DNA, such as old bones and hair shafts. The gold standard methodology still constitutes the direct sequencing of polymerase chain reaction (PCR) products or cloned amplicons from the HVS-1 and HVS-2 (hypervariable segment) control region segments. Identifications using mtDNA are time consuming, expensive and can be very complex, depending on the amount and nature of the material being tested. The main goal of this work is to develop a less labour-intensive and less expensive screening method for mtDNA analysis, in order to aid in the exclusion of non-matching samples and as a presumptive test prior to final confirmatory DNA sequencing. We have selected 14 highly discriminatory single nucleotide polymorphisms (SNPs) based on simulations performed by Salas and Amigo (2010) to be typed using SNaPShot(TM) (Applied Biosystems, Foster City, CA, USA). The assay was validated by typing more than 100 HVS-1/HVS-2 sequenced samples. No differences were observed between the SNP typing and DNA sequencing when results were compared, with the exception of allelic dropouts observed in a few haplotypes. Haplotype diversity simulations were performed using 172 mtDNA sequences representative of the Brazilian population and a score of 0.9794 was obtained when the 14 SNPs were used, showing that the theoretical prediction approach for the selection of highly discriminatory SNPs suggested by Salas and Amigo (2010) was confirmed in the population studied. As the main goal of the work is to develop a screening assay to skip the sequencing of all samples in a particular case, a pair-wise comparison of the sequences was done using the selected SNPs. When both HVS-1/HVS-2 SNPs were used for simulations, at least two differences were observed in 93.2% of the comparisons performed. The assay was validated with casework samples. Results show that the method is straightforward and can be used for exclusionary purposes, saving time and laboratory resources. The assay confirms the theoretic prediction suggested by Salas and Amigo (2010). All forensic advantages, such as high sensitivity and power of discrimination, as also the disadvantages, such as the occurrence of allele dropouts, are discussed throughout the article. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Komori, S; Sakata, K; Kasumi, H; Tsuji, Y; Hamada, K; Koyama, K
1999-10-01
DNA analysis of the androgen receptor gene in a patient with complete androgen insensitivity syndrome identified a substitutional mutation (tyrosine converted to cysteine at position 571) in the DNA binding domain. In vitro transfection experiments with the patients' androgen receptor gene, indicated normal expression of the androgen receptor in transfected COS-7 cells compared to the wild type gene. There was also no evidence of impaired thermal stability of the 5 alpha-dihydrotestosterone-androgen receptor complex. However, the capacity of the androgen receptor to activate target gene transcription was found to be completely disrupted in a luciferase assay. These results confirmed that only one substitutional mutation in the DNA binding domain was related to the pathogenesis of the complete androgen insensitivity syndrome.
de Vries, Tamar I; R Monroe, Glen; van Belzen, Martine J; van der Lans, Christian A; Savelberg, Sanne MC; Newman, William G; van Haaften, Gijs; Nievelstein, Rutger A; van Haelst, Mieke M
2016-01-01
Rubinstein–Taybi syndrome (RTS, OMIM 180849) and Filippi syndrome (FLPIS, OMIM 272440) are both rare syndromes, with multiple congenital anomalies and intellectual deficit (MCA/ID). We present a patient with intellectual deficit, short stature, bilateral syndactyly of hands and feet, broad thumbs, ocular abnormalities, and dysmorphic facial features. These clinical features suggest both RTS and FLPIS. Initial DNA analysis of DNA isolated from blood did not identify variants to confirm either of these syndrome diagnoses. Whole-exome sequencing identified a homozygous variant in C9orf173, which was novel at the time of analysis. Further Sanger sequencing analysis of FLPIS cases tested negative for CKAP2L variants did not, however, reveal any further variants. Subsequent analysis using DNA isolated from buccal mucosa revealed a mosaic variant in CREBBP. This report highlights the importance of excluding mosaic variants in patients with a strong but atypical clinical presentation of a MCA/ID syndrome if no disease-causing variants can be detected in DNA isolated from blood samples. As the striking syndactyly observed in the present case is typical for FLPIS, we suggest CREBBP analysis in saliva samples for FLPIS syndrome cases in which no causal CKAP2L variant is detected. PMID:26956253
Molecular Diagnostics in Autosomal Dominant Polycystic Kidney Disease: Utility and Limitations
Zhao, Xiao; Paterson, Andrew D.; Zahirieh, Alireza; He, Ning; Wang, Kairong; Pei, York
2008-01-01
Background and objectives: Gene-based mutation screening is now available and has the potential to provide diagnostic confirmation or exclusion of autosomal dominant polycystic kidney disease. This study illustrates its utility and limitations in the clinical setting. Design, setting, participants, & measurements: Using a molecular diagnostic service, genomic DNA of one affected individual from each study family was screened for pathologic PKD1 and PKD2 mutations. Bidirectional sequencing was performed to identify sequence variants in all exons and splice junctions of both genes and to confirm the specific mutations in other family members. In two multiplex families, microsatellite markers were genotyped at both PDK1 and PKD2 loci, and pair-wise and multipoint linkage analysis was performed. Results: Three of five probands studied were referred for assessment of renal cystic disease without a family history of autosomal dominant polycystic kidney disease, and two others were younger at-risk members of families with autosomal dominant polycystic kidney disease being evaluated as living-related kidney donors. Gene-based mutation screening identified pathogenic mutations that provided confirmation or exclusion of disease in three probands, but in the other two, only unclassified variants were identified. In one proband in which mutation screening was indeterminate, DNA linkage studies provided strong evidence for disease exclusion. Conclusions: Gene-based mutation screening or DNA linkage analysis should be considered in individuals in whom the diagnosis of autosomal dominant polycystic kidney disease is uncertain because of a lack of family history or equivocal imaging results and in younger at-risk individuals who are being evaluated as living-related kidney donors. PMID:18077784
Bhanjadeo, Madhabi M; Nayak, Ashok K; Subudhi, Umakanta
2017-04-01
DNA based self-assembled nanostructures and DNA origami has proven useful for organizing nanomaterials with firm precision. However, for advanced applications like nanoelectronics and photonics, large-scale organization of self-assembled branched DNA (bDNA) into periodic lattices is desired. In this communication for the first time we report a facile method of self-assembly of Y-shaped bDNA nanostructures on the cationic surface of Aluminum (Al) foil to prepare periodic two dimensional (2D) bDNA lattice. Particularly those Y-shaped bDNA structures having smaller overhangs and unable to self-assemble in solution, they are easily assembled on the surface of Al foil in the absence of ligase. Field emission scanning electron microscopy (FESEM) analysis shows homogenous distribution of two-dimensional bDNA lattices across the Al foil. When the assembled bDNA structures were recovered from the Al foil and electrophoresed in nPAGE only higher order polymeric bDNA structures were observed without a trace of monomeric structures which confirms the stability and high yield of the bDNA lattices. Therefore, this enzyme-free economic and efficient strategy for developing bDNA lattices can be utilized in assembling various nanomaterials for functional molecular components towards development of DNA based self-assembled nanodevices. Copyright © 2017 Elsevier Inc. All rights reserved.
Kang, Seung-Hui; Park, Chan Hee; Jeung, Hei Cheul; Kim, Ki-Yeol; Rha, Sun Young; Chung, Hyun Cheol
2007-06-01
In array-CGH, various factors may act as variables influencing the result of experiments. Among them, Cot-1 DNA, which has been used as a repetitive sequence-blocking agent, may become an artifact-inducing factor in BAC array-CGH. To identify the effect of Cot-1 DNA on Microarray-CGH experiments, Cot-1 DNA was labeled directly and Microarray-CGH experiments were performed. The results confirmed that probes which hybridized more completely with Cot-1 DNA had a higher sequence similarity to the Alu element. Further, in the sex-mismatched Microarray-CGH experiments, the variation and intensity in the fluorescent signal were reduced in the high intensity probe group in which probes were better hybridized with Cot-1 DNA. Otherwise, those of the low intensity probe group showed no alterations regardless of Cot-1 DNA. These results confirmed by in silico methods that Cot-1 DNA could block repetitive sequences in gDNA and probes. In addition, it was confirmed biologically that the blocking effect of Cot-1 DNA could be presented via its repetitive sequences, especially Alu elements. Thus, in contrast to BAC-array CGH, the use of Cot-1 DNA is advantageous in controlling experimental variation in Microarray-CGH.
Serwer, P; Watson, R H; Hayes, S J
1987-01-01
By use of rate-zonal centrifugation, followed by either one- or two-dimensional agarose gel electrophoresis, the forms of intracellular bacteriophage T7 DNA produced by replication, recombination, and packaging have been analyzed. Previous studies had shown that at least some intracellular DNA with sedimentation coefficients between 32S (the S value of mature T7 DNA) and 100S is concatemeric, i.e., linear and longer than mature T7 DNA. The analysis presented here confirmed that most of this DNA is linear, but also revealed a significant amount of circular DNA. The data suggest that these circles are produced during DNA packaging. It is proposed that circles are produced after a capsid has bound two sequential genomes in a concatemer. The size distribution of the linear, concatemeric DNA had peaks at the positions of dimeric and trimeric concatemers. Restriction endonuclease analysis revealed that most of the mature T7 DNA subunits of concatemers were joined left end to right end. However, these data also suggest that a comparatively small amount of left-end to left-end joining occurs, possibly by blunt-end ligation. A replicating form of T7 DNA that had an S value greater than 100 (100S+ DNA) was also found to contain concatemers. However, some of the 100S+ DNA, probably the most branched component, remained associated with the origin after agarose gel electrophoresis. It has been found that T7 protein 19, known to be required for DNA packaging, was also required to prevent loss, probably by nucleolytic degradation, of the right end of all forms of intracellular T7 DNA. T7 gene 3 endonuclease, whose activity is required for both recombination of T7 DNA and degradation of host DNA, was required for the formation of the 32S to 100S molecules that behaved as concatemers during gel electrophoresis. In the absence of gene 3 endonuclease, the primary accumulation product was origin-associated 100S+ DNA with properties that suggest the accumulation of branches, primarily at the left end of mature DNA subunits within the 100S+ DNA. Images PMID:2822958
Hao, Liping; Lü, Fan; Mazéas, Laurent; Desmond-Le Quéméner, Elie; Madigou, Céline; Guenne, Angéline; Shao, Liming; Bouchez, Théodore; He, Pinjing
2015-02-01
Ammonia inhibition represents a major operational issue for anaerobic digestion. In order to refine our understanding of the terminal catabolic steps in thermophilic anaerobic digestion under ammonia stress, we studied batch thermophilic acetate fed experiments at low (0.26 g L(-1)) and high (7.00 g L(-1)) Total Ammonia Nitrogen concentrations (TAN). Although methane production started immediately for all incubations and resulted in methane yields close to stoichiometric expectations, a 62-72% decrease of methanogenic rate was observed throughout the incubation at 7.00 g L(-1) of TAN compared to 0.26 g L(-1). Stable Isotope Probing analysis of active microbial communities in (13)C-acetate fed experiments coupled to automated ribosomal intergenic spacer analysis and 16S rDNA pyrotag sequencing confirmed that microbial communities were similar for both TAN conditions. At both TAN levels, the (13)C-labeled bacterial community was mainly affiliated to Clostridia-relatives, with OPB54 bacteria being the most abundant sequence in the heavy DNA 16S rDNA pyrotag library. Sequences closely related to Methanosarcina thermophila were also abundantly retrieved in the heavy DNA fractions, showing that this methanogen was still actively assimilating labeled carbon from acetate at free ammonia nitrogen concentrations up to 916 mg L(-1). Stable isotopic signature analysis of biogas, measured in unlabeled acetate fed experiments that were conducted in parallel, confirmed that acetoclastic methanogenic pathway was dominant at both ammonia concentrations. Our work demonstrates that, besides the syntrophic acetate oxidation pathway, acetoclastic methanogenesis catalyzed by Methanosarcina can also play a major role in methane production at high ammonia levels. Copyright © 2014 Elsevier Ltd. All rights reserved.
Vallée, Maud; Gravel, Catherine; Palin, Marie-France; Reghenas, Hélène; Stothard, Paul; Wishart, David S; Sirard, Marc-André
2005-07-01
The main objective of the present study was to identify novel oocyte-specific genes in three different species: bovine, mouse, and Xenopus laevis. To achieve this goal, two powerful technologies were combined: a polymerase chain reaction (PCR)-based cDNA subtraction, and cDNA microarrays. Three subtractive libraries consisting of 3456 clones were established and enriched for oocyte-specific transcripts. Sequencing analysis of the positive insert-containing clones resulted in the following classification: 53% of the clones corresponded to known cDNAs, 26% were classified as uncharacterized cDNAs, and a final 9% were classified as novel sequences. All these clones were used for cDNA microarray preparation. Results from these microarray analyses revealed that in addition to already known oocyte-specific genes, such as GDF9, BMP15, and ZP, known genes with unknown function in the oocyte were identified, such as a MLF1-interacting protein (MLF1IP), B-cell translocation gene 4 (BTG4), and phosphotyrosine-binding protein (xPTB). Furthermore, 15 novel oocyte-specific genes were validated by reverse transcription-PCR to confirm their preferential expression in the oocyte compared to somatic tissues. The results obtained in the present study confirmed that microarray analysis is a robust technique to identify true positives from the suppressive subtractive hybridization experiment. Furthermore, obtaining oocyte-specific genes from three species simultaneously allowed us to look at important genes that are conserved across species. Further characterization of these novel oocyte-specific genes will lead to a better understanding of the molecular mechanisms related to the unique functions found in the oocyte.
Identification of victims of the 1998 Taoyuan Airbus crash accident using DNA analysis.
Hsu, C M; Huang, N E; Tsai, L C; Kao, L G; Chao, C H; Linacre, A; Lee, J C
1999-01-01
In February 1998 a civilian aeroplane carrying 196 individuals crashed in Taiwan and killed another 6 people on the ground. Although there were dental and medical records, fingerprints, photographic evidence and personal effects to identify some of the victims, DNA analysis was required to further identify severely damaged remains. From the 202 people known to have perished in the plane crash, a total of 685 fragments of human remains were subjected to DNA analysis. The analysis was carried out using nine microsatellite loci, plus amelogenin to cluster the 685 fragments into 202 groups, accounting for all the victims. To establish genetic relatedness of the victims to other victims and living relatives, additional DNA loci were used. In this case the paternity index was increased by using HLA DQA1 plus Polymarker. The same 16 DNA loci were used to test blood samples from 201 relatives to establish parent/child and sibling relationships. With the exception of 19 victims identified by non-genetic evidence, 183 victims were successfully identified by DNA typing with relatively high values of paternity index by the direct or indirect comparison of relatives. The 202 victims were from 37 different families, ranging in size from 2 to 13 members and 74 individuals known to be unrelated to any other victim. The DNA from living relatives was used to identify one member of a family group, from which other victims of the family could be identified. ABO blood group information was further used to confirm genetic relatedness within families. A comparison of the DNA profiling results to the ABO blood group of the victims showed no discrepancies with the exception of two mutations in the FGA locus. In cases of severely damaged victims from a plane crash, DNA analysis proved to be the best choice to identify victims.
Adélie Penguin Population Diet Monitoring by Analysis of Food DNA in Scats
Jarman, Simon N.; McInnes, Julie C.; Faux, Cassandra; Polanowski, Andrea M.; Marthick, James; Deagle, Bruce E.; Southwell, Colin; Emmerson, Louise
2013-01-01
The Adélie penguin is the most important animal currently used for ecosystem monitoring in the Southern Ocean. The diet of this species is generally studied by visual analysis of stomach contents; or ratios of isotopes of carbon and nitrogen incorporated into the penguin from its food. There are significant limitations to the information that can be gained from these methods. We evaluated population diet assessment by analysis of food DNA in scats as an alternative method for ecosystem monitoring with Adélie penguins as an indicator species. Scats were collected at four locations, three phases of the breeding cycle, and in four different years. A novel molecular diet assay and bioinformatics pipeline based on nuclear small subunit ribosomal RNA gene (SSU rDNA) sequencing was used to identify prey DNA in 389 scats. Analysis of the twelve population sample sets identified spatial and temporal dietary change in Adélie penguin population diet. Prey diversity was found to be greater than previously thought. Krill, fish, copepods and amphipods were the most important food groups, in general agreement with other Adélie penguin dietary studies based on hard part or stable isotope analysis. However, our DNA analysis estimated that a substantial portion of the diet was gelatinous groups such as jellyfish and comb jellies. A range of other prey not previously identified in the diet of this species were also discovered. The diverse prey identified by this DNA-based scat analysis confirms that the generalist feeding of Adélie penguins makes them a useful indicator species for prey community composition in the coastal zone of the Southern Ocean. Scat collection is a simple and non-invasive field sampling method that allows DNA-based estimation of prey community differences at many temporal and spatial scales and provides significant advantages over alternative diet analysis approaches. PMID:24358158
Adélie penguin population diet monitoring by analysis of food DNA in scats.
Jarman, Simon N; McInnes, Julie C; Faux, Cassandra; Polanowski, Andrea M; Marthick, James; Deagle, Bruce E; Southwell, Colin; Emmerson, Louise
2013-01-01
The Adélie penguin is the most important animal currently used for ecosystem monitoring in the Southern Ocean. The diet of this species is generally studied by visual analysis of stomach contents; or ratios of isotopes of carbon and nitrogen incorporated into the penguin from its food. There are significant limitations to the information that can be gained from these methods. We evaluated population diet assessment by analysis of food DNA in scats as an alternative method for ecosystem monitoring with Adélie penguins as an indicator species. Scats were collected at four locations, three phases of the breeding cycle, and in four different years. A novel molecular diet assay and bioinformatics pipeline based on nuclear small subunit ribosomal RNA gene (SSU rDNA) sequencing was used to identify prey DNA in 389 scats. Analysis of the twelve population sample sets identified spatial and temporal dietary change in Adélie penguin population diet. Prey diversity was found to be greater than previously thought. Krill, fish, copepods and amphipods were the most important food groups, in general agreement with other Adélie penguin dietary studies based on hard part or stable isotope analysis. However, our DNA analysis estimated that a substantial portion of the diet was gelatinous groups such as jellyfish and comb jellies. A range of other prey not previously identified in the diet of this species were also discovered. The diverse prey identified by this DNA-based scat analysis confirms that the generalist feeding of Adélie penguins makes them a useful indicator species for prey community composition in the coastal zone of the Southern Ocean. Scat collection is a simple and non-invasive field sampling method that allows DNA-based estimation of prey community differences at many temporal and spatial scales and provides significant advantages over alternative diet analysis approaches.
Castañeda, María; Odriozola, Adrián; Gómez, Javier; Zarrabeitia, María T
2013-07-01
We report the development of an effective system for analyzing X chromosome-linked mini short tandem repeat loci with reduced-size amplicons (less than 220 bp), useful for analyzing highly degraded DNA samples. To generate smaller amplicons, we redesigned primers for eight X-linked microsatellites (DXS7132, DXS10079, DXS10074, DXS10075, DXS6801, DXS6809, DXS6789, and DXS6799) and established efficient conditions for a multiplex PCR system (miniX). The validation tests confirmed that it has good sensitivity, requiring as little as 20 pg of DNA, and performs well with DNA from paraffin-embedded tissues, thus showing potential for improved analysis and identification of highly degraded and/or very limited DNA samples. Consequently, this system may help to solve complex forensic cases, particularly when autosomal markers convey insufficient information.
Optimization of applied voltages for on-chip concentration of DNA using nanoslit
NASA Astrophysics Data System (ADS)
Azuma, Naoki; Itoh, Shintaro; Fukuzawa, Kenji; Zhang, Hedong
2017-12-01
On-chip sample concentration is an effective pretreatment to improve the detection sensitivity of lab-on-a-chip devices for biochemical analysis. In a previous study, we successfully achieved DNA sample concentration using a nanoslit fabricated in the microchannel of a device designed for DNA size separation. The nanoslit was a channel with a depth smaller than the diameter of a random coil-shaped DNA molecule. The concentration was achieved using the entropy trap at the boundary between the microchannel and the nanoslit. DNA molecules migrating toward the nanoslit owing to electrophoresis were trapped in front of the nanoslit and the concentration was enhanced over time. In this study, we successfully maximize the molecular concentration by optimizing the applied voltage for electrophoresis and verifying the effect of temperature. In addition, we propose a model formula that predicts the molecular concentration, the validity of which is confirmed through comparison with experimental results.
Randrianjatovo-Gbalou, I; Rouquette, P; Lefebvre, D; Girbal-Neuhauser, E; Marcato-Romain, C-E
2017-05-01
This study attempts to determine which of the exopolymeric substances are involved in the adherence and aggregation of a Bacillus licheniformis biofilm. The involvement of extracellular proteins and eDNA were particularly investigated using DNase and proteinase K treatment. The permeability of the biofilms increased fivefold after DNase I treatment. The quantification of the matrix components showed that, irrespective to the enzyme tested, eDNA and amyloid-like polymers were removed simultaneously. Size-exclusion chromatography analyses supported these observations and revealed the presence of associated nucleic acid and protein complexes in the biofilm lysates. These data suggest that some extracellular DNA and amyloid-like proteins were closely interlaced within the matrix. Finally, confocal laser scanning microscopy imaging gave supplementary clues about the 3D organization of the biofilms, confirming that eDNA and exoproteins were essentially layered under and around the bacterial cells, whereas the amyloid-like fractions were homogeneously distributed within the matrix. These results confirm that some DNA-amyloid complexes play a key role in the modulation of the mechanical resistance of B. licheniformis biofilms. The study highlights the need to consider the whole structure of biofilms and to target the interactions between matrix components. A better understanding of B. licheniformis biofilm physiology and the structural organization of the matrix will strengthen strategies of biofilm control. © 2017 The Society for Applied Microbiology.
Mutant KRAS Circulating Tumor DNA Is an Accurate Tool for Pancreatic Cancer Monitoring.
Perets, Ruth; Greenberg, Orli; Shentzer, Talia; Semenisty, Valeria; Epelbaum, Ron; Bick, Tova; Sarji, Shada; Ben-Izhak, Ofer; Sabo, Edmond; Hershkovitz, Dov
2018-05-01
Many new pancreatic cancer treatment combinations have been discovered in recent years, yet the prognosis of pancreatic ductal adenocarcinoma (PDAC) remains grim. The advent of new treatments highlights the need for better monitoring tools for treatment response, to allow a timely switch between different therapeutic regimens. Circulating tumor DNA (ctDNA) is a tool for cancer detection and characterization with growing clinical use. However, currently, ctDNA is not used for monitoring treatment response. The high prevalence of KRAS hotspot mutations in PDAC suggests that mutant KRAS can be an efficient ctDNA marker for PDAC monitoring. Seventeen metastatic PDAC patients were recruited and serial plasma samples were collected. CtDNA was extracted from the plasma, and KRAS mutation analysis was performed using next-generation sequencing and correlated with serum CA19-9 levels, imaging, and survival. Plasma KRAS mutations were detected in 5/17 (29.4%) patients. KRAS ctDNA detection was associated with shorter survival (8 vs. 37.5 months). Our results show that, in ctDNA positive patients, ctDNA is at least comparable to CA19-9 as a marker for monitoring treatment response. Furthermore, the rate of ctDNA change was inversely correlated with survival. Our results confirm that mutant KRAS ctDNA detection in metastatic PDAC patients is a poor prognostic marker. Additionally, we were able to show that mutant KRAS ctDNA analysis can be used to monitor treatment response in PDAC patients and that ctDNA dynamics is associated with survival. We suggest that ctDNA analysis in metastatic PDAC patients is a readily available tool for disease monitoring. Avoiding futile chemotherapy in metastatic pancreatic ductal adenocarcinoma (PDAC) patients by monitoring response to treatment is of utmost importance. A novel biomarker for monitoring treatment response in PDAC, using mutant KRAS circulating tumor DNA (ctDNA), is proposed. Results, although limited by small sample numbers, suggest that ctDNA can be an effective marker for disease monitoring and that ctDNA level over time is a better predictor of survival than the dynamics of the commonly used biomarker CA19-9. Therefore, ctDNA analysis can be a useful tool for monitoring PDAC treatment response. These results should be further validated in larger sample numbers. © AlphaMed Press 2018.
Construction and engineering of large biochemical pathways via DNA assembler
Shao, Zengyi; Zhao, Huimin
2015-01-01
Summary DNA assembler enables rapid construction and engineering of biochemical pathways in a one-step fashion by exploitation of the in vivo homologous recombination mechanism in Saccharomyces cerevisiae. It has many applications in pathway engineering, metabolic engineering, combinatorial biology, and synthetic biology. Here we use two examples including the zeaxanthin biosynthetic pathway and the aureothin biosynthetic gene cluster to describe the key steps in the construction of pathways containing multiple genes using the DNA assembler approach. Methods for construct design, pathway assembly, pathway confirmation, and functional analysis are shown. The protocol for fine genetic modifications such as site-directed mutagenesis for engineering the aureothin gene cluster is also illustrated. PMID:23996442
Stagnati, L; Soffritti, G; Lanubile, A; Busconi, M
2017-05-01
Six different commercial methods were compared to evaluate their efficiency in recovering high quantity/quality PCR compatible microbial DNA from an agricultural biogas plant. Within the last two decades, biogas plants have been developed to produce energy from organic wastes and from devoted biomass. The complex biotransformations are performed by a diverse consortium of microorganisms that is an important reserve of genes and enzymatic activities with a huge range of applications in various commercial fields. In this respect, the ability to isolate DNA from a complex matrix is of high importance. Important parameters of the recovered DNA are good yield, purity, and quality. The methods examined showed considerable differences about quantity and quality of the recovered DNA and, usually, it was observed that a higher amount was accompanied by more degradation. DNA purity was determined by its PCR amplificability. Only two methods were able to provide DNA pure enough to be directly amplified. For the rest of the methods, a few intermediate steps such as dilution and/or the addition of polyvinylpyrrolidone were necessary to remove the inhibitors present and to amplify the DNA. Real-time PCR analysis evidenced that, as expected, prokaryotic DNA was much more abundant than eukaryotic DNA, but some methods were more suited to recovering prokaryotic or eukaryotic DNA. The digestion analysis of ribosomal DNA amplicons confirmed the influence of the methods on the final output, allowing the recovery of only a fraction of the present species as determined by sequencing a small prokaryotic and eukaryotic ribosomal library.
Production of transgenic chickens using an avian retroviral vector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopchick, J.; Mills, E.; Rosenblum C.
1987-05-01
The authors efforts to insert genes into the chicken germ line are dependent upon the ability of exogenous avian retroviruses to infect chicken germ cells. They have used a transformation defective Schmidt Ruppin A strain of Rous Sarcoma Virus (RSV-SRA) in their initial experiments. The general protocol involved generating RSV-SRA viremic female chickens (Go), which shed exogenous virus via the oviduct. As the fertilized egg passes through the oviduct, embryonic cells are exposed to the virus. If the germ cell precursors are infected by the virus, offspring (G1) should be generated which are capable of passing the viral DNA tomore » the next generation (G2). Fifteen viremic G1 males were selected for breeding and progeny testing. Since male chickens do not congenitally pass retroviruses through semen, production of viremic G2 offspring indicates germ line DNA transmission. This is confirmed by DNA analysis of the experimental chickens. Using a specific probe for exogenous retrovirus, they have detected the presence of RSV-SRA DNA in viremic chickens. Southern DNA analysis revealed junction fragments for RSV-SRA DNA in viremic G2 chickens, but not in non-viremic siblings. Furthermore, DNA isolated from various tissues of a viremic G2 chicken showed an identical DNA junction fragment pattern, indicating all tissues were derived from the same embryonic cell which contained integrated provirus. To date they have generated 50 transgenic chickens.« less
Cattani-Scholz, Anna; Pedone, Daniel; Blobner, Florian; Abstreiter, Gerhard; Schwartz, Jeffrey; Tornow, Marc; Andruzzi, Luisa
2009-03-09
The synthesis and characterization of two types of silicon-based biofunctional interfaces are reported; each interface bonds a dense layer of poly(ethylene glycol) (PEG(n)) and peptide nucleic acid (PNA) probes. Phosphonate self-assembled monolayers were derivatized with PNA using a maleimido-terminated PEG(45). Similarly, siloxane monolayers were functionalized with PNA using a maleimido-terminated PEG(45) spacer and were subsequently modified with a shorter methoxy-terminated PEG(12) ("back-filling"). The long PEG(45) spacer was used to distance the PNA probe from the surface and to minimize undesirable nonspecific adsorption of DNA analyte. The short PEG(12) "back-filler" was used to provide additional passivation of the surface against nonspecific DNA adsorption. X-ray photoelectron spectroscopic (XPS) analysis near the C 1s and N 1s ionization edges was done to characterize chemical groups formed in the near-surface region, which confirmed binding of PEG and PNA to the phosphonate and silane films. XPS also indicated that additional PEG chains were tethered to the surface during the back-filling process. Fluorescence hybridization experiments were carried out with complementary and noncDNA strands; both phosphonate and siloxane biofunctional surfaces were effective for hybridization of cDNA strands and significantly reduced nonspecific adsorption of the analyte. Spatial patterns were prepared by polydimethylsiloxane (PDMS) micromolding on the PNA-functionalized surfaces; selective hybridization of fluorescently labeled DNA was shown at the PNA functionalized regions, and physisorption at the probe-less PEG-functionalized regions was dramatically reduced. These results show that PNA-PEG derivatized phosphonate monolayers hold promise for the smooth integration of device surface chemistry with semiconductor technology for the fabrication of DNA biosensors. In addition, our results confirm that PNA-PEG derivatized self-assembled carboxyalkylsiloxane films are promising substrates for DNA microarray applications.
Tam, Annie S; Chu, Jeffrey S C; Rose, Ann M
2015-11-12
Cancer therapy largely depends on chemotherapeutic agents that generate DNA lesions. However, our understanding of the nature of the resulting lesions as well as the mutational profiles of these chemotherapeutic agents is limited. Among these lesions, DNA interstrand crosslinks are among the more toxic types of DNA damage. Here, we have characterized the mutational spectrum of the commonly used DNA interstrand crosslinking agent mitomycin C (MMC). Using a combination of genetic mapping, whole genome sequencing, and genomic analysis, we have identified and confirmed several genomic lesions linked to MMC-induced DNA damage in Caenorhabditis elegans. Our data indicate that MMC predominantly causes deletions, with a 5'-CpG-3' sequence context prevalent in the deleted regions of DNA. Furthermore, we identified microhomology flanking the deletion junctions, indicative of DNA repair via nonhomologous end joining. Based on these results, we propose a general repair mechanism that is likely to be involved in the biological response to this highly toxic agent. In conclusion, the systematic study we have described provides insight into potential sequence specificity of MMC with DNA. Copyright © 2016 Tam et al.
A novel, highly divergent ssDNA virus identified in Brazil infecting apple, pear and grapevine.
Basso, Marcos Fernando; da Silva, José Cleydson Ferreira; Fajardo, Thor Vinícius Martins; Fontes, Elizabeth Pacheco Batista; Zerbini, Francisco Murilo
2015-12-02
Fruit trees of temperate and tropical climates are of great economical importance worldwide and several viruses have been reported affecting their productivity and longevity. Fruit trees of different Brazilian regions displaying virus-like symptoms were evaluated for infection by circular DNA viruses. Seventy-four fruit trees were sampled and a novel, highly divergent, monopartite circular ssDNA virus was cloned from apple, pear and grapevine trees. Forty-five complete viral genomes were sequenced, with a size of approx. 3.4 kb and organized into five ORFs. Deduced amino acid sequences showed identities in the range of 38% with unclassified circular ssDNA viruses, nanoviruses and alphasatellites (putative Replication-associated protein, Rep), and begomo-, curto- and mastreviruses (putative coat protein, CP, and movement protein, MP). A large intergenic region contains a short palindromic sequence capable of forming a hairpin-like structure with the loop sequence TAGTATTAC, identical to the conserved nonanucleotide of circoviruses, nanoviruses and alphasatellites. Recombination events were not detected and phylogenetic analysis showed a relationship with circo-, nano- and geminiviruses. PCR confirmed the presence of this novel ssDNA virus in field plants. Infectivity tests using the cloned viral genome confirmed its ability to infect apple and pear tree seedlings, but not Nicotiana benthamiana. The name "Temperate fruit decay-associated virus" (TFDaV) is proposed for this novel virus. Copyright © 2015 Elsevier B.V. All rights reserved.
Presence of DNA methyltransferase activity and CpC methylation in Drosophila melanogaster.
Panikar, Chitra S; Rajpathak, Shriram N; Abhyankar, Varada; Deshmukh, Saniya; Deobagkar, Deepti D
2015-12-01
Drosophila melanogaster lacks DNMT1/DNMT3 based methylation machinery. Despite recent reports confirming the presence of low DNA methylation in Drosophila; little is known about the methyltransferase. Therefore, in this study, we have aimed to investigate the possible functioning of DNA methyltransferase in Drosophila. The 14 K oligo microarray slide was incubated with native cell extract from adult Drosophila to check the presence of the methyltransferase activity. After incubation under appropriate conditions, the methylated oligo sequences were identified by the binding of anti 5-methylcytosine monoclonal antibody. The antibody bound to the methylated oligos was detected using Cy3 labeled secondary antibody. Methylation sensitive restriction enzyme mediated PCR was used to assess the methylation at a few selected loci identified on the array. It could be seen that a few of the total oligos got methylated under the assay conditions. Analysis of methylated oligo sequences provides evidence for the presence of de novo methyltransferase activity and allows identification of its sequence specificity in adult Drosophila. With the help of methylation sensitive enzymes we could detect presence of CpC methylation in the selected genomic regions. This study reports presence of an active DNA methyltransferase in adult Drosophila, which exhibits sequence specificity confirmed by presence of asymmetric methylation at corresponding sites in the genomic DNA. It also provides an innovative approach to investigate methylation specificity of a native methyltransferase.
Binding and thermodynamics of REV peptide-ctDNA interaction.
Upadhyay, Santosh Kumar
2017-03-01
The thermodynamics of DNA-ligand binding is important as it provides useful information to understand the details of binding processes. HIV-1 REV response element (RRE) located in the env coding region of the viral genome is reported to be well conserved across different HIV-1 isolates. In this study, the binding characteristics of Calf thymus DNA (ctDNA) and REV peptide from HIV-1 were investigated using spectroscopic (UV-visible, fluorescence, and circular dichroism (CD)) and isothermal titration calorimetric (ITC) techniques. Thermal stability and ligand binding properties of the ctDNA revealed that native ctDNA had a T m of 75.5 °C, whereas the ctDNA-REV peptide complex exhibited an incremental shift in the T m by 8 °C, indicating thermal stability of the complex. CD data indicated increased ellipticity due to large conformational changes in ctDNA molecule upon binding with REV peptide and two binding stoichiometric modes are apparent. The ctDNA experienced condensation due to large conformational changes in the presence of REV peptide and positive B→Ψ transition was observed at higher molar charge ratios. Fluorescence studies performed at several ligand concentrations revealed a gradual decrease in the fluorescence intensity of EtBr-bound ctDNA in response to increasing ligand concentrations. The fluorescence data further confirmed two stoichiometric modes of binding for ctDNA-REV peptide complex as previously observed with CD studies. The binding enthalpies were determined using ITC in the temperature range of 293 K-308 K. The ITC binding isotherm was exothermic at all temperatures examined, with low ΔH values indicating that the ctDNA-REV peptide interaction is driven largely by entropy. The heat capacity change (ΔC p ) was insignificant, an unusual finding in the area of DNA-peptide interaction studies. The variation in the values obtained for ΔH, ΔS, and ΔG with temperature further suggests that ctDNA-REV peptide interaction is entropically driven. ITC based analysis of salt dependence of binding constant gave a charge value (Z) = +4.01, as determined for the δlnK/δln[Na + ] parameter, suggesting the participation of only 3-4 Arg out of 11 Arg charge from REV peptide. The stoichiometry observed for the complex was three molar charge of REV peptide binding per molar charge of ctDNA. ITC based analysis further confirmed that the binding between ctDNA and REV peptide is governed by electrostatic interaction. Molecular interactions including H-bonding, van der Waals forces, and solvent molecules rearrangement, underlie the binding of REV peptide to ctDNA. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Diaz-Egea, Carlos; Sigle, Wilfried; van Aken, Peter A.; Molina, Sergio I.
2013-07-01
We present the mapping of the full plasmonic mode spectrum for single and aggregated gold nanoparticles linked through DNA strands to a silicon nitride substrate. A comprehensive analysis of the electron energy loss spectroscopy images maps was performed on nanoparticles standing alone, dimers, and clusters of nanoparticles. The experimental results were confirmed by numerical calculations using the Mie theory and Gans-Mie theory for solving Maxwell's equations. Both bright and dark surface plasmon modes have been unveiled.
Walker, J; Tait, A
1997-11-01
A reverse-transcriptase polymerase chain reaction (PCR) procedure was used to isolate an Ostertagia circumcincta partial cDNA encoding a protein with general primary sequence features characteristic of members of the mitochondrial processing peptidase (MPP) subfamily of M16 metallopeptidases. The structural relationships of the predicted protein (Oc MPPX) with MPP subfamily proteins from other species (including the model free-living nematode Caenorhabditis elegans) were examined, and Northern analysis confirmed the expression of the Oc mppx gene in adult nematodes.
Lactobacillus apodemi sp. nov., a tannase-producing species isolated from wild mouse faeces.
Osawa, Ro; Fujisawa, Tomohiko; Pukall, Rüdiger
2006-07-01
A Gram-positive, rod-shaped, non-endospore-forming bacterium, strain ASB1(T), able to degrade tannin, was isolated from faeces of the Japanese large wood mouse, Apodemus speciosus. Comparative analysis of the 16S rRNA gene sequence revealed that the strain could be assigned as a member of the genus Lactobacillus. The nearest phylogenetic neighbours were determined as Lactobacillus animalis DSM 20602(T) (98.9 % 16S rRNA gene sequence similarity) and Lactobacillus murinus ASF 361 (98.9 %). Subsequent polyphasic analysis, including automated ribotyping and DNA-DNA hybridization experiments, confirmed that the isolate represents a novel species, for which the name Lactobacillus apodemi sp. nov. is proposed. The DNA G+C content of the novel strain is 38.5 mol%. The cell-wall peptidoglycan is of type A4alpha L-lys-D-asp. The type strain is ASB1(T) (=DSM 16634(T)=CIP 108913(T)).
Choosing relatives for DNA identification of missing persons.
Ge, Jianye; Budowle, Bruce; Chakraborty, Ranajit
2011-01-01
DNA-based analysis is integral to missing person identification cases. When direct references are not available, indirect relative references can be used to identify missing persons by kinship analysis. Generally, more reference relatives render greater accuracy of identification. However, it is costly to type multiple references. Thus, at times, decisions may need to be made on which relatives to type. In this study, pedigrees for 37 common reference scenarios with 13 CODIS STRs were simulated to rank the information content of different combinations of relatives. The results confirm that first-order relatives (parents and fullsibs) are the most preferred relatives to identify missing persons; fullsibs are also informative. Less genetic dependence between references provides a higher on average likelihood ratio. Distant relatives may not be helpful solely by autosomal markers. But lineage-based Y chromosome and mitochondrial DNA markers can increase the likelihood ratio or serve as filters to exclude putative relationships. © 2010 American Academy of Forensic Sciences.
Bettio, Daniela; Capalbo, Antonio; Albani, Elena; Rienzi, Laura; Achille, Valentina; Venci, Anna; Ubaldi, Filippo Maria; Levi Setti, Paolo Emanuele
2016-09-06
Preimplantation genetic screening (PGS) provides an opportunity to eliminate a potential implantation failure due to aneuploidy in infertile couples. Some studies clearly show that twins following single embryo transfer (SET) can be the result of a concurrent natural conception and an incidence as high as 1 in 5 twins has been reported. In our case PGS was performed on trophectoderm (TE) biopsies by quantitative polymerase chain reaction (qPCR). The product of conception (POC) was cytogenetically investigated after selection of the placental villi by means of the direct method. Molecular cytogenetic characterization of the POC was performed by fluorescence in situ hybridization (FISH) and array-comparative genomic hybridization (a-CGH) analyses. To investigate the possibility of a spontaneous conception, a panel of 40 single nucleotide polymorphisms (SNPs) was used to compare genetic similarity between the DNA of the POC and the DNA leftover of the TE biopsy. We describe a 36-year old infertile woman undergoing PGS who had a spontaneous abortion after a single euploid embryo transfer on a spontaneous cycle. The POC showed a 45,X karyotype confirmed by FISH and a-CGH. DNA fingerprinting demonstrated a genetic similarity of 75 % between the DNA of the POC and TE biopsy, consistent with a sibling status. All supernumerary euploid embryos were also tested showing a non-self relationship with the POC, excluding a mix-up event at the time of fetal embryo transfer. DNA fingerprinting of the transferred blastocyst and POC, confirmed the occurrence of a spontaneous conception. This case challenges the assumption that a pregnancy after assisted reproductive technology (ART) is always a result of ART, and strengthens the importance to avoid intercourses during PGS and natural transfer cycles. Moreover, cytogenetic analysis of the POCs is strongly recommended along with fingerprinting children born after PGS to see what the concordance is between the embryo transferred and the resultant child.
Introgression of Swertia mussotii gene into Bupleurum scorzonerifolium via somatic hybridization
2011-01-01
Background The wild herb Swertia mussotii is a source of the anti-hepatitis compounds swertiamarin, mangiferin and gentiopicroside. Its over-exploitation has raised the priority of producing these compounds heterologously. Somatic hybridization represents a novel approach for introgressing Swertia mussotii genes into a less endangered species. Results Protoplasts derived from calli of Bupleurum scorzonerifolium and S. mussotii were fused to produce 194 putative hybrid cell lines, of which three (all derived from fusions where the S. mussotii protoplasts were pre-treated for 30 s with UV light) later differentiated into green plants. The hybridity of the calli was confirmed by a combination of isozyme, RAPD and chromosomal analysis. The hybrid calli genomes were predominantly B. scorzonerifolium. GISH analysis of mitotic chromosomes confirmed that the irradiation of donor protoplasts increased the frequency of chromosome elimination and fragmentation. RFLP analysis of organellar DNA revealed that mitochondrial and chloroplast DNA of both parents coexisted and recombined in some hybrid cell lines. Some of the hybrid calli contained SmG10H from donor, and produced swertiamarin, mangiferin and certain volatile compounds characteristic of S. mussotii. The expression of SmG10H (geraniol 10-hydroxylase) was associated with the heterologous accumulation of swertiamarin. Conclusions Somatic hybrids between B. scorzonerifolium and S. mussotii were obtained, hybrids selected all contained introgressed nuclear and cytoplasmic DNA from S. mussotii; and some produced more mangiferin than the donor itself. The introgression of SmG10H was necessary for the accumulation of swertiamarin. PMID:21513581
Arutiunian, A V; Ivanova, M A; Kurliand, D I; Kapshin, Iu S; Landa, S B; Poshekhonov, S T; Drobchenko, E A; Shevelev, I V
2011-01-01
Changes in the rigidity of the polymetric chain of phage lambda double-strand DNA have been studied by laser correlation spectroscopy. It was shown that, as the ionic strength increases, the effect of the screening of the hydrodynamic interaction of the links of the polymeric chain specific for polymeric coils arises in a DNA solution. It is assumed that the screening occurs when the threshold of the overlapping of DNA coils is achieved. The overlapping of coils is the result of a previously observed significant rise of DNA coil size from abnormally small DNA coils in low ionic strength buffers (about 10(-2) M Na+ or less) to maximum possible large coils in the 5SSC and 5SSC-like buffers. Further analysis of the far interlink interactions in linear lambda phage DNA coils in similar buffers at pH 7 and 4 confirms the earlier proposal about the role of H+ ions in the appearance of abnormally small DNA coils. The abnormal decrease in the DNA coil size in low ionic strength buffers is not a specific feature of lambda phage DNA only.
Mechanistic Insights on the Inhibition of C5 DNA Methyltransferases by Zebularine
Champion, Christine; Guianvarc'h, Dominique; Sénamaud-Beaufort, Catherine; Jurkowska, Renata Z.; Jeltsch, Albert; Ponger, Loïc; Arimondo, Paola B.; Guieysse-Peugeot, Anne-Laure
2010-01-01
In mammals DNA methylation occurs at position 5 of cytosine in a CpG context and regulates gene expression. It plays an important role in diseases and inhibitors of DNA methyltransferases (DNMTs)—the enzymes responsible for DNA methylation—are used in clinics for cancer therapy. The most potent inhibitors are 5-azacytidine and 5-azadeoxycytidine. Zebularine (1-(β-D-ribofuranosyl)-2(1H)- pyrimidinone) is another cytidine analog described as a potent inhibitor that acts by forming a covalent complex with DNMT when incorporated into DNA. Here we bring additional experiments to explain its mechanism of action. First, we observe an increase in the DNA binding when zebularine is incorporated into the DNA, compared to deoxycytidine and 5-fluorodeoxycytidine, together with a strong decrease in the dissociation rate. Second, we show by denaturing gel analysis that the intermediate covalent complex between the enzyme and the DNA is reversible, differing thus from 5-fluorodeoxycytidine. Third, no methylation reaction occurs when zebularine is present in the DNA. We confirm that zebularine exerts its demethylation activity by stabilizing the binding of DNMTs to DNA, hindering the methylation and decreasing the dissociation, thereby trapping the enzyme and preventing turnover even at other sites. PMID:20808780
Identification and DNA annotation of a plasmid isolated from Chromobacterium violaceum.
Lima, Daniel C; Nyberg, Lena K; Westerlund, Fredrik; Batistuzzo de Medeiros, Silvia R
2018-03-28
Chromobacterium violaceum is a ß-proteobacterium found widely worldwide with important biotechnological properties and is associated to lethal sepsis in immune-depressed individuals. In this work, we report the discover, complete sequence and annotation of a plasmid detected in C. violaceum that has been unnoticed until now. We used DNA single-molecule analysis to confirm that the episome found was a circular molecule and then proceeded with NGS sequencing. After DNA annotation, we found that this extra-chromosomal DNA is probably a defective bacteriophage of approximately 44 kilobases, with 39 ORFs comprising, mostly hypothetical proteins. We also found DNA sequences that ensure proper plasmid replication and partitioning as well as a toxin addiction system. This report sheds light on the biology of this important species, helping us to understand the mechanisms by which C. violaceum endures to several harsh conditions. This discovery could also be a first step in the development of a DNA manipulation tool in this bacterium.
High flexibility of DNA on short length scales probed by atomic force microscopy.
Wiggins, Paul A; van der Heijden, Thijn; Moreno-Herrero, Fernando; Spakowitz, Andrew; Phillips, Rob; Widom, Jonathan; Dekker, Cees; Nelson, Philip C
2006-11-01
The mechanics of DNA bending on intermediate length scales (5-100 nm) plays a key role in many cellular processes, and is also important in the fabrication of artificial DNA structures, but previous experimental studies of DNA mechanics have focused on longer length scales than these. We use high-resolution atomic force microscopy on individual DNA molecules to obtain a direct measurement of the bending energy function appropriate for scales down to 5 nm. Our measurements imply that the elastic energy of highly bent DNA conformations is lower than predicted by classical elasticity models such as the worm-like chain (WLC) model. For example, we found that on short length scales, spontaneous large-angle bends are many times more prevalent than predicted by the WLC model. We test our data and model with an interlocking set of consistency checks. Our analysis also shows how our model is compatible with previous experiments, which have sometimes been viewed as confirming the WLC.
Can indirect tests detect a known recombination event in human mtDNA?
White, Daniel James; Gemmell, Neil John
2009-07-01
Whether human mitochondrial DNA (mtDNA) recombines sufficiently to influence its evolution, evolutionary analysis, and disease etiology, remains equivocal. Overall, evidence from indirect studies of population genetic data suggests that recombination is not occurring at detectable levels. This may be explained by no, or low, recombination or, alternatively, current indirect tests may be incapable of detecting recombination in human mtDNA. To investigate the latter, we have tested whether six well-established indirect tests of recombination could detect recombination in a human mtDNA data set, in which its occurrence had been empirically confirmed. Three showed statistical evidence for recombination (r(2) vs. distance, the Homoplasy test, Neighborhood Similarity Score), and three did not (D' vs. distance, Max Chi Squared, Pairwise Homoplasy Index). Possible reasons for detection failure are discussed. Further, evidence from earlier studies suggesting a lack of recombination in mtDNA in humans is reconsidered, taking into account the appropriateness of the tests used, based on our new findings.
Liew, Pauline Woanying; Jong, Bor Chyan
2008-05-01
Two culture-independent methods, namely ribosomal DNA libraries and denaturing gradient gel electrophoresis (DGGE), were adopted to examine the microbial community of a Malaysian light crude oil. In this study, both 16S and 18S rDNAs were PCR-amplified from bulk DNA of crude oil samples, cloned, and sequenced. Analyses of restriction fragment length polymorphism (RFLP) and phylogenetics clustered the 16S and 18S rDNA sequences into seven and six groups, respectively. The ribosomal DNA sequences obtained showed sequence similarity between 90 to 100% to those available in the GenBank database. The closest relatives documented for the 16S rDNAs include member species of Thermoincola and Rhodopseudomonas, whereas the closest fungal relatives include Acremonium, Ceriporiopsis, Xeromyces, Lecythophora, and Candida. Others were affiliated to uncultured bacteria and uncultured ascomycete. The 16S rDNA library demonstrated predomination by a single uncultured bacterial type by >80% relative abundance. The predomination was confirmed by DGGE analysis.
Single-molecule imaging of DNA polymerase I (Klenow fragment) activity by atomic force microscopy
NASA Astrophysics Data System (ADS)
Chao, J.; Zhang, P.; Wang, Q.; Wu, N.; Zhang, F.; Hu, J.; Fan, C. H.; Li, B.
2016-03-01
We report a DNA origami-facilitated single-molecule platform that exploits atomic force microscopy to study DNA replication. We imaged several functional activities of the Klenow fragment of E. coli DNA polymerase I (KF) including binding, moving, and dissociation from the template DNA. Upon completion of these actions, a double-stranded DNA molecule was formed. Furthermore, the direction of KF activities was captured and then confirmed by shifting the KF binding sites on the template DNA.We report a DNA origami-facilitated single-molecule platform that exploits atomic force microscopy to study DNA replication. We imaged several functional activities of the Klenow fragment of E. coli DNA polymerase I (KF) including binding, moving, and dissociation from the template DNA. Upon completion of these actions, a double-stranded DNA molecule was formed. Furthermore, the direction of KF activities was captured and then confirmed by shifting the KF binding sites on the template DNA. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06544e
NASA Astrophysics Data System (ADS)
Patil, Sangamesh A.; Prabhakara, Chetan T.; Halasangi, Bhimashankar M.; Toragalmath, Shivakumar S.; Badami, Prema S.
2015-02-01
The metal complexes of Co(II), Ni(II) and Cu(II) have been synthesized from 6-formyl-7,8-dihydroxy-4-methylcoumarin with o-toluidine/3-aminobenzotrifluoride. The synthesized Schiff bases and their metal complexes were structurally characterized based on IR, 1H NMR, 13C NMR, UV-visible, ESR, magnetic, thermal, fluorescence, mass and ESI-MS studies. The molar conductance values indicate that complexes are non-electrolytic in nature. Elemental analysis reveals ML2·2H2O [M = Co(II), Ni(II) and Cu(II)] stoichiometry, where 'L' stands for a singly deprotonated ligand. The presence of co-ordinated water molecules were confirmed by thermal studies. The spectroscopic studies suggest the octahedral geometry. Redox behavior of the complexes were confirmed by cyclic voltammetry. All the synthesized compounds were screened for their antibacterial (Escherichia coli, Pseudomonas auregenosa, klebsiella, Proteus, Staphylococcus aureus and salmonella) antifungal (Candida, Aspergillus niger and Rhizopus), anthelmintic (Pheretima posthuma) and DNA cleavage (Calf Thymus DNA) activity.
Patil, Sangamesh A; Prabhakara, Chetan T; Halasangi, Bhimashankar M; Toragalmath, Shivakumar S; Badami, Prema S
2015-02-25
The metal complexes of Co(II), Ni(II) and Cu(II) have been synthesized from 6-formyl-7,8-dihydroxy-4-methylcoumarin with o-toluidine/3-aminobenzotrifluoride. The synthesized Schiff bases and their metal complexes were structurally characterized based on IR, (1)H NMR, (13)C NMR, UV-visible, ESR, magnetic, thermal, fluorescence, mass and ESI-MS studies. The molar conductance values indicate that complexes are non-electrolytic in nature. Elemental analysis reveals ML2·2H2O [M = Co(II), Ni(II) and Cu(II)] stoichiometry, where 'L' stands for a singly deprotonated ligand. The presence of co-ordinated water molecules were confirmed by thermal studies. The spectroscopic studies suggest the octahedral geometry. Redox behavior of the complexes were confirmed by cyclic voltammetry. All the synthesized compounds were screened for their antibacterial (Escherichia coli, Pseudomonas auregenosa, klebsiella, Proteus, Staphylococcus aureus and salmonella) antifungal (Candida, Aspergillus niger and Rhizopus), anthelmintic (Pheretima posthuma) and DNA cleavage (Calf Thymus DNA) activity. Copyright © 2014 Elsevier B.V. All rights reserved.
Escaping introns in COI through cDNA barcoding of mushrooms: Pleurotus as a test case.
Avin, Farhat A; Subha, Bhassu; Tan, Yee-Shin; Braukmann, Thomas W A; Vikineswary, Sabaratnam; Hebert, Paul D N
2017-09-01
DNA barcoding involves the use of one or more short, standardized DNA fragments for the rapid identification of species. A 648-bp segment near the 5' terminus of the mitochondrial cytochrome c oxidase subunit I (COI) gene has been adopted as the universal DNA barcode for members of the animal kingdom, but its utility in mushrooms is complicated by the frequent occurrence of large introns. As a consequence, ITS has been adopted as the standard DNA barcode marker for mushrooms despite several shortcomings. This study employed newly designed primers coupled with cDNA analysis to examine COI sequence diversity in six species of Pleurotus and compared these results with those for ITS. The ability of the COI gene to discriminate six species of Pleurotus , the commonly cultivated oyster mushroom, was examined by analysis of cDNA. The amplification success, sequence variation within and among species, and the ability to design effective primers was tested. We compared ITS sequences to their COI cDNA counterparts for all isolates. ITS discriminated between all six species, but some sequence results were uninterpretable, because of length variation among ITS copies. By comparison, a complete COI sequences were recovered from all but three individuals of Pleurotus giganteus where only the 5' region was obtained. The COI sequences permitted the resolution of all species when partial data was excluded for P. giganteus . Our results suggest that COI can be a useful barcode marker for mushrooms when cDNA analysis is adopted, permitting identifications in cases where ITS cannot be recovered or where it offers higher resolution when fresh tissue is. The suitability of this approach remains to be confirmed for other mushrooms.
Hu, Huiying; Jiang, Yulin; Zhang, Minghui; Liu, Shanying; Hao, Na; Zhou, Jing; Liu, Juntao; Zhang, Xiaojin; Ma, Liangkun
2017-03-01
To evaluate, side by side, the efficiency of dried blood spots (DBSs) against serum screening for Down's syndrome, and then, to construct a two-tier strategy by topping up the fetal cell-free DNA (cfDNA) secondary screening over the high-risk women marked by the primary blood testing to build a practical screening tactic to identify fetal Down's syndrome. One thousand eight hundred and thirty-seven low-risk Chinese women, with singleton pregnancy, were enrolled for the study. Alpha-fetoprotein and free beta human chorionic gonadotropin were measured for the serum as well as for the parallel DBS samples. Partial high-risk pregnant women identified by primary blood testing (n = 38) were also subject to the secondary cfDNA screening. Diagnostic amniocentesis was utilized to confirm the screening results. The true positive rate for Down's syndrome detection was 100% for both blood screening methods; however, the false-positive rate was 3.0% for DBS and 4.0% for serum screening, respectively. DBS correlated well with serum screening on Down's syndrome detection. Three out of 38 primary high-risk women displayed chromosomal abnormalities by cfDNA analysis, which were confirmed by amniocentesis. Either the true detection rate or the false-positive rate for Down's syndrome between DBS and the serum test is comparable. In addition, blood primary screening aligned with secondary cfDNA analysis, a "before and after" two-tier screening strategy, can massively decrease the false-positive rate, which, then, dramatically reduces the demand for invasive diagnostic operation. Impact statement Children born with Down's syndrome display a wide range of mental and physical disability. Currently, there is no effective treatment to ease the burden and anxiety of the Down's syndrome family and the surrounding society. This study is to evaluate the efficiency of dried blood spots against serum screening for Down's syndrome and to construct a two-tier strategy by topping up the fetal cell-free DNA (cfDNA) secondary screening over the high-risk women marked by the primary blood testing to build a practical screening tactic to identify fetal Down's syndrome. Results demonstrate that fetal cfDNA can significantly reduce false-positive rate close to none while distinguishing all true positives. Thus, we recommend that fetal cfDNA analysis to be utilized as a secondary screening tool atop of the primary blood protein screening to further minimize the capacity of undesirable invasive diagnostic operations.
Single Nucleotide Polymorphism Analysis of European Archaeological M. leprae DNA
Watson, Claire L.; Lockwood, Diana N. J.
2009-01-01
Background Leprosy was common in Europe eight to twelve centuries ago but molecular confirmation of this has been lacking. We have extracted M. leprae ancient DNA (aDNA) from medieval bones and single nucleotide polymorphism (SNP) typed the DNA, this provides insight into the pattern of leprosy transmission in Europe and may assist in the understanding of M. leprae evolution. Methods and Findings Skeletons have been exhumed from 3 European countries (the United Kingdom, Denmark and Croatia) and are dated around the medieval period (476 to 1350 A.D.). we tested for the presence of 3 previously identified single nucleotide polymorphisms (SNPs) in 10 aDNA extractions. M. leprae aDNA was extracted from 6 of the 10 bone samples. SNP analysis of these 6 extractions were compared to previously analysed European SNP data using the same PCR assays and were found to be the same. Testing for the presence of SNPs in M. leprae DNA extracted from ancient bone samples is a novel approach to analysing European M. leprae DNA and the findings concur with the previously published data that European M. leprae strains fall in to one group (SNP group 3). Conclusions These findings support the suggestion that the M. leprae genome is extremely stable and show that archaeological M. leprae DNA can be analysed to gain detailed information about the genotypic make-up of European leprosy, which may assist in the understanding of leprosy transmission worldwide. PMID:19847306
Implementation of a protocol for assembling DNA in a Teflon tube
NASA Astrophysics Data System (ADS)
Walsh, Edmond J.; Feuerborn, Alexander; Cook, Peter R.
2017-02-01
Droplet based microfluidics continues to grow as a platform for chemical and biological reactions using small quantities of fluids, however complex protocols are rarely possible in existing devices. This paper implements a new approach to merging of drops, combined with magnetic bead manipulation, for the creation of ligated double-stranded DNA molecule using "Gibson assembly" chemistry. DNA assembly is initially accomplished through the merging, and mixing, of five drops followed by a thermal cycle. Then, integrating this drop merging method with magnetic beads enable the implementation of amore complete protocol consisting of nine wash steps,merging of four drop, transport of selective reagents between twelve drops using magnetic particles, followed by a thermal cycle and finally the deposition of a purified drop into an Eppendorf for downstream analysis. Gel electrophoresis is used to confirm successful DNA assembly.
Transient expression and activity of human DNA polymerase iota in loach embryos.
Makarova, Irina V; Kazakov, Andrey A; Makarova, Alena V; Khaidarova, Nella V; Kozikova, Larisa V; Nenasheva, Valentina V; Gening, Leonid V; Tarantul, Vyacheslav Z; Andreeva, Ludmila E
2012-02-01
Human DNA polymerase iota (Pol ι) is a Y-family DNA polymerase with unusual biochemical properties and not fully understood functions. Pol ι preferentially incorporates dGTP opposite template thymine. This property can be used to monitor Pol ι activity in the presence of other DNA polymerases, e.g. in cell extracts of tissues and tumors. We have now confirmed the specificity and sensitivity of the method of Pol ι activity detection in cell extracts using an animal model of loach Misgurnus fossilis embryos transiently expressing human Pol ι. The overexpression of Pol ι was shown to be accompanied by an increase in abnormalities in development and the frequency of pycnotic nuclei in fish embryos. Further analysis of fish embryos with constitutive or regulated Pol ι expression may provide insights into Pol ι functions in vertebrate animals.
Wood, Henry M; Belvedere, Ornella; Conway, Caroline; Daly, Catherine; Chalkley, Rebecca; Bickerdike, Melissa; McKinley, Claire; Egan, Phil; Ross, Lisa; Hayward, Bruce; Morgan, Joanne; Davidson, Leslie; MacLennan, Ken; Ong, Thian K; Papagiannopoulos, Kostas; Cook, Ian; Adams, David J; Taylor, Graham R; Rabbitts, Pamela
2010-08-01
The use of next-generation sequencing technologies to produce genomic copy number data has recently been described. Most approaches, however, reply on optimal starting DNA, and are therefore unsuitable for the analysis of formalin-fixed paraffin-embedded (FFPE) samples, which largely precludes the analysis of many tumour series. We have sought to challenge the limits of this technique with regards to quality and quantity of starting material and the depth of sequencing required. We confirm that the technique can be used to interrogate DNA from cell lines, fresh frozen material and FFPE samples to assess copy number variation. We show that as little as 5 ng of DNA is needed to generate a copy number karyogram, and follow this up with data from a series of FFPE biopsies and surgical samples. We have used various levels of sample multiplexing to demonstrate the adjustable resolution of the methodology, depending on the number of samples and available resources. We also demonstrate reproducibility by use of replicate samples and comparison with microarray-based comparative genomic hybridization (aCGH) and digital PCR. This technique can be valuable in both the analysis of routine diagnostic samples and in examining large repositories of fixed archival material.
Haller, Florian; Zhang, Jitao David; Moskalev, Evgeny A; Braun, Alexander; Otto, Claudia; Geddert, Helene; Riazalhosseini, Yasser; Ward, Aoife; Balwierz, Aleksandra; Schaefer, Inga-Marie; Cameron, Silke; Ghadimi, B Michael; Agaimy, Abbas; Fletcher, Jonathan A; Hoheisel, Jörg; Hartmann, Arndt; Werner, Martin; Wiemann, Stefan; Sahin, Ozgür
2015-03-01
Gastrointestinal stromal tumors (GISTs) have distinct gene expression patterns according to localization, genotype and aggressiveness. DNA methylation at CpG dinucleotides is an important mechanism for regulation of gene expression. We performed targeted DNA methylation analysis of 1.505 CpG loci in 807 cancer-related genes in a cohort of 76 GISTs, combined with genome-wide mRNA expression analysis in 22 GISTs, to identify signatures associated with clinicopathological parameters and prognosis. Principal component analysis revealed distinct DNA methylation patterns associated with anatomical localization, genotype, mitotic counts and clinical follow-up. Methylation of a single CpG dinucleotide in the non-CpG island promoter of SPP1 was significantly correlated with shorter disease-free survival. Hypomethylation of this CpG was an independent prognostic parameter in a multivariate analysis compared to anatomical localization, genotype, tumor size and mitotic counts in a cohort of 141 GISTs with clinical follow-up. The epigenetic regulation of SPP1 was confirmed in vitro, and the functional impact of SPP1 protein on tumorigenesis-related signaling pathways was demonstrated. In summary, SPP1 promoter methylation is a novel and independent prognostic parameter in GISTs, and might be helpful in estimating the aggressiveness of GISTs from the intermediate-risk category. © 2014 UICC.
Nolden, T; Pfaff, F; Nemitz, S; Freuling, C M; Höper, D; Müller, T; Finke, Stefan
2016-04-05
Reverse genetics approaches are indispensable tools for proof of concepts in virus replication and pathogenesis. For negative strand RNA viruses (NSVs) the limited number of infectious cDNA clones represents a bottleneck as clones are often generated from cell culture adapted or attenuated viruses, with limited potential for pathogenesis research. We developed a system in which cDNA copies of complete NSV genomes were directly cloned into reverse genetics vectors by linear-to-linear RedE/T recombination. Rapid cloning of multiple rabies virus (RABV) full length genomes and identification of clones identical to field virus consensus sequence confirmed the approache's reliability. Recombinant viruses were recovered from field virus cDNA clones. Similar growth kinetics of parental and recombinant viruses, preservation of field virus characters in cell type specific replication and virulence in the mouse model were confirmed. Reduced titers after reporter gene insertion indicated that the low level of field virus replication is affected by gene insertions. The flexibility of the strategy was demonstrated by cloning multiple copies of an orthobunyavirus L genome segment. This important step in reverse genetics technology development opens novel avenues for the analysis of virus variability combined with phenotypical characterization of recombinant viruses at a clonal level.
Panda, S; Martín, J P; Aguinagalde, I
2003-04-01
A population genetic analysis of chloroplast and nuclear DNA was performed covering nine wild populations of Brassica oleracea. Three members of the n = 9 group, all close to B. oleracea, Brassica alboglabra Bailey, Brassica bourgeaui (Webb) O. Kuntze and Brassica montana Pourret, were also studied to better understand their relationship with B. oleracea. Chloroplast DNA was analysed using the PCR-RFLP (polymerase chain reaction - restriction fragment length polymorphism) method. The ISSR-PCR (inter-simple sequence repeat - polymerase chain reaction) technique was adopted to study nuclear DNA. Twelve primer pairs of chloroplast DNA showed very good amplification. The amplified product of each primer pair, digested by three restriction enzymes, revealed no variation of cpDNA among the taxa studied. This indicates they may have the same chloroplast genotype. Seven selected ISSR primers have detected genetic variation, both within and among the populations/taxa surveyed. The information obtained on the intra- and inter-populational genetic diversity of wild populations of B. oleracea neatly defined the individual plants. It could provide important guidelines for backing management and conservation strategies in this species. The study confirms a close relationship between B. alboglabra, B. bourgeaui and B. montana, which is parallel to their morphological similitude.
Tarcz, Sebastian
2013-01-01
Paramecium novaurelia Beale and Schneller, 1954, was first found in Scotland and is known to occur mainly in Europe, where it is the most common species of the P. aurelia complex. In recent years, two non-European localities have been described: Turkey and the United States of America. This article presents the analysis of intraspecific variability among 25 strains of P. novaurelia with the application of ribosomal and mitochondrial loci (ITS1-5.8S-ITS2, 5' large subunit rDNA (5'LSU rDNA) and cytochrome c oxidase subunit 1 (COI) mtDNA). The mean distance observed for all of the studied P. novaurelia sequence pairs was p=0.008/0.016/0.092 (ITS1-5.8S-ITS2/5'LSU rDNA/COI). Phylogenetic trees (NJ/MP/BI) based on a comparison of all of the analysed sequences show that the studied strains of P. novaurelia form a distinct clade, separate from the P. caudatum outgroup, and are divided into two clusters (A and B) and two branches (C and D). The occurrence of substantial genetic differentiation within P. novaurelia, confirmed by the analysed DNA fragments, indicates a rapid evolution of particular species within the Paramecium genus. Copyright © 2012 Elsevier GmbH. All rights reserved.
Molecular confirmation of a case of multiorgan cystic echinococcosis.
Yang, Y R; Sun, T; Zhang, J Z; McManus, D P
2006-02-01
We report on the results of radical surgery performed on a 10-yr-old Chinese female with multiple echinococcosis lesions and the diagnosis of the infection by imaging, histology, serology, and DNA analysis. Molecular genotyping provided unequivocal proof that the patient was infected with Echinococcus granulosus, the cause of cystic echinococcosis.
Decoding DNA labels by melting curve analysis using real-time PCR.
Balog, József A; Fehér, Liliána Z; Puskás, László G
2017-12-01
Synthetic DNA has been used as an authentication code for a diverse number of applications. However, existing decoding approaches are based on either DNA sequencing or the determination of DNA length variations. Here, we present a simple alternative protocol for labeling different objects using a small number of short DNA sequences that differ in their melting points. Code amplification and decoding can be done in two steps using quantitative PCR (qPCR). To obtain a DNA barcode with high complexity, we defined 8 template groups, each having 4 different DNA templates, yielding 158 (>2.5 billion) combinations of different individual melting temperature (Tm) values and corresponding ID codes. The reproducibility and specificity of the decoding was confirmed by using the most complex template mixture, which had 32 different products in 8 groups with different Tm values. The industrial applicability of our protocol was also demonstrated by labeling a drone with an oil-based paint containing a predefined DNA code, which was then successfully decoded. The method presented here consists of a simple code system based on a small number of synthetic DNA sequences and a cost-effective, rapid decoding protocol using a few qPCR reactions, enabling a wide range of authentication applications.
Parvari, R; Hershkovitz, E; Carmi, R; Moses, S
1996-09-01
Glycogen storage disease type 1a (GSD 1a), a severe metabolic disorder, is caused by the absence of glucose-6-phosphatase (G6Pase) activity. Diagnosis is currently established by demonstrating the lack of G6Pase activity in the patient's liver specimen. Enzymatic diagnosis cannot be performed in chorionic villi or amniocytes as G6Pase is active only in the liver, kidney, and intestinal mucosa. Recent cloning of the G6Pase gene and subsequent identification of the mutations causing GSD 1a have led to the possibility of performing DNA-based diagnosis in chorionic villus samples (CVS) or amniocytes. Here we report the first DNA-based prenatal diagnosis in two families in whom GSD 1a patients were diagnosed. In one Jewish family with a previously identified R83C mutation, single-stranded conformation polymorphism (SSCP) analysis of the DNA extracted from CVS showed a homozygous R83C mutant pattern. As a result, the pregnancy was terminated and the diagnosis was confirmed on DNA analysis of the aborted fetus. In another family of Arabic extraction in which a V166G mutation has been identified in one of the siblings, SSCP analysis performed on DNA extracted from CVS presented the pattern of a normal control. The pregnancy was carried to term and a healthy baby was born. Thus, once mutations causing the disease are identified, prenatal diagnosis of GSD 1a is possible. SSCP analysis of DNA prepared from CVS is reliable, simple and fast, making it a suitable method for prenatal diagnosis.
Pros and cons of methylation-based enrichment methods for ancient DNA.
Seguin-Orlando, Andaine; Gamba, Cristina; Der Sarkissian, Clio; Ermini, Luca; Louvel, Guillaume; Boulygina, Eugenia; Sokolov, Alexey; Nedoluzhko, Artem; Lorenzen, Eline D; Lopez, Patricio; McDonald, H Gregory; Scott, Eric; Tikhonov, Alexei; Stafford, Thomas W; Alfarhan, Ahmed H; Alquraishi, Saleh A; Al-Rasheid, Khaled A S; Shapiro, Beth; Willerslev, Eske; Prokhortchouk, Egor; Orlando, Ludovic
2015-07-02
The recent discovery that DNA methylation survives in fossil material provides an opportunity for novel molecular approaches in palaeogenomics. Here, we apply to ancient DNA extracts the probe-independent Methylated Binding Domains (MBD)-based enrichment method, which targets DNA molecules containing methylated CpGs. Using remains of a Palaeo-Eskimo Saqqaq individual, woolly mammoths, polar bears and two equine species, we confirm that DNA methylation survives in a variety of tissues, environmental contexts and over a large temporal range (4,000 to over 45,000 years before present). MBD enrichment, however, appears principally biased towards the recovery of CpG-rich and long DNA templates and is limited by the fast post-mortem cytosine deamination rates of methylated epialleles. This method, thus, appears only appropriate for the analysis of ancient methylomes from very well preserved samples, where both DNA fragmentation and deamination have been limited. This work represents an essential step toward the characterization of ancient methylation signatures, which will help understanding the role of epigenetic changes in past environmental and cultural transitions.
Pros and cons of methylation-based enrichment methods for ancient DNA
Seguin-Orlando, Andaine; Gamba, Cristina; Sarkissian, Clio Der; Ermini, Luca; Louvel, Guillaume; Boulygina, Eugenia; Sokolov, Alexey; Nedoluzhko, Artem; Lorenzen, Eline D.; Lopez, Patricio; McDonald, H. Gregory; Scott, Eric; Tikhonov, Alexei; Stafford,, Thomas W.; Alfarhan, Ahmed H.; Alquraishi, Saleh A.; Al-Rasheid, Khaled A. S.; Shapiro, Beth; Willerslev, Eske; Prokhortchouk, Egor; Orlando, Ludovic
2015-01-01
The recent discovery that DNA methylation survives in fossil material provides an opportunity for novel molecular approaches in palaeogenomics. Here, we apply to ancient DNA extracts the probe-independent Methylated Binding Domains (MBD)-based enrichment method, which targets DNA molecules containing methylated CpGs. Using remains of a Palaeo-Eskimo Saqqaq individual, woolly mammoths, polar bears and two equine species, we confirm that DNA methylation survives in a variety of tissues, environmental contexts and over a large temporal range (4,000 to over 45,000 years before present). MBD enrichment, however, appears principally biased towards the recovery of CpG-rich and long DNA templates and is limited by the fast post-mortem cytosine deamination rates of methylated epialleles. This method, thus, appears only appropriate for the analysis of ancient methylomes from very well preserved samples, where both DNA fragmentation and deamination have been limited. This work represents an essential step toward the characterization of ancient methylation signatures, which will help understanding the role of epigenetic changes in past environmental and cultural transitions. PMID:26134828
Structure and DNA-binding of meiosis-specific protein Hop2
NASA Astrophysics Data System (ADS)
Zhou, Donghua; Moktan, Hem; Pezza, Roberto
2014-03-01
Here we report structure elucidation of the DNA binding domain of homologous pairing protein 2 (Hop2), which is important to gene diversity when sperms and eggs are produced. Together with another protein Mnd1, Hop2 enhances the strand invasion activity of recombinase Dmc1 by over 30 times, facilitating proper synapsis of homologous chromosomes. However, the structural and biochemical bases for the function of Hop2 and Mnd1 have not been well understood. As a first step toward such understanding, we recently solved the structure for the N-terminus of Hop2 (1-84) using solution NMR. This fragment shows a typical winged-head conformation with recognized DNA binding activity. DNA interacting sites were then investigated by chemical shift perturbations in a titration experiment. Information of these sites was used to guide protein-DNA docking with MD simulation, revealing that helix 3 is stably lodged in the DNA major groove and that wing 1 (connecting strands 2 and 3) transiently comes in contact with the minor groove in nanosecond time scale. Mutagenesis analysis further confirmed the DNA binding sites in this fragment of the protein.
Kim, Min Jung; Hwang, Kyung Hwan; Lee, Young-Seok; Park, Jae-Yoon; Kook, Joong-Ki
2011-03-01
The aim of this study was to develop Prevotella intermedia-specific PCR primers based on the P. intermedia-specific DNA probe. The P. intermedia-specific DNA probe was screened by inverted dot blot hybridization and confirmed by Southern blot hybridization. The nucleotide sequences of the species-specific DNA probes were determined using a chain termination method. Southern blot analysis showed that the DNA probe, Pig27, detected only the genomic DNA of P. intermedia strains. PCR showed that the PCR primers, Pin-F1/Pin-R1, had species-specificity for P. intermedia. The detection limits of the PCR primer sets were 0.4pg of the purified genomic DNA of P. intermedia ATCC 49046. These results suggest that the PCR primers, Pin-F1/Pin-R1, could be useful in the detection of P. intermedia as well as in the development of a PCR kit in epidemiological studies related to periodontal diseases. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.
Saladino, R; Crestini, C; Mincione, E; Costanzo, G; Di Mauro, E; Negri, R
1997-11-01
We describe the reaction of formamide with 2'-deoxycytidine to give pyrimidine ring opening by nucleophilic addition on the electrophilic C(6) and C(4) positions. This information is confirmed by the analysis of the products of formamide attack on 2'-deoxycytidine, 5-methyl-2'-deoxycytidine, and 5-bromo-2'-deoxycytidine, residues when the latter are incorporated into oligonucleotides by DNA polymerase-driven polymerization and solid-phase phosphoramidite procedure. The increased sensitivity of 5-bromo-2'-deoxycytidine relative to that of 2'-deoxycytidine is pivotal for the improvement of the one-lane chemical DNA sequencing procedure based on the base-selective reaction of formamide with DNA. In many DNA sequencing cases it will in fact be possible to incorporate this base analogue into the DNA to be sequenced, thus providing a complete discrimination between its UV absorption signal and that of the thymidine residues. The wide spectrum of different sensitivities to formamide displayed by the 2'-deoxycytidine analogues solves, in the DNA single-lane chemical sequencing procedure, the possible source of errors due to low discrimination between C and T residues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serwer, Philip, E-mail: serwer@uthscsa.edu; Wright, Elena T.; Liu, Zheng
DNA packaging of phages phi29, T3 and T7 sometimes produces incompletely packaged DNA with quantized lengths, based on gel electrophoretic band formation. We discover here a packaging ATPase-free, in vitro model for packaged DNA length quantization. We use directed evolution to isolate a five-site T3 point mutant that hyper-produces tail-free capsids with mature DNA (heads). Three tail gene mutations, but no head gene mutations, are present. A variable-length DNA segment leaks from some mutant heads, based on DNase I-protection assay and electron microscopy. The protected DNA segment has quantized lengths, based on restriction endonuclease analysis: six sharp bands of DNAmore » missing 3.7–12.3% of the last end packaged. Native gel electrophoresis confirms quantized DNA expulsion and, after removal of external DNA, provides evidence that capsid radius is the quantization-ruler. Capsid-based DNA length quantization possibly evolved via selection for stalling that provides time for feedback control during DNA packaging and injection. - Graphical abstract: Highlights: • We implement directed evolution- and DNA-sequencing-based phage assembly genetics. • We purify stable, mutant phage heads with a partially leaked mature DNA molecule. • Native gels and DNase-protection show leaked DNA segments to have quantized lengths. • Native gels after DNase I-removal of leaked DNA reveal the capsids to vary in radius. • Thus, we hypothesize leaked DNA quantization via variably quantized capsid radius.« less
Cell-Free DNA in Metastatic Colorectal Cancer: A Systematic Review and Meta-Analysis.
Spindler, Karen-Lise G; Boysen, Anders K; Pallisgård, Niels; Johansen, Julia S; Tabernero, Josep; Sørensen, Morten M; Jensen, Benny V; Hansen, Torben F; Sefrioui, David; Andersen, Rikke F; Brandslund, Ivan; Jakobsen, Anders
2017-09-01
Circulating DNA can be detected and quantified in the blood of cancer patients and used for detection of tumor-specific genetic alterations. The clinical utility has been intensively investigated for the past 10 years. The majority of reports focus on analyzing the clinical potential of tumor-specific mutations, whereas the use of total cell-free DNA (cfDNA) quantification is somehow controversial and sparsely described in the literature, but holds important clinical information in itself. The purpose of the present report was to present a systematic review and meta-analysis of the prognostic value of total cfDNA in patients with metastatic colorectal cancer (mCRC) treated with chemotherapy. In addition, we report on the overall performance of cfDNA as source for KRAS mutation detection. A systematic literature search of PubMed and Embase was performed by two independent investigators. Eligibility criteria were (a) total cfDNA analysis, (b) mCRC, and (c) prognostic value during palliative treatment. The preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines were followed, and meta-analysis applied on both aggregate data extraction and individual patients' data. Ten eligible cohorts were identified, including a total of 1,076 patients. Seven studies used quantitative polymerase chain reaction methods, two BEAMing [beads, emulsification, amplification, and magnetics] technology, and one study digital droplet polymerase chain reaction. The baseline levels of cfDNA was similar in the presented studies, and all studies reported a clear prognostic value in favor of patients with lowest levels of baseline cfDNA. A meta-analysis revealed a combined estimate of favorable overall survival hazard ratio (HR) in patients with levels below the median cfDNA (HR = 2.39, 95% confidence interval 2.03-2.82, p < .0001). The total cfDNA levels are high in patients with mCRC and bear strong prognostic information, which should be tested prospectively by using a predefined cut-off value based on normal values in healthy cohorts. Finally, the potential use of cfDNA for detection of tumor-specific mutations was emphasized in a large individual patients' data meta-analysis. Reliable prognostic markers could help to guide patients and treating physicians regarding the relevance and choice of systemic therapy. Small fragments of circulating cell-free DNA (cfDNA) can be measured in a simple blood sample. This report presents the first meta-analysis of the prognostic value of total cfDNA measurement in patients with metastatic colorectal cancer. Data from 1,076 patients confirmed that patients with the lowest pre-treatment levels of cfDNA had a significantly higher chance of longer survival than those with higher levels. Cell-free DNA analysis can also be used for detection of tumor-specific mutations, and hold potential as a valuable tool in colorectal cancer treatment. © AlphaMed Press 2017.
Ellis, Justine A; Munro, Jane E; Chavez, Raul A; Gordon, Lavinia; Joo, Jihoon E; Akikusa, Jonathan D; Allen, Roger C; Ponsonby, Anne-Louise; Craig, Jeffrey M; Saffery, Richard
2012-11-13
Juvenile Idiopathic Arthritis (JIA) is a complex autoimmune rheumatic disease of largely unknown cause. Evidence is growing that epigenetic variation, particularly DNA methylation, is associated with autoimmune disease. However, nothing is currently known about the potential role of aberrant DNA methylation in JIA. As a first step to addressing this knowledge gap, we have profiled DNA methylation in purified CD4+ T cells from JIA subjects and controls. Genomic DNA was isolated from peripheral blood CD4+ T cells from 14 oligoarticular and polyarticular JIA cases with active disease, and healthy age- and sex-matched controls. Genome-scale methylation analysis was carried out using the Illumina Infinium HumanMethylation27 BeadChip. Methylation data at >25,000 CpGs was compared in a case-control study design. Methylation levels were significantly different (FDR adjusted p<0.1) at 145 loci. Removal of four samples exposed to methotrexate had a striking impact on the outcome of the analysis, reducing the number of differentially methylated loci to 11. The methotrexate-naive analysis identified reduced methylation at the gene encoding the pro-inflammatory cytokine IL32, which was subsequently replicated using a second analysis platform and a second set of case-control pairs. Our data suggests that differential T cell DNA methylation may be a feature of JIA, and that reduced methylation at IL32 is associated with this disease. Further work in larger prospective and longitudinal sample collections is required to confirm these findings, assess whether the identified differences are causal or consequential of disease, and further investigate the epigenetic modifying properties of therapeutic regimens.
Rambhatla, Lakshmi; Ram-Mohan, Sumati; Cheng, Jennifer J; Sherley, James L
2005-04-15
Because they are long-lived and cycle continuously, adult stem cells (ASCs) are predicted as the most common precursor for cancers in adult mammalian tissues. Two unique attributes have been proposed to restrict the carcinogenic potential of ASCs. These are asymmetric self-renewal that limits their number and immortal DNA strand cosegregation that limits their accumulation of mutations due to DNA replication errors. Until recently, the molecular basis and regulation of these important ASC-specific functions were unknown. We developed engineered cultured cells that exhibit asymmetric self-renewal and immortal DNA strand cosegregation. These model cells were used to show that both ASC-specific functions are regulated by the p53 cancer gene. Previously, we proposed that IMP dehydrogenase (IMPDH) was an essential factor for p53-dependent asymmetric self-renewal. We now confirm this proposal and provide quantitative evidence that asymmetric self-renewal is acutely sensitive to even modest changes in IMPDH expression. These analyses reveal that immortal DNA strand cosegregation is also regulated by IMPDH and confirm the original implicit precept that immortal DNA strand cosegregation is specific to cells undergoing asymmetric self-renewal (i.e., ASCs). With IMPDH being the rate-determining enzyme for guanine ribonucleotide (rGNP) biosynthesis, its requirement implicates rGNPs as important regulators of ASC asymmetric self-renewal and immortal DNA strand cosegregation. An in silico analysis of global gene expression data from human cancer cell lines underscored the importance of p53-IMPDH-rGNP regulation for normal tissue cell kinetics, providing further support for the concept that ASCs are key targets for adult tissue carcinogenesis.
Description of Kribbella italica sp. nov., isolated from a Roman catacomb.
Everest, Gareth J; Curtis, Sarah M; De Leo, Filomena; Urzì, Clara; Meyers, Paul R
2015-02-01
A novel actinobacterium, strain BC637(T), was isolated from a biodeteriogenic biofilm sample collected in 2009 in the Saint Callixstus Roman catacomb. The strain was found to belong to the genus Kribbella by analysis of the 16S rRNA gene. Phylogenetic analysis using the 16S rRNA gene and the gyrB, rpoB, relA, recA and atpD concatenated gene sequences showed that strain BC637(T) was most closely related to the type strains of Kribbella lupini and Kribbella endophytica. DNA-DNA hybridization experiments confirmed that strain BC637(T) is a genomic species that is distinct from its closest phylogenetic relatives, K. endophytica DSM 23718(T) (63 % DNA relatedness) and K. lupini LU14(T) (63 % DNA relatedness). Physiological comparisons showed that strain BC637(T) is phenotypically distinct from the type strains of K. endophytica and K. lupini. Thus, strain BC637(T) represents the type strain of a novel species, for which the name Kribella italica sp. nov. is proposed ( = DSM 28967(T) = NRRL B-59155(T)). © 2015 IUMS.
Chang, Yu-Wei; Ko, Tzu-Ping; Lee, Chien-Der; Chang, Yuan-Chih; Lin, Kuei-Ann; Chang, Chia-Seng; Wang, Andrew H.-J.; Wang, Ting-Fang
2009-01-01
RecA family proteins, including bacterial RecA, archaeal RadA, and eukaryotic Dmc1 and Rad51, mediate homologous recombination, a reaction essential for maintaining genome integrity. In the presence of ATP, these proteins bind a single-strand DNA to form a right-handed nucleoprotein filament, which catalyzes pairing and strand exchange with a homologous double-stranded DNA (dsDNA), by as-yet unknown mechanisms. We recently reported a structure of RadA left-handed helical filament, and here present three new structures of RadA left-handed helical filaments. Comparative structural analysis between different RadA/Rad51 helical filaments reveals that the N-terminal domain (NTD) of RadA/Rad51, implicated in dsDNA binding, is highly flexible. We identify a hinge region between NTD and polymerization motif as responsible for rigid body movement of NTD. Mutant analysis further confirms that structural flexibility of NTD is essential for RadA's recombinase activity. These results support our previous hypothesis that ATP-dependent axial rotation of RadA nucleoprotein helical filament promotes homologous recombination. PMID:19295907
Matějů, Jana; Chanová, Marta; Modrý, David; Mitková, Barbora; Hrazdilová, Kristýna; Žampachová, Víta; Kolářová, Libuše
2016-04-19
Human dirofilariasis is a zoonotic infection that continues to spread to previously unaffected areas of Europe. In the South Moravian Region of the Czech Republic (CR), imported as well as autochthonous canine infections were recorded in the last decade, and parasite DNA was detected in mosquitoes of Aedes vexans. In the present paper, human Dirofilaria infections are reported from the country for the first time. The samples from five patients with suspected tissue helminthiases were investigated. In particular cases, nematodes were isolated from various tissues including skin of lower leg, soft tissues of finger, subcutaneous tissue of hypogastrium, lymph node and peritoneum. The diagnosis was based on light microscopic morphology and/or DNA analysis of the worms. In addition, ELISA examination of patients' sera for anti-filaria IgG antibodies was performed. In the CR, five cases of human dirofilariasis caused by Dirofilaria repens were recorded during 2010-2014 (species determination for three of them was confirmed besides morphological also by DNA analysis). At least, three of the cases were of autochthonous origin (the patients are Czech citizens residing in South Moravian Region who have never travelled abroad). The findings confirm the natural setting of D. repens in South Moravian Region of the CR. Dirofilariasis should be therefore considered as endemic in this area where it may represent a significant risk factor for public health.
Abdel-Shafi, Iman R; Shoieb, Eman Y; Attia, Samar S; Rubio, José M; Ta-Tang, Thuy-Huong; El-Badry, Ayman A
2017-03-01
Lymphatic filariasis (LF) is a serious vector-borne health problem, and Wuchereria bancrofti (W.b) is the major cause of LF worldwide and is focally endemic in Egypt. Identification of filarial infection using traditional morphologic and immunological criteria can be difficult and lead to misdiagnosis. The aim of the present study was molecular detection of W.b in residents in endemic areas in Egypt, sequence variance analysis, and phylogenetic analysis of W.b DNA. Collected blood samples from residents in filariasis endemic areas in five governorates were subjected to semi-nested PCR targeting repeated DNA sequence, for detection of W.b DNA. PCR products were sequenced; subsequently, a phylogenetic analysis of the obtained sequences was performed. Out of 300 blood samples, W.b DNA was identified in 48 (16%). Sequencing analysis confirmed PCR results identifying only W.b species. Sequence alignment and phylogenetic analysis indicated genetically distinct clusters of W.b among the study population. Study results demonstrated that the semi-nested PCR proved to be an effective diagnostic tool for accurate and rapid detection of W.b infections in nano-epidemics and is applicable for samples collected in the daytime as well as the night time. PCR products sequencing and phylogenitic analysis revealed three different nucleotide sequences variants. Further genetic studies of W.b in Egypt and other endemic areas are needed to distinguish related strains and the various ecological as well as drug effects exerted on them to support W.b elimination.
NASA Astrophysics Data System (ADS)
Khajeh, Masoumeh Ashrafi; Dehghan, Gholamreza; Dastmalchi, Siavoush; Shaghaghi, Masoomeh; Iranshahi, Mehrdad
2018-03-01
DNA is a major target for a number of anticancer substances. Interaction studies between small molecules and DNA are essential for rational drug designing to influence main biological processes and also introducing new probes for the assay of DNA. Tschimgine (TMG) is a monoterpene derivative with anticancer properties. In the present study we tried to elucidate the interaction of TMG with calf thymus DNA (CT-DNA) using different spectroscopic methods. UV-visible absorption spectrophotometry, fluorescence and circular dichroism (CD) spectroscopies as well as molecular docking study revealed formation of complex between TMG and CT-DNA. Binding constant (Kb) between TMG and DNA was 2.27 × 104 M- 1, that is comparable to groove binding agents. The fluorescence spectroscopic data revealed that the quenching mechanism of fluorescence of TMG by CT-DNA is static quenching. Thermodynamic parameters (ΔH < 0 and ΔS < 0) at different temperatures indicated that van der Waals forces and hydrogen bonds were involved in the binding process of TMG with CT-DNA. Competitive binding assay with methylene blue (MB) and Hoechst 33258 using fluorescence spectroscopy displayed that TMG possibly binds to the minor groove of CT-DNA. These observations were further confirmed by CD spectral analysis, viscosity measurements and molecular docking.
Hendrickson, Edwin R.; Payne, Jo Ann; Young, Roslyn M.; Starr, Mark G.; Perry, Michael P.; Fahnestock, Stephen; Ellis, David E.; Ebersole, Richard C.
2002-01-01
The environmental distribution of Dehalococcoides group organisms and their association with chloroethene-contaminated sites were examined. Samples from 24 chloroethene-dechlorinating sites scattered throughout North America and Europe were tested for the presence of members of the Dehalococcoides group by using a PCR assay developed to detect Dehalococcoides 16S rRNA gene (rDNA) sequences. Sequences identified by sequence analysis as sequences of members of the Dehalococcoides group were detected at 21 sites. Full dechlorination of chloroethenes to ethene occurred at these sites. Dehalococcoides sequences were not detected in samples from three sites at which partial dechlorination of chloroethenes occurred, where dechlorination appeared to stop at 1,2-cis-dichloroethene. Phylogenetic analysis of the 16S rDNA amplicons confirmed that Dehalococcoides sequences formed a unique 16S rDNA group. These 16S rDNA sequences were divided into three subgroups based on specific base substitution patterns in variable regions 2 and 6 of the Dehalococcoides 16S rDNA sequence. Analyses also demonstrated that specific base substitution patterns were signature patterns. The specific base substitutions distinguished the three sequence subgroups phylogenetically. These results demonstrated that members of the Dehalococcoides group are widely distributed in nature and can be found in a variety of geological formations and in different climatic zones. Furthermore, the association of these organisms with full dechlorination of chloroethenes suggests that they are promising candidates for engineered bioremediation and may be important contributors to natural attenuation of chloroethenes. PMID:11823182
Cogulu, O; Pariltay, E; Koroglu, O A; Aykut, A; Ozyurek, R; Levent, E; Kultursay, N; Ozkinay, F
2013-01-01
Caudal appendage is a rare dysmorphic feature of which etiologic mechanisms are not well understood. Here we report monozygotic (MZ) twin brothers who are discordant for the caudal appendage and multiple congenital anomalies. Twins were the product of a 33 weeks of gestation, monochorionic-diamniotic pregnancy. On admission the proband had micrognathia, beaked nose, hypospadias, caudal appendage and juxtaductal aorta coarctation. At birth, he was small for gestational age and he had transient hypothyroidism which was detected in the newborn period. Karyotype analysis showed 46,XY. Monozygosity was shown by 15 microsatellite markers plus amelogenin (AmpFlSTR Identifiler PCR Amplification Kit, Applied Biosystems). Genome-wide copy number analysis of the twins by DNA-DNA hybridization of whole genomic DNA (NimbleGen Human CGH 385K WG-T v2.0 array) showed a significant difference at two neighboring probes with Log2 ratio: 0.72088 which are located on chromosome 3p12.3. Further analysis by high resolution of chromosome 3 array (Roche NimbleGen Human HG18 CHR3 FT Median Probe Spacing 475 bp) and quantitative PCR analysis did not confirm the deletion.
Higgins, Denice; Rohrlach, Adam B.; Kaidonis, John; Townsend, Grant; Austin, Jeremy J.
2015-01-01
Major advances in genetic analysis of skeletal remains have been made over the last decade, primarily due to improvements in post-DNA-extraction techniques. Despite this, a key challenge for DNA analysis of skeletal remains is the limited yield of DNA recovered from these poorly preserved samples. Enhanced DNA recovery by improved sampling and extraction techniques would allow further advancements. However, little is known about the post-mortem kinetics of DNA degradation and whether the rate of degradation varies between nuclear and mitochondrial DNA or across different skeletal tissues. This knowledge, along with information regarding ante-mortem DNA distribution within skeletal elements, would inform sampling protocols facilitating development of improved extraction processes. Here we present a combined genetic and histological examination of DNA content and rates of DNA degradation in the different tooth tissues of 150 human molars over short-medium post-mortem intervals. DNA was extracted from coronal dentine, root dentine, cementum and pulp of 114 teeth via a silica column method and the remaining 36 teeth were examined histologically. Real time quantification assays based on two nuclear DNA fragments (67 bp and 156 bp) and one mitochondrial DNA fragment (77 bp) showed nuclear and mitochondrial DNA degraded exponentially, but at different rates, depending on post-mortem interval and soil temperature. In contrast to previous studies, we identified differential survival of nuclear and mtDNA in different tooth tissues. Futhermore histological examination showed pulp and dentine were rapidly affected by loss of structural integrity, and pulp was completely destroyed in a relatively short time period. Conversely, cementum showed little structural change over the same time period. Finally, we confirm that targeted sampling of cementum from teeth buried for up to 16 months can provide a reliable source of nuclear DNA for STR-based genotyping using standard extraction methods, without the need for specialised equipment or large-volume demineralisation steps. PMID:25992635
[Hydrophidae identification through analysis on Cyt b gene barcode].
Liao, Li-xi; Zeng, Ke-wu; Tu, Peng-fei
2015-08-01
Hydrophidae, one of the precious traditional Chinese medicines, is generally drily preserved to prevent corruption, but it is hard to identify the species of Hydrophidae through the appearance because of the change due to the drying process. The identification through analysis on gene barcode, a new technique in species identification, can avoid the problem. The gene barcodes of the 6 species of Hydrophidae like Lapemis hardwickii were aquired through DNA extraction and gene sequencing. These barcodes were then in sequence alignment and test the identification efficency by BLAST. Our results revealed that the barcode sequences performed high identification efficiency, and had obvious difference between intra- and inter-species. These all indicated that Cyt b DNA barcoding can confirm the Hydrophidae identification.
Radhika, R; Shankar, R; Vijayakumar, S; Kolandaivel, P
2018-05-01
The theoretical studies on DNA with the anticancer drug 6-Mercaptopurine (6-MP) are investigated using theoretical methods to shed light on drug designing. Among the DNA base pairs considered, 6-MP is stacked with GC with the highest interaction energy of -46.19 kcal/mol. Structural parameters revealed that structure of the DNA base pairs is deviated from the planarity of the equilibrium position due to the formation of hydrogen bonds and stacking interactions with 6-MP. These deviations are verified through the systematic comparison between X-H bond contraction and elongation and the associated blue shift and red shift values by both NBO analysis and vibrational analysis. Bent's rule is verified for the C-H bond contraction in the 6-MP interacted base pairs. The AIM results disclose that the higher values of electron density (ρ) and Laplacian of electron density (∇ 2 ρ) indicate the increased overlap between the orbitals that represent the strong interaction and positive values of the total electron density show the closed-shell interaction. The relative sensitivity of the chemical shift values for the DNA base pairs with 6-MP is investigated to confirm the hydrogen bond strength. Molecular dynamics simulation studies of G-quadruplex DNA d(TGGGGT) 4 with 6-MP revealed that the incorporation of 6-MP appears to cause local distortions and destabilize the G-quadruplex DNA.
Li, Yanwei; Ding, Xianlong; Wang, Xuan; He, Tingting; Zhang, Hao; Yang, Longshu; Wang, Tanliu; Chen, Linfeng; Gai, Junyi; Yang, Shouping
2017-08-10
DNA methylation is an important epigenetic modification. It can regulate the expression of many key genes without changing the primary structure of the genomic DNA, and plays a vital role in the growth and development of the organism. The genome-wide DNA methylation profile of the cytoplasmic male sterile (CMS) line in soybean has not been reported so far. In this study, genome-wide comparative analysis of DNA methylation between soybean CMS line NJCMS5A and its maintainer NJCMS5B was conducted by whole-genome bisulfite sequencing. The results showed 3527 differentially methylated regions (DMRs) and 485 differentially methylated genes (DMGs), including 353 high-credible methylated genes, 56 methylated genes coding unknown protein and 76 novel methylated genes with no known function were identified. Among them, 25 DMRs were further validated that the genome-wide DNA methylation data were reliable through bisulfite treatment, and 9 DMRs were confirmed the relationship between DNA methylation and gene expression by qRT-PCR. Finally, 8 key DMGs possibly associated with soybean CMS were identified. Genome-wide DNA methylation profile of the soybean CMS line NJCMS5A and its maintainer NJCMS5B was obtained for the first time. Several specific DMGs which participated in pollen and flower development were further identified to be probably associated with soybean CMS. This study will contribute to further understanding of the molecular mechanism behind soybean CMS.
Abbas, Ghulam; Hameed, Amjad; Rizwan, Muhammad; Ahsan, Muhammad; Asghar, Muhammad J; Iqbal, Nayyer
2015-01-01
Molecular confirmation of interspecific recombinants is essential to overcome the issues like self-pollination, environmental influence, and inadequacy of morphological characteristics during interspecific hybridization. The present study was conducted for genetic confirmation of mungbean (female) and mashbean (male) interspecific crosses using molecular markers. Initially, polymorphic random amplified polymorphic DNA (RAPD), universal rice primers (URP), and simple sequence repeats (SSR) markers differentiating parent genotypes were identified. Recombination in hybrids was confirmed using these polymorphic DNA markers. The NM 2006 × Mash 88 was most successful interspecific cross. Most of true recombinants confirmed by molecular markers were from this cross combination. SSR markers were efficient in detecting genetic variability and recombination with reference to specific chromosomes and particular loci. SSR (RIS) and RAPD identified variability dispersed throughout the genome. In conclusion, DNA based marker assisted selection (MAS) efficiently confirmed the interspecific recombinants. The results provided evidence that MAS can enhance the authenticity of selection in mungbean improvement program.
McNab, Alistair R.; Desai, Prashant; Person, Stan; Roof, Lori L.; Thomsen, Darrell R.; Newcomb, William W.; Brown, Jay C.; Homa, Fred L.
1998-01-01
The herpes simplex virus type 1 (HSV-1) UL25 gene contains a 580-amino-acid open reading frame that codes for an essential protein. Previous studies have shown that the UL25 gene product is a virion component (M. A. Ali et al., Virology 216:278–283, 1996) involved in virus penetration and capsid assembly (C. Addison et al., Virology 138:246–259, 1984). In this study, we describe the isolation of a UL25 mutant (KUL25NS) that was constructed by insertion of an in-frame stop codon in the UL25 open reading frame and propagated on a complementing cell line. Although the mutant was capable of synthesis of viral DNA, it did not form plaques or produce infectious virus in noncomplementing cells. Antibodies specific for the UL25 protein were used to demonstrate that KUL25NS-infected Vero cells did not express the UL25 protein. Western immunoblotting showed that the UL25 protein was associated with purified, wild-type HSV A, B, and C capsids. Transmission electron microscopy indicated that the nucleus of Vero cells infected with KUL25NS contained large numbers of both A and B capsids but no C capsids. Analysis of infected cells by sucrose gradient sedimentation analysis confirmed that the ratio of A to B capsids was elevated in KUL25NS-infected Vero cells. Following restriction enzyme digestion, specific terminal fragments were observed in DNA isolated from KUL25NS-infected Vero cells, indicating that the UL25 gene was not required for cleavage of replicated viral DNA. The latter result was confirmed by pulsed-field gel electrophoresis (PFGE), which showed the presence of genome-size viral DNA in KUL25NS-infected Vero cells. DNase I treatment prior to PFGE demonstrated that monomeric HSV DNA was not packaged in the absence of the UL25 protein. Our results indicate that the product of the UL25 gene is required for packaging but not cleavage of replicated viral DNA. PMID:9445000
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iriyama, Chisako; Tomita, Akihiro, E-mail: atomita@med.nagoya-u.ac.jp; Hoshino, Hideaki
2012-03-23
Highlights: Black-Right-Pointing-Pointer Circulating DNAs (CDs) can be used to detect genetic/epigenetic abnormalities in MDS. Black-Right-Pointing-Pointer Epigenetic changes can be detected more sensitively when using plasma DNA than PBMNC. Black-Right-Pointing-Pointer Mutation ratio in CDs may reflect the ratio in stem cell population in bone marrow. Black-Right-Pointing-Pointer Using CDs can be a safer alternate strategy compared to bone marrow aspiration. -- Abstract: Myelodysplastic syndrome (MDS) is a hematopoietic stem cell disorder. Several genetic/epigenetic abnormalities are deeply associated with the pathogenesis of MDS. Although bone marrow (BM) aspiration is a common strategy to obtain MDS cells for evaluating their genetic/epigenetic abnormalities, BM aspirationmore » is difficult to perform repeatedly to obtain serial samples because of pain and safety concerns. Here, we report that circulating cell-free DNAs from plasma and serum of patients with MDS can be used to detect genetic/epigenetic abnormalities. The plasma DNA concentration was found to be relatively high in patients with higher blast cell counts in BM, and accumulation of DNA fragments from mono-/di-nucleosomes was confirmed. Using serial peripheral blood (PB) samples from patients treated with hypomethylating agents, global methylation analysis using bisulfite pyrosequencing was performed at the specific CpG sites of the LINE-1 promoter. The results confirmed a decrease of the methylation percentage after treatment with azacitidine (days 3-9) using DNAs from plasma, serum, and PB mono-nuclear cells (PBMNC). Plasma DNA tends to show more rapid change at days 3 and 6 compared with serum DNA and PBMNC. Furthermore, the TET2 gene mutation in DNAs from plasma, serum, and BM cells was quantitated by pyrosequencing analysis. The existence ratio of mutated genes in plasma and serum DNA showed almost equivalent level with that in the CD34+/38- stem cell population in BM. These data suggest that genetic/epigenetic analyses using PB circulating DNA can be a safer and painless alternative to using BM cells.« less
A Pre-mRNA-Splicing Factor Is Required for RNA-Directed DNA Methylation in Arabidopsis
Huang, Chao-Feng; Miki, Daisuke; Tang, Kai; Zhou, Hao-Ran; Zheng, Zhimin; Chen, Wei; Ma, Ze-Yang; Yang, Lan; Zhang, Heng; Liu, Renyi; He, Xin-Jian; Zhu, Jian-Kang
2013-01-01
Cytosine DNA methylation is a stable epigenetic mark that is frequently associated with the silencing of genes and transposable elements (TEs). In Arabidopsis, the establishment of DNA methylation is through the RNA-directed DNA methylation (RdDM) pathway. Here, we report the identification and characterization of RDM16, a new factor in the RdDM pathway. Mutation of RDM16 reduced the DNA methylation levels and partially released the silencing of a reporter gene as well as some endogenous genomic loci in the DNA demethylase ros1-1 mutant background. The rdm16 mutant had morphological defects and was hypersensitive to salt stress and abscisic acid (ABA). Map-based cloning and complementation test led to the identification of RDM16, which encodes a pre-mRNA-splicing factor 3, a component of the U4/U6 snRNP. RNA-seq analysis showed that 308 intron retention events occurred in rdm16, confirming that RDM16 is involved in pre-mRNA splicing in planta. RNA-seq and mRNA expression analysis also revealed that the RDM16 mutation did not affect the pre-mRNA splicing of known RdDM genes, suggesting that RDM16 might be directly involved in RdDM. Small RNA expression analysis on loci showing RDM16-dependent DNA methylation suggested that unlike the previously reported putative splicing factor mutants, rdm16 did not affect small RNA levels; instead, the rdm16 mutation caused a decrease in the levels of Pol V transcripts. ChIP assays revealed that RDM16 was enriched at some Pol V target loci. Our results suggest that RDM16 regulates DNA methylation through influencing Pol V transcript levels. Finally, our genome-wide DNA methylation analysis indicated that RDM16 regulates the overall methylation of TEs and gene-surrounding regions, and preferentially targets Pol IV-dependent DNA methylation loci and the ROS1 target loci. Our work thus contributes to the understanding of RdDM and its interactions with active DNA demethylation. PMID:24068953
Lactobacillus bobalius sp. nov., a lactic acid bacterium isolated from Spanish Bobal grape must.
Mañes-Lázaro, Rosario; Ferrer, Sergi; Rodas, Ana María; Urdiain, Mercedes; Pardo, Isabel
2008-12-01
A Lactobacillus strain, designated 203(T), previously isolated from Bobal grape must was characterized phylogenetically, genotypically and phenotypically in order to establish whether it represents a novel species. On the basis of the 16S rRNA gene sequence, strain 203(T) was shown to belong to the genus Lactobacillus, falling within the Lactobacillus alimentarius-Lactobacillus farciminis group and being closely related to the type strains of L. alimentarius, Lactobacillus kimchii and Lactobacillus paralimentarius. DNA-DNA hybridization results confirmed the separate status of strain 203(T) at the species level. To establish the similarities and differences between 203(T) and the three aforementioned closest species, the following methods were used: amplified rDNA restriction analysis, analysis of the 16S-23S rDNA intergenic spacer region, random amplification of polymorphic DNA (RAPD) profiling, ribotyping, carbohydrate fermentation and physiological tests. Strain 203(T) could be differentiated genetically using RAPD analysis and ribotyping. Phenotypically, it can be distinguished from its closest relatives by its ability to grow at pH 3.3, by gas production from gluconate and by certain carbohydrate fermentations. On the basis of these data, strain 203(T) represents a novel species of the genus Lactobacillus, for which the name Lactobacillus bobalius sp. nov. is proposed. The type strain is 203(T) (=CECT 7310(T) =DSM 19674(T)).
Gardan, L; Dauga, C; Prior, P; Gillis, M; Saddler, G S
2000-01-01
The bacterial leaf-spot of anthurium emerged during the 1980s, in the French West Indies and Trinidad. This new bacterial disease is presently wide spread and constitutes a serious limiting factor for commercial anthurium production. Twenty-nine strains isolated from leaf-spots of naturally infected anthurium were characterized and compared with reference strains belonging to the Comamonadaceae family, the genera Ralstonia and Burkholderia, and representative fluorescent pseudomonads. From artificial inoculations 25 out of 29 strains were pathogenic on anthurium. Biochemical and physiological tests, fatty acid analysis, DNA-DNA hybridization, 16S rRNA gene sequence analysis, DNA-16S RNA hybridization were performed. The 25 pathogenic strains on anthurium were clustered in one phenon closely related to phytopathogenic strains of the genus Acidovorax. Anthurium strains were 79-99% (deltaTm range 0.2-1.6) related to the strain CFBP 3232 and constituted a discrete DNA homology group indicating that they belong to the same species. DNA-rRNA hybridization, 16S rRNA sequence and fatty acid analysis confirmed that this new species belongs to the beta-subclass of Proteobacteria and to rRNA superfamily III, to the family of Comamonadaceae and to the genus Acidovorax. The name Acidovorax anthurii is proposed for this new phytopathogenic bacterium. The type strain has been deposited in the Collection Française des Bactéries Phytopathogènes as CFBP 3232T.
Brenner, D J; Steigerwalt, A G; Wathen, H G; Gross, R J; Rowe, B
1982-01-01
Shigella boydii 13 strains are separable from other Shigella and Escherichia coli strains on the basis of DNA relatedness. From this observation, it was possible to confirm the existence of aerogenic S. boydii 13 strains. DNA relatedness studies also showed that strains of E. coli and strains representing all other serotypes of Shigella, including provisional strains, belong to the same genetic species. PMID:6752183
Kwon, Seomun; Lee, Jaejoon; Jeon, Jongbum; Kim, Seongbeom; Park, Sook-Young; Jeon, Junhyun; Lee, Yong-Hwan
2018-06-01
Acetylation of histone H3 lysine 56 (H3K56) by the fungal-specific histone acetyltransferase Rtt109 plays important roles in maintaining genome integrity and surviving DNA damage. Here we investigated the implications of Rtt109-mediated response to DNA damage on development and pathogenesis of the rice blast fungus, Magnaporthe oryzae (anamorph: Pyricularia oryzae). The ortholog of Rtt109 in M. oryzae (MoRtt109) was found via sequence homology and its functionality confirmed by phenotypic complementation of the Saccharomyces cerevisiae Rtt109 deletion strain. Targeted deletion of MoRtt109 resulted in a significant reduction in acetylation of H3K56 and rendered the fungus defective in hyphal growth and asexual reproduction. Furthermore, the deletion mutant displayed hypersensitivity to genotoxic agents, confirming the conserved importance of Rtt109 in genome integrity maintenance and genotoxic stress tolerance. Elevated expression of DNA repair genes and the results of the comet assay were consistent with constitutive endogenous DNA damage. Although the conidia produced from the mutant were not impaired in germination and appressorium morphogenesis, the mutant was significantly less pathogenic on rice leaves. Transcriptomic analysis provided insight into the factors underlying phenotypic defects that are associated with deficiency of H3K56 acetylation. Overall, our results indicate that MoRtt109 is a conserved histone acetyltransferase that affects proliferation and asexual fecundity of M. oryzae through maintenance of genome integrity and response to DNA damage.
Amplification of Mitochondrial DNA for detection of Plasmodiumvivax in Balochistan.
Shahwani, Muhammad Naeem; Nisar, Samia; Aleem, Abdul; Panezai, Marina; Afridi, Sarwat; Malik, Shaukat Iqbal
2017-05-01
To access a new step using PCR to amplify the targeted mtDNA sequence for detecting specifically Plasmodium vivax and its co-infections, false positive and false negative results with Plasmodium falciparum. In this study we have standardized a new technical approach in which the target mitochondrial DNA sequence (mtDNA) was amplified by using a PCR technique as a tool to detect Plasmodium spp. Species specific primers were designed to hybridize with cytochrome c oxidase gene of P. vivax (cox I) and P. falciparum (cox III). Two hundred blood samples were collected on the basis of clinical symptoms which were initially examined through microscopic analysis after preparing Giemsa stained thick and thin blood smears. Afterwards genomic DNA was extracted from all samples and was then subjected to PCR amplification by using species specific primers and amplified segments were sequenced for confirmation of results. One-hundred and thirty-two blood samples were detected as positive for malaria by PCR, out of which 64 were found to be positive by PCR and 53 by both microscopy and PCR for P.vivax infection. Nine samples were found to be false negative, one P.vivax mono infection was declared as co infection by PCR and 3 samples identified as having P.falciparum gametes were confirmed as P.vivax by PCR amplification. Sensitivity and specificity were found to be 85% and 92% respectively. Results obtained through PCR method were comparatively better and reliable than microscopy.
Breivik, Jarle; Gaudernack, Gustav
2004-04-09
Loss of genetic stability is a critical phenomenon in cancer and antibiotic resistance, and the prevailing dogma is that unstable cells survive because instability provides adaptive mutations. Challenging this view, we have argued that genetic instability arises because DNA repair may be a counterproductive strategy in mutagenic environments. This paradoxical relationship has also been confirmed by explicit experiments, but the underlying evolutionary principles remain controversial. This paper aims to clarify the issue, and presents a model that explains genetic instability from the basic perspective of molecular evolution and information processing.
Slayton, Mark; Hossain, Tanvir; Biegalke, Bonita J
2018-05-01
The human cytomegalovirus (HCMV) UL34 gene encodes sequence-specific DNA-binding proteins (pUL34) which are required for viral replication. Interactions of pUL34 with DNA binding sites represses transcription of two viral immune evasion genes, US3 and US9. 12 additional predicted pUL34-binding sites are present in the HCMV genome (strain AD169) with three binding sites concentrated near the HCMV origin of lytic replication (oriLyt). We used ChIP-seq analysis of pUL34-DNA interactions to confirm that pUL34 binds to the oriLyt region during infection. Mutagenesis of the UL34-binding sites in an oriLyt-containing plasmid significantly reduced viral-mediated oriLyt-dependent DNA replication. Mutagenesis of these sites in the HCMV genome reduced the replication efficiencies of the resulting viruses. Protein-protein interaction analyses demonstrated that pUL34 interacts with the viral proteins IE2, UL44, and UL84, that are essential for viral DNA replication, suggesting that pUL34-DNA interactions in the oriLyt region are involved in the DNA replication cascade. Copyright © 2018 Elsevier Inc. All rights reserved.
Changes in mitochondrial DNA alter expression of nuclear encoded genes associated with tumorigenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jandova, Jana; Janda, Jaroslav; Sligh, James E, E-mail: jsligh@azcc.arizona.edu
We previously reported the presence of a mtDNA mutation hotspot in UV-induced premalignant and malignant skin tumors in hairless mice. We have modeled this change (9821insA) in murine cybrid cells and demonstrated that this alteration in mtDNA associated with mtBALB haplotype can alter the biochemical characteristics of cybrids and subsequently can contribute to significant changes in their behavioral capabilities. This study shows that changes in mtDNA can produce differences in expression levels of specific nuclear-encoded genes, which are capable of triggering the phenotypes such as seen in malignant cells. From a potential list of differentially expressed genes discovered by microarraymore » analysis, we selected MMP-9 and Col1a1 for further studies. Real-time PCR confirmed up-regulation of MMP-9 and down-regulation of Col1a1 in cybrids harboring the mtDNA associated with the skin tumors. These cybrids also showed significantly increased migration and invasion abilities compared to wild type. The non-specific MMP inhibitor, GM6001, was able to inhibit migratory and invasive abilities of the 9821insA cybrids confirming a critical role of MMPs in cellular motility. Nuclear factor-{kappa}B (NF-{kappa}B) is a key transcription factor for production of MMPs. An inhibitor of NF-{kappa}B activation, Bay 11-7082, was able to inhibit the expression of MMP-9 and ultimately decrease migration and invasion of mutant cybrids containing 9821insA. These studies confirm a role of NF-{kappa}B in the regulation of MMP-9 expression and through this regulation modulates the migratory and invasive capabilities of cybrids with mutant mtDNA. Enhanced migration and invasion abilities caused by up-regulated MMP-9 may contribute to the tumorigenic phenotypic characteristics of mutant cybrids. -- Highlights: Black-Right-Pointing-Pointer Cybrids are useful models to study the role of mtDNA changes in cancer development. Black-Right-Pointing-Pointer mtDNA changes affect the expression of nuclear genes associated with tumorigenesis. Black-Right-Pointing-Pointer MMP-9 is up-regulated and Col1a1 is down-regulated in mutant cybrids. Black-Right-Pointing-Pointer GM6001 reduced the enhanced motility of mutant cybrids caused by up-regulated MMP-9. Black-Right-Pointing-Pointer The MMP-9 expression and invasiveness of mutant cybrids were reduced by Bay 11-7802.« less
The chorionic gonadotropin alpha-subunit gene is on human chromosome 18 in JEG cells.
Hardin, J W; Riser, M E; Trent, J M; Kohler, P O
1983-01-01
The gene for the alpha subunit of human chorionic gonadotropin (hCG) has been tentatively assigned to human chromosome 18. This localization was accomplished through the use of Southern blot analysis. A full-length cDNA probe for the hCG alpha subunit and DNA isolated from a series of somatic hybrids between mouse and human cells were utilized to make this assignment. In addition, in situ hybridization with normal human peripheral blood lymphocytes as a source of human chromosomes and with the same cDNA probe confirmed this result. The presence of human chromosome 18 was required for the detection of DNA fragments characteristic of the alpha-hCG gene. These results are consistent with our previous observation that human chromosomes 10 and 18 are required for the production of hCG in cultured cells. Images PMID:6578509
Saito, T; Ochiai, H
1999-10-01
cDNA fragments putatively encoding amino acid sequences characteristic of the fatty acid desaturase were obtained using expressed sequence tag (EST) information of the Dictyostelium cDNA project. Using this sequence, we have determined the cDNA sequence and genomic sequence of a desaturase. The cloned cDNA is 1489 nucleotides long and the deduced amino acid sequence comprised 464 amino acid residues containing an N-terminal cytochrome b5 domain. The whole sequence was 38.6% identical to the initially identified Delta5-desaturase of Mortierella alpina. We have confirmed its function as Delta5-desaturase by over expression mutation in D. discoideum and also the gain of function mutation in the yeast Saccharomyces cerevisiae. Analysis of the lipids from transformed D. discoideum and yeast demonstrated the accumulation of Delta5-desaturated products. This is the first report concering fatty acid desaturase in cellular slime molds.
Myopathic mtDNA Depletion Syndrome Due to Mutation in TK2 Gene.
Martín-Hernández, Elena; García-Silva, María Teresa; Quijada-Fraile, Pilar; Rodríguez-García, María Elena; Hernández-Laín, Aurelio; Coca-Robinot, David; Rivera, Henry; Fernández-Toral, Joaquín; Arenas, Joaquín; Martín, MiguelÁngel; Martínez-Azorín, Francisco
2016-02-29
Whole-exome sequencing (WES) was used to identify the disease gene(s) in a Spanish girl with failure to thrive, muscle weakness, mild facial weakness, elevated creatine kinase (CK), deficiency of mitochondrial complex III and depletion of mtDNA. With WES data, it was possible to get the whole mtDNA sequencing and discard any pathogenic variant in this genome. The analysis of whole exome uncovered a homozygous pathogenic mutation in Thymidine kinase 2 gene (TK2; NM_004614.4:c.323C>T, p.T108M). TK2 mutations have been identified mainly in patients with the myopathic form of mtDNA depletion syndromes (MDS). This patient presents an atypical TK2 related-myopathic form of MDS, because despite having a very low content of mtDNA (<20%), she presents a slower and less severe evolution of the disease. In conclusion, our data confirm the role of TK2 gene in MDS and expanded the phenotypic spectrum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heravi, Mitra; Department of Radiation Oncology, McGill University, Montreal; Segal Cancer Center, Jewish General Hospital, Montreal
2015-06-01
Purpose: ZRBA1 is a combi-molecule designed to induce DNA alkylating lesions and to block epidermal growth factor receptor (EGFR) TK domain. Inasmuch as ZRBA1 downregulates the EGFR TK-mediated antisurvival signaling and induces DNA damage, we postulated that it might be a radiosensitizer. The aim of this study was to further investigate the potentiating effect of ZRBA1 in combination with radiation and to elucidate the possible mechanisms of interaction between these 2 treatment modalities. Methods and Materials: The triple negative human breast MDA-MB-468 cancer cell line and mouse mammary cancer 4T1 cell line were used in this study. Clonogenic assay, Westernmore » blot analysis, and DNA damage analysis were performed at multiple time points after treatment. To confirm our in vitro findings, in vivo tumor growth delay assay was performed. Results: Our results show that a combination of ZRBA1 and radiation increases the radiation sensitivity of both cell lines significantly with a dose enhancement factor of 1.56, induces significant numbers of DNA strand breaks, prolongs higher DNA damage up to 24 hours after treatment, and significantly increases tumor growth delay in a syngeneic mouse model. Conclusions: Our data suggest that the higher efficacy of this combination could be partially due to increased DNA damage and delayed DNA repair process and to the inhibition of EGFR. The encouraging results of this combination demonstrated a significant improvement in treatment efficiency and therefore could be applicable in early clinical trial settings.« less
In-utero diagnosis of Norrie disease by ultrasonography.
Redmond, R M; Vaughan, J I; Jay, M; Jay, B
1993-03-01
Obstetric ultrasonography of an obligate Norrie disease carrier revealed bilateral retinal detachments in a third trimester male fetus. Postnatal examination confirmed the diagnosis of Norrie disease. DNA linkage analysis with the markers L1.28 and MAO had been uninformative for this family. This report suggests that retinal detachment occurs late in the gestation of the affected fetus.
Kim, Suk Kyeong; Kim, Dong-Lim; Han, Hye Seung; Kim, Wan Seop; Kim, Seung Ja; Moon, Won Jin; Oh, Seo Young; Hwang, Tae Sook
2008-06-01
Fine-needle aspiration biopsy (FNAB) is the primary means of distinguishing benign from malignant and of guiding therapeutic intervention in thyroid nodules. However, 10% to 30% of cases with indeterminate cytology in FNAB need other diagnostic tools to refine diagnosis. We compared the pyrosequencing method with the conventional direct DNA sequencing analysis and investigated the usefulness of preoperative BRAF mutation analysis as an adjunct diagnostic tool with routine FNAB. A total of 103 surgically confirmed patients' FNA slides were recruited and DNA was extracted after atypical cells were scraped from the slides. BRAF mutation was analyzed by pyrosequencing and direct DNA sequencing. Sixty-three (77.8%) of 81 histopathologically diagnosed malignant nodules revealed positive BRAF mutation on pyrosequencing analysis. In detail, 63 (84.0%) of 75 papillary thyroid carcinoma (PTC) samples showed positive BRAF mutation, whereas 3 follicular thyroid carcinomas, 1 anaplastic carcinoma, 1 medullary thyroid carcinoma, and 1 metastatic lung carcinoma did not show BRAF mutation. None of 22 benign nodules had BRAF mutation in both pyrosequencing and direct DNA sequencing. Out of 27 thyroid nodules classified as 'indeterminate' on cytologic examination preoperatively, 21 (77.8%) cases turned out to be malignant: 18 PTCs (including 2 follicular variant types) and 3 follicular thyroid carcinomas. Among these, 13 (61.9%) classic PTCs had BRAF mutation. None of 6 benign nodules, including 3 follicular adenomas and 3 nodular hyperplasias, had BRAF mutation. Among 63 PTCs with positive BRAF mutation detected by pyrosequencing analysis, 3 cases did not show BRAF mutation by direct DNA sequencing. Although it was not statistically significant, pyrosequencing was superior to direct DNA sequencing in detecting the BRAF mutation of thyroid nodules (P=0.25). Detecting BRAF mutation by pyrosequencing is more sensitive, faster, and less expensive than direct DNA sequencing and is proposed as an adjunct diagnostic tool in evaluating thyroid nodules of indeterminate cytology.
Detection of Theileria orientalis in mosquito blood meals in the United Kingdom.
Fernández de Marco, M; Brugman, V A; Hernández-Triana, L M; Thorne, L; Phipps, L P; Nikolova, N I; Fooks, A R; Johnson, N
2016-10-15
Theileria spp. are tick-borne protozoan parasites that infect a wide range of wild and domestic animals. In this study, the utility of xenosurveillance of blood-fed specimens of Culiseta annulata for detecting the presence of piroplasms in livestock was investigated. Blood-fed mosquitoes were collected at Elmley National Nature Reserve, Kent, United Kingdom. All specimens were morphologically identified, and DNA barcoding was used to confirm the morphological identification. Both the vertebrate host species and Theileria genome was detected within the bloodmeal by real-time PCR. Sequencing was used to confirm the identity of all amplicons. In total, 105 blood-fed mosquitoes morphologically identified as Cs. annulata were collected. DNA barcoding revealed that 102 specimens were Cs. annulata (99%), while a single specimen was identified as Anopheles messeae. Two specimens could not be identified molecularly due to PCR amplification failure. Blood meal analysis revealed that Cs. annulata fed almost exclusively on cattle at the collection site (n=100). The application of a pan-piroplasm PCR detected 16 positive samples (15.2%) and sequence analysis of the amplicons demonstrated that the piroplasms present in the blood meal belonged to the Theileria orientalis group. This study demonstrates how xenosurveillance can be applied to detecting pathogens in livestock and confirms the presence of Theileria species in livestock from the United Kingdom. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.
Deftereos, Georgios; Finkelstein, Sydney D; Jackson, Sara A; Ellsworth, Eric M G; Krishnamurti, Uma; Liu, Yulin; Silverman, Jan F; Binkert, Candy R; Ujevich, Beth A; Mohanty, Alok
2014-04-01
Fine-needle aspiration (FNA) of pancreatic solid masses can be significantly impacted by sampling variation. Molecular analysis of tumor DNA can be an aid for more definitive diagnosis. The aim of this study was to evaluate how molecular analysis of the cell-free cytocentrifugation supernatant DNA can help reduce sampling variability and increase diagnostic yield. Twenty-three FNA smears from pancreatic solid masses were performed. Remaining aspirates were rinsed for preparation of cytocentrifuged slides or cell blocks. DNA was extracted from supernatant fluid and assessed for DNA quantity spectrophotometrically and for amplifiability by quantitative PCR (qPCR). Supernatants with adequate DNA were analyzed for mutations using PCR/capillary electrophoresis for a broad panel of markers (KRAS point mutation by sequencing, microsatellite fragment analysis for loss of heterozygosity (LOH) of 16 markers at 1p, 3p, 5q, 9p, 10q, 17p, 17q, 21q, and 22q). In selected cases, microdissection of stained cytology smears and/or cytocentrifugation cellular slides were analyzed and compared. In all, 5/23 samples cytologically confirmed as adenocarcinoma showed detectable mutations both in the microdissected slide-based cytology cells and in the cytocentrifugation supernatant. While most mutations detected were present in both microdissected slides and supernatant fluid specimens, the latter showed additional mutations supporting greater sensitivity for detecting relevant DNA damage. Clonality for individual marker mutations was higher in the supernatant fluid than in microdissected cells. Cytocentrifugation supernatant fluid contains levels of amplifiable DNA suitable for mutation detection and characterization. The finding of additional detectable mutations at higher clonality indicates that supernatant fluid may be enriched with tumor DNA. Molecular analysis of the supernatant fluid could serve as an adjunct method to reduce sampling variability and increase diagnostic yield, especially in cases with a high clinical suspicion for malignancy and limited number of atypical cells in the smears.
Ma, Mingyue; Li, Shuyin; Jin, Huanrong; Zhang, Yumin; Xu, Jia; Chen, Dongmei; Kuimin, Chen; Yuan, Zhou; Xiao, Chunling
2015-09-01
Fine particulate matter (PM2.5) pollution is becoming serious in China. This study aimed to investigate the impact of PM2.5 on DNA damage in Shenyang city. The concentration and composition of PM2.5 in traffic policemen's working sites including fields and indoor offices were obtained. Blood samples of field and office policemen were collected to detect DNA damage by Comet assay. Rats were used to further analyzing the oxidative DNA damage. The average concentration of PM2.5 in exposed group was significantly higher than that in control group. Composition analysis revealed that toxic heavy metal and polycyclic aromatic hydrocarbon substances were main elements of this PM2.5. DNA damage in field policemen was significantly higher than those in non-field group. Moreover, animal studies confirmed the oxidative DNA damage induced by PM2.5. Taken together, high DNA damages are found in the Shenyang traffic policemen and rats exposed to high level of airborne PM2.5. Copyright © 2015 Elsevier B.V. All rights reserved.
Hu, Sheng-Ping; Du, Ju-Ping; Li, De-Rui; Yao, Yong-Gang
2014-01-01
Recent studies have shown association of mtDNA background with cancer development. We analyzed mitochondrial DNA (mtDNA) control region variation of 201 patients with nasopharyngeal carcinoma (NPC) and of 201 normal controls from Chaoshan Han Chinese to discern mtDNA haplogroup effect on the disease onset. Binary logistic regression analysis with adjustment for gender and age revealed that the haplogroup R9 (P = 0.011, OR = 1.91, 95% CI = 1.16–3.16), particularly its sub-haplogroup F1 (P = 0.015, OR = 2.43, 95% CI = 1.18–5.00), were associated significantly with increased NPC risk. These haplogroups were further confirmed to confer high NPC risk in males and/or individuals ≥40 years of age, but not in females or in subjects <40 years old. Our results indicated that mtDNA background confers genetic susceptibility to NPC in Chaoshan Han Chinese, and R9, particularly its sub-haplogroup F1, is a risk factor for NPC. PMID:24498198
Liu, Jun; Li, Qi; Kong, Lingfeng; Yu, Hong; Zheng, Xiaodong
2011-09-01
Oysters (family Ostreidae), with high levels of phenotypic plasticity and wide geographic distribution, are a challenging group for taxonomists and phylogenetics. As a useful tool for molecular species identification, DNA barcoding might offer significant potential for oyster identification and taxonomy. This study used two mitochondrial fragments, cytochrome c oxidase I (COI) and the large ribosomal subunit (16S rDNA), to assess whether oyster species could be identified by phylogeny and distance-based DNA barcoding techniques. Relationships among species were estimated by the phylogenetic analyses of both genes, and then pairwise inter- and intraspecific genetic divergences were assessed. Species forming well-differentiated clades in the molecular phylogenies were identical for both genes even when the closely related species were included. Intraspecific variability of 16S rDNA overlapped with interspecific divergence. However, average intra- and interspecific genetic divergences for COI were 0-1.4% (maximum 2.2%) and 2.6-32.2% (minimum 2.2%), respectively, indicating the existence of a barcoding gap. These results confirm the efficacy of species identification in oysters via DNA barcodes and phylogenetic analysis. © 2011 Blackwell Publishing Ltd.
Seifert, Lisa; Harbeck, Michaela; Thomas, Astrid; Hoke, Nadja; Zöller, Lothar; Wiechmann, Ingrid; Grupe, Gisela; Scholz, Holger C.; Riehm, Julia M.
2013-01-01
Yersinia pestis has been identified as the causative agent of the Black Death pandemic in the 14th century. However, retrospective diagnostics in human skeletons after more than 600 years are critical. We describe a strategy following a modern diagnostic algorithm and working under strict ancient DNA regime for the identification of medieval human plague victims. An initial screening and DNA quantification assay detected the Y. pestis specific pla gene of the high copy number plasmid pPCP1. Results were confirmed by conventional PCR and sequence analysis targeting both Y. pestis specific virulence plasmids pPCP1 and pMT1. All assays were meticulously validated according to human clinical diagnostics requirements (ISO 15189) regarding efficiency, sensitivity, specificity, and limit of detection (LOD). Assay specificity was 100% tested on 41 clinically relevant bacteria and 29 Y. pseudotuberculosis strains as well as for DNA of 22 Y. pestis strains and 30 previously confirmed clinical human plague samples. The optimized LOD was down to 4 gene copies. 29 individuals from three different multiple inhumations were initially assessed as possible victims of the Black Death pandemic. 7 samples (24%) were positive in the pPCP1 specific screening assay. Confirmation through second target pMT1 specific PCR was successful for 4 of the positive individuals (14%). A maximum of 700 and 560 copies per µl aDNA were quantified in two of the samples. Those were positive in all assays including all repetitions, and are candidates for future continuative investigations such as whole genome sequencing. We discuss that all precautions taken here for the work with aDNA are sufficient to prevent external sample contamination and fulfill the criteria of authenticity. With regard to retrospective diagnostics of a human pathogen and the uniqueness of ancient material we strongly recommend using a careful strategy and validated assays as presented in our study. PMID:24069445
Seifert, Lisa; Harbeck, Michaela; Thomas, Astrid; Hoke, Nadja; Zöller, Lothar; Wiechmann, Ingrid; Grupe, Gisela; Scholz, Holger C; Riehm, Julia M
2013-01-01
Yersinia pestis has been identified as the causative agent of the Black Death pandemic in the 14(th) century. However, retrospective diagnostics in human skeletons after more than 600 years are critical. We describe a strategy following a modern diagnostic algorithm and working under strict ancient DNA regime for the identification of medieval human plague victims. An initial screening and DNA quantification assay detected the Y. pestis specific pla gene of the high copy number plasmid pPCP1. Results were confirmed by conventional PCR and sequence analysis targeting both Y. pestis specific virulence plasmids pPCP1 and pMT1. All assays were meticulously validated according to human clinical diagnostics requirements (ISO 15189) regarding efficiency, sensitivity, specificity, and limit of detection (LOD). Assay specificity was 100% tested on 41 clinically relevant bacteria and 29 Y. pseudotuberculosis strains as well as for DNA of 22 Y. pestis strains and 30 previously confirmed clinical human plague samples. The optimized LOD was down to 4 gene copies. 29 individuals from three different multiple inhumations were initially assessed as possible victims of the Black Death pandemic. 7 samples (24%) were positive in the pPCP1 specific screening assay. Confirmation through second target pMT1 specific PCR was successful for 4 of the positive individuals (14%). A maximum of 700 and 560 copies per µl aDNA were quantified in two of the samples. Those were positive in all assays including all repetitions, and are candidates for future continuative investigations such as whole genome sequencing. We discuss that all precautions taken here for the work with aDNA are sufficient to prevent external sample contamination and fulfill the criteria of authenticity. With regard to retrospective diagnostics of a human pathogen and the uniqueness of ancient material we strongly recommend using a careful strategy and validated assays as presented in our study.
Zhang, Wanying; Wang, Tao; Huang, Shuaiwu; Zhao, Xiuli
2018-04-10
To detect mutation of HPGD gene among three pedigrees affected with primary hypertrophic osteoarthropathy (PHO) by DNA sequencing and high-resolution melting (HRM) analysis. Genomic DNA was extracted from peripheral blood samples collected from the pedigrees. PCR and direct sequencing were carried out to identify potential mutations of the HPGD gene. Amplicons containing the mutation spot were generated by nested PCR. The products were then subjected to HRM analysis using the HR-1 instrument. Direct sequencing was carried out in family members and healthy individuals to confirm the result of HRM analysis. A homozygous mutation c.310_311delCT was detected in 2 affected probands, while a heterozygous mutation c.310_311delCT was detected in the third proband. HRM analysis of the fragments encompassing HPGD exon 3 showed 3 curve patterns representing three different genotypes, i.e., the wild type, the c.310_311delCT homozygote, and the c.310_311delCT heterozygote. Result of DNA sequencing was consistent with that of the HRM analysis and phenotype of the subjects. The c.310_311delCT mutation may be the most prevalent mutation among Chinese population. HRM analysis has provided an optimized method for genetic testing of HPGD mutation for its simplicity, rapid turnover and high sensitivity.
Development of Tat-Conjugated Dendrimer for Transdermal DNA Vaccine Delivery.
Bahadoran, Azadeh; Moeini, Hassan; Bejo, Mohd Hair; Hussein, Mohd Zobir; Omar, Abdul Rahman
In order to enhance cellular uptake and to facilitate transdermal delivery of DNA vaccine, polyamidoamine (PAMAM) dendrimers conjugated with HIV transactivator of transcription (TAT) was developed. First, the plasmid DNA (pIRES-H5/GFP) nanoparticle was formulated using PAMAM dendrimer and TAT peptide and then characterized for surface charge, particle size, DNA encapsulation and protection of the pIRES-H5/GFP DNA plasmid to enzymatic digestion. Subsequently, the potency of the TAT-conjugated dendrimer for gene delivery was evaluated through in vitro transfection into Vero cells followed by gene expression analysis including western blotting, fluorescent microscopy and PCR. The effect of the TAT peptide on cellular uptake of DNA vaccine was studied by qRT-PCR and flow cytometry. Finally, the ability of TAT-conjugated PAMAM dendrimer for transdermal delivery of the DNA plasmid was assessed through artificial membranes followed by qRT-PCR and flow cytometry. TAT-conjugated PAMAM dendrimer showed the ability to form a compact and nanometre-sized polyplexes with the plasmid DNA, having the size range of 105 to 115 nm and a positive charge of +42 to +45 mV over the N/P ratio of 6:1(+/-). In vitro transfection analysis into Vero cells confirms the high potency of TAT-conjugated PAMAM dendrimer to enhance the cellular uptake of DNA vaccine. The permeability value assay through artificial membranes reveals that TAT-conjugated PAMAM has more capacity for transdermal delivery of the DNA compared to unmodified PAMAM dendrimer (P<0.05). The findings of this study suggest that TAT-conjugated PAMAM dendrimer is a promising non-viral vector for transdermal use.This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.
Lim, Natalie Y. N.; Roco, Constance A.; Frostegård, Åsa
2016-01-01
Adequate comparisons of DNA and cDNA libraries from complex environments require methods for co-extraction of DNA and RNA due to the inherent heterogeneity of such samples, or risk bias caused by variations in lysis and extraction efficiencies. Still, there are few methods and kits allowing simultaneous extraction of DNA and RNA from the same sample, and the existing ones generally require optimization. The proprietary nature of kit components, however, makes modifications of individual steps in the manufacturer’s recommended procedure difficult. Surprisingly, enzymatic treatments are often performed before purification procedures are complete, which we have identified here as a major problem when seeking efficient genomic DNA removal from RNA extracts. Here, we tested several DNA/RNA co-extraction commercial kits on inhibitor-rich soils, and compared them to a commonly used phenol-chloroform co-extraction method. Since none of the kits/methods co-extracted high-quality nucleic acid material, we optimized the extraction workflow by introducing small but important improvements. In particular, we illustrate the need for extensive purification prior to all enzymatic procedures, with special focus on the DNase digestion step in RNA extraction. These adjustments led to the removal of enzymatic inhibition in RNA extracts and made it possible to reduce genomic DNA to below detectable levels as determined by quantitative PCR. Notably, we confirmed that DNase digestion may not be uniform in replicate extraction reactions, thus the analysis of “representative samples” is insufficient. The modular nature of our workflow protocol allows optimization of individual steps. It also increases focus on additional purification procedures prior to enzymatic processes, in particular DNases, yielding genomic DNA-free RNA extracts suitable for metatranscriptomic analysis. PMID:27803690
Chater-Diehl, Eric J; Laufer, Benjamin I; Castellani, Christina A; Alberry, Bonnie L; Singh, Shiva M
2016-01-01
The molecular basis of Fetal Alcohol Spectrum Disorders (FASD) is poorly understood; however, epigenetic and gene expression changes have been implicated. We have developed a mouse model of FASD characterized by learning and memory impairment and persistent gene expression changes. Epigenetic marks may maintain expression changes over a mouse's lifetime, an area few have explored. Here, mice were injected with saline or ethanol on postnatal days four and seven. At 70 days of age gene expression microarray, methylated DNA immunoprecipitation microarray, H3K4me3 and H3K27me3 chromatin immunoprecipitation microarray were performed. Following extensive pathway analysis of the affected genes, we identified the top affected gene expression pathway as "Free radical scavenging". We confirmed six of these changes by droplet digital PCR including the caspase Casp3 and Wnt transcription factor Tcf7l2. The top pathway for all methylation-affected genes was "Peroxisome biogenesis"; we confirmed differential DNA methylation in the Acca1 thiolase promoter. Altered methylation and gene expression in oxidative stress pathways in the adult hippocampus suggests a novel interface between epigenetic and oxidative stress mechanisms in FASD.
Staphylococcus petrasii subsp. pragensis subsp. nov., occurring in human clinical material.
Švec, Pavel; De Bel, Annelies; Sedláček, Ivo; Petráš, Petr; Gelbíčová, Tereza; Černohlávková, Jitka; Mašlanˇová, Ivana; Cnockaert, Margo; Varbanovová, Ivana; Echahidi, Fedoua; Vandamme, Peter; Pantuček, Roman
2015-07-01
Seven coagulase-negative, oxidase-negative and novobiocin-susceptible staphylococci assigned tentatively as Staphylococcus petrasii were investigated in this study in order to elucidate their taxonomic position. All strains were initially shown to form a genetically homogeneous group separated from remaining species of the genus Staphylococcus by using a repetitive sequence-based PCR fingerprinting with the (GTG)5 primer. Phylogenetic analysis based on 16S rRNA gene, hsp60, rpoB, dnaJ, gap and tuf sequences showed that the group is closely related to Staphylococcus petrasii but separated from the three hitherto known subspecies, S. petrasii subsp. petrasii, S. petrasii subsp. croceilyticus and S. petrasii subsp. jettensis. Further investigation using automated ribotyping, MALDI-TOF mass spectrometry, fatty acid methyl ester analysis, DNA-DNA hybridization and extensive biotyping confirmed that the analysed group represents a novel subspecies within S. petrasii, for which the name Staphylococcus petrasii subsp. pragensis subsp. nov. is proposed. The type strain is NRL/St 12/356(T) ( = CCM 8529(T) = LMG 28327(T)).
Greenblatt, R.J.; Work, Thierry M.; Balazs, G.; Sutton, C.A.; Casey, R.N.; Casey, J.W.
2004-01-01
Fibropapillomatosis (FP) of marine turtles is a neoplastic disease of ecological concern. A fibropapilloma-associated turtle herpesvirus (FPTHV) is consistently present, usually at loads exceeding one virus copy per tumor cell. DNA from an array of parasites of green turtles (Chelonia mydas) was examined with quantitative PCR (qPCR) to determine whether any carried viral loads are sufficient to implicate them as vectors for FPTHV. Marine leeches (Ozobranchus spp.) were found to carry high viral DNA loads; some samples approached 10 million copies per leech. Isopycnic sucrose density gradient/qPCR analysis confirmed that some of these copies were associated with particles of the density of enveloped viruses. The data implicate the marine leech Ozobranchus as a mechanical vector for FPTHV. Quantitative RT-PCR analysis of FPTHV gene expression indicated that most of the FPTHV copies in a fibropapilloma have restricted DNA polymerase expression, suggestive of latent infection.
Pantoea allii sp. nov., isolated from onion plants and seed.
Brady, Carrie L; Goszczynska, Teresa; Venter, Stephanus N; Cleenwerck, Ilse; De Vos, Paul; Gitaitis, Ronald D; Coutinho, Teresa A
2011-04-01
Eight yellow-pigmented, Gram-negative, rod-shaped, oxidase-negative, motile, facultatively anaerobic bacteria were isolated from onion seed in South Africa and from an onion plant exhibiting centre rot symptoms in the USA. The isolates were assigned to the genus Pantoea on the basis of phenotypic and biochemical tests. 16S rRNA gene sequence analysis and multilocus sequence analysis (MLSA), based on gyrB, rpoB, infB and atpD sequences, confirmed the allocation of the isolates to the genus Pantoea. MLSA further indicated that the isolates represented a novel species, which was phylogenetically most closely related to Pantoea ananatis and Pantoea stewartii. Amplified fragment length polymorphism analysis also placed the isolates into a cluster separate from P. ananatis and P. stewartii. Compared with type strains of species of the genus Pantoea that showed >97 % 16S rRNA gene sequence similarity with strain BD 390(T), the isolates exhibited 11-55 % whole-genome DNA-DNA relatedness, which confirmed the classification of the isolates in a novel species. The most useful phenotypic characteristics for the differentiation of the isolates from their closest phylogenetic neighbours are production of acid from amygdalin and utilization of adonitol and sorbitol. A novel species, Pantoea allii sp. nov., is proposed, with type strain BD 390(T) ( = LMG 24248(T)).
Genome-wide analysis of DNA methylation in five tissues of sika deer (Cervus nippon).
Yang, Chun; Zhang, Yan; Liu, Wenyuan; Lu, Xiao; Li, Chunyi
2018-03-01
DNA methylation plays an important role in regulating gene expression during tissue development and differentiation in eukaryotes. In contrast to domestic animals, epigenetic studies have been seldom conducted in wild animals. In the present study, we conducted the genome-wide profiling of DNA methylation for five tissues of sika deer using the fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP) technique. Overall, a total of 104,131 fragments were amplified including 41,951 methylated fragments using 32 pairs of selected primers. The average incidence of DNA methylation was approximately 38.18% in muscle, 40.32% in heart, 41.86% in liver, 41.20% in lung, and 41.68% in kidney, respectively. Also, the significant differences of the DNA methylation levels were found between the different tissue types (P<0.05), which indicates that the differences of genome-wide DNA methylation levels may be related to gene expression during tissue development and differentiation. In addition, 37 tissue-specific differentially methylated regions (T-DMRs) were identified and recovered by MSAP in five tissues, and were further confirmed by Southern blot analysis. Our study presents the first look at the T-DMRs in sika deer and represents an initial step towards understanding of epigenetic regulatory mechanism underlying tissue development and differentiation in sika deer. Copyright © 2017. Published by Elsevier B.V.
2010-01-01
Background The modular approach to analysis of genetically modified organisms (GMOs) relies on the independence of the modules combined (i.e. DNA extraction and GM quantification). The validity of this assumption has to be proved on the basis of specific performance criteria. Results An experiment was conducted using, as a reference, the validated quantitative real-time polymerase chain reaction (PCR) module for detection of glyphosate-tolerant Roundup Ready® GM soybean (RRS). Different DNA extraction modules (CTAB, Wizard and Dellaporta), were used to extract DNA from different food/feed matrices (feed, biscuit and certified reference material [CRM 1%]) containing the target of the real-time PCR module used for validation. Purity and structural integrity (absence of inhibition) were used as basic criteria that a DNA extraction module must satisfy in order to provide suitable template DNA for quantitative real-time (RT) PCR-based GMO analysis. When performance criteria were applied (removal of non-compliant DNA extracts), the independence of GMO quantification from the extraction method and matrix was statistically proved, except in the case of Wizard applied to biscuit. A fuzzy logic-based procedure also confirmed the relatively poor performance of the Wizard/biscuit combination. Conclusions For RRS, this study recognises that modularity can be generally accepted, with the limitation of avoiding combining highly processed material (i.e. biscuit) with a magnetic-beads system (i.e. Wizard). PMID:20687918
van Doorn, Remco; Zoutman, Willem H; Dijkman, Remco; de Menezes, Renee X; Commandeur, Suzan; Mulder, Aat A; van der Velden, Pieter A; Vermeer, Maarten H; Willemze, Rein; Yan, Pearlly S; Huang, Tim H; Tensen, Cornelis P
2005-06-10
To analyze the occurrence of promoter hypermethylation in primary cutaneous T-cell lymphoma (CTCL) on a genome-wide scale, focusing on epigenetic alterations with pathogenetic significance. DNA isolated from biopsy specimens of 28 patients with CTCL, including aggressive CTCL entities (transformed mycosis fungoides and CD30-negative large T-cell lymphoma) and an indolent entity (CD30-positive large T-cell lymphoma), were investigated. For genome-wide DNA methylation screening, differential methylation hybridization using CpG island microarrays was applied, which allows simultaneous detection of the methylation status of 8640 CpG islands. Bisulfite sequence analysis was applied for confirmation and detection of hypermethylation of eight selected tumor suppressor genes. The DNA methylation patterns of CTCLs emerging from differential methylation hybridization analysis included 35 CpG islands hypermethylated in at least four of the 28 studied CTCL samples when compared with benign T-cell samples. Hypermethylation of the putative tumor suppressor genes BCL7a (in 48% of CTCL samples), PTPRG (27%), and thrombospondin 4 (52%) was confirmed and demonstrated to be associated with transcriptional downregulation. BCL7a was hypermethylated at a higher frequency in aggressive (64%) than in indolent (14%) CTCL entities. In addition, the promoters of the selected tumor suppressor genes p73 (48%), p16 (33%), CHFR (19%), p15 (10%), and TMS1 (10%) were hypermethylated in CTCL. Malignant T cells of patients with CTCL display widespread promoter hypermethylation associated with inactivation of several tumor suppressor genes involved in DNA repair, cell cycle, and apoptosis signaling pathways. In view of this, CTCL may be amenable to treatment with demethylating agents.
Galamb, Orsolya; Kalmár, Alexandra; Péterfia, Bálint; Csabai, István; Bodor, András; Ribli, Dezső; Krenács, Tibor; Patai, Árpád V; Wichmann, Barnabás; Barták, Barbara Kinga; Tóth, Kinga; Valcz, Gábor; Spisák, Sándor; Tulassay, Zsolt; Molnár, Béla
2016-08-02
The WNT signaling pathway has an essential role in colorectal carcinogenesis and progression, which involves a cascade of genetic and epigenetic changes. We aimed to analyze DNA methylation affecting the WNT pathway genes in colorectal carcinogenesis in promoter and gene body regions using whole methylome analysis in 9 colorectal cancer, 15 adenoma, and 6 normal tumor adjacent tissue (NAT) samples by methyl capture sequencing. Functional methylation was confirmed on 5-aza-2'-deoxycytidine-treated colorectal cancer cell line datasets. In parallel with the DNA methylation analysis, mutations of WNT pathway genes (APC, β-catenin/CTNNB1) were analyzed by 454 sequencing on GS Junior platform. Most differentially methylated CpG sites were localized in gene body regions (95% of WNT pathway genes). In the promoter regions, 33 of the 160 analyzed WNT pathway genes were differentially methylated in colorectal cancer vs. normal, including hypermethylated AXIN2, CHP1, PRICKLE1, SFRP1, SFRP2, SOX17, and hypomethylated CACYBP, CTNNB1, MYC; 44 genes in adenoma vs. NAT; and 41 genes in colorectal cancer vs. adenoma comparisons. Hypermethylation of AXIN2, DKK1, VANGL1, and WNT5A gene promoters was higher, while those of SOX17, PRICKLE1, DAAM2, and MYC was lower in colon carcinoma compared to adenoma. Inverse correlation between expression and methylation was confirmed in 23 genes, including APC, CHP1, PRICKLE1, PSEN1, and SFRP1. Differential methylation affected both canonical and noncanonical WNT pathway genes in colorectal normal-adenoma-carcinoma sequence. Aberrant DNA methylation appears already in adenomas as an early event of colorectal carcinogenesis.
Wang, Yong-Chun; Lin, Cong-Bin; Su, Jian-Jia; Ru, Ying-Ming; Wu, Qiao; Chen, Zhao-Bin; Mao, Bing-Wei; Tian, Zhao-Wu
2011-06-15
In this paper, we present an electrochemically driven large amplitude pH alteration method based on a serial electrolytic cell involving a hydrogen permeable bifacial working electrode such as Pd thin foil. The method allows solution pH to be changed periodically up to ±4~5 units without additional alteration of concentration and/or composition of the system. Application to the acid-base driven cyclic denaturation and renaturation of 290 bp DNA fragments is successfully demonstrated with in situ real-time UV spectroscopic characterization. Electrophoretic analysis confirms that the denaturation and renaturation processes are reversible without degradation of the DNA. The serial electrolytic cell based electrochemical pH alteration method presented in this work would promote investigations of a wide variety of potential-dependent processes and techniques.
Mitochondrial gene rearrangements confirm the parallel evolution of the crab-like form.
Morrison, C L; Harvey, A W; Lavery, S; Tieu, K; Huang, Y; Cunningham, C W
2002-01-01
The repeated appearance of strikingly similar crab-like forms in independent decapod crustacean lineages represents a remarkable case of parallel evolution. Uncertainty surrounding the phylogenetic relationships among crab-like lineages has hampered evolutionary studies. As is often the case, aligned DNA sequences by themselves were unable to fully resolve these relationships. Four nested mitochondrial gene rearrangements--including one of the few reported movements of an arthropod protein-coding gene--are congruent with the DNA phylogeny and help to resolve a crucial node. A phylogenetic analysis of DNA sequences, and gene rearrangements, supported five independent origins of the crab-like form, and suggests that the evolution of the crab-like form may be irreversible. This result supports the utility of mitochondrial gene rearrangements in phylogenetic reconstruction. PMID:11886621
Detection of BRAF-V600E and V600K in melanoma circulating tumour cells by droplet digital PCR.
Reid, Anna L; Freeman, James B; Millward, Michael; Ziman, Melanie; Gray, Elin S
2015-10-01
Defining the BRAF mutation status in metastatic melanoma patients is critical to selecting patients for therapeutic treatment with targeted therapies. Circulating tumour cells (CTCs) can provide an alternative source of contemporaneous tumour genetic material. However methodologies to analyse the presence of rare mutations in a background of wild-type DNA requires a detailed assessment. Here we evaluate the sensitivity of two technologies for cancer mutation detection and the suitability of whole genome amplified DNA as a template for the detection of BRAF-V600 mutations. Serial dilutions of mutant BRAF-V600E DNA in wild-type DNA were tested using both competitive allele-specific PCR (castPCR) and droplet digital PCR (ddPCR), with and without previous whole genome amplification (WGA). Using immunomagnetic beads, we partially enriched CTCs from blood obtained from metastatic melanoma patients with confirmed BRAF mutation positive tumours and extracted RNA and DNA from the CTCs. We used RT-PCR of RNA to confirm the presence of melanoma cells in the CTC fraction then the DNAs of CTC positive fractions were WGA and tested for BRAF V600E or V600K mutations by ddPCRs. WGA DNA produced lower than expected fractional abundances by castPCR analysis but not by ddPCR. Moreover, ddPCR was found to be 200 times more sensitive than castPCR and in combination with WGA produced the most concordant results, with a limit of detection of 0.0005%. BRAF-V600E or V600K mutated DNA was detected in 77% and 44%, respectively, of enriched CTC fractions from metastatic melanoma patients carrying the corresponding mutations. Our results demonstrate that using ddPCR in combination with WGA DNA allows the detection with high sensitivity of cancer mutations in partially enriched CTC fractions. Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Holland, M J; Holland, J P; Thill, G P; Jackson, K A
1981-02-10
Segments of yeast genomic DNA containing two enolase structural genes have been isolated by subculture cloning procedures using a cDNA hybridization probe synthesized from purified yeast enolase mRNA. Based on restriction endonuclease and transcriptional maps of these two segments of yeast DNA, each hybrid plasmid contains a region of extensive nucleotide sequence homology which forms hybrids with the cDNA probe. The DNA sequences which flank this homologous region in the two hybrid plasmids are nonhomologous indicating that these sequences are nontandemly repeated in the yeast genome. The complete nucleotide sequence of the coding as well as the flanking noncoding regions of these genes has been determined. The amino acid sequence predicted from one reading frame of both structural genes is extremely similar to that determined for yeast enolase (Chin, C. C. Q., Brewer, J. M., Eckard, E., and Wold, F. (1981) J. Biol. Chem. 256, 1370-1376), confirming that these isolated structural genes encode yeast enolase. The nucleotide sequences of the coding regions of the genes are approximately 95% homologous, and neither gene contains an intervening sequence. Codon utilization in the enolase genes follows the same biased pattern previously described for two yeast glyceraldehyde-3-phosphate dehydrogenase structural genes (Holland, J. P., and Holland, M. J. (1980) J. Biol. Chem. 255, 2596-2605). DNA blotting analysis confirmed that the isolated segments of yeast DNA are colinear with yeast genomic DNA and that there are two nontandemly repeated enolase genes per haploid yeast genome. The noncoding portions of the two enolase genes adjacent to the initiation and termination codons are approximately 70% homologous and contain sequences thought to be involved in the synthesis and processing messenger RNA. Finally there are regions of extensive homology between the two enolase structural genes and two yeast glyceraldehyde-3-phosphate dehydrogenase structural genes within the 5- noncoding portions of these glycolytic genes.
Esteghamat-Panah, Roya; Hadadzadeh, Hassan; Farrokhpour, Hossein; Simpson, Jim; Abdolmaleki, Amir; Abyar, Fatemeh
2017-02-15
A new mononuclear rhodium(III) complex, [Rh(bzimpy)Cl 3 ] (bzimpy = 2,6-bis(2-benzimidazolyl)pyridine), was synthesized and characterized by elemental analysis and spectroscopic methods. The molecular structure of the complex was confirmed by single-crystal X-ray crystallography. The interaction of the complex with fish sperm DNA (FS-DNA) was investigated by UV spectroscopy, emission titration, and viscosity measurement in order to evaluate the possible DNA-binding mode and to calculate the corresponding DNA-binding constant. The results reveal that the Rh(III) complex interacts with DNA through groove binding mode with a binding affinity on the order of 10 4 . In addition, the binding of the Rh(III) complex to bovine serum albumin (BSA) was monitored by UV-Vis and fluorescence emission spectroscopy at different temperatures. The mechanism of the complex interaction was found to be static quenching. The thermodynamic parameters (ΔH, ΔS, and ΔG) obtained from the fluorescence spectroscopy data show that van der Waals interactions and hydrogen bonds play a major role in the binding of the Rh(III) complex to BSA. For the comparison of the DNA- and BSA-binding affinities of the free bzimpy ligand with its Rh(III) complex, the absorbance titration and fluorescence quenching experiments of the free bzimpy ligand with DNA and BSA were carried out. Competitive experiments using eosin Y and ibuprofen as site markers indicated that the complex was mainly located in the hydrophobic cavity of site I of the protein. These experimental results were confirmed by the results of molecular docking. Finally, the in vitro cytotoxicity properties of the Rh(III) complex against the MCF-7, K562, and HT-29 cell lines were evaluated and compared with those of the free ligand (bzimpy). It was found that the complexation process improved the anticancer activity significantly. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Leontiou, Chrysanthia A.; Hadjidaniel, Michael D.; Mina, Petros; Antoniou, Pavlos; Ioannides, Marios; Patsalis, Philippos C.
2015-01-01
Introduction Epigenetic alterations, including DNA methylation, play an important role in the regulation of gene expression. Several methods exist for evaluating DNA methylation, but bisulfite sequencing remains the gold standard by which base-pair resolution of CpG methylation is achieved. The challenge of the method is that the desired outcome (conversion of unmethylated cytosines) positively correlates with the undesired side effects (DNA degradation and inappropriate conversion), thus several commercial kits try to adjust a balance between the two. The aim of this study was to compare the performance of four bisulfite conversion kits [Premium Bisulfite kit (Diagenode), EpiTect Bisulfite kit (Qiagen), MethylEdge Bisulfite Conversion System (Promega) and BisulFlash DNA Modification kit (Epigentek)] regarding conversion efficiency, DNA degradation and conversion specificity. Methods Performance was tested by combining fully methylated and fully unmethylated λ-DNA controls in a series of spikes by means of Sanger sequencing (0%, 25%, 50% and 100% methylated spikes) and Next-Generation Sequencing (0%, 3%, 5%, 7%, 10%, 25%, 50% and 100% methylated spikes). We also studied the methylation status of two of our previously published differentially methylated regions (DMRs) at base resolution by using spikes of chorionic villus sample in whole blood. Results The kits studied showed different but comparable results regarding DNA degradation, conversion efficiency and conversion specificity. However, the best performance was observed with the MethylEdge Bisulfite Conversion System (Promega) followed by the Premium Bisulfite kit (Diagenode). The DMRs, EP6 and EP10, were confirmed to be hypermethylated in the CVS and hypomethylated in whole blood. Conclusion Our findings indicate that the MethylEdge Bisulfite Conversion System (Promega) was shown to have the best performance among the kits. In addition, the methylation level of two of our DMRs, EP6 and EP10, was confirmed. Finally, we showed that bisulfite amplicon sequencing is a suitable approach for methylation analysis of targeted regions. PMID:26247357
Leontiou, Chrysanthia A; Hadjidaniel, Michael D; Mina, Petros; Antoniou, Pavlos; Ioannides, Marios; Patsalis, Philippos C
2015-01-01
Epigenetic alterations, including DNA methylation, play an important role in the regulation of gene expression. Several methods exist for evaluating DNA methylation, but bisulfite sequencing remains the gold standard by which base-pair resolution of CpG methylation is achieved. The challenge of the method is that the desired outcome (conversion of unmethylated cytosines) positively correlates with the undesired side effects (DNA degradation and inappropriate conversion), thus several commercial kits try to adjust a balance between the two. The aim of this study was to compare the performance of four bisulfite conversion kits [Premium Bisulfite kit (Diagenode), EpiTect Bisulfite kit (Qiagen), MethylEdge Bisulfite Conversion System (Promega) and BisulFlash DNA Modification kit (Epigentek)] regarding conversion efficiency, DNA degradation and conversion specificity. Performance was tested by combining fully methylated and fully unmethylated λ-DNA controls in a series of spikes by means of Sanger sequencing (0%, 25%, 50% and 100% methylated spikes) and Next-Generation Sequencing (0%, 3%, 5%, 7%, 10%, 25%, 50% and 100% methylated spikes). We also studied the methylation status of two of our previously published differentially methylated regions (DMRs) at base resolution by using spikes of chorionic villus sample in whole blood. The kits studied showed different but comparable results regarding DNA degradation, conversion efficiency and conversion specificity. However, the best performance was observed with the MethylEdge Bisulfite Conversion System (Promega) followed by the Premium Bisulfite kit (Diagenode). The DMRs, EP6 and EP10, were confirmed to be hypermethylated in the CVS and hypomethylated in whole blood. Our findings indicate that the MethylEdge Bisulfite Conversion System (Promega) was shown to have the best performance among the kits. In addition, the methylation level of two of our DMRs, EP6 and EP10, was confirmed. Finally, we showed that bisulfite amplicon sequencing is a suitable approach for methylation analysis of targeted regions.
Mathur, Ashish; Gupta, Rathin; Kondal, Sidharth; Wadhwa, Shikha; Pudake, Ramesh N; Shivani; Kansal, Ruby; Pundir, C S; Narang, Jagriti
2018-06-01
Staphylococcus aureus (S. aureus) is a pathogenic bacteria which causes infectious diseases and food poisoning. Current diagnostic methods for infectious disease require sophisticated instruments, long analysis time and expensive reagents which restrict their application in resource-limited settings. Electrochemical paper based analytical device (EPAD) was developed by integrating graphene nano dots (GNDs) and zeolite (Zeo) using specific DNA probe. The ssDNA/GNDs-Zeo modified paper based analytical device (PAD) was characterized using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The genosensor was optimized at pH7.4 and incubation temperature of 30°C. A linear current response with respect to target DNA concentrations was obtained. The limit of detection (LOD) of the proposed sensor was found out to be 0.1nM. The specificity was confirmed by introducing non-complimentary target DNA to ssDNA/GNDs-Zeo modified PAD. The suitability of the proposed EPAD genosensor was demonstrated with fruit juice samples mixed with S. aureus. The proposed EPAD genosensor is a low cost, highly specific, easy to fabricate diagnostic device for detection of S. aureus bacteria which requires very low sample volume and minimum analysis time of 10s. Copyright © 2018 Elsevier B.V. All rights reserved.
Turner, D P; Connolly, B A
2000-12-15
The Escherichia coli vsr endonuclease recognises G:T base-pair mismatches in double-stranded DNA and initiates a repair pathway by hydrolysing the phosphate group 5' to the incorrectly paired T. The enzyme shows a preference for G:T mismatches within a particular sequence context, derived from the recognition site of the E. coli dcm DNA-methyltransferase (CC[A/T]GG). Thus, the preferred substrate for the vsr protein is (CT[A/T]GG), where the underlined T is opposed by a dG base. This paper provides quantitative data for the interaction of the vsr protein with a number of oligonucleotides containing G:T mismatches. Evaluation of specificity constant (k(st)/K(D); k(st)=rate constant for single turnover, K(D)=equilibrium dissociation constant) confirms vsr's preference for a G:T mismatch within a hemi-methylated dcm sequence, i.e. the best substrate is a duplex (both strands written in the 5'-3' orientation) composed of CT[A/T]GG and C(5Me)C[T/A]GG. Conversion of the mispaired T (underlined) to dU or the d(5Me)C to dC gave poorer substrates. No interaction was observed with oligonucleotides that lacked a G:T mismatch or did not possess a dcm sequence. An analysis of the fraction of active protein, by "reverse-titration" (i.e. adding increasing amounts of DNA to a fixed amount of protein followed by gel-mobility shift analysis) showed that less than 1% of the vsr endonuclease was able to bind to the substrate. This was confirmed using "competitive titrations" (where competitor oligonucleotides are used to displace a (32)P-labelled nucleic acid from the vsr protein) and burst kinetic analysis. This result is discussed in the light of previous in vitro and in vivo data which indicate that the MutL protein may be needed for full vsr activity. Copyright 2000 Academic Press.
Lake, Jennifer; Gravel, Catherine; Koko, Gabriel Koffi D; Robert, Claude; Vandenberg, Grant W
2010-03-01
Phosphorus (P)-responsive genes and how they regulate renal adaptation to phosphorous-deficient diets in animals, including fish, are not well understood. RNA abundance profiling using cDNA microarrays is an efficient approach to study nutrient-gene interactions and identify these dietary P-responsive genes. To test the hypothesis that dietary P-responsive genes are differentially expressed in fish fed varying P levels, rainbow trout were fed a practical high-P diet (R20: 0.96% P) or a low-P diet (R0: 0.38% P) for 7 weeks. The differentially-expressed genes between dietary groups were identified and compared from the kidney by combining suppressive subtractive hybridization (SSH) with cDNA microarray analysis. A number of genes were confirmed by real-time PCR, and correlated with plasma and bone P concentrations. Approximately 54 genes were identified as potential dietary P-responsive after 7 weeks on a diet deficient in P according to cDNA microarray analysis. Of 18 selected genes, 13 genes were confirmed to be P-responsive at 7 weeks by real-time PCR analysis, including: iNOS, cytochrome b, cytochrome c oxidase subunit II , alpha-globin I, beta-globin, ATP synthase, hyperosmotic protein 21, COL1A3, Nkef, NDPK, glucose phosphate isomerase 1, Na+/H+ exchange protein and GDP dissociation inhibitor 2. Many of these dietary P-responsive genes responded in a moderate way (R0/R20 ratio: <2-3 or >0.5) and in a transient manner to dietary P limitation. In summary, renal adaptation to dietary P deficiency in trout involves changes in the expression of several genes, suggesting a profile of metabolic stress, since many of these differentially-expressed candidates are associated with the cellular adaptative responses. Crown Copyright 2009. Published by Elsevier Inc. All rights reserved.
Spatiotemporal recruitment of human DNA polymerase delta to sites of UV damage
Chea, Jennifer; Zhang, Sufang; Zhao, Hong; Zhang, Zhongtao; Lee, Ernest Y.C.; Darzynkiewicz, Zbigniew; Lee, Marietta Y.W.T.
2012-01-01
Human DNA polymerase δ (Pol δ) is involved in various DNA damage responses in addition to its central role in DNA replication. The Pol δ4 holoenzyme consists of four subunits, p125, p50, p68 and p12. It has been established that the p12 subunit is rapidly degraded in response to DNA damage by UV leading to the in vivo conversion of Pol δ4 to Pol δ3, a trimeric form lacking the p12 subunit. We provide the first analysis of the time-dependent recruitment of the individual Pol δ subunits to sites of DNA damage produced by UV irradiation through 5 μm polycarbonate filters by immunofluorescence microscopy and laser scanning cytometry (LSC). Quantitative analysis demonstrates that the recruitments of the three large subunits was near complete by 2 h and did not change significantly up to 4 h after UV exposure. However, the recruitment of p12 was incomplete even at 4 h, with about 70% of the Pol δ lacking the p12 subunit. ChIP analysis of Pol δ after global UV irradiation further demonstrates that only p125, p50 and p68 were present. Thus, Pol δ3 is the predominant form of Pol δ at sites of UV damage as a result of p12 degradation. Using LSC, we have further confirmed that Pol δ was recruited to CPD damage sites in all phases of the cell cycle. Collectively, our results show that Pol δ at the DNA damage site is the Pol δ trimer lacking p12 regardless of the cell cycle phase. PMID:22801543
Kolarova, Julia; Tangen, Imke; Bens, Susanne; Gillessen-Kaesbach, Gabriele; Gutwein, Jana; Kautza, Monika; Rydzanicz, Malgorzata; Stephani, Ulrich; Siebert, Reiner; Ammerpohl, Ole; Caliebe, Almuth
2015-08-01
Despite recent progress in molecular karyotyping and clinical sequencing the cause of intellectual disability in a considerable subset of individuals affected by this phenotype remains elusive. As intellectual disability is also a feature of various imprinting disorders and some monogenic forms of intellectual disability are caused by epigenetic modifiers we hypothesized that changes in DNA methylation might be associated with or even causative in some cases of intellectual disability. Therefore, we performed a DNA methylation analysis of peripheral blood samples from 82 patients with intellectual disability and additional features using the HumanMethylation450 BeadChip. The findings were compared to that of 19 normal controls. Differentially methylated loci were validated by bisulfite pyrosequencing. On a global level, we failed to detect a robust DNA methylation signature segregating individuals with intellectual disability from controls. Using an individual approach, we identified 157 regions showing individual DNA methylation changes in at least one patient. These correlated to 107 genes including genes linked to conditions associated with intellectual disability, namely COLEC11, SHANK2, GLI2 and KCNQ2, as well as imprinted genes like FAM50B and MEG3. The latter was suggestive of an undiagnosed Temple syndrome which could be confirmed by diagnostic tests. Subsequent in-depth analysis of imprinted loci revealed DNA methylation changes at additional imprinted loci, i.e. PPIEL, IGF2R, MEG8 and MCTS2/HM13, in up to five patients. Our findings indicate that imprinting disorders are rare but probably under-diagnosed in patients with intellectual disability and moreover point to DNA methylation changes as potential alternative means to identify deregulated genes involved in the pathogenesis of intellectual disability. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Rochtus, Anne; Izzi, Benedetta; Vangeel, Elise; Louwette, Sophie; Wittevrongel, Christine; Lambrechts, Diether; Moreau, Yves; Winand, Raf; Verpoorten, Carla; Jansen, Katrien; Van Geet, Chris; Freson, Kathleen
2015-01-01
Neural tube defects (NTDs) are common birth defects of complex etiology. Though family- and population-based studies have confirmed a genetic component, the responsible genes for NTDs are still largely unknown. Based on the hypothesis that folic acid prevents NTDs by stimulating methylation reactions, epigenetic factors, such as DNA methylation, are predicted to be involved in NTDs. Homeobox (HOX) genes play a role in spinal cord development and are tightly regulated in a spatiotemporal and collinear manner, partly by epigenetic modifications. We have quantified DNA methylation for the different HOX genes by subtracting values from a genome-wide methylation analysis using leukocyte DNA from 10 myelomeningocele (MMC) patients and 6 healthy controls. From the 1575 CpGs profiled for the 4 HOX clusters, 26 CpGs were differentially methylated (P-value < 0.05; β-difference > 0.05) between MMC patients and controls. Seventy-seven percent of these CpGs were located in the HOXA and HOXB clusters, with the most profound difference for 3 CpGs within the HOXB7 gene body. A validation case-control study including 83 MMC patients and 30 unrelated healthy controls confirmed a significant association between MMC and HOXB7 hypomethylation (-14.4%; 95% CI: 11.9–16.9%; P-value < 0.0001) independent of the MTHFR 667C>T genotype. Significant HOXB7 hypomethylation was also present in 12 unaffected siblings, each related to a MMC patient, suggestive of an epigenetic change induced by the mother. The inclusion of a neural tube formation model using zebrafish showed that Hoxb7a overexpression but not depletion resulted in deformed body axes with dysmorphic neural tube formation. Our results implicate HOXB7 hypomethylation as risk factor for NTDs and highlight the importance for future genome-wide DNA methylation analyses without preselecting candidate pathways. PMID:25565354
Vaiyapuri, Periasamy S; Ali, Alshatwi A; Mohammad, Akbarsha A; Kandhavelu, Jeyalakshmi; Kandhavelu, Meenakshisundaram
2015-01-01
The effect of Calotropis gigantea latex (CGLX) on human mammary carcinoma cells is not well established. We present the results of this drug activity at total population and single cell level. CGLX inhibited the growth of MCF7 cancer cells at lower IC50 concentration (17 µL/mL). Microscopy of IC50 drug treated cells at 24 hr confirming the appearance of morphological characteristics of apoptotic and necrotic cells, associated with 70% of DNA damage. FACS analysis confirmed that, 10 and 20% of the disruption of cellular mitochondrial nature by at 24 and 48 h, respectively. Microscopic image analysis of total population level proved that MMP changes were statistically significant with P values. The cell to cell variation was confirmed by functional heterogeneity analysis which proves that CGLX was able to induce the apoptosis without the contribution of mitochondria. We conclude that CGLX inhibits cell proliferation, survival, and heterogeneity of pathways in human mammary carcinoma cells. © 2014 Wiley Periodicals, Inc.
Yousaf, Nasim; Gould, David
2017-01-01
Confirming the binding of a transcription factor with a particular DNA sequence may be important in characterizing interactions with a synthetic promoter. Electrophoretic mobility shift assay is a powerful approach to demonstrate the specific DNA sequence that is bound by a transcription factor and also to confirm the specific transcription factor involved in the interaction. In this chapter we describe a method we have successfully used to demonstrate interactions of endogenous transcription factors with sequences derived from endogenous and synthetic promoters.
1997-08-01
anti-neu antibody response of DNA vaccine immunized mice again by indirectly flowcytometry assay, we confirm our previous finding. We also examine the... flowcytometry assay, I have confirmed my previous finding from Elisa assay. 5 I also examined the cellular immunity response of DNA immunized mice by CTL...immunized mice by indirectly flowcytometry assay. I also find mice immunized with neu DNA vaccine did not develop detectable cytotoxic T lymphocyte
Khajeh, Masoumeh Ashrafi; Dehghan, Gholamreza; Dastmalchi, Siavoush; Shaghaghi, Masoomeh; Iranshahi, Mehrdad
2018-03-05
DNA is a major target for a number of anticancer substances. Interaction studies between small molecules and DNA are essential for rational drug designing to influence main biological processes and also introducing new probes for the assay of DNA. Tschimgine (TMG) is a monoterpene derivative with anticancer properties. In the present study we tried to elucidate the interaction of TMG with calf thymus DNA (CT-DNA) using different spectroscopic methods. UV-visible absorption spectrophotometry, fluorescence and circular dichroism (CD) spectroscopies as well as molecular docking study revealed formation of complex between TMG and CT-DNA. Binding constant (K b ) between TMG and DNA was 2.27×10 4 M -1 , that is comparable to groove binding agents. The fluorescence spectroscopic data revealed that the quenching mechanism of fluorescence of TMG by CT-DNA is static quenching. Thermodynamic parameters (ΔH<0 and ΔS<0) at different temperatures indicated that van der Waals forces and hydrogen bonds were involved in the binding process of TMG with CT-DNA. Competitive binding assay with methylene blue (MB) and Hoechst 33258 using fluorescence spectroscopy displayed that TMG possibly binds to the minor groove of CT-DNA. These observations were further confirmed by CD spectral analysis, viscosity measurements and molecular docking. Copyright © 2017 Elsevier B.V. All rights reserved.
Visualization of complex DNA damage along accelerated ions tracks
NASA Astrophysics Data System (ADS)
Kulikova, Elena; Boreyko, Alla; Bulanova, Tatiana; Ježková, Lucie; Zadneprianetc, Mariia; Smirnova, Elena
2018-04-01
The most deleterious DNA lesions induced by ionizing radiation are clustered DNA double-strand breaks (DSB). Clustered or complex DNA damage is a combination of a few simple lesions (single-strand breaks, base damage etc.) within one or two DNA helix turns. It is known that yield of complex DNA lesions increases with increasing linear energy transfer (LET) of radiation. For investigation of the induction and repair of complex DNA lesions, human fibroblasts were irradiated with high-LET 15N ions (LET = 183.3 keV/μm, E = 13MeV/n) and low-LET 60Co γ-rays (LET ≈ 0.3 keV/μm) radiation. DNA DSBs (γH2AX and 53BP1) and base damage (OGG1) markers were visualized by immunofluorecence staining and high-resolution microscopy. The obtained results showed slower repair kinetics of induced DSBs in cells irradiated with accelerated ions compared to 60Co γ-rays, indicating induction of more complex DNA damage. Confirming previous assumptions, detailed 3D analysis of γH2AX/53BP1 foci in 15N ions tracks revealed more complicated structure of the foci in contrast to γ-rays. It was shown that proteins 53BP1 and OGG1 involved in repair of DNA DSBs and modified bases, respectively, were colocalized in tracks of 15N ions and thus represented clustered DNA DSBs.
NASA Astrophysics Data System (ADS)
Asadi, Zahra; Nasrollahi, Neda; Karbalaei-Heidari, Hamidreza; Eigner, Vaclav; Dusek, Michal; Mobaraki, Nabiallah; Pournejati, Roya
2017-05-01
Two water-soluble mono-nuclear macrocyclic lanthanum(III) complexes of 2,6-diformyl-4-methylphenol with 1,3-diamino-2-propanol (C1) or 1,3-propylenediamine (C2) were synthesized and characterized by UV-Vis, FT-IR, 13C and 1H NMR spectroscopy and elemental analysis. C1 complex was structurally characterized by single-crystal X-ray diffraction, which revealed that the complex was mononuclear and ten-coordinated. The coordination sites around lanthanum(III) were occupied with a five-dentate ligand, two bidentate nitrates, and one water molecule. The interaction of complexes with DNA was studied in buffered aqueous solution at pH 7.4. UV-Vis absorption spectroscopy, emission spectroscopy, circular dichroism (CD) and viscometric measurements provided clear evidence of the intercalation mechanism of binding. The obtained intrinsic binding constants (Kb) 9.3 × 103 and 1.2 × 103 M- 1 for C1 and C2, respectively confirmed that C1 is better intercalator than C2. The DNA docking studies suggested that the complexes bind with DNA in a groove binding mode with the binding affinity of C1 > C2. Moreover, agarose gel electrophoresis study of the DNA-complex for both compounds revealed that the C1 intercalation cause ethidium bromide replacement in a competitive manner which confirms the suggested mechanism of binding. Finally, the anticancer experiments for the treated cancerous cell lines with both synthesized compounds show that these hydrophilic molecules need a suitable carrier to pass through the hydrophobic nature of cell membrane efficiently.
Cavalli, Roberta; Bisazza, Agnese; Trotta, Michele; Argenziano, Monica; Civra, Andrea; Donalisio, Manuela; Lembo, David
2012-01-01
The development of nonviral gene delivery systems is one of the most intriguing topics in nanomedicine. However, despite the advances made in recent years, several key issues remain unsettled. One of the main problems relates to the difficulty in designing nanodevices for targeted delivery of genes and other drugs to specific anatomic sites. In this study, we describe the development of a novel chitosan nanobubble-based gene delivery system for ultrasound-triggered release. Chitosan was selected for the nanobubble shell because of its low toxicity, low immunogenicity, and excellent biocompatibility, while the core consisted of perfluoropentane. DNA-loaded chitosan nanobubbles were formed with a mean diameter of less than 300 nm and a positive surface charge. Transmission electron microscopic analysis confirmed composition of the core-shell structure. The ability of the chitosan nanobubbles to complex with and protect DNA was confirmed by agarose gel assay. Chitosan nanobubbles were found to be stable following insonation (2.5 MHz) for up to 3 minutes at 37°C. DNA release was evaluated in vitro in both the presence and absence of ultrasound. The release of chitosan nanobubble-bound plasmid DNA occurred after just one minute of insonation. In vitro transfection experiments were performed by exposing adherent COS7 cells to ultrasound in the presence of different concentrations of plasmid DNA-loaded nanobubbles. In the absence of ultrasound, nanobubbles failed to trigger transfection at all concentrations tested. In contrast, 30 seconds of ultrasound promoted a moderate degree of transfection. Cell viability experiments demonstrated that neither ultrasound nor the nanobubbles affected cell viability under these experimental conditions. Based on these results, chitosan nanobubbles have the potential to be promising tools for ultrasound-mediated DNA delivery.
Cavalli, Roberta; Bisazza, Agnese; Trotta, Michele; Argenziano, Monica; Civra, Andrea; Donalisio, Manuela; Lembo, David
2012-01-01
Background The development of nonviral gene delivery systems is one of the most intriguing topics in nanomedicine. However, despite the advances made in recent years, several key issues remain unsettled. One of the main problems relates to the difficulty in designing nanodevices for targeted delivery of genes and other drugs to specific anatomic sites. In this study, we describe the development of a novel chitosan nanobubble-based gene delivery system for ultrasound-triggered release. Methods and results Chitosan was selected for the nanobubble shell because of its low toxicity, low immunogenicity, and excellent biocompatibility, while the core consisted of perfluoropentane. DNA-loaded chitosan nanobubbles were formed with a mean diameter of less than 300 nm and a positive surface charge. Transmission electron microscopic analysis confirmed composition of the core-shell structure. The ability of the chitosan nanobubbles to complex with and protect DNA was confirmed by agarose gel assay. Chitosan nanobubbles were found to be stable following insonation (2.5 MHz) for up to 3 minutes at 37°C. DNA release was evaluated in vitro in both the presence and absence of ultrasound. The release of chitosan nanobubble-bound plasmid DNA occurred after just one minute of insonation. In vitro transfection experiments were performed by exposing adherent COS7 cells to ultrasound in the presence of different concentrations of plasmid DNA-loaded nanobubbles. In the absence of ultrasound, nanobubbles failed to trigger transfection at all concentrations tested. In contrast, 30 seconds of ultrasound promoted a moderate degree of transfection. Cell viability experiments demonstrated that neither ultrasound nor the nanobubbles affected cell viability under these experimental conditions. Conclusion Based on these results, chitosan nanobubbles have the potential to be promising tools for ultrasound-mediated DNA delivery. PMID:22802689
DNA methylome signature in rheumatoid arthritis.
Nakano, Kazuhisa; Whitaker, John W; Boyle, David L; Wang, Wei; Firestein, Gary S
2013-01-01
Epigenetics can influence disease susceptibility and severity. While DNA methylation of individual genes has been explored in autoimmunity, no unbiased systematic analyses have been reported. Therefore, a genome-wide evaluation of DNA methylation loci in fibroblast-like synoviocytes (FLS) isolated from the site of disease in rheumatoid arthritis (RA) was performed. Genomic DNA was isolated from six RA and five osteoarthritis (OA) FLS lines and evaluated using the Illumina HumanMethylation450 chip. Cluster analysis of data was performed and corrected using Benjamini-Hochberg adjustment for multiple comparisons. Methylation was confirmed by pyrosequencing and gene expression was determined by qPCR. Pathway analysis was performed using the Kyoto Encyclopedia of Genes and Genomes. RA and control FLS segregated based on DNA methylation, with 1859 differentially methylated loci. Hypomethylated loci were identified in key genes relevant to RA, such as CHI3L1, CASP1, STAT3, MAP3K5, MEFV and WISP3. Hypermethylation was also observed, including TGFBR2 and FOXO1. Hypomethylation of individual genes was associated with increased gene expression. Grouped analysis identified 207 hypermethylated or hypomethylated genes with multiple differentially methylated loci, including COL1A1, MEFV and TNF. Hypomethylation was increased in multiple pathways related to cell migration, including focal adhesion, cell adhesion, transendothelial migration and extracellular matrix interactions. Confirmatory studies with OA and normal FLS also demonstrated segregation of RA from control FLS based on methylation pattern. Differentially methylated genes could alter FLS gene expression and contribute to the pathogenesis of RA. DNA methylation of critical genes suggests that RA FLS are imprinted and implicate epigenetic contributions to inflammatory arthritis.
Kawaura, Kanako; Mochida, Keiichi; Yamazaki, Yukiko; Ogihara, Yasunari
2006-04-01
In this study, we constructed a 22k wheat oligo-DNA microarray. A total of 148,676 expressed sequence tags of common wheat were collected from the database of the Wheat Genomics Consortium of Japan. These were grouped into 34,064 contigs, which were then used to design an oligonucleotide DNA microarray. Following a multistep selection of the sense strand, 21,939 60-mer oligo-DNA probes were selected for attachment on the microarray slide. This 22k oligo-DNA microarray was used to examine the transcriptional response of wheat to salt stress. More than 95% of the probes gave reproducible hybridization signals when targeted with RNAs extracted from salt-treated wheat shoots and roots. With the microarray, we identified 1,811 genes whose expressions changed more than 2-fold in response to salt. These included genes known to mediate response to salt, as well as unknown genes, and they were classified into 12 major groups by hierarchical clustering. These gene expression patterns were also confirmed by real-time reverse transcription-PCR. Many of the genes with unknown function were clustered together with genes known to be involved in response to salt stress. Thus, analysis of gene expression patterns combined with gene ontology should help identify the function of the unknown genes. Also, functional analysis of these wheat genes should provide new insight into the response to salt stress. Finally, these results indicate that the 22k oligo-DNA microarray is a reliable method for monitoring global gene expression patterns in wheat.
Cloning and Expression of cDNA for Rat Heme Oxygenase
NASA Astrophysics Data System (ADS)
Shibahara, Shigeki; Muller, Rita; Taguchi, Hayao; Yoshida, Tadashi
1985-12-01
Two cDNA clones for rat heme oxygenase have been isolated from a rat spleen cDNA library in λ gt11 by immunological screening using a specific polyclonal antibody. One of these clones has an insert of 1530 nucleotides that contains the entire protein-coding region. To confirm that the isolated cDNA encodes heme oxygenase, we transfected monkey kidney cells (COS-7) with the cDNA carried in a simian virus 40 vector. The heme oxygenase was highly expressed in endoplasmic reticulum of transfected cells. The nucleotide sequence of the cloned cDNA was determined and the primary structure of heme oxygenase was deduced. Heme oxygenase is composed of 289 amino acids and has one hydrophobic segment at its carboxyl terminus, which is probably important for the insertion of heme oxygenase into endoplasmic reticulum. The cloned cDNA was used to analyze the induction of heme oxygenase in rat liver by treatment with CoCl2 or with hemin. RNA blot analysis showed that both CoCl2 and hemin increased the amount of hybridizable mRNA, suggesting that these substances may act at the transcriptional level to increase the amount of heme oxygenase.
Saeedfar, Kasra; Heng, Lee Yook; Chiang, Chew Poh
2017-12-01
Multi-wall carbon nanotubes (MWCNTs) were modified to design a new DNA biosensor. Functionalized MWCNTs were equipped with gold nanoparticles (GNPs) (~15nm) (GNP-MWCNTCOOH) to construct DNA biosensors based on carbon-paste screen-printed (SPE) electrodes. GNP attachment onto functionalized MWCNTs was carried out by microwave irradiation and was confirmed by spectroscopic studies and surface analysis. DNA biosensors based on differential pulse voltammetry (DPV) were constructed by immobilizing thiolated single-stranded DNA probes onto GNP-MWCNTCOOH. Ruthenium (III) chloride hexaammoniate [Ru(NH 3 ) 6 ,2Cl - ] (RuHex) was used as hybridization redox indicator. RuHex and MWCNT interaction was low in compared to other organic redox hybridization indicators. The linear response range for DNA determination was 1×10 -21 to 1×10 -9 M with a lower detection limit of 1.55×10 -21 M. Thus, the attachment of GNPs onto functionalized MWCNTs yielded sensitive DNA biosensor with low detection limit and stability more than 30days. Constructed electrode was used to determine gender of arowana fish. Copyright © 2017 Elsevier B.V. All rights reserved.
2013-01-01
Background Genotyping requires biological sample collection that must be reliable, convenient and acceptable for patients and clinicians. Finding the most optimal procedure of sample collection for premature neonates who have a very limited blood volume is a particular challenge. The aim of the current study was to evaluate the use of umbilical cord (UC) tissue and newborn dried blood spot (DBS)-extracted genomic DNA (gDNA) as an alternative to venous blood-derived gDNA from premature neonates for molecular genetic analysis. All samples were obtained from premature newborn infants between 24-32 weeks of gestation. Paired blood and UC samples were collected from 31 study participants. gDNA was extracted from ethylenediaminetetraacetic acid (EDTA) anticoagulant-treated blood samples (~500 μl) and newborn DBSs (n = 723) using QIAamp DNA Micro kit (Qiagen Ltd., Crawley, UK); and from UC using Qiagen DNAeasy Blood and Tissue kit (Qiagen Ltd., Crawley, UK). gDNA was quantified and purity confirmed by measuring the A260:A280 ratio. PCR amplification and pyrosequencing was carried out to determine suitability of the gDNA for molecular genetic analysis. Minor allele frequency of two unrelated single nucleotide polymorphisms (SNPs) was calculated using the entire cohort. Results Both whole blood samples and UC tissue provided good quality and yield of gDNA, which was considerably less from newborn DBS. The gDNA purity was also reduced after 3 years of storage of the newborn DBS. PCR amplification of three unrelated genes resulted in clear products in all whole blood and UC samples and 86%-100% of newborn DBS. Genotyping using pyrosequencing showed 100% concordance in the paired UC and whole blood samples. Minor allele frequencies of the two SNPs indicated that no maternal gDNA contamination occurred in the genotyping of the UC samples. Conclusions gDNAs from all three sources are suitable for standard PCR and pyrosequencing assays. Given that UC provide good quality and quantity gDNA with 100% concordance in the genetic analysis with whole blood, it can replace blood sampling from premature infants. This is likely to reduce the stress and potential side effects associated with invasive sample collection and thus, greatly facilitate participant recruitment for genetic studies. PMID:24168095
Lin, Chang Sheng-Huei; Chao, Shi-Yu; Hammel, Michal; Nix, Jay C; Tseng, Hsiao-Ling; Tsou, Chih-Cheng; Fei, Chun-Hsien; Chiou, Huo-Sheng; Jeng, U-Ser; Lin, Yee-Shin; Chuang, Woei-Jer; Wu, Jiunn-Jong; Wang, Shuying
2014-01-01
Group A streptococcus (GAS, Streptococcus pyogenes) is a strict human pathogen that causes severe, invasive diseases. GAS does not produce catalase, but has an ability to resist killing by reactive oxygen species (ROS) through novel mechanisms. The peroxide response regulator (PerR), a member of ferric uptake regulator (Fur) family, plays a key role for GAS to cope with oxidative stress by regulating the expression of multiple genes. Our previous studies have found that expression of an iron-binding protein, Dpr, is under the direct control of PerR. To elucidate the molecular interactions of PerR with its cognate promoter, we have carried out structural studies on PerR and PerR-DNA complex. By combining crystallography and small-angle X-ray scattering (SAXS), we confirmed that the determined PerR crystal structure reflects its conformation in solution. Through mutagenesis and biochemical analysis, we have identified DNA-binding residues suggesting that PerR binds to the dpr promoter at the per box through a winged-helix motif. Furthermore, we have performed SAXS analysis and resolved the molecular architecture of PerR-DNA complex, in which two 30 bp DNA fragments wrap around two PerR homodimers by interacting with the adjacent positively-charged winged-helix motifs. Overall, we provide structural insights into molecular recognition of DNA by PerR and define the hollow structural arrangement of PerR-30bpDNA complex, which displays a unique topology distinct from currently proposed DNA-binding models for Fur family regulators.
Integrated DNA walking system to characterize a broad spectrum of GMOs in food/feed matrices.
Fraiture, Marie-Alice; Herman, Philippe; Lefèvre, Loic; Taverniers, Isabel; De Loose, Marc; Deforce, Dieter; Roosens, Nancy H
2015-08-14
In order to provide a system fully integrated with qPCR screening, usually used in GMO routine analysis, as well as being able to detect, characterize and identify a broad spectrum of GMOs in food/feed matrices, two bidirectional DNA walking methods targeting p35S or tNOS, the most common transgenic elements found in GM crops, were developed. These newly developed DNA walking methods are completing the previously implemented DNA walking method targeting the t35S pCAMBIA element. Food/feed matrices containing transgenic crops (Bt rice or MON863 maize) were analysed using the integrated DNA walking system. First, the newly developed DNA walking methods, anchored on the sequences used for the p35S or tNOS qPCR screening, were tested on Bt rice that contains these two transgenic elements. Second, the methods were assessed on a maize sample containing a low amount of the GM MON863 event, representing a more complex matrix in terms of genome size and sensitivity. Finally, to illustrate its applicability in GMO routine analysis by enforcement laboratories, the entire workflow of the integrated strategy, including qPCR screening to detect the potential presence of GMOs and the subsequent DNA walking methods to characterize and identify the detected GMOs, was applied on a GeMMA Scheme Proficiency Test matrix. Via the characterization of the transgene flanking region between the transgenic cassette and the plant genome as well as of a part of the transgenic cassette, the presence of GMOs was properly confirmed or infirmed in all tested samples. Due to their simple procedure and their short time-frame to get results, the developed DNA walking methods proposed here can be easily implemented in GMO routine analysis by the enforcement laboratories. In providing crucial information about the transgene flanking regions and/or the transgenic cassettes, this DNA walking strategy is a key molecular tool to prove the presence of GMOs in any given food/feed matrix.
Nakamura, Haruhiko; Koizumi, Hirotaka; Kimura, Hiroyuki; Marushima, Hideki; Saji, Hisashi; Takagi, Masayuki
2016-09-01
Epidermal growth factor receptor (EGFR) mutation rates in adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA) were studied using both DNA analysis and mutation-specific immunohistochemistry. The peptide nucleic acid-locked nucleic acid polymerase chain reaction clamp method was used to detect mutations in exons 18, 19, 20, and 21 of the EGFR gene in DNA samples extracted from paraffin-embedded tissue sections. Simultaneously, immunohistochemical analysis with two EGFR mutation-specific monoclonal antibodies was used to identify proteins resulting from an in-frame deletion in exon 19 (E746_A750del) and a point mutation replacing leucine with arginine at codon 858 of exon 21 (L858R). Forty-three tumors (22 AIS and 21 MIA) were examined. The EGFR mutation rate in AIS detected by DNA analysis was 27.3% (L858R, 5/22; exon 19 deletion,1/22), whereas that detected in MIA was 42.9% (L858R,4/21; exon 19 deletion,5/21). Mutations detected by immunohistochemical analysis included 22.7% (L858R, 4/22; exon 19 deletion, 1/22) in AIS and 42.9% (L858R, 4/21; exon 19 deletion, 5/21) in MIA. Although some results were contradictory, concordant results were obtained using both assays in 38 of 43 cases (88.4%). DNA and immunohistochemical analyses revealed similar EGFR mutation rates in both MIA and AIS, suggesting that mutation-specific monoclonal antibodies are useful to confirm DNA assay results. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Tsui, Nancy B. Y.; Jiang, Peiyong; Chow, Katherine C. K.; Su, Xiaoxi; Leung, Tak Y.; Sun, Hao; Chan, K. C. Allen; Chiu, Rossa W. K.; Lo, Y. M. Dennis
2012-01-01
Background Fetal DNA in maternal urine, if present, would be a valuable source of fetal genetic material for noninvasive prenatal diagnosis. However, the existence of fetal DNA in maternal urine has remained controversial. The issue is due to the lack of appropriate technology to robustly detect the potentially highly degraded fetal DNA in maternal urine. Methodology We have used massively parallel paired-end sequencing to investigate cell-free DNA molecules in maternal urine. Catheterized urine samples were collected from seven pregnant women during the third trimester of pregnancies. We detected fetal DNA by identifying sequenced reads that contained fetal-specific alleles of the single nucleotide polymorphisms. The sizes of individual urinary DNA fragments were deduced from the alignment positions of the paired reads. We measured the fractional fetal DNA concentration as well as the size distributions of fetal and maternal DNA in maternal urine. Principal Findings Cell-free fetal DNA was detected in five of the seven maternal urine samples, with the fractional fetal DNA concentrations ranged from 1.92% to 4.73%. Fetal DNA became undetectable in maternal urine after delivery. The total urinary cell-free DNA molecules were less intact when compared with plasma DNA. Urinary fetal DNA fragments were very short, and the most dominant fetal sequences were between 29 bp and 45 bp in length. Conclusions With the use of massively parallel sequencing, we have confirmed the existence of transrenal fetal DNA in maternal urine, and have shown that urinary fetal DNA was heavily degraded. PMID:23118982
Pérez-Flores, J; Rueda-Calderon, H; Kvist, S; Siddall, M E; Oceguera-Figueroa, A
2016-10-01
Invertebrate-derived ingested DNA (iDNA) is quickly proving to be a valuable, non-invasive tool for monitoring vertebrate species of conservation concern. Using the DNA barcoding locus, we successfully identified both the blood-feeding leech Haementeria acuecueyetzin and its blood meal-the latter is shown to be derived from the Caribbean manatee, Trichechus manatus . DNA amplification was successful despite the fact that the specimen was fixed in Mezcal (a beverage distilled from agave). We report the first confirmed case of a leech feeding on a manatee, the first record of H. acuecueyetzin for the State of Chiapas and, to our knowledge, the first case of successful DNA amplification of a biological sample fixed in Mezcal other than the caterpillar "worms" more commonly found in that beverage.
High-speed detection of DNA translocation in nanopipettes
NASA Astrophysics Data System (ADS)
Fraccari, Raquel L.; Ciccarella, Pietro; Bahrami, Azadeh; Carminati, Marco; Ferrari, Giorgio; Albrecht, Tim
2016-03-01
We present a high-speed electrical detection scheme based on a custom-designed CMOS amplifier which allows the analysis of DNA translocation in glass nanopipettes on a microsecond timescale. Translocation of different DNA lengths in KCl electrolyte provides a scaling factor of the DNA translocation time equal to p = 1.22, which is different from values observed previously with nanopipettes in LiCl electrolyte or with nanopores. Based on a theoretical model involving electrophoresis, hydrodynamics and surface friction, we show that the experimentally observed range of p-values may be the result of, or at least be affected by DNA adsorption and friction between the DNA and the substrate surface.We present a high-speed electrical detection scheme based on a custom-designed CMOS amplifier which allows the analysis of DNA translocation in glass nanopipettes on a microsecond timescale. Translocation of different DNA lengths in KCl electrolyte provides a scaling factor of the DNA translocation time equal to p = 1.22, which is different from values observed previously with nanopipettes in LiCl electrolyte or with nanopores. Based on a theoretical model involving electrophoresis, hydrodynamics and surface friction, we show that the experimentally observed range of p-values may be the result of, or at least be affected by DNA adsorption and friction between the DNA and the substrate surface. Electronic supplementary information (ESI) available: Gel electrophoresis confirming lengths and purity of DNA samples, comparison between Axopatch 200B and custom-built setup, comprehensive low-noise amplifier characterization, representative I-V curves of nanopipettes used, typical scatter plots of τ vs. peak amplitude for the four LDNA's used, table of most probable τ values, a comparison between different fitting models for the DNA translocation time distribution, further details on the stochastic numerical simulation of the scaling statistics and the derivation of the extended model for the length dependence of τ. See DOI: 10.1039/c5nr08634e
van Asch, Barbara; Zhang, Ai-bing; Oskarsson, Mattias C R; Klütsch, Cornelya F C; Amorim, António; Savolainen, Peter
2013-09-07
Dogs were present in pre-Columbian America, presumably brought by early human migrants from Asia. Studies of free-ranging village/street dogs have indicated almost total replacement of these original dogs by European dogs, but the extent to which Arctic, North and South American breeds are descendants of the original population remains to be assessed. Using a comprehensive phylogeographic analysis, we traced the origin of the mitochondrial DNA lineages for Inuit, Eskimo and Greenland dogs, Alaskan Malamute, Chihuahua, xoloitzcuintli and perro sín pelo del Peru, by comparing to extensive samples of East Asian (n = 984) and European dogs (n = 639), and previously published pre-Columbian sequences. Evidence for a pre-Columbian origin was found for all these breeds, except Alaskan Malamute for which results were ambigous. No European influence was indicated for the Arctic breeds Inuit, Eskimo and Greenland dog, and North/South American breeds had at most 30% European female lineages, suggesting marginal replacement by European dogs. Genetic continuity through time was shown by the sharing of a unique haplotype between the Mexican breed Chihuahua and ancient Mexican samples. We also analysed free-ranging dogs, confirming limited pre-Columbian ancestry overall, but also identifying pockets of remaining populations with high proportion of indigenous ancestry, and we provide the first DNA-based evidence that the Carolina dog, a free-ranging population in the USA, may have an ancient Asian origin.
Effect of DNA-CTMA complex on optical properties of LDS 821 dye
NASA Astrophysics Data System (ADS)
Udayan, Sony; Ramachandran, Vijesh Kavumoottil; Sebastian, Mathew; Chandran, Pradeep; Nampoori, Vadakkedath Parameswaran Narayanan; Thomas, Sheenu
2017-07-01
We have investigated the fluorescence behavior of LDS 821 dye (Styryl 9 M) with deoxyribonucleic acid attached with cetyltrimethyl-ammonium (DNA-CTMA). Optical absorption studies confirm the intercalation of the dye molecules with DNA-CTMA. Fluorescence studies show an enhancement of fluorescence intensity of dye with DNA-CTMA, which suggest the reduction of TICT states of the dye molecule. The FWHM of the fluorescence spectrum increases from 95 nm to 161 nm indicating the formation of new energy levels when DNA-CTMA forms a complex with LDS 821 dye. Fluorescence lifetime measurements shows that lifetime of LDS 821 varies from 507ps to 953 ps with the addition of DNA-CTMA, which also confirms the deactivation of TICT states of dye molecule. Results show that the incorporation of DNA-CTMA with LDS 821 dye improves the optical characteristics of LDS 821 dye and therefore, can be used as a good fluorescence probe for DNA visualization as well as in lasing applications.
Hb L'Aquila [beta106(G8)Leu-->Val, CTG-->GTG]: a novel thalassemic hemoglobin variant.
Amato, Antonio; Cappabianca, Maria Pia; Ponzini, Donatella; Rinaldi, Silvana; Biagio, Paola Di; Foglietta, Enrica; Grisanti, Paola; Mastropietro, Fabrizio
2007-01-01
A new beta-globin variant at codon 106 (CTG-->GTG), and which we named Hb L'Aquila [beta106(G8)Leu-->Val], was detected by DNA analysis. The proband and her father presented with the features of a mild beta(+)-thalassemia (thal), confirmed by their alpha/beta-globin chain biosynthesis ratios.
Molecular analysis of genetic diversity among vine accessions using DNA markers.
da Costa, A F; Teodoro, P E; Bhering, L L; Tardin, F D; Daher, R F; Campos, W F; Viana, A P; Pereira, M G
2017-04-13
Viticulture presents a number of economic and social advantages, such as increasing employment levels and fixing the labor force in rural areas. With the aim of initiating a program of genetic improvement in grapevine from the State University of the state of Rio de Janeiro North Darcy Ribeiro, genetic diversity between 40 genotypes (varieties, rootstock, and species of different subgenera) was evaluated using Random amplified polymorphic DNA (RAPD) molecular markers. We built a matrix of binary data, whereby the presence of a band was assigned as "1" and the absence of a band was assigned as "0." The genetic distance was calculated between pairs of genotypes based on the arithmetic complement from the Jaccard Index. The results revealed the presence of considerable variability in the collection. Analysis of the genetic dissimilarity matrix revealed that the most dissimilar genotypes were Rupestris du Lot and Vitis rotundifolia because they were the most genetically distant (0.5972). The most similar were genotypes 31 (unidentified) and Rupestris du lot, which showed zero distance, confirming the results of field observations. A duplicate was confirmed, consistent with field observations, and a short distance was found between the variety 'Italy' and its mutation, 'Ruby'. The grouping methods used were somewhat concordant.
Molecular Analysis of Sarcoidosis Granulomas Reveals Antimicrobial Targets
Celada, Lindsay J.; Polosukhin, Vasiliy V.; Atkinson, James B.; Drake, Wonder P.
2016-01-01
Sarcoidosis is a granulomatous disease of unknown cause. Prior molecular and immunologic studies have confirmed the presence of mycobacterial virulence factors, such as catalase peroxidase and superoxide dismutase A, within sarcoidosis granulomas. Molecular analysis of granulomas can identify targets of known antibiotics classes. Currently, major antibiotics are directed against DNA synthesis, protein synthesis, and cell wall formation. We conducted molecular analysis of 40 sarcoidosis diagnostic specimens and compared them with 33 disease control specimens for the presence of mycobacterial genes that encode antibiotic targets. We assessed for genes involved in DNA synthesis (DNA gyrase A [gyrA] and DNA gyrase B), protein synthesis (RNA polymerase subunit β), cell wall synthesis (embCAB operon and enoyl reductase), and catalase peroxidase. Immunohistochemical analysis was conducted to investigate the locale of mycobacterial genes such as gyrA within 12 sarcoidosis specimens and 12 disease controls. Mycobacterial DNA was detected in 33 of 39 sarcoidosis specimens by quantitative real-time polymerase chain reaction compared with 2 of 30 disease control specimens (P < 0.001, two-tailed Fisher’s test). Twenty of 39 were positive for three or more mycobacterial genes, compared with 1 of 30 control specimens (P < 0.001, two-tailed Fisher’s test). Immunohistochemistry analysis localized mycobacterial gyrA nucleic acids to sites of granuloma formation in 9 of 12 sarcoidosis specimens compared with 1 of 12 disease controls (P < 0.01). Microbial genes encoding enzymes that can be targeted by currently available antimycobacterial antibiotics are present in sarcoidosis specimens and localize to sites of granulomatous inflammation. Use of antimicrobials directed against target enzymes may be an innovative treatment alternative. PMID:26807608
Trcek, Janja
2005-10-01
Acetic acid bacteria (AAB) are well known for oxidizing different ethanol-containing substrates into various types of vinegar. They are also used for production of some biotechnologically important products, such as sorbose and gluconic acids. However, their presence is not always appreciated since certain species also spoil wine, juice, beer and fruits. To be able to follow AAB in all these processes, the species involved must be identified accurately and quickly. Because of inaccuracy and very time-consuming phenotypic analysis of AAB, the application of molecular methods is necessary. Since the pairwise comparison among the 16S rRNA gene sequences of AAB shows very high similarity (up to 99.9%) other DNA-targets should be used. Our previous studies showed that the restriction analysis of 16S-23S rDNA internal transcribed spacer region is a suitable approach for quick affiliation of an acetic acid bacterium to a distinct group of restriction types and also for quick identification of a potentially novel species of acetic acid bacterium (Trcek & Teuber 2002; Trcek 2002). However, with the exception of two conserved genes, encoding tRNAIle and tRNAAla, the sequences of 16S-23S rDNA are highly divergent among AAB species. For this reason we analyzed in this study a gene encoding PQQ-dependent ADH as a possible DNA-target. First we confirmed the expression of subunit I of PQQ-dependent ADH (AdhA) also in Asaia, the only genus of AAB which exhibits little or no ADH-activity. Further we analyzed the partial sequences of adhA among some representative species of the genera Acetobacter, Gluconobacter and Gluconacetobacter. The conserved and variable regions in these sequences made possible the construction of A. acetispecific oligonucleotide the specificity of which was confirmed in PCR-reaction using 45 well-defined strains of AAB as DNA-templates. The primer was also successfully used in direct identification of A. aceti from home made cider vinegar as well as for revealing the misclassification of strain IFO 3283 into the species A. aceti.
Subramaniam, R; Reinold, S; Molitor, E K; Douglas, C J
1993-01-01
A heterologous probe encoding phenylalanine ammonia-lyase (PAL) was used to identify PAL clones in cDNA libraries made with RNA from young leaf tissue of two Populus deltoides x P. trichocarpa F1 hybrid clones. Sequence analysis of a 2.4-kb cDNA confirmed its identity as a full-length PAl clone. The predicted amino acid sequence is conserved in comparison with that of PAL genes from several other plants. Southern blot analysis of popular genomic DNA from parental and hybrid individuals, restriction site polymorphism in PAL cDNA clones, and sequence heterogeneity in the 3' ends of several cDNA clones suggested that PAL is encoded by at least two genes that can be distinguished by HindIII restriction site polymorphisms. Clones containing each type of PAL gene were isolated from a poplar genomic library. Analysis of the segregation of PAL-specific HindIII restriction fragment-length polymorphisms demonstrated the existence of two independently segregating PAL loci, one of which was mapped to a linkage group of the poplar genetic map. Developmentally regulated PAL expression in poplar was analyzed using RNA blots. Highest expression was observed in young stems, apical buds, and young leaves. Expression was lower in older stems and undetectable in mature leaves. Cellular localization of PAL expression by in situ hybridization showed very high levels of expression in subepidermal cells of leaves early during leaf development. In stems and petioles, expression was associated with subepidermal cells and vascular tissues. PMID:8108506
The role of human papillomavirus in head and neck cancer in Senegal.
Ndiaye, Cathy; Alemany, Laia; Diop, Yankhoba; Ndiaye, Nafissatou; Diémé, Marie-Joseph; Tous, Sara; Klaustermeier, Jo Ellen; Alejo, Maria; Castellsagué, Xavier; Bosch, F Xavier; Trottier, Helen; Sanjosé, Silvia de
2013-04-17
Exploring the presence and role of human papillomavirus (HPV) in head and neck cancer (HNC) is a necessary step to evaluate the potential impact of HPV prophylactic vaccines. To assess the prevalence and oncogenic role of HPV in HNC in Senegal. This is a multicenter cross-sectional study. Paraffin-embedded blocks of cases diagnosed with invasive HNC between 2002 and 2010 were collected from 4 pathology laboratories in Senegal. Presence of HPV DNA was determined by PCR and DEIA, and genotyping performed with LiPA25. Tubulin analysis was performed to assess DNA quality. HPV DNA-positive cases were tested for p16INK4a expression. A total of 117 cases were included in the analysis: 71% were men, mean age was 52 years old (SD ±18.3), and 96% of cases were squamous cell carcinoma. Analysis was performed on 41 oral cavity tumors, 64 laryngeal tumors, 5 oropharyngeal tumors and 7 pharyngeal tumors. Only four cases (3.4%; 95% CI = 0.9%-8.5%) harbored HPV DNA. HPV types detected were HPV16, HPV35 and HPV45. However, among HPV-positive cases, none showed p16INK4a overexpression. Our findings indicate that HPV DNA prevalence in HNC in Senegal is very low, suggesting that HPV is not a strong risk factor for these cancers. Additional larger studies are needed to confirm these findings and explore other potential risk factors specific to the region.
Mitochondrial DNA heritage of Cres Islanders--example of Croatian genetic outliers.
Jeran, Nina; Havas Augustin, Dubravka; Grahovac, Blaienka; Kapović, Miljenko; Metspalu, Ene; Villems, Richard; Rudan, Pavao
2009-12-01
Diversity of mitochondrial DNA (mtDNA) lineages of the Island of Cres was determined by high-resolution phylogenetic analysis on a sample of 119 adult unrelated individuals from eight settlements. The composition of mtDNA pool of this Island population is in contrast with other Croatian and European populations. The analysis revealed the highest frequency of haplogroup U (29.4%) with the predominance of one single lineage of subhaplogroup U2e (20.2%). Haplogroup H is the second most prevalent one with only 27.7%. Other very interesting features of contemporary Island population are extremely low frequency of haplogroup J (only 0.84%), and much higher frequency of haplogroup W (12.6%) comparing to other Croatian and European populations. Especially interesting finding is a strikingly higher frequency of haplogroup N1a (9.24%) presented with African/south Asian branch almost absent in Europeans, while its European sister-branch, proved to be highly prevalent among Neolithic farmers, is present in contemporary Europeans with only 0.2%. Haplotype analysis revealed that only five mtDNA lineages account for almost 50% of maternal genetic heritage of this island and they present supposed founder lineages. All presented findings confirm that genetic drift, especially founder effect, has played significant role in shaping genetic composition of the isolated population of the Island of Cres. Due to presented data contemporary population of Cres Island can be considered as genetic "outlier" among Croatian populations.
Development of swine-specific DNA markers for biosensor-based halal authentication.
Ali, M E; Hashim, U; Kashif, M; Mustafa, S; Che Man, Y B; Abd Hamid, S B
2012-06-29
The pig (Sus scrofa) mitochondrial genome was targeted to design short (15-30 nucleotides) DNA markers that would be suitable for biosensor-based hybridization detection of target DNA. Short DNA markers are reported to survive harsh conditions in which longer ones are degraded into smaller fragments. The whole swine mitochondrial-genome was in silico digested with AluI restriction enzyme. Among 66 AluI fragments, five were selected as potential markers because of their convenient lengths, high degree of interspecies polymorphism and intraspecies conservatism. These were confirmed by NCBI blast analysis and ClustalW alignment analysis with 11 different meat-providing animal and fish species. Finally, we integrated a tetramethyl rhodamine-labeled 18-nucleotide AluI fragment into a 3-nm diameter citrate-tannate coated gold nanoparticle to develop a swine-specific hybrid nanobioprobe for the determination of pork adulteration in 2.5-h autoclaved pork-beef binary mixtures. This hybrid probe detected as low as 1% pork in deliberately contaminated autoclaved pork-beef binary mixtures and no cross-species detection was recorded, demonstrating the feasibility of this type of probe for biosensor-based detection of pork adulteration of halal and kosher foods.
Analysis of barosensitive mechanisms in yeast for Pressure Regulated Fermentation
NASA Astrophysics Data System (ADS)
Nomura, Kazuki; Iwahashi, Hitoshi; Iguchi, Akinori; Shigematsu, Toru
2013-06-01
Introduction: We are intending to develop a novel food processing technology, Pressure Regulated Fermentation (PReF), using pressure sensitive (barosensitive) fermentation microorganisms. Objectives of our study are to clarify barosensitive mechanisms for application to PReF technology. We isolated Saccharomyces cerevisiae barosensitive mutant a924E1 that was derived from the parent KA31a. Methods: Gene expression levels were analyzed by DNA microarray. The altered genes of expression levels were classified according to the gene function. Mutated genes were estimated by mating and producing diploid strains and confirmed by PCR of mitochondrial DNA (mtDNA). Results and Discussion: Gene expression profiles showed that genes of `Energy' function and that of encoding protein localized in ``Mitochondria'' were significantly down regulated in the mutant. These results suggest the respiratory deficiency and relationship between barosensitivity and respiratory deficiency. Since the respiratory functions of diploids showed non Mendelian inheritance, the respiratory deficiency was indicated to be due to mtDNA mutation. PCR analysis showed that the region of COX1 locus was deleted. COX1 gene encodes the subunit 1 of cytochrome c oxidase. For this reason, barosensitivity is strongly correlated with mitochondrial functions.
NASA Astrophysics Data System (ADS)
Zhang, Haiyan; Feng, Guoqiang; Guo, Yuan; Zhou, Dejian
2013-10-01
We report herein the successful preparation of a compact and functional CdSe-ZnS core-shell quantum dot (QD)-DNA conjugate via highly efficient copper-free ``click chemistry'' (CFCC) between a dihydro-lipoic acid-polyethylene glycol-azide (DHLA-PEG-N3) capped QD and a cyclooctyne modified DNA. This represents an excellent balance between the requirements of high sensitivity, robustness and specificity for the QD-FRET (Förster resonance energy transfer) based sensor as confirmed by a detailed FRET analysis on the QD-DNA conjugate, yielding a relatively short donor-acceptor distance of ~5.8 nm. We show that this CFCC clicked QD-DNA conjugate is not only able to retain the native fluorescence quantum yield (QY) of the parent DHLA-PEG-N3 capped QD, but also well-suited for robust and specific biosensing; it can directly quantitate, at the pM level, both labelled and unlabelled complementary DNA probes with a good SNP (single-nucleotide polymorphism) discrimination ability in complex media, e.g. 10% human serum via target-binding induced FRET changes between the QD donor and the dye acceptor. Furthermore, this sensor has also been successfully exploited for the detection, at the pM level, of a specific protein target (thrombin) via the encoded anti-thrombin aptamer sequence in the QD-DNA conjugate.We report herein the successful preparation of a compact and functional CdSe-ZnS core-shell quantum dot (QD)-DNA conjugate via highly efficient copper-free ``click chemistry'' (CFCC) between a dihydro-lipoic acid-polyethylene glycol-azide (DHLA-PEG-N3) capped QD and a cyclooctyne modified DNA. This represents an excellent balance between the requirements of high sensitivity, robustness and specificity for the QD-FRET (Förster resonance energy transfer) based sensor as confirmed by a detailed FRET analysis on the QD-DNA conjugate, yielding a relatively short donor-acceptor distance of ~5.8 nm. We show that this CFCC clicked QD-DNA conjugate is not only able to retain the native fluorescence quantum yield (QY) of the parent DHLA-PEG-N3 capped QD, but also well-suited for robust and specific biosensing; it can directly quantitate, at the pM level, both labelled and unlabelled complementary DNA probes with a good SNP (single-nucleotide polymorphism) discrimination ability in complex media, e.g. 10% human serum via target-binding induced FRET changes between the QD donor and the dye acceptor. Furthermore, this sensor has also been successfully exploited for the detection, at the pM level, of a specific protein target (thrombin) via the encoded anti-thrombin aptamer sequence in the QD-DNA conjugate. Electronic supplementary information (ESI) available: Details on the synthesis, purification and characterisation of the DHLA-PEG600-N3, cyclooctyne-DNA, and QD-TBA20 conjugates as well as all supporting figures and tables. See DOI: 10.1039/c3nr02897f
Stability and morphological and molecular-genetic identification of algae in buried soils
NASA Astrophysics Data System (ADS)
Temraleeva, A. D.; Moskalenko, S. V.; El'tsov, M. V.; Vagapov, I. M.; Ovchinnikov, A. Yu.; Gugalinskaya, L. A.; Alifanov, V. M.; Pinskii, D. L.
2017-08-01
Living cultural strains of the green algae `Chlorella' mirabilis and Muriella terrestris have been isolated from buried soils, and their identification has been confirmed by morphological and molecular-genetic analysis. It has been shown that the retention of their viability could be related to their small size and the presence of sporopollenin in cell walls. The effect of methods for the reactivation of dormant microbial forms on the growth of algae in paleosols has been estimated. The total DNA content has been determined in buried and recent background soils, and relationship between DNA and the presence and age of burial has been established.
Amaral, Catarina; Pimentel, Catarina; Matos, Rute G; Arraiano, Cecília M; Matzapetakis, Manolis; Rodrigues-Pousada, Claudina
2013-01-01
In Saccharomyces cerevisiae, the transcription factor Yap8 is a key determinant in arsenic stress response. Contrary to Yap1, another basic region-leucine zipper (bZIP) yeast regulator, Yap8 has a very restricted DNA-binding specificity and only orchestrates the expression of ACR2 and ACR3 genes. In the DNA-binding basic region, Yap8 has three distinct amino acids residues, Leu26, Ser29 and Asn31, at sites of highly conserved positions in the other Yap family of transcriptional regulators and Pap1 of Schizosaccharomyces pombe. To evaluate whether these residues are relevant to Yap8 specificity, we first built a homology model of the complex Yap8bZIP-DNA based on Pap1-DNA crystal structure. Several Yap8 mutants were then generated in order to confirm the contribution of the residues predicted to interact with DNA. Using bioinformatics analysis together with in vivo and in vitro approaches, we have identified several conserved residues critical for Yap8-DNA binding. Moreover, our data suggest that Leu26 is required for Yap8 binding to DNA and that this residue together with Asn31, hinder Yap1 response element recognition by Yap8, thus narrowing its DNA-binding specificity. Furthermore our results point to a role of these two amino acids in the stability of the Yap8-DNA complex.
Yang, Guoli; Zhang, Jing; Dong, Wenjing; Liu, Li; Shi, Jue; Wang, Huiming
2016-03-21
The purpose of this work was to fabricate a multilayer laminin γ2 DNA coating on a titanium surface and evaluate its biological properties. A multilayer laminin γ2 DNA coating was fabricated on titanium using a layer-by-layer assembly technique. The rate of coating degradation was evaluated by detecting the amount of cDNA remaining. Surface analysis using X-ray photoelectron spectroscopy, atomic force microscopy, and surface contact angle measurements revealed the multilayer structure to consist of cationic lipid and confirmed that a laminin γ2 DNA layer could be fabricated on titanium via the layer-by-layer assembly process. The transfection efficiency was highest for five layers in the multilayer structure. HEK293 cells cultured on the multilayer films displayed significantly higher adhesion activity than the control group. The expression of laminin γ2 and the co-localization of integrin β4 and plectin were more obvious in HN4 cells cultured on the multilayer laminin γ2 DNA coating, while weak immunoreactivities were observed in the control group. We concluded that the DNA-loaded multilayer provided a surface with good biocompatibility and that the multilayer laminin γ2 DNA coating might be effective in improving cell adhesion and the formation of hemidesmosomes on titanium surfaces.
Yang, Guoli; Zhang, Jing; Dong, Wenjing; Liu, Li; Shi, Jue; Wang, Huiming
2016-01-01
The purpose of this work was to fabricate a multilayer laminin γ2 DNA coating on a titanium surface and evaluate its biological properties. A multilayer laminin γ2 DNA coating was fabricated on titanium using a layer-by-layer assembly technique. The rate of coating degradation was evaluated by detecting the amount of cDNA remaining. Surface analysis using X-ray photoelectron spectroscopy, atomic force microscopy, and surface contact angle measurements revealed the multilayer structure to consist of cationic lipid and confirmed that a laminin γ2 DNA layer could be fabricated on titanium via the layer-by-layer assembly process. The transfection efficiency was highest for five layers in the multilayer structure. HEK293 cells cultured on the multilayer films displayed significantly higher adhesion activity than the control group. The expression of laminin γ2 and the co-localization of integrin β4 and plectin were more obvious in HN4 cells cultured on the multilayer laminin γ2 DNA coating, while weak immunoreactivities were observed in the control group. We concluded that the DNA-loaded multilayer provided a surface with good biocompatibility and that the multilayer laminin γ2 DNA coating might be effective in improving cell adhesion and the formation of hemidesmosomes on titanium surfaces. PMID:26996815
Rapid detection of cancer related DNA nanoparticulate biomarkers and nanoparticles in whole blood
NASA Astrophysics Data System (ADS)
Heller, Michael J.; Krishnan, Raj; Sonnenberg, Avery
2010-08-01
The ability to rapidly detect cell free circulating (cfc) DNA, cfc-RNA, exosomes and other nanoparticulate disease biomarkers as well as drug delivery nanoparticles directly in blood is a major challenge for nanomedicine. We now show that microarray and new high voltage dielectrophoretic (DEP) devices can be used to rapidly isolate and detect cfc-DNA nanoparticulates and nanoparticles directly from whole blood and other high conductance samples (plasma, serum, urine, etc.). At DEP frequencies of 5kHz-10kHz both fluorescent-stained high molecular weight (hmw) DNA, cfc-DNA and fluorescent nanoparticles separate from the blood and become highly concentrated at specific DEP highfield regions over the microelectrodes, while blood cells move to the DEP low field-regions. The blood cells can then be removed by a simple fluidic wash while the DNA and nanoparticles remain highly concentrated. The hmw-DNA could be detected at a level of <260ng/ml and the nanoparticles at <9.5 x 109 particles/ml, detection levels that are well within the range for viable clinical diagnostics and drug nanoparticle monitoring. Disease specific cfc-DNA materials could also be detected directly in blood from patients with Chronic Lymphocytic Leukemia (CLL) and confirmed by PCR genotyping analysis.
NASA Astrophysics Data System (ADS)
Yang, Guoli; Zhang, Jing; Dong, Wenjing; Liu, Li; Shi, Jue; Wang, Huiming
2016-03-01
The purpose of this work was to fabricate a multilayer laminin γ2 DNA coating on a titanium surface and evaluate its biological properties. A multilayer laminin γ2 DNA coating was fabricated on titanium using a layer-by-layer assembly technique. The rate of coating degradation was evaluated by detecting the amount of cDNA remaining. Surface analysis using X-ray photoelectron spectroscopy, atomic force microscopy, and surface contact angle measurements revealed the multilayer structure to consist of cationic lipid and confirmed that a laminin γ2 DNA layer could be fabricated on titanium via the layer-by-layer assembly process. The transfection efficiency was highest for five layers in the multilayer structure. HEK293 cells cultured on the multilayer films displayed significantly higher adhesion activity than the control group. The expression of laminin γ2 and the co-localization of integrin β4 and plectin were more obvious in HN4 cells cultured on the multilayer laminin γ2 DNA coating, while weak immunoreactivities were observed in the control group. We concluded that the DNA-loaded multilayer provided a surface with good biocompatibility and that the multilayer laminin γ2 DNA coating might be effective in improving cell adhesion and the formation of hemidesmosomes on titanium surfaces.
DNA-RNA hybrid formation mediates RNAi-directed heterochromatin formation.
Nakama, Mina; Kawakami, Kei; Kajitani, Takuya; Urano, Takeshi; Murakami, Yota
2012-03-01
Certain noncoding RNAs (ncRNAs) implicated in the regulation of chromatin structure associate with chromatin. During the formation of RNAi-directed heterochromatin in fission yeast, ncRNAs transcribed from heterochromatin are thought to recruit the RNAi machinery to chromatin for the formation of heterochromatin; however, the molecular details of this association are not clear. Here, using RNA immunoprecipitation assay, we showed that the heterochromatic ncRNA was associated with chromatin via the formation of a DNA-RNA hybrid and bound to the RNA-induced transcriptional silencing (RITS) complex. The presence of DNA-RNA hybrid in the cell was also confirmed by immunofluorescence analysis using anti-DNA-RNA hybrid antibody. Over-expression and depletion of RNase H in vivo decreased and increased the amount of DNA-RNA hybrid formed, respectively, and both disturbed heterochromatin. Moreover, DNA-RNA hybrid was formed on, and over-expression of RNase H inhibited the formation of, artificial heterochromatin induced by tethering of RITS to mRNA. These results indicate that heterochromatic ncRNAs are retained on chromatin via the formation of DNA-RNA hybrids and provide a platform for the RNAi-directed heterochromatin assembly and suggest that DNA-RNA hybrid formation plays a role in chromatic ncRNA function. © 2012 The Authors. Journal compilation © 2012 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.
Aging effects on DNA methylation modules in human brain and blood tissue
2012-01-01
Background Several recent studies reported aging effects on DNA methylation levels of individual CpG dinucleotides. But it is not yet known whether aging-related consensus modules, in the form of clusters of correlated CpG markers, can be found that are present in multiple human tissues. Such a module could facilitate the understanding of aging effects on multiple tissues. Results We therefore employed weighted correlation network analysis of 2,442 Illumina DNA methylation arrays from brain and blood tissues, which enabled the identification of an age-related co-methylation module. Module preservation analysis confirmed that this module can also be found in diverse independent data sets. Biological evaluation showed that module membership is associated with Polycomb group target occupancy counts, CpG island status and autosomal chromosome location. Functional enrichment analysis revealed that the aging-related consensus module comprises genes that are involved in nervous system development, neuron differentiation and neurogenesis, and that it contains promoter CpGs of genes known to be down-regulated in early Alzheimer's disease. A comparison with a standard, non-module based meta-analysis revealed that selecting CpGs based on module membership leads to significantly increased gene ontology enrichment, thus demonstrating that studying aging effects via consensus network analysis enhances the biological insights gained. Conclusions Overall, our analysis revealed a robustly defined age-related co-methylation module that is present in multiple human tissues, including blood and brain. We conclude that blood is a promising surrogate for brain tissue when studying the effects of age on DNA methylation profiles. PMID:23034122
Erwinia teleogrylli sp. nov., a Bacterial Isolate Associated with a Chinese Cricket
Liu, Bo; Luo, Jin; Li, Wei; Long, Xiu-Feng; Zhang, Yu-Qin; Zeng, Zhi-Gang; Tian, Yong-Qiang
2016-01-01
A bacterial isolate (SCU-B244T) was obtained in China from crickets (Teleogryllus occipitalis) living in cropland deserted for approximately 10 years. The isolated bacteria were Gram-negative, facultatively anaerobic, oxidase-negative rods. A preliminary analysis of the 16S rRNA gene sequence indicated that the strain belongs to either the genus Erwinia or Pantoea. Analysis of multilocus sequence typing based on concatenated partial atpD, gyrB and infB gene sequences and physiological and biochemical characteristics indicated that the strain belonged to the genus Erwinia, as member of a new species as it was distinct from other known Erwinia species. Further analysis of the 16S rRNA gene showed SCU-B244T to have 94.71% identity to the closest species of that genus, Erwinia oleae (DSM 23398T), which is below the threshold of 97% used to discriminate bacterial species. DNA-DNA hybridization results (5.78±2.52%) between SCU-B244T and Erwinia oleae (DSM 23398T) confirmed that SCU-B244T and Erwinia oleae (DSM 23398T) represent different species combined with average nucleotide identity values which range from 72.42% to 74.41. The DNA G+C content of SCU-B244T was 55.32 mol%, which also differs from that of Erwinia oleae (54.7 to 54.9 mol%). The polyphasic taxonomic approach used here confirmed that the strain belongs to the Erwinia group and represents a novel species. The name Erwinia teleogrylli sp. nov. is proposed for this novel taxon, for which the type strain is SCU-B244T (= CGMCC 1.12772T = DSM 28222T = KCTC 42022T). PMID:26800121
Berry, Tina E; Osterrieder, Sylvia K; Murray, Dáithí C; Coghlan, Megan L; Richardson, Anthony J; Grealy, Alicia K; Stat, Michael; Bejder, Lars; Bunce, Michael
2017-07-01
The analysis of apex predator diet has the ability to deliver valuable insights into ecosystem health, and the potential impacts a predator might have on commercially relevant species. The Australian sea lion ( Neophoca cinerea ) is an endemic apex predator and one of the world's most endangered pinnipeds. Given that prey availability is vital to the survival of top predators, this study set out to understand what dietary information DNA metabarcoding could yield from 36 sea lion scats collected across 1,500 km of its distribution in southwest Western Australia. A combination of PCR assays were designed to target a variety of potential sea lion prey, including mammals, fish, crustaceans, cephalopods, and birds. Over 1.2 million metabarcodes identified six classes from three phyla, together representing over 80 taxa. The results confirm that the Australian sea lion is a wide-ranging opportunistic predator that consumes an array of mainly demersal fauna. Further, the important commercial species Sepioteuthis australis (southern calamari squid) and Panulirus cygnus (western rock lobster) were detected, but were present in <25% of samples. Some of the taxa identified, such as fish, sharks and rays, clarify previous knowledge of sea lion prey, and some, such as eel taxa and two gastropod species, represent new dietary insights. Even with modest sample sizes, a spatial analysis of taxa and operational taxonomic units found within the scat shows significant differences in diet between many of the sample locations and identifies the primary taxa that are driving this variance. This study provides new insights into the diet of this endangered predator and confirms the efficacy of DNA metabarcoding of scat as a noninvasive tool to more broadly define regional biodiversity.
Verma, Chandni; Chaudhary, Anshu; Shanker Singh, Hridaya
2017-09-26
The phylogenetic studies on monogeneans of the genus Thaparocleidus parasitizing W. attu in India was inferred from 18S rDNA gene data. Out of species of Thaparocleidus, one new, T. armillatus sp. n., is described herein which distinguished from its congener species in the shapes and sizes of sclerotized structures and rest of the two species, T. indicus and T. wallagonius are redescribed morphologically as well as validated and confirmed by molecular means also. Besides the above, T. gangus was also included in the molecular analysis as it is recently described on the basis of morphology only. The phylogenetic tree was also reconstructed in order to elucidate the taxonomic status of Thaparocleidus armillatus sp. n., T. indicus, T. wallagonius and T. gangus. This research reports for the first time, the molecular phylogenetic analysis of 18S rDNA gene for four species belonging to the genus Thaparocleidus from W. attu collected off the River Ganga in India. In phylogram, all four species of Thapaocleidus come in a single clade that confirmed their monophyletic status. A very low interspecific variability was observed in T. armillatus sp. n. and T. wallagonius suggesting that these species are highly similar in morphology. Correspondingly, T. indicus and T. gangus also showed low interspecific variability which too signifies their morphological similarities in their sclerotized structures. Our result suggested that all four species taken in the present investigation from India are monophyletic and it is also observed that morphological similarities in the sclerotized structures are well correlated with phylogeny.
Sarmiento-Rubiano, Luz-Adriana; Berger, Bernard; Moine, Déborah; Zúñiga, Manuel; Pérez-Martínez, Gaspar; Yebra, María J
2010-09-17
Comparative genomic hybridization (CGH) constitutes a powerful tool for identification and characterization of bacterial strains. In this study we have applied this technique for the characterization of a number of Lactobacillus strains isolated from the intestinal content of rats fed with a diet supplemented with sorbitol. Phylogenetic analysis based on 16S rRNA gene, recA, pheS, pyrG and tuf sequences identified five bacterial strains isolated from the intestinal content of rats as belonging to the recently described Lactobacillus taiwanensis species. DNA-DNA hybridization experiments confirmed that these five strains are distinct but closely related to Lactobacillus johnsonii and Lactobacillus gasseri. A whole genome DNA microarray designed for the probiotic L. johnsonii strain NCC533 was used for CGH analysis of L. johnsonii ATCC 33200T, L. johnsonii BL261, L. gasseri ATCC 33323T and L. taiwanensis BL263. In these experiments, the fluorescence ratio distributions obtained with L. taiwanensis and L. gasseri showed characteristic inter-species profiles. The percentage of conserved L. johnsonii NCC533 genes was about 83% in the L. johnsonii strains comparisons and decreased to 51% and 47% for L. taiwanensis and L. gasseri, respectively. These results confirmed the separate status of L. taiwanensis from L. johnsonii at the level of species, and also that L. taiwanensis is closer to L. johnsonii than L. gasseri is to L. johnsonii. Conventional taxonomic analyses and microarray-based CGH analysis have been used for the identification and characterization of the newly species L. taiwanensis. The microarray-based CGH technology has been shown as a remarkable tool for the identification and fine discrimination between phylogenetically close species, and additionally provided insight into the adaptation of the strain L. taiwanensis BL263 to its ecological niche.
Aiba, Toshiki; Saito, Toshiyuki; Hayashi, Akiko; Sato, Shinji; Yunokawa, Harunobu; Maruyama, Toru; Fujibuchi, Wataru; Kurita, Hisaka; Tohyama, Chiharu; Ohsako, Seiichiroh
2017-03-09
It has been pointed out that environmental factors or chemicals can cause diseases that are developmental in origin. To detect abnormal epigenetic alterations in DNA methylation, convenient and cost-effective methods are required for such research, in which multiple samples are processed simultaneously. We here present methylated site display (MSD), a unique technique for the preparation of DNA libraries. By combining it with amplified fragment length polymorphism (AFLP) analysis, we developed a new method, MSD-AFLP. Methylated site display libraries consist of only DNAs derived from DNA fragments that are CpG methylated at the 5' end in the original genomic DNA sample. To test the effectiveness of this method, CpG methylation levels in liver, kidney, and hippocampal tissues of mice were compared to examine if MSD-AFLP can detect subtle differences in the levels of tissue-specific differentially methylated CpGs. As a result, many CpG sites suspected to be tissue-specific differentially methylated were detected. Nucleotide sequences adjacent to these methyl-CpG sites were identified and we determined the methylation level by methylation-sensitive restriction endonuclease (MSRE)-PCR analysis to confirm the accuracy of AFLP analysis. The differences of the methylation level among tissues were almost identical among these methods. By MSD-AFLP analysis, we detected many CpGs showing less than 5% statistically significant tissue-specific difference and less than 10% degree of variability. Additionally, MSD-AFLP analysis could be used to identify CpG methylation sites in other organisms including humans. MSD-AFLP analysis can potentially be used to measure slight changes in CpG methylation level. Regarding the remarkable precision, sensitivity, and throughput of MSD-AFLP analysis studies, this method will be advantageous in a variety of epigenetics-based research.
Screening and Characterization of RAPD Markers in Viscerotropic Leishmania Parasites
Mkada–Driss, Imen; Talbi, Chiraz; Guerbouj, Souheila; Driss, Mehdi; Elamine, Elwaleed M.; Cupolillo, Elisa; Mukhtar, Moawia M.; Guizani, Ikram
2014-01-01
Visceral leishmaniasis (VL) is mainly due to the Leishmania donovani complex. VL is endemic in many countries worldwide including East Africa and the Mediterranean region where the epidemiology is complex. Taxonomy of these pathogens is under controversy but there is a correlation between their genetic diversity and geographical origin. With steady increase in genome knowledge, RAPD is still a useful approach to identify and characterize novel DNA markers. Our aim was to identify and characterize polymorphic DNA markers in VL Leishmania parasites in diverse geographic regions using RAPD in order to constitute a pool of PCR targets having the potential to differentiate among the VL parasites. 100 different oligonucleotide decamers having arbitrary DNA sequences were screened for reproducible amplification and a selection of 28 was used to amplify DNA from 12 L. donovani, L. archibaldi and L. infantum strains having diverse origins. A total of 155 bands were amplified of which 60.65% appeared polymorphic. 7 out of 28 primers provided monomorphic patterns. Phenetic analysis allowed clustering the parasites according to their geographical origin. Differentially amplified bands were selected, among them 22 RAPD products were successfully cloned and sequenced. Bioinformatic analysis allowed mapping of the markers and sequences and priming sites analysis. This study was complemented with Southern-blot to confirm assignment of markers to the kDNA. The bioinformatic analysis identified 16 nuclear and 3 minicircle markers. Analysis of these markers highlighted polymorphisms at RAPD priming sites with mainly 5′ end transversions, and presence of inter– and intra– taxonomic complex sequence and microsatellites variations; a bias in transitions over transversions and indels between the different sequences compared is observed, which is however less marked between L. infantum and L. donovani. The study delivers a pool of well-documented polymorphic DNA markers, to develop molecular diagnostics assays to characterize and differentiate VL causing agents. PMID:25313833
NASA Astrophysics Data System (ADS)
Mondal, Apurba Sau; Jana, Mahendra Sekhar; Manna, Chandan Kumar; Naskar, Rahul; Mondal, Tapan Kumar
2018-07-01
A new zinc(II) complex, [Zn(L)](ClO4) with hexadentate N4S2 donor azo-thioether ligand (HL) was synthesized and characterized by several spectroscopic techniques. The structure was confirmed by single crystal X-ray analysis. The interaction of the complex with CT DNA was investigated by UV-vis method and binding constant is found to be 6.6 × 104 M-1. Competitive binding titration with ethidium bromide (EB) by fluorescence titration method reveals that the complex efficiently displaces EB from EB-DNA system and the Stern-Volmer dynamic quenching constant, Ksv is found to be 2.6 × 104 M-1. DFT and TDDFT calculations were carried out to interpret the electronic structure and electronic spectra of the complex.
Suba, Eric J; Pfeifer, John D; Raab, Stephen S
2007-10-01
Patient identification errors in surgical pathology often involve switches of prostate or breast needle core biopsy specimens among patients. We assessed strategies for decreasing the occurrence of these uncommon and yet potentially catastrophic events. Root cause analyses were performed following 3 cases of patient identification error involving prostate needle core biopsy specimens. Patient identification errors in surgical pathology result from slips and lapses of automatic human action that may occur at numerous steps during pre-laboratory, laboratory and post-laboratory work flow processes. Patient identification errors among prostate needle biopsies may be difficult to entirely prevent through the optimization of work flow processes. A DNA time-out, whereby DNA polymorphic microsatellite analysis is used to confirm patient identification before radiation therapy or radical surgery, may eliminate patient identification errors among needle biopsies.
Kirgiz, Irina A; Calloway, Cassandra
2017-04-01
Tape lifting and FTA paper scraping methods were directly compared to traditional double swabbing for collecting touch DNA from car steering wheels (n = 70 cars). Touch DNA was collected from the left or right side of each steering wheel (randomized) using two sterile cotton swabs, while the other side was sampled using water-soluble tape or FTA paper cards. DNA was extracted and quantified in duplicate using qPCR. Quantifiable amounts of DNA were detected for 100% of the samples (n = 140) collected independent of the method. However, the DNA collection yield was dependent on the collection method. A statistically significant difference in DNA yield was observed between FTA scraping and double swabbing methods (p = 0.0051), with FTA paper collecting a two-fold higher amount. Statistical analysis showed no significant difference in DNA yields between the double swabbing and tape lifting techniques (p = 0.21). Based on the DNA concentration required for 1 ng input, 47% of the samples collected using FTA paper would be expected to yield a short tandem repeat (STR) profile compared to 30% and 23% using double swabbing or tape, respectively. Further, 55% and 77% of the samples collected using double swabbing or tape, respectively, did not yield a high enough DNA concentration for the 0.5 ng of DNA input recommended for conventional STR kits and would be expected to result in a partial or no profile compared to 35% of the samples collected using FTA paper. STR analysis was conducted for a subset of the higher concentrated samples to confirm that the DNA collected from the steering wheel was from the driver. 32 samples were selected with DNA amounts of at least 1 ng total DNA (100 pg/μl when concentrated if required). A mixed STR profile was observed for 26 samples (88%) and the last driver was the major DNA contributor for 29 samples (94%). For one sample, the last driver was the minor DNA contributor. A full STR profile of the last driver was observed for 21 samples (69%) and a partial profile was observed for nine samples (25%); STR analysis failed for two samples collected using tape (6%). In conclusion, we show that the FTA paper scraping method has the potential to collect higher DNA yields from touch DNA evidence deposited on non-porous surfaces often encountered in criminal cases compared to conventional methods. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
NASA Astrophysics Data System (ADS)
Saeidifar, Maryam; Mirzaei, Hamidreza; Ahmadi Nasab, Navid; Mansouri-Torshizi, Hassan
2017-11-01
The binding ability between a new water-soluble palladium(II) complex [Pd(bpy)(bez-dtc)]Cl (where bpy is 2,2‧-bipyridine and bez-dtc is benzyl dithiocarbamate), as an antitumor agent, and calf thymus DNA was evaluated using various physicochemical methods, such as UV-Vis absorption, Competitive fluorescence studies, viscosity measurement, zeta potential and circular dichroism (CD) spectroscopy. The Pd(II) complex was synthesized and characterized using elemental analysis, molar conductivity measurements, FT-IR, 1H NMR, 13C NMR and electronic spectra studies. The anticancer activity against HeLa cell lines demonstrated lower cytotoxicity than cisplatin. The binding constants and the thermodynamic parameters were determined at different temperatures (300 K, 310 K and 320 K) and shown that the complex can bind to DNA via electrostatic forces. Furthermore, this result was confirmed by the viscosity and zeta potential measurements. The CD spectral results demonstrated that the binding of Pd(II) complex to DNA induced conformational changes in DNA. We hope that these results will provide a basis for further studies and practical clinical use of anticancer drugs.
☆DNA assembly technique simplifies the construction of infectious clone of fowl adenovirus.
Zou, Xiao-Hui; Bi, Zhi-Xiang; Guo, Xiao-Juan; Zhang, Zun; Zhao, Yang; Wang, Min; Zhu, Ya-Lu; Jie, Hong-Ying; Yu, Yang; Hung, Tao; Lu, Zhuo-Zhuang
2018-07-01
Plasmid bearing adenovirus genome is generally constructed with the method of homologous recombination in E. coli BJ5183 strain. Here, we utilized Gibson gene assembly technique to generate infectious clone of fowl adenovirus 4 (FAdV-4). Primers flanked with partial inverted terminal repeat (ITR) sequence of FAdV-4 were synthesized to amplify a plasmid backbone containing kanamycin-resistant gene and pBR322 origin (KAN-ORI). DNA assembly was carried out by combining the KAN-ORI fragment, virus genomic DNA and DNA assembly master mix. E. coli competent cells were transformed with the assembled product, and plasmids (pKFAV4) were extracted and confirmed to contain viral genome by restriction analysis and sequencing. Virus was successfully rescued from linear pKFAV4-transfected chicken LMH cells. This approach was further verified in cloning of human adenovirus 5 genome. Our results indicated that DNA assembly technique simplified the construction of infectious clone of adenovirus, suggesting its possible application in virus traditional or reverse genetics. Copyright © 2018 Elsevier B.V. All rights reserved.
Two Novel Determinants of Etoposide Resistance in Small Cell Lung Cancer
Lawson, Malcolm H; Cummings, Natalie M; Rassl, Doris M; Russell, Roslin; Brenton, James D; Rintoul, Robert C; Murphy, Gillian
2011-01-01
Patient survival in small cell lung cancer (SCLC) is limited by acquired chemoresistance. Here we report the use of a biologically relevant model to identify novel candidate genes mediating in vivo acquired resistance to etoposide. Candidate genes derived from a cDNA microarray analysis were cloned and transiently overexpressed to evaluate their potential functional roles. We identified two promising genes in the DNA repair enzyme DNA Polymerase β and in the neuroendocrine transcription factor NKX2.2. Specific inhibition of DNA Polymerase β reduced the numbers of cells surviving treatment with etoposide and increased the amount of DNA damage in cells. Conversely, stable overexpression of NKX2.2 increased cell survival in response to etoposide in SCLC cell lines. Consistent with these findings, we found that an absence of nuclear staining for NKX2.2 in SCLC primary tumors was an independent predictor of improved outcomes in chemotherapy-treated patients. Taken together, our findings justify future prospective studies to confirm the roles of these molecules in mediating chemotherapy resistance in SCLC. PMID:21642373
Koczor, Christopher A.; Torres, Rebecca A.; Fields, Earl J.; Boyd, Amy; He, Stanley; Patel, Nilamkumar; Lee, Eva K.; Samarel, Allen M.
2013-01-01
This study addresses how depletion of human cardiac left ventricle (LV) mitochondrial DNA (mtDNA) and epigenetic nuclear DNA methylation promote cardiac dysfunction in human dilated cardiomyopathy (DCM) through regulation of pyrimidine nucleotide kinases. Samples of DCM LV and right ventricle (n = 18) were obtained fresh at heart transplant surgery. Parallel samples from nonfailing (NF) controls (n = 12) were from donor hearts found unsuitable for clinical use. We analyzed abundance of mtDNA and nuclear DNA (nDNA) using qPCR. LV mtDNA was depleted in DCM (50%, P < 0.05 each) compared with NF. No detectable change in RV mtDNA abundance occurred. DNA methylation and gene expression were determined using microarray analysis (GEO accession number: GSE43435). Fifty-seven gene promoters exhibited DNA hypermethylation or hypomethylation in DCM LVs. Among those, cytosolic thymidine kinase 1 (TK1) was hypermethylated. Expression arrays revealed decreased abundance of the TK1 mRNA transcript with no change in transcripts for other relevant thymidine metabolism enzymes. Quantitative immunoblots confirmed decreased TK1 polypeptide steady state abundance. TK1 activity remained unchanged in DCM samples while mitochondrial thymidine kinase (TK2) activity was significantly reduced. Compensatory TK activity was found in cardiac myocytes in the DCM LV. Diminished TK2 activity is mechanistically important to reduced mtDNA abundance and identified in DCM LV samples here. Epigenetic and genetic changes result in changes in mtDNA and in nucleotide substrates for mtDNA replication and underpin energy starvation in DCM. PMID:23695887
Arora, Sumit; Omar, Yousef; Ijaz, Zohaib Mohammad; AL-Ghadhban, Ahmed; Deshmukh, Sachin K.; Carter, James E.; Singh, Ajay P.; Singh, Seema
2016-01-01
Sunscreen formulations containing UVB filters, such as Zinc-oxide (ZnO) and titanium-dioxide (TiO2) nanoparticles (NPs) have been developed to limit the exposure of human skin to UV-radiations. Unfortunately, these UVB protective agents have failed in controlling the skin cancer incidence. We recently demonstrated that silver nanoparticles (Ag-NPs) could serve as novel protective agents against UVB-radiations. Here our goal was to perform comparative analysis of direct and indirect UVB-protection efficacy of ZnO-, TiO2- and Ag-NPs. Sun-protection-factor calculated based on their UVB-reflective/absorption abilities was the highest for TiO2-NPs followed by Ag- and ZnO-NPs. This was further confirmed by studying indirect protection of UVB radiation-induced death of HaCaT cells. However, only Ag-NPs were active in protecting HaCaT cells against direct UVB-induced DNA-damage by repairing bulky-DNA lesions through nucleotide-excision-repair mechanism. Moreover, Ag-NPs were also effective in protecting HaCaT cells from UVB-induced oxidative DNA damage by enhancing SOD/CAT/GPx activity. In contrast, ZnO- and TiO2-NPs not only failed in providing any direct protection from DNA-damage, but rather enhanced oxidative DNA-damage by increasing ROS production. Together, these findings raise concerns about safety of ZnO- and TiO2-NPs and establish superior protective efficacy of Ag-NPs. PMID:27693632
The timing of UV mutagenesis in yeast: a pedigree analysis of induced recessive mutation.
James, A P; Kilbey, B J
1977-10-01
The mechanism of UV-induced mutation in eukaryotes was studied in individual yeast cells by a procedure that combined pedigree analysis and tetrad analysis. The technique involved the induction of recessive lethals and semilethals in G1 diploid cells. Induced frequencies were 25 and 61 percent at survival levels of 90 and 77 percent, respectively. No evidence of gross chromosome aberrations was detected. Recessive mutations that affect only one strand or that affect both strands of the DNA molecule are induced much at random among a population of cells, and both types can occur within the same cell. However, the data confirm that two-strand mutations are in the majority after a low level of irradiation. The simplest explanation involves a mechanism whereby most mutations are fixed in both strands prior to the first round of post-irradiation DNA replication. The recessive mutational consequences of irradiation are exhausted at the conclusion of the first post-irradiation cell division, although dominant-lethal sectoring continues at a high level through the second post-irradiation division. It is concluded that pyrimidine dimers that persist to the second round of DNA replication are rare or ineffective.
Identification of mammalian proteins cross-linked to DNA by ionizing radiation.
Barker, Sharon; Weinfeld, Michael; Zheng, Jing; Li, Liang; Murray, David
2005-10-07
Ionizing radiation (IR) is an important environmental risk factor for various cancers and also a major therapeutic agent for cancer treatment. Exposure of mammalian cells to IR induces several types of damage to DNA, including double- and single-strand breaks, base and sugar damage, as well as DNA-DNA and DNA-protein cross-links (DPCs). Little is known regarding the biological consequences of DPCs. Identifying the proteins that become cross-linked to DNA by IR would be an important first step in this regard. We have therefore undertaken a proteomics study to isolate and identify proteins involved in IR-induced DPCs. DPCs were induced in AA8 Chinese hamster ovary or GM00637 human fibroblast cells using 0-4 gray of gamma-rays under either aerated or hypoxic conditions. DPCs were isolated using a recently developed method, and proteins were identified by mass spectrometry. We identified 29 proteins as being cross-linked to DNA by IR under aerated and/or hypoxic conditions. The identified proteins include structural proteins, actin-associated proteins, transcription regulators, RNA-splicing components, stress-response proteins, cell cycle regulatory proteins, and GDP/GTP-binding proteins. The involvement of several proteins (actin, histone H2B, and others) in DPCs was confirmed by using Western blot analysis. The dose responsiveness of DPC induction was examined by staining one-dimensional SDS-polyacrylamide gels with SYPRO Tangerine followed by analysis using fluorescence imaging. Quantitation of the fluorescence signal indicated no significant difference in total yields of IR-induced DPCs generated under aerated or hypoxic conditions, although differences were observed for several individual protein bands.
No Genetic Influence for Childhood Behavior Problems From DNA Analysis
Trzaskowski, Maciej; Dale, Philip S.; Plomin, Robert
2013-01-01
Objective Twin studies of behavior problems in childhood point to substantial genetic influence. It is now possible to estimate genetic influence using DNA alone in samples of unrelated individuals, not relying on family-based designs such as twins. A linear mixed model, which incorporates DNA microarray data, has confirmed twin results by showing substantial genetic influence for diverse traits in adults. Here we present direct comparisons between twin and DNA heritability estimates for childhood behavior problems as rated by parents, teachers, and children themselves. Method Behavior problem data from 2,500 UK-representative 12-year-old twin pairs were used in twin analyses; DNA analyses were based on 1 member of the twin pair with genotype data for 1.7 million DNA markers. Diverse behavior problems were assessed, including autistic, depressive, and hyperactive symptoms. Genetic influence from DNA was estimated using genome-wide complex trait analysis (GCTA), and the twin estimates of heritability were based on standard twin model fitting. Results Behavior problems in childhood—whether rated by parents, teachers, or children themselves—show no significant genetic influence using GCTA, even though twin study estimates of heritability are substantial in the same sample, and even though both GCTA and twin study estimates of genetic influence are substantial for cognitive and anthropometric traits. Conclusions We suggest that this new type of “missing heritability,” that is, the gap between GCTA and twin study estimates for behavior problems in childhood, is due to nonadditive genetic influence, which will make it more difficult to identify genes responsible for heritability. PMID:24074471
Sundararajan, Rangapriya; Freudenreich, Catherine H.
2011-01-01
Repetitive DNA elements are mutational hotspots in the genome, and their instability is linked to various neurological disorders and cancers. Although it is known that expanded trinucleotide repeats can interfere with DNA replication and repair, the cellular response to these events has not been characterized. Here, we demonstrate that an expanded CAG/CTG repeat elicits a DNA damage checkpoint response in budding yeast. Using microcolony and single cell pedigree analysis, we found that cells carrying an expanded CAG repeat frequently experience protracted cell division cycles, persistent arrests, and morphological abnormalities. These phenotypes were further exacerbated by mutations in DSB repair pathways, including homologous recombination and end joining, implicating a DNA damage response. Cell cycle analysis confirmed repeat-dependent S phase delays and G2/M arrests. Furthermore, we demonstrate that the above phenotypes are due to the activation of the DNA damage checkpoint, since expanded CAG repeats induced the phosphorylation of the Rad53 checkpoint kinase in a rad52Δ recombination deficient mutant. Interestingly, cells mutated for the MRX complex (Mre11-Rad50-Xrs2), a central component of DSB repair which is required to repair breaks at CAG repeats, failed to elicit repeat-specific arrests, morphological defects, or Rad53 phosphorylation. We therefore conclude that damage at expanded CAG/CTG repeats is likely sensed by the MRX complex, leading to a checkpoint response. Finally, we show that repeat expansions preferentially occur in cells experiencing growth delays. Activation of DNA damage checkpoints in repeat-containing cells could contribute to the tissue degeneration observed in trinucleotide repeat expansion diseases. PMID:21437275
NASA Astrophysics Data System (ADS)
Al-Otaibi, Jamelah S.; EL Gogary, Tarek M.
2017-02-01
Anthraquinones are well-known anticancer drugs. Anthraquinones anticancer drugs carry out their cytotoxic activities through their interaction with DNA, and inhibition of topoisomerase II activity. Anthraquinones (AQ5 and AQ5H) were synthesized and studied with 1,5-DAAQ by computational and experimental tools. The purpose of this study is to shade more light on mechanism of interaction between anthraquinone DNA affinic agents and different types of DNA. This study will lead to gain of information useful for drug design and development. Molecular structures were optimized using DFT B3LYP/6-31 + G(d). Depending on intramolecular hydrogen bonding interactions four conformers of AQ5 were detected within the range of about 42 kcal/mol. Molecular reactivity of the anthraquinone compounds was explored using global and condensed descriptors (electrophilicity and Fukui functions). NMR and UV-VIS electronic absorption spectra of anthraquinones/DNA were investigated at the physiological pH. The interaction of the anthraquinones (AQ5 and AQ5H) were studied with different DNA namely, calf thymus DNA, (Poly[dA].Poly[dT]) and (Poly[dG].Poly[dC]). UV-VIS electronic absorption spectral data were employed to measure the affinity constants of drug/DNA binding using Scatchard analysis. NMR study confirms qualitatively the drug/DNA interaction in terms of peak shift and broadening.
[Analysis of free foetal DNA in maternal plasma using STR loci].
Vodicka, R; Vrtel, R; Procházka, M; Santavá, A; Dusek, L; Vrbická, D; Singh, R; Krejciríková, E; Schneiderová, E; Santavý, J
2006-01-01
Problems of maternal and foetal genotype differentiation of maternal plasma in pregnant women are solved generally by real-time systems. In this case the specific probes are used to distinguish particular genotype. Mostly gonosomal sequences are utilised to recognise the male foetus. This work describes possibilities in free foetal DNA detection and quantification by STR. Artificial genotype mixtures ranging from 0,2 % to 100 % to simulate maternal and paternal genotypes and 27 DNA samples from pregnant women in different stage of pregnancy were used for DNA quantification and detection. Foetal genotype was confirmed by biological father genotyping. The detection was performed in STR from 21st chromosome Down syndrome (DS) responsible region by innovated (I) QF PCR which allows to reveal and quantify even very rare DNA mosaics. The STR quantification was assessed in artificial mixtures of genotypes and discriminability of particular genotypes was on the level of few percent. Foetal DNA was detected in 74 % of tested samples. The IQF PCR application in quantification and differentiation between maternal and foetal genotypes by STR loci could have importance in non-invasive prenatal diagnostics as another possible marker for DS risk assessment.
Investigation of paternity establishing without the putative father using hypervariable DNA probes.
Yokoi, T; Odaira, T; Nata, M; Sagisaka, K
1990-09-01
Seven kinds of DNA probes which recognize hypervariable loci were applied for paternity test. The putative father was decreased and unavailable for the test. The two legitimate children and their mother (the deceased's wife) and the four illegitimate children and their mother (the deceased's kept mistress) were available for analysis. Paternity index of four illegitimate child was investigated. Allelic frequencies and their confidence intervals among unrelated Japanese individuals were previously reported from our laboratory, and co-dominant segregation of the polymorphism was confirmed in family studies. Cumulative paternity indices of four illegitimate children from 16 kinds of standard blood group markers were 165, 42, 0.09, and 36, respectively. On the other hand, cumulative paternity indices from 7 kinds of DNA probes are 2,363, 4,685, 57,678, and 54,994, respectively, which are 14, 113, 640, 864, and 1,509 times higher than that from standard blood group markers. The DNA analyses gave nearly conclusive evidence that the putative father was the biological father of the children. Especially, the paternity relation of the third illegitimate child could not be established without the DNA analyses. Accordingly, DNA polymorphism is considered to be informative enough for paternity test.
Characterization of Circular ssDNA Viruses within the Echinoderm Nanobiome
NASA Astrophysics Data System (ADS)
Jackson, E.; Bistolas, K. S.; Hewson, I.
2016-02-01
Viral metagenomics has revealed a great diversity and presence of circular single-stranded(ss) DNA viruses most similar to the viral family Circoviridae in various environments both ambient and host. These viruses are an emerging paradigm in viral discovery amongst aquatic invertebrates mainly from the sub-phlya Crustacea and to a lesser extent the phylum Echinodermata. This parasite-host relationship is furthered here with the discovery of circo-like viruses extracted from the tissue of members from the family Holothuroidea (sea cucumbers). Verification and presence of these viruses within the tissue of the host was confirmed through rigorous genome architecture screening and PCR amplification of the rep gene from unamplified viral DNA extracts. Phylogenetic analysis of the rep gene reveals high similarity to circular ssDNA viruses from environmental metagenomic surveys of marine habitats. The significance of these findings is changing the perception and understanding of circular ssDNA viruses by broadening the known host range and blurring certain defining characteristics established by their pathogenic counterparts. Aside from discover and characterization, the potential ecological impacts of ssDNA viruses upon their host remains relatively unknown and further investigations should aim to determine the pathology, route of infection, and ecological implications of viral infection.
Pang, Huili; Kitahara, Maki; Tan, Zhongfang; Wang, Yanping; Qin, Guangyong; Ohkuma, Moriya; Cai, Yimin
2012-10-01
Characterization and identification of strain CW 1 ( = JCM 17161) isolated from corn silage were performed. Strain CW 1 was a Gram-positive, catalase-negative and homofermentative rod that produced the DL-form of lactic acid. This strain exhibited more than 99.6% 16S rRNA gene sequence similarity and greater than 82% DNA-DNA reassociation with type strains of Lactobacillus kimchii, L. bobalius and L. paralimentarius. To clarify the taxonomic positions of these type strains, phenotypic characterization, 16S rRNA gene sequencing, ribotyping and DNA-DNA relatedness were examined. The three type strains displayed different L-arabinose, lactose, melibiose, melezitose, raffinose and N-acetyl-β-glucosaminidase fermentation patterns. Phylogenetic analysis showed that L. paralimentarius is a closer neighbour of L. kimchii and L. bobalius, sharing 99.5-99.9% 16S rRNA gene sequence similarity, which was confirmed by the high DNA-DNA relatedness (≥82%) between L. paralimentarius JCM 10415(T), L. bobalius JCM 16180(T) and L. kimchii JCM 10707(T). Therefore, it is proposed that L. kimchii and L. bobalius should be reclassified as later synonyms of L. paralimentarius.
Surveying Europe's Only Cave-Dwelling Chordate Species (Proteus anguinus) Using Environmental DNA.
Vörös, Judit; Márton, Orsolya; Schmidt, Benedikt R; Gál, Júlia Tünde; Jelić, Dušan
2017-01-01
In surveillance of subterranean fauna, especially in the case of rare or elusive aquatic species, traditional techniques used for epigean species are often not feasible. We developed a non-invasive survey method based on environmental DNA (eDNA) to detect the presence of the red-listed cave-dwelling amphibian, Proteus anguinus, in the caves of the Dinaric Karst. We tested the method in fifteen caves in Croatia, from which the species was previously recorded or expected to occur. We successfully confirmed the presence of P. anguinus from ten caves and detected the species for the first time in five others. Using a hierarchical occupancy model we compared the availability and detection probability of eDNA of two water sampling methods, filtration and precipitation. The statistical analysis showed that both availability and detection probability depended on the method and estimates for both probabilities were higher using filter samples than for precipitation samples. Combining reliable field and laboratory methods with robust statistical modeling will give the best estimates of species occurrence.
Yum, Soo-Young; Lee, Song-Jeon; Kim, Hyun-Min; Choi, Woo-Jae; Park, Ji-Hyun; Lee, Won-Wu; Kim, Hee-Soo; Kim, Hyeong-Jong; Bae, Seong-Hun; Lee, Je-Hyeong; Moon, Joo-Yeong; Lee, Ji-Hyun; Lee, Choong-Il; Son, Bong-Jun; Song, Sang-Hoon; Ji, Su-Min; Kim, Seong-Jin; Jang, Goo
2016-01-01
Here, we efficiently generated transgenic cattle using two transposon systems (Sleeping Beauty and Piggybac) and their genomes were analyzed by next-generation sequencing (NGS). Blastocysts derived from microinjection of DNA transposons were selected and transferred into recipient cows. Nine transgenic cattle have been generated and grown-up to date without any health issues except two. Some of them expressed strong fluorescence and the transgene in the oocytes from a superovulating one were detected by PCR and sequencing. To investigate genomic variants by the transgene transposition, whole genomic DNA were analyzed by NGS. We found that preferred transposable integration (TA or TTAA) was identified in their genome. Even though multi-copies (i.e. fifteen) were confirmed, there was no significant difference in genome instabilities. In conclusion, we demonstrated that transgenic cattle using the DNA transposon system could be efficiently generated, and all those animals could be a valuable resource for agriculture and veterinary science. PMID:27324781
Universal DNA-based methods for assessing the diet of grazing livestock and wildlife from feces.
Pegard, Anthony; Miquel, Christian; Valentini, Alice; Coissac, Eric; Bouvier, Frédéric; François, Dominique; Taberlet, Pierre; Engel, Erwan; Pompanon, François
2009-07-08
Because of the demand for controlling livestock diets, two methods that characterize the DNA of plants present in feces were developed. After DNA extraction from fecal samples, a short fragment of the chloroplastic trnL intron was amplified by PCR using a universal primer pair for plants. The first method generates a signature that is the electrophoretic migration pattern of the PCR product. The second method consists of sequencing several hundred DNA fragments from the PCR product through pyrosequencing. These methods were validated with a blind analysis of feces from concentrate- and pasture-fed lambs. The signature method allowed differentiation of the two diets and confirmed the presence of concentrate in one of them. The pyrosequencing method allowed the identification of up to 25 taxa in a diet. These methods are complementary to the chemical methods already used. They could be applied to the control of diets and the study of food preferences.
Boulanouar, Omar; Fromm, Michel; Bass, Andrew D.; Cloutier, Pierre; Sanche, Léon
2013-01-01
It was recently shown that the affinity of doubly charged, 1–3 diaminopropane (Dap2+) for DNA permits the growth on highly ordered pyrolitic graphite (HOPG) substrates, of plasmid DNA films, of known uniform thickness [O. Boulanouar, A. Khatyr, G. Herlem, F. Palmino, L. Sanche, and M. Fromm, J. Phys. Chem. C 115, 21291–21298 (2011)]. Post-irradiation analysis by electrophoresis of such targets confirms that electron impact at 10 eV produces a maximum in the yield of single strand breaks that can be associated with the formation of a DNA− transient anion. Using a well-adapted deterministic survival model for the variation of electron damage with fluence and film thickness, we have determined an absolute cross section for strand-break damage by 10 eV electrons and inelastic scattering attenuation length in DNA-Dap complex films. PMID:23927289
Structure of human Cdc45 and implications for CMG helicase function
Simon, Aline C.; Sannino, Vincenzo; Costanzo, Vincenzo; Pellegrini, Luca
2016-01-01
Cell division cycle protein 45 (Cdc45) is required for DNA synthesis during genome duplication, as a component of the Cdc45-MCM-GINS (CMG) helicase. Despite its essential biological function, its biochemical role in DNA replication has remained elusive. Here we report the 2.1-Å crystal structure of human Cdc45, which confirms its evolutionary link with the bacterial RecJ nuclease and reveals several unexpected features that underpin its function in eukaryotic DNA replication. These include a long-range interaction between N- and C-terminal DHH domains, blocking access to the DNA-binding groove of its RecJ-like fold, and a helical insertion in its N-terminal DHH domain, which appears poised for replisome interactions. In combination with available electron microscopy data, we validate by mutational analysis the mechanism of Cdc45 association with the MCM ring and GINS co-activator, critical for CMG assembly. These findings provide an indispensable molecular basis to rationalize the essential role of Cdc45 in genomic duplication. PMID:27189187
Weissella fabaria sp. nov., from a Ghanaian cocoa fermentation.
De Bruyne, Katrien; Camu, Nicholas; De Vuyst, Luc; Vandamme, Peter
2010-09-01
Two lactic acid bacteria, strains 257(T) and 252, were isolated from traditional heap fermentations of Ghanaian cocoa beans. 16S rRNA gene sequence analysis of these strains allocated them to the genus Weissella, showing 99.5 % 16S rRNA gene sequence similarity towards Weissella ghanensis LMG 24286(T). Whole-cell protein electrophoresis, fluorescent amplified fragment length polymorphism fingerprinting of whole genomes and biochemical tests confirmed their unique taxonomic position. DNA-DNA hybridization experiments towards their nearest phylogenetic neighbour demonstrated that the two strains represent a novel species, for which we propose the name Weissella fabaria sp. nov., with strain 257(T) (=LMG 24289(T) =DSM 21416(T)) as the type strain. Additional sequence analysis using pheS gene sequences proved useful for identification of all Weissella-Leuconostoc-Oenococcus species and for the recognition of the novel species.
Kuevda, E V; Gubareva, E A; Gumenyuk, I S; Sotnichenko, A S; Gilevich, I V; Nakokhov, R Z; Rusinova, T V; Yudina, T G; Red'ko, A N; Alekseenko, S N
2017-03-01
We modified the protocol of obtaining of biological scaffolds of rat lungs based on dynamic recording of specific resistivity of working detergent solution (conductometry) during perfusion decellularization. Termination of sodium deoxycholate exposure after attaining ionic equilibrium plateau did not impair the quality of decellularization and preserved structural matrix components, which was confirmed by morphological analysis and quantitative assay of residual DNA.
High resolution DNA melting analysis: an application for prenatal control of alpha-thalassemia.
Sirichotiyakul, Supatra; Wanapirak, Chanane; Saetung, Rattika; Sanguansermsri, Torpong
2010-04-01
To report the use of real-time gap-PCR using SYTO9 with high-resolution melting analysis (HRMA) in prenatal diagnosis of alpha-thalassemia 1. Real-time gap-PCR using SYTO9 with HRMA was performed in 33 DNA samples from chorionic villi sampling (8 normal, 16 heterozygous, and 9 homozygous) to determine the alpha-thalassemia 1 gene [normal and Southeast Asia (-SEA) allele]. The dissociation curve analysis in normal and - SEA allele gave a peak of T(m) at 91.80 +/- 0.14 degrees C and 88.67 +/- 0.08 degrees C, respectively. Normal genotype and homozygous alpha-thalassemia 1 showed a single peak of T(m) that corresponded to their alleles. The heterozygotes gave both peaks with higher normal peak and smaller - SEA peak. Thirty one samples showed consistent results with the conventional gap-PCR. Two samples with ambiguous results were confirmed to be maternal DNA contamination on real-time quantitative PCR and microsatellite assay. HRMA from both samples showed similar pattern to that of heterozygotes. However, they showed much smaller normal peak compared with the - SEA peak, which is in contrast to those of heterozygotes and can readily be distinguished. HRMA with SYTO9 is feasible for prenatal diagnosis of alpha-thalassemia. It had potential advantage of prompt detection maternal DNA contamination. Copyright (c) 2010 John Wiley & Sons, Ltd.
Li, Kan-Chien; Ding, Shih-Torng; Lin, En-Chung; Wang, Lon (Alex); Lu, Yen-Wen
2014-01-01
A continuous-flow microchip with a temperature gradient in microchannels was utilized to demonstrate spatial melting analysis on microbeads for clinical Single Nucleotide Polymorphisms (SNPs) genotyping on animal genomic DNA. The chip had embedded heaters and thermometers, which created a rapid and yet stable temperature gradient between 60 °C and 85 °C in a short distance as the detection region. The microbeads, which served as mobile supports carrying the target DNA and fluorescent dye, were transported across the temperature gradient. As the surrounding temperature increased, the fluorescence signals of the microbeads decayed with this relationship being acquired as the melting curve. Fast DNA denaturation, as a result of the improved heat transfer and thermal stability due to scaling, was also confirmed. Further, each individual microbead could potentially bear different sequences and pass through the detection region, one by one, for a series of melting analysis, with multiplex, high-throughput capability being possible. A prototype was tested with target DNA samples in different genotypes (i.e., wild and mutant types) with a SNP location from Landrace sows. The melting temperatures were obtained and compared to the ones using a traditional tube-based approach. The results showed similar levels of SNP discrimination, validating our proposed technique for scanning homozygotes and heterozygotes to distinguish single base changes for disease research, drug development, medical diagnostics, agriculture, and animal production. PMID:25553186
Karthi, Natesan; Karthiga, Arumugasamy; Kalaiyarasu, Thangaraj; Stalin, Antony; Manju, Vaiyapuri; Singh, Sanjeev Kumar; Cyril, Ravi; Lee, Sang-Myeong
2017-10-01
Pelargonidin is an anthocyanidin isolated from plant resources. It shows strong cytotoxicity toward various cancer cell lines, even though the carcinogenesis-modulating pathway of pelargonidin is not yet known. One of our previous reports showed that pelargonidin arrests the cell cycle and induces apoptosis in HT29 cells. Flowcytometry and immunoblot analysis confirmed that pelargonidin specifically inhibits the activation of CDK1 and blocks the G2-M transition of the cell cycle. In addition, DNA fragmentation was observed along with induction of cytochrome c release-mediated apoptosis. Hence, the aim of the present study was to investigate the molecular mechanism of pelargonidin's action on cell cycle regulators CDK1, CDK4, and CDK6 as well as the substrate-binding domain of DNMT1 and DNMT3A, which regulate the epigenetic signals related to DNA methylation. The results of docking analysis, binding free energy calculation, and molecular dynamics simulation correlated with the experimental results, and pelargonidin showed a specific interaction with CDK1. In this context, pelargonidin may also inhibit the recognition of DNA and catalytic binding by DNMT1 and DNMT3A. The HOMO-LUMO analysis mapped the functional groups of pelargonidin. Prediction of pharmacological descriptors suggested that pelargonidin can serve as a multitarget inhibitor for cancer treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bannwarth, Sylvie; Procaccio, Vincent; Paquis-Flucklinger, Veronique
2005-06-01
Molecular analysis of mitochondrial DNA (mtDNA) is a critical step in diagnosis and genetic counseling of respiratory chain defects. No fast method is currently available for the identification of unknown mtDNA point mutations. We have developed a new strategy based on complete mtDNA PCR amplification followed by digestion with a mismatch-specific DNA endonuclease, Surveyor Nuclease. This enzyme, a member of the CEL nuclease family of plant DNA endonucleases, cleaves double-strand DNA at any mismatch site including base substitutions and small insertions/deletions. After digestion, cleavage products are separated and analyzed by agarose gel electrophoresis. The size of the digestion products indicates the location of the mutation, which is then confirmed and characterized by sequencing. Although this method allows the analysis of 2 kb mtDNA amplicons and the detection of multiple mutations within the same fragment, it does not lead to the identification of homoplasmic base substitutions. Homoplasmic pathogenic mutations have been described. Nevertheless, most homoplasmic base substitutions are neutral polymorphisms while deleterious mutations are typically heteroplasmic. Here, we report that this method can be used to detect mtDNA mutations such as m.3243A>G tRNA(Leu) and m.14709T>C tRNA(Glu) even when they are present at levels as low as 3% in DNA samples derived from patients with respiratory chain defects. Then, we tested five patients suffering from a mitochondrial respiratory chain defect and we identified a variant (m.16189T>C) in two of them, which was previously associated with susceptibility to diabetes and cardiomyopathy. In conclusion, this method can be effectively used to rapidly and completely screen the entire human mitochondrial genome for heteroplasmic mutations and in this context represents an important advance for the diagnosis of mitochondrial diseases.
Fonteneau, M; Filliol, D; Anglard, P; Befort, K; Romieu, P; Zwiller, J
2017-03-01
DNA methylation is a major epigenetic process which regulates the accessibility of genes to the transcriptional machinery. In the present study, we investigated whether modifying the global DNA methylation pattern in the brain would alter cocaine intake by rats, using the cocaine self-administration test. The data indicate that treatment of rats with the DNA methyltransferase inhibitors 5-aza-2'-deoxycytidine (dAZA) and zebularine enhanced the reinforcing properties of cocaine. To obtain some insights about the underlying neurobiological mechanisms, a genome-wide methylation analysis was undertaken in the prefrontal cortex of rats self-administering cocaine and treated with or without dAZA. The study identified nearly 189 000 differentially methylated regions (DMRs), about half of them were located inside gene bodies, while only 9% of DMRs were found in the promoter regions of genes. About 99% of methylation changes occurred outside CpG islands. Gene expression studies confirmed the inverse correlation usually observed between increased methylation and transcriptional activation when methylation occurs in the gene promoter. This inverse correlation was not observed when methylation took place inside gene bodies. Using the literature-based Ingenuity Pathway Analysis, we explored how the differentially methylated genes were related. The analysis showed that increase in cocaine intake by rats in response to DNA methyltransferase inhibitors underlies plasticity mechanisms which mainly concern axonal growth and synaptogenesis as well as spine remodeling. Together with the Akt/PI3K pathway, the Rho-GTPase family was found to be involved in the plasticity underlying the effect of dAZA on the observed behavioral changes. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Chelomina, Galina N; Rozhkovan, Konstantin V; Voronova, Anastasia N; Burundukova, Olga L; Muzarok, Tamara I; Zhuravlev, Yuri N
2016-04-01
Wild ginseng, Panax ginseng Meyer, is an endangered species of medicinal plants. In the present study, we analyzed variations within the ribosomal DNA (rDNA) cluster to gain insight into the genetic diversity of the Oriental ginseng, P. ginseng, at artificial plant cultivation. The roots of wild P. ginseng plants were sampled from a nonprotected natural population of the Russian Far East. The slides were prepared from leaf tissues using the squash technique for cytogenetic analysis. The 18S rDNA sequences were cloned and sequenced. The distribution of nucleotide diversity, recombination events, and interspecific phylogenies for the total 18S rDNA sequence data set was also examined. In mesophyll cells, mononucleolar nuclei were estimated to be dominant (75.7%), while the remaining nuclei contained two to four nucleoli. Among the analyzed 18S rDNA clones, 20% were identical to the 18S rDNA sequence of P. ginseng from Japan, and other clones differed in one to six substitutions. The nucleotide polymorphism was more expressed at the positions 440-640 bp, and distributed in variable regions, expansion segments, and conservative elements of core structure. The phylogenetic analysis confirmed conspecificity of ginseng plants cultivated in different regions, with two fixed mutations between P. ginseng and other species. This study identified the evidences of the intragenomic nucleotide polymorphism in the 18S rDNA sequences of P. ginseng. These data suggest that, in cultivated plants, the observed genome instability may influence the synthesis of biologically active compounds, which are widely used in traditional medicine.
Chelomina, Galina N.; Rozhkovan, Konstantin V.; Voronova, Anastasia N.; Burundukova, Olga L.; Muzarok, Tamara I.; Zhuravlev, Yuri N.
2015-01-01
Background Wild ginseng, Panax ginseng Meyer, is an endangered species of medicinal plants. In the present study, we analyzed variations within the ribosomal DNA (rDNA) cluster to gain insight into the genetic diversity of the Oriental ginseng, P. ginseng, at artificial plant cultivation. Methods The roots of wild P. ginseng plants were sampled from a nonprotected natural population of the Russian Far East. The slides were prepared from leaf tissues using the squash technique for cytogenetic analysis. The 18S rDNA sequences were cloned and sequenced. The distribution of nucleotide diversity, recombination events, and interspecific phylogenies for the total 18S rDNA sequence data set was also examined. Results In mesophyll cells, mononucleolar nuclei were estimated to be dominant (75.7%), while the remaining nuclei contained two to four nucleoli. Among the analyzed 18S rDNA clones, 20% were identical to the 18S rDNA sequence of P. ginseng from Japan, and other clones differed in one to six substitutions. The nucleotide polymorphism was more expressed at the positions 440–640 bp, and distributed in variable regions, expansion segments, and conservative elements of core structure. The phylogenetic analysis confirmed conspecificity of ginseng plants cultivated in different regions, with two fixed mutations between P. ginseng and other species. Conclusion This study identified the evidences of the intragenomic nucleotide polymorphism in the 18S rDNA sequences of P. ginseng. These data suggest that, in cultivated plants, the observed genome instability may influence the synthesis of biologically active compounds, which are widely used in traditional medicine. PMID:27158239
Radical-induced purine lesion formation is dependent on DNA helical topology.
Terzidis, Michael A; Prisecaru, Andreea; Molphy, Zara; Barron, Niall; Randazzo, Antonio; Dumont, Elise; Krokidis, Marios G; Kellett, Andrew; Chatgilialoglu, Chryssostomos
2016-11-01
Herein we report the quantification of purine lesions arising from gamma-radiation sourced hydroxyl radicals (HO • ) on tertiary dsDNA helical forms of supercoiled (SC), open circular (OC), and linear (L) conformation, along with single-stranded folded and non-folded sequences of guanine-rich DNA in selected G-quadruplex structures. We identify that DNA helical topology and folding plays major, and unexpected, roles in the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) and 8-oxo-7,8-dihydro-2'-deoxyadenosine (8-oxo-dA), along with tandem-type purine lesions 5',8-cyclo-2'-deoxyguanosine (5',8-cdG) and 5',8-cyclo-2'-deoxyadenosine (5',8-cdA). SC, OC, and L dsDNA conformers together with folded and non-folded G-quadruplexes d[TGGGGT] 4 (TG4T), d[AGGG(TTAGGG) 3 ] (Tel22), and the mutated tel24 d[TTGGG(TTAGGG) 3 A] (mutTel24) were exposed to HO • radicals and purine lesions were then quantified via stable isotope dilution LC-MS/MS analysis. Purine oxidation in dsDNA follows L > OC ≫ SC indicating greater damage towards the extended B-DNA topology. Conversely, G-quadruplex sequences were significantly more resistant toward purine oxidation in their unfolded states as compared with G-tetrad folded topologies; this effect is confirmed upon comparative analysis of Tel22 (∼50% solution folded) and mutTel24 (∼90% solution folded). In an effort to identify the accessibly of hydroxyl radicals to quadruplex purine nucleobases, G-quadruplex solvent cavities were then modeled at 1.33 Å with evidence suggesting that folded G-tetrads may act as potential oxidant traps to protect against chromosomal DNA damage.
Evin, Allowen; Flink, Linus Girdland; Bălăşescu, Adrian; Popovici, Dragomir; Andreescu, Radian; Bailey, Douglas; Mirea, Pavel; Lazăr, Cătălin; Boroneanţ, Adina; Bonsall, Clive; Vidarsdottir, Una Strand; Brehard, Stéphanie; Tresset, Anne; Cucchi, Thomas; Larson, Greger; Dobney, Keith
2015-01-01
Current evidence suggests that pigs were first domesticated in Eastern Anatolia during the ninth millennium cal BC before dispersing into Europe with Early Neolithic farmers from the beginning of the seventh millennium. Recent ancient DNA (aDNA) research also indicates the incorporation of European wild boar into domestic stock during the Neolithization process. In order to establish the timing of the arrival of domestic pigs into Europe, and to test hypotheses regarding the role European wild boar played in the domestication process, we combined a geometric morphometric analysis (allowing us to combine tooth size and shape) of 449 Romanian ancient teeth with aDNA analysis. Our results firstly substantiate claims that the first domestic pigs in Romania possessed the same mtDNA signatures found in Neolithic pigs in west and central Anatolia. Second, we identified a significant proportion of individuals with large molars whose tooth shape matched that of archaeological (likely) domestic pigs. These large ‘domestic shape’ specimens were present from the outset of the Romanian Neolithic (6100–5500 cal BC) through to later prehistory, suggesting a long history of admixture between introduced domestic pigs and local wild boar. Finally, we confirmed a turnover in mitochondrial lineages found in domestic pigs, possibly coincident with human migration into Anatolia and the Levant that occurred in later prehistory. PMID:25487340
Herrnstadt, Corinna; Elson, Joanna L; Fahy, Eoin; Preston, Gwen; Turnbull, Douglass M; Anderson, Christen; Ghosh, Soumitra S; Olefsky, Jerrold M; Beal, M Flint; Davis, Robert E; Howell, Neil
2002-05-01
The evolution of the human mitochondrial genome is characterized by the emergence of ethnically distinct lineages or haplogroups. Nine European, seven Asian (including Native American), and three African mitochondrial DNA (mtDNA) haplogroups have been identified previously on the basis of the presence or absence of a relatively small number of restriction-enzyme recognition sites or on the basis of nucleotide sequences of the D-loop region. We have used reduced-median-network approaches to analyze 560 complete European, Asian, and African mtDNA coding-region sequences from unrelated individuals to develop a more complete understanding of sequence diversity both within and between haplogroups. A total of 497 haplogroup-associated polymorphisms were identified, 323 (65%) of which were associated with one haplogroup and 174 (35%) of which were associated with two or more haplogroups. Approximately one-half of these polymorphisms are reported for the first time here. Our results confirm and substantially extend the phylogenetic relationships among mitochondrial genomes described elsewhere from the major human ethnic groups. Another important result is that there were numerous instances both of parallel mutations at the same site and of reversion (i.e., homoplasy). It is likely that homoplasy in the coding region will confound evolutionary analysis of small sequence sets. By a linkage-disequilibrium approach, additional evidence for the absence of human mtDNA recombination is presented here.
Zhao, Ya-E; Wu, Li-Ping
2012-09-01
To confirm phylogenetic relationships in Demodex mites based on mitochondrial 16S rDNA partial sequences, mtDNA 16S partial sequences of ten isolates of three Demodex species from China were amplified, recombined, and sequenced and then analyzed with two Demodex folliculorum isolates from Spain. Lastly, genetic distance was computed, and phylogenetic tree was reconstructed. MEGA 4.0 analysis showed high sequence identity among 16S rDNA partial sequences of three Demodex species, which were 95.85 % in D. folliculorum, 98.53 % in Demodex canis, and 99.71 % in Demodex brevis. The divergence, genetic distance, and transition/transversions of the three Demodex species reached interspecies level, whereas there was no significant difference of the divergence (1.1 %), genetic distance (0.011), and transition/transversions (3/1) of the two geographic D. folliculorum isolates (Spain and China). Phylogenetic trees reveal that the three Demodex species formed three separate branches of one clade, where D. folliculorum and D. canis gathered first, and then gathered with D. brevis. The two Spain and five China D. folliculorum isolates did not form sister clades. In conclusion, 16S mtDNA are suitable for phylogenetic relationship analysis in low taxa (genus or species), but not for intraspecies determination of Demodex. The differentiation among the three Demodex species has reached interspecies level.
Adewumi, Gbenga A; Oguntoyinbo, Folarin A; Keisam, Santosh; Romi, Wahengbam; Jeyaram, Kumaraswamy
2012-01-01
In this study, bacterial composition of iru produced by natural, uncontrolled fermentation of Parkia biglobosa seeds was assessed using culture-independent method in combination with culture-based genotypic typing techniques. PCR-denaturing gradient gel electrophoresis (DGGE) revealed similarity in DNA fragments with the two DNA extraction methods used and confirmed bacterial diversity in the 16 iru samples from different production regions. DNA sequencing of the highly variable V3 region of the 16S rRNA genes obtained from PCR-DGGE identified species related to Bacillus subtilis as consistent bacterial species in the fermented samples, while other major bands were identified as close relatives of Staphylococcus vitulinus, Morganella morganii, B. thuringiensis, S. saprophyticus, Tetragenococcus halophilus, Ureibacillus thermosphaericus, Brevibacillus parabrevis, Salinicoccus jeotgali, Brevibacterium sp. and uncultured bacteria clones. Bacillus species were cultured as potential starter cultures and clonal relationship of different isolates determined using amplified ribosomal DNA restriction analysis (ARDRA) combined with 16S-23S rRNA gene internal transcribed spacer (ITS) PCR amplification, restriction analysis (ITS-PCR-RFLP), and randomly amplified polymorphic DNA (RAPD-PCR). This further discriminated B. subtilis and its variants from food-borne pathogens such as B. cereus and suggested the need for development of controlled fermentation processes and good manufacturing practices (GMP) for iru production to achieve product consistency, safety quality, and improved shelf life.
Reddy, M K; Nair, S; Singh, B N; Mudgil, Y; Tewari, K K; Sopory, S K
2001-01-24
We report the cloning and sequencing of both cDNA and genomic DNA of a 33 kDa chloroplast ribonucleoprotein (33RNP) from pea. The analysis of the predicted amino acid sequence of the cDNA clone revealed that the encoded protein contains two RNA binding domains, including the conserved consensus ribonucleoprotein sequences CS-RNP1 and CS-RNP2, on the C-terminus half and the presence of a putative transit peptide sequence in the N-terminus region. The phylogenetic and multiple sequence alignment analysis of pea chloroplast RNP along with RNPs reported from the other plant sources revealed that the pea 33RNP is very closely related to Nicotiana sylvestris 31RNP and 28RNP and also to 31RNP and 28RNP of Arabidopsis and spinach, respectively. The pea 33RNP was expressed in Escherichia coli and purified to homogeneity. The in vitro import of precursor protein into chloroplasts confirmed that the N-terminus putative transit peptide is a bona fide transit peptide and 33RNP is localized in the chloroplast. The nucleic acid-binding properties of the recombinant protein, as revealed by South-Western analysis, showed that 33RNP has higher binding affinity for poly (U) and oligo dT than for ssDNA and dsDNA. The steady state transcript level was higher in leaves than in roots and the expression of this gene is light stimulated. Sequence analysis of the genomic clone revealed that the gene contains four exons and three introns. We have also isolated and analyzed the 5' flanking region of the pea 33RNP gene.
Haubert, Louise; Cunha, Carlos Eduardo Pouey da; Lopes, Graciela Völz; Silva, Wladimir Padilha da
2018-05-01
The genetic basis of tetracycline resistance in a food isolate Listeria monocytogenes (Lm16) was evaluated. Resistance to tetracycline was associated with the presence of the tetM gene in plasmid DNA. The sequence of tetM showed 100% of similarity with the Enterococcus faecalis sequences found in the EMBL database, suggesting that Lm16 received this gene from E. faecalis. Various size bands were detected in the DNA plasmid analysis, the largest being approximately 54.38 kb. Transferability of the tetM gene was achieved in vitro by agar matings between Lm16 and E. faecalis JH2-2, proving the potential for the spread of tetM by horizontal gene transfer. Furthermore, the conjugation experiments were performed on the surface of processed cheese, confirming the transferability in a food matrix. PCR assays were used to confirm the identity of E. faecalis and to detect the tetM gene in transconjugant bacteria. Additionally, the minimal inhibitory concentration for tetracycline and rifampicin and plasmid profiling were performed. This is the first report of a food isolate L. monocytogenes carrying the tetM gene in plasmid DNA, and it highlights the potential risk of spreading antimicrobial resistance genes between different bacteria. Copyright © 2018 Elsevier Ltd. All rights reserved.
Diagnosis of skin cancer by correlation and complexity analyses of damaged DNA
Namazi, Hamidreza; Kulish, Vladimir V.; Delaviz, Fatemeh; Delaviz, Ali
2015-01-01
Skin cancer is a common, low-grade cancerous (malignant) growth of the skin. It starts from cells that begin as normal skin cells and transform into those with the potential to reproduce in an out-of-control manner. Cancer develops when DNA, the molecule found in cells that encodes genetic information, becomes damaged and the body cannot repair the damage. A DNA walk of a genome represents how the frequency of each nucleotide of a pairing nucleotide couple changes locally. In this research in order to diagnose the skin cancer, first DNA walk plots of genomes of patients with skin cancer were generated. Then, the data so obtained was checked for complexity by computing the fractal dimension. Furthermore, the Hurst exponent has been employed in order to study the correlation of damaged DNA. By analysing different samples it has been found that the damaged DNA sequences are exhibiting higher degree of complexity and less correlation compared to normal DNA sequences. This investigation confirms that this method can be used for diagnosis of skin cancer. The method discussed in this research is useful not only for diagnosis of skin cancer but can be applied for diagnosis and growth analysis of different types of cancers. PMID:26497203
NASA Astrophysics Data System (ADS)
Lee, Young Ju; Ahn, Hyung Joon; Lee, Gi-Ja; Jung, Gyeong Bok; Lee, Gihyun; Kim, Dohyun; Shin, Jae-Ho; Jin, Kyung-Hyun; Park, Hun-Kuk
2015-07-01
The study was to investigate the changes in biochemical properties of activated mature CD8+ T cells related to apoptosis at a molecular level. We confirmed the activation and apoptosis of CD8+ T cells by fluorescence-activated cell sorting and atomic force microscopy and then performed Raman spectral measurements on activated mature CD8+ T cells and cellular deoxyribose nucleic acid (DNA). In the activated mature CD8+ T cells, there were increases in protein spectra at 1002 and 1234 cm-1. In particular, to assess the apoptosis-related DNA spectral signatures, we investigated the spectra of the cellular DNA isolated from resting and activated mature CD8+ T cells. Raman spectra at 765 to 786 cm-1 and 1053 to 1087 cm-1 were decreased in activated mature DNA. In addition, we analyzed Raman spectrum using the multivariate statistical method including principal component analysis. Raman spectra of activated mature DNA are especially well-discriminated from those of resting DNA. Our findings regarding the biochemical and structural changes associated with apoptosis in activated mature T cells and cellular DNA according to Raman spectroscopy provide important insights into allospecific immune responses generated after organ transplantation, and may be useful for therapeutic manipulation of the immune response.
Krawczak, Felipe S.; Muñoz-Leal, Sebastián; Guztzazky, Ana Carolina; Oliveira, Stefan V.; Santos, Fabiana C. P.; Angerami, Rodrigo N.; Moraes-Filho, Jonas; de Souza, Julio C.; Labruna, Marcelo B.
2016-01-01
Santa Catarina State in southern Brazil is the state with the second highest number of laboratory-confirmed cases of spotted fever illness in Brazil. However, all these cases were confirmed solely by serological analysis (seroconversion to spotted fever group rickettsiae), which has not allowed identification of the rickettsial agent. Here, a clinical case of spotted fever illness from Santa Catarina is shown by seroconversion and molecular analysis to be caused by Rickettsia sp. strain Atlantic rainforest. This is the third confirmed clinical case due to this emerging rickettsial agent in Brazil. Like the previous two cases, the patient presented an inoculation eschar at the tick bite site. Our molecular diagnosis was performed on DNA extracted from the crust removed from the eschar. These results are supported by previous epidemiological studies in Santa Catarina, which showed that nearly 10% of the most common human-biting ticks were infected by Rickettsia sp. strain Atlantic rainforest. PMID:27325804
Krawczak, Felipe S; Muñoz-Leal, Sebastián; Guztzazky, Ana Carolina; Oliveira, Stefan V; Santos, Fabiana C P; Angerami, Rodrigo N; Moraes-Filho, Jonas; de Souza, Julio C; Labruna, Marcelo B
2016-09-07
Santa Catarina State in southern Brazil is the state with the second highest number of laboratory-confirmed cases of spotted fever illness in Brazil. However, all these cases were confirmed solely by serological analysis (seroconversion to spotted fever group rickettsiae), which has not allowed identification of the rickettsial agent. Here, a clinical case of spotted fever illness from Santa Catarina is shown by seroconversion and molecular analysis to be caused by Rickettsia sp. strain Atlantic rainforest. This is the third confirmed clinical case due to this emerging rickettsial agent in Brazil. Like the previous two cases, the patient presented an inoculation eschar at the tick bite site. Our molecular diagnosis was performed on DNA extracted from the crust removed from the eschar. These results are supported by previous epidemiological studies in Santa Catarina, which showed that nearly 10% of the most common human-biting ticks were infected by Rickettsia sp. strain Atlantic rainforest. © The American Society of Tropical Medicine and Hygiene.
Salaba, O; Rylková, K; Vadlejch, J; Petrtýl, M; Scháňková, S; Brožová, A; Jankovská, I; Jebavý, L; Langrová, I
2013-03-01
Trichuris nematodes were isolated from roe deer (Capreolus capreolus). At first, nematodes were determined using morphological and biometrical methods. Subsequently genomic DNA was isolated and the ITS1-5.8S-ITS2 segment from ribosomal DNA (RNA) was amplified and sequenced using PCR techniques. With u sing morphological and biometrical methods, female nematodes were identified as Trichuris globulosa, and the only male was identified as Trichuris ovis. The females were classified into four morphotypes. However, analysis of the internal transcribed spacers (ITS1-5.8S-ITS2) of specimens did not confirm this classification. Moreover, the female individuals morphologically determined as T. globulosa were molecularly identified as Trichuris discolor. In the case of the only male molecular analysis match the result of the molecular identification. Furthermore, a comparative phylogenetic study was carried out with the ITS1 and ITS2 sequences of the Trichuris species from various hosts. A comparison of biometric information from T. discolor individuals from this study was also conducted.
Andeer, Peter; Strand, Stuart E; Stahl, David A
2012-01-01
Stable-isotope probing (SIP) has proved a valuable cultivation-independent tool for linking specific microbial populations to selected functions in various natural and engineered systems. However, application of SIP to microbial populations with relatively minor buoyant density increases, such as populations that utilize compounds as a nitrogen source, results in reduced resolution of labeled populations. We therefore developed a tandem quantitative PCR (qPCR)-TRFLP (terminal restriction fragment length polymorphism) protocol that improves resolution of detection by quantifying specific taxonomic groups in gradient fractions. This method combines well-controlled amplification with TRFLP analysis to quantify relative taxon abundance in amplicon pools of FAM-labeled PCR products, using the intercalating dye EvaGreen to monitor amplification. Method accuracy was evaluated using mixtures of cloned 16S rRNA genes, DNA extracted from low- and high-G+C bacterial isolates (Escherichia coli, Rhodococcus, Variovorax, and Microbacterium), and DNA from soil microcosms amended with known amounts of genomic DNA from bacterial isolates. Improved resolution of minor shifts in buoyant density relative to TRFLP analysis alone was confirmed using well-controlled SIP analyses.
Asian affinities and continental radiation of the four founding Native American mtDNAs.
Torroni, A; Schurr, T G; Cabell, M F; Brown, M D; Neel, J V; Larsen, M; Smith, D G; Vullo, C M; Wallace, D C
1993-01-01
The mtDNA variation of 321 individuals from 17 Native American populations was examined by high-resolution restriction endonuclease analysis. All mtDNAs were amplified from a variety of sources by using PCR. The mtDNA of a subset of 38 of these individuals was also analyzed by D-loop sequencing. The resulting data were combined with previous mtDNA data from five other Native American tribes, as well as with data from a variety of Asian populations, and were used to deduce the phylogenetic relationships between mtDNAs and to estimate sequence divergences. This analysis revealed the presence of four haplotype groups (haplogroups A, B, C, and D) in the Amerind, but only one haplogroup (A) in the Na-Dene, and confirmed the independent origins of the Amerinds and the Na-Dene. Further, each haplogroup appeared to have been founded by a single mtDNA haplotype, a result which is consistent with a hypothesized founder effect. Most of the variation within haplogroups was tribal specific, that is, it occurred as tribal private polymorphisms. These observations suggest that the process of tribalization began early in the history of the Amerinds, with relatively little intertribal genetic exchange occurring subsequently. The sequencing of 341 nucleotides in the mtDNA D-loop revealed that the D-loop sequence variation correlated strongly with the four haplogroups defined by restriction analysis, and it indicated that the D-loop variation, like the haplotype variation, arose predominantly after the migration of the ancestral Amerinds across the Bering land bridge. Images Figure 4 PMID:7688932
Methylation of MORC1: A possible biomarker for depression?
Mundorf, Annakarina; Schmitz, Judith; Güntürkün, Onur; Freund, Nadja; Ocklenburg, Sebastian
2018-05-30
New findings identified the MORC1 gene as a link between early life stress and major depression. In this study, MORC1 methylation was investigated in 60 healthy human adults (30 women, 30 men) between 19 and 33 years of age. For analysis, DNA was isolated from buccal cells. The results show that DNA methylation in the MORC1 promoter region significantly correlates with the Beck Depression Inventory score in the examined non-clinical population. Sum score of birth complications, however, seems to correlate negatively with methylation. These findings further confirm that MORC1 is a stress sensitive gene and a possible biomarker for depression. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cho, Sang-Yun; Cho, Won Kyong; Sohn, Seong-Han; Kim, Kook-Hyung
2012-01-06
Plant viruses must interact with host cellular components to replicate and move from cell to cell. In the case of Potato virus X (PVX), it carries stem-loop 1 (SL1) RNA essential for viral replication and movement. Using two-dimensional electrophoresis northwestern blot analysis, we previously identified several host proteins that bind to SL1 RNA. Of those, we further characterized a DnaJ-like protein from Nicotiana benthamiana named NbDnaJ. An electrophoretic mobility shift assay confirmed that NbDnaJ binds only to SL1 minus-strand RNA, and bimolecular fluorescence complementation (BiFC) indicated that NbDnaJ interacts with PVX capsid protein (CP). Using a series of deletion mutants, the C-terminal region of NbDnaJ was found to be essential for the interaction with PVX CP. The expression of NbDnaJ significantly changed upon infection with different plant viruses such as PVX, Tobacco mosaic virus, and Cucumber mosaic virus, but varied depending on the viral species. In transient experiments, both PVX replication and movement were inhibited in plants that over-expressed NbDnaJ but accelerated in plants in which NbDnaJ was silenced. In summary, we suggest that the newly identified NbDnaJ plays a role in PVX replication and movement by interacting with SL1(-) RNA and PVX CP. Copyright © 2011 Elsevier Inc. All rights reserved.
Baldigo, Barry P.; Sporn, Lee Ann; George, Scott D.; Ball, Jacob
2016-01-01
Environmental DNA (eDNA) analysis is rapidly evolving as a tool for monitoring the distributions of aquatic species. Detection of species’ populations in streams may be challenging because the persistence time for intact DNA fragments is unknown and because eDNA is diluted and dispersed by dynamic hydrological processes. During 2015, the DNA of Brook Trout Salvelinus fontinalis was analyzed from water samples collected at 40 streams across the Adirondack region of upstate New York, where Brook Trout populations were recently quantified. Study objectives were to evaluate different sampling methods and the ability of eDNA to accurately predict the presence and abundance of resident Brook Trout populations. Results from three-pass electrofishing surveys indicated that Brook Trout were absent from 10 sites and were present in low (<100 fish/0.1 ha), moderate (100–300 fish/0.1 ha), and high (>300 fish/0.1 ha) densities at 9, 11, and 10 sites, respectively. The eDNA results correctly predicted the presence and confirmed the absence of Brook Trout at 85.0–92.5% of the study sites; eDNA also explained 44% of the variability in Brook Trout population density and 24% of the variability in biomass. These findings indicate that eDNA surveys will enable researchers to effectively characterize the presence and abundance of Brook Trout and other species’ populations in headwater streams across the Adirondack region and elsewhere.
Lee, Sung Ryul; Heo, Hye Jin; Jeong, Seung Hun; Kim, Hyoung Kyu; Song, In Sung; Ko, Kyung Soo; Rhee, Byoung Doo; Kim, Nari; Han, Jin
2015-07-01
Mutation or depletion of mitochondrial DNA (mtDNA) can cause severe mitochondrial malfunction, originating from the mitochondrion itself, or from the crosstalk between nuclei and mitochondria. However, the changes that would occur if the amount of mtDNA is diminished are less known. Thus, we generated rat myoblast H9c2 cells containing lower amounts of mtDNA via ethidium bromide and uridine supplementation. After confirming the depletion of mtDNA by quantitative PCR and gel electrophoresis analysis, we investigated the changes in mitochondrial physical parameters by using flow cytometry. We also evaluated the resistance of these cells to serum starvation and sodium nitroprusside. H9c2 cells with diminished mtDNA contents showed decreased mitochondrial membrane potential, mass, free calcium, and zinc ion contents as compared to naïve H9c2 cells. Furthermore, cytosolic and mitochondrial reactive oxygen species levels were significantly higher in mtDNA-lowered H9c2 cells than in the naïve cells. Although the oxygen consumption rate and cell proliferation were decreased, mtDNA-lowered H9c2 cells were more resistant to serum deprivation and nitroprusside insults than the naïve H9c2 cells. Taken together, we conclude that the low abundance of mtDNA cause changes in cellular status, such as changes in reactive oxygen species, calcium, and zinc ion levels inducing resistance to stress. © 2015 International Federation for Cell Biology.
Characterization of proviruses cloned from mink cell focus-forming virus-infected cellular DNA.
Khan, A S; Repaske, R; Garon, C F; Chan, H W; Rowe, W P; Martin, M A
1982-01-01
Two proviruses were cloned from EcoRI-digested DNA extracted from mink cells chronically infected with AKR mink cell focus-forming (MCF) 247 murine leukemia virus (MuLV), using a lambda phage host vector system. One cloned MuLV DNA fragment (designated MCF 1) contained sequences extending 6.8 kilobases from an EcoRI restriction site in the 5' long terminal repeat (LTR) to an EcoRI site located in the envelope (env) region and was indistinguishable by restriction endonuclease mapping for 5.1 kilobases (except for the EcoRI site in the LTR) from the 5' end of AKR ecotropic proviral DNA. The DNA segment extending from 5.1 to 6.8 kilobases contained several restriction sites that were not present in the AKR ecotropic provirus. A 0.5-kilobase DNA segment located at the 3' end of MCF 1 DNA contained sequences which hybridized to a xenotropic env-specific DNA probe but not to labeled ecotropic env-specific DNA. This dual character of MCF 1 proviral DNA was also confirmed by analyzing heteroduplex molecules by electron microscopy. The second cloned proviral DNA (designated MCF 2) was a 6.9-kilobase EcoRI DNA fragment which contained LTR sequences at each end and a 2.0-kilobase deletion encompassing most of the env region. The MCF 2 proviral DNA proved to be a useful reagent for detecting LTRs electron microscopically due to the presence of nonoverlapping, terminally located LTR sequences which effected its circularization with DNAs containing homologous LTR sequences. Nucleotide sequence analysis demonstrated the presence of a 104-base-pair direct repeat in the LTR of MCF 2 DNA. In contrast, only a single copy of the reiterated component of the direct repeat was present in MCF 1 DNA. Images PMID:6281459
(Poly)cation-induced protection of conventional and wireframe DNA origami nanostructures.
Ahmadi, Yasaman; De Llano, Elisa; Barišić, Ivan
2018-04-26
DNA nanostructures hold immense potential to be used for biological and medical applications. However, they are extremely vulnerable towards salt depletion and nucleases, which are common under physiological conditions. In this contribution, we used chitosan and linear polyethyleneimine for coating and long-term stabilization of several three-dimensional DNA origami nanostructures. The impact of the degree of polymerization and the charge density of the polymer together with the N/P charge ratio (ratio of the amines in polycations to the phosphates in DNA) on the stability of encapsulated DNA origami nanostructures in the presence of nucleases and in low-salt media was examined. The polycation shells were compatible with enzyme- and aptamer-based functionalization of the DNA nanostructures. Additionally, we showed that despite being highly vulnerable to salt depletion and nucleolytic digestion, self-assembled DNA nanostructures are stable in cell culture media up to a week. This was contrary to unassembled DNA scaffolds that degraded in one hour, showing that placing DNA strands into a spatially designed configuration crucially affect the structural integrity. The stability of naked DNA nanostructures in cell culture was shown to be mediated by growth media. DNA origami nanostructures kept in growth media were significantly more resistant towards low-salt denaturation, DNase I and serum-mediated digestion than when in a conventional buffer. Moreover, we confirmed that DNA origami nanostructures remain not only structurally intact but also fully functional after exposure to cell media. Agarose gel electrophoresis and negative stain transmission electron microscopy analysis revealed the hybridization of DNA origami nanostructures to their targets in the presence of serum proteins and nucleases. The structural integrity and functionality of DNA nanostructures in physiological fluids validate their use particularly for short-time biological applications in which the shape and structural details of DNA nanodevices are functionally critical.
Genotoxic effect of N-hydroxy-4-acetylaminobiphenyl on human DNA: implications in bladder cancer.
Shahab, Uzma; Moinuddin; Ahmad, Saheem; Dixit, Kiran; Habib, Safia; Alam, Khursheed; Ali, Asif
2013-01-01
The interaction of environmental chemicals and their metabolites with biological macromolecules can result in cytotoxic and genotoxic effects. 4-Aminobiphenyl (4-ABP) and several other related arylamines have been shown to be causally involved in the induction of human urinary bladder cancers. The genotoxic and the carcinogenic effects of 4-ABP are exhibited only when it is metabolically converted to a reactive electrophile, the aryl nitrenium ions, which subsequently binds to DNA and induce lesions. Although several studies have reported the formation of 4-ABP-DNA adducts, no extensive work has been done to investigate the immunogenicity of 4-ABP-modified DNA and its possible involvement in the generation of antibodies in bladder cancer patients. Human DNA was modified by N-hydroxy-4-acetylaminobiphenyl (N-OH-AABP), a reactive metabolite of 4-ABP. Structural perturbations in the N-OH-AABP modified DNA were assessed by ultraviolet, fluorescence, and circular dichroic spectroscopy as well as by agarose gel electrophoresis. Genotoxicity of N-OH-AABP modified DNA was ascertained by comet assay. High performance liquid chromatography (HPLC) analysis of native and modified DNA samples confirmed the formation of N-(deoxyguanosine-8-yl)-4-aminobiphenyl (dG-C8-4ABP) in the N-OH-AABP damaged DNA. The experimentally induced antibodies against N-OH-AABP-modified DNA exhibited much better recognition of the DNA isolated from bladder cancer patients as compared to the DNA obtained from healthy individuals in competitive binding ELISA. This work shows epitope sharing between the DNA isolated from bladder cancer patients and the N-OH-AABP-modified DNA implicating the role of 4-ABP metabolites in the DNA damage and neo-antigenic epitope generation that could lead to the induction of antibodies in bladder cancer patients.
Horning, Aaron M; Awe, Julius A; Wang, Chiou-Miin; Liu, Joseph; Lai, Zhao; Wang, Vickie Yao; Jadhav, Rohit R; Louie, Anna D; Lin, Chun-Lin; Kroczak, Tad; Chen, Yidong; Jin, Victor X; Abboud-Werner, Sherry L; Leach, Robin J; Hernandez, Javior; Thompson, Ian M; Saranchuk, Jeff; Drachenberg, Darrel; Chen, Chun-Liang; Mai, Sabine; Huang, Tim Hui-Ming
2015-11-01
Altered DNA methylation in CpG islands of gene promoters has been implicated in prostate cancer (PCa) progression and can be used to predict disease outcome. In this study, we determine whether methylation changes of androgen biosynthesis pathway (ABP)-related genes in patients' plasma cell-free DNA (cfDNA) can serve as prognostic markers for biochemical recurrence (BCR). Methyl-binding domain capture sequencing (MBDCap-seq) was used to identify differentially methylated regions (DMRs) in primary tumors of patients who subsequently developed BCR or not, respectively. Methylation pyrosequencing of candidate loci was validated in cfDNA samples of 86 PCa patients taken at and/or post-radical prostatectomy (RP) using univariate and multivariate prediction analyses. Putative DMRs in 13 of 30 ABP-related genes were found between tumors of BCR (n = 12) versus no evidence of disease (NED) (n = 15). In silico analysis of The Cancer Genome Atlas data confirmed increased DNA methylation of two loci-SRD5A2 and CYP11A1, which also correlated with their decreased expression, in tumors with subsequent BCR development. Their aberrant cfDNA methylation was also associated with detectable levels of PSA taken after patients' post-RP. Multivariate analysis of the change in cfDNA methylation at all of CpG sites measured along with patient's treatment history predicted if a patient will develop BCR with 77.5% overall accuracy. Overall, increased DNA methylation of SRD5A2 and CYP11A1 related to androgen biosynthesis functions may play a role in BCR after patients' RP. The correlation between aberrant cfDNA methylation and detectable PSA in post-RP further suggests their utility as predictive markers for PCa recurrence. . © 2015 Wiley Periodicals, Inc.
Shaw, Jyoti; Chakraborty, Ayan; Nag, Arijit; Chattopadyay, Arnab; Dasgupta, Anjan K; Bhattacharyya, Maitreyee
2017-11-01
To investigate the cause and effects of intracellular iron overload in lymphocytes of thalassemia major patients. Sixty-six thalassemia major patients having iron overload and 10 age-matched controls were chosen for the study. Blood sample was collected, and serum ferritin, oxidative stress; lymphocyte DNA damage were examined, and infective episodes were also counted. Case-control analysis revealed significant oxidative stress, iron overload, DNA damage, and rate of infections in thalassemia cases as compared to controls. For cases, oxidative stress (ROS) and iron overload (serum ferritin) showed good correlation with R 2 = 0.934 and correlation between DNA damage and ROS gave R 2 = 0.961. We also demonstrated that intracellular iron overload in thalassemia caused oxidative damage of lymphocyte DNA as exhibited by DNA damage assay. The inference is further confirmed by partial inhibition of such damage by chelation of iron and the concurrent lowering of the ROS level in the presence of chelator deferasirox. Therefore, intracellular iron overload caused DNA fragmentation, which may ultimately hamper lymphocyte function, and this may contribute to immune dysfunction and increased susceptibility to infections in thalassemia patients as indicated by the good correlation (R 2 = 0.91) between lymphocyte DNA damage and rate of infection found in this study. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Direct detection of Marek's disease virus in poultry dust by loop-mediated isothermal amplification.
Woźniakowski, Grzegorz; Samorek-Salamonowicz, Elżbieta
2014-11-01
Marek's disease virus (MDV) is a serious concern for poultry production and represents a unique herpesvirus model. MDV can be shed by doubly infected chickens despite vaccination. The fully infectious MDV particles are produced in the feather follicle epithelium (FFE), and MDV remains infectious for many months in fine skin particles and feather debris. Molecular biology methods including PCR and real-time PCR have been shown to be valuable for the detection of MDV DNA in farm dust. Recently, loop-mediated isothermal amplification (LAMP) was found to be useful in the detection of MDV in feathers and internal organs of infected chickens. LAMP is also less affected by the inhibitors present in DNA samples. Taking into account the advantages of LAMP, direct detection of MDV DNA in poultry dust has been conducted in this research. The detection of MDV DNA was possible in 11 out of the 12 examined dust samples without DNA extraction. The DNA was retrieved from dust samples by dilution and incubation at 95 °C for 5 min. The direct detection of MDV DNA in the dust was possible within 30 min using a water bath and UV light. The results were confirmed by electrophoresis and melting curve analysis of the LAMP products. Our results show that LAMP may be used to test for the presence of virulent MDV in poultry farm dust without DNA extraction.
Inturi, Swetha; Tewari-Singh, Neera; Gu, Mallikarjuna; Shrotriya, Sangeeta; Gomez, Joe; Agarwal, Chapla; White, Carl W; Agarwal, Rajesh
2011-12-15
Employing mouse skin epidermal JB6 cells and dermal fibroblasts, here we examined the mechanisms of DNA damage by 2-chloroethyl ethyl sulfide (CEES), a monofunctional analog of sulfur mustard (SM). CEES exposure caused H2A.X and p53 phosphorylation as well as p53 accumulation in both cell types, starting at 1h, that was sustained for 24h, indicating a DNA-damaging effect of CEES, which was also confirmed and quantified by alkaline comet assay. CEES exposure also induced oxidative stress and oxidative DNA damage in both cell types, measured by an increase in mitochondrial and cellular reactive oxygen species and 8-hydroxydeoxyguanosine levels, respectively. In the studies distinguishing between oxidative and direct DNA damage, 1h pretreatment with glutathione (GSH) or the antioxidant Trolox showed a decrease in CEES-induced oxidative stress and oxidative DNA damage. However, only GSH pretreatment decreased CEES-induced total DNA damage measured by comet assay, H2A.X and p53 phosphorylation, and total p53 levels. This was possibly due to the formation of GSH-CEES conjugates detected by LC-MS analysis. Together, our results show that CEES causes both direct and oxidative DNA damage, suggesting that to rescue SM-caused skin injuries, pleiotropic agents (or cocktails) are needed that could target multiple pathways of mustard skin toxicities. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eggers, B.; Kurth, J.H.; Kurth, M.C.
1994-09-01
Epidemiological studies suggest that several different environmental agents interact with a number of genetic elements to cause Parkinson`s disease (PD), a common neurodegenerative disease. Abnormalities of oxidative metabolism may be central to this process. Specifically, the production and degradation of dopamine may lead to toxic by-products and increased oxidative stress. Toxic by-products include hydrogen peroxide, superoxide, and hydroxyl radicals, all of which are implicated in the aging process of the central nervous system. Superoxide dismutase (SOD) catalyzes superoxide to hydrogen peroxide. Genetic predisposition to PD may be at least partially a result of certain SOD alleles. Using the cDNA sequencemore » of Mn-SOD gene, oligonucleotide primers were designed which span several presumptive splice junction sites. An approximatley 2.4kb PCR product was amplified from gDNA samples that span one or more intron near the 3{prime} end of the Mn-SOD cDNA sequence. The resultant product was screened with a panel of 4-cutters to identify fragments appropriate for SSCP analysis. Twenty-two gDNA samples were screened for SSCP and size differences of these PCR products. After digestion with AluI, two polymorphisms were observed. Two alleles with a size difference of 2-4 bp were observed by denaturing PAGE in one of the fragments. SSCP analysis revealed a polymorphism with 2 alleles in another fragment. Sequence analysis of these polymorphisms is in progress. DNA from several DEPH families was used to confirm Mendelian inheritance of these polymorphisms. Genomic DNA samples have been collected from 265 PD patients and 169 control individuals; allelic frequencies will be determined for these populations, compared by {chi}{sup 2} analysis, and relative risk calculated. These results may support a contribution of Mn-SOD in the genetic predisposition to PD.« less
Checinska Sielaff, Aleksandra; Kumar, Rajendran Mathan; Pal, Deepika; Mayilraj, Shanmugam; Venkateswaran, Kasthuri
2017-04-01
A Gram-stain-positive, rod-shaped, endospore-forming, aerobic bacterial strain, designated ISSFR-015T, was isolated from a high-efficiency particulate arrestance filter in the International Space Station and was characterized by polyphasic taxonomy. A comparative analysis of the 16S rRNA gene sequence (1494 bp) of strain ISSFR-015T showed highest similarity to Solibacillus isronensis B3W22T (98.9 %), followed by Solibacillus silvestris HR3-23T (98.6 %) and Bacillus cecembensis PN5T (96.7 %). DNA-DNA hybridization analysis revealed that the DNA relatedness values of strain ISSFR-015T with other closely related species were in the range of 41-47 % [S. silvestrisMTCC 10789T (47 %), S. isronensis MTCC 7902T (41 %) and B. cecembensis MTCC 9127T (43 %)]. The DNA G+C content of strain ISSFR-015T was 45.4 mol%. The major fatty acids were iso-C15 : 0 (45.2 %) and C17 : 1ω10c (12.1 %). The polar lipid profile contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylserine and one unknown phospholipid. The isoprenoid quinones present in strain ISSFR-015T were MK-7 (86.8 %), MK-6 (11.6 %) and MK-8 (1.0 %). The peptidoglycan type of the cell wall was A4α l-Lys-d-Glu. Based on the phylogenetic analysis, strain ISSFR-015T belongs to the genus Solibacillus. The polyphasic taxonomic data, including low DNA-DNA hybridization values, and the chemotaxonomic analysis confirmed that strain ISSFR-015T represents a novel species, for which the name Solibacillus kalamii sp. nov. is proposed. The type strain for this proposed species is ISSFR-015T (=NRRL B-65388T=DSM 101595T).
Transcriptional bursting is intrinsically caused by interplay between RNA polymerases on DNA
NASA Astrophysics Data System (ADS)
Fujita, Keisuke; Iwaki, Mitsuhiro; Yanagida, Toshio
2016-12-01
Cell-to-cell variability plays a critical role in cellular responses and decision-making in a population, and transcriptional bursting has been broadly studied by experimental and theoretical approaches as the potential source of cell-to-cell variability. Although molecular mechanisms of transcriptional bursting have been proposed, there is little consensus. An unsolved key question is whether transcriptional bursting is intertwined with many transcriptional regulatory factors or is an intrinsic characteristic of RNA polymerase on DNA. Here we design an in vitro single-molecule measurement system to analyse the kinetics of transcriptional bursting. The results indicate that transcriptional bursting is caused by interplay between RNA polymerases on DNA. The kinetics of in vitro transcriptional bursting is quantitatively consistent with the gene-nonspecific kinetics previously observed in noisy gene expression in vivo. Our kinetic analysis based on a cellular automaton model confirms that arrest and rescue by trailing RNA polymerase intrinsically causes transcriptional bursting.
Ancient DNA from nomads in 2500-year-old archeological sites of Pengyang, China.
Zhao, Yong-Bin; Li, Hong-Jie; Cai, Da-Wei; Li, Chun-Xiang; Zhang, Quan-Chao; Zhu, Hong; Zhou, Hui
2010-04-01
Six human remains (dating approximately 2500 years ago) were excavated from Pengyang, China, an area occupied by both ancient nomadic and farming people. The funerary objects found with these remains suggested they were nomads. To further confirm their ancestry, we analyzed both the maternal lineages and paternal lineages of the ancient DNA. From the mitochondrial DNA, six haplotypes were identified as three haplogroups: C, D4 and M10. The haplotype-sharing populations and phylogenetic analyses revealed that these individuals were closely associated with the ancient Xiongnu and modern northern Asians. Single-nucleotide polymorphism analysis of Y chromosomes from four male samples that were typed as haplogroup Q indicated that these people had originated in Siberia. These results show that these ancient people from Pengyang present a close genetic affinity to nomadic people, indicating that northern nomads had reached the Central Plain area of China nearly 2500 years ago.
Lüssen, Arne; Falk, Thomas M; Villwock, Wolfgang
2003-10-01
Patterns of molecular genetic differentiation among taxa of the "agassii species complex" (Parenti, 1984) were analysed based on partial mtDNA control region sequences. Special attention has been paid to Chilean populations of Orestias agassii and species from isolated lakes of northern Chile, e.g., O. agassii, Orestias chungarensis, Orestias parinacotensis, Orestias laucaensis, and Orestias ascotanensis. Orestias tschudii, Orestias luteus, and Orestias ispi were analysed comparatively. Our findings support the utility of mtDNA control region sequences for phylogenetic studies within the "agassii species complex" and confirmed the monophyly of this particular lineage, excluding O. luteus. However, the monophyly of further morphologically defined lineages within the "agassii complex" appears doubtful. No support was found for the utility of these data sets for inferring phylogenetic relationships between more distantly related taxa originating from Lake Titicaca.
Genome-wide DNA methylation analysis in jejunum of Sus scrofa with intrauterine growth restriction.
Hu, Yue; Hu, Liang; Gong, Desheng; Lu, Hanlin; Xuan, Yue; Wang, Ru; Wu, De; Chen, Daiwen; Zhang, Keying; Gao, Fei; Che, Lianqiang
2018-02-01
Intrauterine growth restriction (IUGR) may elicit a series of postnatal body developmental and metabolic diseases due to their impaired growth and development in the mammalian embryo/fetus during pregnancy. In the present study, we hypothesized that IUGR may lead to abnormally regulated DNA methylation in the intestine, causing intestinal dysfunctions. We applied reduced representation bisulfite sequencing (RRBS) technology to study the jejunum tissues from four newborn IUGR piglets and their normal body weight (NBW) littermates. The results revealed extensively regional DNA methylation changes between IUGR/NBW pairs from different gilts, affecting dozens of genes. Hiseq-based bisulfite sequencing PCR (Hiseq-BSP) was used for validations of 19 genes with epigenetic abnormality, confirming three genes (AIFM1, MTMR1, and TWIST2) in extra samples. Furthermore, integrated analysis of these 19 genes with proteome data indicated that there were three main genes (BCAP31, IRAK1, and AIFM1) interacting with important immunity- or metabolism-related proteins, which could explain the potential intestinal dysfunctions of IUGR piglets. We conclude that IUGR can lead to disparate DNA methylation in the intestine and these changes may affect several important biological processes such as cell apoptosis, cell differentiation, and immunity, which provides more clues linking IUGR and its long-term complications.
Transcriptome Analysis of Lactococcus lactis in Coculture with Saccharomyces cerevisiae▿
Maligoy, Mathieu; Mercade, Myriam; Cocaign-Bousquet, Muriel; Loubiere, Pascal
2008-01-01
The study of microbial interactions in mixed cultures remains an important conceptual and methodological challenge for which transcriptome analysis could prove to be the essential method for improving our understanding. However, the use of whole-genome DNA chips is often restricted to the pure culture of the species for which the chips were designed. In this study, massive cross-hybridization was observed between the foreign cDNA and the specific Lactococcus lactis DNA chip. A very simple method is proposed to considerably decrease this nonspecific hybridization, consisting of adding the microbial partner's DNA. A correlation was established between the resulting cross-hybridization and the phylogenetic distance between the microbial partners. The response of L. lactis to the presence of Saccharomyces cerevisiae was analyzed during the exponential growth phase in fermentors under defined growth conditions. Although no differences between growth kinetics were observed for the pure and the mixed cultures of L. lactis, the mRNA levels of 158 genes were significantly modified. More particularly, a strong reorientation of pyrimidine metabolism was observed when L. lactis was grown in mixed cultures. These changes in transcript abundance were demonstrated to be regulated by the ethanol produced by the yeast and were confirmed by an independent method (quantitative reverse transcription-PCR). PMID:17993564
DNA analysis in the case of Kaspar Hauser.
Weichhold, G M; Bark, J E; Korte, W; Eisenmenger, W; Sullivan, K M
1998-01-01
In 1828 a mysterious young man appeared in Nürnberg, Germany, who was barely able to speak or walk but could write down his name, Kaspar Hauser. He quickly became the centre of social interest but also the victim of intrigue. His appearance, his origin and assassination in 1833 were, and still are, the source of much debate. The most widely accepted theory postulates that Kaspar Hauser was the son of Grand Duke Carl von Baden and his wife Stephanie de Beauharnais, an adopted daughter of Napoleon Bonaparte. To check this theory, DNA analysis was performed on the clothes most likely worn by Kaspar Hauser when he was stabbed on December 14th, 1833. A suitable bloodstain from the underpants was divided and analysed independently by the Institute of Legal Medicine, University of Munich (ILM) and the Forensic Science Service Laboratory, Birmingham (FSS). Mitochondrial DNA (mtDNA) was sequenced from the bloodstain and from blood samples obtained from two living maternal relatives of Stephanie de Beauharnais. The sequence from the bloodstained clothing differed from the sequence found in both reference blood samples at seven confirmed positions. This proves that the bloodstain does not originate from a son of Stephanie de Beauharnais. Thus, it is becoming clear that Kaspar Hauser was not the Prince of Baden.
Galeotti, M; Manzano, M; Beraldo, P; Bulfon, C; Rossi, G; Volpatti, D; Magi, G E
2017-07-01
Red mark syndrome (RMS) and US strawberry disease (US SD) are skin disorders affecting rainbow trout farmed in Europe and USA. The disease etiology has not yet been established. In spite of specific investigations, identifying Rickettsia-like organism (RLO)- and Midichloria-like organism (MLO)-related DNA in affected individuals, these pathogens have never been observed. We performed histological, ultrastructural and biomolecular analysis on skin and spleen samples of trout with RMS. Examination by TEM revealed the presence of intracytoplasmic microorganisms resembling Rickettsiales within macrophages, fibroblasts and erythrocytes. The microorganisms were oval or short rod shaped (400-800 nm in length and 100-200 nm in width) and often showed a cell wall similar to Gram-negative bacteria. PCR analysis for Rickettsiales supported these findings: 53% of affected trout were positive by both PCR and TEM The primers RiFCfw-RiFCrev were used to anneal both the RLO 16S DNA sequence and the MLO 16S DNA sequence. For this reason, and in agreement with previous studies confirming the presence of Rickettsiales-related DNA in trout with RMS, we assume that TEM detected microorganisms morphologically consistent with bacteria belonging to Rickettsiales order and could be considered as possible causative agents of RMS. © 2016 John Wiley & Sons Ltd.
Highlighting Astyanax Species Diversity through DNA Barcoding
Oliveira, Carlos Alexandre Miranda; de Melo, Filipe Augusto Gonçalves; Bertaco, Vinicius de Araújo; de Astarloa, Juan M. Díaz; Rosso, Juan J.; Foresti, Fausto; Oliveira, Claudio
2016-01-01
DNA barcoding has been used extensively to solve taxonomic questions and identify new species. Neotropical fishes are found in a wide variety of shapes and sizes, with a large number of species yet to be described, many of which are very difficult to identify. Characidae is the most species-rich family of the Characiformes, and many of its genera are affected by taxonomic uncertainties, including the widely-distributed, species-rich genus Astyanax. In this study, we present an extensive analysis of Astyanax covering almost its entire area of occurrence, based on DNA barcoding. The use of different approaches (ABGD, GMYC and BIN) to the clustering of the sequences revealed ample consistency in the results obtained by the initial cutoff value of 2% divergence for putative species in the Neighbor-Joining analysis using the Kimura-2-parameter model. The results indicate the existence of five Astyanax lineages. Some groups, such as that composed by the trans-Andean forms, are mostly composed of well-defined species, and in others a number of nominal species are clustered together, hampering the delimitation of species, which in many cases proved impossible. The results confirm the extreme complexity of the systematics of the genus Astyanax and show that DNA barcoding can be an useful tool to address these complexes questions. PMID:27992537
Beltrami, Caroline Moraes; Dos Reis, Mariana Bisarro; Barros-Filho, Mateus Camargo; Marchi, Fabio Albuquerque; Kuasne, Hellen; Pinto, Clóvis Antônio Lopes; Ambatipudi, Srikant; Herceg, Zdenko; Kowalski, Luiz Paulo; Rogatto, Silvia Regina
2017-01-01
Papillary thyroid carcinoma (PTC) is a common endocrine neoplasm with a recent increase in incidence in many countries. Although PTC has been explored by gene expression and DNA methylation studies, the regulatory mechanisms of the methylation on the gene expression was poorly clarified. In this study, DNA methylation profile (Illumina HumanMethylation 450K) of 41 PTC paired with non-neoplastic adjacent tissues (NT) was carried out to identify and contribute to the elucidation of the role of novel genic and intergenic regions beyond those described in the promoter and CpG islands (CGI). An integrative and cross-validation analysis were performed aiming to identify molecular drivers and pathways that are PTC-related. The comparisons between PTC and NT revealed 4995 methylated probes (88% hypomethylated in PTC) and 1446 differentially expressed transcripts cross-validated by the The Cancer Genome Atlas data. The majority of these probes was found in non-promoters regions, distant from CGI and enriched by enhancers. The integrative analysis between gene expression and DNA methylation revealed 185 and 38 genes (mainly in the promoter and body regions, respectively) with negative and positive correlation, respectively. Genes showing negative correlation underlined FGF and retinoic acid signaling as critical canonical pathways disrupted by DNA methylation in PTC. BRAF mutation was detected in 68% (28 of 41) of the tumors, which presented a higher level of demethylation (95% hypomethylated probes) compared with BRAF wild-type tumors. A similar integrative analysis uncovered 40 of 254 differentially expressed genes, which are potentially regulated by DNA methylation in BRAF V600E-positive tumors. The methylation and expression pattern of six selected genes ( ERBB3 , FGF1 , FGFR2 , GABRB2 , HMGA2 , and RDH5 ) were confirmed as altered by pyrosequencing and RT-qPCR. DNA methylation loss in non-promoter, poor CGI and enhancer-enriched regions was a significant event in PTC, especially in tumors harboring BRAF V600E. In addition to the promoter region, gene body and 3'UTR methylation have also the potential to influence the gene expression levels (both, repressing and inducing). The integrative analysis revealed genes potentially regulated by DNA methylation pointing out potential drivers and biomarkers related to PTC development.
Ravanfar, Seyed Ali; Aziz, Maheran Abdul; Saud, Halimi Mohd; Abdullah, Janna Ong
2015-11-01
An efficient system for shoot regeneration and Agrobacterium tumefaciens-mediated transformation of Brassica oleracea cv. Green Marvel cultivar is described. This study focuses on developing shoot regeneration from hypocotyl explants of broccoli cv. Green Marvel using thidiazuron (TDZ), zeatin, and kinetin, the optimization of factors affecting Agrobacterium-mediated transformation of the hypocotyl explants with heat-resistant cDNA, followed by the confirmation of transgenicity of the regenerants. High shoot regeneration was observed in 0.05-0.1 mg dm(-3) TDZ. TDZ at 0.1 mg dm(-3) produced among the highest percentage of shoot regeneration (96.67 %) and mean number of shoot formation (6.17). The highest percentage (13.33 %) and mean number (0.17) of putative transformant production were on hypocotyl explants subjected to preculture on shoot regeneration medium (SRM) with 200 µM acetosyringone. On optimization of bacterial density and inoculation time, the highest percentage and mean number of putative transformant production were on hypocotyl explants inoculated with a bacterial dilution of 1:5 for 30 min. Polymerase chain reaction (PCR) assay indicated a transformation efficiency of 8.33 %. The luciferase assay showed stable integration of the Arabidopsis thaliana HSP101 (AtHSP101) cDNA in the transgenic broccoli regenerants. Three out of five transgenic lines confirmed through PCR showed positive hybridization bands of the AtHSP101 cDNA through Southern blot analysis. The presence of AtHSP101 transcripts in the three transgenic broccoli lines indicated by reverse transcription-PCR (RT-PCR) confirmed the expression of the gene. In conclusion, an improved regeneration system has been established from hypocotyl explants of broccoli followed by successful transformation with AtHSP101 for resistance to high temperature.
Li, Minchao; Perelman, Juliy M; Zhou, Xiangdong
2012-05-01
To construct phosphorylation sites domain (PSD) mutant of myristoylated alaninerich C kinase substrate (MARCKS) and explore the role of transient receptor potential melastatin 8 cation channels (TRPM8) and MARCKS in cold-induced synthesis and exocytosis of mucin (MUC) 5AC. Human placental cDNA was used as a template to amplify the full coding region of MARCKS cDNA by PCR. Ser159, Ser 163, Ser 167, Ser 170 in the PSD were mutated to aspartic acids by an overlap PCR method. The resultant PSD mutant cDNA and the wild-type MARCKS cDNA were each subcloned into a mammalian expression vector pcDNA3.0. Recombinant constructs were confirmed by restriction enzyme digestion analysis and DNA sequencing. In intervention experiments, cells were pretreated with the TRPM8 channel antagonist BCTC and transfected with MARCKS-PSD mutant cDNA, and thereafter cold stimulation was applied. The levels of MUC5AC were measured by immunofluorescence and ELISA to clarify the roles of TRPM8 and PSD mutant on the synthesis and secretion of MUC5AC induced by cold, respectively. Restriction enzyme digestion analysis and DNA sequencing revealed that the pcDNA3.0- MARCKS and pcDNA3.0-MARCKS-PSD mutants were successfully constructed. The levels of intracellular and secreted MUC5AC of cold treated group were significantly higher than those of control group (P<0.05). BCTC attenuated the cold-induced synthesis and secretion of MUC5AC when compared with cold treated group (P<0.05). Transfection of 16HBE cells with the MARCKS-PSD mutant cDNA resulted in significant inhibition of mucin secretion in response to cold, and significantly higher level of intracellular MUC5AC than that of control group (P<0.01), whereas transfection with the vector DNA or the wild-type MARCKS cDNA had no effect on the mucin synthesis and secretion in response to cold (P>0.05). TRPM8 and phosphorylation of MARCKS-PSD mediates the cold-induced exocytosis of MUC5AC by airway epithelial cells.
Owa, Chie; Poulin, Matthew; Yan, Liying; Shioda, Toshi
2018-01-01
The existence of cytosine methylation in mammalian mitochondrial DNA (mtDNA) is a controversial subject. Because detection of DNA methylation depends on resistance of 5'-modified cytosines to bisulfite-catalyzed conversion to uracil, examined parameters that affect technical adequacy of mtDNA methylation analysis. Negative control amplicons (NCAs) devoid of cytosine methylation were amplified to cover the entire human or mouse mtDNA by long-range PCR. When the pyrosequencing template amplicons were gel-purified after bisulfite conversion, bisulfite pyrosequencing of NCAs did not detect significant levels of bisulfite-resistant cytosines (brCs) at ND1 (7 CpG sites) or CYTB (8 CpG sites) genes (CI95 = 0%-0.94%); without gel-purification, significant false-positive brCs were detected from NCAs (CI95 = 4.2%-6.8%). Bisulfite pyrosequencing of highly purified, linearized mtDNA isolated from human iPS cells or mouse liver detected significant brCs (~30%) in human ND1 gene when the sequencing primer was not selective in bisulfite-converted and unconverted templates. However, repeated experiments using a sequencing primer selective in bisulfite-converted templates almost completely (< 0.8%) suppressed brC detection, supporting the false-positive nature of brCs detected using the non-selective primer. Bisulfite-seq deep sequencing of linearized, gel-purified human mtDNA detected 9.4%-14.8% brCs for 9 CpG sites in ND1 gene. However, because all these brCs were associated with adjacent non-CpG brCs showing the same degrees of bisulfite resistance, DNA methylation in this mtDNA-encoded gene was not confirmed. Without linearization, data generated by bisulfite pyrosequencing or deep sequencing of purified mtDNA templates did not pass the quality control criteria. Shotgun bisulfite sequencing of human mtDNA detected extremely low levels of CpG methylation (<0.65%) over non-CpG methylation (<0.55%). Taken together, our study demonstrates that adequacy of mtDNA methylation analysis using methods dependent on bisulfite conversion needs to be established for each experiment, taking effects of incomplete bisulfite conversion and template impurity or topology into consideration.
Poon, Kok Siong; Sng, Andrew Anjian; Ho, Cindy Weili; Koay, Evelyn Siew-Chuan
2015-01-01
Loss-of-function mutations in the phosphate regulating gene with homologies to endopeptidases on the X-chromosome (PHEX) have been causally associated with X-linked hypophosphatemic rickets (XLHR). The early diagnosis of XLHR in infants is challenging when it is based solely on clinical features and biochemical findings. We report a 7-month-old boy with a family history of hypophosphatemic rickets., who demonstrated early clinical evidence of rickets, although serial biochemical findings could not definitively confirm rickets. A sequencing assay targeting the PHEX gene was first performed on the mother’s DNA to screen for mutations in the 5′UTR, 22 coding exons, and the exon-intron junctions. Targeted mutation analysis and mRNA studies were subsequently performed on the boys’ DNA to investigate the pathogenicity of the identified mutation. Genetic screening of the PHEX gene revealed a novel mutation, c.1080-2A>C, at the splice acceptor site in intron 9. The detection of an aberrant mRNA transcript with skipped (loss of) exon 10 establishes its pathogenicity and confirms the diagnosis of XLHR in this infant. Genetic testing of the PHEX gene resulted in early diagnosis of XLHR, thus enabling initiation of therapy and prevention of progressive rachitic changes in the infant. PMID:26904698
Clinicopathologic and molecular spectrum of RNASEH1-related mitochondrial disease
Bugiardini, Enrico; Poole, Olivia V.; Manole, Andreea; Pittman, Alan M.; Horga, Alejandro; Hargreaves, Iain; Woodward, Cathy E.; Sweeney, Mary G.; Holton, Janice L.; Taanman, Jan-Willem; Plant, Gordon T.; Poulton, Joanna; Zeviani, Massimo; Ghezzi, Daniele; Taylor, John; Smith, Conrad; Fratter, Carl; Kanikannan, Meena A.; Paramasivam, Arumugam; Thangaraj, Kumarasamy; Spinazzola, Antonella; Holt, Ian J.; Houlden, Henry; Hanna, Michael G.
2017-01-01
Objective: Pathologic ribonuclease H1 (RNase H1) causes aberrant mitochondrial DNA (mtDNA) segregation and is associated with multiple mtDNA deletions. We aimed to determine the prevalence of RNase H1 gene (RNASEH1) mutations among patients with mitochondrial disease and establish clinically meaningful genotype-phenotype correlations. Methods: RNASEH1 was analyzed in patients with (1) multiple deletions/depletion of muscle mtDNA and (2) mendelian progressive external ophthalmoplegia (PEO) with neuropathologic evidence of mitochondrial dysfunction, but no detectable multiple deletions/depletion of muscle mtDNA. Clinicopathologic and molecular evaluation of the newly identified and previously reported patients harboring RNASEH1 mutations was subsequently undertaken. Results: Pathogenic c.424G>A p.Val142Ile RNASEH1 mutations were detected in 3 pedigrees among the 74 probands screened. Given that all 3 families had Indian ancestry, RNASEH1 genetic analysis was undertaken in 50 additional Indian probands with variable clinical presentations associated with multiple mtDNA deletions, but no further RNASEH1 mutations were confirmed. RNASEH1-related mitochondrial disease was characterized by PEO (100%), cerebellar ataxia (57%), and dysphagia (50%). The ataxia neuropathy spectrum phenotype was observed in 1 patient. Although the c.424G>A p.Val142Ile mutation underpins all reported RNASEH1-related mitochondrial disease, haplotype analysis suggested an independent origin, rather than a founder event, for the variant in our families. Conclusions: In our cohort, RNASEH1 mutations represent the fourth most common cause of adult mendelian PEO associated with multiple mtDNA deletions, following mutations in POLG, RRM2B, and TWNK. RNASEH1 genetic analysis should also be considered in all patients with POLG-negative ataxia neuropathy spectrum. The pathophysiologic mechanisms by which the c.424G>A p.Val142Ile mutation impairs human RNase H1 warrant further investigation. PMID:28508084
IMP-29, a Novel IMP-Type Metallo-β-Lactamase in Pseudomonas aeruginosa
Jeannot, Katy; Poirel, Laurent; Robert-Nicoud, Marjorie; Cholley, Pascal; Nordmann, Patrice
2012-01-01
Analysis of two clonally related multiresistant Pseudomonas aeruginosa isolates led to the identification of a novel IMP-type metallo-β-lactamase. IMP-29 was significantly different from the other IMP variants (the closest variant being IMP-5 with 93% amino acid identity). The blaIMP-29 gene cassette was carried by a class 1 integron in strain 10.298, while in strain 10.266 it was located in a rearranged DNA region on a 30-kb conjugative plasmid. Biochemical analysis confirmed that IMP-29 efficiently hydrolyzed carbapenems. PMID:22290960
An ocular cysticercosis case: Caused by Asian genotype of Taenia solium.
Sharma, M; Beke, N; Khurana, S; Bhatti, H S; Sehgal, R; Malla, N
2015-01-01
An ocular cysticercosis case of a 42-year-old male, who presented with anterior uveitis is being reported. Microscopical examination of the cyst revealed presence of only one hooklet suggestive of T. solium cysticercus. Mitochondrial DNA analysis confirmed it to be T. solium cysticercus of Asian genotype. This is the first report on molecular typing of cysticercus isolate from ocular cysticercosis patient in India. The study suggests that the molecular analysis of cox1 gene may be a useful diagnostic tool in cases where microscopic examination is not confirmatory.
Congenital disorder of glycosylation Ic due to a de novo deletion and an hALG-6 mutation.
Eklund, Erik A; Sun, Liangwu; Yang, Samuel P; Pasion, Romela M; Thorland, Erik C; Freeze, Hudson H
2006-01-20
We describe a new cause of congenital disorder of glycosylation-Ic (CDG-Ic) in a young girl with a rather mild CDG phenotype. Her cells accumulated lipid-linked oligosaccharides lacking three glucose residues, and sequencing of the ALG6 gene showed what initially appeared to be a homozygous novel point mutation (338G>A). However, haplotype analysis showed that the patient does not carry any paternal DNA markers extending 33kb in the telomeric direction from the ALG6 region, and microsatellite analysis extended the abnormal region to at least 2.5Mb. We used high-resolution karyotyping to confirm a deletion (10-12Mb) [del(1)(p31.2p32.3)] and found no structural abnormalities in the father, suggesting a de novo event. Our findings extend the causes of CDG to larger DNA deletions and identify the first Japanese CDG-Ic mutation.
Burkholderia cordobensis sp. nov., from agricultural soils.
Draghi, Walter O; Peeters, Charlotte; Cnockaert, Margo; Snauwaert, Cindy; Wall, Luis G; Zorreguieta, Angeles; Vandamme, Peter
2014-06-01
Two Gram-negative, rod-shaped bacteria were isolated from agricultural soils in Córdoba province in central Argentina. Their 16S rRNA gene sequences demonstrated that they belong to the genus Burkholderia, with Burkholderia zhejiangensis as most closely related formally named species; this relationship was confirmed through comparative gyrB sequence analysis. Whole-cell fatty acid analysis supported their assignment to the genus Burkholderia. Burkholderia sp. strain YI23, for which a whole-genome sequence is available, represents the same taxon, as demonstrated by its highly similar 16S rRNA (100% similarity) and gyrB (99.1-99.7%) gene sequences. The results of DNA-DNA hybridization experiments and physiological and biochemical characterization further substantiated the genotypic and phenotypic distinctiveness of the Argentinian soil isolates, for which the name Burkholderia cordobensis sp. nov. is proposed, with strain MMP81(T) ( = LMG 27620(T) = CCUG 64368(T)) as the type strain. © 2014 IUMS.
Kong, B H; Hanifah, Y A; Yusof, M Y; Thong, K L
2011-12-01
Acinetobacter baumannii, genomic species 3 and 13TU are being increasingly reported as the most important Acinetobacter species that cause infections in hospitalized patients. These Acinetobacter species are grouped in the Acinetobacter calcoaceticus- Acinetobacter baumannii (Acb) complex. Differentiation of the species in the Acb-complex is limited by phenotypic methods. Therefore, in this study, amplified ribosomal DNA restriction analysis (ARDRA) was applied to confirm the identity A. baumannii strains as well as to differentiate between the subspecies. One hundred and eighty-five strains from Intensive Care Unit, Universiti Malaya Medical Center (UMMC) were successfully identified as A. baumannii by ARDRA. Acinetobacter genomic species 13TU and 15TU were identified in 3 and 1 strains, respectively. ARDRA provides an accurate, rapid and definitive approach towards the identification of the species level in the genus Acinetobacter. This paper reports the first application ARDRA in genospecies identification of Acinetobacter in Malaysia.
Yao, Lin; Yang, Qian; Song, Jinzhu; Tan, Chong; Guo, Changhong; Wang, Li; Qu, Lianhai; Wang, Yun
2013-04-01
Trichoderma harzianum 88, a filamentous soil fungus, is an effective biocontrol agent against several plant pathogens. High-throughput sequencing was used here to study the mycoparasitism mechanisms of T. harzianum 88. Plate confrontation tests of T. harzianum 88 against plant pathogens were conducted, and a cDNA library was constructed from T. harzianum 88 mycelia in the presence of plant pathogen cell walls. Randomly selected transcripts from the cDNA library were compared with eukaryotic plant and fungal genomes. Of the 1,386 transcripts sequenced, the most abundant Gene Ontology (GO) classification group was "physiological process". Differential expression of 19 genes was confirmed by real-time RT-PCR at different mycoparasitism stages against plant pathogens. Gene expression analysis revealed the transcription of various genes involved in mycoparasitism of T. harzianum 88. Our study provides helpful insights into the mechanisms of T. harzianum 88-plant pathogen interactions.
Yao, Jia-Long; Tomes, Sumathi; Gleave, Andrew P
2013-05-01
Apple acetolactate synthase mutants were generated by site-specific mutagenesis and successfully used as selection marker in tobacco and apple transformation. T-DNA/Apple genome junctions were analysed using genome-walking PCR and sequencing. An Agrobacterium-mediated genetic transformation system was developed for apple (Malus × domestica), using mutants of apple acetolactate synthase (ALS) as a selectable marker. Four apple ALS mutants were generated by site-specific mutagenesis and subsequently cloned under the transcriptional control of the CaMV 35S promoter and ocs 3' terminator, in a pART27-derived plant transformation vector. Three of the four mutations were found to confer resistance to the herbicide Glean(®), containing the active agent chlorsulfuron, in tobacco (Nicotiana tabacum) transformation. In apple transformation, leaf explants infected with Agrobacterium tumefaciens EHA105 containing one of the three ALS mutants resulted in the production of shoots on medium containing 2-8 μg L(-1) Glean(®), whilst uninfected wild-type explants failed to regenerate shoots or survive on medium containing 1 and 3 μg L(-1) Glean(®), respectively. Glean(®)-resistant, regenerated shoots were further multiplied and rooted on medium containing 10 μg L(-1) Glean(®). The T-DNA and apple genome-DNA junctions from eight rooted transgenic apple plants were analysed using genome-walking PCR amplification and sequencing. This analysis confirmed T-DNA integration into the apple genome, identified the genome integration sites and revealed the extent of any vector backbone integration, T-DNA rearrangements and deletions of apple genome DNA at the sites of integration.
Tyagi, Nikhil; Srivastava, Sanjeev K; Arora, Sumit; Omar, Yousef; Ijaz, Zohaib Mohammad; Al-Ghadhban, Ahmed; Deshmukh, Sachin K; Carter, James E; Singh, Ajay P; Singh, Seema
2016-12-01
Sunscreen formulations containing UVB filters, such as Zinc-oxide (ZnO) and titanium-dioxide (TiO 2 ) nanoparticles (NPs) have been developed to limit the exposure of human skin to UV-radiations. Unfortunately, these UVB protective agents have failed in controlling the skin cancer incidence. We recently demonstrated that silver nanoparticles (Ag-NPs) could serve as novel protective agents against UVB-radiations. Here our goal was to perform comparative analysis of direct and indirect UVB-protection efficacy of ZnO-, TiO 2 - and Ag-NPs. Sun-protection-factor calculated based on their UVB-reflective/absorption abilities was the highest for TiO 2 -NPs followed by Ag- and ZnO-NPs. This was further confirmed by studying indirect protection of UVB radiation-induced death of HaCaT cells. However, only Ag-NPs were active in protecting HaCaT cells against direct UVB-induced DNA-damage by repairing bulky-DNA lesions through nucleotide-excision-repair mechanism. Moreover, Ag-NPs were also effective in protecting HaCaT cells from UVB-induced oxidative DNA damage by enhancing SOD/CAT/GPx activity. In contrast, ZnO- and TiO 2 -NPs not only failed in providing any direct protection from DNA-damage, but rather enhanced oxidative DNA-damage by increasing ROS production. Together, these findings raise concerns about safety of ZnO- and TiO 2 -NPs and establish superior protective efficacy of Ag-NPs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Huang, Rui-Lan; Gu, Fei; Kirma, Nameer B; Ruan, Jianhua; Chen, Chun-Liang; Wang, Hui-Chen; Liao, Yu-Ping; Chang, Cheng-Chang; Yu, Mu-Hsien; Pilrose, Jay M; Thompson, Ian M; Huang, Hsuan-Cheng; Huang, Tim Hui-Ming; Lai, Hung-Cheng; Nephew, Kenneth P
2013-06-01
Women with advanced stage ovarian cancer (OC) have a five-year survival rate of less than 25%. OC progression is associated with accumulation of epigenetic alterations and aberrant DNA methylation in gene promoters acts as an inactivating "hit" during OC initiation and progression. Abnormal DNA methylation in OC has been used to predict disease outcome and therapy response. To globally examine DNA methylation in OC, we used next-generation sequencing technology, MethylCap-sequencing, to screen 75 malignant and 26 normal or benign ovarian tissues. Differential DNA methylation regions (DMRs) were identified, and the Kaplan-Meier method and Cox proportional hazard model were used to correlate methylation with clinical endpoints. Functional role of specific genes identified by MethylCap-sequencing was examined in in vitro assays. We identified 577 DMRs that distinguished (p < 0.001) malignant from non-malignant ovarian tissues; of these, 63 DMRs correlated (p < 0.001) with poor progression free survival (PFS). Concordant hypermethylation and corresponding gene silencing of sonic hedgehog pathway members ZIC1 and ZIC4 in OC tumors was confirmed in a panel of OC cell lines, and ZIC1 and ZIC4 repression correlated with increased proliferation, migration and invasion. ZIC1 promoter hypermethylation correlated (p < 0.01) with poor PFS. In summary, we identified functional DNA methylation biomarkers significantly associated with clinical outcome in OC and suggest our comprehensive methylome analysis has significant translational potential for guiding the design of future clinical investigations targeting the OC epigenome. Methylation of ZIC1, a putative tumor suppressor, may be a novel determinant of OC outcome.
Burton, Barbara K; Kronn, David F; Hwu, Wuh-Liang; Kishnani, Priya S
2017-07-01
Newborn screening (NBS) for Pompe disease is done through analysis of acid α-glucosidase (GAA) activity in dried blood spots. When GAA levels are below established cutoff values, then second-tier testing is required to confirm or refute a diagnosis of Pompe disease. This article in the "Newborn Screening, Diagnosis, and Treatment for Pompe Disease" guidance supplement provides recommendations for confirmatory testing after a positive NBS result indicative of Pompe disease is obtained. Two algorithms were developed by the Pompe Disease Newborn Screening Working Group, a group of international experts on both NBS and Pompe disease, based on whether DNA sequencing is performed as part of the screening method. Using the recommendations in either algorithm will lead to 1 of 3 diagnoses: classic infantile-onset Pompe disease, late-onset Pompe disease, or no disease/not affected/carrier. Mutation analysis of the GAA gene is essential for confirming the biochemical diagnosis of Pompe disease. For NBS laboratories that do not have DNA sequencing capabilities, the responsibility of obtaining sequencing of the GAA gene will fall on the referral center. The recommendations for confirmatory testing and the initial evaluation are intended for a broad global audience. However, the Working Group recognizes that clinical practices, standards of care, and resource capabilities vary not only regionally, but also by testing centers. Individual patient needs and health status as well as local/regional insurance reimbursement programs and regulations also must be considered. Copyright © 2017 by the American Academy of Pediatrics.
The Siblings With Ischemic Stroke Study (SWISS) Protocol
Meschia, James F; Brown, Robert D; Brott, Thomas G; Chukwudelunzu, Felix E; Hardy, John; Rich, Stephen S
2002-01-01
Background Family history and twins studies suggest an inherited component to ischemic stroke risk. Candidate gene association studies have been performed but have limited capacity to identify novel risk factor genes. The Siblings With Ischemic Stroke Study (SWISS) aims to conduct a genome-wide scan in sibling pairs concordant or discordant for ischemic stroke to identify novel genetic risk factors through linkage analysis. Methods Screening at multiple clinical centers identifies patients (probands) with radiographically confirmed ischemic stroke and a family history of at least 1 living full sibling with stroke. After giving informed consent, without violating privacy among other family members, the proband invites siblings concordant and discordant for stroke to participate. Siblings then contact the study coordinating center. The diagnosis of ischemic stroke in potentially concordant siblings is confirmed by systematic centralized review of medical records. The stroke-free status of potentially discordant siblings is confirmed by validated structured telephone interview. Blood samples for DNA analysis are taken from concordant sibling pairs and, if applicable, from 1 discordant sibling. Epstein-Barr virus-transformed lymphoblastoid cell lines are created, and a scan of the human genome is planned. Discussion Conducting adequately powered genomics studies of stroke in humans is challenging because of the heterogeneity of the stroke phenotype and the difficulty of obtaining DNA samples from clinically well-characterized members of a cohort of stroke pedigrees. The multicentered design of this study is intended to efficiently assemble a cohort of ischemic stroke pedigrees without invoking community consent or using cold-calling of pedigree members. PMID:11882254
Wang, Xiaojie; Tang, Chunlei; Zhang, Gang; Li, Yingchun; Wang, Chenfang; Liu, Bo; Qu, Zhipeng; Zhao, Jie; Han, Qingmei; Huang, Lili; Chen, Xianming; Kang, Zhensheng
2009-01-01
Background Puccinia striiformis f. sp. tritici is a fungal pathogen causing stripe rust, one of the most important wheat diseases worldwide. The fungus is strictly biotrophic and thus, completely dependent on living host cells for its reproduction, which makes it difficult to study genes of the pathogen. In spite of its economic importance, little is known about the molecular basis of compatible interaction between the pathogen and wheat host. In this study, we identified wheat and P. striiformis genes associated with the infection process by conducting a large-scale transcriptomic analysis using cDNA-AFLP. Results Of the total 54,912 transcript derived fragments (TDFs) obtained using cDNA-AFLP with 64 primer pairs, 2,306 (4.2%) displayed altered expression patterns after inoculation, of which 966 showed up-regulated and 1,340 down-regulated. 186 TDFs produced reliable sequences after sequencing of 208 TDFs selected, of which 74 (40%) had known functions through BLAST searching the GenBank database. Majority of the latter group had predicted gene products involved in energy (13%), signal transduction (5.4%), disease/defence (5.9%) and metabolism (5% of the sequenced TDFs). BLAST searching of the wheat stem rust fungus genome database identified 18 TDFs possibly from the stripe rust pathogen, of which 9 were validated of the pathogen origin using PCR-based assays followed by sequencing confirmation. Of the 186 reliable TDFs, 29 homologous to genes known to play a role in disease/defense, signal transduction or uncharacterized genes were further selected for validation of cDNA-AFLP expression patterns using qRT-PCR analyses. Results confirmed the altered expression patterns of 28 (96.5%) genes revealed by the cDNA-AFLP technique. Conclusion The results show that cDNA-AFLP is a reliable technique for studying expression patterns of genes involved in the wheat-stripe rust interactions. Genes involved in compatible interactions between wheat and the stripe rust pathogen were identified and their expression patterns were determined. The present study should be helpful in elucidating the molecular basis of the infection process, and identifying genes that can be targeted for inhibiting the growth and reproduction of the pathogen. Moreover, this study can also be used to elucidate the defence responses of the genes that were of plant origin. PMID:19566949
Evaluation of environmental genotoxicity by comet assay in Columba livia.
González-Acevedo, Anahi; García-Salas, Juan A; Gosálvez, Jaime; Fernández, José Luis; Dávila-Rodríguez, Martha I; Cerda-Flores, Ricardo M; Méndez-López, Luis F; Cortés-Gutiérrez, Elva I
2016-01-01
The concentrations of recognized or suspected genotoxic and carcinogenic agents found in the air of large cities and, in particular, developing countries, have raised concerns about the potential for chronic health effects in the populations exposed to them. The biomonitoring of environmental genotoxicity requires the selection of representative organisms as "sentinels," as well as the development of suitable and sensitive assays, such as those aimed at assessing DNA damage. The aim of this study was to evaluate DNA damage levels in erythrocytes from Columba livia living in the metropolitan area of Monterrey, Mexico, compared with control animals via comet assay, and to confirm the results via Micronuclei test (MN) and DNA breakage detection-fluorescence in situ hybridization (DBD-FISH). Our results showed a significant increase in DNA migration in animals from the area assayed compared with that observed in control animals sampled in non-contaminated areas. These results were confirmed by MN test and DBD-FISH. In conclusion, these observations confirm that the examination of erythrocytes from Columba livia via alkaline comet assay provides a sensitive and reliable end point for the detection of environmental genotoxicants.
Wu, Liang; Yang, Jinzeng
2012-01-01
The tilapia family of the Cichlidae includes many fish species, which live in freshwater and saltwater environments. Several species, such as O. niloticus, O. aureus, and O. mossambicus, are excellent for aquaculture because these fish are easily reproduced and readily adapt to diverse environments. Historically, tilapia species, including O. mossambicus, S. melanotheron, and O. aureus, were introduced to Hawaii many decades ago, and the state of Hawaii uses the import permit policy to prevent O. niloticus from coming into the islands. However, hybrids produced from O. niloticus may already be present in the freshwater and marine environments of the islands. The purpose of this study was to identify tilapia species that exist in Hawaii using mitochondrial DNA analysis. In this study, we analyzed 382 samples collected from 13 farm (captive) and wild tilapia populations in Oahu and the Hawaii Islands. Comparison of intraspecies variation between the mitochondrial DNA control region (mtDNA CR) and cytochrome c oxidase I (COI) gene from five populations indicated that mtDNA CR had higher nucleotide diversity than COI. A phylogenetic tree of all sampled tilapia was generated using mtDNA CR sequences. The neighbor-joining tree analysis identified seven distinctive tilapia species: O. aureus, O. mossambicus, O. niloticus, S. melanotheron, O. urolepies, T. redalli, and a hybrid of O. massambicus and O. niloticus. Of all the populations examined, 10 populations consisting of O. aureus, O. mossambicus, O. urolepis, and O. niloticus from the farmed sites were relatively pure, whereas three wild populations showed some degree of introgression and hybridization. This DNA-based tilapia species identification is the first report that confirmed tilapia species identities in the wild and captive populations in Hawaii. The DNA sequence comparisons of mtDNA CR appear to be a valid method for tilapia species identification. The suspected tilapia hybrids that consist of O. niloticus are present in captive and wild populations in Hawaii.
Wu, Liang; Yang, Jinzeng
2012-01-01
Background The tilapia family of the Cichlidae includes many fish species, which live in freshwater and saltwater environments. Several species, such as O. niloticus, O. aureus, and O. mossambicus, are excellent for aquaculture because these fish are easily reproduced and readily adapt to diverse environments. Historically, tilapia species, including O. mossambicus, S. melanotheron, and O. aureus, were introduced to Hawaii many decades ago, and the state of Hawaii uses the import permit policy to prevent O. niloticus from coming into the islands. However, hybrids produced from O. niloticus may already be present in the freshwater and marine environments of the islands. The purpose of this study was to identify tilapia species that exist in Hawaii using mitochondrial DNA analysis. Methodology/Principal Findings In this study, we analyzed 382 samples collected from 13 farm (captive) and wild tilapia populations in Oahu and the Hawaii Islands. Comparison of intraspecies variation between the mitochondrial DNA control region (mtDNA CR) and cytochrome c oxidase I (COI) gene from five populations indicated that mtDNA CR had higher nucleotide diversity than COI. A phylogenetic tree of all sampled tilapia was generated using mtDNA CR sequences. The neighbor-joining tree analysis identified seven distinctive tilapia species: O. aureus, O. mossambicus, O. niloticus, S. melanotheron, O. urolepies, T. redalli, and a hybrid of O. massambicus and O. niloticus. Of all the populations examined, 10 populations consisting of O. aureus, O. mossambicus, O. urolepis, and O. niloticus from the farmed sites were relatively pure, whereas three wild populations showed some degree of introgression and hybridization. Conclusions/Significance This DNA-based tilapia species identification is the first report that confirmed tilapia species identities in the wild and captive populations in Hawaii. The DNA sequence comparisons of mtDNA CR appear to be a valid method for tilapia species identification. The suspected tilapia hybrids that consist of O. niloticus are present in captive and wild populations in Hawaii. PMID:23251613
Ting, Jie; Smith, Jennifer S; Myers, Evan R
2015-10-01
To compare the cost-effectiveness of high-risk human papillomavirus (hrHPV) testing using a hrHPV DNA and a hrHPV messenger RNA (mRNA) assay under current US cervical cancer screening guidelines. We constructed a Markov model for stochastic cost-effectiveness analysis using published data. We compared screening efficiency using DNA and mRNA testing for the following: (1) cotesting with cytology in women 30 to 65 years, and (2) triage of women with mild cervical cytological abnormalities (atypical squamous cells of undetermined significance [ASC-US]) in the United States. Screening end point is histologically confirmed high-grade lesions (cervical intraepithelial neoplasia grade 2, 3, or invasive cancer). Sensitivity and specificity estimates of DNA and mRNA testing to detect cervical intraepithelial neoplasia grade 2, 3, or invasive cancer were obtained from 2 published trials: the US Clinical Evaluation of APTIMA mRNA (CLEAR) study for ASC-US triage and the French APTIMA Screening Evaluation (FASE) study for cotesting. Costs of DNA and mRNA testing were assumed identical. Costs of screening, diagnosis, and treatment of cervical neoplasia and cancer were from previously published estimates, adjusted to 2012 US dollars. Inputs were modeled as distributions for Monte Carlo probabilistic sensitivity analysis. Model outcomes were costs per life-year saved for each strategy, discounted at 3% annually. For both cotesting and ASC-US triage, mRNA testing cost less than DNA testing, whereas life expectancies were widely overlapping. There was a 100% probability that DNA testing was not cost-effective at $100,000/life-year saved threshold for ASC-US triage and a 55% probability that DNA testing was not cost-effective at the same threshold for cotesting. Based on the available evidence, mRNA testing for cotesting or ASC-US triage is likely to be more efficient than DNA testing under current US cervical cancer screening guidelines.
Direct analysis in real time mass spectrometry for analysis of sexual assault evidence.
Musah, Rabi A; Cody, Robert B; Dane, A John; Vuong, Angela L; Shepard, Jason R E
2012-05-15
Sexual assault crimes are vastly underreported and suffer from alarmingly low prosecution and conviction rates. The key scientific method to aid in prosecution of such cases is forensic DNA analysis, where biological evidence such as semen collected using a rape test kit is used to determine a suspect's DNA profile. However, the growing awareness by criminals of the importance of DNA in the prosecution of sexual assaults has resulted in increased condom use by assailants as a means to avoid leaving behind their DNA. Thus, other types of trace evidence are important to help corroborate victims' accounts, exonerate the innocent, link suspects to the crime, or confirm penetration. Direct Analysis in Real Time Mass Spectrometry (DART-MS) was employed for the comprehensive characterization of non-DNA trace evidence associated with sexual assault. The ambient ionization method associated with DART-MS is extremely rapid and samples are processed instantaneously, without the need for extraction, sample preparation, or other means that might compromise forensic evidence for future analyses. In a single assay, we demonstrated the ability to identify lubricant formulations associated with sexual assault, such as the spermicide nonoxynol-9, compounds used in condom manufacture, and numerous other trace components as probative evidence. In addition, the method can also serve to identify compounds within trace biological residues, such as fatty acids commonly identified in latent fingerprints. Characterization of lubricant residues as probative evidence serves to establish a connection between the victim and the perpetrator, and the availability of these details may lead to higher rates of prosecution and conviction, as well as more severe penalties. The methodology described here opens the way for the adoption of a comprehensive, rapid, and sensitive analysis for use in crime labs, while providing knowledge that can inform and guide criminal justice policy and practice. Copyright © 2012 John Wiley & Sons, Ltd.
Gim, Jeong-An; Hong, Chang Pyo; Kim, Dae-Soo; Moon, Jae-Woo; Choi, Yuri; Eo, Jungwoo; Kwon, Yun-Jeong; Lee, Ja-Rang; Jung, Yi-Deun; Bae, Jin-Han; Choi, Bong-Hwan; Ko, Junsu; Song, Sanghoon; Ahn, Kung; Ha, Hong-Seok; Yang, Young Mok; Lee, Hak-Kyo; Park, Kyung-Do; Do, Kyoung-Tag; Han, Kyudong; Yi, Joo Mi; Cha, Hee-Jae; Ayarpadikannan, Selvam; Cho, Byung-Wook; Bhak, Jong; Kim, Heui-Soo
2015-01-01
Athletic performance is an important criteria used for the selection of superior horses. However, little is known about exercise-related epigenetic processes in the horse. DNA methylation is a key mechanism for regulating gene expression in response to environmental changes. We carried out comparative genomic analysis of genome-wide DNA methylation profiles in the blood samples of two different thoroughbred horses before and after exercise by methylated-DNA immunoprecipitation sequencing (MeDIP-Seq). Differentially methylated regions (DMRs) in the pre-and post-exercise blood samples of superior and inferior horses were identified. Exercise altered the methylation patterns. After 30 min of exercise, 596 genes were hypomethylated and 715 genes were hypermethylated in the superior horse, whereas in the inferior horse, 868 genes were hypomethylated and 794 genes were hypermethylated. These genes were analyzed based on gene ontology (GO) annotations and the exercise-related pathway patterns in the two horses were compared. After exercise, gene regions related to cell division and adhesion were hypermethylated in the superior horse, whereas regions related to cell signaling and transport were hypermethylated in the inferior horse. Analysis of the distribution of methylated CpG islands confirmed the hypomethylation in the gene-body methylation regions after exercise. The methylation patterns of transposable elements also changed after exercise. Long interspersed nuclear elements (LINEs) showed abundance of DMRs. Collectively, our results serve as a basis to study exercise-based reprogramming of epigenetic traits. PMID:25666347
Muraiso, T; Nomoto, S; Yamazaki, H; Mishima, Y; Kominami, R
1992-01-01
A protein that binds to a synthetic oligonucleotide of (CCT)12 has been purified from Ehrlich ascites tumor cells by a (CCT)12 affinity chromatography. The protein (p70) has an apparent molecular mass of 70 kDa, as assayed by Southwestern analysis. A competition experiment revealed that p70 binds to (CCT)12, (CCCT)8 and (CCTCCCT)6, but not to (CTT)12, (CT)16 and (CCTGCCT)6, suggesting that p70 has a sequence-specificity. The complementary (AGG)12 and the double stranded DNA did not show the binding. It is also confirmed by S1 nuclease analysis that the (AGG:CCT)12 duplex takes a single-stranded conformation in the absence of the protein. This raises a possibility that the duplex forms two single-stranded loops in chromosomes, the C-rich strand being bound to p70. Structural analysis of the resulting (AGG)12 strand by non-denaturing polyacrylamide gel electrophoresis demonstrated the presence of slower and faster migrated conformers in a neutral pH buffer containing 50 mM NaCl at 5 degrees C. The ratio was dependent on the DNA concentration. Both conformers disappeared in the absence of NaCl. This suggests that (AGG)12 can form intra- and inter-molecular complexes by non-Watson-Crick, guanine:guanine base-pairing. The possible biological function of the (AGG:CCT)n duplex and the p70 is discussed. Images PMID:1480484
Xie, Cheng-Hui; Yokota, Akira
2006-04-01
Three yellow-pigmented strains associated with rice plants were characterized by using a polyphasic approach. The nitrogen-fixing abilities of these strains were confirmed by acetylene reduction assay and nifH gene detection. The three strains were found to be very closely related, with 99.9 % 16S rRNA gene sequence similarity and greater than 70 % DNA-DNA hybridization values, suggesting that the three strains represent a single species. 16S rRNA gene sequence analysis indicated that the strains were closely related to Sphingomonas trueperi, with 99.5 % similarity. The chemotaxonomic characteristics (G+C content of the DNA of 68.0 mol%, ubiquinone Q-10 system, 2-OH as the only hydroxy fatty acid and homospermidine as the sole polyamine) were similar to those of members of the genus Sphingomonas. Based on DNA-DNA hybridization values and physiological characteristics, the three novel strains could be differentiated from other recognized species of the genus Sphingomonas. The name Sphingomonas azotifigens sp. nov. is proposed to accommodate these bacterial strains; the type strain is Y39T (=NBRC 15497T = IAM 15283T = CCTCC AB205007T).
Wilson, J-J; Sing, K-W; Halim, M R A; Ramli, R; Hashim, R; Sofian-Azirun, M
2014-02-19
Bats are important flagship species for biodiversity research; however, diversity in Southeast Asia is considerably underestimated in the current checklists and field guides. Incorporation of DNA barcoding into surveys has revealed numerous species-level taxa overlooked by conventional methods. Inclusion of these taxa in inventories provides a more informative record of diversity, but is problematic as these species lack formal description. We investigated how frequently documented, but undescribed, bat taxa are encountered in Peninsular Malaysia. We discuss whether a barcode library provides a means of recognizing and recording these taxa across biodiversity inventories. Tissue was sampled from bats trapped at Pasir Raja, Dungun Terengganu, Peninsular Malaysia. The DNA was extracted and the COI barcode region amplified and sequenced. We identified 9 species-level taxa within our samples, based on analysis of the DNA barcodes. Six specimens matched to four previously documented taxa considered candidate species but currently lacking formal taxonomic status. This study confirms the high diversity of bats within Peninsular Malaysia (9 species in 13 samples) and demonstrates how DNA barcoding allows for inventory and documentation of known taxa lacking formal taxonomic status.
Bogacheva, Mariia; Egorova, Anna; Slita, Anna; Maretina, Marianna; Baranov, Vladislav; Kiselev, Anton
2017-11-01
The major barriers for intracellular DNA transportation by cationic polymers are their toxicity, poor endosomal escape and inefficient nuclear uptake. Therefore, we designed novel modular peptide-based carriers modified with SV40 nuclear localization signal (NLS). Core peptide consists of arginine, histidine and cysteine residues for DNA condensation, endosomal escape promotion and interpeptide cross-linking, respectively. We investigated three polyplexes with different NLS content (10 mol%, 50 mol% and 90 mol% of SV40 NLS) as vectors for intranuclear DNA delivery. All carriers tested were able to condense DNA, to protect it from DNAase I and were not toxic to the cells. We observed that cell cycle arrest by hydroxyurea did not affect transfection efficacy of NLS-modified carriers which we confirmed using quantitative confocal microscopy analysis. Overall, peptide carrier modified with 90 mol% of SV40 NLS provided efficient transfection and nuclear uptake in non-dividing cells. Thus, incorporation of NLS into arginine-rich cross-linking peptides is an adequate approach to the development of efficient intranuclear gene delivery vehicles. Copyright © 2017 Elsevier Ltd. All rights reserved.
Vagococcus carniphilus sp. nov., isolated from ground beef.
Shewmaker, P Lynn; Steigerwalt, Arnold G; Morey, Roger E; Carvalho, Maria da Glória S; Elliott, John A; Joyce, Kevin; Barrett, Timothy J; Teixeira, Lucia M; Facklam, Richard R
2004-09-01
Nine enterococcus-like strains were referred to the Streptococcus Laboratory at the Centers for Disease Control and Prevention (CDC) for further identification from the National Antimicrobial Resistance Monitoring System Laboratory at the CDC. The cultures were isolated from ground beef purchased from retail in Oregon in 2000. Conventional biochemical testing and analysis of whole-cell protein electrophoretic profiles distinguished these strains from known species of enterococci and vagococci. Comparative 16S rRNA gene sequencing studies revealed that these strains were most closely related to the species Vagococcus fluvialis. DNA-DNA reassociation studies confirmed that these nine strains represented a new taxon. The relative binding ratio was 87 % or greater at the optimal temperature, and the divergence was less than 1 % for strains hybridized against the isolate designated the type strain. DNA-DNA relatedness was 25 % to V. fluvialis and 9 % or less to the other three species of Vagococcus. DNA-DNA relatedness was 33 % or less to the 25 currently described species of Enterococcus. On the basis of this evidence, it is proposed that these strains be classified as Vagococcus carniphilus sp. nov. The type strain of V. carniphilus is 1843-02T (= ATCC BAA-640T = CCUG 46823T). The clinical significance (if any) of these strains is yet to be determined.
Nuclear DNA content variation in life history phases of the Bonnemasoniaceae (Rhodophyta).
Salvador Soler, Noemi; Gómez Garreta, Amelia; Ribera Siguan, Ma Antonia; Kapraun, Donald F
2014-01-01
Nuclear DNA content in gametophytes and sporophytes or the prostrate phases of the following species of Bonnemaisoniaceae (Asparagopsis armata, Asparagopsis taxiformis, Bonnemaisonia asparagoides, Bonnemaisonia clavata and Bonnemaisonia hamifera) were estimated by image analysis and static microspectrophotometry using the DNA-localizing fluorochrome DAPI (4', 6-diamidino-2-phenylindole, dilactate) and the chicken erythrocytes standard. These estimates expand on the Kew database of DNA nuclear content. DNA content values for 1C nuclei in the gametophytes (spermatia and vegetative cells) range from 0.5 pg to 0.8 pg, and for 2C nuclei in the sporophytes or the prostrate phases range from 1.15-1.7 pg. Although only the 2C and 4C values were observed in the sporophyte or the prostrate phase, in the vegetative cells of the gametophyte the values oscillated from 1C to 4C, showing the possible start of endopolyploidy. The results confirm the alternation of nuclear phases in these Bonnemaisoniaceae species, in those that have tetrasporogenesis, as well as those that have somatic meiosis. The availability of a consensus phylogenetic tree for Bonnemaisoniaceae has opened the way to determine evolutionary trends in DNA contents. Both the estimated genome sizes and the published chromosome numbers for Bonnemaisoniaceae suggest a narrow range of values consistent with the conservation of an ancestral genome.
Pea DNA topoisomerase I is phosphorylated and stimulated by casein kinase 2 and protein kinase C.
Tuteja, Narendra; Reddy, Malireddy Kodandarami; Mudgil, Yashwanti; Yadav, Badam Singh; Chandok, Meena Rani; Sopory, Sudhir Kumar
2003-08-01
DNA topoisomerase I catalyzes the relaxation of superhelical DNA tension and is vital for DNA metabolism; therefore, it is essential for growth and development of plants. Here, we have studied the phosphorylation-dependent regulation of topoisomerase I from pea (Pisum sativum). The purified enzyme did not show autophosphorylation but was phosphorylated in an Mg(2+)-dependent manner by endogenous protein kinases present in pea nuclear extracts. This phosphorylation was abolished with calf intestinal alkaline phosphatase and lambda phosphatase. It was also phosphorylated by exogenous casein kinase 2 (CK2), protein kinase C (PKC; from animal sources), and an endogenous pea protein, which was purified using a novel phorbol myristate acetate affinity chromatography method. All of these phosphorylations were inhibited by heparin (inhibitor of CK2) and calphostin (inhibitor of PKC), suggesting that pea topoisomerase I is a bona fide substrate for these kinases. Spermine and spermidine had no effect on the CK2-mediated phosphorylation, suggesting that it is polyamine independent. Phospho-amino acid analysis showed that only serine residues were phosphorylated, which was further confirmed using antiphosphoserine antibody. The topoisomerase I activity increased after phosphorylation with exogenous CK2 and PKC. This study shows that these kinases may contribute to the physiological regulation of DNA topoisomerase I activity and overall DNA metabolism in plants.
NASA Astrophysics Data System (ADS)
Khodakov, Dmitriy A.; Thredgold, Leigh D.; Lenehan, Claire E.; Andersson, Gunther A.; Kobus, Hilton; Ellis, Amanda V.
2011-12-01
Poly(dimethylsiloxane) (PDMS) is an elastomeric material used for microfluidic devices and is especially suited to medical and forensic applications. This is due to its relatively low cost, ease of fabrication, excellent optical transmission characteristics and its ability to support electroosmotic flow, required during electrophoretic separations. These aspects combined with its large range of surface modification chemistries, make PDMS an attractive substrate in microfluidic devices for, in particular, DNA separation. Here, we report the successful wet chemical surface modification of PDMS microchannels using a simple three step method to produce an isothiocyanate-terminated surface. Initially, PDMS was oxygen plasma treated to produce a silanol-terminated surface, this was then reacted with 3-aminopropyltriethoxysilane with subsequent reaction of the now amine-terminated surface with p-phenylenediisothiocyanate. Water contact angle measurements both before and after modification showed a reduction in hydrophobicity from 101o for native PDMS to 94o for the isothiocyante-terminated PDMS. The isothiocyanate-terminated surface was then coupled with an amineterminated single-stranded DNA (ssDNA) oligonucleotide capture probe via a thiourea linkage. Confirmation of capture probe attachment was observed using fluorescent microscopy after hybridization of the capture probes with fluorescently labeled complimentary ssDNA oligonucleotides.
On site DNA barcoding by nanopore sequencing
Menegon, Michele; Cantaloni, Chiara; Rodriguez-Prieto, Ana; Centomo, Cesare; Abdelfattah, Ahmed; Rossato, Marzia; Bernardi, Massimo; Xumerle, Luciano; Loader, Simon; Delledonne, Massimo
2017-01-01
Biodiversity research is becoming increasingly dependent on genomics, which allows the unprecedented digitization and understanding of the planet’s biological heritage. The use of genetic markers i.e. DNA barcoding, has proved to be a powerful tool in species identification. However, full exploitation of this approach is hampered by the high sequencing costs and the absence of equipped facilities in biodiversity-rich countries. In the present work, we developed a portable sequencing laboratory based on the portable DNA sequencer from Oxford Nanopore Technologies, the MinION. Complementary laboratory equipment and reagents were selected to be used in remote and tough environmental conditions. The performance of the MinION sequencer and the portable laboratory was tested for DNA barcoding in a mimicking tropical environment, as well as in a remote rainforest of Tanzania lacking electricity. Despite the relatively high sequencing error-rate of the MinION, the development of a suitable pipeline for data analysis allowed the accurate identification of different species of vertebrates including amphibians, reptiles and mammals. In situ sequencing of a wild frog allowed us to rapidly identify the species captured, thus confirming that effective DNA barcoding in the field is possible. These results open new perspectives for real-time-on-site DNA sequencing thus potentially increasing opportunities for the understanding of biodiversity in areas lacking conventional laboratory facilities. PMID:28977016
Phylogeographic structure and demographic patterns of brown trout in North-West Africa.
Snoj, Aleš; Marić, Saša; Bajec, Simona Sušnik; Berrebi, Patrick; Janjani, Said; Schöffmann, Johannes
2011-10-01
The objectives of the study were to determine the phylogeographic structure of brown trout (Salmo trutta) in Morocco, elucidate their colonization patterns in North-West Africa and identify the mtDNA lineages involved in this process. We also aimed to resolve whether certain brown trout entities are also genetically distinct. Sixty-two brown trout from eleven locations across the Mediterranean and the Atlantic drainages in Morocco were surveyed using sequence analysis of the mtDNA control region and nuclear gene LDH, and by genotyping twelve microsatellite loci. Our study confirms that in Morocco both the Atlantic and Mediterranean basins are populated by Atlantic mtDNA lineage brown trout only, demonstrating that the Atlantic lineage (especially its southern clade) invaded initially not only the western part of the Mediterranean basin in Morocco but also expanded deep into the central area. Atlantic haplotypes identified here sort into three distinct groups suggesting Morocco was colonized in at least three successive waves (1.2, 0.4 and 0.2-0.1 MY ago). This notion becomes more pronounced with the finding of a distinct haplotype in the Dades river system, whose origin appears to coalesce with the nascent stage of the basal mtDNA evolutionary lineages of brown trout. According to our results, Salmo akairos, Salmo pellegrini and "green trout" from Lake Isli do not exhibited any character states that distinctively separate them from the other brown trout populations studied. Therefore, their status as distinct species was not confirmed. Copyright © 2011 Elsevier Inc. All rights reserved.
Dobosz, Marina; Bocci, Chiara; Bonuglia, Margherita; Grasso, Cinzia; Merigioli, Sara; Russo, Alessandra; De Iuliis, Paolo
2010-01-01
Microsatellites have been used for parentage testing and individual identification in forensic science because they are highly polymorphic and show abundant sequences dispersed throughout most eukaryotic nuclear genomes. At present, genetic testing based on DNA technology is used for most domesticated animals, including horses, to confirm identity, to determine parentage, and to validate registration certificates. But if genetic data of one of the putative parents are missing, verifying a genealogy could be questionable. The aim of this paper is to illustrate a new approach to analyze complex cases of disputed relationship with microsatellites markers. These cases were solved by analyzing the genotypes of the offspring and other horses' genotypes in the pedigrees of the putative dam/sire with probabilistic expert systems (PESs). PES was especially efficient in supplying reliable, error-free Bayesian probabilities in complex cases with missing pedigree data. One of these systems was developed for forensic purposes (FINEX program) and is particularly valuable in human analyses. We applied this program to parentage analysis in horses, and we will illustrate how different cases have been successfully worked out.
Vector-Borne Infections in Tornado-Displaced and Owner-Relinquished Dogs in Oklahoma, USA.
Barrett, Anne W; Little, Susan E
2016-06-01
To determine the prevalence of infection with vector-borne agents in a cross-section of dogs from Oklahoma, where canine vector-borne diseases are common, blood samples were evaluated through serology and molecular analysis. Antibodies reactive to Ehrlichia spp., Rickettsia rickettsii, R. montanensis, and "R. amblyommii" were detected in 10.5% (11/105), 74.3% (78/105), 58.1% (61/105), and 55.2% (58/105) of dogs, respectively. Presence of spotted fever group Rickettsia spp. DNA was identified in 13.1% (8/61) of shelter dogs but not in any pet dogs (0/44). DNA of "R. amblyommii" was confirmed by sequencing, constituting the first report of this agent in a naturally infected dog. Antigen of Dirofilaria immitis was detected in 10.5% (11/105) and 16.2% (17/105) of samples before and after heat treatment, respectively. In total, 87.6% (92/105) of the dogs had evidence of infection with at least one vector-borne disease agent, confirming high risk of exposure to multiple vector-borne disease agents, several of which are zoonotic.
Naser, Sabri M; Vancanneyt, Marc; Hoste, Bart; Snauwaert, Cindy; Swings, Jean
2006-07-01
The applicability of a multilocus sequence analysis (MLSA)-based identification system for lactobacilli was evaluated. Two housekeeping genes that code for the phenylalanyl-tRNA synthase alpha-subunit (pheS) and RNA polymerase alpha-subunit (rpoA) were sequenced and analysed for members of the Lactobacillus salivarius species group. The type strains of Lactobacillus acidipiscis and Lactobacillus cypricasei were investigated further using a third gene that encodes the alpha-subunit of ATP synthase (atpA). The MLSA data revealed close relatedness between L. acidipiscis and L. cypricasei, with 99.8-100 % pheS, rpoA and atpA gene sequence similarities. Comparison of the 16S rRNA gene sequences of the type strains of the two species confirmed the close relatedness (99.8 % gene sequence similarity) between the two taxa. Similar phenotypes and high DNA-DNA binding values in the range of 84 to 97.5 % confirmed that L. acidipiscis and L. cypricasei are synonymous species. On the basis of the present study, it is proposed that Lactobacillus cypricasei is a later heterotypic synonym of Lactobacillus acidipiscis.
Forlano, M D; Teixeira, K R S; Scofield, A; Elisei, C; Yotoko, K S C; Fernandes, K R; Linhares, G F C; Ewing, S A; Massard, C L
2007-04-10
To characterize phylogenetically the species which causes canine hepatozoonosis at two rural areas of Rio de Janeiro State, Brazil, we used universal or Hepatozoon spp. primer sets for the 18S SSU rRNA coding region. DNA extracts were obtained from blood samples of thirteen dogs naturally infected, from four experimentally infected, and from five puppies infected by vertical transmission from a dam, that was experimentally infected. DNA of sporozoites of Hepatozoon americanum was used as positive control. The amplification of DNA extracts from blood of dogs infected with sporozoites of Hepatozoon spp. was observed in the presence of primers to 18S SSU rRNA gene of Hepatozoon spp., whereas DNA of H. americanum sporozoites was amplified in the presence of either universal or Hepatozoon spp.-specific primer sets; the amplified products were approximately 600bp in size. Cloned PCR products obtained from DNA extracts of blood from two dogs experimentally infected with Hepatozoon sp. were sequenced. The consensus sequence, derived from six sequence data sets, were blasted against sequences of 18S SSU rRNA of Hepatozoon spp. available at GenBank and aligned to homologous sequences to perform the phylogenetic analysis. This analysis clearly showed that our sequence clustered, independently of H. americanum sequences, within a group comprising other Hepatozoon canis sequences. Our results confirmed the hypothesis that the agent causing hepatozoonosis in the areas studied in Brazil is H. canis, supporting previous reports that were based on morphological and morphometric analyses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Claffey, K.P.; Herrera, V.L.; Brecher, P.
1987-12-01
A fatty acid binding protein (FABP) as been identified and characterized in rat heart, but the function and regulation of this protein are unclear. In this study the cDNA for rat heart FABP was cloned from a lambda gt11 library. Sequencing of the cDNA showed an open reading frame coding for a protein with 133 amino acids and a calculated size of 14,776 daltons. Several differences were found between the sequence determined from the cDNA and that reported previously by protein sequencing techniques. Northern blot analysis using rat heart FABP cDNA as a probe established the presence of an abundantmore » mRNA in rat heart about 0.85 kilobases in length. This mRNA was detected, but was not abundant, in fetal heart tissue. Tissue distribution studies showed a similar mRNA species in red, but not white, skeletal muscle. In general, the mRNA tissue distribution was similar to that of the protein detected by Western immunoblot analysis, suggesting that heart FABP expression may be regulated at the transcriptional level. S1 nuclease mapping studies confirmed that the mRNA hybridized to rat heart FABP cDNA was identical in heart and red skeletal muscle throughout the entire open reading frame. The structural differences between heart FABP and other members of this multigene family may be related to the functional requirements of oxidative muscle for fatty acids as a fuel source.« less
Fan, Lihua; Shuai, Jiangbing; Zeng, Ruoxue; Mo, Hongfei; Wang, Suhua; Zhang, Xiaofeng; He, Yongqiang
2017-12-01
Genome fragment enrichment (GFE) method was applied to identify host-specific bacterial genetic markers that differ among different fecal metagenomes. To enrich for swine-specific DNA fragments, swine fecal DNA composite (n = 34) was challenged against a DNA composite consisting of cow, human, goat, sheep, chicken, duck and goose fecal DNA extracts (n = 83). Bioinformatic analyses of 384 non-redundant swine enriched metagenomic sequences indicated a preponderance of Bacteroidales-like regions predicted to encode metabolism-associated, cellular processes and information storage and processing. After challenged against fecal DNA extracted from different animal sources, four sequences from the clone libraries targeting two Bacteroidales- (genes 1-38 and 3-53), a Clostridia- (gene 2-109) as well as a Bacilli-like sequence (gene 2-95), respectively, showed high specificity to swine feces based on PCR analysis. Host-specificity and host-sensitivity analysis confirmed that oligonucleotide primers and probes capable of annealing to select Bacteroidales-like sequences (1-38 and 3-53) exhibited high specificity (>90%) in quantitative PCR assays with 71 fecal DNAs from non-target animal sources. The two assays also demonstrated broad distributions of corresponding genetic markers (>94% positive) among 72 swine feces. After evaluation with environmental water samples from different areas, swine-targeted assays based on two Bacteroidales-like GFE sequences appear to be suitable quantitative tracing tools for swine fecal pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.
Molecular cloning and characterization of arginine kinase gene of Toxocara canis.
Sahu, Shivani; Samanta, S; Harish, D R; Sudhakar, N R; Raina, O K; Shantaveer, S B; Madhu, D N; Kumar, Ashok
2015-06-01
Toxocara canis is an important gastrointestinal nematode of dogs and also a causative agent of visceral larva migrans in humans. Arginine kinase (AK) gene is one of the important biomolecule of phosphagen kinase of T. canis which is emerging as an exciting novel diagnostic target in toxocarosis. The present study was carried out to clone and characterize AK gene of T. canis for future utilization as a diagnostic molecule. Total RNA was extracted from intact adult worms and reverse transcription was done with oligo dT primers to obtain complementary DNA (cDNA). Polymerase chain reaction (PCR) was carried out using cDNA as template with specific primers which amplified a product of 1,202 bp. The amplicon was cloned into pDrive cloning vector and clone was confirmed by colony PCR and restriction endonuclease analysis. Sequence analysis of the gene showed 99.8 and 77.9 % homology with the published AK gene of T. canis (EF015466.1) and Ascaris suum respectively. Structural analysis shown that the mature AK protein consist of 400 amino acids with a molecular wt of 45360.73 Da. Further expression studies are required for producing the recombinant protein for its evaluation in the diagnosis of T. canis infection in humans as well as in adult dogs.
Everest, Gareth J; Curtis, Sarah M; De Leo, Filomena; Urzì, Clara; Meyers, Paul R
2013-10-01
A novel actinobacterium, strain BC640(T), was isolated from a biofilm sample collected in 2009 in the Saint Callistus Roman catacombs. Analysis of the 16S rRNA gene sequence showed that the strain belonged to the genus Kribbella. Phylogenetic analysis using the 16S rRNA gene and concatenated gyrB, rpoB, relA, recA and atpD gene sequences showed that strain BC640(T) was most closely related to the type strains of Kribbella yunnanensis and Kribbella sandramycini. Based on gyrB genetic distance analysis, strain BC640(T) was shown to be distinct from all Kribbella type strains. DNA-DNA hybridization experiments confirmed that strain BC640(T) represents a genomic species distinct from its closest phylogenetic relatives, K. yunnanensis DSM 15499(T) (53.5±7.8 % DNA relatedness) and K. sandramycini DSM 15626(T) (33.5±5.0 %). Physiological comparisons further showed that strain BC640(T) is phenotypically distinct from the type strains of K. yunnanensis and K. sandramycini. Strain BC640(T) ( = DSM 26744(T) = NRRL B-24917(T)) is thus presented as the type strain of a novel species, for which the name Kribbella albertanoniae sp. nov. is proposed.
Burke, Christopher S; Byrne, Aisling; Keyes, Tia E
2018-06-06
Exploiting NF-κB transcription factor peptide conjugation, a Ru(II)-bis-tap complex (tap = 1,4,5,8-tetraazaphenanthrene) was targeted specifically to the nuclei of live HeLa and CHO cells for the first time. DNA binding of the complex within the nucleus of live cells was evident from gradual extinction of the metal complex luminescence after it had crossed the nuclear envelope, attributed to guanine quenching of the ruthenium emission via photoinduced electron transfer. Resonance Raman imaging confirmed that the complex remained in the nucleus after emission is extinguished. In the dark and under imaging conditions the cells remain viable, but efficient cellular destruction was induced with precise spatiotemporal control by applying higher irradiation intensities to selected cells. Solution studies indicate that the peptide conjugated complex associates strongly with calf thymus DNA ex-cellulo and gel electrophoresis confirmed that the peptide conjugate is capable of singlet oxygen independent photodamage to plasmid DNA. This indicates that the observed efficient cellular destruction likely operates via direct DNA oxidation by photoinduced electron transfer between guanine and the precision targeted Ru(II)-tap probe. The discrete targeting of polyazaaromatic complexes to the cell nucleus and confirmation that they are photocytotoxic after nuclear delivery is an important step toward their application in cellular phototherapy.
Acinetobacter lactucae sp. nov., isolated from iceberg lettuce (Asteraceae: Lactuca sativa).
Rooney, Alejandro P; Dunlap, Christopher A; Flor-Weiler, Lina B
2016-09-01
Strain NRRL B-41902T and three closely related strains were isolated from iceberg lettuce. The strain was found to consist of strictly aerobic, Gram-stain-negative rods that formed cocci in late stationary phase. 16S rRNA gene sequence analysis showed that strain NRRL B-41902T was most closely related to species within the genera Acinetobacter, and that a grouping of it and the three other closely related strains was most closely related to the type strain of Acinetobacter pittii, which was also confirmed through a phylogenomic analysis. Moreover, in silico DNA-DNA hybridization analysis revealed a substantial amount of genomic divergence (39.1 %) between strain NRRL B-41902T and the type strain of A. pittii, which is expected if the strains represent distinct species. Further phenotypic analysis revealed that strain NRRL B-41902T was able to utilize a combination of l-serine, citraconic acid and citramalic acid, which differentiated it from other, closely related Acinetobacter species. Therefore, strain NRRL B-41902T (=CCUG 68785T) is proposed as the type strain of a novel species, Acinetobacter lactucae sp. nov.
Kerr, M; Fischer, J E; Purushotham, K R; Gao, D; Nakagawa, Y; Maeda, N; Ghanta, V; Hiramoto, R; Chegini, N; Humphreys-Beher, M G
1994-08-02
The murine transformed cell line YC-8 and beta-adrenergic receptor agonist (isoproternol) treated rat and mouse parotid gland acinar cells ectopically express cell surface beta 1-4 galactosyltransferase during active proliferation. This activity is dependent upon the expression of the GTA-kinase (p58) in these cells. Using total RNA, cDNA clones for the protein coding region of the kinase were isolated by reverse transcriptase-PCR cloning. DNA sequence analysis failed to show sequence differences with the normal homolog from mouse cells although Southern blot analysis of YC-8, and a second cell line KI81, indicated changes in the restriction enzyme digestion profile relative to murine cell lines which do not express cell surface galactosyltransferase. The rat cDNA clone from isoproterenol-treated salivary glands showed a high degree of protein and nucleic acid sequence homology to the GTA-kinase from both murine and human sources. Northern blot analysis of YC-8 and a control cell line LSTRA revealed the synthesis of a major 3.0 kb mRNA from both cell lines plus the unique expression of a 4.5 kb mRNA in the YC-8 cells. Reverse transcriptase-PCR of LSTRA and YC-8 confirmed the increased steady state levels of the GTA-kinase mRNA in YC-8. In the mouse, induction of cell proliferation by isoproterenol resulted in a 50-fold increase in steady state mRNA levels for the kinase over the low level of expression in quiescent cells. Expression of the rat 3' untranslated region in rat parotid cells in vitro led to an increased rate of DNA synthesis, cell number an ectopic expression of cell surface galactosyltransferase in the sense orientation. Antisense expression or vector alone did not alter growth characteristics of acinar cells. A polyclonal antibody monospecific to a murine amino terminal peptide sequence revealed a uniform distribution of GTA-kinase over the cytoplasm of acinar and duct cells of control mouse parotid glands. However, upon growth stimulation, kinase was detected primarily in a perinuclear and nuclear immunostaining pattern. Western blot analysis confirmed a translocation from a cytoplasmic localization in both LSTRA and quiescent salivary cells to a membrane-associated localization in YC-8 and proliferating salivary cells.
Liu, Yawen; Zheng, Zhaozhu; Gong, He; Liu, Meng; Guo, Shaozhe; Li, Gang; Wang, Xiaoqin; Kaplan, David L
2017-06-27
The structure of DNA is susceptible to alterations at high temperature and on changing pH, irradiation and exposure to DNase. Options to protect and preserve DNA during storage are important for applications in genetic diagnosis, identity authentication, drug development and bioresearch. In the present study, the stability of total DNA purified from human dermal fibroblast cells, as well as that of plasmid DNA, was studied in silk protein materials. The DNA/silk mixtures were stabilized on filter paper (silk/DNA + filter) or filter paper pre-coated with silk and treated with methanol (silk/DNA + PT-filter) as a route to practical utility. After air-drying and water extraction, 50-70% of the DNA and silk could be retrieved and showed a single band on electrophoretic gels. 6% silk/DNA + PT-filter samples provided improved stability in comparison with 3% silk/DNA + filter samples and DNA + filter samples for DNA preservation, with ∼40% of the band intensity remaining at 37 °C after 40 days and ∼10% after exposure to UV light for 10 hours. Quantitative analysis using the PicoGreen assay confirmed the results. The use of Tris/borate/EDTA (TBE) buffer enhanced the preservation and/or extraction of the DNA. The DNA extracted after storage maintained integrity and function based on serving as a functional template for PCR amplification of the gene for zinc finger protein 750 (ZNF750) and for transgene expression of red fluorescence protein (dsRed) in HEK293 cells. The high molecular weight and high content of a crystalline beta-sheet structure formed on the coated surfaces likely accounted for the preservation effects observed for the silk/DNA + PT-filter samples. Although similar preservation effects were also obtained for lyophilized silk/DNA samples, the rapid and simple processing available with the silk-DNA-filter membrane system makes it appealing for future applications.
Avendaño, Conrado; Franchi, Anahí; Duran, Hakan; Oehninger, Sergio
2010-07-01
To evaluate DNA fragmentation in morphologically normal sperm recovered from the same sample used for intracytoplasmic sperm injection (ICSI) and to correlate DNA damage with embryo quality and pregnancy outcome. Prospective study. Academic center. 36 infertile men participating in the ICSI program. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-fluorescein nick end labeling (TUNEL) assay and morphologic assessment by phase contrast. Simultaneous assessment of sperm morphology and DNA fragmentation by TUNEL assay was performed in the same cell, then the percentage of normal sperm with fragmented DNA (normal SFD) was correlated with embryo quality and pregnancy outcomes. A highly statistically significant negative correlation was found between the percentage of normal SFD and embryo quality. This association was confirmed for the transferred embryos and for the total embryo cohort. The receiver operating characteristics curve analysis demonstrated that the percentage of normal SFD and embryo quality were statistically significant predictors of pregnancy. When the percentage of normal SFD was
Shamsipur, Mojtaba; Nasirian, Vahid; Barati, Ali; Mansouri, Kamran; Vaisi-Raygani, Asad; Kashanian, Soheila
2017-05-08
In the present study, we developed a sensitive method based on fluorescence resonance energy transfer (FRET) for the determination of the BCR/ABL fusion gene, which is used as a biomarker to confirm the clinical diagnosis of both chronic myelogenous leukemia (CML) and acute lymphocytic leukemia (ALL). For this purpose, CdTe quantum dots (QDs) were conjugated to amino-modified 18-mer oligonucleotide ((N)DNA) to form the QDs-(N)DNA nanosensor. In the presence of methylene blue (MB) as an intercalator, the hybridization of QDs-(N)DNA with the target BCR/ABL fusion gene (complementary DNA), brings the MB (acceptor) at close proximity of the QDs (donor), leading to FRET upon photoexcitation of the QDs. The enhancement in the emission intensity of MB was used to follow up the hybridization, which was linearly proportional to concentration of the target complementary DNA in a range from 1.0 × 10 -9 to 1.25 × 10 -7 M. The detection limit of the proposed method was obtained to be 1.5 × 10 -10 M. Finally, the feasibility and selectivity of the proposed nanosensor was evaluated by the analysis of derived nucleotides from both mismatched sequences and clinical samples of patients with leukemia as real samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Interactions of vitamin K3 with herring-sperm DNA using spectroscopy and electrochemistry.
Huang, Jianhang; Wang, Xingming; Fei, Dan; Ding, Lisheng
2010-10-01
By means of ultraviolet-visible (UV-Vis) and fluorescence spectra, the binding ratio between vitamin K(3) and herring-sperm DNA in a physiological pH environment (pH = 7.40) was determined as n(K3):n(DNA) = 2:1, and the binding constants of vitamin K(3) binding to DNA at different temperatures were determined as K(θ)(298K) = 1.28 × 10(5) L·mol(-1) and K(θ)(310K) = 7.19 × 10(4) L·mol(-1), which were confirmed using the double reciprocal method are Δ(r)H(m)(θ) = -3.57 × 10(4) J·mol(-1), Δ(r)G(m)(θ) = -2.92 × 10(4) J·mol(-1), and Δ(r)S(m)(θ) = 217.67 J·mol(-1)K(-1). The driving power of this process was enthalpy. An intercalation binding of the vitamin K(3) with DNA was supported by a competitive experiment using acridine orange (AO) as a spectral probe. By combination analysis of the Scatchard method and cyclic voltammetry, we suggested that the interaction mode between vitamin K(3) and herring-sperm DNA would be a mixed mode. The quinonoid, duality fused-ring of vitamin K(3) can intercalate into the base pairs of DNA, and there is an electrostatic binding along with intercalation binding.
Thaler, David S; Stoeckle, Mark Y
2016-10-01
DNA barcodes for species identification and the analysis of human mitochondrial variation have developed as independent fields even though both are based on sequences from animal mitochondria. This study finds questions within each field that can be addressed by reference to the other. DNA barcodes are based on a 648-bp segment of the mitochondrially encoded cytochrome oxidase I. From most species, this segment is the only sequence available. It is impossible to know whether it fairly represents overall mitochondrial variation. For modern humans, the entire mitochondrial genome is available from thousands of healthy individuals. SNPs in the human mitochondrial genome are evenly distributed across all protein-encoding regions arguing that COI DNA barcode is representative. Barcode variation among related species is largely based on synonymous codons. Data on human mitochondrial variation support the interpretation that most - possibly all - synonymous substitutions in mitochondria are selectively neutral. DNA barcodes confirm reports of a low variance in modern humans compared to nonhuman primates. In addition, DNA barcodes allow the comparison of modern human variance to many other extant animal species. Birds are a well-curated group in which DNA barcodes are coupled with census and geographic data. Putting modern human variation in the context of intraspecies variation among birds shows humans to be a single breeding population of average variance.
Genetic examination of the putative skull of Jan Kochanowski reveals its female sex
Kupiec, Tomasz; Branicki, Wojciech
2011-01-01
We report the results of genetic examination of the putative skull of Jan Kochanowski (1530-1584), a great Polish renaissance poet. The skull was retrieved in 1791 by historian Tadeusz Czacki from the Kochanowski family tomb and became the property of the Czartoryskis Museum in Krakow. An anthropological study in 1926 questioned its male origin, which raised doubts about its authenticity. Our report presents genetic evidence that resolves this dispute. From the sole tooth we obtained a sufficient amount of DNA to perform the analysis of nuclear markers. The analysis of the sex-informative part of intron 1 in amelogenin, genotyped using AmpFiSTR® NGM PCR Amplification Kit and Powerplex® ESI17 Kit human identification systems, revealed the female origin of the tooth. The female origin was further confirmed by the analysis of a portion of amelogenin intron 2, a microsatellite marker located on the X chromosome, as well as by a lack of signal from Y chromosomal microsatellite markers and the sex-determining region Y marker. Data obtained for two hypervariable regions, HVI and HVII, in mitochondrial DNA showed that mtDNA haplotype was relatively frequent among contemporary Europeans. The analysis of a set of single nucleotide polymorphisms relevant for prediction of the iris color indicated an 87% probability that the woman had hazel or brown eye color. PMID:21674838
Genetic examination of the putative skull of Jan Kochanowski reveals its female sex.
Kupiec, Tomasz; Branicki, Wojciech
2011-06-01
We report the results of genetic examination of the putative skull of Jan Kochanowski (1530-1584), a great Polish renaissance poet. The skull was retrieved in 1791 by historian Tadeusz Czacki from the Kochanowski family tomb and became the property of the Czartoryskis Museum in Krakow. An anthropological study in 1926 questioned its male origin, which raised doubts about its authenticity. Our report presents genetic evidence that resolves this dispute. From the sole tooth we obtained a sufficient amount of DNA to perform the analysis of nuclear markers. The analysis of the sex-informative part of intron 1 in amelogenin, genotyped using AmpFiSTR® NGM PCR Amplification Kit and Powerplex® ESI17 Kit human identification systems, revealed the female origin of the tooth. The female origin was further confirmed by the analysis of a portion of amelogenin intron 2, a microsatellite marker located on the X chromosome, as well as by a lack of signal from Y chromosomal microsatellite markers and the sex-determining region Y marker. Data obtained for two hypervariable regions, HVI and HVII, in mitochondrial DNA showed that mtDNA haplotype was relatively frequent among contemporary Europeans. The analysis of a set of single nucleotide polymorphisms relevant for prediction of the iris color indicated an 87% probability that the woman had hazel or brown eye color.
Khan, Husain Y; Zubair, Haseeb; Ullah, Mohd F; Ahmad, Aamir; Hadi, Sheikh M
2011-12-01
To account for the observed anticancer properties of plant polyphenols, we have earlier proposed a mechanism which involves the mobilization of endogenous copper ions by polyphenols leading to the generation of reactive oxygen species (ROS) that serve as proximal DNA cleaving agents and lead to cell death. Over the last decade we have proceeded to validate our hypothesis with considerable success. As a further confirmation of our hypothesis, in this paper we first show that oral administration of copper to rats leads to elevated copper levels in lymphocytes. When such lymphocytes with a copper overload were isolated and treated with polyphenols EGCG, genistein and resveratrol, an increased level of DNA breakage was observed. Further, preincubation of lymphocytes having elevated copper levels with the membrane permeable copper chelator neocuproine, resulted in inhibition of polyphenol induced DNA degradation. However, membrane impermeable chelator of copper bathocuproine, as well as iron and zinc chelators were ineffective in causing such inhibition in DNA breakage, confirming the involvement of endogenous copper in polyphenol induced cellular DNA degradation. It is well established that serum and tissue concentrations of copper are greatly increased in various malignancies. In view of this fact, the present results further confirm our earlier findings and strengthen our hypothesis that an important anticancer mechanism of plant polyphenols could be the mobilization of intracellular copper leading to ROS-mediated cellular DNA breakage. In this context, it may be noted that cancer cells are under considerable oxidative stress and increasing such stress to cytotoxic levels could be a successful anticancer approach.
Pig cloning by microinjection of fetal fibroblast nuclei.
Onishi, A; Iwamoto, M; Akita, T; Mikawa, S; Takeda, K; Awata, T; Hanada, H; Perry, A C
2000-08-18
Pig cloning will have a marked impact on the optimization of meat production and xenotransplantation. To clone pigs from differentiated cells, we microinjected the nuclei of porcine (Sus scrofa) fetal fibroblasts into enucleated oocytes, and development was induced by electroactivation. The transfer of 110 cloned embryos to four surrogate mothers produced an apparently normal female piglet. The clonal provenance of the piglet was indicated by her coat color and confirmed by DNA microsatellite analysis.
First detection of bovine papillomavirus type 2 in cutaneous wart lesions from ovines.
Mazzuchelli-de-Souza, J; de Carvalho, R F; Módolo, D G; Thompson, C E; Araldi, R P; Stocco, R C
2018-05-03
This study diagnosed cutaneous wart lesions excised from three rams from a sheep farm in São Paulo State, Brazil. Histopathologically, these cases were diagnosed as papilloma. The amplification by PCR, sequencing and bioinformatics analysis showed that all the lesions presented DNA sequences of bovine papillomavirus type 2. This is the first report confirming the detection of BPV2 in papilloma warts from ovines. © 2018 Blackwell Verlag GmbH.
Melov, S; Hinerfeld, D; Esposito, L; Wallace, D C
1997-01-01
Mitochondrial DNA (mtDNA) rearrangements have been shown to accumulate with age in the post-mitotic tissues of a variety of animals and have been hypothesized to result in the age-related decline of mitochondrial bioenergetics leading to tissue and organ failure. Caloric restriction in rodents has been shown to extend life span supporting an association between bioenergetics and senescence. In the present study, we use full length mtDNA amplification by long-extension polymerase chain reaction (LX-PCR) to demonstrate that mice accumulate a wide variety of mtDNA rearrangements with age in post mitotic tissues. Similarly, using an alternative PCR strategy, we have found that 2-4 kb minicircles containing the origin of heavy-strand replication accumulate with age in heart but not brain. Analysis of mtDNA structure and conformation by Southern blots of unrestricted DNA resolved by field inversion gel electrophoresis have revealed that the brain mtDNAs of young animals contain the traditional linear, nicked, and supercoiled mtDNAs while old animals accumulate substantial levels of a slower migrating species we designate age-specific mtDNAs. In old caloric restricted animals, a wide variety of rearranged mtDNAs can be detected by LX-PCR in post mitotic tissues, but Southern blots of unrestricted DNA reveals a marked reduction in the levels of the age- specific mtDNA species. These observations confirm that mtDNA mutations accumulate with age in mice and suggest that caloric restriction impedes this progress. PMID:9023106
An ultrasensitive hollow-silica-based biosensor for pathogenic Escherichia coli DNA detection.
Ariffin, Eda Yuhana; Lee, Yook Heng; Futra, Dedi; Tan, Ling Ling; Karim, Nurul Huda Abd; Ibrahim, Nik Nuraznida Nik; Ahmad, Asmat
2018-03-01
A novel electrochemical DNA biosensor for ultrasensitive and selective quantitation of Escherichia coli DNA based on aminated hollow silica spheres (HSiSs) has been successfully developed. The HSiSs were synthesized with facile sonication and heating techniques. The HSiSs have an inner and an outer surface for DNA immobilization sites after they have been functionalized with 3-aminopropyltriethoxysilane. From field emission scanning electron microscopy images, the presence of pores was confirmed in the functionalized HSiSs. Furthermore, Brunauer-Emmett-Teller (BET) analysis indicated that the HSiSs have four times more surface area than silica spheres that have no pores. These aminated HSiSs were deposited onto a screen-printed carbon paste electrode containing a layer of gold nanoparticles (AuNPs) to form a AuNP/HSiS hybrid sensor membrane matrix. Aminated DNA probes were grafted onto the AuNP/HSiS-modified screen-printed electrode via imine covalent bonds with use of glutaraldehyde cross-linker. The DNA hybridization reaction was studied by differential pulse voltammetry using an anthraquinone redox intercalator as the electroactive DNA hybridization label. The DNA biosensor demonstrated a linear response over a wide target sequence concentration range of 1.0×10 -12 -1.0×10 -2 μM, with a low detection limit of 8.17×10 -14 μM (R 2 = 0.99). The improved performance of the DNA biosensor appeared to be due to the hollow structure and rough surface morphology of the hollow silica particles, which greatly increased the total binding surface area for high DNA loading capacity. The HSiSs also facilitated molecule diffusion through the silica hollow structure, and substantially improved the overall DNA hybridization assay. Graphical abstract Step-by-step DNA biosensor fabrication based on aminated hollow silica spheres.
Merker, Jason D; Oxnard, Geoffrey R; Compton, Carolyn; Diehn, Maximilian; Hurley, Patricia; Lazar, Alexander J; Lindeman, Neal; Lockwood, Christina M; Rai, Alex J; Schilsky, Richard L; Tsimberidou, Apostolia M; Vasalos, Patricia; Billman, Brooke L; Oliver, Thomas K; Bruinooge, Suanna S; Hayes, Daniel F; Turner, Nicholas C
2018-06-01
Purpose Clinical use of analytical tests to assess genomic variants in circulating tumor DNA (ctDNA) is increasing. This joint review from ASCO and the College of American Pathologists summarizes current information about clinical ctDNA assays and provides a framework for future research. Methods An Expert Panel conducted a literature review on the use of ctDNA assays for solid tumors, including pre-analytical variables, analytical validity, interpretation and reporting, and clinical validity and utility. Results The literature search identified 1,338 references. Of those, 390, plus 31 references supplied by the Expert Panel, were selected for full-text review. There were 77 articles selected for inclusion. Conclusion The evidence indicates that testing for ctDNA is optimally performed on plasma collected in cell stabilization or EDTA tubes, with EDTA tubes processed within 6 hours of collection. Some ctDNA assays have demonstrated clinical validity and utility with certain types of advanced cancer; however, there is insufficient evidence of clinical validity and utility for the majority of ctDNA assays in advanced cancer. Evidence shows discordance between the results of ctDNA assays and genotyping tumor specimens and supports tumor tissue genotyping to confirm undetected results from ctDNA tests. There is no evidence of clinical utility and little evidence of clinical validity of ctDNA assays in early-stage cancer, treatment monitoring, or residual disease detection. There is no evidence of clinical validity and clinical utility to suggest that ctDNA assays are useful for cancer screening, outside of a clinical trial. Given the rapid pace of research, re-evaluation of the literature will shortly be required, along with the development of tools and guidance for clinical practice.
Sun, Yue-feng; Wu, Yi-dong; Wu, Lei; Jiang, Juan-juan; Gao, Rong; Xu, Bin; Chen, Xiao-wei; Zhao, Zheng-yan
2012-12-01
The purpose of this prospective study was to investigate the presence of human papillomavirus (HPV) in tonsillectomy and adenoidectomy specimens from pediatric patients without juvenile-onset recurrent respiratory papillomatosis (JORRP), so as to understand the effect of HPV infection in the upper respiratory tract in children. Two hundred and forty-one pediatric patients without known JORRP or other HPV-related diseases undergoing tonsillectomy and/or adenoidectomy for hypertrophy or chronic tonsillitis were enrolled in this prospective study. One hundred and seventy-seven fresh samples of tonsillar tissues and 195 samples of adenoid tissues were collected and then examined for the presence of HPV DNA with the polymerase chain reaction (PCR) technique and typing. Laryngeal papilloma specimens from 17 patients obtained during routine debulking procedures were also analyzed and served as positive controls. All 17 papilloma specimens were positive for HPV DNA and the type was 6 or 11. This result confirmed that the methods used were valid for detecting HPV infection. HPV DNA was detected in 2 of the 177 tonsillar specimens and zero of the 195 adenoid specimens. The two positive samples were confirmed with typing. One was positive for HPV6 and the other for HPV11. Review of the medical records of these two cases confirmed that there were no history of HPV-related diseases. Histologic analysis of their specimens showed lymphoid hyperplasia, no specific changes suggesting HPV infection and no signs of malignancy. The HPV infection rate in upper respiratory tract was 0.8% (2/241). There is HPV infection in upper respiratory tract in Chinese children without JORRP, but maybe is not sufficient for the formation of JORRP.
Ratsoavina, Fanomezana Mihaja; Ranjanaharisoa, Fiadanantsoa Andrianja; Glaw, Frank; Raselimanana, Achille P; Miralles, Aurélien; Vences, Miguel
2015-08-21
We describe a new leaf-tailed gecko species of the Uroplatus ebenaui group from the eastern central rainforests of Madagascar, which had previously been considered as a confirmed candidate species. Our description of Uroplatus fiera sp. nov. relies on integrating evidence from molecular and morphological characters and is based on newly collected material from two localities. A phylogenetic analysis based on multiple mitochondrial DNA fragments places the new species as sister to a lineage of uncertain status (Uroplatus ebenaui [Ca8]), and the clade consisting of these two lineages is sister to a further undescribed candidate species (U. ebenaui [Ca1]). This entire clade is sister to U. phantasticus plus another candidate species. The new species differs from these close relatives, and all other congenerics, by strong differences in DNA sequences of mitochondrial genes (>8.5% uncorrected p-distance in 16S rDNA to all nominal species of the genus) and lacks shared alleles with any of the nominal species in the nuclear CMOS gene. From its closest relatives the new species further differs in its much smaller tail size (relative to U. phantasticus), and a narrower tail, fewer supralabials, and more toe lamellae (relative to U. ebenaui [Ca1]). Morphologically the new species is most similar to U. ebenaui but differs in its larger body size and unpigmented oral mucosa. Given its distribution in central eastern Madagascar, with records from near Fierenana and Ambatovy, its range overlaps with that of U. phantasticus. Based on examination of the U. phantasticus holotype, we confirm that this latter has a blackish pigmented oral mucosa as do those specimens typically attributed to this nomen, thereby confirming its distinctness from U. fiera sp. nov., in which the mucosa is unpigmented.
Case of successful IVF treatment of an oligospermic male with 46,XX/46,XY chimerism.
Laursen, R J; Alsbjerg, B; Vogel, I; Gravholt, C H; Elbaek, H; Lildballe, D L; Humaidan, P; Vestergaard, E M
2018-04-30
We present a case of an infertile male with 46,XX/46,XYchimerism fathering a child after ICSI procedure. Conventional cytogenetic analysis on chromosomes, derived from lymphocytes, using standard Q-banding procedures with a 450-550-band resolution and short-tandem-repeat analysis of 14 loci. Analysis of 20 metaphases from lymphocytes indicated that the proband was a karyotypic mosaic with an almost equal distribution between male and female cell lines. In total, 12 of 20 (60%) metaphases exhibited a normal female karyotype 46,XX, while 8 of 20 (40%) metaphases demonstrated a normal male karyotype 46,XY. No structural chromosomal abnormalities were present. Out of 14 STR loci, two loci (D18S51 and D21S11) showed four different alleles in peripheral blood, buccal mucosal cells, conjunctival mucosal cells, and seminal fluid. In three loci (D2S1338, D7S820, and vWA), three alleles were detected with quantitative differences that indicated presence of four alleles. In DNA extracted from washed semen, four alleles were detected in one locus, and three alleles were detected in three loci. This pattern is consistent with tetragametic chimerism. There were no quantitative significant differences in peak heights between maternal and paternal alleles. STR-analysis on DNA from the son confirmed paternity. We report a unique case with 46,XX/46,XY chimerism confirmed to be tetragametic, demonstrated in several tissues, with male phenotype and no genital ambiguity with oligospermia fathering a healthy child after IVF with ICSI procedure.
[Analysis of gene mutation in a Chinese family with Norrie disease].
Zhang, Tian-xiao; Zhao, Xiu-li; Hua, Rui; Zhang, Jin-song; Zhang, Xue
2012-09-01
To detect the pathogenic mutation in a Chinese family with Norrie disease. Clinical diagnosis was based on familial history, clinical sign and B ultrasonic examination. Peripheral blood samples were obtained from all available members in a Chinese family with Norrie disease. Genomic DNA was extracted from lymphocytes by the standard SDS-proteinase K-phenol/chloroform method. Two coding exons and all intron-exon boundaries of the NDP gene were PCR amplified using three pairs of primers and subjected to automatic DNA sequence. The causative mutation was confirmed by restriction enzyme analysis and genotyping analysis in all members. Sequence analysis of NDP gene revealed a missense mutation c.220C > T (p.Arg74Cys) in the proband and his mother. Further mutation identification by restriction enzyme analysis and genotyping analysis showed that the proband was homozygote of this mutation. His mother and other four unaffected members (III3, IV4, III5 and II2) were carriers of this mutation. The mutant amino acid located in the C-terminal cystine knot-like domain, which was critical motif for the structure and function of NDP. A NDP missense mutation was identified in a Chinese family with Norrie disease.
Katayama, S; Takeshita, N; Yano, T; Ubagai, T; Qiu, X J; Katagiri, Y; Kubo, H; Hirakawa, S
1993-06-01
We compared the efficacy of the multiplex PCR with that of the cDNA analysis for detection of deletions of the DMD gene in the Japanese patients. Thirty males with DMD from 27 Japanese families were studied by the multiplex PCR, and 24 of them were also investigated by Southern blot analysis. We used five dystrophin cDNA probes for deletion analysis. A total of 19 regions were amplified by the PCR to detect deletions, 9 regions by the method of Chamberlain et al. and another 10 regions by the method of Beggs et al. Deletions were detected in 14 (52%) out of 27 DMD families by the PCR. Southern blot analysis detected deletions in 14 (64%) out of 22 families. Thirteen (93%) of the 14 DMD families with deletions detected by Southern blotting were also confirmed by the multiplex PCR. Provided care is taken in cases where the deletion is limited to a single exon, the multiplex PCR appears to be an efficient and useful alternative to conventional Southern blot analysis for detecting deletions during the prenatal and postnatal diagnosis of DMD.
Jayakumar, Kumarasamy; Camarada, María Belén; Dharuman, Venkataraman; Rajesh, Rajendiran; Venkatesan, Rengarajan; Ju, Huangxian; Maniraj, Mahalingam; Rai, Abhishek; Barman, Sudipta Roy; Wen, Yangping
2018-06-27
The structure and electrochemical properties of layer-by-layer-assembled gold nanoparticles (AuNPs)-decorated first-generation (G1) poly(amidoamine) dendrimer (PD) with reduced graphene oxide (rGO) core as a highly sensitive and label-free biosensing platform with a controllable three-dimensional (3D) nanoarchitecture for the rapid voltammetric analysis of DNA hybridization at ultratrace levels were characterized. Mercaptopropinoic acid (MPA) was self-assembled onto Au substrate, then GG1PD formed by the covalent functionalization between the amino terminals of G1PD and carboxyl terminals of rGO was covalently linked onto MPA, and finally AuNPs were decorated onto GG1PD by strong physicochemical interaction between AuNPs and -OH of rGO in GG1PD, which was characterized through different techniques and confirmed by computational calculation. This 3D controllable thin-film electrode was optimized and evaluated using [Fe(CN) 6 ] 3-/4- as the redox probe and employed to covalently immobilize thiol-functionalized single-stranded DNA as biorecognition element to form the DNA nanobiosensor, which achieved fast, ultrasensitive, and high-selective differential pulse voltammetric analysis of DNA hybridization in a linear range from 1 × 10 -6 to 1 × 10 -13 g m -1 with a low detection limit of 9.07 × 10 -14 g m -1 . This work will open a new pathway for the controllable 3D nanoarchitecture of the layer-by-layer-assembled metal nanoparticles-functionalized lower-generation PD with two-dimensional layered nanomaterials as cores that can be employed as ultrasensitive and label-free nanobiodevices for the fast diagnosis of specific genome diseases in the field of biomedicine.
DNA Repair Biomarkers Predict Response to Neoadjuvant Chemoradiotherapy in Esophageal Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, Brian M., E-mail: bmalexander@lroc.harvard.edu; Wang Xiaozhe; Niemierko, Andrzej
2012-05-01
Purpose: The addition of neoadjuvant chemoradiotherapy prior to surgical resection for esophageal cancer has improved clinical outcomes in some trials. Pathologic complete response (pCR) following neoadjuvant therapy is associated with better clinical outcome in these patients, but only 22% to 40% of patients achieve pCR. Because both chemotherapy and radiotherapy act by inducing DNA damage, we analyzed proteins selected from multiple DNA repair pathways, using quantitative immunohistochemistry coupled with a digital pathology platform, as possible biomarkers of treatment response and clinical outcome. Methods and Materials: We identified 79 patients diagnosed with esophageal cancer between October 1994 and September 2002, withmore » biopsy tissue available, who underwent neoadjuvant chemoradiotherapy prior to surgery at the Massachusetts General Hospital and used their archived, formalin-fixed, paraffin-embedded biopsy samples to create tissue microarrays (TMA). TMA sections were stained using antibodies against proteins in various DNA repair pathways including XPF, FANCD2, PAR, MLH1, PARP1, and phosphorylated MAPKAP kinase 2 (pMK2). Stained TMA slides were evaluated using machine-based image analysis, and scoring incorporated both the intensity and the quantity of positive tumor nuclei. Biomarker scores and clinical data were assessed for correlations with clinical outcome. Results: Higher scores for MLH1 (p = 0.018) and lower scores for FANCD2 (p = 0.037) were associated with pathologic response to neoadjuvant chemoradiation on multivariable analysis. Staining of MLH1, PARP1, XPF, and PAR was associated with recurrence-free survival, and staining of PARP1 and FANCD2 was associated with overall survival on multivariable analysis. Conclusions: DNA repair proteins analyzed by immunohistochemistry may be useful as predictive markers for response to neoadjuvant chemoradiotherapy in patients with esophageal cancer. These results are hypothesis generating and need confirmation in an independent data set.« less
Ennahar, Saïd; Cai, Yimin; Fujita, Yasuhito
2003-01-01
A total of 161 low-G+C-content gram-positive bacteria isolated from whole-crop paddy rice silage were classified and subjected to phenotypic and genetic analyses. Based on morphological and biochemical characters, these presumptive lactic acid bacterium (LAB) isolates were divided into 10 groups that included members of the genera Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Pediococcus, and Weissella. Analysis of the 16S ribosomal DNA (rDNA) was used to confirm the presence of the predominant groups indicated by phenotypic analysis and to determine the phylogenetic affiliation of representative strains. The virtually complete 16S rRNA gene was PCR amplified and sequenced. The sequences from the various LAB isolates showed high degrees of similarity to those of the GenBank reference strains (between 98.7 and 99.8%). Phylogenetic trees based on the 16S rDNA sequence displayed high consistency, with nodes supported by high bootstrap values. With the exception of one species, the genetic data was in agreement with the phenotypic identification. The prevalent LAB, predominantly homofermentative (66%), consisted of Lactobacillus plantarum (24%), Lactococcus lactis (22%), Leuconostoc pseudomesenteroides (20%), Pediococcus acidilactici (11%), Lactobacillus brevis (11%), Enterococcus faecalis (7%), Weissella kimchii (3%), and Pediococcus pentosaceus (2%). The present study, the first to fully document rice-associated LAB, showed a very diverse community of LAB with a relatively high number of species involved in the fermentation process of paddy rice silage. The comprehensive 16S rDNA-based approach to describing LAB community structure was valuable in revealing the large diversity of bacteria inhabiting paddy rice silage and enabling the future design of appropriate inoculants aimed at improving its fermentation quality. PMID:12514026
Ennahar, Saïd; Cai, Yimin; Fujita, Yasuhito
2003-01-01
A total of 161 low-G+C-content gram-positive bacteria isolated from whole-crop paddy rice silage were classified and subjected to phenotypic and genetic analyses. Based on morphological and biochemical characters, these presumptive lactic acid bacterium (LAB) isolates were divided into 10 groups that included members of the genera Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Pediococcus, and WEISSELLA: Analysis of the 16S ribosomal DNA (rDNA) was used to confirm the presence of the predominant groups indicated by phenotypic analysis and to determine the phylogenetic affiliation of representative strains. The virtually complete 16S rRNA gene was PCR amplified and sequenced. The sequences from the various LAB isolates showed high degrees of similarity to those of the GenBank reference strains (between 98.7 and 99.8%). Phylogenetic trees based on the 16S rDNA sequence displayed high consistency, with nodes supported by high bootstrap values. With the exception of one species, the genetic data was in agreement with the phenotypic identification. The prevalent LAB, predominantly homofermentative (66%), consisted of Lactobacillus plantarum (24%), Lactococcus lactis (22%), Leuconostoc pseudomesenteroides (20%), Pediococcus acidilactici (11%), Lactobacillus brevis (11%), Enterococcus faecalis (7%), Weissella kimchii (3%), and Pediococcus pentosaceus (2%). The present study, the first to fully document rice-associated LAB, showed a very diverse community of LAB with a relatively high number of species involved in the fermentation process of paddy rice silage. The comprehensive 16S rDNA-based approach to describing LAB community structure was valuable in revealing the large diversity of bacteria inhabiting paddy rice silage and enabling the future design of appropriate inoculants aimed at improving its fermentation quality.
Chen, Y. C.; Eisner, J. D.; Kattar, M. M.; Rassoulian-Barrett, S. L.; LaFe, K.; Yarfitz, S. L.; Limaye, A. P.; Cookson, B. T.
2000-01-01
Identification of medically relevant yeasts can be time-consuming and inaccurate with current methods. We evaluated PCR-based detection of sequence polymorphisms in the internal transcribed spacer 2 (ITS2) region of the rRNA genes as a means of fungal identification. Clinical isolates (401), reference strains (6), and type strains (27), representing 34 species of yeasts were examined. The length of PCR-amplified ITS2 region DNA was determined with single-base precision in less than 30 min by using automated capillary electrophoresis. Unique, species-specific PCR products ranging from 237 to 429 bp were obtained from 92% of the clinical isolates. The remaining 8%, divided into groups with ITS2 regions which differed by ≤2 bp in mean length, all contained species-specific DNA sequences easily distinguishable by restriction enzyme analysis. These data, and the specificity of length polymorphisms for identifying yeasts, were confirmed by DNA sequence analysis of the ITS2 region from 93 isolates. Phenotypic and ITS2-based identification was concordant for 427 of 434 yeast isolates examined using sequence identity of ≥99%. Seven clinical isolates contained ITS2 sequences that did not agree with their phenotypic identification, and ITS2-based phylogenetic analyses indicate the possibility of new or clinically unusual species in the Rhodotorula and Candida genera. This work establishes an initial database, validated with over 400 clinical isolates, of ITS2 length and sequence polymorphisms for 34 species of yeasts. We conclude that size and restriction analysis of PCR-amplified ITS2 region DNA is a rapid and reliable method to identify clinically significant yeasts, including potentially new or emerging pathogenic species. PMID:10834993
RECQ-like helicases Sgs1 and BLM regulate R-loop–associated genome instability
Chang, Emily Yun-Chia; Novoa, Carolina A.; Aristizabal, Maria J.; Coulombe, Yan; Segovia, Romulo; Shen, Yaoqing; Keong, Christelle; Tam, Annie S.; Jones, Steven J.M.; Masson, Jean-Yves; Kobor, Michael S.
2017-01-01
Sgs1, the orthologue of human Bloom’s syndrome helicase BLM, is a yeast DNA helicase functioning in DNA replication and repair. We show that SGS1 loss increases R-loop accumulation and sensitizes cells to transcription–replication collisions. Yeast lacking SGS1 accumulate R-loops and γ-H2A at sites of Sgs1 binding, replication pausing regions, and long genes. The mutation signature of sgs1Δ reveals copy number changes flanked by repetitive regions with high R-loop–forming potential. Analysis of BLM in Bloom’s syndrome fibroblasts or by depletion of BLM from human cancer cells confirms a role for Sgs1/BLM in suppressing R-loop–associated genome instability across species. In support of a potential direct effect, BLM is found physically proximal to DNA:RNA hybrids in human cells, and can efficiently unwind R-loops in vitro. Together, our data describe a conserved role for Sgs1/BLM in R-loop suppression and support an increasingly broad view of DNA repair and replication fork stabilizing proteins as modulators of R-loop–mediated genome instability. PMID:29042409
Kim, Jong-Won; Lee, Joong-Jae; Choi, Joon Sig; Kim, Hak-Sung
2018-06-10
Although a variety of non-viral gene delivery systems have been developed, they still suffer from low efficiency and specificity. Herein, we present the assembly of a dendrimer complex comprising a DNA cargo and a targeting moiety as a new format for targeted gene delivery. A PAMAM dendrimer modified with histidine and arginine (HR-dendrimer) was used to enhance the endosomal escape and transfection efficiency. An EGFR-specific repebody, composed of leucine-rich repeat (LRR) modules, was employed as a targeting moiety. A polyanionic peptide was genetically fused to the repebody, followed by incubation with an HR-dendrimer and a DNA cargo to assemble the dendrimer complex through an electrostatic interaction. The resulting dendrimer complex was shown to deliver a DNA cargo with high efficiency in a receptor-specific manner. An analysis using a confocal microscope confirmed the internalization of the dendrimer complex and subsequent dissociation of a DNA cargo from the complex. The present approach can be broadly used in a targeted gene delivery in many areas. Copyright © 2018 Elsevier B.V. All rights reserved.
RECQ-like helicases Sgs1 and BLM regulate R-loop-associated genome instability.
Chang, Emily Yun-Chia; Novoa, Carolina A; Aristizabal, Maria J; Coulombe, Yan; Segovia, Romulo; Chaturvedi, Richa; Shen, Yaoqing; Keong, Christelle; Tam, Annie S; Jones, Steven J M; Masson, Jean-Yves; Kobor, Michael S; Stirling, Peter C
2017-12-04
Sgs1, the orthologue of human Bloom's syndrome helicase BLM, is a yeast DNA helicase functioning in DNA replication and repair. We show that SGS1 loss increases R-loop accumulation and sensitizes cells to transcription-replication collisions. Yeast lacking SGS1 accumulate R-loops and γ-H2A at sites of Sgs1 binding, replication pausing regions, and long genes. The mutation signature of sgs1 Δ reveals copy number changes flanked by repetitive regions with high R-loop-forming potential. Analysis of BLM in Bloom's syndrome fibroblasts or by depletion of BLM from human cancer cells confirms a role for Sgs1/BLM in suppressing R-loop-associated genome instability across species. In support of a potential direct effect, BLM is found physically proximal to DNA:RNA hybrids in human cells, and can efficiently unwind R-loops in vitro. Together, our data describe a conserved role for Sgs1/BLM in R-loop suppression and support an increasingly broad view of DNA repair and replication fork stabilizing proteins as modulators of R-loop-mediated genome instability. © 2017 Chang et al.
Guo, Mei; Lu, Fuping; Pu, Jun; Bai, Dongqing; Du, Lianxiang
2005-11-01
A cDNA encoding for laccase was isolated from the ligninolytic fungus Trametes versicolor by RNA-PCR. The cDNA corresponds to the gene Lcc1, which encodes a laccase isoenzyme of 498 amino acid residues preceded by a 22-residue signal peptide. The Lcc1 cDNA was cloned into the vectors pMETA and pMETalphaA and expressed in Pichia methanolica. The laccase activity obtained with the Saccharomyces cerevisiae alpha-factor signal peptide was found to be twofold higher than that obtained with the native secretion signal peptide. The extracellular laccase activity in recombinants with the alpha-factor signal peptide was 9.79 U ml(-1). The presence of 0.2 mM copper was necessary for optimal activity of laccase. The expression level was favoured by lower cultivation temperature. The identity of the recombinant protein was further confirmed by immunodetection using Western blot analysis. As expected, the molecular mass of the mature laccase was 64.0 kDa, similar to that of the native form.
Surveying Europe’s Only Cave-Dwelling Chordate Species (Proteus anguinus) Using Environmental DNA
Márton, Orsolya; Schmidt, Benedikt R.; Gál, Júlia Tünde; Jelić, Dušan
2017-01-01
In surveillance of subterranean fauna, especially in the case of rare or elusive aquatic species, traditional techniques used for epigean species are often not feasible. We developed a non-invasive survey method based on environmental DNA (eDNA) to detect the presence of the red-listed cave-dwelling amphibian, Proteus anguinus, in the caves of the Dinaric Karst. We tested the method in fifteen caves in Croatia, from which the species was previously recorded or expected to occur. We successfully confirmed the presence of P. anguinus from ten caves and detected the species for the first time in five others. Using a hierarchical occupancy model we compared the availability and detection probability of eDNA of two water sampling methods, filtration and precipitation. The statistical analysis showed that both availability and detection probability depended on the method and estimates for both probabilities were higher using filter samples than for precipitation samples. Combining reliable field and laboratory methods with robust statistical modeling will give the best estimates of species occurrence. PMID:28129383
Interaction between a cationic porphyrin and ctDNA investigated by SPR, CV and UV-vis spectroscopy.
Xu, Zi-Qiang; Zhou, Bo; Jiang, Feng-Lei; Dai, Jie; Liu, Yi
2013-10-01
The interaction between ctDNA and a cationic porphyrin was studied in this work. The binding process was monitored by surface plasmon resonance (SPR) spectroscopy in detail. The association, dissociation rate constants and the binding constants calculated by global analysis were 2.4×10(2)±26.4M(-1)s(-1), 0.011±0.0000056s(-1) and 2.18×10(4)M(-1), respectively. And the results were confirmed by cyclic voltammetry and UV-vis absorption spectroscopy. The binding constants obtained from cyclic voltammetry and UV-vis absorption spectroscopy were 8.28×10(4)M(-1) and 6.73×10(4)M(-1) at 298K, respectively. The covalent immobilization methodology of ctDNA onto gold surface modified with three different compounds was also investigated by SPR. These compounds all contain sulfydryl but with different terminated functional groups. The results indicated that the 11-MUA (HS(CH2)10COOH)-modified gold film is more suitable for studying the DNA-drug interaction. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tretyakova, Irina; Nickols, Brian; Hidajat, Rachmat
Yellow fever (YF) causes an acute hemorrhagic fever disease in tropical Africa and Latin America. To develop a novel experimental YF vaccine, we applied iDNA infectious clone technology. The iDNA represents plasmid that encodes the full-length RNA genome of 17D vaccine downstream from a cytomegalovirus (CMV) promoter. The vaccine was designed to transcribe the full-length viral RNA and to launch 17D vaccine virus in vitro and in vivo. Transfection with 10 ng of iDNA plasmid was sufficient to start replication of vaccine virus in vitro. Safety of the parental 17D and iDNA-derived 17D viruses was confirmed in AG129 mice deficientmore » in receptors for IFN-α/β/γ. Finally, direct vaccination of BALB/c mice with a single 20 μg dose of iDNA plasmid resulted in seroconversion and elicitation of virus-specific neutralizing antibodies in animals. We conclude that iDNA immunization approach combines characteristics of DNA and attenuated vaccines and represents a promising vaccination strategy for YF. - Highlights: • The iDNA{sup ®} platform combines advantages of DNA and live attenuated vaccines. • Yellow fever (YF) 17D vaccine was launched from iDNA plasmid in vitro and in vivo. • Safety of iDNA-generated 17D virus was confirmed in AG129 mice. • BALB/c mice seroconverted after a single-dose vaccination with iDNA. • YF virus-neutralizing response was elicited in iDNA-vaccinated mice.« less
[Construction and expression of recombinant human serum albumin-EPO fusion protein].
Huang, Ying-Chun; Gou, Xing-Hua; Han, Lei; Li, De-Hua; Zhao, Lan-Ying; Wu, Qia-Qing
2011-05-01
OBJECTIVE To construct the recombinant plasmid pCI-HLE encoding human serum album-EPO (HSA-EPO) fusion protein and to express it in CHO cell. The cDNA encoding human serum album and EPO were amplified by PCR, and then spliced with the synsitic DNA fragment encoding GS (GGGGS), by overlap PCR extension to form LEPO. After BamH I digestion, the HSA and LEPO was ligated to generate the fusion HSA-EPO gene and was then cloned into the expression vector pCI-neo to generate the recombinant plasmid pCI-HLE. The plasmid pCI-HLE was transfected into CHO cell by liposome protocol. Then, the recombinant cells were screened by G418 and identified by PCR and Western blot. Expression of fusion protein was evaluated by Enzyme Linked Immunosorbent Assay (ELISA). Restrictive enzymes digestion and DNA sequencing revealed that HSA-EPO fusion gene was cloned into expression vector pCI-neo successfully. PCR and Western blot analysis confirmed that the fusion gene was integrated in the genome of CHO cells and expressed successfully. The HSA-EPO production varied from 86 Iu/(mL x 10(6) x 72 h) to 637 IU/(mLx 10(6) x 72 h). The results confirmed that HSA-EPO fusion gene can be expressed in the CHO cells, with EPO immunogenicity, which could serve as foundation for the development of long-lasting recombinant HSA-EPO protein.
Universal Temporal Profile of Replication Origin Activation in Eukaryotes
NASA Astrophysics Data System (ADS)
Goldar, Arach
2011-03-01
The complete and faithful transmission of eukaryotic genome to daughter cells involves the timely duplication of mother cell's DNA. DNA replication starts at multiple chromosomal positions called replication origin. From each activated replication origin two replication forks progress in opposite direction and duplicate the mother cell's DNA. While it is widely accepted that in eukaryotic organisms replication origins are activated in a stochastic manner, little is known on the sources of the observed stochasticity. It is often associated to the population variability to enter S phase. We extract from a growing Saccharomyces cerevisiae population the average rate of origin activation in a single cell by combining single molecule measurements and a numerical deconvolution technique. We show that the temporal profile of the rate of origin activation in a single cell is similar to the one extracted from a replicating cell population. Taking into account this observation we exclude the population variability as the origin of observed stochasticity in origin activation. We confirm that the rate of origin activation increases in the early stage of S phase and decreases at the latter stage. The population average activation rate extracted from single molecule analysis is in prefect accordance with the activation rate extracted from published micro-array data, confirming therefore the homogeneity and genome scale invariance of dynamic of replication process. All these observations point toward a possible role of replication fork to control the rate of origin activation.
Murase, Yusuke; Konnai, Satoru; Githaka, Naftaly; Hidano, Arata; Taylor, Kyle; Ito, Takuya; Takano, Ai; Ando, Shuji; Kawabata, Hiroki; Tsubota, Toshio; Murata, Shiro; Ohashi, Kazuhiko
2013-02-01
In this study, the prevalence of Borrelia infections in Ixodes ticks from a site in Hokkaido, Japan, with confirmed cases of Lyme disease was determined by a PCR method capable of detecting and differentiating between strains of pathogenic Borrelia, with particular emphasis on Borrelia garinii (B. garinii) and Borrelia afzelli (B. afzelli), using tick-derived DNA extracts as template. A total of 338 ticks, inclusive of 284 Ixodes persulcatus (I. persulcatus), were collected by flagging vegetation in mid-spring. Ninety-eight (34.5%) of I. persulcatus tested positive for Borrelia species DNA, whereas the overall prevalence of Borrelia species in Ixodes ovatus and Haemaphysalis longicornis ticks was 19.5 and 7.7%, respectively. PCR-RFLP and sequence analysis of Borrelia rrf(5S)-rrl(23S) intergenic spacer DNA amplicons indicated that they originated from three different Borrelia species namely, B. garinii, B. afzelii and B. japonica. Among the I. persulcatus species, which is a known vector of human borreliosis, 86 were mono-infected with B. garinii, 2 ticks were mono-infected with B. afzelii and whereas 12 ticks had dual infections. Most significant, 11 of the I. persulcatus ticks were coinfected with Anaplasma phagocytophilum and B. garinii. The difference between the number of obtained and expected co-infections was significant (χ(2)=4.32, P=0.038).
Mačkić-Đurović, Mirela; Projić, Petar; Ibrulj, Slavka; Cakar, Jasmina; Marjanović, Damir
2014-05-01
The goal of this study was to examine the effectiveness of 6 STR markers application (D21S1435, D21S11, D21S1270, D21S1411, D21S226 and IFNAR) in molecular genetic diagnostics of Down syndrome (DS) and to compare it with cytogenetic method. Testing was performed on 73 children, with the previously cytogenetically confirmed Down syndrome. DNA isolated from the buccal swab was used. Previously mentioned loci located on chromosome 21 were simultaneously amplified using quantitative fluorescence PCR (QF PCR). Using this method, 60 previously cytogenetically diagnosed DS with standard type of trisomy 21 were confirmed. Furthermore, six of eight children with mosaic type of DS were detected. Two false negative results for mosaic type of DS were obtained. Finally, five children with the translocation type of Down syndrome were also confirmed with this molecular test. In conclusion, molecular genetic analysis of STR loci is fast, cheap and simple method that could be used in detection of DS. Regarding possible false results detected for certain number of mosaic types, cytogenetic analysis should be used as a confirmatory test.
Fingerprinting of HLA class I genes for improved selection of unrelated bone marrow donors.
Martinelli, G; Farabegoli, P; Buzzi, M; Panzica, G; Zaccaria, A; Bandini, G; Calori, E; Testoni, N; Rosti, G; Conte, R; Remiddi, C; Salvucci, M; De Vivo, A; Tura, S
1996-02-01
The degree of matching of HLA genes between the selected donor and recipient is an important aspect of the selection of unrelated donors for allogeneic bone marrow transplantation (UBMT). The most sensitive methods currently used are serological typing of HLA class I genes, mixed lymphocyte culture (MLC), IEF and molecular genotyping of HLA class II genes by direct sequencing of PCR products. Serological typing of class I antigenes (A, B and C) fails to detect minor differences demonstrated by direct sequencing of DNA polymorphic regions. Molecular genotyping of HLA class I genes by DNA analysis is costly and work-intensive. To improve compatibility between donor and recipient, we have set up a new rapid and non-radioisotopic application of the 'fingerprinting PCR' technique for the analysis of the polymorphic second exon of the HLA class I A, B and C genes. This technique is based on the formation of specific patterns (PCR fingerprints) of homoduplexes and heteroduplexes between heterologous amplified DNA sequences. After an electrophoretic run on non-denaturing polyacrylamide gel, different HLA class I types give allele-specific banding patterns. HLA class I matching is performed, after the gel has been soaked in ethidium bromide or silver-stained, by visual comparison of patients' fingerprints with those of donors. Identity can be confirmed by mixing donor and recipient DNAs in an amplification cross-match. To assess the technique, 10 normal samples, 22 related allogeneic bone marrow transplanted pairs and 10 unrelated HLA-A and HLA-B serologically matched patient-donor pairs were analysed for HLA class I polymorphic regions. In all the related pairs and in 1/10 unrelated pairs, matched donor-recipient patterns were identified. This new application of PCR fingerprinting may confirm the HLA class I serological selection of unrelated marrow donors.
Brehm, Gunnar; Hebert, Paul D. N.; Colwell, Robert K.; Adams, Marc-Oliver; Bodner, Florian; Friedemann, Katrin; Möckel, Lars; Fiedler, Konrad
2016-01-01
We sampled 14,603 geometrid moths along a forested elevational gradient from 1020–3021 m in the southern Ecuadorian Andes, and then employed DNA barcoding to refine decisions on species boundaries initially made by morphology. We compared the results with those from an earlier study on the same but slightly shorter gradient that relied solely on morphological criteria to discriminate species. The present analysis revealed 1857 putative species, an 80% increase in species richness from the earlier study that detected only 1010 species. Measures of species richness and diversity that are less dependent on sample size were more than twice as high as in the earlier study, even when analysis was restricted to an identical elevational range. The estimated total number of geometrid species (new dataset) in the sampled area is 2350. Species richness at single sites was 32–43% higher, and the beta diversity component rose by 43–51%. These impacts of DNA barcoding on measures of richness reflect its capacity to reveal cryptic species that were overlooked in the first study. The overall results confirmed unique diversity patterns reported in the first investigation. Species diversity was uniformly high along the gradient, declining only slightly above 2800 m. Species turnover also showed little variation along the gradient, reinforcing the lack of evidence for discrete faunal zones. By confirming these major biodiversity patterns, the present study establishes that incomplete species delineation does not necessarily conceal trends of biodiversity along ecological gradients, but it impedes determination of the true magnitude of diversity and species turnover. PMID:26959368
Effective DNA Inhibitors of Cathepsin G by In Vitro Selection
Gatto, Barbara; Vianini, Elena; Lucatello, Lorena; Sissi, Claudia; Moltrasio, Danilo; Pescador, Rodolfo; Porta, Roberto; Palumbo, Manlio
2008-01-01
Cathepsin G (CatG) is a chymotrypsin-like protease released upon degranulation of neutrophils. In several inflammatory and ischaemic diseases the impaired balance between CatG and its physiological inhibitors leads to tissue destruction and platelet aggregation. Inhibitors of CatG are suitable for the treatment of inflammatory diseases and procoagulant conditions. DNA released upon the death of neutrophils at injury sites binds CatG. Moreover, short DNA fragments are more inhibitory than genomic DNA. Defibrotide, a single stranded polydeoxyribonucleotide with antithrombotic effect is also a potent CatG inhibitor. Given the above experimental evidences we employed a selection protocol to assess whether DNA inhibition of CatG may be ascribed to specific sequences present in defibrotide DNA. A Selex protocol was applied to identify the single-stranded DNA sequences exhibiting the highest affinity for CatG, the diversity of a combinatorial pool of oligodeoxyribonucleotides being a good representation of the complexity found in defibrotide. Biophysical and biochemical studies confirmed that the selected sequences bind tightly to the target enzyme and also efficiently inhibit its catalytic activity. Sequence analysis carried out to unveil a motif responsible for CatG recognition showed a recurrence of alternating TG repeats in the selected CatG binders, adopting an extended conformation that grants maximal interaction with the highly charged protein surface. This unprecedented finding is validated by our results showing high affinity and inhibition of CatG by specific DNA sequences of variable length designed to maximally reduce pairing/folding interactions. PMID:19325843
Xiang, Yuqian; Zhang, Junyu; Li, Qiaoli; Zhou, Xinyao; Wang, Teng; Xu, Mingqing; Xia, Shihui; Xing, Qinghe; Wang, Lei; He, Lin; Zhao, Xinzhi
2014-09-01
Utilizing epigenetic (DNA methylation) differences to differentiate between maternal peripheral blood (PBL) and fetal (placental) DNA has been a promising strategy for non-invasive prenatal testing (NIPT). However, the differentially methylated regions (DMRs) have yet to be fully ascertained. In the present study, we performed genome-wide comparative methylome analysis between maternal PBL and placental DNA from pregnancies of first trimester by methylated DNA immunoprecipitation-sequencing (MeDIP-Seq) and Infinium HumanMethylation450 BeadChip assays. A total of 36 931 DMRs and 45 804 differentially methylated sites (DMSs) covering the whole genome, exclusive of the Y chromosome, were identified via MeDIP-Seq and Infinium 450k array, respectively, of which 3759 sites in 2188 regions were confirmed by both methods. Not only did we find the previously reported potential fetal DNA markers in our identified DMRs/DMSs but also we verified fully the identified DMRs/DMSs in the validation round by MassARRAY EpiTYPER. The screened potential fetal DNA markers may be used for NIPT on aneuploidies and other chromosomal diseases, such as cri du chat syndrome and velo-cardio-facial syndrome. In addition, these potential markers may have application in the early diagnosis of placental dysfunction, such as pre-eclampsia. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Wang, Lihua; Lv, Hong; Ji, Pei; Zhu, Xun; Yuan, Hua; Jin, Guangfu; Dai, Juncheng; Hu, Zhibin; Su, Yuxiong; Ma, Hongxia
2018-04-19
Mitochondria show the special role in cellular bioenergy and many essential physiological activities. Previous researches have suggested that variations of mitochondrial DNA copy number contribute to development of different types of carcinomas. However, the relationship of mtDNA copy number in peripheral blood leukocytes (PBLs) with the risk of head and neck squamous cell carcinoma (HNSCC) is still inconclusive. We investigated the association of mtDNA with HNSCC risk through a case-control study including 570 HNSCC cases and 597 cancer-free controls. mtDNA copy number in PBLs was measured by real-time qPCR. Logistic regression was performed to estimate the association between the mtDNA copy number in PBLs and HNSCC risk. A U-shaped relation between the mtDNA copy number and HNSCC risk was found. Compared with those in the second quartile group, the adjusted odds ratios (ORs) and 95% confidence interval (CI) for those in the first and the forth quartile groups were 1.95 (1.37-2.76) and 2.16 (1.53-3.04), respectively. Using restricted cubic spline analysis, we confirmed such a significant U-shaped relation. Furthermore, the U-shaped association remained significant in different subgroups stratified by age, gender, tobacco smoking, and alcohol consumption. Both extremely low and high mtDNA copy numbers had significant associations with the increased HNSCC risk. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Pavanello, Sofia; Pulliero, Alessandra; Saia, Bruno Onofrio; Clonfero, Erminio
2006-12-10
We evaluated determinants of anti-benzo[a]pyrenediolepoxide-(B[a]PDE)-DNA adduct formation (adduct induced by the ultimate carcinogenic metabolite of B[a]P) in lymphomonocytes of subjects environmentally exposed to low doses of polycyclic aromatic hydrocarbons (PAHs) (B[a]P). Our study population consisted of 585 Caucasian subjects, all municipal workers living in North-East Italy and recruited during their periodic check-ups after informed consent. PAH (B[a]P) exposure was assessed by questionnaire. Anti-B[a]PDE-DNA levels were measured by HPLC fluorescence analysis. We found that cigarette smoking (smokers (22%) versus non-smokers, p<0.0001), dietary intake of PAH-rich meals (> or =52 (38%) versus <52 times/year, p<0.0001), and outdoor exposure (> or =4 (19%) versus <4h/day; p=0.0115) significantly influenced adduct levels. Indoor exposure significantly increased the frequency of positive subjects (> or =0.5 adducts/10(8) nucleotides; chi(2) for linear trend, p=0.051). In linear multiple regression analysis the major determinants of increased DNA adduct levels (ln values) were smoking (t=6.362, p<0.0001) and diet (t=4.035, p<0.0001). In this statistical analysis, indoor and outdoor exposure like other factors of PAH exposure had no influence. In non-smokers, the influence of diet (p<0.0001) and high indoor exposure (p=0.016) on anti-B[a]PDE-DNA adduct formation became more evident, but not that of outdoor exposure, as was confirmed by linear multiple regression analysis (diet, t=3.997, p<0.0001 and high indoor exposure, t=2.522, p=0.012). This study indicates that anti-B[a]PDE-DNA adducts can be detected in the general population and are modulated by PAH (B[a]P) exposure not only with smoking - information already known from studies with limited number of subjects - but also with dietary habits and high indoor exposure. In non-smokers, these two factors are the principal determinants of DNA adduct formation. The information provided here seems to be important, since DNA adduct formation in surrogate tissue is an index of genotoxic exposure also in target organs (e.g., lung) and their increase may also be predictive of higher risk for PAH-related cancers.
Marjanović, Damir; Durmić-Pašić, Adaleta; Kovačević, Lejla; Avdić, Jasna; Džehverović, Mirela; Haverić, Sanin; Ramić, Jasmin; Kalamujić, Belma; Bilela, Lada Lukić; Škaro, Vedrana; Projić, Petar; Bajrović, Kasim; Drobnič, Katja; Davoren, Jon; Primorac, Dragan
2009-01-01
Aim To report on the use of STR, Y-STRs, and miniSTRs typing methods in the identification of victims of revolutionary violence and crimes against humanity committed by the Communist Armed Forces during and after World War II in which bodies were exhumed from mass and individual graves in Slovenia. Methods Bone fragments and teeth were removed from human remains found in several small and closely located hidden mass graves in the Škofja Loka area (Lovrenska Grapa and Žolšče) and 2 individual graves in the Ljubljana area (Podlipoglav), Slovenia. DNA was isolated using the Qiagen DNA extraction procedure optimized for bone and teeth. Some DNA extracts required additional purification, such as N-buthanol treatment. The QuantifilerTM Human DNA Quantification Kit was used for DNA quantification. Initially, PowerPlex 16 kit was used to simultaneously analyze 15 short tandem repeat (STR) loci. The PowerPlex S5 miniSTR kit and AmpFℓSTR® MiniFiler PCR Amplification Kit was used for additional analysis if preliminary analysis yielded weak partial or no profiles at all. In 2 cases, when the PowerPlex 16 profiles indicated possible relatedness of the remains with reference samples, but there were insufficient probabilities to call the match to possible male paternal relatives, we resorted to an additional analysis of Y-STR markers. PowerPlex® Y System was used to simultaneously amplify 12 Y-STR loci. Fragment analysis was performed on an ABI PRISM 310 genetic analyzer. Matching probabilities were estimated using the DNA-View software. Results Following the Y-STR analysis, 1 of the “weak matches” previously obtained based on autosomal loci, was confirmed while the other 1 was not. Combined standard STR and miniSTR approach applied to bone samples from 2 individual graves resulted in positive identifications. Finally, using the same approach on 11 bone samples from hidden mass grave Žološče, we were able to obtain 6 useful DNA profiles. Conclusion The results of this study, in combination with previously obtained results, demonstrate that Y-chromosome testing and miniSTR methodology can contribute to the identification of human remains of victims of revolutionary violence from World War II. PMID:19480024
Skorodumova, L O; Babalyan, K A; Sultanov, R; Vasiliev, A O; Govorov, A V; Pushkar, D Y; Prilepskaya, E A; Danilenko, S A; Generozov, E V; Larin, A K; Kostryukova, E S; Sharova, E I
2016-11-01
There is a clear need in molecular markers for prostate cancer (PC) risk stratification. Alteration of DNA methylation is one of processes that occur during ÐÑ progression. Methylation-sensitive PCR with high resolution melting curve analysis (MS-HRM) can be used for gene methylation analysis in routine laboratory practice. This method requires very small amounts of DNA for analysis. Numerous results have been accumulated on DNA methylation in PC samples analyzed by the Infinium HumanMethylation450 BeadChip (HM450). However, the consistency of MS-HRM results with chip hybridization results has not been examined yet. The aim of this study was to assess the consistency of results of GSTP1, APC and RASSF1 gene methylation analysis in ÐÑ biopsy samples obtained by MS-HRM and chip hybridization. The methylation levels of each gene determined by MS-HRM were statistically different in the group of PC tissue samples and the samples without signs of tumor growth. Chip hybridization data analysis confirmed the results obtained with the MS-HRM. Differences in methylation levels between tumor tissue and histologically intact tissue of each sample determined by MS-HRM and chip hybridization, were consistent with each other. Thus, we showed that the assessment of GSTP1, APC and RASSF1 gene methylation analysis using MS-HRM is suitable for the design of laboratory assays that will differentiate the PC tissue from the tissue without signs of tumor growth.
Armas, Federica; Camperio, Cristina; Coltella, Luana; Selvaggini, Serena; Boniotti, Maria Beatrice; Pacciarini, Maria Lodovica; Di Marco Lo Presti, Vincenzo; Marianelli, Cinzia
2017-08-04
Highly discriminatory genotyping strategies are essential in molecular epidemiological studies of tuberculosis. In this study we evaluated, for the first time, the efficacy of the repetitive sequence-based PCR (rep-PCR) DiversiLab Mycobacterium typing kit over spoligotyping, 12-locus mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) typing and embB single nucleotide polymorphism (SNP) analysis for Mycobacterium bovis typing. A total of 49 M. bovis animal isolates were used. DNA was extracted and genomic DNA was amplified using the DiversiLab Mycobacterium typing kit. The amplified fragments were separated and detected using a microfluidics chip with Agilent 2100. The resulting rep-PCR-based DNA fingerprints were uploaded to and analysed using web-based DiversiLab software through Pearson's correlation coefficient. Rep-PCR DiversiLab grouped M. bovis isolates into ten different clusters. Most isolates sharing identical spoligotype, MIRU-VNTR profile or embB gene polymorphism were grouped into different rep-PCR clusters. Rep-PCR DiversiLab displayed greater discriminatory power than spoligotyping and embB SNP analysis but a lower resolution power than the 12-locus MIRU-VNTR analysis. MIRU-VNTR confirmed that it is superior to the other PCR-based methods tested here. In combination with spoligotyping and 12-locus MIRU-VNTR analysis, rep-PCR improved the discriminatory power for M. bovis typing.
Qiu, Jing; Kleineidam, Anna; Gouraud, Sabine; Yao, Song Tieng; Greenwood, Mingkwan; Hoe, See Ziau; Hindmarch, Charles
2014-01-01
The supraoptic nucleus (SON) of the hypothalamus is responsible for maintaining osmotic stability in mammals through its elaboration of the antidiuretic hormone arginine vasopressin. Upon dehydration, the SON undergoes a function-related plasticity, which includes remodeling of morphology, electrical properties, and biosynthetic activity. This process occurs alongside alterations in steady state transcript levels, which might be mediated by changes in the activity of transcription factors. In order to identify which transcription factors might be involved in changing patterns of gene expression, an Affymetrix protein-DNA array analysis was carried out. Nuclear extracts of SON from dehydrated and control male rats were analyzed for binding to the 345 consensus DNA transcription factor binding sequences of the array. Statistical analysis revealed significant changes in binding to 26 consensus elements, of which EMSA confirmed increased binding to signal transducer and activator of transcription (Stat) 1/Stat3, cellular Myelocytomatosis virus-like cellular proto-oncogene (c-Myc)-Myc-associated factor X (Max), and pre-B cell leukemia transcription factor 1 sequences after dehydration. Focusing on c-Myc and Max, we used quantitative PCR to confirm previous transcriptomic analysis that had suggested an increase in c-Myc, but not Max, mRNA levels in the SON after dehydration, and we demonstrated c-Myc- and Max-like immunoreactivities in SON arginine vasopressin-expressing cells. Finally, by comparing new data obtained from Roche-NimbleGen chromatin immunoprecipitation arrays with previously published transcriptomic data, we have identified putative c-Myc target genes whose expression changes in the SON after dehydration. These include known c-Myc targets, such as the Slc7a5 gene, which encodes the L-type amino acid transporter 1, ribosomal protein L24, histone deactylase 2, and the Rat sarcoma proto-oncogene (Ras)-related nuclear GTPase. PMID:25144923
Naveenkumar, Chandrashekar; Raghunandhakumar, Subramanian; Asokkumar, Selvamani; Devaki, Thiruvengadam
2013-04-01
Our current study aimed to evaluate the chemotherapeutic efficacy of baicalein (BE) in Swiss albino mice, which is exposed to benzo(a)pyrene [B(a)P] for its ability to alleviate mitochondrial dysfunction and systolic failure. Here, we report that oral administration of B(a)P (50 mg/kg body weight)-induced pulmonary genotoxicities in mice was assessed in terms of elevation in reactive oxygen species (ROS) generation and DNA damage in lung mitochondria. MDA-DNA adducts were formed in immunohistochemical analysis, which confirmed nuclear DNA damage. mRNA expression levels studied by RT-PCR analysis of voltage-dependent anion channel (VDAC) and adenine nucleotide translocase (ANT) were found to be significantly decreased and showed a marked increase in membrane permeability transition pore (MPTP) opening. Accompanied by up-regulated Bcl-xL and down-regulated Bid, Bim and Cyt-c proteins studied by immunoblot were observed in B(a)P-induced lung cancer-bearing animals. Administration of BE (12 mg/kg body weight) significantly reversed all the above deleterious changes. Moreover, assessment of mitochondrial enzyme system revealed that BE treatment effectively counteracts B(a)P-induced down-regulated levels/activities of isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, NADH dehydrogenase, cytochrome-C-oxidase and ATP levels. Restoration of mitochondria from oxidative damage was further confirmed by transmission electron microscopic examination. Further analysis of lipid peroxidation, superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, glutathione reductase, reduced glutathione, vitamin E and vitamin C in lung mitochondria was carried out to substantiate the antioxidant effect of BE. The overall data conclude that chemotherapeutic efficacy of BE might have strong mitochondria protective and restoration capacity in sub-cellular level against lung carcinogenesis in Swiss albino mice. © 2012 The Authors Basic & Clinical Pharmacology & Toxicology © 2012 Nordic Pharmacological Society.
2010-01-01
Background Comparative genomic hybridization (CGH) constitutes a powerful tool for identification and characterization of bacterial strains. In this study we have applied this technique for the characterization of a number of Lactobacillus strains isolated from the intestinal content of rats fed with a diet supplemented with sorbitol. Results Phylogenetic analysis based on 16S rRNA gene, recA, pheS, pyrG and tuf sequences identified five bacterial strains isolated from the intestinal content of rats as belonging to the recently described Lactobacillus taiwanensis species. DNA-DNA hybridization experiments confirmed that these five strains are distinct but closely related to Lactobacillus johnsonii and Lactobacillus gasseri. A whole genome DNA microarray designed for the probiotic L. johnsonii strain NCC533 was used for CGH analysis of L. johnsonii ATCC 33200T, L. johnsonii BL261, L. gasseri ATCC 33323T and L. taiwanensis BL263. In these experiments, the fluorescence ratio distributions obtained with L. taiwanensis and L. gasseri showed characteristic inter-species profiles. The percentage of conserved L. johnsonii NCC533 genes was about 83% in the L. johnsonii strains comparisons and decreased to 51% and 47% for L. taiwanensis and L. gasseri, respectively. These results confirmed the separate status of L. taiwanensis from L. johnsonii at the level of species, and also that L. taiwanensis is closer to L. johnsonii than L. gasseri is to L. johnsonii. Conclusion Conventional taxonomic analyses and microarray-based CGH analysis have been used for the identification and characterization of the newly species L. taiwanensis. The microarray-based CGH technology has been shown as a remarkable tool for the identification and fine discrimination between phylogenetically close species, and additionally provided insight into the adaptation of the strain L. taiwanensis BL263 to its ecological niche. PMID:20849602
Capturing a DNA duplex under near-physiological conditions
NASA Astrophysics Data System (ADS)
Zhang, Huijuan; Xu, Wei; Liu, Xiaogang; Stellacci, Francesco; Thong, John T. L.
2010-10-01
We report in situ trapping of a thiolated DNA duplex with eight base pairs into a polymer-protected gold nanogap device under near-physiological conditions. The double-stranded DNA was captured by electrophoresis and covalently attached to the nanogap electrodes through sulfur-gold bonding interaction. The immobilization of the DNA duplex was confirmed by direct electrical measurements under near-physiological conditions. The conductance of the DNA duplex was estimated to be 0.09 μS. We also demonstrate the control of DNA dehybridization by heating the device to temperatures above the melting point of the DNA.
cDNA cloning and analysis of betaine aldehyde dehydrogenase, a salt inducible enzyme in sugar beet
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCue, K.F.; Hanson, A.D.
1990-05-01
Betaine accumulates and serves as a compatible osmolyte in some plants subjected to drought or salinity stress. The last enzyme in the betaine biosynthetic pathway is betaine aldehyde dehydrogenase (BADH). The activity of BADH increases in response to increasing salinity levels. This increase in activity corresponds to an increase in protein detectable by immunoblotting, and to an increase in the translatable BADH mRNA. BADH was cloned from a cDNA library constructed in {lambda}gt10 using poly(A){sup +} RNA from sugar beets salinized to 500 mM NaCl. cDNAs were size selected (>1kb) before ligation into the vector, and the library was screenedmore » with a spinach BADH cDNA probe. Three nearly full length clones obtained were confirmed as BADH by their nucleotide and deduced amino acid homology to spinach BADH. Clones averaged 1.8 kb and contained open reading frames of 500 amino acids at 80% identity with spinach BADH. RNA gel blot analysis of poly(A){sup +} RNA indicated that salinization to 500 mM NaCl resulted in a 5-fold increase of BADH mRNA level.« less
Cortés-Gutiérrez, Elva I; Dávila-Rodríguez, Martha I; Fernández, José Luis; López-Fernández, Carmen; Aragón-Tovar, Anel R; Urbina-Bernal, Luis C; Gosálvez, Jaime
2016-01-01
Evaluation of DNA integrity is an important test, possessing greater diagnostic and prognostic significance for couples requiring assisted reproduction. In this study, we evaluate the levels of DNA damage in infertile patients with varicocele with respect to fertile males by the sperm chromatin dispersion (SCD) test. The presence of DNA breaks in spermatozoa was confirmed by DNA breakage detection-fluorescence in situ hybridization (DBD-FISH). In this study, the frequency of sperm cells with fragmented DNA was studied in a group of 20 infertile patients with varicocele and compared with 20 fertile males. The spermatozoa were processed to classify different levels of DNA fragmentation using the Halosperm(®) kit, an improved SCD test, and DBD-FISH. Patients with varicocele showed 25.54 ± 28.17 % of spermatozoa with fragmented DNA, significantly higher than those of the group of fertile subjects (11.54 ± 3.88 %). The proportion of degraded cells in total sperm cells with fragmented DNA was sixfold higher in the case of patients with varicocele. The presence of DNA breaks in spermatozoa was confirmed by DBD-FISH. 5-bp Classical satellite-2 regions showed greater sensitivity to damage or "breakage" than alphoid satellite regions. Our finding preliminary demonstrated an increase of DNA fragmentation associated to severe sperm damage, in infertile patients with varicocele with respect to fertile males. 5-bp Classical satellite-2 regions showed greater sensitivity to damage or "breakage" than alphoid satellite regions.
Evaluation of optimal DNA staining for triggering by scanning fluorescence microscopy (SFM)
NASA Astrophysics Data System (ADS)
Mittag, Anja; Marecka, Monika; Pierzchalski, Arkadiusz; Malkusch, Wolf; Bocsi, József; Tárnok, Attila
2009-02-01
In imaging and flow cytometry, DNA staining is a common trigger signal for cell identification. Selection of the proper DNA dye is restricted by the hardware configuration of the instrument. The Zeiss Imaging Solutions GmbH (München, Germany) introduced a new automated scanning fluorescence microscope - SFM (Axio Imager.Z1) which combines fluorescence imaging with cytometric parameters measurement. The aim of the study was to select optimal DNA dyes as trigger signal in leukocyte detection and subsequent cytometric analysis of double-labeled leukocytes by SFM. Seven DNA dyes (DAPI, Hoechst 33258, Hoechst 33342, POPO-3, PI, 7-AAD, and TOPRO-3) were tested and found to be suitable for the implemented filtersets (fs) of the SFM (fs: 49, fs: 44, fs: 20). EDTA blood was stained after erythrocyte lysis with DNA dye. Cells were transferred on microscopic slides and embedded in fluorescent mounting medium. Quality of DNA fluorescence signal as well as spillover signals were analyzed by SFM. CD45-APC and CD3-PE as well as CD4-FITC and CD8-APC were selected for immunophenotyping and used in combination with Hoechst. Within the tested DNA dyes DAPI showed relatively low spillover and the best CV value. Due to the low spillover of UV DNA dyes a triple staining of Hoechst and APC and PE (or APC and FITC, respectively) could be analyzed without difficulty. These results were confirmed by FCM measurements. DNA fluorescence is applicable for identifying and triggering leukocytes in SFM analyses. Although some DNA dyes exhibit strong spillover in other fluorescence channels, it was possible to immunophenotype leukocytes. DAPI seems to be best suitable for use in the SFM system and will be used in protocol setups as primary parameter.
Preterm newborns show slower repair of oxidative damage and paternal smoking associated DNA damage.
Vande Loock, Kim; Ciardelli, Roberta; Decordier, Ilse; Plas, Gina; Haumont, Dominique; Kirsch-Volders, Micheline
2012-09-01
Newborns have to cope with hypoxia during delivery and a sudden increase in oxygen at birth. Oxygen will partly be released as reactive oxygen species having the potential to cause damage to DNA and proteins. In utero, increase of most (non)-enzymatic antioxidants occurs during last weeks of gestation, making preterm neonates probably more sensitive to oxidative stress. Moreover, it has been hypothesized that oxidative stress might be the common etiological factor for certain neonatal diseases in preterm infants. The aim of this study was to assess background DNA damage; in vitro H(2)O(2) induced oxidative DNA damage and repair capacity (residual DNA damage) in peripheral blood mononucleated cells from 25 preterm newborns and their mothers. In addition, demographic data were taken into account and repair capacity of preterm was compared with full-term newborns. Multivariate linear regression analysis revealed that preterm infants from smoking fathers have higher background DNA damage levels than those from non-smoking fathers, emphasizing the risk of paternal smoking behaviour for the progeny. Significantly higher residual DNA damage found after 15-min repair in preterm children compared to their mothers and higher residual DNA damage after 2 h compared to full-term newborns suggest a slower DNA repair capacity in preterm children. In comparison with preterm infants born by caesarean delivery, preterm infants born by vaginal delivery do repair more slowly the in vitro induced oxidative DNA damage. Final impact of passive smoking and of the slower DNA repair activity of preterm infants need to be confirmed in a larger study population combining transgenerational genetic and/or epigenetic effects, antioxidant levels, genotypes, repair enzyme efficiency/levels and infant morbidity.
The role of extracellular DNA in uranium precipitation and biomineralisation.
Hufton, Joseph; Harding, John H; Romero-González, Maria E
2016-10-26
Bacterial extra polymeric substances (EPS) have been associated with the extracellular precipitation of uranium. Here we report findings on the biomineralisation of uranium, with extracellular DNA (eDNA) used as a model biomolecule representative of EPS. The complexation and precipitation of eDNA with uranium were investigated as a function of pH, ionic strength and varying concentrations of reactants. The role of phosphate moieties in the biomineralisation mechanism was studied by enzymatically releasing phosphate (ePO 4 ) from eDNA compared to abiotic phosphate (aPO 4 ). The eDNA-uranium precipitates and uranium minerals obtained were characterised by Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FT-IR) spectroscopy, Scanning Electron Microscopy-Energy Dispersive X-Ray analysis (SEM-EDX), X-Ray Powder Diffraction (XRD) and X-Ray Photoelectron Spectroscopy (XPS). ATR-FT-IR showed that at pH 5, the eDNA-uranium precipitation mechanism was predominantly mediated by interactions with phosphate moieties from eDNA. At pH 2, the uranium interactions with eDNA occur mainly through phosphate. The solubility equilibrium was dependent on pH with the formation of precipitate reduced as the pH increased. The XRD data confirmed the formation of a uranium phosphate precipitate when synthesised using ePO 4 . XPS and SEM-EDX studies showed the incorporation of carbon and nitrogen groups from the enzymatic orthophosphate hydrolysis on the obtained precipitated. These results suggested that the removal of uranium from solution occurs via two mechanisms: complexation by eDNA molecules and precipitation of a uranium phosphate mineral of the type (UO 2 HPO 4 )·xH 2 O by enzymatic orthophosphate hydrolysis. This demonstrated that eDNA from bacterial EPS is a key contributor to uranium biomineralisation.
A High-Throughput Arabidopsis Reverse Genetics System
Sessions, Allen; Burke, Ellen; Presting, Gernot; Aux, George; McElver, John; Patton, David; Dietrich, Bob; Ho, Patrick; Bacwaden, Johana; Ko, Cynthia; Clarke, Joseph D.; Cotton, David; Bullis, David; Snell, Jennifer; Miguel, Trini; Hutchison, Don; Kimmerly, Bill; Mitzel, Theresa; Katagiri, Fumiaki; Glazebrook, Jane; Law, Marc; Goff, Stephen A.
2002-01-01
A collection of Arabidopsis lines with T-DNA insertions in known sites was generated to increase the efficiency of functional genomics. A high-throughput modified thermal asymetric interlaced (TAIL)-PCR protocol was developed and used to amplify DNA fragments flanking the T-DNA left borders from ∼100,000 transformed lines. A total of 85,108 TAIL-PCR products from 52,964 T-DNA lines were sequenced and compared with the Arabidopsis genome to determine the positions of T-DNAs in each line. Predicted T-DNA insertion sites, when mapped, showed a bias against predicted coding sequences. Predicted insertion mutations in genes of interest can be identified using Arabidopsis Gene Index name searches or by BLAST (Basic Local Alignment Search Tool) search. Insertions can be confirmed by simple PCR assays on individual lines. Predicted insertions were confirmed in 257 of 340 lines tested (76%). This resource has been named SAIL (Syngenta Arabidopsis Insertion Library) and is available to the scientific community at www.tmri.org. PMID:12468722
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selamat, Norhidayah; Heng, Lee Yook; Hassan, Nurul Izzaty
2015-09-25
The tetradentate ligand with four donor atoms OONN was synthesized. Bis(phenoxy)bipyridine ligand was prepared by Suzuki coupling reaction between 6,6’-dibromo-2,2’-bipyridyl and 2-hydroxyphenylboronic acid with presence of palladium (II) acetate. Bis(phenoxy)bipyridine ligand was also synthesized by demethylating of 6,6’-bis(2-methoxyphenyl)-2,2’-bipyridyl ligand through solvent free reaction using pyridine hydrocloride. The formation of both phenoxy and methoxy ligands was confirmed by {sup 1}H, 2D cosy and {sup 13}C NMR spectroscopy, ESI-MS spectrometry, FTIR spectroscopy. The purity of the ligand was confirmed by melting point. Binding studies of small molecules with DNA are useful to understand the reaction mechanism and to provide guidance for themore » application and design of new and more efficient drugs targeted to DNA. In this study, the binding interaction between the synthesized ligand with calf thymus-DNA (ct-DNA) has been investigated by UV/Vis DNA titration study. From the UV/Vis DNA study, it shows that bis(phenoxy)bipyridine ligand bind with ct-DNA via outside binding with binding contant K{sub b} = 1.19 × 10{sup 3} ± 0.08 M{sup −1}.« less
Identification of a novel CLRN1 gene mutation in Usher syndrome type 3: two case reports.
Yoshimura, Hidekane; Oshikawa, Chie; Nakayama, Jun; Moteki, Hideaki; Usami, Shin-Ichi
2015-05-01
This study examines the CLRN1 gene mutation analysis in Japanese patients who were diagnosed with Usher syndrome type 3 (USH3) on the basis of clinical findings. Genetic analysis using massively parallel DNA sequencing (MPS) was conducted to search for 9 causative USH genes in 2 USH3 patients. We identified the novel pathogenic mutation in the CLRN1 gene in 2 patients. The missense mutation was confirmed by functional prediction software and segregation analysis. Both patients were diagnosed as having USH3 caused by the CLRN1 gene mutation. This is the first report of USH3 with a CLRN1 gene mutation in Asian populations. Validating the presence of clinical findings is imperative for properly differentiating among USH subtypes. In addition, mutation screening using MPS enables the identification of causative mutations in USH. The clinical diagnosis of this phenotypically variable disease can then be confirmed. © The Author(s) 2015.
Clarification of the Concept of Ganoderma orbiforme with High Morphological Plasticity
Wang, Dong-Mei; Wu, Sheng-Hua; Yao, Yi-Jian
2014-01-01
Ganoderma has been considered a very difficult genus among the polypores to classify and is currently in a state of taxonomic chaos. In a study of Ganoderma collections including numerous type specimens, we found that six species namely G. cupreum, G. densizonatum, G. limushanense, G. mastoporum, G. orbiforme, G. subtornatum, and records of G. fornicatum from Mainland China and Taiwan are very similar to one another in basidiocarp texture, pilear cuticle structure, context color, pore color and basidiospore characteristics. Further, we sequenced the nrDNA ITS region (ITS1 and ITS2) and partial mtDNA SSU region of the studied materials, and performed phylogenetic analyses based on these sequence data. The nrDNA ITS sequence analysis results show that the eight nrDNA ITS sequences derived from this study have single-nucleotide polymorphisms in ITS1 and/or ITS2 at inter- and intra-individual levels. In the nrDNA ITS phylogenetic trees, all the sequences from this study are grouped together with those of G. cupreum and G. mastoporum retrieved from GenBank to form a distinct clade. The mtDNA SSU sequence analysis results reveal that the five mtDNA SSU sequences derived from this study are clustered together with those of G. cupreum retrieved from GenBank and also form a distinct clade in the mtDNA SSU phylogenetic trees. Based on morphological and molecular data, we conclude that the studied taxa are conspecific. Among the names assigned to this species, G. fornicatum given to Asian collections has nomenclatural priority over the others. However, the type of G. fornicatum from Brazil is probably lost and a modern description based on the type lacks. The identification of the Asian collections to G. fornicatum therefore cannot be confirmed. To the best of our knowledge, G. orbiforme is the earliest valid name for use. PMID:24875218
Lan, Jiaqi; Rahman, Sheikh Mokhlesur; Gou, Na; Jiang, Tao; Plewa, Micheal J; Alshawabkeh, Akram; Gu, April Z
2018-06-05
Genotoxicity is considered a major concern for drinking water disinfection byproducts (DBPs). Of over 700 DBPs identified to date, only a small number has been assessed with limited information for DBP genotoxicity mechanism(s). In this study, we evaluated genotoxicity of 20 regulated and unregulated DBPs applying a quantitative toxicogenomics approach. We used GFP-fused yeast strains that examine protein expression profiling of 38 proteins indicative of all known DNA damage and repair pathways. The toxicogenomics assay detected genotoxicity potential of these DBPs that is consistent with conventional genotoxicity assays end points. Furthermore, the high-resolution, real-time pathway activation and protein expression profiling, in combination with clustering analysis, revealed molecular level details in the genotoxicity mechanisms among different DBPs and enabled classification of DBPs based on their distinct DNA damage effects and repair mechanisms. Oxidative DNA damage and base alkylation were confirmed to be the main molecular mechanisms of DBP genotoxicity. Initial exploration of QSAR modeling using moleular genotoxicity end points (PELI) suggested that genotoxicity of DBPs in this study was correlated with topological and quantum chemical descriptors. This study presents a toxicogenomics-based assay for fast and efficient mechanistic genotoxicity screening and assessment of a large number of DBPs. The results help to fill in the knowledge gap in the understanding of the molecular mechanisms of DBP genotoxicity.
2013-01-01
Background The identity of herpesviruses isolated in Europe from domestic pigeons (Columbid herpesvirus-1 - CoHV-1) as well as falcons and owls remains unknown. All these herpesviruses are antigenically and genetically related. The falcons and owls are thought to have become infected during the ingestion of pigeon meat thus suggesting the virus’s capacity to infect a wide range of hosts. The aim of the conducted study was to detect the occurrence of CoHV-1 and estimating the similarities and differences in the DNA-dependent DNA polymerase gene of herpesviruses isolated from domestic pigeons, birds of prey and non-raptorial free-ranging birds in Poland. Results The study has shown the presence of CoHV-1 in 20.4% (18/88) in the examined birds. In case of one CoHV-1, infected Peregrine Falcon (Falco peregrinus), neurological signs were observed. Nucleotide sequencing of the DNA-dependent DNA polymerase gene, showed a high similarity among Polish strains (100%), independently from the species of the affected birds. Only one compared CoHV-1 strain - KP 21/23 originating from Germany showed a slightly lower similarity at a level of 99.1%. Further analysis has shown the identity of DNA-dependent DNA polymerase of CoHV-1 strains and other herpesviruses present in poultry as well as other birds ranged from 35.4 to 44.9%. Interestingly CoHV-1 infection was also confirmed for the first time in four non-raptorial birds. Conclusions The current study has shown a high similarity of CoHV-1 strains and the possible transmission of herpesviruses between domestic rock pigeons and free-ranging birds including raptors and non-raptorial birds. Further studies focused on cloning and the analysis of the whole CoHV-1 genome which is needed to explain the role of the observed similarities and differences between field strains of columbid herpesviruses. PMID:23517888
Negureanu, Lacramioara; Salsbury, Freddie R.
2012-01-01
The cellular response to DNA damage signaling by MMR proteins is incompletely understood. It is generally accepted that MMR-dependent apoptosis pathway in response to DNA damage detection is independent of MMR's DNA repair function. In this study we investigate correlated motions in response to the binding of mismatched and PCL DNA fragments by MutSα, as derived from 50 ns molecular dynamics simulations. The protein dynamics in response to the mismatched and damaged DNA recognition suggests that MutSα signals their recognition through independent pathways providing evidence for the molecular origin of the MMR-dependent apoptosis. MSH2 subunit is indicated to play a key role in signaling both mismatched and damaged DNA recognition; localized and collective motions within the protein allow identifying sites on the MSH2 surface possible involved in recruiting proteins responsible for downstream events. Unlike in the mismatch complex, predicted key communication sites specific for the damage recognition are on the list of known cancer causing mutations or deletions. This confirms MSH2's role in signaling DNA-damage induced apoptosis and suggests that defects in MMR alone is sufficient to trigger tumorigenesis, supporting the experimental evidence that MMR-damage response function could protect from the early occurrence of tumors. Identifying these particular communication sites may have implications for the treatment of cancers that are not defective for MMR, but are unable to function optimally for MMR-dependent responses following DNA damage such as the case of resistance to cisplatin. PMID:22712459
Saurer, Eric M.; Yamanouchi, Dai; Liu, Bo; Lynn, David M.
2010-01-01
We report an approach for the localized delivery of plasmid DNA to vascular tissue from the surfaces of inflatable embolectomy catheter balloons. Using a layer-by-layer approach, ultrathin multilayered polyelectrolyte films were fabricated on embolectomy catheter balloons by alternately adsorbing layers of a hydrolytically degradable poly(β-amino ester) and plasmid DNA. Fluorescence microscopy revealed that the films coated the surfaces of the balloons uniformly. Coated balloons that were incubated in phosphate-buffered saline at 37 °C released ~25 μg DNA/cm2 over 24 hours. Analysis of the DNA by gel electrophoresis showed that the DNA was released in open-circular (‘nicked’) and supercoiled conformations, and in vitro cell transfection assays confirmed that the released DNA was transcriptionally active. Arterial injury was induced in the internal carotid arteries of Sprague-Dawley rats using uncoated balloons, followed by treatment with film-coated balloons for 20 minutes. X-gal, immunohistochemical, and immunofluorescence staining of sectioned arteries indicated high levels of β-galactosidase or enhanced green fluorescent protein (EGFP) expression in arteries treated with film-coated balloons. β-galactosidase and EGFP expression were observed throughout the medial layers of arterial tissue, and around approximately two-thirds of the circumference of the treated arteries. The layer-by-layer approach reported here provides a general platform for the balloon-mediated delivery of DNA to vascular tissue. Our results suggest the potential of this approach to deliver therapeutically relevant DNA to prevent complications such as intimal hyperplasia that arise after vascular interventions. PMID:20933275
Danquah, Michael K; Forde, Gareth M
2007-06-15
The creation of a commercially viable and a large-scale purification process for plasmid DNA (pDNA) production requires a whole-systems continuous or semi-continuous purification strategy employing optimised stationary adsorption phase(s) without the use of expensive and toxic chemicals, avian/bovine-derived enzymes and several built-in unit processes, thus affecting overall plasmid recovery, processing time and economics. Continuous stationary phases are known to offer fast separation due to their large pore diameter making large molecule pDNA easily accessible with limited mass transfer resistance even at high flow rates. A monolithic stationary sorbent was synthesised via free radical liquid porogenic polymerisation of ethylene glycol dimethacrylate (EDMA) and glycidyl methacrylate (GMA) with surface and pore characteristics tailored specifically for plasmid binding, retention and elution. The polymer was functionalised with an amine active group for anion-exchange purification of pDNA from cleared lysate obtained from E. coli DH5alpha-pUC19 pellets in RNase/protease-free process. Characterization of the resin showed a unique porous material with 70% of the pores sizes above 300 nm. The final product isolated from anion-exchange purification in only 5 min was pure and homogenous supercoiled pDNA with no gDNA, RNA and protein contamination as confirmed with DNA electrophoresis, restriction analysis and SDS page. The resin showed a maximum binding capacity of 15.2 mg/mL and this capacity persisted after several applications of the resin. This technique is cGMP compatible and commercially viable for rapid isolation of pDNA.
Alharbi, Khalid Khalaf; Ali Khan, Imran; Alotaibi, Mohammad Abdullah; Saud Aloyaid, Abdullah; Al-Basheer, Haifa Abdulaziz; Alghamdi, Naelah Abdullah; Al-Baradie, Raid Saleem; Al-Sulaiman, A M
2018-01-01
Stroke is a multifactorial and heterogeneous disorder, correlates with heritability and considered as one of the major diseases. The prior reports performed the variable models such as genome-wide association studies (GWAS), replication, case-control, cross-sectional and meta-analysis studies and still, we lack diagnostic marker in the global world. There are limited studies were carried out in Saudi population, and we aim to investigate the molecular association of single nucleotide polymorphisms (SNPs) identified through GWAS and meta-analysis studies in stroke patients in the Saudi population. In this case-control study, we have opted gender equality of 207 cases and 207 controls from the capital city of Saudi Arabia in King Saud University Hospital. The peripheral blood (5 ml) sample will be collected in two different vacutainers, and three mL of the coagulated blood will be used for lipid analysis (biochemical tests) and two mL will be used for DNA analysis (molecular tests). Genomic DNA will be extracted with the collected blood samples, and specific primers will be designed for the opted SNPs ( SORT1 -rs646218 and OLR1 -rs11053646 polymorphisms) and PCR-RFLP will be performed and randomly DNA sequencing will be carried out to cross check the results. The rs646218 and rs11053646 polymorphisms were significantly associated with allele, genotype and dominant models with and without crude odds ratios (OR's) and Multiple logistic regression analysis (p < 0.05). Correlation between lipid profile and genotypes has confirmed the significant relation between triglycerides and rs646218 and rs1105364 6polymorphisms. However, rs11053646 polymorphism was correlated with HDLC (p = 0.04). Genotypes were examined in both males' vs. males and females' vs. females in cases and control and we concluded that in rs11053646 polymorphisms with male subjects compared between cases and controls found to be associated with dominant model heterozygote genotypes (p < 0.05). The results of the current study confirmed the SORT1 and OLR1 SNPs were associated in the Saudi population. The current results were in the association with the prior study results documented through GWAS and meta-analysis association. However, other ethnic population studies should be performed to rule out in the human hereditary diseases.
Fu, Peter P; Xia, Qingsu; He, Xiaobo; Barel, Shimon; Edery, Nir; Beland, Frederick A; Shimshoni, Jakob A
2017-03-20
Pyrrolizidine alkaloids are among the most common poisonous plants affecting livestock, wildlife, and humans. Exposure of humans and livestock to toxic pyrrolizidine alkaloids through the intake of contaminated food and feed may result in poisoning, leading to devastating epidemics. During February 2014, 73 mixed breed female beef cows from the Galilee region of Israel were accidently fed pyrrolizidine alkaloid contaminated hay for 42 days, resulting in the sudden death of 24 cows over a period of 63 days. The remaining cows were slaughtered 2.5 months after the last ingestion of the contaminated hay. In this study, we report the histopathological analysis of the livers from five of the slaughtered cows and quantitation of pyrrolizidine alkaloid-derived DNA adducts from their livers and three livers of control cows fed with feed free of weeds producing pyrrolizidine alkaloids. Histopathological examination revealed that the five cows suffered from varying degrees of bile duct proliferation, fibrosis, and megalocytosis. Selected reaction monitoring HPLC-ES-MS/MS analysis indicated that (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-derived DNA adducts were formed in all five livers. The livers from the three control cows did not have any liver damage nor any indication of DHP-DNA adduct formed. These results confirm that the toxicity observed in these cattle was caused by pyrrolizidine alkaloid poisoning and that pyrrolizidine alkaloid-derived DNA adducts could still be detected and quantified in the livers of the chronically poisoned cows 2.5 months after their last exposure to the contaminated feed, suggesting that DHP-derived DNA adducts can serve as biomarkers for pyrrolizidine alkaloid exposure and poisoning.
Evaluation of the skin irritation using a DNA microarray on a reconstructed human epidermal model.
Niwa, Makoto; Nagai, Kanji; Oike, Hideaki; Kobori, Masuko
2009-02-01
To avoid the need to use animals to test the skin irritancy potential of chemicals and cosmetics, it is important to establish an in vitro method based on the reconstructed human epidermal model. To evaluate skin irritancy efficiently and sensitively, we determined the gene expression induced by a topically-applied mild irritant sodium dodecyl sulfate (SDS) in a reconstructed human epidermal model LabCyte EPI-MODEL (LabCyte) using a DNA microarray carrying genes that were related to inflammation, immunity, stress and housekeeping. The expression and secretion of IL-1alpha in reconstructed human epidermal culture is known to be induced by irritation. We detected the induction of IL-1alpha expression and its secretion into the cell culture medium by treatment with 0.075% SDS for 18 h in LabCyte culture using DNA microarray, quantitative reverse-transcription polymerase chain reaction (RT-PCR) and ELISA. DNA microarray analysis indicated that the expression of 10 of the 205 genes carried on the DNA microarray was significantly induced in a LabCyte culture by 0.05% or 0.075% SDS irritation for 18 h. RT-PCR analysis confirmed that SDS treatment significantly induced the expressions of interleukin-1 receptor antagonist (IL-1RN), FOS-like antigen 1 (FOSL1), heat shock 70 kDa protein 1A (HSPA1) and myeloid differentiation primary response gene (88) (MYD88), as well as the known marker genes for irritation IL-1beta and IL-8 in a LabCyte culture. Our results showed that a DNA microarray is a useful tool for efficiently evaluating mild skin irritation using a reconstructed human epidermal model.
Xu, Li; Fengji, Liang; Changning, Liu; Liangcai, Zhang; Yinghui, Li; Yu, Li; Shanguang, Chen; Jianghui, Xiong
2015-01-01
Introduction Advances in high-throughput technologies have generated diverse informative molecular markers for cancer outcome prediction. Long non-coding RNA (lncRNA) and DNA methylation as new classes of promising markers are emerging as key molecules in human cancers; however, the prognostic utility of such diverse molecular data remains to be explored. Materials and Methods We proposed a computational pipeline (IDFO) to predict patient survival by identifying prognosis-related biomarkers using multi-type molecular data (mRNA, microRNA, DNA methylation, and lncRNA) from 3198 samples of five cancer types. We assessed the predictive performance of both single molecular data and integrated multi-type molecular data in patient survival stratification, and compared their relative importance in each type of cancer, respectively. Survival analysis using multivariate Cox regression was performed to investigate the impact of the IDFO-identified markers and traditional variables on clinical outcome. Results Using the IDFO approach, we obtained good predictive performance of the molecular datasets (bootstrap accuracy: 0.71–0.97) in five cancer types. Impressively, lncRNA was identified as the best prognostic predictor in the validated cohorts of four cancer types, followed by DNA methylation, mRNA, and then microRNA. We found the incorporating of multi-type molecular data showed similar predictive power to single-type molecular data, but with the exception of the lncRNA + DNA methylation combinations in two cancers. Survival analysis of proportional hazard models confirmed a high robustness for lncRNA and DNA methylation as prognosis factors independent of traditional clinical variables. Conclusion Our study provides insight into systematically understanding the prognostic performance of diverse molecular data in both single and aggregate patterns, which may have specific reference to subsequent related studies. PMID:26606135
Wolffe, E J; Gause, W C; Pelfrey, C M; Holland, S M; Steinberg, A D; August, J T
1990-01-05
We describe the isolation and sequencing of a cDNA encoding mouse Pgp-1. An oligonucleotide probe corresponding to the NH2-terminal sequence of the purified protein was synthesized by the polymerase chain reaction and used to screen a mouse macrophage lambda gt11 library. A cDNA clone with an insert of 1.2 kilobases was selected and sequenced. In Northern blot analysis, only cells expressing Pgp-1 contained mRNA species that hybridized with this Pgp-1 cDNA. The nucleotide sequence of the cDNA has a single open reading frame that yields a protein-coding sequence of 1076 base pairs followed by a 132-base pair 3'-untranslated sequence that includes a putative polyadenylation signal but no poly(A) tail. The translated sequence comprises a 13-amino acid signal peptide followed by a polypeptide core of 345 residues corresponding to an Mr of 37,800. Portions of the deduced amino acid sequence were identical to those obtained by amino acid sequence analysis from the purified glycoprotein, confirming that the cDNA encodes Pgp-1. The predicted structure of Pgp-1 includes an NH2-terminal extracellular domain (residues 14-265), a transmembrane domain (residues 266-286), and a cytoplasmic tail (residues 287-358). Portions of the mouse Pgp-1 sequence are highly similar to that of the human CD44 cell surface glycoprotein implicated in cell adhesion. The protein also shows sequence similarity to the proteoglycan tandem repeat sequences found in cartilage link protein and cartilage proteoglycan core protein which are thought to be involved in binding to hyaluronic acid.
Guttek, Karina; Hartig, Roland; Godenschweger, Frank; Roggenbuck, Dirk; Ricke, Jens; Reinhold, Dirk; Speck, Oliver
2015-01-01
The global use of magnetic resonance imaging (MRI) is constantly growing and the field strengths increasing. Yet, only little data about harmful biological effects caused by MRI exposure are available and published research analyzing the impact of MRI on DNA integrity reported controversial results. This in vitro study aimed to investigate the genotoxic and cytotoxic potential of 7 T ultra-high-field MRI on isolated human peripheral blood mononuclear cells. Hence, unstimulated mononuclear blood cells were exposed to 7 T static magnetic field alone or in combination with maximum permissible imaging gradients and radiofrequency pulses as well as to ionizing radiation during computed tomography and γ-ray exposure. DNA double-strand breaks were quantified by flow cytometry and automated microscopy analysis of immunofluorescence stained γH2AX. Cytotoxicity was studied by CellTiter-Blue viability assay and [3H]-thymidine proliferation assay. Exposure of unstimulated mononuclear blood cells to 7 T static magnetic field alone or combined with varying gradient magnetic fields and pulsed radiofrequency fields did not induce DNA double-strand breaks, whereas irradiation with X- and γ-rays led to a dose-dependent induction of γH2AX foci. The viability assay revealed a time- and dose-dependent decrease in metabolic activity only among samples exposed to γ-radiation. Further, there was no evidence for altered proliferation response after cells were exposed to 7 T MRI or low doses of ionizing radiation (≤ 0.2 Gy). These findings confirm the acceptance of MRI as a safe non-invasive diagnostic imaging tool, but whether MRI can induce other types of DNA lesions or DNA double-strand breaks during altered conditions still needs to be investigated. PMID:26176601
Löfström, Charlotta; Knutsson, Rickard; Axelsson, Charlotta Engdahl; Rådström, Peter
2004-01-01
A PCR procedure has been developed for routine analysis of viable Salmonella spp. in feed samples. The objective was to develop a simple PCR-compatible enrichment procedure to enable DNA amplification without any sample pretreatment such as DNA extraction or cell lysis. PCR inhibition by 14 different feed samples and natural background flora was circumvented by the use of the DNA polymerase Tth. This DNA polymerase was found to exhibit a high level of resistance to PCR inhibitors present in these feed samples compared to DyNAzyme II, FastStart Taq, Platinum Taq, Pwo, rTth, Taq, and Tfl. The specificity of the Tth assay was confirmed by testing 101 Salmonella and 43 non-Salmonella strains isolated from feed and food samples. A sample preparation method based on culture enrichment in buffered peptone water and DNA amplification with Tth DNA polymerase was developed. The probability of detecting small numbers of salmonellae in feed, in the presence of natural background flora, was accurately determined and found to follow a logistic regression model. From this model, the probability of detecting 1 CFU per 25 g of feed in artificially contaminated soy samples was calculated and found to be 0.81. The PCR protocol was evaluated on 155 naturally contaminated feed samples and compared to an established culture-based method, NMKL-71. Eight percent of the samples were positive by PCR, compared with 3% with the conventional method. The reasons for the differences in sensitivity are discussed. Use of this method in the routine analysis of animal feed samples would improve safety in the food chain. PMID:14711627
Koester, Meike; Gergs, René
2017-10-05
Analyzing food webs is essential for a better understanding of ecosystems. For example, food web interactions can undergo severe changes caused by the invasion of non-indigenous species. However, an exact identification of field predator-prey interactions is difficult in many cases. These analyses are often based on a visual evaluation of gut content or the analysis of stable isotope ratios (δ 15 N and δ 13 C). Such methods require comprehensive knowledge about, respectively, morphologic diversity or isotopic signature from individual prey organisms, leading to obstacles in the exact identification of prey organisms. Visual gut content analyses especially underestimate soft bodied prey organisms, because maceration, ingestion and digestion of prey organisms make identification of specific species difficult. Hence, polymerase chain reaction (PCR) based strategies, for example the use of group-specific primer sets, provide a powerful tool for the investigation of food web interactions. Here, we describe detailed protocols to investigate the gut contents of macroinvertebrate consumers from the field using group-specific primer sets for nuclear ribosomal deoxyribonucleic acid (rDNA). DNA can be extracted either from whole specimens (in the case of small taxa) or out of gut contents of specimens collected in the field. Presence and functional efficiency of the DNA templates need to be confirmed directly from the tested individual using universal primer sets targeting the respective subunit of DNA. We also demonstrate that consumed prey can be determined further down to species level via PCR with unmodified group-specific primers combined with subsequent single strand conformation polymorphism (SSCP) analyses using polyacrylamide gels. Furthermore, we show that the use of different fluorescent dyes as labels enables parallel screening for DNA fragments of different prey groups from multiple gut content samples via automated fragment analysis.
Brun, Adrian; Rangé, Hélène; Prouvost, Bastien; Meilhac, Olivier; Mazighi, Mikael; Amarenco, Pierre; Lesèche, Guy; Bouchard, Philippe; Michel, Jean-Baptiste
2016-06-28
Periodontal diseases are multifactorial inflammatory diseases, caused by a bacterial biofilm involving both innate and adaptative immunity, characterized by the destruction of tooth-supporting tissues. In the context of periodontitis, the spread of weak pathogenic bacteria into the bloodstream has been described. These bacteria will preferentially localize to existing clot within the circulation. Atherothrombosis of the carotid arteries is a local pathology and a common cause of cerebral infarction. Intraplaque hemorrhages render the lesion more prone to clinical complications such as stroke. The main objective of this study is to explore the biological relationship between carotid intraplaque hemorrhage and periodontal diseases. This study included consecutive patients with symptomatic or asymptomatic carotid stenosis, admitted for endarterectomy surgical procedure (n=41). In conditioned media of the carotid samples collected, markers of neutrophil activation (myeloperoxidase or MPO, DNA-MPO complexes) and hemoglobin were quantified. To investigate the presence of DNA from periodontal bacteria in atherosclerotic plaque, PCR analysis using specific primers was performed. Our preliminary results indicate an association between neutrophil activation and intraplaque hemorrhages, reflected by the release of MPO (p<0,01) and MPO-DNA complexes (p<0,05). Presence of DNA from periodontitis-associated bacteria was found in 32/41 (78%) atheromatous plaque samples. More specifically, DNA from Pg, Tf, Pi, Aa was found in 46%, 24%, 34% and 68% of the samples, respectively. Hemoglobin levels were higher in conditioned media in carotid samples where the bacteria were found, but this was not statistically significant. Our data confirm the relationship between intraplaque hemorrhage and neutrophil activation. In addition, the presence of periodontal bacteria DNA in carotid atheromatous plaque, may contribute to this activation. Further analysis is needed to fully explore the raw data and specimens.
Woo, Nain; Kim, Su-Kang; Sun, Yucheng; Kang, Seong Ho
2018-01-01
Human apolipoprotein E (ApoE) is associated with high cholesterol levels, coronary artery disease, and especially Alzheimer's disease. In this study, we developed an ApoE genotyping and one-step multiplex polymerase chain reaction (PCR) based-capillary electrophoresis (CE) method for the enhanced diagnosis of Alzheimer's. The primer mixture of ApoE genes enabled the performance of direct one-step multiplex PCR from whole blood without DNA purification. The combination of direct ApoE genotyping and one-step multiplex PCR minimized the risk of DNA loss or contamination due to the process of DNA purification. All amplified PCR products with different DNA lengths (112-, 253-, 308-, 444-, and 514-bp DNA) of the ApoE genes were analyzed within 2min by an extended voltage programming (VP)-based CE under the optimal conditions. The extended VP-based CE method was at least 120-180 times faster than conventional slab gel electrophoresis methods In particular, all amplified DNA fragments were detected in less than 10 PCR cycles using a laser-induced fluorescence detector. The detection limits of the ApoE genes were 6.4-62.0pM, which were approximately 100-100,000 times more sensitive than previous Alzheimer's diagnosis methods In addition, the combined one-step multiplex PCR and extended VP-based CE method was also successfully applied to the analysis of ApoE genotypes in Alzheimer's patients and normal samples and confirmed the distribution probability of allele frequencies. This combination of direct one-step multiplex PCR and an extended VP-based CE method should increase the diagnostic reliability of Alzheimer's with high sensitivity and short analysis time even with direct use of whole blood. Copyright © 2017 Elsevier B.V. All rights reserved.
A bipedal DNA motor that travels back and forth between two DNA origami tiles.
Liber, Miran; Tomov, Toma E; Tsukanov, Roman; Berger, Yaron; Nir, Eyal
2015-02-04
In this work, the successful operation of a dynamic DNA device constructed from two DNA origami building blocks is reported. The device includes a bipedal walker that strides back and forth between the two origami tiles. Two different DNA origami tiles are first prepared separately; they are then joined together in a controlled manner by a set of DNA strands to form a stable track in high yield as confirmed by single-molecule fluorescence (SMF). Second, a bipedal DNA motor, initially attached to one of the two origami units and operated by sequential interaction with "fuel" and "antifuel" DNA strands, moves from one origami tile to another and then back again. The operational yield, measured by SMF, was similar to that of a motor operating on a similar track embedded in a single origami tile, confirming that the transfer across the junction from one tile to the other does not result in dissociation that is any more than that of steps on a single tile. These results demonstrate that moving parts can reliably travel from one origami unit to another, and it demonstrates the feasibility of dynamic DNA molecular machines that are made of more than a single origami building block. This study is a step toward the development of motors that can stride over micrometer distances. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Findri-Guštek, Stefica; Petek, Maja Jelena; Sarajlija, Hrvoje; Mršić, Gordan; Džepina, Ana Mlinarić; Oreščanin, Višnja
2012-09-01
The objective of this study was determination of causative factors of the genital infections and their correlation with various predictor variables. Secondary objectives included: (1) determination of the presence and the type of low molecular weight metabolites in the samples of vaginal secretion formed in vivo, (2) determination of the concentration of 2-phenylethanol formed in vitro for each Candida species, (3) determination of the relationship between fungal/bacterial/viral infections with the metabolites formed in vivo using multivariate analysis. One hundred and ninety-seven women in the age range from 18 to 65 years were included in the study. After the completion of questionnaire, all the patients were subjected to Pap test, cervical swabs for the presence of aerobic bacteria, yeasts, Ureaplasma urealyticum, Chlamydia trachomatis, Mycoplasma, and hrHPV DNA. The presence and the concentration of low-molecular weight metabolites in vitro and in vivo were determined by gas chromatography-mass spectrometry (GC-MS) method. Multivariate analysis methods were used for statistical evaluation. The most important risk factors of fungal/bacterial/viral infections were determined. The presence of 2-phenylethanol in vivo was confirmed in 14 of 74 tested samples and connected with the Candida species. The presence of symptoms, hrHPV DNA and Ureaplasma urealyticum are the predictor variables with the highest influence on the formation of the metabolite in vivo. The results in vitro confirmed that various Candida species produced 2-phenylethanol with the concentrations ranging from 0.6 to 4.64 μg/mL. The medical exposure to irradiation, marital status, and number of partners as well as stress factors (miscarriages, chronic, viral, or tumor illnesses) had the highest influence on the development of the bacterial/fungal/viral infections. The formation of 2-phenylethanol, both in vivo and in vitro, was confirmed and connected with Candida species. Besides, according to statistical tests, it seems that presence of symptoms, hrHPV DNA, and Ureaplasma urealyticum had also significant role on the formation of 2-phenylethanol in vivo.
GM2 Gangliosidosis in Shiba Inu Dogs with an In-Frame Deletion in HEXB.
Kolicheski, A; Johnson, G S; Villani, N A; O'Brien, D P; Mhlanga-Mutangadura, T; Wenger, D A; Mikoloski, K; Eagleson, J S; Taylor, J F; Schnabel, R D; Katz, M L
2017-09-01
Consistent with a tentative diagnosis of neuronal ceroid lipofuscinosis (NCL), autofluorescent cytoplasmic storage bodies were found in neurons from the brains of 2 related Shiba Inu dogs with a young-adult onset, progressive neurodegenerative disease. Unexpectedly, no potentially causal NCL-related variants were identified in a whole-genome sequence generated with DNA from 1 of the affected dogs. Instead, the whole-genome sequence contained a homozygous 3 base pair (bp) deletion in a coding region of HEXB. The other affected dog also was homozygous for this 3-bp deletion. Mutations in the human HEXB ortholog cause Sandhoff disease, a type of GM2 gangliosidosis. Thin-layer chromatography confirmed that GM2 ganglioside had accumulated in an affected Shiba Inu brain. Enzymatic analysis confirmed that the GM2 gangliosidosis resulted from a deficiency in the HEXB encoded protein and not from a deficiency in products from HEXA or GM2A, which are known alternative causes of GM2 gangliosidosis. We conclude that the homozygous 3-bp deletion in HEXB is the likely cause of the Shiba Inu neurodegenerative disease and that whole-genome sequencing can lead to the early identification of potentially disease-causing DNA variants thereby refocusing subsequent diagnostic analyses toward confirming or refuting candidate variant causality. Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.
BILATERAL RETINOCHOROIDITIS CAUSED BY AN ATYPICAL STRAIN OF TOXOPLASMA GONDII
Bottós, Juliana; Miller, Robin H.; Belfort, Rubens N.; Macedo, Ana Carolina; Belfort, Rubens; Grigg, Michael E.
2012-01-01
Background A 53-year-old man presented with an acute bilateral posterior uveitis with extensive necrotizing retinochoroiditis but without chorioretinal scarring. A thorough workup did not reveal any underlying disease. The possibilities of atypical ocular toxoplasmosis as well as herpetic retinal necrosis were considered and specific therapy instituted, with little improvement. The patient died within two months as result of an undifferentiated squamous cell carcinoma. Methods Histopathological examination, immunohistochemistry and multi-locus polymerase chain reaction confirmed T. gondii infection of the retina Results Macroscopic examination of enucleated globe showed extensive retinal necrosis and vitreous detachment. Histological examination of retinal tissue identified numerous round–to-elliptical toxoplasmic cysts within the retina, with retinal necrosis and minimal choroidal inflammation. Immunohistochemical analyses confirmed the cysts were due to Toxoplasma gondii. DNA extracted from formalin-fixed, paraffin-embedded tissue sections was subjected to multi-locus PCR analysis at the following typing loci: SAG1, SAG2, SAG3, SAG4, B1, NTS2, GRA6, and GRA7. DNA sequencing of positive PCR products at the NTS2, SAG1, and GRA7 loci confirmed the presence of a non-archetypal strain of T. gondii infecting the eye of the patient experiencing a severe, atypical ocular toxoplasmosis Conclusion A highly divergent, non-archetypal strain of Toxoplasma gondii was responsible for causing a severe, atypical bilateral retinochoroiditis in a patient from Brazil. PMID:19666926
Koper, Andre; Zeef, Leo A H; Joseph, Leena; Kerr, Keith; Gosney, John; Lindsay, Mark A; Booton, Richard
2017-01-10
Preinvasive squamous cell cancer (PSCC) are local transformations of bronchial epithelia that are frequently observed in current or former smokers. Their different grades and sizes suggest a continuum of dysplastic change with increasing severity, which may culminate in invasive squamous cell carcinoma (ISCC). As a consequence of the difficulty in isolating cancerous cells from biopsies, the molecular pathology that underlies their histological variability remains largely unknown. To address this issue, we have employed microdissection to isolate normal bronchial epithelia and cancerous cells from low- and high-grade PSCC and ISCC, from paraffin embedded (FFPE) biopsies and determined gene expression using Affymetric Human Exon 1.0 ST arrays. Tests for differential gene expression were performed using the Bioconductor package limma followed by functional analyses of differentially expressed genes in IPA. Examination of differential gene expression showed small differences between low- and high-grade PSCC but substantial changes between PSCC and ISCC samples (184 vs 1200 p-value <0.05, fc ±1.75). However, the majority of the differentially expressed PSCC genes (142 genes: 77%) were shared with those in ISCC samples. Pathway analysis showed that these shared genes are associated with DNA damage response, DNA/RNA metabolism and inflammation as major biological themes. Cluster analysis identified 12 distinct patterns of gene expression including progressive up or down-regulation across PSCC and ISCC. Pathway analysis of incrementally up-regulated genes revealed again significant enrichment of terms related to DNA damage response, DNA/RNA metabolism, inflammation, survival and proliferation. Altered expression of selected genes was confirmed using RT-PCR, as well as immunohistochemistry in an independent set of 45 ISCCs. Gene expression profiles in PSCC and ISCC differ greatly in terms of numbers of genes with altered transcriptional activity. However, altered gene expression in PSCC affects canonical pathways and cellular and biological processes, such as inflammation and DNA damage response, which are highly consistent with hallmarks of cancer.
Leão, Sylvia Cardoso; Briones, Marcelo R. S.; Sircili, Marcelo Palma; Balian, Simone Carvalho; Mores, Nelson; Ferreira-Neto, José Soares
1999-01-01
Mycobacterium avium complex (MAC) is composed of environmental mycobacteria found widely in soil, water, and aerosols that can cause disease in animals and humans, especially disseminated infections in AIDS patients. MAC consists of two closely related species, M. avium and M. intracellulare, and may also include other, less-defined groups. The precise differentiation of MAC species is a fundamental step in epidemiological studies and for the evaluation of possible reservoirs for MAC infection in humans and animals. In this study, which included 111 pig and 26 clinical MAC isolates, two novel allelic M. avium PCR-restriction enzyme analysis (PRA) variants were identified, differing from the M. avium PRA prototype in the HaeIII digestion pattern. Mutations in HaeIII sites were confirmed by DNA sequencing. Identification of these isolates as M. avium was confirmed by PCR with DT1-DT6 and IS1245 primers, nucleic acid hybridization with the AccuProbe system, 16S ribosomal DNA sequencing, and biochemical tests. The characterization of M. avium PRA variants can be useful in the elucidation of factors involved in mycobacterial virulence and routes of infection and also has diagnostic significance, since they can be misidentified as M. simiae II and M. kansasii I if the PRA method is used in the clinical laboratory for identification of mycobacteria. PMID:10405407
Perez Perez, Guillermo I.; Gao, Zhan; Jourdain, Roland; Ramirez, Julia; Gany, Francesca; Clavaud, Cecile; Demaude, Julien
2016-01-01
We studied skin microbiota present in three skin sites (forearm, axilla, scalp) in men from six ethnic groups living in New York City. Methods. Samples were obtained at baseline and after four days following use of neutral soap and stopping regular hygiene products, including shampoos and deodorants. DNA was extracted using the MoBio Power Lyzer kit and 16S rRNA gene sequences determined on the IIlumina MiSeq platform, using QIIME for analysis. Results. Our analysis confirmed skin swabbing as a useful method for sampling different areas of the skin because DNA concentrations and number of sequences obtained across subject libraries were similar. We confirmed that skin location was the main factor determining the composition of bacterial communities. Alpha diversity, expressed as number of species observed, was greater in arm than on scalp or axilla in all studied groups. We observed an unexpected increase in α-diversity on arm, with similar tendency on scalp, in the South Asian group after subjects stopped using their regular shampoos and deodorants. Significant differences at phylum and genus levels were observed between subjects of the different ethnic origins at all skin sites. Conclusions. We conclude that ethnicity and particular soap and shampoo practices are secondary factors compared to the ecological zone of the human body in determining cutaneous microbiota composition. PMID:27088867
Roberts, Mark A; Schwartz, Tonia S; Karl, Stephen A
2004-01-01
We assessed the degree of population subdivision among global populations of green sea turtles, Chelonia mydas, using four microsatellite loci. Previously, a single-copy nuclear DNA study indicated significant male-mediated gene flow among populations alternately fixed for different mitochondrial DNA haplotypes and that genetic divergence between populations in the Atlantic and Pacific Oceans was more common than subdivisions among populations within ocean basins. Even so, overall levels of variation at single-copy loci were low and inferences were limited. Here, the markedly more variable microsatellite loci confirm the presence of male-mediated gene flow among populations within ocean basins. This analysis generally confirms the genetic divergence between the Atlantic and Pacific. As with the previous study, phylogenetic analyses of genetic distances based on the microsatellite loci indicate a close genetic relationship among eastern Atlantic and Indian Ocean populations. Unlike the single-copy study, however, the results here cannot be attributed to an artifact of general low variability and likely represent recent or ongoing migration between ocean basins. Sequence analyses of regions flanking the microsatellite repeat reveal considerable amounts of cryptic variation and homoplasy and significantly aid in our understanding of population connectivity. Assessment of the allele frequency distributions indicates that at least some of the loci may not be evolving by the stepwise mutation model. PMID:15126404
[Identification of human papilloma viruses (HPV) in inflammatory states and ear neoplasms].
Rydzewski, Bogdan; Goździcka-Józefiak, Anna; Sokalski, Jerzy; Matusiak, Monika; Durzyński, Lukasz
2007-01-01
Human Papilloma Virus has a strong relation to oropharyngeal mucosa and is considered to be responsible for a wide range of upper respiratory tract pathologies, like laryngeal papilloma. There's a hypothesis, that it plays a significant role in middle ear chronic inflammations and neoplasm's. MATERIAL AND METHODIC. The examination was carried on a group of 53 patients, 39 of which was suffering from granulation tissue chronic otitis media, 7-cholesteatomatous otitis media, 6--middle ear malignant neoplasm, and 1 middle and/or external ear benign neoplasm. The control group consisted of 5 patients operated on: otosclerosis--4 cases and post-traumatic tympanic membrane perforation--1 case. The material was postoperative tissue, like polyps, inflammatory granulation tissue, cholesteatoma masses and malignant neoplasm's tissue. In the whole group of 53 examined cases, HPV DNA was confirmed in 22 cases (41.5%), in that group oncogenic types 16 or 18 in 12 cases (22.6%), and in 14 cases (26.4%) types 6 or 11. In a group of chronic granulomatous otitis media DNA characteristic for Papilloma was identified in 12 cases (25.6%), in it in 9 cases DNA HPV type 6 or 11 was confirmed, and in 7 cases type 16 or 18. Among cholesteatomatous chronic otitis media HPV DNA types 6 or 11 was identified in 70%. In every case of middle ear malignant neoplasm a presence of high-risk DNA Papilloma types 16 or 18 was confirmed. In any case of control group HPV DNA was detected. The results has been compared with other authors examinations and it is claimed that they confirm the observation, that Human Papilloma Viruses may be a factor, that might play an important role in pathology of chronic otitis media and ear neoplasm's. It is concluded, that differences in percentages of HPV presence in chronic inflammations (70%) and ear neoplasm's may be explained by viral co-infection during bacterial c. o. m. Viral infection probably evolves carcinogenesis, which leads to a neoplastic growth.
Nefedova, V V; Korenberg, E I; Kovalevskiĭ, Iu V; Gorelova, N B; Vorob'eva, N N
2008-01-01
The PCR and sequence analysis revealed DNA Ehrlichia muris, Anaplasma phagocytophilum, and Rickettsia spp. in the I. persulcatus ticks and blood samples from a patients with acute febrile illness occurring after a tick bite, registered in the seasonal peak of the tick activity of one of the highly endemic areas of Russia (Perm region). These data confirmed the validity a diagnosis of HME and HGA, which were made earlier on the basis of the clinical-serologic survey. In 10.0% of the tested taiga ticks were detected DNA of two and more agents in various combinations i.e. E. muris and Rickettsia spp, A. phagocytophilum and Rickettsia spp., and E. muris, A. phagocytophilum and Rickettsia spp. DNA of a R. helvetica was detected in I. persulcatus tick and blood tick-bitten patient with febrile episodes. Probably that R. helvetica can be etiological agent in some part of cases with the serologically unconfirmed diagnoses of acute feverish diseases developing after tick bite.
Formaldehyde activation of mitoxantrone yields CpG and CpA specific DNA adducts
Parker, Belinda S.; Cutts, Suzanne M.; Cullinane, Carleen; Phillips, Don R.
2000-01-01
Recently we have found that mitoxantrone, like Adriamycin, can be activated by formaldehyde and subsequently form adducts which stabilise double-stranded DNA in vitro. This activation by formaldehyde may be biologically relevant since formaldehyde levels are elevated in those tumours in which mitoxantrone is most cytotoxic. In vitro transcription analysis revealed that these adducts block the progression of RNA polymerase during transcription and cause truncated RNA transcripts. There was an absolute requirement for both mitoxantrone and formaldehyde in transcriptional blockage formation and the activated complex was found to exhibit site specificity, with blockage occurring prior to CpG and CpA sites in the DNA (non-template strand). The stability of the adduct at 37°C was site dependent. The half-lives ranged from 45 min to ~5 h and this was dependent on both the central 2 bp blockage site as well as flanking sequences. The CpG specificity of mitoxantrone adduct sites was also confirmed independently by a λ exonuclease digestion assay. PMID:10648792
Mulepati, Sabin; Bailey, Scott
2011-09-09
RNA transcribed from clustered regularly interspaced short palindromic repeats (CRISPRs) protects many prokaryotes from invasion by foreign DNA such as viruses, conjugative plasmids, and transposable elements. Cas3 (CRISPR-associated protein 3) is essential for this CRISPR protection and is thought to mediate cleavage of the foreign DNA through its N-terminal histidine-aspartate (HD) domain. We report here the 1.8 Å crystal structure of the HD domain of Cas3 from Thermus thermophilus HB8. Structural and biochemical studies predict that this enzyme binds two metal ions at its active site. We also demonstrate that the single-stranded DNA endonuclease activity of this T. thermophilus domain is activated not by magnesium but by transition metal ions such as manganese and nickel. Structure-guided mutagenesis confirms the importance of the metal-binding residues for the nuclease activity and identifies other active site residues. Overall, these results provide a framework for understanding the role of Cas3 in the CRISPR system.
[Application of the polymerase chain reaction (PCR) in the diagnosis of Hb S-beta(+)-thalassemia].
Harano, K; Harano, T; Kushida, Y; Ueda, S
1991-08-01
Isoelectric focusing of the hemolysate prepared from a two-year-old American black boy with microcytic hypochromia showed the presence of a high percentage (63.3%) of such Hb variant as Hb S, while the levels of Hb A, Hb F and Hb A2 were 20.0%, 12.7%, and 4.0%, respectively. The ratio of the non-alpha-chain to the alpha-chain of the biosynthesized globin chains was 0.49. The variant was identified as Hb S by amino acid analysis of the abnormal peptide (beta T-1) and digestion of DNA amplified by the polymerase chain reaction with enzyme Eco 81 I. This was further confirmed by DNA sequencing. DNA sequencing of a beta-gene without the beta s-mutation revealed a nucleotide change of T to C in the polyadenylation signal sequence AATAAA 3' to the beta-gene, resulting in beta(+)-thalassemia. These results are consistent with the existence of a beta s-gene and a beta(+)-thalassemia gene in trans.
Kang, In-Nee; Musa, Maslinda; Harun, Fatimah; Junit, Sarni Mat
2010-02-01
The FOXE1 gene was screened for mutations in a cohort of 34 unrelated patients with congenital hypothyroidism, 14 of whom had thyroid dysgenesis and 18 were normal (the thyroid status for 2 patients was unknown). The entire coding region of the FOXE1 gene was PCR-amplified, then analyzed using single-stranded conformational polymorphism, followed by confirmation by direct DNA sequencing. DNA sequencing analysis revealed a heterozygous A>G transition at nucleotide position 394 in one of the patients. The nucleotide transition changed asparagine to aspartate at codon 132 in the highly conserved region of the forkhead DNA binding domain of the FOXE1 gene. This mutation was not detected in a total of 104 normal healthy individuals screened. The binding ability of the mutant FOXE1 protein to the human thyroperoxidase (TPO) promoter was slightly reduced compared with the wild-type FOXE1. The mutation also caused a 5% loss of TPO transcriptional activity.
Producing primate embryonic stem cells by somatic cell nuclear transfer.
Byrne, J A; Pedersen, D A; Clepper, L L; Nelson, M; Sanger, W G; Gokhale, S; Wolf, D P; Mitalipov, S M
2007-11-22
Derivation of embryonic stem (ES) cells genetically identical to a patient by somatic cell nuclear transfer (SCNT) holds the potential to cure or alleviate the symptoms of many degenerative diseases while circumventing concerns regarding rejection by the host immune system. However, the concept has only been achieved in the mouse, whereas inefficient reprogramming and poor embryonic development characterizes the results obtained in primates. Here, we used a modified SCNT approach to produce rhesus macaque blastocysts from adult skin fibroblasts, and successfully isolated two ES cell lines from these embryos. DNA analysis confirmed that nuclear DNA was identical to donor somatic cells and that mitochondrial DNA originated from oocytes. Both cell lines exhibited normal ES cell morphology, expressed key stem-cell markers, were transcriptionally similar to control ES cells and differentiated into multiple cell types in vitro and in vivo. Our results represent successful nuclear reprogramming of adult somatic cells into pluripotent ES cells and demonstrate proof-of-concept for therapeutic cloning in primates.
Evidence of SV40 infections in hospitalized children
NASA Technical Reports Server (NTRS)
Butel, J. S.; Jafar, S.; Wong, C.; Arrington, A. S.; Opekun, A. R.; Finegold, M. J.; Adam, E.
1999-01-01
Simian virus 40 (SV40) is known to have contaminated poliovirus vaccines used between 1955 and 1963. Accumulating reports have described the presence of SV40 DNA in human tumors and normal tissues, although the significance of human infections by SV40 is unknown. We investigated whether unselected hospitalized children had evidence of SV40 infections and whether any clinical correlations were apparent. Serum samples were examined for SV40 neutralizing antibody using a specific plaque reduction test; of 337 samples tested, 20 (5.9%) had antibody to SV40. Seropositivity increased with age and was significantly associated with kidney transplants (6 of 15 [40%] positive, P < .001). Many of the antibody-positive patients had impaired immune systems. Molecular assays (polymerase chain reaction and DNA sequence analysis) on archival tissue specimens confirmed the presence of SV40 DNA in 4 of the antibody-positive patients. This study, using 2 independent assays, shows the presence of SV40 infections in children born after 1980. We conclude that SV40 causes natural infections in humans.
Hardy Bacterium Isolated From Two Geographically Distinct Spacecraft Assembly Cleanroom Facilities
NASA Technical Reports Server (NTRS)
Vaisham-payan, Parag A.; Venkateswaran, Kasthuri J.; Schwendner, Petra; Moissl-Eichinger, Christine
2012-01-01
Earlier studies have confirmed that a tenacious hardy bacterial population manages to persist and survive throughout a spacecraft assembly process. The widespread detection of these organisms underscores the challenges in eliminating them completely. Only comprehensive and repetitive microbial diversity studies of geographically distinct cleanroom facilities will bolster the understanding of planetary protection relevant microbes. Extensive characterizations of the physiological traits demonstrated by cleanroom microbes will aid NASA in gauging the forward contamination risk that hardy bacteria (such as Tersicoccus phoenicis) pose to spacecraft. This study reports on the isolation and identification of two gram-positive, non-motile, non-spore-forming bacterial strains from the spacecraft assembly facilities at Kennedy Space Center, Florida, USA and Centre Spatial Guyanais, Kourou, French Guiana. DNA-DNA relatedness values between the novel strains indicates that these novel strains were indeed members of a same species. Phylogenetic evidence derived from a 16S ribosomal DNA analysis indicated that both the novel strains are less closely related to all other Arthrobacter species.
Mannose Induces an Endonuclease Responsible for DNA Laddering in Plant Cells
Stein, Joshua C.; Hansen, Geneviève
1999-01-01
The effect of d-mannose (Man) on plant cells was studied in two different systems: Arabidopsis roots and maize (Zea mays) suspension-cultured cells. In both systems, exposure to d-Man was associated with a subset of features characteristic of apoptosis, as assessed by oligonucleosomal fragmentation and microscopy analysis. Furthermore, d-Man induced the release of cytochrome c from mitochondria. The specificity of d-Man was evaluated by comparing the effects of diastereomers such as l-Man, d-glucose, and d-galactose. Of these treatments, only d-Man caused a reduction in final fresh weight with concomitant oligonucleosomal fragmentation. Man-induced DNA laddering coincided with the activation of a DNase in maize cytosolic extracts and with the appearance of single 35-kD band detected using an in-gel DNase assay. The DNase activity was further confirmed by using covalently closed circular plasmid DNA as a substrate. It appears that d-Man, a safe and readily accessible compound, offers remarkable features for the study of apoptosis in plant cells. PMID:10482662
Global analysis of host-pathogen interactions that regulate early stage HIV-1 replication
König, Renate; Zhou, Yingyao; Elleder, Daniel; Diamond, Tracy L.; Bonamy, Ghislain M.C.; Irelan, Jeffrey T.; Chiang, Chih-yuan; Tu, Buu P.; De Jesus, Paul D.; Lilley, Caroline E.; Seidel, Shannon; Opaluch, Amanda M.; Caldwell, Jeremy S.; Weitzman, Matthew D.; Kuhen, Kelli L.; Bandyopadhyay, Sourav; Ideker, Trey; Orth, Anthony P.; Miraglia, Loren J.; Bushman, Frederic D.; Young, John A.; Chanda, Sumit K.
2008-01-01
Human Immunodeficiency Viruses (HIV-1 and HIV-2) rely upon host-encoded proteins to facilitate their replication. Here we combined genome-wide siRNA analyses with interrogation of human interactome databases to assemble a host-pathogen biochemical network containing 213 confirmed host cellular factors and 11 HIV-1-encoded proteins. Protein complexes that regulate ubiquitin conjugation, proteolysis, DNA damage response and RNA splicing were identified as important modulators of early stage HIV-1 infection. Additionally, over 40 new factors were shown to specifically influence initiation and/or kinetics of HIV-1 DNA synthesis, including cytoskeletal regulatory proteins, modulators of post-translational modification, and nucleic acid binding proteins. Finally, fifteen proteins with diverse functional roles, including nuclear transport, prostaglandin synthesis, ubiquitination, and transcription, were found to influence nuclear import or viral DNA integration. Taken together, the multi-scale approach described here has uncovered multiprotein virus-host interactions that likely act in concert to facilitate early steps of HIV-1 infection. PMID:18854154