Science.gov

Sample records for dna biosensor built

  1. DNA biosensors that reason.

    PubMed

    Sainz de Murieta, Iñaki; Rodríguez-Patón, Alfonso

    2012-08-01

    Despite the many designs of devices operating with the DNA strand displacement, surprisingly none is explicitly devoted to the implementation of logical deductions. The present article introduces a new model of biosensor device that uses nucleic acid strands to encode simple rules such as "IF DNA_strand(1) is present THEN disease(A)" or "IF DNA_strand(1) AND DNA_strand(2) are present THEN disease(B)". Taking advantage of the strand displacement operation, our model makes these simple rules interact with input signals (either DNA or any type of RNA) to generate an output signal (in the form of nucleotide strands). This output signal represents a diagnosis, which either can be measured using FRET techniques, cascaded as the input of another logical deduction with different rules, or even be a drug that is administered in response to a set of symptoms. The encoding introduces an implicit error cancellation mechanism, which increases the system scalability enabling longer inference cascades with a bounded and controllable signal-noise relation. It also allows the same rule to be used in forward inference or backward inference, providing the option of validly outputting negated propositions (e.g. "diagnosis A excluded"). The models presented in this paper can be used to implement smart logical DNA devices that perform genetic diagnosis in vitro.

  2. DNA nanotechnology-enabled biosensors.

    PubMed

    Chao, Jie; Zhu, Dan; Zhang, Yinan; Wang, Lianhui; Fan, Chunhai

    2016-02-15

    Biosensors employ biological molecules to recognize the target and utilize output elements which can translate the biorecognition event into electrical, optical or mass-sensitive signals to determine the quantities of the target. DNA-based biosensors, as a sub-field to biosensor, utilize DNA strands with short oligonucleotides as probes for target recognition. Although DNA-based biosensors have offered a promising alternative for fast, simple and cheap detection of target molecules, there still exist key challenges including poor stability and reproducibility that hinder their competition with the current gold standard for DNA assays. By exploiting the self-recognition properties of DNA molecules, researchers have dedicated to make versatile DNA nanostructures in a highly rigid, controllable and functionalized manner, which offers unprecedented opportunities for developing DNA-based biosensors. In this review, we will briefly introduce the recent advances on design and fabrication of static and dynamic DNA nanostructures, and summarize their applications for fabrication and functionalization of DNA-based biosensors.

  3. Biosensors for DNA sequence detection

    NASA Technical Reports Server (NTRS)

    Vercoutere, Wenonah; Akeson, Mark

    2002-01-01

    DNA biosensors are being developed as alternatives to conventional DNA microarrays. These devices couple signal transduction directly to sequence recognition. Some of the most sensitive and functional technologies use fibre optics or electrochemical sensors in combination with DNA hybridization. In a shift from sequence recognition by hybridization, two emerging single-molecule techniques read sequence composition using zero-mode waveguides or electrical impedance in nanoscale pores.

  4. Electrochemical application of DNA biosensors

    NASA Astrophysics Data System (ADS)

    Mascini, M.; Lucarelli, F.; Palchetti, I.; Marrazza, G.

    2001-09-01

    Disposable electrochemical DNA-based biosensors are reviewed; they have been used for the determination of low- molecular weight compounds with affinity for nucleic acids and for the detection of hybridization reaction. The first application is related to the molecular interaction between surface-linked DNA and pollutants or drugs, in order to develop a simple device for rapid screening of toxic compounds. The determination of such compounds was measured by their effect simple device for rapid screening of toxic compounds. The determination of such compounds was measured by their effect on the oxidation signal of the guanine peak of calf thymus DNA immobilized on the electrode surface and investigated by chronopotentiometric or voltammetric analysis. Applicability to river and wastewater sample is demonstrated. Moreover, disposable electrochemical sensors for the detection of a specific sequence of DNA were realized by immobilizing synthetic single-stranded oligonucleotides onto a graphite screen-printed electrode. The probes because hybridized with different concentrations of complementary sequences present in the sample. The hybrids formed on the electrode surface were evaluated by chronopotentiometric analysis using daunomycin as the indicator of the hybridization reaction. The hybridization was also performed using real samples. Application to apolipoprotein E is described, in this case samples have to be amplified by PCR and then analyzed by the DNA biosensor. The extension of such procedures to samples of environmental interest or to contamination of food is discussed.

  5. Molecular machinery built from DNA

    NASA Astrophysics Data System (ADS)

    Bath, Jonathan; Turberfield, Andrew J.

    2013-03-01

    DNA can be used as both construction material and fuel for molecular motors. Systems of motors and tracks can be constructed and movement of the motor along the track can be directly observed. The path that a taken by a motor as it navigates a network of tracks can be programmed by instructions that are added externally or carried by the motor itself. Such systems might be used as part molecular assembly lines that can be dynamically reconfigured in response to changing demands.

  6. DNA Generated Electric Current Biosensor.

    PubMed

    Hu, Lanshuang; Hu, Shengqiang; Guo, Linyan; Shen, Congcong; Yang, Minghui; Rasooly, Avraham

    2017-02-21

    In addition to its primary function as a genetic material, deoxyribonucleic acid (DNA) is also a potential biologic energy source for molecular electronics. For the first time, we demonstrate that DNA can generate a redox electric current. As an example of this new functionality, DNA generated redox current was used for electrochemical detection of human epidermal growth factor receptor 2 (HER2), a clinically important breast cancer biomarker. To induce redox current, the phosphate of the single stranded DNA aptamer backbone was reacted with molybdate to form redox molybdophosphate precipitate and generate an electrochemical current of ∼16.8 μA/μM cm(2). This detection of HER2 was performed using a sandwich detection assay. A HER2 specific peptide was immobilized onto a gold electrode surface for capturing HER2 in buffer and serum. The HER2 specific aptamer was used as both ligand to bind the captured HER2 and to generate a redox current signal. When tested for HER2 detection, the electrochemical current generated by the aptasensor was proportional to HER2 concentration in the range of 0.01 to 5 ng/mL, with a current generated in the range of ∼6.37 to 31.8 μA/cm(2) in both buffer and serum. This detection level is within the clinically relevant range of HER2 concentrations. This method of electrochemical signal amplification greatly simplifies the signal transduction of aptasensors, broadening their use for HER2 analysis. This novel approach of using the same aptamer as biosensor ligand and as transducer can be universally extended to other aptasensors for a wide array of biodetection applications. Moreover, electric currents generated by DNA or other nucleic acids can be used in molecular electronics or implanted devices for both power generation and measurement of output.

  7. FIBER OPTIC BIOSENSOR FOR DNA DAMAGE

    EPA Science Inventory

    This paper describes a fiber optic biosensor for the rapid and sensitive detection of radiation-induced or chemically-induced oxidative DNA damage. The assay is based on the hybridization and temperature-induced dissociation (melting curves) of synthetic oligonucleotides. The...

  8. Recent Development of Nano-Materials Used in DNA Biosensors

    PubMed Central

    Xu, Kai; Huang, Junran; Ye, Zunzhong; Ying, Yibin; Li, Yanbin

    2009-01-01

    As knowledge of the structure and function of nucleic acid molecules has increased, sequence-specific DNA detection has gained increased importance. DNA biosensors based on nucleic acid hybridization have been actively developed because of their specificity, speed, portability, and low cost. Recently, there has been considerable interest in using nano-materials for DNA biosensors. Because of their high surface-to-volume ratios and excellent biological compatibilities, nano-materials could be used to increase the amount of DNA immobilization; moreover, DNA bound to nano-materials can maintain its biological activity. Alternatively, signal amplification by labeling a targeted analyte with nano-materials has also been reported for DNA biosensors in many papers. This review summarizes the applications of various nano-materials for DNA biosensors during past five years. We found that nano-materials of small sizes were advantageous as substrates for DNA attachment or as labels for signal amplification; and use of two or more types of nano-materials in the biosensors could improve their overall quality and to overcome the deficiencies of the individual nano-components. Most current DNA biosensors require the use of polymerase chain reaction (PCR) in their protocols. However, further development of nano-materials with smaller size and/or with improved biological and chemical properties would substantially enhance the accuracy, selectivity and sensitivity of DNA biosensors. Thus, DNA biosensors without PCR amplification may become a reality in the foreseeable future. PMID:22346713

  9. Recent development of nano-materials used in DNA biosensors.

    PubMed

    Xu, Kai; Huang, Junran; Ye, Zunzhong; Ying, Yibin; Li, Yanbin

    2009-01-01

    As knowledge of the structure and function of nucleic acid molecules has increased, sequence-specific DNA detection has gained increased importance. DNA biosensors based on nucleic acid hybridization have been actively developed because of their specificity, speed, portability, and low cost. Recently, there has been considerable interest in using nano-materials for DNA biosensors. Because of their high surface-to-volume ratios and excellent biological compatibilities, nano-materials could be used to increase the amount of DNA immobilization; moreover, DNA bound to nano-materials can maintain its biological activity. Alternatively, signal amplification by labeling a targeted analyte with nano-materials has also been reported for DNA biosensors in many papers. This review summarizes the applications of various nano-materials for DNA biosensors during past five years. We found that nano-materials of small sizes were advantageous as substrates for DNA attachment or as labels for signal amplification; and use of two or more types of nano-materials in the biosensors could improve their overall quality and to overcome the deficiencies of the individual nano-components. Most current DNA biosensors require the use of polymerase chain reaction (PCR) in their protocols. However, further development of nano-materials with smaller size and/or with improved biological and chemical properties would substantially enhance the accuracy, selectivity and sensitivity of DNA biosensors. Thus, DNA biosensors without PCR amplification may become a reality in the foreseeable future.

  10. DNA biosensors based on self-assembled carbon nanotubes.

    PubMed

    Wang, S G; Wang, Ruili; Sellin, P J; Zhang, Qing

    2004-12-24

    DNA biosensors based on self-assembled multi-walled carbon nanotubes (MWNTs) were described in this paper, in which the probe DNA oligonucleotides were immobilized by forming covalent amide bonds between carboxyl groups at the nanotubes and amino groups at the ends of the DNA oligonucleotides. Hybridization between the probe and target DNA oligonucleotides was confirmed by the changes in the voltammetric peak of the indicator of methylene blue. Our results demonstrate that the DNA biosensors based on self-assembled MWNTs had a higher hybridization efficiency compared to those based on random MWNTs. In addition, the developed DNA biosensors also had a high selectivity of hybridization detection.

  11. Biosensors based on DNA-Functionalized Graphene

    NASA Astrophysics Data System (ADS)

    Vishnubhotla, Ramya; Ping, Jinglei; Vrudhula, Amey; Johnson, A. T. Charlie

    Since its discovery, graphene has been used for sensing applications due to its outstanding electrical properties and biocompatibility. Here, we demonstrate the capabilities of field effect transistors (FETs) based on CVD-grown graphene functionalized with commercially obtained DNA oligomers and aptamers for detection of various biomolecular targets (e.g., complementary DNA and small molecule drug targets). Graphene FETs were created with a scalable photolithography process that produces arrays consisting of 50-100 FETs with a layout suitable for multiplexed detection of four molecular targets. FETs were characterized via AFM to confirm the presence of the aptamer. From the measured electrical characteristics, it was determined that binding of molecular targets by the DNA chemical recognition element led to a reproducible, concentration-dependent shift in the Dirac voltage. This biosensor class is potentially suitable for applications in drug detection. This work is funded by NIH through the Center for AIDS Research at the University of Pennsylvania.

  12. Molecular associative memory built on DNA

    NASA Astrophysics Data System (ADS)

    Nowak, Robert M.; Mulawka, Jan J.; Pucienniczak, Andrzej

    2006-03-01

    This paper describes an associative memory based on DNA strands practically build in laboratory. The method for suppressing DNA fragment amplification during polymerase chain reaction (PCR) was used. Such memory exhibits a number of advantages over Baum's associative molecular memory as well as traditional electronic implementations.

  13. Electrochemical uranyl cation biosensor with DNA oligonucleotides as receptor layer.

    PubMed

    Jarczewska, Marta; Ziółkowski, Robert; Górski, Łukasz; Malinowska, Elżbieta

    2014-04-01

    The present study aims at the further development of the uranyl oligonucleotide-based voltammetric biosensor, which takes advantage of strong interaction between UO2(2+) and phosphate DNA backbone. Herein we report the optimization of working parameters of previously elaborated electrochemical DNA biosensor. It is shown that the sensor sensitivity is highly dependent on the oligonucleotide probe length and the incubation time of sensor in a sample solution. Consequently, the highest sensitivity was obtained for 10-nucleotide sequence and 60 min incubation time. The lower detection limit towards uranyl cation for developed biosensor was 30 nM. The influence of mixed monolayers and the possibility of developing a non-calibration device were also investigated. The selectivity of the proposed biosensor was significantly improved via elimination of adenine nucleobases from the DNA probe. Moreover, the regeneration procedure was elaborated and tested to prolong the use of the same biosensor for 4 subsequent determinations of UO2(2+).

  14. DNA electrochemical biosensor for metallic drugs at physiological conditions

    PubMed Central

    Santiago-Lopez, Angel J.; Vera, José L.; Meléndez, Enrique

    2014-01-01

    Entrapment of dsSS-DNA into the polypyrrole-polyvinyl sulphonate (dsSS-DNA-PPy-PVS) film over indium-tin-oxide (ITO) coated glass has been designed to detect titanium and platinum drugs, titanocene dichloride and cisplatin. The disposable dsSS-DNA-PPy-PVS/ITO biosensor was characterized by cyclic voltammetry, attenuated total reflectance Infrared spectroscopy and atomic force microscopy. Amperometric studies by cyclic voltammetry using, dsSS-DNA-PPy PVS/ITO biosensor, demonstrated the ability of this biosensor to detect these metallic drugs in millimolar concentration by monitoring the decrease of the guanine oxidation signal as a result of the DNA damage. The concentration range detected for titanocene dichloride is 0.25 to 1.5 mM and for cisplatin is 0.06 to 1.0 mM. PMID:25705144

  15. An Evolution Based Biosensor Receptor DNA Sequence Generation Algorithm

    PubMed Central

    Kim, Eungyeong; Lee, Malrey; Gatton, Thomas M.; Lee, Jaewan; Zang, Yupeng

    2010-01-01

    A biosensor is composed of a bioreceptor, an associated recognition molecule, and a signal transducer that can selectively detect target substances for analysis. DNA based biosensors utilize receptor molecules that allow hybridization with the target analyte. However, most DNA biosensor research uses oligonucleotides as the target analytes and does not address the potential problems of real samples. The identification of recognition molecules suitable for real target analyte samples is an important step towards further development of DNA biosensors. This study examines the characteristics of DNA used as bioreceptors and proposes a hybrid evolution-based DNA sequence generating algorithm, based on DNA computing, to identify suitable DNA bioreceptor recognition molecules for stable hybridization with real target substances. The Traveling Salesman Problem (TSP) approach is applied in the proposed algorithm to evaluate the safety and fitness of the generated DNA sequences. This approach improves efficiency and stability for enhanced and variable-length DNA sequence generation and allows extension to generation of variable-length DNA sequences with diverse receptor recognition requirements. PMID:22315543

  16. Digital biosensors with built-in logic for biomedical applications--biosensors based on a biocomputing concept.

    PubMed

    Wang, Joseph; Katz, Evgeny

    2010-10-01

    This article reviews biomolecular logic systems for bioanalytical applications, specifically concentrating on the prospects and fundamental and practical challenges of designing digitally operating biosensors logically processing multiple biochemical signals. Such digitally processed information produces a final output in the form of a yes/no response through Boolean logic networks composed of biomolecular systems, and hence leads to a high-fidelity biosensing compared with traditional single (or parallel) sensing devices. It also allows direct coupling of the signal processing with chemical actuators to produce integrated "smart" "sense/act" (biosensor-bioactuator) systems. Unlike common biosensing devices based on a single input (analyte), devices based on biochemical logic systems require a fundamentally new approach for the sensor design and operation and careful attention to the interface of biocomputing systems and electronic transducers. As common in conventional biosensors, the success of the enzyme logic biosensor would depend, in part, on the immobilization of the biocomputing reagent layer. Such surface confinement provides a contact between the biocomputing layer and the transducing surface and combines efficiently the individual logic-gate elements. Particular attention should thus be given to the composition, preparation, and immobilization of the biocomputing surface layer, to the role of the system scalability, and to the efficient transduction of the output signals. By processing complex patterns of multiple physiological markers, such multisignal digital biosensors should have a profound impact upon the rapid diagnosis and treatment of diseases, and particularly upon the timely detection and alert of medical emergencies (along with immediate therapeutic intervention). Other fields ranging from biotechnology to homeland security would benefit from these advances in new biocomputing biosensors and the corresponding closed-loop "add/act" operation.

  17. A sensitive DNA capacitive biosensor using interdigitated electrodes.

    PubMed

    Wang, Lei; Veselinovic, Milena; Yang, Lang; Geiss, Brian J; Dandy, David S; Chen, Tom

    2017-01-15

    This paper presents a label-free affinity-based capacitive biosensor using interdigitated electrodes. Using an optimized process of DNA probe preparation to minimize the effect of contaminants in commercial thiolated DNA probe, the electrode surface was functionalized with the 24-nucleotide DNA probes based on the West Nile virus sequence (Kunjin strain). The biosensor has the ability to detect complementary DNA fragments with a detection limit down to 20 DNA target molecules (1.5aM range), making it suitable for a practical point-of-care (POC) platform for low target count clinical applications without the need for amplification. The reproducibility of the biosensor detection was improved with efficient covalent immobilization of purified single-stranded DNA probe oligomers on cleaned gold microelectrodes. In addition to the low detection limit, the biosensor showed a dynamic range of detection from 1µL(-1) to 10(5)µL(-1) target molecules (20 to 2 million targets), making it suitable for sample analysis in a typical clinical application environment. The binding results presented in this paper were validated using fluorescent oligomers.

  18. A liquid-crystal-based DNA biosensor for pathogen detection

    NASA Astrophysics Data System (ADS)

    Khan, Mashooq; Khan, Abdur Rahim; Shin, Jae-Ho; Park, Soo-Young

    2016-03-01

    A liquid-crystal (LC)-filled transmission electron microscopy (TEM) grid cell coated with the cationic surfactant dodecyltrimethylammonium bromide (DTAB), to which a single-stranded deoxyribonucleic acid probe (ssDNAprobe) was adsorbed at the LC/aqueous interface (TEMDTAB/DNA), was applied for the highly specific detection of target DNA molecules. The DTAB-coated E7 (used LC mixture) in the TEM grid (TEMDTAB) exhibited a homeotropic orientation, and changed to a planar orientation upon adsorption of the ssDNAprobe. The TEMDTAB/DNA was then exposed to complementary (target) ssDNA, which resulted in a planar-to-homeotropic configurational change of E7 that could be observed through a polarized optical microscope under crossed polarizers. The optimum adsorption density (2 μM) of ssDNAprobe enabled the detection of ≥0.05 nM complementary ssDNA. This TEMDTAB/DNA biosensor could differentiate complementary ssDNA from mismatched ssDNA as well as double-stranded DNA. It also successfully detected the genomic DNAs of the bacterium Erwinia carotovora and the fungi Rhazictonia solani. Owe to the high specificity, sensitivity, and label-free detection, this biosensor may broaden the applications of LC-based biosensors to pathogen detection.

  19. A liquid-crystal-based DNA biosensor for pathogen detection

    PubMed Central

    Khan, Mashooq; Khan, Abdur Rahim; Shin, Jae-Ho; Park, Soo-Young

    2016-01-01

    A liquid-crystal (LC)-filled transmission electron microscopy (TEM) grid cell coated with the cationic surfactant dodecyltrimethylammonium bromide (DTAB), to which a single-stranded deoxyribonucleic acid probe (ssDNAprobe) was adsorbed at the LC/aqueous interface (TEMDTAB/DNA), was applied for the highly specific detection of target DNA molecules. The DTAB-coated E7 (used LC mixture) in the TEM grid (TEMDTAB) exhibited a homeotropic orientation, and changed to a planar orientation upon adsorption of the ssDNAprobe. The TEMDTAB/DNA was then exposed to complementary (target) ssDNA, which resulted in a planar-to-homeotropic configurational change of E7 that could be observed through a polarized optical microscope under crossed polarizers. The optimum adsorption density (2 μM) of ssDNAprobe enabled the detection of ≥0.05 nM complementary ssDNA. This TEMDTAB/DNA biosensor could differentiate complementary ssDNA from mismatched ssDNA as well as double-stranded DNA. It also successfully detected the genomic DNAs of the bacterium Erwinia carotovora and the fungi Rhazictonia solani. Owe to the high specificity, sensitivity, and label-free detection, this biosensor may broaden the applications of LC-based biosensors to pathogen detection. PMID:26940532

  20. Indicator Based and Indicator - Free Electrochemical DNA Biosensors

    DTIC Science & Technology

    2007-11-02

    of genomic material from infectious organisms. Methylene blue (MB) is an aromatic heterocycle that binds strongly to DNA via intercalation. MB...detection of disease- related point mutation in the guanine bases of the cyanobacteria . The resulting biosensors offer great promise for mismatch

  1. DETECTION OF DNA DAMAGE USING A FIBEROPTIC BIOSENSOR

    EPA Science Inventory

    A rapid and sensitive fiber optic biosensor assay for radiation-induced DNA damage is reported. For this assay, a biotin-labeled capture oligonucleotide (38 mer) was immobilized to an avidin-coated quartz fiber. Hybridization of a dye-labeled complementary sequence was observed...

  2. Tetrahedron-structured DNA and functional oligonucleotide for construction of an electrochemical DNA-based biosensor.

    PubMed

    Bu, Nan-Nan; Tang, Chun-Xia; He, Xi-Wen; Yin, Xue-Bo

    2011-07-21

    Tetrahedron-structured DNA (ts-DNA) in combination with a functionalized oligonucleotide was used to develop a "turn-on" biosensor for Hg(2+) ions. The ts-DNA provided an improved sensitivity and was used to block the active sites.

  3. Electrochemical Biosensor: Multistep functionalization of thiolated ssDNA on gold-coated microcantilever

    NASA Astrophysics Data System (ADS)

    Dulanto Carbajal, Jorge

    Bio-chemical sensors are an emerging and vibrant area of research. The use of micromechanical cantilevers is relatively new as biomechanical recognition detectors. Reactions on a gold coated and chemically functionalized surface produce a mechanical deflection of the cantilever which is used as the input signal of the detector. Within the area of biosensors, DNA-sensors have a wide range of applications such as DNA hybridization detectors, DNA mismatch sequence detectors and protein detectors. We designed and built a microcantilever sensor system which allows for control and characterization of surface conditions. This includes controlled functionalization which can be a dominant factor in signal generation and reproducibility in these systems. Additionally, we developed a multistep functionalization protocol which consists of a sequence of short incubations and characterizations of thiolated ssDNA on a gold-coated cantilever. Multistep functionalization is a new protocol that is used to control the ssDNA surface density on a gold-coated cantilever. Repeatable responses and feasible biosensors are obtained using this protocol.

  4. Biosensors.

    ERIC Educational Resources Information Center

    Rechnitz, Garry A.

    1988-01-01

    Describes theory and principles behind biosensors that incorporate biological components as part of a sensor or probe. Projects major applications in medicine and veterinary medicine, biotechnology, food and agriculture, environmental studies, and the military. Surveys current use of biosensors. (ML)

  5. Chemically modified diamondoids as biosensors for DNA

    NASA Astrophysics Data System (ADS)

    Sivaraman, Ganesh; Fyta, Maria

    2014-03-01

    Understanding the interaction of biological molecules with materials is essential in view of the novel potential applications arising when these two are combined. To this end, we investigate the interaction of DNA with diamondoids, a broad family of tiny hydrogen-terminated diamond clusters with high technological potential. We model this interaction through quantum-mechanical computer simulations and focus on the hydrogen bonding possibilities of the different DNA nucleobases to the lower amine-modified diamondoids with respect to their relative distance and orientation. Our aim is to promote the binding between these two units, and probe this through the association energy, the electronic structure of the nucleobase-diamondoid system, and the specific role of their frontier orbitals. We discuss the relevance of our results in view of biosensing applications and specifically nanopore sequencing of DNA.

  6. Microfabricated EIS biosensor for detection of DNA

    NASA Astrophysics Data System (ADS)

    Taing, M.; Sweatman, D.

    2006-01-01

    This paper focuses on the design of an EIS (electrolyte on insulator on Silicon) structure as a detection method for pathogenic DNA. Current rapid detection methods rely on fluorescent labeling to determine binding affinity. Fluorescent quenching is seen by a change in activity as opposed to non-quenched states. Sensitive optical equipment is required to detect and distinguish these colour changes because they cannot be seen by the naked eye. The disadvantages of this is (1) a portable, independent device cannot be made since samples have to be brought back to the benchtop and (2) the obvious cost of acquiring and maintaining these optical detection systems. A low cost, portable electrical detection method has been investigated. The EIS structure (Electrolyte on Insulator on Silicon) provides a novel, label-free and simple to fabricate way to make a small field effect DNA detection sensor. The sensor responds to fluctuating capacitances caused by a depletion layer thickness change at the surface of the silicon substrate as a result of DNA adsorption onto the dielectric oxide/APTES (Aminopropylthioxysilane) surface. As DNA molecules diffuse to the sensor surface, they are bound to their complimentary capture probes. The negative charge exhibited by the DNA forces negative charge carriers in the silicon substrate to move away from the surface. This causes a depletion layer in n-type substrate to thicken and for a p-type to thin and can be observed as a change in capacitance. A low ionic solution strength will ensure that counter-ions do not affect the sensor measurements. The EIS sensor is designed to be later integrated into a complete lab on chip solution. A full lab on chip can incorporate the sensor to perform DNA quantity based measurements. Nucleic acids can be amplified by the on chip PCR system and then fed into the sensor to work out the DNA concentration. The sensor surface contains capture probes that will bind to the pathogen. They are held onto the

  7. Ultrasensitive electrochemical cocaine biosensor based on reversible DNA nanostructure.

    PubMed

    Sheng, Qinglin; Liu, Ruixiao; Zhang, Sai; Zheng, Jianbin

    2014-01-15

    We proposed an ultrasensitive electrochemical cocaine biosensor based on the three-dimensional (3D) DNA structure conversion of nanostructure from Triangular Pyramid Frustum (TPFDNA) to Equilateral Triangle (ETDNA). The presence of cocaine triggered the aptamer-composed DNA nanostructure change from "Close" to "Open", leading to obvious faradaic impedance changes. The unique properties with excellent stability and specific rigid structure of the 3D DNA nanostructure made the biosensing functions stable, sensitive, and regenerable. The Faradaic impedance responses were linearly related to cocaine concentration between 1.0 nM and 2.0 μM with a correlation coefficient of 0.993. The limit of detection was calculated to be 0.21 nM following IUPAC recommendations (3Sb/b). It is expected that the distinctive features of DNA nanostructure would make it potentially advantageous for a broad range of biosensing, bionanoelectronics, and therapeutic applications.

  8. Effect of DNA type on response of DNA biosensor for carcinogens

    NASA Astrophysics Data System (ADS)

    Sani, Nor Diyana bt. Md.; Heng, Lee Yook; Surif, Salmijah; Lazim, Azwani Mat

    2013-11-01

    Carcinogens are cancer causing chemicals that can bind to DNA and cause damage to the DNA. These chemicals are available everywhere including in water, air, soil and food. Therefore, a sensor that can detect the presence of these chemicals will be a very useful tool. Since carcinogens bind to DNA, DNA can be used as the biological element in a biosensor. This study has utilized different types of DNA in a biosensor for carcinogen detection. The DNAs include double stranded calf thymus DNA, single stranded calf thymus DNA and guanine rich single stranded DNA. The modified SPE was exposed to a carcinogen followed by interaction with methylene blue which acts as the electroactive indicator. The SPE was then analysed using differential pulse voltammetry (DPV). Optimization studies were conducted for MB concentration and accumulation time, DNA concentration, as well as effect of buffer concentration, buffer pH and ionic strength. The performance of the biosensor was tested on a group 1 carcinogen, formaldehyde. The results indicated that the usage of guanine rich single stranded DNA also gives higher response as carcinogens prefer to bind with guanine compared to other bases.

  9. Biosensors with Built-In Biomolecular Logic Gates for Practical Applications

    PubMed Central

    Lai, Yu-Hsuan; Sun, Sin-Cih; Chuang, Min-Chieh

    2014-01-01

    Molecular logic gates, designs constructed with biological and chemical molecules, have emerged as an alternative computing approach to silicon-based logic operations. These molecular computers are capable of receiving and integrating multiple stimuli of biochemical significance to generate a definitive output, opening a new research avenue to advanced diagnostics and therapeutics which demand handling of complex factors and precise control. In molecularly gated devices, Boolean logic computations can be activated by specific inputs and accurately processed via bio-recognition, bio-catalysis, and selective chemical reactions. In this review, we survey recent advances of the molecular logic approaches to practical applications of biosensors, including designs constructed with proteins, enzymes, nucleic acids, nanomaterials, and organic compounds, as well as the research avenues for future development of digitally operating “sense and act” schemes that logically process biochemical signals through networked circuits to implement intelligent control systems. PMID:25587423

  10. Electrochemical DNA biosensor based on the BDD nanograss array electrode

    PubMed Central

    2013-01-01

    Background The development of DNA biosensor has attracted considerable attention due to their potential applications, including gene analysis, clinical diagnostics, forensic study and more medical applications. Using electroactive daunomycin as an indicator, the hybridization detection was measured by differential pulse voltammetry in this study. Results Electrochemical DNA biosensor was developed based on the BDD film electrode (fBDD) and BDD nanograss array electrode (nBDD). In comparison with fBDD and AuNPs/CA/fBDD electrode, the lower semicircle diameter of electrochemical impedance spectroscopy obtained on nBDD and AuNPs/CA/nBDD electrode indicated that the presence of nanograss array improved the reactive site, reduced the interfacial resistance, and made the electron transfer easier. Using electroactive daunomycin as an indicator, the hybridization detection was measured by differential pulse voltammetry. Conclusions The experimental results demonstrated that the prepared AuNPs/CA/nBDD electrode was suitable for DNA hybridization with favorable performance of faster response, higher sensitivity, lower detection limit and satisfactory selectivity, reproducibility and stability. PMID:23575250

  11. Photonic Crystal Biosensor with In-Situ Synthesized DNA Probes for Enhanced Sensitivity

    SciTech Connect

    Hu, Shuren; Zhao, Y.; Retterer, Scott T; Kravchenko, Ivan I; Weiss, Sharon

    2013-01-01

    We report on a nearly 8-fold increase in multi-hole defect photonic crystal biosensor response by incorporating in-situ synthesis of DNA probes, as compared to the conventional functionalization method employing pre-synthesized DNA probe immobilization.

  12. Electro-microchip DNA-biosensor for bacteria detection.

    PubMed

    Yeh, Chia Hsien; Chang, Yu Huai; Chang, Tsung Chain; Lin, Hong Ping; Lin, Yu Cheng

    2010-10-01

    This paper presents a bacteria biosensor based on DNA hybridization detection with an electro-microchip transducer. Acinetobacter baumannii was chosen as DNA sample source, because the occurrence of bacteremia caused by Acinetobacter baumannii is high in hospitals worldwide. Our strategy is based on DNA hybridization of PCR amplified bacteria DNA with biotin labelled primers and detection enhancement using gold-streptavidin nanoparticles and Ag(+)-hydroquinone solution. Gold nanoparticles catalyze silver ions reduction by hydroquinone. The gradually precipitated silver metal between the two electrodes of the electro-microchip allows electrons to pass. The detection limit for Acinetobacter baumannii genomic DNA sample is 0.825 ng mL(-1) (1.2 fM). Probe specificity was investigated by screening various species of bacteria, various strains of a single species and various species of a single genus. The proposed DNA hybridization method is easy, convenient, and rapid. Moreover, it has potential applications in detection of bacteria causing infections and clinical diagnosis.

  13. Aminated hollow silica spheres for electrochemical DNA biosensor

    NASA Astrophysics Data System (ADS)

    Ariffin, Eda Yuhana; Heng, Lee Yook; Futra, Dedi; Ling, Tan Ling

    2015-09-01

    An electrochemical DNA biosensor for e.coli determination based on aminated hollow silica was successfully developed. Aminated hollow silica spheres were prepared through the reaction of Tween 20 template and silica precursor. The template was removed by the thermal decomposition at 620°C. Hollow silica spheres were modified with (3-Aminopropyl) triethoxysilane (APTS) to form aminated hollow silica spheres.Aminated DNA probe were covalently immobilized on to the amine functionalized hollow silica spheres through glutaradehyde linkers. The formation hollow silica was characterized using FTIR and FESEM. A range of 50-300nm particle size obtained from FESEM micrograph. Meanwhile for the electrochemical study, a quasi-reversible system has been obtain via cyclic voltammetry (CV).

  14. Electrochemical DNA biosensor based on avidin-biotin conjugation for influenza virus (type A) detection

    NASA Astrophysics Data System (ADS)

    Chung, Da-Jung; Kim, Ki-Chul; Choi, Seong-Ho

    2011-09-01

    An electrochemical DNA biosensor (E-DNA biosensor) was fabricated by avidin-biotin conjugation of a biotinylated probe DNA, 5'-biotin-ATG AGT CTT CTA ACC GAG GTC GAA-3', and an avidin-modified glassy carbon electrode (GCE) to detect the influenza virus (type A). An avidin-modified GCE was prepared by the reaction of avidin and a carboxylic acid-modified GCE, which was synthesized by the electrochemical reduction of 4-carboxyphenyl diazonium salt. The current value of the E-DNA biosensor was evaluated after hybridization of the probe DNA and target DNA using cyclic voltammetry (CV). The current value decreased after the hybridization of the probe DNA and target DNA. The DNA that was used follows: complementary target DNA, 5'-TTC GAC CTC GGT TAG AAG ACT CAT-3' and two-base mismatched DNA, 5'-TTC GAC AGC GGT TAT AAG ACT CAT-3'.

  15. Nanomaterial-Assisted Signal Enhancement of Hybridization for DNA Biosensors: A Review

    PubMed Central

    Liu, Jinhuai; Liu, Jinyun; Yang, Liangbao; Chen, Xing; Zhang, Meiyun; Meng, Fanli; Luo, Tao; Li, Minqiang

    2009-01-01

    Detection of DNA sequences has received broad attention due to its potential applications in a variety of fields. As sensitivity of DNA biosensors is determined by signal variation of hybridization events, the signal enhancement is of great significance for improving the sensitivity in DNA detection, which still remains a great challenge. Nanomaterials, which possess some unique chemical and physical properties caused by nanoscale effects, provide a new opportunity for developing novel nanomaterial-based signal-enhancers for DNA biosensors. In this review, recent progress concerning this field, including some newly-developed signal enhancement approaches using quantum-dots, carbon nanotubes and their composites reported by our group and other researchers are comprehensively summarized. Reports on signal enhancement of DNA biosensors by non-nanomaterials, such as enzymes and polymer reagents, are also reviewed for comparison. Furthermore, the prospects for developing DNA biosensors using nanomaterials as signal-enhancers in future are also indicated. PMID:22399999

  16. New Catalytic DNA Biosensors for Radionuclides and Metal ions

    SciTech Connect

    Lu, Yi

    2003-06-01

    The goals of the project are to develop new catalytic DNA biosensors for simultaneous detection and quantification of bioavailable radionuclides and metal ions, and apply the sensors for on-site, real-time assessment of concentration, speciation and stability of the individual contaminants during and after bioremediation. A negative selection strategy was tested and validated. In vitro selection was shown to yield highly active and specific transition metal ion-dependent catalytic DNA/RNA. A fluorescence resonance energy transfer (FRET) study of in vitro selected DNA demonstrated that the trifluorophore labeled system is a simple and powerful tool in studying complex biomolecules structure and dynamics, and is capable of revealing new sophisticated structural changes. New fluorophore/quenchers in a single fluorosensor yielded improved signal to noise ratio in detection, identification and quantification of metal contaminants. Catalytic DNA fluorescent and colorimetric sensors were shown useful in sensing lead in lake water and in leaded paint. Project results were described in two papers and two patents, and won an international prize.

  17. New Catalytic DNA Biosensors for Radionuclides and Metal ions

    SciTech Connect

    Lu, Yi

    2002-06-01

    The goals of the project are to develop new catalytic DNA biosensors for simultaneous detection and quantification of bioavailable radionuclides and metal ions, and apply the sensors for on-site, real-time assessment of concentration, speciation and stability of the individual contaminants during and after bioremediation. A negative selection strategy was tested and validated. In vitro selection was shown to yield highly active and specific transition metal ion-dependent catalytic DNA/RNA. A fluorescence resonance energy transfer (FRET) study of in vitro selected DNA demonstrated that the trifluorophore labeled system is a simple and powerful tool in studying complex biomolecules structure and dynamics, and is capable of revealing new sophisticated structural changes. New fluorophore/quenchers in a single fluorosensor yielded improved signal to noise ratio in detection, identification and quantification of metal contaminants. Catalytic DNA fluorescent and colorimetric sensors were shown useful in sensing lead in lake water and in leaded paint. Project results were described in two papers and two patents, and won an international prize.

  18. Electrochemical DNA biosensor for detection of DNA damage induced by hydroxyl radicals.

    PubMed

    Hájková, Andrea; Barek, Jiří; Vyskočil, Vlastimil

    2017-03-01

    A simple electrochemical DNA biosensor based on a glassy carbon electrode (GCE) was prepared by adsorbing double-stranded DNA (dsDNA) onto the GCE surface and subsequently used for the detection of dsDNA damage induced by hydroxyl radicals. Investigation of the mutual interaction between hydroxyl radicals and dsDNA was conducted using a combination of several electrochemical detection techniques: square-wave voltammetry for direct monitoring the oxidation of dsDNA bases, and cyclic voltammetry and electrochemical impedance spectroscopy as indirect electrochemical methods making use of the redox-active indicator [Fe(CN)6](4-/3-). Hydroxyl radicals were generated electrochemically on the surface of a boron-doped diamond electrode and chemically (via the Fenton's reaction or the auto-oxidation of Fe(II)). The extent of dsDNA damage by electrochemically generated hydroxyl radicals depended on the current density applied to the generating electrode: by applying 5, 10, and 50mAcm(-2), selected relative biosensor responses decreased after 3min incubation from 100% to 38%, 27%, and 3%, respectively. Chemically generated hydroxyl radicals caused less pronounced dsDNA damage, and their damaging activity depended on the form of Fe(II) ions: decreases to 49% (Fenton's reaction; Fe(II) complexed with EDTA) and 33% (auto-oxidation of Fe(II); Fe(II) complexed with dsDNA) were observed after 10min incubation.

  19. Ancient whole genome enrichment using baits built from modern DNA.

    PubMed

    Enk, Jacob M; Devault, Alison M; Kuch, Melanie; Murgha, Yusuf E; Rouillard, Jean-Marie; Poinar, Hendrik N

    2014-05-01

    We report metrics from complete genome capture of nuclear DNA from extinct mammoths using biotinylated RNAs transcribed from an Asian elephant DNA extract. Enrichment of the nuclear genome ranged from 1.06- to 18.65-fold, to an apparent maximum threshold of ∼80% on-target. This projects an order of magnitude less costly complete genome sequencing from long-dead organisms, even when a reference genome is unavailable for bait design.

  20. Luminescent Iridium(III) Complex Labeled DNA for Graphene Oxide-Based Biosensors.

    PubMed

    Zhao, Qingcheng; Zhou, Yuyang; Li, Yingying; Gu, Wei; Zhang, Qi; Liu, Jian

    2016-02-02

    There has been growing interest in utilizing highly photostable iridium(III) complexes as new luminescent probes for biotechnology and life science. Herein, iridium(III) complex with carboxyl group was synthesized and activated with N-hydroxysuccinimide, followed by tagging to the amino terminate of single-stranded DNA (ssDNA). The Ir-ssDNA probe was further combined with graphene oxide (GO) nanosheets to develop a GO-based biosensor for target ssDNA detection. The quenching efficiency of GO, and the photostability of iridium(III) complex and GO-Ir-ssDNA biosensor, were also investigated. On the basis of the high luminescence quenching efficiency of GO toward iridium(III) complex, the GO-Ir-ssDNA biosensor exhibited minimal background signals, while strong emission was observed when Ir-ssDNA desorbed from GO nanosheets and formed a double helix with the specific target, leading to a high signal-to-background ratio. Moreover, it was found that luminescent intensities of iridium(III) complex and GO-Ir-ssDNA biosensor were around 15 and 3 times higher than those of the traditional carboxyl fluorescein (FAM) dye and the GO-FAM-ssDNA biosensor after UV irradiation, respectively. Our study suggested the sensitive and selective Ir-ssDNA probe was suitable for the development of highly photostable GO-based detection platforms, showing promise for application beyond the OLED (organic light emitting diode) area.

  1. QCM DNA biosensor for the diagnosis of a fish pathogenic virus VHSV.

    PubMed

    Hong, Sung-Rok; Jeong, Hyun-Do; Hong, Suhee

    2010-08-15

    Viral haemorrhagic septicaemia (VHS) is one of the most serious viral diseases damaging both fresh and marine fish species. VHS caused by VHSV and diagnosis of VHSV has been dependent on the conventional methods, such as cell culture and RT-PCR, which takes a few days or several hours. This study demonstrates a rapid and sensitive QCM biosensor for diagnosis of VHSV infection in fish. The QCM biosensor was developed to detect a main viral RNA encoding G protein in VHSV using the specific DNA probe. To maximize the sensitivity of the biosensor, we prepared three different DNA probes which modified 3' end of DNA by thiol, amine, or biotin and compared three different immobilisation methods on quartz surface coated with gold: immobilisation of thiol labelled probe DNA on naked gold surface, immobilisation of amino labelled probe DNA on gold surface prepared as carboxyl chip using MPA followed by EDC/NHS activation, and immobilisation of biotin labelled probe DNA on gold surface after immobilising avidin on carboxyl chip prior to biotin. As a result, immobilisation method using avidin-biotin interaction was most efficient to immobilise probe DNA and to detect target DNA. The QCM biosensor system using biotinylated probe DNA was stable enough to withstand 32 times of repeated regenerations and the detection limit was 0.0016muM. Diagnosis using the QCM biosensor system was more sensitive and much faster than a conventional RT-PCR analysis in detecting the viral RNA.

  2. Label-free DNA biosensor based on resistance change of platinum nanoparticles assemblies.

    PubMed

    Skotadis, Evangelos; Voutyras, Konstantinos; Chatzipetrou, Marianneza; Tsekenis, Georgios; Patsiouras, Lampros; Madianos, Leonidas; Chatzandroulis, Stavros; Zergioti, Ioanna; Tsoukalas, Dimitris

    2016-07-15

    A novel nanoparticle based biosensor for the fast and simple detection of DNA hybridization events is presented. The sensor utilizes hybridized DNA's charge transport properties, combining them with metallic nanoparticle networks that act as nano-gapped electrodes. The DNA hybridization events can be detected by a significant reduction in the sensor's resistance due to the conductive bridging offered by hybridized DNA. By modifying the nanoparticle surface coverage, which can be controlled experimentally being a function of deposition time, and the structural properties of the electrodes, an optimized biosensor for the in situ detection of DNA hybridization events is ultimately fabricated. The fabricated biosensor exhibits a wide response range, covering four orders of magnitude, a limit of detection of 1nM and can detect a single base pair mismatch between probe and complementary DNA.

  3. Short thio-multi-walled carbon nanotubes and Au nanoparticles enhanced electrochemical DNA biosensor for DNA hybridization detection

    NASA Astrophysics Data System (ADS)

    Guo, Feng; Zhang, Jimei; Dai, Zhao; Zheng, Guo

    2010-07-01

    A novel and sensitive electrochemical DNA biosensor based on multi-walled carbon nanotubes functionalized with a thio group (MWNTs-SH) and gold nanoparticles (GNPs) for covalent DNA immobilization and enhanced hybridization detection is described. The key step for developing this novel DNA biosensor is to cut the pristine MWNT into short and generate lots of active sites simultaneously. With this approach, the target DNA could be quantified in a linear range from 8.5×10-10 to 1.5×10-5 mol/L, with a detection limit of 1.67×10-11 mol/L by 3σ.

  4. DNA Enzyme-Decorated DNA Nanoladders as Enhancer for Peptide Cleavage-Based Electrochemical Biosensor.

    PubMed

    Kou, Bei-Bei; Zhang, Li; Xie, Hua; Wang, Ding; Yuan, Ya-Li; Chai, Ya-Qin; Yuan, Ruo

    2016-09-07

    Herein, we developed a label-free electrochemical biosensor for sensitive detection of matrix metalloproteinase-7 (MMP-7) based on DNA enzyme-decorated DNA nanoladders as enhancer. A peptide and single-stranded DNA S1-modified platinum nanoparticles (P1-PtNPs-S1), which served as recognition nanoprobes, were first immobilized on electrode. When target MMP-7 specifically recognized and cleaved the peptide, the PtNPs-S1 bioconjugates were successfully released from electrode. The remaining S1 on electrode then hybridized with ssDNA1 (I1) and ssDNA2 (I2), which could synchronously trigger two hybridization chain reactions (HCRs), resulting in the in situ formation of DNA nanoladders. The desired DNA nanoladders not only were employed as ideal nanocarriers for enzyme loading, but also maintained its catalytic activity. With the help of hydrogen peroxide (H2O2), manganese porphyrin (MnPP) with peroxidase-like activity accelerated the 4-chloro-1-naphthol (4-CN) oxidation with generation of insoluble precipitation on electrode, causing a very low differential pulse voltammetry (DPV) signal for quantitative determination of MMP-7. Under optimal conditions, the developed biosensor exhibited a wide linear ranging from 0.2 pg/mL to 20 ng/mL, and the detection limit was 0.05 pg/mL. This work successfully realized the combination of DNA signal amplification technique with artificial mimetic enzyme-catalyzed precipitation reaction in peptide cleavage-based protein detection, offering a promising avenue for the detection of other proteases.

  5. A Graphene-Based Biosensing Platform Based on Regulated Release of an Aptameric DNA Biosensor.

    PubMed

    Mao, Yu; Chen, Yongli; Li, Song; Lin, Shuo; Jiang, Yuyang

    2015-11-09

    A novel biosensing platform was developed by integrating an aptamer-based DNA biosensor with graphene oxide (GO) for rapid and facile detection of adenosine triphosphate (ATP, as a model target). The DNA biosensor, which is locked by GO, is designed to contain two sensing modules that include recognition site for ATP and self-replication track that yields the nicking domain for Nt.BbvCI. By taking advantage of the different binding affinity of single-stranded DNA, double-stranded DNA and aptamer-target complex toward GO, the DNA biosensor could be efficiently released from GO in the presence of target with the help of a complementary DNA strand (CPDNA) that partially hybridizes to the DNA biosensor. Then, the polymerization/nicking enzyme synergetic isothermal amplification could be triggered, leading to the synthesis of massive DNA amplicons, thus achieving an enhanced sensitivity with a wide linear dynamic response range of four orders of magnitude and good selectivity. This biosensing strategy expands the applications of GO-DNA nanobiointerfaces in biological sensing, showing great potential in fundamental research and biomedical diagnosis.

  6. Electrochemical biosensor for Mycobacterium tuberculosis DNA detection based on gold nanotubes array electrode platform.

    PubMed

    Torati, Sri Ramulu; Reddy, Venu; Yoon, Seok Soo; Kim, CheolGi

    2016-04-15

    The template assisted electrochemical deposition technique was used for the synthesis of gold nanotubes array (AuNTsA). The morphological structure of the synthesized AuNTsA was observed by scanning electron microscopy and found that the individual nanotubes are around 1.5 μm in length with a diameter of 200 nm. Nanotubes are vertically aligned to the Au thick film, which is formed during the synthesis process of nanotubes. The electrochemical performance of the AuNTsA was compared with the bare Au electrode and found that AuNTsA has better electron transfer surface than bare Au electrode which is due to the high surface area. Hence, the AuNTsA was used as an electrode for the fabrication of DNA hybridization biosensor for detection of Mycobacterium Tuberculosis DNA. The DNA hybridization biosensor constructed by AuNTsA electrode was characterized by cyclic voltammetry technique with Fe(CN)6(3-/4-) as an electrochemical redox indicator. The selectivity of the fabricated biosensor was illustrated by hybridization with complementary DNA and non-complementary DNA with probe DNA immobilized AuNTsA electrode using methylene blue as a hybridization indicator. The developed electrochemical DNA biosensor shows good linear range of complementary DNA concentration from 0.01 ng/μL to 100 ng/μL with high detection limit.

  7. Development of a multilayered polymeric DNA biosensor using radio frequency technology with gold and magnetic nanoparticles.

    PubMed

    Yang, Cheng-Hao; Kuo, Long-Sheng; Chen, Ping-Hei; Yang, Chii-Rong; Tsai, Zuo-Min

    2012-01-15

    This study utilized the radio frequency (RF) technology to develop a multilayered polymeric DNA sensor with the help of gold and magnetic nanoparticles. The flexible polymeric materials, poly (p-xylylene) (Parylene) and polyethylene naphtholate (PEN), were used as substrates to replace the conventional rigid substrates such as glass and silicon wafers. The multilayered polymeric RF biosensor, including the two polymer layers and two copper transmission structure layers, was developed to reduce the total sensor size and further enhance the sensitivity of the biochip in the RF DNA detection. Thioglycolic acid (TGA) was used on the surface of the proposed biochip to form a thiolate-modified sensing surface for DNA hybridization. Gold nanoparticles (AuNPs) and magnetic nanoparticles (MNPs) were used to immobilize on the surface of the biosensor to enhance overall detection sensitivity. In addition to gold nanoparticles, the magnetic nanoparticles has been demonstrated the applicability for RF DNA detection. The performance of the proposed biosensor was evaluated by the shift of the center frequency of the RF biosensor because the electromagnetic characteristic of the biosensors can be altered by the immobilized multilayer nanoparticles on the biosensor. The experimental results show that the detection limit of the DNA concentration can reach as low as 10 pM, and the largest shift of the center frequency with triple-layer AuNPs and MNPs can approach 0.9 and 0.7 GHz, respectively. Such the achievement implies that the developed biosensor can offer an alternative inexpensive, disposable, and highly sensitive option for application in biomedicine diagnostic systems because the price and size of each biochip can be effectively reduced by using fully polymeric materials and multilayer-detecting structures.

  8. Ultrasensitive cDNA Detection of Dengue Virus RNA Using Electrochemical Nanoporous Membrane-Based Biosensor

    PubMed Central

    Rai, Varun; Hapuarachchi, Hapuarachchige C.; Ng, Lee Ching; Soh, Siew Hwa; Leo, Yee Sin; Toh, Chee-Seng

    2012-01-01

    A nanoporous alumina membrane-based ultrasensitive DNA biosensor is constructed using 5′-aminated DNA probes immobilized onto the alumina channel walls. Alumina nanoporous membrane-like structure is carved over platinum wire electrode of 76 µm diameter dimension by electrochemical anodization. The hybridization of complementary target DNA with probe DNA molecules attached inside the pores influences the pore size and ionic conductivity. The biosensor demonstrates linear range over 6 order of magnitude with ultrasensitive detection limit of 9.55×10−12 M for the quantification of ss-31 mer DNA sequence. Its applicability is challenged against real time cDNA PCR sample of dengue virus serotype1 derived from asymmetric PCR. Excellent specificity down to one nucleotide mismatch in target DNA sample of DENV3 is also demonstrated. PMID:22927927

  9. Detection EGFR exon 19 status of lung cancer patients by DNA electrochemical biosensor.

    PubMed

    Xu, Xiong-Wei; Weng, Xiu-Hua; Wang, Chang-Lian; Lin, Wei-Wei; Liu, Ai-Lin; Chen, Wei; Lin, Xin-Hua

    2016-06-15

    Epidermal growth factor receptor (EGFR) exon 19 mutation status is a very important prediction index for tyrosine kinase inhibitors (TKIs) therapy. In this paper, we constructed a superior selective sandwich-type electrochemical biosensor to detect in-frame deletions in exon 19 of EGFR in real samples of patients with non-small cell lung carcinoma. Based on the characteristics of different hybridization efficiency in different hybridization phase conditions, different region around EGFR exon 19 deletion hotspots was selected to design DNA probes to improve biosensor performance. The results confirm that alteration of deletion location in target deliberately according to different hybridization phase is able to improve selectivity of sandwich-type DNA biosensor. Satisfactory discrimination ability can be achieved when the deletions are located in the capture probe interaction region. In order to improve efficiency of ssDNA generation from dsDNA, we introduce Lambda exonuclease (λ-exo) to sandwich-type biosensor system. EGFR exon 19 statuses of clinical real samples from lung cancer patients can be discriminated successfully by the proposed method. Our research would make the electrochemical biosensor be an excellent candidate for EGFR detection for lung cancer patients.

  10. Fabrication of an electrochemical DNA-based biosensor for Bacillus cereus detection in milk and infant formula.

    PubMed

    Izadi, Zahra; Sheikh-Zeinoddin, Mahmoud; Ensafi, Ali A; Soleimanian-Zad, Sabihe

    2016-06-15

    This paper describes fabrication of a DNA-based Au-nanoparticle modified pencil graphite electrode (PGE) biosensor for detection of Bacillus cereus, causative agent of two types of food-borne disease, i.e., emetic and diarrheal syndrome. The sensing element of the biosensor was comprised of gold nanoparticles (GNPs) self-assembled with single-stranded DNA (ssDNA) of nheA gene immobilized with thiol linker on the GNPs modified PGE. The size, shape and dispersion of the GNPs were characterized by field emission scanning electron microscope (FESEM). Detection of B. cereus was carried out based on an increase in the charge transfer resistance (Rct) of the biosensor due to hybridization of the ss-DNA with target DNA. An Atomic force microscope (AFM) was used to confirm the hybridization. The biosensor sensitivity in pure cultures of B. cereus was found to be 10(0) colony forming units per milliliter (CFU/mL) with a detection limit of 9.4 × 10(-12) mol L(-1). The biosensor could distinguish complementary from mismatch DNA sequence. The proposed biosensor exhibited a rapid detection, low cost, high sensitivity to bacterial contamination and could exclusively and specifically detect the target DNA sequence of B. cereus from other bacteria that can be found in dairy products. Moreover, the DNA biosensor exhibited high reproducibility and stability, thus it may be used as a suitable biosensor to detect B. cereus and to become a portable system for food quality control.

  11. An electrochemical DNA biosensor based on Oracet Blue as a label for detection of Helicobacter pylori.

    PubMed

    Hajihosseini, Saeedeh; Nasirizadeh, Navid; Hejazi, Mohammad Saeid; Yaghmaei, Parichereh

    2016-10-01

    An innovative method of a DNA electrochemical biosensor based on Oracet Blue (OB) as an electroactive label and gold electrode (AuE) for detection of Helicobacter pylori, was offered. A single-stranded DNA probe with a thiol modification was covalently immobilized on the surface of the AuE by forming an Au-S bond. Differential pulse voltammetry (DPV) was used to monitor DNA hybridization by measuring the electrochemical signals of reduction of the OB binding to double-stranded DNA (ds-DNA). Our results showed that OB-based DNA biosensor has a decent potential for detection of single-base mismatch in target DNA. Selectivity of the proposed DNA biosensor was further confirmed in the presence of non-complementary and complementary DNA strands. Under optimum conditions, the electrochemical signal had a linear relationship with the concentration of the target DNA ranging from 0.3nmolL(-1) to 240.0nmolL(-1), and the detection limit was 0.17nmolL(-1), whit a promising reproducibility and repeatability.

  12. A novel self-powered and sensitive label-free DNA biosensor in microbial fuel cell.

    PubMed

    Asghary, Maryam; Raoof, Jahan Bakhsh; Rahimnejad, Mostafa; Ojani, Reza

    2016-08-15

    In this work, a novel self-powered, sensitive, low-cost, and label-free DNA biosensor is reported by applying a two-chambered microbial fuel cell (MFC) as a power supply. A graphite electrode and an Au nanoparticles modified graphite electrode (AuNP/graphite electrode) were used as anode and cathode in the MFC system, respectively. The active biocatalyst in the anodic chamber was a mixed culture of microorganisms. The sensing element of the biosensor was fabricated by the well-known Au-thiol binding the ssDNA probe on the surface of an AuNP/graphite cathode. Electrons produced by microorganisms were transported from the anode to the cathode through an external circuit, which could be detected by the terminal multi-meter detector. The difference between power densities of the ssDNA probe modified cathode in the absence and presence of complementary sequence served as the detection signal of the DNA hybridization with detection limit of 3.1nM. Thereafter, this biosensor was employed for diagnosis and determination of complementary sequence in a human serum sample. The hybridization specificity studies further revealed that the developed DNA biosensor could distinguish fully complementary sequences from one-base mismatched and non-complementary sequences.

  13. Recent advances in DNA-based electrochemical biosensors for heavy metal ion detection: A review.

    PubMed

    Saidur, M R; Aziz, A R Abdul; Basirun, W J

    2017-04-15

    The presence of heavy metal in food chains due to the rapid industrialization poses a serious threat on the environment. Therefore, detection and monitoring of heavy metals contamination are gaining more attention nowadays. However, the current analytical methods (based on spectroscopy) for the detection of heavy metal contamination are often very expensive, tedious and can only be handled by trained personnel. DNA biosensors, which are based on electrochemical transduction, is a sensitive but inexpensive method of detection. The principles, sensitivity, selectivity and challenges of electrochemical biosensors are discussed in this review. This review also highlights the major advances of DNA-based electrochemical biosensors for the detection of heavy metal ions such as Hg(2+), Ag(+), Cu(2+) and Pb(2+).

  14. Tetrahedral DNA nanostructure-based microRNA biosensor coupled with catalytic recycling of the analyte.

    PubMed

    Miao, Peng; Wang, Bidou; Chen, Xifeng; Li, Xiaoxi; Tang, Yuguo

    2015-03-25

    MicroRNAs are not only important regulators of a wide range of cellular processes but are also identified as promising disease biomarkers. Due to the low contents in serum, microRNAs are always difficult to detect accurately . In this study, an electrochemical biosensor for ultrasensitive detection of microRNA based on tetrahedral DNA nanostructure is developed. Four DNA single strands are engineered to form a tetrahedral nanostructure with a pendant stem-loop and modified on a gold electrode surface, which largely enhances the molecular recognition efficiency. Moreover, taking advantage of strand displacement polymerization, catalytic recycling of microRNA, and silver nanoparticle-based solid-state Ag/AgCl reaction, the proposed biosensor exhibits high sensitivity with the limit of detection down to 0.4 fM. This biosensor shows great clinical value and may have practical utility in early diagnosis and prognosis of certain diseases.

  15. Graphene coated fiber optic surface plasmon resonance biosensor for the DNA hybridization detection: Simulation analysis

    NASA Astrophysics Data System (ADS)

    Shushama, Kamrun Nahar; Rana, Md. Masud; Inum, Reefat; Hossain, Md. Biplob

    2017-01-01

    In this paper, a graphene coated optical fiber surface plasmon resonance (SPR) biosensor is presented for the detection of DNA Hybridization. For the proposed sensor, a four layer model (fiber core /metal /sensing layer /sample) where a sheet of graphene (biomolecular recognition elements (BRE)) acting as a sensing layer is coated around the gold film because graphene enhances the sensitivity of fiber optic SPR biosensor. Numerical analysis shows the variation of resonance wavelength and spectrum of transmitted power for mismatched DNA strands and for complementary DNA strands. For mismatched DNA strands variation is negligible whereas for complementary DNA strands is considerably countable. Proposed sensor successfully distinguishes hybridization and single nucleotide polymorphisms (SNP) by observing the variation level of resonance wavelength and spectrum of transmitted power.

  16. A high sensitivity wireless mass-loading surface acoustic wave DNA biosensor

    NASA Astrophysics Data System (ADS)

    Cai, Hua-Lin; Yang, Yi; Zhang, Yi-Han; Zhou, Chang-Jian; Guo, Cang-Ran; Liu, Jing; Ren, Tian-Ling

    2014-03-01

    In this paper, a surface acoustic wave (SAW) biosensor with gold delay area on LiNbO3 substrate detecting DNA sequences is proposed. By well-designed device parameters of the SAW sensor, it achieves a high performance for highly sensitive detection of target DNA. In addition, an effective biological treatment method for DNA immobilization and abundant experimental verification of the sensing effect have made it a reliable device in DNA detection. The loading mass of the probe and target DNA sequences is obtained from the frequency shifts, which are big enough in this work due to an effective biological treatment. The experimental results show that the biosensor has a high sensitivity of 1.2 pg/ml/Hz and high selectivity characteristic is also verified by the few responses of other substances. In combination with wireless transceiver, we develop a wireless receiving and processing system that can directly display the detection results.

  17. RCA-Based Biosensor for Electrical and Colorimetric Detection of Pathogen DNA

    NASA Astrophysics Data System (ADS)

    Jeong, Jaepil; Kim, Hyejin; Lee, Dong Jun; Jung, Byung Jun; Lee, Jong Bum

    2016-05-01

    For the diagnosis and prevention of diseases, a range of strategies for the detection of pathogens have been developed. In this study, we synthesized the rolling circle amplification (RCA)-based biosensor that enables detection of pathogen DNA in two analytical modes. Only in the presence of the target DNA, the template DNA can be continuously polymerized by simply carrying out RCA, which gives rise to a change of surface structure of Au electrodes and the gap between the electrodes. Electrical signal was generated after introducing hydrogen tetrachloroaurate (HAuCl4) to the DNA-coated biosensor for the improvement of the conductivity of DNA, which indicates that the presence of the pathogen DNA can be detected in an electrical approach. Furthermore, the existence of the target DNA was readily detected by the naked eyes through change in colors of the electrodes from bright yellow to orange-red after RCA reaction. The RCA-based biosensor offers a new platform for monitoring of pathogenic DNA with two different detection modes in one system.

  18. The Application of DNA-Biosensors and Differential Scanning Calorimetry to the Study of the DNA-Binding Agent Berenil.

    PubMed

    De Abreu, Fabiane C; De Paula, Francine S; Ferreira, Danielle C M; Nascimento, Valberes B; Lopes, Julio C D; Santos, Alexandre M C; Santoro, Marcelo M; Salas, Carlos E; Goulart, Marília O F

    2008-03-03

    The in situ DNA-damaging capacity of berenil (1) has been investigated usingan electrochemical approach employing double stranded (ds) DNA-modified glassy carbonelectrode biosensors. Electrochemical voltammetric sensing of damage caused by 1 todsDNA was monitored by the appearance of peaks diagnostic of the oxidation of guanineand adenine. When 1 was incorporated directly onto the biosensor surface, DNA damagecould be observed at concentrations of additive as low as 10 μM. In contrast, when thedsDNA-modified biosensor was exposed to 1, in acetate buffer solution, the method wasmuch less sensitive and DNA damage could be detected only in the presence of 100 μMberenil. When mixed solutions of 1 and single stranded (ss) DNA, polyguanylic acid orpolyadenylic acid were submitted to voltammetric study, the oxidation signals of therespective bases decreased in a concentration-dependent manner and the major variation ofthe adenine current peak indicated preferential binding of 1 to adenine. The electrochemical results were in close agreement with those deriving from a differentialscanning calorimetric study of the DNA-berenil complex.

  19. [Cu(phen)2](2+) acts as electrochemical indicator and anchor to immobilize probe DNA in electrochemical DNA biosensor.

    PubMed

    Yang, Linlin; Li, Xiaoyu; Li, Xi; Yan, Songling; Ren, Yinna; Wang, Mengmeng; Liu, Peng; Dong, Yulin; Zhang, Chaocan

    2016-01-01

    We demonstrate a novel protocol for sensitive in situ label-free electrochemical detection of DNA hybridization based on copper complex ([Cu(phen)2](2+), where phen = 1,10-phenanthroline) and graphene (GR) modified glassy carbon electrode. Here, [Cu(phen)2](2+) acted advantageously as both the electrochemical indicator and the anchor for probe DNA immobilization via intercalative interactions between the partial double helix structure of probe DNA and the vertical aromatic groups of phen. GR provided large density of docking site for probe DNA immobilization and increased the electrical conductivity ability of the electrode. The modification procedure was monitored by electrochemical impedance spectroscopy (EIS). Square-wave voltammetry (SWV) was used to explore the hybridization events. Under the optimal conditions, the designed electrochemical DNA biosensor could effectively distinguish different mismatch degrees of complementary DNA from one-base mismatch to noncomplementary, indicating that the biosensor had high selectivity. It also exhibited a reasonable linear relationship. The oxidation peak currents of [Cu(phen)2](2+) were linear with the logarithm of the concentrations of complementary target DNA ranging from 1 × 10(-12) to 1 × 10(-6) M with a detection limit of 1.99 × 10(-13) M (signal/noise = 3). Moreover, the stability of the electrochemical DNA biosensor was also studied.

  20. First paraben substituted cyclotetraphosphazene compounds and DNA interaction analysis with a new automated biosensor.

    PubMed

    Çiftçi, Gönül Yenilmez; Şenkuytu, Elif; İncir, Saadet Elif; Yuksel, Fatma; Ölçer, Zehra; Yıldırım, Tuba; Kılıç, Adem; Uludağ, Yıldız

    2016-06-15

    Cancer, as one of the leading causes of death in the world, is caused by malignant cell division and growth that depends on rapid DNA replication. To develop anti-cancer drugs this feature of cancer could be exploited by utilizing DNA-damaging molecules. To achieve this, the paraben substituted cyclotetraphosphazene compounds have been synthesized for the first time and their effect on DNA (genotoxicity) has been investigated. The conventional genotoxicity testing methods are laborious, take time and are expensive. Biosensor based assays provide an alternative to investigate this drug/compound DNA interactions. Here for the first time, a new, easy and rapid screening method has been used to investigate the DNA damage, which is based on an automated biosensor device that relies on the real-time electrochemical profiling (REP™) technology. Using both the biosensor based screening method and the in vitro biological assay, the compounds 9 and 11 (propyl and benzyl substituted cyclotetraphosphazene compounds, respectively), have resulted in higher DNA damage than the others with 65% and 80% activity reduction, respectively.

  1. Electrochemical DNA biosensor based on the proximity-dependent surface hybridization assay.

    PubMed

    Zhang, Yanli; Wang, Ying; Wang, Haibo; Jiang, Jian-Hui; Shen, Guo-Li; Yu, Ru-Qin; Li, Jinghong

    2009-03-01

    This paper describes a novel electrochemical DNA (E-DNA) biosensor for simple, rapid, and specific detection of nucleic acids based on the proximity-dependent surface hybridization assay. This E-DNA biosensor was constructed by self-assembly of a 3' short thiolated capture probe on the gold electrode. DNA detection was realized by outputting a remarkable redox current of the 5' ferrocene (Fc) tail labeled probe. When the target DNA was introduced into the system, it was complementary to the 5' Fc labeled probe at the one-half-segment and complementary to the 3' short thiolated capture probe at the other half-segment, resulting in forming a stable duplex complex. As a result, the Fc probe was proximate to the electrode surface, and the Faradaic current was observed. This E-DNA biosensor was proved to have a low detection limit (1 fM) and a wide dynamic range (from 1 fM to 1 nM) due to the stable hybridization mode. In addition, the sensing system could discriminate the complementary sequence from mismatch sequences, with high sensitivity, stability, and reusability.

  2. Electrochemical detection of benzo(a)pyrene and related DNA damage using DNA/hemin/nafion-graphene biosensor.

    PubMed

    Ni, Yongnian; Wang, Pingping; Song, Haiyan; Lin, Xiaoyun; Kokot, Serge

    2014-04-22

    A novel electrochemical biosensor, DNA/hemin/nafion-graphene/GCE, was constructed for the analysis of the benzo(a)pyrene PAH, which can produce DNA damage induced by a benzo(a)pyrene (BaP) enzyme-catalytic product. This biosensor was assembled layer-by-layer, and was characterized with the use of cyclic voltammetry, electrochemical impedance spectroscopy (EIS) and atomic force microscopy. Ultimately, it was demonstrated that the hemin/nafion-graphene/GCE was a viable platform for the immobilization of DNA. This DNA biosensor was treated separately in benzo(a)pyrene, hydrogen peroxide (H2O2) and in their mixture, respectively, and differential pulse voltammetry (DPV) analysis showed that an oxidation peak was apparent after the electrode was immersed in H2O2. Such experiments indicated that in the presence of H2O2, hemin could mimic cytochrome P450 to metabolize benzo(a)pyrene, and a voltammogram of its metabolite was recorded. The DNA damage induced by this metabolite was also detected by electrochemical impedance and ultraviolet spectroscopy. Finally, a novel, indirect DPV analytical method for BaP in aqueous solution was developed based on the linear metabolite versus BaP concentration plot; this method provided a new, indirect, quantitative estimate of DNA damage.

  3. Label-free slot-waveguide biosensor for the detection of DNA hybridization.

    PubMed

    Dar, Tuffail; Homola, Jiri; Rahman, B M Azizur; Rajarajan, Muttukrishnan

    2012-12-01

    A finite element method based on the full-vectorial H-field formulation has been employed to achieve the maximum field penetration in the sensing medium of the slot-waveguide-based ring resonator biosensor. The use of nanometer scale guiding structure where optical mode is confined in a low-index region permits a very compact sensor with high optical intensity in the region, which makes it possible to detect minimum refractive index change, and offers higher sensitivities. We analyze the change in effective refractive index of mode, sensitivity, and power confinement of the proposed slot-waveguide-based ring resonator biosensor for the detection of DNA hybridization. The biosensor exhibited theoretical sensitivity of 856 nm per refractive index unit (RIU) and a detection limit of 1.43×10(-6)  RIU.

  4. An electrochemical DNA biosensor for trace amounts of mercury ion quantification.

    PubMed

    Maâtouk, Ferdaous; Maâtouk, Mouna; Bekir, Karima; Barhoumi, Houcine; Maaref, Abderrazak; Ben Mansour, Hedi

    2016-10-01

    In this work we report the development of an electrochemical DNA biosensor with high sensitivity for mercury ion detection. A new matrix based on gold nanoparticles (AuNPs)-glutathione (GSH)/cysteine was investigated. The interaction between DNA oligonucleotides and Hg(2+) ions followed by the formation of Thymine-Hg(2+)-Thymine (T-Hg(2+)-T) structures was quantified using different electrochemical methods. It has been shown that the electrochemical impedance spectroscopy (EIS) measurements and the differential pulse voltammetry (DPV) confirmed the specific interaction between the oligonucleotide receptor layer and the Hg(2+) ions. Besides, the developed sensor exhibited high sensitivity towards mercury among some examined metal ions such as Pb(2+), Cu(2+) and Cd(2+). As a result, a high electrochemical response and low detection limit of 50 pM were estimated in the case of Hg(2+) ions. The developed DNA biosensor was applied successfully to the determination of Hg(2+)ions in wastewater samples.

  5. High specific surface gold electrode on polystyrene substrate: Characterization and application as DNA biosensor.

    PubMed

    Yang, Zhiliu; Liu, Yichen; Lu, Wei; Yuan, Qingpan; Wang, Wei; Pu, Qiaosheng; Yao, Bo

    2016-05-15

    In the past decades, many efforts have been made to improve the sensitivity and specificity of electrochemical DNA biosensors. However, it is still strongly required to develop disposable and reliable DNA biosensors for wide and practical application. In this article, we reported superior electrochemical properties of an integrated plastic-gold electrode (PGE) fabricated in-house by chemical plating on polystyrene substrate. PGEs were found having extremely high capacity of DNA immobilization compared with gold electrodes fabricated by standard sputtering based photolithography. Unique nano-structured surface was observed on PGEs through morphology techniques, which would to some extend give an explanation to higher capacity of DNA immobilization on PGEs. A probable mechanism of carboxylic acid produced on polystyrene substrate after exposure to UV irradiation was proposed and discussed for the first time. This biosensor was applied to detection and manipulate of DNA hybridization. Detection limit of 7.2×10(-11) M and 1-500 nM of linearity range was obtained.

  6. Precise and selective sensing of DNA-DNA hybridization by graphene/Si-nanowires diode-type biosensors

    PubMed Central

    Kim, Jungkil; Park, Shin-Young; Kim, Sung; Lee, Dae Hun; Kim, Ju Hwan; Kim, Jong Min; Kang, Hee; Han, Joong-Soo; Park, Jun Woo; Lee, Hosun; Choi, Suk-Ho

    2016-01-01

    Single-Si-nanowire (NW)-based DNA sensors have been recently developed, but their sensitivity is very limited because of high noise signals, originating from small source-drain current of the single Si NW. Here, we demonstrate that chemical-vapor-deposition-grown large-scale graphene/surface-modified vertical-Si-NW-arrays junctions can be utilized as diode-type biosensors for highly-sensitive and -selective detection of specific oligonucleotides. For this, a twenty-seven-base-long synthetic oligonucleotide, which is a fragment of human DENND2D promoter sequence, is first decorated as a probe on the surface of vertical Si-NW arrays, and then the complementary oligonucleotide is hybridized to the probe. This hybridization gives rise to a doping effect on the surface of Si NWs, resulting in the increase of the current in the biosensor. The current of the biosensor increases from 19 to 120% as the concentration of the target DNA varies from 0.1 to 500 nM. In contrast, such biosensing does not come into play by the use of the oligonucleotide with incompatible or mismatched sequences. Similar results are observed from photoluminescence microscopic images and spectra. The biosensors show very-uniform current changes with standard deviations ranging ~1 to ~10% by ten-times endurance tests. These results are very promising for their applications in accurate, selective, and stable biosensing. PMID:27534818

  7. Precise and selective sensing of DNA-DNA hybridization by graphene/Si-nanowires diode-type biosensors.

    PubMed

    Kim, Jungkil; Park, Shin-Young; Kim, Sung; Lee, Dae Hun; Kim, Ju Hwan; Kim, Jong Min; Kang, Hee; Han, Joong-Soo; Park, Jun Woo; Lee, Hosun; Choi, Suk-Ho

    2016-08-18

    Single-Si-nanowire (NW)-based DNA sensors have been recently developed, but their sensitivity is very limited because of high noise signals, originating from small source-drain current of the single Si NW. Here, we demonstrate that chemical-vapor-deposition-grown large-scale graphene/surface-modified vertical-Si-NW-arrays junctions can be utilized as diode-type biosensors for highly-sensitive and -selective detection of specific oligonucleotides. For this, a twenty-seven-base-long synthetic oligonucleotide, which is a fragment of human DENND2D promoter sequence, is first decorated as a probe on the surface of vertical Si-NW arrays, and then the complementary oligonucleotide is hybridized to the probe. This hybridization gives rise to a doping effect on the surface of Si NWs, resulting in the increase of the current in the biosensor. The current of the biosensor increases from 19 to 120% as the concentration of the target DNA varies from 0.1 to 500 nM. In contrast, such biosensing does not come into play by the use of the oligonucleotide with incompatible or mismatched sequences. Similar results are observed from photoluminescence microscopic images and spectra. The biosensors show very-uniform current changes with standard deviations ranging ~1 to ~10% by ten-times endurance tests. These results are very promising for their applications in accurate, selective, and stable biosensing.

  8. Precise and selective sensing of DNA-DNA hybridization by graphene/Si-nanowires diode-type biosensors

    NASA Astrophysics Data System (ADS)

    Kim, Jungkil; Park, Shin-Young; Kim, Sung; Lee, Dae Hun; Kim, Ju Hwan; Kim, Jong Min; Kang, Hee; Han, Joong-Soo; Park, Jun Woo; Lee, Hosun; Choi, Suk-Ho

    2016-08-01

    Single-Si-nanowire (NW)-based DNA sensors have been recently developed, but their sensitivity is very limited because of high noise signals, originating from small source-drain current of the single Si NW. Here, we demonstrate that chemical-vapor-deposition-grown large-scale graphene/surface-modified vertical-Si-NW-arrays junctions can be utilized as diode-type biosensors for highly-sensitive and -selective detection of specific oligonucleotides. For this, a twenty-seven-base-long synthetic oligonucleotide, which is a fragment of human DENND2D promoter sequence, is first decorated as a probe on the surface of vertical Si-NW arrays, and then the complementary oligonucleotide is hybridized to the probe. This hybridization gives rise to a doping effect on the surface of Si NWs, resulting in the increase of the current in the biosensor. The current of the biosensor increases from 19 to 120% as the concentration of the target DNA varies from 0.1 to 500 nM. In contrast, such biosensing does not come into play by the use of the oligonucleotide with incompatible or mismatched sequences. Similar results are observed from photoluminescence microscopic images and spectra. The biosensors show very-uniform current changes with standard deviations ranging ~1 to ~10% by ten-times endurance tests. These results are very promising for their applications in accurate, selective, and stable biosensing.

  9. A novel bio-sensor based on DNA strand displacement.

    PubMed

    Shi, Xiaolong; Wang, Zhiyu; Deng, Chenyan; Song, Tao; Pan, Linqiang; Chen, Zhihua

    2014-01-01

    DNA strand displacement technology performs well in sensing and programming DNA segments. In this work, we construct DNA molecular systems based on DNA strand displacement performing computation of logic gates. Specifically, a class of so-called "DNA neurons" are achieved, in which a "smart" way inspired by biological neurons encoding information is developed to encode and deliver information using DNA molecules. The "DNA neuron" is bistable, that is, it can sense DNA molecules as input signals, and release "negative" or "positive" signals DNA molecules. We design intelligent DNA molecular systems that are constructed by cascading some particularly organized "DNA neurons", which could perform logic computation, including AND, OR, XOR logic gates, automatically. Both simulation results using visual DSD (DNA strand displacement) software and experimental results are obtained, which shows that the proposed systems can detect DNA signals with high sensitivity and accretion; moreover, the systems can process input signals automatically with complex nonlinear logic. The method proposed in this work may provide a new way to construct a sensitive molecular signal detection system with neurons spiking behavior in vitro, and can be used to develop intelligent molecular processing systems in vivo.

  10. Fabrication of Ultrasensitive Field-Effect Transistor DNA Biosensors by a Directional Transfer Technique Based on CVD-Grown Graphene.

    PubMed

    Zheng, Chao; Huang, Le; Zhang, Hong; Sun, Zhongyue; Zhang, Zhiyong; Zhang, Guo-Jun

    2015-08-12

    Most graphene field-effect transistor (G-FET) biosensors are fabricated through a routine process, in which graphene is transferred onto a Si/SiO2 substrate and then devices are subsequently produced by micromanufacture processes. However, such a fabrication approach can introduce contamination onto the graphene surface during the lithographic process, resulting in interference for the subsequent biosensing. In this work, we have developed a novel directional transfer technique to fabricate G-FET biosensors based on chemical-vapor-deposition- (CVD-) grown single-layer graphene (SLG) and applied this biosensor for the sensitive detection of DNA. A FET device with six individual array sensors was first fabricated, and SLG obtained by the CVD-growth method was transferred onto the sensor surface in a directional manner. Afterward, peptide nucleic acid (PNA) was covalently immobilized on the graphene surface, and DNA detection was realized by applying specific target DNA to the PNA-functionalized G-FET biosensor. The developed G-FET biosensor was able to detect target DNA at concentrations as low as 10 fM, which is 1 order of magnitude lower than those reported in a previous work. In addition, the biosensor was capable of distinguishing the complementary DNA from one-base-mismatched DNA and noncomplementary DNA. The directional transfer technique for the fabrication of G-FET biosensors is simple, and the as-constructed G-FET DNA biosensor shows ultrasensitivity and high specificity, indicating its potential application in disease diagnostics as a point-of-care tool.

  11. Electrochemical DNA biosensors based on thin gold films sputtered on capacitive nanoporous niobium oxide.

    PubMed

    Rho, Sangchul; Jahng, Deokjin; Lim, Jae Hoon; Choi, Jinsub; Chang, Jeong Ho; Lee, Sang Cheon; Kim, Kyung Ja

    2008-01-18

    Electrochemical DNA biosensors based on a thin gold film sputtered on anodic porous niobium oxide (Au@Nb(2)O(5)) are studied in detail here. We found that the novel DNA biosensor based on Au@Nb(2)O(5) is superior to those based on the bulk gold electrode or niobium oxide electrode. For example, the novel method does not require any time-consuming cleaning step in order to obtain reproducible results. The adhesion of gold films on the substrate is very stable during electrochemical biosensing, when the thin gold films are deposited on anodically prepared nanoporous niobium oxide. In particular, the novel biosensor shows enhanced biosensing performance with a 2.4 times higher resolution and a three times higher sensitivity. The signal enhancement is in part attributed to capacitive interface between gold films and nanoporous niobium oxide, where charges are accumulated during the anodic and cathodic scanning, and is in part ascribed to the structural stability of DNA immobilized at the sputtered gold films. The method allows for the detection of single-base mismatch DNA as well as for the discrimination of mismatch positions.

  12. Specific detection of Mycobacterium sp. genomic DNA using dual labeled gold nanoparticle based electrochemical biosensor.

    PubMed

    Thiruppathiraja, Chinnasamy; Kamatchiammal, Senthilkumar; Adaikkappan, Periyakaruppan; Santhosh, Devakirubakaran Jayakar; Alagar, Muthukaruppan

    2011-10-01

    The present study was aimed at the development and evaluation of a DNA electrochemical biosensor for Mycobacterium sp. genomic DNA detection in a clinical specimen using a signal amplifier as dual-labeled AuNPs. The DNA electrochemical biosensors were fabricated using a sandwich detection strategy involving two kinds of DNA probes specific to Mycobacterium sp. genomic DNA. The probes of enzyme ALP and the detector probe both conjugated on the AuNPs and subsequently hybridized with target DNA immobilized in a SAM/ITO electrode followed by characterization with CV, EIS, and DPV analysis using the electroactive species para-nitrophenol generated by ALP through hydrolysis of para-nitrophenol phosphate. The effect of enhanced sensitivity was obtained due to the AuNPs carrying numerous ALPs per hybridization and a detection limit of 1.25 ng/ml genomic DNA was determined under optimized conditions. The dual-labeled AuNP-facilitated electrochemical sensor was also evaluated by clinical sputum samples, showing a higher sensitivity and specificity and the outcome was in agreement with the PCR analysis. In conclusion, the developed electrochemical sensor demonstrated unique sensitivity and specificity for both genomic DNA and sputum samples and can be employed as a regular diagnostics tool for Mycobacterium sp. monitoring in clinical samples.

  13. The development of a silica nanoparticle-based label-free DNA biosensor

    NASA Astrophysics Data System (ADS)

    Kell, Arnold J.; Pagé, Lilianne; Tan, Sophie; Charlebois, Isabelle; Boissinot, Maurice; Leclerc, Mario; Simard, Benoit

    2011-09-01

    A silica nanoparticle-based DNA biosensor capable of detecting Bacillus anthracis bacteria through the use of unlabelled ss-oligonucleotides has been developed. The biosensor makes use of the optical changes that accompany a nanoparticle-immobilized cationic conjugated polymer (polythiophene) interacting with single-stranded vs. hybridized oligonucleotides, where a fluorescence signal appears only when hybridized DNA is present (i.e. only when the ss-oligonucleotide interacting with the polymer has hybridized with its complement). In order to enhance the sensitivity of the biosensor, two different nanoparticle architectures were developed and used to elucidate how the presence of neighboring fluorophores on the nanoparticle surface affects Förster-resonant energy transfer (FRET) between the polythiophene/oligonucleotide complex (FRET donor) and the fluorophores (FRET acceptors). We demonstrate that the silica nanoparticle-based FRET platform lowers the limit of detection at least 10-fold in comparison to the polythiophene itself, and allows the detection of ~2 × 10-12 moles of ss-oligonucleotide in a 100 μL sample with a standard fluorimeter (i.e. has a limit of detection of ~2 nM ssDNA). Such nanoparticle-based biosensor platforms are beneficial because of the robustness and stability inherent to their covalent assembly and they provide a valuable new tool that may allow for the sensitive, label-free detection (the target DNA that produces the fluorescence signal is unlabelled) without the use of polymerase chain reaction.A silica nanoparticle-based DNA biosensor capable of detecting Bacillus anthracis bacteria through the use of unlabelled ss-oligonucleotides has been developed. The biosensor makes use of the optical changes that accompany a nanoparticle-immobilized cationic conjugated polymer (polythiophene) interacting with single-stranded vs. hybridized oligonucleotides, where a fluorescence signal appears only when hybridized DNA is present (i.e. only when

  14. Label-free detection of DNA hybridization and single point mutations in a nano-gap biosensor.

    PubMed

    Zaffino, R L; Mir, M; Samitier, J

    2014-03-14

    We describe a conductance-based biosensor that exploits DNA-mediated long-range electron transport for the label-free and direct electrical detection of DNA hybridization. This biosensor platform comprises an array of vertical nano-gap biosensors made of gold and fabricated through standard photolithography combined with focused ion beam lithography. The nano-gap walls are covalently modified with short, anti-symmetric thiolated DNA probes, which are terminated by 19 bases complementary to both the ends of a target DNA strand. The nano-gaps are separated by a distance of 50 nm, which was adjusted to fit the length of the DNA target plus the DNA probes. The hybridization of the target DNA closes the gap circuit in a switch on/off fashion, in such a way that it is readily detected by an increase in the current after nano-gap closure. The nano-biosensor shows high specificity in the discrimination of base-pair mismatching and does not require signal indicators or enhancing molecules. The design of the biosensor platform is applicable for multiplexed detection in a straightforward manner. The platform is well-suited to mass production, point-of-care diagnostics, and wide-scale DNA analysis applications.

  15. Label-free detection of DNA hybridization and single point mutations in a nano-gap biosensor

    NASA Astrophysics Data System (ADS)

    Zaffino, R. L.; Mir, M.; Samitier, J.

    2014-03-01

    We describe a conductance-based biosensor that exploits DNA-mediated long-range electron transport for the label-free and direct electrical detection of DNA hybridization. This biosensor platform comprises an array of vertical nano-gap biosensors made of gold and fabricated through standard photolithography combined with focused ion beam lithography. The nano-gap walls are covalently modified with short, anti-symmetric thiolated DNA probes, which are terminated by 19 bases complementary to both the ends of a target DNA strand. The nano-gaps are separated by a distance of 50nm, which was adjusted to fit the length of the DNA target plus the DNA probes. The hybridization of the target DNA closes the gap circuit in a switch on/off fashion, in such a way that it is readily detected by an increase in the current after nano-gap closure. The nano-biosensor shows high specificity in the discrimination of base-pair mismatching and does not require signal indicators or enhancing molecules. The design of the biosensor platform is applicable for multiplexed detection in a straightforward manner. The platform is well-suited to mass production, point-of-care diagnostics, and wide-scale DNA analysis applications.

  16. Identification of Chinese Herbs Using a Sequencing-Free Nanostructured Electrochemical DNA Biosensor

    PubMed Central

    Lei, Yan; Yang, Fan; Tang, Lina; Chen, Keli; Zhang, Guo-Jun

    2015-01-01

    Due to the nearly identical phenotypes and chemical constituents, it is often very challenging to accurately differentiate diverse species of a Chinese herbal genus. Although technologies including DNA barcoding have been introduced to help address this problem, they are generally time-consuming and require expensive sequencing. Herein, we present a simple sequencing-free electrochemical biosensor, which enables easy differentiation between two closely related Fritillaria species. To improve its differentiation capability using trace amounts of DNA sample available from herbal extracts, a stepwise electrochemical deposition of reduced graphene oxide (RGO) and gold nanoparticles (AuNPs) was adopted to engineer a synergistic nanostructured sensing interface. By using such a nanofeatured electrochemical DNA (E-DNA) biosensor, two Chinese herbal species of Fritillaria (F. thunbergii and F. cirrhosa) were successfully discriminated at the DNA level, because a fragment of 16-mer sequence at the spacer region of the 5S-rRNA only exists in F. thunbergii. This E-DNA sensor was capable of identifying the target sequence in the range from 100 fM to 10 nM, and a detection limit as low as 11.7 fM (S/N = 3) was obtained. Importantly, this sensor was applied to detect the unique fragment of the PCR products amplified from F. thunbergii and F. cirrhosa, respectively. We anticipate that such a direct, sequencing-free sensing mode will ultimately pave the way towards a new generation of herb-identification strategies. PMID:26633399

  17. Nanostructured SERS-electrochemical biosensors for testing of anticancer drug interactions with DNA.

    PubMed

    Ilkhani, Hoda; Hughes, Taylor; Li, Jing; Zhong, Chuan Jian; Hepel, Maria

    2016-06-15

    Widely used anti-cancer treatments involving chemotherapeutic drugs result in cancer cell damage due to their strong interaction with DNA. In this work, we have developed laboratory biosensors for screening chemotherapeutic drugs and to aid in the assessment of DNA modification/damage caused by these drugs. The sensors utilize surface-enhanced Raman scattering (SERS) spectroscopy and electrochemical methods to monitor sensory film modification and observe the drug-DNA reactivity. The self-assembled monolayer protected gold-disk electrode (AuDE) was coated with a reduced graphene oxide (rGO), decorated with plasmonic gold-coated Fe2Ni@Au magnetic nanoparticles functionalized with double-stranded DNA (dsDNA), a sequence of the breast cancer gene BRCA1. The nanobiosensors AuDE/SAM/rGO/Fe2Ni@Au/dsDNA were then subjected to the action of a model chemotherapeutic drug, doxorubicin (DOX), to assess the DNA modification and its dose dependence. The designed novel nanobiosensors offer SERS/electrochemical transduction, enabling chemically specific and highly sensitive analytical signals generation. The SERS measurements have corroborated the DOX intercalation into the DNA duplex whereas the electrochemical scans have indicated that the DNA modification by DOX proceeds in a concentration dependent manner, with limit of detection LOD=8 µg/mL (S/N=3), with semilog linearity over 3 orders of magnitude. These new biosensors are sensitive to agents that interact with DNA and facilitate the analysis of functional groups for determination of the binding mode. The proposed nanobiosensors can be applied in the first stage of the drug development for testing the interactions of new drugs with DNA before the drug efficacy can be assessed in more expensive testing in vitro and in vivo.

  18. An ultrasensitive electrochemical DNA biosensor based on a copper oxide nanowires/single-walled carbon nanotubes nanocomposite

    NASA Astrophysics Data System (ADS)

    Chen, Mei; Hou, Changjun; Huo, Danqun; Yang, Mei; Fa, Huanbao

    2016-02-01

    Here, we developed a novel and sensitive electrochemical biosensor to detect specific-sequence target DNA. The biosensor was based on a hybrid nanocomposite consisting of copper oxide nanowires (CuO NWs) and carboxyl-functionalized single-walled carbon nanotubes (SWCNTs-COOH). The resulting CuO NWs/SWCNTs layers exhibited a good differential pulse voltammetry (DPV) current response for the target DNA sequences, which we attributed to the properties of CuO NWs and SWCNTs. CuO NWs and SWCNTs hybrid composites with highly conductive and biocompatible nanostructure were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and cyclic voltammetry (CV). Immobilization of the probe DNA on the electrode surface was largely improved due to the unique synergetic effect of CuO NWs and SWCNTs. DPV was applied to monitor the DNA hybridization event, using adriamycin as an electrochemical indicator. Under optimal conditions, the peak currents of adriamycin were linear with the logarithm of target DNA concentrations (ranging from 1.0 × 10-14 to 1.0 × 10-8 M), with a detection limit of 3.5 × 10-15 M (signal/noise ratio of 3). The biosensor also showed high selectivity to single-base mismatched target DNA. Compared with other electrochemical DNA biosensors, we showed that the proposed biosensor is simple to implement, with good stability and high sensitivity.

  19. Conducting polymer based DNA biosensor for the detection of the Bacillus cereus group species

    NASA Astrophysics Data System (ADS)

    Velusamy, Vijayalakshmi; Arshak, Khalil; Korostynska, Olga; Oliwa, Kamila; Adley, Catherine

    2009-05-01

    Biosensor designs are emerging at a significant rate and play an increasingly important role in foodborne pathogen detection. Conducting polymers are excellent tools for the fabrication of biosensors and polypyrrole has been used in the detection of biomolecules due to its unique properties. The prime intention of this paper was to pioneer the design and fabrication of a single-strand (ss) DNA biosensor for the detection of the Bacillus cereus (B.cereus) group species. Growth of B. cereus, results in production of several highly active toxins. Therefore, consumption of food containing >106 bacteria/gm may results in emetic and diarrhoeal syndromes. The most common source of this bacterium is found in liquid food products, milk powder, mixed food products and is of particular concern in the baby formula industry. The electrochemical deposition technique, such as cyclic voltammetry, was used to develop and test a model DNA-based biosensor on a gold electrode electropolymerized with polypyrrole. The electrically conducting polymer, polypyrrole is used as a platform for immobilizing DNA (1μg) on the gold electrode surface, since it can be more easily deposited from neutral pH aqueous solutions of pyrrolemonomers. The average current peak during the electrodeposition event is 288μA. There is a clear change in the current after hybridization of the complementary oligonucleotide (6.35μA) and for the noncomplementary oligonucleotide (5.77μA). The drop in current after each event was clearly noticeable and it proved to be effective.

  20. Detection of DNA hybridization by field-effect DNA-based biosensors: mechanisms of signal generation and open questions.

    PubMed

    Cherstvy, A G

    2013-08-15

    We model theoretically the electrostatic effects taking place upon DNA hybridization in dense DNA arrays immobilized on a layer of Au nano-particles deposited on the surface of a field-effect-based DNA capacitive biosensor. We consider the influence of separation of a charged analyte from the sensor surface and the salinity of electrolyte solution, in the framework of both linear and nonlinear Poisson-Boltzmann theories. The latter predicts a substantially weaker sensor signals due to electrostatic saturation effects that is the main conclusion of this paper. We analyze how different physical parameters of dense DNA brushes affect the magnitude of hybridization signals. The list includes the fraction of DNA charge neutralization, the length and spatial conformations of adsorbed DNA molecules, as well as the discreteness of DNA charges. We also examine the effect of Donnan ionic equilibrium in DNA lattices on the sensor response. The validity of theoretical models is contrasted against recent experimental observations on detection of DNA hybridization via its intrinsic electric charge. The sensitivity of such biochemical sensing devices, their detection limit, and DNA hybridization efficiency are briefly discussed in the end.

  1. Mimicking enzymatic effects of cytochrome P450 by an efficient biosensor for in vitro detection of DNA damage.

    PubMed

    Jalalvand, Ali R; Gholivand, Mohammad-Bagher; Goicoechea, Hector C; Skov, Thomas; Mansouri, Kamran

    2015-08-01

    A novel biosensor for detecting DNA damage induced by benzo(a)pyrene (BP) and its metabolite was presented in this work. The nafion-solubilized single wall carbon nanotubes-ionic liquid (SWCNTs-NA-IL) composite film was prepared and then horseradish peroxidase (HRP) and double-stranded DNA were alternately assembled on the composite film by the layer-by-layer method. The biosensor was characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), differential pulse voltammetry (DPV), scanning electron microscopy (SEM) and computational methods. UV-vis spectrophotometry was also used to investigate DNA damage induced by BP and its metabolites in solution. The DNA biosensor was treated separately in BP, hydrogen peroxide (H2O2) and in their mixture, respectively. The EIS analysis showed a decrease in the charge transfer resistance at the DNA/HRP/SWCNTs-NA-IL/GCE incubated in a mixture of HRP and H2O2, because HRP in the presence of H2O2 could mimic enzymatic effects of cytochrome P450 (CYP450) to metabolize BP which could cause significant DNA damage and the exposed DNA bases reduced the electrostatic repulsion of the negatively charged redox probe and leads to Faradaic impedance changes. Finally, a novel biosensor for BP determination was developed and this method provided an indirect, and quantitative estimation of DNA damage in vitro.

  2. Detection of femtomolar level osteosarcoma-related gene via a chronocoulometric DNA biosensor based on nanostructure gold electrode.

    PubMed

    Zhong, Guangxian; Liu, Ailin; Xu, Xiongwei; Sun, Zhouliang; Chen, Jinyuan; Wang, Kun; Liu, Qicai; Lin, Xinhua; Lin, Jianhua

    2012-01-01

    In this paper, a sensitive chronocoulometric deoxyribonucleic acid (DNA) biosensor based on a nanostructure gold electrode was fabricated for detection of the femtomolar level survivin gene which was correlated with osteosarcoma by using hexaamine-ruthenium III complexes, [Ru(NH(3))(6)](3+), as the electrochemical indicator. The effect of different frequencies on the real surface area of the nanostructure gold electrode obtained by repetitive square-wave oxidation reduction cycle was investigated. At the optimal frequency of 8000 Hz, the real surface of the developed nanostructure gold electrode was about 42.5 times compared with that of the bare planar gold electrode. The capture probe DNA was immobilized on the nanostructure gold electrode and hybridized with target DNA. Electrochemical signals of hexaamine-ruthenium III bound to the anionic phosphate of DNA strands via electrostatic interactions were measured by chronocoulometry before and after hybridization. The increase of the charges of hexaamine-ruthenium III was observed upon hybridization of the probe with target DNA. Results indicate that this DNA biosensor could detect the femtomole (fM) concentration of the DNA target quantitatively in the range of 50 fM to 250 fM; the detection limit of this DNA biosensor was 5.6 fM (signal to noise = 3). This new biosensor exhibits excellent sensitivity and selectivity and has been used for an assay of polymerase chain reaction (PCR) with a satisfactory result.

  3. A sensitive impedimetric DNA biosensor for the determination of the HIV gene based on graphene-Nafion composite film.

    PubMed

    Gong, Qiaojuan; Wang, Yongdong; Yang, Haiying

    2017-03-15

    An impedimetric HIV-1 gene biosensor has been developed based on graphene-Nafion composite film. The biosensor was fabricated by adsorbing the single-stranded DNA (ssDNA) on graphene-Nafion modified on the surface of glassy carbon electrode via the π-π* stacking interactions. As the negative ssDNA and the steric hindrance, the electron transfer resistance of the electrodes toward the [Fe(CN)6](3-/4) redox couple was difficult, the electron transfer resistance value increased. In the measurement of HIV gene, ssDNA probe with the target DNA to form double-stranded DNA (dsDNA), the formation of helix induced dsDNA to release from the surface of the biosensor. The decrease in the electron transfer resistance was in logarithmically direct proportion to the concentration of HIV-1 gene over a range from 1.0×10(-13) to 1.0×10(-10)M. The detection limit of this sensor was 2.3×10(-14)M. It was found that Nafion could not only stabilize graphene but also increase the dispersion of graphene. The results demonstrate that this graphene-Nafion biosensor possesses good selectivity, acceptable stability and reproducibility for HIV-1 gene detection.

  4. Development of an electrochemical biosensor methods based on acrylic microsphere for the determination of Arowana DNA hybridization

    NASA Astrophysics Data System (ADS)

    Rahman, Mahbubur; Heng, Lee Yook; Futra, Dedi; Chiang, Chew Poh

    2015-09-01

    An electrochemical method of Arowana DNA determination based of N-acrylosuccinimide (NAS) modified acrylic microsphere was fabricated. Hydrophobic succinimide functional group containing poly(n-butylacrylate-N-acryloxysuccinimide) microspheres were synthesized with a simple one-step photopolymerization pocedure. Aminated DNA probe was covalently bonded to the succinimde functional group of the acrylic microspheres. The hybridization of the immobilized DNA probe with the complementary DNA was determined by the differential pulse voltametry using anthraquninone-2-sulfonic acid monohydrate sodium salt (AQMS) as the electroactive hybridization label. The influences of many factors such as duration of DNA probe immobilization and hybridization, operational temperature and non-complementary DNA on the biosensor performance were evaluated. Under optimized conditions, the DNA microbiosensor demonstrated a wide linear response range to target DNA is 1.0 × 10-16 and 1.0 × 10-8 M with a lower limit of detection (LOD) of 9.46 × 10-17 M (R2 = 0.99) were calculated. This biosensor had improved the overall analytical performance of the resultant DNA microbiosensor when compared with other reported DNA biosensors using other nano-materials for membranes and microspheres as DNA immobilization matrices.

  5. Recent Updates of DNA Incorporated in Carbon Nanotubes and Nanoparticles for Electrochemical Sensors and Biosensors

    PubMed Central

    Yogeswaran, Umasankar; Thiagarajan, Soundappan; Chen, Shen-Ming

    2008-01-01

    Innovations in the field of electrochemical sensors and biosensors are of much importance nowadays. These devices are designed with probes and micro electrodes. The miniaturized designs of these sensors allow analyses of materials without damaging the samples. Some of these sensors are also useful for real time analysis within the host system, so these sensors are considered to be more advantageous than other types of sensors. The active sensing materials used in these types of sensors can be any material that acts as a catalyst for the oxidation or reduction of particular analyte or set of analytes. Among various kinds of sensing materials, deoxyribonucleic acid (DNA), carbon nanotubes (CNTs) and nanoparticles have received considerable attraction in recent years. DNA is one of the classes of natural polymers, which can interact with CNTs and nanoparticles to form new types of composite materials. These composite materials have also been used as sensing materials for sensor applications. They have advantages in characteristics such as extraordinary low weight and multifunctional properties. In this article, advantages of DNA incorporated in CNT and nanoparticle hybrids for electrochemical sensors and biosensors are presented in detail, along with some key results noted from the literature. PMID:27873923

  6. Recent Updates of DNA Incorporated in Carbon Nanotubes and Nanoparticles for Electrochemical Sensors and Biosensors.

    PubMed

    Yogeswaran, Umasankar; Thiagarajan, Soundappan; Chen, Shen-Ming

    2008-11-13

    Innovations in the field of electrochemical sensors and biosensors are of much importance nowadays. These devices are designed with probes and micro electrodes. The miniaturized designs of these sensors allow analyses of materials without damaging the samples. Some of these sensors are also useful for real time analysis within the host system, so these sensors are considered to be more advantageous than other types of sensors. The active sensing materials used in these types of sensors can be any material that acts as a catalyst for the oxidation or reduction of particular analyte or set of analytes. Among various kinds of sensing materials, deoxyribonucleic acid (DNA), carbon nanotubes (CNTs) and nanoparticles have received considerable attraction in recent years. DNA is one of the classes of natural polymers, which can interact with CNTs and nanoparticles to form new types of composite materials. These composite materials have also been used as sensing materials for sensor applications. They have advantages in characteristics such as extraordinary low weight and multifunctional properties. In this article, advantages of DNA incorporated in CNT and nanoparticle hybrids for electrochemical sensors and biosensors are presented in detail, along with some key results noted from the literature.

  7. Electrochemical biosensor modified with dsDNA monolayer for restriction enzyme activity determination.

    PubMed

    Zajda, Joanna; Górski, Łukasz; Malinowska, Elżbieta

    2016-06-01

    A simple and cost effective method for the determination of restriction endonuclease activity is presented. dsDNA immobilized at a gold electrode surface is used as the enzymatic substrate, and an external cationic redox probe is employed in voltammetric measurements for analytical signal generation. The assessment of enzyme activity is based on a decrease of a current signal derived from reduction of methylene blue which is present in the sample solution. For this reason, the covalent attachment of the label molecule is not required which significantly reduces costs of the analysis and simplifies the entire determination procedure. The influence of buffer components on utilized dsDNA/MCH monolayer stability and integrity is also verified. Electrochemical impedance spectroscopy measurements reveal that due to pinhole formation during enzyme activity measurement the presence of any surfactants should be avoided. Additionally, it is shown that the sensitivity of the electrochemical biosensor can be tuned by changing the restriction site location along the DNA length. Under optimal conditions the proposed biosensor exhibits a linear response toward PvuII activity within a range from 0.25 to 1.50 U/μL.

  8. Development of swine-specific DNA markers for biosensor-based halal authentication.

    PubMed

    Ali, M E; Hashim, U; Kashif, M; Mustafa, S; Che Man, Y B; Abd Hamid, S B

    2012-06-29

    The pig (Sus scrofa) mitochondrial genome was targeted to design short (15-30 nucleotides) DNA markers that would be suitable for biosensor-based hybridization detection of target DNA. Short DNA markers are reported to survive harsh conditions in which longer ones are degraded into smaller fragments. The whole swine mitochondrial-genome was in silico digested with AluI restriction enzyme. Among 66 AluI fragments, five were selected as potential markers because of their convenient lengths, high degree of interspecies polymorphism and intraspecies conservatism. These were confirmed by NCBI blast analysis and ClustalW alignment analysis with 11 different meat-providing animal and fish species. Finally, we integrated a tetramethyl rhodamine-labeled 18-nucleotide AluI fragment into a 3-nm diameter citrate-tannate coated gold nanoparticle to develop a swine-specific hybrid nanobioprobe for the determination of pork adulteration in 2.5-h autoclaved pork-beef binary mixtures. This hybrid probe detected as low as 1% pork in deliberately contaminated autoclaved pork-beef binary mixtures and no cross-species detection was recorded, demonstrating the feasibility of this type of probe for biosensor-based detection of pork adulteration of halal and kosher foods.

  9. Triple-helix DNA structural studies using a Love wave acoustic biosensor.

    PubMed

    Papadakis, George; Tsortos, Achilleas; Gizeli, Electra

    2009-12-15

    The development of sensors for detecting the conformation of surface-attached molecules is an emerging field with significance in the pharmaceutical industry and in drug design. In this work, triplex-forming oligos (TFOs), a separate class of non-natural DNA bending agents that can affect the mechanical properties of DNA through the formation of triple-helical structures of specific conformation and/or flexibility, are used as a model system in combination with an acoustic biosensor to determine molecular geometrical features. In practice, the degree of bending of a specific DNA target caused by a particular TFO was evaluated by measuring the ratio of acoustic energy change over phase change observed during the binding of pre-formed triplex DNA molecules to the device surface. The DNA bending angle derived via acoustic measurements is in excellent agreement with previously reported values using molecular biology techniques. The reported acoustic technique appears quite appealing for the biophysical study of DNA molecules providing rapid qualitative and quantitative information, at the same time holding promise to be developed as a high-throughput method for the evaluation of DNA conformational changes.

  10. New Catalytic DNA Biosensors for Radionuclides and Metal ions

    SciTech Connect

    Lu, Yi

    2005-06-01

    In vitro selection for DNAzymes that are catalytically active with UO22+ ions as the metal cofactor has been completed. The 10th generation pool of DNA was cloned and sequenced. A total of 84 clones were sequenced and placed into families based on sequence alignments. Selected members of each family were 5-labeled with 32P and amplified using PCR. Activity assays were conducted using the isotopically labeled DNAzymes in order to determine which sequences were the most active. The secondary structures of the two most active sequences, called Clone 13 and Clone 39, were determined using the computer program Mfold. A cleavage rate of approximately 1 min-1 in the presence of 10 uM UO22+ was observed for both clones. Clone 39 was determined to be the best candidate for truncation to create a trans-cleaving DNAzyme, based on its secondary structure. An enzyme strand, called 39E, and a substrate strand, called 39DS, were designed by truncating the cis-cleaving DNAzyme. An alternative enzyme strand, called 39Ec, was also assayed with the 39DS substrate. This strand was designed so that the two binding arms were perfectly complimentary, unlike 39E, which formed three mismatched base pairs with 39DS. Both 39E and 39Ec were found to be active, with a rate of approximately 1 min-1 in the presence of 10 uM UO22+. A preliminary UO22+ binding curve was obtained for the 39Ec/39DS trans-cleaving system. The enzyme is active with UO22+ concentrations as low as 1 nM. Based on the preliminary binding curve data, the apparent UO22+ binding constant is approximately 330 nM, and kmax is approximately 1 min-1.

  11. Mechanism for invalid detection of microcantilever-DNA biosensors due to environmental changes

    NASA Astrophysics Data System (ADS)

    Tan, Z.-Q.; Zhang, N.-H.; Meng, W.-L.; Tang, H.-S.

    2016-06-01

    Microcantilever-DNA biosensors can lose recognition signals under specific hybridization conditions; this could be termed as a type of invalid detection. Using a multiscale energy method, this paper presents an alternative mechanism for this invalid detection induced by bio-interactions and environmental changes in temperature and ionic strength. First, a scaling law for the nanoscale thickness of the DNA film, and a mesoscopic empirical potential for bio-interactions in DNA liquid crystal solution, were combined to update a multiscale analytical model revealing the relation between cantilever motion, temperature, ionic strength, elastic properties of multilayered cantilevers, and nanoscopic properties of DNA molecules. Second, we carried out isothermal and non-isothermal experiments for the bending motion during the formation of a self-assembled monolayer of thiolated single-stranded DNA covalently immobilized on the gold-coated side of the cantilevers, and during the subsequent hybridization with the complementary nucleic acid, in order to obtain the relevant model parameters, and also to validate the proposed analytical model. Third, the effects of temperature and ionic strength on the microcantilever deflections were investigated. Numerical results show that the competing interplay among electrostatic force, hydration force, and configurational entropy generates an invalid point of detection at a grafting density of about 0.05 chain nm-2. In the grafting density interval of 0.02-0.05 chain nm-2, the thermal effect induces distortion of signals; in the grafting density interval of 0.05-0.097 chain nm-2, fluctuations in ionic strength make detection fail. These findings will help to design and improve microcantilever-based biosensors with high sensitivity and robustness.

  12. Nanoparticle-based DNA biosensor for visual detection of genetically modified organisms.

    PubMed

    Kalogianni, Despina P; Koraki, Theodora; Christopoulos, Theodore K; Ioannou, Penelope C

    2006-01-15

    Although screening of raw ingredients and food products for genetically modified organisms (GMO) may be accomplished by detecting either the exogenous DNA or the novel protein, DNA is the preferred analyte because of its superior stability during food processing. The development of DNA biosensors is of increasing importance due to the growing demand for rapid and reliable methods for GMO detection. We report the first DNA biosensor in a dry-reagent dipstick configuration for visual detection and confirmation of GMO-related sequences by hybridization within minutes. The sensor is disposable and does not require special instrumentation. It detects the 35S promoter and nopaline synthase (NOS) terminator sequences that are present in the majority of transgenic plants. The target sequences are amplified by the polymerase chain reaction (PCR) and hybridized (7min) with probes bearing oligo(dA) tail. The biotinylated product is applied to the sensor followed by immersion in the appropriate buffer. Migration of the buffer rehydrates gold nanoparticles conjugated to oligo(dT), which hybridize with the oligo(dA) tails. The hybrids are captured by immobilized streptavidin at the test zone of the sensor giving a characteristic red line due to the accumulation of the nanoparticles. The excess of nanoparticle conjugates are captured at the control zone by immobilized oligo(dA) strands. Amplified 35S or NOS DNA is detectable at 0.16nM. Soybean powder certified reference material with 0.1% GMO content is clearly detectable after 35 and 40 amplification cycles for 35S and NOS sequence, respectively. The sensor was also applied to real samples from various sources.

  13. Dopamine-loaded liposome and its application in electrochemical DNA biosensor.

    PubMed

    Mahmoudi-Badiki, Tohid; Alipour, Esmaeel; Hamishehkar, Hamed; Golabi, Seyed Mahdi

    2016-08-01

    In this study, disruption and lyophilization-rehydration of dopamine-loaded liposome and its application in electrochemical DNA biosensor was investigated. The liposomes containing soyphosphatidylcholine and cholesterol were prepared through thin-layer hydration. First, an investigation was carried out to find an appropriate lysing agent for disruption of prepared liposomes. Differential pulse voltammetry, as a high sensitive electrochemical technique, was used along with a multi-walled carbon nanotubes modified glassy carbon electrode for sensitive electrochemical detection of released dopamine from disrupted liposomes. Various lysing agents were investigated and finally, the disruption of liposomes using methanol was selected without any surfactant, because of its least fouling effect. Then, lyophilization of dopamine-loaded liposomes was carried out using sucrose as cryoprotectant. The electrochemical studies of lyophilized liposomes showed that the remained dopamine in sucrose-protected liposomes was higher than sucrose-free liposomes. Furthermore, sucrose has no interference in electrochemical studies. Then, with the addition of biotin-X-DHPE to liposome formulation, the lyophilized sucrose protected dopamine-loaded biotin-tagged liposomes were prepared and the feasibility of application of them in electrochemical DNA biosensor was investigated as signal enhancer and verified for detection of oligonucleotides.

  14. Hairpin DNA probe based surface plasmon resonance biosensor used for the activity assay of E. coli DNA ligase.

    PubMed

    Luan, Qingfen; Xue, Ying; Yao, Xin; Lu, Wu

    2010-02-01

    Using hairpin DNA probe self-structure change during DNA ligation process, a sensitive, label-free and simple method of E. coli DNA ligase assay via a home-built high-resolution surface plasmon resonance (SPR) instrument was developed. The DNA ligation process was monitored in real-time and the effects of single-base mutation on the DNA ligation process were investigated. Then an assay of E. coli DNA ligase was completed with a lower detection limit (0.6 nM), wider concentration range and better reproducibility. Moreover, the influence of Quinacrine on the activity of E. coli DNA ligase was also studied, which demonstrated that our method was useful for drug screening.

  15. Piezoelectric Cantilever Biosensors for Label-free, Real-time Detection of DNA and RNA.

    PubMed

    Haring, Alexander P; Cesewski, Ellen; Johnson, Blake N

    2017-01-01

    This chapter reviews the design, fabrication, characterization, and application of piezoelectric-excited millimeter-sized cantilever (PEMC) sensors. The sensor transduction mechanism, sensing principle, and mode of operation are discussed. Bio-recognition strategies and surface functionalization methods for detection of DNA and RNA are discussed with a focus on self-assembly-based approaches. Methods for the verification of biosensor response via secondary binding assays, reversible binding assays, and the integration of complementary transduction mechanisms are presented. Sensing applications for medical diagnostics, food safety, and environmental monitoring are provided. PEMC sensor technology provides a robust platform for the real-time, label-free detection of DNA and RNA in complex matrices over nanomolar (nM) to attomolar (aM) concentration ranges.

  16. DNA-based biosensors for Hg(2+) determination by polythymine-methylene blue modified electrodes.

    PubMed

    Tortolini, Cristina; Bollella, Paolo; Antonelli, Marta Letizia; Antiochia, Riccarda; Mazzei, Franco; Favero, Gabriele

    2015-05-15

    In this work we have developed a new electrochemical DNA-based biosensor for the selective determination of the Hg(2+) ion by the use of different electrodes modified with polythymine, bearing methylene blue, as redox probe, in 3' position. The determination of Hg(2+) can be employed with an excellent degree of selectivity by the use of DNA biosensors through the formation of the complex Thymine-Hg-Thymine (T-Hg-T): in fact, Hg(2+) tends to bind two thymines, generating a T-Hg-T complex with a formation constant higher than that one of the coupling Adenine-Thymine, which can be employed for a selective, fast and cost-effective Hg(2+) detection. The presence of the Hg(2+) in solution leads to the formation of T-Hg-T complex thus causing the "hairpin-like" folding of oligonucleotide, leading to an improved electronic exchange of methylene blue with the electrode surface due to the reduced distance and thus to an increase of the faradic current which is detected by means of square wave voltammetry (SWV). To test the feasibility of this kind of biosensor to be applied to the analysis of Hg(2+) we have developed several biosensors configuration by modifying the electrochemical sensor transducer: (a) Au electrode; (b) Au screen-printed electrode (SPE). The proposed system, allows the determination of Hg(2+) in the range 0.2-100 nM (0.05-20 ppb), with a sensitivity 0.327 µA/nM, LOD 0.1 nM (0.02 ppb), LOQ 0.2 nM (0.05 ppb) and RSD ≤4.3% when Au electrode is used as electrochemical transducer; on the other hand, in the case of Au SPE the linear range is 0.2-50 nM (0.05-10 ppb), with a sensitivity 0.285 µA/nM, while LOD and LOQ are the same as previously and RSD is ≤3.8%. This enabled the detection of mercury in real samples (waters and fishes) with good accuracy (recoveries 92-101% on waters and 92-107% on fishes, respectively) and reproducibility (RSD ≤9.6% for measurements on waters and ≤8.8% on fishes, respectively).

  17. Nano-silver-modified PQC/DNA biosensor for detecting E. coli in environmental water.

    PubMed

    Sun, H; Choy, T S; Zhu, D R; Yam, W C; Fung, Y S

    2009-01-01

    To meet the requirement of World Health Organization for zero tolerance of E. coli cell in 100mL drinking water, a new procedure based on photodeposition of nano-Ag at TiO(2)-coated piezoelectric quartz crystal (PQC) electrode was developed to fabricate a highly sensitive PQC/DNA biosensor. Enhancement of 3.3 times for binding of complementary DNA has been shown and attributed to the following effects arising from the nano-Ag coating. First, a large increase in the active surface area and packing density of neutravidin enhances the maximum neutravidin load to 1.8 times of a normal electrode. Second, the functional activity of neutravidin is enhanced by chemical interaction with nano-Ag to give rise to an increase in the binding ratio between neutravidin and biotinylated DNA probe from 1.00:1.76 to 1.00:3.01. Third, the stronger binding leads to a higher stability of the biotinylated DNA probes bound and increase in hybridization with the complementary DNA. Under the optimized conditions for flow analysis with online PCR product denaturing and hybridization, a detection limit of eight E. coli cells are obtained which require sampling at least 800mL water to detect a single E. coli cell in 100mL water.

  18. DNA-functionalized upconversion nanoparticles as biosensors for rapid, sensitive, and selective detection of Hg(2+) in complex matrices.

    PubMed

    Huang, Li-Jiao; Yu, Ru-Qin; Chu, Xia

    2015-08-07

    We have developed a facile one-step approach to make hydrophilic and DNA-functionalizable upconversion nanoparticles (UCNPs), which are used to act as a biosensor for determining Hg(2+) in complex matrices. The proposed approach is simple and exhibits low background interference, high sensitivity and rapid response.

  19. Enhancing the sensitivity of localized surface plasmon resonance (LSPR) biosensors using nanorods and DNA aptamers

    NASA Astrophysics Data System (ADS)

    Chuang, Po-Chun; Liao, Pei-Chen; Chen, Yih-Fan

    2015-03-01

    Localized surface plasmon resonance (LSPR) biosensors have drawn much attention for their promising application in point-of-care diagnostics. While surface plasmon resonance (SPR) biosensing systems have been well developed, LSPR systems have the advantages of simpler and more compact setups. The LSPR peak shifts caused by the binding of molecules to the LSPR substrates, however, are usually smaller than 1 nm if no signal amplification mechanism is used. When using nanoparticles to enhance the sensitivity of LSPR biosensors, because of the short field penetration depth, the nanoparticles should be very close to the LSPR substrate to induce significant shifts in the LSPR peak position. In this study, we used DNA aptamers and gold nanorods to significantly increase the change in the LSPR peak position with the concentration of the target molecules. We have successfully used the proposed mechanism to detect 0.1 nM interferongamma (IFN-γ), a biomarker related to the diagnosis of latent tuberculosis infection. The calibration curves obtained in pure buffers and serum-containing buffers show that accurate detection can be achieved even when the sample is from complex biological fluids such as serum. Because of the enhancement in the sensitivity by the proposed sensing scheme, it is possible to use a low-cost spectrometer to build a LSPR biosensing system.

  20. Electrochemical surface plasmon resonance biosensor for study of DNA desorption and hybridization

    NASA Astrophysics Data System (ADS)

    Ferrari, Luca; Šípová, Hana; Tichý, Ivo; Chadt, Karel; Homola, Jiri

    2013-05-01

    We report a system, which combines electrochemical and surface plasmon resonance (SPR) techniques on the same sensing chip. Each channel of a four-channel laboratory SPR sensor is supplemented with two planar gold electrodes (the reference and the counter electrodes), whereas the gold layer of SPR chip is used as the working electrode. A custom electronics enables to set an arbitrary potential between the reference and working electrodes and to measure the current flow between the counter and the working electrodes. Information from standard electrochemical techniques, i.e. cyclovoltammetry and chronoamperometry can be acquired with the system while simultaneously monitoring the shift in the surface plasmon resonance. The electrochemical SPR biosensor was used to study desorption of thiolated DNA probes with a negative potential. By comparing the acquired electrochemical and SPR signals, we show that DNA probes as well as a monolayer of alkanethiols can be desorbed by applying negative potentials to the SPR chip surface. Moreover, it is shown that the DNA probes can be reabsorbed on the SPR sensor surface and the complementary DNA can be detected without loss in detection sensitivity.

  1. An Electrochemical DNA Biosensor Developed on a Nanocomposite Platform of Gold and Poly(propyleneimine) Dendrimer

    PubMed Central

    Arotiba, Omotayo; Owino, Joseph; Songa, Everlyne; Hendricks, Nicolette; Waryo, Tesfaye; Jahed, Nazeem; Baker, Priscilla; Iwuoha, Emmanuel

    2008-01-01

    An electrochemical DNA nanobiosensor was prepared by immobilization of a 20mer thiolated probe DNA on electro-deposited generation 4 (G4) poly(propyleneimine) dendrimer (PPI) doped with gold nanoparticles (AuNP) as platform, on a glassy carbon electrode (GCE). Field emission scanning electron microscopy results confirmed the co-deposition of PPI (which was linked to the carbon electrode surface by C-N covalent bonds) and AuNP ca 60 nm. Voltammetric interrogations showed that the platform (GCE/PPI-AuNP) was conducting and exhibited reversible electrochemistry (E°′ = 235 mV) in pH 7.2 phosphate buffer saline solution (PBS) due to the PPI component. The redox chemistry of PPI was pH dependent and involves a two electron, one proton process, as interpreted from a 28 mV/pH value obtained from pH studies. The charge transfer resistance (Rct) from the electrochemical impedance spectroscopy (EIS) profiles of GCE/PPI-AuNP monitored with ferro/ferricyanide (Fe(CN)63-/4-) redox probe, decreased by 81% compared to bare GCE. The conductivity (in PBS) and reduced Rct (in Fe(CN)63-/4-) values confirmed PPI-AuNP as a suitable electron transfer mediator platform for voltammetric and impedimetric DNA biosensor. The DNA probe was effectively wired onto the GCE/PPI-AuNP via Au-S linkage and electrostatic interactions. The nanobiosensor responses to target DNA which gave a dynamic linear range of 0.01 - 5 nM in PBS was based on the changes in Rct values using Fe(CN)63-/4- redox probe. PMID:27873900

  2. Electrochemical DNA biosensor for detection of porcine oligonucleotides using ruthenium(II) complex as intercalator label redox

    NASA Astrophysics Data System (ADS)

    Halid, Nurul Izni Abdullah; Hasbullah, Siti Aishah; Ahmad, Haslina; Heng, Lee Yook; Karim, Nurul Huda Abd; Harun, Siti Norain

    2014-09-01

    A DNA biosensor detection of oligonucleotides via the interactions of porcine DNA with redox active complex based on the electrochemical transduction is described. A ruthenium(II) complex, [Ru(bpy)2(PIP)]2+, (bpy = 2,2'bipyridine, PIP = 2-phenylimidazo[4,5-f[[1,10-phenanthroline]) as DNA label has been synthesized and characterized by 1H NMR and mass spectra. The study was carried out by covalent bonding immobilization of porcine aminated DNA probes sequences on screen printed electrode (SPE) modified with succinimide-acrylic microspheres and [Ru(bpy)2(PIP)]2+ was used as electrochemical redox intercalator label to detect DNA hybridization event. Electrochemical detection was performed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) over the potential range where the ruthenium (II) complex was active. The results indicate that the interaction of [Ru(bpy)2(PIP)]2+ with hybridization complementary DNA has higher response compared to single-stranded and mismatch complementary DNA.

  3. Studies on the Interaction Mechanism of 1,10-Phenanthroline Cobalt(II) Complex with DNA and Preparation of Electrochemical DNA Biosensor

    PubMed Central

    Niu, Shuyan; Li, Feng; Zhang, Shusheng; Wang, Long; Li, Xuemei; Wang, Shiying

    2006-01-01

    Fluorescence spectroscopy and ultraviolet (UV) spectroscopy techniques coupled with cyclic voltammetry (CV) were used to study the interaction between salmon sperm DNA and 1,10-Phenanthroline cobalt(II) complex, [Co(phen)2(Cl)(H2O)]Cl·H2O, where phen = 1,10-phenanthroline. The interaction between [Co(phen)2(Cl)(H2O)]+ and double-strand DNA (dsDNA) was identified to be intercalative mode. An electrochemical DNA biosensor was developed by covalent immobilization of probe single-strand DNA (ssDNA) related to human immunodeficiency virus (HIV) on the activated glassy carbon electrode (GCE). With [Co(phen)2(Cl)(H2O)]+ being the novel electrochemical hybridization indicator, the selectivity of ssDNA-modified electrode was investigated and selective detection of complementary ssDNA was achieved using differential pulse voltammetry (DPV).

  4. A fiber optic biosensor for fluorimetric detection of triple-helical DNA.

    PubMed Central

    Uddin, A H; Piunno, P A; Hudson, R H; Damha, M J; Krull, U J

    1997-01-01

    A fiber optic biosensor was used for the fluorimetric detection of T/AT triple-helical DNA formation. The surfaces of two sets of fused silica optical fibers were functionalized with hexaethylene oxide linkers from which decaadenylic acid oligonucleotides were grown in the 3'to 5'and 5'to 3'direction, respectively, using a DNA synthesizer. Fluorescence studies of hybridization showed unequivocal hybridization between oligomers immobilized on the fibers and complementary oligonucleotides from the solution phase, as detected by fluorescence from intercalated ethidium bromide. The complementary oligonucleotide, dT10, which was expected to Watson-Crick hybridize upon cooling the system below the duplex melting temperature ( T m), provided a fluorescence intensity with a negative temperature coefficient. Upon further cooling, to the point where the pyrimidine motif T*AT triple-helix formation occurred, a fluorescence intensity change with a positive temperature coefficient was observed. The reverse-Hoogsteen T.AT triplex, which is known to form with branched nucleic acids, provided a corresponding decrease in fluorescence intensity with decreasing temperature. Full analytical signal evolution was attainable in minutes. PMID:9321670

  5. A electrogenerated chemiluminescence biosensor for Ramos cancer cell using DNA encapsulated Ru(bpy)₃Cl₂ as signal probe.

    PubMed

    Hun, Xu; Chen, Huaicheng; Wang, Wei

    2011-05-15

    A label-free sensing technology for detection of Ramos cell was developed based on a signal probe Ru(bpy)3Cl2 (Ru) encapsulated by DNA. Gold electrode or magnetic bead as the sensing surface was firstly modified with long-strand DNA with five repeating units. Then two kinds of short-strand DNA are grafted onto the long-strand DNA to form DNA strands A and B (L-A and L-B) through the hybridization, respectively. The addition of aptamer initiates hybridization of L-A and L-B with the aptamer sequence. As the hybridization proceeds, the four kinds of DNA would finally transform into a three-dimensional network structure and the signal probe Ru was encapsulated by DNA simultaneously. When Ramos cells are introduced to interact with the aptamer, the signal probe is released. In order to confirm the generality of this method the ferrocenecarboxylic acid and luminol selected as a signal probe mode were also tested. The Ru used as a signal probe for electrogenerated chemiluminescence (ECL) detection was detailedly studied. With this ECL biosensor, detection limit as low as 58 cells/mL was achieved for Ramos cell. The biosensor also exhibited excellent sensitivity and selectivity.

  6. A label-free, PCR-free and signal-on electrochemical DNA biosensor for Leishmania major based on gold nanoleaves.

    PubMed

    Moradi, M; Sattarahmady, N; Rahi, A; Hatam, G R; Sorkhabadi, S M Rezayat; Heli, H

    2016-12-01

    Detection of leishmaniasis is important in clinical diagnoses. In the present study, identification of Leishmania parasites was performed by a label-free, PCR-free and signal-on ultrasensitive electrochemical DNA biosensor. Gold nanoleaves were firstly electrodeposited by an electrodeposition method using spermidine as a shape directing agent. The biosensor was fabricated by immobilization of a Leishmania major specific DNA probe onto gold nanoleaves, and methylene blue was employed as a marker. Hybridization of the complementary single stranded DNA sequence with the biosensor under the selected conditions was then investigated. The biosensor could detect a synthetic DNA target in a range of 1.0×10(-10) to 1.0×10(-19)molL(-1) with a limit of detection of 1.8×10(-20)molL(-1), and genomic DNA in a range of 0.5-20ngμL(-1) with a limit of detection of 0.07ngμL(-1). The biosensor could distinguish Leishmania major from a non-complementary-sequence oligonucleotide and the tropica species with a high selectivity. The biosensor was applicable to detect Leishmania major in patient samples.

  7. A chemiluminescence biosensor based on the adsorption recognition function between Fe3O4@SiO2@GO polymers and DNA for ultrasensitive detection of DNA.

    PubMed

    Sun, Yuanling; Li, Jianbo; Wang, Yanhui; Ding, Chaofan; Lin, Yanna; Sun, Weiyan; Luo, Chuannan

    2017-05-05

    In this work, a chemiluminescence (CL) biosensor was prepared for ultrasensitive determination of deoxyribonucleic acid (DNA) based on the adsorption recognition function between core-shell Fe3O4@SiO2 - graphene oxide (Fe3O4@SiO2@GO) polymers and DNA. The Fe3O4@SiO2@GO polymers were composed by GO and magnetite nanoparticles. And the core-shell polymers were confirmed by Scanning Electron Microscope (SEM), X-Ray Powder Diffraction (XRD) and Fourier Transform Infrared (FTIR). Then Fe3O4@SiO2@GO was modified by DNA. Based on the principle of complementary base, Fe3O4@SiO2@GO-DNA was introduced to the CL system and the selectivity, sensitivity of DNA detection was significantly improved. The adsorption properties of Fe3O4@SiO2@GO to DNA were researched through the adsorption equilibrium, adsorption kinetic and thermodynamics. Under optimized CL conditions, DNA could be assayed with the linear concentration range of 5.0×10(-12)-2.5×10(-11)mol/L. The detection limit was 1.7×10(-12)mol/L (3δ) and the relative standard deviation (RSD) was 3.1%. The biosensor was finally used for the determination of DNA in laboratory samples and recoveries ranged from 99% to 103%. The satisfactory results revealed the potential application of Fe3O4@SiO2@GO-DNA-CL biosensor in the diagnosis and the treatment of human genetic diseases.

  8. Specific DNA duplex formation at an artificial lipid bilayer: towards a new DNA biosensor technology.

    PubMed

    Werz, Emma; Korneev, Sergei; Montilla-Martinez, Malayko; Wagner, Richard; Hemmler, Roland; Walter, Claudius; Eisfeld, Jörg; Gall, Karsten; Rosemeyer, Helmut

    2012-02-01

    A novel technique is described which comprises a base-specific DNA duplex formation at a lipid bilayer-H(2) O-phase boundary layer. Two different probes of oligonucleotides both carrying a double-tailed lipid at the 5'-terminus were incorporated into stable artificial lipid bilayers separating two compartments (cis/trans-channel) of an optically transparent microfluidic sample carrier with perfusion capabilities. Both the cis- and trans-channels are filled with saline buffer. Injection of a cyanine-5-labeled target DNA sequence, which is complementary to only one of the oligonucleotide probes, into the cis-channel, followed by a thorough perfusion, leads to an immobilization of the labeled complementary oligonucleotide on the membrane as detected by single-molecule fluorescence spectroscopy and microscopy. In the case of fluorescent but non-complementary DNA sequences, no immobilized fluorescent oligonucleotide duplex could be detected on the membrane. This clearly verifies a specific duplex formation at the membrane interface.

  9. Electrical detection of dengue virus (DENV) DNA oligomer using silicon nanowire biosensor with novel molecular gate control.

    PubMed

    Nuzaihan M N, M; Hashim, U; Md Arshad, M K; Kasjoo, S R; Rahman, S F A; Ruslinda, A R; Fathil, M F M; Adzhri, R; Shahimin, M M

    2016-09-15

    In this paper, a silicon nanowire biosensor with novel molecular gate control has been demonstrated for Deoxyribonucleic acid (DNA) detection related to dengue virus (DENV). The silicon nanowire was fabricated using the top-down nanolithography approach, through nanostructuring of silicon-on-insulator (SOI) layers achieved by combination of the electron-beam lithography (EBL), plasma dry etching and size reduction processes. The surface of the fabricated silicon nanowire was functionalized by means of a three-step procedure involving surface modification, DNA immobilization and hybridization. This procedure acts as a molecular gate control to establish the electrical detection for 27-mers base targets DENV DNA oligomer. The electrical detection is based on the changes in current, resistance and conductance of the sensor due to accumulation of negative charges added by the immobilized probe DNA and hybridized target DNA. The sensitivity of the silicon nanowire biosensors attained was 45.0µAM(-1), which shows a wide-range detection capability of the sensor with respect to DNA. The limit of detection (LOD) achieved was approximately 2.0fM. The demonstrated results show that the silicon nanowire has excellent properties for detection of DENV with outstanding repeatability and reproducibility performances.

  10. Comparison of impedimetric detection of DNA hybridization on the various biosensors based on modified glassy carbon electrodes with PANHS and nanomaterials of RGO and MWCNTs.

    PubMed

    Benvidi, Ali; Tezerjani, Marzieh Dehghan; Jahanbani, Shahriar; Mazloum Ardakani, Mohammad; Moshtaghioun, Seyed Mohammad

    2016-01-15

    In this research, we have developed lable free DNA biosensors based on modified glassy carbon electrodes (GCE) with reduced graphene oxide (RGO) and carbon nanotubes (MWCNTs) for detection of DNA sequences. This paper compares the detection of BRCA1 5382insC mutation using independent glassy carbon electrodes (GCE) modified with RGO and MWCNTs. A probe (BRCA1 5382insC mutation detection (ssDNA)) was then immobilized on the modified electrodes for a specific time. The immobilization of the probe and its hybridization with the target DNA (Complementary DNA) were performed under optimum conditions using different electrochemical techniques such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The proposed biosensors were used for determination of complementary DNA sequences. The non-modified DNA biosensor (1-pyrenebutyric acid-N- hydroxysuccinimide ester (PANHS)/GCE), revealed a linear relationship between ∆Rct and logarithm of the complementary target DNA concentration ranging from 1.0×10(-16)molL(-1) to 1.0×10(-10)mol L(-1) with a correlation coefficient of 0.992, for DNA biosensors modified with multi-wall carbon nanotubes (MWCNTs) and reduced graphene oxide (RGO) wider linear range and lower detection limit were obtained. For ssDNA/PANHS/MWCNTs/GCE a linear range 1.0×10(-17)mol L(-1)-1.0×10(-10)mol L(-1) with a correlation coefficient of 0.993 and for ssDNA/PANHS/RGO/GCE a linear range from 1.0×10(-18)mol L(-1) to 1.0×10(-10)mol L(-1) with a correlation coefficient of 0.985 were obtained. In addition, the mentioned biosensors were satisfactorily applied for discriminating of complementary sequences from noncomplementary sequences, so the mentioned biosensors can be used for the detection of BRCA1-associated breast cancer.

  11. Cantilever biosensors.

    PubMed

    Fritz, Jürgen

    2008-07-01

    This review will provide a general introduction to the field of cantilever biosensors by discussing the basic principles and the basic technical background necessary to understand and evaluate this class of sensors. Microfabricated cantilever sensors respond to changes in their environment or changes on their surface with a mechanical bending in the order of nanometers which can easily be detected. They are able to detect pH and temperature changes, the formation of self-assembled monolayers, DNA hybridization, antibody-antigen interactions, or the adsorption of bacteria. The review will focus on the surface stress mode of microfabricated cantilever arrays and their application as biosensors in molecular life science. A general background on biosensors, an overview of the different modes of operation of cantilever sensors and some details on sensor functionalization will be given. Finally, key experiments and current theoretical efforts to describe the surface stress mode of cantilever sensors will be discussed.

  12. A novel GMO biosensor for rapid ultrasensitive and simultaneous detection of multiple DNA components in GMO products.

    PubMed

    Huang, Lin; Zheng, Lei; Chen, Yinji; Xue, Feng; Cheng, Lin; Adeloju, Samuel B; Chen, Wei

    2015-04-15

    Since the introduction of genetically modified organisms (GMOs), there has been on-going and continuous concern and debates on the commercialization of products derived from GMOs. There is an urgent need for development of highly efficient analytical methods for rapid and high throughput screening of GMOs components, as required for appropriate labeling of GMO-derived foods, as well as for on-site inspection and import/export quarantine. In this study, we describe, for the first time, a multi-labeling based electrochemical biosensor for simultaneous detection of multiple DNA components of GMO products on the same sensing interface. Two-round signal amplification was applied by using both an exonuclease enzyme catalytic reaction and gold nanoparticle-based bio-barcode related strategies, respectively. Simultaneous multiple detections of different DNA components of GMOs were successfully achieved with satisfied sensitivity using this electrochemical biosensor. Furthermore, the robustness and effectiveness of the proposed approach was successfully demonstrated by application to various GMO products, including locally obtained and confirmed commercial GMO seeds and transgenetic plants. The proposed electrochemical biosensor demonstrated unique merits that promise to gain more interest in its use for rapid and on-site simultaneous multiple screening of different components of GMO products.

  13. Homogeneous Electrochemical Biosensor for Melamine Based on DNA Triplex Structure and Exonuclease III-Assisted Recycling Amplification.

    PubMed

    Fu, Caili; Liu, Chang; Li, Ying; Guo, Yajing; Luo, Fang; Wang, Peilong; Guo, Longhua; Qiu, Bin; Lin, Zhenyu

    2016-10-03

    Abasic site (AP site) in the triplex structure can recognize specific target with high selectivity. In this study, this character was first applied to develop a simple, sensitive, and selective homogeneous electrochemical biosensor for melamine determination. The assay combines the advantage of the high selectivity of the DNA triplex structure containing an AP site to melamine and high efficiency of exonuclease (Exo) III-assisted recycling amplification. DNA-1 (T1), DNA-2 (T2), poly[dA] probe containing an AP site (8A) and methylene blue-labeled DNA probe (dMB probe) were carefully designed. Melamine can specifically locate in the AP site through hydrogen bonding interaction between thymine and melamine to make T1, T2, and 8A close to each other, therefore, forming a stable T-melamine-T DNA triplex structure. Under the optimal conditions, the differential pulse voltammetric (DPV) response had a linear relationship with the logarithm of melamine concentration in the range of 1 nM∼0.5 μM. The developed biosensor has been successfully applied to detect the migration of melamine from melamine bowl. Result showed that the migration in 4% acetic acid solvent was the largest, which is similar to that detected by high performance liquid chromatography. This homogeneous electrochemical sensor may have a potential prospect in detecting melamine in dairy products and migration of melamine from multicategory food packaging or application materials.

  14. An electrochemical DNA biosensor based on nitrogen-doped graphene/Au nanoparticles for human multidrug resistance gene detection.

    PubMed

    Chen, Mei; Hou, Changjun; Huo, Danqun; Bao, Jing; Fa, Huanbao; Shen, Caihong

    2016-11-15

    Multidrug resistance (MDR) has become a major obstacle to the adequate treatment of cancer patients; thus, there is an urgent need for exploring new strategies for early diagnosis of MDR in clinic. Here, we report a novel electrochemical biosensor based on nitrogen-doped graphene nanosheets functionalized with Au nanoparticles (N-G/Au) for sensitive and selective DNA detection. The highly conductive nanocomposite layer was characterized by using scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry. DNA with thiol groups at the 5' end was immobilized on the N-G/Au surface via the strong Au-S bond. Differential pulse voltammetry was applied to monitor the target DNA hybridization event using methylene blue as an electrochemical indicator. Under optimal conditions, the biosensor could detect target DNA down to 3.12×10(-15)M with a linear range from 1.0×10(-14) to 1.0×10(-7)M, showing high sensitivity. Further, the sensing strategy was successfully used for detecting MDR1 DNA in real clinical samples. These results will aid in developing a new portable detection system for MDR that will allow effective diagnosis in the early stages of related cancer.

  15. Probing the Dynamic Interaction between Damaged DNA and a Cellular Responsive Protein Using a Piezoelectric Mass Biosensor.

    PubMed

    Jin, Yulong; Xie, Yunfeng; Wu, Kui; Huang, Yanyan; Wang, Fuyi; Zhao, Rui

    2017-03-15

    The binding events between damaged DNA and recognition biomolecules are of great interest for understanding the activity of DNA-damaging drugs and the related DNA repair networks. Herein, a simple and sensitive sensor system was tailored for real-time probing of the dynamic molecular recognition between cisplatin-damaged-DNA (cisPt-DNA) and a cellular responsive protein, high-mobility-group box 1 (HMGB1). By integration of flow injection analysis (FIA) with quartz crystal microbalance (QCM), the interaction time-course of cisPt-DNA and HMGB1 domain A (HMGB1a) was investigated. The highly specific sensing interface was carefully designed and fabricated using cisPt-DNA as recognition element. A hybrid self-assembled monolayer consisting of cysteamine and mercaptohexanol was introduced to resist nonspecific adsorption. The calculated kinetic parameters (kass and kdiss) and the dissociation constant (KD) demonstrated the rapid recognition and tight binding of HMGB1a toward cisPt-DNA. Molecular docking was employed to simulate the complex formed by cisPt-DNA and HMGB1a. The tight binding of such a DNA-damage responsive complex is appealing for the downstream molecular recognition event related to the resistance to DNA repair. This continuous-flow QCM biosensor is an ideal tool for studying specific interactions between drug-damaged-DNAs and their recognition proteins in a physiological-relevant environment, and will provide a potential sensor platform for rapid screening and evaluating metal anticancer drugs.

  16. Electrochemical functionalization of polypyrrole through amine oxidation of poly(amidoamine) dendrimers: Application to DNA biosensor.

    PubMed

    Miodek, Anna; Mejri-Omrani, Nawel; Khoder, Rabih; Korri-Youssoufi, Hafsa

    2016-07-01

    Electrochemical patterning method has been developed to fabricate composite based on polypyrrole (PPy) film and poly(amidoamine) dendrimers of fourth generation (PAMAM G4). PPy layer was generated using electrochemical polymerization of pyrrole on a gold electrode. PPy film was then modified with PAMAM G4 using amines electro-oxidation method. Covalent bonding of PAMAM G4 and the formation of PPy-PAMAM composite was characterized using Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray Photoelectron Spectroscopy (XPS). Ferrocenyl groups were then attached to such surface as a redox marker. Electrochemical properties of the modified nanomaterial (PPy-PAMAM-Fc) were studied using both amperometric and impedimetric methods to demonstrate the efficiency of electron transfer through the modified PPy layer. The obtained electrical and electrochemical properties were compared to a composite where PPy bearing carboxylic acid functions was chemically modified with PAMAM G4 by covalent attachment through formation of amid bond (PPy-CONH-PAMAM). The above mentioned studies showed that electrochemical patterning does not disturb the electronic properties of PPy. The effect of the number of functional groups introduced by the electrochemical patterning was demonstrated through the association of various compounds (ethylenediamine, PAMAM G2 and PAMAM G6). We demonstrated that such compounds could be applied in the biosensors technology. The modified PPy-PAMAM-Fc was evaluated as a platform for DNA sensing. High performance in the DNA detection by variation of the electrochemical signal of ferrocene was obtained with detection limit of 0.4 fM. Furthermore, such approach of electrochemical patterning by oxidation of amines could be applied for chemical modification of PPy and open a new way in various biosensing application involving functionalized PPy.

  17. Lateral flow biosensor for DNA extraction-free detection of Salmonella based on aptamer mediated strand displacement amplification.

    PubMed

    Fang, Zhiyuan; Wu, Wei; Lu, Xuewen; Zeng, Lingwen

    2014-06-15

    Convenient and sensitive point-of-care rapid diagnostic tests for food-borne pathogens have been a long-felt need of clinicians. Traditional approaches such as culture-based methods have good sensitivity and specificity, but they tend to be tedious and time-consuming. Herein we present a simple and sensitive aptamer based biosensor for rapid detection of Salmonella enteritidis (S. enteritidis). One of the aptamers specific for the outmembrane of S. enteritidis was used for magnetic bead enrichments. Another aptamer against S. enteritidis was used as a reporter for this pathogen, which was amplified by isothermal strand displacement amplification (SDA) and further detected by a lateral flow biosensor. As low as 10(1) colony forming unit (CFU) of S. enteritidis was detected in this study. Without DNA extraction, the reduced handling and simpler equipment requirement render this assay a simple and rapid alternative to conventional methods.

  18. Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames

    SciTech Connect

    Tian, Ye; Wang, Tong; Liu, Wenyan; Xin, Huolin L.; Li, Huilin; Ke, Yonggang; Shih, William M.; Gang, Oleg

    2015-05-25

    Three-dimensional mesoscale clusters that are formed from nanoparticles spatially arranged in pre-determined positions can be thought of as mesoscale analogues of molecules. These nanoparticle architectures could offer tailored properties due to collective effects, but developing a general platform for fabricating such clusters is a significant challenge. Here, we report a strategy for assembling 3D nanoparticle clusters that uses a molecular frame designed with encoded vertices for particle placement. The frame is a DNA origami octahedron and can be used to fabricate clusters with various symmetries and particle compositions. Cryo-electron microscopy is used to uncover the structure of the DNA frame and to reveal that the nanoparticles are spatially coordinated in the prescribed manner. We show that the DNA frame and one set of nanoparticles can be used to create nanoclusters with different chiroptical activities. We also show that the octahedra can serve as programmable interparticle linkers, allowing one- and two-dimensional arrays to be assembled that have designed particle arrangements.

  19. Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames

    DOE PAGES

    Tian, Ye; Wang, Tong; Liu, Wenyan; ...

    2015-05-25

    Three-dimensional mesoscale clusters that are formed from nanoparticles spatially arranged in pre-determined positions can be thought of as mesoscale analogues of molecules. These nanoparticle architectures could offer tailored properties due to collective effects, but developing a general platform for fabricating such clusters is a significant challenge. Here, we report a strategy for assembling 3D nanoparticle clusters that uses a molecular frame designed with encoded vertices for particle placement. The frame is a DNA origami octahedron and can be used to fabricate clusters with various symmetries and particle compositions. Cryo-electron microscopy is used to uncover the structure of the DNA framemore » and to reveal that the nanoparticles are spatially coordinated in the prescribed manner. We show that the DNA frame and one set of nanoparticles can be used to create nanoclusters with different chiroptical activities. We also show that the octahedra can serve as programmable interparticle linkers, allowing one- and two-dimensional arrays to be assembled that have designed particle arrangements.« less

  20. DNA-functionalized silicon nitride nanopores for sequence-specific recognition of DNA biosensor

    NASA Astrophysics Data System (ADS)

    Tan, Shengwei; Wang, Lei; Yu, Jingjing; Hou, Chuanrong; Jiang, Rui; Li, Yanping; Liu, Quanjun

    2015-05-01

    Nanopores have been proven to be novel and versatile single-molecule sensors for individual unlabeled biopolymer detection and characterization. In the present study, a relatively large silicon nitride (Si3N4) nanopore with a diameter of approximately 60 nm was fabricated successfully using a focused Ga ion beam (FIB). We demonstrated a simple ex situ silanization procedure to control the size and functionality of solid-state nanopores. The presented results show that by varying the silanization time, it is possible to adjust the efficiency of probe molecule attachment, thus shrinking the pore to the chosen size, while introducing selective sensing probes. The functionalization of nanopores was verified by analysis of field-emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), and electrical measurements. Based on this study, we envision that the functionalized silicon nitride nanopores with the DNA probe might provide a biosensing platform for the detection and discrimination of a short single-stranded DNA oligomer of unknown sequences in the future.

  1. DNA-functionalized silicon nitride nanopores for sequence-specific recognition of DNA biosensor.

    PubMed

    Tan, Shengwei; Wang, Lei; Yu, Jingjing; Hou, Chuanrong; Jiang, Rui; Li, Yanping; Liu, Quanjun

    2015-01-01

    Nanopores have been proven to be novel and versatile single-molecule sensors for individual unlabeled biopolymer detection and characterization. In the present study, a relatively large silicon nitride (Si3N4) nanopore with a diameter of approximately 60 nm was fabricated successfully using a focused Ga ion beam (FIB). We demonstrated a simple ex situ silanization procedure to control the size and functionality of solid-state nanopores. The presented results show that by varying the silanization time, it is possible to adjust the efficiency of probe molecule attachment, thus shrinking the pore to the chosen size, while introducing selective sensing probes. The functionalization of nanopores was verified by analysis of field-emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), and electrical measurements. Based on this study, we envision that the functionalized silicon nitride nanopores with the DNA probe might provide a biosensing platform for the detection and discrimination of a short single-stranded DNA oligomer of unknown sequences in the future.

  2. A localized surface plasmon resonance DNA biosensor based on gold nanospheres coated on the tip of the fiber

    NASA Astrophysics Data System (ADS)

    Jia, Shuo; Bian, Chao; Tong, Jian-hua; Sun, Ji-zhou; Xia, Shan-hong

    2016-03-01

    A localized surface plasmon resonance (LSPR) biosensor was prepared with gold nanospheres (AuNSs) coated on the tip face of the optical silica fiber. AuNSs with the sizes of 20 nm and 80 nm were used. The sensitivities of AuNS20 nm and AuNS80 nm modified sensors to bulk refractive index (RI) variation are 82.86 nm/RIU and 218.98 nm/RIU, respectively. The AuNS80 nm modified sensor was used for the detection of 40 bases DNA hybridization and the limit of detection is 50 nmol/L, where the 40-bases DNA probe was covalently linked with AuNS80 nm. The complementary DNA sequence in tris-acetate-EDTA (TAE) buffer solution was detected as the target DNA. This fiber sensor has the advantages of small sample consumption, easy fabrication and high sensitivity.

  3. Differentiating between fluorescence-quenching metal ions with polyfluorophore sensors built on a DNA backbone.

    PubMed

    Tan, Samuel S; Kim, Su Jeong; Kool, Eric T

    2011-03-02

    A common problem in detecting metal ions with fluorescentchemosensors is the emission-suppressing effects of fluorescence-quenching metal ions. This quenching tendency makes it difficult to design sensors with turn-on signal, and differentiate between several metal ions that may yield a strong quenching response. To address these challenges, we investigate a new sensor design strategy, incorporating fluorophores and metal ligands as DNA base replacements in DNA-like oligomers, for generating a broader range of responses for quenching metal ions. The modular molecular design enabled rapid synthesis and discovery of sensors from libraries on PEG-polystyrene beads. Using this approach, water-soluble sensors 1-5 were identified as strong responders to a set of eight typically quenching metal ions (Co(2+), Ni(2+), Cu(2+), Hg(2+), Pb(2+), Ag(+), Cr(3+), and Fe(3+)). They were synthesized and characterized for sensing responses in solution. Cross-screening with the full set of metal ions showed that they have a wide variety of responses, including emission enhancements and red- and blue-shifts. The diversity of sensor responses allows as few as two sensors (1 and 2) to be used together to successfully differentiate these eight metals. As a test, a set of unknown metal ion solutions in blind studies were also successfully identified based on the response pattern of the sensors. The modular nature of the sensor design strategy suggests a broadly applicable approach to finding sensors for differentiating many different cations by pattern-based recognition, simply by varying the sequence and composition of ligands and fluorophores on a DNA synthesizer.

  4. A Sensitive and Selective Label-Free Electrochemical DNA Biosensor for the Detection of Specific Dengue Virus Serotype 3 Sequences

    PubMed Central

    Oliveira, Natália; Souza, Elaine; Ferreira, Danielly; Zanforlin, Deborah; Bezerra, Wessulla; Borba, Maria Amélia; Arruda, Mariana; Lopes, Kennya; Nascimento, Gustavo; Martins, Danyelly; Cordeiro, Marli; Lima-Filho, José

    2015-01-01

    Dengue fever is the most prevalent vector-borne disease in the world, with nearly 100 million people infected every year. Early diagnosis and identification of the pathogen are crucial steps for the treatment and for prevention of the disease, mainly in areas where the co-circulation of different serotypes is common, increasing the outcome of dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Due to the lack of fast and inexpensive methods available for the identification of dengue serotypes, herein we report the development of an electrochemical DNA biosensor for the detection of sequences of dengue virus serotype 3 (DENV-3). DENV-3 probe was designed using bioinformatics software and differential pulse voltammetry (DPV) was used for electrochemical analysis. The results showed that a 22-m sequence was the best DNA probe for the identification of DENV-3. The optimum concentration of the DNA probe immobilized onto the electrode surface is 500 nM and a low detection limit of the system (3.09 nM). Moreover, this system allows selective detection of DENV-3 sequences in buffer and human serum solutions. Therefore, the application of DNA biosensors for diagnostics at the molecular level may contribute to future advances in the implementation of specific, effective and rapid detection methods for the diagnosis dengue viruses. PMID:26140346

  5. Detection of Aeromonas hydrophila DNA oligonucleotide sequence using a biosensor design based on Ceria nanoparticles decorated reduced graphene oxide and Fast Fourier transform square wave voltammetry.

    PubMed

    Jafari, Safiye; Faridbod, Farnoush; Norouzi, Parviz; Dezfuli, Amin Shiralizadeh; Ajloo, Davood; Mohammadipanah, Fatemeh; Ganjali, Mohammad Reza

    2015-10-01

    A new strategy was introduced for ssDNA immobilization on a modified glassy carbon electrode. The electrode surface was modified using polyaniline and chemically reduced graphene oxide decorated cerium oxide nanoparticles (CeO2NPs-RGO). A single-stranded DNA (ssDNA) probe was immobilized on the modified electrode surface. Fast Fourier transform square wave voltammetry (FFT-SWV) was applied as detection technique and [Ru(bpy)3](2+/3+) redox signal was used as electrochemical marker. The hybridization of ssDNA with its complementary target caused a dramatic decrease in [Ru(bpy)3](2+/3+) FFT-SW signal. The proposed electrochemical biosensor was able to detect Aeromonas hydrophila DNA oligonucleotide sequence encoding aerolysin protein. Under optimal conditions, the biosensor showed excellent selectivity toward complementary sequence in comparison with noncomplementary and two-base mismatch sequences. The dynamic linear range of this electrochemical DNA biosensor for detecting 20-mer oligonucleotide sequence of A. hydrophila was from 1 × 10(-15) to 1 × 10(-8) mol L(-1). The proposed biosensor was successfully applied for the detection of DNA extracted from A. hydrophila in fish pond water up to 0.01 μg mL(-1) with RSD of 5%. Besides, molecular docking was applied to consider the [Ru(bpy)3](2+/3+) interaction with ssDNA before and after hybridization.

  6. An Electrochemical DNA Biosensor for the Detection of Salmonella Using Polymeric Films and Electrochemical Labels

    NASA Astrophysics Data System (ADS)

    Diaz Serrano, Madeline

    Waterborne and foodborne diseases are one of the principal public health problems worldwide. Microorganisms are the major agents of foodborne illness: pathogens such as Salmonella, Campylobacter jejuni and Escherichia coli, and parasites such as cryptosporidium. The most popular methods to detect Salmonella are based on culture and colony counting methods, ELISA, Gel electrophoresis and the polymerase chain reaction. Conventional detection methods are laborious and time-consuming, allowing for portions of the food to be distributed, marketed, sold and eaten before the analysis is done and the problem even detected. By these reasons, the rapid, easy and portable detection of foodborne organisms will facilitate the disease treatment. Our particular interest is to develop a nucleic acid biosensor (NAB) for the detection of pathogenic microorganisms in food and water samples. In this research, we report on the development of a NAB prototype using a polymer modified electrode surface together with sequences of different lengths for the OmpC gene from Salmonella as probes and Ferrocene-labeled target (Fc-ssDNA), Ferrocene-labeled tri(ethylene glycol) (Fc-PEG) and Ruthenium-Ferrocene (Ru-Fe) bimetallic complex as an electrochemical labels. We have optimized several PS films and anchored nucleic acid sequences with different lengths at gold and carbon surfaces. Non contact mode AFM and XPS were used to monitor each step of the NAB preparation, from polymer modification to oligos hybridization (conventional design). The hybridization reaction was followed electrochemically using a Fc-ssDNA and Fc-PEG in solution taking advantage of the morphological changes generated upon hybridization. We observed a small current at the potential for the Fe oxidation without signal amplification at +296 mV vs. Ag/AgCl for the Fc-ssDNA strategy and a small current at +524 mV for the Fc-PEG strategy. The immobilization, hybridization and signal amplification of Biotin- OmpC Salmonella genes

  7. Genomagnetic Electrochemical Biosensors

    NASA Astrophysics Data System (ADS)

    Wang, Joseph; Erdem, Arzum

    The use of nucleic acid technologies has significantly improved preparation and diagnostic procedures in life sciences. Nucleic acid layers combined with electrochemical or optical transducers produce a new kind of affinity biosensors as DNA Biosensor for small molecular weight molecules. Electrochemical DNA biosensors are attractive devices for converting the hybridization event into an analytical signal for obtaining sequence-specific information in connection with clinical, environmental or forensic investigations. DNA hybridization biosensors, based on electrochemical transduction of hybridization, couple the high specificity of hybridization reactions with the excellent sensitivity and portability of electrochemical transducers. The main goal in all researches is to design DNA biosensors for preparing a basis for the future DNA microarray system. DNA chip has now become a powerful tool in biological research, however the real clinic assay is still under development. Recently, there has been a great interest to the magnetic beads and/or nanoparticles labelled with metals such as gold, cadmium, silver, etc. for designing of novel electrochemical DNA biosensor approaches resulting in efficient separation. The attractive features of this technology include simple approach, rapid results, multi-analyte detection, low-cost per measurument, stable, and non-hazardous reagents, and reduced waste handling. Some of these new approaches and applications of the electrochemical DNA biosensors based on magnetic beads and its combining with nanoparticles labelled with metals are described and discussed.

  8. Electrochemical DNA Biosensor Based on a Tetrahedral Nanostructure Probe for the Detection of Avian Influenza A (H7N9) Virus.

    PubMed

    Dong, Shibiao; Zhao, Rongtao; Zhu, Jiangong; Lu, Xiao; Li, Yang; Qiu, Shaofu; Jia, Leili; Jiao, Xiong; Song, Shiping; Fan, Chunhai; Hao, RongZhang; Song, HongBin

    2015-04-29

    A DNA tetrahedral nanostructure-based electrochemical biosensor was developed to detect avian influenza A (H7N9) virus through recognizing a fragment of the hemagglutinin gene sequence. The DNA tetrahedral probe was immobilized onto a gold electrode surface based on self-assembly between three thiolated nucleotide sequences and a longer nucleotide sequence containing complementary DNA to hybridize with the target single-stranded (ss)DNA. The captured target sequence was hybridized with a biotinylated-ssDNA oligonucleotide as a detection probe, and then avidin-horseradish peroxidase was introduced to produce an amperometric signal through the interaction with 3,3',5,5'-tetramethylbenzidine substrate. The target ssDNA was obtained by asymmetric polymerase chain reaction (PCR) of the cDNA template, reversely transcribed from the viral lysate of influenza A (H7N9) virus in throat swabs. The results showed that this electrochemical biosensor could specifically recognize the target DNA fragment of influenza A (H7N9) virus from other types of influenza viruses, such as influenza A (H1N1) and (H3N2) viruses, and even from single-base mismatches of oligonucleotides. Its detection limit could reach a magnitude of 100 fM for target nucleotide sequences. Moreover, the cycle number of the asymmetric PCR could be reduced below three with the electrochemical biosensor still distinguishing the target sequence from the negative control. To the best of our knowledge, this is the first report of the detection of target DNA from clinical samples using a tetrahedral DNA probe functionalized electrochemical biosensor. It displays that the DNA tetrahedra has a great potential application as a probe of the electrochemical biosensor to detect avian influenza A (H7N9) virus and other pathogens at the gene level, which will potentially aid the prevention and control of the disease caused by such pathogens.

  9. DNA-wrapped multi-walled carbon nanotube modified electrochemical biosensor for the detection of Escherichia coli from real samples.

    PubMed

    Ozkan-Ariksoysal, Dilsat; Kayran, Yasin Ugur; Yilmaz, Fethiye Ferda; Ciucu, Anton Alexandru; David, Iulia Gabriela; David, Vasile; Hosgor-Limoncu, Mine; Ozsoz, Mehmet

    2017-05-01

    This paper introduces DNA-wrapped multi-walled carbon nanotube (MWCNT)-modified genosensor for the detection of Escherichia coli (E. coli) from polymerase chain reaction (PCR)-amplified real samples while Staphylococcus aureus (S. aureus) was used to investigate the selectivity of the biosensor. The capture probe specifically recognizing E. coli DNA and it was firstly interacted with MWCNTs for wrapping of single-stranded DNA (ssDNA) onto the nanomaterial. DNA-wrapped MWCNTs were then immobilised on the surface of disposable pencil graphite electrode (PGE) for the detection of DNA hybridization. Electrochemical behaviors of the modified PGEs were investigated using Raman spectroscopy and differential pulse voltammetry (DPV). The sequence selective DNA hybridization was determined and evaluated by changes in the intrinsic guanine oxidation signal at about 1.0V by DPV. Numerous factors affecting the hybridization were optimized such as target concentration, hybridization time, etc. The designed DNA sensor can well detect E. coli DNA in 20min detection time with 0.5pmole of detection limit in 30µL of sample volume.

  10. Ultrasensitive electrochemical DNA biosensor based on functionalized gold clusters/graphene nanohybrids coupling with exonuclease III-aided cascade target recycling.

    PubMed

    Wang, Wei; Bao, Ting; Zeng, Xi; Xiong, Huayu; Wen, Wei; Zhang, Xiuhua; Wang, Shengfu

    2017-05-15

    In this work, a novel and ultrasensitive electrochemical biosensor was constructed for DNA detection based on functionalized gold clusters/graphene nanohybrids (AuNCs/GR nanobybrids) and exonuclease III (Exo III)-aided cascade target recycling. By utilizing the capacity of GR as universal template, different metal nanoclusters including AuNCs/GR nanobybrids and PtNCs/GR nanohybrids were synthesized through convenient ultrasonic method. Exo III-aided cascade recycling was initiated by target DNA, generating the final cleavage product (S2), which acted as a linkage between capture probe and the functionalized metal nanoclusters/GR conjugates in the construction of the biosensor. The AuNCs/GR-DNA-enzyme conjugates acted as interfaces of enzyme-catalyzed silver deposition reaction, achieving DNA detection ranging from 0.02 fM to 20 pM with a detection limit of 0.057 fM. In addition, PtNCs/GR-DNA conjugates presented peroxidase-like activity and the functionalized PtNCs/GR nanohybrids-based electrochemical biosensor also realized DNA detection by catalyzing the 3,3',5,5'-tetramethylbenzidine-hydrogen peroxide (TMB-H2O2) system to produce electrochemical signal. This metal clusters/GR-based multiple-amplified electrochemical biosensor provided an universal method for DNA detection.

  11. Development of a Mass Sensitive Quartz Crystal Microbalance (QCM)-Based DNA Biosensor Using a 50 MHz Electronic Oscillator Circuit

    PubMed Central

    García-Martinez, Gonzalo; Bustabad, Enrique Alonso; Perrot, Hubert; Gabrielli, Claude; Bucur, Bogdan; Lazerges, Mathieu; Rose, Daniel; Rodriguez-Pardo, Loreto; Fariña, Jose; Compère, Chantal; Vives, Antonio Arnau

    2011-01-01

    This work deals with the design of a high sensitivity DNA sequence detector using a 50 MHz quartz crystal microbalance (QCM) electronic oscillator circuit. The oscillator circuitry is based on Miller topology, which is able to work in damping media. Calibration and experimental study of frequency noise are carried out, finding that the designed sensor has a resolution of 7.1 ng/cm2 in dynamic conditions (with circulation of liquid). Then the oscillator is proved as DNA biosensor. Results show that the system is able to detect the presence of complementary target DNAs in a solution with high selectivity and sensitivity. DNA target concentrations higher of 50 ng/mL can be detected. PMID:22164037

  12. Development of a mass sensitive quartz crystal microbalance (QCM)-based DNA biosensor using a 50 MHz electronic oscillator circuit.

    PubMed

    García-Martinez, Gonzalo; Bustabad, Enrique Alonso; Perrot, Hubert; Gabrielli, Claude; Bucur, Bogdan; Lazerges, Mathieu; Rose, Daniel; Rodriguez-Pardo, Loreto; Fariña, Jose; Compère, Chantal; Vives, Antonio Arnau

    2011-01-01

    This work deals with the design of a high sensitivity DNA sequence detector using a 50 MHz quartz crystal microbalance (QCM) electronic oscillator circuit. The oscillator circuitry is based on Miller topology, which is able to work in damping media. Calibration and experimental study of frequency noise are carried out, finding that the designed sensor has a resolution of 7.1 ng/cm(2) in dynamic conditions (with circulation of liquid). Then the oscillator is proved as DNA biosensor. Results show that the system is able to detect the presence of complementary target DNAs in a solution with high selectivity and sensitivity. DNA target concentrations higher of 50 ng/mL can be detected.

  13. Lab-on-a-chip platforms based on highly sensitive nanophotonic Si biosensors for single nucleotide DNA testing

    NASA Astrophysics Data System (ADS)

    Sánchez del Rio, J.; Carrascosa, L. G.; Blanco, F. J.; Moreno, M.; Berganzo, J.; Calle, A.; Dominguez, C.; Lechuga, L. M.

    2007-02-01

    In order to solve the drawbacks of sensitivity and portability in optical biosensors we have developed ultrasensitive and miniaturized photonic silicon sensors able to be integrated in a "lab-on-a-chip" microsystem platform. The sensors are integrated Mach-Zehnder interferometers based on TIR optical waveguides (Si/SiO II/Si 3N 4) of micro/nanodimensions. We have applied this biosensor for DNA testing and for detection of single nucleotide polymorphisms at BRCA-1 gene, involved in breast cancer development, without target labeling. The oligonucleotide probe is immobilized by covalent attachment to the sensor surface through silanization procedures. The hybridization was performed for different DNA target concentrations showing a lowest detection limit at 10 pM. Additionally, we have detected the hybridization of different concentrations of DNA target with two mismatching bases corresponding to a mutation of the BRCA-1 gene. Following the way of the lab-on-a-chip microsystem, integration with the microfluidics has been achieved by using a novel fabrication method of 3-D embedded microchannels using the polymer SU-8 as structural material. The optofluidic chip shows good performances for biosensing.

  14. Detection of single-nucleotide polymorphisms with novel leaky surface acoustic wave biosensors, DNA ligation and enzymatic signal amplification.

    PubMed

    Xu, Qinghua; Chang, Kai; Lu, Weiping; Chen, Wei; Ding, Yi; Jia, Shuangrong; Zhang, Kejun; Li, Fake; Shi, Jianfeng; Cao, Liang; Deng, Shaoli; Chen, Ming

    2012-03-15

    This manuscript describes a new technique for detecting single-nucleotide polymorphisms (SNPs) by integrating a leaky surface acoustic wave (LSAW) biosensor, enzymatic DNA ligation and enzymatic signal amplification. In this technique, the DNA target is hybridized with a capture probe immobilized on the surface of a LSAW biosensor. Then, the hybridized sequence is ligated to biotinylated allele-specific detection probe using Taq DNA ligase. The ligation does not take place if there is a single-nucleotide mismatch between the target and the capture probe. The ligated detection probe is transformed into a streptavidin-horseradish peroxidase (SA-HRP) terminal group via a biotin-streptavidin complex. Then, the SA-HRP group catalyzes the polymerization of 3,3-diaminobenzidine (DAB) to form a surface precipitate, thus effectively increasing the sensitivity of detecting surface mass changes and allowing detection of SNPs. Optimal detection conditions were found to be: 0.3 mol/L sodium ion concentration in PBS, pH 7.6, capture probe concentration 0.5 μmol/L and target sequence concentration 1.0 μmol/L. The detection limit was found to be 1 × 10(-12)mol/L. Using this technique, we were able to detect a single-point mutation at nucleotide A2293G in Japanese encephalitis virus.

  15. Combination of cascade chemical reactions with graphene-DNA interaction to develop new strategy for biosensor fabrication.

    PubMed

    Zhu, Xiaoli; Sun, Liya; Chen, Yangyang; Ye, Zonghuang; Shen, Zhongming; Li, Genxi

    2013-09-15

    Graphene, a single atom thick and two dimensional carbon nano-material, has been proven to possess many unique properties, one of which is the recent discovery that it can interact with single-stranded DNA through noncovalent π-π stacking. In this work, we demonstrate that a new strategy to fabricate many kinds of biosensors can be developed by combining this property with cascade chemical reactions. Taking the fabrication of glucose sensor as an example, while the detection target, glucose, may regulate the graphene-DNA interaction through three cascade chemical reactions, electrochemical techniques are employed to detect the target-regulated graphene-DNA interaction. Experimental results show that in a range from 5μM to 20mM, the glucose concentration is in a natural logarithm with the logarithm of the amperometric response, suggesting a best detection limit and detection range. The proposed biosensor also shows favorable selectivity, and it has the advantage of no need for labeling. What is more, by controlling the cascade chemical reactions, detection of a variety of other targets may be achieved, thus the strategy proposed in this work may have a wide application potential in the future.

  16. Disposable DNA biosensor with the carbon nanotubes-polyethyleneimine interface at a screen-printed carbon electrode for tests of DNA layer damage by quinazolines.

    PubMed

    Galandová, Júlia; Ovádeková, Renáta; Ferancová, Adriana; Labuda, Ján

    2009-06-01

    A screen-printed carbon working electrode within a commercially available screen-printed three-electrode assembly was modified by using a composite of multiwalled carbon nanotubes (MWCNT) dispersed in polyethylenimine (PEI) followed by covering with the calf thymus dsDNA layer. Several electrochemical methods were used to characterize the biosensor and to evaluate damage to the surface-attached DNA: square wave voltammetry of the [Ru(bpy)(3)](2+) redox indicator and mediator of the guanine moiety oxidation, cyclic voltammetry and electrochemical impedance spectroscopy in the presence of the [Fe(CN)(6)](3-/4-) indicator in solution. Due to high electroconductivity and large surface area of MWCNT and positive charge of PEI, the MWCNT-PEI composite is an advantageous platform for the DNA immobilization by the polyelectrolyte complexation and its voltammetric and impedimetric detection. In this respect, the MWCNT-PEI interface exhibited better properties than the MWCNT-chitosan one reported from our laboratory previously. A deep DNA layer damage at incubation of the biosensor in quinazoline solution was found, which depends on the quinazoline concentration and incubation time.

  17. Electrochemical DNA biosensor for detection of porcine oligonucleotides using ruthenium(II) complex as intercalator label redox

    SciTech Connect

    Halid, Nurul Izni Abdullah; Hasbullah, Siti Aishah; Heng, Lee Yook; Karim, Nurul Huda Abd; Ahmad, Haslina; Harun, Siti Norain

    2014-09-03

    A DNA biosensor detection of oligonucleotides via the interactions of porcine DNA with redox active complex based on the electrochemical transduction is described. A ruthenium(II) complex, [Ru(bpy){sub 2}(PIP)]{sup 2+}, (bpy = 2,2′bipyridine, PIP = 2-phenylimidazo[4,5-f[[1,10-phenanthroline]) as DNA label has been synthesized and characterized by 1H NMR and mass spectra. The study was carried out by covalent bonding immobilization of porcine aminated DNA probes sequences on screen printed electrode (SPE) modified with succinimide-acrylic microspheres and [Ru(bpy){sub 2}(PIP)]{sup 2+} was used as electrochemical redox intercalator label to detect DNA hybridization event. Electrochemical detection was performed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) over the potential range where the ruthenium (II) complex was active. The results indicate that the interaction of [Ru(bpy){sub 2}(PIP)]{sup 2+} with hybridization complementary DNA has higher response compared to single-stranded and mismatch complementary DNA.

  18. A sensitive electrochemical DNA biosensor for antineoplastic drug 5-fluorouracil based on glassy carbon electrode modified with poly(bromocresol purple).

    PubMed

    Koyuncu Zeybek, Derya; Demir, Burcu; Zeybek, Bülent; Pekyardımcı, Şule

    2015-11-01

    This paper describes an electrochemical sensor for the first time based on poly(bromocresol purple) (P(BCP)) developed to observe the interaction between 5-fluorouracil (5-FU) and fish sperm double strand DNA (dsDNA). The P(BCP) film was electrosynthesized by cyclic voltammetry method on the glassy carbon electrode (GCE). The dsDNA was electrochemically immobilized on the surface of P(BCP) modified GCE and the DNA biosensor was prepared. The interaction mechanism of dsDNA with 5-FU was investigated by differential pulse voltammetry using this biosensor. A decrease in the guanine oxidation peak current of the biosensor was observed after the interaction of dsDNA and 5-FU in 0.5 mol L(-1) acetate buffer (pH 4.8) containing 0.02 mol L(-1) NaCl. The accumulation time and dsDNA concentration were optimized to obtain the best peak current response. Under optimum conditions, the linear response on the guanine signal decreasing curve was observed in the 5-FU concentration range of 1.0-50 mg L(-1). The interaction mechanism between dsDNA and 5-FU was further investigated by UV-vis spectroscopy and viscometer. The results reveal that intercalation is the primary mode of interaction between 5-FU and dsDNA.

  19. Developing an electrochemical deoxyribonucleic acid (DNA) biosensor on the basis of human interleukine-2 gene using an electroactive label.

    PubMed

    Pournaghi-Azar, M H; Hejazi, M S; Alipour, E

    2006-06-16

    Development of an electrochemical DNA biosensor based on a human interleukine-2 (IL-2) gene probe, using a pencil graphite electrode (PGE) as transducer and methylene blue (MB) as electroactive label is described. The sensor relies on the immobilization of a 20-mer single stranded oligonucleotide probe (hIL-2) related to the IL-2 gene on the electrode. The hybridization between the probe and its complementary sequence (chIL-2) as the target was studied by square wave voltammetry (SWV) of MB accumulated on the PGE. In this approach the extent of hybridization is evaluated on the basis of the difference between SWV signals of MB accumulated on the probe-PGE and MB accumulated on the probe-target-PGE. Some hybridization experiments with non-complementary oligonucleotides were carried out to assess whether the suggested DNA sensor responds selectively to the target. Some experimental variables affecting the performance of the biosensor including: polishing of PGE, its electrochemical activation conditions (i.e., activation potential and activation time) and probe immobilization conditions on the electrodes (i.e., immobilization potential and time) were investigated and the optimum values of 1.80 V and 300 s for PGE activation, and -0.5 V and 400s for the probe immobilization on the electrode were suggested.

  20. Electrochemical study of quinone redox cycling: A novel application of DNA-based biosensors for monitoring biochemical reactions.

    PubMed

    Ensafi, Ali A; Jamei, Hamid Reza; Heydari-Bafrooei, Esmaeil; Rezaei, B

    2016-10-01

    This paper presents the results of an experimental investigation of voltammetric and impedimetric DNA-based biosensors for monitoring biological and chemical redox cycling reactions involving free radical intermediates. The concept is based on associating the amounts of radicals generated with the electrochemical signals produced, using differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). For this purpose, a pencil graphite electrode (PGE) modified with multiwall carbon nanotubes and poly-diallydimethlammonium chloride decorated with double stranded fish sperm DNA was prepared to detect DNA damage induced by the radicals generated from a redox cycling quinone (i.e., menadione (MD; 2-methyl-1,4-naphthoquinone)). Menadione was employed as a model compound to study the redox cycling of quinones. A direct relationship was found between free radical production and DNA damage. The relationship between MD-induced DNA damage and free radical generation was investigated in an attempt to identify the possible mechanism(s) involved in the action of MD. Results showed that DPV and EIS were appropriate, simple and inexpensive techniques for the quantitative and qualitative comparisons of different reducing reagents. These techniques may be recommended for monitoring DNA damages and investigating the mechanisms involved in the production of redox cycling compounds.

  1. Specific and Sensitive Isothermal Electrochemical Biosensor for Plant Pathogen DNA Detection with Colloidal Gold Nanoparticles as Probes.

    PubMed

    Lau, Han Yih; Wu, Haoqi; Wee, Eugene J H; Trau, Matt; Wang, Yuling; Botella, Jose R

    2017-01-17

    Developing quick and sensitive molecular diagnostics for plant pathogen detection is challenging. Herein, a nanoparticle based electrochemical biosensor was developed for rapid and sensitive detection of plant pathogen DNA on disposable screen-printed carbon electrodes. This 60 min assay relied on the rapid isothermal amplification of target pathogen DNA sequences by recombinase polymerase amplification (RPA) followed by gold nanoparticle-based electrochemical assessment with differential pulse voltammetry (DPV). Our method was 10,000 times more sensitive than conventional polymerase chain reaction (PCR)/gel electrophoresis and could readily identify P. syringae infected plant samples even before the disease symptoms were visible. On the basis of the speed, sensitivity, simplicity and portability of the approach, we believe the method has potential as a rapid disease management solution for applications in agriculture diagnostics.

  2. A MoS2 Nanosheet-Based Fluorescence Biosensor for Simple and Quantitative Analysis of DNA Methylation

    PubMed Central

    Xiao, Le; Xu, Li; Gao, Chuan; Zhang, Yulin; Yao, Qunfeng; Zhang, Guo-Jun

    2016-01-01

    MoS2 nanomaterial has unique properties, including innate affinity with ss-DNA and quenching ability for fluorescence dyes. Here, we present the development of a simple fluorescence biosensor based on water-soluble MoS2 nanosheets and restriction endonuclease BstUI for methylation analysis of p16 promoter. The biosensing platform exhibited excellent sensitivity in detecting DNA with a linear range of 100 pM~20 nM and a detection limit of 140 pM. More importantly, our method could distinguish as low as 1% difference in methylation level. Compared with previous methylation analysis, our design is both time saving and simple to operate, avoiding the limitations of PCR-based assays without compromising performance. PMID:27669248

  3. Specific and Sensitive Isothermal Electrochemical Biosensor for Plant Pathogen DNA Detection with Colloidal Gold Nanoparticles as Probes

    NASA Astrophysics Data System (ADS)

    Lau, Han Yih; Wu, Haoqi; Wee, Eugene J. H.; Trau, Matt; Wang, Yuling; Botella, Jose R.

    2017-01-01

    Developing quick and sensitive molecular diagnostics for plant pathogen detection is challenging. Herein, a nanoparticle based electrochemical biosensor was developed for rapid and sensitive detection of plant pathogen DNA on disposable screen-printed carbon electrodes. This 60 min assay relied on the rapid isothermal amplification of target pathogen DNA sequences by recombinase polymerase amplification (RPA) followed by gold nanoparticle-based electrochemical assessment with differential pulse voltammetry (DPV). Our method was 10,000 times more sensitive than conventional polymerase chain reaction (PCR)/gel electrophoresis and could readily identify P. syringae infected plant samples even before the disease symptoms were visible. On the basis of the speed, sensitivity, simplicity and portability of the approach, we believe the method has potential as a rapid disease management solution for applications in agriculture diagnostics.

  4. Specific and Sensitive Isothermal Electrochemical Biosensor for Plant Pathogen DNA Detection with Colloidal Gold Nanoparticles as Probes

    PubMed Central

    Lau, Han Yih; Wu, Haoqi; Wee, Eugene J. H.; Trau, Matt; Wang, Yuling; Botella, Jose R.

    2017-01-01

    Developing quick and sensitive molecular diagnostics for plant pathogen detection is challenging. Herein, a nanoparticle based electrochemical biosensor was developed for rapid and sensitive detection of plant pathogen DNA on disposable screen-printed carbon electrodes. This 60 min assay relied on the rapid isothermal amplification of target pathogen DNA sequences by recombinase polymerase amplification (RPA) followed by gold nanoparticle-based electrochemical assessment with differential pulse voltammetry (DPV). Our method was 10,000 times more sensitive than conventional polymerase chain reaction (PCR)/gel electrophoresis and could readily identify P. syringae infected plant samples even before the disease symptoms were visible. On the basis of the speed, sensitivity, simplicity and portability of the approach, we believe the method has potential as a rapid disease management solution for applications in agriculture diagnostics. PMID:28094255

  5. Fiber optofluidic biosensor for the label-free detection of DNA hybridization and methylation based on an in-line tunable mode coupler.

    PubMed

    Gao, Ran; Lu, Dan-Feng; Cheng, Jin; Jiang, Yi; Jiang, Lan; Xu, Jian-Dong; Qi, Zhi-Mei

    2016-12-15

    An optical fiber optofluidic biosensor for the detection of DNA hybridization and methylation has been proposed and experimentally demonstrated. An in-line fiber Michelson interferometer was formed in the photonic crystal fiber. A micrhole in the collapsed region, which combined the tunable mode coupler and optofluidic channel, was fabricated by using femtosecond laser micromachining. The mode field diameter of the guided light is changed with the refractive index in the optofluidic channel, which results in the tunable coupling ratio. Label-free detections of the DNA hybridization and methylation have been experimentally demonstrated. The probe single stranded DNA (ssDNA) was bound with the surface of the optofluidic channel through the Poly-l-lysine layer, and the hybridization between a short 22-mer probe ssDNA and a complementary target ssDNA was carried out and detected by interrogating the fringe visibility of the reflection spectrum. Then, the DNA methylation was also detected through the binding between the methylated DNA and the 5-methylcytosine (5-mC) monoclonal antibody. The experiments results demonstrate that the limit of detection of 5nM is achieved, establishing the tunable mode coupler as a sensitive and versatile biosensor. The sensitive optical fiber optofluidic biosensor possesses high specificity and low temperature cross-sensitivity.

  6. A sandwich-type DNA biosensor based on electrochemical co-reduction synthesis of graphene-three dimensional nanostructure gold nanocomposite films.

    PubMed

    Liu, Ai-Lin; Zhong, Guang-Xian; Chen, Jin-Yuan; Weng, Shao-Huang; Huang, Hong-Nan; Chen, Wei; Lin, Li-Qing; Lei, Yun; Fu, Fei-Huan; Sun, Zhou-liang; Lin, Xin-Hua; Lin, Jian-Hua; Yang, Shu-Yu

    2013-03-12

    A novel electrochemical DNA biosensor based on graphene-three dimensional nanostructure gold nanocomposite modified glassy carbon electrode (G-3D Au/GCE) was fabricated for detection of survivin gene which was correlated with osteosarcoma. The G-3D Au film was prepared with one-step electrochemical coreduction with graphite oxide and HAuCl4 at cathodic potentials. The active surface area of G-3D Au/GCE was 2.629cm(2), which was about 3.8 times compared to that of a Au-coated GCE under the same experimental conditions, and 8.8 times compared to a planar gold electrode with a similar geometric area. The resultant nanocomposites with high conductivity, electrocatalysis and biocompatibility were characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). A "sandwich-type" detection strategy was employed in this electrochemical DNA biosensor and the response of this DNA biosensor was measured by CV and amperometric current-time curve detection. Under optimum conditions, there was a good linear relationship between the current signal and the logarithmic function of complementary DNA concentration in a range of 50-5000fM with a detection limit of 3.4fM. This new biosensor exhibited a fast amperometric response, high sensitivity and selectivity and has been used in a polymerase chain reaction assay of real-life sample with a satisfactory result.

  7. Titanium Dioxide Nanoparticle-Based Interdigitated Electrodes: A Novel Current to Voltage DNA Biosensor Recognizes E. coli O157:H7.

    PubMed

    Nadzirah, Sh; Azizah, N; Hashim, Uda; Gopinath, Subash C B; Kashif, Mohd

    2015-01-01

    Nanoparticle-mediated bio-sensing promoted the development of novel sensors in the front of medical diagnosis. In the present study, we have generated and examined the potential of titanium dioxide (TiO2) crystalline nanoparticles with aluminium interdigitated electrode biosensor to specifically detect single-stranded E.coli O157:H7 DNA. The performance of this novel DNA biosensor was measured the electrical current response using a picoammeter. The sensor surface was chemically functionalized with (3-aminopropyl) triethoxysilane (APTES) to provide contact between the organic and inorganic surfaces of a single-stranded DNA probe and TiO2 nanoparticles while maintaining the sensing system's physical characteristics. The complement of the target DNA of E. coli O157:H7 to the carboxylate-probe DNA could be translated into electrical signals and confirmed by the increased conductivity in the current-to-voltage curves. The specificity experiments indicate that the biosensor can discriminate between the complementary sequences from the base-mismatched and the non-complementary sequences. After duplex formation, the complementary target sequence can be quantified over a wide range with a detection limit of 1.0 x 10(-13)M. With target DNA from the lysed E. coli O157:H7, we could attain similar sensitivity. Stability of DNA immobilized surface was calculated with the relative standard deviation (4.6%), displayed the retaining with 99% of its original response current until 6 months. This high-performance interdigitated DNA biosensor with high sensitivity, stability and non-fouling on a novel sensing platform is suitable for a wide range of biomolecular interactive analyses.

  8. A novel electrochemical DNA biosensor based on a modified magnetic bar carbon paste electrode with Fe3O4NPs-reduced graphene oxide/PANHS nanocomposite.

    PubMed

    Jahanbani, Shahriar; Benvidi, Ali

    2016-11-01

    In this study, we have designed a label free DNA biosensor based on a magnetic bar carbon paste electrode (MBCPE) modified with nanomaterial of Fe3O4/reduced graphene oxide (Fe3O4NP-RGO) as a composite and 1- pyrenebutyric acid-N- hydroxysuccinimide ester (PANHS) as a linker for detection of DNA sequences. Probe (BRCA1 5382 insC mutation detection) strands were immobilized on the MBCPE/Fe3O4-RGO/PANHS electrode for the exact incubation time. The characterization of the modified electrode was studied using different techniques such as scanning electron microscopy (SEM), infrared spectroscopy (IR), vibrating sample magnetometer (VSM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry methods. Some experimental parameters such as immobilization time of probe DNA, time and temperature of hybridization process were investigated. Under the optimum conditions, the immobilization of the probe and its hybridization with the target DNA (Complementary DNA) were tested. This DNA biosensor revealed a good linear relationship between ∆Rct and logarithm of the complementary target DNA concentration ranging from 1.0×10(-18)molL(-1) to 1.0×10(-8)molL(-1) with a correlation coefficient of 0.9935 and a detection limit of 2.8×10(-19)molL(-1). In addition, the mentioned biosensor was satisfactorily applied for discriminating of complementary sequences from non-complementary sequences. The constructed biosensor (MBCPE/Fe3O4-RGO/PANHS/ssDNA) with high sensitivity, selectivity, stability, reproducibility and low cost can be used for detection of BRCA1 5382 insC mutation.

  9. Titanium Dioxide Nanoparticle-Based Interdigitated Electrodes: A Novel Current to Voltage DNA Biosensor Recognizes E. coli O157:H7

    PubMed Central

    Nadzirah, Sh.; Azizah, N.; Hashim, Uda; Gopinath, Subash C. B.; Kashif, Mohd

    2015-01-01

    Nanoparticle-mediated bio-sensing promoted the development of novel sensors in the front of medical diagnosis. In the present study, we have generated and examined the potential of titanium dioxide (TiO2) crystalline nanoparticles with aluminium interdigitated electrode biosensor to specifically detect single-stranded E.coli O157:H7 DNA. The performance of this novel DNA biosensor was measured the electrical current response using a picoammeter. The sensor surface was chemically functionalized with (3-aminopropyl) triethoxysilane (APTES) to provide contact between the organic and inorganic surfaces of a single-stranded DNA probe and TiO2 nanoparticles while maintaining the sensing system’s physical characteristics. The complement of the target DNA of E. coli O157:H7 to the carboxylate-probe DNA could be translated into electrical signals and confirmed by the increased conductivity in the current-to-voltage curves. The specificity experiments indicate that the biosensor can discriminate between the complementary sequences from the base-mismatched and the non-complementary sequences. After duplex formation, the complementary target sequence can be quantified over a wide range with a detection limit of 1.0 x 10-13M. With target DNA from the lysed E. coli O157:H7, we could attain similar sensitivity. Stability of DNA immobilized surface was calculated with the relative standard deviation (4.6%), displayed the retaining with 99% of its original response current until 6 months. This high-performance interdigitated DNA biosensor with high sensitivity, stability and non-fouling on a novel sensing platform is suitable for a wide range of biomolecular interactive analyses. PMID:26445455

  10. Real-time reliable determination of binding kinetics of DNA hybridization using a multi-channel graphene biosensor

    PubMed Central

    Xu, Shicai; Zhan, Jian; Man, Baoyuan; Jiang, Shouzhen; Yue, Weiwei; Gao, Shoubao; Guo, Chengang; Liu, Hanping; Li, Zhenhua; Wang, Jihua; Zhou, Yaoqi

    2017-01-01

    Reliable determination of binding kinetics and affinity of DNA hybridization and single-base mismatches plays an essential role in systems biology, personalized and precision medicine. The standard tools are optical-based sensors that are difficult to operate in low cost and to miniaturize for high-throughput measurement. Biosensors based on nanowire field-effect transistors have been developed, but reliable and cost-effective fabrication remains a challenge. Here, we demonstrate that a graphene single-crystal domain patterned into multiple channels can measure time- and concentration-dependent DNA hybridization kinetics and affinity reliably and sensitively, with a detection limit of 10 pM for DNA. It can distinguish single-base mutations quantitatively in real time. An analytical model is developed to estimate probe density, efficiency of hybridization and the maximum sensor response. The results suggest a promising future for cost-effective, high-throughput screening of drug candidates, genetic variations and disease biomarkers by using an integrated, miniaturized, all-electrical multiplexed, graphene-based DNA array. PMID:28322227

  11. Real-time reliable determination of binding kinetics of DNA hybridization using a multi-channel graphene biosensor

    NASA Astrophysics Data System (ADS)

    Xu, Shicai; Zhan, Jian; Man, Baoyuan; Jiang, Shouzhen; Yue, Weiwei; Gao, Shoubao; Guo, Chengang; Liu, Hanping; Li, Zhenhua; Wang, Jihua; Zhou, Yaoqi

    2017-03-01

    Reliable determination of binding kinetics and affinity of DNA hybridization and single-base mismatches plays an essential role in systems biology, personalized and precision medicine. The standard tools are optical-based sensors that are difficult to operate in low cost and to miniaturize for high-throughput measurement. Biosensors based on nanowire field-effect transistors have been developed, but reliable and cost-effective fabrication remains a challenge. Here, we demonstrate that a graphene single-crystal domain patterned into multiple channels can measure time- and concentration-dependent DNA hybridization kinetics and affinity reliably and sensitively, with a detection limit of 10 pM for DNA. It can distinguish single-base mutations quantitatively in real time. An analytical model is developed to estimate probe density, efficiency of hybridization and the maximum sensor response. The results suggest a promising future for cost-effective, high-throughput screening of drug candidates, genetic variations and disease biomarkers by using an integrated, miniaturized, all-electrical multiplexed, graphene-based DNA array.

  12. Production and characterization of titanium (Ti), platinum (Pt) and tantalum (Ta) thin films for native DNA biosensors

    NASA Astrophysics Data System (ADS)

    Genç, Eminegül; Kepceoǧlu, Abdullah; Gezgin, Serap Yiǧit; Kars, Meltem Demirel; Kılıç, Hamdi Şükür

    2017-02-01

    The use of the femtosecond (fs) laser pulses for ablation applications have several advantageous and Laser-Induced Forward Transfer (LIFT) is an ablation-driven transfer process. The use of fs laser pulses for LIFT is gaining a great attraction nowadays. The most of the Direct Writing (DW) methods are laser based techniques and the LIFT technique is the one of them. This spectacular technique allows high resolution without lithographic processes. In this study, we have grown Ti, Pt and Ta thin films on the microscope slides by Pulse Laser Deposition (PLD) technique using Nd:YAG laser in the high vacuum condition. As a result, thin films produced in this work is a good candidate to produce native DNA biosensors based on LIFT technique.

  13. Three types of human CpG motifs differentially modulate and augment immunogenicity of nonviral and viral replicon DNA vaccines as built-in adjuvants.

    PubMed

    Yu, Yun-Zhou; Li, Na; Ma, Yao; Wang, Shuang; Yu, Wei-Yuan; Sun, Zhi-Wei

    2013-01-01

    NakedDNA vaccines given by intramuscular injection are efficient in mouse models, but they require improvement for human use. As the immunogenicity of DNA vaccines depends, to a large extent, on the presence of CpG motifs as built-in adjuvants, we addressed this issue by inserting three types of human CpG motifs (A-type, B-type, and C-type) into the backbone of nonviral DNA and viral DNA replicon vectors with distinct immunostimulatory activities on human PBMCs. The adjuvant effects of CpG modifications in DNA vaccines expressing three types of antigens (β-Gal, AHc, or PA4) were then characterized in mice and found to significantly enhance antigen-specific humoral and cell-mediated immune responses. The three types of CpG motifs also differentially affected and modulated immune responses and protective potency against botulinum neurotoxin serotype A and Bacillus anthracis A16R challenge. Taken together, these results demonstrate that insertion of human CpG motifs can differentially modulate the immunogenicity of nonviral DNA vaccines as well as viral DNA replicon vaccines. Our study provides not only a better understanding of the in vivo activities of CpG motif adjuvants but implications for the rational design of such motifs as built-in adjuvants for DNA vectors targeting specific antigens.

  14. Cyclometalated iridium complex-based label-free photoelectrochemical biosensor for DNA detection by hybridization chain reaction amplification.

    PubMed

    Li, Chunxiang; Wang, Hongyang; Shen, Jing; Tang, Bo

    2015-04-21

    Photoactive material is the most crucial factor which intimately determines analytical performances of the photoelectrochemical sensor. On the basis of the high affinity of dipyrido [3,2-a:2',3'-c] phenazine (dppz) with DNA helix, a novel photoactive intercalator, [(ppy)2Ir(dppz)](+)PF6(-)(ppy = 2-phenylpyridine and dppz = dipyrido [3,2-a:2',3'-c] phenazine) was prepared and characterized by UV-vis absorption spectroscopy, fluorescence spectroscopy, and cyclic voltammetry. The photoelectrochemical properties of the as-prepared iridium(III) complex immobilized on the ITO electrode was investigated. Either cathodic or anodic photocurrent generation can be observed when triethanolamine (TEOA) or dissolved O2 is used as a sacrificial electron donor/acceptor, respectively. The probable photocurrent-generation mechanisms are speculated. A highly sensitive iridium(III) complex-based photoelectrochemical sensor was proposed for DNA detection via hybridization chain reaction (HCR) signal amplification. Under optimal conditions, the biosensor was found to be linearly proportional to the logarithm of target DNA concentration in the range from 0.025 to 100 pmol L(-1) with a detection limit of 9.0 fmol L(-1) (3σ). Moreover, the proposed sensor displayed high selectivity and good reproducibility, demonstrating efficient and stable photoelectric conversion ability of the Ir(III) complex.

  15. An electrochemical biosensor to simultaneously detect VEGF and PSA for early prostate cancer diagnosis based on graphene oxide/ssDNA/PLLA nanoparticles.

    PubMed

    Pan, Lung-Hsuan; Kuo, Shin-Hung; Lin, Tzu-Yang; Lin, Chih-Wen; Fang, Po-Yu; Yang, Hung-Wei

    2017-03-15

    Early diagnosis of prostate cancer (PCa) is critical for the prevention of metastasis and for early treatment; therefore, a simple and accurate device must be developed for this purpose. In this study, we reported a novel fabrication method for producing a dual-modality biosensor that can simultaneously detect vascular endothelial growth factor (VEGF) and prostate-specific antigen (PSA) in human serum for early diagnosis of PCa. This biosensor was constructed by coating graphene oxide/ssDNA (GO-ssDNA) on an Au-electrode for VEGF detection, and incorporated with poly-L-lactide nanoparticles (PLLA NPs) for signal amplification and PSA detection. The results showed that this biosensor has wide liner detection ranges (0.05-100ng/mL for VEGF and 1-100ng/mL for PSA), as well as high levels of sensitivity and selectivity (i.e., resisting interference from external factors, such as glucose, ascorbic acid human serum protein, immunoglobulin G, and immunoglobulin M), and demonstrated a high correlation with an enzyme-linked immunosorbent assay for sample detection in patients. Therefore, this biosensor could be utilized for early clinical diagnosis of PCa in the future.

  16. Electrochemical DNA sandwich biosensor based on enzyme amplified microRNA-21 detection and gold nanoparticles.

    PubMed

    Mandli, Jihane; Mohammadi, Hasna; Amine, Aziz

    2017-03-14

    In this work, a novel electrochemical biosensor for miRNA-21 determination, involving a sandwich hybridization assay onto gold nanoparticles modified pencil graphite electrode (PGE) and enzyme signal amplification was reported. The thiol terminated capture probe 1 (SH-P1) was immobilized on the electrode through AuS interaction. In the presence of target miRNA-21, SH-P1 hybridized with the first part of the target, however, the second part hybridizes with a biotinylated probe P2 (B-P2). Then, a streptavidin-conjugated alkaline phosphatase was immobilized by a specific binding of avidin-B-P2. The enzyme catalyzed the electro-inactive α-naphtyl phosphate to an electro-active α-naphtol. The miRNA-21 detection was achieved through the changes of α-naphtol oxidation signals observed at +0.12V vs Ag/AgCl with Differential Pulse Voltammetry. Under the optimal detection conditions, the biosensor exhibited selective and sensitive detection with a linear range from 200pM to 388nM and the detection limit was 100pM (10fmol in 100μL).

  17. The evaluation of loop-mediated isothermal amplification-quartz crystal microbalance (LAMP-QCM) biosensor as a real-time measurement of HPV16 DNA.

    PubMed

    Jearanaikoon, Patcharee; Prakrankamanant, Preeda; Leelayuwat, Chanvit; Wanram, Surasak; Limpaiboon, Temduang; Promptmas, Chamras

    2016-03-01

    We have previously developed quartz crystal microbalance biosensor integrated with loop-mediated isothermal amplification (LAMP-QCM) for human papillomavirus (HPV) type58 DNA detection. Infection with HPV, particularly HPV16, remains a serious health problem due to its major risk factor contributing to cervical cancer. In the present study, LAMP-QCM biosensor was evaluated in terms of a quantitative assay for copy number of HPV16 DNA in cervical samples compared to quantitative PCR using TaqMan assay (TaqMan-qPCR). The detection limit of LAMP-QCM was found to be 10 fold more sensitive than TaqMan-qPCR with 100% specificity and 7.6% imprecision. Different plot of HPV16 DNA copy number using Bland-Altman analysis revealed 94% correlation between LAMP-QCM and qPCR. We therefore concluded that the developed LAMP-QCM biosensor provides a possible rapid and sensitive assay for HPV16 DNA quantification in a routine laboratory.

  18. Ultrasensitive electrochemical biosensor for specific detection of DNA based on molecular beacon mediated circular strand displacement polymerization and hyperbranched rolling circle amplification.

    PubMed

    Li, Xiaolu; Guo, Jing; Zhai, Qian; Xia, Jing; Yi, Gang

    2016-08-31

    Using a cascade signal amplification strategy, an ultrasensitive electrochemical biosensor for specific detection of DNA based on molecular beacon (MB) mediated circular strand displacement polymerization (CSDP) and hyperbranched rolling circle amplification (HRCA) was proposed. The hybridization of MB probe to target DNA resulted in a conformational change of the MB and triggered the CSDP in the presence of bio-primer and Klenow fragment (KF exo(-)), leading to multiple biotin-tagged DNA duplex. Furthermore, the HRCA was implemented to product amounts of double-stranded DNA (ds-DNA) fragments using phi29 DNA polymerase via biotin-streptavidin interaction. After the product of HRCA binded numerous biotinylated detection probes, an ultrasensitive electrochemical readout by further employing the streptavidin-alkaline phosphatase. The proposed biosensor exhibited excellent detection sensitivity and specificity with a log-linear response to target DNA from 0.01 fM to 10 pM as low as 8.9 aM. The proposed method allowed DNA detection with simplicity, rapidness, low cost and high specificity, which might have the potential for application in clinical molecular diagnostics and environmental monitoring.

  19. Development of an optical biosensor based on surface-enhanced Raman scattering for DNA analysis

    NASA Astrophysics Data System (ADS)

    Yigit, Tugce; Akdogan, Ebru; Karagoz, Isık. Didem; Kahraman, Mehmet

    2016-03-01

    Rapid, accurate and sensitive DNA analysis is critically important for the diagnostic of genetic diseases. The most common method preferred in practice is fluorescence based microarrays to analyze the DNA. However, there exist some disadvantages related to the above-mentioned method such as the overlapping of the fluorescence emission wavelengths that can diminish in the performance of multiplexing, needed to obtain fluorescence spectra from each dye and photo degradation. In this study, a novel SERS based DNA analysis approach, which is Raman active dye-free and independent of SERS substrate properties, is developed. First, the single strand DNA probe is attached to the SERS substrate and half of the complimentary DNA is attached to gold nanoparticles, as well. We hypothesize that in the presence of target DNA, the complimentary DNA coupled colloids will bind to the SERS substrate surface via hybridization of single strand target DNA. To test this hypothesis, we used UV/Vis spectroscopy, atomic for microscopy (AFM) and dynamic light scattering (DLS). DNA analysis is demonstrated by a peak shift of the certain peak of the small molecules attached to the SERS substrate surface instead of SERS spectrum obtained in the presence of target DNA from the Raman reporter molecules. The degree of peak shifting will be used for the quantification of the target DNA in the sample. Plasmonic properties of SERS substrates and reproducibility issues will not be considerable due to the use of peak shifting instead of peak intensity for the qualitative analysis.

  20. Dendritic structure DNA for specific metal ion biosensor based on catalytic hairpin assembly and a sensitive synergistic amplification strategy.

    PubMed

    Zhao, Jianmin; Jing, Pei; Xue, Shuyan; Xu, Wenju

    2017-01-15

    In this work, a sensitive electrochemical biosensing to Pb(2+) was proposed based on the high specificity of DNAzymes to Pb(2+). The response signal was efficiently amplified by the catalytic hairpin assembly induced by strand replacement reaction and the formation of dendritic structure DNA (DSDNA) by layer-by-layer assembly. Firstly, in the presence of Pb(2+), the substrate strand (S1) of the Pb(2+)-specific DNAzymes was specifically cleaved by Pb(2+). Secondly, one of the two fragments (rS1) introduced into the electrode surface was hybridized with a hairpin DNA (H1) and further replaced by another hairpin DNA (H2) by the hybridization reaction of H1 with H2. The released rS1 then induced the next hybridization with H1. After repeated cycles, the catalytic recycling assembly of H2 with H1 was completed. Thirdly, two bioconjugates of Pt@Pd nanocages (Pt@PdNCs) labeled with DNA S3/S4 and electroactive toluidine blue (Tb) (Tb-S3-Pt@PdNCs and Tb-S4-Pt@PdNCs) were captured onto the resultant electrode surface through the hybridization of S3 and H2, S3 and S4, resulting in the formation of DSDNA triggered by layer-by-layer assembly. This formed DSDNA greatly facilitated the immobilization of manganese(III) meso-tetrakis (4-N-methylpyridiniumyl)-porphyrin (MnTMPyP) as mimicking enzyme. Under the synergistic catalysis of Pt@PdNCs and MnTMPyP to H2O2 reduction, the effective signal amplification of the developed Pb(2+) biosensor was achieved. As a result, the sensitive detection of the proposed electrochemical strategy for Pb(2+) was greatly improved in the range of 0.1pM-200nM with a detection limit of 0.033pM.

  1. Microfluidics and nanoparticles based amperometric biosensor for the detection of cyanobacteria (Planktothrix agardhii NIVA-CYA 116) DNA.

    PubMed

    Ölcer, Zehra; Esen, Elif; Ersoy, Aylin; Budak, Sinan; Sever Kaya, Dilek; Yağmur Gök, Mehmet; Barut, Serkan; Üstek, Duran; Uludag, Yildiz

    2015-08-15

    Some of the cyanobacteria produce protease inhibitor oligopeptides such as cyanopeptolins and cause drinking water contamination; hence, their detection has great importance to monitor the well-being of water sources that is used for human consumption. In the current study, a fast and sensitive nucleic acid biosensor assay has been described where cyanopeptolin coding region of one of the cyanobacteria (Planktothrix agardhii NIVA-CYA 116) genome has been used as target for monitoring of the fresh water resources. A biochip that has two sets of Au electrode arrays, each consist of shared reference/counter electrodes and 3 working electrodes has been used for the assay. The biochip has been integrated to a microfluidics system and all steps of the assay have been performed during the reagent flow to achieve fast and sensitive DNA detection. On-line hybridization of the target on to the capture probe immobilized surface resulted in a very short assay duration with respect to the conventional static assays. The binding of the avidin and enzyme modified Au nanoparticles to the biotinylated detection probe and the subsequent injection of the substrate enabled a real-time amperometric measurement with a detection limit of 6×10(-12) M target DNA (calibration curve r(2)=0.98). The developed assay enables fast and sensitive detection of cyanopeptolin producing cyanobacteria from freshwater samples and hence shows a promising technology for toxic microorganism detection from environmental samples.

  2. A new system for the amplification of biological signals: RecA and complimentary single strand DNA probes on a leaky surface acoustic wave biosensor.

    PubMed

    Zhang, Liqun; Wang, Yunxia; Chen, Ming; Luo, Yang; Deng, Kun; Chen, Dong; Fu, Weiling

    2014-10-15

    This research describes a new amplification signals system of the leaky surface acoustic wave (LSAW) bis-peptide nucleic acid (bis-PNA) biosensor for the simple, sensitive and rapid detection of the target double-stranded DNA (dsDNA). The system consists of a RecA protein-coated complementary single-stranded DNA (cssDNA) probe complex that amplifies the biological signal to improve the sensitivity of the biosensor. The bis-PNA probe for detecting HPV was first immobilized on a gold surface membrane of the detection channel. After the probe was completely hybridized with the corresponding target DNA, different concentrations of the "RecA protein-complementary single strand DNA probe" were added to react with the bis-PNA/dsDNA complex. The phase shift of the LSAW biosensors, which was measured and found to be most significant when the RecA protein was 45 μg/mL and the ATPγS was 2.5 mmol/L. Compared with other concentrations (P<0.01) of RecA and ATPγS, the value of the phase shift was (11.74 ± 1.03) degrees and the ratio of the phase shift and hybridization time clearly outperformed that of the other concentrations. Compared to the direct hybridization of the bis-PNA probe and the target DNA sequence, the sensitivity was effectively improved and the detection time was significantly shortened. PNA binding adjacent to the area of the target sequence homologous to the probe significantly increased the yield of the hybridization reaction between the PNA/dsDNA complex and the RecA protein-coated cssDNA probe. In this condition, the phase shift was significantly obvious and the detection time was significantly shortened. In conclusion, the combination of the RecA protein-coated cssDNA probe and the LSAW bis-PNA biosensor provides sensitivity and simple and rapid detection of clinical trace pathogenic microorganisms.

  3. Enzyme-based electrochemical biosensor for sensitive detection of DNA demethylation and the activity of DNA demethylase.

    PubMed

    Zhou, Yunlei; Li, Bingchen; Wang, Mo; Yang, Zhiqing; Yin, Huanshun; Ai, Shiyun

    2014-08-20

    A novel electrochemical method is developed for detection of DNA demethylation and assay of DNA demethylase activity. This method is constructed by hybridizing the probe with biotin tagged hemi-methylated complementary DNA and further capturing streptavidin tagged alkaline phosphatase (SA-ALP) to catalyze the hydrolysis reaction of p-nitrophenyl phosphate. The hydrolysate of p-nitrophenol (PNP) is then used as electrochemical probe for detecting DNA demethylation and assaying the activity of DNA demethylase. Demethylation of target DNA initiates a degradation reaction of the double-stranded DNA (dsDNA) by restriction endonuclease of BstUI. It makes the failed immobilization of ALP, resulting in a decreased electrochemical oxidation signal of PNP. Through the change of this electrochemical signal, the DNA demethylation is identified and the activity of DNA demethylase is analyzed with low detection limit of 1.3 ng mL(-1). This method shows the advantages of simple operation, cheap and miniaturized instrument, high selectivity. Thus, it provides a useful platform for detecting DNA demethylation, analyzing demethylase activity and screening inhibited drug.

  4. Construction of DNA biosensor at glassy carbon surface modified with 4-aminoethylbenzenediazonium salt.

    PubMed

    Kowalczyk, Agata; Nowicka, Anna; Jurczakowski, Rafal; Fau, Michal; Krolikowska, Agata; Stojek, Zbigniew

    2011-01-15

    A simple, label-free electrochemical impedance-spectroscopy method for sequence-specific detection of DNA using a 4-aminoethylbenzenediazonium (AEBD) salt as a binder for amino-modified probe DNA is reported. This novel method simplifies the anchoring of DNA at the GC surface and opens new ways for the detection of hybridization. The hybridization of target DNA, without and with mismatches, with the probe DNA anchored at the GC surface modified with AEBD, greatly increases the interfacial electron transfer resistance at the double-stranded DNA modified electrodes for the redox couple Fe(CN)(6)(3-/4-). The resistance was measured using electrochemical impedance spectroscopy. The sensor response increased linearly with logarithm of concentration of target DNA in the range 2×10(-12)÷2×10(-6) M. The obtained quantification limit was circa 6.5×10(-17) mole in a 7 μL droplet and corresponded to a concentration of 9.2×10(-12) M of target DNA in the sample. This limit is equivalent to the detection of circa 4×10(7) copies of DNA in a 7 μL droplet or circa 5.7×10(12) DNA copies in one litre of sample.

  5. A fluorescence biosensor for VEGF detection based on DNA assembly structure switching and isothermal amplification.

    PubMed

    Li, Junlong; Sun, Kexin; Chen, Zhongping; Shi, Jifei; Zhou, Dandan; Xie, Guoming

    2017-03-15

    Vascular endothelial growth factor (VEGF) is an important biomarker in cancer angiogenesis. Here, we develop a aptasensor method for VEGF detection based on DNA assembly structure switching and isothermal amplification. The design employs a DNA assembly made of a isothermal amplification template, a aptamer, a primer and a protector chain. The DNA assembly is unable to undergo isothermal amplification in the absence of target. The presence of the target, however, triggers a structure switching event that causes hybridization of primer with template to facilitate isothermal amplification. Whereafter, toehold-mediated DNA strand displacement reaction between the generated (single-stranded DNA) ssDNA and fluorescent/quencher labeled probe are performed. Then, the increase in fluorescence provides an analytical signal. This strategy opens up a sensitive, selective and simple sensing platform for detection of VEGF. The system was also implemented to analyze the VEGF in human serum samples with satisfactory results.

  6. A DNA biosensor based on graphene paste electrode modified with Prussian blue and chitosan.

    PubMed

    Bo, Yang; Wang, Weiqi; Qi, Junfei; Huang, Shasheng

    2011-05-07

    A chemically modified graphene paste electrode was prepared by incorporating appropriate amounts of graphene in a paste mixture, followed by electrodepositing Prussian blue (PB) and coating chitosan on the electrode surface. The electrode was able to bind ssDNA, and gave a better voltammetric response for complement DNA than did ordinary carbon paste electrodes. The response of the electrode was characterized with respect to the paste composition, immobilization time of probe DNA on the chitosan and PB modified graphene paste electrode, and the effect of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC). The electrochemical behavior of PB assembled on the graphene paste electrode was investigated. The combination of graphene and PB can enhance the current response of the graphene paste electrode. As a consequence of DNA hybridization, a significant change in the current due to daunomycin intercalated with double-stranded DNA (ds-DNA) on the surface of the graphene paste electrode was observed.

  7. Fluorescence-tunable Ag-DNA biosensor with tailored cytotoxicity for live-cell applications

    NASA Astrophysics Data System (ADS)

    Bossert, Nelli; de Bruin, Donny; Götz, Maria; Bouwmeester, Dirk; Heinrich, Doris

    2016-11-01

    DNA-stabilized silver clusters (Ag-DNA) show excellent promise as a multi-functional nanoagent for molecular investigations in living cells. The unique properties of these fluorescent nanomaterials allow for intracellular optical sensors with tunable cytotoxicity based on simple modifications of the DNA sequences. Three Ag-DNA nanoagent designs are investigated, exhibiting optical responses to the intracellular environments and sensing-capability of ions, functional inside living cells. Their sequence-dependent fluorescence responses inside living cells include (1) a strong splitting of the fluorescence peak for a DNA hairpin construct, (2) an excitation and emission shift of up to 120 nm for a single-stranded DNA construct, and (3) a sequence robust in fluorescence properties. Additionally, the cytotoxicity of these Ag-DNA constructs is tunable, ranging from highly cytotoxic to biocompatible Ag-DNA, independent of their optical sensing capability. Thus, Ag-DNA represents a versatile live-cell nanoagent addressable towards anti-cancer, patient-specific and anti-bacterial applications.

  8. Development of a PCR free, fieldable, rapid, accurate, and sensitive bio-electronic DNA biosensor

    NASA Astrophysics Data System (ADS)

    Hill, Doyle; Chafin, David; Greco, Roberta; Jafri, Samina; Murante, Richard; Noonan, John; Pham, An; Seabridge, Scott; Tannous, Vera; VanDerMeid, Karl; Wang, Daguang; Wescott, Nate; McFarlane, Kristin; Shah, Sanjiv

    2005-05-01

    The objective of this study was to demonstrate proof of concept for the Integrated Nano-Technologies BioDetect Bacillus anthracis electronic DNA sensor. B. anthracis Ames strain DNA was successfully detected by the formation of DNA bridges on the sensor. The bridges were coated with metal, resulting in a significant drop in electrical resistance. In this small test, at a relatively high DNA concentration, the overall accuracy of the sensor was 90.7%. The technology shows significant promise for future development as a bio-agent detection system.

  9. Development of a Fish Cell Biosensor System for Genotoxicity Detection Based on DNA Damage-Induced Trans-Activation of p21 Gene Expression

    PubMed Central

    Geng, Deyu; Zhang, Zhixia; Guo, Huarong

    2012-01-01

    p21CIP1/WAF1 is a p53-target gene in response to cellular DNA damage. Here we report the development of a fish cell biosensor system for high throughput genotoxicity detection of new drugs, by stably integrating two reporter plasmids of pGL3-p21-luc (human p21 promoter linked to firefly luciferase) and pRL-CMV-luc (CMV promoter linked to Renilla luciferase) into marine flatfish flounder gill (FG) cells, referred to as p21FGLuc. Initial validation of this genotoxicity biosensor system showed that p21FGLuc cells had a wild-type p53 signaling pathway and responded positively to the challenge of both directly acting genotoxic agents (bleomycin and mitomycin C) and indirectly acting genotoxic agents (cyclophosphamide with metabolic activation), but negatively to cyclophosphamide without metabolic activation and the non-genotoxic agents ethanol and D-mannitol, thus confirming a high specificity and sensitivity, fast and stable response to genotoxic agents for this easily maintained fish cell biosensor system. This system was especially useful in the genotoxicity detection of Di(2-ethylhexyl) phthalate (DEHP), a rodent carcinogen, but negatively reported in most non-mammalian in vitro mutation assays, by providing a strong indication of genotoxicity for DEHP. A limitation for this biosensor system was that it might give false positive results in response to sodium butyrate and any other agents, which can trans-activate the p21 gene in a p53-independent manner. PMID:25585933

  10. Hydrogel with chains functionalized with carboxyl groups as universal 3D platform in DNA biosensors.

    PubMed

    Kowalczyk, Agata; Fau, Michal; Karbarz, Marcin; Donten, Mikolaj; Stojek, Zbigniew; Nowicka, Anna M

    2014-04-15

    Application of hydrogel based on N-isopropylacrylamide with carboxyl groups grafted to the chains enabled the immobilization of DNA at an extent exceeding that for flat surfaces by at least one order of magnitude. The probe DNA strands in the 3D platform were fully available for the hybridization process. The examination of the gels containing different amounts of grafted carboxyl groups (1-10%) was done using quartz crystal microbalance, electrochemical impedance spectroscopy, chronoamperometry and ionic coupled plasma with laser ablation. The optimal carboxyl group content was determined to be 5%. A very good agreement of the data obtained with independent techniques on content of DNA in the gel was obtained. In comparison to the other methods of immobilization of DNA the new platform enabled complete removal of DNA after the measurements and analysis and, therefore, could be used many times. After a 10-fold exchange of the DNA-sensing layer the efficiency of hybridization and analytical signal did not change by more than 5%. The sensor response increased linearly with logarithm of concentration of target DNA in the range 1×10(-13)-1×10(-6) M. The obtained detection limit was circa 8×10(-13) M of target DNA in the sample which is a substantial improvement over the planar sensing layers.

  11. Effect of different concentration of HPV DNA probe immobilization for cervical cancer detection based IDE biosensor

    NASA Astrophysics Data System (ADS)

    Roshila, M. L.; Hashim, U.; Azizah, N.; Nadzirah, Sh.; Arshad, M. K. Md; Ruslinda, A. R.; Gopinath, Subash C. B.

    2017-03-01

    This paper principally delineates to the detection process of Human Papillomavirus (HPV) DNA test. HPV is an extremely common virus infection that infected to human by the progressions cell in the cervix cell. The types of HPV that give a most exceedingly awful infected with cervical cancer is 16 and 18 other than 31 and 45. The HPV DNA probe is immobilized with a different concentration to stabilize the sensitivity. A technique of rapid and sensitive for the HPV identification was proposed by coordinating basic DNA extraction with a quality of DNA. The extraction of the quality of DNA will make a proficiency of the discovery procedure. It will rely on the sequence of the capture probes and the way to support their attached. The fabrication, surface modification, immobilization and hybridization procedures are described by current-voltage (I-V) estimation by utilizing KEITHLEY 6487. This procedure will play out a decent affectability and selectivity of HPV discovery.

  12. Electrochemical Performances of Electroactive Nano-Layered Organic-Inorganic Perovskite Containing Trivalent Iron Ion and its Use for a DNA Biosensor Preparation

    PubMed Central

    Wu, Jing; Liu, Hanxing; Lin, Zhidong; Cao, Minghe

    2010-01-01

    A steady nano organic-inorganic perovskite hybrid with [H23-AMP]3/2Fe(CN)6 (3-AMP = 3-methylaminopyridine) was prepared in the air. The structure is an unusual layered organic-inorganic type. The resulting hybrid enveloped in paraffin to prepare [H23-AMP]3/2Fe(CN)6 paste electrode (HPE) shows good electrochemical activity and a couple of oxidation and reduction peaks with potential of cyclic voltammometry (CV) at around 440 mV and 30 mV. Compared with that on CPE, oxidation potential of Fe(CN)63− on HPE shifts negatively 259.7 mV and that of reduction shifts positively 338.7 mV, which exhibits that [H23-AMP]3/2Fe(CN)6 can accelerate the electron-transfer to improve the electrochemical reaction reversibility. Such characteristics of [H23-AMP]3/2Fe(CN)6 have been employed to prepare the DNA biosensor. The single-strand DNA (ssDNA) and double-strand DNA (dsDNA) immobilized on HPE, respectively, can improve the square wave voltammometry (SWV) current and SWV potential shifts positively. The effect of pH was evaluated. And there is hybridization peak on SWV curve using HPE immobilized ssDNA in the complementary ssDNA solution. And HPE immobilized ssDNA can be utilized to monitor the DNA hybridization and detect complementary ssDNA, covering range from 3.24 × 10−7 to 6.72 × 10−5 g/mL with detection limit of 1.57 × 10−7 g/mL. The DNA biosensor exhibits a good stability and reproducibility. PMID:20671970

  13. DNA biosensors implemented on PNA-functionalized microstructured optical fibers Bragg gratings

    NASA Astrophysics Data System (ADS)

    Candiani, A.; Giannetti, S.; Cucinotta, A.; Bertucci, A.; Manicardi, A.; Konstantaki, M.; Margulis, W.; Pissadakis, S.; Corradini, R.; Selleri, S.

    2013-05-01

    A novel DNA sensing platform based on a Peptide Nucleic Acid - functionalized Microstructured Optical Fibers gratings has been demonstrated. The inner surface of different MOFs has been functionalized using PNA probes, OligoNucleotides mimic that are well suited for specific DNA target sequences detection. The hybrid sensing systems were tested for optical DNA detection of targets of relevance in biomedical application, using the cystic fibrosis gene mutation, and food-analysis, using the genomic DNA from genetic modified organism soy flour. After the solutions of DNA molecules has been infiltrated inside the fibers capillaries and hybridization has occurred, oligonucleotidefunctionalized gold nanoparticles were infiltrated and used to form a sandwich-like system to achieve signal amplification. Spectral measurements of the reflected signal reveal a clear wavelength shift of the reflected modes when the infiltrated complementary DNA matches with the PNA probes placed on the inner fiber surface. Measurements have also been made using the mismatched DNA solution for the c, containing a single nucleotide polymorphism, showing no significant changes in the reflected spectrum. Several experiments have been carried out demonstrating the reproducibility of the results and the high selectivity of the sensors, showing the simplicity and the potential of this approach.

  14. High affinity truncated DNA aptamers for the development of fluorescence based progesterone biosensors.

    PubMed

    Alhadrami, Hani A; Chinnappan, Raja; Eissa, Shimaa; Rahamn, Anas Abdel; Zourob, Mohammed

    2017-02-24

    Aptamers have shown a number of potential applications in sensing and therapeutic due to the high affinity and specificity towards their target molecules. Not all the nucleotides in the full length aptamers are involved in the binding with their targets. The non-binding domain of the aptamer may affect the binding affinity of the aptamer-target complex. Mapping the aptamer binding region could increase the affinity and the specificity. In this paper, we designed aptamer-based fluorescence sensors from a truncated progesterone (P4) aptamer. Then, fluorescein and quencher labelled aptamer complementary oligonucleotide sequences were hybridized to the truncated aptamer at different sites to form duplex structures. We used fluorescence-quencher pair displacement assay upon progesterone binding for the determination of P4. One of the truncated sequences has shown high binding affinity with 16 fold increase in the dissociation constant, Kd (2.1 nM) compared to the original aptamer. The aptasensor was highly selective for P4 against similar compounds such as 17-β estradiol, bisphenol-A and vitamin D. The sensor has been applied for the detection of P4 in spiked tap water and in urine samples showing good recovery. This new developed aptamer-based fluorescence biosensor can be applied in food, pharmaceutical, and clinical industries.

  15. Biosensors in clinical chemistry.

    PubMed

    D'Orazio, Paul

    2003-08-01

    Biosensors are analytical devices composed of a recognition element of biological origin and a physico-chemical transducer. The biological element is capable of sensing the presence, activity or concentration of a chemical analyte in solution. The sensing takes place either as a binding event or a biocatalytical event. These interactions produce a measurable change in a solution property, which the transducer converts into a quantifiable electrical signal. Present-day applications of biosensors to clinical chemistry are reviewed, including basic and applied research, commercial applications and fabrication techniques. Recognition elements include enzymes as biocatalytic recognition elements and immunoagents and DNA segments as affinity ligand recognition elements, coupled to electrochemical and optical modes of transduction. The future will include biosensors based on synthetic recognition elements to allow broad applicability to different classes of analytes and modes of transduction extending lower limits of sensitivity. Microfabrication will permit biosensors to be constructed as arrays and incorporated into lab-on-a-chip devices.

  16. Multi-wall carbon nanotubes (MWCNTs)-doped polypyrrole DNA biosensor for label-free detection of genetically modified organisms by QCM and EIS.

    PubMed

    Truong, Thi Ngoc Lien; Tran, Dai Lam; Vu, Thi Hong An; Tran, Vinh Hoang; Duong, Tuan Quang; Dinh, Quang Khieu; Tsukahara, Toshifumi; Lee, Young Hoon; Kim, Jong Seung

    2010-01-15

    In this paper, we describe DNA electrochemical detection for genetically modified organism (GMO) based on multi-wall carbon nanotubes (MWCNTs)-doped polypyrrole (PPy). DNA hybridization is studied by quartz crystal microbalance (QCM) and electrochemical impedance spectroscopy (EIS). An increase in DNA complementary target concentration results in a decrease in the faradic charge transfer resistance (R(ct)) and signifying "signal-on" behavior of MWCNTs-PPy-DNA system. QCM and EIS data indicated that the electroanalytical MWCNTs-PPy films were highly sensitive (as low as 4pM of target can be detected with QCM technique). In principle, this system can be suitable not only for DNA but also for protein biosensor construction.

  17. Optical biosensors

    PubMed Central

    Damborský, Pavel; Švitel, Juraj

    2016-01-01

    Optical biosensors represent the most common type of biosensor. Here we provide a brief classification, a description of underlying principles of operation and their bioanalytical applications. The main focus is placed on the most widely used optical biosensors which are surface plasmon resonance (SPR)-based biosensors including SPR imaging and localized SPR. In addition, other optical biosensor systems are described, such as evanescent wave fluorescence and bioluminescent optical fibre biosensors, as well as interferometric, ellipsometric and reflectometric interference spectroscopy and surface-enhanced Raman scattering biosensors. The optical biosensors discussed here allow the sensitive and selective detection of a wide range of analytes including viruses, toxins, drugs, antibodies, tumour biomarkers and tumour cells. PMID:27365039

  18. Trapping of a single DNA molecule using nanoplasmonic structures for biosensor applications

    PubMed Central

    Kim, Jung-Dae; Lee, Yong-Gu

    2014-01-01

    Conventional optical trapping using a tightly focused beam is not suitable for trapping particles that are smaller than the diffraction limit because of the increasing need of the incident laser power that could produce permanent thermal damages. One of the current solutions to this problem is to intensify the local field enhancement by using nanoplasmonic structures without increasing the laser power. Nanoplasmonic tweezers have been used for various small molecules but there is no known report of trapping a single DNA molecule. In this paper, we present the trapping of a single DNA molecule using a nanohole created on a gold substrate. Furthermore, we show that the DNA of different lengths can be differentiated through the measurement of scattering signals leading to possible new DNA sensor applications. PMID:25136478

  19. Study of concentration of HPV DNA probe immobilization for cervical cancer detection based IDE biosensor

    NASA Astrophysics Data System (ADS)

    Roshila, M. L.; Hashim, U.; Azizah, N.

    2016-07-01

    This paper mainly illustrates regarding the detection process of Human Papillomavirus (HPV) DNA probe. HPV is the most common virus that infected to human by a sexually transmitted virus. The most common high-risk HPV are 16 and 18. Interdigitated electrode (IDE) device used as based of Titanium Dioxide (TiO2) acts as inorganic surface, where by using APTES as a linker between inorganic surface and organic surface. A strategy of rapid and sensitive for the HPV detection was proposed by integrating simple DNA extraction with a gene of DNA. The extraction of the gene of DNA will make an efficiency of the detection process. It will depend on the sequence of the capture probes and the way to support their attached. The fabrication, surface modification, immobilization and hybridization processes are characterized by current voltage (I-V) measurement by using KEITHLEY 6487. This strategy will perform a good sensitivity of HPV detection.

  20. Two-dimensional micro-bubble actuator array to enhance the efficiency of molecular beacon based DNA micro-biosensors.

    PubMed

    Deng, Peigang; Lee, Yi-Kuen; Cheng, Ping

    2006-02-15

    Two-dimensional micro-bubble actuator arrays were developed and studied in detail to enhance the hybridization kinetics of a DNA micro-biosensor. The hybridization between a molecular beacon, a kind of oligonucleotide probe, and its complement was investigated in a millimeter-sized PDMS based reaction chamber, where various 2D micro-heater arrays were distributed on the bottom for micro-bubble generation. The hybridization assay without the micro-bubble actuation revealed that the fluorescence increased fast at the beginning and slowed down after that. However, a uniform fluorescence increase was observed when periodic micro-bubble agitation was introduced in the static hybridization solution. A comparison of hybridization assays with and without micro-bubble agitation revealed that the hybridization time could be effectively shortened by 33% with 10 cycles of micro-bubble agitation from a 2 x 1 bubble actuator array, and by 43% with 10 cycles of micro-bubble agitation from a 2 x 2 bubble actuator array.

  1. Facile construction of a highly sensitive DNA biosensor by in-situ assembly of electro-active tags on hairpin-structured probe fragment

    PubMed Central

    Wang, Qingxiang; Gao, Feng; Ni, Jiancong; Liao, Xiaolei; Zhang, Xuan; Lin, Zhenyu

    2016-01-01

    An ultrasensitive DNA biosensor has been developed through in-situ labeling of electroactive melamine-Cu2+ complex (Mel-Cu2+) on the end of hairpin-like probe using gold nanoparticles (AuNPs) as the signal amplification platform. The 3′-thiolated hairpin-like probe was first immobilized to the gold electrode surface by the Au-S bond. The AuNPs were then tethered on the free 5′-end of the immobilized probe via the special affinity between Au and the modified -NH2. Followed by, the Mel and Cu2+ were assembled on the AuNPs surface through Au-N bond and Cu2+-N bond, respectively. Due to the surface area and electrocatalytic effects of the AuNPs, the loading amount and electron transfer kinetic of the Mel-Cu2+ were enhanced greatly, resulting in significantly enhanced electrochemical response of the developed biosensor. Compared with the synthesis process of conventional electroactive probe DNA accomplished by homogeneous method, the method presented in this work is more reagent- and time-saving. The proposed biosensor showed high selectivity, wide linear range and low detection limit. This novel strategy could also be extended to the other bioanalysis platforms such as immunosensors and aptasensors. PMID:26931160

  2. Pd-Au@carbon dots nanocomposite: Facile synthesis and application as an ultrasensitive electrochemical biosensor for determination of colitoxin DNA in human serum.

    PubMed

    Huang, Qitong; Lin, Xiaofeng; Zhu, Jie-Ji; Tong, Qing-Xiao

    2017-03-22

    In this study, a green and fast method was developed to synthesize high-yield carbon dots (CDs) via one-pot microwave treatment of banana peels without using any other surface passivation agents. Then the as-prepared CDs was used as the reducing agent and stabilizer to synthesize a Pd-Au@CDs nanocomposite by a simple sequential reduction strategy. Finally, Pd-Au@CDs nanocomposite modified glassy carbon electrode (Pd-Au@CDs/GCE) was obtained as a biosensor for target DNA after being immobilized a single-stranded probe DNA by a carboxyl ammonia condensation reaction. Under the optimal conditions, the sensor could detect target DNA concentrations in the range from 5.0×10(-16) to 1.0×10(-1)°molL(-1). The detection limit (LD) was estimated to be 1.82×10(-17)molL(-1), which showed higher sensitivity than other electrochemical biosensors reported. In addition, the DNA sensor was also successfully applied to detect colitoxin DNA in human serum.

  3. Electrochemical DNA biosensor based on poly(2,6-pyridinedicarboxylic acid) modified glassy carbon electrode for the determination of anticancer drug gemcitabine.

    PubMed

    Tığ, Gözde Aydoğdu; Zeybek, Bülent; Pekyardımcı, Şule

    2016-07-01

    In this study, a simple methodology was used to develop a new electrochemical DNA biosensor based on poly(2,6-pyridinedicarboxylic acid) (P(PDCA)) modified glassy carbon electrode (GCE). This modified electrode was used to monitor for the electrochemical interaction between the dsDNA and gemcitabine (GEM) for the first time. A decrease in oxidation signals of guanine after the interaction of the dsDNA with the GEM was used as an indicator for the selective determination of the GEM via differential pulse voltammetry (DPV). The guanine oxidation peak currents were linearly proportional to the concentrations of the GEM in the range of 1-30mgL(‒1). Limit of detection (LOD) and limit of quantification (LOQ) were found to be 0.276mgL(‒1) and 0.922mgL(‒1), respectively. The reproducibility, repeatability, and applicability of the analysis to pharmaceutical dosage forms and human serum samples were also examined. In addition to DPV method, UV-vis and viscosity measurements were utilized to propose the interaction mechanism between the GEM and the dsDNA. The novel DNA biosensor could serve for sensitive, accurate and rapid determination of the GEM.

  4. Determination of atropine sulfate using a novel sensitive DNA-biosensor based on its interaction on a modified pencil graphite electrode.

    PubMed

    Ensafi, Ali A; Nasr-Esfahani, Parisa; Heydari-Bafrooei, Esmaeil; Rezaei, B

    2015-01-01

    A novel, selective, rapid and simple electrochemical method is developed for the determination of atropine sulfate. UV-Vis and differential pulse voltammetry are used to study the interaction of atropine sulfate with salmon sperm ds-DNA on the surface of salmon sperm ds-DNA modified-pencil graphite electrode (PGE). For this purpose, a pencil graphite electrode (PGE) modified with multiwall carbon nanotubes (MWCNTs), titanium dioxide nanoparticles (TiO2NPs), and poly-dialyldimethylammonium chloride (PDDA) decorated with ds-DNA is tested for the determination of atropine sulfate. The electrochemical oxidation peak current of adenine and guanine bonded on the surface of ds-DNA/PDDA-TiO2NPs-MWCNTs/PGE is used to obtain the analytical signal. Decreases in the intensities of guanine and adenine oxidation signals after their interaction with atropine sulfate are used as indicator signals for the sensitive determination of atropine sulfate. Using ds-DNA/PDDA-TiO2NPs-MWCNTs/PGE and based on the guanine signal, linear calibration curves were obtained in the range of 0.6 to 30.0 μmol L(-1) and 30.0 to 600.0 μmol L(-1) atropine sulfate with low detection limits of 30.0 nmol L(-1). The biosensor shows a good selectivity for the determination of atropine sulfate. Finally, the applicability of the biosensor is evaluated by measuring atropine sulfate in real samples with good accuracy.

  5. A upconversion luminescene biosensor based on dual-signal amplification for the detection of short DNA species of c-erbB-2 oncogene

    PubMed Central

    Lan, Jianming; Liu, Yingxin; Li, Li; Wen, Fadi; Wu, Fang; Han, Zhizhong; Sun, Weiming; Li, Chunyan; Chen, Jinghua

    2016-01-01

    High-sensitivity detection of trace amounts of c-erbB-2 oncogene was reported to be equal to or surpass the ability of CA 15-3 for early diagnosis and/or follow-up recurrent screening of breast cancer. Therefore, in the current study, by using upconversion nanoparticles (UCNPs), rare earth-doped NaYF4:Yb3+/Er3+ as the luminescent labels, a upconversion luminescent (UCL) biosensor based on dual-signal amplification of exonuclease III (ExoIII)-assisted target cycles and long-range self-assembly DNA concatamers was developed for the detection of c-erbB-2 oncogene. The proposed biosensor exhibited ultrasensitive detection with limit as low as 40 aM, which may express the potential of being used in trace analysis of c-erbB-2 oncogene and early diagnosis of breast cancer. PMID:27098295

  6. Identification of single-nucleotide polymorphisms by the oligonucleotide ligation reaction: a DNA biosensor for simultaneous visual detection of both alleles.

    PubMed

    Toubanaki, Dimitra K; Christopoulos, Theodore K; Ioannou, Penelope C; Flordellis, Christodoulos S

    2009-01-01

    Although single nucleotide polymorphisms (SNPs) can be identified by direct hybridization with allele-specific oligonucleotide probes, enzyme-based genotyping methods offer much higher specificity and robustness. Among enzymatic methods, the oligonucleotide ligation reaction (OLR) offers the highest specificity for allele discrimination because two hybridization events are required for ligation. We report the development of a DNA biosensor that offers significant advantages over currently available methods for detection of OLR products: It allows simultaneous visual discrimination of both alleles using a single ligation reaction. Detection is complete within minutes without the need for any specialized instruments. It does not involve multiple cycles of incubation and washing. The dry-reagent format minimizes the pipetting steps. The need for qualified personnel is much lower than current methods. The principle of the assay is as follows: Following PCR amplification, a single OLR is performed using a biotinylated common probe and two allele-specific probes labeled with the haptens digoxigenin and fluorescein. Ligation products corresponding to the normal and mutant allele are double-labeled with biotin and either digoxigenin or fluorescein, respectively. The products are captured by antidigoxigenin or antifluorescein antibodies, or both, that are immobilized at the two test zones of the biosensor and react with antibiotin-functionalized gold nanoparticle reporters. The excess nanoparticles bind to biotinylated albumin that is immobilized at the control zone of the biosensor. The genotype is assigned by the characteristic red lines that appear at the two test zones. The proposed DNA biosensor constitutes a significant step toward point-of-care SNP genotyping.

  7. DNA tetrahedral scaffolds-based platform for the construction of electrochemiluminescence biosensor.

    PubMed

    Feng, Qiu-Mei; Zhou, Zhen; Li, Mei-Xing; Zhao, Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2017-04-15

    Proximal metallic nanoparticles (NPs) could quench the electrochemiluminescence (ECL) emission of semiconductor quantum dots (QDs) due to Förster energy transfer (FRET), but at a certain distance, the coupling of light-emission with surface plasmon resonance (SPR) result in enhanced ECL. Thus, the modification strategies and distances control between QDs and metallic NPs are critical for the ECL intensity of QDs. In this strategy, a SPR enhanced ECL sensor based on DNA tetrahedral scaffolds modified platform was reported for the detection of telomerase activity. Due to the rigid three-dimensional structure, DNA tetrahedral scaffolds grafting on the electrode surface could accurately modulate the distance between CdS QDs and luminol labelled gold nanoparticles (L-Au NPs), meanwhile provide an enhanced spatial dimension and accessibility for the assembly of multiple L-Au NPs. The ECL intensities of both CdS QDs (-1.25V vs. SCE) and luminol (+0.33V vs. SCE) gradually increased along with the formation of multiple L-Au NPs at the vertex of DNA tetrahedral scaffolds induced by telomerase, bringing in a dual-potential ECL analysis. The proposed method showed high sensitivity for the identification of telomerase and was successfully applied for the differentiation of cancer cells from normal cells. This work suggests that DNA tetrahedral scaffolds could serve as an excellent choice for the construction of SPR-ECL system.

  8. Polymerase chain reaction-free detection of hepatitis B virus DNA using a nanostructured impedance biosensor.

    PubMed

    Chen, Chun-Cheng; Lai, Zi-Lun; Wang, Gou-Jen; Wu, Chun-Ying

    2016-03-15

    A polymerase chain reaction (PCR)-free technique for the effective detection of genomic length hepatitis B virus (HBV) DNA is described in this study. The honeycomb-like barrier layer of an anodic aluminum oxide (AAO) film having a uniform nanohemisphere array was used as the substrate of the sensing electrode. A 30-nm gold film was sputtered onto the AAO barrier layer surface as the electrode, followed by electrochemical deposition of gold nanoparticles (GNPs) on the hemisphere surface. A specially designed single-strand 96-mer gene fragment of the target genomic DNA of HBV based on the genome sequences of HBV was immobilized on the nanostructured electrode as the capture probe. Target HBV DNA obtained from clinical samples was hybridized to the sensing probes. Detection results illustrate two dynamic linear ranges, 10(2)-10(3) and 10(3)-10(5.1) copies/mL, having R(2) values of 0.801 and 0.996 could be obtained, respectively. The detection limit of the proposed sending scheme was measured to be 111 copies/mL. The total of 45 target samples, including 20 samples with HBV concentration being lower than 10(2) copies/mL and 25 samples with HBV concentration being in the range of 10(3)-10(5.1) copies/mL, were used for real test. The concentration of these 45 HBV DNA samples was measured by the COBAS Ampliprep system. Comparing the measured results of the COBAS Ampliprep and our system, it was illustrated that the HBV DNA concentrations measured by the proposed method in this study had a high linear correlation with the COBAS Ampliprep, having R(2) values of 0.983. The proposed sensing scheme is highly feasible for future clinical applications.

  9. Electrochemiluminescence Biosensor Based on 3-D DNA Nanomachine Signal Probe Powered by Protein-Aptamer Binding Complex for Ultrasensitive Mucin 1 Detection.

    PubMed

    Jiang, Xinya; Wang, Haijun; Wang, Huijun; Zhuo, Ying; Yuan, Ruo; Chai, Yaqin

    2017-04-04

    Herein, we fabricated a novel electrochemiluminescence (ECL) biosensor for ultrasensitive detection of mucin 1 (MUC1) based on a three-dimensional (3-D) DNA nanomachine signal probe powered by protein-aptamer binding complex. The assembly of 3-D DNA nanomachine signal probe achieved the cyclic reuse of target protein based on the protein-aptamer binding complex induced catalyzed hairpin assembly (CHA), which overcame the shortcoming of protein conversion with enzyme cleavage or polymerization in the traditional examination of protein. In addition, CoFe2O4, a mimic peroxidase, was used as the nanocarrier of the 3-D DNA nanomachine signal probe to catalyze the decomposition of coreactant H2O2 to generate numerous reactive hydroxyl radical OH(•) as the efficient accelerator of N-(aminobutyl)-N-(ethylisoluminol) (ABEI) ECL reaction to amplify the luminescence signal. Simultaneously, the assembly of 3-D DNA nanomachine signal probe was executed in solution, which led to abundant luminophore ABEI be immobilized around the CoFe2O4 surface with amplified ECL signal output since the CHA reaction was occurred unencumberedly in all directions under homogeneous environment. The prepared ECL biosensor showed a favorable linear response for MUC1 detection with a relatively low detection limit of 0.62 fg mL(-1). With excellent sensitivity, the strategy may provide an efficient method for clinical application, especially in trace protein determination.

  10. Triplex DNA: A new platform for polymerase chain reaction – based biosensor

    PubMed Central

    Li, Yubin; Miao, Xiangmin; Ling, Liansheng

    2015-01-01

    Non - specific PCR amplification and DNA contamination usually accompany with PCR process, to overcome these problems, here we establish a sensor for thrombin by sequence - specific recognition of the PCR product with molecular beacon through triplex formation. Probe A and probe B were designed for the sensor, upon addition of thrombin, two probes hybridized to each other and the probe B was extended in the presence of Klenow Fragment polymerase and dNTPs. The PCR amplification occurred with further addition of Taq DNA Polymerase and two primers, the PCR product was recognized by molecular beacon through triplex formation. The fluorescence intensity increased with the logarithm of the concentration of thrombin over the range from 1.0 × 10−12 M to 1.0 × 10−7 M, with a detection limit of 261 fM. Moreover, the effect of DNA contamination and non - specific amplification could be ignored completely in the proposed strategy. PMID:26268575

  11. Integrating and Amplifying Signal from Riboswitch Biosensors

    DTIC Science & Technology

    2014-08-01

    AFRL-RH-WP-TR-2014-0108 INTEGRATING AND AMPLIFYING SIGNAL FROM RIBOSWITCH BIOSENSORS Michael S. Goodson Yaroslav G. Chushak UES...Amplifying Signal from Riboswitch Biosensors 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Michael...88ABW-2014-1997; Cleared 30 Apr 2014. 14. ABSTRACT Biosensors offer a built-in energy supply and inherent sensing machinery that when exploited

  12. G-quadruplex DNA biosensor for sensitive visible detection of genetically modified food.

    PubMed

    Jiang, Xiaohua; Zhang, Huimin; Wu, Jun; Yang, Xiang; Shao, Jingwei; Lu, Yujing; Qiu, Bin; Lin, Zhenyu; Chen, Guonan

    2014-10-01

    In this paper, a novel label-free G-quadruplex DNAzyme sensor has been proposed for colorimetric identification of GMO using CaMV 35S promoter sequence as the target. The binary probes can fold into G-quadruplex structure in the presence of DNA-T (Target DNA) and then combine with hemin to form a DNAzyme resembling horseradish peroxidase. The detection system consists of two G-rich probes with 2:2 split mode by using the absorbance and color of ABTS(2-) as signal reporter. Upon the addition of a target sequence, two probes both hybridize with target and then their G-rich sequences combine to form a G-quadruplex DNAzyme, and the DNAzyme can catalyze the reaction of ABTS(2-) with H2O2. Then the linear range is from 0.05 to 0.5 μM while detection limit is 5nM. These results demonstrate that the proposed G-quadruplex DNAzyme method could be used as a simple, sensitive and cost-effective approach for assays of GMO.

  13. In vitro selection of DNA aptamers targeting β-lactoglobulin and their integration in graphene-based biosensor for the detection of milk allergen.

    PubMed

    Eissa, Shimaa; Zourob, Mohammed

    2017-05-15

    Food allergy has increased rapidly in recent years affecting millions of people worldwide. With the increased consumption of packed food nowadays, a sensitive, accurate and rapid screening method for potential food allergens has become an urgent need in order to protect the sensitive consumers from life-threatening reactions. The current detection methods for food allergens are mostly based on immunoassays which are costly and times-consuming. In this work, we developed an aptamer/graphene-based electrochemical biosensor for on-step, sensitive and low cost detection of β-lactoglobulin (β-LG) milk protein, one of the most common food allergens specially in infants. The selection of DNA aptamers against the two β-LG variants A and B was successfully realised using systemic evolution of ligands by exponential enrichment (SELEX) method. Among the selected aptamers, BLG14 aptamer sequence has shown high affinity and specificity to both β-LG A and B with dissociation constants (Kds) of 82 and 80nM, respectively as calculated using fluorescence binding assays. The aptamer was then integrated in a voltammetric biosensor utilizing graphene-modified screen printed carbon electrodes. The binding is monitored by following the change in the square wave voltammetry (SWV) reduction peak signal of ferrocyanide/ferricyanide redox couple due to the removal of the negatively charged aptamers from the surface upon protein binding. This one-step "signal on" biosensor takes 20min for the sensitive and selective detection of β-LG without using any labelling or sophisticated designs. The method was also tested in spiked food sample extract achieving good recovery percentage. The integration of the novel aptamer in the graphene biosensor allows a promising way for cost-effective, rapid and sensitive on-site detection of milk allergen in food stuff.

  14. Detection of Single-Nucleotide Polymorphism on uidA Gene of Escherichia coli by a Multiplexed Electrochemical DNA Biosensor with Oligonucleotide-Incorporated Nonfouling Surface

    PubMed Central

    Liu, Gang; Lao, Ruojun; Xu, Li; Xu, Qin; Li, Lanying; Zhang, Min; Shen, Hao; Mathur, Sanjay; Fan, Chunhai; Song, Shiping

    2011-01-01

    We report here a practical application of a multiplexed electrochemical DNA sensor for highly specific single-nucleotide polymorphism (SNP) detection. In this work, a 16-electrode array was applied with an oligonucleotide-incorporated nonfouling surfaces (ONS) on each electrode for the resistance of unspecific absorption. The fully matched target DNA templated the ligation between the capture probe assembled on gold electrodes and the tandem signal probe with a biotin moiety, which could be transduced to peroxidase-based catalyzed amperometric signals. A mutant site (T93G) in uidA gene of E. coli was analyzed in PCR amplicons. 10% percentage of single mismatched mutant gene was detected, which clearly proved the selectivity of the multiplexed electrochemical DNA biosensor when practically applied. PMID:22164059

  15. Label-free fluorescent biosensor based on the target recycling and Thioflavin T-induced quadruplex formation for short DNA species of c-erbB-2 detection.

    PubMed

    Chen, Jinghua; Lin, Jia; Zhang, Xi; Cai, Shuxian; Wu, Dongzhi; Li, Chunyan; Yang, Sheng; Zhang, Jing

    2014-03-19

    Non-invasive early diagnosis of breast cancer is the most effective way to improve the survival rate and increase more chances of breast-conserving. In this paper, we developed a label-free fluorescent biosensor based on nuclease assisted target recycling and Thioflavin T-induced quadruplex formation for short DNA species of c-erbB-2 detection in saliva. By employing the strategy, the sensor can detect as low as 20fM target DNA with high discrimination ability even against single-base mismatch sequence. To the best of our knowledge, the proposed sensor is the first attempt to apply Thioflavin T that possesses outstanding structural selectivity for G-quadruplex in DNA amplification techniques, which may represent a promising path toward direct breast cancer detection in saliva at the point of care.

  16. An electrochemical DNA biosensor for evaluating the effect of mix anion in cellular fluid on the antioxidant activity of CeO2 nanoparticles.

    PubMed

    Zhai, Yanwu; Zhang, Yan; Qin, Fei; Yao, Xin

    2015-08-15

    CeO2 nanoparticles are of particular interest as a novel antioxidant for scavenging free radicals. However, some studies showed that they could cause cell damage or death by generating reactive oxygen species (ROS). Up to now, it is not well understood about these paradoxical phenomena. Therefore, many attentions have been paid to the factors that could affect the antioxidant activity of CeO2 nanoparticles. CeO2 nanoparticles would inevitably encounter body fluid environment for its potential medical application. In this work the antioxidant activity behavior of CeO2 nanoparticles is studied in simulated cellular fluid, which contains main body anions (HPO4(2-), HCO3(-), Cl(-) and SO4(2-)), by a method of electrochemical DNA biosensor. We found that in the solution of Cl(-) and SO4(2-), CeO2 nanoparticles can protect DNA from damage by hydroxyl radicals, while in the presence of HPO4(2-) and HCO3(-), CeO2 nanoparticles lose the antioxidant activity. This can be explained by the cerium phosphate and cerium carbonate formed on the surface of the nanoparticles, which interfere with the redox cycling between Ce(3+) and Ce(4+). These results not only add basic knowledge to the antioxidant activity of CeO2 nanoparticles under different situations, but also pave the way for practical applications of nanoceria. Moreover, it also shows electrochemical DNA biosensor is an effective method to explore the antioxidant activity of CeO2 nanoparticles.

  17. A novel electrochemical DNA biosensor based on HRP-mimicking hemin/G-quadruplex wrapped GOx nanocomposites as tag for detection of Escherichia coli O157:H7.

    PubMed

    Li, Yan; Deng, Jun; Fang, Lichao; Yu, Kangkang; Huang, Hui; Jiang, Lili; Liang, Wenbin; Zheng, Junsong

    2015-01-15

    A novel sensitive electrochemical DNA biosensor was developed for amperometric detection of Escherichia coli O157:H7 (E. coli O157:H7). The graphene oxide (GOx) was utilized as nanocarrier to immobilize thionine (Thi) and the Au nanoparticles coated SiO2 nanocomposites (Au-SiO2) by electrostatic adsorption and the adsorption among nanomaterials. Then a large amounts of signal DNA (S2) and G-quadruplex were immobilized on the GOx-Thi-Au@SiO2 nanocomposites. Finally, hemin was intercalated into the G-quadruplex to obtain the hemin/G-quadruplex structure as HRP-mimicking DNAzyme. On the basis of the signal amplification strategy of GOx-Thi-Au@SiO2 nanocomposites and DNAzyme, the developed DNA biosensor could respond to 0.01 nM (S/N=3) with a linear calibration range from 0.02 to 50.0 nM E. coli O157:H7, which could be well accepted for early clinical detection. The studied system provides new opportunities, and might speed up disease diagnosis, treatment and prevention with pathogen.

  18. A FRET-Based DNA Biosensor Tracks OmpR-Dependent Acidification of Salmonella during Macrophage Infection

    PubMed Central

    Chakraborty, Smarajit; Mizusaki, Hideaki; Kenney, Linda J.

    2015-01-01

    In bacteria, one paradigm for signal transduction is the two-component regulatory system, consisting of a sensor kinase (usually a membrane protein) and a response regulator (usually a DNA binding protein). The EnvZ/OmpR two-component system responds to osmotic stress and regulates expression of outer membrane proteins. In Salmonella, EnvZ/OmpR also controls expression of another two-component system SsrA/B, which is located on Salmonella Pathogenicity Island (SPI) 2. SPI-2 encodes a type III secretion system, which functions as a nanomachine to inject bacterial effector proteins into eukaryotic cells. During the intracellular phase of infection, Salmonella switches from assembling type III secretion system structural components to secreting effectors into the macrophage cytoplasm, enabling Salmonella to replicate in the phagocytic vacuole. Major questions remain regarding how bacteria survive the acidified vacuole and how acidification affects bacterial secretion. We previously reported that EnvZ sensed cytoplasmic signals rather than extracellular ones, as intracellular osmolytes altered the dynamics of a 17-amino-acid region flanking the phosphorylated histidine. We reasoned that the Salmonella cytoplasm might acidify in the macrophage vacuole to activate OmpR-dependent transcription of SPI-2 genes. To address these questions, we employed a DNA-based FRET biosensor (“I-switch”) to measure bacterial cytoplasmic pH and immunofluorescence to monitor effector secretion during infection. Surprisingly, we observed a rapid drop in bacterial cytoplasmic pH upon phagocytosis that was not predicted by current models. Cytoplasmic acidification was completely dependent on the OmpR response regulator, but did not require known OmpR-regulated genes such as ompC, ompF, or ssaC (SPI-2). Microarray analysis highlighted the cadC/BA operon, and additional experiments confirmed that it was repressed by OmpR. Acidification was blocked in the ompR null background in a Cad

  19. A FRET-based DNA biosensor tracks OmpR-dependent acidification of Salmonella during macrophage infection.

    PubMed

    Chakraborty, Smarajit; Mizusaki, Hideaki; Kenney, Linda J

    2015-04-01

    In bacteria, one paradigm for signal transduction is the two-component regulatory system, consisting of a sensor kinase (usually a membrane protein) and a response regulator (usually a DNA binding protein). The EnvZ/OmpR two-component system responds to osmotic stress and regulates expression of outer membrane proteins. In Salmonella, EnvZ/OmpR also controls expression of another two-component system SsrA/B, which is located on Salmonella Pathogenicity Island (SPI) 2. SPI-2 encodes a type III secretion system, which functions as a nanomachine to inject bacterial effector proteins into eukaryotic cells. During the intracellular phase of infection, Salmonella switches from assembling type III secretion system structural components to secreting effectors into the macrophage cytoplasm, enabling Salmonella to replicate in the phagocytic vacuole. Major questions remain regarding how bacteria survive the acidified vacuole and how acidification affects bacterial secretion. We previously reported that EnvZ sensed cytoplasmic signals rather than extracellular ones, as intracellular osmolytes altered the dynamics of a 17-amino-acid region flanking the phosphorylated histidine. We reasoned that the Salmonella cytoplasm might acidify in the macrophage vacuole to activate OmpR-dependent transcription of SPI-2 genes. To address these questions, we employed a DNA-based FRET biosensor ("I-switch") to measure bacterial cytoplasmic pH and immunofluorescence to monitor effector secretion during infection. Surprisingly, we observed a rapid drop in bacterial cytoplasmic pH upon phagocytosis that was not predicted by current models. Cytoplasmic acidification was completely dependent on the OmpR response regulator, but did not require known OmpR-regulated genes such as ompC, ompF, or ssaC (SPI-2). Microarray analysis highlighted the cadC/BA operon, and additional experiments confirmed that it was repressed by OmpR. Acidification was blocked in the ompR null background in a Cad

  20. Time-resolved luminescence biosensor for continuous activity detection of protein acetylation-related enzymes based on DNA-sensitized terbium(III) probes.

    PubMed

    Han, Yitao; Li, Hao; Hu, Yufang; Li, Pei; Wang, Huixia; Nie, Zhou; Yao, Shouzhuo

    2015-09-15

    Protein acetylation of histone is an essential post-translational modification (PTM) mechanism in epigenetic gene regulation, and its status is reversibly controlled by histone acetyltransferases (HATs) and histone deacetylases (HDACs). Herein, we have developed a sensitive and label-free time-resolved luminescence (TRL) biosensor for continuous detection of enzymatic activity of HATs and HDACs, respectively, based on acetylation-mediated peptide/DNA interaction and Tb(3+)/DNA luminescent probes. Using guanine (G)-rich DNA-sensitized Tb(3+) luminescence as the output signal, the polycationic substrate peptides interact with DNA with high affinity and subsequently replace Tb(3+), eliminating the luminescent signal. HAT-catalyzed acetylation remarkably reduces the positive charge of the peptides and diminishes the peptide/DNA interaction, resulting in the signal on detection via recovery of DNA-sensitized Tb(3+) luminescence. With this TRL sensor, HAT (p300) can be sensitively detected with a wide linear range from 0.2 to 100 nM and a low detection limit of 0.05 nM. The proposed sensor was further used to continuously monitor the HAT activity in real time. Additionally, the TRL biosensor was successfully applied to evaluating HAT inhibition by two specific inhibitors, anacardic acid and C464, and satisfactory Z'-factors above 0.73 were obtained. Moreover, this sensor is feasible to continuously monitor the HDAC (Sirt1)-catalyzed deacetylation with a linear range from 0.5 to 500 nM and a detection limit of 0.5 nM. The proposed sensor is a convenient, sensitive, and mix-and-read assay, presenting a promising platform for protein acetylation-targeted epigenetic research and drug discovery.

  1. Approaches to label-free flexible DNA biosensors using low-temperature solution-processed InZnO thin-film transistors.

    PubMed

    Jung, Joohye; Kim, Si Joon; Lee, Keun Woo; Yoon, Doo Hyun; Kim, Yeong-Gyu; Kwak, Hee Young; Dugasani, Sreekantha Reddy; Park, Sung Ha; Kim, Hyun Jae

    2014-05-15

    Low-temperature solution-processed In-Zn-O (IZO) thin-film transistors (TFTs) exhibiting a favorable microenvironment for electron transfer by adsorbed artificial deoxyribonucleic acid (DNA) have extraordinary potential for emerging flexible biosensor applications. Superb sensing ability to differentiate even 0.5 μL of 50 nM DNA target solution was achieved through using IZO TFTs fabricated at 280 °C. Our IZO TFT had a turn-on voltage (V(on)) of -0.8 V, on/off ratio of 6.94 × 10(5), and on-current (I(on)) value of 2.32 × 10(-6)A in pristine condition. A dry-wet method was applied to immobilize two dimensional double crossover tile based DNA nanostructures on the IZO surface, after which we observed a negative shift of the transfer curve accompanied by a significant increase in the Ion and degradation of the Von and on/off ratio. As the concentration of DNA target solution increased, variances in these parameters became increasingly apparent. The sensing mechanism based on the current evolution was attributed to the oxidation of DNA, in which the guanine nucleobase plays a key role. The sensing behavior obtained from flexible biosensors on a polymeric substrate fabricated under the identical conditions was exactly analogous. These results compare favorably with the conventional field-effect transistor based DNA sensors by demonstrating remarkable sensitivity and feasibility of flexible devices that arose from a different sensing mechanism and a low-temperature process, respectively.

  2. Development of an Advanced Electrochemical DNA Biosensor for Bacterial Pathogen Detection

    PubMed Central

    Liao, Joseph C.; Mastali, Mitra; Li, Yang; Gau, Vincent; Suchard, Marc A.; Babbitt, Jane; Gornbein, Jeffrey; Landaw, Elliot M.; McCabe, Edward R.B.; Churchill, Bernard M.; Haake, David A.

    2007-01-01

    Electrochemical sensors have the capacity for rapid and accurate detection of a wide variety of target molecules in biological fluids. We have developed an electrochemical sensor assay involving hybridization of bacterial 16S rRNA to fluorescein-modified detector probes and to biotin-modified capture probes anchored to the sensor surface. Signal is generated by an oxidation-reduction current produced by the action of horseradish peroxidase conjugated to an anti-fluorescein monoclonal Fab. A previous study found that this electrochemical sensor strategy could identify uropathogens in clinical urine specimens. To improve assay sensitivity, we examined the key steps that affect the current amplitude of the electrochemical signal. Efficient lysis and release of 16S rRNA from both gram-negative and -positive bacteria was achieved with an initial treatment with Triton X-100 and lysozyme followed by alkaline lysis, resulting in a 12-fold increase in electrochemical signal compared with alkaline lysis alone. The distance in nucleotides between the target hybridization sites of the detector and capture probes and the location of fluorescein modification on the detector probe contributed to a 23-fold change in signal intensity. These results demonstrate the importance of target-probe and probe-probe interactions in the detection of bacterial 16S rRNA using an electrochemical DNA sensor approach. PMID:17384207

  3. Construction of Plasmonic Core-Satellite Nanostructures on Substrates Based on DNA-Directed Self-Assembly as a Sensitive and Reproducible Biosensor.

    PubMed

    Zhang, Tingting; Li, He; Hou, Shengwei; Dong, Youqing; Pang, Guangsheng; Zhang, Yingwei

    2015-12-16

    We report the successful construction of plasmonic core-satellite nanostructured assemblies on two-dimensional substrates, based on a strategy of combining DNA-functionalized plasmonic nanoparticles (NPs) with the specific recognition ability toward target to enable satellite NPs to self-assemble around the core immobilized on substrates. A strongly coupled plasmonic resonance band was observed because of the close proximity between core and satellite NPs, which presented significant red-shift and enhanced extinction with respect to the local surface plasmon resonance (LSPR) band of individual core NPs on the substrate. The functionality of this core-satellite nanostructured assembly as a biosensor was further explored, and the changes in extinction intensity and the peak shift of the plasmonic coupling resonance band arising from the probe-target DNA binding event all proved to be useful criteria for target DNA detection. Moreover, high selectivity down to single-base mismatched DNA was achieved using this strongly coupled plasmonic core-satellite nanostructured assembly on a substrate. Such substrate-based detection was advantageous, and its reusability and high cycle stability were demonstrated after five cycles of disassembly and reassembly. Our work demonstrates the biosensing capacity of this DNA-functionalized plasmonic nanoassembly model system on two-dimensional substrate, which is also applicable to the detection of numerous DNA-recognized biomolecules. Likewise, the presented construction method can be extended to fabricate other compositional core-satellite nanoassemblies.

  4. Biosensors and their applications – A review

    PubMed Central

    Mehrotra, Parikha

    2016-01-01

    The various types of biosensors such as enzyme-based, tissue-based, immunosensors, DNA biosensors, thermal and piezoelectric biosensors have been deliberated here to highlight their indispensable applications in multitudinous fields. Some of the popular fields implementing the use of biosensors are food industry to keep a check on its quality and safety, to help distinguish between the natural and artificial; in the fermentation industry and in the saccharification process to detect precise glucose concentrations; in metabolic engineering to enable in vivo monitoring of cellular metabolism. Biosensors and their role in medical science including early stage detection of human interleukin-10 causing heart diseases, rapid detection of human papilloma virus, etc. are important aspects. Fluorescent biosensors play a vital role in drug discovery and in cancer. Biosensor applications are prevalent in the plant biology sector to find out the missing links required in metabolic processes. Other applications are involved in defence, clinical sector, and for marine applications. PMID:27195214

  5. A label-free and enzyme-free ultra-sensitive transcription factors biosensor using DNA-templated copper nanoparticles as fluorescent indicator and hairpin DNA cascade reaction as signal amplifier.

    PubMed

    Sha, Liang; Zhang, Xiaojun; Wang, Guangfeng

    2016-08-15

    Detection and quantification of specific protein with ultralow concentration play a crucial role in biotechnological applications and biomedical diagnostics. In this paper, a label-free and enzyme-free amplified fluorescent biosensor has been developed for transcription factors detection based on AT-rich double-stranded DNA-templated copper nanoparticles (ds DNA/Cu NPs) and hairpin DNA cascade reaction. This strategy was demonstrated by using nuclear factor-kappa B p50 (NF-κB p50) and specific recognition sequences as a model case. In this assay, a triplex consists of double-stranded DNA containing NF-κB p50 specifically binding sequences and a special design single-stranded DNA (Trigger) which is able to activate the hairpin DNA cascade amplifier (HDCA). In the presence of NF-κB p50, the triplex became unstable since the target bound to the recognition sequences with strong affinity. The selective binding event confirmed that the Trigger was successfully released from the triplex and initiated HDCA to yield the product which could effectively template the formation of fluorescent Cu NPs. The experimental results revealed that the advanced strategy was ultra-sensitive for detecting NF-κB p50 in the concentration range from 0.1 to 1000 pM with a detection limit of 0.096 pM. In addition, the relative standard deviation was 4.08% in 3 repetitive assays of 500 pM NF-κB p50, which indicated that the reproducibility of this strategy was acceptable. Besides desirable sensitivity, the developed biosensor also showed high selectivity, cost-effective, and simplified operations. In addition, the proposed biosensing platform is versatile. By conjugating with various specific recognition units, it could hold considerable potential to sensitive and selective detect various DNA-binding proteins and might find wide applications in biomedical fields.

  6. Development of a novel electrochemical DNA biosensor based on elongated hexagonal-pyramid CdS and poly-isonicotinic acid composite film.

    PubMed

    Zheng, Delun; Wang, Qingxiang; Gao, Feng; Wang, Qinghua; Qiu, Weiwei; Gao, Fei

    2014-10-15

    Three CdS materials with different shapes (i.e., irregular, rod-like, and elongated hexagonal-pyramid) were hydrothermally synthesized through controlling the molar ratio of Cd(2+) to thiourea. Electrochemical experiments showed that the elongated hexagonal-pyramid CdS (eh-CdS) modified on glassy carbon electrode (GCE) had the higher electrical conductivity than the other two forms. Then the eh-CdS modified GCE was further modified with a layer of poly-isonicotinic acid (PIA) through electro-polymerization in IA solution to enhance the stability and functionality of the interface. The layer-by-layer modification process was characterized by atomic force microscopy and electrochemistry. Then 5'-amino functionalized DNA was immobilized on the electrode surface through coupling with the carboxylic groups derived from PIA-eh-CdS composite film. The hybridization performance of the developed biosensor was evaluated using methylene blue as redox indicator, and the results showed that the peak currents of methylene blue varied with target concentrations in a wide linear range from 1.0 × 10(-14)M to 1.0 × 10(-9)M with a low detection limit of 3.9 × 10(-15)M. The biosensor also showed high stability and good discrimination ability to the one-base, three-base mismatched and non-complementary sequence.

  7. Real-time, multiplexed electrochemical DNA detection using an active complementary metal-oxide-semiconductor biosensor array with integrated sensor electronics.

    PubMed

    Levine, Peter M; Gong, Ping; Levicky, Rastislav; Shepard, Kenneth L

    2009-03-15

    Optical biosensing based on fluorescence detection has arguably become the standard technique for quantifying extents of hybridization between surface-immobilized probes and fluorophore-labeled analyte targets in DNA microarrays. However, electrochemical detection techniques are emerging which could eliminate the need for physically bulky optical instrumentation, enabling the design of portable devices for point-of-care applications. Unlike fluorescence detection, which can function well using a passive substrate (one without integrated electronics), multiplexed electrochemical detection requires an electronically active substrate to analyze each array site and benefits from the addition of integrated electronic instrumentation to further reduce platform size and eliminate the electromagnetic interference that can result from bringing non-amplified signals off chip. We report on an active electrochemical biosensor array, constructed with a standard complementary metal-oxide-semiconductor (CMOS) technology, to perform quantitative DNA hybridization detection on chip using targets conjugated with ferrocene redox labels. A 4 x 4 array of gold working electrodes and integrated potentiostat electronics, consisting of control amplifiers and current-input analog-to-digital converters, on a custom-designed 5 mm x 3 mm CMOS chip drive redox reactions using cyclic voltammetry, sense DNA binding, and transmit digital data off chip for analysis. We demonstrate multiplexed and specific detection of DNA targets as well as real-time monitoring of hybridization, a task that is difficult, if not impossible, with traditional fluorescence-based microarrays.

  8. Real-time, multiplexed electrochemical DNA detection using an active complementary metal-oxide-semiconductor biosensor array with integrated sensor electronics

    PubMed Central

    Levine, Peter M.; Gong, Ping; Levicky, Rastislav; Shepard, Kenneth L.

    2009-01-01

    Optical biosensing based on fluorescence detection has arguably become the standard technique for quantifying extents of hybridization between surface-immobilized probes and fluorophore-labeled analyte targets in DNA microarrays. However, electrochemical detection techniques are emerging which could eliminate the need for physically bulky optical instrumentation, enabling the design of portable devices for point-of-care applications. Unlike fluorescence detection, which can function well using a passive substrate (one without integrated electronics), multiplexed electrochemical detection requires an electronically-active substrate to analyze each array site and benefits from the addition of integrated electronic instrumentation to further reduce platform size and eliminate the electromagnetic interference that can result from bringing non-amplified signals off chip. We report on an active electrochemical biosensor array, constructed with a standard complementary metal-oxide-semiconductor (CMOS) technology, to perform quantitative DNA hybridization detection on chip using targets conjugated with ferrocene redox labels. A 4×4 array of gold working electrodes and integrated potentiostat electronics, consisting of control amplifiers and current-input analog-to-digital converters, on a custom-designed 5×3 mm2 CMOS chip drive redox reactions using cyclic voltammetry, sense DNA binding, and transmit digital data off chip for analysis. We demonstrate multiplexed and specific detection of DNA targets as well as real-time monitoring of hybridization, a task that is difficult, if not impossible, with traditional fluorescence-based microarrays. PMID:19054661

  9. Enhancing capacitive DNA biosensor performance by target overhang with application on screening test of HLA-B*58:01 and HLA-B*57:01 genes.

    PubMed

    Thipmanee, Orawan; Numnuam, Apon; Limbut, Warakorn; Buranachai, Chittanon; Kanatharana, Proespichaya; Vilaivan, Tirayut; Hirankarn, Nattiya; Thavarungkul, Panote

    2016-08-15

    A highly sensitive label-free DNA biosensor based on PNA probes immobilized on a gold electrode was used to detect a hybridization event. The effect of a target DNA overhang on the hybridization efficiency was shown to enhance the detected signal and allowed detection at a very low concentration. The sensors performances were investigated with a complementary target that had the same length as the probe, and the signal was compared to the target DNAs with different lengths and overhangs. A longer target DNA overhang was found to provide a better response. When the overhang was on the electrode side the signal enhancement was greater than when the overhang was on the solution side due to the increased thickness of the sensing surface, hence produced a larger capacitance change. Using conformationally constrained acpcPNA probes, double stranded DNA was detected sensitively and specifically without any denaturing step. When two acpcPNA probes were applied for the screening test for the double stranded HLA-B*58:01 and HLA-B*57:01 genes that are highly similar, the method differentiated the two genes in all samples. Both purified and unpurified PCR products gave comparable results. This method would be potentially useful as a rapid screening test without the need for purification and denaturation of the PCR products.

  10. Rapid on-site/in-situ detection of heavy metal ions in environmental water using a structure-switching DNA optical biosensor

    NASA Astrophysics Data System (ADS)

    Long, Feng; Zhu, Anna; Shi, Hanchang; Wang, Hongchen; Liu, Jingquan

    2013-07-01

    A structure-switching DNA optical biosensor for rapid on-site/in situ detection of heavy metal ions is reported. Mercury ions (Hg2+), highly toxic and ubiquitous pollutants, were selected as model target. In this system, fluorescence-labeled DNA containing T-T mismatch structure was introduced to bind with DNA probes immobilized onto the sensor surface. In the presence of Hg2+, some of the fluorescence-labeled DNAs bind with Hg2+ to form T-Hg2+-T complexes through the folding of themselves into a hairpin structure and dehybridization from the sensor surface, which leads to decrease in fluorescence signal. The total analysis time for a single sample was less than 10 min with detection limit of 1.2 nM. The rapid on-site/in situ determination of Hg2+ was readily performed in natural water. This sensing strategy can be extended in principle to other metal ions by substituting the T-Hg2+-T complexes with other specificity structures that selectively bind to other analytes.

  11. Rapid on-site/in-situ detection of heavy metal ions in environmental water using a structure-switching DNA optical biosensor.

    PubMed

    Long, Feng; Zhu, Anna; Shi, Hanchang; Wang, Hongchen; Liu, Jingquan

    2013-01-01

    A structure-switching DNA optical biosensor for rapid on-site/in situ detection of heavy metal ions is reported. Mercury ions (Hg²⁺), highly toxic and ubiquitous pollutants, were selected as model target. In this system, fluorescence-labeled DNA containing T-T mismatch structure was introduced to bind with DNA probes immobilized onto the sensor surface. In the presence of Hg²⁺, some of the fluorescence-labeled DNAs bind with Hg²⁺ to form T-Hg²⁺-T complexes through the folding of themselves into a hairpin structure and dehybridization from the sensor surface, which leads to decrease in fluorescence signal. The total analysis time for a single sample was less than 10 min with detection limit of 1.2 nM. The rapid on-site/in situ determination of Hg²⁺ was readily performed in natural water. This sensing strategy can be extended in principle to other metal ions by substituting the T-Hg²⁺-T complexes with other specificity structures that selectively bind to other analytes.

  12. Plasmonic Biosensors

    PubMed Central

    Hill, Ryan T.

    2015-01-01

    The unique optical properties of plasmon resonant nanostructures enable exploration of nanoscale environments using relatively simple optical characterization techniques. For this reason, the field of plasmonics continues to garner the attention of the biosensing community. Biosensors based on propagating surface plasmon resonances (SPRs) in films are the most well-recognized plasmonic biosensors, but there is great potential for the new, developing technologies to surpass the robustness and popularity of film-based SPR sensing. This review surveys the current plasmonic biosensor landscape with emphasis on the basic operating principles of each plasmonic sensing technique and the practical considerations when developing a sensing platform with the various techniques. The “gold standard” film SPR technique is reviewed briefly, but special emphasis is devoted to the up-and-coming LSPR-based and plasmonically coupled sensor technology. PMID:25377594

  13. Electrochemical spectroscopic investigations on the interaction of an ytterbium complex with DNA and their analytical applications such as biosensor.

    PubMed

    Ilkhani, Hoda; Ganjali, Mohamad Reza; Arvand, Majid; Hejazi, Mohammad Saeid; Azimi, Fateme; Norouzi, Parviz

    2011-12-01

    Metal ion-DNA interactions are important in nature, often changing the genetic material's structure and function. A new Yb complex of YbCl(3) (tris(8-hydroxyquinoline-5-sulfonic acid) ytterbium) was synthesized and utilized as an electrochemical indicator for the detection of DNA oligonucleotide based on its interaction with Yb(QS)(3). Cyclic voltammetry (CV) and fluorescence spectroscopy were used to investigate the interaction of Yb(QS)(3) with ds-DNA. It was revealed that Yb(QS)(3) presented an excellent electrochemical activity on glassy carbon electrode (GCE) and could intercalate into the double helix of double-stranded DNA (ds-DNA). The binding mechanism of interaction was elucidated on glassy carbon electrode dipped in DNA solution and DNA modified carbon paste electrode by using differential pulse voltammetry and cyclic voltammetry. The binding ratio between this complex and ds-DNA was calculated to be 1:1. The extent of hybridization was evaluated on the basis of the difference between signals of Yb(QS)(3) with probe DNA before and after hybridization with complementary DNA. With this approach, this DNA could be quantified over the range from 1 × 10(-8) to 1.1 × 10(-7)M. The interaction mode between Yb(QS)(3) and DNA was found to be mainly intercalative interaction. These results were confirmed with fluorescence experiments.

  14. A microfluidic electrochemical biosensor based on multiwall carbon nanotube/ferrocene for genomic DNA detection of Mycobacterium tuberculosis in clinical isolates

    PubMed Central

    Zribi, B.; Roy, E.; Pallandre, A.; Chebil, S.; Koubaa, M.; Mejri, N.; Magdinier Gomez, H.; Sola, C.; Korri-Youssoufi, H.; Haghiri-Gosnet, A.-M.

    2016-01-01

    Herein we present a microfluidic-multiplexed platform that integrates electrochemical sensors based on carbon nanotubes associated with ferrocene as redox marker (carbon nanotube (CNT)/ferrocene) for direct detection of pathogenic viral DNA from Hepatitis C and genomic DNA from Mycobacterium tuberculosis in clinical isolates. By operating the fluidic device under high flow (150 μl/min), the formation of a very thin depletion layer at the sensor surface (δS = 230 nm) enhances the capture rate up to one DNA strand per second. By comparison, this capture rate is only 0.02 molecule/s in a static regime without flow. This fluidic protocol allows thus enhancing the limit of detection of the electrochemical biosensor from picomolar in bulk solution to femtomolar with a large dynamic range from 0.1 fM to 1 pM. Kinetics analysis also demonstrates an enhancement of the rate constant of electron transfer (kS) of the electrochemical process from 1 s−1 up to 6 s−1 thanks to the geometry of the miniaturized fluidic electrochemical cell. This microfluidic device working under high flow allows selective direct detection of a Mycobacterium tuberculosis (H37Rv) rpoB allele from clinical isolate extracted DNA. We envision that a microfluidic approach under high flow associated with a multiwall CNT/ferrocene sensor could find useful applications as the point-of-care for multi-target diagnostics of biomarkers in real samples. PMID:26865908

  15. Quantitative characterization of conformational-specific protein-DNA binding using a dual-spectral interferometric imaging biosensor

    NASA Astrophysics Data System (ADS)

    Zhang, Xirui; Daaboul, George G.; Spuhler, Philipp S.; Dröge, Peter; Ünlü, M. Selim

    2016-03-01

    DNA-binding proteins play crucial roles in the maintenance and functions of the genome and yet, their specific binding mechanisms are not fully understood. Recently, it was discovered that DNA-binding proteins recognize specific binding sites to carry out their functions through an indirect readout mechanism by recognizing and capturing DNA conformational flexibility and deformation. High-throughput DNA microarray-based methods that provide large-scale protein-DNA binding information have shown effective and comprehensive analysis of protein-DNA binding affinities, but do not provide information of DNA conformational changes in specific protein-DNA complexes. Building on the high-throughput capability of DNA microarrays, we demonstrate a quantitative approach that simultaneously measures the amount of protein binding to DNA and nanometer-scale DNA conformational change induced by protein binding in a microarray format. Both measurements rely on spectral interferometry on a layered substrate using a single optical instrument in two distinct modalities. In the first modality, we quantitate the amount of binding of protein to surface-immobilized DNA in each DNA spot using a label-free spectral reflectivity technique that accurately measures the surface densities of protein and DNA accumulated on the substrate. In the second modality, for each DNA spot, we simultaneously measure DNA conformational change using a fluorescence vertical sectioning technique that determines average axial height of fluorophores tagged to specific nucleotides of the surface-immobilized DNA. The approach presented in this paper, when combined with current high-throughput DNA microarray-based technologies, has the potential to serve as a rapid and simple method for quantitative and large-scale characterization of conformational specific protein-DNA interactions.DNA-binding proteins play crucial roles in the maintenance and functions of the genome and yet, their specific binding mechanisms are

  16. Real-time monitoring of mycobacterium genomic DNA with target-primed rolling circle amplification by a Au nanoparticle-embedded SPR biosensor.

    PubMed

    Xiang, Yang; Zhu, Xiaoyan; Huang, Qing; Zheng, Junsong; Fu, Weiling

    2015-04-15

    In this study, we developed a surface plasmon resonance (SPR) DNA biosensor array based on target-primed rolling circle amplification (RCA) for isothermal and rapid detection of two pathogenic mycobacteria, Mycobacterium tuberculosis complex (MTBC) and Mycobacterium avium complex (MAC).The species-specific padlock probe (PLP) was designed to target the sequence in 16S-23S rRNA gene internal transcribed spacer (ITS). After ligation, the circularized PLP could be primed by the target sequence to initial RCA. The RCA performed simultaneously with the cleavage reaction to produce small fragments of single strand DNA which immediately hybridized with the probe immobilized on the sensor chip without denaturation. This process caused SPR angle changes on the chip surface, which made the detection for analysis from the solution achievable, and dynamic real-time RCA monitoring of mycobacterium possible. Besides, Au nanoparticles (AuNPs) were directly assembled onto the surface of the sensor chip via hexanedithiol (HDT) for the enhancement of sensitivity as a label-free detection system. Experimental results show that the signal enhancement by the target-primed RCA together with AuNPs-embedded surface caused at least10-fold increased sensitivity as compared with conventional RCA on bare SPR chip method. Within 40min amplification duration as low as 20amol of synthetic targets and 10(4)CFUmL(-1) of genomic DNA from clinical samples can be detected. The proposed method not only provides a simple design idea for liquid-phase amplification monitoring, but also apply it in clinical pathogen detection, which holds great promise in ultrasensitive bioassay in the future.

  17. Metal-organic frameworks-based biosensor for sequence-specific recognition of double-stranded DNA.

    PubMed

    Chen, Lifen; Zheng, Hanye; Zhu, Xi; Lin, Zhenyu; Guo, Longhua; Qiu, Bin; Chen, Guonan; Chen, Zhong-Ning

    2013-06-21

    A simple, cost-efficient, sensitive and selective fluorescence sensor is developed for sequence-specific recognition of duplex DNA (ds-DNA) in vitro using metal-organic framework (MOF) as the sensing platform. N,N-Bis(2-hydroxy-ethyl)dithiooxamidatocopper(II) (H(2)dtoaCu) was chosen as the example MOF, because it strongly chemisorbs the dye-labeled probe TFO (triplex-forming oligonucleotide), and quenches fluorescence from the dye. In the presence of target ds-DNA (the PPT of HIV RNA, a 16-bp ds-DNA sequence), the TFO could interact with the major groove in ds-DNA (via Hoogsteen hydrogen bonding) to form a rigid triplex structure, resulting in fluorescence recovery. The enhanced fluorescence signal has a relationship with the ds-DNA concentration, the detection limit is as low as 1.3 nmol L(-1) (S/N = 3) with good selectivity, which is lower than that based on a graphene oxide platform and electrochemical-DNA sensor.

  18. Potential of cross-priming amplification and DNA-based lateral-flow strip biosensor for rapid on-site GMO screening.

    PubMed

    Huang, Xin; Zhai, Congcong; You, Qimin; Chen, Hongjun

    2014-07-01

    The requirement to monitor the presence of genetically modified organisms (GMO) in a variety of marked products has generated an increasing demand for reliable, rapid, and time and cost-effective analytical methods. Here we report an on-site method for rapid detection of cauliflower mosaic virus promoter (CaMV 35S), a common element present in most GMO, using cross-priming amplification (CPA) technology. Detection was achieved using a DNA-based contamination-proof strip biosensor. The limit of detection was 30 copies for the pBI121 plasmid containing the CaMV 35S gene. The certified reference sample of GM maize line MON810 was detectable even at the low relative mass concentration of 0.05%. The developed CPA method had high specificity for the CaMV 35S gene, as compared with other GM lines not containing this gene and non-GM products. The method was further validated using nine real-world samples, and the results were confirmed by real-time PCR analysis. Because of its simplicity, rapidity, and high sensitivity, this method of detecting the CaMV 35S gene has great commercial prospects for rapid GMO screening of high-consumption food and agriculture products.

  19. DNA biosensor-based on fluorescence detection of E. coli O157:H7 by Au@Ag nanorods.

    PubMed

    Sun, Jiadi; Ji, Jian; Sun, Yanqing; Abdalhai, Mandour H; Zhang, Yinzhi; Sun, Xiulan

    2015-08-15

    A novel DNA sensor for the detection of the Escherichia coli O157:H7 (E. coli O157:H7) eaeA gene was constructed using surface enhanced fluorescence (SEF). The spacing distance dependence nature of Au@Ag nanorods surface enhanced fluorescence was investigated when the cy3-labled single strand DNA(ssDNA) and the stem-loop DNA probe modified on the nanorods was co-hybridized. The result revealed that the fluorescence intensity reached the maximum value with the spacing distance of about 10nm between cy3 and the Au@Ag nanorods surface. Based on this result, a fluorescence "ON/OFF" switch for detecting the eaeA gene of E. coli O157:H7 was constructed. Under optimal conditions, the DNA sensor produced a linear range from 10(-17) to 10(-11) M with a correlation coefficient of 0.9947 and a detection limit of 3.33×10(-18) M, and was also found to be specific in targeting eaeA. The DNA sensor demonstrated a new strategy of combining eaeA recognition and Au@Ag nanorods for fluorescence signal enhancement, and increased sensitivity in the detection of bacterial specific genes.

  20. A review on impedimetric biosensors.

    PubMed

    Bahadır, Elif Burcu; Sezgintürk, Mustafa Kemal

    2016-01-01

    Electrochemical impedance spectroscopy (EIS) is a sensitive technique for the analysis of the interfacial properties related to biorecognition events such as reactions catalyzed by enzymes, biomolecular recognition events of specific binding proteins, lectins, receptors, nucleic acids, whole cells, antibodies or antibody-related substances, occurring at the modified surface. Many studies on impedimetric biosensors are focused on immunosensors and aptasensors. In impedimetric immunosensors, antibodies and antigens are bound each other and thus immunocomplex is formed and the electrode is coated with a blocking layer. As a result of that electron transfer resistance increases. In impedimetric aptasensors, impedance changes following the binding of target sequences, conformational changes, or DNA damages. Impedimetric biosensors allow direct detection of biomolecular recognition events without using enzyme labels. In this paper, impedimetric biosensors are reviewed and the most interesting ones are discussed.

  1. Aptamer-Based Fluorescent Biosensors

    PubMed Central

    Wang, Rongsheng E.; Zhang, Yin; Cai, Jianfeng; Cai, Weibo; Gao, Ting

    2011-01-01

    Selected from random pools of DNA or RNA molecules through systematic evolution of ligands by exponential enrichment (SELEX), aptamers can bind to target molecules with high affinity and specificity, which makes them ideal recognition elements in the development of biosensors. To date, aptamer-based biosensors have used a wide variety of detection techniques, which are briefly summarized in this article. The focus of this review is on the development of aptamer-based fluorescent biosensors, with emphasis on their design as well as properties such as sensitivity and specificity. These biosensors can be broadly divided into two categories: those using fluorescently-labeled aptamers and others that employ label-free aptamers. Within each category, they can be further divided into “signal-on” and “signal-off” sensors. A number of these aptamer-based fluorescent biosensors have shown promising results in biological samples such as urine and serum, suggesting their potential applications in biomedical research and disease diagnostics. PMID:21838688

  2. Porous silicon biosensor: current status.

    PubMed

    Dhanekar, Saakshi; Jain, Swati

    2013-03-15

    Biosensing technologies cater to modern day diagnostics and point of care multi-specialty clinics, hospitals and laboratories. Biosensors aggregate the sensitivity of detection methodologies and constitutional selectivity of biomolecules. Endeavors to develop highly sensitive, fast, stable and low cost biosensors have been made possible by extensive and arduous research. Immense research work is going on for detection of molecules using various materials as immobilization substrate and sensing elements. Amongst materials being used as bio-sensing substrates, nano-porous silicon (PS) has amassed attention and gained popularity in recent years. It has captivating and tunable features like ease of fabrication, special optico-physico properties, tailored morphological structure and versatile surface chemistry enhancing its prospects as transducer for fabricating biosensors. The present review describes the fabrication of PS and its biosensing capabilities for detection of various analytes including, but not limited to, glucose, DNA, antibodies, bacteria and viruses. Attention has been consecrated on the various methodologies such as electrical, electrochemical, optical and label free techniques along with the performances of these biosensors. It concludes with some future prospects and challenges of PS based biosensors.

  3. Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating

    NASA Astrophysics Data System (ADS)

    Candiani, Alessandro; Bertucci, Alessandro; Giannetti, Sara; Konstantaki, Maria; Manicardi, Alex; Pissadakis, Stavros; Cucinotta, Annamaria; Corradini, Roberto; Selleri, Stefano

    2013-05-01

    We describe a novel sensing approach based on a functionalized microstructured optical fiber-Bragg grating for specific DNA target sequences detection. The inner surface of a microstructured fiber, where a Bragg grating was previously inscribed, has been functionalized by covalent linking of a peptide nucleic acid probe targeting a DNA sequence bearing a single point mutation implicated in cystic fibrosis (CF) disease. A solution of an oligonucleotide (ON) corresponding to a tract of the CF gene containing the mutated DNA has been infiltrated inside the fiber capillaries and allowed to hybridize to the fiber surface according to the Watson-Crick pairing. In order to achieve signal amplification, ON-functionalized gold nanoparticles were then infiltrated and used in a sandwich-like assay. Experimental measurements show a clear shift of the reflected high order mode of a Bragg grating for a 100 nM DNA solution, and fluorescence measurements have confirmed the successful hybridization. Several experiments have been carried out on the same fiber using the identical concentration, showing the same modulation trend, suggesting the possibility of the reuse of the sensor. Measurements have also been made using a 100 nM mismatched DNA solution, containing a single nucleotide mutation and corresponding to the wild-type gene, and the results demonstrate the high selectivity of the sensor.

  4. Nanotubes, Nanowires, and Nanocantilevers in Biosensor Development

    SciTech Connect

    Wang, Jun; Liu, Guodong; Lin, Yuehe

    2007-03-08

    In this chapter, the reviews on biosensor development based on 1-D nanomaterials, CNTs, semiconducting nanowires, and some cantilevers will be introduced. The emphasis of this review will be placed on CNTs and electrochemical/electronic biosensor developments. Section 2 of this chapter gives a detailed description of carbon nanotubes-based biosensor development, from fabrication of carbon nanotubes, the strategies for construction of carbon nanotube based biosensors to their bioapplications. In the section of the applications of CNTs based biosensors, various detection principles, e. g. electrochemical, electronic, and optical method, and their applications are reviewed in detail. Section 3 introduces the method for synthesis of semiconducting nanowires, e.g. silicon nanowires, conducting polymer nanowires and metal oxide nanowires and their applications in DNA and proteins sensing. Section 4 simply describes the development for nanocantilevers based biosensors and their application in DNA and protein diagnosis. Each section starts from a brief introduction and then goes into details. Finally in the Conclusion section, the development of 1-D nanomaterials based biosensor development is summarized.

  5. A sandwich-type DNA electrochemical biosensor for hairpin-stem-loop structure based on multistep temperature-controlling method

    PubMed Central

    Hong, Guolin; Liu, Yinhuan; Chen, Wei; Weng, Shaohuang; Liu, Qicai; Liu, Ailin; Zheng, Daoxin; Lin, Xinhua

    2012-01-01

    A highly sensitive and selective method for amplified electrochemical detection for hairpin-stem-loop structured target sequences was developed based on the temperature regulation of DNA hybrids on a sandwich-type electrochemical DNA sensor. Multistep hybridization was applied to promote the hybridization efficiency of each section of sandwich structure. The results showed that both multistep and temperature-controlling hybridization techniques were both especially made to fabricate the sensor for the tendency of internal hybridization of target gene sequences. This strategy provides significantly enhanced hybridization efficiency and sequence specificity of electrochemical detection. PMID:23028223

  6. Field Friendly Tuberculosis Biosensor

    NASA Astrophysics Data System (ADS)

    Proper, N.; Scherman, M. S.; Jevsevar, K. L.; Stone, J.; McNeil, M. R.; Krapf, D.

    2009-10-01

    Tuberculosis (TB) is a fading threat in the United States, but in the developing world it is still a major health-care concern. Given the rising number of cases and lack of resources, there is a desperate need for an affordable, portable detection system. We are working towards the development of a field-friendly immunological biosensor that utilizes florescence microscopy to undertake this task. We observe fluorescently labeled antibodies/antigens as they bind to a glass slide treated with polyethylene glycol (PEG) in order to inhibit non-specific adsorption. Antibodies against the antigens of interest are bound to the PEGylated glass slides via biotin-streptavidin interactions. Then, fluorescently labeled antibodies are mixed with different concentrations of TB antigens and this solution is incubated on the treated glass slides for 30 minutes. The slides are thoroughly rinsed with water following the incubation period. The antigens are then detected by fluorescence using a low-cost biosensor. Our system includes a ``supermarket-scanner'' HeNe laser, home-built electronics, off-the-shelf optics and a Si photodiode. Work is underway to incorporate a flow-cell into the system, in a small portable box.

  7. Step-gate polysilicon nanowires field effect transistor compatible with CMOS technology for label-free DNA biosensor.

    PubMed

    Wenga, G; Jacques, E; Salaün, A-C; Rogel, R; Pichon, L; Geneste, F

    2013-02-15

    Currently, detection of DNA hybridization using fluorescence-based detection technique requires expensive optical systems and complex bioinformatics tools. Hence, the development of new low cost devices that enable direct and highly sensitive detection stimulates a lot of research efforts. Particularly, devices based on silicon nanowires are emerging as ultrasensitive electrical sensors for the direct detection of biological species thanks to their high surface to volume ratio. In this study, we propose innovative devices using step-gate polycrystalline silicon nanowire FET (poly-Si NW FETs), achieved with simple and low cost fabrication process, and used as ultrasensitive electronic sensor for DNA hybridization. The poly-SiNWs are synthesized using the sidewall spacer formation technique. The detailed fabrication procedure for a step-gate NWFET sensor is described in this paper. No-complementary and complementary DNA sequences were clearly discriminated and detection limit to 1 fM range is observed. This first result using this nano-device is promising for the development of low cost and ultrasensitive polysilicon nanowires based DNA sensors compatible with the CMOS technology.

  8. Fiber optic-based biosensor

    NASA Technical Reports Server (NTRS)

    Ligler, Frances S.

    1991-01-01

    The NRL fiber optic biosensor is a device which measures the formation of a fluorescent complex at the surface of an optical fiber. Antibodies and DNA binding proteins provide the mechanism for recognizing an analyze and immobilizing a fluorescent complex on the fiber surface. The fiber optic biosensor is fast, sensitive, and permits analysis of hazardous materials remote from the instrumentation. The fiber optic biosensor is described in terms of the device configuration, chemistry for protein immobilization, and assay development. A lab version is being used for assay development and performance characterization while a portable device is under development. Antibodies coated on the fiber are stable for up to two years of storage prior to use. The fiber optic biosensor was used to measure concentration of toxins in the parts per billion (ng/ml) range in under a minute. Immunoassays for small molecules and whole bacteria are under development. Assays using DNA probes as the detection element can also be used with the fiber optic sensor, which is currently being developed to detect biological warfare agents, explosives, pathogens, and toxic materials which pollute the environment.

  9. Impedimetric DNA-biosensor for the study of dopamine induces DNA damage and investigation of inhibitory and repair effects of some antioxidants.

    PubMed

    Ensafi, Ali A; Kazemnadi, Narges; Amini, Maryam; Rezaei, B

    2015-08-01

    A simple and inexpensive methodology was used to develop a new method in order to inspect the DNA damage due to dopamine and some ionic metals. In addition, the inhibitory and repair effects of some antioxidant such as glutathione and ascorbic acid were studied and compared with each other using electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV). In this work a pencil graphite electrode (PGE) was modified with multiwall carbon nanotubes (MWCNTs) and chitosan (CHIT), then it was decorated with a ds-DNA (ds-DNA/CHIT-MWCNTs/PGE). Due to interaction of ds-DNA and the damaging agents (dopamine+metallic ions), electrochemical and spectroscopy properties of ds-DNA at the surface of the modified electrode was changed, and these changes are followed with EIS and DPV methods. Our study showed that dopamine, Cu(II) and Fe(III) alone could not destroy DNA, but dopamine + Cu(II) and dopamine + Fe(III) can damage DNA. In addition, the ability of dopamine-Cu(II) was greater than dopamine-Fe(III). Moreover, some antioxidant such as glutathione and ascorbic acid can overcome and/or minimize the influence of these damaging interactions.

  10. A novel probe density controllable electrochemiluminescence biosensor for ultra-sensitive detection of Hg2+ based on DNA hybridization optimization with gold nanoparticles array patterned self-assembly platform.

    PubMed

    Gao, Wenhua; Zhang, An; Chen, Yunsheng; Chen, Zixuan; Chen, Yaowen; Lu, Fushen; Chen, Zhanguang

    2013-11-15

    Biosensor based on DNA hybridization holds great potential to get higher sensitivity as the optimal DNA hybridization efficiency can be achieved by controlling the distribution and orientation of probe strands on the transducer surface. In this work, an innovative strategy is reported to tap the sensitivity potential of current electrochemiluminescence (ECL) biosensing system by dispersedly anchoring the DNA beacons on the gold nanoparticles (GNPs) array which was electrodeposited on the glassy carbon electrode surface, rather than simply sprawling the coil-like strands onto planar gold surface. The strategy was developed by designing a "signal-on" ECL biosensing switch fabricated on the GNPs nanopatterned electrode surface for enhanced ultra-sensitivity detection of Hg(2+). A 57-mer hairpin-DNA labeled with ferrocene as ECL quencher and a 13-mer DNA labeled with Ru(bpy)3(2+) as reporter were hybridized to construct the signal generator in off-state. A 31-mer thymine (T)-rich capture-DNA was introduced to form T-T mismatches with the loop sequence of the hairpin-DNA in the presence of Hg(2+) and induce the stem-loop open, meanwhile the ECL "signal-on" was triggered. The peak sensitivity with the lowest detection limit of 0.1 nM was achieved with the optimal GNPs number density while exorbitant GNPs deposition resulted in sensitivity deterioration for the biosensor. We expect the present strategy could lead the renovation of the existing probe-immobilized ECL genosensor design to get an even higher sensitivity in ultralow level of target detection such as the identification of genetic diseases and disorders in basic research and clinical application.

  11. A label-free fluorescent biosensor for ultratrace detection of terbium (ш) based on structural conversion of G-quadruplex DNA mediated by ThT and terbium (ш).

    PubMed

    Chen, Qiang; Zuo, Junfeng; Chen, Jinfeng; Tong, Ping; Mo, Xiujuan; Zhang, Lan; Li, Jianrong

    2015-10-15

    In this paper, a novel label-free fluorescent biosensor for terbium (ш) (Tb(3+)) was proposed based on structural conversion of G-quadruplex DNA mediated by Thioflavin T (ThT) and Tb(3+). In the presence of K(+), ThT could bind to K(+)-stabilized parallel G-quadruplex, giving rise to high fluorescence intensity. Upon the addition of Tb(3+), Tb(3+) could competitively bind to parallel G-quadruplex leading to the structural change, which resulted in fluorescence decrease. The change of fluorescence intensity (ΔF=F0-F) showed a good linear response toward the concentration of Tb(3+) over the range from 1.0 pM to 10.0 µM with a limit of detection of 0.55 pM. This proposed biosensor was simple and cost-effective in design and in operation with ultrahigh sensitivity and selectivity. Thus, the proposed biosensor could be a promising candidate for monitoring ultratrace Tb(3+) in environment.

  12. An electrochemical biosensor based on DNA tetrahedron/graphene composite film for highly sensitive detection of NADH.

    PubMed

    Li, Zonglin; Su, Wenqiong; Liu, Shuopeng; Ding, Xianting

    2015-07-15

    Dihydronicotinamide adenine dinucleotide (NADH) is a major biomarker correlated with lethal diseases such as cancers and bacterial infection. Herein, we report a graphene-DNA tetrahedron-gold nanoparticle modified gold disk electrode for highly sensitive NADH detection. By assembling the DNA tetrahedron/graphene composite film on the gold disk electrode surface which prior harnessed electrochemical deposition of gold nanoparticles to enhance the effective surface area, the oxidation potential of NADH was substantially decreased to 0.28V (vs. Ag/AgCl) and surface fouling effects were successfully eliminated. Furthermore, the lower detection limit of NADH by the presented platform was reduced down to 1fM, with an upper limit of 10pM. Both the regeneration and selectivity of composite film-modified electrode are investigated and proved to be robust. The novel sensor developed here could serve as a highly sensitive probe for NADH detection, which would further benefit the field of NADH related disease diagnostics.

  13. DNA biosensor combining single-wavelength colorimetry and a digital lock-in amplifier within a smartphone.

    PubMed

    Wu, Tzu-Heng; Chang, Chia-Chen; Vaillant, Julien; Bruyant, Aurélien; Lin, Chii-Wann

    2016-11-15

    Smartphone camera based gold nanoparticle colorimetry (SCB-AuNP colorimetry) has shown good potential for point-of-care applications. However, due to the use of a camera as a photo-detector, there are major limitations to this technique such as a low bit resolution (∼8 bits mainstream) and a low data acquisition rate. These issues have limited the ultimate sensitivity of smartphone based colorimetry as well as the possibility to integrate efficiently a more sensitive approach such as detection based on a lock-in amplifier (LIA). In this paper, we improve the metrological performance of the smartphone to overcome existing issues by adding the LIA capability to AuNP sensing. In this work, instead of using the camera as a photo-detector, the audio jack is used as a photo-detector reader and function generator for driving a laser diode in order to achieve a smartphone based digital lock-in amplifier AuNP colorimetric (SBLIA-AuNP colorimetry) system. A full investigation on the SBLIA design, parameters and performance is comprehensively provided. It is found that the SBLIA can reduce most of the noise and provides a detection noise-to-signal ratio down to -63 dB, which is much better than the -49 dB of the state-of-the-art SCB based method. A DNA detection experiment is demonstrated to reveal the efficacy of the proposed metrological method. The results are compared to UV-visible spectrometry, which is the gold standard for colorimetric measurement. Based on our results, the SBLIA-AuNP colorimetric system has a detection limit of 0.77 nM on short strand DNA detection, which is 5.7 times better than the 4.36 nM limit of a commercial UV-visible spectrometer. Judging from the results, we believe that the sensitive SBLIA would be further extended to other optical diagnostic tools in the near future.

  14. REVIEW ARTICLE: Environmental applications of analytical biosensors

    NASA Astrophysics Data System (ADS)

    Marco, María-Pilar; Barceló, Damià

    1996-11-01

    A review of the fundamental aspects and environmental applications of biosensors is presented. The bases of different transducer principles such as electrochemical, optical and piezoelectric are discussed. Various examples are given of the applications of such principles to develop immunosensor devices to determine common environmental contaminants. Attention is also paid to catalytic biosensors, using enzymes as sensing elements. Biosensor devices based on the use of cholinesterase and various oxidase enzymes such as tyrosinase, laccase, peroxidase and aldehyde dehydrogenase are reported. Some examples are given of the applications of other biomolecules such as whole cells, DNA or proteins, to determine pollution. Validation studies are presented comparing biosensors with chromatographic techniques to determine organophosphorus pesticides and phenolic compounds in environmental samples.

  15. Electronic Biosensors Based on III-Nitride Semiconductors.

    PubMed

    Kirste, Ronny; Rohrbaugh, Nathaniel; Bryan, Isaac; Bryan, Zachary; Collazo, Ramon; Ivanisevic, Albena

    2015-01-01

    We review recent advances of AlGaN/GaN high-electron-mobility transistor (HEMT)-based electronic biosensors. We discuss properties and fabrication of III-nitride-based biosensors. Because of their superior biocompatibility and aqueous stability, GaN-based devices are ready to be implemented as next-generation biosensors. We review surface properties, cleaning, and passivation as well as different pathways toward functionalization, and critically analyze III-nitride-based biosensors demonstrated in the literature, including those detecting DNA, bacteria, cancer antibodies, and toxins. We also discuss the high potential of these biosensors for monitoring living cardiac, fibroblast, and nerve cells. Finally, we report on current developments of covalent chemical functionalization of III-nitride devices. Our review concludes with a short outlook on future challenges and projected implementation directions of GaN-based HEMT biosensors.

  16. Electronic Biosensors Based on III-Nitride Semiconductors

    NASA Astrophysics Data System (ADS)

    Kirste, Ronny; Rohrbaugh, Nathaniel; Bryan, Isaac; Bryan, Zachary; Collazo, Ramon; Ivanisevic, Albena

    2015-07-01

    We review recent advances of AlGaN/GaN high-electron-mobility transistor (HEMT)-based electronic biosensors. We discuss properties and fabrication of III-nitride-based biosensors. Because of their superior biocompatibility and aqueous stability, GaN-based devices are ready to be implemented as next-generation biosensors. We review surface properties, cleaning, and passivation as well as different pathways toward functionalization, and critically analyze III-nitride-based biosensors demonstrated in the literature, including those detecting DNA, bacteria, cancer antibodies, and toxins. We also discuss the high potential of these biosensors for monitoring living cardiac, fibroblast, and nerve cells. Finally, we report on current developments of covalent chemical functionalization of III-nitride devices. Our review concludes with a short outlook on future challenges and projected implementation directions of GaN-based HEMT biosensors.

  17. Glycan and lectin biosensors

    PubMed Central

    Belický, Štefan; Katrlík, Jaroslav

    2016-01-01

    A short description about the importance of glycan biorecognition in physiological (blood cell type) and pathological processes (infections by human and avian influenza viruses) is provided in this review. Glycans are described as much better information storage media, compared to proteins or DNA, due to the extensive variability of glycan structures. Techniques able to detect an exact glycan structure are briefly discussed with the main focus on the application of lectins (glycan-recognising proteins) in the specific analysis of glycans still attached to proteins or cells/viruses. Optical, electrochemical, piezoelectric and micromechanical biosensors with immobilised lectins or glycans able to detect a wide range of analytes including whole cells/viruses are also discussed. PMID:27365034

  18. Nanotechnology and biosensors.

    PubMed

    Jianrong, Chen; Yuqing, Miao; Nongyue, He; Xiaohua, Wu; Sijiao, Li

    2004-09-01

    Nanotechnology is playing an increasingly important role in the development of biosensors. The sensitivity and performance of biosensors is being improved by using nanomaterials for their construction. The use of these nanomaterials has allowed the introduction of many new signal transduction technologies in biosensors. Because of their submicron dimensions, nanosensors, nanoprobes and other nanosystems have allowed simple and rapid analyses in vivo. Portable instruments capable of analyzing multiple components are becoming available. This work reviews the status of the various nanostructure-based biosensors. Use of the self-assembly techniques and nano-electromechanical systems (NEMS) in biosensors is discussed.

  19. Biosensors: the new wave in cancer diagnosis

    PubMed Central

    Bohunicky, Brian; Mousa, Shaker A

    2011-01-01

    The earlier cancer can be detected, the better the chance of a cure. Currently, many cancers are diagnosed only after they have metastasized throughout the body. Effective, accurate methods of cancer detection and clinical diagnosis are urgently needed. Biosensors are devices that are designed to detect a specific biological analyte by essentially converting a biological entity (ie, protein, DNA, RNA) into an electrical signal that can be detected and analyzed. The use of biosensors in cancer detection and monitoring holds vast potential. Biosensors can be designed to detect emerging cancer biomarkers and to determine drug effectiveness at various target sites. Biosensor technology has the potential to provide fast and accurate detection, reliable imaging of cancer cells, and monitoring of angiogenesis and cancer metastasis, and the ability to determine the effectiveness of anticancer chemotherapy agents. This review will briefly summarize the current obstacles to early detection of cancer and the expanding use of biosensors as a diagnostic tool, as well as some future applications of biosensor technology. PMID:24198482

  20. Biosensors in clinical chemistry: An overview.

    PubMed

    Murugaiyan, Sathish Babu; Ramasamy, Ramesh; Gopal, Niranjan; Kuzhandaivelu, V

    2014-01-01

    Biosensors are small devices that employ biological/biochemical reactions for detecting target analytes. Basically, the device consists of a biocatalyst and a transducer. The biocatalyst may be a cell, tissue, enzyme or even an oligonucleotide. The transducers are mainly amperometric, potentiometric or optical. The classification of biosensors is based on (a) the nature of the recognition event or (b) the intimacy between the biocatalyst and the transducer. Bioaffinity and biocatalytic devices are examples for the former and the first, whereas second and third generation instruments are examples for the latter. Cell-based biosensors utilizing immobilized cells, tissues as also enzyme immunosensors and DNA biosensors find variegated uses in diagnostics. Enzyme nanoparticle-based biosensors make use of small particles in the nanometer scale and are currently making a mark in laboratory medicine. Nanotechnology can help in optimizing the diagnostic biochips, which would facilitate sensitive, rapid, accurate and precise bedside monitoring. Biosensors render themselves as capable diagnostic tools as they meet most of the above-mentioned criteria.

  1. Trends in tactile biosensors, smell-sensitive biosensors

    NASA Astrophysics Data System (ADS)

    Higuchi, K.; Kawana, Y.; Kimura, J.

    1986-03-01

    Biosensors, whch combine substances from living organisms such as enzymes with electrochemical transducers, are considered taste-sensitive biosensors. Touch sensors were analyzed using various pressure-sensitive elements, but no attempts were made to use substances from organisms. The sense of smell is a gase sensor for the body; there are numerous uncertainties about the meaning of smell-sensitive biosensors. Tactile biosensors and olfactor biosensors were examined. Biosensors include sensors directly apply materials extracted from organisms and sensors which copy sensors.

  2. Electroactive crown ester-Cu(2+) complex with in-situ modification at molecular beacon probe serving as a facile electrochemical DNA biosensor for the detection of CaMV 35s.

    PubMed

    Zhan, Fengping; Liao, Xiaolei; Gao, Feng; Qiu, Weiwei; Wang, Qingxiang

    2017-06-15

    A novel electrochemical DNA biosensor has been facilely constructed by in-situ assembly of electroactive 4'-aminobenzo-18-crown-6-copper(II) complex (AbC-Cu(2+)) on the free terminal of the hairpin-structured molecule beacon. The 3'-SH modified molecule beacon probe was first immobilized on the gold electrode (AuE) surface through self-assembly chemistry of Au-S bond. Then the crow ester of AbC was covalently coupled with 5'-COOH on the molecule beacon, and served as a platform to attach the Cu(2+) by coordination with ether bond (-O-) of the crown cycle. Thus, an electroactive molecule beacon-based biosensing interface was constructed. In comparison with conventional methods for preparation of electroactive molecule beacon, the approach presented in this work is much simpler, reagent- and labor-saving. Selectivity study shows that the in-situ fabricated electroactive molecule beacon remains excellent recognition ability of pristine molecule beacon probe to well differentiate various DNA fragments. The target DNA can be quantatively determined over the range from 0.10pM to 0.50nM. The detection limit of 0.060pM was estimated based on signal-to-noise ratio of 3. When the biosensor was applied for the detection cauliflower mosaic virus 35s (CaMV 35s) in soybean extraction samples, satisfactory results are achieved. This work opens a new strategy for facilely fabricating electrochemical sensing interface, which also shows great potential in aptasensor and immurosensor fabrication.

  3. Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials.

    PubMed

    Song, Yang; Luo, Yanan; Zhu, Chengzhou; Li, He; Du, Dan; Lin, Yuehe

    2016-02-15

    Graphene as a star among two-dimensional nanomaterials has attracted tremendous research interest in the field of electrochemistry due to their intrinsic properties, including the electronic, optical, and mechanical properties associated with their planar structure. The marriage of graphene and electrochemical biosensors has created many ingenious biosensing strategies for applications in the areas of clinical diagnosis and food safety. This review provides a comprehensive overview of the recent advances in the development of graphene based electrochemical biosensors. Special attention is paid to graphene-based enzyme biosensors, immunosensors, and DNA biosensors. Future perspectives on high-performance graphene-based electrochemical biosensors are also discussed.

  4. Fiber Optic Surface Plasmon Resonance-Based Biosensor Technique: Fabrication, Advancement, and Application.

    PubMed

    Liang, Gaoling; Luo, Zewei; Liu, Kunping; Wang, Yimin; Dai, Jianxiong; Duan, Yixiang

    2016-05-03

    Fiber optic-based biosensors with surface plasmon resonance (SPR) technology are advanced label-free optical biosensing methods. They have brought tremendous progress in the sensing of various chemical and biological species. This review summarizes four sensing configurations (prism, grating, waveguide, and fiber optic) with two ways, attenuated total reflection (ATR) and diffraction, to excite the surface plasmons. Meanwhile, the designs of different probes (U-bent, tapered, and other probes) are also described. Finally, four major types of biosensors, immunosensor, DNA biosensor, enzyme biosensor, and living cell biosensor, are discussed in detail for their sensing principles and applications. Future prospects of fiber optic-based SPR sensor technology are discussed.

  5. "Smart dust" biosensors powered by biomolecular motors.

    PubMed

    Bachand, George D; Hess, Henry; Ratna, Banahalli; Satir, Peter; Vogel, Viola

    2009-06-21

    The concept of a microfabricated biosensor for environmental and biomedical monitoring applications which is composed of environmentally benign components is presented. With a built-in power source (the biological fuel ATP) and driven by biological motors (kinesin), sensing in the microdevice can be remotely activated and the presence of a target molecule or toxin remotely detected. The multifaceted progress towards the realization of such a device is described.

  6. Graphene-Based Optical Biosensors and Imaging

    SciTech Connect

    Tang, Zhiwen; He, Shijiang; Pei, Hao; Du, Dan; Fan, Chunhai; Lin, Yuehe

    2014-01-13

    This chapter focuses on the design, fabrication and application of graphene based optical nanobiosensors. The emerging graphene based optical nanobiosensors demonstrated the promising bioassay and biomedical applications thanking to the unique optical features of graphene. According to the different applications, the graphene can be tailored to form either fluorescent emitter or efficient fluorescence quencher. The exceptional electronic feature of graphene makes it a powerful platform for fabricating the SPR and SERS biosensors. Today the graphene based optical biosensors have been constructed to detect various targets including ions, small biomolecules, DNA/RNA and proteins. This chapter reviews the recent progress in graphene-based optical biosensors and discusses the opportunities and challenges in this field.

  7. Biosentinel: Developing a Space Radiation Biosensor

    NASA Technical Reports Server (NTRS)

    Santa Maria, Sergio R.; Marina, Diana B.; Parra, Macarena P.; Boone, Travis D.; Tan, Ming; Ricco, Antonio J.; Straume, Tore N.; Lusby, Terry C.; Harkness, T.; Reiss-Bubenheim, Debra; Brent, R.; Bhattacharya, Sharmila

    2014-01-01

    Ionizing radiation presents a major challenge to human exploration and long-term residence in space. The deep-space radiation spectrum includes highly energetic particles that generate double strand breaks (DSBs), deleterious DNA lesions that are usually repaired without errors via homologous recombination (HR), a conserved pathway in all eukaryotes. While progress identifying and characterizing biological radiation effects using Earth-based facilities has been significant, no terrestrial source duplicates the unique space radiation environment.We are developing a biosensor-based nanosatellite to fly aboard NASAs Space Launch System Exploration Mission 1, expected to launch in 2017 and reach a 1AU (astronomic unit) heliocentric orbit. Our biosensor (called BioSentinel) uses the yeast S. cerevisiae to measure DSBs in response to ambient space radiation. The BioSentinel strain contains engineered genetic defects that prevent growth until and unless a radiation-induced DSB near a reporter gene activates the yeasts HR repair mechanisms. Thus, culture growth and metabolic activity directly indicate a successful DSB-and-repair event. In parallel, HR-defective and wild type strains will provide survival data. Desiccated cells will be carried within independent culture microwells, built into 96-well microfluidic cards. Each microwell set will be activated by media addition at different time points over 18 months, and cell growth will be tracked continuously via optical density. One reserve set will be activated only in the occurrence of a solar particle event. Biological measurements will be compared to data provided by onboard physical dosimeters and to Earth-based experiments.BioSentinel will conduct the first study of biological response to space radiation outside Low Earth Orbit in over 40 years. BioSentinel will thus address strategic knowledge gaps related to the biological effects of space radiation and will provide an adaptable platform to perform human

  8. Biosensors for Cell Analysis.

    PubMed

    Zhou, Qing; Son, Kyungjin; Liu, Ying; Revzin, Alexander

    2015-01-01

    Biosensors first appeared several decades ago to address the need for monitoring physiological parameters such as oxygen or glucose in biological fluids such as blood. More recently, a new wave of biosensors has emerged in order to provide more nuanced and granular information about the composition and function of living cells. Such biosensors exist at the confluence of technology and medicine and often strive to connect cell phenotype or function to physiological or pathophysiological processes. Our review aims to describe some of the key technological aspects of biosensors being developed for cell analysis. The technological aspects covered in our review include biorecognition elements used for biosensor construction, methods for integrating cells with biosensors, approaches to single-cell analysis, and the use of nanostructured biosensors for cell analysis. Our hope is that the spectrum of possibilities for cell analysis described in this review may pique the interest of biomedical scientists and engineers and may spur new collaborations in the area of using biosensors for cell analysis.

  9. Photoelectrochemical enzymatic biosensors.

    PubMed

    Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2017-06-15

    Enzymatic biosensors have been valuable bioanalytical devices for analysis of diverse targets in disease diagnosis, biological and biomedical research, etc. Photoelectrochemical (PEC) bioanalysis is a recently emerged method that promptly becoming a subject of new research interests due to its attractive potential for future bioanalysis with high sensitivity and specificity. PEC enzymatic biosensors integrate the inherent sensitivities of PEC bioanalysis and the selectivity of enzymes and thus share their both advantages. Currently, PEC enzymatic biosensors have become a hot topic of significant research and the recent impetus has grown rapidly as demonstrated by increased research papers. Given the pace of advances in this area, this review will make a thorough discussion and survey on the fundamentals, sensing strategies, applications and the state of the art in PEC enzymatic biosensors, followed by future prospects based on our own opinions. We hope this work could provide an accessible introduction to PEC enzymatic biosensors for any scientist.

  10. Replaceable Microfluidic Cartridges for a PCR Biosensor

    NASA Technical Reports Server (NTRS)

    Francis, Kevin; Sullivan, Ron

    2005-01-01

    The figure depicts a replaceable microfluidic cartridge that is a component of a miniature biosensor that detects target deoxyribonucleic acid (DNA) sequences. The biosensor utilizes (1) polymerase chain reactions (PCRs) to multiply the amount of DNA to be detected, (2) fluorogenic polynucleotide probe chemicals for labeling the target DNA sequences, and (3) a high-sensitivity epifluorescence-detection optoelectronic subsystem. Microfluidics is a relatively new field of device development in which one applies techniques for fabricating microelectromechanical systems (MEMS) to miniature systems for containing and/or moving fluids. Typically, microfluidic devices are microfabricated, variously, from silicon or polymers. The development of microfluidic devices for applications that involve PCR and fluorescence-based detection of PCR products poses special challenges

  11. Single bead-based electrochemical biosensor

    PubMed Central

    Liu, Changchun; Schrlau, Michael G.; Bau, Haim H.

    2009-01-01

    A simple, robust, single bead-based electrochemical biosensor was fabricated and characterized. The sensor’s working electrode consists of an electrochemically-etched platinum wire, with a nominal diameter of 25 μm, hermetically heat-fusion sealed in a pulled glass capillary (micropipette). The sealing process does not require any epoxy or glue. A commercially available, densely functionalized agarose bead was mounted on the tip of the etched platinum wire. The use of a pre-functionalized bead eliminates the tedious and complicated surface functionalization process that is often the bottleneck in the development of electrochemical biosensors. We report on the use of a biotin agarose bead-based, micropipette, electrochemical (Bio-BMP) biosensor to monitor H2O2 concentration and the use of a streptavidin bead-based, micropipette, electrochemical (SA-BMP) biosensor to detect DNA amplicons. The Bio-BMP biosensor’s response increased linearly as the H2O2 concentration increased in the range from 1×10−6 to 1.2×10−4 M with a detection limit of 5×10−7 M. The SA-BMP was able to detect the amplicons of 1 pg DNA template of B. Cereus bacteria, thus providing better detection sensitivity than conventional gel-based electropherograms. PMID:19767195

  12. Built to disappear.

    PubMed

    Bauer, Siegfried; Kaltenbrunner, Martin

    2014-06-24

    Microelectronics dominates the technological and commercial landscape of today's electronics industry; ultrahigh density integrated circuits on rigid silicon provide the computing power for smart appliances that help us organize our daily lives. Integrated circuits function flawlessly for decades, yet we like to replace smart phones and tablet computers every year. Disposable electronics, built to disappear in a controlled fashion after the intended lifespan, may be one of the potential applications of transient single-crystalline silicon nanomembranes, reported by Hwang et al. in this issue of ACS Nano. We briefly outline the development of this latest branch of electronics research, and we present some prospects for future developments. Electronics is steadily evolving, and 20 years from now we may find it perfectly normal for smart appliances to be embedded everywhere, on textiles, on our skin, and even in our body.

  13. Design of electrochemical biosensor systems for the detection of specific DNA sequences in PCR-amplified nucleic acids related to the catechol-O-methyltransferase Val108/158Met polymorphism based on intrinsic guanine signal.

    PubMed

    Ozkan-Ariksoysal, Dilsat; Tezcanli, Burcin; Kosova, Buket; Ozsoz, Mehmet

    2008-02-01

    Psychiatric disorders are common and complex diseases that show polygenic and multifactorial heredity. A single nucleotide polymorphism (Val108/158Met) in the catechol-O-methyl transferase (COMT) gene is related to many psychiatric disorders such as schizophrenia, alcoholism, bipolar disorder, and obsessive-compulsive disorder. Schizophrenia is a complex disorder and a single nucleotide polymorphism (Val108/158Met) at the COMT gene is related to schizophrenia susceptibility. A novel hybridization-based disposable electrochemical DNA biosensor for the detection of a common functional polymorphism in the COMT gene from polymerase chain reaction (PCR) amplicons has been described without using an external label. This developed technology combined with a disposable carbon graphite electrode and differential pulse voltammetry was performed by using short synthetic oligonucleotides and PCR amplicons in length 203 bp to measure the change of guanine oxidation signal obtained at approximately +1.0 V after DNA hybridization between probe and target (synthetic target or denatured PCR samples). COMT-specific oligonucleotides were immobilized onto the carbon surface with a simple adsorption method in two different modes: (a) Guanine-containing targets were attached or (b) inosine-substituted probes were attached onto an electrode. By controlling the surface coverage of the target DNA, the hybridization event between the probes and their synthetic targets or specific PCR products was optimized. The wild-type or polymorphic allele-specific probes/targets were also interacted with an equal amount of noncomplementary and one-base mismatch-containing DNAs in order to measure the sensor selectivity. The decrease or appearance in the intrinsic guanine signal simplified the detection procedure and shortened the assay time because protocol eliminates the label-binding step. The nonspecific binding effects were minimized by using sodium dodecyl sulfate with different washing methods

  14. Introduction to biosensors

    PubMed Central

    Bhalla, Nikhil; Jolly, Pawan; Formisano, Nello

    2016-01-01

    Biosensors are nowadays ubiquitous in biomedical diagnosis as well as a wide range of other areas such as point-of-care monitoring of treatment and disease progression, environmental monitoring, food control, drug discovery, forensics and biomedical research. A wide range of techniques can be used for the development of biosensors. Their coupling with high-affinity biomolecules allows the sensitive and selective detection of a range of analytes. We give a general introduction to biosensors and biosensing technologies, including a brief historical overview, introducing key developments in the field and illustrating the breadth of biomolecular sensing strategies and the expansion of nanotechnological approaches that are now available. PMID:27365030

  15. Development of an immunoFET biosensor for the detection of biotinylated PCR product.

    PubMed

    Muangsuwan, Wannaporn; Promptmas, Chamras; Jeamsaksiri, Wutthinan; Bunjongpru, Win; Srisuwan, Awirut; Hruanun, Charndet; Poyai, Amporn; Wongchitrat, Prapimpun; Yasawong, Montri

    2016-10-01

    ImmunoFET (IMFET) biosensor is a simple platform for the detection of biotinylated products of polymerase chain reaction (PCR). Construction of the IMFET biosensor started with adsorption of 1.5 mg/mL of protein A (PA) onto the insulated gate surface of ISFET for 90 min. Next, the immobilized 1/500 dilution of anti-biotin antibody was adsorbed onto the PA layer for 60 min. The IMFET biosensor was subsequently ready for detection of the biotinylated amplicon. The IMFET biosensor showed highly specific binding to the biotinylated PCR product of the phaE gene of Haloquadratum walsbyi DSM 16854. The phaE gene is a biomarker of polyhydroxyalkanoate (PHA) producers that contain PHA synthase class III. The lowest amount of DNA template of H. walsbyi DSM 16854 that the IMFET biosensor could detect was 125 fg. The IMFET biosensor has a lower amount of detection compared with a DNA lateral flow biosensor from our previous study. The degree of linearity of the biosensor signal was influenced by the concentration of the biotinylated amplicon. The IMFET biosensor also has a short response time (approximately 30 times) to detect the phaE amplicon compared to an agarose gel electrophoresis. The IMFET biosensor is a promising tool for the detection of the biotinylated PCR product, and it can be integrated into a micro total analysis system (μTAS).

  16. Toward hypoxia-selective DNA-alkylating agents built by grafting nitrogen mustards onto the bioreductively activated, hypoxia-selective DNA-oxidizing agent 3-amino-1,2,4-benzotriazine 1,4-dioxide (tirapazamine).

    PubMed

    Johnson, Kevin M; Parsons, Zachary D; Barnes, Charles L; Gates, Kent S

    2014-08-15

    Tirapazamine (3-amino-1,2,4-benzotriazine 1,4-dioxide) is a heterocyclic di-N-oxide that undergoes enzymatic deoxygenation selectively in the oxygen-poor (hypoxic) cells found in solid tumors to generate a mono-N-oxide metabolite. This work explored the idea that the electronic changes resulting from the metabolic deoxygenation of tirapazamine analogues might be exploited to activate a DNA-alkylating species selectively in hypoxic tissue. Toward this end, tirapazamine analogues bearing nitrogen mustard units were prepared. In the case of the tirapazamine analogue 18a bearing a nitrogen mustard unit at the 6-position, it was found that removal of the 4-oxide from the parent di-N-oxide to generate the mono-N-oxide analogue 17a did indeed cause a substantial increase in reactivity of the mustard unit, as measured by hydrolysis rates and DNA-alkylation yields. Hammett sigma values were measured to quantitatively assess the magnitude of the electronic changes induced by metabolic deoxygenation of the 3-amino-1,2,4-benzotriazine 1,4-dioxide heterocycle. The results provide evidence that the 1,2,4-benzotiazine 1,4-dioxide unit can serve as an oxygen-sensing prodrug platform for the selective unmasking of bioactive agents in hypoxic cells.

  17. Biosensors Incorporating Bimetallic Nanoparticles

    PubMed Central

    Rick, John; Tsai, Meng-Che; Hwang, Bing Joe

    2015-01-01

    This article presents a review of electrochemical bio-sensing for target analytes based on the use of electrocatalytic bimetallic nanoparticles (NPs), which can improve both the sensitivity and selectivity of biosensors. The review moves quickly from an introduction to the field of bio-sensing, to the importance of biosensors in today’s society, the nature of the electrochemical methods employed and the attendant problems encountered. The role of electrocatalysts is introduced with reference to the three generations of biosensors. The contributions made by previous workers using bimetallic constructs, grouped by target analyte, are then examined in detail; following which, the synthesis and characterization of the catalytic particles is examined prior to a summary of the current state of endeavor. Finally, some perspectives for the future of bimetallic NPs in biosensors are given. PMID:28344262

  18. Triggered optical biosensor

    DOEpatents

    Song, Xuedong; Swanson, Basil I.

    2001-10-02

    An optical biosensor is provided for the detection of a multivalent target biomolecule, the biosensor including a substrate having a bilayer membrane thereon, a recognition molecule situated at the surface, the recognition molecule capable of binding with the multivalent target biomolecule, the recognition molecule further characterized as including a fluorescence label thereon and as being movable at the surface and a device for measuring a fluorescence change in response to binding between the recognition molecule and the multivalent target biomolecule.

  19. Low-cost and highly efficient DNA biosensor for heavy metal ion using specific DNAzyme-modified microplate and portable glucometer-based detection mode.

    PubMed

    Zhang, Jin; Tang, Ying; Teng, Liumei; Lu, Minghua; Tang, Dianping

    2015-06-15

    A simple and low-cost DNA sensing platform based on Pb(2+)-specific DNAzyme-modified microplate was successfully developed for highly sensitive monitoring of lead ion (Pb(2+), one kind of toxic heavy metal ion) in the environmental samples coupling with a portable personal glucometer (PGM)-based detection mode. The detection cell was first prepared simply by means of immobilizing the DNAzyme on the streptavidin-modified microplate. Gold nanoparticle labeled with single-stranded DNA and invertase (Enz-AuNP-DNA) was utilized as the signal-transduction tag to produce PGM substrate (glucose). Upon addition of lead ion into the microplate, the substrate strand of the immobilized DNAzyme was catalytically cleaved by target Pb(2+), and the newly generated single-strand DNA in the microplate could hybridize again with the single-stranded DNA on the Enz-AuNP-DNA. Accompanying with the Enz-AuNP-DNA, the carried invertase could convert sucrose into glucose. The as-produced glucose could be monitored by using a widely accessible PGM for in situ amplified digital readout. Based on Enz-AuNP-DNA amplification strategy, as low as 1.0 pM Pb(2+) could be detected under the optimal conditions. Moreover, the methodology also showed good reproducibility and high selectivity toward target Pb(2+) against other metal ions because of highly specific Pb(2+)-dependent DNAzyme, and was applicable for monitoring Pb(2+) in the naturally contaminated sewage and spiked drinking water samples.

  20. High-density fiber optic biosensor arrays

    NASA Astrophysics Data System (ADS)

    Epstein, Jason R.; Walt, David R.

    2002-02-01

    Novel approaches are required to coordinate the immense amounts of information derived from diverse genomes. This concept has influenced the expanded role of high-throughput DNA detection and analysis in the biological sciences. A high-density fiber optic DNA biosensor was developed consisting of oligonucleotide-functionalized, 3.1 mm diameter microspheres deposited into the etched wells on the distal face of a 500 micrometers imaging fiber bundle. Imaging fiber bundles containing thousands of optical fibers, each associated with a unique oligonucleotide probe sequence, were the foundation for an optically connected, individually addressable DNA detection platform. Different oligonucleotide-functionalized microspheres were combined in a stock solution, and randomly dispersed into the etched wells. Microsphere positions were registered from optical dyes incorporated onto the microspheres. The distribution process provided an inherent redundancy that increases the signal-to-noise ratio as the square root of the number of sensors examined. The representative amount of each probe-type in the array was dependent on their initial stock solution concentration, and as other sequences of interest arise, new microsphere elements can be added to arrays without altering the existing detection capabilities. The oligonucleotide probe sequences hybridize to fluorescently-labeled, complementary DNA target solutions. Fiber optic DNA microarray research has included DNA-protein interaction profiles, microbial strain differentiation, non-labeled target interrogation with molecular beacons, and single cell-based assays. This biosensor array is proficient in DNA detection linked to specific disease states, single nucleotide polymorphism (SNP's) discrimination, and gene expression analysis. This array platform permits multiple detection formats, provides smaller feature sizes, and enables sensor design flexibility. High-density fiber optic microarray biosensors provide a fast

  1. Creation of carbon nanotube based bioSensors through dielectrophoretic assembly

    NASA Astrophysics Data System (ADS)

    Mani, Nilan S.; Kim, Steve; Annam, Kaushik; Bane, Danielle; Subramanyam, Guru

    2015-08-01

    Due to their excellent electrical, optical, and mechanical properties, nanosized single wall carbon nanotubes (SWNTs) have attracted significant attention as a transducing element in nano-bio sensor research. Controlled assembly, device fabrication, and bio-functionalization of the SWNTs are crucial in creating the sensors. In this study, working biosensor platforms were created using dielectrophoretic assembly of single wall carbon nanotubes (SWNTs) as a bridge between two gold electrodes. SWNTs in a commercial SDS surfactant solution were dispensed in the gap between the two gold electrodes, followed by applying an ac voltage across the two electrodes. The dielectrophoresis aligns the CNTs and forms a bridge between the two electrodes. A copious washing and a subsequent annealing of the devices at 200 °C remove the surfactants and create an excellent semiconducting (p-type) bridge between the two electrodes. A liquid gated field effect transistor (LGFET) was built using DI water as the gate dielectric and the SWNT bridge as the channel. Negative gate voltages of the FET increased the drain current and applying a positive gate voltage of +0.5V depleted the channel of charges and turned the device off. The biosensor was verified using both the two terminal and three terminal devices. Genomic salmon DNA dissolved in DI water was applied on the SWNT bridge in both type of devices. In the two terminal device, the conductance of the bridge dropped by 65x after the binding of the DNA. In the LGFET, the transconductance of the device decreased 2X after the binding of the DNA. The binding of the DNA also suppressed hysteresis in the Drain Current vs Gate Voltage characteristics of the LGFET.

  2. Recent research trends of radio-frequency biosensors for biomolecular detection.

    PubMed

    Lee, Hee-Jo; Yook, Jong-Gwan

    2014-11-15

    This article reviews radio-frequency (RF) biosensors based on passive and/or active devices and circuits. In particular, we focus on RF biosensors designed for detection of various biomolecules such as biotin-streptavidin, DNA hybridization, IgG, and glucose. The performance of these biosensors has been enhanced by the introduction of various sensing schemes with diverse nanomaterials (e.g., carbon nanotubes, graphene oxide, magnetic and gold nanoparticles, etc.). In addition, the RF biosensing platforms that can be associated with an RF active system are discussed. Finally, the challenges of RF biosensors are presented and suggestions are made for their future direction and prospects.

  3. Integral toxicity test of sea waters by an algal biosensor.

    PubMed

    Tonnina, Daniele; Campanella, Luigi; Sammartino, Maria Pia; Visco, Giovanni

    2002-04-01

    An integral toxicity test, based on an algal biosensor and suitable to be used in sea water, is presented. The biosensor was designed and built by coupling a Clark oxygen electrode as transducer and the marine alga Spirulina subsalsa as biological mediator; it constitutes the "core" in a lab-scale prototype of a flow apparatus suitable to continuously monitor, in sea water, the photosynthetic activity of the alga and, from its variation, the marine pollution from the toxicological point of view. Inorganic pollutants (heavy metals) were tested in previous researches while organic ones (chlorophenols, pesticides and surfactants) are the object of the present paper.

  4. Development of mercury (II) ion biosensors based on mercury-specific oligonucleotide probes.

    PubMed

    Li, Lanying; Wen, Yanli; Xu, Li; Xu, Qin; Song, Shiping; Zuo, Xiaolei; Yan, Juan; Zhang, Weijia; Liu, Gang

    2016-01-15

    Mercury (II) ion (Hg(2+)) contamination can be accumulated along the food chain and cause serious threat to the public health. Plenty of research effort thus has been devoted to the development of fast, sensitive and selective biosensors for monitoring Hg(2+). Thymine was demonstrated to specifically combine with Hg(2+) and form a thymine-Hg(2+)-thymine (T-Hg(2+)-T) structure, with binding constant even higher than T-A Watson-Crick pair in DNA duplex. Recently, various novel Hg(2+) biosensors have been developed based on T-rich Mercury-Specific Oligonucleotide (MSO) probes, and exhibited advanced selectivity and excellent sensitivity for Hg(2+) detection. In this review, we explained recent development of MSO-based Hg(2+) biosensors mainly in 3 groups: fluorescent biosensors, colorimetric biosensors and electrochemical biosensors.

  5. Electrochemiluminescent biosensor of ATP using tetrahedron structured DNA and a functional oligonucleotide for Ru(phen)3(2+) intercalation and target identification.

    PubMed

    Bu, Nan-Nan; Gao, Ai; He, Xi-Wen; Yin, Xue-Bo

    2013-05-15

    Restricted target accessibility and surface-induced perturbation of the aptamer structure are the main limitations in single-stranded DNA aptamer-based electrochemical sensors. Chemical labeling of the aptamer with a probe at the end of aptamer is inefficient and time-consuming. In this work, tetrahedron-structured DNA (ts-DNA) and a functionalized oligonucleotide (FO) were used to develop an electrochemiluminescence (ECL) aptasensor with adenosine triphosphate (ATP) as a model target. The ts-DNA was formed with three thiolated oligonucleotides and one oligonucleotide containing anti-ATP aptamer. The FO contained a complementary strand to the anti-ATP aptamer and an intermolecular duplex for Ru(phen)3(2+) intercalation. After the ts-DNA was immobilized on the electrode surface through gold-thiol interactions, hybridization between the anti-ATP aptamer and its complementary strand introduced the intercalated Ru(phen)3(2+) to the electrode. ECL emission from Ru(phen)3(2+) was observed with tripropylamine as a co-reactant. Once ATP reacted with its aptamer, the aptamer-complimentary strand duplex dissociated and the intermolecular duplex containing Ru(phen)3(2+) was released. The difference in emission before and after reaction with ATP was used to quantify ATP with a detection limit of 0.2nM. The ts-DNA increased the sensitivity compared to conventional methods, and the intercalation strategy avoided a complex chemical labeling procedure.

  6. Hybrid detection of target sequence DNA based on phosphorescence resonance energy transfer.

    PubMed

    Miao, Yanming; Lv, Jinzhi; Yan, Guiqin

    2017-03-07

    The severe background fluorescence and scattering light of real biological samples or environmental samples largely reduce the sensitivity and accuracy of fluorescence resonance energy transfer sensors based on fluorescent quantum dots (QDs). To solve this problem, we designed a novel target sequence DNA biosensor based on phosphorescent resonance energy transfer (PRET). This sensor relied on Mn-doped ZnS (Mn-ZnS) room-temperature phosphorescence (RTP) QDs/poly-(diallyldimethylammonium chloride) (PDADMAC) nanocomposite (QDs(+)) as the energy donor and the single-strand DNA-ROX as the energy receptor. Thereby, an RTP biosensor was built and used to quantitatively detect target sequence DNA. This biosensor had a detection limit of 0.16nM and a linear range of 0.5-20nM for target sequence DNA. The dependence on RTP of QDs effectively avoided the interference from background fluorescence and scattering light in biological samples. Moreover, this sensor did not need sample pretreatment. Thus, this sensor compared with FRET is more feasible for quantitative detection of target sequence DNA in biological samples. Interestingly, the QDs(+) nanocomposite prolonged the phosphorescence lifetime of Mn-ZnS QDs by 2.6 times to 4.94ms, which was 5-6 magnitude-order larger than that of fluorescent QDs. Thus, this sensor largely improves the optical properties of QDs and permits chemical reactions at a long enough time scale.

  7. Enzyme-free fluorescent biosensor for the detection of DNA based on core-shell Fe3O4 polydopamine nanoparticles and hybridization chain reaction amplification.

    PubMed

    Li, Na; Hao, Xia; Kang, Bei Hua; Xu, Zhen; Shi, Yan; Li, Nian Bing; Luo, Hong Qun

    2016-03-15

    A novel, highly sensitive assay for quantitative determination of DNA is developed based on hybridization chain reaction (HCR) amplification and the separation via core-shell Fe3O4 polydopamine nanoparticles (Fe3O4@PDA NPs). In this assay, two hairpin probes are designed, one of which is labeled with a 6-carboxyfluorescein (FAM). Without target DNA, auxiliary hairpin probes are stable in solution. However, when target DNA is present, the HCR between the two hairpins is triggered. The HCR products have sticky ends of 24 nt, which are much longer than the length of sticky ends of auxiliary hairpins (6 nt) and make the adsorption much easier by Fe3O4@PDA NPs. With the addition of Fe3O4@PDA NPs, HCR products could be adsorbed because of the strong interaction between their sticky ends and Fe3O4@PDA NPs. As a result, supernatant of the solution with target DNA emits weak fluorescence after separation by magnet, which is much lower than that of the blank solution. The detection limit of the proposed method is as low as 0.05 nM. And the sensing method exhibits high selectivity for the determination between perfectly complementary sequence and target with single base-pair mismatch. Importantly, the application of the sensor for DNA detection in human serum shows that the proposed method works well for biological samples.

  8. Future of biosensors: a personal view.

    PubMed

    Scheller, Frieder W; Yarman, Aysu; Bachmann, Till; Hirsch, Thomas; Kubick, Stefan; Renneberg, Reinhard; Schumacher, Soeren; Wollenberger, Ulla; Teller, Carsten; Bier, Frank F

    2014-01-01

    Biosensors representing the technological counterpart of living senses have found routine application in amperometric enzyme electrodes for decentralized blood glucose measurement, interaction analysis by surface plasmon resonance in drug development, and to some extent DNA chips for expression analysis and enzyme polymorphisms. These technologies have already reached a highly advanced level and need minor improvement at most. The dream of the "100-dollar" personal genome may come true in the next few years provided that the technological hurdles of nanopore technology or of polymerase-based single molecule sequencing can be overcome. Tailor-made recognition elements for biosensors including membrane-bound enzymes and receptors will be prepared by cell-free protein synthesis. As alternatives for biological recognition elements, molecularly imprinted polymers (MIPs) have been created. They have the potential to substitute antibodies in biosensors and biochips for the measurement of low-molecular-weight substances, proteins, viruses, and living cells. They are more stable than proteins and can be produced in large amounts by chemical synthesis. Integration of nanomaterials, especially of graphene, could lead to new miniaturized biosensors with high sensitivity and ultrafast response. In the future individual therapy will include genetic profiling of isoenzymes and polymorphic forms of drug-metabolizing enzymes especially of the cytochrome P450 family. For defining the pharmacokinetics including the clearance of a given genotype enzyme electrodes will be a useful tool. For decentralized online patient control or the integration into everyday "consumables" such as drinking water, foods, hygienic articles, clothing, or for control of air conditioners in buildings and cars and swimming pools, a new generation of "autonomous" biosensors will emerge.

  9. Biosensors: sense and sensibility.

    PubMed

    Turner, Anthony P F

    2013-04-21

    This review is based on the Theophilus Redwood Medal and Award lectures, delivered to Royal Society of Chemistry meetings in the UK and Ireland in 2012, and presents a personal overview of the field of biosensors. The biosensors industry is now worth billions of United States dollars, the topic attracts the attention of national initiatives across the world and tens of thousands of papers have been published in the area. This plethora of information is condensed into a concise account of the key achievements to date. The reasons for success are examined, some of the more exciting emerging technologies are highlighted and the author speculates on the importance of biosensors as a ubiquitous technology of the future for health and the maintenance of wellbeing.

  10. Nuclear reactors built, being built, or planned 1993

    SciTech Connect

    Not Available

    1993-08-01

    Nuclear Reactors Built, Being Built, or Planned contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1993. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: (1) a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; (2) tables of data for reactors operating, being built, or planned; and (3) tables of data for reactors that have been shut down permanently or dismantled. The reactors are subdivided into the following parts: civilian, production, military, export, and critical assembly.

  11. Biosensor development in Russia.

    PubMed

    Reshetilov, Anatoly N

    2007-07-01

    The review summarizes the current Russian research in the field of biological sensors for detection of carbohydrates, alcohols, medicines, enzyme inhibitors, toxicants, heavy metal ions, as well as viruses and microbial cells. Some of the presented works describe the analytical parameters of biosensors; other publications provide a basis for their development. The review covers mainly publications that have appeared over the past 10 years. As a whole, the collected material gives an idea of the main tendencies of biosensor development in Russia. The review is not meant to be comprehensive but highlights the major trends in this field in the last decade.

  12. Electrochemical biosensors for hormone analyses.

    PubMed

    Bahadır, Elif Burcu; Sezgintürk, Mustafa Kemal

    2015-06-15

    Electrochemical biosensors have a unique place in determination of hormones due to simplicity, sensitivity, portability and ease of operation. Unlike chromatographic techniques, electrochemical techniques used do not require pre-treatment. Electrochemical biosensors are based on amperometric, potentiometric, impedimetric, and conductometric principle. Amperometric technique is a commonly used one. Although electrochemical biosensors offer a great selectivity and sensitivity for early clinical analysis, the poor reproducible results, difficult regeneration steps remain primary challenges to the commercialization of these biosensors. This review summarizes electrochemical (amperometric, potentiometric, impedimetric and conductometric) biosensors for hormone detection for the first time in the literature. After a brief description of the hormones, the immobilization steps and analytical performance of these biosensors are summarized. Linear ranges, LODs, reproducibilities, regenerations of developed biosensors are compared. Future outlooks in this area are also discussed.

  13. Surface stress-based biosensors.

    PubMed

    Sang, Shengbo; Zhao, Yuan; Zhang, Wendong; Li, Pengwei; Hu, Jie; Li, Gang

    2014-01-15

    Surface stress-based biosensors, as one kind of label-free biosensors, have attracted lots of attention in the process of information gathering and measurement for the biological, chemical and medical application with the development of technology and society. This kind of biosensors offers many advantages such as short response time (less than milliseconds) and a typical sensitivity at nanogram, picoliter, femtojoule and attomolar level. Furthermore, it simplifies sample preparation and testing procedures. In this work, progress made towards the use of surface stress-based biosensors for achieving better performance is critically reviewed, including our recent achievement, the optimally circular membrane-based biosensors and biosensor array. The further scientific and technological challenges in this field are also summarized. Critical remark and future steps towards the ultimate surface stress-based biosensors are addressed.

  14. Biosensors and other medical and environmental probes

    SciTech Connect

    Jacobson, K.B.

    1996-12-31

    The author presents a overview of work at Oak Ridge National Laboratory directed toward the development of biosensors which can be used to monitor for an array of medical and environmental effects. The article describes the variety of problems which have been addressed by development of such sensors, and the range of staff who have been actively involved in this effort. The first such sensor developed at ORNL was an optical fiber whose end was treated with an antibody which would react with the carcinogen benzo(a)pyrene (BaP). Section titles from the article provide an idea of the breadth of applications addressed: medical telesensors; microcantilevers; detecting cancer and health abnormalities; bioreporters; miniaturized devices; biosensors and DNA analysis; lipids in bacteria and human fingerprints; and anthropometry.

  15. Development of Peptide Nanotube-Modified Biosensors for Gas-Phase Organophosphate Detection

    DTIC Science & Technology

    2013-03-01

    walled carbon nanotubes , and surface acoustic wave sensor arrays employing a variety of different polymers as sensing materials have been...reversible in the absence of the aflotoxin (Arduini et al., 2007). Nanotubes Carbon nanotubes were discovered in 1991 (Iijima, 1991). Since then...biosensors. Kong et al. (2000) built the first carbon nanotube biosensor for detecting the amine group (-NH2) and ammonia gas. Chen et al. (2001) were

  16. Biosensors for bioprocesses

    SciTech Connect

    Van Brunt, J.

    1987-05-01

    The advent of biosensors has been touted as the marriage of the century - a marriage of microelectronics and biotechnology. But exactly what is a biosensor. Actually, the term is used interchangeably for two sometimes very different classes of devices - those that measure biological molecules and particles and those that use biomolecules as part of the sensing mechanism. The basic conceptual design of a biosensor is simple: a biological receptor is coupled to an electronic tranducer in such a way that the transducer converts biochemical activity at one end into electrical activity at the other. The biological component is usually an enzyme (for selective chemical catalysis) or an antibody (for highly selective binding), although cell membrane receptors, tissue slices, and microbial cells are used as well. The electronic component measures voltage (potentiometric), current (amperometric), light, sound, temperaure, or mass (piezoelectric). Biosensors display several unique features that make them especially attractive. They are small. They are simple to use many procedures require one step, no additional reagents, and no radioactivity. They are portable. And they are inexpensive and perfect for data processing.

  17. Recent Trends in Biosensors

    NASA Astrophysics Data System (ADS)

    Karube, Isao

    The determination of organic compounds in foods is very important in food industries. A various compounds are contained in foods, selective determination methods are required for food processing and analysis. Electrochemical monitoring devices (biosensors) employing immobilized biocatalysts such as immobilized enzymes, organelles, microorganisms, and tissue have definite advantages. The enzyme Sensors consisted of immobilized enzymes and electrochemical devices. Enzyme sensors could be used for the determination of sugars, amino acids, organic acids, alcohols, lipids, nucleic acid derivatives, etc.. Furthermore, a multifunctional biosensor for the determination of several compounds has been developed for food processing. On the other hand, microbial sensors consisted of immobilized microorganisms and electrodes have been used for industrial and environmental analysis. Microbial sensors were applied for the determination of sugars, organic acids, alcohols, amino acids, mutagens, me thane, ammonia, and BOD. Furthermore, micro-biosensors using immobilized biocatalysts and ion sensitive field effect transistor or microelectrodes prepared by silicon fabrication technologies have been developed for medical ap. plication and food processing. This review summarizes the design and application of biosensors.

  18. Biosensors and bioelectronics on smartphone for portable biochemical detection.

    PubMed

    Zhang, Diming; Liu, Qingjun

    2016-01-15

    Smartphone has been widely integrated with sensors, such as test strips, sensor chips, and hand-held detectors, for biochemical detections due to its portability and ubiquitous availability. Utilizing built-in function modules, smartphone is often employed as controller, analyzer, and displayer for rapid, real-time, and point-of-care monitoring, which can significantly simplify design and reduce cost of the detecting systems. This paper presents a review of biosensors and bioelectronics on smartphone for portable biochemical detections. The biosensors and bioelectronics based on smartphone can mainly be classified into biosensors using optics, surface plasmon resonance, electrochemistry, and near-field communication. The developments of these biosensors and bioelectronics on smartphone are reviewed along with typical biochemical detecting cases. Sensor strategies, detector attachments, and coupling methods are highlighted to show designs of the compact, lightweight, and low-cost sensor systems. The performances and advantages of these designs are introduced with their applications in healthcare diagnosis, environment monitoring, and food evaluation. With advances in micro-manufacture, sensor technology, and miniaturized electronics, biosensor and bioelectronic devices on smartphone can be used to perform biochemical detections as common and convenient as electronic tag readout in foreseeable future.

  19. A signal-amplified electrochemical DNA biosensor incorporated with a colorimetric internal control for Vibrio cholerae detection using shelf-ready reagents.

    PubMed

    Low, Kim-Fatt; Zain, Zainiharyati Mohd; Yean, Chan Yean

    2017-01-15

    A novel enzyme/nanoparticle-based DNA biosensing platform with dual colorimetric/electrochemical approach has been developed for the sequence-specific detection of the bacterium Vibrio cholerae, the causative agent of acute diarrheal disease in cholera. This assay platform exploits the use of shelf-stable and ready-to-use (shelf-ready) reagents to greatly simplify the bioanalysis procedures, allowing the assay platform to be more amenable to point-of-care applications. To assure maximum diagnosis reliability, an internal control (IC) capable of providing instant validation of results was incorporated into the assay. The microbial target, single-stranded DNA amplified with asymmetric PCR, was quantitatively detected via electrochemical stripping analysis of gold nanoparticle-loaded latex microspheres as a signal-amplified hybridization tag, while the incorporated IC was analyzed using a simplified horseradish peroxidase enzyme-based colorimetric scheme by simple visual observation of enzymatic color development. The platform showed excellent diagnostic sensitivity and specificity (100%) when challenged with 145 clinical isolate-spiked fecal specimens. The limits of detection were 0.5ng/ml of genomic DNA and 10 colony-forming units (CFU)/ml of bacterial cells with dynamic ranges of 0-100ng/ml (R(2)=0.992) and log10 (1-10(4) CFU/ml) (R(2)=0.9918), respectively. An accelerated stability test revealed that the assay reagents were stable at temperatures of 4-37°C, with an estimated ambient shelf life of 200 days. The versatility of the biosensing platform makes it easily adaptable for quantitative detection of other microbial pathogens.

  20. Field-Friendly Tuberculosis Biosensor

    NASA Astrophysics Data System (ADS)

    Proper, Nathan; Stone, Jeremy; Jevsevar, Kristen L.; Scherman, Michael; McNeil, Michael R.; Krapf, Diego

    2010-03-01

    Tuberculosis is a fading threat in the United States, but in the developing world it is still a major health-care concern. With the rising number of cases and lack of resources, there is a desperate need for an affordable, portable detection system. Here, we demonstrate the feasibility of a field-friendly immunological biosensor that utilizes florescence and specialized surface chemistries. We observe fluorescently labeled antibodies as they bind to a glass slide. Slides are treated with biotinylated polyethylene glycol to inhibit non-specific interactions and facilitate the binding of primary antibodies allowing for a high degree of specificity. Solutions of tuberculosis-specific antigens where mixed with fluorescently labeled secondary antibodies and incubated on the treated surfaces. An array of different concentrations of antigens bound to fluorescent tags is then read in an epifluorescnece microscope. This assay was used in the portable detector to show that higher concentrations of bound labeled antigens produce a greater emission when excited by a HeNe laser. Home-built electronics, off-the-shelf optics, and a Si photodiode (PD) were used. The data collected from multiple concentrations show a measurable photocurrent. Work is now underway to incorporate a avalanche (PD), flow-cell technology, in a portable box.

  1. Our Built and Natural Environments

    EPA Pesticide Factsheets

    Our Built and Natural Environments summarizes research that shows how development patterns affect the environment and human health, and how certain development patterns can reduce the environmental and human health impacts of development.

  2. Recent advances in phosphate biosensors.

    PubMed

    Upadhyay, Lata Sheo Bachan; Verma, Nishant

    2015-07-01

    A number of biosensors have been developed for phosphate analysis particularly, concerning its negative impact within the environmental and biological systems. Enzymatic biosensors comprising either a single or multiple enzymatic system have been extensively used for the direct and indirect analysis of phosphate ions. Furthermore, some non-enzymatic biosensors, such as affinity-based biosensors, provide an alternative analytical approach with a higher selectivity. This article reviews the recent advances in the field of biosensor developed for phosphate estimation in clinical and environmental samples, concerning the techniques involved, and the sensitivity toward phosphate ions. The biosensors have been classified and discussed on the basis of the number of enzymes used to develop the analytical system, and a comparative analysis has been performed.

  3. Nanomaterial-Based Electrochemical Biosensors and Bioassays

    SciTech Connect

    Liu, Guodong; Mao, Xun; Gurung, Anant; Baloda, Meenu; Lin, Yuehe; He, Yuqing

    2010-08-31

    This book chapter summarizes the recent advance in nanomaterials for electrochemical biosensors and bioassays. Biofunctionalization of nanomaterials for biosensors fabrication and their biomedical applications are discussed.

  4. Biosensor for organoarsenical herbicides and growth promoters.

    PubMed

    Chen, Jian; Sun, Samio; Li, Chen-Zhong; Zhu, Yong-Guan; Rosen, Barry P

    2014-01-21

    The toxic metalloid arsenic is widely distributed in food, water, and soil. While inorganic arsenic enters the environment primarily from geochemical sources, methylarsenicals either result from microbial biotransformation of inorganic arsenic or are introduced anthropogenically. Methylarsenicals such as monosodium methylarsonic acid (MSMA) have been extensively utilized as herbicides, and aromatic arsenicals such as roxarsone (Rox) are used as growth promoters for poultry and swine. Organoarsenicals are degraded to inorganic arsenic. The toxicological effects of arsenicals depend on their oxidation state, chemical composition, and bioavailability. Here we report that the active forms are the trivalent arsenic-containing species. We constructed a whole-cell biosensor utilizing a modified ArsR repressor that is highly selective toward trivalent methyl and aromatic arsenicals, with essentially no response to inorganic arsenic. The biosensor was adapted for in vitro detection of organoarsenicals using fluorescence anisotropy of ArsR-DNA interactions. It detects bacterial biomethylation of inorganic arsenite both in vivo and in vitro with detection limits of 10(-7) M and linearity to 10(-6) M for phenylarsenite and 5 × 10(-6) M for methylarsenite. The biosensor detects reduced forms of MSMA and roxarsone and offers a practical, low cost method for detecting activate forms and breakdown products of organoarsenical herbicides and growth promoters.

  5. BioSentinel: Mission Development of a Radiation Biosensor to Gauge DNA Damage and Repair Beyond Low Earth Orbit on a 6U Nanosatellite

    NASA Technical Reports Server (NTRS)

    Sanchez, Hugo; Lewis, Brian; Hanel, Robert

    2015-01-01

    We are designing and developing a 6U (10 x 22 x 34 cm; 14 kg) nanosatellite as a secondary payload to fly aboard NASAs Space Launch System (SLS) Exploration Mission (EM) 1, scheduled for launch in late 2017. For the first time in over forty years, direct experimental data from biological studies beyond low Earth orbit (LEO) will be obtained during BioSentinels 12- to 18-month mission. BioSentinel will measure the damage and repair of DNA in a biological organism and allow us to compare that to information from onboard physical radiation sensors. In order to understand the relative contributions of the space environments two dominant biological perturbations, reduced gravity and ionizing radiation, results from deep space will be directly compared to data obtained in LEO (on ISS) and on Earth. These data points will be available for validation of existing biological radiation damage and repair models, and for extrapolation to humans, to assist in mitigating risks during future long-term exploration missions beyond LEO. The BioSentinel Payload occupies 4U of the spacecraft and will utilize the monocellular eukaryotic organism Saccharomyces cerevisiae (yeast) to report DNA double-strand-break (DSB) events that result from ambient space radiation. DSB repair exhibits striking conservation of repair proteins from yeast to humans. Yeast was selected because of 1) its similarity to cells in higher organisms, 2) the well-established history of strains engineered to measure DSB repair, 3) its spaceflight heritage, and 4) the wealth of available ground and flight reference data. The S. cerevisiae flight strain will include engineered genetic defects to prevent growth and division until a radiation-induced DSB activates the yeasts DNA repair mechanisms. The triggered culture growth and metabolic activity directly indicate a DSB and its successful repair. The yeast will be carried in the dry state within the 1-atm PL container in 18 separate fluidics cards with each card

  6. Nuclear reactors built, being built, or planned, 1991

    SciTech Connect

    Simpson, B.

    1992-07-01

    This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1991. The book is divided into three major sections: Section 1 consists of a reactor locator map and reactor tables; Section 2 includes nuclear reactors that are operating, being built, or planned; and Section 3 includes reactors that have been shut down permanently or dismantled. Sections 2 and 3 contain the following classification of reactors: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is an American company -- working either independently or in cooperation with a foreign company (Part 4, in each section). Critical assembly refers to an assembly of fuel and assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5).

  7. Nuclear reactors built, being built, or planned 1996

    SciTech Connect

    1997-08-01

    This publication contains unclassified information about facilities, built, being built, or planned in the United States for domestic use or export as of December 31, 1996. The Office of Scientific and Technical Information, U.S. Department of Energy, gathers this information annually from Washington headquarters, and field offices of DOE; from the U.S. Nuclear Regulatory Commission (NRC); from the U. S. reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from U.S. and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: (1) a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; (2) tables of data for reactors operating, being built, or planned; and (3) tables of data for reactors that have been shut down permanently or dismantled.

  8. Graphene Based Electrochemical Sensors and Biosensors: A Review

    SciTech Connect

    Shao, Yuyan; Wang, Jun; Wu, Hong; Liu, Jun; Aksay, Ilhan A.; Lin, Yuehe

    2010-05-01

    Graphene, emerging as a true 2-dimensional material, has received increasing attention due to its unique physicochemical properties (high surface area, excellent conductivity, high mechanical strength, and ease of functionalization and mass production). This article selectively reviews recent advances in graphene-based electrochemical sensors and biosensors. In particular, graphene for direct electrochemistry of enzyme, its electrocatalytic activity toward small biomolecules (hydrogen peroxide, NADH, dopamine, etc.), and graphene-based enzyme biosensors have been summarized in more detail; Graphene-based DNA sensing and environmental analysis have been discussed. Future perspectives in this rapidly developing field are also discussed.

  9. Carbon Nanotube Biosensors

    NASA Astrophysics Data System (ADS)

    Tilmaciu, Carmen-Mihaela; Morris, May

    2015-10-01

    Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular Carbon Nanotubes (CNTs) can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites or disease biomarkers. Here we provide a comprehensive review on these carbon nanostructures, in which we will describe their structural and physical properties, discuss functionalization and cellular uptake, biocompatibility and toxicity issues. We further review historical developments in the field of biosensors, and describe the different types of biosensors which have been developed over time, with specific focus on CNT-conjugates engineered for biosensing applications, and in particular detection of cancer biomarkers.

  10. Carbon nanotube biosensors

    PubMed Central

    Tîlmaciu, Carmen-Mihaela; Morris, May C.

    2015-01-01

    Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular, carbon nanotubes (CNTs) can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical, and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites, or disease biomarkers. Here we provide a comprehensive review on these carbon nanostructures, in which we describe their structural and physical properties, functionalization and cellular uptake, biocompatibility, and toxicity issues. We further review historical developments in the field of biosensors, and describe the different types of biosensors which have been developed over time, with specific focus on CNT-conjugates engineered for biosensing applications, and in particular detection of cancer biomarkers. PMID:26579509

  11. Micro-algal biosensors.

    PubMed

    Brayner, Roberta; Couté, Alain; Livage, Jacques; Perrette, Catherine; Sicard, Clémence

    2011-08-01

    Fighting against water pollution requires the ability to detect pollutants for example herbicides or heavy metals. Micro-algae that live in marine and fresh water offer a versatile solution for the construction of novel biosensors. These photosynthetic microorganisms are very sensitive to changes in their environment, enabling the detection of traces of pollutants. Three groups of micro-algae are described in this paper: chlorophyta, cyanobacteria, and diatoms.

  12. Graphene-based biosensors

    NASA Astrophysics Data System (ADS)

    Lebedev, A. A.; Davydov, V. Yu.; Novikov, S. N.; Litvin, D. P.; Makarov, Yu. N.; Klimovich, V. B.; Samoilovich, M. P.

    2016-07-01

    Results of developing and testing graphene-based sensors capable of detecting protein molecules are presented. The biosensor operation was checked using an immunochemical system comprising fluorescein dye and monoclonal antifluorescein antibodies. The sensor detects fluorescein concentration on a level of 1-10 ng/mL and bovine serum albumin-fluorescein conjugate on a level of 1-5 ng/mL. The proposed device has good prospects for use for early diagnostics of various diseases.

  13. Symposium on Biosensors

    DTIC Science & Technology

    1989-11-01

    the same side of irreversible thermodynamic equation is the pyroelectric effect in which a thermal cradient induces a field and a measurable voltage...permit analysis of phosphate and bicarbonate, for example, and Li+ and Mg÷2 among the cations. Design of optical sensors has again lagged behind trial...make good enthatipetric biosensors for use in flow injectic analysis systems. First, a bimo:-ph is constructed by placing two sheets of the fiV face

  14. A portable array biosensor

    NASA Astrophysics Data System (ADS)

    Golden, Joel P.; Shriver-Lake, Lisa C.; Taitt, Chris R.; Fertig, Stephanie; Sapsford, Kim E.; Ligler, Fran S.

    2004-12-01

    An array biosensor developed for performing simultaneous analysis of multiple samples for multiple analytes has been miniaturized and fully automated. The biochemical component of the multi-analyte biosensor consists of a patterned array of biological recognition elements ("capture" antibodies) immobilized on the surface of a planar waveguide. A fluorescence assay is performed on the patterned surface, yielding an array of fluorescent spots, the locations of which are used to identify what analyte is present. Signal transduction is accomplished by means of a diode laser for fluorescence excitation, optical filters and a CCD camera for image capture. A laptop computer controls the miniaturized fluidics system and image capture. Data analysis software has been developed to locate each spot and quantify the fluorescent signal in each spot. The array biosensor is capable of detecting a variety of analytes including toxins, bacteria and viruses and shows minimal interference from complex physiological sample matrices such whole blood and blood components, fecal matter, saliva, nasal secretions, and urine. Some results from recent field trials are presented.

  15. Biosensors, antibiotics and food.

    PubMed

    Virolainen, Nina; Karp, Matti

    2014-01-01

    Antibiotics are medicine's leading asset for fighting microbial infection, which is one of the leading causes of death worldwide. However, the misuse of antibiotics has led to the rapid spread of antibiotic resistance among bacteria and the development of multiple resistant pathogens. Therefore, antibiotics are rapidly losing their antimicrobial value. The use of antibiotics in food production animals is strictly controlled by the European Union (EU). Veterinary use is regulated to prevent the spread of resistance. EU legislation establishes maximum residue limits for veterinary medicinal products in foodstuffs of animal origin and enforces the establishment and execution of national monitoring plans. Among samples selected for monitoring, suspected noncompliant samples are screened and then subjected to confirmatory analysis to establish the identity and concentration of the contaminant. Screening methods for antibiotic residues are typically based on microbiological growth inhibition, whereas physico-chemical methods are used for confirmatory analysis. This chapter discusses biosensors, especially whole-cell based biosensors, as emerging screening methods for antibiotic residues. Whole-cell biosensors can offer highly sensitive and specific detection of residues. Applications demonstrating quantitative analysis and specific analyte identification further improve their potential as screening methods.

  16. Bacteriophage biosensors for antibiotic-resistant bacteria.

    PubMed

    Sorokulova, Irina; Olsen, Eric; Vodyanoy, Vitaly

    2014-03-01

    An increasing number of disease-causing bacteria are resistant to one or more anti-bacterial drugs utilized for therapy. Early and speedy detection of these pathogens is therefore very important. Traditional pathogen detection techniques, that include microbiological and biochemical assays are long and labor-intensive, while antibody or DNA-based methods require substantial sample preparation and purification. Biosensors based on bacteriophages have demonstrated remarkable potential to surmount these restrictions and to offer rapid, efficient and sensitive detection technique for antibiotic-resistant bacteria.

  17. BioSentinel: Mission Development of a Radiation Biosensor to Gauge DNA Damage and Repair Beyond Low Earth Orbit on a 6U Nanosatellite.

    NASA Technical Reports Server (NTRS)

    Lewis, Brian; Hanel, Robert; Bhattacharya, Sharmila; Ricco, Antonion J.; Agasid, Elwood; Reiss-Bubenheim, Debra; Straume, Tore; Parra, Macerena; Boone, Travis; Santa Maria, Sergio; Tan, Ming; Marina, Diana; Friedericks, Charlie; Schooley, Aaron; Wu, Shang; Sorgenfrei, Matthew; Rademacher, Abe; Lusby, Terry; Kuroda, Vanessa; Pires, Craig; Benton, Josh; Forman, Doug; Klamm, Ben; Martinez, Andres; Wickizer, Brittany; Sanchez, Hugo; Swan, Bobbie Gale; Semones, Edward; Wheeler, Scott; Ott, C. Mark; Castro, Sarah

    2015-01-01

    We are designing and developing a "6U" (10 x 22 x 34 cm; 14 kg) nanosatellite as a secondary payload to fly aboard NASA's Space Launch System (SLS) Exploration Mission (EM) 1, scheduled for launch in late 2017. For the first time in over forty years, direct experimental data from biological studies beyond low Earth orbit (LEO) will be obtained during BioSentinel's 12- to 18- month mission. BioSentinel will measure the damage and repair of DNA in a biological organism and allow us to compare that to information from onboard physical radiation sensors. In order to understand the relative contributions of the space environment's two dominant biological perturbations, reduced gravity and ionizing radiation, results from deep space will be directly compared to data obtained in LEO (on ISS) and on Earth. These data points will be available for validation of existing biological radiation damage and repair models, and for extrapolation to humans, to assist in mitigating risks during future long-term exploration missions beyond LEO. The BioSentinel Payload occupies 4U of the spacecraft and will utilize the monocellular eukaryotic organism Saccharomyces cerevisiae (yeast) to report DNA double-strand-break (DSB) events that result from ambient space radiation. DSB repair exhibits striking conservation of repair proteins from yeast to humans. Yeast was selected because of 1) its similarity to cells in higher organisms, 2) the well-established history of strains engineered to measure DSB repair, 3) its spaceflight heritage, and 4) the wealth of available ground and flight reference data. The S. cerevisiae flight strain will include engineered genetic defects to prevent growth and division until a radiation-induced DSB activates the yeast's DNA repair mechanisms. The triggered culture growth and metabolic activity directly indicate a DSB and its successful repair. The yeast will be carried in the dry state within the 1-atm P/L container in 18 separate fluidics cards with each

  18. Reagentless Measurement of Aminoglycoside Antibiotics in Blood Serum via an Electrochemical, Ribonucleic Acid Aptamer-Based Biosensor

    PubMed Central

    Rowe, Aaron A.; Miller, Erin A.; Plaxco, Kevin W.

    2011-01-01

    Biosensors built using ribonucleic acid (RNA) aptamers show promise as tools for point-of-care medical diagnostics, but they remain vulnerable to nuclease degradation when deployed in clinical samples. To explore methods for protecting RNA-based biosensors from such degradation we have constructed and characterized an electrochemical, aptamer-based sensor for the detection of aminoglycosidic antibiotics. We find that while this sensor achieves low micromolar detection limits and subminute equilibration times when challenged in buffer, it deteriorates rapidly when immersed directly in blood serum. In order to circumvent this problem, we have developed and tested sensors employing modified versions of the same aptamer. Our first effort to this end entailed the methylation of all of the 2′-hydroxyl groups outside of the aptamer’s antibiotic binding pocket. However, while devices employing this modified aptamer are as sensitive as those employing an unmodified parent, the modification fails to confer greater stability when the sensor is challenged directly in blood serum. As a second potentially naive alternative, we replaced the RNA bases in the aptamer with their more degradation-resistant deoxyribonucleic acid (DNA) equivalents. Surprisingly and unlike control DNA-stem loops employing other sequences, this DNA aptamer retains the ability to bind aminoglycosides, albeit with poorer affinity than the parent RNA aptamer. Unfortunately, however, while sensors fabricated using this DNA aptamer are stable in blood serum, its lower affinity pushes their detection limits above the therapeutically relevant range. Finally, we find that ultrafiltration through a low-molecular-weight-cutoff spin column rapidly and efficiently removes the relevant nucleases from serum samples spiked with gentamicin, allowing the convenient detection of this aminoglycoside at clinically relevant concentrations using the original RNA-based sensor. PMID:20687587

  19. CMOS biosensors for in vitro diagnosis - transducing mechanisms and applications.

    PubMed

    Lei, Ka-Meng; Mak, Pui-In; Law, Man-Kay; Martins, Rui P

    2016-09-21

    Complementary metal oxide semiconductor (CMOS) technology enables low-cost and large-scale integration of transistors and physical sensing materials on tiny chips (e.g., <1 cm(2)), seamlessly combining the two key functions of biosensors: transducing and signal processing. Recent CMOS biosensors unified different transducing mechanisms (impedance, fluorescence, and nuclear spin) and readout electronics have demonstrated competitive sensitivity for in vitro diagnosis, such as detection of DNA (down to 10 aM), protein (down to 10 fM), or bacteria/cells (single cell). Herein, we detail the recent advances in CMOS biosensors, centering on their key principles, requisites, and applications. Together, these may contribute to the advancement of our healthcare system, which should be decentralized by broadly utilizing point-of-care diagnostic tools.

  20. Graphene oxide-based electrochemical label-free detection of glycoproteins down to aM level using a lectin biosensor.

    PubMed

    Klukova, L; Filip, J; Belicky, S; Vikartovska, A; Tkac, J

    2016-07-21

    A label-free ultrasensitive impedimetric biosensor with lectin immobilised on graphene oxide (GO) for the detection of glycoproteins from 1 aM is shown here. This is the first time a functional lectin biosensor with lectin directly immobilised on a graphene-based interface without any polymer modifier has been described. The study also shows that hydrophilic oxidative debris present on GO has a beneficial effect on the sensitivity of (8.46 ± 0.20)% per decade for the lectin biosensor compared to the sensitivity of (4.52 ± 0.23)% per decade for the lectin biosensor built up from GO with the oxidative debris washed out.

  1. The House That Putin Built

    DTIC Science & Technology

    2005-06-01

    BUILT by Claudine Caluori June 2005 Thesis Co-Advisors: Anne Clunan Robert Looney THIS...Claudine Caluori Approved by: Anne Clunan Thesis Co-Advisor Robert Looney Thesis Co-Advisor Douglas Porch Chairman, Department of...Remington, Politics in Russia, (New York: Pearson Education, Inc. 2004), 49. 3 Robert D. English, Russia and the Idea of the West: Chapter 6: The New

  2. Schools Built with Fallout Shelter.

    ERIC Educational Resources Information Center

    Office of Civil Defense (DOD), Washington, DC.

    Fallout protection can be built into a school building with little or no additional cost, using areas that are in continual use in the normal functioning of the building. A general discussion of the principles of shelter design is given along with photographs, descriptions, drawings, and cost analysis for a number of recently constructed schools…

  3. Engineering Modular Biosensors to Confer Metabolite-Responsive Regulation of Transcription.

    PubMed

    Younger, Andrew K D; Dalvie, Neil C; Rottinghaus, Austin G; Leonard, Joshua N

    2017-02-17

    Efforts to engineer microbial factories have benefitted from mining biological diversity and high throughput synthesis of novel enzymatic pathways, yet screening and optimizing metabolic pathways remain rate-limiting steps. Metabolite-responsive biosensors may help to address these persistent challenges by enabling the monitoring of metabolite levels in individual cells and metabolite-responsive feedback control. We are currently limited to naturally evolved biosensors, which are insufficient for monitoring many metabolites of interest. Thus, a method for engineering novel biosensors would be powerful, yet we lack a generalizable approach that enables the construction of a wide range of biosensors. As a step toward this goal, we here explore several strategies for converting a metabolite-binding protein into a metabolite-responsive transcriptional regulator. By pairing a modular protein design approach with a library of synthetic promoters and applying robust statistical analyses, we identified strategies for engineering biosensor-regulated bacterial promoters and for achieving design-driven improvements of biosensor performance. We demonstrated the feasibility of this strategy by fusing a programmable DNA binding motif (zinc finger module) with a model ligand binding protein (maltose binding protein), to generate a novel biosensor conferring maltose-regulated gene expression. This systematic investigation provides insights that may guide the development of additional novel biosensors for diverse synthetic biology applications.

  4. Label-Free Electrochemical Biosensor for Monitoring of Chloride Ion in an Animal Model of Alzhemier's Disease.

    PubMed

    Dong, Hui; Zhang, Limin; Liu, Wei; Tian, Yang

    2017-02-15

    The potential damage of Alzheimer's disease (AD) in brain function has attracted extensive attention. As the most common anion, Cl(-) has been indicated to play significant roles in brain diseases, particularly in the pathological process of AD. In this work, a label-free selective and accurate electrochemical biosensor was first developed for real-time monitoring of Cl(-) levels in a mouse brain model of AD and rat brain upon global cerebral ischemia. Silver nanoparticles (AgNPs) were designed and synthesized as selective recognition element for Cl(-), while 5'-MB-GGCGCGATTTT-SH-3' (SH-DNA-MB, MB = methylene blue) was selected as an inner reference molecule for a built-in correction to avoid the effects from the complicated brain. The electrochemical biosensor showed high accuracy and remarkable selectivity for determination of Cl(-) over other anions, metal ions, amino acids, and other biomolecules. Furthermore, three-dimensional nanostructures composed of single-walled carbon nanotubes (SWNTs) and Au nanoleaves were assembled on the carbon fiber microelectrode (CFME) surface to enhance the response signal. Finally, the developed biosensor with high analytical performance, as well as the unique characteristic of CFME itself including inertness in live brain and good biocompatibility, was successfully applied to in vivo determination of Cl(-) levels in three brain regions: striatum, hippocampus, and cortex of live mouse and rat brains. The comparison of average levels of Cl(-) in normal striatum, hippocampus, and cortex of normal mouse brains and those in the mouse model brains of AD was reported. In addition, the results in rat brains followed by cerebral ischemia demonstrated that the concentrations of Cl(-) decreased by 19.8 ± 0.5% (n = 5) in the striatum and 27.2 ± 0.3% (n = 5) in hippocampus after cerebral ischemia for 30 min, but that negligible change in Cl(-) concentration was observed in cortex.

  5. Nuclear reactors built, being built, or planned, 1994

    SciTech Connect

    1995-07-01

    This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1994. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from US and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; tables of data for reactors operating, being built, or planned; and tables of data for reactors that have been shut down permanently or dismantled. The reactors are subdivided into the following parts: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is a US company -- working either independently or in cooperation with a foreign company (Part 4). Critical assembly refers to an assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5).

  6. Nuclear reactors built, being built, or planned: 1995

    SciTech Connect

    1996-08-01

    This report contains unclassified information about facilities built, being built, or planned in the US for domestic use or export as of December 31, 1995. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from US and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: (1) a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; (2) tables of data for reactors operating, being built, or planned; and (3) tables of data for reactors that have been shut down permanently or dismantled. The reactors are subdivided into the following parts: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is a US company--working either independently or in cooperation with a foreign company (Part 4). Critical assembly refers to an assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5).

  7. Carbon Nanotube Biosensors for Space Molecule Detection and Clinical Molecular Diagnostics

    NASA Technical Reports Server (NTRS)

    Han, Jie

    2001-01-01

    Both space molecule detection and clinical molecule diagnostics need to develop ultra sensitive biosensors for detection of less than attomole molecules such as amino acids for DNA. However all the electrode sensor systems including those fabricated from the existing carbon nanotubes, have a background level of nA (nanoAmp). This has limited DNA or other molecule detection to nA level or molecules whose concentration is, much higher than attomole level. A program has been created by NASA and NCI (National Cancer Institute) to exploit the possibility of carbon nanotube based biosensors to solve this problem for both's interest. In this talk, I will present our effort on the evaluation and novel design of carbon nanotubes as electrode biosensors with strategies to minimize background currents while maximizing signal intensity.The fabrication of nanotube electrode arrays, immobilization of molecular probes on nanotube electrodes and in vitro biosensor testing will also be discussed.

  8. [Nanobiotechnology and biosensor research].

    PubMed

    Reshetilov, A N; Bezborodov, A M

    2008-01-01

    Nanobiotechnology is defined as an interdisciplinary field of science that studies the application of fine-sized biological objects (of nanoscale, 1-100 nm) to design the devices and systems of the same size that utilize for new purposes the unusual, known, or previously unknown effects. Analysis demonstrates that the final goals, approaches, solution methods, and applications of nanostructures and biological sensors have much in common. This brief review attempts to systematize a number of the available data and pick out an organic connection of the new research direction with the field of biosensor technology, which have reached the level of sustainable development.

  9. Built Environment Wind Turbine Roadmap

    SciTech Connect

    Smith, J.; Forsyth, T.; Sinclair, K.; Oteri, F.

    2012-11-01

    The market currently encourages BWT deployment before the technology is ready for full-scale commercialization. To address this issue, industry stakeholders convened a Rooftop and Built-Environment Wind Turbine Workshop on August 11 - 12, 2010, at the National Wind Technology Center, located at the U.S. Department of Energy’s National Renewable Energy Laboratory in Boulder, Colorado. This report summarizes the workshop.

  10. Electrochemical biosensors and nanobiosensors

    PubMed Central

    Hammond, Jules L.; Formisano, Nello; Carrara, Sandro; Tkac, Jan

    2016-01-01

    Electrochemical techniques have great promise for low-cost miniaturised easy-to-use portable devices for a wide range of applications–in particular, medical diagnosis and environmental monitoring. Different techniques can be used for biosensing, with amperometric devices taking the central role due to their widespread application in glucose monitoring. In fact, glucose biosensing takes an approximately 70% share of the biosensor market due to the need for diabetic patients to monitor their sugar levels several times a day, making it an appealing commercial market. In this review, we present the basic principles of electrochemical biosensor devices. A description of the different generations of glucose sensors is used to describe in some detail the operation of amperometric sensors and how the introduction of mediators can enhance the performance of the sensors. Electrochemical impedance spectroscopy is a technique being increasingly used in devices due to its ability to detect variations in resistance and capacitance upon binding events. Novel advances in electrochemical sensors, due to the use of nanomaterials such as carbon nanotubes and graphene, are presented as well as future directions that the field is taking. PMID:27365037

  11. Improved Biosensors for Soils

    NASA Astrophysics Data System (ADS)

    Silberg, J. J.; Masiello, C. A.; Cheng, H. Y.

    2014-12-01

    Microbes drive processes in the Earth system far exceeding their physical scale, affecting crop yields, water quality, the mobilization of toxic materials, and fundamental aspects of soil biogeochemistry. The tools of synthetic biology have the potential to significantly improve our understanding of microbial Earth system processes: for example, synthetic microbes can be be programmed to report on environmental conditions that stimulate greenhouse gas production, metal oxidation, biofilm formation, pollutant degradation, and microbe-plant symbioses. However, these tools are only rarely deployed in the lab. This research gap arises because synthetically programmed microbes typically report on their environment by producing molecules that are detected optically (e.g., fluorescent proteins). Fluorescent reporters are ideal for petri-dish applications and have fundamentally changed how we study human health, but their usefulness is quite limited in soils where detecting fluorescence is challenging. Here we describe the construction of gas-reporting biosensors, which release nonpolar gases that can be detected in the headspace of incubation experiments. These constructs can be used to probe microbial processes within soils in real-time noninvasive lab experiments. These biosensors can be combined with traditional omics-based approaches to reveal processes controlling soil microbial behavior and lead to improved environmental management decisions.

  12. DNA.

    ERIC Educational Resources Information Center

    Felsenfeld, Gary

    1985-01-01

    Structural form, bonding scheme, and chromatin structure of and gene-modification experiments with deoxyribonucleic acid (DNA) are described. Indicates that DNA's double helix is variable and also flexible as it interacts with regulatory and other molecules to transfer hereditary messages. (DH)

  13. Development of solution-gated graphene transistor model for biosensors

    PubMed Central

    2014-01-01

    The distinctive properties of graphene, characterized by its high carrier mobility and biocompatibility, have stimulated extreme scientific interest as a promising nanomaterial for future nanoelectronic applications. In particular, graphene-based transistors have been developed rapidly and are considered as an option for DNA sensing applications. Recent findings in the field of DNA biosensors have led to a renewed interest in the identification of genetic risk factors associated with complex human diseases for diagnosis of cancers or hereditary diseases. In this paper, an analytical model of graphene-based solution gated field effect transistors (SGFET) is proposed to constitute an important step towards development of DNA biosensors with high sensitivity and selectivity. Inspired by this fact, a novel strategy for a DNA sensor model with capability of single-nucleotide polymorphism detection is proposed and extensively explained. First of all, graphene-based DNA sensor model is optimized using particle swarm optimization algorithm. Based on the sensing mechanism of DNA sensors, detective parameters (Ids and Vgmin) are suggested to facilitate the decision making process. Finally, the behaviour of graphene-based SGFET is predicted in the presence of single-nucleotide polymorphism with an accuracy of more than 98% which guarantees the reliability of the optimized model for any application of the graphene-based DNA sensor. It is expected to achieve the rapid, quick and economical detection of DNA hybridization which could speed up the realization of the next generation of the homecare sensor system. PMID:24517158

  14. Development of solution-gated graphene transistor model for biosensors

    NASA Astrophysics Data System (ADS)

    Karimi, Hediyeh; Yusof, Rubiyah; Rahmani, Rasoul; Hosseinpour, Hoda; Ahmadi, Mohammad T.

    2014-02-01

    The distinctive properties of graphene, characterized by its high carrier mobility and biocompatibility, have stimulated extreme scientific interest as a promising nanomaterial for future nanoelectronic applications. In particular, graphene-based transistors have been developed rapidly and are considered as an option for DNA sensing applications. Recent findings in the field of DNA biosensors have led to a renewed interest in the identification of genetic risk factors associated with complex human diseases for diagnosis of cancers or hereditary diseases. In this paper, an analytical model of graphene-based solution gated field effect transistors (SGFET) is proposed to constitute an important step towards development of DNA biosensors with high sensitivity and selectivity. Inspired by this fact, a novel strategy for a DNA sensor model with capability of single-nucleotide polymorphism detection is proposed and extensively explained. First of all, graphene-based DNA sensor model is optimized using particle swarm optimization algorithm. Based on the sensing mechanism of DNA sensors, detective parameters ( I ds and V gmin) are suggested to facilitate the decision making process. Finally, the behaviour of graphene-based SGFET is predicted in the presence of single-nucleotide polymorphism with an accuracy of more than 98% which guarantees the reliability of the optimized model for any application of the graphene-based DNA sensor. It is expected to achieve the rapid, quick and economical detection of DNA hybridization which could speed up the realization of the next generation of the homecare sensor system.

  15. High-sensitive label-free biosensors based on single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Maehashi, Kenzo; Matsumoto, Kazuhiko

    2006-02-01

    DNA hybridization has sensitively been detected using carbon nanotube field-effect transistors (CNTFETs) in real time. After full-complementary DNA introduction, the source-drain current gradually increased while monitoring in real time. Full-complementary DNA with concentration as low as 1 fmol/L solution could be effectively detected. Our CNTFET-based biochip is a promising candidate for the development of an integrated, high-throughput, multiplexed DNA biosensor for medical, forensic and environmental diagnostics.

  16. New design incinerator being built

    SciTech Connect

    Not Available

    1980-09-01

    A $14 million garbage-burning facility is being built by Reedy Creek Utilities Co. in cooperation with DOE at Lake Buena Vista, Fla., on the edge of Walt Disney World. The nation's first large-volume slagging pyrolysis incinerator will burn municipal waste in a more beneficial way and supply 15% of the amusement park's energy demands. By studying the new incinerators slag-producing capabilities, engineers hope to design similar facilities for isolating low-level nuclear wastes in inert, rocklike slag.

  17. Biosensor commercialization strategy - a theoretical approach.

    PubMed

    Lin, Chin-Tsai; Wang, Su-Man

    2005-01-01

    Biosensors are analytical devices, which use biological interactions to provide either qualitative or quantitative results. They are extensively employed in many fields such as clinical diagnosis and biomedicine, military applications, anti-terrorism, farm, garden and veterinary analysis, process control, fermentation control and analysis, pharmaceutical and drug analysis, food and drink production and analysis, pollution control and monitoring, microbiology, bacterial and viral analysis, mining, and industrial and toxic gases. The biosensor market has significantly increased and will be mushrooming in the next decade. The total biosensor market is estimated to be 10.8 billion dollars by 2007. The emerging biosensor market presents both opportunities and obstacles to start-up biosensor entrepreneurs. The major challenge and threat for these entrepreneurs is how to predict the biosensor market and how to convert promising biosensor technology into commercialized biosensors. By adopting a simple commercialization strategy framework, we identify two key elements of biosensor commercialization strategy: excludability and complementary asset. We further divide biosensor commercialization environments into four distinct sub-environments: the Attacker's Advantage, Reputation-Based Idea Trading, Greenfield Competition and Ideas Factories. This paper explains how the interaction between these two key elements shapes biosensor commercialization strategy and biosensor industry dynamics. This paper also discusses alternative commercialization strategies for each specific commercialization environment and how to choose from these alternatives. The analysis of this study further provides a good reference for start-up biosensor entrepreneurs to formulate effective biosensor commercialization strategy.

  18. Organic photodiodes for biosensor miniaturization.

    PubMed

    Wojciechowski, Jason R; Shriver-Lake, Lisa C; Yamaguchi, Mariko Y; Füreder, Erwin; Pieler, Roland; Schamesberger, Martin; Winder, Christoph; Prall, Hans Jürgen; Sonnleitner, Max; Ligler, Frances S

    2009-05-01

    Biosensors have successfully demonstrated the capability to detect multiple pathogens simultaneously at very low levels. Miniaturization of biosensors is essential for use in the field or at the point of care. While microfluidic systems reduce the footprint for biochemical processing devices and electronic components are continually becoming smaller, optical components suitable for integration--such as LEDs and CMOS chips--are generally still too expensive for disposable components. This paper describes the integration of polymer diodes onto a biosensor chip to create a disposable device that includes both the detector and the sensing surface coated with immobilized capture antibody. We performed a chemiluminescence immunoassay on the OPD substrate and measured the results using a hand-held reader attached to a laptop computer. The miniaturized biosensor with the disposable slide including the organic photodiode detected Staphylococcal enterotoxin B at concentrations as low as 0.5 ng/mL.

  19. Graphene electrochemistry: fabricating amperometric biosensors.

    PubMed

    Brownson, Dale A C; Banks, Craig E

    2011-05-21

    The electrochemical sensing of hydrogen peroxide is of substantial interest to the operation of oxidase-based amperometric biosensors. We explore the fabrication of a novel and highly sensitive electro-analytical biosensor using well characterised commercially available graphene and compare and contrast responses using Nafion -graphene and -graphite modified electrodes. Interestingly we observe that graphite exhibits a superior electrochemical response due to its enhanced percentage of edge plane sites when compared to graphene. However, when Nafion, routinely used in amperometric biosensors, is introduced onto graphene and graphite modified electrodes, re-orientation occurs in both cases which is beneficial in the former and detrimental in the latter; insights into this contrasting behaviour are consequently presented providing acuity into sensor design and development where graphene is utilised in biosensors.

  20. The electrophotonic silicon biosensor

    PubMed Central

    Juan-Colás, José; Parkin, Alison; Dunn, Katherine E.; Scullion, Mark G.; Krauss, Thomas F.; Johnson, Steven D.

    2016-01-01

    The emergence of personalized and stratified medicine requires label-free, low-cost diagnostic technology capable of monitoring multiple disease biomarkers in parallel. Silicon photonic biosensors combine high-sensitivity analysis with scalable, low-cost manufacturing, but they tend to measure only a single biomarker and provide no information about their (bio)chemical activity. Here we introduce an electrochemical silicon photonic sensor capable of highly sensitive and multiparameter profiling of biomarkers. Our electrophotonic technology consists of microring resonators optimally n-doped to support high Q resonances alongside electrochemical processes in situ. The inclusion of electrochemical control enables site-selective immobilization of different biomolecules on individual microrings within a sensor array. The combination of photonic and electrochemical characterization also provides additional quantitative information and unique insight into chemical reactivity that is unavailable with photonic detection alone. By exploiting both the photonic and the electrical properties of silicon, the sensor opens new modalities for sensing on the microscale. PMID:27624590

  1. The electrophotonic silicon biosensor

    NASA Astrophysics Data System (ADS)

    Juan-Colás, José; Parkin, Alison; Dunn, Katherine E.; Scullion, Mark G.; Krauss, Thomas F.; Johnson, Steven D.

    2016-09-01

    The emergence of personalized and stratified medicine requires label-free, low-cost diagnostic technology capable of monitoring multiple disease biomarkers in parallel. Silicon photonic biosensors combine high-sensitivity analysis with scalable, low-cost manufacturing, but they tend to measure only a single biomarker and provide no information about their (bio)chemical activity. Here we introduce an electrochemical silicon photonic sensor capable of highly sensitive and multiparameter profiling of biomarkers. Our electrophotonic technology consists of microring resonators optimally n-doped to support high Q resonances alongside electrochemical processes in situ. The inclusion of electrochemical control enables site-selective immobilization of different biomolecules on individual microrings within a sensor array. The combination of photonic and electrochemical characterization also provides additional quantitative information and unique insight into chemical reactivity that is unavailable with photonic detection alone. By exploiting both the photonic and the electrical properties of silicon, the sensor opens new modalities for sensing on the microscale.

  2. Noninvasive biosensor for hypoglycemia

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.; Whitchurch, Ashwin K.; Sarukesi, Karunakaran

    2003-01-01

    Hypoglycemia-abnormal decrease in blood sugar- is a major obstacle in the management of diabetes and prevention of long-term complications, and it may impose serious effects on the brain, including impairment of memory and other cognitive functions. This is especially a concern in early childhood years when the nervous system is still developing. Hypoglycemic unawareness (in which the body"s normal ability to signal low blood sugar doesn"t work and an oncoming low blood sugar episode proceeds undetected) is a particularly frightening problem for many people with diabetes. Researchers have now uncovered evidence that repeated bouts of insulin-induced hypoglycemia can harm the brain over time, causing confusion, abnormal behavior, loss of consciousness, and seizures. Extreme cases have resulted in coma and death. In this paper, a non-invasive biosensor in a wrist watch along with a wireless data downloading system is proposed.

  3. Integrated optic biosensor

    NASA Astrophysics Data System (ADS)

    Boiarski, Anthony A.; Busch, James R.; Bhullar, Ballwant S.; Ridgway, Richard W.; Miller, Larry S.; Zulich, A. W.

    1993-05-01

    A micro-sized biosensor is formed using integrated-optic channel waveguides in a Mach- Zehnder interferometer configuration. The device measures refractive index changes on the waveguide surface, so it is called a biorefractometer. With an appropriate overlay or selective coating, the sensor can monitor proteins in blood or pollutants and bio-warfare agents in water. The waveguides are fabricated in a glass substrate using potassium ion exchange. A patterned glass buffer layer defines the interferometer's sensing and reference arms. A silicone-rubber cell arrangement brings sample analytes into contact with proteins immobilized on the integrated-optical waveguide surface. Data obtained for antigen-antibody binding of the proteins human Immunoglobulin-G and staph enterotoxin-B indicate that a 50 - 100 ng/ml concentration levels can be measured in less than ten minutes.

  4. Novel trends in affinity biosensors: current challenges and perspectives

    NASA Astrophysics Data System (ADS)

    Arugula, Mary A.; Simonian, Aleksandr

    2014-03-01

    Molecular biorecognition processes facilitate physical and biochemical interactions between molecules in all crucial metabolic pathways. Perhaps the target analyte and the biorecognition element interactions have the most impactful use in biosensing applications. Traditional analytical sensing systems offer excellent biorecognition elements with the ability to detect and determine the presence of analytes. High affinity antibodies and DNA play an important role in the development of affinity biosensors based on electrochemical, optical and mass sensitive approaches. Advancements in this area routinely employ labels, label free, nanoparticles, multifunctional matrices, carbon nanotubes and other methods to meet the requirements of its own application. However, despite increasing affinity ceilings for conventional biosensors, the field draws back in meeting specifically important demands, such as long-term stability, ultrasensitivity, rapid detection, extreme selectivity, strong biological base, calibration, in vivo measurements, regeneration, satisfactory performance and ease of production. Nevertheless, recent efforts through this line have produced novel high-tech nanosensing systems such as ‘aptamers’ and ‘phages’ which exhibit high-throughput sensing. Aptamers and phages are powerful tools that excel over antibodies in sensibility, stability, multi-detection, in vivo measurements and regeneration. Phages are superior in stability, screening for affinity-based target molecules ranging from small to proteins and even cells, and easy production. In this review, we focus mainly on recent developments in affinity-based biosensors such as immunosensors, DNA sensors, emphasizing aptasensors and phage-based biosensors basing on novel electrochemical, optical and mass sensitive detection techniques. We also address enzyme inhibition-based biosensors and the current problems associated with the above sensors and their future perspectives.

  5. R&D 100 Winner 2010: Acoustic Wave Biosensors

    SciTech Connect

    Larson, Richard; Branch, Darren; Edwards, Thayne

    2016-06-07

    The acoustic wave biosensor is innovative device that is a handheld, battery-powered, portable detection system capable of multiplex identification of a wide range of medically relevant pathogens and their biomolecular signatures — viruses, bacteria, proteins, and DNA — at clinically relevant levels. This detection occurs within minutes — not hours — at the point of care, whether that care is in a physician's office, a hospital bed, or at the scene of a biodefense or biomedical emergency.

  6. Built-Environment Report Summary

    SciTech Connect

    Baring-Gould, Ian; Fields, Jason; Preus, Robert; Oteri, Frank

    2016-06-14

    Built-environment wind turbine (BEWT) projects are wind energy projects that are constructed on, in, or near buildings. These projects present an opportunity for distributed, low-carbon generation combined with highly visible statements on sustainability, but the BEWT niche of the wind industry is still developing and is relatively less mature than the utility-scale wind or conventional ground-based distributed wind sectors. The findings presented in this presentation cannot be extended to wind energy deployments in general because of the large difference in application and technology maturity. This presentation summarizes the results of a report investigating the current state of the BEWT industry by reviewing available literature on BEWT projects as well as interviewing project owners on their experiences deploying and operating the technology. The authors generated a series of case studies that outlines the pertinent project details, project outcomes, and lessons learned.

  7. An enzyme-amplified lateral flow strip biosensor for visual detection of microRNA-224.

    PubMed

    Gao, Xuefei; Xu, Li-Ping; Wu, Tingting; Wen, Yongqiang; Ma, Xinlei; Zhang, Xueji

    2016-01-01

    An enzyme-based dual-labeled nanoprobe is designed to fabricate a sensitive enzyme-amplified lateral flow biosensor for visual detection of mircoRNA-224 (miRNA-224). The recognition DNA probe (detection probe) and signal amplification enzyme (Horseradish peroxidase, HRP) are immobilized on gold nanoparticle (GNPs) surface, simultaneously. The capture DNA probes are immobilized on the test zone of the lateral flow biosensor. When miRNA-224 is present, the enzyme-based dual-labeled nanoprobes will be captured by forming the "sandwich structure" on the test zone of the lateral flow biosensor, enabling the visual detection for miRNA-224. Sensitivity is amplified by applying the 3,3,5,5-tetramethylbenzidine enzymatic substrate (TMB/H2O2 enzymatic substrate) onto the test zone. The enzymatic reactions between the HRP and the TMB/H2O2 enzymatic substrate will produce blue products, which deposit on the nanoprobe surface to enhance the visual effect and the corresponding response intensities of the test zone. This enzyme-amplified lateral flow biosensor shows a low limit of detection (LOD) (7.5 pM) toward miRNA-224 in the buffer solution, which is improved by 10-fold than that of the single-labeled lateral flow biosensor. This biosensor has been successfully used for the detection of the target miRNA-224 detection in A549 cell lysate.

  8. Thiol- and biotin-labeled probes for oligonucleotide quartz crystal microbalance biosensors of microalga alexandrium minutum.

    PubMed

    Lazerges, Mathieu; Perrot, Hubert; Rabehagasoa, Niriniony; Compère, Chantal

    2012-07-04

    Two quartz crystal microbalance oligonucleotide biosensors of a toxic microalga gene sequence (Alexandrium Minutum) have been designed. Grafting on a gold surface of 20-base thiol- or biotin-labeled probe, and selective hybridization with the complementary 20-base target, have been monitored in situ with a 27 MHz quartz crystal microbalance under controlled hydrodynamic conditions. The frequency of the set up is stable to within a few hertz, corresponding to the nanogram scale, for three hour experiments. DNA recognition by the two biosensors is efficient and selective. Hybridization kinetic curves indicate that the biosensor designed with the thiol-labeled probe is more sensitive, and that the biosensor designed with the biotin-labeled probe has a shorter time response and a higher hybridization efficiency.

  9. Thiol- and Biotin-Labeled Probes for Oligonucleotide Quartz Crystal Microbalance Biosensors of Microalga Alexandrium Minutum

    PubMed Central

    Lazerges, Mathieu; Perrot, Hubert; Rabehagasoa, Niriniony; Compère, Chantal

    2012-01-01

    Two quartz crystal microbalance oligonucleotide biosensors of a toxic microalga gene sequence (Alexandrium Minutum) have been designed. Grafting on a gold surface of 20-base thiol- or biotin-labeled probe, and selective hybridization with the complementary 20-base target, have been monitored in situ with a 27 MHz quartz crystal microbalance under controlled hydrodynamic conditions. The frequency of the set up is stable to within a few hertz, corresponding to the nanogram scale, for three hour experiments. DNA recognition by the two biosensors is efficient and selective. Hybridization kinetic curves indicate that the biosensor designed with the thiol-labeled probe is more sensitive, and that the biosensor designed with the biotin-labeled probe has a shorter time response and a higher hybridization efficiency. PMID:25585927

  10. NANOSCALE BIOSENSORS IN ECOSYSTEM EXPOSURE RESEARCH

    EPA Science Inventory

    This powerpoint presentation presented information on nanoscale biosensors in ecosystem exposure research. The outline of the presentation is as follows: nanomaterials environmental exposure research; US agencies involved in nanosensor research; nanoscale LEDs in biosensors; nano...

  11. BIOSENSORS FOR ENVIRONMENTAL MONITORING: A REGULATORY PERSPECTIVE

    EPA Science Inventory

    Biosensors show the potential to complement laboratory-based analytical methods for environmental applications. Although biosensors for potential environmental-monitoring applications have been reported for a wide range of environmental pollutants, from a regulatory perspective, ...

  12. DNA

    ERIC Educational Resources Information Center

    Stent, Gunther S.

    1970-01-01

    This history for molecular genetics and its explanation of DNA begins with an analysis of the Golden Jubilee essay papers, 1955. The paper ends stating that the higher nervous system is the one major frontier of biological inquiry which still offers some romance of research. (Author/VW)

  13. Smart built-in test

    NASA Astrophysics Data System (ADS)

    Richards, Dale W.

    1990-03-01

    The work which built-in test (BIT) is asked to perform in today's electronic systems increases with every insertion of new technology or introduction of tighter performance criteria. Yet the basic purpose remains unchanged -- to determine with high confidence the operational capability of that equipment. Achievement of this level of BIT performance requires the management and assimilation of a large amount of data, both realtime and historical. Smart BIT has taken advantage of advanced techniques from the field of artificial intelligence (AI) in order to meet these demands. The Smart BIT approach enhances traditional functional BIT by utilizing AI techniques to incorporate environmental stress data, temporal BIT information and maintenance data, and realtime BIT reports into an integrated test methodology for increased BIT effectiveness and confidence levels. Future research in this area will incorporate onboard fault-logging of BIT output, stress data and Smart BIT decision criteria in support of a singular, integrated and complete test and maintenance capability. The state of this research is described along with a discussion of directions for future development.

  14. Smart built-in test

    NASA Technical Reports Server (NTRS)

    Richards, Dale W.

    1990-01-01

    The work which built-in test (BIT) is asked to perform in today's electronic systems increases with every insertion of new technology or introduction of tighter performance criteria. Yet the basic purpose remains unchanged -- to determine with high confidence the operational capability of that equipment. Achievement of this level of BIT performance requires the management and assimilation of a large amount of data, both realtime and historical. Smart BIT has taken advantage of advanced techniques from the field of artificial intelligence (AI) in order to meet these demands. The Smart BIT approach enhances traditional functional BIT by utilizing AI techniques to incorporate environmental stress data, temporal BIT information and maintenance data, and realtime BIT reports into an integrated test methodology for increased BIT effectiveness and confidence levels. Future research in this area will incorporate onboard fault-logging of BIT output, stress data and Smart BIT decision criteria in support of a singular, integrated and complete test and maintenance capability. The state of this research is described along with a discussion of directions for future development.

  15. Biosensor for metal analysis and speciation

    DOEpatents

    Aiken, Abigail M.; Peyton, Brent M.; Apel, William A.; Petersen, James N.

    2007-01-30

    A biosensor for metal analysis and speciation is disclosed. The biosensor comprises an electron carrier immobilized to a surface of an electrode and a layer of an immobilized enzyme adjacent to the electrode. The immobilized enzyme comprises an enzyme having biological activity inhibited by a metal to be detected by the biosensor.

  16. Reagentless optical biosensor

    NASA Astrophysics Data System (ADS)

    Grace, Karen M.; Goeller, Roy M.; Grace, W. K.; Kolar, Jerome D.; Morrison, Leeland J.; Sweet, Martin R.; Wiig, L. G.; Reed, Scott M.; Lauer, Sabine A.; Little, Kristin M.; Bustos, Gerrie L.; Anderson, Aaron S.; Swanson, Basil I.

    2004-03-01

    Critical to our ability to respond effectively to a biothreat attack is the development of sensitive and specific sensor systems that can easily be used for rapid screening of potential victims for infection due to biothreat agents and detection of pathogens in the environment. To help address these needs, we have developed a Reagentless Optical Biosensor (ROB) based on protein specific assays and waveguide-based evanescent fluorescence excitation. Modeled on host pathogen interactions, the sensor's membrane based assay provides rapid, sensitive detection without the addition of reagents. We report here the development of two waveguide based detection systems: a laboratory sensor test-bed system and a handheld, battery operated, prototype. Evanescent fluorescence excitation using planar optical waveguides provides spatial filtering of background auto-fluorescence found in many natural samples, thereby permitting direct analysis of complex environmental and medical samples. The waveguide based assay is fully self-contained in a small, exchangeable cartridge that is optically coupled to the sensor detection system making ROB simple to use and offering the possibility of inexpensive, disposable sensor elements. Using assays for cholera toxin we compare results using flourimetry of vesicle solutions against results for our waveguide based test-bed and prototype sensor systems.

  17. Biosensors for termite control

    NASA Astrophysics Data System (ADS)

    Farkhanda, M.

    2013-12-01

    Termites are major urban pests in Pakistan and cause damage to wooden structures and buildings. Termite management has two parts: prevention and control. The most difficult part of termite control is termite detection as most of them are subterranean in Pakistan and have tunneling habit.Throughout the world, chemical termiticides are going to be replaced by baits, microwave and sensor technology. Termite species are distinct biologically and have specific foraging behaviors. Termite Detection Radar, Moisture meter and Remote Thermal Sensor with Laser are available throughout the world. These can detect termites underground and use fewer chemicals than traditional methods. For wooden buildings, a termite sensor and an intrusion detection system for detecting termites are designed. A pair of electrodes is disposed inside the container. A pair of terminals is connected to these electrodes, these extend outside the container. Termites are detected by a change of conductivity between the electrodes, when termites are detected a warning device generates a warning signal. In Pakistan, there is dire need to develop such biosensoring devices locally, then apply control methods that would save money and protect the environment.

  18. Plants as Environmental Biosensors

    PubMed Central

    Ranatunga, Don Rufus A

    2006-01-01

    Plants are continuously exposed to a wide variety of perturbations including variation of temperature and/or light, mechanical forces, gravity, air and soil pollution, drought, deficiency or surplus of nutrients, attacks by insects and pathogens, etc., and hence, it is essential for all plants to have survival sensory mechanisms against such perturbations. Consequently, plants generate various types of intracellular and intercellular electrical signals mostly in the form of action and variation potentials in response to these environmental changes. However, over a long period, only certain plants with rapid and highly noticeable responses for environmental stresses have received much attention from plant scientists. Of particular interest to our recent studies on ultra fast action potential measurements in green plants, we discuss in this review the evidence supporting the foundation for utilizing green plants as fast biosensors for molecular recognition of the direction of light, monitoring the environment, and detecting the insect attacks as well as the effects of pesticides, defoliants, uncouplers, and heavy metal pollutants. PMID:19521490

  19. Built-in self test

    NASA Astrophysics Data System (ADS)

    Jansen, B.; Vandegoor, A. J.

    1988-11-01

    Because of the increasing complexity of digital circuits, it is becoming more and more difficult to determine whether a circuit is correct or faulty. Faults in a circuit can hardly be detected just by looking at the outside what the reaction of the circuit is to a certain input sequence. Fault tolerant computing can be a solution. Built-In Self Test (BIST) techniques can also be used to verify whether the circuit is correct, not only during normal operation, but also during the early development periods. The result of using BIST techniques is a considerable reduction of time between design and the final product, and a reduction of maintenance time and cost. BIST is a test method of which the circuit can separate itself from the surrounding logic, and perform a test. After the self test, the circuit reports to the surrounding logic whether it is correct. The advantage of BIST is that it is a universal and systematic test method with a solid mathematical foundation. Based on the stuck-at fault model, it is possible to compute the fault coverage, which is the number of faults detected by the BIST method. The theory of BIST is described. A circuit is divided into combinational and sequential parts, which are tested separately. The sequential parts are tested with a so-called scan-path test. Alternative test methods to test the combinational parts are described. The method to compute the number of patterns needed to detect all faults with a certain probability as function of complexity of the circuit is given. The theory of CRC signature analyzers, and the probability of masking are also described and illustrated with some examples, which can directly be used in practice.

  20. Rapid amplification/detection of nucleic acid targets utilizing a HDA/thin film biosensor.

    PubMed

    Jenison, Robert; Jaeckel, Heidi; Klonoski, Joshua; Latorra, David; Wiens, Jacinta

    2014-08-07

    Thin film biosensors exploit a flat, optically coated silicon-based surface whereupon formation of nucleic acid hybrids are enzymatically transduced in a molecular thin film that can be detected by the unaided human eye under white light. While the limit of sensitivity for detection of nucleic acid targets is at sub-attomole levels (60 000 copies) many clinical specimens containing bacterial pathogens have much lower levels of analyte present. Herein, we describe a platform, termed HDA/thin film biosensor, which performs helicase-dependant nucleic acid amplification on a thin film biosensor surface to improve the limit of sensitivity to 10 copies of the mecA gene present in methicillin-resistant strains of Staphylococcus. As double-stranded DNA is unwound by helicase it was either bound by solution-phase DNA primers to be copied by DNA polymerase or hybridized to surface immobilized probe on the thin film biosensor surface to be detected. Herein, we show that amplification reactions on the thin film biosensor are equivalent to in standard thin wall tubes, with detection at the limit of sensitivity of the assay occurring after 30 minutes of incubation time. Further we validate the approach by detecting the presence of the mecA gene in methicillin-resistant Staphylococcus aureus (MRSA) from positive blood culture aliquots with high specificity (signal/noise ratio of 105).

  1. A biosensor for ferric ion.

    PubMed

    Barrero, J M; Morino-Bondi, M C; Pérez-Conde, M C; Cámara, C

    1993-11-01

    A new biosensor for monitoring iron has been developed. The active solid phase is pyoverdin, a natural fluorescent pigment biosynthesized by Pseudomonas fluorescens immobilized on controlled pore glass (CPG) and packed in a quartz flow-through cell. The biosensor is very selective for iron(III) and can be easily regenerated in about 2 min by passing 1M HCl through the cell. The optimum conditions and analytical characteristics (detection limit, precision and linear range) for the new sensor in solution (DL = 10 ng/ml) and in immobilized form (DL = 3 ng/ml) are reported. The biosensor has good stability and can be used continuously over a period for at least 3 months (over 1000 determinations). The sensor was successfully applied to determine iron in different water samples. There were no significant differences between the new method and the Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) reference method at the 95% confidence level.

  2. Fluidics cube for biosensor miniaturization

    NASA Technical Reports Server (NTRS)

    Dodson, J. M.; Feldstein, M. J.; Leatzow, D. M.; Flack, L. K.; Golden, J. P.; Ligler, F. S.

    2001-01-01

    To create a small, portable, fully automated biosensor, a compact means of fluid handling is required. We designed, manufactured, and tested a "fluidics cube" for such a purpose. This cube, made of thermoplastic, contains reservoirs and channels for liquid samples and reagents and operates without the use of any internal valves or meters; it is a passive fluid circuit that relies on pressure relief vents to control fluid movement. We demonstrate the ability of pressure relief vents to control fluid movement and show how to simply manufacture or modify the cube. Combined with the planar array biosensor developed at the Naval Research Laboratory, it brings us one step closer to realizing our goal of a handheld biosensor capable of analyzing multiple samples for multiple analytes.

  3. Biosensors for hepatitis B virus detection

    PubMed Central

    Yao, Chun-Yan; Fu, Wei-Ling

    2014-01-01

    A biosensor is an analytical device used for the detection of analytes, which combines a biological component with a physicochemical detector. Recently, an increasing number of biosensors have been used in clinical research, for example, the blood glucose biosensor. This review focuses on the current state of biosensor research with respect to efficient, specific and rapid detection of hepatitis B virus (HBV). The biosensors developed based on different techniques, including optical methods (e.g., surface plasmon resonance), acoustic wave technologies (e.g., quartz crystal microbalance), electrochemistry (amperometry, voltammetry and impedance) and novel nanotechnology, are also discussed. PMID:25253948

  4. Aptamer-based Electrochemical Biosensor for Interferon Gamma Detection

    PubMed Central

    Liu, Ying; Tuleouva, Nazgul; Ramanculov, Erlan; Revzin, Alexander

    2010-01-01

    In this paper, we describe the development of an electrochemical DNA aptamer-based biosensor for detection of IFN-γ. A DNA hairpin containing IFN-γ-binding aptamer was thiolated, conjugated with Methylene Blue (MB) redox tag and immobilized on a gold electrode by self-assembly. Binding of IFN-γ caused the aptamer hairpin to unfold, pushing MB redox molecules away from the electrode and decreasing electron-transfer efficiency. The change in redox current was quantified using Square Wave Voltammetry (SWV) and was found to be highly sensitive to IFN-γ concentration. The limit of detection for optimized biosensor was 0.06 nM with linear response extending to 10 nM. This aptasensor was specific to IFN-γ in the presence of overabundant serum proteins. Importantly, the same aptasensor could be regenerated by disrupting aptamer-IFN-γ complex in urea buffer and re-used multiple times. Unlike standard sandwich immunoassays, the aptasensor described here allowed to detect IFN-γ binding directly without the need for multiple washing steps and reagents. An electrochemical biosensor for simple and sensitive detection of IFN-γ demonstrated in this paper will have future applications in immunology, cancer research and infectious disease monitoring. PMID:20815336

  5. Enzyme catalytic amplification of miRNA-155 detection with graphene quantum dot-based electrochemical biosensor.

    PubMed

    Hu, Tianxing; Zhang, Le; Wen, Wei; Zhang, Xiuhua; Wang, Shengfu

    2016-03-15

    A specific and sensitive method was developed for quantitative detection of miRNA by integrating horseradish peroxidase (HRP)-assisted catalytic reaction with a simple electrochemical RNA biosensor. The electrochemical biosensor was constructed by a double-stranded DNA structure. The structure was formed by the hybridization of thiol-tethered oligodeoxynucleotide probes (capture DNA), assembled on the gold electrode surface, with target DNA and aminated indicator probe (NH2-DNA). After the construction of the double-stranded DNA structure, the activated carboxyl groups of graphene quantum dots (GQDs) assembled on NH2-DNA. GQDs were used as a new platform for HRP immobilization through noncovalent assembly. HRP modified biosensor can effectively catalyze the hydrogen peroxide (H2O2)-mediated oxidation of 3,3',5,5'-tetramethylbenzidine (TMB), accompanied by a change from colorless to blue in solution color and an increased electrochemical current signal. Due to GQDs and enzyme catalysis, the proposed biosensor could sensitively detect miRNA-155 from 1 fM to 100 pM with a detection limit of 0.14 fM. High performance of the biosensor is attributed to the large surface-to-volume ratio, excellent compatibility of GQDs. For these advantages, the proposed method holds great potential for analysis of other interesting tumor makers.

  6. A luminescent nisin biosensor

    NASA Astrophysics Data System (ADS)

    Immonen, Nina; Karp, Matti

    2006-02-01

    Nisin is a lantibiotic, an antibacterial peptide produced by certain Lactococcus lactis strains that kills or inhibits the growth of other bacteria. Nisin is widely used as a food preservative, and its long-time use suggests that it can be generally regarded as safe. We have developed a method for determining the amount of nisin in food samples that is based on luminescent biosensor bacteria. Bacterial luciferase operon luxABCDE was inserted into plasmid pNZ8048, and the construct was transformed by electroporation into Lc. lactis strain NZ9800, whose ability to produce nisin has been erased by deletion of the gene nisA. The operon luxABCDE has been modified to be functional in gram-positive bacteria to confer a bioluminescent phenotype without the requirement of adding an exogenous substrate. In the plasmid pNZ8048, the operon was placed under control of the nisin-inducible nisA promoter. The chromosomal nisRK genes of Lc. lactis NZ9800 allow it to sense nisin in the environment and relay this signal via signal transduction proteins NisK and NisR to initiate transcription from nisA promoter. In the case of our sensor bacteria, this leads to production of luciferase and, thus, luminescence that can be directly measured from living bacteria. Luminescence can be detected as early as within minutes of induction. The nisin assay described here provides a detection limit in the sub-picogram level per ml, and a linear area between 1 - 1000 pg/ml. The sensitivity of this assay exceeds the performance of all previously published methods.

  7. Electrical percolation based biosensors.

    PubMed

    Bruck, Hugh Alan; Yang, Minghui; Kostov, Yordan; Rasooly, Avraham

    2013-10-01

    A new approach to label free biosensing has been developed based on the principle of "electrical percolation". In electrical percolation, long-range electrical connectivity is formed in randomly oriented and distributed systems of discrete elements. By applying this principle to biological interactions, it is possible to measure biological components both directly and electronically. The main element for electrical percolation biosensor is the biological semiconductor (BSC) which is a multi-layer 3-D carbon nanotube-antibody network. In the BSC, molecular interactions, such as binding of antigens to the antibodies, disrupt the network continuity causing increased resistance of the network. BSCs can be fabricated by immobilizing conducting elements, such as pre-functionalized single-walled carbon nanotubes (SWNTs)-antibody complex, directly onto a substrate, such as a Poly(methyl methacrylate) (PMMA) surface (also known as plexi-glass or Acrylic). BSCs have been demonstrated for direct (label-free) electronic measurements of antibody-antigen binding using SWNTs. If the concentration of the SWNT network is slightly above the electrical percolation threshold, then binding of a specific antigen to the pre-functionalized SWNT dramatically increases the electrical resistance due to changes in the tunneling between the SWNTs. Using anti-staphylococcal enterotoxin B (SEB) IgG as a "gate" and SEB as an "actuator", it was demonstrated that the BSC was able to detect SEB at concentrations of 1 ng/ml. Based on this concept, an automated configuration for BSCs is described here that enables real time continuous detection. The new BSC configuration may permit assembly of multiple sensors on the same chip to create "biological central processing units (CPUs)" with multiple biological elements, capable of processing and sorting out information on multiple analytes simultaneously.

  8. Bioelectrochemical interface engineering: toward the fabrication of electrochemical biosensors, biofuel cells, and self-powered logic biosensors.

    PubMed

    Zhou, Ming; Dong, Shaojun

    2011-11-15

    Over the past decade, researchers have devoted considerable attention to the integration of living organisms with electronic elements to yield bioelectronic devices. Not only is the integration of DNA, enzymes, or whole cells with electronics of scientific interest, but it has many versatile potential applications. Researchers are using these ideas to fabricate biosensors for analytical applications and to assemble biofuel cells (BFCs) and biomolecule-based devices. Other research efforts include the development of biocomputing systems for information processing. In this Account, we focus on our recent progress in engineering at the bioelectrochemical interface (BECI) for the rational design and construction of important bioelectronic devices, ranging from electrochemical (EC-) biosensors to BFCs, and self-powered logic biosensors. Hydrogels and sol-gels provide attractive materials for the immobilization of enzymes because they make EC-enzyme biosensors stable and even functional in extreme environments. We use a layer-by-layer (LBL) self-assembly technique to fabricate multicomponent thin films on the BECI at the nanometer scale. Additionally, we demonstrate how carbon nanomaterials have paved the way for new and improved EC-enzyme biosensors. In addition to the widely reported BECI-based electrochemical impedance spectroscopy (EIS)-type aptasensors, we integrate the LBL technique with our previously developed "solid-state probe" technique for redox probes immobilization on electrode surfaces to design and fabricate BECI-based differential pulse voltammetry (DPV)-type aptasensors. BFCs can directly harvest energy from ambient biofuels as green energy sources, which could lead to their application as simple, flexible, and portable power sources. Porous materials provide favorable microenvironments for enzyme immobilization, which can enhance BFC power output. Furthermore, by introducing aptamer-based logic systems to BFCs, such systems could be applied as self

  9. An immobilization free DNAzyme based electrochemical biosensor for lead determination.

    PubMed

    Tan, Yue; Qiu, Jiazhi; Cui, Meiying; Wei, Xiaofeng; Zhao, Mengmeng; Qiu, Bin; Chen, Guonan

    2016-02-07

    DNAzyme based electrochemical biosensors have the characteristics of high sensitivity and selectivity, but traditional DNAzyme based electrochemical biosensors need the immobilization of DNAzyme on the electrode surface first, and the procedures are time consuming and tedious, which limit their real application. In this study, a simple but sensitive immobilization free DNAzyme based electrochemical biosensor has been proposed and lead has been chosen as a model target because of the severe effects of lead toxicity. The different diffusivity and electrostatic repulsion between long and short DNA on the negatively charged ITO electrode can be used to discriminate the short and long DNA. Lead dependent DNAzyme was hybridized with its substrate (which was modified with methylene blue at the 3' terminal) beforehand. Since the DNAzyme/substrate complex contains a large negative charge, it cannot diffuse easily to the negatively charged ITO electrode surface and little electrochemical signal has been detected. The presence of lead would trigger the cleavage of the DNAzyme/substrate complex and cause the release of a methylene blue-labeled short-oligonucleotide into the solution. The methylene blue-labeled short-oligonucleotide can diffuse easily to the surface of the negatively charged ITO electrode and results in the enhanced electrochemical response being detected. Each lead can cleave a lot of DNAzyme/substrate complex to realize signal amplification. The enhanced electrochemical signal has a linear relationship with the Pb(2+) concentration in the range of 0.05-1 μM with a detection limit of 0.018 μM (S/N = 3). The proposed biosensor has been applied to detect Pb(2+) in water samples with satisfactory results.

  10. Improved Ion-Channel Biosensors

    NASA Technical Reports Server (NTRS)

    Nadeau, Jay; White, Victor; Dougherty, Dennis; Maurer, Joshua

    2004-01-01

    An effort is underway to develop improved biosensors of a type based on ion channels in biomimetic membranes. These sensors are microfabricated from silicon and other materials compatible with silicon. As described, these sensors offer a number of advantages over prior sensors of this type.

  11. A high content assay for biosensor validation and for examining stimuli that affect biosensor activity

    PubMed Central

    Slattery, Scott D.; Hahn, Klaus M.

    2015-01-01

    Biosensors are valuable tools used to monitor many different protein behaviors in vivo. Demand for new biosensors is high, but their development and characterization can be difficult. During biosensor design, it is necessary to evaluate the effects of different biosensor structures on specificity, brightness, and fluorescence responses. By co-expressing the biosensor with upstream proteins that either stimulate or inhibit the activity reported by the biosensor, one can determine the difference between the biosensor’s maximally activated and inactivated state, and examine response to specific proteins. This involves considerable labor and expense, as expression conditions must be optimized to saturate the biosensor with the regulator, and multiple replicates and controls are required. We describe here a protocol for biosensor validation in a 96-well plate format using an automated microscope. This protocol produces dose-response curves, enables efficient examination of many parameters, and unlike cell suspension assays allows visual inspection (eg for cell health and biosensor or regulator localization). Optimization of single chain and dual chain Rho GTPase biosensors is addressed, but the assay is applicable to any biosensor that can be expressed or otherwise loaded in adherent cells. The assay can also be used for purposes other than biosensor validation, using a well-characterized biosensor as a readout for variations in upstream molecules. PMID:25447074

  12. A High-Content Assay for Biosensor Validation and for Examining Stimuli that Affect Biosensor Activity.

    PubMed

    Slattery, Scott D; Hahn, Klaus M

    2014-12-01

    Biosensors are valuable tools used to monitor many different protein behaviors in vivo. Demand for new biosensors is high, but their development and characterization can be difficult. During biosensor design, it is necessary to evaluate the effects of different biosensor structures on specificity, brightness, and fluorescence responses. By co-expressing the biosensor with upstream proteins that either stimulate or inhibit the activity reported by the biosensor, one can determine the difference between the biosensor's maximally activated and inactivated state, and examine response to specific proteins. We describe here a method for biosensor validation in a 96-well plate format using an automated microscope. This protocol produces dose-response curves, enables efficient examination of many parameters, and unlike cell suspension assays, allows visual inspection (e.g., for cell health and biosensor or regulator localization). Optimization of single-chain and dual-chain Rho GTPase biosensors is addressed, but the assay is applicable to any biosensor that can be expressed or otherwise loaded in adherent cells. The assay can also be used for purposes other than biosensor validation, using a well-characterized biosensor as a readout for effects of upstream molecules.

  13. Biosensor Recognition Elements

    DTIC Science & Technology

    2008-01-01

    upon aptamer-protein binding via a ruthenium phenazine molecular light switch. The Ru-(phen) 2 (dppz)2+ “light switch” complex does not luminesce...in aqueous solution. However, when bound to dsDNA, the interaction protects the phenazine nitrogen from water, leading to intense emission. Thus

  14. Printable Electrochemical Biosensors: A Focus on Screen-Printed Electrodes and Their Application

    PubMed Central

    Yamanaka, Keiichiro; Vestergaard, Mun’delanji C.; Tamiya, Eiichi

    2016-01-01

    In this review we present electrochemical biosensor developments, focusing on screen-printed electrodes (SPEs) and their applications. In particular, we discuss how SPEs enable simple integration, and the portability needed for on-field applications. First, we briefly discuss the general concept of biosensors and quickly move on to electrochemical biosensors. Drawing from research undertaken in this area, we cover the development of electrochemical DNA biosensors in great detail. Through specific examples, we describe the fabrication and surface modification of printed electrodes for sensitive and selective detection of targeted DNA sequences, as well as integration with reverse transcription-polymerase chain reaction (RT-PCR). For a more rounded approach, we also touch on electrochemical immunosensors and enzyme-based biosensors. Last, we present some electrochemical devices specifically developed for use with SPEs, including USB-powered compact mini potentiostat. The coupling demonstrates the practical use of printable electrode technologies for application at point-of-use. Although tremendous advances have indeed been made in this area, a few challenges remain. One of the main challenges is application of these technologies for on-field analysis, which involves complicated sample matrices. PMID:27775661

  15. Printable Electrochemical Biosensors: A Focus on Screen-Printed Electrodes and Their Application.

    PubMed

    Yamanaka, Keiichiro; Vestergaard, Mun'delanji C; Tamiya, Eiichi

    2016-10-21

    In this review we present electrochemical biosensor developments, focusing on screen-printed electrodes (SPEs) and their applications. In particular, we discuss how SPEs enable simple integration, and the portability needed for on-field applications. First, we briefly discuss the general concept of biosensors and quickly move on to electrochemical biosensors. Drawing from research undertaken in this area, we cover the development of electrochemical DNA biosensors in great detail. Through specific examples, we describe the fabrication and surface modification of printed electrodes for sensitive and selective detection of targeted DNA sequences, as well as integration with reverse transcription-polymerase chain reaction (RT-PCR). For a more rounded approach, we also touch on electrochemical immunosensors and enzyme-based biosensors. Last, we present some electrochemical devices specifically developed for use with SPEs, including USB-powered compact mini potentiostat. The coupling demonstrates the practical use of printable electrode technologies for application at point-of-use. Although tremendous advances have indeed been made in this area, a few challenges remain. One of the main challenges is application of these technologies for on-field analysis, which involves complicated sample matrices.

  16. Modular Zero Energy. BrightBuilt Home

    SciTech Connect

    Aldrich, Robb; Butterfield, Karla

    2016-03-01

    With funding from the Building America Program, part of the U.S. Department of Energy Building Technologies Office, the Consortium for Advanced Residential Buildings (CARB) worked with BrightBuilt Home (BBH) to evaluate and optimize building systems. CARB’s work focused on a home built by Black Bros. Builders in Lincolnville, Maine (International Energy Conservation Code Climate Zone 6). As with most BBH projects to date, modular boxes were built by Keiser Homes in Oxford, Maine.

  17. A compact two-wave dichrometer of an optical biosensor analytical system for medicine

    NASA Astrophysics Data System (ADS)

    Chulkov, D. P.; Gusev, V. M.; Kompanets, O. N.; Vereschagin, F. V.; Skuridin, S. G.; Yevdokimov, Yu. M.

    2016-12-01

    An experimental model has been developed of a compact two-wave dichrometer on the base of LEDs that is well-suited to work with "liquid" DNA nanoconstructions as biosensing units. The mobile and inexpensive device is intended for use in a biosensor analytical system for rapid determination of biologically active compounds in liquids to solve practical problems of clinic medicine and pharmacology.

  18. Development of a Diagnostic Tool to Detect DNA Methylation Biomarkers for Early-Stage Lung Cancer

    DTIC Science & Technology

    2015-02-01

    Biosensor and Bioelectronics, 58:333 (2014)) and one conference Fig. 3: DNA binding gel showing (A) the DNA recognition domain binds specifically to...engineered methyl- probe, Biosensor and Bioelectronics, 58:333 (2014)). Two more publications are being planned in the near future. Books or other non

  19. Capacitive Biosensors and Molecularly Imprinted Electrodes

    PubMed Central

    Ertürk, Gizem; Mattiasson, Bo

    2017-01-01

    Capacitive biosensors belong to the group of affinity biosensors that operate by registering direct binding between the sensor surface and the target molecule. This type of biosensors measures the changes in dielectric properties and/or thickness of the dielectric layer at the electrolyte/electrode interface. Capacitive biosensors have so far been successfully used for detection of proteins, nucleotides, heavy metals, saccharides, small organic molecules and microbial cells. In recent years, the microcontact imprinting method has been used to create very sensitive and selective biorecognition cavities on surfaces of capacitive electrodes. This chapter summarizes the principle and different applications of capacitive biosensors with an emphasis on microcontact imprinting method with its recent capacitive biosensor applications. PMID:28218689

  20. Lipase and phospholipase biosensors: a review.

    PubMed

    Herrera-López, Enrique J

    2012-01-01

    Recent advances in the field of biology, electronics, and nanotechnology have improved the development of biosensors. A biosensor is a device composed of a biological recognition element and a sensor element. Biosensor applications are becoming increasingly important in areas such as biotechnology, pharmaceutics, food, and environment. Lipases and phospholipases are enzymes which have been used widely in food industry, oleochemical industry, biodegradable polymers, detergents, and other applications. In the medical industry, lipases and phospholipases are used as diagnostic tools to detect triglycerides, cholesterol, and phospholipids levels in blood samples. Therefore, the development of lipase and phospholipase biosensors is of paramount importance in the clinical area. This chapter introduces the reader into the preliminaries of biosensor and reviews recent developments of lipase and phospholipase biosensors.

  1. Capacitive Biosensors and Molecularly Imprinted Electrodes.

    PubMed

    Ertürk, Gizem; Mattiasson, Bo

    2017-02-17

    Capacitive biosensors belong to the group of affinity biosensors that operate by registering direct binding between the sensor surface and the target molecule. This type of biosensors measures the changes in dielectric properties and/or thickness of the dielectric layer at the electrolyte/electrode interface. Capacitive biosensors have so far been successfully used for detection of proteins, nucleotides, heavy metals, saccharides, small organic molecules and microbial cells. In recent years, the microcontact imprinting method has been used to create very sensitive and selective biorecognition cavities on surfaces of capacitive electrodes. This chapter summarizes the principle and different applications of capacitive biosensors with an emphasis on microcontact imprinting method with its recent capacitive biosensor applications.

  2. Recent Development in Optical Fiber Biosensors

    PubMed Central

    Bosch, María Espinosa; Sánchez, Antonio Jesús Ruiz; Rojas, Fuensanta Sánchez; Ojeda, Catalina Bosch

    2007-01-01

    Remarkable developments can be seen in the field of optical fibre biosensors in the last decade. More sensors for specific analytes have been reported, novel sensing chemistries or transduction principles have been introduced, and applications in various analytical fields have been realised. This review consists of papers mainly reported in the last decade and presents about applications of optical fiber biosensors. Discussions on the trends in optical fiber biosensor applications in real samples are enumerated.

  3. A biosensor for organoarsenical herbicides and growth promoters

    PubMed Central

    Chen, Jian; Sun, Samio; Li, Chen-Zhong; Zhu, Yong-Guan; Rosen, Barry P.

    2014-01-01

    The toxic metalloid arsenic is widely distributed in food, water, and soil. While inorganic arsenic enters the environment primarily from geochemical sources, methylarsenicals either result from microbial biotransformation of inorganic arsenic or are introduced anthropogenically. Methylarsenicals such as monosodium methylarsonic acid (MSMA) have been extensively utilized as herbicides, and aromatic arsenicals such as roxarsone (Rox) are used as growth promoters for poultry and swine. Organoarsenicals are degraded to inorganic arsenic. The toxicological effects of arsenicals depend on their oxidation state, chemical composition, and bioavailability. Here we report that the active forms are the trivalent arsenic-containing species. We constructed a whole-cell biosensor utilizing a modified ArsR repressor that is highly selective toward trivalent methyl and aromatic arsenicals, with essentially no response to inorganic arsenic. The biosensor was adapted for in vitro detection of organoarsenicals using fluorescence anisotropy of ArsR-DNA interactions. It detects bacterial biomethylation of inorganic arsenite both in vivo and in vitro with detection limits of 10−7 M and linearity to 10−6 M for phenylarsenite and 5×10−6 M for methylarsenite. The biosensor detects reduced forms of MSMA and roxarsone and offers a practical, low cost method for detecting activate forms and breakdown products of organoarsenical herbicides and growth promoters. PMID:24359149

  4. Teaching about the Built Environment. ERIC Digest.

    ERIC Educational Resources Information Center

    Graves, Ginny

    Critical thinking, responsible citizenship, cultural literacy, social relevancy; these concerns of educators in the social studies can be addressed through teaching and learning about the built environment. The tangible structures that humans have created (bridges, houses, factories, farms, monuments) constitute the built environment. Objects in…

  5. Built Environment Education in Art Education.

    ERIC Educational Resources Information Center

    Guilfoil, Joanne K., Ed.; Sandler, Alan R., Ed.

    This anthology brings the study of the built environment, its design, social and cultural functions, and the criticism thereof into focus. Following a preface and introduction, 22 essays are organized in three parts. Part 1 includes: (1) "Landscape Art and the Role of the Natural Environment in Built Environment Education" (Heather…

  6. Zinc oxide interdigitated electrode for biosensor application

    NASA Astrophysics Data System (ADS)

    Sin L., L.; Arshad, M. K. Md.; Fathil, M. F. M.; Adzhri, R.; M. Nuzaihan M., N.; Ruslinda, A. R.; Gopinath, Subash C. B.; Hashim, U.

    2016-07-01

    In biosensors, zinc oxide (ZnO) thin film plays a crucial role in term of stability, sensitivity, biocompatibility and low cost. Interdigitated electrode (IDE) design is one of the device architecture in biosensor for label free, stability and sensitivity. In this paper, we discuss the fabrication of zinc oxide deposited on the IDE as a transducer for sensing of biomolecule. The formation of APTES had increase the performance of the surface functionalization..Furthermore we extend the discuss on the surface functionalization process which is utilized for probe attachment onto the surface of biosensor through surface immobilization process, thus enables the sensing of biomolecules for biosensor application.

  7. Engineered Plants as Biosensors

    DTIC Science & Technology

    2007-11-02

    GFP fluorescence was detectable in the lower leaves and especially in the roots of one transgenic plant compared to negative and positive control...mgfp5-er gene, lane 5 contains cDNA from a 35s-mgfp5-er transgenic plant , lanes 6-10 contain cDNAs from gn1/gfp plants. RNA extraction was performed 7...contains transgenic plant sprayed with water (negative control). Lanes 5-12 are independent gn1/gfp transgenic events sprayed with 5 mM BTH. Lanes

  8. Development of new hCaM-Alexa Fluor(®) biosensors for a wide range of ligands.

    PubMed

    Velázquez-López, I; León-Cruz, E; Pardo, J P; Sosa-Peinado, A; González-Andrade, M

    2017-01-01

    Eight new fluorescent biosensors of human calmodulin (hCaM) using Alexa Fluor(®) 350, 488, 532, and 555 dyes were constructed. These biosensors are thermodynamically stable, functional, and highly sensitive to ligands of the CaM. They resolve the problem of CaM ligands with similar spectroscopic properties to the intrinsic and extrinsic fluorophores of other biosensors previously reported. Additionally, they can be used in studies of protein-protein interaction through Förster resonance energy transfer (FRET). The variation in Tm (range 78.07-81.47 °C; 79.05 to WT) is no larger than two degrees in all cases in regards to CaM WT. The Kds calculated with all biosensors for CPZ and BIMI (a new inhibitor of CaM) are in the range of 0.45-1.86 and 0.69-1.54 μm respectively. All biosensors retain their ability to activate Calcineurin about 70%. Structural models built "in silico" show their possible conformation taking the fluorophores in protein thus we can predict system stability. Finally, these new biosensors represent a biotechnological development applied to an analytical problem, which aims to determine accurately the affinity of inhibitors of CaM without possible interference, to be put forward as possible drugs related to CaM.

  9. [Application of field-effect transistor based on carbon nanotube in biosensors].

    PubMed

    Yang, Danna; Wang, Lin; Chen, Zhiqiang; Li, Sai

    2011-12-01

    With the emergence of avian flu, influence A virus and other diseases, the development of rapid, real-time, label-free biological sensors has become increasingly significant at the early detection and clinical diagnoses of various diseases. Single-walled carbon nanotubes (SWNTs) have unique one-dimensional structure, special electrical properties, good biocompatibility and size compatibility, so that the SWNTs have great potential uses in the biosensor fields due to these advantages. This article reviews recent examples of carbon nanotubes field-effect transistor (CNTFET) as a label-free biosensors for detecting a variety of biological macromolecules, such as protein, enzyme, DNA, cancer, virus, carbohydrate and so on.

  10. Organic Photodiodes for Biosensor Miniaturization

    DTIC Science & Technology

    2009-01-01

    1 pW/mm2. Using this system, sandwich immunoassays were performed on the OPD substrate for detection of Staphylococcal enterotoxin B (SEB). Results...demonstrated the capability to detect multiple pathogens simultaneously at very low levels. Miniaturization of biosensors is essential for use in the field or...the sensing surface coated with immobilized capture antibody. We performed a chemiluminescence immunoassay on the OPD substrate and measured the results

  11. Alginate cryogel based glucose biosensor

    NASA Astrophysics Data System (ADS)

    Fatoni, Amin; Windy Dwiasi, Dian; Hermawan, Dadan

    2016-02-01

    Cryogel is macroporous structure provides a large surface area for biomolecule immobilization. In this work, an alginate cryogel based biosensor was developed to detect glucose. The cryogel was prepared using alginate cross-linked by calcium chloride under sub-zero temperature. This porous structure was growth in a 100 μL micropipette tip with a glucose oxidase enzyme entrapped inside the cryogel. The glucose detection was based on the colour change of redox indicator, potassium permanganate, by the hydrogen peroxide resulted from the conversion of glucose. The result showed a porous structure of alginate cryogel with pores diameter of 20-50 μm. The developed glucose biosensor was showed a linear response in the glucose detection from 1.0 to 5.0 mM with a regression of y = 0.01x+0.02 and R2 of 0.994. Furthermore, the glucose biosensor was showed a high operational stability up to 10 times of uninterrupted glucose detections.

  12. Cholesterol self-powered biosensor.

    PubMed

    Sekretaryova, Alina N; Beni, Valerio; Eriksson, Mats; Karyakin, Arkady A; Turner, Anthony P F; Vagin, Mikhail Yu

    2014-10-07

    Monitoring the cholesterol level is of great importance, especially for people with high risk of developing heart disease. Here we report on reagentless cholesterol detection in human plasma with a novel single-enzyme, membrane-free, self-powered biosensor, in which both cathodic and anodic bioelectrocatalytic reactions are powered by the same substrate. Cholesterol oxidase was immobilized in a sol-gel matrix on both the cathode and the anode. Hydrogen peroxide, a product of the enzymatic conversion of cholesterol, was electrocatalytically reduced, by the use of Prussian blue, at the cathode. In parallel, cholesterol oxidation catalyzed by mediated cholesterol oxidase occurred at the anode. The analytical performance was assessed for both electrode systems separately. The combination of the two electrodes, formed on high surface-area carbon cloth electrodes, resulted in a self-powered biosensor with enhanced sensitivity (26.0 mA M(-1) cm(-2)), compared to either of the two individual electrodes, and a dynamic range up to 4.1 mM cholesterol. Reagentless cholesterol detection with both electrochemical systems and with the self-powered biosensor was performed and the results were compared with the standard method of colorimetric cholesterol quantification.

  13. Biosensor of endotoxin and sepsis

    NASA Astrophysics Data System (ADS)

    Shao, Yang; Wang, Xiang; Wu, Xi; Gao, Wei; He, Qing-hua; Cai, Shaoxi

    2001-09-01

    To investigate the relation between biosensor of endotoxin and endotoxin of plasma in sepsis. Method: biosensor of endotoxin was designed with technology of quartz crystal microbalance bioaffinity sensor ligand of endotoxin were immobilized by protein A conjugate. When a sample soliton of plasma containing endotoxin 0.01, 0.03, 0.06, 0.1, 0.5, 1.0Eu, treated with perchloric acid and injected into slot of quartz crystal surface respectively, the ligand was released from the surface of quartz crystal to form a more stable complex with endotoxin in solution. The endotoxin concentration corresponded to the weight change on the crystal surface, and caused change of frequency that occurred when desorbed. The result was biosensor of endotoxin might detect endotoxin of plasma in sepsis, measurements range between 0.05Eu and 0.5Eu in the stop flow mode, measurement range between 0.1Eu and 1Eu in the flow mode. The sensor of endotoxin could detect the endotoxin of plasm rapidly, and use for detection sepsis in clinically.

  14. R&D 100 Winner 2010: Acoustic Wave Biosensors

    ScienceCinema

    Larson, Richard; Branch, Darren; Edwards, Thayne

    2016-07-12

    The acoustic wave biosensor is innovative device that is a handheld, battery-powered, portable detection system capable of multiplex identification of a wide range of medically relevant pathogens and their biomolecular signatures — viruses, bacteria, proteins, and DNA — at clinically relevant levels. This detection occurs within minutes — not hours — at the point of care, whether that care is in a physician's office, a hospital bed, or at the scene of a biodefense or biomedical emergency.

  15. BioSentinel: Developing a Space Radiation Biosensor

    NASA Technical Reports Server (NTRS)

    Santa Maria, Sergio R.

    2015-01-01

    BioSentinel is an autonomous fully self-contained science mission that will conduct the first study of the biological response to space radiation outside low Earth orbit (LEO) in over 40 years. The 4-unit (4U) BioSentinel biosensor system, is housed within a 6-Unit (6U) spacecraft, and uses yeast cells in multiple independent microfluidic cards to detect and measure DNA damage that occurs in response to ambient space radiation. Cell growth and metabolic activity will be measured using a 3-color LED detection system and a metabolic indicator dye with a dedicated thermal control system per fluidic card.

  16. Portable evanescent wave fiber biosensor for highly sensitive detection of Shigella

    NASA Astrophysics Data System (ADS)

    Xiao, Rui; Rong, Zhen; Long, Feng; Liu, Qiqi

    2014-11-01

    A portable evanescent wave fiber biosensor was developed to achieve the rapid and highly sensitive detection of Shigella. In this study, a DNA probe was covalently immobilized onto fiber-optic biosensors that can hybridize with a fluorescently labeled complementary DNA. The sensitivity of detection for synthesized oligonucleotides can reach 10-10 M. The surface of the sensor can be regenerated with 0.5% sodium dodecyl sulfate solution (pH 1.9) for over 30 times without significant deterioration of performance. The total analysis time for a single sample, including the time for measurement and surface regeneration, was less than 6 min. We employed real-time polymerase chain reaction (PCR) and compared the results of both methods to investigate the actual Shigella DNA detection capability of the fiber-optic biosensor. The fiber-optic biosensor could detect as low as 102 colony-forming unit/mL Shigella. This finding was comparable with that by real-time PCR, which suggests that this method is a potential alternative to existing detection methods.

  17. Utilization of nanoparticle labels for signal amplification in ultrasensitive electrochemical affinity biosensors: a review.

    PubMed

    Ding, Liang; Bond, Alan M; Zhai, Jianping; Zhang, Jie

    2013-10-03

    Nanoparticles with desirable properties not exhibited by the bulk material can be readily synthesized because of rapid technological developments in the fields of materials science and nanotechnology. In particular their highly attractive electrochemical properties and electrocatalytic activity have facilitated achievement of the high level of signal amplification needed for the development of ultrasensitive electrochemical affinity biosensors for the detection of proteins and DNA. This review article explains the basic principles of nanoparticle based electrochemical biosensors, highlights the recent advances in the development of nanoparticle based signal amplification strategies, and provides a critical assessment of the likely drawbacks associated with each strategy. Finally, future perspectives for achieving advanced signal simplification in nanoparticles based biosensors are considered.

  18. Rapid visual detection of eight meat species using optical thin-film biosensor chips.

    PubMed

    Wang, Wei; Zhu, Yepei; Chen, Ying; Xu, Xinglian; Zhou, Guanghong

    2015-01-01

    Adulteration of meat products has become a very serious issue nowadays. To protect consumer rights, food labeling is required in many countries, and efficient and accurate detection methods are essential as well. This paper reports an innovative method for the rapid detection and identification of meat species based on a silicon-based optical thin-film biosensor chip with which color change results can be perceived by the naked eye without any expensive instruments. This biosensor system can simultaneously and specifically detect eight meat species, including deer, rabbit, duck, chicken, beef, horse, sheep, and pork. The absolute detection limit of this method was 0.5 pg of deer/beef DNA, and the practical detection limit was 0.001%. The biosensor detection can be completed within 30 min after PCR amplification. Therefore, this assay permits specific, sensitive, rapid, and simple detection of meat species in raw or cooked meat products.

  19. Principles of As-Built Engineering

    SciTech Connect

    Dolin, R.M.; Hefele, J.

    1996-11-01

    As-Built Engineering is a product realization methodology founded on the notion that life-cycle engineering should be based on what is actually produced and not on what is nominally designed. As-Built Engineering is a way of thinking about the production realization process that enables customization in mass production environments. It questions the relevance of nominal based methods of engineering and the role that tolerancing plays in product realization. As-Built Engineering recognizes that there will always be errors associated with manufacturing that cannot be controlled and therefore need to be captured in order to fully characterize each individual product`s unique attributes. One benefit of As-Built Engineering is the ability to provide actual product information to designers and analysts enabling them to verify their assumptions using actual part and assembly data. Another benefit is the ability to optimize new and re-engineered assemblies.

  20. Built Environment Analysis Tool: April 2013

    SciTech Connect

    Porter, C.

    2013-05-01

    This documentation describes the tool development. It was created to evaluate the effects of built environment scenarios on transportation energy and greenhouse gas (GHG) emissions. This documentation also provides guidance on how to apply the tool.

  1. Immobilization free electrochemical biosensor for folate receptor in cancer cells based on terminal protection.

    PubMed

    Ni, Jiancong; Wang, Qingxiang; Yang, Weiqiang; Zhao, Mengmeng; Zhang, Ying; Guo, Longhua; Qiu, Bin; Lin, Zhenyu; Yang, Huang-Hao

    2016-12-15

    The determination of folate receptor (FR) that over expressed in vast quantity of cancerous cells frequently is significant for the clinical diagnosis and treatment of cancers. Many DNA-based electrochemical biosensors have been developed for FR detection with high selectivity and sensitivity, but most of them need complicated immobilization of DNA on the electrode surface firstly, which is tedious and therefore results in the poor reproducibility. In this study, a simple, sensitive, and selective electrochemical FR biosensor in cancer cells has been proposed, which combines the advantages of the convenient immobilization-free homogeneous indium tin oxide (ITO)-based electrochemical detection strategy and the high selectivity of the terminal protection of small molecule linked DNA. The small molecule of folic acid (FA) and an electroactive molecule of ferrocence (Fc) were tethered to 3'- and 5'-end of an arbitrary single-stranded DNA (ssDNA), respectively, forming the FA-ssDNA-Fc complex. In the absence of the target FR, the FA-ssDNA-Fc was degraded by exonuclease I (Exo I) from 3'-end and produced a free Fc, diffusing freely to the ITO electrode surface and resulting in strong electrochemical signal. When the target FR was present, the FA-ssDNA-Fc was bound to FR through specific interaction with FA anchored at the 3'-end, effectively protecting the ssDNA strand from hydrolysis by Exo I. The FR-FA-ssDNA-Fc could not diffuse easily to the negatively charged ITO electrode surface due to the electrostatic repulsion between the DNA strand and the negatively charged ITO electrode, so electrochemical signal reduced. The decreased electrochemical signal has a linear relationship with the logarithm of FR concentration in range of 10fM to 10nM with a detection limit of 3.8fM (S/N=3). The proposed biosensor has been applied to detect FR in HeLa cancer cells, and the decreased electrochemical signal has a linear relationship with the logarithm of cell concentration ranging

  2. Artificial DNA and surface plasmon resonance

    PubMed Central

    D'Agata, Roberta; Spoto, Giuseppe

    2012-01-01

    The combined use of surface plasmon resonance (SPR) and modified or mimic oligonucleotides have expanded diagnostic capabilities of SPR-based biosensors and have allowed detailed studies of molecular recognition processes. This review summarizes the most significant advances made in this area over the past 15 years.   Functional and conformationally restricted DNA analogs (e.g., aptamers and PNAs) when used as components of SPR biosensors contribute to enhance the biosensor sensitivity and selectivity. At the same time, the SPR technology brings advantages that allows forbetter exploration of underlying properties of non-natural nucleic acid structures such us DNAzymes, LNA and HNA. PMID:22821257

  3. MWCNTs based high sensitive lateral flow strip biosensor for rapid determination of aqueous mercury ions.

    PubMed

    Yao, Li; Teng, Jun; Zhu, Mengya; Zheng, Lei; Zhong, Youhao; Liu, Guodong; Xue, Feng; Chen, Wei

    2016-11-15

    Here, we describe a disposable multi-walled carbon nanotubes (MWCNTs) labeled nucleic acid lateral flow strip biosensor for rapid and sensitive detection of aqueous mercury ions (Hg(2+)). Unlike the conventional colloidal gold nanoparticle based strip biosensors, the carboxylated MWCNTs were selected as the labeling substrate because of its high specific surface area for immobilization of recognition probes, improved stability and enhanced detection sensitivity of the strip biosensor. Combining the sandwich-type of T-Hg(2+)-T recognition mechanism with the optical properties of MWCNTs on lateral flow strip, optical black bands were observed on the lateral flow strips. Parameters (such as membrane category, the MWCNTs concentration, the amount of MWCNT-DNA probe, and the volume of the test probe) that govern the sensitivity and reproducibility of the sensor were optimized. The response of the optimized biosensor was highly linear over the range of 0.05-1ppb target Hg(2+), and the detection threshold was estimated at 0.05 ppb within a 15-min assay time. The sensitivity was 10-fold higher than the conventional colloidal gold based strip biosensor. More importantly, the stability of the sensor was also greatly improved with the usage of MWCNTs as the labeling.

  4. The Built Environment Predicts Observed Physical Activity

    PubMed Central

    Kelly, Cheryl; Wilson, Jeffrey S.; Schootman, Mario; Clennin, Morgan; Baker, Elizabeth A.; Miller, Douglas K.

    2014-01-01

    Background: In order to improve our understanding of the relationship between the built environment and physical activity, it is important to identify associations between specific geographic characteristics and physical activity behaviors. Purpose: Examine relationships between observed physical activity behavior and measures of the built environment collected on 291 street segments in Indianapolis and St. Louis. Methods: Street segments were selected using a stratified geographic sampling design to ensure representation of neighborhoods with different land use and socioeconomic characteristics. Characteristics of the built environment on-street segments were audited using two methods: in-person field audits and audits based on interpretation of Google Street View imagery with each method blinded to results from the other. Segments were dichotomized as having a particular characteristic (e.g., sidewalk present or not) based on the two auditing methods separately. Counts of individuals engaged in different forms of physical activity on each segment were assessed using direct observation. Non-parametric statistics were used to compare counts of physically active individuals on each segment with built environment characteristic. Results: Counts of individuals engaged in physical activity were significantly higher on segments with mixed land use or all non-residential land use, and on segments with pedestrian infrastructure (e.g., crosswalks and sidewalks) and public transit. Conclusion: Several micro-level built environment characteristics were associated with physical activity. These data provide support for theories that suggest changing the built environment and related policies may encourage more physical activity. PMID:24904916

  5. Nanomaterials based biosensors for cancer biomarker detection

    NASA Astrophysics Data System (ADS)

    Malhotra, Bansi D.; Kumar, Saurabh; Mouli Pandey, Chandra

    2016-04-01

    Biosensors have enormous potential to contribute to the evolution of new molecular diagnostic techniques for patients suffering with cancerous diseases. A major obstacle preventing faster development of biosensors pertains to the fact that cancer is a highly complex set of diseases. The oncologists currently rely on a few biomarkers and histological characterization of tumors. Some of the signatures include epigenetic and genetic markers, protein profiles, changes in gene expression, and post-translational modifications of proteins. These molecular signatures offer new opportunities for development of biosensors for cancer detection. In this context, conducting paper has recently been found to play an important role towards the fabrication of a biosensor for cancer biomarker detection. In this paper we will focus on results of some of the recent studies obtained in our laboratories relating to fabrication and application of nanomaterial modified paper based biosensors for cancer biomarker detection.

  6. Oxide-on-graphene field effect biosensors

    NASA Astrophysics Data System (ADS)

    Wang, Bei; Liddell, Kristi; Wang, Junjie; Koger, Brandon; Keating, Christine; Zhu, J.

    2013-03-01

    Nanoelectronics-based detection schemes offer fast and label-free alternatives to bioanalysis. Here we report on the design, fabrication, and operation of ion-sensitive field-effect biosensors using large-area graphene sheets synthesized by chemical vapor deposition. The graphene transducer channel has a high carrier mobility of approximately 5000cm2/Vs. Our oxide-on-graphene design uses thin HfO2 and SiO2 films to passivate the graphene channel and electrodes from electrolyte and uses the top SiO2 surface for sensing and linker chemistry. The pH sensitivity of the bare SiO2 is measured to be 46mV/pH, in good agreement with literature results. We demonstrate the silanization of the SiO2 surface with aminopropyl-trimethoxysilane (APTMS). The pH sensitivity of the APTMS-functionalized SiO2 is measured to be 43mV/pH. By applying the solution gate voltage in pulse, we eliminate hysteresis in the transfer curve of the graphene channel, which is a common challenge in achieving high-solution detection using nanostructure-based field effect sensors. The amine-functionalized SiO2 surface can be further functionalized with bio-probes to perform the detection of specific binding events such as DNA hybridization.

  7. TIGER: the universal biosensor

    NASA Astrophysics Data System (ADS)

    Hofstadler, Steven A.; Sampath, Rangarajan; Blyn, Lawrence B.; Eshoo, Mark W.; Hall, Thomas A.; Jiang, Yun; Drader, Jared J.; Hannis, James C.; Sannes-Lowery, Kristin A.; Cummins, Lendell L.; Libby, Brian; Walcott, Demetrius J.; Schink, Amy; Massire, Christian; Ranken, Raymond; Gutierrez, Jose; Manalili, Sheri; Ivy, Cristina; Melton, Rachael; Levene, Harold; Barrett-Wilt, Greg; Li, Feng; Zapp, Vanessa; White, Neill; Samant, Vivek; McNeil, John A.; Knize, Duane; Robbins, David; Rudnick, Karl; Desai, Anjali; Moradi, Emily; Ecker, David J.

    2005-03-01

    In this work, we describe a strategy for the detection and characterization of microorganisms associated with a potential biological warfare attack or a natural outbreak of an emerging infectious disease. This approach, termed TIGER (Triangulation Identification for the Genetic Evaluation of Risks), relies on mass spectrometry-derived base composition signatures obtained from PCR amplification of broadly conserved regions of the microbial genome(s) in a sample. The sample can be derived from air filtration devices, clinical samples, or other sources. Core to this approach are "intelligent PCR primers" that target broadly conserved regions of microbial genomes that flank variable regions. This approach requires that high-performance mass measurements be made on PCR products in the 80-140 bp size range in a high-throughput, robust modality. As will be demonstrated, the concept is equally applicable to bacteria and viruses and could be further applied to fungi and protozoa. In addition to describing the fundamental strategy of this approach, several specific examples of TIGER are presented that illustrate the impact this approach could have on the way biological weapons attacks are detected and the way that the etiologies of infectious diseases are determined. The first example illustrates how any bacterial species might be identified, using Bacillus anthracis as the test agent. The second example demonstrates how DNA-genome viruses are identified using five members of Poxviridae family, whose members includes Variola virus, the agent responsible for smallpox. The third example demonstrates how RNA-genome viruses are identified using the Alphaviruses (VEE, WEE, and EEE) as representative examples. These examples illustrate how the TIGER technology can be applied to create a universal identification strategy for all pathogens, including those that infect humans, livestock, and plants.

  8. Microfabricated silicon biosensors for microphysiometry

    NASA Technical Reports Server (NTRS)

    Bousse, L. J.; Libby, J. M.; Parce, J. W.

    1993-01-01

    Microphysiometers are biosensor devices that measure the metabolic rate of living cells by detecting the rate of extracellular acidification caused by a small number of cells. The cells are entrapped in a microvolume chamber, whose bottom surface is a silicon sensor chip. In a further miniaturization step, we have recently fabricated multichannel flow-through chips that will allow greater throughput and multiplicity. Microphysiometer technology can be applied to the detection of microorganisms. We describe the sensitive detection of bacteria and yeast. Further applications of microphysiometry to the characterization of microorganisms can be anticipated.

  9. Ultrasensitive Electrochemical Biosensor for HIV Gene Detection Based on Graphene Stabilized Gold Nanoclusters with Exonuclease Amplification.

    PubMed

    Wang, Yijia; Bai, Xiaoning; Wen, Wei; Zhang, Xiuhua; Wang, Shengfu

    2015-08-26

    Because human immunodeficiency virus (HIV) has been one of the most terrible viruses in recent decades, early diagnosis of the HIV gene is of great importance for all scientists around the world. In our work, we developed a novel electrochemical biosensor based on one-step ultrasonic synthesized graphene stabilized gold nanocluster (GR/AuNC) modified glassy carbon electrode (GCE) with an exonuclease III (Exo III)-assisted target recycling amplification strategy for the detection of HIV DNA. It is the first time that GR/AuNCs have been used as biosensor platform and aptamer with cytosine-rich base set as capture probe to construct the biosensor. With the combination of cytosine-rich capture probe, good conductivity and high surfaces of GR/AuNCs, and Exo III-assisted target recycling amplification, we realized high sensitivity and good selectivity detection of target HIV DNA with a detection limit of 30 aM (S/N = 3). Furthermore, the proposed biosensor has a promising potential application for target detection in human serum analysis.

  10. Quantum dot-based microfluidic biosensor for cancer detection

    SciTech Connect

    Ghrera, Aditya Sharma; Pandey, Chandra Mouli; Ali, Md. Azahar; Malhotra, Bansi Dhar

    2015-05-11

    We report results of the studies relating to fabrication of an impedimetric microfluidic–based nucleic acid sensor for quantification of DNA sequences specific to chronic myelogenous leukemia (CML). The sensor chip is prepared by patterning an indium–tin–oxide (ITO) coated glass substrate via wet chemical etching method followed by sealing with polydimethylsiloxane (PDMS) microchannel for fluid control. The fabricated microfluidic chip comprising of a patterned ITO substrate is modified by depositing cadmium selenide quantum dots (QCdSe) via Langmuir–Blodgett technique. Further, the QCdSe surface has been functionalized with specific DNA probe for CML detection. The probe DNA functionalized QCdSe integrated miniaturized system has been used to monitor target complementary DNA concentration by measuring the interfacial charge transfer resistance via hybridization. The presence of complementary DNA in buffer solution significantly results in decreased electro-conductivity of the interface due to presence of a charge barrier for transport of the redox probe ions. The microfluidic DNA biosensor exhibits improved linearity in the concentration range of 10{sup −15} M to 10{sup −11} M.

  11. Quantum dot-based microfluidic biosensor for cancer detection

    NASA Astrophysics Data System (ADS)

    Ghrera, Aditya Sharma; Pandey, Chandra Mouli; Ali, Md. Azahar; Malhotra, Bansi Dhar

    2015-05-01

    We report results of the studies relating to fabrication of an impedimetric microfluidic-based nucleic acid sensor for quantification of DNA sequences specific to chronic myelogenous leukemia (CML). The sensor chip is prepared by patterning an indium-tin-oxide (ITO) coated glass substrate via wet chemical etching method followed by sealing with polydimethylsiloxane (PDMS) microchannel for fluid control. The fabricated microfluidic chip comprising of a patterned ITO substrate is modified by depositing cadmium selenide quantum dots (QCdSe) via Langmuir-Blodgett technique. Further, the QCdSe surface has been functionalized with specific DNA probe for CML detection. The probe DNA functionalized QCdSe integrated miniaturized system has been used to monitor target complementary DNA concentration by measuring the interfacial charge transfer resistance via hybridization. The presence of complementary DNA in buffer solution significantly results in decreased electro-conductivity of the interface due to presence of a charge barrier for transport of the redox probe ions. The microfluidic DNA biosensor exhibits improved linearity in the concentration range of 10-15 M to 10-11 M.

  12. Characterization of Textile-Insulated Capacitive Biosensors.

    PubMed

    Ng, Charn Loong; Reaz, Mamun Bin Ibne

    2017-03-12

    Capacitive biosensors are an emerging technology revolutionizing wearable sensing systems and personal healthcare devices. They are capable of continuously measuring bioelectrical signals from the human body while utilizing textiles as an insulator. Different textile types have their own unique properties that alter skin-electrode capacitance and the performance of capacitive biosensors. This paper aims to identify the best textile insulator to be used with capacitive biosensors by analysing the characteristics of 6 types of common textile materials (cotton, linen, rayon, nylon, polyester, and PVC-textile) while evaluating their impact on the performance of a capacitive biosensor. A textile-insulated capacitive (TEX-C) biosensor was developed and validated on 3 subjects. Experimental results revealed that higher skin-electrode capacitance of a TEX-C biosensor yields a lower noise floor and better signal quality. Natural fabric such as cotton and linen were the two best insulating materials to integrate with a capacitive biosensor. They yielded the lowest noise floor of 2 mV and achieved consistent electromyography (EMG) signals measurements throughout the performance test.

  13. Characterization of Textile-Insulated Capacitive Biosensors

    PubMed Central

    Ng, Charn Loong; Reaz, Mamun Bin Ibne

    2017-01-01

    Capacitive biosensors are an emerging technology revolutionizing wearable sensing systems and personal healthcare devices. They are capable of continuously measuring bioelectrical signals from the human body while utilizing textiles as an insulator. Different textile types have their own unique properties that alter skin-electrode capacitance and the performance of capacitive biosensors. This paper aims to identify the best textile insulator to be used with capacitive biosensors by analysing the characteristics of 6 types of common textile materials (cotton, linen, rayon, nylon, polyester, and PVC-textile) while evaluating their impact on the performance of a capacitive biosensor. A textile-insulated capacitive (TEX-C) biosensor was developed and validated on 3 subjects. Experimental results revealed that higher skin-electrode capacitance of a TEX-C biosensor yields a lower noise floor and better signal quality. Natural fabric such as cotton and linen were the two best insulating materials to integrate with a capacitive biosensor. They yielded the lowest noise floor of 2 mV and achieved consistent electromyography (EMG) signals measurements throughout the performance test. PMID:28287493

  14. Plasmonic biosensor for label-free G-quadruplexes detection

    NASA Astrophysics Data System (ADS)

    Qiu, Suyan; Zhao, Fusheng; Santos, Greggy M.; Shih, Wei-Chuan

    2016-03-01

    G-quadruplex, readily formed by the G-rich sequence, potentially distributes in over 40 % of all human genes, such as the telomeric DNA with the G-rich sequence found at the end of the chromosome. The G-quadruplex structure is supposed to possess a diverse set of critical functions in the mammalian genome for transcriptional regulation, DNA replication and genome stability. However, most of the currently available methods for G-quadruplex identification are restricted to fluorescence techniques susceptible to poor sensitivity. It is essential to propose methods with higher sensitivity to specifically recognize the G-quadruplexes. In this study, we demonstrate a label-free plasmonic biosensor for G-quadruplex detection by relying on the advantages of nanoporous gold (NPG) disks that provide high-density plasmonic hot spots, suitable for molecular recognition capability without the requirement for labeling processes.

  15. Built-In Mechanical Stress in Viral Shells

    PubMed Central

    Carrasco, C.; Luque, A.; Hernando-Pérez, M.; Miranda, R.; Carrascosa, J.L.; Serena, P.A.; de Ridder, M.; Raman, A.; Gómez-Herrero, J.; Schaap, I.A.T.; Reguera, D.; de Pablo, P.J.

    2011-01-01

    Mechanical properties of biological molecular aggregates are essential to their function. A remarkable example are double-stranded DNA viruses such as the ϕ29 bacteriophage, that not only has to withstand pressures of tens of atmospheres exerted by the confined DNA, but also uses this stored elastic energy during DNA translocation into the host. Here we show that empty prolated ϕ29 bacteriophage proheads exhibit an intriguing anisotropic stiffness which behaves counterintuitively different from standard continuum elasticity predictions. By using atomic force microscopy, we find that the ϕ29 shells are approximately two-times stiffer along the short than along the long axis. This result can be attributed to the existence of a residual stress, a hypothesis that we confirm by coarse-grained simulations. This built-in stress of the virus prohead could be a strategy to provide extra mechanical strength to withstand the DNA compaction during and after packing and a variety of extracellular conditions, such as osmotic shocks or dehydration. PMID:21320456

  16. Knowledge from data in the built environment.

    PubMed

    Starkey, Christopher; Garvin, Chris

    2013-08-01

    Data feedback is changing our relationship to the built environment. Both traditional and new sources of data are developing rapidly, compelled by efforts to optimize the performance of human habitats. However, there are many obstacles to the successful implementation of information-centered environments that continue to hinder widespread adoption. This paper identifies these obstacles and challenges and describes emerging data-rich analytic techniques in infrastructure, buildings, and building portfolios. Further, it speculates on the impact that a robust data sphere may have on the built environment and posits that linkages to other data sets may enable paradigm shifts in sustainability and resiliency.

  17. Built Environment Energy Analysis Tool Overview (Presentation)

    SciTech Connect

    Porter, C.

    2013-04-01

    This presentation provides an overview of the Built Environment Energy Analysis Tool, which is designed to assess impacts of future land use/built environment patterns on transportation-related energy use and greenhouse gas (GHG) emissions. The tool can be used to evaluate a range of population distribution and urban design scenarios for 2030 and 2050. This tool was produced as part of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  18. A transparent nanostructured optical biosensor.

    PubMed

    He, Yuan; Li, Xiang; Que, Long

    2014-05-01

    Herein we report a new transparent nanostructured Fabry-Perot interferometer (FPI) device. The unique features of the nanostructured optical device can be summarized as the following: (i) optically transparent nanostructured optical device; (ii) simple and inexpensive for fabrication; (iii) easy to be fabricated and scaled up as an arrayed format. These features overcome the existing barriers for the current nanopore-based interferometric optical biosensors by measuring the transmitted optical signals rather than the reflected optical signals, thereby facilitating the optical testing significantly for the arrayed biosensors and thus paving the way for their potential for high throughput biodetection applications. The optically transparent nanostructures (i.e., anodic aluminum oxide nanopores) inside the FPI devices are fabricated from 2.2 microm thick lithographically patterned Al thin film on an indium tin oxide (ITO) glass substrate using a two-step anodization process. Utilizing the binding between Protein A and porcine immunoglobulin G (IgG) as a model, the detection of the bioreaction between biomolecules has been demonstrated successfully. Experiments found that the lowest detection concentration of proteins is in the range of picomolar level using current devices, which can be easily tuned into the range of femtomolar level by optimizing the performance of devices.

  19. Early Lung Cancer Diagnosis by Biosensors

    PubMed Central

    Zhang, Yuqian; Yang, Dongliang; Weng, Lixing; Wang, Lianhui

    2013-01-01

    Lung cancer causes an extreme threat to human health, and the mortality rate due to lung cancer has not decreased during the last decade. Prognosis or early diagnosis could help reduce the mortality rate. If microRNA and tumor-associated antigens (TAAs), as well as the corresponding autoantibodies, can be detected prior to clinical diagnosis, such high sensitivity of biosensors makes the early diagnosis and prognosis of cancer realizable. This review provides an overview of tumor-associated biomarker identifying methods and the biosensor technology available today. Laboratorial researches utilizing biosensors for early lung cancer diagnosis will be highlighted. PMID:23892596

  20. Enhanced efficiency of a capillary-based biosensor over an optical fiber biosensor for detecting calpastatin.

    PubMed

    Bratcher, C L; Grant, S A; Vassalli, J T; Lorenzen, C L

    2008-06-15

    A capillary-based optical biosensor has been developed to detect calpastatin, an indicator of meat tenderness. Longissimus muscle samples (n=11) were extracted from beef carcasses at 0 and 48h post-mortem. These samples were assayed for calpastatin by traditional laboratory methods and with a newly developed capillary tube biosensor as well as for Warner-Bratzler shear force (WBSF) and crude protein and the responses were compared. Additionally, the response from the capillary-based biosensor was compared to a previously developed optical fiber biosensor. When the 0 and 48h sampling periods were combined, the capillary tube biosensor was moderately accurate in predicting calpastatin activity (R(2)=0.6058). There was less variation in the 0h capillary tube biosensor compared to the 0h pre-column (P=0.006) and post-column optical fiber biosensors (P=0.047), therefore the capillary tube biosensor is a more precise system of measurement. This research further advances the development of a calpastatin biosensor and makes online assessment one step closer to reality.

  1. Simple and Cooperatively Built Wave Motion Demonstrator

    ERIC Educational Resources Information Center

    Cortel, Adolf

    2006-01-01

    Some designs of simple wave demonstration devices have been described in this journal and elsewhere. A new simple model can be built using only dowels, binder clips, and loops of thread. Not only can it be easily assembled, stored, or disassembled, but also all the students in a class can cooperate in its building by connecting successive pieces…

  2. Built Environment Correlates of Walking: A Review

    PubMed Central

    Saelens, Brian E.; Handy, Susan L.

    2010-01-01

    Introduction The past decade has seen a dramatic increase in the empirical investigation into the relations between built environmental and physical activity. To create places that facilitate and encourage walking, practitioners need an understanding of the specific characteristics of the built environment that correlate most strongly with walking. This paper reviews evidence on the built environment correlates with walking. Method Included in this review were 13 reviews published between 2002 and 2006 and 29 original studies published in 2005 and up through May 2006. Results were summarized based on specific characteristics of the built environment and transportation walking versus recreational walking. Results Previous reviews and newer studies document consistent positive relations between walking for transportation and density, distance to non-residential destinations, and land use mix; findings for route/network connectivity, parks and open space, and personal safety are more equivocal. Results regarding recreational walking were less clear. Conclusions More recent evidence supports the conclusions of prior reviews, and new studies address some of the limitations of earlier studies. Although prospective studies are needed, evidence on correlates appears sufficient to support policy changes. PMID:18562973

  3. Schooling Built on the Multiple Intelligences

    ERIC Educational Resources Information Center

    Kunkel, Christine D.

    2009-01-01

    This article features a school built on multiple intelligences. As the first multiple intelligences school in the world, the Key Learning Community shapes its students' days to include significant time in the musical, spatial and bodily-kinesthetic intelligences, as well as the more traditional areas of logical-mathematical and linguistics. In…

  4. Multichannel Analyzer Built from a Microcomputer.

    ERIC Educational Resources Information Center

    Spencer, C. D.; Mueller, P.

    1979-01-01

    Describes a multichannel analyzer built using eight-bit S-100 bus microcomputer hardware. The output modes are an oscilloscope display, print data, and send data to another computer. Discusses the system's hardware, software, costs, and advantages relative to commercial multichannels. (Author/GA)

  5. Electrochemical paper-based peptide nucleic acid biosensor for detecting human papillomavirus.

    PubMed

    Teengam, Prinjaporn; Siangproh, Weena; Tuantranont, Adisorn; Henry, Charles S; Vilaivan, Tirayut; Chailapakul, Orawon

    2017-02-01

    A novel paper-based electrochemical biosensor was developed using an anthraquinone-labeled pyrrolidinyl peptide nucleic acid (acpcPNA) probe (AQ-PNA) and graphene-polyaniline (G-PANI) modified electrode to detect human papillomavirus (HPV). An inkjet printing technique was employed to prepare the paper-based G-PANI-modified working electrode. The AQ-PNA probe baring a negatively charged amino acid at the N-terminus was immobilized onto the electrode surface through electrostatic attraction. Electrochemical impedance spectroscopy (EIS) was used to verify the AQ-PNA immobilization. The paper-based electrochemical DNA biosensor was used to detect a synthetic 14-base oligonucleotide target with a sequence corresponding to human papillomavirus (HPV) type 16 DNA by measuring the electrochemical signal response of the AQ label using square-wave voltammetry before and after hybridization. It was determined that the current signal significantly decreased after the addition of target DNA. This phenomenon is explained by the rigidity of PNA-DNA duplexes, which obstructs the accessibility of electron transfer from the AQ label to the electrode surface. Under optimal conditions, the detection limit of HPV type 16 DNA was found to be 2.3 nM with a linear range of 10-200 nM. The performance of this biosensor on real DNA samples was tested with the detection of PCR-amplified DNA samples from the SiHa cell line. The new method employs an inexpensive and disposable device, which easily incinerated after use and is promising for the screening and monitoring of the amount of HPV-DNA type 16 to identify the primary stages of cervical cancer.

  6. Enzyme Nanoparticles-Based Electronic Biosensor

    SciTech Connect

    Liu, Guodong; Lin, Yuehe; Ostatna, V.; Wang, Joseph

    2005-06-28

    A novel method for fabricating electronic biosensors based on coupling enzyme nanoparticles and self assembly technology is illustrated. Redox horseradish peroxidase nanoparticles were prepared by desolvation with ethanol and subsequent crosslinking with glutaraldehyde. The cross-linked enzyme nanoparticles were functionalized by cysteine to introduce thiol groups on the nanoparticle surface. Immobilized enzyme nanoparticle on the gold electrode by self-assembly kept redox and electrocatalytic activities, and was used to develop reagentless biosensors for H2O2 detection without promoters and mediators. The new approach is simple, low cost and circumvents complications associated with solution systems. It is a universal immobilization method for biosensor, biomedical devices, biofuel cells and enzymatic bioreactors fabrication and expected to open new opportunities for biosensor, clinical diagnostics, and for bioanalysis, in general.

  7. PRINCIPLES OF AFFINITY-BASED BIOSENSORS

    EPA Science Inventory

    Despite the amount of resources that have been invested by national and international academic, government, and commercial sectors to develop affinity-based biosensor products, little obvious success has been realized through commercialization of these devices for specific applic...

  8. Biosensors a promising future in measurements

    NASA Astrophysics Data System (ADS)

    Saleem, Muhammad

    2013-12-01

    A biosensor is an analytical device which can be used to convert the existence of a molecule or compound into a measurable and useful signal. Biosensors use stimulus to translate changes to recognisable signals and have great importance to society. Applications include diagnosis tools for diseases, security appliances, and other biomedical equipments. Biosensors can also be used in the detection of pathogens and other microbes in foodstuffs, drugs and processing industries. Enormous progress and advancement has been witnessed in this area. Research and development in micro level systems serves to interface biology with novel materials such as nanomaterial. Development of high speed and accurate electronic devices tfor use in medicine and energy storage (such as biofuel cells) is one of the target areas. This paper discusses the importance, use and current and future trend in the application of biosensors.

  9. Recent Advances in Nanotechnology Applied to Biosensors

    PubMed Central

    Zhang, Xueqing; Guo, Qin; Cui, Daxiang

    2009-01-01

    In recent years there has been great progress the application of nanomaterials in biosensors. The importance of these to the fundamental development of biosensors has been recognized. In particular, nanomaterials such as gold nanoparticles, carbon nanotubes, magnetic nanoparticles and quantum dots have been being actively investigated for their applications in biosensors, which have become a new interdisciplinary frontier between biological detection and material science. Here we review some of the main advances in this field over the past few years, explore the application prospects, and discuss the issues, approaches, and challenges, with the aim of stimulating a broader interest in developing nanomaterial-based biosensors and improving their applications in disease diagnosis and food safety examination. PMID:22399954

  10. Surface plasmon resonance biosensors: advances and applications

    NASA Astrophysics Data System (ADS)

    Homola, Jirí

    2009-10-01

    Surface plasmon resonance (SPR) biosensors represent the most advanced label-free optical affinity biosensor technology. In the last decade numerous SPR sensor platforms have been developed and applied in the life sciences and bioanalytics. This contribution reviews the state of the art in the development of SPR (bio)sensor technology and presents selected results of research into SPR biosensors at the Institute of Photonics and Electronics, Prague. The developments discussed in detail include a miniature fiber optic SPR sensor for localized measurements, a compact SPR sensor for field use and a multichannel SPR sensor for high-throughput screening. Examples of applications for the detection of analytes related to medical diagnostics (biomarkers, hormones, antibodies), environmental monitoring (endocrine disrupting compounds), and food safety (pathogens and toxins) are given.

  11. Fabrication strategies, sensing modes and analytical applications of ratiometric electrochemical biosensors.

    PubMed

    Jin, Hui; Gui, Rijun; Yu, Jianbo; Lv, Wei; Wang, Zonghua

    2017-05-15

    Previously developed electrochemical biosensors with single-electric signal output are probably affected by intrinsic and extrinsic factors. In contrast, the ratiometric electrochemical biosensors (RECBSs) with dual-electric signal outputs have an intrinsic built-in correction to the effects from system or background electric signals, and therefore exhibit a significant potential to improve the accuracy and sensitivity in electrochemical sensing applications. In this review, we systematically summarize the fabrication strategies, sensing modes and analytical applications of RECBSs. First, the different fabrication strategies of RECBSs were introduced, referring to the analytes-induced single- and dual-dependent electrochemical signal strategies for RECBSs. Second, the different sensing modes of RECBSs were illustrated, such as differential pulse voltammetry, square wave voltammetry, cyclic voltammetry, alternating current voltammetry, electrochemiluminescence, and so forth. Third, the analytical applications of RECBSs were discussed based on the types of target analytes. Finally, the forthcoming development and future prospects in the research field of RECBSs were also highlighted.

  12. Fiber Optic Biosensors for Contaminant Monitoring

    DTIC Science & Technology

    2005-12-01

    3 Biosensor response (as photomultiplier voltage change) following a change in analyte concentration. Figure 2-4 Reactions catalyzed by hydrolytic...biosensor measures small pH changes produced by the reaction of an enzyme with 1,2-DCA and techniques are required to distinguish these pH changes from...layer of the detection element contains bacteria with an enzyme that catalyzes a reaction with the analyte resulting in protons being released. The

  13. Biosensors for Inorganic and Organic Arsenicals

    PubMed Central

    Chen, Jian; Rosen, Barry P.

    2014-01-01

    Arsenic is a natural environmental contaminant to which humans are routinely exposed and is strongly associated with human health problems, including cancer, cardiovascular and neurological diseases. To date, a number of biosensors for the detection of arsenic involving the coupling of biological engineering and electrochemical techniques has been developed. The properties of whole-cell bacterial or cell-free biosensors are summarized in the present review with emphasis on their sensitivity and selectivity. Their limitations and future challenges are highlighted. PMID:25587436

  14. Graphene-Based Biosensors: Going Simple.

    PubMed

    Morales-Narváez, Eden; Baptista-Pires, Luis; Zamora-Gálvez, Alejandro; Merkoçi, Arben

    2017-02-01

    The main properties of graphene derivatives facilitating optical and electrical biosensing platforms are discussed, along with how the integration of graphene derivatives, plastic, and paper can lead to innovative devices in order to simplify biosensing technology and manufacture easy-to-use, yet powerful electrical or optical biosensors. Some crucial issues to be overcome in order to bring graphene-based biosensors to the market are also underscored.

  15. Magnetic impedance biosensor: A review.

    PubMed

    Wang, Tao; Zhou, Yong; Lei, Chong; Luo, Jun; Xie, Shaorong; Pu, Huayan

    2017-04-15

    Though the magnetoimpedance effect was discovered two decades ago, the biomedical applications of the magnetoimpedance sensor are still in their infancy. In this review, the authors summarized the magnetoimpedance effect in soft ferromagnetic wires, ribbons and thin films for biosensing applications. Recent progress and achievements of the magnetoimpedance-based biosensing applications including the detection of magnetic Ferrofluid, magnetic beads, magnetic nanoparticles, magnetically labeled bioanalytes and biomagnetic fields of living systems were reviewed. The modification effect of the biochemical liquids, agglomeration effect of the magnetic particles, and the effect of the stray magnetic field on magnetoimpedance were investigated in this review. Some constructive strategies were proposed for design of the high-performance magnetoimpedance biosensor, for quantitative and ultrasensitive detection of magnetically labeled biomolecules. The theoretical and experimental results suggest that the magnetoimpedance sensors are particularly suitable for highly sensitive detection of low-concentration biomolecules, and might be used for early diagnosis and screening of cancers.

  16. Nanoparticles Modified ITO Based Biosensor

    NASA Astrophysics Data System (ADS)

    Khan, M. Z. H.

    2016-12-01

    Incorporation of nanomaterials with controlled molecular architecture shows great promise in improving electronic communication between biomolecules and the electrode substrate. In electrochemical applications metal nanoparticles (NPs) modified electrodes have been widely used and are emerging as candidates to develop highly sensitive electrochemical sensors. There has been a growing technological interest in modified indium tin oxide (ITO) electrodes due to their prominent optoelectronic properties and their wide use as a transducing platform. The introduction of NPs into the transducing platform is commonly achieved by their adsorption onto conventional electrode surfaces in various forms, including that of a composite. The aim of this review is to discuss the role of metallic NPs for surface fabrication of ITO thin films leading to detection of specific biomolecules and applications as a biosensor platform.

  17. Integrated optical biosensor system (IOBS)

    DOEpatents

    Grace, Karen M.; Sweet, Martin R.; Goeller, Roy M.; Morrison, Leland Jean; Grace, Wynne Kevin; Kolar, Jerome D.

    2007-10-30

    An optical biosensor has a first enclosure with a pathogen recognition surface, including a planar optical waveguide and grating located in the first enclosure. An aperture is in the first enclosure for insertion of sample to be investigated to a position in close proximity to the pathogen recognition surface. A laser in the first enclosure includes means for aligning and means for modulating the laser, the laser having its light output directed toward said grating. Detection means are located in the first enclosure and in optical communication with the pathogen recognition surface for detecting pathogens after interrogation by the laser light and outputting the detection. Electronic means is located in the first enclosure and receives the detection for processing the detection and outputting information on the detection, and an electrical power supply is located in the first enclosure for supplying power to the laser, the detection means and the electronic means.

  18. Nanoparticles Modified ITO Based Biosensor

    NASA Astrophysics Data System (ADS)

    Khan, M. Z. H.

    2017-04-01

    Incorporation of nanomaterials with controlled molecular architecture shows great promise in improving electronic communication between biomolecules and the electrode substrate. In electrochemical applications metal nanoparticles (NPs) modified electrodes have been widely used and are emerging as candidates to develop highly sensitive electrochemical sensors. There has been a growing technological interest in modified indium tin oxide (ITO) electrodes due to their prominent optoelectronic properties and their wide use as a transducing platform. The introduction of NPs into the transducing platform is commonly achieved by their adsorption onto conventional electrode surfaces in various forms, including that of a composite. The aim of this review is to discuss the role of metallic NPs for surface fabrication of ITO thin films leading to detection of specific biomolecules and applications as a biosensor platform.

  19. Packaged bulk micromachined triglyceride biosensor

    NASA Astrophysics Data System (ADS)

    Mohanasundaram, S. V.; Mercy, S.; Harikrishna, P. V.; Rani, Kailash; Bhattacharya, Enakshi; Chadha, Anju

    2010-02-01

    Estimation of triglyceride concentration is important for the health and food industries. Use of solid state biosensors like Electrolyte Insulator Semiconductor Capacitors (EISCAP) ensures ease in operation with good accuracy and sensitivity when compared to conventional sensors. In this paper we report on packaging of miniaturized EISCAP sensors on silicon. The packaging involves glass to silicon bonding using adhesive. Since this kind of packaging is done at room temperature, it cannot damage the thin dielectric layers on the silicon wafer unlike the high temperature anodic bonding technique and can be used for sensors with immobilized enzyme without denaturing the enzyme. The packaging also involves a teflon capping arrangement which helps in easy handling of the bio-analyte solutions. The capping solves two problems. Firstly, it helps in the immobilization process where it ensures the enzyme immobilization happens only on one pit and secondly it helps with easy transport of the bio-analyte into the sensor pit for measurements.

  20. Biosensor technology: technology push versus market pull.

    PubMed

    Luong, John H T; Male, Keith B; Glennon, Jeremy D

    2008-01-01

    Biosensor technology is based on a specific biological recognition element in combination with a transducer for signal processing. Since its inception, biosensors have been expected to play a significant analytical role in medicine, agriculture, food safety, homeland security, environmental and industrial monitoring. However, the commercialization of biosensor technology has significantly lagged behind the research output as reflected by a plethora of publications and patenting activities. The rationale behind the slow and limited technology transfer could be attributed to cost considerations and some key technical barriers. Analytical chemistry has changed considerably, driven by automation, miniaturization, and system integration with high throughput for multiple tasks. Such requirements pose a great challenge in biosensor technology which is often designed to detect one single or a few target analytes. Successful biosensors must be versatile to support interchangeable biorecognition elements, and in addition miniaturization must be feasible to allow automation for parallel sensing with ease of operation at a competitive cost. A significant upfront investment in research and development is a prerequisite in the commercialization of biosensors. The progress in such endeavors is incremental with limited success, thus, the market entry for a new venture is very difficult unless a niche product can be developed with a considerable market volume.

  1. Measuring the Built Environment for Physical Activity

    PubMed Central

    Brownson, Ross C.; Hoehner, Christine M.; Day, Kristen; Forsyth, Ann; Sallis, James F.

    2009-01-01

    Physical inactivity is one of the most important public health issues in the U.S. and internationally. Increasingly, links are being identified between various elements of the physical—or built—environment and physical activity. To understand the impact of the built environment on physical activity, the development of high-quality measures is essential. Three categories of built environment data are being used: (1) perceived measures obtained by telephone interview or self-administered questionnaires; (2) observational measures obtained using systematic observational methods (audits); and (3) archival data sets that are often layered and analyzed with GIS. This review provides a critical assessment of these three types of built-environment measures relevant to the study of physical activity. Among perceived measures, 19 questionnaires were reviewed, ranging in length from 7 to 68 questions. Twenty audit tools were reviewed that cover community environments (i.e., neighborhoods, cities), parks, and trails. For GIS-derived measures, more than 50 studies were reviewed. A large degree of variability was found in the operationalization of common GIS measures, which include population density, land-use mix, access to recreational facilities, and street pattern. This first comprehensive examination of built-environment measures demonstrates considerable progress over the past decade, showing diverse environmental variables available that use multiple modes of assessment. Most can be considered first-generation measures, so further development is needed. In particular, further research is needed to improve the technical quality of measures, understand the relevance to various population groups, and understand the utility of measures for science and public health. PMID:19285216

  2. Built-Environment Wind Turbine Roadmap

    SciTech Connect

    Smith, J.; Forsyth, T.; Sinclair, K.; Oteri, F.

    2012-11-01

    Although only a small contributor to total electricity production needs, built-environment wind turbines (BWTs) nonetheless have the potential to influence the public's consideration of renewable energy, and wind energy in particular. Higher population concentrations in urban environments offer greater opportunities for project visibility and an opportunity to acquaint large numbers of people to the advantages of wind projects on a larger scale. However, turbine failures will be equally visible and could have a negative effect on public perception of wind technology. This roadmap provides a framework for achieving the vision set forth by the attendees of the Built-Environment Wind Turbine Workshop on August 11 - 12, 2010, at the U.S. Department of Energy's National Renewable Energy Laboratory. The BWT roadmap outlines the stakeholder actions that could be taken to overcome the barriers identified. The actions are categorized as near-term (0 - 3 years), medium-term (4 - 7 years), and both near- and medium-term (requiring immediate to medium-term effort). To accomplish these actions, a strategic approach was developed that identifies two focus areas: understanding the built-environment wind resource and developing testing and design standards. The authors summarize the expertise and resources required in these areas.

  3. 2. EAST ELEVATION OF IPA FACTORY; TWOSTORY SECTION BUILT IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. EAST ELEVATION OF IPA FACTORY; TWO-STORY SECTION BUILT IN 1892 AND PARTIALLY DESTROYED PARAPET SECTION BUILT CA. 1948. BRICK CHIMNEY ALSO BUILT CA. 1948. - Illinois Pure Aluminum Company, 109 Holmes Street, Lemont, Cook County, IL

  4. One Bedroom Units: Floor Plan, South Elevation (As Built), North ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    One Bedroom Units: Floor Plan, South Elevation (As Built), North Elevation (As Built), Section A-A (As Built), Section AA (Existing) - Aluminum City Terrace, East Hill Drive, New Kensington, Westmoreland County, PA

  5. Angle-resolved diffraction grating biosensor based on porous silicon

    NASA Astrophysics Data System (ADS)

    Lv, Changwu; Jia, Zhenhong; Liu, Yajun; Mo, Jiaqing; Li, Peng; Lv, Xiaoyi

    2016-03-01

    In this study, an optical biosensor based on a porous silicon composite structure was fabricated using a simple method. This structure consists of a thin, porous silicon surface diffraction grating and a one-dimensional porous silicon photonic crystal. An angle-resolved diffraction efficiency spectrum was obtained by measuring the diffraction efficiency at a range of incident angles. The angle-resolved diffraction efficiency of the 2nd and 3rd orders was studied experimentally and theoretically. The device was sensitive to the change of refractive index in the presence of a biomolecule indicated by the shift of the diffraction efficiency spectrum. The sensitivity of this sensor was investigated through use of an 8 base pair antifreeze protein DNA hybridization. The shifts of the angle-resolved diffraction efficiency spectrum showed a relationship with the change of the refractive index, and the detection limit of the biosensor reached 41.7 nM. This optical device is highly sensitive, inexpensive, and simple to fabricate. Using shifts in diffraction efficiency spectrum to detect biological molecules has not yet been explored, so this study establishes a foundation for future work.

  6. Nanostructured Tip-Shaped Biosensors: Application of Six Sigma Approach for Enhanced Manufacturing.

    PubMed

    Kahng, Seong-Joong; Kim, Jong-Hoon; Chung, Jae-Hyun

    2016-12-23

    Nanostructured tip-shaped biosensors have drawn attention for biomolecule detection as they are promising for highly sensitive and specific detection of a target analyte. Using a nanostructured tip, the sensitivity is increased to identify individual molecules because of the high aspect ratio structure. Various detection methods, such as electrochemistry, fluorescence microcopy, and Raman spectroscopy, have been attempted to enhance the sensitivity and the specificity. Due to the confined path of electrons, electrochemical measurement using a nanotip enables the detection of single molecules. When an electric field is combined with capillary action and fluid flow, target molecules can be effectively concentrated onto a nanotip surface for detection. To enhance the concentration efficacy, a dendritic nanotip rather than a single tip could be used to detect target analytes, such as nanoparticles, cells, and DNA. However, reproducible fabrication with relation to specific detection remains a challenge due to the instability of a manufacturing method, resulting in inconsistent shape. In this paper, nanostructured biosensors are reviewed with our experimental results using dendritic nanotips for sequence specific detection of DNA. By the aid of the Six Sigma approach, the fabrication yield of dendritic nanotips increases from 20.0% to 86.6%. Using the nanotips, DNA is concentrated and detected in a sequence specific way with the detection limit equivalent to 1000 CFU/mL. The pros and cons of a nanotip biosensor are evaluated in conjunction with future prospects.

  7. Nicking enzyme-assisted biosensor for Salmonella enteritidis detection based on fluorescence resonance energy transfer.

    PubMed

    Song, Yang; Li, Wenkai; Duan, Yingfen; Li, Zhongjie; Deng, Le

    2014-05-15

    Salmonella enteritidis (S. enteritidis) outbreaks continue to occur, and have increased public awareness of this pathogen. Nicking endonuclease Nb.BbvC I is widely used for the detection of biomolecules and displays activity for specific double-stranded DNA (dsDNA). In this study, we developed a biosensor to detect S. enteritidis based on fluorescence resonance energy transfer (FRET) using nicking enzyme and carbon nanoparticles (CNPs). Because of the quenching effect of black hole quencher 1 (BHQ 1), the CNPs do not fluoresce in the reaction system. When the target bacteria are added, the nicking enzyme recognizes and cleaves the dsDNA fabricated by the interaction between probe and target. As a result, the CNPs dissociate from BHQ 1 and emit strong fluorescence. Using the nicking enzyme, the fluorescence signals of the biosensor are greatly amplified. The biosensor exhibited a linear relationship with the concentration of S. enteritidis ranging from 10(2) to 3 × 10(3)CFU/mL in water and from 1.5 × 10(2) to 3 × 10(3)CFU/mL in milk. The present results indicate that our FRET-based detection system can be widely employed for the effective detection of pathogens.

  8. Nanostructured Tip-Shaped Biosensors: Application of Six Sigma Approach for Enhanced Manufacturing

    PubMed Central

    Kahng, Seong-Joong; Kim, Jong-Hoon; Chung, Jae-Hyun

    2016-01-01

    Nanostructured tip-shaped biosensors have drawn attention for biomolecule detection as they are promising for highly sensitive and specific detection of a target analyte. Using a nanostructured tip, the sensitivity is increased to identify individual molecules because of the high aspect ratio structure. Various detection methods, such as electrochemistry, fluorescence microcopy, and Raman spectroscopy, have been attempted to enhance the sensitivity and the specificity. Due to the confined path of electrons, electrochemical measurement using a nanotip enables the detection of single molecules. When an electric field is combined with capillary action and fluid flow, target molecules can be effectively concentrated onto a nanotip surface for detection. To enhance the concentration efficacy, a dendritic nanotip rather than a single tip could be used to detect target analytes, such as nanoparticles, cells, and DNA. However, reproducible fabrication with relation to specific detection remains a challenge due to the instability of a manufacturing method, resulting in inconsistent shape. In this paper, nanostructured biosensors are reviewed with our experimental results using dendritic nanotips for sequence specific detection of DNA. By the aid of the Six Sigma approach, the fabrication yield of dendritic nanotips increases from 20.0% to 86.6%. Using the nanotips, DNA is concentrated and detected in a sequence specific way with the detection limit equivalent to 1000 CFU/mL. The pros and cons of a nanotip biosensor are evaluated in conjunction with future prospects. PMID:28025540

  9. The amplification effect of functionalized gold nanoparticles on the binding of anticancer drug dacarbazine to DNA and DNA bases

    NASA Astrophysics Data System (ADS)

    Shen, Qin; Wang, Xuemei; Fu, Degang

    2008-11-01

    The promising application of functionalized gold nanoparticles to amplify the performance of biosensors and relevant biomolecular recognition processes has been explored in this paper. Our observations illustrate the apparent enhancement effect of the gold nanoparticles on the electrochemical response of the anticancer drug dacarbazine (DTIC) binding to DNA and DNA bases, indicating that these functionalized gold nanoparticles could readily facilitate the specific interactions between DTIC and DNA/DNA bases. This raises the potential valuable applications of these biocompatible nanoparticles in the promising biosensors and biomedical engineering.

  10. Amperometric Glucose Biosensor Based on Self-Assembling Glucose Oxidase on Carbon Nanotubes

    SciTech Connect

    Liu, Guodong; Lin, Yuehe

    2006-01-01

    A flow injection amperometric glucose biosensor based on electrostatic self-assembling glucose oxidase (GOx) on a carbon nanotube (CNT)-modified glassy carbon transducer is described. GOx is immobilized on the negatively charged CNT surface by alternatively assembling a cationic polydiallyldimethylammonium chloride (PDDA) layer and a GOx layer. The unique sandwich-like layer structure (PDDA/GOx/PDDA/CNT) formed by self-assembling provides a favorable microenvironment to keep the bioactivity of GOx and to prevent enzyme molecule leakage. The direct electrochemistry behavior of GOx and electrocatalysis of H2O2 on the fabricated PDDA/GOx/PDDA/CNT electrode demonstrated that such a biosensor fabrication method preserves the activity of enzyme molecules and the mechanical and electrocatalytic properties of carbon nanotubes, enabling sensitive determination of glucose. Flow injection amperometric detection of glucose is carried out at -100 mV (vs Ag/AgCl) in 0.05 M phosphate buffer solution (pH 7.4) with wide linear response range of 15 uM- 6 mM and a detection limit of 7 uM. The PDDA/GOx/PDDA/CNT/GC biosensor showed excellent properties for the sensitive determination of glucose with good reproducibility, remarkable stability, and free of interference from other co-existing electroactive species. The present methods can be applied to assemble other enzyme molecules and biological molecules, such as antibody, antigen, and DNA, to the CNT surface for wide biosensor and bioassay applications.

  11. Development of an acoustic wave based biosensor for vapor phase detection of small molecules

    NASA Astrophysics Data System (ADS)

    Stubbs, Desmond

    For centuries scientific ingenuity and innovation have been influenced by Mother Nature's perfect design. One of her more elusive designs is that of the sensory olfactory system, an array of highly sensitive receptors responsible for chemical vapor recognition. In the animal kingdom this ability is magnified among canines where ppt (parts per trillion) sensitivity values have been reported. Today, detection dogs are considered an essential part of the US drug and explosives detection schemes. However, growing concerns about their susceptibility to extraneous odors have inspired the development of highly sensitive analytical detection tools or biosensors known as "electronic noses". In general, biosensors are distinguished from chemical sensors in that they use an entity of biological origin (e.g. antibody, cell, enzyme) immobilized onto a surface as the chemically-sensitive film on the device. The colloquial view is that the term "biosensors" refers to devices which detect the presence of entities of biological origin, such as proteins or single-stranded DNA and that this detection must take place in a liquid. Our biosensor utilizes biomolecules, specifically IgG monoclonal antibodies, to achieve molecular recognition of relatively small molecules in the vapor phase.

  12. Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of biosensors for healthcare.

    PubMed

    Kumar, Sandeep; Ahlawat, Wandit; Kumar, Rajesh; Dilbaghi, Neeraj

    2015-08-15

    Technological advancements worldwide at rapid pace in the area of materials science and nanotechnology have made it possible to synthesize nanoparticles with desirable properties not exhibited by the bulk material. Among variety of available nanomaterials, graphene, carbon nanotubes, zinc oxide and gold nanopartilces proved to be elite and offered amazing electrochemical biosensing. This encourages us to write a review which highlights the recent achievements in the construction of genosensor, immunosensor and enzymatic biosensor based on the above nanomaterials. Carbon based nanomaterials offers a direct electron transfer between the functionalized nanomaterials and active site of bioreceptor without involvement of any mediator which not only amplifies the signal but also provide label free sensing. Gold shows affinity towards immunological molecules and is most routinely used for immunological sensing. Zinc oxide can easily immobilize proteins and hence offers a large group of enzyme based biosensor. Modification of the working electrode by introduction of these nanomaterials or combination of two/three of above nanomaterials together and forming a nanocomposite reflected the best results with excellent stability, reproducibility and enhanced sensitivity. Highly attractive electrochemical properties and electrocatalytic activity of these elite nanomaterials have facilitated achievement of enhanced signal amplification needed for the construction of ultrasensitive electrochemical affinity biosensors for detection of glucose, cholesterol, Escherichia coli, influenza virus, cancer, human papillomavirus, dopamine, glutamic acid, IgG, IgE, uric acid, ascorbic acid, acetlycholine, cortisol, cytosome, sequence specific DNA and amino acids. Recent researches for bedside biosensors are also discussed.

  13. Optimization of Xenon Biosensors for Detection of ProteinInteractions

    SciTech Connect

    Lowery, Thomas J.; Garcia, Sandra; Chavez, Lana; Ruiz, E.Janette; Wu, Tom; Brotin, Thierry; Dutasta, Jean-Pierre; King, David S.; Schultz, Peter G.; Pines, Alex; Wemmer, David E..

    2005-08-03

    Hyperpolarized 129Xe NMR can detect the presence of specific low-concentration biomolecular analytes by means of the xenon biosensor, which consists of a water-soluble, targeted cryptophane-A cage that encapsulates xenon. In this work we use the prototypical biotinylated xenon biosensor to determine the relationship between the molecular composition of the xenon biosensor and the characteristics of protein-bound resonances. The effects of diastereomer overlap, dipole-dipole coupling, chemical shift anisotropy, xenon exchange, and biosensor conformational exchange on protein-bound biosensor signal were assessed. It was found that optimal protein-bound biosensor signal can be obtained by minimizing the number of biosensor diastereomers and using a flexible linker of appropriate length. Both the linewidth and sensitivity of chemical shift to protein binding of the xenon biosensor were found to be inversely proportional to linker length.

  14. An electrochemical biosensor for ultratrace terbium based on Tb3+ promoted conformational change of human telomeric G-quadruplex.

    PubMed

    Zhang, Jing; Chen, Jinghua; Chen, Rongchun; Chen, Guonan; Fu, Fengfu

    2009-10-15

    A new electrochemical biosensor for the monitoring of ultratrace terbium based on the conformational change of DNA containing a single guanine (G)-rich stretch was described here. The biosensor was fabricated by immobilizing a thiolated DNA containing a single G-rich stretch on the gold surface as probe surface. The G-rich DNA probe was found to be capable of changing its configuration from flexible single-stranded structures to rigid tetramolecular G-quadruplex in the presence of terbium III, which provided a switchable charge transport path for the oxidation of [Fe(CN)(6)](4-). The switchable surface provided a sensing platform for the single-step and reagentless detection of Tb(3+). Using this reusable electrochemical sensing platform, a simple, rapid, and selective biosensor for the determination of ultratrace terbium ions with a detection limit of 6.0 x 10(-11)M has been developed. The success in the present biosensor served as a significant step toward the development of monitoring ultratrace Tb(3+) in river water or seawater.

  15. Electronic transport in methylated fragments of DNA

    NASA Astrophysics Data System (ADS)

    de Almeida, M. L.; Oliveira, J. I. N.; Lima Neto, J. X.; Gomes, C. E. M.; Fulco, U. L.; Albuquerque, E. L.; Freire, V. N.; Caetano, E. W. S.; de Moura, F. A. B. F.; Lyra, M. L.

    2015-11-01

    We investigate the electronic transport properties of methylated deoxyribonucleic-acid (DNA) strands, a biological system in which methyl groups are added to DNA (a major epigenetic modification in gene expression), sandwiched between two metallic platinum electrodes. Our theoretical simulations apply an effective Hamiltonian based on a tight-binding model to obtain current-voltage curves related to the non-methylated/methylated DNA strands. The results suggest potential applications in the development of novel biosensors for molecular diagnostics.

  16. Electronic transport in methylated fragments of DNA

    SciTech Connect

    Almeida, M. L. de; Oliveira, J. I. N.; Lima Neto, J. X.; Gomes, C. E. M.; Fulco, U. L. Albuquerque, E. L.; Freire, V. N.; Caetano, E. W. S.; Moura, F. A. B. F. de; Lyra, M. L.

    2015-11-16

    We investigate the electronic transport properties of methylated deoxyribonucleic-acid (DNA) strands, a biological system in which methyl groups are added to DNA (a major epigenetic modification in gene expression), sandwiched between two metallic platinum electrodes. Our theoretical simulations apply an effective Hamiltonian based on a tight-binding model to obtain current-voltage curves related to the non-methylated/methylated DNA strands. The results suggest potential applications in the development of novel biosensors for molecular diagnostics.

  17. Amperometric biosensor for Salmonella typhimurium detection in milk

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper reports an amperometric biosensor for rapid and sensitive Salmonella Typhimurium detection in milk. The biosensor was assembled from the self-assembled monolayers technique on a gold surface. In this device, polyclonal antibodies were oriented by protein A. The biosensor structure was cha...

  18. Device considerations for development of conductance-based biosensors

    PubMed Central

    Lee, Kangho; Nair, Pradeep R.; Scott, Adina; Alam, Muhammad A.; Janes, David B.

    2009-01-01

    Design and fabrication of electronic biosensors based on field-effect-transistor (FET) devices require understanding of interactions between semiconductor surfaces and organic biomolecules. From this perspective, we review practical considerations for electronic biosensors with emphasis on molecular passivation effects on FET device characteristics upon immobilization of organic molecules and an electrostatic model for FET-based biosensors. PMID:24753627

  19. Electrochemical biosensors: recommended definitions and classification.

    PubMed

    Thévenot, D R; Toth, K; Durst, R A; Wilson, G S

    2001-01-01

    Two Divisions of the International Union of Pure and Applied Chemistry (IUPAC), namely Physical Chemistry (Commission 1.7 on Biophysical Chemistry formerly Steering Committee on Biophysical Chemistry) and Analytical Chemistry (Commission V.5 on Electroanalytical Chemistry) have prepared recommendations on the definition, classification and nomenclature related to electrochemical biosensors: these recommendations could, in the future, be extended to other types of biosensors. An electrochemical biosensor is a self-contained integrated device, which is capable of providing specific quantitative or semi-quantitative analytical information using a biological recognition element (biochemical receptor) which is retained in direct spatial contact with an electrochemical transduction element. Because of their ability to be repeatedly calibrated, we recommend that a biosensor should be clearly distinguished from a bioanalytical system, which requires additional processing steps, such as reagent addition. A device that is both disposable after one measurement, i.e. single use, and unable to monitor the analyte concentration continuously or after rapid and reproducible regeneration, should be designated a single use biosensor. Biosensors may be classified according to the biological specificity-conferring mechanism or, alternatively, to the mode of physico-chemical signal transduction. The biological recognition element may be based on a chemical reaction catalysed by, or on an equilibrium reaction with macromolecules that have been isolated, engineered or present in their original biological environment. In the latter cases. equilibrium is generally reached and there is no further, if any, net consumption of analyte(s) by the immobilized biocomplexing agent incorporated into the sensor. Biosensors may be further classified according to the analytes or reactions that they monitor: direct monitoring of analyte concentration or of reactions producing or consuming such analytes

  20. Low cost flatbed scanner label-free biosensor

    NASA Astrophysics Data System (ADS)

    Aygun, Ugur; Avci, Oguzhan; Seymour, Elif; Sevenler, Derin D.; Urey, Hakan; Ünlü, M. Selim; Ozkumur, Ayca Yalcin

    2016-03-01

    In this paper, we demonstrate utilization of a commercial flatbed document scanner as a label-free biosensor for highthroughput imaging of DNA and protein microarrays. We implemented an interferometric sensing technique through use of a silicon/oxide layered substrate, and easy to implement hardware modifications such as re-aligning moving parts and inserting a custom made sample plate. With a cost as low as 100USD, powered by a USB cable, and scan speed of 30 seconds for a 4mm x 4 mm area with ~10μm lateral resolution, the presented system offers a super low cost, easy to use alternative to commercially available label-free systems.

  1. Cell buffer with built-in test

    NASA Technical Reports Server (NTRS)

    Ott, William E. (Inventor)

    2004-01-01

    A cell buffer with built-in testing mechanism is provided. The cell buffer provides the ability to measure voltage provided by a power cell. The testing mechanism provides the ability to test whether the cell buffer is functioning properly and thus providing an accurate voltage measurement. The testing mechanism includes a test signal-provider to provide a test signal to the cell buffer. During normal operation, the test signal is disabled and the cell buffer operates normally. During testing, the test signal is enabled and changes the output of the cell buffer in a defined way. The change in the cell buffer output can then be monitored to determine if the cell buffer is functioning correctly. Specifically, if the voltage output of the cell buffer changes in a way that corresponds to the provided test signal, then the functioning of the cell buffer is confirmed. If the voltage output of the cell buffer does not change correctly, then the cell buffer is known not to be operating correctly. Thus, the built in testing mechanism provides the ability to quickly and accurately determine if the cell buffer is operating correctly. Furthermore, the testing mechanism provides this functionality without requiring excessive device size and complexity.

  2. Modular Zero Energy. BrightBuilt Home

    SciTech Connect

    Aldrich, Robb; Butterfield, Karla

    2016-03-01

    Kaplan Thompson Architects (KTA) has specialized in sustainable, energy-efficient buildings, and they have designed several custom, zero-energy homes in New England. These zero-energy projects have generally been high-end, custom homes with budgets that could accommodate advanced energy systems. In an attempt to make zero energy homes more affordable and accessible to a larger demographic, KTA explored modular construction as way to provide high-quality homes at lower costs. In the mid-2013, KTA formalized this concept when they launched BrightBuilt Home (BBH). The BBH mission is to offer a line of architect-designed, high-performance homes that are priced to offer substantial savings off the lifetime cost of a typical home and can be delivered in less time. For the past two years, CARB has worked with BBH and Keiser Homes (the primary modular manufacturer for BBH) to discuss challenges related to wall systems, HVAC, and quality control. In Spring of 2014, CARB and BBH began looking in detail on a home to be built in Lincolnville, ME by Black Bros. Builders. This report details the solution package specified for this modular plan and the challenges that arose during the project.

  3. Nanomaterial-mediated Biosensors for Monitoring Glucose

    PubMed Central

    Taguchi, Masashige; Ptitsyn, Andre; McLamore, Eric S.

    2014-01-01

    Real-time monitoring of physiological glucose transport is crucial for gaining new understanding of diabetes. Many techniques and equipment currently exist for measuring glucose, but these techniques are limited by complexity of the measurement, requirement of bulky equipment, and low temporal/spatial resolution. The development of various types of biosensors (eg, electrochemical, optical sensors) for laboratory and/or clinical applications will provide new insights into the cause(s) and possible treatments of diabetes. State-of-the-art biosensors are improved by incorporating catalytic nanomaterials such as carbon nanotubes, graphene, electrospun nanofibers, and quantum dots. These nanomaterials greatly enhance biosensor performance, namely sensitivity, response time, and limit of detection. A wide range of new biosensors that incorporate nanomaterials such as lab-on-chip and nanosensor devices are currently being developed for in vivo and in vitro glucose sensing. These real-time monitoring tools represent a powerful diagnostic and monitoring tool for measuring glucose in diabetes research and point of care diagnostics. However, concerns over the possible toxicity of some nanomaterials limit the application of these devices for in vivo sensing. This review provides a general overview of the state of the art in nanomaterial-mediated biosensors for in vivo and in vitro glucose sensing, and discusses some of the challenges associated with nanomaterial toxicity. PMID:24876594

  4. Natural bacterial communities serve as quantitative geochemical biosensors

    DOE PAGES

    Smith, Mark B.; Rocha, Andrea M.; Smillie, Chris S.; ...

    2015-05-12

    Biological sensors can be engineered to measure a wide range of environmental conditions. Here we show that statistical analysis of DNA from natural microbial communities can be used to accurately identify environmental contaminants, including uranium and nitrate at a nuclear waste site. In addition to contamination, sequence data from the 16S rRNA gene alone can quantitatively predict a rich catalogue of 26 geochemical features collected from 93 wells with highly differing geochemistry characteristics. We extend this approach to identify sites contaminated with hydrocarbons from the Deepwater Horizon oil spill, finding that altered bacterial communities encode a memory of prior contamination,more » even after the contaminants themselves have been fully degraded. We show that the bacterial strains that are most useful for detecting oil and uranium are known to interact with these substrates, indicating that this statistical approach uncovers ecologically meaningful interactions consistent with previous experimental observations. Future efforts should focus on evaluating the geographical generalizability of these associations. Taken as a whole, these results indicate that ubiquitous, natural bacterial communities can be used as in situ environmental sensors that respond to and capture perturbations caused by human impacts. These in situ biosensors rely on environmental selection rather than directed engineering, and so this approach could be rapidly deployed and scaled as sequencing technology continues to become faster, simpler, and less expensive. Here we show that DNA from natural bacterial communities can be used as a quantitative biosensor to accurately distinguish unpolluted sites from those contaminated with uranium, nitrate, or oil. These results indicate that bacterial communities can be used as environmental sensors that respond to and capture perturbations caused by human impacts.« less

  5. Natural bacterial communities serve as quantitative geochemical biosensors

    SciTech Connect

    Smith, Mark B.; Rocha, Andrea M.; Smillie, Chris S.; Olesen, Scott W.; Paradis, Charles; Wu, Liyou; Campbell, James H.; Fortney, Julian L.; Mehlhorn, Tonia L.; Lowe, Kenneth A.; Earles, Jennifer E.; Phillips, Jana; Techtmann, Steve M.; Joyner, Dominique C.; Elias, Dwayne A.; Bailey, Kathryn L.; Hurt, Richard A.; Preheim, Sarah P.; Sanders, Matthew C.; Yang, Joy; Mueller, Marcella A.; Brooks, Scott; Watson, David B.; Zhang, Ping; He, Zhili; Dubinsky, Eric A.; Adams, Paul D.; Arkin, Adam P.; Fields, Matthew W.; Zhou, Jizhong; Alm, Eric J.; Hazen, Terry C.

    2015-05-12

    Biological sensors can be engineered to measure a wide range of environmental conditions. Here we show that statistical analysis of DNA from natural microbial communities can be used to accurately identify environmental contaminants, including uranium and nitrate at a nuclear waste site. In addition to contamination, sequence data from the 16S rRNA gene alone can quantitatively predict a rich catalogue of 26 geochemical features collected from 93 wells with highly differing geochemistry characteristics. We extend this approach to identify sites contaminated with hydrocarbons from the Deepwater Horizon oil spill, finding that altered bacterial communities encode a memory of prior contamination, even after the contaminants themselves have been fully degraded. We show that the bacterial strains that are most useful for detecting oil and uranium are known to interact with these substrates, indicating that this statistical approach uncovers ecologically meaningful interactions consistent with previous experimental observations. Future efforts should focus on evaluating the geographical generalizability of these associations. Taken as a whole, these results indicate that ubiquitous, natural bacterial communities can be used as in situ environmental sensors that respond to and capture perturbations caused by human impacts. These in situ biosensors rely on environmental selection rather than directed engineering, and so this approach could be rapidly deployed and scaled as sequencing technology continues to become faster, simpler, and less expensive. Here we show that DNA from natural bacterial communities can be used as a quantitative biosensor to accurately distinguish unpolluted sites from those contaminated with uranium, nitrate, or oil. These results indicate that bacterial communities can be used as environmental sensors that respond to and capture perturbations caused by human impacts.

  6. BioSentinel: Biosensors for Deep-Space Radiation Study

    NASA Technical Reports Server (NTRS)

    Lokugamage, Melissa P.; Santa Maria, Sergio R.; Marina, Diana B.; Bhattacharya, Sharmila

    2016-01-01

    The BioSentinel mission will be deployed on NASA's Exploration Mission 1 (EM-1) in 2018. We will use the budding yeast, Saccharomyces cerevisiae, as a biosensor to study the effect of deep-space radiation on living cells. The BioSentinel mission will be the first investigation of a biological response to space radiation outside Low Earth Orbit (LEO) in over 40 years. Radiation can cause damage such as double stand breaks (DSBs) on DNA. The yeast cell was chosen for this mission because it is genetically controllable, shares homology with human cells in its DNA repair pathways, and can be stored in a desiccated state for long durations. Three yeast strains will be stored dry in multiple microfluidic cards: a wild type control strain, a mutant defective strain that cannot repair DSBs, and a biosensor strain that can only grow if it gets DSB-and-repair events occurring near a specific gene. Growth and metabolic activity of each strain will be measured by a 3-color LED optical detection system. Parallel experiments will be done on the International Space Station and on Earth so that we can compare the results to that of deep space. One of our main objectives is to characterize the microfluidic card activation sequence before the mission. To increase the sensitivity of yeast cells as biosensors, desiccated yeast in each card will be resuspended in a rehydration buffer. After several weeks, the rehydration buffer will be exchanged with a growth medium in order to measure yeast growth and metabolic activity. We are currently working on a time-course experiment to better understand the effects of the rehydration buffer on the response to ionizing radiation. We will resuspend the dried yeast in our rehydration medium over a period of time; then each week, we will measure the viability and ionizing radiation sensitivity of different yeast strains taken from this rehydration buffer. The data obtained in this study will be useful in finalizing the card activation sequence for

  7. Thin Hydrogel Films for Optical Biosensor Applications

    PubMed Central

    Mateescu, Anca; Wang, Yi; Dostalek, Jakub; Jonas, Ulrich

    2012-01-01

    Hydrogel materials consisting of water-swollen polymer networks exhibit a large number of specific properties highly attractive for a variety of optical biosensor applications. This properties profile embraces the aqueous swelling medium as the basis of biocompatibility, non-fouling behavior, and being not cell toxic, while providing high optical quality and transparency. The present review focuses on some of the most interesting aspects of surface-attached hydrogel films as active binding matrices in optical biosensors based on surface plasmon resonance and optical waveguide mode spectroscopy. In particular, the chemical nature, specific properties, and applications of such hydrogel surface architectures for highly sensitive affinity biosensors based on evanescent wave optics are discussed. The specific class of responsive hydrogel systems, which can change their physical state in response to externally applied stimuli, have found large interest as sophisticated materials that provide a complex behavior to hydrogel-based sensing devices. PMID:24957962

  8. Antibodies and antibody-derived analytical biosensors

    PubMed Central

    Sharma, Shikha; Byrne, Hannah

    2016-01-01

    The rapid diagnosis of many diseases and timely initiation of appropriate treatment are critical determinants that promote optimal clinical outcomes and general public health. Biosensors are now being applied for rapid diagnostics due to their capacity for point-of-care use with minimum need for operator input. Antibody-based biosensors or immunosensors have revolutionized diagnostics for the detection of a plethora of analytes such as disease markers, food and environmental contaminants, biological warfare agents and illicit drugs. Antibodies are ideal biorecognition elements that provide sensors with high specificity and sensitivity. This review describes monoclonal and recombinant antibodies and different immobilization approaches crucial for antibody utilization in biosensors. Examples of applications of a variety of antibody-based sensor formats are also described. PMID:27365031

  9. Novel Nanocomposite-based Potassium Ion Biosensor

    NASA Astrophysics Data System (ADS)

    Xue, R.; Gouma, P. I.

    2009-05-01

    Potassium ion (K+) is important in regulating normal cell function in the human body, specifically the heartbeat and the muscle function. Thus, it is important to be able to monitor potassium ion concentrations in human fluids. This paper describes a novel concept for a potassium ion biosensor that accurately, rapidly, and efficiently monitors the presence and records the concentration of potassium ions with high specificity, not only in serum and urine, but also in the sweat or even eye fluid. This specific biosensor design utilizes a nanomanufacturing technique, i.e. electrospinning, to produce advanced nano-bio-composites that specifically trace even minute quantities of potassium ions through the use of selective bio-receptors (ionophores) attached to high surface area nanofibers. Electroactive polymers are then employed as transducers to produce an electronic (rather than ionic) output that changes instantly with the change in K+ concentration. Such biosensors may be manufactured in a skin patch configuration.

  10. Design and application of a lactulose biosensor

    PubMed Central

    Wu, Jieyuan; Jiang, Peixia; Chen, Wei; Xiong, Dandan; Huang, Linglan; Jia, Junying; Chen, Yuanyuan; Jin, Jian-Ming; Tang, Shuang-Yan

    2017-01-01

    In this study the repressor of Escherichia coli lac operon, LacI, has been engineered for altered effector specificity. A LacI saturation mutagenesis library was subjected to Fluorescence Activated Cell Sorting (FACS) dual screening. Mutant LacI-L5 was selected and it is specifically induced by lactulose but not by other disaccharides tested (lactose, epilactose, maltose, sucrose, cellobiose and melibiose). LacI-L5 has been successfully used to construct a whole-cell lactulose biosensor which was then applied in directed evolution of cellobiose 2-epimerase (C2E) for elevated lactulose production. The mutant C2E enzyme with ~32-fold enhanced expression level was selected, demonstrating the high efficiency of the lactulose biosensor. LacI-L5 can also be used as a novel regulatory tool. This work explores the potential of engineering LacI for customized molecular biosensors which can be applied in practice. PMID:28387245

  11. Biosensor-guided screening for macrolides.

    PubMed

    Möhrle, V; Stadler, M; Eberz, G

    2007-07-01

    Macrolides are complex polyketides of microbial origin that possess an extraordinary variety of pharmacological properties, paired with an impressive structural diversity. Bioassays for specific detection of such compounds will be of advantage for a class-specific drug screening. The current paper describes a cell-based microbial biosensor, assigning a luminescence response to natural or chemically modified macrolides, independent from their biological activity. This biosensor is based on the coupling of the structural luciferase genes of Vibrio fischeri to the regulatory control mechanism of a bacterial erythromycin resistance operon. The bioassays is easy to handle and can be applied to various screening formats. The feasibility of the test system for natural products screening is exemplified by the isolation and characterization of picromycin from a Streptomyces species. Biosensor-guided screening for macrolides is based on macrolide-promoted expression of lux genes and induction of luminescence (independent of macrolide antibiotic activity).

  12. Construction of a bacterial biosensor for styrene.

    PubMed

    Alonso, Sergio; Navarro-Llorens, Juana María; Tormo, Antonio; Perera, Julián

    2003-05-08

    A new bacterial biosensor for styrene has been developed and characterized. A translational fusion of the lacZ gene to the sty promoter of Pseudomonas sp. strain Y2 has been inserted into miniTn5. Transposition of the recombinant transposon to the chromosome of Pseudomonas sp. strain Y2 resulted in a whole-cell biosensor able to detect and degrade styrene. In this biosensor, the endogenous StyS/StyR system detects the presence of styrene and turns on the expression of the exogenous reporter gene from the transferred construction. Other compounds such as toluene, epoxystyrene, phenylacetaldehyde and 2-phenylethanol also induced expression of beta-galactosidase although quantitative differences in their effect are clearly detected. Non-inducing compounds affect differently the sensitivity to inducing compounds when present in a mixture.

  13. The Large Built Water Clock Of Amphiaraeion.

    NASA Astrophysics Data System (ADS)

    Theodossiou, E.; Katsiotis, M.; Manimanis, V. N.; Mantarakis, P.

    A very well preserved ancient water clock was discovered during excavations at the Amphiaraeion, in Oropos, Greece. The Amphiaraeion, a famous religious and oracle center of the deified healer Amphiaraus, was active from the pre-classic period until the replacement of the ancient religion by Christianity in the 5th Century A.D.. The foretelling was supposedly done through dreams sent by the god to the believers sleeping in a special gallery. In these dreams the god suggesting to them the therapy for their illness or the solution to their problems. The patients, then threw coins into a spring of the sanctuary. In such a place, the measurement of time was a necessity. Therefore, time was kept with both a conical sundial and a water clock in the form of a fountain. According to archeologists, the large built structure that measured the time for the sanctuary dates from the 4th Century B.C.

  14. A Student-Built Scanning Tunneling Microscope

    NASA Astrophysics Data System (ADS)

    Ekkens, Tom

    2015-12-01

    Many introductory and nanotechnology textbooks discuss the operation of various microscopes including atomic force (AFM), scanning tunneling (STM), and scanning electron microscopes (SEM). In a nanotechnology laboratory class, students frequently utilize microscopes to obtain data without a thought about the detailed operation of the tool itself. I wanted to give my students a deeper appreciation for the physics by having them build a simple scanning tunneling microscope. Initially, 15 hours of an upper-division laboratory class were devoted to building and operating the STM. As the build process was refined, the time commitment for this project has shrunk to nine hours. Using the method described in this paper, the project is now simple enough that it can be built and operated by students in the introductory class.

  15. Green laser excited surface plasmon resonance biosensor utilizing highly sensitive phase interrogation detection

    NASA Astrophysics Data System (ADS)

    Chen, How-Foo; Hsu, Wei-Chen; Wang, Ya-Jung; Yen, Ta-Jen

    2010-04-01

    Surface plasmon resonance (SPR) biosensors have been widely used for dynamical analysis of molecular affinity, bacterium screening, and drug discovery due to its advantages of label-free detection, dynamic interaction analysis, small sample volume, and ultra sensitivity (feasibility of single molecular detection). Recently, SPR biosensing for cell imaging known as SPR microscopy (SPRM) has attracted great attention due to the characteristics of SPR biosensors. However, it is well known that the trends of sensitivity and spatial resolution are opposite to each other: Surface plasmon waves (SPWs) with shorter wavelength which provides higher spatial resolution has less sensitivity. It is known that the spatial resolution of SPRM is limited by the propagation length of surface plasmon wave (SPW) along the metaldielectric interface. SPW excited by 632.8 nm light has the propagation length of 3 um. This length becomes longer when a longer wavelength is selected. While most of SPR biosensors are built with 632.8 nm or longer wavelength for high sensitivity, using 532nm light to excite SPWs is desired for submicron resolution since the propagation length is around 150 nm. Different from current phase interrogation methods, the proposed phase interrogation method is highly sensitive and suitable for CCD imaging. Although it is generally believed that SPWs with wavelength 532nm has poor sensitivity, the experimental result showed that the setup can reach the sensitivity lower than 2×10-6 RIU when sucrose is used as the test sample.

  16. Photocatalytic oxide films in the built environment

    NASA Astrophysics Data System (ADS)

    Österlund, Lars; Topalian, Zareh

    2014-11-01

    The possibility to increase human comfort in buildings is a powerful driving force for the introduction of new technology. Among other things our sense of comfort depends on air quality, temperature, lighting level, and the possibility of having visual contact between indoors and outdoors. Indeed there is an intimate connection between energy, comfort, and health issues in the built environment, leading to a need for intelligent building materials and green architecture. Photocatalytic materials can be applied as coatings, filters, and be embedded in building materials to provide self-cleaning, antibacterial, air cleaning, deodorizing, and water cleaning functions utilizing either solar light or artificial illumination sources - either already present in buildings, or by purposefully designed luminaries. Huge improvements in indoor comfort can thus be made, and also alleviate negative health effects associated with buildings, such as the sick-house syndrome. At the same time huge cost savings can be made by reducing maintenance costs. Photocatalytic oxides can be chemically modified by changing their acid-base surface properties, which can be used to overcome deactivation problems commonly encountered for TiO2 in air cleaning applications. In addition, the wetting properties of oxides can be tailored by surface chemical modifications and thus be made e.g. oleophobic and water repellent. Here we show results of surface acid modified TiO2 coatings on various substrates by means of photo-fixation of surface sulfate species by a method invented in our group. In particular, we show that such surface treatments of photocatalytic concrete made by mixing TiO2 nanoparticles in reactive concrete powders result in concrete surfaces with beneficial self-cleaning properties. We propose that such approaches are feasible for a number of applications in the built environment, including glass, tiles, sheet metals, plastics, etc.

  17. Broad-spectrum protein biosensors for class-specific detection of antibiotics.

    PubMed

    Weber, Cornelia C; Link, Nils; Fux, Cornelia; Zisch, Andreas H; Weber, Wilfried; Fussenegger, Martin

    2005-01-05

    The dramatically increasing prevalence of multi-drug-resistant human pathogenic bacteria and related mortality requires two key actions: (i) decisive initiatives for the detection of novel antibiotics and (ii) a global ban for use of antibiotics as growth promotants in stock farming. Both key actions entail technology for precise, high-sensitive detection of antibiotic substances either to detect and validate novel anti-infective structures or to enforce the non-use of clinically relevant antibiotics. We have engineered prokaryotic antibiotic response regulators into a molecular biosensor configuration able to detect tetracycline, streptogramin, and macrolide antibiotics in spiked liquids including milk and serum at ng/mL concentrations and up to 2 orders of magnitude below current Swiss and EC threshold values. This broad-spectrum, class-specific, biosensor-based assay has been optimized for use in a storable ready-to-use and high-throughput-compatible ELISA-type format. At the center of the assay is an antibiotic sensor protein whose interaction with specific DNA fragments is responsive to a particular class of antibiotics. Binding of biosensor protein to the cognate DNA chemically linked to a solid surface is converted into an immuno-based colorimetric readout correlating with specific antibiotics concentrations.

  18. Green fluorescent protein-based biosensor for detecting SOS-inducing activity of genotoxic compounds.

    PubMed

    Kostrzynska, Magdalena; Leung, Kam T; Lee, Hung; Trevors, Jack T

    2002-01-01

    Increasing levels of environmental pollution demand specific and sensitive methods for detection of genotoxic agents in water, food products and environmental samples. Tests for genotoxicity assessment are often based on biosensor strains that respond to DNA damage induced by chemicals. In the present study, fluorescent reporter Escherichia coli strains have been developed, which contain a plasmid-borne transcriptional fusion between the DNA-damage inducible recA promoter and the green fluorescent protein gene (gfp) or a gene encoding a red-shifted, higher intensity GFP variant (mutant 3). GFP-based biosensors allowed the detection of a dose-dependent response to genotoxic agents such as mitomycin C (MMC), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and nalidixic acid (NA). A reporter strain carrying recA'-gfp mutant 3 fusion gave more dramatic and sensitive response than a strain containing the wild-type gfp. These results indicate that recA'-gfp mutant 3-based biosensor is potentially useful for detection of genotoxins.

  19. Aptamer-based sandwich-type biosensors.

    PubMed

    Seo, Ho Bin; Gu, Man Bock

    2017-01-01

    Sandwich-type biosensor platforms have drawn lots of attentions due to its superior features, compared to other platforms, in terms of its stable and reproducible responses and easy enhancement in the detection sensitivity. The sandwich-type assays can be developed by utilizing a pair of receptors, which bind to the different sites of the same target. In this mini-review paper, the sandwich-type biosensors using either pairs of aptamers or aptamer-antibody pairs are reviewed in terms of its targets and platforms, the schematic designs, and their analytical performance.

  20. Assembling Amperometric Biosensors for Clinical Diagnostics

    PubMed Central

    Belluzo, María Soledad; Ribone, María Élida; Lagier, Claudia Marina

    2008-01-01

    Clinical diagnosis and disease prevention routinely require the assessment of species determined by chemical analysis. Biosensor technology offers several benefits over conventional diagnostic analysis. They include simplicity of use, specificity for the target analyte, speed to arise to a result, capability for continuous monitoring and multiplexing, together with the potentiality of coupling to low-cost, portable instrumentation. This work focuses on the basic lines of decisions when designing electron-transfer-based biosensors for clinical analysis, with emphasis on the strategies currently used to improve the device performance, the present status of amperometric electrodes for biomedicine, and the trends and challenges envisaged for the near future. PMID:27879771

  1. Biosensor technology for pesticides--a review.

    PubMed

    Verma, Neelam; Bhardwaj, Atul

    2015-03-01

    Pesticides, due to their lucrative outcomes, are majorly implicated in agricultural fields for crop production enhancement. Due to their pest removal properties, pesticides of various classes have been designed to persist in the environment over a longer duration after their application to achieve maximum effectiveness. Apart from their recalcitrant structure and agricultural benefits, pesticides also impose acute toxicological effects onto the other various life forms. Their accumulation in the living system may prove to be detrimental if established in higher concentrations. Thus, their prompt and accurate analysis is a crucial matter of concern. Conventional techniques like chromatographic techniques (HPLC, GC, etc.) used for pesticides detection are associated with various limitations like stumpy sensitivity and efficiency, time consumption, laboriousity, requirement of expensive equipments and highly trained technicians, and many more. So there is a need to recruit the methods which can detect these neurotoxic compounds sensitively, selectively, rapidly, and easily in the field. Present work is a brief review of the pesticide effects, their current usage scenario, permissible limits in various food stuffs and 21st century advancements of biosensor technology for pesticide detection. Due to their exceptional performance capabilities, easiness in operation and on-site working, numerous biosensors have been developed for bio-monitoring of various environmental samples for pesticide evaluation immensely throughout the globe. Till date, based on sensing element (enzyme based, antibody based, etc.) and type of detection method used (Electrochemical, optical, and piezoelectric, etc.), a number of biosensors have been developed for pesticide detection. In present communication, authors have summarized 21st century's approaches of biosensor technology for pesticide detection such as enzyme-based biosensors, immunosensors, aptamers, molecularly imprinted polymers, and

  2. Transcription factor-based biosensors enlightened by the analyte

    PubMed Central

    Fernandez-López, Raul; Ruiz, Raul; de la Cruz, Fernando; Moncalián, Gabriel

    2015-01-01

    Whole cell biosensors (WCBs) have multiple applications for environmental monitoring, detecting a wide range of pollutants. WCBs depend critically on the sensitivity and specificity of the transcription factor (TF) used to detect the analyte. We describe the mechanism of regulation and the structural and biochemical properties of TF families that are used, or could be used, for the development of environmental WCBs. Focusing on the chemical nature of the analyte, we review TFs that respond to aromatic compounds (XylS-AraC, XylR-NtrC, and LysR), metal ions (MerR, ArsR, DtxR, Fur, and NikR) or antibiotics (TetR and MarR). Analyzing the structural domains involved in DNA recognition, we highlight the similitudes in the DNA binding domains (DBDs) of these TF families. Opposite to DBDs, the wide range of analytes detected by TFs results in a diversity of structures at the effector binding domain. The modular architecture of TFs opens the possibility of engineering TFs with hybrid DNA and effector specificities. Yet, the lack of a crisp correlation between structural domains and specific functions makes this a challenging task. PMID:26191047

  3. Photonic crystal biosensors towards on-chip integration.

    PubMed

    Threm, Daniela; Nazirizadeh, Yousef; Gerken, Martina

    2012-08-01

    Photonic crystal technology has attracted large interest in the last years. The possibility to generate highly sensitive sensor elements with photonic crystal structures is very promising for medical or environmental applications. The low-cost fabrication on the mass scale is as advantageous as the compactness and reliability of photonic crystal biosensors. The possibility to integrate microfluidic channels together with photonic crystal structures allows for highly compact devices. This article reviews different types of photonic crystal sensors including 1D photonic crystal biosensors, biosensors with photonic crystal slabs, photonic crystal waveguide biosensors and biosensors with photonic crystal microcavities. Their applications in biomolecular and pathogen detection are highlighted. The sensitivities and the detection limits of the different biosensors are compared. The focus is on the possibilities to integrate photonic crystal biosensors on-chip.

  4. Single-molecule surface studies of fibrinogen and DNA on semiconductors

    NASA Astrophysics Data System (ADS)

    Kong, Xianhua

    Understanding of protein adsorption onto non-biological substrates is of fundamental interest in science, but also has great potential technological applications in medical devices and biosensors. This study explores the non-specific interaction, at the single molecule level, of a blood protein and DNA with semiconductor surfaces through the use of a custom built, non rastering electron emission microscope and a scanning probe microscope. The specifics and history of electron emission are described as well as the equipment used in this study. The protein examined in this study is human plasma fibrinogen, which plays an important role in haemostatis and thrombosis, and deoxyribonucleic acid (DNA) is also studied. A novel technique for determining the photothreshold of biomolecules on single molecule level is developed and applied to fibrinogen molecules adsorbed on oxidized silicon surfaces, using photo-electron emission microscopy (PEEM). Three theoretical models are employed and compared to analyze the experimental photothreshold data. The non-specific adsorption of human plasma fibrinogen on oxidized p- and n- type silicon (100) surfaces is investigated to characterize both hydrophobic interactions and electrostatic forces. The experimental results indicate that hydrophobic interactions are one of the driving forces for protein adsorption and the electrostatic interactions also play a role in the height of the fibrinogen molecules adsorbed on the surface. PEEM images establish a photo threshold of 5.0 +/- 0.2 eV for fibrinogen on both n-type and p-type Si (100) surfaces. We suggest that the photothreshold results from surface state associated Fermi level (EF) pinning and there exists negative charge transfer from the adsorbed fibrinogen onto the p-type silicon substrates, while on n-type silicon substrates negative charge is transferred in the opposite direction. The adsorption of deoxyribonucleic acid (DNA) on mica and silicon is studied in liquid and ambient

  5. Recovery Based Nanowire Field-Effect Transistor Detection of Pathogenic Avian Influenza DNA

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Heng; Chu, Chia-Jung; Teng, Kang-Ning; Su, Yi-Jr; Chen, Chii-Dong; Tsai, Li-Chu; Yang, Yuh-Shyong

    2012-02-01

    Fast and accurate diagnosis is critical in infectious disease surveillance and management. We proposed a DNA recovery system that can easily be adapted to DNA chip or DNA biosensor for fast identification and confirmation of target DNA. This method was based on the re-hybridization of DNA target with a recovery DNA to free the DNA probe. Functionalized silicon nanowire field-effect transistor (SiNW FET) was demonstrated to monitor such specific DNA-DNA interaction using high pathogenic strain virus hemagglutinin 1 (H1) DNA of avian influenza (AI) as target. Specific electric changes were observed in real-time for AI virus DNA sensing and device recovery when nanowire surface of SiNW FET was modified with complementary captured DNA probe. The recovery based SiNW FET biosensor can be further developed for fast identification and further confirmation of a variety of influenza virus strains and other infectious diseases.

  6. Biosensor Systems for Homeland Security

    SciTech Connect

    Bruckner-Lea, Cindy J.

    2004-05-30

    The detection of biological agents is important to minimize the effects of pathogens that can harm people, livestock, or plants. In addition to pathogens distributed by man, there is a need to detect natural outbreaks. Recent outbreaks of SARS, mad cow disease, pathogenic E. coli and Salmonella, as well as the discovery of letters filled with anthrax spores have highlighted the need for biosensor systems to aid in prevention, early warning, response, and recovery. Rapid detection can be used to prevent exposure; and detection on a longer timescale can be used to minimize exposure, define treatment, and determine whether contaminated areas are clean enough for reuse. The common types of biological agents of concern include bacteria, spores, and viruses (Figure 1). From a chemist’s point of view, pathogens are essentially complex packages of chemicals that are assembled into organized packages with somewhat predictable physical characteristics such as size and shape. Pathogen detection methods can be divided into three general approaches: selective detection methods for specific identification such as nucleic acid analysis and structural recognition, semi-selective methods for broad-spectrum detection (e.g. physical properties, metabolites, lipids), and function-based methods (e.g. effect of the pathogen on organisms, tissues, or cells). The requirements for biodetection systems depend upon the application. While detect to warn sensors may require rapid detection on the order one minute, detection times of many minutes or hours may be suitable for determining appropriate treatments or for forensic analysis. Of course ideal sensor systems will meet the needs of many applications, and will be sensitive, selective, rapid, and simultaneously detect all agents of concern. They will also be reliable with essentially no false negatives or false positives, small, easy to use, and low cost with minimal consumables.

  7. Biosensors for breast cancer diagnosis: A review of bioreceptors, biotransducers and signal amplification strategies.

    PubMed

    Mittal, Sunil; Kaur, Hardeep; Gautam, Nandini; Mantha, Anil K

    2017-02-15

    Breast cancer is highly prevalent in females and accounts for second highest number of deaths, worldwide. Cumbersome, expensive and time consuming detection techniques presently available for detection of breast cancer potentiates the need for development of novel, specific and ultrasensitive devices. Biosensors are the promising and selective detection devices which hold immense potential as point of care (POC) tools. Present review comprehensively scrutinizes various breast cancer biosensors developed so far and their technical evaluation with respect to efficiency and potency of selected bioreceptors and biotransducers. Use of glycoproteins, DNA biomarkers, micro-RNA, circulatory tumor cells (CTC) and some potential biomarkers are introduced briefly. The review also discusses various strategies used in signal amplification such as nanomaterials, redox mediators, p19 protein, duplex specific nucleases (DSN) and redox cycling.

  8. Thermoresponsive magnetic nano-biosensors for rapid measurements of inorganic arsenic and cadmium.

    PubMed

    Siddiki, Mohammad Shohel Rana; Shimoaoki, Shun; Ueda, Shunsaku; Maeda, Isamu

    2012-10-18

    Green fluorescent protein-tagged sensor proteins, ArsR-GFP and CadC-GFP, have been produced as biosensors for simple and low-cost quantification of As(III) or Cd(II). In this study, the sensor protein-promoter DNA complexes were reconstructed on the surfaces of magnetic particles of different sizes. After the surface modification all the particles could be attracted by magnets, and released different amounts of GFP-tagged protein, according to the metal concentrations within 5 min, which caused significant increases in fluorescence. A detection limit of 1 µg/L for As(III) and Cd(II) in purified water was obtained only with the nanoparticles exhibiting enough magnetization after heat treatment for 1 min. Therefore, thermoresponsive magnetic nano-biosensors offer great advantages of rapidity and sensitivity for the measurement of the toxic metals in drinking water.

  9. Thermoresponsive Magnetic Nano-Biosensors for Rapid Measurements of Inorganic Arsenic and Cadmium

    PubMed Central

    Siddiki, Mohammad Shohel Rana; Shimoaoki, Shun; Ueda, Shunsaku; Maeda, Isamu

    2012-01-01

    Green fluorescent protein-tagged sensor proteins, ArsR-GFP and CadC-GFP, have been produced as biosensors for simple and low-cost quantification of As(III) or Cd(II). In this study, the sensor protein-promoter DNA complexes were reconstructed on the surfaces of magnetic particles of different sizes. After the surface modification all the particles could be attracted by magnets, and released different amounts of GFP-tagged protein, according to the metal concentrations within 5 min, which caused significant increases in fluorescence. A detection limit of 1 μg/L for As(III) and Cd(II) in purified water was obtained only with the nanoparticles exhibiting enough magnetization after heat treatment for 1 min. Therefore, thermoresponsive magnetic nano-biosensors offer great advantages of rapidity and sensitivity for the measurement of the toxic metals in drinking water. PMID:23202034

  10. A novel firefly luciferase biosensor enhances the detection of apoptosis induced by ESAT-6 family proteins of Mycobacterium tuberculosis

    SciTech Connect

    Shi, Junwei; Zhang, Huan; Fang, Liurong; Xi, Yongqiang; Zhou, Yanrong; Luo, Rui; Wang, Dang Xiao, Shaobo; Chen, Huanchun

    2014-10-03

    Highlights: • We developed a novel firefly luciferase based biosensor to detect apoptosis. • The novel biosensor 233-DnaE-DEVDG was reliable, sensitive and convenient. • 233-DnaE-DEVDG faithfully indicated ESAT-6 family proteins of Mycobacterium tuberculosis induced apoptosis. • EsxA, esxT and esxL in ESAT-6 family proteins induced apoptosis. • Activation of nuclear factor-κB (NF-κB) participated in esxT-induced apoptosis. - Abstract: The activation of caspase-3 is a key surrogate marker for detecting apoptosis. To quantitate caspase-3 activity, we constructed a biosensor comprising a recombinant firefly luciferase containing a caspase-3 cleavage site. When apoptosis was induced, caspase-3 cleavage of the biosensor activated firefly luciferase by a factor greater than 25. The assay conveniently detected apoptosis in real time, indicating that it will facilitate drug discovery. We screened ESAT-6 family proteins of Mycobacterium tuberculosis and found that esxA, esxT and esxL induced apoptosis. Further, activation of nuclear factor-κB (NF-κB) and the NF-κB-regulated genes encoding tumor necrosis factor-α (TNF-α) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) participated in esxT-induced apoptosis. We conclude that this assay is useful for high-throughput screening to identify and characterize proteins and drugs that regulate apoptosis.

  11. National Built Environment Health Impact Assessment Model ...

    EPA Pesticide Factsheets

    Behavioral (activity, diet, social interaction) and exposure (air pollution, traffic injury, and noise) related health impacts of land use and transportation investment decisions are becoming better understood and quantified. Research has shown relationships between density, mix, street connectivity, access to parks, shops, transit, presence of sidewalks and bikeways, and healthy food with physical activity, obesity, cardiovascular disease, type II diabetes, and some mental health outcomes. This session demonstrates successful integration of health impact assessment into multiple scenario planning tool platforms. Detailed evidence on chronic disease and related costs associated with contrasting land use and transportation investments are built into a general-purpose module that can be accessed by multiple platforms. Funders, researchers, and end users of the tool will present a detailed description of the key elements of the approach, how it has been applied, and how will evolve. A critical focus will be placed on equity and social justice inherent within the assessment of health disparities that will be featured in the session. Health impacts of community design have significant cost benefit implications. Recent research is now extending relationships between community design features and chronic disease to health care costs. This session will demonstrate the recent application of this evidence on health impacts to the newly adopted Los Angeles Regional Transpo

  12. The Built Environment Is a Microbial Wasteland

    PubMed Central

    2016-01-01

    ABSTRACT Humanity’s transition from the outdoor environment to the built environment (BE) has reduced our exposure to microbial diversity. The relative importance of factors that contribute to the composition of human-dominated BE microbial communities remains largely unknown. In their article in this issue, Chase and colleagues (J. Chase, J. Fouquier, M. Zare, D. L. Sonderegger, R. Knight, S. T. Kelley, J. Siegel, and J. G. Caporaso, mSystems 1(2):e00022-16, 2016, http://dx.doi.org/10.1128/mSystems.00022-16) present an office building study in which they controlled for environmental factors, geography, surface material, sampling location, and human interaction type. They found that surface location and geography were the strongest factors contributing to microbial community structure, while surface material had little effect. Even in the absence of direct human interaction, BE surfaces were composed of 25 to 30% human skin-associated taxa. The authors demonstrate how technical variation across sequencing runs is a major issue, especially in BE work, where the biomass is often low and the potential for PCR contaminants is high. Overall, the authors conclude that BE surfaces are desert-like environments where microbes passively accumulate. PMID:27832216

  13. A scalable neuristor built with Mott memristors

    NASA Astrophysics Data System (ADS)

    Pickett, Matthew D.; Medeiros-Ribeiro, Gilberto; Williams, R. Stanley

    2013-02-01

    The Hodgkin-Huxley model for action potential generation in biological axons is central for understanding the computational capability of the nervous system and emulating its functionality. Owing to the historical success of silicon complementary metal-oxide-semiconductors, spike-based computing is primarily confined to software simulations and specialized analogue metal-oxide-semiconductor field-effect transistor circuits. However, there is interest in constructing physical systems that emulate biological functionality more directly, with the goal of improving efficiency and scale. The neuristor was proposed as an electronic device with properties similar to the Hodgkin-Huxley axon, but previous implementations were not scalable. Here we demonstrate a neuristor built using two nanoscale Mott memristors, dynamical devices that exhibit transient memory and negative differential resistance arising from an insulating-to-conducting phase transition driven by Joule heating. This neuristor exhibits the important neural functions of all-or-nothing spiking with signal gain and diverse periodic spiking, using materials and structures that are amenable to extremely high-density integration with or without silicon transistors.

  14. Endolithic phototrophs in built and natural stone.

    PubMed

    Gaylarde, Christine C; Gaylarde, Peter M; Neilan, Brett A

    2012-08-01

    Lichens, algae and cyanobacteria have been detected growing endolithically in natural rock and in stone buildings in various countries of Australasia, Europe and Latin America. Previously these organisms had mainly been described in natural carbonaceous rocks in aquatic environments, with some reports in siliceous rocks, principally from extremophilic regions. Using various culture and microscopy methods, we have detected endoliths in siliceous stone, both natural and cut, in humid temperate and subtropical climates. Such endolithic growth leads to degradation of the stone structure, not only by mechanical means, but also by metabolites liberated by the cells. Using in vitro culture, transmission, optical and fluorescence microscopy, and confocal laser scanning microscopy, both coccoid and filamentous cyanobacteria and algae, including Cyanidiales, have been identified growing endolithically in the facades of historic buildings built from limestone, sandstone, granite, basalt and soapstone, as well as in some natural rocks. Numerically, the most abundant are small, single-celled, colonial cyanobacteria. These small phototrophs are difficult to detect by standard microscope techniques and some of these species have not been previously reported within stone.

  15. Methods for using redox liposome biosensors

    DOEpatents

    Cheng, Quan; Stevens, Raymond C.

    2002-01-01

    The present invention provides methods and compositions for detecting the presence of biologically-important analytes by using redox liposome biosensors. In particular, the present invention provides liposome/sol-gel electrodes suitable for the detection of a wide variety of organic molecules, including but not limited to bacterial toxins.

  16. Microbial Biosensors for Selective Detection of Disaccharides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seven microbial strains were screened for their ability to detect disaccharides as components of Clark-type oxygen biosensors. Sensors responded to varying degrees to maltose, cellobiose, sucrose, and melibiose, but none responded strongly to lactose. Although microbial sensors are relatively nons...

  17. Clinical Assessment Applications of Ambulatory Biosensors

    ERIC Educational Resources Information Center

    Haynes, Stephen N.; Yoshioka, Dawn T.

    2007-01-01

    Ambulatory biosensor assessment includes a diverse set of rapidly developing and increasingly technologically sophisticated strategies to acquire minimally disruptive measures of physiological and motor variables of persons in their natural environments. Numerous studies have measured cardiovascular variables, physical activity, and biochemicals…

  18. Boar taint detection using parasitoid biosensors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To evaluate the potential for a non-stinging wasp to be used as a biosensor in the pig industry, we trained wasps to 3 individual chemicals associated with boar taint. Training consisted of presenting the odors to hungry wasps while they were feeding on sugar. This associates the chemical with a fo...

  19. Nanoscale bacteriophage biosensors beyond phage display.

    PubMed

    Lee, Jong-Wook; Song, Jangwon; Hwang, Mintai P; Lee, Kwan Hyi

    2013-01-01

    Bacteriophages are traditionally used for the development of phage display technology. Recently, their nanosized dimensions and ease with which genetic modifications can be made to their structure and function have put them in the spotlight towards their use in a variety of biosensors. In particular, the expression of any protein or peptide on the extraluminal surface of bacteriophages is possible by genetically engineering the genome. In addition, the relatively short replication time of bacteriophages offers researchers the ability to generate mass quantities of any given bacteriophage-based biosensor. Coupled with the emergence of various biomarkers in the clinic as a means to determine pathophysiological states, the development of current and novel technologies for their detection and quantification is imperative. In this review, we categorize bacteriophages by their morphology into M13-based filamentous bacteriophages and T4- or T7-based icosahedral bacteriophages, and examine how such advantages are utilized across a variety of biosensors. In essence, we take a comprehensive approach towards recent trends in bacteriophage-based biosensor applications and discuss their outlook with regards to the field of biotechnology.

  20. Fiber optic-based regenerable biosensor

    DOEpatents

    Sepaniak, Michael J.; Vo-Dinh, Tuan

    1993-01-01

    A fiber optic-based regenerable biosensor. The biosensor is particularly suitable for use in microscale work in situ. In one embodiment, the biosensor comprises a reaction chamber disposed adjacent the distal end of a waveguide and adapted to receive therein a quantity of a sample containing an analyte. Leading into the chamber is a plurality of capillary conduits suitable for introducing into the chamber antibodies or other reagents suitable for selective interaction with a predetermined analyte. Following such interaction, the contents of the chamber may be subjected to an incident energy signal for developing fluorescence within the chamber that is detectable via the optical fiber and which is representative of the presence, i.e. concentration, of the selected analyte. Regeneration of the biosensor is accomplished by replacement of the reagents and/or the analyte, or a combination of these, at least in part via one or more of the capillary conduits. The capillary conduits extend from their respective terminal ends that are in fluid communication with the chamber, away from the chamber to respective location(s) remote from the chamber thereby permitting in situ location of the chamber and remote manipulation and/or analysis of the activity with the chamber.

  1. Biosensors for Whole-Cell Bacterial Detection

    PubMed Central

    Rushworth, Jo V.; Hirst, Natalie A.; Millner, Paul A.

    2014-01-01

    SUMMARY Bacterial pathogens are important targets for detection and identification in medicine, food safety, public health, and security. Bacterial infection is a common cause of morbidity and mortality worldwide. In spite of the availability of antibiotics, these infections are often misdiagnosed or there is an unacceptable delay in diagnosis. Current methods of bacterial detection rely upon laboratory-based techniques such as cell culture, microscopic analysis, and biochemical assays. These procedures are time-consuming and costly and require specialist equipment and trained users. Portable stand-alone biosensors can facilitate rapid detection and diagnosis at the point of care. Biosensors will be particularly useful where a clear diagnosis informs treatment, in critical illness (e.g., meningitis) or to prevent further disease spread (e.g., in case of food-borne pathogens or sexually transmitted diseases). Detection of bacteria is also becoming increasingly important in antibioterrorism measures (e.g., anthrax detection). In this review, we discuss recent progress in the use of biosensors for the detection of whole bacterial cells for sensitive and earlier identification of bacteria without the need for sample processing. There is a particular focus on electrochemical biosensors, especially impedance-based systems, as these present key advantages in terms of ease of miniaturization, lack of reagents, sensitivity, and low cost. PMID:24982325

  2. Surface acoustic wave biosensors: a review.

    PubMed

    Länge, Kerstin; Rapp, Bastian E; Rapp, Michael

    2008-07-01

    This review presents an overview of 20 years of worldwide development in the field of biosensors based on special types of surface acoustic wave (SAW) devices that permit the highly sensitive detection of biorelevant molecules in liquid media (such as water or aqueous buffer solutions). 1987 saw the first approaches, which used either horizontally polarized shear waves (HPSW) in a delay line configuration on lithium tantalate (LiTaO(3)) substrates or SAW resonator structures on quartz or LiTaO(3) with periodic mass gratings. The latter are termed "surface transverse waves" (STW), and they have comparatively low attenuation values when operated in liquids. Later Love wave devices were developed, which used a film resonance effect to significantly reduce attenuation. All of these sensor approaches were accompanied by the development of appropriate sensing films. First attempts used simple layers of adsorbed antibodies. Later approaches used various types of covalently bound layers, for example those utilizing intermediate hydrogel layers. Recent approaches involve SAW biosensor devices inserted into compact systems with integrated fluidics for sample handling. To achieve this, the SAW biosensors can be embedded into micromachined polymer housings. Combining these two features will extend the system to create versatile biosensor arrays for generic lab use or for diagnostic purposes.

  3. DNA interaction of [Cu(dmp)(phen-dion)] (dmp=4,7 and 2,9 dimethyl phenanthroline, phen-dion=1,10-phenanthroline-5,6-dion) complexes and DNA-based electrochemical biosensor using chitosan-carbon nanotubes composite film.

    PubMed

    Kashanian, Soheila; Khodaei, Mohammad Mehdi; Roshanfekr, Hamideh; Peyman, Hossein

    2013-10-01

    The interaction of two new water-soluble [Cu(4,7-dmp)(phen-dione)Cl]Cl (1) and [Cu(2,9-dmp)(phen-dione)Cl]Cl (2) which dmp is dimethyl-1,10-phenanthroline and phen-dion represents 1,10-phenanthroline-5,6-dion, with DNA in solution and immobilized DNA on a chitosan-carbon nanotubes composite modified glassy carbon electrode were investigated by cyclic voltammetry and UV-Vis spectroscopy techniques. In solution interactions, spectroscopic and electrochemical evidences indicate outside binding of these complexes. To clarify the binding mode of complexes, it was done competition studies with Hoechst and Neutral red as groove binder and intercalative probes, respectively. All these results indicating that, these two complexes (1) and (2) interact with DNA via groove binding and partially intercalative modes, respectively. The electrochemical characterization experiments showed that the nanocomposite film of chitosan-carbon nanotubes could effectively immobilize DNA and greatly improve the electron-transfer reactions of the electroactive molecules that latter finding is the result of strong interactions between captured DNA and Cu complexes. This result indicates that these complexes could be noble candidates as hybridization indicators in further studies. At the end, these new complexes showed excellent antitumor activity against K562 (human chronic myeloid leukemia) cell lines.

  4. DNA interaction of [Cu(dmp)(phen-dion)] (dmp = 4,7 and 2,9 dimethyl phenanthroline, phen-dion = 1,10-phenanthroline-5,6-dion) complexes and DNA-based electrochemical biosensor using chitosan-carbon nanotubes composite film

    NASA Astrophysics Data System (ADS)

    Kashanian, Soheila; Khodaei, Mohammad Mehdi; Roshanfekr, Hamideh; Peyman, Hossein

    2013-10-01

    The interaction of two new water-soluble [Cu(4,7-dmp)(phen-dione)Cl]Cl (1) and [Cu(2,9-dmp)(phen-dione)Cl]Cl (2) which dmp is dimethyl-1,10-phenanthroline and phen-dion represents 1,10-phenanthroline-5,6-dion, with DNA in solution and immobilized DNA on a chitosan-carbon nanotubes composite modified glassy carbon electrode were investigated by cyclic voltammetry and UV-Vis spectroscopy techniques. In solution interactions, spectroscopic and electrochemical evidences indicate outside binding of these complexes. To clarify the binding mode of complexes, it was done competition studies with Hoechst and Neutral red as groove binder and intercalative probes, respectively. All these results indicating that, these two complexes (1) and (2) interact with DNA via groove binding and partially intercalative modes, respectively. The electrochemical characterization experiments showed that the nanocomposite film of chitosan-carbon nanotubes could effectively immobilize DNA and greatly improve the electron-transfer reactions of the electroactive molecules that latter finding is the result of strong interactions between captured DNA and Cu complexes. This result indicates that these complexes could be noble candidates as hybridization indicators in further studies. At the end, these new complexes showed excellent antitumor activity against K562 (human chronic myeloid leukemia) cell lines.

  5. Synthesis and characterization of nanoparticles for electrochemical biosensor applications

    NASA Astrophysics Data System (ADS)

    Won, Yu-Ho

    Biosensors have been developed for detection, quantification, and monitoring of specific biomolecules or chemical species for environmental, clinical, and industrial fields. Nanoparticles, which can be functionalized by various materials, have attracted research interest in the electrochemical biosensors field due to their versatile physical and chemical properties. Thus, nanoparticles and nanocomposites have been widely investigated as a matrix for the electrochemical biosensors of the detection of various molecules. In this work, nanoparticles, including Fe3O4/silica core/shell nanocomposites, CaCO3-CdSe/ZnS/silica composites, Au nanocrystals, and Cu2O & Cu2O/Au particles, were synthesized and applied for the design of electrochemical biosensors. The goal of this research is to investigate novel nanoparticle-based platforms for the design of highly sensitive and stable biosensors. Biosensors can be categorized into enzyme-based biosensors and enzyme-free biosensors depending on whether or not enzymes are present in the system. Fe3O 4/silica core/shell nanocomposites and CaCO3-CdSe/ZnS/silica composites were used as material platforms to immobilize enzymes and fabricate enzyme-based electrochemical biosensors. On the other hand, Au nanocrystals, Cu2O, and Cu2O/Au particles, which display significant catalytic and electron transfer properties, were investigated in enzyme-free biosensor configurations. In addition, the morphology-dependent biosensing properties of Au nanocrystals, Cu2O, and Cu2O/Au particles were investigated.

  6. Recombinant antibodies and their use in biosensors.

    PubMed

    Zeng, Xiangqun; Shen, Zhihong; Mernaugh, Ray

    2012-04-01

    Inexpensive, noninvasive immunoassays can be used to quickly detect disease in humans. Immunoassay sensitivity and specificity are decidedly dependent upon high-affinity, antigen-specific antibodies. Antibodies are produced biologically. As such, antibody quality and suitability for use in immunoassays cannot be readily determined or controlled by human intervention. However, the process through which high-quality antibodies can be obtained has been shortened and streamlined by use of genetic engineering and recombinant antibody techniques. Antibodies that traditionally take several months or more to produce when animals are used can now be developed in a few weeks as recombinant antibodies produced in bacteria, yeast, or other cell types. Typically most immunoassays use two or more antibodies or antibody fragments to detect antigens that are indicators of disease. However, a label-free biosensor, for example, a quartz-crystal microbalance (QCM) needs one antibody only. As such, the cost and time needed to design and develop an immunoassay can be substantially reduced if recombinant antibodies and biosensors are used rather than traditional antibody and assay (e.g. enzyme-linked immunosorbant assay, ELISA) methods. Unlike traditional antibodies, recombinant antibodies can be genetically engineered to self-assemble on biosensor surfaces, at high density, and correctly oriented to enhance antigen-binding activity and to increase assay sensitivity, specificity, and stability. Additionally, biosensor surface chemistry and physical and electronic properties can be modified to further increase immunoassay performance above and beyond that obtained by use of traditional methods. This review describes some of the techniques investigators have used to develop highly specific and sensitive, recombinant antibody-based biosensors for detection of antigens in simple or complex biological samples.

  7. Sequestering CO2 in the Built Environment

    NASA Astrophysics Data System (ADS)

    Constantz, B. R.

    2009-12-01

    Calera’s Carbonate Mineralization by Aqueous Precipitation (CMAP) technology with beneficial reuse has been called, “game-changing” by Carl Pope, Director of the Sierra Club. Calera offers a solution to the scale of the carbon problem. By capturing carbon into the built environment through carbonate mineralization, Calera provides a sound and cost-effective alternative to Geologic Sequestration and Terrestrial Sequestration. The CMAP technology permanently converts carbon dioxide into a mineral form that can be stored above ground, or used as a building material. The process produces a suite of carbonate-containing minerals of various polymorphic forms. Calera product can be substituted into blends with ordinary Portland cements and used as aggregate to produce concrete with reduced carbon, carbon neutral, or carbon negative footprints. For each ton of product produced, approximately half a ton of carbon dioxide can be sequestered using the Calera process. Coal and natural gas are composed of predominately istopically light carbon, as the carbon in the fuel is plant-derived. Thus, power plant CO2 emissions have relatively low δ13C values.The carbon species throughout the CMAP process are identified through measuring the inorganic carbon content, δ13C values of the dissolved carbonate species, and the product carbonate minerals. Measuring δ13C allows for tracking the flue gas CO2 throughout the capture process. Initial analysis of the capture of propane flue gas (δ13C ˜ -25 ‰) with seawater (δ13C ˜ -10 ‰) and industrial brucite tailings from a retired magnesium oxide plant in Moss Landing, CA (δ13C ˜ -7 ‰ from residual calcite) produced carbonate mineral products with a δ13C value of ˜ -20 ‰. This isotopically light carbon, transformed from flue gas to stable carbonate minerals, can be transferred and tracked through the capture process, and finally to the built environment. CMAP provides an economical solution to global warming by producing

  8. Life Redefined: Microbes Built with Arsenic

    SciTech Connect

    Webb, Sam

    2011-03-22

    Life can survive in many harsh environments, from extreme heat to the presence of deadly chemicals. However, life as we know it has always been based on the same six elements -- carbon, oxygen, nitrogen, hydrogen, sulfur and phosphorus. Now it appears that even this rule has an exception. In the saline and poisonous environment of Mono Lake, researchers have found a bacterium that can grow by incorporating arsenic into its structure in place of phosphorus. X-ray images taken at SLAC's synchrotron light source reveal that this microbe may even use arsenic as a building block for DNA. Please join us as we describe this discovery, which rewrites the textbook description of how living cells work.

  9. Hybridization assay of insect antifreezing protein gene by novel multilayered porous silicon nucleic acid biosensor.

    PubMed

    Lv, Xiaoyi; Chen, Liangliang; Zhang, Hongyan; Mo, Jiaqing; Zhong, Furu; Lv, Changwu; Ma, Ji; Jia, Zhenhong

    2013-01-15

    A fabrication of a novel simple porous silicon polybasic photonic crystal with symmetrical structure has been reported as a nucleic acid biosensor for detecting antifreeze protein gene in insects (Microdera puntipennis dzhungarica), which would be helpful in the development of some new transgenic plants with tolerance of freezing stress. Compared to various porous silicon-based photonic configurations, porous silicon polytype layered structure is quite easy to prepare and shows more stability; moreover, polybasic photonic crystals with symmetrical structure exhibit interesting optical properties with a sharp resonance in the reflectance spectrum, giving a higher Q factor which causes higher sensitivity for sensing performance. In this experiment, DNA oligonucleotides were immobilized into the porous silicon pores using a standard crosslink chemistry method. The porous silicon polybasic symmetrical structure sensor possesses high specificity in performing controlled experiments with non-complementary DNA. The detection limit was found to be 21.3nM for DNA oligonucleotides. The fabricated multilayered porous silicon-based DNA biosensor has potential commercial applications in clinical chemistry for determination of an antifreeze protein gene or other genes.

  10. 46 CFR 67.97 - United States built.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false United States built. 67.97 Section 67.97 Shipping COAST... DOCUMENTATION OF VESSELS Build Requirements for Vessel Documentation § 67.97 United States built. To be considered built in the United States a vessel must meet both of the following criteria: (a) All...

  11. 46 CFR 67.97 - United States built.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false United States built. 67.97 Section 67.97 Shipping COAST... DOCUMENTATION OF VESSELS Build Requirements for Vessel Documentation § 67.97 United States built. To be considered built in the United States a vessel must meet both of the following criteria: (a) All...

  12. 46 CFR 67.97 - United States built.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false United States built. 67.97 Section 67.97 Shipping COAST... DOCUMENTATION OF VESSELS Build Requirements for Vessel Documentation § 67.97 United States built. To be considered built in the United States a vessel must meet both of the following criteria: (a) All...

  13. 46 CFR 67.97 - United States built.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false United States built. 67.97 Section 67.97 Shipping COAST... DOCUMENTATION OF VESSELS Build Requirements for Vessel Documentation § 67.97 United States built. To be considered built in the United States a vessel must meet both of the following criteria: (a) All...

  14. 46 CFR 67.97 - United States built.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false United States built. 67.97 Section 67.97 Shipping COAST... DOCUMENTATION OF VESSELS Build Requirements for Vessel Documentation § 67.97 United States built. To be considered built in the United States a vessel must meet both of the following criteria: (a) All...

  15. 47 CFR 15.23 - Home-built devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Home-built devices. 15.23 Section 15.23 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES General § 15.23 Home-built... constructed from a kit, and are built in quantities of five or less for personal use. (b) It is...

  16. 47 CFR 15.23 - Home-built devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Home-built devices. 15.23 Section 15.23 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES General § 15.23 Home-built... constructed from a kit, and are built in quantities of five or less for personal use. (b) It is...

  17. Miniature Wireless BioSensor for Remote Endoscopic Monitoring

    NASA Astrophysics Data System (ADS)

    Nemiroski, Alex; Brown, Keith; Issadore, David; Westervelt, Robert; Thompson, Chris; Obstein, Keith; Laine, Michael

    2009-03-01

    We have built a miniature wireless biosensor with fluorescence detection capability that explores the miniaturization limit for a self-powered sensor device assembled from the latest off-the-shelf technology. The device is intended as a remote medical sensor to be inserted endoscopically and remainin a patient's gastrointestinal tract for a period of weeks, recording and transmitting data as necessary. A sensing network may be formed by using multiple such devices within the patient, routing information to an external receiver that communicates through existing mobilephone networks to relay data remotely. By using a monolithic IC chip with integrated processor, memory, and 2.4 GHz radio,combined with a photonic sensor and miniature battery, we have developed a fully functional computing device in a form factorcompliantwith insertion through the narrowest endoscopic channels (less than 3mm x 3mm x 20mm). We envision similar devices with various types of sensors to be used in many different areas of the human body.

  18. Molecular Rotors Built in Porous Materials.

    PubMed

    Comotti, Angiolina; Bracco, Silvia; Sozzani, Piero

    2016-09-20

    Molecules and materials can show dynamic structures in which the dominant mechanism is rotary motion. The single mobile elements are defined as "molecular rotors" and exhibit special properties (compared with their static counterparts), being able in perspective to greatly modulate the dielectric response and form the basis for molecular motors that are designed with the idea of making molecules perform a useful mechanical function. The construction of ordered rotary elements into a solid is a necessary feature for such design, because it enables the alignment of rotors and the fine-tuning of their steric and dipolar interactions. Crystal surfaces or bulk crystals are the most suitable to adapt rotors in 2D or 3D arrangements and engineer juxtaposition of the rotors in an ordered way. Nevertheless, it is only in recent times that materials showing porosity and remarkably low density have undergone tremendous development. The characteristics of large free volume combine well with the virtually unhindered motion of the molecular rotors built into their structure. Indeed, the molecular rotors are used as struts in porous covalent and supramolecular architectures, spanning both hybrid and fully organic materials. The modularity of the approach renders possible a variety of rotor geometrical arrangements in both robust frameworks stable up to 850 K and self-assembled molecular materials. A nanosecond (fast dynamics) motional regime can be achieved at temperatures lower than 240 K, enabling rotor arrays operating in the solid state even at low temperatures. Furthermore, in nanoporous materials, molecular rotors can interact with the diffusing chemical species, be they liquids, vapors, or gases. Through this chemical intervention, rotor speed can be modulated at will, enabling a new generation of rotor-containing materials sensitive to guests. In principle, an applied electric field can be the stimulus for chemical release from porous materials. The effort needed to

  19. Carbon nanomaterials in biosensors: should you use nanotubes or graphene?

    PubMed

    Yang, Wenrong; Ratinac, Kyle R; Ringer, Simon P; Thordarson, Pall; Gooding, J Justin; Braet, Filip

    2010-03-15

    From diagnosis of life-threatening diseases to detection of biological agents in warfare or terrorist attacks, biosensors are becoming a critical part of modern life. Many recent biosensors have incorporated carbon nanotubes as sensing elements, while a growing body of work has begun to do the same with the emergent nanomaterial graphene, which is effectively an unrolled nanotube. With this widespread use of carbon nanomaterials in biosensors, it is timely to assess how this trend is contributing to the science and applications of biosensors. This Review explores these issues by presenting the latest advances in electrochemical, electrical, and optical biosensors that use carbon nanotubes and graphene, and critically compares the performance of the two carbon allotropes in this application. Ultimately, carbon nanomaterials, although still to meet key challenges in fabrication and handling, have a bright future as biosensors.

  20. A catechol biosensor based on electrospun carbon nanofibers

    PubMed Central

    Li, Dawei; Pang, Zengyuan; Chen, Xiaodong; Luo, Lei; Cai, Yibing

    2014-01-01

    Summary Carbon nanofibers (CNFs) were prepared by combining electrospinning with a high-temperature carbonization technique. And a polyphenol biosensor was fabricated by blending the obtained CNFs with laccase and Nafion. Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscope (FE-SEM) were, respectively, employed to investigate the structures and morphologies of the CNFs and of the mixtures. Cyclic voltammetry and chronoamperometry were employed to study the electrocatalysis of the catechol biosensor. The results indicated that the sensitivity of the biosensor was 41 µA·mM−1, the detection limit was 0.63 µM, the linear range was 1–1310 µM and the response time was within 2 seconds, which excelled most other laccase-based biosensor reported. Furthermore, the biosensor showed good repeatability, reproducibility, stability and tolerance to interferences. This novel biosensor also demonstrated its promising application in detecting catechol in real water samples. PMID:24778958