Science.gov

Sample records for dna biosensor built

  1. DNA biosensors that reason.

    PubMed

    Sainz de Murieta, Iñaki; Rodríguez-Patón, Alfonso

    2012-08-01

    Despite the many designs of devices operating with the DNA strand displacement, surprisingly none is explicitly devoted to the implementation of logical deductions. The present article introduces a new model of biosensor device that uses nucleic acid strands to encode simple rules such as "IF DNA_strand(1) is present THEN disease(A)" or "IF DNA_strand(1) AND DNA_strand(2) are present THEN disease(B)". Taking advantage of the strand displacement operation, our model makes these simple rules interact with input signals (either DNA or any type of RNA) to generate an output signal (in the form of nucleotide strands). This output signal represents a diagnosis, which either can be measured using FRET techniques, cascaded as the input of another logical deduction with different rules, or even be a drug that is administered in response to a set of symptoms. The encoding introduces an implicit error cancellation mechanism, which increases the system scalability enabling longer inference cascades with a bounded and controllable signal-noise relation. It also allows the same rule to be used in forward inference or backward inference, providing the option of validly outputting negated propositions (e.g. "diagnosis A excluded"). The models presented in this paper can be used to implement smart logical DNA devices that perform genetic diagnosis in vitro.

  2. DNA biosensors that reason.

    PubMed

    Sainz de Murieta, Iñaki; Rodríguez-Patón, Alfonso

    2012-08-01

    Despite the many designs of devices operating with the DNA strand displacement, surprisingly none is explicitly devoted to the implementation of logical deductions. The present article introduces a new model of biosensor device that uses nucleic acid strands to encode simple rules such as "IF DNA_strand(1) is present THEN disease(A)" or "IF DNA_strand(1) AND DNA_strand(2) are present THEN disease(B)". Taking advantage of the strand displacement operation, our model makes these simple rules interact with input signals (either DNA or any type of RNA) to generate an output signal (in the form of nucleotide strands). This output signal represents a diagnosis, which either can be measured using FRET techniques, cascaded as the input of another logical deduction with different rules, or even be a drug that is administered in response to a set of symptoms. The encoding introduces an implicit error cancellation mechanism, which increases the system scalability enabling longer inference cascades with a bounded and controllable signal-noise relation. It also allows the same rule to be used in forward inference or backward inference, providing the option of validly outputting negated propositions (e.g. "diagnosis A excluded"). The models presented in this paper can be used to implement smart logical DNA devices that perform genetic diagnosis in vitro. PMID:22406690

  3. DNA nanotechnology-enabled biosensors.

    PubMed

    Chao, Jie; Zhu, Dan; Zhang, Yinan; Wang, Lianhui; Fan, Chunhai

    2016-02-15

    Biosensors employ biological molecules to recognize the target and utilize output elements which can translate the biorecognition event into electrical, optical or mass-sensitive signals to determine the quantities of the target. DNA-based biosensors, as a sub-field to biosensor, utilize DNA strands with short oligonucleotides as probes for target recognition. Although DNA-based biosensors have offered a promising alternative for fast, simple and cheap detection of target molecules, there still exist key challenges including poor stability and reproducibility that hinder their competition with the current gold standard for DNA assays. By exploiting the self-recognition properties of DNA molecules, researchers have dedicated to make versatile DNA nanostructures in a highly rigid, controllable and functionalized manner, which offers unprecedented opportunities for developing DNA-based biosensors. In this review, we will briefly introduce the recent advances on design and fabrication of static and dynamic DNA nanostructures, and summarize their applications for fabrication and functionalization of DNA-based biosensors.

  4. Biosensors for DNA sequence detection

    NASA Technical Reports Server (NTRS)

    Vercoutere, Wenonah; Akeson, Mark

    2002-01-01

    DNA biosensors are being developed as alternatives to conventional DNA microarrays. These devices couple signal transduction directly to sequence recognition. Some of the most sensitive and functional technologies use fibre optics or electrochemical sensors in combination with DNA hybridization. In a shift from sequence recognition by hybridization, two emerging single-molecule techniques read sequence composition using zero-mode waveguides or electrical impedance in nanoscale pores.

  5. From DNA biosensors to gene chips

    PubMed Central

    Wang, Joseph

    2000-01-01

    Wide-scale DNA testing requires the development of small, fast and easy-to-use devices. This article describes the preparation, operation and applications of biosensors and gene chips, which provide fast, sensitive and selective detection of DNA hybridization. Various new strategies for DNA biosensors and gene chips are examined, along with recent trends and future directions. The integration of hybridization detection schemes with the sample preparation process in a ‘Lab-on-a-Chip’ format is also covered. While the use of DNA biosensors and gene chips is at an early stage, such devices are expected to have an enormous effect on future DNA diagnostics. PMID:10931914

  6. FIBER OPTIC BIOSENSOR FOR DNA DAMAGE

    EPA Science Inventory

    This paper describes a fiber optic biosensor for the rapid and sensitive detection of radiation-induced or chemically-induced oxidative DNA damage. The assay is based on the hybridization and temperature-induced dissociation (melting curves) of synthetic oligonucleotides. The...

  7. Molecular beacons for DNA biosensors with micrometer to submicrometer dimensions.

    PubMed

    Liu, X; Farmerie, W; Schuster, S; Tan, W

    2000-07-15

    Ultrasensitive molecular beacon (MB) DNA biosensors, with micrometer to submicrometer sizes, have been developed for DNA/RNA analysis. The fluorescence-based biosensors have been applied in DNA/ RNA detection without the need for a dye-labeled target molecule or an intercalation reagent in the testing solution. Molecular beacons are hairpin-shaped oligonucleotides that report the presence of specific nucleic acids. We have designed a surface-immobilizable biotinylated ssDNA molecular beacon for DNA hybridization at a liquid-solid interface. The MBs have been immobilized onto ultrasmall optical fiber probes through avidin-biotin binding. The MB DNA biosensor has been used directly to detect, in real time, its target DNA molecules without the need for a competitive assay. The biosensor is stable and reproducible. The MB DNA biosensor has selectivity with single base-pair mismatch identification capability. The concentration detection limits and mass detection limits are 0.3 nM and 15 amol for a 105-microm biosensor, and 10 nM and 0.27 amol for a submicrometer biosensor, respectively. We have also prepared molecular beacon DNA biosensor arrays for simultaneous analysis of multiple DNA sequences in the same solution. The newly developed DNA biosensors have been used for the precise quantification of a specific rat gamma-actin mRNA sequence amplified by the polymerase chain reaction.

  8. Recent Development of Nano-Materials Used in DNA Biosensors

    PubMed Central

    Xu, Kai; Huang, Junran; Ye, Zunzhong; Ying, Yibin; Li, Yanbin

    2009-01-01

    As knowledge of the structure and function of nucleic acid molecules has increased, sequence-specific DNA detection has gained increased importance. DNA biosensors based on nucleic acid hybridization have been actively developed because of their specificity, speed, portability, and low cost. Recently, there has been considerable interest in using nano-materials for DNA biosensors. Because of their high surface-to-volume ratios and excellent biological compatibilities, nano-materials could be used to increase the amount of DNA immobilization; moreover, DNA bound to nano-materials can maintain its biological activity. Alternatively, signal amplification by labeling a targeted analyte with nano-materials has also been reported for DNA biosensors in many papers. This review summarizes the applications of various nano-materials for DNA biosensors during past five years. We found that nano-materials of small sizes were advantageous as substrates for DNA attachment or as labels for signal amplification; and use of two or more types of nano-materials in the biosensors could improve their overall quality and to overcome the deficiencies of the individual nano-components. Most current DNA biosensors require the use of polymerase chain reaction (PCR) in their protocols. However, further development of nano-materials with smaller size and/or with improved biological and chemical properties would substantially enhance the accuracy, selectivity and sensitivity of DNA biosensors. Thus, DNA biosensors without PCR amplification may become a reality in the foreseeable future. PMID:22346713

  9. Biosensors based on DNA-Functionalized Graphene

    NASA Astrophysics Data System (ADS)

    Vishnubhotla, Ramya; Ping, Jinglei; Vrudhula, Amey; Johnson, A. T. Charlie

    Since its discovery, graphene has been used for sensing applications due to its outstanding electrical properties and biocompatibility. Here, we demonstrate the capabilities of field effect transistors (FETs) based on CVD-grown graphene functionalized with commercially obtained DNA oligomers and aptamers for detection of various biomolecular targets (e.g., complementary DNA and small molecule drug targets). Graphene FETs were created with a scalable photolithography process that produces arrays consisting of 50-100 FETs with a layout suitable for multiplexed detection of four molecular targets. FETs were characterized via AFM to confirm the presence of the aptamer. From the measured electrical characteristics, it was determined that binding of molecular targets by the DNA chemical recognition element led to a reproducible, concentration-dependent shift in the Dirac voltage. This biosensor class is potentially suitable for applications in drug detection. This work is funded by NIH through the Center for AIDS Research at the University of Pennsylvania.

  10. Electrochemical uranyl cation biosensor with DNA oligonucleotides as receptor layer.

    PubMed

    Jarczewska, Marta; Ziółkowski, Robert; Górski, Łukasz; Malinowska, Elżbieta

    2014-04-01

    The present study aims at the further development of the uranyl oligonucleotide-based voltammetric biosensor, which takes advantage of strong interaction between UO2(2+) and phosphate DNA backbone. Herein we report the optimization of working parameters of previously elaborated electrochemical DNA biosensor. It is shown that the sensor sensitivity is highly dependent on the oligonucleotide probe length and the incubation time of sensor in a sample solution. Consequently, the highest sensitivity was obtained for 10-nucleotide sequence and 60 min incubation time. The lower detection limit towards uranyl cation for developed biosensor was 30 nM. The influence of mixed monolayers and the possibility of developing a non-calibration device were also investigated. The selectivity of the proposed biosensor was significantly improved via elimination of adenine nucleobases from the DNA probe. Moreover, the regeneration procedure was elaborated and tested to prolong the use of the same biosensor for 4 subsequent determinations of UO2(2+).

  11. Development of a multiarray biosensor for DNA diagnostics

    SciTech Connect

    Vo-Dinh, T.; Isola, N.; Alarie, J.P.; Landis, D.; Griffin, G.D.; Allison, S.

    1998-11-01

    This work involves the development and evaluation of a multiarray biosensor for DNA diagnostics. The evaluation of various system components developed for the biosensor is discussed. The DNA probes labeled with visible and near infrared (NIR) dyes are evaluated. The detection system uses a two-dimensional charge-coupled device (CCD). Examples of application of gene probes in DNA hybridization experiments and in biomedical diagnosis (detection of the p53 cancer gene) are presented to illustrate the usefulness and potential of the biosensor device.

  12. Assessment of genotoxicity of catecholics using impedimetric DNA-biosensor.

    PubMed

    Ensafi, Ali A; Amini, Maryam; Rezaei, B

    2014-03-15

    The potential toxicity of catecholics is a big concern, because the catechol-derived semiquinone radical after the oxidation of catechol (CA) can donate an H-atom to generate quinone, and during this process a superoxide anion radical may be produced. Considering the fact that catecholics are highly consumed in our daily life and some drugs also contain one or more CA moieties, we speculate that CA's toxicity might not be insurmountable. Therefore, finding approaches to investigate catecholics potential toxicity is of great significance. Here in, an electrochemical protocol for direct monitoring of genotoxicity of catecholics is described. CA encapsulated on MWCNTs (CA@MWCNT) through continuous cyclic voltammetric on the surface of pencil graphite electrode (PGE). Subsequently, a DNA functionalized biosensor (DNA/CA@MWCNT/PGE) was prepared and characterized for the detection and the investigation of DNA damage induced by radicals generated from catecholics. The change in the charge transfer resistance (Rct) after the incubation of the DNA biosensor in the damaging solution for a certain time was used as an indicator for DNA damage. Incubation of DNA-modified electrode with CA solution containing Cu(II), Cr(VI) and Fe(III) has been shown to result in oxidative damage to the DNA and change in the electrochemical properties. It was found that the presence of Cu(II), Cr(VI) and Fe(III) in solution caused damage to DNA. The inhibitory effect of glutathione and plumbagin on the CA-mediated DNA damage has also been investigated using the biosensor. The minimum concentration of the metal ions for CA induced DNA damage was investigated. Recognition of suitable matrixes for CA-mediated DNA damage can be assessed using proposed DNA biosensor. Such direct monitoring of the DNA damage holds great promise for designing new biosensors with modification of the biosensor with different damaging agents. PMID:24121207

  13. DNA electrochemical biosensor for metallic drugs at physiological conditions

    PubMed Central

    Santiago-Lopez, Angel J.; Vera, José L.; Meléndez, Enrique

    2014-01-01

    Entrapment of dsSS-DNA into the polypyrrole-polyvinyl sulphonate (dsSS-DNA-PPy-PVS) film over indium-tin-oxide (ITO) coated glass has been designed to detect titanium and platinum drugs, titanocene dichloride and cisplatin. The disposable dsSS-DNA-PPy-PVS/ITO biosensor was characterized by cyclic voltammetry, attenuated total reflectance Infrared spectroscopy and atomic force microscopy. Amperometric studies by cyclic voltammetry using, dsSS-DNA-PPy PVS/ITO biosensor, demonstrated the ability of this biosensor to detect these metallic drugs in millimolar concentration by monitoring the decrease of the guanine oxidation signal as a result of the DNA damage. The concentration range detected for titanocene dichloride is 0.25 to 1.5 mM and for cisplatin is 0.06 to 1.0 mM. PMID:25705144

  14. A liquid-crystal-based DNA biosensor for pathogen detection

    PubMed Central

    Khan, Mashooq; Khan, Abdur Rahim; Shin, Jae-Ho; Park, Soo-Young

    2016-01-01

    A liquid-crystal (LC)-filled transmission electron microscopy (TEM) grid cell coated with the cationic surfactant dodecyltrimethylammonium bromide (DTAB), to which a single-stranded deoxyribonucleic acid probe (ssDNAprobe) was adsorbed at the LC/aqueous interface (TEMDTAB/DNA), was applied for the highly specific detection of target DNA molecules. The DTAB-coated E7 (used LC mixture) in the TEM grid (TEMDTAB) exhibited a homeotropic orientation, and changed to a planar orientation upon adsorption of the ssDNAprobe. The TEMDTAB/DNA was then exposed to complementary (target) ssDNA, which resulted in a planar-to-homeotropic configurational change of E7 that could be observed through a polarized optical microscope under crossed polarizers. The optimum adsorption density (2 μM) of ssDNAprobe enabled the detection of ≥0.05 nM complementary ssDNA. This TEMDTAB/DNA biosensor could differentiate complementary ssDNA from mismatched ssDNA as well as double-stranded DNA. It also successfully detected the genomic DNAs of the bacterium Erwinia carotovora and the fungi Rhazictonia solani. Owe to the high specificity, sensitivity, and label-free detection, this biosensor may broaden the applications of LC-based biosensors to pathogen detection. PMID:26940532

  15. A liquid-crystal-based DNA biosensor for pathogen detection.

    PubMed

    Khan, Mashooq; Khan, Abdur Rahim; Shin, Jae-Ho; Park, Soo-Young

    2016-01-01

    A liquid-crystal (LC)-filled transmission electron microscopy (TEM) grid cell coated with the cationic surfactant dodecyltrimethylammonium bromide (DTAB), to which a single-stranded deoxyribonucleic acid probe (ssDNAprobe) was adsorbed at the LC/aqueous interface (TEMDTAB/DNA), was applied for the highly specific detection of target DNA molecules. The DTAB-coated E7 (used LC mixture) in the TEM grid (TEMDTAB) exhibited a homeotropic orientation, and changed to a planar orientation upon adsorption of the ssDNAprobe. The TEMDTAB/DNA was then exposed to complementary (target) ssDNA, which resulted in a planar-to-homeotropic configurational change of E7 that could be observed through a polarized optical microscope under crossed polarizers. The optimum adsorption density (2 μM) of ssDNAprobe enabled the detection of ≥0.05 nM complementary ssDNA. This TEMDTAB/DNA biosensor could differentiate complementary ssDNA from mismatched ssDNA as well as double-stranded DNA. It also successfully detected the genomic DNAs of the bacterium Erwinia carotovora and the fungi Rhazictonia solani. Owe to the high specificity, sensitivity, and label-free detection, this biosensor may broaden the applications of LC-based biosensors to pathogen detection.

  16. A liquid-crystal-based DNA biosensor for pathogen detection.

    PubMed

    Khan, Mashooq; Khan, Abdur Rahim; Shin, Jae-Ho; Park, Soo-Young

    2016-01-01

    A liquid-crystal (LC)-filled transmission electron microscopy (TEM) grid cell coated with the cationic surfactant dodecyltrimethylammonium bromide (DTAB), to which a single-stranded deoxyribonucleic acid probe (ssDNAprobe) was adsorbed at the LC/aqueous interface (TEMDTAB/DNA), was applied for the highly specific detection of target DNA molecules. The DTAB-coated E7 (used LC mixture) in the TEM grid (TEMDTAB) exhibited a homeotropic orientation, and changed to a planar orientation upon adsorption of the ssDNAprobe. The TEMDTAB/DNA was then exposed to complementary (target) ssDNA, which resulted in a planar-to-homeotropic configurational change of E7 that could be observed through a polarized optical microscope under crossed polarizers. The optimum adsorption density (2 μM) of ssDNAprobe enabled the detection of ≥0.05 nM complementary ssDNA. This TEMDTAB/DNA biosensor could differentiate complementary ssDNA from mismatched ssDNA as well as double-stranded DNA. It also successfully detected the genomic DNAs of the bacterium Erwinia carotovora and the fungi Rhazictonia solani. Owe to the high specificity, sensitivity, and label-free detection, this biosensor may broaden the applications of LC-based biosensors to pathogen detection. PMID:26940532

  17. A liquid-crystal-based DNA biosensor for pathogen detection

    NASA Astrophysics Data System (ADS)

    Khan, Mashooq; Khan, Abdur Rahim; Shin, Jae-Ho; Park, Soo-Young

    2016-03-01

    A liquid-crystal (LC)-filled transmission electron microscopy (TEM) grid cell coated with the cationic surfactant dodecyltrimethylammonium bromide (DTAB), to which a single-stranded deoxyribonucleic acid probe (ssDNAprobe) was adsorbed at the LC/aqueous interface (TEMDTAB/DNA), was applied for the highly specific detection of target DNA molecules. The DTAB-coated E7 (used LC mixture) in the TEM grid (TEMDTAB) exhibited a homeotropic orientation, and changed to a planar orientation upon adsorption of the ssDNAprobe. The TEMDTAB/DNA was then exposed to complementary (target) ssDNA, which resulted in a planar-to-homeotropic configurational change of E7 that could be observed through a polarized optical microscope under crossed polarizers. The optimum adsorption density (2 μM) of ssDNAprobe enabled the detection of ≥0.05 nM complementary ssDNA. This TEMDTAB/DNA biosensor could differentiate complementary ssDNA from mismatched ssDNA as well as double-stranded DNA. It also successfully detected the genomic DNAs of the bacterium Erwinia carotovora and the fungi Rhazictonia solani. Owe to the high specificity, sensitivity, and label-free detection, this biosensor may broaden the applications of LC-based biosensors to pathogen detection.

  18. DNA nanostructures based biosensor for the determination of aromatic compounds.

    PubMed

    Gayathri, S Baby; Kamaraj, P; Arthanareeswari, M; Devikala, S

    2015-10-15

    Graphite electrode was modified using multi-walled carbon nanotubes (MWCNT), chitosan (CS), glutaraldehyde (GTA) and DNA nanostructures (nsDNA). DNA nanostructures of 50 nm in size were produced from single DNA template sequence using a simple two step procedure and were confirmed using TEM and AFM analysis. The modified electrode was applied to the electrochemical detection of aromatic compounds using EIS. The modified electrode was characterized using differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). For comparison, electrochemical results derived from single stranded (50 bp length) and double stranded (50 bp length) DNA based biosensors were used. The results indicate that the modified electrode prior to nsDNA immobilization provides a viable platform that effectively promotes electron transfer between nsDNA and the electrode. The mode of binding between the nsDNA and aromatic compounds was investigated using EIS, indicating that the dominant interaction is non-covalent. nsDNA based biosensor was observed to act as an efficient biosensor in selective and sensitive identification of aromatic compounds.

  19. DNA detection using a radio frequency biosensor with gold nanoparticles.

    PubMed

    Chien, Jui-Hung; Yang, Ching-Hao; Chen, Ping-Hei; Yang, Chii-Rong; Lin, Chin-Shen; Wang, Huei

    2008-05-01

    This study presents a novel method for DNA detection with multi-layer AuNPs to enhance overall detection sensitivity. This essay achieves not only an innovative radio-frequency biosensor but also a critical signal amplification methodology. Results show that bandwidth change for multi-layer AuNP with hybridization of DNA exceeds that for the double-layer AuNP up to 0.5 GHz. Furthermore, the developed biosensor detection limit for the DNA set employed in this essay is currently 10 pM. A single base-pair mutation of the wild-type target DNA could be distinguished from the perfect match target DNA at the melting temperature of 47 degrees C with a temperature controlling system. Experimental results in this study indicate that the proposed biosensor and the developed amplification methodology are successful. As health care becomes much more essential in modern life, this biosensor has potential applications in a screening kit for recognizing, sensing, and quantifying biomolecules in real samples.

  20. Enzymatic amplification detection of DNA based on "molecular beacon" biosensors.

    PubMed

    Mao, Xun; Jiang, Jianhui; Xu, Xiangmin; Chu, Xia; Luo, Yan; Shen, Guoli; Yu, Ruqin

    2008-05-15

    We described a novel electrochemical DNA biosensor based on molecular beacon (MB) probe and enzymatic amplification protocol. The MB modified with a thiol at its 5' end and a biotin at its 3' end was immobilized on the gold electrode through mixed self-assembly process. Hybridization events between MB and target DNA cause the conformational change of the MB, triggering the attached biotin group on the electrode surface. Following the specific interaction between the conformation-triggered biotin and streptavidin-horseradish peroxidase (HRP), subsequent quantification of DNA was realized by electrochemical detection of enzymatic product in the presence of substrate. The detection limit is obtained as low as 0.1nM. The presented DNA biosensor has good selectivity, being able to differentiate between a complementary target DNA sequence and one containing G-G single-base mismatches.

  1. Designing new strategy for controlling DNA orientation in biosensors.

    PubMed

    Feng, Chao; Ding, Hong-ming; Ren, Chun-lai; Ma, Yu-qiang

    2015-01-01

    Orientation controllable DNA biosensors hold great application potentials in recognizing small molecules and detecting DNA hybridization. Though electric field is usually used to control the orientation of DNA molecules, it is also of great importance and significance to seek for other triggered methods to control the DNA orientation. Here, we design a new strategy for controlling DNA orientation in biosensors. The main idea is to copolymerize DNA molecules with responsive polymers that can show swelling/deswelling transitions due to the change of external stimuli, and then graft the copolymers onto an uncharged substrate. In order to highlight the responsive characteristic, we take thermo-responsive polymers as an example, and reveal multi-responsive behavior and the underlying molecular mechanism of the DNA orientation by combining dissipative particle dynamics simulation and molecular theory. Since swelling/deswelling transitions can be also realized by using other stimuli-responsive (like pH and light) polymers, the present strategy is universal, which can enrich the methods of controlling DNA orientation and may assist with the design of the next generation of biosensors. PMID:26400770

  2. Designing new strategy for controlling DNA orientation in biosensors

    PubMed Central

    Feng, Chao; Ding, Hong-ming; Ren, Chun-lai; Ma, Yu-qiang

    2015-01-01

    Orientation controllable DNA biosensors hold great application potentials in recognizing small molecules and detecting DNA hybridization. Though electric field is usually used to control the orientation of DNA molecules, it is also of great importance and significance to seek for other triggered methods to control the DNA orientation. Here, we design a new strategy for controlling DNA orientation in biosensors. The main idea is to copolymerize DNA molecules with responsive polymers that can show swelling/deswelling transitions due to the change of external stimuli, and then graft the copolymers onto an uncharged substrate. In order to highlight the responsive characteristic, we take thermo-responsive polymers as an example, and reveal multi-responsive behavior and the underlying molecular mechanism of the DNA orientation by combining dissipative particle dynamics simulation and molecular theory. Since swelling/deswelling transitions can be also realized by using other stimuli-responsive (like pH and light) polymers, the present strategy is universal, which can enrich the methods of controlling DNA orientation and may assist with the design of the next generation of biosensors. PMID:26400770

  3. DETECTION OF DNA DAMAGE USING A FIBEROPTIC BIOSENSOR

    EPA Science Inventory

    A rapid and sensitive fiber optic biosensor assay for radiation-induced DNA damage is reported. For this assay, a biotin-labeled capture oligonucleotide (38 mer) was immobilized to an avidin-coated quartz fiber. Hybridization of a dye-labeled complementary sequence was observed...

  4. Multicolor fluorescent biosensor for multiplexed detection of DNA.

    PubMed

    Hu, Rong; Liu, Tao; Zhang, Xiao-Bing; Huan, Shuang-Yan; Wu, Cuichen; Fu, Ting; Tan, Weihong

    2014-05-20

    Development of efficient methods for highly sensitive and rapid screening of specific oligonucleotide sequences is essential to the early diagnosis of serious diseases. In this work, an aggregated cationic perylene diimide (PDI) derivative was found to efficiently quench the fluorescence emission of a variety of anionic oligonucleotide-labeled fluorophores that emit at wavelengths from the visible to NIR region. This broad-spectrum quencher was then adopted to develop a multicolor biosensor via a label-free approach for multiplexed fluorescent detection of DNA. The aggregated perylene derivative exhibits a very high quenching efficiency on all ssDNA-labeled dyes associated with biosensor detection, having efficiency values of 98.3 ± 0.9%, 97 ± 1.1%, and 98.2 ± 0.6% for FAM, TAMRA, and Cy5, respectively. An exonuclease-assisted autocatalytic target recycling amplification was also integrated into the sensing system. High quenching efficiency combined with autocatalytic target recycling amplification afforded the biosensor with high sensitivity toward target DNA, resulting in a detection limit of 20 pM, which is about 50-fold lower than that of traditional unamplified homogeneous fluorescent assay methods. The quencher did not interfere with the catalytic activity of nuclease, and the biosensor could be manipulated in either preaddition or postaddition manner with similar sensitivity. Moreover, the proposed sensing system allows for simultaneous and multicolor analysis of several oligonucleotides in homogeneous solution, demonstrating its potential application in the rapid screening of multiple biotargets. PMID:24731194

  5. Integrated biochip for PCR-based DNA amplification and detection on capacitive biosensors

    NASA Astrophysics Data System (ADS)

    Moschou, D.; Vourdas, N.; Filippidou, M. K.; Tsouti, V.; Kokkoris, G.; Tsekenis, G.; Zergioti, I.; Chatzandroulis, S.; Tserepi, A.

    2013-05-01

    Responding to an increasing demand for LoC devices to perform bioanalytical protocols for disease diagnostics, the development of an integrated LoC device consisting of a μPCR module integrated with resistive microheaters and a biosensor array for disease diagnostics is presented. The LoC is built on a Printed Circuit Board (PCB) platform, implementing both the amplification of DNA samples and DNA detection/identification on-chip. The resistive microheaters for PCR and the wirings for the sensor read-out are fabricated by means of standard PCB technology. The microfluidic network is continuous-flow, designed to perform 30 PCR cycles with heated zones at constant temperatures, and is built onto the PCB utilizing commercial photopatternable polyimide layers. Following DNA amplification, the product is driven in a chamber where a Si-based biosensor array is placed for DNA detection through hybridization. The sensor array is tested for the detection of mutations of the KRAS gene, responsible for colon cancer.

  6. Tetrahedron-structured DNA and functional oligonucleotide for construction of an electrochemical DNA-based biosensor.

    PubMed

    Bu, Nan-Nan; Tang, Chun-Xia; He, Xi-Wen; Yin, Xue-Bo

    2011-07-21

    Tetrahedron-structured DNA (ts-DNA) in combination with a functionalized oligonucleotide was used to develop a "turn-on" biosensor for Hg(2+) ions. The ts-DNA provided an improved sensitivity and was used to block the active sites.

  7. Gold nanoparticle based signal enhancement liquid crystal biosensors for DNA hybridization assays.

    PubMed

    Yang, Shengyuan; Liu, Yanmei; Tan, Hui; Wu, Chao; Wu, Zhaoyang; Shen, Guoli; Yu, Ruqin

    2012-03-18

    A novel signal enhanced liquid crystal biosensor based on using AuNPs for highly sensitive DNA detection has been developed. This biosensor not only significantly decreases the detection limit, but also offers a simple detection process and shows a good selectivity to distinguish perfectly matched target DNA from two-base mismatched DNA. PMID:22302154

  8. New Catalytic DNA Biosensors for Radionuclides and Metal ion

    SciTech Connect

    Yi Lu

    2008-03-01

    We aim to develop new DNA biosensors for simultaneous detection and quantification of bioavailable radionuclides, such as uranium, technetium, and plutonium, and metal contaminants, such as lead, chromium, and mercury. The sensors will be highly sensitive and selective. They will be applied to on-site, real-time assessment of concentration, speciation, and stability of the individual contaminants before and during bioremediation, and for long-term monitoring of DOE contaminated sites. To achieve this goal, we have employed a combinatorial method called “in vitro selection” to search from a large DNA library (~ 1015 different molecules) for catalytic DNA molecules that are highly specific for radionuclides or other metal ions through intricate 3-dimensional interactions as in metalloproteins. Comprehensive biochemical and biophysical studies have been performed on the selected DNA molecules. The findings from these studies have helped to elucidate fundamental principles for designing effective sensors for radionuclides and metal ions. Based on the study, the DNA have been converted to fluorescent or colorimetric sensors by attaching to it fluorescent donor/acceptor pairs or gold nanoparticles, with 11 part-per-trillion detection limit (for uranium) and over million fold selectivity (over other radionuclides and metal ions tested). Practical application of the biosensors for samples from the Environmental Remediation Sciences Program (ERSP) Field Research Center (FRC) at Oak Ridge has also been demonstrated.

  9. Effect of DNA type on response of DNA biosensor for carcinogens

    NASA Astrophysics Data System (ADS)

    Sani, Nor Diyana bt. Md.; Heng, Lee Yook; Surif, Salmijah; Lazim, Azwani Mat

    2013-11-01

    Carcinogens are cancer causing chemicals that can bind to DNA and cause damage to the DNA. These chemicals are available everywhere including in water, air, soil and food. Therefore, a sensor that can detect the presence of these chemicals will be a very useful tool. Since carcinogens bind to DNA, DNA can be used as the biological element in a biosensor. This study has utilized different types of DNA in a biosensor for carcinogen detection. The DNAs include double stranded calf thymus DNA, single stranded calf thymus DNA and guanine rich single stranded DNA. The modified SPE was exposed to a carcinogen followed by interaction with methylene blue which acts as the electroactive indicator. The SPE was then analysed using differential pulse voltammetry (DPV). Optimization studies were conducted for MB concentration and accumulation time, DNA concentration, as well as effect of buffer concentration, buffer pH and ionic strength. The performance of the biosensor was tested on a group 1 carcinogen, formaldehyde. The results indicated that the usage of guanine rich single stranded DNA also gives higher response as carcinogens prefer to bind with guanine compared to other bases.

  10. Biosensors.

    ERIC Educational Resources Information Center

    Rechnitz, Garry A.

    1988-01-01

    Describes theory and principles behind biosensors that incorporate biological components as part of a sensor or probe. Projects major applications in medicine and veterinary medicine, biotechnology, food and agriculture, environmental studies, and the military. Surveys current use of biosensors. (ML)

  11. Ultrasensitive optical DNA biosensor based on surface immobilization of molecular beacon by a bridge structure.

    PubMed

    Li, J; Tan, W; Wang, K; Xiao, D; Yang, X; He, X; Tang, Z

    2001-10-01

    A novel biotinylated molecular beacon (MB) probe was developed to prepare a DNA biosensor using a bridge structure. MB was biotinylated at the quencher side of the stem and linked on a biotinylated glass cover slip through streptavidin, which acted as a bridge between MB and glass matrix. An efficient fluorescence microscope system was constructed to detect the fluorescence change caused by the conformation change of MB in the presence of complementary DNA target. The proposed biosensor was used to directly detect, in real-time, the target DNA molecules. The bridge immobilization method caused the proposed DNA biosensor to have a faster and more stable response. Under the optimal conditions, the newly developed DNA biosensor showed a linear response toward ssDNA in the range of 5-100 nM with a detection limit of 2 nM. It was interesting to note that the described biosensor was reproducible after being regenerated by urea.

  12. Electrochemical DNA biosensor based on the BDD nanograss array electrode

    PubMed Central

    2013-01-01

    Background The development of DNA biosensor has attracted considerable attention due to their potential applications, including gene analysis, clinical diagnostics, forensic study and more medical applications. Using electroactive daunomycin as an indicator, the hybridization detection was measured by differential pulse voltammetry in this study. Results Electrochemical DNA biosensor was developed based on the BDD film electrode (fBDD) and BDD nanograss array electrode (nBDD). In comparison with fBDD and AuNPs/CA/fBDD electrode, the lower semicircle diameter of electrochemical impedance spectroscopy obtained on nBDD and AuNPs/CA/nBDD electrode indicated that the presence of nanograss array improved the reactive site, reduced the interfacial resistance, and made the electron transfer easier. Using electroactive daunomycin as an indicator, the hybridization detection was measured by differential pulse voltammetry. Conclusions The experimental results demonstrated that the prepared AuNPs/CA/nBDD electrode was suitable for DNA hybridization with favorable performance of faster response, higher sensitivity, lower detection limit and satisfactory selectivity, reproducibility and stability. PMID:23575250

  13. Photonic Crystal Biosensor with In-Situ Synthesized DNA Probes for Enhanced Sensitivity

    SciTech Connect

    Hu, Shuren; Zhao, Y.; Retterer, Scott T; Kravchenko, Ivan I; Weiss, Sharon

    2013-01-01

    We report on a nearly 8-fold increase in multi-hole defect photonic crystal biosensor response by incorporating in-situ synthesis of DNA probes, as compared to the conventional functionalization method employing pre-synthesized DNA probe immobilization.

  14. Biosensors with Built-In Biomolecular Logic Gates for Practical Applications

    PubMed Central

    Lai, Yu-Hsuan; Sun, Sin-Cih; Chuang, Min-Chieh

    2014-01-01

    Molecular logic gates, designs constructed with biological and chemical molecules, have emerged as an alternative computing approach to silicon-based logic operations. These molecular computers are capable of receiving and integrating multiple stimuli of biochemical significance to generate a definitive output, opening a new research avenue to advanced diagnostics and therapeutics which demand handling of complex factors and precise control. In molecularly gated devices, Boolean logic computations can be activated by specific inputs and accurately processed via bio-recognition, bio-catalysis, and selective chemical reactions. In this review, we survey recent advances of the molecular logic approaches to practical applications of biosensors, including designs constructed with proteins, enzymes, nucleic acids, nanomaterials, and organic compounds, as well as the research avenues for future development of digitally operating “sense and act” schemes that logically process biochemical signals through networked circuits to implement intelligent control systems. PMID:25587423

  15. An impedance-based integrated biosensor for suspended DNA characterization

    PubMed Central

    Ma, Hanbin; Wallbank, Richard W. R.; Chaji, Reza; Li, Jiahao; Suzuki, Yuji; Jiggins, Chris; Nathan, Arokia

    2013-01-01

    Herein, we describe a novel integrated biosensor for performing dielectric spectroscopy to analyze biological samples. We analyzed biomolecule samples with different concentrations and demonstrated that the solution's impedance is highly correlated with the concentration, indicating that it may be possible to use this sensor as a concentration sensor. In contrast with standard spectrophotometers, this sensor offers a low-cost and purely electrical solution for the quantitative analysis of biomolecule solutions. In addition to determining concentrations, we found that the sample solution impedance is highly correlated with the length of the DNA fragments, indicating that the sizes of PCR products could be validated with an integrated chip-based, sample-friendly system within a few minutes. The system could be the basis of a rapid, low-cost platform for DNA characterization with broad applications in cancer and genetic disease research. PMID:24060937

  16. Nanomaterial-Assisted Signal Enhancement of Hybridization for DNA Biosensors: A Review

    PubMed Central

    Liu, Jinhuai; Liu, Jinyun; Yang, Liangbao; Chen, Xing; Zhang, Meiyun; Meng, Fanli; Luo, Tao; Li, Minqiang

    2009-01-01

    Detection of DNA sequences has received broad attention due to its potential applications in a variety of fields. As sensitivity of DNA biosensors is determined by signal variation of hybridization events, the signal enhancement is of great significance for improving the sensitivity in DNA detection, which still remains a great challenge. Nanomaterials, which possess some unique chemical and physical properties caused by nanoscale effects, provide a new opportunity for developing novel nanomaterial-based signal-enhancers for DNA biosensors. In this review, recent progress concerning this field, including some newly-developed signal enhancement approaches using quantum-dots, carbon nanotubes and their composites reported by our group and other researchers are comprehensively summarized. Reports on signal enhancement of DNA biosensors by non-nanomaterials, such as enzymes and polymer reagents, are also reviewed for comparison. Furthermore, the prospects for developing DNA biosensors using nanomaterials as signal-enhancers in future are also indicated. PMID:22399999

  17. New Catalytic DNA Biosensors for Radionuclides and Metal ions

    SciTech Connect

    Lu, Yi

    2002-06-01

    The goals of the project are to develop new catalytic DNA biosensors for simultaneous detection and quantification of bioavailable radionuclides and metal ions, and apply the sensors for on-site, real-time assessment of concentration, speciation and stability of the individual contaminants during and after bioremediation. A negative selection strategy was tested and validated. In vitro selection was shown to yield highly active and specific transition metal ion-dependent catalytic DNA/RNA. A fluorescence resonance energy transfer (FRET) study of in vitro selected DNA demonstrated that the trifluorophore labeled system is a simple and powerful tool in studying complex biomolecules structure and dynamics, and is capable of revealing new sophisticated structural changes. New fluorophore/quenchers in a single fluorosensor yielded improved signal to noise ratio in detection, identification and quantification of metal contaminants. Catalytic DNA fluorescent and colorimetric sensors were shown useful in sensing lead in lake water and in leaded paint. Project results were described in two papers and two patents, and won an international prize.

  18. New Catalytic DNA Biosensors for Radionuclides and Metal ions

    SciTech Connect

    Lu, Yi

    2003-06-01

    The goals of the project are to develop new catalytic DNA biosensors for simultaneous detection and quantification of bioavailable radionuclides and metal ions, and apply the sensors for on-site, real-time assessment of concentration, speciation and stability of the individual contaminants during and after bioremediation. A negative selection strategy was tested and validated. In vitro selection was shown to yield highly active and specific transition metal ion-dependent catalytic DNA/RNA. A fluorescence resonance energy transfer (FRET) study of in vitro selected DNA demonstrated that the trifluorophore labeled system is a simple and powerful tool in studying complex biomolecules structure and dynamics, and is capable of revealing new sophisticated structural changes. New fluorophore/quenchers in a single fluorosensor yielded improved signal to noise ratio in detection, identification and quantification of metal contaminants. Catalytic DNA fluorescent and colorimetric sensors were shown useful in sensing lead in lake water and in leaded paint. Project results were described in two papers and two patents, and won an international prize.

  19. Direct attachment of DNA to semiconducting surfaces for biosensor applications.

    PubMed

    Fahrenkopf, Nicholas M; Shahedipour-Sandvik, Fatemeh; Tokranova, Natalya; Bergkvist, Magnus; Cady, Nathaniel C

    2010-11-01

    In this work we propose a novel method of immobilizing nucleic acids for field effect or high electron mobility transistor-based biosensors. The naturally occurring 5' terminal phosphate group on nucleic acids was used to coordinate with semiconductor and metal oxide surfaces. We demonstrate that DNA can be directly immobilized onto ZrO(2), AlGaN, GaN, and HfO(2) while retaining its ability to hybridize to target sequences with high specificity. By directly immobilizing the probe molecule to the sensor surface, as opposed to conventional crosslinking strategies, the number of steps in device fabrication is reduced. Furthermore, hybridization to target strands occurs closer to the sensor surface, which has the potential to increase device sensitivity by reducing the impact of the Debye screening length.

  20. Direct attachment of DNA to semiconducting surfaces for biosensor applications.

    PubMed

    Fahrenkopf, Nicholas M; Shahedipour-Sandvik, Fatemeh; Tokranova, Natalya; Bergkvist, Magnus; Cady, Nathaniel C

    2010-11-01

    In this work we propose a novel method of immobilizing nucleic acids for field effect or high electron mobility transistor-based biosensors. The naturally occurring 5' terminal phosphate group on nucleic acids was used to coordinate with semiconductor and metal oxide surfaces. We demonstrate that DNA can be directly immobilized onto ZrO(2), AlGaN, GaN, and HfO(2) while retaining its ability to hybridize to target sequences with high specificity. By directly immobilizing the probe molecule to the sensor surface, as opposed to conventional crosslinking strategies, the number of steps in device fabrication is reduced. Furthermore, hybridization to target strands occurs closer to the sensor surface, which has the potential to increase device sensitivity by reducing the impact of the Debye screening length. PMID:20869405

  1. Gold coating of micromechanical DNA biosensors by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Rebollar, Esther; Sanz, Mikel; Esteves, Carina; Martínez, Nicolás F.; Ahumada, Óscar; Castillejo, Marta

    2012-10-01

    In this work, we describe the gold-coating of silicon microcantilever sensors by pulsed laser deposition (PLD) and their performance as DNA biosensors. To test optimum deposition conditions for coating the sensors, silicon substrates were gold coated by PLD using the fifth harmonic of a Nd:YAG laser (213 nm, pulse duration 15 ns). The gold deposits were characterized by atomic force microscopy and x-ray diffraction. The adequate conditions were selected for coating the sensors with a 20 nm thick gold layer and subsequently functionalized with a self-assembled monolayer of thiolated DNA. To verify PLD as a tool for gold coating of biomechanical sensors, they were characterized by using a scanning laser analyzer platform. Characterization consisted in the measurement of the differential stress of the cantilevers upon hydration forces before and after functionalization with a double-stranded DNA monolayer. The measurements showed that the sensor surface stress induced by the adsorption of water molecules is approximately seven times higher than that of functionalized sensors gold coated by thermal evaporation. These results indicate that gold coating by PLD could be an advantageous method to enhance the response of biomechanical sensors based on gold-thiol chemistry.

  2. Ancient whole genome enrichment using baits built from modern DNA.

    PubMed

    Enk, Jacob M; Devault, Alison M; Kuch, Melanie; Murgha, Yusuf E; Rouillard, Jean-Marie; Poinar, Hendrik N

    2014-05-01

    We report metrics from complete genome capture of nuclear DNA from extinct mammoths using biotinylated RNAs transcribed from an Asian elephant DNA extract. Enrichment of the nuclear genome ranged from 1.06- to 18.65-fold, to an apparent maximum threshold of ∼80% on-target. This projects an order of magnitude less costly complete genome sequencing from long-dead organisms, even when a reference genome is unavailable for bait design.

  3. Ancient whole genome enrichment using baits built from modern DNA.

    PubMed

    Enk, Jacob M; Devault, Alison M; Kuch, Melanie; Murgha, Yusuf E; Rouillard, Jean-Marie; Poinar, Hendrik N

    2014-05-01

    We report metrics from complete genome capture of nuclear DNA from extinct mammoths using biotinylated RNAs transcribed from an Asian elephant DNA extract. Enrichment of the nuclear genome ranged from 1.06- to 18.65-fold, to an apparent maximum threshold of ∼80% on-target. This projects an order of magnitude less costly complete genome sequencing from long-dead organisms, even when a reference genome is unavailable for bait design. PMID:24531081

  4. Luminescent Iridium(III) Complex Labeled DNA for Graphene Oxide-Based Biosensors.

    PubMed

    Zhao, Qingcheng; Zhou, Yuyang; Li, Yingying; Gu, Wei; Zhang, Qi; Liu, Jian

    2016-02-01

    There has been growing interest in utilizing highly photostable iridium(III) complexes as new luminescent probes for biotechnology and life science. Herein, iridium(III) complex with carboxyl group was synthesized and activated with N-hydroxysuccinimide, followed by tagging to the amino terminate of single-stranded DNA (ssDNA). The Ir-ssDNA probe was further combined with graphene oxide (GO) nanosheets to develop a GO-based biosensor for target ssDNA detection. The quenching efficiency of GO, and the photostability of iridium(III) complex and GO-Ir-ssDNA biosensor, were also investigated. On the basis of the high luminescence quenching efficiency of GO toward iridium(III) complex, the GO-Ir-ssDNA biosensor exhibited minimal background signals, while strong emission was observed when Ir-ssDNA desorbed from GO nanosheets and formed a double helix with the specific target, leading to a high signal-to-background ratio. Moreover, it was found that luminescent intensities of iridium(III) complex and GO-Ir-ssDNA biosensor were around 15 and 3 times higher than those of the traditional carboxyl fluorescein (FAM) dye and the GO-FAM-ssDNA biosensor after UV irradiation, respectively. Our study suggested the sensitive and selective Ir-ssDNA probe was suitable for the development of highly photostable GO-based detection platforms, showing promise for application beyond the OLED (organic light emitting diode) area. PMID:26753824

  5. DNA Biosensor for Rapid Detection of Genotoxic Compounds in Soil Samples

    PubMed Central

    Bagni, Graziana; Hernandez, Silvia; Mascini, Marco; Sturchio, Elena; Boccia, Priscilla; Marconi, Simona

    2005-01-01

    An electrochemical DNA-based biosensor is proposed as a fast and easy screening method for the detection of genotoxic compounds in soil samples. The biosensor was assembled by immobilising double stranded Calf thymus DNA on screen-printed electrodes. The interactions between DNA and environmental pollutants can cause variations of the electrochemical proprieties of DNA when they cause a DNA damage. Preliminary studies were performed using benzene, naphthalene and anthracene derivatives as model compounds. The effect of these compounds on the surface-confined DNA was found to be linearly related to their concentration in solution. On the other hand, the objective was to optimise the ultrasonic extraction conditions of these compounds from artificially spiked soil samples. Then, the applicability of such a biosensor was evaluated by analysing soil samples from an Italian region with ecological risk (ACNA of Cengio, SV). DNA biosensor for qualitative analysis of soil presented a good correlation with a semi-quantitative method for aromatic ring systems determination as fixed wavelength fluorescence and interestingly, according results were found also with other bioassays. This kind of biosensors represent a new, easy and fast way of analysis of polluted sites, therefore they can be used as early warnings devices in areas with ecological risk as in situ measurement.

  6. DNA Enzyme-Decorated DNA Nanoladders as Enhancer for Peptide Cleavage-Based Electrochemical Biosensor.

    PubMed

    Kou, Bei-Bei; Zhang, Li; Xie, Hua; Wang, Ding; Yuan, Ya-Li; Chai, Ya-Qin; Yuan, Ruo

    2016-09-01

    Herein, we developed a label-free electrochemical biosensor for sensitive detection of matrix metalloproteinase-7 (MMP-7) based on DNA enzyme-decorated DNA nanoladders as enhancer. A peptide and single-stranded DNA S1-modified platinum nanoparticles (P1-PtNPs-S1), which served as recognition nanoprobes, were first immobilized on electrode. When target MMP-7 specifically recognized and cleaved the peptide, the PtNPs-S1 bioconjugates were successfully released from electrode. The remaining S1 on electrode then hybridized with ssDNA1 (I1) and ssDNA2 (I2), which could synchronously trigger two hybridization chain reactions (HCRs), resulting in the in situ formation of DNA nanoladders. The desired DNA nanoladders not only were employed as ideal nanocarriers for enzyme loading, but also maintained its catalytic activity. With the help of hydrogen peroxide (H2O2), manganese porphyrin (MnPP) with peroxidase-like activity accelerated the 4-chloro-1-naphthol (4-CN) oxidation with generation of insoluble precipitation on electrode, causing a very low differential pulse voltammetry (DPV) signal for quantitative determination of MMP-7. Under optimal conditions, the developed biosensor exhibited a wide linear ranging from 0.2 pg/mL to 20 ng/mL, and the detection limit was 0.05 pg/mL. This work successfully realized the combination of DNA signal amplification technique with artificial mimetic enzyme-catalyzed precipitation reaction in peptide cleavage-based protein detection, offering a promising avenue for the detection of other proteases. PMID:27532492

  7. A Graphene-Based Biosensing Platform Based on Regulated Release of an Aptameric DNA Biosensor

    PubMed Central

    Mao, Yu; Chen, Yongli; Li, Song; Lin, Shuo; Jiang, Yuyang

    2015-01-01

    A novel biosensing platform was developed by integrating an aptamer-based DNA biosensor with graphene oxide (GO) for rapid and facile detection of adenosine triphosphate (ATP, as a model target). The DNA biosensor, which is locked by GO, is designed to contain two sensing modules that include recognition site for ATP and self-replication track that yields the nicking domain for Nt.BbvCI. By taking advantage of the different binding affinity of single-stranded DNA, double-stranded DNA and aptamer-target complex toward GO, the DNA biosensor could be efficiently released from GO in the presence of target with the help of a complementary DNA strand (CPDNA) that partially hybridizes to the DNA biosensor. Then, the polymerization/nicking enzyme synergetic isothermal amplification could be triggered, leading to the synthesis of massive DNA amplicons, thus achieving an enhanced sensitivity with a wide linear dynamic response range of four orders of magnitude and good selectivity. This biosensing strategy expands the applications of GO-DNA nanobiointerfaces in biological sensing, showing great potential in fundamental research and biomedical diagnosis. PMID:26569239

  8. Gelatin methacrylate (GelMA) mediated electrochemical DNA biosensor for DNA hybridization.

    PubMed

    Topkaya, Seda Nur

    2015-02-15

    In this study, an electrochemical biosensor system for the detection of DNA hybridization by using gelatin methacrylate (GelMA) modified electrodes was developed. Electrochemical behavior of GelMA modified Pencil Graphite Electrode (PGE) that serve as a functional platform was investigated by using Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS) and compared with those of the bare PGE. Hybridization was achieved in solution phase and guanine oxidation signal changes were evaluated. The decrease in the guanine oxidation peak currents at around +1.0 V was used as an indicator for the DNA hybridization. Also, more interestingly GelMA intrinsic oxidation peaks at around +0.7 V changed substantially by immobilization of different oligonucleotides such as probe, hybrid and control sequences to the electrode surface. It is the first study of using GelMA as a part of an electrochemical biosensor system. The results are very promising in terms of using GelMA as a new DNA hybridization indicator. Additionally, GelMA modified electrodes could be useful for detecting ultra low quantity of oligonucleotides by providing mechanical support to the bio-recognition layer. The detection limit of this method is at present 10(-12)mol. Signal suppressions were increased from 50% to 93% for hybrid with using GelMA when it was compared to bare electrode which facilitates the hybridization detection.

  9. Scalable Production of High-Sensitivity, Label-Free DNA Biosensors Based on Back-Gated Graphene Field Effect Transistors.

    PubMed

    Ping, Jinglei; Vishnubhotla, Ramya; Vrudhula, Amey; Johnson, A T Charlie

    2016-09-27

    Scalable production of all-electronic DNA biosensors with high sensitivity and selectivity is a critical enabling step for research and applications associated with detection of DNA hybridization. We have developed a scalable and very reproducible (>90% yield) fabrication process for label-free DNA biosensors based upon graphene field effect transistors (GFETs) functionalized with single-stranded probe DNA. The shift of the GFET sensor Dirac point voltage varied systematically with the concentration of target DNA. The biosensors demonstrated a broad analytical range and limit of detection of 1 fM for 60-mer DNA oligonucleotide. In control experiments with mismatched DNA oligomers, the impact of the mismatch position on the DNA hybridization strength was confirmed. This class of highly sensitive DNA biosensors offers the prospect of detection of DNA hybridization and sequencing in a rapid, inexpensive, and accurate way. PMID:27532480

  10. Scalable Production of High-Sensitivity, Label-Free DNA Biosensors Based on Back-Gated Graphene Field Effect Transistors.

    PubMed

    Ping, Jinglei; Vishnubhotla, Ramya; Vrudhula, Amey; Johnson, A T Charlie

    2016-09-27

    Scalable production of all-electronic DNA biosensors with high sensitivity and selectivity is a critical enabling step for research and applications associated with detection of DNA hybridization. We have developed a scalable and very reproducible (>90% yield) fabrication process for label-free DNA biosensors based upon graphene field effect transistors (GFETs) functionalized with single-stranded probe DNA. The shift of the GFET sensor Dirac point voltage varied systematically with the concentration of target DNA. The biosensors demonstrated a broad analytical range and limit of detection of 1 fM for 60-mer DNA oligonucleotide. In control experiments with mismatched DNA oligomers, the impact of the mismatch position on the DNA hybridization strength was confirmed. This class of highly sensitive DNA biosensors offers the prospect of detection of DNA hybridization and sequencing in a rapid, inexpensive, and accurate way.

  11. Electrochemical biosensor for Mycobacterium tuberculosis DNA detection based on gold nanotubes array electrode platform.

    PubMed

    Torati, Sri Ramulu; Reddy, Venu; Yoon, Seok Soo; Kim, CheolGi

    2016-04-15

    The template assisted electrochemical deposition technique was used for the synthesis of gold nanotubes array (AuNTsA). The morphological structure of the synthesized AuNTsA was observed by scanning electron microscopy and found that the individual nanotubes are around 1.5 μm in length with a diameter of 200 nm. Nanotubes are vertically aligned to the Au thick film, which is formed during the synthesis process of nanotubes. The electrochemical performance of the AuNTsA was compared with the bare Au electrode and found that AuNTsA has better electron transfer surface than bare Au electrode which is due to the high surface area. Hence, the AuNTsA was used as an electrode for the fabrication of DNA hybridization biosensor for detection of Mycobacterium Tuberculosis DNA. The DNA hybridization biosensor constructed by AuNTsA electrode was characterized by cyclic voltammetry technique with Fe(CN)6(3-/4-) as an electrochemical redox indicator. The selectivity of the fabricated biosensor was illustrated by hybridization with complementary DNA and non-complementary DNA with probe DNA immobilized AuNTsA electrode using methylene blue as a hybridization indicator. The developed electrochemical DNA biosensor shows good linear range of complementary DNA concentration from 0.01 ng/μL to 100 ng/μL with high detection limit.

  12. Development of a multilayered polymeric DNA biosensor using radio frequency technology with gold and magnetic nanoparticles.

    PubMed

    Yang, Cheng-Hao; Kuo, Long-Sheng; Chen, Ping-Hei; Yang, Chii-Rong; Tsai, Zuo-Min

    2012-01-15

    This study utilized the radio frequency (RF) technology to develop a multilayered polymeric DNA sensor with the help of gold and magnetic nanoparticles. The flexible polymeric materials, poly (p-xylylene) (Parylene) and polyethylene naphtholate (PEN), were used as substrates to replace the conventional rigid substrates such as glass and silicon wafers. The multilayered polymeric RF biosensor, including the two polymer layers and two copper transmission structure layers, was developed to reduce the total sensor size and further enhance the sensitivity of the biochip in the RF DNA detection. Thioglycolic acid (TGA) was used on the surface of the proposed biochip to form a thiolate-modified sensing surface for DNA hybridization. Gold nanoparticles (AuNPs) and magnetic nanoparticles (MNPs) were used to immobilize on the surface of the biosensor to enhance overall detection sensitivity. In addition to gold nanoparticles, the magnetic nanoparticles has been demonstrated the applicability for RF DNA detection. The performance of the proposed biosensor was evaluated by the shift of the center frequency of the RF biosensor because the electromagnetic characteristic of the biosensors can be altered by the immobilized multilayer nanoparticles on the biosensor. The experimental results show that the detection limit of the DNA concentration can reach as low as 10 pM, and the largest shift of the center frequency with triple-layer AuNPs and MNPs can approach 0.9 and 0.7 GHz, respectively. Such the achievement implies that the developed biosensor can offer an alternative inexpensive, disposable, and highly sensitive option for application in biomedicine diagnostic systems because the price and size of each biochip can be effectively reduced by using fully polymeric materials and multilayer-detecting structures.

  13. Detection EGFR exon 19 status of lung cancer patients by DNA electrochemical biosensor.

    PubMed

    Xu, Xiong-Wei; Weng, Xiu-Hua; Wang, Chang-Lian; Lin, Wei-Wei; Liu, Ai-Lin; Chen, Wei; Lin, Xin-Hua

    2016-06-15

    Epidermal growth factor receptor (EGFR) exon 19 mutation status is a very important prediction index for tyrosine kinase inhibitors (TKIs) therapy. In this paper, we constructed a superior selective sandwich-type electrochemical biosensor to detect in-frame deletions in exon 19 of EGFR in real samples of patients with non-small cell lung carcinoma. Based on the characteristics of different hybridization efficiency in different hybridization phase conditions, different region around EGFR exon 19 deletion hotspots was selected to design DNA probes to improve biosensor performance. The results confirm that alteration of deletion location in target deliberately according to different hybridization phase is able to improve selectivity of sandwich-type DNA biosensor. Satisfactory discrimination ability can be achieved when the deletions are located in the capture probe interaction region. In order to improve efficiency of ssDNA generation from dsDNA, we introduce Lambda exonuclease (λ-exo) to sandwich-type biosensor system. EGFR exon 19 statuses of clinical real samples from lung cancer patients can be discriminated successfully by the proposed method. Our research would make the electrochemical biosensor be an excellent candidate for EGFR detection for lung cancer patients. PMID:26874108

  14. Detection of Neisseria meningitidis using surface plasmon resonance based DNA biosensor.

    PubMed

    Kaur, Gurpreet; Paliwal, Ayushi; Tomar, Monika; Gupta, Vinay

    2016-04-15

    Herein, we report the development of a surface plasmon resonance (SPR) based biosensor for the detection of Neisseria meningitidis DNA employing Kretschmann configuration. Highly c-axis oriented ZnO thin film of thickness 200nm was deposited on gold coated glass prisms by RF sputtering technique. Single stranded probe DNA was immobilized on the surface of ZnO thin film by physical adsorption method. SPR reflectance curves were recorded as a function of incident angle of He-Ne laser beam using a laboratory assembled SPR setup. The prepared biosensor exhibits a linear response towards target meningitidis DNA over the concentration range from 10 to 180 ng/μl with a high sensitivity of about 0.03°/(ng/μl) and a low limit of detection of 5 ng/μl. The SPR biosensor demonstrated high specificity and long shelf life thus, pointing towards a promising application in the field of meningitidis diagnosis. PMID:26599479

  15. Detection of Neisseria meningitidis using surface plasmon resonance based DNA biosensor.

    PubMed

    Kaur, Gurpreet; Paliwal, Ayushi; Tomar, Monika; Gupta, Vinay

    2016-04-15

    Herein, we report the development of a surface plasmon resonance (SPR) based biosensor for the detection of Neisseria meningitidis DNA employing Kretschmann configuration. Highly c-axis oriented ZnO thin film of thickness 200nm was deposited on gold coated glass prisms by RF sputtering technique. Single stranded probe DNA was immobilized on the surface of ZnO thin film by physical adsorption method. SPR reflectance curves were recorded as a function of incident angle of He-Ne laser beam using a laboratory assembled SPR setup. The prepared biosensor exhibits a linear response towards target meningitidis DNA over the concentration range from 10 to 180 ng/μl with a high sensitivity of about 0.03°/(ng/μl) and a low limit of detection of 5 ng/μl. The SPR biosensor demonstrated high specificity and long shelf life thus, pointing towards a promising application in the field of meningitidis diagnosis.

  16. A strategy for development of electrochemical DNA biosensor based on site-specific DNA cleavage of restriction endonuclease.

    PubMed

    Chen, Jinghua; Zhang, Jing; Yang, Huanghao; Fu, Fengfu; Chen, Guonan

    2010-09-15

    A new strategy for development of electrochemical DNA biosensor based on site-specific DNA cleavage of restriction endonuclease and using quantum dots as reporter was reported in this paper. The biosensor was fabricated by immobilizing a capture hairpin probe, thiolated single strand DNA labeled with biotin group, on a gold electrode. BfuCI nuclease, which is able to specifically cleave only double strand DNA but not single strand DNA, was used to reduce background current and improve the sensitivity. We demonstrated that the capture hairpin probe can be cleaved by BfuCI nuclease in the absence of target DNA, but cannot be cleaved in the presence of target DNA. The difference before and after enzymatic cleavage was then monitored by electrochemical method after the quantum dots were dissolved from the hybrids. Our results suggested that the usage of BfuCI nuclease obviously improved the sensitivity and selectivity of the biosensor. We successfully applied this method to the sequence-selective discrimination between perfectly matched and mismatched target DNA including a single-base mismatched target DNA, and detected as low as 3.3 × 10(-14) M of complementary target DNA. Furthermore, our above strategy was also verified with fluorescent method by designing a fluorescent molecular beacon (MB), which combined the capture hairpin probe and a pair of fluorophore (TAMRA) and quencher (DABCYL). The fluorescent results are consistent with that of electroanalysis, further indicating that the proposed new strategy indeed works as we expected.

  17. Voltammetric detection of damage to DNA caused by nitro derivatives of fluorene using an electrochemical DNA biosensor.

    PubMed

    Vyskocil, Vlastimil; Labuda, Ján; Barek, Jirí

    2010-05-01

    An electrochemical DNA biosensor based on the screen printed carbon paste electrode (SPCPE) with an immobilized layer of calf thymus double-stranded DNA has been used for in vitro investigation of the interaction between genotoxic nitro derivatives of fluorene (namely 2-nitrofluorene and 2,7-dinitrofluorene) and DNA. Two types of DNA damage have been detected at the DNA/SPCPE biosensor: first, that caused by direct association of the nitrofluorenes, for which an intercalation association has been found using the known DNA intercalators [Cu(phen)(2)](2+) and [Co(phen)(3)](3+) as competing agents, and, second, that caused by short-lived radicals generated by electrochemical reduction of the nitro group (observable under specific conditions only). PMID:20186538

  18. A sensitive DNA biosensor fabricated from gold nanoparticles and graphene oxide on a glassy carbon electrode.

    PubMed

    Hajihosseini, Saeedeh; Nasirizadeh, Navid; Hejazi, Mohammad Saeid; Yaghmaei, Parichereh

    2016-04-01

    A sensitive electrochemical DNA biosensor was developed for Helicobacter pylori (H. pylori) detection using differential pulse voltammetry. Single-stranded DNA probe was immobilized on a graphene oxide/gold nanoparticles modified glassy carbon electrode (GO/AuNPs/GCE). A hybridization reaction was conducted with the target DNA and the immobilized DNA on the electrode surface. Oracet blue (OB) was selected for the first time as a redox indicator for amplifying the electrochemical signal of DNA. Enhanced sensitivity was achieved through combining the excellent electric conductivity of GO/AuNPs and the electroactivity of the OB. The DNA biosensor displayed excellent performance to demonstrate the differences between the voltammetric signals of the OB obtained from different hybridization samples (non-complementary, mismatch and complementary DNAs). The proposed biosensor has a linear range of 60.0-600.0 pM and a detection limit of 27.0 pM for detection of H. pylori. In addition, the biosensor have responded very well in the simulated real sample evaluations, signifying its potential to be used in future clinical detection of the H. pylori bacteria.

  19. A novel self-powered and sensitive label-free DNA biosensor in microbial fuel cell.

    PubMed

    Asghary, Maryam; Raoof, Jahan Bakhsh; Rahimnejad, Mostafa; Ojani, Reza

    2016-08-15

    In this work, a novel self-powered, sensitive, low-cost, and label-free DNA biosensor is reported by applying a two-chambered microbial fuel cell (MFC) as a power supply. A graphite electrode and an Au nanoparticles modified graphite electrode (AuNP/graphite electrode) were used as anode and cathode in the MFC system, respectively. The active biocatalyst in the anodic chamber was a mixed culture of microorganisms. The sensing element of the biosensor was fabricated by the well-known Au-thiol binding the ssDNA probe on the surface of an AuNP/graphite cathode. Electrons produced by microorganisms were transported from the anode to the cathode through an external circuit, which could be detected by the terminal multi-meter detector. The difference between power densities of the ssDNA probe modified cathode in the absence and presence of complementary sequence served as the detection signal of the DNA hybridization with detection limit of 3.1nM. Thereafter, this biosensor was employed for diagnosis and determination of complementary sequence in a human serum sample. The hybridization specificity studies further revealed that the developed DNA biosensor could distinguish fully complementary sequences from one-base mismatched and non-complementary sequences. PMID:27085948

  20. Electrochemically amplified molecular beacon biosensor for ultrasensitive DNA sequence-specific detection of Legionella sp.

    PubMed

    Rai, Varun; Nyine, Yin Thu; Hapuarachchi, Hapuarachchige C; Yap, Hooi Ming; Ng, Lee Ching; Toh, Chee-Seng

    2012-02-15

    An electrochemically amplified molecular beacon (EAMB) biosensor is constructed using thiolated hairpin DNA-ferrocene probes on gold electrode. The switching from "on" to "off" states of individual probes in the presence of complementary DNA target influences the electrode potential, besides the current, owing to changes in surface density of the electroactive hairpin DNA-ferrocene probes. The EAMB biosensor demonstrates linear range over 8 orders of magnitude with ultrasensitive detection limit of 2.3 × 10(-14)M for the quantification of a 21-mer DNA sequence. Its applicability is tested against PCR amplicons derived from genomic DNA of live Legionella pneumophila. Excellent specificity down to one and three nucleotides mismatches in another strain of L. pneumophila and a different bacterium species, respectively, is demonstrated.

  1. [Cu(phen)2](2+) acts as electrochemical indicator and anchor to immobilize probe DNA in electrochemical DNA biosensor.

    PubMed

    Yang, Linlin; Li, Xiaoyu; Li, Xi; Yan, Songling; Ren, Yinna; Wang, Mengmeng; Liu, Peng; Dong, Yulin; Zhang, Chaocan

    2016-01-01

    We demonstrate a novel protocol for sensitive in situ label-free electrochemical detection of DNA hybridization based on copper complex ([Cu(phen)2](2+), where phen = 1,10-phenanthroline) and graphene (GR) modified glassy carbon electrode. Here, [Cu(phen)2](2+) acted advantageously as both the electrochemical indicator and the anchor for probe DNA immobilization via intercalative interactions between the partial double helix structure of probe DNA and the vertical aromatic groups of phen. GR provided large density of docking site for probe DNA immobilization and increased the electrical conductivity ability of the electrode. The modification procedure was monitored by electrochemical impedance spectroscopy (EIS). Square-wave voltammetry (SWV) was used to explore the hybridization events. Under the optimal conditions, the designed electrochemical DNA biosensor could effectively distinguish different mismatch degrees of complementary DNA from one-base mismatch to noncomplementary, indicating that the biosensor had high selectivity. It also exhibited a reasonable linear relationship. The oxidation peak currents of [Cu(phen)2](2+) were linear with the logarithm of the concentrations of complementary target DNA ranging from 1 × 10(-12) to 1 × 10(-6) M with a detection limit of 1.99 × 10(-13) M (signal/noise = 3). Moreover, the stability of the electrochemical DNA biosensor was also studied.

  2. [Cu(phen)2](2+) acts as electrochemical indicator and anchor to immobilize probe DNA in electrochemical DNA biosensor.

    PubMed

    Yang, Linlin; Li, Xiaoyu; Li, Xi; Yan, Songling; Ren, Yinna; Wang, Mengmeng; Liu, Peng; Dong, Yulin; Zhang, Chaocan

    2016-01-01

    We demonstrate a novel protocol for sensitive in situ label-free electrochemical detection of DNA hybridization based on copper complex ([Cu(phen)2](2+), where phen = 1,10-phenanthroline) and graphene (GR) modified glassy carbon electrode. Here, [Cu(phen)2](2+) acted advantageously as both the electrochemical indicator and the anchor for probe DNA immobilization via intercalative interactions between the partial double helix structure of probe DNA and the vertical aromatic groups of phen. GR provided large density of docking site for probe DNA immobilization and increased the electrical conductivity ability of the electrode. The modification procedure was monitored by electrochemical impedance spectroscopy (EIS). Square-wave voltammetry (SWV) was used to explore the hybridization events. Under the optimal conditions, the designed electrochemical DNA biosensor could effectively distinguish different mismatch degrees of complementary DNA from one-base mismatch to noncomplementary, indicating that the biosensor had high selectivity. It also exhibited a reasonable linear relationship. The oxidation peak currents of [Cu(phen)2](2+) were linear with the logarithm of the concentrations of complementary target DNA ranging from 1 × 10(-12) to 1 × 10(-6) M with a detection limit of 1.99 × 10(-13) M (signal/noise = 3). Moreover, the stability of the electrochemical DNA biosensor was also studied. PMID:26403602

  3. RCA-Based Biosensor for Electrical and Colorimetric Detection of Pathogen DNA

    NASA Astrophysics Data System (ADS)

    Jeong, Jaepil; Kim, Hyejin; Lee, Dong Jun; Jung, Byung Jun; Lee, Jong Bum

    2016-05-01

    For the diagnosis and prevention of diseases, a range of strategies for the detection of pathogens have been developed. In this study, we synthesized the rolling circle amplification (RCA)-based biosensor that enables detection of pathogen DNA in two analytical modes. Only in the presence of the target DNA, the template DNA can be continuously polymerized by simply carrying out RCA, which gives rise to a change of surface structure of Au electrodes and the gap between the electrodes. Electrical signal was generated after introducing hydrogen tetrachloroaurate (HAuCl4) to the DNA-coated biosensor for the improvement of the conductivity of DNA, which indicates that the presence of the pathogen DNA can be detected in an electrical approach. Furthermore, the existence of the target DNA was readily detected by the naked eyes through change in colors of the electrodes from bright yellow to orange-red after RCA reaction. The RCA-based biosensor offers a new platform for monitoring of pathogenic DNA with two different detection modes in one system.

  4. A fiber-optic evanescent wave DNA biosensor based on novel molecular beacons.

    PubMed

    Liu, X; Tan, W

    1999-11-15

    We have prepared a novel optical fiber evanescent wave DNA biosensor using a newly developed molecular beacon DNA probe. The molecular beacons (MB) are oligonucleotide probes that become fluorescent upon hybridization with target DNA/RNA molecules. Biotinylated MBs have been designed and immobilized on an optical fiber core surface via biotin-avidin or biotin-streptavidin interactions. The DNA sensor based on a MB does not need labeled analyte or intercalation reagents. It can be used to directly detect, in real-time, target DNA/RNA molecules without using competitive assays. The sensor is rapid, stable, highly selective, and reproducible. We have studied the hybridization kinetics of the immobilized MB by changing the ionic strength of the hybridization solution and target DNA concentration. Our result shows divalent cations play a more important role than monovalent cations in stabilizing the MB stem hybrids and in accelerating the hybridization reaction with target DNA/RNA molecules. The concentration detection limit of the MB evanescent wave biosensor is 1.1 nM. The MB DNA biosensor has been applied to the analysis of specific gamma-actin mRNA sequences amplified by polymerase chain reaction.

  5. Electrochemical detection of the toxic dinoflagellate Alexandrium ostenfeldii with a DNA-biosensor.

    PubMed

    Metfies, Katja; Huljic, Susanne; Lange, Martin; Medlin, Linda K

    2005-01-15

    The steady rise of observations of harmful or toxic algal blooms throughout the world in the past decades constitute a menace for coastal ecosystems and human interests. As a consequence, a number of programs have been launched to monitor the occurrence of harmful and toxic algae. However, the identification is currently done by microscopic examination, which requires a broad taxonomic knowledge, expensive equipment and is very time consuming. In order to facilitate the identification of toxic algae, an inexpensive and easy-to-handle DNA-biosensor has been adapted for the electrochemical detection of the toxic dinoflagellate Alexandrium ostenfeldii. The detection of the toxic algae is based on a sandwich hybridisation, which is carried out on a disposable sensor chip. A set of two probes for the species-specific identification of A. ostenfeldii was developed. The specificity of the probes could be shown in dot-blot hybridisations and with the DNA-biosensor. The sensitivity of the DNA-biosensor was optimised with respect to hybridisation temperature and NaCl-concentration and a significant increase of the sensitivity of the DNA-biosensor could be obtained by a fragmentation of the rRNA prior to the hybridisation and by adding a helper oligonucleotide, which binds in close proximity to the probes to the hybridisation. PMID:15590289

  6. First paraben substituted cyclotetraphosphazene compounds and DNA interaction analysis with a new automated biosensor.

    PubMed

    Çiftçi, Gönül Yenilmez; Şenkuytu, Elif; İncir, Saadet Elif; Yuksel, Fatma; Ölçer, Zehra; Yıldırım, Tuba; Kılıç, Adem; Uludağ, Yıldız

    2016-06-15

    Cancer, as one of the leading causes of death in the world, is caused by malignant cell division and growth that depends on rapid DNA replication. To develop anti-cancer drugs this feature of cancer could be exploited by utilizing DNA-damaging molecules. To achieve this, the paraben substituted cyclotetraphosphazene compounds have been synthesized for the first time and their effect on DNA (genotoxicity) has been investigated. The conventional genotoxicity testing methods are laborious, take time and are expensive. Biosensor based assays provide an alternative to investigate this drug/compound DNA interactions. Here for the first time, a new, easy and rapid screening method has been used to investigate the DNA damage, which is based on an automated biosensor device that relies on the real-time electrochemical profiling (REP™) technology. Using both the biosensor based screening method and the in vitro biological assay, the compounds 9 and 11 (propyl and benzyl substituted cyclotetraphosphazene compounds, respectively), have resulted in higher DNA damage than the others with 65% and 80% activity reduction, respectively. PMID:26852202

  7. An ultrasensitive supersandwich electrochemical DNA biosensor based on gold nanoparticles decorated reduced graphene oxide.

    PubMed

    Wang, Jiao; Shi, Anqi; Fang, Xian; Han, Xiaowei; Zhang, Yuzhong

    2015-01-15

    In this article, a supersandwich-type electrochemical biosensor for sequence-specific DNA detection is described. In design, single-strand DNA labeled with methylene blue (MB) was used as signal probe, and auxiliary probe was designed to hybridize with two different regions of signal probe. The biosensor construction contained three steps: (i) capture DNA labeled with thiol was immobilized on the surface of gold nanoparticles decorated reduced graphene oxide (Au NPs/rGO); (ii) the sandwich structure formation contained "capture-target-signal probe"; and (iii) auxiliary probe was introduced to produce long concatamers containing signal molecule MB. Differential pulse voltammetry (DPV) was used to monitor the DNA hybridization event using peak current changes of MB in phosphate-buffered saline (PBS) containing 1.0M NaClO4. Under optimal conditions, the peak currents of MB were linear with the logarithm of the concentration of target DNA in the range of 0.1μM to 0.1fM with a detection limit of 35aM (signal/noise=3). In addition, this biosensor exhibited good selectivity even for single-base mismatched target DNA detection.

  8. A novel DNA biosensor using a ferrocenyl intercalator applied to the potential detection of human population biomarkers in wastewater.

    PubMed

    Yang, Zhugen; Anglès d'Auriac, Marc; Goggins, Sean; Kasprzyk-Hordern, Barbara; Thomas, Kevin V; Frost, Christopher G; Estrela, Pedro

    2015-05-01

    A new label-free electrochemical DNA (E-DNA) biosensor using a custom synthesized ferrocenyl (Fc) double-stranded DNA intercalator as a redox marker is presented. Single-stranded DNA (ssDNA) was co-immobilized on gold electrodes with 6-mecarpto-hexanol to control the surface density of the ssDNA probe, and hybridized with complementary DNA. The binding of the Fc intercalator to dsDNA was measured by differential pulse voltammetry. This new biosensor was optimized to allow the detection of single base pair mismatched sequences, able to detect as low as 10 pM target ssDNA with a dynamic range from 10 pM to 100 nM. DNA extracted from wastewater was analyzed by quantitative polymerase chain reaction targeting human-specific mitochondrial DNA (mtDNA). The aim of this approach is to enable the analysis of population biomarkers in wastewater for the evaluation of public health using wastewater-based epidemiology (WBE). The E-DNA biosensor was employed to detect human-specific mtDNA from wastewater before and after PCR amplification. The results demonstrate the feasibility of detecting human DNA biomarkers in wastewater using the developed biosensor, which may allow the further development of DNA population biomarkers for public health using WBE. PMID:25853680

  9. High specific surface gold electrode on polystyrene substrate: Characterization and application as DNA biosensor.

    PubMed

    Yang, Zhiliu; Liu, Yichen; Lu, Wei; Yuan, Qingpan; Wang, Wei; Pu, Qiaosheng; Yao, Bo

    2016-05-15

    In the past decades, many efforts have been made to improve the sensitivity and specificity of electrochemical DNA biosensors. However, it is still strongly required to develop disposable and reliable DNA biosensors for wide and practical application. In this article, we reported superior electrochemical properties of an integrated plastic-gold electrode (PGE) fabricated in-house by chemical plating on polystyrene substrate. PGEs were found having extremely high capacity of DNA immobilization compared with gold electrodes fabricated by standard sputtering based photolithography. Unique nano-structured surface was observed on PGEs through morphology techniques, which would to some extend give an explanation to higher capacity of DNA immobilization on PGEs. A probable mechanism of carboxylic acid produced on polystyrene substrate after exposure to UV irradiation was proposed and discussed for the first time. This biosensor was applied to detection and manipulate of DNA hybridization. Detection limit of 7.2×10(-11) M and 1-500 nM of linearity range was obtained.

  10. Precise and selective sensing of DNA-DNA hybridization by graphene/Si-nanowires diode-type biosensors

    NASA Astrophysics Data System (ADS)

    Kim, Jungkil; Park, Shin-Young; Kim, Sung; Lee, Dae Hun; Kim, Ju Hwan; Kim, Jong Min; Kang, Hee; Han, Joong-Soo; Park, Jun Woo; Lee, Hosun; Choi, Suk-Ho

    2016-08-01

    Single-Si-nanowire (NW)-based DNA sensors have been recently developed, but their sensitivity is very limited because of high noise signals, originating from small source-drain current of the single Si NW. Here, we demonstrate that chemical-vapor-deposition-grown large-scale graphene/surface-modified vertical-Si-NW-arrays junctions can be utilized as diode-type biosensors for highly-sensitive and -selective detection of specific oligonucleotides. For this, a twenty-seven-base-long synthetic oligonucleotide, which is a fragment of human DENND2D promoter sequence, is first decorated as a probe on the surface of vertical Si-NW arrays, and then the complementary oligonucleotide is hybridized to the probe. This hybridization gives rise to a doping effect on the surface of Si NWs, resulting in the increase of the current in the biosensor. The current of the biosensor increases from 19 to 120% as the concentration of the target DNA varies from 0.1 to 500 nM. In contrast, such biosensing does not come into play by the use of the oligonucleotide with incompatible or mismatched sequences. Similar results are observed from photoluminescence microscopic images and spectra. The biosensors show very-uniform current changes with standard deviations ranging ~1 to ~10% by ten-times endurance tests. These results are very promising for their applications in accurate, selective, and stable biosensing.

  11. Precise and selective sensing of DNA-DNA hybridization by graphene/Si-nanowires diode-type biosensors.

    PubMed

    Kim, Jungkil; Park, Shin-Young; Kim, Sung; Lee, Dae Hun; Kim, Ju Hwan; Kim, Jong Min; Kang, Hee; Han, Joong-Soo; Park, Jun Woo; Lee, Hosun; Choi, Suk-Ho

    2016-01-01

    Single-Si-nanowire (NW)-based DNA sensors have been recently developed, but their sensitivity is very limited because of high noise signals, originating from small source-drain current of the single Si NW. Here, we demonstrate that chemical-vapor-deposition-grown large-scale graphene/surface-modified vertical-Si-NW-arrays junctions can be utilized as diode-type biosensors for highly-sensitive and -selective detection of specific oligonucleotides. For this, a twenty-seven-base-long synthetic oligonucleotide, which is a fragment of human DENND2D promoter sequence, is first decorated as a probe on the surface of vertical Si-NW arrays, and then the complementary oligonucleotide is hybridized to the probe. This hybridization gives rise to a doping effect on the surface of Si NWs, resulting in the increase of the current in the biosensor. The current of the biosensor increases from 19 to 120% as the concentration of the target DNA varies from 0.1 to 500 nM. In contrast, such biosensing does not come into play by the use of the oligonucleotide with incompatible or mismatched sequences. Similar results are observed from photoluminescence microscopic images and spectra. The biosensors show very-uniform current changes with standard deviations ranging ~1 to ~10% by ten-times endurance tests. These results are very promising for their applications in accurate, selective, and stable biosensing. PMID:27534818

  12. Precise and selective sensing of DNA-DNA hybridization by graphene/Si-nanowires diode-type biosensors

    PubMed Central

    Kim, Jungkil; Park, Shin-Young; Kim, Sung; Lee, Dae Hun; Kim, Ju Hwan; Kim, Jong Min; Kang, Hee; Han, Joong-Soo; Park, Jun Woo; Lee, Hosun; Choi, Suk-Ho

    2016-01-01

    Single-Si-nanowire (NW)-based DNA sensors have been recently developed, but their sensitivity is very limited because of high noise signals, originating from small source-drain current of the single Si NW. Here, we demonstrate that chemical-vapor-deposition-grown large-scale graphene/surface-modified vertical-Si-NW-arrays junctions can be utilized as diode-type biosensors for highly-sensitive and -selective detection of specific oligonucleotides. For this, a twenty-seven-base-long synthetic oligonucleotide, which is a fragment of human DENND2D promoter sequence, is first decorated as a probe on the surface of vertical Si-NW arrays, and then the complementary oligonucleotide is hybridized to the probe. This hybridization gives rise to a doping effect on the surface of Si NWs, resulting in the increase of the current in the biosensor. The current of the biosensor increases from 19 to 120% as the concentration of the target DNA varies from 0.1 to 500 nM. In contrast, such biosensing does not come into play by the use of the oligonucleotide with incompatible or mismatched sequences. Similar results are observed from photoluminescence microscopic images and spectra. The biosensors show very-uniform current changes with standard deviations ranging ~1 to ~10% by ten-times endurance tests. These results are very promising for their applications in accurate, selective, and stable biosensing. PMID:27534818

  13. Fabrication of Ultrasensitive Field-Effect Transistor DNA Biosensors by a Directional Transfer Technique Based on CVD-Grown Graphene.

    PubMed

    Zheng, Chao; Huang, Le; Zhang, Hong; Sun, Zhongyue; Zhang, Zhiyong; Zhang, Guo-Jun

    2015-08-12

    Most graphene field-effect transistor (G-FET) biosensors are fabricated through a routine process, in which graphene is transferred onto a Si/SiO2 substrate and then devices are subsequently produced by micromanufacture processes. However, such a fabrication approach can introduce contamination onto the graphene surface during the lithographic process, resulting in interference for the subsequent biosensing. In this work, we have developed a novel directional transfer technique to fabricate G-FET biosensors based on chemical-vapor-deposition- (CVD-) grown single-layer graphene (SLG) and applied this biosensor for the sensitive detection of DNA. A FET device with six individual array sensors was first fabricated, and SLG obtained by the CVD-growth method was transferred onto the sensor surface in a directional manner. Afterward, peptide nucleic acid (PNA) was covalently immobilized on the graphene surface, and DNA detection was realized by applying specific target DNA to the PNA-functionalized G-FET biosensor. The developed G-FET biosensor was able to detect target DNA at concentrations as low as 10 fM, which is 1 order of magnitude lower than those reported in a previous work. In addition, the biosensor was capable of distinguishing the complementary DNA from one-base-mismatched DNA and noncomplementary DNA. The directional transfer technique for the fabrication of G-FET biosensors is simple, and the as-constructed G-FET DNA biosensor shows ultrasensitivity and high specificity, indicating its potential application in disease diagnostics as a point-of-care tool.

  14. Fabrication of Ultrasensitive Field-Effect Transistor DNA Biosensors by a Directional Transfer Technique Based on CVD-Grown Graphene.

    PubMed

    Zheng, Chao; Huang, Le; Zhang, Hong; Sun, Zhongyue; Zhang, Zhiyong; Zhang, Guo-Jun

    2015-08-12

    Most graphene field-effect transistor (G-FET) biosensors are fabricated through a routine process, in which graphene is transferred onto a Si/SiO2 substrate and then devices are subsequently produced by micromanufacture processes. However, such a fabrication approach can introduce contamination onto the graphene surface during the lithographic process, resulting in interference for the subsequent biosensing. In this work, we have developed a novel directional transfer technique to fabricate G-FET biosensors based on chemical-vapor-deposition- (CVD-) grown single-layer graphene (SLG) and applied this biosensor for the sensitive detection of DNA. A FET device with six individual array sensors was first fabricated, and SLG obtained by the CVD-growth method was transferred onto the sensor surface in a directional manner. Afterward, peptide nucleic acid (PNA) was covalently immobilized on the graphene surface, and DNA detection was realized by applying specific target DNA to the PNA-functionalized G-FET biosensor. The developed G-FET biosensor was able to detect target DNA at concentrations as low as 10 fM, which is 1 order of magnitude lower than those reported in a previous work. In addition, the biosensor was capable of distinguishing the complementary DNA from one-base-mismatched DNA and noncomplementary DNA. The directional transfer technique for the fabrication of G-FET biosensors is simple, and the as-constructed G-FET DNA biosensor shows ultrasensitivity and high specificity, indicating its potential application in disease diagnostics as a point-of-care tool. PMID:26203889

  15. Understanding and mitigating DNA induced corrosion in porous silicon based biosensors

    NASA Astrophysics Data System (ADS)

    Zhao, Yiliang; Lawrie, Jenifer L.; Laibinis, Paul E.; Weiss, Sharon M.

    2014-03-01

    Porous silicon structures have been demonstrated as effective biosensors due to their large surface area, size-selective filtering capabilities, and tunable optical properties. However, porous silicon surfaces are highly susceptible to oxidation and corrosion in aqueous environments and solutions containing negative charges. In DNA sensing applications, porous silicon corrosion can mask the DNA binding signal as the typical increase in refractive index that results from a hybridization event can be countered by the decrease in refractive index due to corrosion of the porous silicon matrix. Such signal ambiguity should be eliminated in practical devices. In this work, we carefully examined the influence of charge density and surface passivation on the corrosion process in porous silicon waveguides in order to control this process in porous silicon based biosensors. Both increased DNA probe density and increased target DNA concentration enhance the corrosion process, leading to an overall blueshift of the waveguide resonance. While native porous silicon structures degrade upon prolonged exposure to solutions containing negative charges, porous silicon waveguides that are sufficiently passivated to prevent oxidation/corrosion in aqueous solution exhibit a saturation effect in the corrosion process, which increases the reliability of the sensor. For practical implementation of porous silicon DNA sensors, the negative charges from DNA must be mitigated. We show that a redshift of the porous silicon waveguide resonance results from either replacing the DNA target with neutral charge PNA or introducing Mg2+ ions to shield the negative charges of DNA.

  16. Electrochemical DNA biosensor based on gold nanorods for detecting hepatitis B virus.

    PubMed

    Shakoori, Zahra; Salimian, Samaneh; Kharrazi, Sharmin; Adabi, Mahdi; Saber, Reza

    2015-01-01

    The purpose of this work was to fabricate an electrochemical DNA biosensor for detecting hepatitis B virus. Gold nanorods (GNRs), which are known for their conductivity, were used to increase surface area and consequently increase the immobilization of single-stranded DNA (ss-DNA) on the modified gold electrode. The GNRs were characterized via transmission electron microscopy. The morphology of the gold electrode before and after modification with GNRs was characterized by scanning electron microscopy. Atomic-force microscopy was used to evaluate the morphology of the GNR electrode surface before and after interaction with ss-DNA. Cyclic voltammetry was used to monitor DNA immobilization and hybridization, using [Co(phen)3](3+) as an electrochemical indicator. The target DNA sequences were quantified at a linear range from 1.0 × 10(-12) to 10.0 × 10(-6) mol L(-1), with a detection limit of 2.0 × 10(-12) mol L(-1) by 3σ. The biosensor had good specificity for distinguishing complementary DNA in the presence of non-complementary and mismatched DNA sequences. PMID:25399076

  17. Electrochemical DNA biosensors based on thin gold films sputtered on capacitive nanoporous niobium oxide.

    PubMed

    Rho, Sangchul; Jahng, Deokjin; Lim, Jae Hoon; Choi, Jinsub; Chang, Jeong Ho; Lee, Sang Cheon; Kim, Kyung Ja

    2008-01-18

    Electrochemical DNA biosensors based on a thin gold film sputtered on anodic porous niobium oxide (Au@Nb(2)O(5)) are studied in detail here. We found that the novel DNA biosensor based on Au@Nb(2)O(5) is superior to those based on the bulk gold electrode or niobium oxide electrode. For example, the novel method does not require any time-consuming cleaning step in order to obtain reproducible results. The adhesion of gold films on the substrate is very stable during electrochemical biosensing, when the thin gold films are deposited on anodically prepared nanoporous niobium oxide. In particular, the novel biosensor shows enhanced biosensing performance with a 2.4 times higher resolution and a three times higher sensitivity. The signal enhancement is in part attributed to capacitive interface between gold films and nanoporous niobium oxide, where charges are accumulated during the anodic and cathodic scanning, and is in part ascribed to the structural stability of DNA immobilized at the sputtered gold films. The method allows for the detection of single-base mismatch DNA as well as for the discrimination of mismatch positions.

  18. Electrochemical determination of biophenol oleuropein using a simple label-free DNA biosensor.

    PubMed

    Mohamadi, Maryam; Mostafavi, Ali; Torkzadeh-Mahani, Masoud

    2015-02-01

    Oleuropein (Ole), naturally occurring phenolic compound found in olive products, is well known for its benefits for human health. In the present work, a simple, sensitive and rapid determination of Ole was achieved using a label-free electrochemical DNA biosensor. The application was related to the molecular interaction between Ole and double-stranded DNA (dsDNA). So, the voltammetric behavior of Ole at the surface of a DNA-immobilized chitosan-modified carbon paste electrode was studied using differential pulse voltammetry (DPV) where the oxidation peak current of Ole was measured as an analytical signal. A considerable increase was observed in the oxidation signal of Ole at the DNA-coated electrode compared with the DNA-free electrode, indicating the pre-concentration of Ole due to the interaction with the surface-confined DNA layer. In order to use the proposed sensor for real samples, different parameters affecting Ole signal such as, immobilization time and potential, accumulation time and pH, and stripping pH were optimized. Under optimized experimental conditions, a linear concentration range of 0.30-12μmolL(-1) with a detection limit of 0.090μmolL(-1) was obtained for Ole determination. The proposed biosensor was successfully applied to the determination of Ole in olive leaf extract and human serum samples.

  19. Highly sensitive electrochemical biosensor based on nonlinear hybridization chain reaction for DNA detection.

    PubMed

    Jia, Liping; Shi, Shanshan; Ma, Rongna; Jia, Wenli; Wang, Huaisheng

    2016-06-15

    In the present work we demonstrated an ultrasensitive detection platform for specific DNA based on nonlinear hybridization chain reaction (HCR) by triggering chain-branching growth of DNA dendrimers. HCR was initiated by target DNA (tDNA) and finally formed dendritic structure by self-assembly. The electrochemical signal was drastically enhanced by capturing multiple catalytic peroxidase with high-ordered growth. Electrochemical signals were obtained by measuring the reduction current of oxidized 3, 3', 5, 5'-tetramethylbenzidine sulfate (TMB), which was generated by HRP in the presence of H2O2. This method exhibited ultrahigh sensitivity to tDNA with detection limit of 0.4 fM. Furthermore, the biosensor was also capable of discriminating single-nucleotide difference among concomitant DNA sequences.

  20. Functionalized ensembles of nanoelectrodes as affinity biosensors for DNA hybridization detection.

    PubMed

    Silvestrini, Morena; Fruk, Ljiljana; Ugo, Paolo

    2013-02-15

    A novel electrochemical biosensor for DNA hybridization detection based on nanoelectrode ensembles (NEEs) is presented. NEEs are prepared by electroless deposition of gold into the pores of a templating track-etched polycarbonate (PC) membrane. The wide surface of the templating membrane surrounding the nanoelectrodes is exploited to bind the capture DNA probes via amide coupling with the carboxylic groups present on the PC surface. The probes are then hybridized with the complementary target labelled with glucose oxidase (GO(x)). The occurrence of the hybridization event is detected by adding, to the supporting electrolyte, excess glucose as the substrate and the (ferrocenylmethyl) trimethylammonium cation (FA(+)) as suitable redox mediator. In the case of positive hybridization, an electrocatalytic current is detected. In the proposed sensor, the biorecognition event and signal transduction occur in different but neighbouring sites, i.e., the PC surface and the nanoelectrodes, respectively; these sites are separated albeit in close proximity on a nanometer scale. Finally, the possibility to activate the PC surface by treatment with permanganate is demonstrated and the analytical performances of biosensors prepared with KMnO(4)-treated NEEs and native NEEs are compared and critically evaluated. The proposed biosensor displays high selectivity and sensitivity, with the capability to detect few picomoles of target DNA.

  1. Identification of Chinese Herbs Using a Sequencing-Free Nanostructured Electrochemical DNA Biosensor

    PubMed Central

    Lei, Yan; Yang, Fan; Tang, Lina; Chen, Keli; Zhang, Guo-Jun

    2015-01-01

    Due to the nearly identical phenotypes and chemical constituents, it is often very challenging to accurately differentiate diverse species of a Chinese herbal genus. Although technologies including DNA barcoding have been introduced to help address this problem, they are generally time-consuming and require expensive sequencing. Herein, we present a simple sequencing-free electrochemical biosensor, which enables easy differentiation between two closely related Fritillaria species. To improve its differentiation capability using trace amounts of DNA sample available from herbal extracts, a stepwise electrochemical deposition of reduced graphene oxide (RGO) and gold nanoparticles (AuNPs) was adopted to engineer a synergistic nanostructured sensing interface. By using such a nanofeatured electrochemical DNA (E-DNA) biosensor, two Chinese herbal species of Fritillaria (F. thunbergii and F. cirrhosa) were successfully discriminated at the DNA level, because a fragment of 16-mer sequence at the spacer region of the 5S-rRNA only exists in F. thunbergii. This E-DNA sensor was capable of identifying the target sequence in the range from 100 fM to 10 nM, and a detection limit as low as 11.7 fM (S/N = 3) was obtained. Importantly, this sensor was applied to detect the unique fragment of the PCR products amplified from F. thunbergii and F. cirrhosa, respectively. We anticipate that such a direct, sequencing-free sensing mode will ultimately pave the way towards a new generation of herb-identification strategies. PMID:26633399

  2. CdS/MoS2 heterojunction-based photoelectrochemical DNA biosensor via enhanced chemiluminescence excitation.

    PubMed

    Zang, Yang; Lei, Jianping; Hao, Qing; Ju, Huangxian

    2016-03-15

    This work developed a CdS/MoS2 heterojunction-based photoelectrochemical biosensor for sensitive detection of DNA under the enhanced chemiluminescence excitation of luminol catalyzed by hemin-DNA complex. The CdS/MoS2 photocathode was prepared by the stepwise assembly of MoS2 and CdS quantum dots (QDs) on indium tin oxide (ITO), and achieved about 280% increasing of photocurrent compared to pure CdS QDs electrode due to the formation of heterostructure. High photoconversion efficiency in the photoelectrochemical system was identified to be the rapid spatial charge separation of electron-hole pairs by the extension of electron transport time and electron lifetime. In the presence of target DNA, the catalytic hairpin assembly was triggered, and simultaneously the dual hemin-labeled DNA probe was introduced to capture DNA/CdS/MoS2 modified ITO electrode. Thus the chemiluminescence emission of luminol was enhanced via hemin-induced mimetic catalysis, leading to the physical light-free photoelectrochemical strategy. Under optimized conditions, the resulting photoelectrode was proportional to the logarithm of target DNA concentration in the range from 1 fM to 100 pM with a detection limit of 0.39 fM. Moreover, the cascade amplification biosensor demonstrated high selectivity, desirable stability and good reproducibility, showing great prospect in molecular diagnosis and bioanalysis.

  3. An ultrasensitive electrochemical DNA biosensor based on a copper oxide nanowires/single-walled carbon nanotubes nanocomposite

    NASA Astrophysics Data System (ADS)

    Chen, Mei; Hou, Changjun; Huo, Danqun; Yang, Mei; Fa, Huanbao

    2016-02-01

    Here, we developed a novel and sensitive electrochemical biosensor to detect specific-sequence target DNA. The biosensor was based on a hybrid nanocomposite consisting of copper oxide nanowires (CuO NWs) and carboxyl-functionalized single-walled carbon nanotubes (SWCNTs-COOH). The resulting CuO NWs/SWCNTs layers exhibited a good differential pulse voltammetry (DPV) current response for the target DNA sequences, which we attributed to the properties of CuO NWs and SWCNTs. CuO NWs and SWCNTs hybrid composites with highly conductive and biocompatible nanostructure were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and cyclic voltammetry (CV). Immobilization of the probe DNA on the electrode surface was largely improved due to the unique synergetic effect of CuO NWs and SWCNTs. DPV was applied to monitor the DNA hybridization event, using adriamycin as an electrochemical indicator. Under optimal conditions, the peak currents of adriamycin were linear with the logarithm of target DNA concentrations (ranging from 1.0 × 10-14 to 1.0 × 10-8 M), with a detection limit of 3.5 × 10-15 M (signal/noise ratio of 3). The biosensor also showed high selectivity to single-base mismatched target DNA. Compared with other electrochemical DNA biosensors, we showed that the proposed biosensor is simple to implement, with good stability and high sensitivity.

  4. An electrochemical DNA biosensor based on gold nanorods decorated graphene oxide sheets for sensing platform.

    PubMed

    Han, Xiaowei; Fang, Xian; Shi, Anqi; Wang, Jiao; Zhang, Yuzhong

    2013-12-15

    A simple electrochemical sensor for sensitive and selective DNA detection was constructed based on gold nanorods (Au NRs) decorated graphene oxide (GO) sheets. The high-quality Au NRs-GO nanocomposite was synthesized via the electrostatic self-assembly technique, which is considered a potential sensing platform. Differential pulse voltammetry was used to monitor the DNA hybridization event using methylene blue as an electrochemical indicator. Under optimal conditions, the peak currents of methylene blue were linear with the logarithm of the concentrations of complementary DNA from 1.0 × 10(-9) to 1.0 × 10(-14)M with a detection limit of 3.5 × 10(-15)M (signal/noise=3). Moreover, the prepared electrochemical sensor can effectively distinguish complementary DNA sequences in the presence of a large amount of single-base mismatched DNA (1000:1), indicating that the biosensor has high selectivity.

  5. Conducting polymer based DNA biosensor for the detection of the Bacillus cereus group species

    NASA Astrophysics Data System (ADS)

    Velusamy, Vijayalakshmi; Arshak, Khalil; Korostynska, Olga; Oliwa, Kamila; Adley, Catherine

    2009-05-01

    Biosensor designs are emerging at a significant rate and play an increasingly important role in foodborne pathogen detection. Conducting polymers are excellent tools for the fabrication of biosensors and polypyrrole has been used in the detection of biomolecules due to its unique properties. The prime intention of this paper was to pioneer the design and fabrication of a single-strand (ss) DNA biosensor for the detection of the Bacillus cereus (B.cereus) group species. Growth of B. cereus, results in production of several highly active toxins. Therefore, consumption of food containing >106 bacteria/gm may results in emetic and diarrhoeal syndromes. The most common source of this bacterium is found in liquid food products, milk powder, mixed food products and is of particular concern in the baby formula industry. The electrochemical deposition technique, such as cyclic voltammetry, was used to develop and test a model DNA-based biosensor on a gold electrode electropolymerized with polypyrrole. The electrically conducting polymer, polypyrrole is used as a platform for immobilizing DNA (1μg) on the gold electrode surface, since it can be more easily deposited from neutral pH aqueous solutions of pyrrolemonomers. The average current peak during the electrodeposition event is 288μA. There is a clear change in the current after hybridization of the complementary oligonucleotide (6.35μA) and for the noncomplementary oligonucleotide (5.77μA). The drop in current after each event was clearly noticeable and it proved to be effective.

  6. Performance of interdigitated nanoelectrodes for electrochemical DNA biosensor.

    PubMed

    Finot, Eric; Bourillot, Eric; Meunier-Prest, Rita; Lacroute, Yvon; Legay, Guillaume; Cherkaoui-Malki, Mustapha; Latruffe, Norbert; Siri, Olivier; Braunstein, Pierre; Dereux, Alain

    2003-01-01

    An electrochemical methodology for bio-molecule sensing using an array of well-defined nanostructures is presented. We describe the fabrication by e-beam lithography of nanoelectrodes consisting of a 100 micro m x 50 micro m area containing interdigitated electrodes of 100 nm in width and interelectrode distance of 200 nm. Sensitivity and response time of the nanoelectrodes are compared to the responses of macro- and microelectrodes. The specificity of the sensor is studied by modifying the gold electrodes with DNA. The technique enables to characterize both single and double-stranded DNA of 15 nucleotides. A special electrochemical cell is adapted to control the temperature and measure the DNA concentration by UV analysis. The electrochemical method requires no label on the DNA, only redox mediators were used.

  7. Ultraselective homogeneous electrochemical biosensor for DNA species related to oral cancer based on nicking endonuclease assisted target recycling amplification.

    PubMed

    Tan, Yue; Wei, Xiaofeng; Zhao, Mengmeng; Qiu, Bin; Guo, Longhua; Lin, Zhenyu; Yang, Huang-Hao

    2015-09-15

    Traditional electrochemical DNA biosensors need DNA immobilization on the electrode surface, which is tedious and time-consuming. In this study, a simple but ultraselective electrochemical DNA biosensor had been designed to determine target DNA species related to oral cancer overexpressed 1 in saliva, which combines the signal amplification of nicking endonuclease assisted target recycling with the immobilization-free electrochemical method. The complementary substrate strand of target DNA species contains a simple asymmetric sequence had been modified with a methylene blue at the 3' terminal first, which cannot diffuse easily to the negative charged ITO electrode surface due to the abundant negative charges. The presence of the target DNA would trigger the formation of double-stranded DNA (dsDNA). Then the nicking endonuclease can recognize the simple asymmetric sequence in the dsDNA and cleave the substrate strand of ds-DNA into two pieces, a long ssDNA and a 2-base ssDNA linked with methylene blue. The short one can diffuse easily to the negative charged ITO electrode surface and results in the enhanced electrochemical response detected. At the same time, the target DNA can dissociate from the dsDNA and trigger the next round of hybridization, cleavage, and releasing, which results in the signal amplification. This homogeneous DNA biosensor can detect as low as 0.35 pM (S/N = 3) target DNA. Compared with the traditional heterogeneous electrochemical DNA biosensors, which are tedious and time-consuming due to the complex DNA immobilization process, the assay not only owns the merits of simple and high efficiency since performed in a homogeneous solution but also exhibits a high distinction ability to single-base mismatch, double-bases mismatch, and noncomplementary DNA sequence.

  8. Detection of Non-PCR Amplified S. enteritidis Genomic DNA from Food Matrices Using a Gold-Nanoparticle DNA Biosensor: A Proof-of-Concept Study

    PubMed Central

    Vetrone, Sylvia A.; Huarng, Michael C.; Alocilja, Evangelyn C.

    2012-01-01

    Bacterial pathogens pose an increasing food safety and bioterrorism concern. Current DNA detection methods utilizing sensitive nanotechnology and biosensors have shown excellent detection, but require expensive and time-consuming polymerase chain reaction (PCR) to amplify DNA targets; thus, a faster, more economical method is still essential. In this proof-of-concept study, we investigated the ability of a gold nanoparticle-DNA (AuNP-DNA) biosensor to detect non-PCR amplified genomic Salmonella enterica serovar Enteritidis (S. enteritidis) DNA, from pure or mixed bacterial culture and spiked liquid matrices. Non-PCR amplified DNA was hybridized into sandwich-like structures (magnetic nanoparticles/DNA/AuNPs) and analyzed through detection of gold voltammetric peaks using differential pulse voltammetry. Our preliminary data indicate that non-PCR amplified genomic DNA can be detected at a concentration as low as 100 ng/mL from bacterial cultures and spiked liquid matrices, similar to reported PCR amplified detection levels. These findings also suggest that AuNP-DNA biosensors are a first step towards a viable detection method of bacterial pathogens, in particular, for resource-limited settings, such as field-based or economically limited conditions. Future efforts will focus on further optimization of the DNA extraction method and AuNP-biosensors, to increase sensitivity at lower DNA target concentrations from food matrices comparable to PCR amplified DNA detection strategies. PMID:23112611

  9. Ultraspecific electrochemical DNA biosensor by coupling spontaneous cascade DNA branch migration and dual-signaling sensing strategy.

    PubMed

    Wang, Ting; Zhou, Lili; Bai, Shulian; Zhang, Zhang; Li, Junlong; Jing, Xiaoying; Xie, Guoming

    2016-04-15

    Using spontaneous cascade DNA branch migration and dual-signaling sensing strategy, we developed a novel universal electrochemical biosensor for the highly specific and sensitive detection of nucleic acids. A target strand (Ts) competitively hybridized with a ferrocene (Fc)-labeled signal probe (Fc-S1), which was blocked by a protector strand (Ps), after strand displacement to form the Ts/Fc-S1 duplex. A methylene blue (MB)-modified signal probe (MB-S2) was immobilized on the Au electrode surface by hybridizing with a thiolated capture probe (Cp). Then, the obtained reactants (Ts/Fc-S1 and MB-S2/Cp) suffered spontaneous DNA branch migration and produced two hybridization products (Fc-S1/Cp and MB-S2/Ts). These reactions led to the dissociation of MB molecules and the collection of Fc molecules. The detection mechanism of this DNA biosensor involved distance variation between the redox tags and the Au electrode, which was associated with target-induced cascade DNA branch migration. Moreover, we rationally designed the cascade DNA branch migration to occur spontaneously with ΔG° ≈ 0, at which slight thermodynamic changes caused by base mismatch exerted a disproportionately large effect on the hybridization yield. This "signal-on/off" sensing system exhibited a remarkable analytical performance and an ultrahigh discrimination capability even against a single-base mismatch. The maximum discrimination factor (DF) of base mutations or alterations can reach 17.9. Therefore, our electrochemical biosensor might hold a great potential for further applications in biomedical research and early clinical diagnosis.

  10. A sensitive DNA biosensor based on a facile sulfamide coupling reaction for capture probe immobilization.

    PubMed

    Wang, Qingxiang; Ding, Yingtao; Gao, Feng; Jiang, Shulian; Zhang, Bin; Ni, Jiancong; Gao, Fei

    2013-07-25

    A novel DNA biosensor was fabricated through a facile sulfamide coupling reaction. First, the versatile sulfonic dye molecule of 1-amino-2-naphthol-4-sulfonate (AN-SO3(-)) was electrodeposited on the surface of a glassy carbon electrode (GCE) to form a steady and ordered AN-SO3(-) layer. Then the amino-terminated capture probe was covalently grafted to the surface of SO3(-)-AN deposited GCE through the sulfamide coupling reaction between the amino groups in the probe DNA and the sulfonic groups in the AN-SO3(-). The step-by-step modification process was characterized by electrochemistry and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. Using Ru(NH3)6(3+) as probe, the probe density and the hybridization efficiency of the biosensor were determined to be 3.18×10(13) strands cm(-2) and 86.5%, respectively. The hybridization performance of the biosensor was examined by differential pulse voltammetry using Co(phen)3(3+/2+) (phen=1,10-phenanthroline) as the indicator. The selectivity experiments showed that the biosensor presented distinguishable response after hybridization with the three-base mismatched, non-complementary and complementary sequences. Under the optimal conditions, the oxidation peak currents of Co(phen)3(3+/2+) increased linearly with the logarithm values of the concentration of the complementary sequences in the range from 1.0×10(-13)M to 1.0×10(-8)M with a regression coefficient of 0.9961. The detection limit was estimated to be 7.2×10(-14)M based on 3σ. PMID:23845495

  11. Detection of femtomolar level osteosarcoma-related gene via a chronocoulometric DNA biosensor based on nanostructure gold electrode

    PubMed Central

    Zhong, Guangxian; Liu, Ailin; Xu, Xiongwei; Sun, Zhouliang; Chen, Jinyuan; Wang, Kun; Liu, Qicai; Lin, Xinhua; Lin, Jianhua

    2012-01-01

    In this paper, a sensitive chronocoulometric deoxyribonucleic acid (DNA) biosensor based on a nanostructure gold electrode was fabricated for detection of the femtomolar level survivin gene which was correlated with osteosarcoma by using hexaamine-ruthenium III complexes, [Ru(NH3)6]3+, as the electrochemical indicator. The effect of different frequencies on the real surface area of the nanostructure gold electrode obtained by repetitive square-wave oxidation reduction cycle was investigated. At the optimal frequency of 8000 Hz, the real surface of the developed nanostructure gold electrode was about 42.5 times compared with that of the bare planar gold electrode. The capture probe DNA was immobilized on the nanostructure gold electrode and hybridized with target DNA. Electrochemical signals of hexaamine-ruthenium III bound to the anionic phosphate of DNA strands via electrostatic interactions were measured by chronocoulometry before and after hybridization. The increase of the charges of hexaamine-ruthenium III was observed upon hybridization of the probe with target DNA. Results indicate that this DNA biosensor could detect the femtomole (fM) concentration of the DNA target quantitatively in the range of 50 fM to 250 fM; the detection limit of this DNA biosensor was 5.6 fM (signal to noise = 3). This new biosensor exhibits excellent sensitivity and selectivity and has been used for an assay of polymerase chain reaction (PCR) with a satisfactory result. PMID:22334782

  12. A novel single-layered MoS2 nanosheet based microfluidic biosensor for ultrasensitive detection of DNA.

    PubMed

    Huang, Yinxi; Shi, Yumeng; Yang, Hui Ying; Ai, Ye

    2015-02-14

    Recently, MoS2 nanosheets were demonstrated to be able to spontaneously adsorb single-stranded DNA, acting as efficient dye quenchers. We herein report a novel microfluidic biosensor for fluorescent DNA detection based on single-layered MoS2 nanosheets. The proposed platform is simple, rapid and visible with high sensitivity and selectivity.

  13. A novel single-layered MoS2 nanosheet based microfluidic biosensor for ultrasensitive detection of DNA.

    PubMed

    Huang, Yinxi; Shi, Yumeng; Yang, Hui Ying; Ai, Ye

    2015-02-14

    Recently, MoS2 nanosheets were demonstrated to be able to spontaneously adsorb single-stranded DNA, acting as efficient dye quenchers. We herein report a novel microfluidic biosensor for fluorescent DNA detection based on single-layered MoS2 nanosheets. The proposed platform is simple, rapid and visible with high sensitivity and selectivity. PMID:25567642

  14. Direct label free ultrasensitive impedimetric DNA biosensor using dendrimer functionalized GaN nanowires.

    PubMed

    Sahoo, Prasana; Suresh, Sumathi; Dhara, Sandip; Saini, Garima; Rangarajan, S; Tyagi, A K

    2013-06-15

    We demonstrate a very simple and generic protocol for ultrasensitive in-situ label-free detection of DNA hybridization using third generation poly(amidoamine)dendrimer (G3-PAMAM) functionalized GaN nanowires (NWs). PAMAM modified GaN NWs provides large density of docking site to immobilize significant number of probe (p-) DNA covalently. These p-DNA/PAMAM/GaN NWs sensor probes are employed to achieve an ultra-high detection limit down to attomolar level concentration of complementary target (t-) DNA. Comparative in-situ studies on single/triple base-pair mismatched, γ-irradiated and complementary t-DNA in the hybridization process reveal selectivity and specificity of the p-DNA/PAMAM/GAN NWs sensor probe over a wide range, 10(-8) to 10(-19)M, of analyte concentration. During the hybridization process, there is a substantial change in t-DNA concentration dependent interfacial polarization resistance during electrochemical impedance measurement, which forms the basis of the present DNA biosensor. This novel methodology for specific DNA sequence detection, as compared with the existing methods, is found to be very robust, highly sensitive, and reproducible. PMID:23425555

  15. Direct label free ultrasensitive impedimetric DNA biosensor using dendrimer functionalized GaN nanowires.

    PubMed

    Sahoo, Prasana; Suresh, Sumathi; Dhara, Sandip; Saini, Garima; Rangarajan, S; Tyagi, A K

    2013-06-15

    We demonstrate a very simple and generic protocol for ultrasensitive in-situ label-free detection of DNA hybridization using third generation poly(amidoamine)dendrimer (G3-PAMAM) functionalized GaN nanowires (NWs). PAMAM modified GaN NWs provides large density of docking site to immobilize significant number of probe (p-) DNA covalently. These p-DNA/PAMAM/GaN NWs sensor probes are employed to achieve an ultra-high detection limit down to attomolar level concentration of complementary target (t-) DNA. Comparative in-situ studies on single/triple base-pair mismatched, γ-irradiated and complementary t-DNA in the hybridization process reveal selectivity and specificity of the p-DNA/PAMAM/GAN NWs sensor probe over a wide range, 10(-8) to 10(-19)M, of analyte concentration. During the hybridization process, there is a substantial change in t-DNA concentration dependent interfacial polarization resistance during electrochemical impedance measurement, which forms the basis of the present DNA biosensor. This novel methodology for specific DNA sequence detection, as compared with the existing methods, is found to be very robust, highly sensitive, and reproducible.

  16. Development of an electrochemical biosensor methods based on acrylic microsphere for the determination of Arowana DNA hybridization

    NASA Astrophysics Data System (ADS)

    Rahman, Mahbubur; Heng, Lee Yook; Futra, Dedi; Chiang, Chew Poh

    2015-09-01

    An electrochemical method of Arowana DNA determination based of N-acrylosuccinimide (NAS) modified acrylic microsphere was fabricated. Hydrophobic succinimide functional group containing poly(n-butylacrylate-N-acryloxysuccinimide) microspheres were synthesized with a simple one-step photopolymerization pocedure. Aminated DNA probe was covalently bonded to the succinimde functional group of the acrylic microspheres. The hybridization of the immobilized DNA probe with the complementary DNA was determined by the differential pulse voltametry using anthraquninone-2-sulfonic acid monohydrate sodium salt (AQMS) as the electroactive hybridization label. The influences of many factors such as duration of DNA probe immobilization and hybridization, operational temperature and non-complementary DNA on the biosensor performance were evaluated. Under optimized conditions, the DNA microbiosensor demonstrated a wide linear response range to target DNA is 1.0 × 10-16 and 1.0 × 10-8 M with a lower limit of detection (LOD) of 9.46 × 10-17 M (R2 = 0.99) were calculated. This biosensor had improved the overall analytical performance of the resultant DNA microbiosensor when compared with other reported DNA biosensors using other nano-materials for membranes and microspheres as DNA immobilization matrices.

  17. An upconversion fluorescent resonant energy transfer biosensor for hepatitis B virus (HBV) DNA hybridization detection.

    PubMed

    Zhu, Hao; Lu, Feng; Wu, Xing-Cai; Zhu, Jun-Jie

    2015-11-21

    A novel fluorescent resonant energy transfer (FRET) biosensor was fabricated for the detection of hepatitis B virus (HBV) DNA using poly(ethylenimine) (PEI) modified upconversion nanoparticles (NH2-UCNPs) as energy donor and gold nanoparticles (Au NPs) as acceptor. The PEI modified upconversion nanoparticles were prepared directly with a simple one-pot hydrothermal method, which provides high quality amino-group functionalized UCNPs with uniform morphology and strong upconversion luminescence. Two single-stranded DNA strands, which were partially complementary to each other, were then conjugated with NH2-UCNPs and Au NPs. When DNA conjugated NH2-UCNPs and Au NPs are mixed together, the hybridization between complementary DNA sequences on UCNPs and Au NPs will lead to the quenching of the upconversion luminescence due to the FRET process. Meanwhile, upon the addition of target DNA, Au NPs will leave the surface of the UCNPs and the upconversion luminescence can be restored because of the formation of the more stable double-stranded DNA on the UCNPs. The sensor we fabricated here for target DNA detection shows good sensitivity and high selectivity, which has the potential for clinical applications in the analysis of HBV and other DNA sequences. PMID:26421323

  18. Electrochemical biosensor modified with dsDNA monolayer for restriction enzyme activity determination.

    PubMed

    Zajda, Joanna; Górski, Łukasz; Malinowska, Elżbieta

    2016-06-01

    A simple and cost effective method for the determination of restriction endonuclease activity is presented. dsDNA immobilized at a gold electrode surface is used as the enzymatic substrate, and an external cationic redox probe is employed in voltammetric measurements for analytical signal generation. The assessment of enzyme activity is based on a decrease of a current signal derived from reduction of methylene blue which is present in the sample solution. For this reason, the covalent attachment of the label molecule is not required which significantly reduces costs of the analysis and simplifies the entire determination procedure. The influence of buffer components on utilized dsDNA/MCH monolayer stability and integrity is also verified. Electrochemical impedance spectroscopy measurements reveal that due to pinhole formation during enzyme activity measurement the presence of any surfactants should be avoided. Additionally, it is shown that the sensitivity of the electrochemical biosensor can be tuned by changing the restriction site location along the DNA length. Under optimal conditions the proposed biosensor exhibits a linear response toward PvuII activity within a range from 0.25 to 1.50 U/μL. PMID:26859430

  19. Electrochemical biosensor modified with dsDNA monolayer for restriction enzyme activity determination.

    PubMed

    Zajda, Joanna; Górski, Łukasz; Malinowska, Elżbieta

    2016-06-01

    A simple and cost effective method for the determination of restriction endonuclease activity is presented. dsDNA immobilized at a gold electrode surface is used as the enzymatic substrate, and an external cationic redox probe is employed in voltammetric measurements for analytical signal generation. The assessment of enzyme activity is based on a decrease of a current signal derived from reduction of methylene blue which is present in the sample solution. For this reason, the covalent attachment of the label molecule is not required which significantly reduces costs of the analysis and simplifies the entire determination procedure. The influence of buffer components on utilized dsDNA/MCH monolayer stability and integrity is also verified. Electrochemical impedance spectroscopy measurements reveal that due to pinhole formation during enzyme activity measurement the presence of any surfactants should be avoided. Additionally, it is shown that the sensitivity of the electrochemical biosensor can be tuned by changing the restriction site location along the DNA length. Under optimal conditions the proposed biosensor exhibits a linear response toward PvuII activity within a range from 0.25 to 1.50 U/μL.

  20. An Analytical Model for Thermal Effect of Microcantilever-DNA Biosensors

    NASA Astrophysics Data System (ADS)

    Tan, Zou-Qing; Zhang, Neng-Hui

    2013-06-01

    The thermal effect of microcantilever-DNA biosensors is investigated by the energy method. Based on a liquid crystal theory for DNA solutions and a two-variable method for laminated cantilevers, an analytical model for nanomechanical cantilever motion under the combination of bio-interactions and thermal loadings is provided and then it is extended to T-shaped cantilevers. Then, the effects of chemo-physical properties of DNA biofilm (i.e., grafting density, nucleotide number, and ionic strength) and temperature change on deflections are discussed. In order to reduce noise signals, the controlling temperature and size optimization of cantilevers with different substrate materials and ionic strengths are also studied. Results show that SU-8 polymer cantilevers can preserve the sensitivity of molecule adsorption and thermal stability, which agrees well with the related experiments; the layer-to-layer thickness ratio of SU-8 polymer cantilevers should be as small as possible, while for silicon nitride cantilevers, there exists an optimal value. These results help to understand the sensitivity and reproducibility of biosensors.

  1. DNA-templated synthesis of PtAu bimetallic nanoparticle/graphene nanocomposites and their application in glucose biosensor

    PubMed Central

    2014-01-01

    In this paper, single-stranded DNA (ss-DNA) is demonstrated to functionalize graphene (GR) and to further guide the growth of PtAu bimetallic nanoparticles (PtAuNPs) on GR with high densities and dispersion. The obtained nanocomposites (PtAuNPs/ss-DNA/GR) were characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectrometer (EDS), and electrochemical techniques. Then, an enzyme nanoassembly was prepared by self-assembling glucose oxidase (GOD) on PtAuNP/ss-DNA/GR nanocomposites (GOD/PtAuNPs/ss-DNA/GR). The nanocomposites provided a suitable microenvironment for GOD to retain its biological activity. The direct and reversible electron transfer process between the active site of GOD and the modified electrode was realized without any extra electron mediator. Thus, the prepared GOD/PtAuNP/ss-DNA/GR electrode was proposed as a biosensor for the quantification of glucose. The effects of pH, applied potential, and temperature on the performance of the biosensor were discussed in detail and were optimized. Under optimal conditions, the biosensor showed a linearity with glucose concentration in the range of 1.0 to 1,800 μM with a detection limit of 0.3 μM (S/N = 3). The results demonstrate that the developed approach provides a promising strategy to improve the sensitivity and enzyme activity of electrochemical biosensors. PMID:24572068

  2. DNA-templated synthesis of PtAu bimetallic nanoparticle/graphene nanocomposites and their application in glucose biosensor

    NASA Astrophysics Data System (ADS)

    Leng, Jing; Wang, Wen-Min; Lu, Li-Min; Bai, Ling; Qiu, Xin-Lan

    2014-02-01

    In this paper, single-stranded DNA (ss-DNA) is demonstrated to functionalize graphene (GR) and to further guide the growth of PtAu bimetallic nanoparticles (PtAuNPs) on GR with high densities and dispersion. The obtained nanocomposites (PtAuNPs/ss-DNA/GR) were characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectrometer (EDS), and electrochemical techniques. Then, an enzyme nanoassembly was prepared by self-assembling glucose oxidase (GOD) on PtAuNP/ss-DNA/GR nanocomposites (GOD/PtAuNPs/ss-DNA/GR). The nanocomposites provided a suitable microenvironment for GOD to retain its biological activity. The direct and reversible electron transfer process between the active site of GOD and the modified electrode was realized without any extra electron mediator. Thus, the prepared GOD/PtAuNP/ss-DNA/GR electrode was proposed as a biosensor for the quantification of glucose. The effects of pH, applied potential, and temperature on the performance of the biosensor were discussed in detail and were optimized. Under optimal conditions, the biosensor showed a linearity with glucose concentration in the range of 1.0 to 1,800 μM with a detection limit of 0.3 μM (S/N = 3). The results demonstrate that the developed approach provides a promising strategy to improve the sensitivity and enzyme activity of electrochemical biosensors.

  3. New Catalytic DNA Biosensors for Radionuclides and Metal ions

    SciTech Connect

    Lu, Yi

    2005-06-01

    In vitro selection for DNAzymes that are catalytically active with UO22+ ions as the metal cofactor has been completed. The 10th generation pool of DNA was cloned and sequenced. A total of 84 clones were sequenced and placed into families based on sequence alignments. Selected members of each family were 5-labeled with 32P and amplified using PCR. Activity assays were conducted using the isotopically labeled DNAzymes in order to determine which sequences were the most active. The secondary structures of the two most active sequences, called Clone 13 and Clone 39, were determined using the computer program Mfold. A cleavage rate of approximately 1 min-1 in the presence of 10 uM UO22+ was observed for both clones. Clone 39 was determined to be the best candidate for truncation to create a trans-cleaving DNAzyme, based on its secondary structure. An enzyme strand, called 39E, and a substrate strand, called 39DS, were designed by truncating the cis-cleaving DNAzyme. An alternative enzyme strand, called 39Ec, was also assayed with the 39DS substrate. This strand was designed so that the two binding arms were perfectly complimentary, unlike 39E, which formed three mismatched base pairs with 39DS. Both 39E and 39Ec were found to be active, with a rate of approximately 1 min-1 in the presence of 10 uM UO22+. A preliminary UO22+ binding curve was obtained for the 39Ec/39DS trans-cleaving system. The enzyme is active with UO22+ concentrations as low as 1 nM. Based on the preliminary binding curve data, the apparent UO22+ binding constant is approximately 330 nM, and kmax is approximately 1 min-1.

  4. Mechanism for invalid detection of microcantilever-DNA biosensors due to environmental changes

    NASA Astrophysics Data System (ADS)

    Tan, Z.-Q.; Zhang, N.-H.; Meng, W.-L.; Tang, H.-S.

    2016-06-01

    Microcantilever-DNA biosensors can lose recognition signals under specific hybridization conditions; this could be termed as a type of invalid detection. Using a multiscale energy method, this paper presents an alternative mechanism for this invalid detection induced by bio-interactions and environmental changes in temperature and ionic strength. First, a scaling law for the nanoscale thickness of the DNA film, and a mesoscopic empirical potential for bio-interactions in DNA liquid crystal solution, were combined to update a multiscale analytical model revealing the relation between cantilever motion, temperature, ionic strength, elastic properties of multilayered cantilevers, and nanoscopic properties of DNA molecules. Second, we carried out isothermal and non-isothermal experiments for the bending motion during the formation of a self-assembled monolayer of thiolated single-stranded DNA covalently immobilized on the gold-coated side of the cantilevers, and during the subsequent hybridization with the complementary nucleic acid, in order to obtain the relevant model parameters, and also to validate the proposed analytical model. Third, the effects of temperature and ionic strength on the microcantilever deflections were investigated. Numerical results show that the competing interplay among electrostatic force, hydration force, and configurational entropy generates an invalid point of detection at a grafting density of about 0.05 chain nm-2. In the grafting density interval of 0.02-0.05 chain nm-2, the thermal effect induces distortion of signals; in the grafting density interval of 0.05-0.097 chain nm-2, fluctuations in ionic strength make detection fail. These findings will help to design and improve microcantilever-based biosensors with high sensitivity and robustness.

  5. Mechanism for invalid detection of microcantilever-DNA biosensors due to environmental changes

    NASA Astrophysics Data System (ADS)

    Tan, Z.-Q.; Zhang, N.-H.; Meng, W.-L.; Tang, H.-S.

    2016-06-01

    Microcantilever-DNA biosensors can lose recognition signals under specific hybridization conditions; this could be termed as a type of invalid detection. Using a multiscale energy method, this paper presents an alternative mechanism for this invalid detection induced by bio-interactions and environmental changes in temperature and ionic strength. First, a scaling law for the nanoscale thickness of the DNA film, and a mesoscopic empirical potential for bio-interactions in DNA liquid crystal solution, were combined to update a multiscale analytical model revealing the relation between cantilever motion, temperature, ionic strength, elastic properties of multilayered cantilevers, and nanoscopic properties of DNA molecules. Second, we carried out isothermal and non-isothermal experiments for the bending motion during the formation of a self-assembled monolayer of thiolated single-stranded DNA covalently immobilized on the gold-coated side of the cantilevers, and during the subsequent hybridization with the complementary nucleic acid, in order to obtain the relevant model parameters, and also to validate the proposed analytical model. Third, the effects of temperature and ionic strength on the microcantilever deflections were investigated. Numerical results show that the competing interplay among electrostatic force, hydration force, and configurational entropy generates an invalid point of detection at a grafting density of about 0.05 chain nm‑2. In the grafting density interval of 0.02–0.05 chain nm‑2, the thermal effect induces distortion of signals; in the grafting density interval of 0.05–0.097 chain nm‑2, fluctuations in ionic strength make detection fail. These findings will help to design and improve microcantilever-based biosensors with high sensitivity and robustness.

  6. Nanoparticle-based DNA biosensor for visual detection of genetically modified organisms.

    PubMed

    Kalogianni, Despina P; Koraki, Theodora; Christopoulos, Theodore K; Ioannou, Penelope C

    2006-01-15

    Although screening of raw ingredients and food products for genetically modified organisms (GMO) may be accomplished by detecting either the exogenous DNA or the novel protein, DNA is the preferred analyte because of its superior stability during food processing. The development of DNA biosensors is of increasing importance due to the growing demand for rapid and reliable methods for GMO detection. We report the first DNA biosensor in a dry-reagent dipstick configuration for visual detection and confirmation of GMO-related sequences by hybridization within minutes. The sensor is disposable and does not require special instrumentation. It detects the 35S promoter and nopaline synthase (NOS) terminator sequences that are present in the majority of transgenic plants. The target sequences are amplified by the polymerase chain reaction (PCR) and hybridized (7min) with probes bearing oligo(dA) tail. The biotinylated product is applied to the sensor followed by immersion in the appropriate buffer. Migration of the buffer rehydrates gold nanoparticles conjugated to oligo(dT), which hybridize with the oligo(dA) tails. The hybrids are captured by immobilized streptavidin at the test zone of the sensor giving a characteristic red line due to the accumulation of the nanoparticles. The excess of nanoparticle conjugates are captured at the control zone by immobilized oligo(dA) strands. Amplified 35S or NOS DNA is detectable at 0.16nM. Soybean powder certified reference material with 0.1% GMO content is clearly detectable after 35 and 40 amplification cycles for 35S and NOS sequence, respectively. The sensor was also applied to real samples from various sources.

  7. Dopamine-loaded liposome and its application in electrochemical DNA biosensor.

    PubMed

    Mahmoudi-Badiki, Tohid; Alipour, Esmaeel; Hamishehkar, Hamed; Golabi, Seyed Mahdi

    2016-08-01

    In this study, disruption and lyophilization-rehydration of dopamine-loaded liposome and its application in electrochemical DNA biosensor was investigated. The liposomes containing soyphosphatidylcholine and cholesterol were prepared through thin-layer hydration. First, an investigation was carried out to find an appropriate lysing agent for disruption of prepared liposomes. Differential pulse voltammetry, as a high sensitive electrochemical technique, was used along with a multi-walled carbon nanotubes modified glassy carbon electrode for sensitive electrochemical detection of released dopamine from disrupted liposomes. Various lysing agents were investigated and finally, the disruption of liposomes using methanol was selected without any surfactant, because of its least fouling effect. Then, lyophilization of dopamine-loaded liposomes was carried out using sucrose as cryoprotectant. The electrochemical studies of lyophilized liposomes showed that the remained dopamine in sucrose-protected liposomes was higher than sucrose-free liposomes. Furthermore, sucrose has no interference in electrochemical studies. Then, with the addition of biotin-X-DHPE to liposome formulation, the lyophilized sucrose protected dopamine-loaded biotin-tagged liposomes were prepared and the feasibility of application of them in electrochemical DNA biosensor was investigated as signal enhancer and verified for detection of oligonucleotides.

  8. Highly-sensitive liquid crystal biosensor based on DNA dendrimers-mediated optical reorientation.

    PubMed

    Tan, Hui; Li, Xia; Liao, Shuzhen; Yu, Ruqin; Wu, Zhaoyang

    2014-12-15

    A novel highly-sensitive liquid crystal (LC) biosensing approach based on target-triggering DNA dendrimers was developed for the detection of p53 mutation gene segment at the LC-aqueous interface. In this study, the mutant-type p53 gene segment was the target to trigger the formation of DNA dendrimers from hairpin DNA probes by hybridization chain reaction, and the latter as a 'signal enhancement element' further induced the LC reorientation from tilted to homeotropic alignment, resulting in a corresponding optical changes of LC biosensors from birefringent to honeycombed textures or dark framework. The distinct optical reorientational appearances can serve as a characteristic signal to distinguish target concentrations ranging from 0.08 nM to 8 nM. Moreover, these optical phenomena suggest that the LC reorientation is related to the electric-dipole coupling between the adsorbed DNA and LC molecules, the conformational constraints of DNA and the internal electric field induction upon hybridization. This label-free LC biosensing strategy can open up a new platform for the sensitive detection of specific DNA sequences and enrich the application scope of an LC biosensing technique. PMID:24984288

  9. A reagentless DNA biosensor based on cathodic electrochemiluminescence at a C/C(x)O(1-x) electrode.

    PubMed

    Wu, Ai-Hong; Sun, Jian-Jun; Zheng, Rui-Juan; Yang, Huang-Hao; Chen, Guo-Nan

    2010-05-15

    A reagentless signal-on electrochemiluminescence (ECL) biosensor for DNA hybridization detection was developed based on the quenching effect of ferrocene (Fc) on intrinsic cathodic ECL at thin oxide covered glassy carbon (C/C(x)O(1-x)) electrodes. To construct the DNA biosensor, molecular beacon (MB) modified with ferrocene (3'-Fc) was attached to a C/C(x)O(1-x) electrode via the covalent bound between labeled amino (5'-NH(2)) and surface functional groups. It was found that the immobilization of the probe on the electrode surface mainly depended on the fraction of surface carbonyl moiety. When a complementary target DNA (cDNA) was present, the stem-loop of MB on the electrode was converted into a linear double-helix configuration due to hybridization, resulting in the moving away of Fc from the electrode surface, and the restoring of the cathodic ECL signal. The restoration of the ECL intensity was linearly changed with the logarithm of cDNA concentration in the range of 1.0x10(-11) to 7.0x10(-8)M, and the detection limit was ca. 5.0pM (S/N=3). Additionally, single-base mismatched DNA can be effectively discriminated from the cDNA. The great advantage of the biosensor lies in its simplicity and cost-effective with ECL generated from the electrode itself, and no adscititious luminophore is required.

  10. Impedimetric DNA Biosensor Based on a Nanoporous Alumina Membrane for the Detection of the Specific Oligonucleotide Sequence of Dengue Virus

    PubMed Central

    Deng, Jiajia; Toh, Chee-Seng

    2013-01-01

    A novel and integrated membrane sensing platform for DNA detection is developed based on an anodic aluminum oxide (AAO) membrane. Platinum electrodes (∼50–100 nm thick) are coated directly on both sides of the alumina membrane to eliminate the solution resistance outside the nanopores. The electrochemical impedance technique is employed to monitor the impedance changes within the nanopores upon DNA binding. Pore resistance (Rp) linearly increases in response towards the increasing concentration of the target DNA in the range of 1 × 10−12 to 1 × 10−6 M. Moreover, the biosensor selectively differentiates the complementary sequence from single base mismatched (MM-1) strands and non-complementary strands. This study reveals a simple, selective and sensitive method to fabricate a label-free DNA biosensor. PMID:23774989

  11. Enhancing the sensitivity of localized surface plasmon resonance (LSPR) biosensors using nanorods and DNA aptamers

    NASA Astrophysics Data System (ADS)

    Chuang, Po-Chun; Liao, Pei-Chen; Chen, Yih-Fan

    2015-03-01

    Localized surface plasmon resonance (LSPR) biosensors have drawn much attention for their promising application in point-of-care diagnostics. While surface plasmon resonance (SPR) biosensing systems have been well developed, LSPR systems have the advantages of simpler and more compact setups. The LSPR peak shifts caused by the binding of molecules to the LSPR substrates, however, are usually smaller than 1 nm if no signal amplification mechanism is used. When using nanoparticles to enhance the sensitivity of LSPR biosensors, because of the short field penetration depth, the nanoparticles should be very close to the LSPR substrate to induce significant shifts in the LSPR peak position. In this study, we used DNA aptamers and gold nanorods to significantly increase the change in the LSPR peak position with the concentration of the target molecules. We have successfully used the proposed mechanism to detect 0.1 nM interferongamma (IFN-γ), a biomarker related to the diagnosis of latent tuberculosis infection. The calibration curves obtained in pure buffers and serum-containing buffers show that accurate detection can be achieved even when the sample is from complex biological fluids such as serum. Because of the enhancement in the sensitivity by the proposed sensing scheme, it is possible to use a low-cost spectrometer to build a LSPR biosensing system.

  12. A new electrochemical biosensor for DNA detection based on molecular recognition and lead sulfide nanoparticles.

    PubMed

    Fan, Hao; Zhao, Kun; Lin, Yan; Wang, Xiaoyun; Wu, Bo; Li, Qianggen; Cheng, Lin

    2011-12-15

    In this paper, we constructed a new electrochemical biosensor for DNA detection based on a molecule recognition technique. In this sensing protocol, a novel dual-labeled DNA probe (DLP) in a stem-loop structure was employed, which was designed with dabcyl labeled at the 3' end as a guest molecule, and with a Pb nanoparticle labeled at the 5' end as electrochemical tag to indicate hybridization. One α-cyclodextrin-modified electrode (α-CD/MCNT/GCE) was used for capturing the DNA hybridization. Initially, the DLP was in the "closed" state in the absence of the target, which shielded dabcyl from the bulky α-CD/MCNT/GCE conjugate due to a steric effect. After hybridization, the loop sequence (16 bases) formed a rigid duplex with the target, breaking the relatively shorter stem duplex (6 bases). Consequently, dabcyl was forced away from the Pb nanoparticle and became accessible by the electrode. Therefore, the target hybridization event can be sensitively transduced via detecting the electrochemical reduction current signal of Pb. Using this method, as low as 7.1×10(-10)M DNA target had been detected with excellent differentiation ability for even a single mismatch.

  13. A simple strategy of probe DNA immobilization by diazotization-coupling on self-assembled 4-aminothiophenol for DNA electrochemical biosensor.

    PubMed

    Li, Feng; Chen, Wei; Dong, Pingjun; Zhang, Shusheng

    2009-03-15

    A novel and simple strategy for fabricating of DNA electrochemical biosensor was developed based on covalent coupling of probe NH(2)-ssDNA (S(1)) on Au electrode that had been functionalized by diazotization of assembled 4-aminothiophenol (4-ATP) monolayer. The thiol group of 4-ATP allowed the stable assembly of 4-ATP monolayer. The following diazotization reaction was directly performed to prepare functional diazo-ATP film for covalent coupling of probe S(1). Remarkably, it was noting that the diazo-ATP provided a surface with high conductibility for electron transfer. The complementary ssDNA was determined by using differential pulse voltammetry. The linear range of the developed biosensor was from 1.57 x 10(-9) to 4.52 x 10(-7)M with a detection limit of 3.26 x 10(-10)M. The fabricated biosensor possessed good selectivity and could be regenerated. The covalent immobilization of probe S(1) by simple diazotization-coupling on self-assembled 4-ATP monolayer could serve as a versatile platform for DNA immobilization and biosensors fabricating. PMID:19124235

  14. A reusable optical biosensor for the ultrasensitive and selective detection of unamplified human genomic DNA with gold nanostars.

    PubMed

    Mariani, Stefano; Scarano, Simona; Spadavecchia, Jolanda; Minunni, Maria

    2015-12-15

    A Surface Plasmon Resonance imaging (SPRi) based DNA sensors for the selective and ultrasensitive human genomic DNA detection, directly extracted from lymphocytes (bypassing PCR amplification), is reported. To achieve DNA detection, a rationally chosen star-shaped nanoparticle (NP), namely gold nanostar (AuNS), has been applied, for the first time, in a sandwich-like assay based on the selective capturing of specific DNA targets and the subsequent signal amplification by a secondary DNA probe linked to AuNS. The plasmonic profile, size and electric field enhancements at the star tips contributed to the maximization of plasmon coupling between LSPs and SPs as aimed for analytical signal magnification. The system was first tested using short synthetic DNA target sequences and applied to DNA biosensing, lowering 610-fold the detection limit from 6.1 nM (without NSs labeling) to 10 pM (with NSs labeling). Then the biosensor was applied to genomic DNA samples, extracted from human lymphocytes and undergoing only to a simple ultrasonic fragmentation, lowering (~435 fold) the detection limit from 3.0 fM (without NSs labeling) to 6.9 aM (with NSs labeling). Thanks to the assay optimization, we proved that tuning the NSs surface coverage with DNA linked to nanoparticles is crucial not only for the increase of signals but also for the regenerability/reusability of the biosensor for tens of measurement cycles.

  15. Electrochemical DNA biosensor for detection of porcine oligonucleotides using ruthenium(II) complex as intercalator label redox

    NASA Astrophysics Data System (ADS)

    Halid, Nurul Izni Abdullah; Hasbullah, Siti Aishah; Ahmad, Haslina; Heng, Lee Yook; Karim, Nurul Huda Abd; Harun, Siti Norain

    2014-09-01

    A DNA biosensor detection of oligonucleotides via the interactions of porcine DNA with redox active complex based on the electrochemical transduction is described. A ruthenium(II) complex, [Ru(bpy)2(PIP)]2+, (bpy = 2,2'bipyridine, PIP = 2-phenylimidazo[4,5-f[[1,10-phenanthroline]) as DNA label has been synthesized and characterized by 1H NMR and mass spectra. The study was carried out by covalent bonding immobilization of porcine aminated DNA probes sequences on screen printed electrode (SPE) modified with succinimide-acrylic microspheres and [Ru(bpy)2(PIP)]2+ was used as electrochemical redox intercalator label to detect DNA hybridization event. Electrochemical detection was performed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) over the potential range where the ruthenium (II) complex was active. The results indicate that the interaction of [Ru(bpy)2(PIP)]2+ with hybridization complementary DNA has higher response compared to single-stranded and mismatch complementary DNA.

  16. Electrochemical biosensor for quantitation of anti-DNA autoantibodies in human serum.

    PubMed

    Rubin, Robert L; Wall, David; Konstantinov, Konstantin N

    2014-01-15

    Measurement of serum autoantibody is a critical tool in the diagnosis and management of autoimmune diseases. However, rapid and convenient methods at the point-of care have not been achieved in large part because any one antibody species is a heterogeneous and miniscule fraction of the total serum immunoglobulin displaying identical properties other than its antigen-binding specificity. The present system addresses these challenges by vacuum-mediated transport of diluted serum through an antigen-coated porous membrane. To measure anti-DNA autoantibodies, native DNA was immobilized into a poly(vinylidene fluoride) membrane pre-coated with a synthetic phenylalanine/lysine co-polymer. Flow-through of primary and peroxidase-conjugated secondary antibodies over the course of 3 min enhanced productive antibody-antigen interactions by bringing the reactants into close mutual proximity. Signal was quantified electrochemically during the enzymatic conversion of the tetramethylbenzidine substrate to a charge-transfer complex. The electrochemical signals generated by sera from patients with systemic lupus erythematosus using this device showed good quantitative correlation with a standard enzyme-linked immunosorbent assay and displayed similar detection limits. Inter- and intra-assay variability and electrode uniformity were favorable as was a two-month test of the stability of the DNA-coated membrane. While refining the fluidics requirements of this biosensor will be needed, its capacity to quantify over the course of 30 min anti-DNA antibodies in fresh human serum without background reactivity of normal serum makes this a promising technology as a point-of care device of clinical utility.

  17. T-T mismatch-driven biosensor using triple functional DNA-protein conjugates for facile detection of Hg2+.

    PubMed

    Wang, Ruoyu; Zhou, Xiaohong; Shi, Hanchang; Luo, Yi

    2016-04-15

    We report herein a T-T mismatch-driven biosensor using triple functional DNA-protein conjugates for facile detection of mercury ions (Hg(2+)) based on evanescent wave fluorescence excitation. Fluorescein-labeled DNA strands and streptavidin molecules were conjugated using heterobifunctional crosslinkers, and the obtained conjugates were named as "Hg(2+) dependent conjugates, HDCs". Initially hybridized with quencher-labeled DNA (Q-DNA) strands, HDCs showed low evanescent wave-induced fluorescence emission signals; however, in the presence of Hg(2+), the DNA moieties of HDCs tended to form hairpin structures stabilized by T-T mismatches, releasing Q-DNA strands, which was accompanied by increases in the fluorescent signals. The novel detection strategy enables the fluorescent detection of mercury ions with high specificity and a low detection limit of 1.06 nM in a facile way.

  18. Electrical detection of dengue virus (DENV) DNA oligomer using silicon nanowire biosensor with novel molecular gate control.

    PubMed

    Nuzaihan M N, M; Hashim, U; Md Arshad, M K; Kasjoo, S R; Rahman, S F A; Ruslinda, A R; Fathil, M F M; Adzhri, R; Shahimin, M M

    2016-09-15

    In this paper, a silicon nanowire biosensor with novel molecular gate control has been demonstrated for Deoxyribonucleic acid (DNA) detection related to dengue virus (DENV). The silicon nanowire was fabricated using the top-down nanolithography approach, through nanostructuring of silicon-on-insulator (SOI) layers achieved by combination of the electron-beam lithography (EBL), plasma dry etching and size reduction processes. The surface of the fabricated silicon nanowire was functionalized by means of a three-step procedure involving surface modification, DNA immobilization and hybridization. This procedure acts as a molecular gate control to establish the electrical detection for 27-mers base targets DENV DNA oligomer. The electrical detection is based on the changes in current, resistance and conductance of the sensor due to accumulation of negative charges added by the immobilized probe DNA and hybridized target DNA. The sensitivity of the silicon nanowire biosensors attained was 45.0µAM(-1), which shows a wide-range detection capability of the sensor with respect to DNA. The limit of detection (LOD) achieved was approximately 2.0fM. The demonstrated results show that the silicon nanowire has excellent properties for detection of DENV with outstanding repeatability and reproducibility performances.

  19. A modular LHC built on the DNA three-way junction.

    PubMed

    Probst, Markus; Langenegger, Simon M; Häner, Robert

    2014-01-01

    A light-harvesting complex composed of a π-stacked multichromophoric array in a DNA three-way junction is described. The modular design allows for a ready exchange of non-covalently attached energy acceptors.

  20. In situ electrochemical evaluation of dsDNA interaction with the anticancer drug danusertib nitrenium radical product using the DNA-electrochemical biosensor.

    PubMed

    Diculescu, Victor Constantin; Oliveira-Brett, Ana Maria

    2016-02-01

    Danusertib is a kinase inhibitor and anti-cancer drug. The evaluation of the interaction between danusertib and dsDNA was investigated in bulk solution and using the dsDNA-electrochemical biosensor. The dsDNA-danusertib interaction occurs in two sequential steps. First, danusertib binds electrostatically todsDNA phosphate backbone through the positively charged piperazine moiety. The second step involved the pyrrolo-pyrazolemoiety and led to small morphological modifications in the dsDNA double helix which were electrochemically characterised through the changes of guanine and adenine residue oxidation peaks and confirmed by electrophoretic and spectrophotometric measurements. The nitrenium cation radical product of danusertib amino group oxidation was electrochemically generated in situ on the dsDNA-electrochemical biosensor surface. The danusertib nitrenium cation radical redox metabolite was covalently attached to the C8 of guanine residues preventing their oxidation. An interaction mechanism of dsDNA-danusertib is proposed and the formation of the danusertib redox nitrenium radical metabolite-guanine adduct explained.

  1. Strip biosensor for amplified detection of nerve growth factor-beta based on a molecular translator and catalytic DNA circuit.

    PubMed

    Liu, Jun; Lai, Ting; Mu, Kejie; Zhou, Zheng

    2014-10-01

    We have demonstrated a new visual detection approach based on a molecular translator and a catalytic DNA circuit for the detection of nerve growth factor-beta (NGF-β). In this assay, a molecular translator based on the binding-induced DNA strand-displacement reaction was employed to convert the input protein to an output DNA signal. The molecular translator is composed of a target recognition element and a signal output element. Target recognition is achieved by the binding of the anti-NGF-β antibody to the target protein. Polyclonal anti-NGF-β antibody is conjugated to DNA1 and DNA2. The antibody conjugated DNA1 is initially hybridized to DNA3 to form a stable DNA1/DNA3 duplex. In the presence of NGF-β, the binding of the same target protein brings DNA1 and DNA2 into close proximity, resulting in an increase in their local effective concentration. This process triggers the strand-displacement reaction between DNA2 and DNA3 and releases the output DNA3. The released DNA3 is further amplified by a catalytic DNA circuit. The product of the catalytic DNA circuit is detected by a strip biosensor. This proposed assay has high sensitivity and selectivity with a dynamic response ranging from 10 fM to 10 pM, and its detection limit is 10 fM of NGF-β. This work provides a sensitive, enzyme-free, and universal strategy for the detection of other proteins. PMID:25068151

  2. A novel GMO biosensor for rapid ultrasensitive and simultaneous detection of multiple DNA components in GMO products.

    PubMed

    Huang, Lin; Zheng, Lei; Chen, Yinji; Xue, Feng; Cheng, Lin; Adeloju, Samuel B; Chen, Wei

    2015-04-15

    Since the introduction of genetically modified organisms (GMOs), there has been on-going and continuous concern and debates on the commercialization of products derived from GMOs. There is an urgent need for development of highly efficient analytical methods for rapid and high throughput screening of GMOs components, as required for appropriate labeling of GMO-derived foods, as well as for on-site inspection and import/export quarantine. In this study, we describe, for the first time, a multi-labeling based electrochemical biosensor for simultaneous detection of multiple DNA components of GMO products on the same sensing interface. Two-round signal amplification was applied by using both an exonuclease enzyme catalytic reaction and gold nanoparticle-based bio-barcode related strategies, respectively. Simultaneous multiple detections of different DNA components of GMOs were successfully achieved with satisfied sensitivity using this electrochemical biosensor. Furthermore, the robustness and effectiveness of the proposed approach was successfully demonstrated by application to various GMO products, including locally obtained and confirmed commercial GMO seeds and transgenetic plants. The proposed electrochemical biosensor demonstrated unique merits that promise to gain more interest in its use for rapid and on-site simultaneous multiple screening of different components of GMO products. PMID:25497983

  3. A novel GMO biosensor for rapid ultrasensitive and simultaneous detection of multiple DNA components in GMO products.

    PubMed

    Huang, Lin; Zheng, Lei; Chen, Yinji; Xue, Feng; Cheng, Lin; Adeloju, Samuel B; Chen, Wei

    2015-04-15

    Since the introduction of genetically modified organisms (GMOs), there has been on-going and continuous concern and debates on the commercialization of products derived from GMOs. There is an urgent need for development of highly efficient analytical methods for rapid and high throughput screening of GMOs components, as required for appropriate labeling of GMO-derived foods, as well as for on-site inspection and import/export quarantine. In this study, we describe, for the first time, a multi-labeling based electrochemical biosensor for simultaneous detection of multiple DNA components of GMO products on the same sensing interface. Two-round signal amplification was applied by using both an exonuclease enzyme catalytic reaction and gold nanoparticle-based bio-barcode related strategies, respectively. Simultaneous multiple detections of different DNA components of GMOs were successfully achieved with satisfied sensitivity using this electrochemical biosensor. Furthermore, the robustness and effectiveness of the proposed approach was successfully demonstrated by application to various GMO products, including locally obtained and confirmed commercial GMO seeds and transgenetic plants. The proposed electrochemical biosensor demonstrated unique merits that promise to gain more interest in its use for rapid and on-site simultaneous multiple screening of different components of GMO products.

  4. Electrochemical functionalization of polypyrrole through amine oxidation of poly(amidoamine) dendrimers: Application to DNA biosensor.

    PubMed

    Miodek, Anna; Mejri-Omrani, Nawel; Khoder, Rabih; Korri-Youssoufi, Hafsa

    2016-07-01

    Electrochemical patterning method has been developed to fabricate composite based on polypyrrole (PPy) film and poly(amidoamine) dendrimers of fourth generation (PAMAM G4). PPy layer was generated using electrochemical polymerization of pyrrole on a gold electrode. PPy film was then modified with PAMAM G4 using amines electro-oxidation method. Covalent bonding of PAMAM G4 and the formation of PPy-PAMAM composite was characterized using Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray Photoelectron Spectroscopy (XPS). Ferrocenyl groups were then attached to such surface as a redox marker. Electrochemical properties of the modified nanomaterial (PPy-PAMAM-Fc) were studied using both amperometric and impedimetric methods to demonstrate the efficiency of electron transfer through the modified PPy layer. The obtained electrical and electrochemical properties were compared to a composite where PPy bearing carboxylic acid functions was chemically modified with PAMAM G4 by covalent attachment through formation of amid bond (PPy-CONH-PAMAM). The above mentioned studies showed that electrochemical patterning does not disturb the electronic properties of PPy. The effect of the number of functional groups introduced by the electrochemical patterning was demonstrated through the association of various compounds (ethylenediamine, PAMAM G2 and PAMAM G6). We demonstrated that such compounds could be applied in the biosensors technology. The modified PPy-PAMAM-Fc was evaluated as a platform for DNA sensing. High performance in the DNA detection by variation of the electrochemical signal of ferrocene was obtained with detection limit of 0.4 fM. Furthermore, such approach of electrochemical patterning by oxidation of amines could be applied for chemical modification of PPy and open a new way in various biosensing application involving functionalized PPy.

  5. Electrochemical functionalization of polypyrrole through amine oxidation of poly(amidoamine) dendrimers: Application to DNA biosensor.

    PubMed

    Miodek, Anna; Mejri-Omrani, Nawel; Khoder, Rabih; Korri-Youssoufi, Hafsa

    2016-07-01

    Electrochemical patterning method has been developed to fabricate composite based on polypyrrole (PPy) film and poly(amidoamine) dendrimers of fourth generation (PAMAM G4). PPy layer was generated using electrochemical polymerization of pyrrole on a gold electrode. PPy film was then modified with PAMAM G4 using amines electro-oxidation method. Covalent bonding of PAMAM G4 and the formation of PPy-PAMAM composite was characterized using Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray Photoelectron Spectroscopy (XPS). Ferrocenyl groups were then attached to such surface as a redox marker. Electrochemical properties of the modified nanomaterial (PPy-PAMAM-Fc) were studied using both amperometric and impedimetric methods to demonstrate the efficiency of electron transfer through the modified PPy layer. The obtained electrical and electrochemical properties were compared to a composite where PPy bearing carboxylic acid functions was chemically modified with PAMAM G4 by covalent attachment through formation of amid bond (PPy-CONH-PAMAM). The above mentioned studies showed that electrochemical patterning does not disturb the electronic properties of PPy. The effect of the number of functional groups introduced by the electrochemical patterning was demonstrated through the association of various compounds (ethylenediamine, PAMAM G2 and PAMAM G6). We demonstrated that such compounds could be applied in the biosensors technology. The modified PPy-PAMAM-Fc was evaluated as a platform for DNA sensing. High performance in the DNA detection by variation of the electrochemical signal of ferrocene was obtained with detection limit of 0.4 fM. Furthermore, such approach of electrochemical patterning by oxidation of amines could be applied for chemical modification of PPy and open a new way in various biosensing application involving functionalized PPy. PMID:27154698

  6. A novel reconfigurable optical biosensor based on DNA aptamers and a DNA molecular beacon.

    PubMed

    Buranachai, Chittanon; Thavarungkul, Panote; Kanatharana, Proespichaya

    2012-11-01

    In order to alter a typical molecular aptamer beacon (MAB) to detect a different analyte there is currently a need to change the whole sensor unit including the expensive labeling fluorophores. In this work a DNA-based reconfigurable molecular aptamer beacon was developed. It is composed of two parts: a variable part and a constant part. The variable part comprises an aptamer strand and its complementary strand while the constant part is an oligonucleotide doubly labeled with a Förster Resonance Energy Transfer (FRET) pair and the two parts become joined via DNA hybridization. The sensor exists in two conformations: a folded (high FRET) and an unfolded (low FRET) in the absence and presence of the aptamer-target binding respectively. This sensor can be reconfigured by washing away the aptamer and the complementary strand using proper complementary strands, called washers. As a proof of the principle, a sensor that bound the enzyme thrombin, an analyte with a strong binding, was first constructed and then reconfigured to bind adenosine, selected as an analyte with a weak binding. We believe that the design is of universal use applicable to many types of aptamers.

  7. A localized surface plasmon resonance DNA biosensor based on gold nanospheres coated on the tip of the fiber

    NASA Astrophysics Data System (ADS)

    Jia, Shuo; Bian, Chao; Tong, Jian-hua; Sun, Ji-zhou; Xia, Shan-hong

    2016-03-01

    A localized surface plasmon resonance (LSPR) biosensor was prepared with gold nanospheres (AuNSs) coated on the tip face of the optical silica fiber. AuNSs with the sizes of 20 nm and 80 nm were used. The sensitivities of AuNS20 nm and AuNS80 nm modified sensors to bulk refractive index (RI) variation are 82.86 nm/RIU and 218.98 nm/RIU, respectively. The AuNS80 nm modified sensor was used for the detection of 40 bases DNA hybridization and the limit of detection is 50 nmol/L, where the 40-bases DNA probe was covalently linked with AuNS80 nm. The complementary DNA sequence in tris-acetate-EDTA (TAE) buffer solution was detected as the target DNA. This fiber sensor has the advantages of small sample consumption, easy fabrication and high sensitivity.

  8. Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames.

    PubMed

    Tian, Ye; Wang, Tong; Liu, Wenyan; Xin, Huolin L; Li, Huilin; Ke, Yonggang; Shih, William M; Gang, Oleg

    2015-07-01

    Three-dimensional mesoscale clusters that are formed from nanoparticles spatially arranged in pre-determined positions can be thought of as mesoscale analogues of molecules. These nanoparticle architectures could offer tailored properties due to collective effects, but developing a general platform for fabricating such clusters is a significant challenge. Here, we report a strategy for assembling three-dimensional nanoparticle clusters that uses a molecular frame designed with encoded vertices for particle placement. The frame is a DNA origami octahedron and can be used to fabricate clusters with various symmetries and particle compositions. Cryo-electron microscopy is used to uncover the structure of the DNA frame and to reveal that the nanoparticles are spatially coordinated in the prescribed manner. We show that the DNA frame and one set of nanoparticles can be used to create nanoclusters with different chiroptical activities. We also show that the octahedra can serve as programmable interparticle linkers, allowing one- and two-dimensional arrays to be assembled with designed particle arrangements.

  9. Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames

    SciTech Connect

    Tian, Ye; Wang, Tong; Liu, Wenyan; Xin, Huolin L.; Li, Huilin; Ke, Yonggang; Shih, William M.; Gang, Oleg

    2015-05-25

    Three-dimensional mesoscale clusters that are formed from nanoparticles spatially arranged in pre-determined positions can be thought of as mesoscale analogues of molecules. These nanoparticle architectures could offer tailored properties due to collective effects, but developing a general platform for fabricating such clusters is a significant challenge. Here, we report a strategy for assembling 3D nanoparticle clusters that uses a molecular frame designed with encoded vertices for particle placement. The frame is a DNA origami octahedron and can be used to fabricate clusters with various symmetries and particle compositions. Cryo-electron microscopy is used to uncover the structure of the DNA frame and to reveal that the nanoparticles are spatially coordinated in the prescribed manner. We show that the DNA frame and one set of nanoparticles can be used to create nanoclusters with different chiroptical activities. We also show that the octahedra can serve as programmable interparticle linkers, allowing one- and two-dimensional arrays to be assembled that have designed particle arrangements.

  10. Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames

    DOE PAGESBeta

    Tian, Ye; Wang, Tong; Liu, Wenyan; Xin, Huolin L.; Li, Huilin; Ke, Yonggang; Shih, William M.; Gang, Oleg

    2015-05-25

    Three-dimensional mesoscale clusters that are formed from nanoparticles spatially arranged in pre-determined positions can be thought of as mesoscale analogues of molecules. These nanoparticle architectures could offer tailored properties due to collective effects, but developing a general platform for fabricating such clusters is a significant challenge. Here, we report a strategy for assembling 3D nanoparticle clusters that uses a molecular frame designed with encoded vertices for particle placement. The frame is a DNA origami octahedron and can be used to fabricate clusters with various symmetries and particle compositions. Cryo-electron microscopy is used to uncover the structure of the DNA framemore » and to reveal that the nanoparticles are spatially coordinated in the prescribed manner. We show that the DNA frame and one set of nanoparticles can be used to create nanoclusters with different chiroptical activities. We also show that the octahedra can serve as programmable interparticle linkers, allowing one- and two-dimensional arrays to be assembled that have designed particle arrangements.« less

  11. Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Wang, Tong; Liu, Wenyan; Xin, Huolin L.; Li, Huilin; Ke, Yonggang; Shih, William M.; Gang, Oleg

    2015-07-01

    Three-dimensional mesoscale clusters that are formed from nanoparticles spatially arranged in pre-determined positions can be thought of as mesoscale analogues of molecules. These nanoparticle architectures could offer tailored properties due to collective effects, but developing a general platform for fabricating such clusters is a significant challenge. Here, we report a strategy for assembling three-dimensional nanoparticle clusters that uses a molecular frame designed with encoded vertices for particle placement. The frame is a DNA origami octahedron and can be used to fabricate clusters with various symmetries and particle compositions. Cryo-electron microscopy is used to uncover the structure of the DNA frame and to reveal that the nanoparticles are spatially coordinated in the prescribed manner. We show that the DNA frame and one set of nanoparticles can be used to create nanoclusters with different chiroptical activities. We also show that the octahedra can serve as programmable interparticle linkers, allowing one- and two-dimensional arrays to be assembled with designed particle arrangements.

  12. A label-free fluorescent molecular beacon based on DNA-Ag nanoclusters for the construction of versatile Biosensors.

    PubMed

    Cao, Qiao; Teng, Ye; Yang, Xuan; Wang, Jin; Wang, Erkang

    2015-12-15

    In this paper, we developed a simple, low-cost and sensitive DNA sequences detection biosensor based on a label-free molecular beacon (MB) whose DNA hairpin structure terminal has a guanine-rich sequence that can enhance fluorescence of silver nanoclusters (Ag NCs). Without hybridization between hairpin probe and target DNA, the Ag NCs presented bright fluorescence for the proximity of guanine-rich sequences (GRSs). After binding with target DNA, the hairpin shape was destroyed which results in a decrease of the Ag NCs fluorescence intensity. With this biosensor, we detected three disease-related genes that were the human immunodeficiency virus (HIV) gene, hepatitis B virus (HBV) gene and human T-lymphotropic virus type I (HTLV-I) gene. The detection limits based on S/N of 3 were 4.4 nM, 6.8 nM and 8.5 nM for HIV gene, HBV gene and HTLV-I gene, respectively. Our sensor was also of high selectivity and could distinguish even one nucleotide mismatched target.

  13. A Sensitive and Selective Label-Free Electrochemical DNA Biosensor for the Detection of Specific Dengue Virus Serotype 3 Sequences

    PubMed Central

    Oliveira, Natália; Souza, Elaine; Ferreira, Danielly; Zanforlin, Deborah; Bezerra, Wessulla; Borba, Maria Amélia; Arruda, Mariana; Lopes, Kennya; Nascimento, Gustavo; Martins, Danyelly; Cordeiro, Marli; Lima-Filho, José

    2015-01-01

    Dengue fever is the most prevalent vector-borne disease in the world, with nearly 100 million people infected every year. Early diagnosis and identification of the pathogen are crucial steps for the treatment and for prevention of the disease, mainly in areas where the co-circulation of different serotypes is common, increasing the outcome of dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Due to the lack of fast and inexpensive methods available for the identification of dengue serotypes, herein we report the development of an electrochemical DNA biosensor for the detection of sequences of dengue virus serotype 3 (DENV-3). DENV-3 probe was designed using bioinformatics software and differential pulse voltammetry (DPV) was used for electrochemical analysis. The results showed that a 22-m sequence was the best DNA probe for the identification of DENV-3. The optimum concentration of the DNA probe immobilized onto the electrode surface is 500 nM and a low detection limit of the system (3.09 nM). Moreover, this system allows selective detection of DENV-3 sequences in buffer and human serum solutions. Therefore, the application of DNA biosensors for diagnostics at the molecular level may contribute to future advances in the implementation of specific, effective and rapid detection methods for the diagnosis dengue viruses. PMID:26140346

  14. Gold nanoparticles modified electrode via a mercapto-diazoaminobenzene monolayer and its development in DNA electrochemical biosensor.

    PubMed

    Li, Feng; Feng, Yan; Dong, Pingjun; Tang, Bo

    2010-05-15

    A novel protocol for the gold nanoparticles (AuNPs) modification on the electrode surface was proposed, which was based on the self-assembly of AuNPs on the mercapto-diazoaminobenzene monolayer modified electrode. The mercapto-diazoaminobenzene monolayer was obtained by covalent immobilization of 4-aminothiophenol (4-ATP) molecules onto another 4-ATP monolayer functionalized gold electrode by diazotization-coupling reaction. The DNA immobilization and hybridization on the AuNPs modified electrode was further investigated. The prepared AuNPs-ATP-diazo-ATP film demonstrated efficient electron transfer ability for the electroactive species toward the electrode surface due to a large conjugated structure of the mercapto-diazoaminobenzene monolayer. The recognition of fabricated electrochemical DNA biosensor toward complementary single-stranded DNA was determined by differential pulse voltammetry with the use of Co(phen)(3)3+ as an electrochemical indicator. A linear detection range for the complementary target DNA was obtained from 3.01 x 10(-10) to 1.32 x 10(-8) M with a detection limit of 9.10 x 10(-11) M. The fabricated biosensor also possessed good selectivity and could be regenerated easily. PMID:20207131

  15. Detection of Aeromonas hydrophila DNA oligonucleotide sequence using a biosensor design based on Ceria nanoparticles decorated reduced graphene oxide and Fast Fourier transform square wave voltammetry.

    PubMed

    Jafari, Safiye; Faridbod, Farnoush; Norouzi, Parviz; Dezfuli, Amin Shiralizadeh; Ajloo, Davood; Mohammadipanah, Fatemeh; Ganjali, Mohammad Reza

    2015-10-01

    A new strategy was introduced for ssDNA immobilization on a modified glassy carbon electrode. The electrode surface was modified using polyaniline and chemically reduced graphene oxide decorated cerium oxide nanoparticles (CeO2NPs-RGO). A single-stranded DNA (ssDNA) probe was immobilized on the modified electrode surface. Fast Fourier transform square wave voltammetry (FFT-SWV) was applied as detection technique and [Ru(bpy)3](2+/3+) redox signal was used as electrochemical marker. The hybridization of ssDNA with its complementary target caused a dramatic decrease in [Ru(bpy)3](2+/3+) FFT-SW signal. The proposed electrochemical biosensor was able to detect Aeromonas hydrophila DNA oligonucleotide sequence encoding aerolysin protein. Under optimal conditions, the biosensor showed excellent selectivity toward complementary sequence in comparison with noncomplementary and two-base mismatch sequences. The dynamic linear range of this electrochemical DNA biosensor for detecting 20-mer oligonucleotide sequence of A. hydrophila was from 1 × 10(-15) to 1 × 10(-8) mol L(-1). The proposed biosensor was successfully applied for the detection of DNA extracted from A. hydrophila in fish pond water up to 0.01 μg mL(-1) with RSD of 5%. Besides, molecular docking was applied to consider the [Ru(bpy)3](2+/3+) interaction with ssDNA before and after hybridization.

  16. Rapid and sensitive detection of foodborne pathogenic bacteria (Staphylococcus aureus) using an electrochemical DNA genomic biosensor and its application in fresh beef.

    PubMed

    Abdalhai, Mandour H; Fernandes, António Maximiano; Bashari, Mohand; Ji, Jian; He, Qian; Sun, Xiulan

    2014-12-31

    Rapid early detection of food contamination is the main key in food safety and quality control. Biosensors are emerging as a vibrant area of research, and the use of DNA biosensor recognition detectors is relatively new. In this study a genomic DNA biosensor system with a fixing and capture probe was modified by a sulfhydryl and amino group, respectively, as complementary with target DNA. After immobilization and hybridization, the following sandwich structure fixing DNA-target DNA-capture DNA-PbS NPs was formed to detect pathogenic bacteria (Staphylococuus aureus EF529607.1) by using GCE modified with (multiwalled carbon nanotubes-chitosan-bismuth) to increase the sensitivity of the electrode. The modification procedure was characterized by cyclic voltammetry and electrochemical impedance spectroscopy. The sandwich structure was dissolved in 1 M nitric acid to become accessible to the electrode, and the PbS NPs was measured in solution by differential pulse voltammetry (DPV). The results showed that the detection limit of the DNA sensor was 3.17 × 10(-14) M S. aureus using PbS NPs, whereas the result for beef samples was 1.23 ng/mL. Thus, according to the experimental results presented, the DNA biosensor exhibited high sensitivity and rapid response, and it will be useful for the food matrix.

  17. Detection of Aeromonas hydrophila DNA oligonucleotide sequence using a biosensor design based on Ceria nanoparticles decorated reduced graphene oxide and Fast Fourier transform square wave voltammetry.

    PubMed

    Jafari, Safiye; Faridbod, Farnoush; Norouzi, Parviz; Dezfuli, Amin Shiralizadeh; Ajloo, Davood; Mohammadipanah, Fatemeh; Ganjali, Mohammad Reza

    2015-10-01

    A new strategy was introduced for ssDNA immobilization on a modified glassy carbon electrode. The electrode surface was modified using polyaniline and chemically reduced graphene oxide decorated cerium oxide nanoparticles (CeO2NPs-RGO). A single-stranded DNA (ssDNA) probe was immobilized on the modified electrode surface. Fast Fourier transform square wave voltammetry (FFT-SWV) was applied as detection technique and [Ru(bpy)3](2+/3+) redox signal was used as electrochemical marker. The hybridization of ssDNA with its complementary target caused a dramatic decrease in [Ru(bpy)3](2+/3+) FFT-SW signal. The proposed electrochemical biosensor was able to detect Aeromonas hydrophila DNA oligonucleotide sequence encoding aerolysin protein. Under optimal conditions, the biosensor showed excellent selectivity toward complementary sequence in comparison with noncomplementary and two-base mismatch sequences. The dynamic linear range of this electrochemical DNA biosensor for detecting 20-mer oligonucleotide sequence of A. hydrophila was from 1 × 10(-15) to 1 × 10(-8) mol L(-1). The proposed biosensor was successfully applied for the detection of DNA extracted from A. hydrophila in fish pond water up to 0.01 μg mL(-1) with RSD of 5%. Besides, molecular docking was applied to consider the [Ru(bpy)3](2+/3+) interaction with ssDNA before and after hybridization. PMID:26454462

  18. An Electrochemical DNA Biosensor for the Detection of Salmonella Using Polymeric Films and Electrochemical Labels

    NASA Astrophysics Data System (ADS)

    Diaz Serrano, Madeline

    Waterborne and foodborne diseases are one of the principal public health problems worldwide. Microorganisms are the major agents of foodborne illness: pathogens such as Salmonella, Campylobacter jejuni and Escherichia coli, and parasites such as cryptosporidium. The most popular methods to detect Salmonella are based on culture and colony counting methods, ELISA, Gel electrophoresis and the polymerase chain reaction. Conventional detection methods are laborious and time-consuming, allowing for portions of the food to be distributed, marketed, sold and eaten before the analysis is done and the problem even detected. By these reasons, the rapid, easy and portable detection of foodborne organisms will facilitate the disease treatment. Our particular interest is to develop a nucleic acid biosensor (NAB) for the detection of pathogenic microorganisms in food and water samples. In this research, we report on the development of a NAB prototype using a polymer modified electrode surface together with sequences of different lengths for the OmpC gene from Salmonella as probes and Ferrocene-labeled target (Fc-ssDNA), Ferrocene-labeled tri(ethylene glycol) (Fc-PEG) and Ruthenium-Ferrocene (Ru-Fe) bimetallic complex as an electrochemical labels. We have optimized several PS films and anchored nucleic acid sequences with different lengths at gold and carbon surfaces. Non contact mode AFM and XPS were used to monitor each step of the NAB preparation, from polymer modification to oligos hybridization (conventional design). The hybridization reaction was followed electrochemically using a Fc-ssDNA and Fc-PEG in solution taking advantage of the morphological changes generated upon hybridization. We observed a small current at the potential for the Fe oxidation without signal amplification at +296 mV vs. Ag/AgCl for the Fc-ssDNA strategy and a small current at +524 mV for the Fc-PEG strategy. The immobilization, hybridization and signal amplification of Biotin- OmpC Salmonella genes

  19. Electrochemical DNA Biosensor Based on a Tetrahedral Nanostructure Probe for the Detection of Avian Influenza A (H7N9) Virus.

    PubMed

    Dong, Shibiao; Zhao, Rongtao; Zhu, Jiangong; Lu, Xiao; Li, Yang; Qiu, Shaofu; Jia, Leili; Jiao, Xiong; Song, Shiping; Fan, Chunhai; Hao, RongZhang; Song, HongBin

    2015-04-29

    A DNA tetrahedral nanostructure-based electrochemical biosensor was developed to detect avian influenza A (H7N9) virus through recognizing a fragment of the hemagglutinin gene sequence. The DNA tetrahedral probe was immobilized onto a gold electrode surface based on self-assembly between three thiolated nucleotide sequences and a longer nucleotide sequence containing complementary DNA to hybridize with the target single-stranded (ss)DNA. The captured target sequence was hybridized with a biotinylated-ssDNA oligonucleotide as a detection probe, and then avidin-horseradish peroxidase was introduced to produce an amperometric signal through the interaction with 3,3',5,5'-tetramethylbenzidine substrate. The target ssDNA was obtained by asymmetric polymerase chain reaction (PCR) of the cDNA template, reversely transcribed from the viral lysate of influenza A (H7N9) virus in throat swabs. The results showed that this electrochemical biosensor could specifically recognize the target DNA fragment of influenza A (H7N9) virus from other types of influenza viruses, such as influenza A (H1N1) and (H3N2) viruses, and even from single-base mismatches of oligonucleotides. Its detection limit could reach a magnitude of 100 fM for target nucleotide sequences. Moreover, the cycle number of the asymmetric PCR could be reduced below three with the electrochemical biosensor still distinguishing the target sequence from the negative control. To the best of our knowledge, this is the first report of the detection of target DNA from clinical samples using a tetrahedral DNA probe functionalized electrochemical biosensor. It displays that the DNA tetrahedra has a great potential application as a probe of the electrochemical biosensor to detect avian influenza A (H7N9) virus and other pathogens at the gene level, which will potentially aid the prevention and control of the disease caused by such pathogens. PMID:25844798

  20. Electrochemical DNA Biosensor Based on a Tetrahedral Nanostructure Probe for the Detection of Avian Influenza A (H7N9) Virus.

    PubMed

    Dong, Shibiao; Zhao, Rongtao; Zhu, Jiangong; Lu, Xiao; Li, Yang; Qiu, Shaofu; Jia, Leili; Jiao, Xiong; Song, Shiping; Fan, Chunhai; Hao, RongZhang; Song, HongBin

    2015-04-29

    A DNA tetrahedral nanostructure-based electrochemical biosensor was developed to detect avian influenza A (H7N9) virus through recognizing a fragment of the hemagglutinin gene sequence. The DNA tetrahedral probe was immobilized onto a gold electrode surface based on self-assembly between three thiolated nucleotide sequences and a longer nucleotide sequence containing complementary DNA to hybridize with the target single-stranded (ss)DNA. The captured target sequence was hybridized with a biotinylated-ssDNA oligonucleotide as a detection probe, and then avidin-horseradish peroxidase was introduced to produce an amperometric signal through the interaction with 3,3',5,5'-tetramethylbenzidine substrate. The target ssDNA was obtained by asymmetric polymerase chain reaction (PCR) of the cDNA template, reversely transcribed from the viral lysate of influenza A (H7N9) virus in throat swabs. The results showed that this electrochemical biosensor could specifically recognize the target DNA fragment of influenza A (H7N9) virus from other types of influenza viruses, such as influenza A (H1N1) and (H3N2) viruses, and even from single-base mismatches of oligonucleotides. Its detection limit could reach a magnitude of 100 fM for target nucleotide sequences. Moreover, the cycle number of the asymmetric PCR could be reduced below three with the electrochemical biosensor still distinguishing the target sequence from the negative control. To the best of our knowledge, this is the first report of the detection of target DNA from clinical samples using a tetrahedral DNA probe functionalized electrochemical biosensor. It displays that the DNA tetrahedra has a great potential application as a probe of the electrochemical biosensor to detect avian influenza A (H7N9) virus and other pathogens at the gene level, which will potentially aid the prevention and control of the disease caused by such pathogens.

  1. Differentiating between fluorescence-quenching metal ions with polyfluorophore sensors built on a DNA backbone.

    PubMed

    Tan, Samuel S; Kim, Su Jeong; Kool, Eric T

    2011-03-01

    A common problem in detecting metal ions with fluorescentchemosensors is the emission-suppressing effects of fluorescence-quenching metal ions. This quenching tendency makes it difficult to design sensors with turn-on signal, and differentiate between several metal ions that may yield a strong quenching response. To address these challenges, we investigate a new sensor design strategy, incorporating fluorophores and metal ligands as DNA base replacements in DNA-like oligomers, for generating a broader range of responses for quenching metal ions. The modular molecular design enabled rapid synthesis and discovery of sensors from libraries on PEG-polystyrene beads. Using this approach, water-soluble sensors 1-5 were identified as strong responders to a set of eight typically quenching metal ions (Co(2+), Ni(2+), Cu(2+), Hg(2+), Pb(2+), Ag(+), Cr(3+), and Fe(3+)). They were synthesized and characterized for sensing responses in solution. Cross-screening with the full set of metal ions showed that they have a wide variety of responses, including emission enhancements and red- and blue-shifts. The diversity of sensor responses allows as few as two sensors (1 and 2) to be used together to successfully differentiate these eight metals. As a test, a set of unknown metal ion solutions in blind studies were also successfully identified based on the response pattern of the sensors. The modular nature of the sensor design strategy suggests a broadly applicable approach to finding sensors for differentiating many different cations by pattern-based recognition, simply by varying the sequence and composition of ligands and fluorophores on a DNA synthesizer.

  2. Genomagnetic Electrochemical Biosensors

    NASA Astrophysics Data System (ADS)

    Wang, Joseph; Erdem, Arzum

    The use of nucleic acid technologies has significantly improved preparation and diagnostic procedures in life sciences. Nucleic acid layers combined with electrochemical or optical transducers produce a new kind of affinity biosensors as DNA Biosensor for small molecular weight molecules. Electrochemical DNA biosensors are attractive devices for converting the hybridization event into an analytical signal for obtaining sequence-specific information in connection with clinical, environmental or forensic investigations. DNA hybridization biosensors, based on electrochemical transduction of hybridization, couple the high specificity of hybridization reactions with the excellent sensitivity and portability of electrochemical transducers. The main goal in all researches is to design DNA biosensors for preparing a basis for the future DNA microarray system. DNA chip has now become a powerful tool in biological research, however the real clinic assay is still under development. Recently, there has been a great interest to the magnetic beads and/or nanoparticles labelled with metals such as gold, cadmium, silver, etc. for designing of novel electrochemical DNA biosensor approaches resulting in efficient separation. The attractive features of this technology include simple approach, rapid results, multi-analyte detection, low-cost per measurument, stable, and non-hazardous reagents, and reduced waste handling. Some of these new approaches and applications of the electrochemical DNA biosensors based on magnetic beads and its combining with nanoparticles labelled with metals are described and discussed.

  3. Development of a Mass Sensitive Quartz Crystal Microbalance (QCM)-Based DNA Biosensor Using a 50 MHz Electronic Oscillator Circuit

    PubMed Central

    García-Martinez, Gonzalo; Bustabad, Enrique Alonso; Perrot, Hubert; Gabrielli, Claude; Bucur, Bogdan; Lazerges, Mathieu; Rose, Daniel; Rodriguez-Pardo, Loreto; Fariña, Jose; Compère, Chantal; Vives, Antonio Arnau

    2011-01-01

    This work deals with the design of a high sensitivity DNA sequence detector using a 50 MHz quartz crystal microbalance (QCM) electronic oscillator circuit. The oscillator circuitry is based on Miller topology, which is able to work in damping media. Calibration and experimental study of frequency noise are carried out, finding that the designed sensor has a resolution of 7.1 ng/cm2 in dynamic conditions (with circulation of liquid). Then the oscillator is proved as DNA biosensor. Results show that the system is able to detect the presence of complementary target DNAs in a solution with high selectivity and sensitivity. DNA target concentrations higher of 50 ng/mL can be detected. PMID:22164037

  4. Development of a mass sensitive quartz crystal microbalance (QCM)-based DNA biosensor using a 50 MHz electronic oscillator circuit.

    PubMed

    García-Martinez, Gonzalo; Bustabad, Enrique Alonso; Perrot, Hubert; Gabrielli, Claude; Bucur, Bogdan; Lazerges, Mathieu; Rose, Daniel; Rodriguez-Pardo, Loreto; Fariña, Jose; Compère, Chantal; Vives, Antonio Arnau

    2011-01-01

    This work deals with the design of a high sensitivity DNA sequence detector using a 50 MHz quartz crystal microbalance (QCM) electronic oscillator circuit. The oscillator circuitry is based on Miller topology, which is able to work in damping media. Calibration and experimental study of frequency noise are carried out, finding that the designed sensor has a resolution of 7.1 ng/cm(2) in dynamic conditions (with circulation of liquid). Then the oscillator is proved as DNA biosensor. Results show that the system is able to detect the presence of complementary target DNAs in a solution with high selectivity and sensitivity. DNA target concentrations higher of 50 ng/mL can be detected. PMID:22164037

  5. A new photoelectrochemical biosensors based on DNA conformational changes and isothermal circular strand-displacement polymerization reaction.

    PubMed

    Zhang, Xiaoru; Xu, Yunpeng; Zhao, Yanqing; Song, Weiling

    2013-01-15

    We report a strategy for the transduction of DNA hybridization into a readily detectable photoelectrochemical signal by means of a conformational change analogous to electrochemical DNA (E-DNA) approach. To demonstrate the effect of distance change for photosensitizer to the surface of electrode on the change of photocurrent, photosensitizer Ru(bpy)(2)(dcbpy)(2+) tagged DNA stem-loop structures were self-assembled onto a nanogold modified ITO electrode. Hybridization induced a large conformational change in DNA structure, which in turn significantly altered the electron-transfer tunneling distance between the electrode and photosensitizer. The resulting change in photocurrent was proportional to the concentration of DNA in the range of 1.0×10(-10)-8.0×10(-9)M. In order to improve the sensitivity of the photoelectrochemical biosensor, an amplified detection method based on isothermal strand displacement polymerization reaction was employed. With multiple rounds of isothermal strand replication, which led to strand displacement and constituted consecutive signal amplification, a detection limit of 9.4×10(-14)M target DNA was achieved.

  6. A highly selective and sensitive electrochemical CS-MWCNTs/Au-NPs composite DNA biosensor for Staphylococcus aureus gene sequence detection.

    PubMed

    Sun, Yange; He, Xingxing; Ji, Jian; Jia, Min; Wang, Zhouping; Sun, Xiulan

    2015-08-15

    This paper presents a new electrochemical DNA biosensor constructed using a substrate electrode composed of a novel nanocomposite material prepared using gold nanoparticles (Au-NPs) and multiwalled carbon nanotubes (MWCNTs) and further modified with an Au electrode (AuE), which was used as the substrate electrode. A single-stranded DNA (ssDNA) probe was immobilized on the Au-NPs/CS-MWCNTs/AuE electrode by means of facile gold-thiol affinity, which resulted in hybridization with the target ssDNA sequence. Hybridization reactions were assessed by using the reduction peak current of methylene blue (MB) as an electrochemical indicator. The advantages of the nanomaterials were found to include high surface area, favorable electronic properties, and strong electrocatalytic activity. The amount of ssDNA adsorbed on the electrode surface was increased and the electrochemical response of MB accelerated. The differential pulse voltammetric responses of MB were in line with the specific target ssDNA sequence within the concentration range 1.0×10(-15)-1.0×10(-8)M with the detection limit 3.3×10(-16)M (3σ). In the colony forming unit (CFU) we were able to detect 10CFU mL(-1)of Staphylococcus aureus in the tap water, achieving good discrimination ability between one- and three-base mismatched ssDNA sequences. The polymerase chain reaction (PCR) amplification products of S. aureus nuc gene sequence were also detected with satisfactory results.

  7. Electrochemical DNA biosensor for detection of porcine oligonucleotides using ruthenium(II) complex as intercalator label redox

    SciTech Connect

    Halid, Nurul Izni Abdullah; Hasbullah, Siti Aishah; Heng, Lee Yook; Karim, Nurul Huda Abd; Ahmad, Haslina; Harun, Siti Norain

    2014-09-03

    A DNA biosensor detection of oligonucleotides via the interactions of porcine DNA with redox active complex based on the electrochemical transduction is described. A ruthenium(II) complex, [Ru(bpy){sub 2}(PIP)]{sup 2+}, (bpy = 2,2′bipyridine, PIP = 2-phenylimidazo[4,5-f[[1,10-phenanthroline]) as DNA label has been synthesized and characterized by 1H NMR and mass spectra. The study was carried out by covalent bonding immobilization of porcine aminated DNA probes sequences on screen printed electrode (SPE) modified with succinimide-acrylic microspheres and [Ru(bpy){sub 2}(PIP)]{sup 2+} was used as electrochemical redox intercalator label to detect DNA hybridization event. Electrochemical detection was performed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) over the potential range where the ruthenium (II) complex was active. The results indicate that the interaction of [Ru(bpy){sub 2}(PIP)]{sup 2+} with hybridization complementary DNA has higher response compared to single-stranded and mismatch complementary DNA.

  8. A highly selective and sensitive electrochemical CS-MWCNTs/Au-NPs composite DNA biosensor for Staphylococcus aureus gene sequence detection.

    PubMed

    Sun, Yange; He, Xingxing; Ji, Jian; Jia, Min; Wang, Zhouping; Sun, Xiulan

    2015-08-15

    This paper presents a new electrochemical DNA biosensor constructed using a substrate electrode composed of a novel nanocomposite material prepared using gold nanoparticles (Au-NPs) and multiwalled carbon nanotubes (MWCNTs) and further modified with an Au electrode (AuE), which was used as the substrate electrode. A single-stranded DNA (ssDNA) probe was immobilized on the Au-NPs/CS-MWCNTs/AuE electrode by means of facile gold-thiol affinity, which resulted in hybridization with the target ssDNA sequence. Hybridization reactions were assessed by using the reduction peak current of methylene blue (MB) as an electrochemical indicator. The advantages of the nanomaterials were found to include high surface area, favorable electronic properties, and strong electrocatalytic activity. The amount of ssDNA adsorbed on the electrode surface was increased and the electrochemical response of MB accelerated. The differential pulse voltammetric responses of MB were in line with the specific target ssDNA sequence within the concentration range 1.0×10(-15)-1.0×10(-8)M with the detection limit 3.3×10(-16)M (3σ). In the colony forming unit (CFU) we were able to detect 10CFU mL(-1)of Staphylococcus aureus in the tap water, achieving good discrimination ability between one- and three-base mismatched ssDNA sequences. The polymerase chain reaction (PCR) amplification products of S. aureus nuc gene sequence were also detected with satisfactory results. PMID:25966418

  9. Highly sensitive silicon nanowire biosensor with novel liquid gate control for detection of specific single-stranded DNA molecules.

    PubMed

    Adam, Tijjani; Hashim, U

    2015-05-15

    The study demonstrates the development of a liquid-based gate-control silicon nanowire biosensor for detection of specific single-stranded DNA (ssDNA) molecules. The sensor was fabricated using conventional photolithography coupled with an inductively coupled plasma dry etching process. Prior to the application of DNA to the device, its linear response to pH was confirmed by serial dilution from pH 2 to pH 14. Then, the sensor surface was silanized and directly aminated with (3-aminopropyl) triethoxysilane to create a molecular binding chemistry for biofunctionalization. The resulting Si‒O‒Si‒ components were functionalized with receptor ssDNA, which interacted with the targeted ssDNA to create a field across the silicon nanowire and increase the current. The sensor shows selectivity for the target ssDNA in a linear range from target ssDNA concentrations of 100 pM to 25 nM. With its excellent detection capabilities, this sensor platform is promising for detection of specific biomarkers and other targeted proteins. PMID:25453738

  10. A sensitive electrochemical DNA biosensor for specific detection of Enterobacteriaceae bacteria by Exonuclease III-assisted signal amplification.

    PubMed

    Luo, Caihui; Tang, Hua; Cheng, Wei; Yan, Li; Zhang, Decai; Ju, Huangxian; Ding, Shijia

    2013-10-15

    A specific and sensitive methodology was developed successfully for quantitative detection of Enterobacteriaceae bacteria by integrating Exonuclease III-assisted target recycling amplification with a simple electrochemical DNA biosensor. After target DNA hybridizes with capture DNA, Exonuclease III can selectively digest the capture DNA, which releases the target to undergo a new hybridization and cleavage cycle on sensor surface, leading to a successful target recycling. Finally, the left capture DNA is recognized by detection probe to produce the detectable signal, which decreases with the increasing target DNA concentration. Under the optimal conditions, the proposed strategy could detect target DNA down to 8.7 fM with a linear range from 0.01 pM to 1 nM, showing high sensitivity. Meanwhile, the sensing strategy was successfully used for detection of Enterobacteriaceae bacteria down to 40 CFU mL⁻¹ in milk samples. This strategy presented a simple, rapid and sensitive platform for Enterobacteriaceae bacteria detection and would become a versatile and powerful tool for food safety, biothreat detection and environmental monitoring.

  11. Electrochemical study of quinone redox cycling: A novel application of DNA-based biosensors for monitoring biochemical reactions.

    PubMed

    Ensafi, Ali A; Jamei, Hamid Reza; Heydari-Bafrooei, Esmaeil; Rezaei, B

    2016-10-01

    This paper presents the results of an experimental investigation of voltammetric and impedimetric DNA-based biosensors for monitoring biological and chemical redox cycling reactions involving free radical intermediates. The concept is based on associating the amounts of radicals generated with the electrochemical signals produced, using differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). For this purpose, a pencil graphite electrode (PGE) modified with multiwall carbon nanotubes and poly-diallydimethlammonium chloride decorated with double stranded fish sperm DNA was prepared to detect DNA damage induced by the radicals generated from a redox cycling quinone (i.e., menadione (MD; 2-methyl-1,4-naphthoquinone)). Menadione was employed as a model compound to study the redox cycling of quinones. A direct relationship was found between free radical production and DNA damage. The relationship between MD-induced DNA damage and free radical generation was investigated in an attempt to identify the possible mechanism(s) involved in the action of MD. Results showed that DPV and EIS were appropriate, simple and inexpensive techniques for the quantitative and qualitative comparisons of different reducing reagents. These techniques may be recommended for monitoring DNA damages and investigating the mechanisms involved in the production of redox cycling compounds.

  12. A MoS₂ Nanosheet-Based Fluorescence Biosensor for Simple and Quantitative Analysis of DNA Methylation.

    PubMed

    Xiao, Le; Xu, Li; Gao, Chuan; Zhang, Yulin; Yao, Qunfeng; Zhang, Guo-Jun

    2016-01-01

    MoS₂ nanomaterial has unique properties, including innate affinity with ss-DNA and quenching ability for fluorescence dyes. Here, we present the development of a simple fluorescence biosensor based on water-soluble MoS₂ nanosheets and restriction endonuclease BstUI for methylation analysis of p16 promoter. The biosensing platform exhibited excellent sensitivity in detecting DNA with a linear range of 100 pM~20 nM and a detection limit of 140 pM. More importantly, our method could distinguish as low as 1% difference in methylation level. Compared with previous methylation analysis, our design is both time saving and simple to operate, avoiding the limitations of PCR-based assays without compromising performance. PMID:27669248

  13. Fiber optofluidic biosensor for the label-free detection of DNA hybridization and methylation based on an in-line tunable mode coupler.

    PubMed

    Gao, Ran; Lu, Dan-Feng; Cheng, Jin; Jiang, Yi; Jiang, Lan; Xu, Jian-Dong; Qi, Zhi-Mei

    2016-12-15

    An optical fiber optofluidic biosensor for the detection of DNA hybridization and methylation has been proposed and experimentally demonstrated. An in-line fiber Michelson interferometer was formed in the photonic crystal fiber. A micrhole in the collapsed region, which combined the tunable mode coupler and optofluidic channel, was fabricated by using femtosecond laser micromachining. The mode field diameter of the guided light is changed with the refractive index in the optofluidic channel, which results in the tunable coupling ratio. Label-free detections of the DNA hybridization and methylation have been experimentally demonstrated. The probe single stranded DNA (ssDNA) was bound with the surface of the optofluidic channel through the Poly-l-lysine layer, and the hybridization between a short 22-mer probe ssDNA and a complementary target ssDNA was carried out and detected by interrogating the fringe visibility of the reflection spectrum. Then, the DNA methylation was also detected through the binding between the methylated DNA and the 5-methylcytosine (5-mC) monoclonal antibody. The experiments results demonstrate that the limit of detection of 5nM is achieved, establishing the tunable mode coupler as a sensitive and versatile biosensor. The sensitive optical fiber optofluidic biosensor possesses high specificity and low temperature cross-sensitivity. PMID:27392233

  14. Titanium Dioxide Nanoparticle-Based Interdigitated Electrodes: A Novel Current to Voltage DNA Biosensor Recognizes E. coli O157:H7

    PubMed Central

    Nadzirah, Sh.; Azizah, N.; Hashim, Uda; Gopinath, Subash C. B.; Kashif, Mohd

    2015-01-01

    Nanoparticle-mediated bio-sensing promoted the development of novel sensors in the front of medical diagnosis. In the present study, we have generated and examined the potential of titanium dioxide (TiO2) crystalline nanoparticles with aluminium interdigitated electrode biosensor to specifically detect single-stranded E.coli O157:H7 DNA. The performance of this novel DNA biosensor was measured the electrical current response using a picoammeter. The sensor surface was chemically functionalized with (3-aminopropyl) triethoxysilane (APTES) to provide contact between the organic and inorganic surfaces of a single-stranded DNA probe and TiO2 nanoparticles while maintaining the sensing system’s physical characteristics. The complement of the target DNA of E. coli O157:H7 to the carboxylate-probe DNA could be translated into electrical signals and confirmed by the increased conductivity in the current-to-voltage curves. The specificity experiments indicate that the biosensor can discriminate between the complementary sequences from the base-mismatched and the non-complementary sequences. After duplex formation, the complementary target sequence can be quantified over a wide range with a detection limit of 1.0 x 10-13M. With target DNA from the lysed E. coli O157:H7, we could attain similar sensitivity. Stability of DNA immobilized surface was calculated with the relative standard deviation (4.6%), displayed the retaining with 99% of its original response current until 6 months. This high-performance interdigitated DNA biosensor with high sensitivity, stability and non-fouling on a novel sensing platform is suitable for a wide range of biomolecular interactive analyses. PMID:26445455

  15. A novel electrochemical DNA biosensor based on a modified magnetic bar carbon paste electrode with Fe3O4NPs-reduced graphene oxide/PANHS nanocomposite.

    PubMed

    Jahanbani, Shahriar; Benvidi, Ali

    2016-11-01

    In this study, we have designed a label free DNA biosensor based on a magnetic bar carbon paste electrode (MBCPE) modified with nanomaterial of Fe3O4/reduced graphene oxide (Fe3O4NP-RGO) as a composite and 1- pyrenebutyric acid-N- hydroxysuccinimide ester (PANHS) as a linker for detection of DNA sequences. Probe (BRCA1 5382 insC mutation detection) strands were immobilized on the MBCPE/Fe3O4-RGO/PANHS electrode for the exact incubation time. The characterization of the modified electrode was studied using different techniques such as scanning electron microscopy (SEM), infrared spectroscopy (IR), vibrating sample magnetometer (VSM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry methods. Some experimental parameters such as immobilization time of probe DNA, time and temperature of hybridization process were investigated. Under the optimum conditions, the immobilization of the probe and its hybridization with the target DNA (Complementary DNA) were tested. This DNA biosensor revealed a good linear relationship between ∆Rct and logarithm of the complementary target DNA concentration ranging from 1.0×10(-18)molL(-1) to 1.0×10(-8)molL(-1) with a correlation coefficient of 0.9935 and a detection limit of 2.8×10(-19)molL(-1). In addition, the mentioned biosensor was satisfactorily applied for discriminating of complementary sequences from non-complementary sequences. The constructed biosensor (MBCPE/Fe3O4-RGO/PANHS/ssDNA) with high sensitivity, selectivity, stability, reproducibility and low cost can be used for detection of BRCA1 5382 insC mutation. PMID:27523989

  16. A novel electrochemical DNA biosensor based on a modified magnetic bar carbon paste electrode with Fe3O4NPs-reduced graphene oxide/PANHS nanocomposite.

    PubMed

    Jahanbani, Shahriar; Benvidi, Ali

    2016-11-01

    In this study, we have designed a label free DNA biosensor based on a magnetic bar carbon paste electrode (MBCPE) modified with nanomaterial of Fe3O4/reduced graphene oxide (Fe3O4NP-RGO) as a composite and 1- pyrenebutyric acid-N- hydroxysuccinimide ester (PANHS) as a linker for detection of DNA sequences. Probe (BRCA1 5382 insC mutation detection) strands were immobilized on the MBCPE/Fe3O4-RGO/PANHS electrode for the exact incubation time. The characterization of the modified electrode was studied using different techniques such as scanning electron microscopy (SEM), infrared spectroscopy (IR), vibrating sample magnetometer (VSM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry methods. Some experimental parameters such as immobilization time of probe DNA, time and temperature of hybridization process were investigated. Under the optimum conditions, the immobilization of the probe and its hybridization with the target DNA (Complementary DNA) were tested. This DNA biosensor revealed a good linear relationship between ∆Rct and logarithm of the complementary target DNA concentration ranging from 1.0×10(-18)molL(-1) to 1.0×10(-8)molL(-1) with a correlation coefficient of 0.9935 and a detection limit of 2.8×10(-19)molL(-1). In addition, the mentioned biosensor was satisfactorily applied for discriminating of complementary sequences from non-complementary sequences. The constructed biosensor (MBCPE/Fe3O4-RGO/PANHS/ssDNA) with high sensitivity, selectivity, stability, reproducibility and low cost can be used for detection of BRCA1 5382 insC mutation.

  17. Titanium Dioxide Nanoparticle-Based Interdigitated Electrodes: A Novel Current to Voltage DNA Biosensor Recognizes E. coli O157:H7.

    PubMed

    Nadzirah, Sh; Azizah, N; Hashim, Uda; Gopinath, Subash C B; Kashif, Mohd

    2015-01-01

    Nanoparticle-mediated bio-sensing promoted the development of novel sensors in the front of medical diagnosis. In the present study, we have generated and examined the potential of titanium dioxide (TiO2) crystalline nanoparticles with aluminium interdigitated electrode biosensor to specifically detect single-stranded E.coli O157:H7 DNA. The performance of this novel DNA biosensor was measured the electrical current response using a picoammeter. The sensor surface was chemically functionalized with (3-aminopropyl) triethoxysilane (APTES) to provide contact between the organic and inorganic surfaces of a single-stranded DNA probe and TiO2 nanoparticles while maintaining the sensing system's physical characteristics. The complement of the target DNA of E. coli O157:H7 to the carboxylate-probe DNA could be translated into electrical signals and confirmed by the increased conductivity in the current-to-voltage curves. The specificity experiments indicate that the biosensor can discriminate between the complementary sequences from the base-mismatched and the non-complementary sequences. After duplex formation, the complementary target sequence can be quantified over a wide range with a detection limit of 1.0 x 10(-13)M. With target DNA from the lysed E. coli O157:H7, we could attain similar sensitivity. Stability of DNA immobilized surface was calculated with the relative standard deviation (4.6%), displayed the retaining with 99% of its original response current until 6 months. This high-performance interdigitated DNA biosensor with high sensitivity, stability and non-fouling on a novel sensing platform is suitable for a wide range of biomolecular interactive analyses. PMID:26445455

  18. Electrochemical DNA biosensor based on a glassy carbon electrode modified with gold nanoparticles and graphene for sensitive determination of Klebsiella pneumoniae carbapenemase.

    PubMed

    Pan, Hong-zhi; Yu, Hong-wei; Wang, Na; Zhang, Ze; Wan, Guang-cai; Liu, Hao; Guan, Xue; Chang, Dong

    2015-11-20

    We describe the fabrication of a sensitive electrochemical DNA biosensor for determination of Klebsiella pneumoniae carbapenemase (KPC). The highly sensitive and selective electrochemical biosensor for DNA detection was constructed based on a glassy carbon electrode (GCE) modified with gold nanoparticles (Au-NPs) and graphene (Gr). Then Au-NPs/Gr/GCE was characterized by scanning electro microscope (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The hybridization detection was measured by diffierential pulse voltammetry (DPV) using methylene blue (MB) as the hybridization indicator. The dynamic range of detection of the sensor for the target DNA sequences was from 1 × 10(-12) to 1 × 10(-7)mol/L, with a detection limit of 2 × 10(-13)mol/L. The DNA biosensor had excellent specificity for distinguishing complementary DNA sequence in the presence of non-complementary and mismatched DNA sequence. The results demonstrated that the Au-NPs/Gr nanocomposite was a promising substrate for the development of high-performance electrocatalysts for determination of KPC.

  19. DNA arrays, electronic noses and tongues, biosensors and receptors for rapid detection of toxigenic fungi and mycotoxins: a review.

    PubMed

    Logrieco, A; Arrigan, D W M; Brengel-Pesce, K; Siciliano, P; Tothill, I

    2005-04-01

    This paper presents an overview of how microsystem technology tools can be applied to the development of rapid, out-of-laboratory measurement capabilities for the determinations of toxigenic fungi and mycotoxins in foodstuffs. Most of the topics discussed are all under investigation within the European Commission-sponsored project Good-Food (FP6-IST). These are DNA arrays, electronic noses and electronic tongues for the detection of fungal contaminants in feed, and biosensors and chemical sensors based on microfabricated electrode systems, antibodies and novel synthetic receptors for the detection of specific mycotoxins. The approach to resolution of these difficult measurement problems in real matrices requires a multidisciplinary approach. The technology tools discussed can provide a route to the rapid, on-site generation of data that can aid the safe production of high-quality foodstuffs.

  20. SiO2 nanoparticles modified CPE as a biosensor for determination of i-motif DNA/Tamoxifen interaction.

    PubMed

    Heydari, Elham; Raoof, Jahan Bakhsh; Ojani, Reza; Bagheryan, Zahra

    2016-08-01

    Cytosine-rich DNA sequences can form a highly ordered structure known as i-motif in slightly acidic solutions. The stability of the folded i-motif structure is a good strategy to inhibit the telomerase reaction in cancer cells. The electrochemical biosensor was prepared by modifying carbon paste electrode with SiO2 nanoparticles to investigate drugs which can stabilize this structure. Tamoxifen (Tam), an antiestrogen hormonal agent for treatment of breast cancer, was chosen as the model ligand and its interaction with i-motif structure was examined. The interaction between i-motif DNA and Tam was studied in PBS buffer and [Fe(CN)6](3-) through the cyclic voltammetry and square wave voltammetry methods. The oxidation peak of Tam, due to the i-motif DNA/Tam interaction, was observed after i-motif immobilized on the surface of the electrode. The i-motif formation was investigated by circular dichroism spectroscopy and the results showed that this structure can certainly be made with pH around 4.5, but its stability reduced by going to the more alkaline pH. The selectivity which was studied in the presence of complementary strand demonstrated that i-motif structure could be stabilized in acidic pH even in the presence of its complementary strand. PMID:27151665

  1. Label-free and high-sensitive detection of Salmonella using a surface plasmon resonance DNA-based biosensor.

    PubMed

    Zhang, Decai; Yan, Yurong; Li, Qing; Yu, Tianxiao; Cheng, Wei; Wang, Long; Ju, Huangxian; Ding, Shijia

    2012-08-31

    A method based on surface plasmon resonance (SPR) DNA biosensor has been developed for label-free and high-sensitive detection of Salmonella. A biotinylated single-stranded oligonucleotide probe was designed to target a specific sequence in the invA gene of Salmonella and then immobilized onto a streptavidin coated dextran sensor surface. The invA gene was isolated from bacterial cultures and amplified using a modified semi-nested asymmetric polymerase chain reaction (PCR) technique. In order to investigate the hybridization detection, experiments with different concentration of synthetic target DNA sequences have been performed. The calibration curve of synthetic target DNA had good linearity from 5 nM to 1000 nM with a detection limit of 0.5 nM. The proposed method was applied successfully to the detection of single-stranded invA amplicons from three serovars of Salmonella, i.e., Typhimurium, Enterica and Derby, and the responses to PCR products were related to different S. typhimurium concentrations in the range from 10(2) to 10(10) CFU mL(-1). While with this system to detect E. coli and S. aureus, no significant signal was observed, demonstrating good selectivity of the method. In addition, the hybridization can be completed within 15 min, and the excellent sensor surface regeneration allows at least 300 assay cycles without obvious loss of performance.

  2. A "turn-on" fluorescent copper biosensor based on DNA cleavage-dependent graphene-quenched DNAzyme.

    PubMed

    Liu, Meng; Zhao, Huimin; Chen, Shuo; Yu, Hongtao; Zhang, Yaobin; Quan, Xie

    2011-06-15

    A novel and promising "turn-on" fluorescent Cu(2+) biosensor is designed based on graphene-DNAzyme catalytic beacon. Due to the essential surface and quenching properties of two-dimensional graphene, it can function as both "scaffold" and "quencher" of the Cu(2+)-dependent DNAzyme, facilitating the formation of self-assembled graphene-quenched DNAzyme complex. However, Cu(2+)-induced catalytic reaction disturbs the graphene-DNAzyme conformation, which will produce internal DNA cleavage-dependent effect. In this case, the quenched fluorescence in graphene-DNAzyme is quickly recovered to a large extent in 15 min. Compared with common DNAzyme-based sensors, the presented graphene-based catalytic beacon greatly improves the signal-to-background ratio, hence increasing the sensitivity (LOD=0.365 nM). Furthermore, the controllable DNA cleavage reaction provides an original and alternative internal method to regulate the interaction between graphene and DNA relative to the previous external sequence-specific hybridization-dependent regulation, which will open new opportunities for nucleic studies and sensing applications in the future.

  3. Cyclometalated iridium complex-based label-free photoelectrochemical biosensor for DNA detection by hybridization chain reaction amplification.

    PubMed

    Li, Chunxiang; Wang, Hongyang; Shen, Jing; Tang, Bo

    2015-04-21

    Photoactive material is the most crucial factor which intimately determines analytical performances of the photoelectrochemical sensor. On the basis of the high affinity of dipyrido [3,2-a:2',3'-c] phenazine (dppz) with DNA helix, a novel photoactive intercalator, [(ppy)2Ir(dppz)](+)PF6(-)(ppy = 2-phenylpyridine and dppz = dipyrido [3,2-a:2',3'-c] phenazine) was prepared and characterized by UV-vis absorption spectroscopy, fluorescence spectroscopy, and cyclic voltammetry. The photoelectrochemical properties of the as-prepared iridium(III) complex immobilized on the ITO electrode was investigated. Either cathodic or anodic photocurrent generation can be observed when triethanolamine (TEOA) or dissolved O2 is used as a sacrificial electron donor/acceptor, respectively. The probable photocurrent-generation mechanisms are speculated. A highly sensitive iridium(III) complex-based photoelectrochemical sensor was proposed for DNA detection via hybridization chain reaction (HCR) signal amplification. Under optimal conditions, the biosensor was found to be linearly proportional to the logarithm of target DNA concentration in the range from 0.025 to 100 pmol L(-1) with a detection limit of 9.0 fmol L(-1) (3σ). Moreover, the proposed sensor displayed high selectivity and good reproducibility, demonstrating efficient and stable photoelectric conversion ability of the Ir(III) complex. PMID:25816127

  4. Synergistic effect of magnetite and gold nanoparticles onto the response of a label-free impedimetric hepatitis B virus DNA biosensor.

    PubMed

    Mashhadizadeh, Mohammad Hossein; Talemi, Rasoul Pourtaghavi

    2016-02-01

    A magnetite and gold nanoparticle modified carbon paste electrode (CPE) was prepared for the immobilization of a thiol modified Hepatitis B virus (HBV) probe DNA and determination trace amount of target HBV DNA. Indeed, the sensing platform integrated two nanoparticles that had previously been employed individually in the DNA biosensors. The proposed DNA biosensor could measure target HBV DNA virus concentration with a low detection limit of 3.1 (±0.1)×10-(13)M, which was greatly lower than the detection limit reported with gold or magnetite nanoparticles alone. The change of interfacial charge transfer resistance (RCT) was confirmed the hybrid formation between probe and target HBV DNA. The RCT difference (before and after hybridization with the target HBV DNA) was in a linear relationship with the logarithm of complementary oligonucleotide concentrations in the range of 8.3 (±0.1)×10(-13) to 6.4 (±0.2)×10(-7)M. In addition, the novel methodology for specific DNA sequence detection was highly selective, repeatable, and reproducible. Finally, this work was successfully utilized for the sensitive and label free impedimetric determination of HBV target DNA in the urine and blood plasma samples.

  5. Ultrasensitive electrochemical biosensor for specific detection of DNA based on molecular beacon mediated circular strand displacement polymerization and hyperbranched rolling circle amplification.

    PubMed

    Li, Xiaolu; Guo, Jing; Zhai, Qian; Xia, Jing; Yi, Gang

    2016-08-31

    Using a cascade signal amplification strategy, an ultrasensitive electrochemical biosensor for specific detection of DNA based on molecular beacon (MB) mediated circular strand displacement polymerization (CSDP) and hyperbranched rolling circle amplification (HRCA) was proposed. The hybridization of MB probe to target DNA resulted in a conformational change of the MB and triggered the CSDP in the presence of bio-primer and Klenow fragment (KF exo(-)), leading to multiple biotin-tagged DNA duplex. Furthermore, the HRCA was implemented to product amounts of double-stranded DNA (ds-DNA) fragments using phi29 DNA polymerase via biotin-streptavidin interaction. After the product of HRCA binded numerous biotinylated detection probes, an ultrasensitive electrochemical readout by further employing the streptavidin-alkaline phosphatase. The proposed biosensor exhibited excellent detection sensitivity and specificity with a log-linear response to target DNA from 0.01 fM to 10 pM as low as 8.9 aM. The proposed method allowed DNA detection with simplicity, rapidness, low cost and high specificity, which might have the potential for application in clinical molecular diagnostics and environmental monitoring. PMID:27506343

  6. Ultrasensitive electrochemical biosensor for specific detection of DNA based on molecular beacon mediated circular strand displacement polymerization and hyperbranched rolling circle amplification.

    PubMed

    Li, Xiaolu; Guo, Jing; Zhai, Qian; Xia, Jing; Yi, Gang

    2016-08-31

    Using a cascade signal amplification strategy, an ultrasensitive electrochemical biosensor for specific detection of DNA based on molecular beacon (MB) mediated circular strand displacement polymerization (CSDP) and hyperbranched rolling circle amplification (HRCA) was proposed. The hybridization of MB probe to target DNA resulted in a conformational change of the MB and triggered the CSDP in the presence of bio-primer and Klenow fragment (KF exo(-)), leading to multiple biotin-tagged DNA duplex. Furthermore, the HRCA was implemented to product amounts of double-stranded DNA (ds-DNA) fragments using phi29 DNA polymerase via biotin-streptavidin interaction. After the product of HRCA binded numerous biotinylated detection probes, an ultrasensitive electrochemical readout by further employing the streptavidin-alkaline phosphatase. The proposed biosensor exhibited excellent detection sensitivity and specificity with a log-linear response to target DNA from 0.01 fM to 10 pM as low as 8.9 aM. The proposed method allowed DNA detection with simplicity, rapidness, low cost and high specificity, which might have the potential for application in clinical molecular diagnostics and environmental monitoring.

  7. A kinetic study of analyte-receptor binding and dissociation for biosensor applications: a fractal analysis for two different DNA systems.

    PubMed

    Ramakrishnan, Anand; Sadana, Ajit

    2002-01-01

    A fractal analysis of DNA binding and dissociation kinetics on biosensor surfaces is presented. The fractal approach provides an attractive, convenient method to model the kinetic data taking into account the effects of surface heterogeneity brought about by ligand immobilization. The fractal technique can be used in conjunction or as an alternate approach to conventional modeling techniques, such as the Langmuir model, saturation model, etc. Examples analyzed include a DNA molecular beacon biosensor and a plasmid DNA-(cationic polymer) interaction biosensor. The molecular beacon example provides some insights into the nature of the surface and how it influences the binding rate coefficients. The DNA-cationic polymer interaction example provides some quantitative results on the binding and dissociation rate coefficients. Data taken from the literature may be modeled, in the case of binding, using a single-fractal analysis or a dual-fractal analysis. The dual-fractal analysis results indicate a change in the binding mechanism as the reaction progresses on the surface. A single-fractal analysis is adequate to model the dissociation kinetics in the example presented. Relationships are presented for the binding rate coefficients as a function of their corresponding fractal dimension, D(f), which is an indication of the degree of heterogeneity that exists on the surface. When analyte-receptor binding is involved, an increase in the heterogeneity of the surface (increase in D(f)) leads to an increase in the binding rate coefficient.

  8. Hybridization-based unquenching of DNA hairpins on au surfaces: prototypical "molecular beacon" biosensors.

    PubMed

    Du, Hui; Disney, Matthew D; Miller, Benjamin L; Krauss, Todd D

    2003-04-01

    There is a keen interest in developing techniques for rapid genetic analysis that do not require labeling of an analyte. Here we demonstrate that fluorophore-tagged DNA hairpins attached to gold films can function as immobilized "molecular beacons". Two DNA hairpins incorporating portions of the Staphlococcus aureus FemA and mecR methicillin-resistance genes were attached to a gold substrate. Upon exposure to the complement, a approximately 26-fold increase in fluorescence intensity was measured corresponding to a 96 +/- 5% quenching efficiency. Studies with nonspecific DNA indicate that DNA hairpins immobilized on a gold surface retain their ability to bind complementary DNA sequences selectively.

  9. Development of an optical biosensor based on surface-enhanced Raman scattering for DNA analysis

    NASA Astrophysics Data System (ADS)

    Yigit, Tugce; Akdogan, Ebru; Karagoz, Isık. Didem; Kahraman, Mehmet

    2016-03-01

    Rapid, accurate and sensitive DNA analysis is critically important for the diagnostic of genetic diseases. The most common method preferred in practice is fluorescence based microarrays to analyze the DNA. However, there exist some disadvantages related to the above-mentioned method such as the overlapping of the fluorescence emission wavelengths that can diminish in the performance of multiplexing, needed to obtain fluorescence spectra from each dye and photo degradation. In this study, a novel SERS based DNA analysis approach, which is Raman active dye-free and independent of SERS substrate properties, is developed. First, the single strand DNA probe is attached to the SERS substrate and half of the complimentary DNA is attached to gold nanoparticles, as well. We hypothesize that in the presence of target DNA, the complimentary DNA coupled colloids will bind to the SERS substrate surface via hybridization of single strand target DNA. To test this hypothesis, we used UV/Vis spectroscopy, atomic for microscopy (AFM) and dynamic light scattering (DLS). DNA analysis is demonstrated by a peak shift of the certain peak of the small molecules attached to the SERS substrate surface instead of SERS spectrum obtained in the presence of target DNA from the Raman reporter molecules. The degree of peak shifting will be used for the quantification of the target DNA in the sample. Plasmonic properties of SERS substrates and reproducibility issues will not be considerable due to the use of peak shifting instead of peak intensity for the qualitative analysis.

  10. Microfluidics and nanoparticles based amperometric biosensor for the detection of cyanobacteria (Planktothrix agardhii NIVA-CYA 116) DNA.

    PubMed

    Ölcer, Zehra; Esen, Elif; Ersoy, Aylin; Budak, Sinan; Sever Kaya, Dilek; Yağmur Gök, Mehmet; Barut, Serkan; Üstek, Duran; Uludag, Yildiz

    2015-08-15

    Some of the cyanobacteria produce protease inhibitor oligopeptides such as cyanopeptolins and cause drinking water contamination; hence, their detection has great importance to monitor the well-being of water sources that is used for human consumption. In the current study, a fast and sensitive nucleic acid biosensor assay has been described where cyanopeptolin coding region of one of the cyanobacteria (Planktothrix agardhii NIVA-CYA 116) genome has been used as target for monitoring of the fresh water resources. A biochip that has two sets of Au electrode arrays, each consist of shared reference/counter electrodes and 3 working electrodes has been used for the assay. The biochip has been integrated to a microfluidics system and all steps of the assay have been performed during the reagent flow to achieve fast and sensitive DNA detection. On-line hybridization of the target on to the capture probe immobilized surface resulted in a very short assay duration with respect to the conventional static assays. The binding of the avidin and enzyme modified Au nanoparticles to the biotinylated detection probe and the subsequent injection of the substrate enabled a real-time amperometric measurement with a detection limit of 6×10(-12) M target DNA (calibration curve r(2)=0.98). The developed assay enables fast and sensitive detection of cyanopeptolin producing cyanobacteria from freshwater samples and hence shows a promising technology for toxic microorganism detection from environmental samples.

  11. Gold nanoparticle-based lateral flow biosensor for rapid visual detection of Leishmania-specific DNA amplification products.

    PubMed

    Toubanaki, Dimitra K; Athanasiou, Evita; Karagouni, Evdokia

    2016-08-01

    Leishmaniasis is a disease, caused by Leishmania parasites, which infect humans and animals, posing a major social and economic burden worldwide. The need for accurate and sensitive disease diagnosis led to the widespread adoption of PCR amplification. Detection of the amplification products (i.e. gel electrophoresis) require time-consuming protocols performed by trained personnel, with high cost. Aim of the present study was the simplification of PCR product detection, using a nucleic acid lateral flow, combined with functionalized gold nanoparticles. Amplification reactions targeting kinetoplastid DNA of Leishmania spp were performed on canine blood samples and a positive signal was formed as a red test zone. The visual detection was completed in 20min. Extensive optimization enabled the detection of 100fmol of target DNA. Clinical samples of infected dog blood were analyzed with high specificity. Overall, the proposed lateral flow biosensor can be considered an appealing alternative platform for Leishmania-specific amplification products detection with low cost and attractive simplicity. PMID:27255490

  12. Overview of Electrochemical DNA Biosensors: New Approaches to Detect the Expression of Life

    PubMed Central

    Cagnin, Stefano; Caraballo, Marcelo; Guiducci, Carlotta; Martini, Paolo; Ross, Marty; SantaAna, Mark; Danley, David; West, Todd; Lanfranchi, Gerolamo

    2009-01-01

    DNA microarrays are an important tool with a variety of applications in gene expression studies, genotyping, pharmacogenomics, pathogen classification, drug discovery, sequencing and molecular diagnostics. They are having a strong impact in medical diagnostics for cancer, toxicology and infectious disease applications. A series of papers have been published describing DNA biochips as alternative to conventional microarray platforms to facilitate and ameliorate the signal readout. In this review, we will consider the different methods proposed for biochip construction, focusing on electrochemical detection of DNA. We also introduce a novel single-stranded DNA platform performing high-throughput SNP detection and gene expression profiling. PMID:22574066

  13. Targeting CpG DNA to screen and isolate anti-sepsis fraction and monomers from traditional Chinese herbs using affinity biosensor technology.

    PubMed

    Liu, Xin; Cheng, Juan; Zheng, Xinchuang; Chen, Yiguo; Wu, Chong; Li, Bin; Fu, Jianfeng; Cao, Hongwei; Lu, Yongling; Li, Jun; Zheng, Jiang; Zhou, Hong

    2009-08-01

    Bacterial DNA/CpG DNA is recognized as a key molecule during the pathogenesis of sepsis. Therefore, preventing CpG DNA from binding to its receptor is considered as the most promising strategy. In the present experiments, Radix et Rhizoma Rhei had the highest CpG DNA-binding ability among the seventy-eight traditional Chinese herbs. After the isolation of silica gel chromatography and high performance liquid chromatography (HPLC) and evaluation with affinity biosensor, the active fraction was confirmed and named Fraction D. It was found that in vitro, Fraction D bound to both CpG DNA and lipid A with high affinity, and strongly inhibited LPS- and CpG DNA-induced TNF-alpha release from RAW264.7 cells in a dose-dependent manner. Furthermore, Fraction D reduced the expression of TLR9 mRNA up-regulated by CpG DNA. In vivo, Fraction D protected mice challenged with lethal heat-killed E. coli. Using HPLC method, two monomers with high affinity for CpG DNA were isolated and identified as rhein and emodin. Rhein could significantly reduce CpG DNA- and LPS-induced TNF-alpha release, but emodin only reduced CpG DNA-induced TNF-alpha release. Rhein in combination with emodin could play synergistic inhibitory effect on both CpG DNA and LPS-induced TNF-alpha release, which contributed to the bioactivity of Fraction D. In conclusion, we successfully established the platform to screen anti-CpG DNA components of traditional Chinese herbs using affinity biosensor technology, got active Fraction D from Radix et Rhizoma Rhei and determined rhein and emodin as the main bioactive ingredients in Fraction D. PMID:19376273

  14. An ultrasensitive DNA biosensor based on covalent immobilization of probe DNA on fern leaf-like α-Fe2O3 and chitosan Hybrid film using terephthalaldehyde as arm-linker.

    PubMed

    Xu, Biyan; Zheng, Delun; Qiu, Weiwei; Gao, Feng; Jiang, Shaoxiong; Wang, Qingxiang

    2015-10-15

    In this work, a novel electrochemical DNA biosensor has been developed based on the hybrid film of fern leaf-like α-Fe2O3 microparticles and chitosan (CS). The fern leaf-like α-Fe2O3 microparticles were synthesized via a facile template-free hydrothermal method, and their morphologies were characterized by X-ray diffraction, energy dispersive spectrometry, scanning electron microscope, and transmission electron microscope. Electrochemical characterization assays revealed that the hybrid film modified electrode had remarkable synergistic effects of the large accessible surface area and high electrical conductivity of semiconductive Fe2O3, and the good film stability of CS. Based on the rich amino groups on CS, the CS-Fe2O3 hybrid film was employed as a functional matrix for probe DNA immobilization using terephthalaldehyde (TPA) as a bifunctional arm-linker. The hybridization capacity of the developed biosensor was evaluated with electrochemical impedance spectroscopy (EIS) using [Fe(CN)6](3-/4-) as the indicating probe. A wide dynamic detection range from 1.0 × 10(-14) to 1.0 × 10(-10)M with ultralow detection limit of 5.6 × 10(-15)M was achieved for the target DNA. The hybridization selectivity experiments further revealed that the biosensor could discriminate fully complementary sequences from one-base mismatched, three-base mismatched, and non-complementary sequences. Moreover, the biosensor showed the advantage of good regeneration ability and reproducibility.

  15. An ultrasensitive DNA biosensor based on covalent immobilization of probe DNA on fern leaf-like α-Fe2O3 and chitosan Hybrid film using terephthalaldehyde as arm-linker.

    PubMed

    Xu, Biyan; Zheng, Delun; Qiu, Weiwei; Gao, Feng; Jiang, Shaoxiong; Wang, Qingxiang

    2015-10-15

    In this work, a novel electrochemical DNA biosensor has been developed based on the hybrid film of fern leaf-like α-Fe2O3 microparticles and chitosan (CS). The fern leaf-like α-Fe2O3 microparticles were synthesized via a facile template-free hydrothermal method, and their morphologies were characterized by X-ray diffraction, energy dispersive spectrometry, scanning electron microscope, and transmission electron microscope. Electrochemical characterization assays revealed that the hybrid film modified electrode had remarkable synergistic effects of the large accessible surface area and high electrical conductivity of semiconductive Fe2O3, and the good film stability of CS. Based on the rich amino groups on CS, the CS-Fe2O3 hybrid film was employed as a functional matrix for probe DNA immobilization using terephthalaldehyde (TPA) as a bifunctional arm-linker. The hybridization capacity of the developed biosensor was evaluated with electrochemical impedance spectroscopy (EIS) using [Fe(CN)6](3-/4-) as the indicating probe. A wide dynamic detection range from 1.0 × 10(-14) to 1.0 × 10(-10)M with ultralow detection limit of 5.6 × 10(-15)M was achieved for the target DNA. The hybridization selectivity experiments further revealed that the biosensor could discriminate fully complementary sequences from one-base mismatched, three-base mismatched, and non-complementary sequences. Moreover, the biosensor showed the advantage of good regeneration ability and reproducibility. PMID:25982725

  16. Hydrogel with chains functionalized with carboxyl groups as universal 3D platform in DNA biosensors.

    PubMed

    Kowalczyk, Agata; Fau, Michal; Karbarz, Marcin; Donten, Mikolaj; Stojek, Zbigniew; Nowicka, Anna M

    2014-04-15

    Application of hydrogel based on N-isopropylacrylamide with carboxyl groups grafted to the chains enabled the immobilization of DNA at an extent exceeding that for flat surfaces by at least one order of magnitude. The probe DNA strands in the 3D platform were fully available for the hybridization process. The examination of the gels containing different amounts of grafted carboxyl groups (1-10%) was done using quartz crystal microbalance, electrochemical impedance spectroscopy, chronoamperometry and ionic coupled plasma with laser ablation. The optimal carboxyl group content was determined to be 5%. A very good agreement of the data obtained with independent techniques on content of DNA in the gel was obtained. In comparison to the other methods of immobilization of DNA the new platform enabled complete removal of DNA after the measurements and analysis and, therefore, could be used many times. After a 10-fold exchange of the DNA-sensing layer the efficiency of hybridization and analytical signal did not change by more than 5%. The sensor response increased linearly with logarithm of concentration of target DNA in the range 1×10(-13)-1×10(-6) M. The obtained detection limit was circa 8×10(-13) M of target DNA in the sample which is a substantial improvement over the planar sensing layers. PMID:24287408

  17. Electrochemical molecular beacon biosensor for sequence-specific recognition of double-stranded DNA.

    PubMed

    Miao, Xiangmin; Guo, Xiaoting; Xiao, Zhiyou; Ling, Liansheng

    2014-09-15

    Direct recognition of double-stranded DNA (dsDNA) was crucial to disease diagnosis and gene therapy, because DNA in its natural state is double stranded. Here, a novel sensor for the sequence-specific recognition of dsDNA was developed based on the structure change of ferrocene (Fc) redox probe modified molecular beacon (MB). For constructing such a sensor, gold nanoparticles (AuNPs) were initially electrochemical-deposited onto glass carbon electrode (GCE) surface to immobilize thiolated MB in their folded states with Au-S bond. Hybridization of MB with target dsDNA induced the formation of parallel triplex DNA and opened the stem-loop structure of it, which resulted in the redox probe (Fc) away from the electrode and triggered the decrease of current signals. Under optimal conditions, dsDNA detection could be realized in the range from 350 pM to 25 nM, with a detection limit of 275 pM. Moreover, the proposed method has good sequence-specificity for target dsDNA compared with single base pair mismatch and two base pairs mismatches.

  18. Effective immobilization of DNA for development of polypyrrole nanowires based biosensor

    NASA Astrophysics Data System (ADS)

    Tran, Thi Luyen; Chu, Thi Xuan; Huynh, Dang Chinh; Pham, Duc Thanh; Luu, Thi Hoai Thuong; Mai, Anh Tuan

    2014-09-01

    This paper reports an easy technique for immobilization of the DNA to the conducting polymer polypyrrole nanowires (PPy NWs). The nanowires were electrochemically synthesized on the surface of working electrode in the presence of gelatin as a soft mold. The structure of obtained PPy NWs was investigated by Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy and Surface Enhanced Raman Spectroscopy (SERS). The DNA strands were directly immobilized on the PPy NWs. The amino groups at the up-end of the PPy nanowires facilitate the linkage with the phosphate groups of the probe DNA. The DNA immobilization and hybridization were characterized by Electrochemical Impedance Spectroscopy (EIS). The initial results show that the sensor responses to 10 pM of DNA sequence in the solution.

  19. Development of a Fish Cell Biosensor System for Genotoxicity Detection Based on DNA Damage-Induced Trans-Activation of p21 Gene Expression

    PubMed Central

    Geng, Deyu; Zhang, Zhixia; Guo, Huarong

    2012-01-01

    p21CIP1/WAF1 is a p53-target gene in response to cellular DNA damage. Here we report the development of a fish cell biosensor system for high throughput genotoxicity detection of new drugs, by stably integrating two reporter plasmids of pGL3-p21-luc (human p21 promoter linked to firefly luciferase) and pRL-CMV-luc (CMV promoter linked to Renilla luciferase) into marine flatfish flounder gill (FG) cells, referred to as p21FGLuc. Initial validation of this genotoxicity biosensor system showed that p21FGLuc cells had a wild-type p53 signaling pathway and responded positively to the challenge of both directly acting genotoxic agents (bleomycin and mitomycin C) and indirectly acting genotoxic agents (cyclophosphamide with metabolic activation), but negatively to cyclophosphamide without metabolic activation and the non-genotoxic agents ethanol and D-mannitol, thus confirming a high specificity and sensitivity, fast and stable response to genotoxic agents for this easily maintained fish cell biosensor system. This system was especially useful in the genotoxicity detection of Di(2-ethylhexyl) phthalate (DEHP), a rodent carcinogen, but negatively reported in most non-mammalian in vitro mutation assays, by providing a strong indication of genotoxicity for DEHP. A limitation for this biosensor system was that it might give false positive results in response to sodium butyrate and any other agents, which can trans-activate the p21 gene in a p53-independent manner. PMID:25585933

  20. DNA biosensors implemented on PNA-functionalized microstructured optical fibers Bragg gratings

    NASA Astrophysics Data System (ADS)

    Candiani, A.; Giannetti, S.; Cucinotta, A.; Bertucci, A.; Manicardi, A.; Konstantaki, M.; Margulis, W.; Pissadakis, S.; Corradini, R.; Selleri, S.

    2013-05-01

    A novel DNA sensing platform based on a Peptide Nucleic Acid - functionalized Microstructured Optical Fibers gratings has been demonstrated. The inner surface of different MOFs has been functionalized using PNA probes, OligoNucleotides mimic that are well suited for specific DNA target sequences detection. The hybrid sensing systems were tested for optical DNA detection of targets of relevance in biomedical application, using the cystic fibrosis gene mutation, and food-analysis, using the genomic DNA from genetic modified organism soy flour. After the solutions of DNA molecules has been infiltrated inside the fibers capillaries and hybridization has occurred, oligonucleotidefunctionalized gold nanoparticles were infiltrated and used to form a sandwich-like system to achieve signal amplification. Spectral measurements of the reflected signal reveal a clear wavelength shift of the reflected modes when the infiltrated complementary DNA matches with the PNA probes placed on the inner fiber surface. Measurements have also been made using the mismatched DNA solution for the c, containing a single nucleotide polymorphism, showing no significant changes in the reflected spectrum. Several experiments have been carried out demonstrating the reproducibility of the results and the high selectivity of the sensors, showing the simplicity and the potential of this approach.

  1. High-sensitivity DNA biosensor based on optical fiber taper interferometer coated with conjugated polymer tentacle.

    PubMed

    Huang, Yunyun; Tian, Zhuang; Sun, Li-Peng; Sun, Dandan; Li, Jie; Ran, Yang; Guan, Bai-Ou

    2015-10-19

    A sensitive bio-probe to in situ detect unlabeled single-stranded DNA targets based on optical microfiber taper interferometer coated by a high ordered pore arrays conjugated polymer has been presented. The polymer coating serves as tentacles to catch single-stranded DNA molecules by π-π conjugated interaction and varies the surface refractive index of the optical microfiber. The microfiber taper interferometer translates the refractive index information into wavelength shift of the interference fringe. The sensor exhibits DNA concentration sensitivity of 2.393 nm/log M and the lowest detection ability of 10(-10) M or even lower.

  2. High-sensitivity DNA biosensor based on optical fiber taper interferometer coated with conjugated polymer tentacle.

    PubMed

    Huang, Yunyun; Tian, Zhuang; Sun, Li-Peng; Sun, Dandan; Li, Jie; Ran, Yang; Guan, Bai-Ou

    2015-10-19

    A sensitive bio-probe to in situ detect unlabeled single-stranded DNA targets based on optical microfiber taper interferometer coated by a high ordered pore arrays conjugated polymer has been presented. The polymer coating serves as tentacles to catch single-stranded DNA molecules by π-π conjugated interaction and varies the surface refractive index of the optical microfiber. The microfiber taper interferometer translates the refractive index information into wavelength shift of the interference fringe. The sensor exhibits DNA concentration sensitivity of 2.393 nm/log M and the lowest detection ability of 10(-10) M or even lower. PMID:26480357

  3. Multi-wall carbon nanotubes (MWCNTs)-doped polypyrrole DNA biosensor for label-free detection of genetically modified organisms by QCM and EIS.

    PubMed

    Truong, Thi Ngoc Lien; Tran, Dai Lam; Vu, Thi Hong An; Tran, Vinh Hoang; Duong, Tuan Quang; Dinh, Quang Khieu; Tsukahara, Toshifumi; Lee, Young Hoon; Kim, Jong Seung

    2010-01-15

    In this paper, we describe DNA electrochemical detection for genetically modified organism (GMO) based on multi-wall carbon nanotubes (MWCNTs)-doped polypyrrole (PPy). DNA hybridization is studied by quartz crystal microbalance (QCM) and electrochemical impedance spectroscopy (EIS). An increase in DNA complementary target concentration results in a decrease in the faradic charge transfer resistance (R(ct)) and signifying "signal-on" behavior of MWCNTs-PPy-DNA system. QCM and EIS data indicated that the electroanalytical MWCNTs-PPy films were highly sensitive (as low as 4pM of target can be detected with QCM technique). In principle, this system can be suitable not only for DNA but also for protein biosensor construction. PMID:20006069

  4. Multi-wall carbon nanotubes (MWCNTs)-doped polypyrrole DNA biosensor for label-free detection of genetically modified organisms by QCM and EIS.

    PubMed

    Truong, Thi Ngoc Lien; Tran, Dai Lam; Vu, Thi Hong An; Tran, Vinh Hoang; Duong, Tuan Quang; Dinh, Quang Khieu; Tsukahara, Toshifumi; Lee, Young Hoon; Kim, Jong Seung

    2010-01-15

    In this paper, we describe DNA electrochemical detection for genetically modified organism (GMO) based on multi-wall carbon nanotubes (MWCNTs)-doped polypyrrole (PPy). DNA hybridization is studied by quartz crystal microbalance (QCM) and electrochemical impedance spectroscopy (EIS). An increase in DNA complementary target concentration results in a decrease in the faradic charge transfer resistance (R(ct)) and signifying "signal-on" behavior of MWCNTs-PPy-DNA system. QCM and EIS data indicated that the electroanalytical MWCNTs-PPy films were highly sensitive (as low as 4pM of target can be detected with QCM technique). In principle, this system can be suitable not only for DNA but also for protein biosensor construction.

  5. An electrochemical competitive biosensor for ochratoxin A based on a DNA biotinylated aptamer.

    PubMed

    Bonel, Laura; Vidal, Juan C; Duato, Patricia; Castillo, Juan R

    2011-03-15

    Ochratoxin A (OTA) is one of the most important mycotoxin contaminants of foods, particularly cereals and cereal products, with strict low regulatory levels (of ppb) in many countries worldwide. An electrochemical competitive aptamer-based biosensor for OTA is described. Paramagnetic microparticle beads (MBs) were functionalized with an aptamer specific to OTA, and were allowed to compete with a solution of the mycotoxin conjugated to the enzyme horseradish peroxidase (OTA-HRP) and free OTA. After separation and washing steps helped with magnetic separations, the modified MBs were localized on disposable screen-printed carbon electrodes (SPCEs) under a magnetic field, and the product of the enzymatic reaction with the substrate was detected with differential-pulse voltammetry. In addition to magnetic separation assays, other competitive schemes (direct/indirect aptasensors performed on the SPCEs surface or using gold nanoparticles functionalized with the aptamer) were preliminary tested, optimized and compared. The magnetic aptasensor showed a linear response to OTA in the range 0.78-8.74 ng mL(-1) and a limit of detection of 0.07±0.01 ng mL(-1), and was accurately applied to extracts of certified and spiked wheat samples with an RSD lower than about 8%.

  6. DNA aptamer-based fiber optic biosensor for selective and label-free detection of dopamine

    NASA Astrophysics Data System (ADS)

    Zibaii, M. I.; Latifi, H.; Asadollahi, A.; Bayat, A. H.; Haghparast, A.

    2015-09-01

    Dopamine (DA) analysis is complicated by the interference from other electrochemically active endogenous compounds present in the brain, including DA precursors and metabolites and other neurotransmitters (NT). Here we report a simple, sensitive and selective optical fiber biosensor for the detection of DA in the presence of other NT. It is composed of a 57-mer dopamine-binding aptamer (DBA) as recognition element and nonadiabatic tapered optical fiber (NATOF) as probe. Upon the addition of DA, the conformation of DBA would change from a random coil structure to a rigid tertiary structure like a pocket. The conformational change of DBA lead to the refractive index (RI) change around the tapered fiber surface. Specific recognition of DA by the aptamer allowed a selective optical detection of DA within the physiologically relevant 500 nM to 10 μM range. Some common interferents such as epinephrine (EP) and ascorbic acid (AA) showed no or just a little interference in the determination of DA.

  7. Study of concentration of HPV DNA probe immobilization for cervical cancer detection based IDE biosensor

    NASA Astrophysics Data System (ADS)

    Roshila, M. L.; Hashim, U.; Azizah, N.

    2016-07-01

    This paper mainly illustrates regarding the detection process of Human Papillomavirus (HPV) DNA probe. HPV is the most common virus that infected to human by a sexually transmitted virus. The most common high-risk HPV are 16 and 18. Interdigitated electrode (IDE) device used as based of Titanium Dioxide (TiO2) acts as inorganic surface, where by using APTES as a linker between inorganic surface and organic surface. A strategy of rapid and sensitive for the HPV detection was proposed by integrating simple DNA extraction with a gene of DNA. The extraction of the gene of DNA will make an efficiency of the detection process. It will depend on the sequence of the capture probes and the way to support their attached. The fabrication, surface modification, immobilization and hybridization processes are characterized by current voltage (I-V) measurement by using KEITHLEY 6487. This strategy will perform a good sensitivity of HPV detection.

  8. Two-dimensional micro-bubble actuator array to enhance the efficiency of molecular beacon based DNA micro-biosensors.

    PubMed

    Deng, Peigang; Lee, Yi-Kuen; Cheng, Ping

    2006-02-15

    Two-dimensional micro-bubble actuator arrays were developed and studied in detail to enhance the hybridization kinetics of a DNA micro-biosensor. The hybridization between a molecular beacon, a kind of oligonucleotide probe, and its complement was investigated in a millimeter-sized PDMS based reaction chamber, where various 2D micro-heater arrays were distributed on the bottom for micro-bubble generation. The hybridization assay without the micro-bubble actuation revealed that the fluorescence increased fast at the beginning and slowed down after that. However, a uniform fluorescence increase was observed when periodic micro-bubble agitation was introduced in the static hybridization solution. A comparison of hybridization assays with and without micro-bubble agitation revealed that the hybridization time could be effectively shortened by 33% with 10 cycles of micro-bubble agitation from a 2 x 1 bubble actuator array, and by 43% with 10 cycles of micro-bubble agitation from a 2 x 2 bubble actuator array.

  9. Determination of atropine sulfate using a novel sensitive DNA-biosensor based on its interaction on a modified pencil graphite electrode.

    PubMed

    Ensafi, Ali A; Nasr-Esfahani, Parisa; Heydari-Bafrooei, Esmaeil; Rezaei, B

    2015-01-01

    A novel, selective, rapid and simple electrochemical method is developed for the determination of atropine sulfate. UV-Vis and differential pulse voltammetry are used to study the interaction of atropine sulfate with salmon sperm ds-DNA on the surface of salmon sperm ds-DNA modified-pencil graphite electrode (PGE). For this purpose, a pencil graphite electrode (PGE) modified with multiwall carbon nanotubes (MWCNTs), titanium dioxide nanoparticles (TiO2NPs), and poly-dialyldimethylammonium chloride (PDDA) decorated with ds-DNA is tested for the determination of atropine sulfate. The electrochemical oxidation peak current of adenine and guanine bonded on the surface of ds-DNA/PDDA-TiO2NPs-MWCNTs/PGE is used to obtain the analytical signal. Decreases in the intensities of guanine and adenine oxidation signals after their interaction with atropine sulfate are used as indicator signals for the sensitive determination of atropine sulfate. Using ds-DNA/PDDA-TiO2NPs-MWCNTs/PGE and based on the guanine signal, linear calibration curves were obtained in the range of 0.6 to 30.0 μmol L(-1) and 30.0 to 600.0 μmol L(-1) atropine sulfate with low detection limits of 30.0 nmol L(-1). The biosensor shows a good selectivity for the determination of atropine sulfate. Finally, the applicability of the biosensor is evaluated by measuring atropine sulfate in real samples with good accuracy.

  10. A regenerative ratiometric electrochemical biosensor for selective detecting Hg²⁺ based on Y-shaped/hairpin DNA transformation.

    PubMed

    Jia, Jing; Chen, Hong Guo; Feng, Ji; Lei, Jing Lei; Luo, Hong Qun; Li, Nian Bing

    2016-02-18

    Inspired by dual-signaling ratiometric mechanism which could reduce the influence of the environmental change, a novel, convenient, and reliable method for the detection of mercury ions (Hg(2+)) based on Y-shaped DNA (Y-DNA) was developed. Firstly, the Y-DNA was formed via the simple annealing way of using two different redox probes simultaneously, omitting the multiple operation steps on the electrode. The Y-DNA was immobilized on the gold electrode surface and then an obvious ferrocene (Fc) signal and a weak methylene blue (MB) signal were observed. Upon addition of Hg(2+), the Y-DNA structure was transformed to hairpin structure based on the formation of T-Hg(2+)-T complex. During the transformation, the redox MB gets close to and the redox Fc gets far away from the electrode surface, respectively. This special design allows a reliable Hg(2+) detection with a detection range from 1 nM to 5 μM and a low detection limit down to 0.094 nM. Furthermore, this biosensor exhibits good selectivity and repeatability, and can be easily regenerated by using L-cysteine. This study offers a simple and effective method for designing ratiometric biosensors for detecting other ions and biomolecules.

  11. Facile construction of a highly sensitive DNA biosensor by in-situ assembly of electro-active tags on hairpin-structured probe fragment

    PubMed Central

    Wang, Qingxiang; Gao, Feng; Ni, Jiancong; Liao, Xiaolei; Zhang, Xuan; Lin, Zhenyu

    2016-01-01

    An ultrasensitive DNA biosensor has been developed through in-situ labeling of electroactive melamine-Cu2+ complex (Mel-Cu2+) on the end of hairpin-like probe using gold nanoparticles (AuNPs) as the signal amplification platform. The 3′-thiolated hairpin-like probe was first immobilized to the gold electrode surface by the Au-S bond. The AuNPs were then tethered on the free 5′-end of the immobilized probe via the special affinity between Au and the modified -NH2. Followed by, the Mel and Cu2+ were assembled on the AuNPs surface through Au-N bond and Cu2+-N bond, respectively. Due to the surface area and electrocatalytic effects of the AuNPs, the loading amount and electron transfer kinetic of the Mel-Cu2+ were enhanced greatly, resulting in significantly enhanced electrochemical response of the developed biosensor. Compared with the synthesis process of conventional electroactive probe DNA accomplished by homogeneous method, the method presented in this work is more reagent- and time-saving. The proposed biosensor showed high selectivity, wide linear range and low detection limit. This novel strategy could also be extended to the other bioanalysis platforms such as immunosensors and aptasensors. PMID:26931160

  12. Facile construction of a highly sensitive DNA biosensor by in-situ assembly of electro-active tags on hairpin-structured probe fragment.

    PubMed

    Wang, Qingxiang; Gao, Feng; Ni, Jiancong; Liao, Xiaolei; Zhang, Xuan; Lin, Zhenyu

    2016-01-01

    An ultrasensitive DNA biosensor has been developed through in-situ labeling of electroactive melamine-Cu(2+) complex (Mel-Cu(2+)) on the end of hairpin-like probe using gold nanoparticles (AuNPs) as the signal amplification platform. The 3'-thiolated hairpin-like probe was first immobilized to the gold electrode surface by the Au-S bond. The AuNPs were then tethered on the free 5'-end of the immobilized probe via the special affinity between Au and the modified -NH2. Followed by, the Mel and Cu(2+) were assembled on the AuNPs surface through Au-N bond and Cu(2+)-N bond, respectively. Due to the surface area and electrocatalytic effects of the AuNPs, the loading amount and electron transfer kinetic of the Mel-Cu(2+) were enhanced greatly, resulting in significantly enhanced electrochemical response of the developed biosensor. Compared with the synthesis process of conventional electroactive probe DNA accomplished by homogeneous method, the method presented in this work is more reagent- and time-saving. The proposed biosensor showed high selectivity, wide linear range and low detection limit. This novel strategy could also be extended to the other bioanalysis platforms such as immunosensors and aptasensors. PMID:26931160

  13. Optical biosensors

    PubMed Central

    Damborský, Pavel; Švitel, Juraj

    2016-01-01

    Optical biosensors represent the most common type of biosensor. Here we provide a brief classification, a description of underlying principles of operation and their bioanalytical applications. The main focus is placed on the most widely used optical biosensors which are surface plasmon resonance (SPR)-based biosensors including SPR imaging and localized SPR. In addition, other optical biosensor systems are described, such as evanescent wave fluorescence and bioluminescent optical fibre biosensors, as well as interferometric, ellipsometric and reflectometric interference spectroscopy and surface-enhanced Raman scattering biosensors. The optical biosensors discussed here allow the sensitive and selective detection of a wide range of analytes including viruses, toxins, drugs, antibodies, tumour biomarkers and tumour cells. PMID:27365039

  14. A upconversion luminescene biosensor based on dual-signal amplification for the detection of short DNA species of c-erbB-2 oncogene

    PubMed Central

    Lan, Jianming; Liu, Yingxin; Li, Li; Wen, Fadi; Wu, Fang; Han, Zhizhong; Sun, Weiming; Li, Chunyan; Chen, Jinghua

    2016-01-01

    High-sensitivity detection of trace amounts of c-erbB-2 oncogene was reported to be equal to or surpass the ability of CA 15-3 for early diagnosis and/or follow-up recurrent screening of breast cancer. Therefore, in the current study, by using upconversion nanoparticles (UCNPs), rare earth-doped NaYF4:Yb3+/Er3+ as the luminescent labels, a upconversion luminescent (UCL) biosensor based on dual-signal amplification of exonuclease III (ExoIII)-assisted target cycles and long-range self-assembly DNA concatamers was developed for the detection of c-erbB-2 oncogene. The proposed biosensor exhibited ultrasensitive detection with limit as low as 40 aM, which may express the potential of being used in trace analysis of c-erbB-2 oncogene and early diagnosis of breast cancer. PMID:27098295

  15. A novel electrochemical biosensor for ultrasensitive and specific detection of DNA based on molecular beacon mediated circular strand displacement and rolling circle amplification.

    PubMed

    Cheng, Wei; Zhang, Wei; Yan, Yurong; Shen, Bo; Zhu, Dan; Lei, Pinhua; Ding, Shijia

    2014-12-15

    A novel electrochemical biosensing strategy was developed for ultrasensitive and specific detection of target DNA using a cascade signal amplification based on molecular beacon (MB) mediated circular strand displacement (CSD), rolling circle amplification (RCA), biotin-strepavidin system, and enzymatic amplification. The target DNA hybridized with the loop portion of MB probe immobilized on the gold electrode and triggered the CSD, leading to multiple biotin-tagged DNA duplex. Furthermore, via biotin-streptavidin interaction, the RCA was implemented, producing long massive tandem-repeat DNA sequences for binding numerous biotinylated detection probes. This enabled an ultrasensitive electrochemical readout by further employing the streptavidin-alkaline phosphatase. The proposed biosensor showed very high sensitivity and selectivity with a dynamic response range from 1 fM to 100 pM. The proposed strategy could have the potential for applying in clinical molecular diagnostics and environmental monitoring.

  16. A novel optical DNA biosensor for detection of trace amounts of mercuric ions using gold nanoparticles introduced onto modified glass surface

    NASA Astrophysics Data System (ADS)

    Mashhadizadeh, Mohammad Hossein; Talemi, Rasoul Pourtaghavi

    2014-11-01

    In this work we report a DNA spectrophotometric biosensor for detection of Hg2+ ions in which a pair of oligonucleotides with four thymine-thymine (T-T) mismatched bases was immobilized onto modified glass surface. Firstly, glass surface modified with 3-(mercaptopropyl) trimethoxysilane (MSPT) and gold nano-particles respectively and then one oligonucleotide (P1) modified with hexanthiol at 5-terminal was immobilized on gold nano-particles via self-assembly and inserted in methylene blue. Methylene blue can intercalate on single strand DNA (ss-DNA) and its absorption peak can measure spectrophotometrically. Then the other oligonucleotide was able to hybridize with P1 by forming thymine-Hg2+-thymine (T-Hg2+-T) complexes in the presence of Hg2+, and absorption signal of methylene blue reduced upon Hg2+ increasing concentration because inaccessibility of guanine base in DNA duplex. However, when Hg2+ was absent, the two oligonucleotides could not hybridize due to the T-T mismatched bases, and P2 could not be fixed on the modified glass surface and any change in absorption peak of methylene blue takes place. The UV-Vis spectrum showed a linear correlation between the absorption peak of methylene blue and the concentration of Hg2+ over the range from 10 nM to 10 μM (R2 = 0.9985) with a detection limit of 6 nM. This spectrophotometric biosensor could be widely used for selective detection of Hg2+.

  17. Triplex DNA: A new platform for polymerase chain reaction – based biosensor

    PubMed Central

    Li, Yubin; Miao, Xiangmin; Ling, Liansheng

    2015-01-01

    Non - specific PCR amplification and DNA contamination usually accompany with PCR process, to overcome these problems, here we establish a sensor for thrombin by sequence - specific recognition of the PCR product with molecular beacon through triplex formation. Probe A and probe B were designed for the sensor, upon addition of thrombin, two probes hybridized to each other and the probe B was extended in the presence of Klenow Fragment polymerase and dNTPs. The PCR amplification occurred with further addition of Taq DNA Polymerase and two primers, the PCR product was recognized by molecular beacon through triplex formation. The fluorescence intensity increased with the logarithm of the concentration of thrombin over the range from 1.0 × 10−12 M to 1.0 × 10−7 M, with a detection limit of 261 fM. Moreover, the effect of DNA contamination and non - specific amplification could be ignored completely in the proposed strategy. PMID:26268575

  18. Triplex DNA: A new platform for polymerase chain reaction-based biosensor.

    PubMed

    Li, Yubin; Miao, Xiangmin; Ling, Liansheng

    2015-01-01

    Non-specific PCR amplification and DNA contamination usually accompany with PCR process, to overcome these problems, here we establish a sensor for thrombin by sequence-specific recognition of the PCR product with molecular beacon through triplex formation. Probe A and probe B were designed for the sensor, upon addition of thrombin, two probes hybridized to each other and the probe B was extended in the presence of Klenow Fragment polymerase and dNTPs. The PCR amplification occurred with further addition of Taq DNA Polymerase and two primers, the PCR product was recognized by molecular beacon through triplex formation. The fluorescence intensity increased with the logarithm of the concentration of thrombin over the range from 1.0 × 10(-12) M to 1.0 × 10(-7) M, with a detection limit of 261 fM. Moreover, the effect of DNA contamination and non - specific amplification could be ignored completely in the proposed strategy.

  19. Impedimetric DNA-biosensor for the study of anti-cancer action of mitomycin C: comparison between acid and electroreductive activation.

    PubMed

    Ensafi, Ali A; Amini, Maryam; Rezaei, Behzad

    2014-09-15

    An electrochemical protocol is described for direct monitoring of anti-cancer properties of MMC. Using electrochemical impedance spectroscopy, a pretreated pencil graphite electrode (PGE) modified with multiwall carbon nanotubes (MWCNTs) and poly(diallyldimethylmmonium chloride), PDDA, decorated with ds-DNA was employed in this study to identify DNA damages induced by MMC. The change in charge transfer resistance after incubation of the DNA-biosensor in MMC solution for a known time was used as indication of DNA damage. It was found that MMC did not interact with DNA. As MMC does not inherently possess any anti-cancer activity, it is, therefore, necessary to activate it by either of two ways: activation in acidic media or electrochemical activation. Incubation of DNA-modified electrode in activated MMC led to alterations in DNA and changes in its electrochemical properties (which forms the theme of the present study). Acid and electroreductive MMC activations were compared and different adducts were subsequently generated, suggesting that the drug can bind to DNA in more than one way. Impedance spectroscopy was used for the first time as a novel technique for detecting DNA-drug adducts. PMID:24747202

  20. G-quadruplex DNA biosensor for sensitive visible detection of genetically modified food.

    PubMed

    Jiang, Xiaohua; Zhang, Huimin; Wu, Jun; Yang, Xiang; Shao, Jingwei; Lu, Yujing; Qiu, Bin; Lin, Zhenyu; Chen, Guonan

    2014-10-01

    In this paper, a novel label-free G-quadruplex DNAzyme sensor has been proposed for colorimetric identification of GMO using CaMV 35S promoter sequence as the target. The binary probes can fold into G-quadruplex structure in the presence of DNA-T (Target DNA) and then combine with hemin to form a DNAzyme resembling horseradish peroxidase. The detection system consists of two G-rich probes with 2:2 split mode by using the absorbance and color of ABTS(2-) as signal reporter. Upon the addition of a target sequence, two probes both hybridize with target and then their G-rich sequences combine to form a G-quadruplex DNAzyme, and the DNAzyme can catalyze the reaction of ABTS(2-) with H2O2. Then the linear range is from 0.05 to 0.5 μM while detection limit is 5nM. These results demonstrate that the proposed G-quadruplex DNAzyme method could be used as a simple, sensitive and cost-effective approach for assays of GMO.

  1. Label-free fluorescent biosensor based on the target recycling and Thioflavin T-induced quadruplex formation for short DNA species of c-erbB-2 detection.

    PubMed

    Chen, Jinghua; Lin, Jia; Zhang, Xi; Cai, Shuxian; Wu, Dongzhi; Li, Chunyan; Yang, Sheng; Zhang, Jing

    2014-03-19

    Non-invasive early diagnosis of breast cancer is the most effective way to improve the survival rate and increase more chances of breast-conserving. In this paper, we developed a label-free fluorescent biosensor based on nuclease assisted target recycling and Thioflavin T-induced quadruplex formation for short DNA species of c-erbB-2 detection in saliva. By employing the strategy, the sensor can detect as low as 20fM target DNA with high discrimination ability even against single-base mismatch sequence. To the best of our knowledge, the proposed sensor is the first attempt to apply Thioflavin T that possesses outstanding structural selectivity for G-quadruplex in DNA amplification techniques, which may represent a promising path toward direct breast cancer detection in saliva at the point of care. PMID:24594816

  2. An electrochemical DNA biosensor for evaluating the effect of mix anion in cellular fluid on the antioxidant activity of CeO2 nanoparticles.

    PubMed

    Zhai, Yanwu; Zhang, Yan; Qin, Fei; Yao, Xin

    2015-08-15

    CeO2 nanoparticles are of particular interest as a novel antioxidant for scavenging free radicals. However, some studies showed that they could cause cell damage or death by generating reactive oxygen species (ROS). Up to now, it is not well understood about these paradoxical phenomena. Therefore, many attentions have been paid to the factors that could affect the antioxidant activity of CeO2 nanoparticles. CeO2 nanoparticles would inevitably encounter body fluid environment for its potential medical application. In this work the antioxidant activity behavior of CeO2 nanoparticles is studied in simulated cellular fluid, which contains main body anions (HPO4(2-), HCO3(-), Cl(-) and SO4(2-)), by a method of electrochemical DNA biosensor. We found that in the solution of Cl(-) and SO4(2-), CeO2 nanoparticles can protect DNA from damage by hydroxyl radicals, while in the presence of HPO4(2-) and HCO3(-), CeO2 nanoparticles lose the antioxidant activity. This can be explained by the cerium phosphate and cerium carbonate formed on the surface of the nanoparticles, which interfere with the redox cycling between Ce(3+) and Ce(4+). These results not only add basic knowledge to the antioxidant activity of CeO2 nanoparticles under different situations, but also pave the way for practical applications of nanoceria. Moreover, it also shows electrochemical DNA biosensor is an effective method to explore the antioxidant activity of CeO2 nanoparticles.

  3. A FRET-based DNA biosensor tracks OmpR-dependent acidification of Salmonella during macrophage infection.

    PubMed

    Chakraborty, Smarajit; Mizusaki, Hideaki; Kenney, Linda J

    2015-04-01

    In bacteria, one paradigm for signal transduction is the two-component regulatory system, consisting of a sensor kinase (usually a membrane protein) and a response regulator (usually a DNA binding protein). The EnvZ/OmpR two-component system responds to osmotic stress and regulates expression of outer membrane proteins. In Salmonella, EnvZ/OmpR also controls expression of another two-component system SsrA/B, which is located on Salmonella Pathogenicity Island (SPI) 2. SPI-2 encodes a type III secretion system, which functions as a nanomachine to inject bacterial effector proteins into eukaryotic cells. During the intracellular phase of infection, Salmonella switches from assembling type III secretion system structural components to secreting effectors into the macrophage cytoplasm, enabling Salmonella to replicate in the phagocytic vacuole. Major questions remain regarding how bacteria survive the acidified vacuole and how acidification affects bacterial secretion. We previously reported that EnvZ sensed cytoplasmic signals rather than extracellular ones, as intracellular osmolytes altered the dynamics of a 17-amino-acid region flanking the phosphorylated histidine. We reasoned that the Salmonella cytoplasm might acidify in the macrophage vacuole to activate OmpR-dependent transcription of SPI-2 genes. To address these questions, we employed a DNA-based FRET biosensor ("I-switch") to measure bacterial cytoplasmic pH and immunofluorescence to monitor effector secretion during infection. Surprisingly, we observed a rapid drop in bacterial cytoplasmic pH upon phagocytosis that was not predicted by current models. Cytoplasmic acidification was completely dependent on the OmpR response regulator, but did not require known OmpR-regulated genes such as ompC, ompF, or ssaC (SPI-2). Microarray analysis highlighted the cadC/BA operon, and additional experiments confirmed that it was repressed by OmpR. Acidification was blocked in the ompR null background in a Cad

  4. Time-resolved luminescence biosensor for continuous activity detection of protein acetylation-related enzymes based on DNA-sensitized terbium(III) probes.

    PubMed

    Han, Yitao; Li, Hao; Hu, Yufang; Li, Pei; Wang, Huixia; Nie, Zhou; Yao, Shouzhuo

    2015-09-15

    Protein acetylation of histone is an essential post-translational modification (PTM) mechanism in epigenetic gene regulation, and its status is reversibly controlled by histone acetyltransferases (HATs) and histone deacetylases (HDACs). Herein, we have developed a sensitive and label-free time-resolved luminescence (TRL) biosensor for continuous detection of enzymatic activity of HATs and HDACs, respectively, based on acetylation-mediated peptide/DNA interaction and Tb(3+)/DNA luminescent probes. Using guanine (G)-rich DNA-sensitized Tb(3+) luminescence as the output signal, the polycationic substrate peptides interact with DNA with high affinity and subsequently replace Tb(3+), eliminating the luminescent signal. HAT-catalyzed acetylation remarkably reduces the positive charge of the peptides and diminishes the peptide/DNA interaction, resulting in the signal on detection via recovery of DNA-sensitized Tb(3+) luminescence. With this TRL sensor, HAT (p300) can be sensitively detected with a wide linear range from 0.2 to 100 nM and a low detection limit of 0.05 nM. The proposed sensor was further used to continuously monitor the HAT activity in real time. Additionally, the TRL biosensor was successfully applied to evaluating HAT inhibition by two specific inhibitors, anacardic acid and C464, and satisfactory Z'-factors above 0.73 were obtained. Moreover, this sensor is feasible to continuously monitor the HDAC (Sirt1)-catalyzed deacetylation with a linear range from 0.5 to 500 nM and a detection limit of 0.5 nM. The proposed sensor is a convenient, sensitive, and mix-and-read assay, presenting a promising platform for protein acetylation-targeted epigenetic research and drug discovery.

  5. Approaches to label-free flexible DNA biosensors using low-temperature solution-processed InZnO thin-film transistors.

    PubMed

    Jung, Joohye; Kim, Si Joon; Lee, Keun Woo; Yoon, Doo Hyun; Kim, Yeong-Gyu; Kwak, Hee Young; Dugasani, Sreekantha Reddy; Park, Sung Ha; Kim, Hyun Jae

    2014-05-15

    Low-temperature solution-processed In-Zn-O (IZO) thin-film transistors (TFTs) exhibiting a favorable microenvironment for electron transfer by adsorbed artificial deoxyribonucleic acid (DNA) have extraordinary potential for emerging flexible biosensor applications. Superb sensing ability to differentiate even 0.5 μL of 50 nM DNA target solution was achieved through using IZO TFTs fabricated at 280 °C. Our IZO TFT had a turn-on voltage (V(on)) of -0.8 V, on/off ratio of 6.94 × 10(5), and on-current (I(on)) value of 2.32 × 10(-6)A in pristine condition. A dry-wet method was applied to immobilize two dimensional double crossover tile based DNA nanostructures on the IZO surface, after which we observed a negative shift of the transfer curve accompanied by a significant increase in the Ion and degradation of the Von and on/off ratio. As the concentration of DNA target solution increased, variances in these parameters became increasingly apparent. The sensing mechanism based on the current evolution was attributed to the oxidation of DNA, in which the guanine nucleobase plays a key role. The sensing behavior obtained from flexible biosensors on a polymeric substrate fabricated under the identical conditions was exactly analogous. These results compare favorably with the conventional field-effect transistor based DNA sensors by demonstrating remarkable sensitivity and feasibility of flexible devices that arose from a different sensing mechanism and a low-temperature process, respectively. PMID:24368226

  6. Approaches to label-free flexible DNA biosensors using low-temperature solution-processed InZnO thin-film transistors.

    PubMed

    Jung, Joohye; Kim, Si Joon; Lee, Keun Woo; Yoon, Doo Hyun; Kim, Yeong-Gyu; Kwak, Hee Young; Dugasani, Sreekantha Reddy; Park, Sung Ha; Kim, Hyun Jae

    2014-05-15

    Low-temperature solution-processed In-Zn-O (IZO) thin-film transistors (TFTs) exhibiting a favorable microenvironment for electron transfer by adsorbed artificial deoxyribonucleic acid (DNA) have extraordinary potential for emerging flexible biosensor applications. Superb sensing ability to differentiate even 0.5 μL of 50 nM DNA target solution was achieved through using IZO TFTs fabricated at 280 °C. Our IZO TFT had a turn-on voltage (V(on)) of -0.8 V, on/off ratio of 6.94 × 10(5), and on-current (I(on)) value of 2.32 × 10(-6)A in pristine condition. A dry-wet method was applied to immobilize two dimensional double crossover tile based DNA nanostructures on the IZO surface, after which we observed a negative shift of the transfer curve accompanied by a significant increase in the Ion and degradation of the Von and on/off ratio. As the concentration of DNA target solution increased, variances in these parameters became increasingly apparent. The sensing mechanism based on the current evolution was attributed to the oxidation of DNA, in which the guanine nucleobase plays a key role. The sensing behavior obtained from flexible biosensors on a polymeric substrate fabricated under the identical conditions was exactly analogous. These results compare favorably with the conventional field-effect transistor based DNA sensors by demonstrating remarkable sensitivity and feasibility of flexible devices that arose from a different sensing mechanism and a low-temperature process, respectively.

  7. Selection and characterization of DNA aptamers for the development of light-up biosensor to detect Cd(II).

    PubMed

    Wang, Hongyan; Cheng, Hui; Wang, Jine; Xu, Lijun; Chen, Hongxia; Pei, Renjun

    2016-07-01

    In order to develop a facile, cost-effective and quick-testing light-up biosensor with excellent specificity for cadmium ions (Cd(II)) detection, a modified selection method based on target-induced release of strands was used to isolate aptamers of Cd (II) with high specificity. Circular Dichroism (CD) data confirmed that one of the selected aptamers underwent a distinct conformational change on addition of Cd (II). A biosensor for Cd(II) was developed based on the Cd(II)-induced release of fluorescence-labeled aptamer from complex with a quencher-labeled short complementary sequence. The sensing platform displayed a Cd(II) concentration-dependent increase of fluorescence intensity in the low micromolar range and had an excellent selectivity in the presence of various interfering metal ions. Such biosensor could potentially be used for the detection of Cd(II) in environmental samples.

  8. Selection and characterization of DNA aptamers for the development of light-up biosensor to detect Cd(II).

    PubMed

    Wang, Hongyan; Cheng, Hui; Wang, Jine; Xu, Lijun; Chen, Hongxia; Pei, Renjun

    2016-07-01

    In order to develop a facile, cost-effective and quick-testing light-up biosensor with excellent specificity for cadmium ions (Cd(II)) detection, a modified selection method based on target-induced release of strands was used to isolate aptamers of Cd (II) with high specificity. Circular Dichroism (CD) data confirmed that one of the selected aptamers underwent a distinct conformational change on addition of Cd (II). A biosensor for Cd(II) was developed based on the Cd(II)-induced release of fluorescence-labeled aptamer from complex with a quencher-labeled short complementary sequence. The sensing platform displayed a Cd(II) concentration-dependent increase of fluorescence intensity in the low micromolar range and had an excellent selectivity in the presence of various interfering metal ions. Such biosensor could potentially be used for the detection of Cd(II) in environmental samples. PMID:27154706

  9. Construction of Plasmonic Core-Satellite Nanostructures on Substrates Based on DNA-Directed Self-Assembly as a Sensitive and Reproducible Biosensor.

    PubMed

    Zhang, Tingting; Li, He; Hou, Shengwei; Dong, Youqing; Pang, Guangsheng; Zhang, Yingwei

    2015-12-16

    We report the successful construction of plasmonic core-satellite nanostructured assemblies on two-dimensional substrates, based on a strategy of combining DNA-functionalized plasmonic nanoparticles (NPs) with the specific recognition ability toward target to enable satellite NPs to self-assemble around the core immobilized on substrates. A strongly coupled plasmonic resonance band was observed because of the close proximity between core and satellite NPs, which presented significant red-shift and enhanced extinction with respect to the local surface plasmon resonance (LSPR) band of individual core NPs on the substrate. The functionality of this core-satellite nanostructured assembly as a biosensor was further explored, and the changes in extinction intensity and the peak shift of the plasmonic coupling resonance band arising from the probe-target DNA binding event all proved to be useful criteria for target DNA detection. Moreover, high selectivity down to single-base mismatched DNA was achieved using this strongly coupled plasmonic core-satellite nanostructured assembly on a substrate. Such substrate-based detection was advantageous, and its reusability and high cycle stability were demonstrated after five cycles of disassembly and reassembly. Our work demonstrates the biosensing capacity of this DNA-functionalized plasmonic nanoassembly model system on two-dimensional substrate, which is also applicable to the detection of numerous DNA-recognized biomolecules. Likewise, the presented construction method can be extended to fabricate other compositional core-satellite nanoassemblies.

  10. Construction of Plasmonic Core-Satellite Nanostructures on Substrates Based on DNA-Directed Self-Assembly as a Sensitive and Reproducible Biosensor.

    PubMed

    Zhang, Tingting; Li, He; Hou, Shengwei; Dong, Youqing; Pang, Guangsheng; Zhang, Yingwei

    2015-12-16

    We report the successful construction of plasmonic core-satellite nanostructured assemblies on two-dimensional substrates, based on a strategy of combining DNA-functionalized plasmonic nanoparticles (NPs) with the specific recognition ability toward target to enable satellite NPs to self-assemble around the core immobilized on substrates. A strongly coupled plasmonic resonance band was observed because of the close proximity between core and satellite NPs, which presented significant red-shift and enhanced extinction with respect to the local surface plasmon resonance (LSPR) band of individual core NPs on the substrate. The functionality of this core-satellite nanostructured assembly as a biosensor was further explored, and the changes in extinction intensity and the peak shift of the plasmonic coupling resonance band arising from the probe-target DNA binding event all proved to be useful criteria for target DNA detection. Moreover, high selectivity down to single-base mismatched DNA was achieved using this strongly coupled plasmonic core-satellite nanostructured assembly on a substrate. Such substrate-based detection was advantageous, and its reusability and high cycle stability were demonstrated after five cycles of disassembly and reassembly. Our work demonstrates the biosensing capacity of this DNA-functionalized plasmonic nanoassembly model system on two-dimensional substrate, which is also applicable to the detection of numerous DNA-recognized biomolecules. Likewise, the presented construction method can be extended to fabricate other compositional core-satellite nanoassemblies. PMID:26583430

  11. Electrochemical determination of the anticancer drug taxol at a ds-DNA modified pencil-graphite electrode and its application as a label-free electrochemical biosensor.

    PubMed

    Tajik, Somayeh; Taher, Mohammad Ali; Beitollahi, Hadi; Torkzadeh-Mahani, Mosoud

    2015-03-01

    In this study a novel biosensor for determination of taxol is described. The interaction of taxol with salmon-sperm double-stranded DNA (ds-DNA) based on the decreasing of the oxidation signals of guanine and adenine bases was studied electrochemically with a pencil-graphite electrode (PGE) using a differential pulse voltammetry (DPV) method. The decreases in the intensity of the guanine and adenine oxidation signals after interaction with taxol were used as indicator signals for the sensitive determination of taxol. DPV exhibits a linear dynamic range of 2.0×10(-7)-1.0×10(-5) M for taxol with a detection limit of 8.0×10(-8) M. Finally, this modified electrode was used for determination of taxol in some real samples.

  12. Molecular beacon-functionalized gold nanoparticles as probes in dry-reagent strip biosensor for DNA analysis.

    PubMed

    Mao, Xun; Xu, Hui; Zeng, Qingxiang; Zeng, Lingwen; Liu, Guodong

    2009-06-01

    The highly specific molecule recognition properties of molecular beacons (MB) are combined with the unique optical properties of gold nanoparticles (Au-NPs) for the development of a dry-reagent strip-type nucleic acid biosensor (DSNAB) that enables sensitive and low-cost detection of nucleic acid samples within 15 min.

  13. A label-free and enzyme-free ultra-sensitive transcription factors biosensor using DNA-templated copper nanoparticles as fluorescent indicator and hairpin DNA cascade reaction as signal amplifier.

    PubMed

    Sha, Liang; Zhang, Xiaojun; Wang, Guangfeng

    2016-08-15

    Detection and quantification of specific protein with ultralow concentration play a crucial role in biotechnological applications and biomedical diagnostics. In this paper, a label-free and enzyme-free amplified fluorescent biosensor has been developed for transcription factors detection based on AT-rich double-stranded DNA-templated copper nanoparticles (ds DNA/Cu NPs) and hairpin DNA cascade reaction. This strategy was demonstrated by using nuclear factor-kappa B p50 (NF-κB p50) and specific recognition sequences as a model case. In this assay, a triplex consists of double-stranded DNA containing NF-κB p50 specifically binding sequences and a special design single-stranded DNA (Trigger) which is able to activate the hairpin DNA cascade amplifier (HDCA). In the presence of NF-κB p50, the triplex became unstable since the target bound to the recognition sequences with strong affinity. The selective binding event confirmed that the Trigger was successfully released from the triplex and initiated HDCA to yield the product which could effectively template the formation of fluorescent Cu NPs. The experimental results revealed that the advanced strategy was ultra-sensitive for detecting NF-κB p50 in the concentration range from 0.1 to 1000 pM with a detection limit of 0.096 pM. In addition, the relative standard deviation was 4.08% in 3 repetitive assays of 500 pM NF-κB p50, which indicated that the reproducibility of this strategy was acceptable. Besides desirable sensitivity, the developed biosensor also showed high selectivity, cost-effective, and simplified operations. In addition, the proposed biosensing platform is versatile. By conjugating with various specific recognition units, it could hold considerable potential to sensitive and selective detect various DNA-binding proteins and might find wide applications in biomedical fields. PMID:27045526

  14. Biosensors and their applications – A review

    PubMed Central

    Mehrotra, Parikha

    2016-01-01

    The various types of biosensors such as enzyme-based, tissue-based, immunosensors, DNA biosensors, thermal and piezoelectric biosensors have been deliberated here to highlight their indispensable applications in multitudinous fields. Some of the popular fields implementing the use of biosensors are food industry to keep a check on its quality and safety, to help distinguish between the natural and artificial; in the fermentation industry and in the saccharification process to detect precise glucose concentrations; in metabolic engineering to enable in vivo monitoring of cellular metabolism. Biosensors and their role in medical science including early stage detection of human interleukin-10 causing heart diseases, rapid detection of human papilloma virus, etc. are important aspects. Fluorescent biosensors play a vital role in drug discovery and in cancer. Biosensor applications are prevalent in the plant biology sector to find out the missing links required in metabolic processes. Other applications are involved in defence, clinical sector, and for marine applications. PMID:27195214

  15. Biosensors and their applications - A review.

    PubMed

    Mehrotra, Parikha

    2016-01-01

    The various types of biosensors such as enzyme-based, tissue-based, immunosensors, DNA biosensors, thermal and piezoelectric biosensors have been deliberated here to highlight their indispensable applications in multitudinous fields. Some of the popular fields implementing the use of biosensors are food industry to keep a check on its quality and safety, to help distinguish between the natural and artificial; in the fermentation industry and in the saccharification process to detect precise glucose concentrations; in metabolic engineering to enable in vivo monitoring of cellular metabolism. Biosensors and their role in medical science including early stage detection of human interleukin-10 causing heart diseases, rapid detection of human papilloma virus, etc. are important aspects. Fluorescent biosensors play a vital role in drug discovery and in cancer. Biosensor applications are prevalent in the plant biology sector to find out the missing links required in metabolic processes. Other applications are involved in defence, clinical sector, and for marine applications. PMID:27195214

  16. Development of a novel electrochemical DNA biosensor based on elongated hexagonal-pyramid CdS and poly-isonicotinic acid composite film.

    PubMed

    Zheng, Delun; Wang, Qingxiang; Gao, Feng; Wang, Qinghua; Qiu, Weiwei; Gao, Fei

    2014-10-15

    Three CdS materials with different shapes (i.e., irregular, rod-like, and elongated hexagonal-pyramid) were hydrothermally synthesized through controlling the molar ratio of Cd(2+) to thiourea. Electrochemical experiments showed that the elongated hexagonal-pyramid CdS (eh-CdS) modified on glassy carbon electrode (GCE) had the higher electrical conductivity than the other two forms. Then the eh-CdS modified GCE was further modified with a layer of poly-isonicotinic acid (PIA) through electro-polymerization in IA solution to enhance the stability and functionality of the interface. The layer-by-layer modification process was characterized by atomic force microscopy and electrochemistry. Then 5'-amino functionalized DNA was immobilized on the electrode surface through coupling with the carboxylic groups derived from PIA-eh-CdS composite film. The hybridization performance of the developed biosensor was evaluated using methylene blue as redox indicator, and the results showed that the peak currents of methylene blue varied with target concentrations in a wide linear range from 1.0 × 10(-14)M to 1.0 × 10(-9)M with a low detection limit of 3.9 × 10(-15)M. The biosensor also showed high stability and good discrimination ability to the one-base, three-base mismatched and non-complementary sequence.

  17. Development of a novel electrochemical DNA biosensor based on elongated hexagonal-pyramid CdS and poly-isonicotinic acid composite film.

    PubMed

    Zheng, Delun; Wang, Qingxiang; Gao, Feng; Wang, Qinghua; Qiu, Weiwei; Gao, Fei

    2014-10-15

    Three CdS materials with different shapes (i.e., irregular, rod-like, and elongated hexagonal-pyramid) were hydrothermally synthesized through controlling the molar ratio of Cd(2+) to thiourea. Electrochemical experiments showed that the elongated hexagonal-pyramid CdS (eh-CdS) modified on glassy carbon electrode (GCE) had the higher electrical conductivity than the other two forms. Then the eh-CdS modified GCE was further modified with a layer of poly-isonicotinic acid (PIA) through electro-polymerization in IA solution to enhance the stability and functionality of the interface. The layer-by-layer modification process was characterized by atomic force microscopy and electrochemistry. Then 5'-amino functionalized DNA was immobilized on the electrode surface through coupling with the carboxylic groups derived from PIA-eh-CdS composite film. The hybridization performance of the developed biosensor was evaluated using methylene blue as redox indicator, and the results showed that the peak currents of methylene blue varied with target concentrations in a wide linear range from 1.0 × 10(-14)M to 1.0 × 10(-9)M with a low detection limit of 3.9 × 10(-15)M. The biosensor also showed high stability and good discrimination ability to the one-base, three-base mismatched and non-complementary sequence. PMID:24800680

  18. [The application of iron(III) complexing with different forms of DNA for the development of the biosensor for blood serum assay].

    PubMed

    Babkina, S S; Ulakhovich, N A

    2004-01-01

    Fe(III) complexing with DNA was studied using spectrophotometric and voltamperometric data and mathematic simulation as well. The binding constant for the hypothetical complex Fe(III)-DNA 1:1 was 1.4 x 10(-5) mol(-1) x 1. Fe(III) complexes with various forms of DNA were characterized in terms of their composition and binding constants. The complex composition for the immobilized denatured DNA (d-IDNA) was found to be 1:2.25 (nucleotide:Fe(III)); this complex was characterized by the highest value of binding constant. d-IDNA was included into an amperometric biosensor for assay of Fe(II) content in human blood serum. The method of Fe(III) selective determination in the form of the complexonate was elaborated with the lower limit of detection of 1 x 10(-7) mol x l(-1). The linear region of Fe(III) detection was within the following concentration range 1.0 x 10(-7) - 6.0 x 10(-5) mol x l(-1). Determination of Fe(III) in the presence of matrix blood serum ions such as Mg(II), Zn(II), Cu(II) and Al(III) was carried out. The proposed method is well reproducible, characterised with an easy sampling and speed.

  19. Real-time, multiplexed electrochemical DNA detection using an active complementary metal-oxide-semiconductor biosensor array with integrated sensor electronics.

    PubMed

    Levine, Peter M; Gong, Ping; Levicky, Rastislav; Shepard, Kenneth L

    2009-03-15

    Optical biosensing based on fluorescence detection has arguably become the standard technique for quantifying extents of hybridization between surface-immobilized probes and fluorophore-labeled analyte targets in DNA microarrays. However, electrochemical detection techniques are emerging which could eliminate the need for physically bulky optical instrumentation, enabling the design of portable devices for point-of-care applications. Unlike fluorescence detection, which can function well using a passive substrate (one without integrated electronics), multiplexed electrochemical detection requires an electronically active substrate to analyze each array site and benefits from the addition of integrated electronic instrumentation to further reduce platform size and eliminate the electromagnetic interference that can result from bringing non-amplified signals off chip. We report on an active electrochemical biosensor array, constructed with a standard complementary metal-oxide-semiconductor (CMOS) technology, to perform quantitative DNA hybridization detection on chip using targets conjugated with ferrocene redox labels. A 4 x 4 array of gold working electrodes and integrated potentiostat electronics, consisting of control amplifiers and current-input analog-to-digital converters, on a custom-designed 5 mm x 3 mm CMOS chip drive redox reactions using cyclic voltammetry, sense DNA binding, and transmit digital data off chip for analysis. We demonstrate multiplexed and specific detection of DNA targets as well as real-time monitoring of hybridization, a task that is difficult, if not impossible, with traditional fluorescence-based microarrays.

  20. Electrochemical DNA biosensor with chitosan-Co(3)O(4) nanorod-graphene composite for the sensitive detection of Staphylococcus aureus nuc gene sequence.

    PubMed

    Qi, Xiaowei; Gao, Hongwei; Zhang, Yuanyuan; Wang, Xiuzhen; Chen, Ying; Sun, Wei

    2012-12-01

    In this paper a novel nanocomposite material prepared by Co(3)O(4) nanorods (nano-Co(3)O(4)), graphene (GR) and chitosan (CTS) was fabricated and further modified on carbon ionic liquid electrode (CILE), which was used as the substrate electrode to construct a new electrochemical DNA biosensor. The single-stranded DNA (ssDNA) probe was immobilized on the CTS-Co(3)O(4)-GR/CILE surface by electrostatic attraction, which could hybridize with the target ssDNA sequence under the selected conditions. By using methylene blue (MB) as the electrochemical indicator, the hybridization reactions were monitored with the reduction peak current. By combining the biocompatibility of Co(3)O(4) nanorods, excellent electron transfer ability and big surface of GR, good film-forming ability of CTS and the high conductivity of CILE, the amount of ssDNA adsorbed on the electrode surface was increased and the electrochemical response of MB was accelerated. Under the optimal conditions differential pulse voltammetric responses of MB were in linear with the specific target ssDNA sequence in the concentration range from 1.0×10(-12) to 1.0×10(-6)M with the detection limit as 4.3×10(-13)M (3σ). Good discrimination ability to the one-base and three-base mismatched ssDNA sequences could be achieved and the polymerase chain reaction (PCR) amplification products of Staphylococcus aureus nuc gene sequence were detected with satisfactory results.

  1. Quantitative characterization of conformational-specific protein-DNA binding using a dual-spectral interferometric imaging biosensor

    NASA Astrophysics Data System (ADS)

    Zhang, Xirui; Daaboul, George G.; Spuhler, Philipp S.; Dröge, Peter; Ünlü, M. Selim

    2016-03-01

    DNA-binding proteins play crucial roles in the maintenance and functions of the genome and yet, their specific binding mechanisms are not fully understood. Recently, it was discovered that DNA-binding proteins recognize specific binding sites to carry out their functions through an indirect readout mechanism by recognizing and capturing DNA conformational flexibility and deformation. High-throughput DNA microarray-based methods that provide large-scale protein-DNA binding information have shown effective and comprehensive analysis of protein-DNA binding affinities, but do not provide information of DNA conformational changes in specific protein-DNA complexes. Building on the high-throughput capability of DNA microarrays, we demonstrate a quantitative approach that simultaneously measures the amount of protein binding to DNA and nanometer-scale DNA conformational change induced by protein binding in a microarray format. Both measurements rely on spectral interferometry on a layered substrate using a single optical instrument in two distinct modalities. In the first modality, we quantitate the amount of binding of protein to surface-immobilized DNA in each DNA spot using a label-free spectral reflectivity technique that accurately measures the surface densities of protein and DNA accumulated on the substrate. In the second modality, for each DNA spot, we simultaneously measure DNA conformational change using a fluorescence vertical sectioning technique that determines average axial height of fluorophores tagged to specific nucleotides of the surface-immobilized DNA. The approach presented in this paper, when combined with current high-throughput DNA microarray-based technologies, has the potential to serve as a rapid and simple method for quantitative and large-scale characterization of conformational specific protein-DNA interactions.DNA-binding proteins play crucial roles in the maintenance and functions of the genome and yet, their specific binding mechanisms are

  2. DNA-Aptamer optical biosensors based on a LPG-SPR optical fiber platform for point-of-care diagnostic

    NASA Astrophysics Data System (ADS)

    Coelho, L.; Queirós, R. B.; Santos, J. L.; Martins, M. Cristina L.; Viegas, D.; Jorge, P. A. S.

    2014-03-01

    Surface Plasmon Resonance (SPR) is the base for some of the most sensitive label free optical fiber biosensors. However, most solutions presented to date require the use of fragile fiber optic structure such as adiabatic tapers or side polished fibers. On the other hand, long-period fiber gratings (LPG) present themselves as an interesting solution to attain an evanescent wave refractive index sensor platform while preserving the optical fiber integrity. The combination of these two approaches constitute a powerful platform that can potentially reach the highest sensitivities as it was recently demonstrated by detailed theoretical study [1, 2]. In this work, a LPG-SPR platform is explored in different configurations (metal coating between two LPG - symmetric and asymmetric) operating in the telecom band (around 1550 nm). For this purpose LPGs with period of 396 μm are combined with tailor made metallic thin films. In particular, the sensing regions were coated with 2 nm of chromium to improve the adhesion to the fiber and 16 nm of gold followed by a 100 nm thick layer of TiO2 dielectric material strategically chosen to attain plasmon resonance in the desired wavelength range. The obtained refractometric platforms were then validated as a biosensor. For this purpose the detection of thrombin using an aptamer based probe was used as a model system for protein detection. The surface of the sensing fibers were cleaned with isopropanol and dried with N2 and then the aminated thrombin aptamer (5'-[NH2]- GGTTGGTGTGGTTGG-3') was immobilized by physisorption using Poly-L-Lysine (PLL) as cationic polymer. Preliminary results indicate the viability of the LPFG-SPR-APTAMER as a flexible platforms point of care diagnostic biosensors.

  3. Sensitive pseudobienzyme electrocatalytic DNA biosensor for mercury(II) ion by using the autonomously assembled hemin/G-quadruplex DNAzyme nanowires for signal amplification.

    PubMed

    Yuan, Yali; Gao, Min; Liu, Guangpeng; Chai, Yaqin; Wei, Shiqing; Yuan, Ruo

    2014-02-01

    Herein, a novel sensitive pseudobienzyme electrocatalytic DNA biosensor was proposed for mercury ion (Hg(2+)) detection by using autonomously assembled hemin/G-quadruplex DNAzyme nanowires for signal amplification. Thiol functionalized capture DNA was firstly immobilized on a nano-Au modified glass carbon electrode (GCE). In presence of Hg(2+), the specific coordination between Hg(2+) and T could result in the assembly of primer DNA on the electrode, which successfully triggered the HCR to form the hemin/G-quadruplex DNAzyme nanowires with substantial redox probe thionine (Thi). In the electrolyte of PBS containing NADH, the hemin/G-quadruplex nanowires firstly acted as an NADH oxidase to assist the concomitant formation of H2O2 in the presence of dissolved O2. Then, with the redox probe Thi as electron mediator, the hemin/G-quadruplex nanowires acted as an HRP-mimicking DNAzyme that quickly bioelectrocatalyzed the reduction of produced H2O2, which finally led to a dramatically amplified electrochemical signal. This method has demonstrated a high sensitivity of Hg(2+) detection with the dynamic concentration range spanning from 1.0 ng L(-1) to 10 mg L(-1) Hg(2+) and a detection limit of 0.5 ng L(-1) (2.5 pM) at the 3Sblank level, and it also demonstrated excellent selectivity against other interferential metal ions.

  4. Rapid on-site/in-situ detection of heavy metal ions in environmental water using a structure-switching DNA optical biosensor.

    PubMed

    Long, Feng; Zhu, Anna; Shi, Hanchang; Wang, Hongchen; Liu, Jingquan

    2013-01-01

    A structure-switching DNA optical biosensor for rapid on-site/in situ detection of heavy metal ions is reported. Mercury ions (Hg²⁺), highly toxic and ubiquitous pollutants, were selected as model target. In this system, fluorescence-labeled DNA containing T-T mismatch structure was introduced to bind with DNA probes immobilized onto the sensor surface. In the presence of Hg²⁺, some of the fluorescence-labeled DNAs bind with Hg²⁺ to form T-Hg²⁺-T complexes through the folding of themselves into a hairpin structure and dehybridization from the sensor surface, which leads to decrease in fluorescence signal. The total analysis time for a single sample was less than 10 min with detection limit of 1.2 nM. The rapid on-site/in situ determination of Hg²⁺ was readily performed in natural water. This sensing strategy can be extended in principle to other metal ions by substituting the T-Hg²⁺-T complexes with other specificity structures that selectively bind to other analytes.

  5. Rapid on-site/in-situ detection of heavy metal ions in environmental water using a structure-switching DNA optical biosensor.

    PubMed

    Long, Feng; Zhu, Anna; Shi, Hanchang; Wang, Hongchen; Liu, Jingquan

    2013-01-01

    A structure-switching DNA optical biosensor for rapid on-site/in situ detection of heavy metal ions is reported. Mercury ions (Hg²⁺), highly toxic and ubiquitous pollutants, were selected as model target. In this system, fluorescence-labeled DNA containing T-T mismatch structure was introduced to bind with DNA probes immobilized onto the sensor surface. In the presence of Hg²⁺, some of the fluorescence-labeled DNAs bind with Hg²⁺ to form T-Hg²⁺-T complexes through the folding of themselves into a hairpin structure and dehybridization from the sensor surface, which leads to decrease in fluorescence signal. The total analysis time for a single sample was less than 10 min with detection limit of 1.2 nM. The rapid on-site/in situ determination of Hg²⁺ was readily performed in natural water. This sensing strategy can be extended in principle to other metal ions by substituting the T-Hg²⁺-T complexes with other specificity structures that selectively bind to other analytes. PMID:23892693

  6. Rapid on-site/in-situ detection of heavy metal ions in environmental water using a structure-switching DNA optical biosensor

    NASA Astrophysics Data System (ADS)

    Long, Feng; Zhu, Anna; Shi, Hanchang; Wang, Hongchen; Liu, Jingquan

    2013-07-01

    A structure-switching DNA optical biosensor for rapid on-site/in situ detection of heavy metal ions is reported. Mercury ions (Hg2+), highly toxic and ubiquitous pollutants, were selected as model target. In this system, fluorescence-labeled DNA containing T-T mismatch structure was introduced to bind with DNA probes immobilized onto the sensor surface. In the presence of Hg2+, some of the fluorescence-labeled DNAs bind with Hg2+ to form T-Hg2+-T complexes through the folding of themselves into a hairpin structure and dehybridization from the sensor surface, which leads to decrease in fluorescence signal. The total analysis time for a single sample was less than 10 min with detection limit of 1.2 nM. The rapid on-site/in situ determination of Hg2+ was readily performed in natural water. This sensing strategy can be extended in principle to other metal ions by substituting the T-Hg2+-T complexes with other specificity structures that selectively bind to other analytes.

  7. Accurate and easy-to-use assessment of contiguous DNA methylation sites based on proportion competitive quantitative-PCR and lateral flow nucleic acid biosensor.

    PubMed

    Xu, Wentao; Cheng, Nan; Huang, Kunlun; Lin, Yuehe; Wang, Chenguang; Xu, Yuancong; Zhu, Longjiao; Du, Dan; Luo, Yunbo

    2016-06-15

    Many types of diagnostic technologies have been reported for DNA methylation, but they require a standard curve for quantification or only show moderate accuracy. Moreover, most technologies have difficulty providing information on the level of methylation at specific contiguous multi-sites, not to mention easy-to-use detection to eliminate labor-intensive procedures. We have addressed these limitations and report here a cascade strategy that combines proportion competitive quantitative PCR (PCQ-PCR) and lateral flow nucleic acid biosensor (LFNAB), resulting in accurate and easy-to-use assessment. The P16 gene with specific multi-methylated sites, a well-studied tumor suppressor gene, was used as the target DNA sequence model. First, PCQ-PCR provided amplification products with an accurate proportion of multi-methylated sites following the principle of proportionality, and double-labeled duplex DNA was synthesized. Then, a LFNAB strategy was further employed for amplified signal detection via immune affinity recognition, and the exact level of site-specific methylation could be determined by the relative intensity of the test line and internal reference line. This combination resulted in all recoveries being greater than 94%, which are pretty satisfactory recoveries in DNA methylation assessment. Moreover, the developed cascades show significantly high usability as a simple, sensitive, and low-cost tool. Therefore, as a universal platform for sensing systems for the detection of contiguous multi-sites of DNA methylation without external standards and expensive instrumentation, this PCQ-PCR-LFNAB cascade method shows great promise for the point-of-care diagnosis of cancer risk and therapeutics.

  8. Microfluidic biosensor for the detection of DNA by fluorescence enhancement and the following streptavidin detection by fluorescence quenching.

    PubMed

    Wang, Jun; Aki, Michihiko; Onoshima, Daisuke; Arinaga, Kenji; Kaji, Noritada; Tokeshi, Manabu; Fujita, Shozo; Yokoyama, Naoki; Baba, Yoshinobu

    2014-01-15

    We reported an optical DNA/protein microfluidic sensor which consists of single stranded (ss) DNA-Cy3 probes on gold surface and simple line-shape microfluidic channel. These ssDNA-Cy3 probes with random sequence in bulk solution or on gold surface exhibits fluorescence enhancement after binding with complementary ssDNA (cssDNA) targets. Particularly it did not require complicated design or hairpin-like stem-loop conformation, which made it easier to be made and applied in analytes detection by fluorescence switching techniques. Using ssDNA-cy3 probes attached on gold surface in a microfluidic channel, strong fluorescence enhancement was measured by ssDNA with cssDNA binding or ssDNA with cssDNA-biotin binding. The following introduction of streptavidin resulted in fluorescence quenching (fluorescence decrease) because of the binding of hybridized DNA-biotin with streptavidin. This sensor showed strong affinity and high sensitivity toward the streptavidin, the minimum detectable concentration for streptavidin was 1 pM, equating to an absolute detection limit of 60 amol in this microfluidic channel. Microfluidic channel height and flow rate is optimized to increase surface reaction efficiency and fluorescence switching efficiency. In contrast to previously reported optical molecular beacon approach, this sensor can be used not only for the detection of cssDNA target, but also for the detection of streptavidin. This microfluidic sensor offers the promise of analyzing kinds of molecular targets or immunoreactions.

  9. Electrochemical spectroscopic investigations on the interaction of an ytterbium complex with DNA and their analytical applications such as biosensor.

    PubMed

    Ilkhani, Hoda; Ganjali, Mohamad Reza; Arvand, Majid; Hejazi, Mohammad Saeid; Azimi, Fateme; Norouzi, Parviz

    2011-12-01

    Metal ion-DNA interactions are important in nature, often changing the genetic material's structure and function. A new Yb complex of YbCl(3) (tris(8-hydroxyquinoline-5-sulfonic acid) ytterbium) was synthesized and utilized as an electrochemical indicator for the detection of DNA oligonucleotide based on its interaction with Yb(QS)(3). Cyclic voltammetry (CV) and fluorescence spectroscopy were used to investigate the interaction of Yb(QS)(3) with ds-DNA. It was revealed that Yb(QS)(3) presented an excellent electrochemical activity on glassy carbon electrode (GCE) and could intercalate into the double helix of double-stranded DNA (ds-DNA). The binding mechanism of interaction was elucidated on glassy carbon electrode dipped in DNA solution and DNA modified carbon paste electrode by using differential pulse voltammetry and cyclic voltammetry. The binding ratio between this complex and ds-DNA was calculated to be 1:1. The extent of hybridization was evaluated on the basis of the difference between signals of Yb(QS)(3) with probe DNA before and after hybridization with complementary DNA. With this approach, this DNA could be quantified over the range from 1 × 10(-8) to 1.1 × 10(-7)M. The interaction mode between Yb(QS)(3) and DNA was found to be mainly intercalative interaction. These results were confirmed with fluorescence experiments.

  10. Plasmonic Biosensors

    PubMed Central

    Hill, Ryan T.

    2015-01-01

    The unique optical properties of plasmon resonant nanostructures enable exploration of nanoscale environments using relatively simple optical characterization techniques. For this reason, the field of plasmonics continues to garner the attention of the biosensing community. Biosensors based on propagating surface plasmon resonances (SPRs) in films are the most well-recognized plasmonic biosensors, but there is great potential for the new, developing technologies to surpass the robustness and popularity of film-based SPR sensing. This review surveys the current plasmonic biosensor landscape with emphasis on the basic operating principles of each plasmonic sensing technique and the practical considerations when developing a sensing platform with the various techniques. The “gold standard” film SPR technique is reviewed briefly, but special emphasis is devoted to the up-and-coming LSPR-based and plasmonically coupled sensor technology. PMID:25377594

  11. Quantitative characterization of conformational-specific protein-DNA binding using a dual-spectral interferometric imaging biosensor

    NASA Astrophysics Data System (ADS)

    Zhang, Xirui; Daaboul, George G.; Spuhler, Philipp S.; Dröge, Peter; Ünlü, M. Selim

    2016-03-01

    DNA-binding proteins play crucial roles in the maintenance and functions of the genome and yet, their specific binding mechanisms are not fully understood. Recently, it was discovered that DNA-binding proteins recognize specific binding sites to carry out their functions through an indirect readout mechanism by recognizing and capturing DNA conformational flexibility and deformation. High-throughput DNA microarray-based methods that provide large-scale protein-DNA binding information have shown effective and comprehensive analysis of protein-DNA binding affinities, but do not provide information of DNA conformational changes in specific protein-DNA complexes. Building on the high-throughput capability of DNA microarrays, we demonstrate a quantitative approach that simultaneously measures the amount of protein binding to DNA and nanometer-scale DNA conformational change induced by protein binding in a microarray format. Both measurements rely on spectral interferometry on a layered substrate using a single optical instrument in two distinct modalities. In the first modality, we quantitate the amount of binding of protein to surface-immobilized DNA in each DNA spot using a label-free spectral reflectivity technique that accurately measures the surface densities of protein and DNA accumulated on the substrate. In the second modality, for each DNA spot, we simultaneously measure DNA conformational change using a fluorescence vertical sectioning technique that determines average axial height of fluorophores tagged to specific nucleotides of the surface-immobilized DNA. The approach presented in this paper, when combined with current high-throughput DNA microarray-based technologies, has the potential to serve as a rapid and simple method for quantitative and large-scale characterization of conformational specific protein-DNA interactions.DNA-binding proteins play crucial roles in the maintenance and functions of the genome and yet, their specific binding mechanisms are

  12. Piezotronic Effect Enhanced Label-Free Detection of DNA Using a Schottky-Contacted ZnO Nanowire Biosensor.

    PubMed

    Cao, Xiaotao; Cao, Xia; Guo, Huijuan; Li, Tao; Jie, Yang; Wang, Ning; Wang, Zhong Lin

    2016-08-23

    A sensitive and in situ selective label-free DNA sensor based on a Schottky-contacted ZnO nanowire (NW) device has been developed and utilized to detect the human immunodeficiency virus 1 gene in this work. Piezotronic effect on the performance of the DNA sensor is studied by measuring its output current under different compressive strains and target complementary DNA concentrations. By applying a -0.59% compressive strain to a ZnO NW-based DNA sensor, the relative current response is greatly enhanced by 454%. A theoretical model is proposed to explain the observed behaviors of the DNA sensor. This study provides a piezotronically modified method to effectively improve the overall performance of the Schottky-contacted ZnO NW-based DNA sensor.

  13. Real-time monitoring of mycobacterium genomic DNA with target-primed rolling circle amplification by a Au nanoparticle-embedded SPR biosensor.

    PubMed

    Xiang, Yang; Zhu, Xiaoyan; Huang, Qing; Zheng, Junsong; Fu, Weiling

    2015-04-15

    In this study, we developed a surface plasmon resonance (SPR) DNA biosensor array based on target-primed rolling circle amplification (RCA) for isothermal and rapid detection of two pathogenic mycobacteria, Mycobacterium tuberculosis complex (MTBC) and Mycobacterium avium complex (MAC).The species-specific padlock probe (PLP) was designed to target the sequence in 16S-23S rRNA gene internal transcribed spacer (ITS). After ligation, the circularized PLP could be primed by the target sequence to initial RCA. The RCA performed simultaneously with the cleavage reaction to produce small fragments of single strand DNA which immediately hybridized with the probe immobilized on the sensor chip without denaturation. This process caused SPR angle changes on the chip surface, which made the detection for analysis from the solution achievable, and dynamic real-time RCA monitoring of mycobacterium possible. Besides, Au nanoparticles (AuNPs) were directly assembled onto the surface of the sensor chip via hexanedithiol (HDT) for the enhancement of sensitivity as a label-free detection system. Experimental results show that the signal enhancement by the target-primed RCA together with AuNPs-embedded surface caused at least10-fold increased sensitivity as compared with conventional RCA on bare SPR chip method. Within 40min amplification duration as low as 20amol of synthetic targets and 10(4)CFUmL(-1) of genomic DNA from clinical samples can be detected. The proposed method not only provides a simple design idea for liquid-phase amplification monitoring, but also apply it in clinical pathogen detection, which holds great promise in ultrasensitive bioassay in the future.

  14. Highly sensitive and multiple DNA biosensor based on isothermal strand-displacement polymerase reaction and functionalized magnetic microparticles.

    PubMed

    Luo, Ming; Li, Ningxing; Liu, Yufei; Chen, Chaohui; Xiang, Xia; Ji, Xinghu; He, Zhike

    2014-05-15

    A universal, highly sensitive and selective chemiluminescence (CL) imaging method has been developed for high throughput detection of DNA. After molecular beacon (MB) hybridized with the target DNA, the biotin-labeled primer was attached to a magnetic microparticle (MMP) surface by hybridization with the stem part of the MB to initiate a polymerization of DNA strand, which led to the release of the target and another polymerization cycle. Thus the polymerization produced the multiplication of biotin-labeled primer on the surface of MMPs. Sequentially, the horseradish peroxidase (HRP) was conjugated to MMPs surface through the biotin-streptavidin reaction. Then, the conjugated HRP was determined by the CL imaging method. This proposed method could detect the sequence-specific DNA as low as 0.4 pM and discriminate perfectly matched target DNA from the mismatch DNAs. All in all, this proposed method exhibited an efficient amplification performance, and would open new opportunities for sensitive and high throughput detection of DNA.

  15. Potential of cross-priming amplification and DNA-based lateral-flow strip biosensor for rapid on-site GMO screening.

    PubMed

    Huang, Xin; Zhai, Congcong; You, Qimin; Chen, Hongjun

    2014-07-01

    The requirement to monitor the presence of genetically modified organisms (GMO) in a variety of marked products has generated an increasing demand for reliable, rapid, and time and cost-effective analytical methods. Here we report an on-site method for rapid detection of cauliflower mosaic virus promoter (CaMV 35S), a common element present in most GMO, using cross-priming amplification (CPA) technology. Detection was achieved using a DNA-based contamination-proof strip biosensor. The limit of detection was 30 copies for the pBI121 plasmid containing the CaMV 35S gene. The certified reference sample of GM maize line MON810 was detectable even at the low relative mass concentration of 0.05%. The developed CPA method had high specificity for the CaMV 35S gene, as compared with other GM lines not containing this gene and non-GM products. The method was further validated using nine real-world samples, and the results were confirmed by real-time PCR analysis. Because of its simplicity, rapidity, and high sensitivity, this method of detecting the CaMV 35S gene has great commercial prospects for rapid GMO screening of high-consumption food and agriculture products. PMID:24736809

  16. Potential of cross-priming amplification and DNA-based lateral-flow strip biosensor for rapid on-site GMO screening.

    PubMed

    Huang, Xin; Zhai, Congcong; You, Qimin; Chen, Hongjun

    2014-07-01

    The requirement to monitor the presence of genetically modified organisms (GMO) in a variety of marked products has generated an increasing demand for reliable, rapid, and time and cost-effective analytical methods. Here we report an on-site method for rapid detection of cauliflower mosaic virus promoter (CaMV 35S), a common element present in most GMO, using cross-priming amplification (CPA) technology. Detection was achieved using a DNA-based contamination-proof strip biosensor. The limit of detection was 30 copies for the pBI121 plasmid containing the CaMV 35S gene. The certified reference sample of GM maize line MON810 was detectable even at the low relative mass concentration of 0.05%. The developed CPA method had high specificity for the CaMV 35S gene, as compared with other GM lines not containing this gene and non-GM products. The method was further validated using nine real-world samples, and the results were confirmed by real-time PCR analysis. Because of its simplicity, rapidity, and high sensitivity, this method of detecting the CaMV 35S gene has great commercial prospects for rapid GMO screening of high-consumption food and agriculture products.

  17. Renewable Surface Biosensors With Optical Detection

    SciTech Connect

    Bruckner-Lea, Cynthia J.; Ackerman, Eric J.; Dockendorff, Brian P.; Holman, David A.; Grate, Jay W.

    2001-12-01

    One major challenge in the development of biosensors is the limited lifetime of a chemically selective surface that includes biomolecules. Renewable surface biosensors address this issue by using fresh aliquots of derivatized microbeads for each analysis. The analyte detection can then occur on the microbeads, or downstream from the microbeads. In this paper, we will describe two types of renewable surface biosensors. The first renewable biosensor system includes on-column optical detection for monitoring the binding of biomolecules onto protein or DNA-derivatized Sepharose beads. The second renewable biosensor system includes detection downstream from the microparticles and is based on the use of derivatized magnetic particles for selective binding. The magnetic particles are fluidically captured and released in a sequential injection system to allow the automation of an Enzyme Linked ImmunoSorbent Assay.

  18. Renewable Surface Biosensors with Optical Detection

    SciTech Connect

    Bruckner-Lea, Cindy J.; Ackerman, Eric J.; Dockendorff, Brian P.; Holman, David A.; Grate, Jay W.

    2001-04-30

    One major challenge in the development of biosensors is the limited lifetime of a chemically selective surface that includes biomolecules. Renewable surface biosensors address this issue by using fresh aliquots of derivatized microbeads for each analysis. The analyte detection can then occur on the microbeads, or downstream from the microbeads. In this paper, we will describe two types of renewable surface biosensors. The first renewable biosensor system includes on-column optical detection for monitoring the binding of biomolecules onto protein or DNA-derivatized Sepharose beads. The second renewable biosensor system includes detection downstream from the microparticles and is based on the use of derivatized magnetic particles for selective binding. The magnetic particles are fluidically captured and released in a sequential injection system to allow the automation of an Enzyme Linked ImmunoSorbent Assay.

  19. Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating

    NASA Astrophysics Data System (ADS)

    Candiani, Alessandro; Bertucci, Alessandro; Giannetti, Sara; Konstantaki, Maria; Manicardi, Alex; Pissadakis, Stavros; Cucinotta, Annamaria; Corradini, Roberto; Selleri, Stefano

    2013-05-01

    We describe a novel sensing approach based on a functionalized microstructured optical fiber-Bragg grating for specific DNA target sequences detection. The inner surface of a microstructured fiber, where a Bragg grating was previously inscribed, has been functionalized by covalent linking of a peptide nucleic acid probe targeting a DNA sequence bearing a single point mutation implicated in cystic fibrosis (CF) disease. A solution of an oligonucleotide (ON) corresponding to a tract of the CF gene containing the mutated DNA has been infiltrated inside the fiber capillaries and allowed to hybridize to the fiber surface according to the Watson-Crick pairing. In order to achieve signal amplification, ON-functionalized gold nanoparticles were then infiltrated and used in a sandwich-like assay. Experimental measurements show a clear shift of the reflected high order mode of a Bragg grating for a 100 nM DNA solution, and fluorescence measurements have confirmed the successful hybridization. Several experiments have been carried out on the same fiber using the identical concentration, showing the same modulation trend, suggesting the possibility of the reuse of the sensor. Measurements have also been made using a 100 nM mismatched DNA solution, containing a single nucleotide mutation and corresponding to the wild-type gene, and the results demonstrate the high selectivity of the sensor.

  20. "Signal-on" photoelectrochemical biosensor for sensitive detection of human T-Cell lymphotropic virus type II DNA: dual signal amplification strategy integrating enzymatic amplification with terminal deoxynucleotidyl transferase-mediated extension.

    PubMed

    Shen, Qingming; Han, Li; Fan, Gaochao; Zhang, Jian-Rong; Jiang, Liping; Zhu, Jun-Jie

    2015-01-01

    A novel "signal-on" photoelectrochemical (PEC) biosensor for sensitive detection of human T-cell lymphotropic virus type II (HTLV-II) DNA was developed on the basis of enzymatic amplification coupled with terminal deoxynucleotidyl transferase (TdT)-mediated extension strategy. The intensity of the photocurrent signal was proportional to the concentration of the HTLV-II DNA-target DNA (tDNA) by dual signal amplification. In this protocol, GR-CdS:Mn/ZnS nanocomposites were used as photoelectric conversion material, while pDNA was used as the tDNA recognizing unit. Moreover, the TdT-mediated extension and the enzymatic signal amplification technique were used to enhance the sensitivity of detection. Using this novel dual signal amplification strategy, the prototype of PEC DNA sensor can detect as low as ∼0.033 fM of HTLV-II DNA with a linear range of 0.1-5000 fM, with excellent differentiation ability even for single-base mismatches. This PEC DNA assay opens a promising platform to detect various DNA targets at ultralow levels for early diagnoses of different diseases. PMID:25871300

  1. Nanotubes, Nanowires, and Nanocantilevers in Biosensor Development

    SciTech Connect

    Wang, Jun; Liu, Guodong; Lin, Yuehe

    2007-03-08

    In this chapter, the reviews on biosensor development based on 1-D nanomaterials, CNTs, semiconducting nanowires, and some cantilevers will be introduced. The emphasis of this review will be placed on CNTs and electrochemical/electronic biosensor developments. Section 2 of this chapter gives a detailed description of carbon nanotubes-based biosensor development, from fabrication of carbon nanotubes, the strategies for construction of carbon nanotube based biosensors to their bioapplications. In the section of the applications of CNTs based biosensors, various detection principles, e. g. electrochemical, electronic, and optical method, and their applications are reviewed in detail. Section 3 introduces the method for synthesis of semiconducting nanowires, e.g. silicon nanowires, conducting polymer nanowires and metal oxide nanowires and their applications in DNA and proteins sensing. Section 4 simply describes the development for nanocantilevers based biosensors and their application in DNA and protein diagnosis. Each section starts from a brief introduction and then goes into details. Finally in the Conclusion section, the development of 1-D nanomaterials based biosensor development is summarized.

  2. A signal-on electrochemical DNA biosensor based on potential-assisted Cu(I)-catalyzed azide-alkyne cycloaddition mediated labeling of hairpin-like oligonucleotide with electroactive probe.

    PubMed

    Hu, Qiong; Kong, Jinming; Li, Yajie; Zhang, Xueji

    2016-01-15

    A novel electrochemical biosensor was developed for the signal-on detection of sequence-specific DNA by exploiting potential-assisted Cu(I)-catalyzed azide-alkyne cycloaddition (φCuAAC) as an efficient approach for the labeling of hairpin-like oligonucleotide (hairpin) with electroactive probe. The hairpins, dually labeled with thiol and azide at either terminal, were firstly self-assembled on gold electrode and served as the capture probes for the specific recognition of target DNA. Upon hybridization with target DNA, the surface-confined hairpins were unfolded, liberating the azide-containing terminals away from electrode surface. Subsequently, the unfolded hairpins were conveniently and efficiently labeled with ethynylferrocene (EFC) via the φCuAAC. The quantitatively labeled EFC was finally measured via differential pulse voltammetry (DPV) for the signal-on electrochemical detection of sequence-specific DNA. The biosensor presented a good linear response over the range from 1pM to 1nM with a detection limit of 0.62pM. Results also revealed that it was highly specific and held a good detection capability in serum samples. Furthermore, the ability to chemoselectively label hairpin-like oligonucleotide with signal reporter by electrical addressing, together with the simplicity and efficiency of the φCuAAC, makes it compatible with microfluidic devices and microelectrode arrays to achieve the miniaturized and multiplexed detections.

  3. A novel fluorescent biosensor for detection of target DNA fragment from the transgene cauliflower mosaic virus 35S promoter.

    PubMed

    Qiu, Bin; Zhang, Ya-shan; Lin, Yi-bing; Lu, Yu-Jing; Lin, Zhen-yu; Wong, Kwok-Yin; Chen, Guo-nan

    2013-03-15

    In this paper, we reported a convenient fluorescence method for the detection of genetically modified organisms (GMOs). As it is known that the cauliflower mosaic virus (CaMV) 35S promoter is widely used in most transgenic plants (Schnurr and Guerra, 2000), we thus design a simple method based on the detection of a section target DNA (DNA-T) from the transgene CaMV 35S promoter. In this method, the full-length guanine-rich single-strand sequences were split into fragments (Probe 1 and 2) and each part of the fragment possesses two GGG repeats. In the presence of K(+) ion and berberine, if a complementary target DNA of the CaMV 35S promoter was introduced to hybridize with Probe 1 and 2, a G-quadruplex-berberine complex was thus formed and generated a strong fluorescence signal. The generation of fluorescence signal indicates the presence of CaMV 35S promoter. This method is able to identify and quantify Genetically Modified Organisms (GMOs), and it shows wide linear ranges from 5.0×10(-9) to 9.0×10(-7) mol/L with a detection limit of 2.0×10(-9) mol/L. PMID:22959013

  4. A novel fluorescent biosensor for detection of target DNA fragment from the transgene cauliflower mosaic virus 35S promoter.

    PubMed

    Qiu, Bin; Zhang, Ya-shan; Lin, Yi-bing; Lu, Yu-Jing; Lin, Zhen-yu; Wong, Kwok-Yin; Chen, Guo-nan

    2013-03-15

    In this paper, we reported a convenient fluorescence method for the detection of genetically modified organisms (GMOs). As it is known that the cauliflower mosaic virus (CaMV) 35S promoter is widely used in most transgenic plants (Schnurr and Guerra, 2000), we thus design a simple method based on the detection of a section target DNA (DNA-T) from the transgene CaMV 35S promoter. In this method, the full-length guanine-rich single-strand sequences were split into fragments (Probe 1 and 2) and each part of the fragment possesses two GGG repeats. In the presence of K(+) ion and berberine, if a complementary target DNA of the CaMV 35S promoter was introduced to hybridize with Probe 1 and 2, a G-quadruplex-berberine complex was thus formed and generated a strong fluorescence signal. The generation of fluorescence signal indicates the presence of CaMV 35S promoter. This method is able to identify and quantify Genetically Modified Organisms (GMOs), and it shows wide linear ranges from 5.0×10(-9) to 9.0×10(-7) mol/L with a detection limit of 2.0×10(-9) mol/L.

  5. Fiber optic-based biosensor

    NASA Technical Reports Server (NTRS)

    Ligler, Frances S.

    1991-01-01

    The NRL fiber optic biosensor is a device which measures the formation of a fluorescent complex at the surface of an optical fiber. Antibodies and DNA binding proteins provide the mechanism for recognizing an analyze and immobilizing a fluorescent complex on the fiber surface. The fiber optic biosensor is fast, sensitive, and permits analysis of hazardous materials remote from the instrumentation. The fiber optic biosensor is described in terms of the device configuration, chemistry for protein immobilization, and assay development. A lab version is being used for assay development and performance characterization while a portable device is under development. Antibodies coated on the fiber are stable for up to two years of storage prior to use. The fiber optic biosensor was used to measure concentration of toxins in the parts per billion (ng/ml) range in under a minute. Immunoassays for small molecules and whole bacteria are under development. Assays using DNA probes as the detection element can also be used with the fiber optic sensor, which is currently being developed to detect biological warfare agents, explosives, pathogens, and toxic materials which pollute the environment.

  6. A Metal-Organic Framework/DNA Hybrid System as a Novel Fluorescent Biosensor for Mercury(II) Ion Detection.

    PubMed

    Wu, Lan-Lan; Wang, Zhuo; Zhao, Shu-Na; Meng, Xing; Song, Xue-Zhi; Feng, Jing; Song, Shu-Yan; Zhang, Hong-Jie

    2016-01-11

    Mercury(II) ions have emerged as a widespread environmental hazard in recent decades. Despite different kinds of detection methods reported to sense Hg(2+) , it still remains a challenging task to develop new sensing molecules to replenish the fluorescence-based apparatus for Hg(2+) detection. This communication demonstrates a novel fluorescent sensor using UiO-66-NH2 and a T-rich FAM-labeled ssDNA as a hybrid system to detect Hg(2+) sensitively and selectively. To the best of our knowledge, it has rarely been reported that a MOF is utilized as the biosensing platform for Hg(2+) assay. PMID:26555340

  7. A label-free fluorescent biosensor for ultratrace detection of terbium (ш) based on structural conversion of G-quadruplex DNA mediated by ThT and terbium (ш).

    PubMed

    Chen, Qiang; Zuo, Junfeng; Chen, Jinfeng; Tong, Ping; Mo, Xiujuan; Zhang, Lan; Li, Jianrong

    2015-10-15

    In this paper, a novel label-free fluorescent biosensor for terbium (ш) (Tb(3+)) was proposed based on structural conversion of G-quadruplex DNA mediated by Thioflavin T (ThT) and Tb(3+). In the presence of K(+), ThT could bind to K(+)-stabilized parallel G-quadruplex, giving rise to high fluorescence intensity. Upon the addition of Tb(3+), Tb(3+) could competitively bind to parallel G-quadruplex leading to the structural change, which resulted in fluorescence decrease. The change of fluorescence intensity (ΔF=F0-F) showed a good linear response toward the concentration of Tb(3+) over the range from 1.0 pM to 10.0 µM with a limit of detection of 0.55 pM. This proposed biosensor was simple and cost-effective in design and in operation with ultrahigh sensitivity and selectivity. Thus, the proposed biosensor could be a promising candidate for monitoring ultratrace Tb(3+) in environment.

  8. An electrochemical biosensor based on DNA tetrahedron/graphene composite film for highly sensitive detection of NADH.

    PubMed

    Li, Zonglin; Su, Wenqiong; Liu, Shuopeng; Ding, Xianting

    2015-07-15

    Dihydronicotinamide adenine dinucleotide (NADH) is a major biomarker correlated with lethal diseases such as cancers and bacterial infection. Herein, we report a graphene-DNA tetrahedron-gold nanoparticle modified gold disk electrode for highly sensitive NADH detection. By assembling the DNA tetrahedron/graphene composite film on the gold disk electrode surface which prior harnessed electrochemical deposition of gold nanoparticles to enhance the effective surface area, the oxidation potential of NADH was substantially decreased to 0.28V (vs. Ag/AgCl) and surface fouling effects were successfully eliminated. Furthermore, the lower detection limit of NADH by the presented platform was reduced down to 1fM, with an upper limit of 10pM. Both the regeneration and selectivity of composite film-modified electrode are investigated and proved to be robust. The novel sensor developed here could serve as a highly sensitive probe for NADH detection, which would further benefit the field of NADH related disease diagnostics.

  9. Electrochemical detection of peanut allergen Ara h 1 using a sensitive DNA biosensor based on stem-loop probe.

    PubMed

    Sun, Xiulan; Guan, Lu; Shan, Xiaohong; Zhang, Yinzhi; Li, Zaijun

    2012-11-01

    A novel electrochemical DNA sensor was developed by using a stem-loop probe for peanut allergen Ara h 1 detection. The probe was modified with a thiol at its 5' end and a biotin at its 3' end. The biotin-tagged "molecular beacon"-like probe was attached to the surface of a gold electrode to form a stem-loop structure by self-assembly through facile gold-thiol affinity. 6-Mercaptohexanol (MCH) was used to cover the remnant bare region. The stem--loop probe was "closed" when the target was absent, and then the hybridization of the target induced the conformational change to "open", along with the biotin at its 3' end moved away from the electrode surface. The probe conformational change process was verified by circular dichroism (CD); meanwhile, electron-transfer efficiency changes between probe and electrode were proved by electrochemical impedance spectroscopy (EIS). The detection limit of this method was 0.35 fM with the linear response ranging from 10(-15) to 10(-10) M. Moreover, a complementary target could be discriminated from one-base mismatch and noncomplementarity. The proposed strategy has been successfully applied to detect Ara h 1 in the peanut DNA extracts of peanut milk beverage, and the concentration of it was 3.2 × 10(-13) mol/L.

  10. Meditating metal coenhanced fluorescence and SERS around gold nanoaggregates in nanosphere as bifunctional biosensor for multiple DNA targets.

    PubMed

    Liu, Yong; Wu, Peiyi

    2013-06-26

    Gold nanoparticles (Au NPs) are very attractive candidate nanoparticles in biological assay because of their high chemical stabilities, high homogeneities, good biocompatibilities, and low toxicities. However, molecular beacon assays via encapsulating the combined fluorescence or surface-enhanced Raman scattering (SERS) signals of reporters and Au NPs in nanobarcodes particles usually suffer from fluorescence quenching or weak Raman enhancement when Au NPs are employed (especially with size smaller than 15 nm). Herein, we present a new design of simultaneously realizing metal-enhanced fluorescence and coenhanced surface-enhanced Raman scattering by facilely embedding Ag nanoparticle into the shell of two kinds of Au nanoaggregate (5 and 10 nm), meanwhile, fluorophore is located between the silver core and gold nanoparticle layers and the distance among them is adjusted by SiO2 spacer (Ag@first SiO2 spacer@FiTC+SiO2@second SiO2 spacer@Au nanoaggregate). In this architecture, Ag nanoparticle not only is utilized as an efficient fluorescence enhancer to overcome the common fluorescence quenching around Au nanoaggregates but also behaves like a mirror. Thus, incident light that passes through the SERS-active Au nanoaggregate and the intervening dielectric layer of SiO2 could be reflected multiply from the surface of Ag nanoparticle and coupled with the light at the nanogap between the Au nanoaggregates to further amplify Raman intensity. This results in enhancement factors for fluorescence and SERS ~1.6-fold and more than 300-fold higher than the control samples without silver core under identical experimental conditions, respectively. Moreover, fluorophore and SERS reporters are assembled onto different layers of the concentric hybrid microsphere, resulting in a feasible fabrication protocol when a large number of agents need to be involved into the dual-mode nanobarcodes. A proof-of-concept chip-based DNA sandwich hybridization assay using genetically modified

  11. Label-Free Impedance Biosensors: Opportunities and Challenges

    PubMed Central

    Daniels, Jonathan S.; Pourmand, Nader

    2007-01-01

    Impedance biosensors are a class of electrical biosensors that show promise for point-of-care and other applications due to low cost, ease of miniaturization, and label-free operation. Unlabeled DNA and protein targets can be detected by monitoring changes in surface impedance when a target molecule binds to an immobilized probe. The affinity capture step leads to challenges shared by all label-free affinity biosensors; these challenges are discussed along with others unique to impedance readout. Various possible mechanisms for impedance change upon target binding are discussed. We critically summarize accomplishments of past label-free impedance biosensors and identify areas for future research. PMID:18176631

  12. Electronic Biosensors Based on III-Nitride Semiconductors

    NASA Astrophysics Data System (ADS)

    Kirste, Ronny; Rohrbaugh, Nathaniel; Bryan, Isaac; Bryan, Zachary; Collazo, Ramon; Ivanisevic, Albena

    2015-07-01

    We review recent advances of AlGaN/GaN high-electron-mobility transistor (HEMT)-based electronic biosensors. We discuss properties and fabrication of III-nitride-based biosensors. Because of their superior biocompatibility and aqueous stability, GaN-based devices are ready to be implemented as next-generation biosensors. We review surface properties, cleaning, and passivation as well as different pathways toward functionalization, and critically analyze III-nitride-based biosensors demonstrated in the literature, including those detecting DNA, bacteria, cancer antibodies, and toxins. We also discuss the high potential of these biosensors for monitoring living cardiac, fibroblast, and nerve cells. Finally, we report on current developments of covalent chemical functionalization of III-nitride devices. Our review concludes with a short outlook on future challenges and projected implementation directions of GaN-based HEMT biosensors.

  13. Electronic Biosensors Based on III-Nitride Semiconductors.

    PubMed

    Kirste, Ronny; Rohrbaugh, Nathaniel; Bryan, Isaac; Bryan, Zachary; Collazo, Ramon; Ivanisevic, Albena

    2015-01-01

    We review recent advances of AlGaN/GaN high-electron-mobility transistor (HEMT)-based electronic biosensors. We discuss properties and fabrication of III-nitride-based biosensors. Because of their superior biocompatibility and aqueous stability, GaN-based devices are ready to be implemented as next-generation biosensors. We review surface properties, cleaning, and passivation as well as different pathways toward functionalization, and critically analyze III-nitride-based biosensors demonstrated in the literature, including those detecting DNA, bacteria, cancer antibodies, and toxins. We also discuss the high potential of these biosensors for monitoring living cardiac, fibroblast, and nerve cells. Finally, we report on current developments of covalent chemical functionalization of III-nitride devices. Our review concludes with a short outlook on future challenges and projected implementation directions of GaN-based HEMT biosensors.

  14. Glycan and lectin biosensors

    PubMed Central

    Belický, Štefan; Katrlík, Jaroslav

    2016-01-01

    A short description about the importance of glycan biorecognition in physiological (blood cell type) and pathological processes (infections by human and avian influenza viruses) is provided in this review. Glycans are described as much better information storage media, compared to proteins or DNA, due to the extensive variability of glycan structures. Techniques able to detect an exact glycan structure are briefly discussed with the main focus on the application of lectins (glycan-recognising proteins) in the specific analysis of glycans still attached to proteins or cells/viruses. Optical, electrochemical, piezoelectric and micromechanical biosensors with immobilised lectins or glycans able to detect a wide range of analytes including whole cells/viruses are also discussed. PMID:27365034

  15. Glycan and lectin biosensors.

    PubMed

    Belický, Štefan; Katrlík, Jaroslav; Tkáč, Ján

    2016-06-30

    A short description about the importance of glycan biorecognition in physiological (blood cell type) and pathological processes (infections by human and avian influenza viruses) is provided in this review. Glycans are described as much better information storage media, compared to proteins or DNA, due to the extensive variability of glycan structures. Techniques able to detect an exact glycan structure are briefly discussed with the main focus on the application of lectins (glycan-recognising proteins) in the specific analysis of glycans still attached to proteins or cells/viruses. Optical, electrochemical, piezoelectric and micromechanical biosensors with immobilised lectins or glycans able to detect a wide range of analytes including whole cells/viruses are also discussed. PMID:27365034

  16. Trends in tactile biosensors, smell-sensitive biosensors

    NASA Astrophysics Data System (ADS)

    Higuchi, K.; Kawana, Y.; Kimura, J.

    1986-03-01

    Biosensors, whch combine substances from living organisms such as enzymes with electrochemical transducers, are considered taste-sensitive biosensors. Touch sensors were analyzed using various pressure-sensitive elements, but no attempts were made to use substances from organisms. The sense of smell is a gase sensor for the body; there are numerous uncertainties about the meaning of smell-sensitive biosensors. Tactile biosensors and olfactor biosensors were examined. Biosensors include sensors directly apply materials extracted from organisms and sensors which copy sensors.

  17. Built environment and diabetes

    PubMed Central

    Pasala, Sudhir Kumar; Rao, Allam Appa; Sridhar, G. R.

    2010-01-01

    Development of type 2 diabetes mellitus is influenced by built environment, which is, ‘the environments that are modified by humans, including homes, schools, workplaces, highways, urban sprawls, accessibility to amenities, leisure, and pollution.’ Built environment contributes to diabetes through access to physical activity and through stress, by affecting the sleep cycle. With globalization, there is a possibility that western environmental models may be replicated in developing countries such as India, where the underlying genetic predisposition makes them particularly susceptible to diabetes. Here we review published information on the relationship between built environment and diabetes, so that appropriate modifications can be incorporated to reduce the risk of developing diabetes mellitus. PMID:20535308

  18. Fiber Optic Surface Plasmon Resonance-Based Biosensor Technique: Fabrication, Advancement, and Application.

    PubMed

    Liang, Gaoling; Luo, Zewei; Liu, Kunping; Wang, Yimin; Dai, Jianxiong; Duan, Yixiang

    2016-05-01

    Fiber optic-based biosensors with surface plasmon resonance (SPR) technology are advanced label-free optical biosensing methods. They have brought tremendous progress in the sensing of various chemical and biological species. This review summarizes four sensing configurations (prism, grating, waveguide, and fiber optic) with two ways, attenuated total reflection (ATR) and diffraction, to excite the surface plasmons. Meanwhile, the designs of different probes (U-bent, tapered, and other probes) are also described. Finally, four major types of biosensors, immunosensor, DNA biosensor, enzyme biosensor, and living cell biosensor, are discussed in detail for their sensing principles and applications. Future prospects of fiber optic-based SPR sensor technology are discussed.

  19. Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials.

    PubMed

    Song, Yang; Luo, Yanan; Zhu, Chengzhou; Li, He; Du, Dan; Lin, Yuehe

    2016-02-15

    Graphene as a star among two-dimensional nanomaterials has attracted tremendous research interest in the field of electrochemistry due to their intrinsic properties, including the electronic, optical, and mechanical properties associated with their planar structure. The marriage of graphene and electrochemical biosensors has created many ingenious biosensing strategies for applications in the areas of clinical diagnosis and food safety. This review provides a comprehensive overview of the recent advances in the development of graphene based electrochemical biosensors. Special attention is paid to graphene-based enzyme biosensors, immunosensors, and DNA biosensors. Future perspectives on high-performance graphene-based electrochemical biosensors are also discussed.

  20. Graphene-Based Optical Biosensors and Imaging

    SciTech Connect

    Tang, Zhiwen; He, Shijiang; Pei, Hao; Du, Dan; Fan, Chunhai; Lin, Yuehe

    2014-01-13

    This chapter focuses on the design, fabrication and application of graphene based optical nanobiosensors. The emerging graphene based optical nanobiosensors demonstrated the promising bioassay and biomedical applications thanking to the unique optical features of graphene. According to the different applications, the graphene can be tailored to form either fluorescent emitter or efficient fluorescence quencher. The exceptional electronic feature of graphene makes it a powerful platform for fabricating the SPR and SERS biosensors. Today the graphene based optical biosensors have been constructed to detect various targets including ions, small biomolecules, DNA/RNA and proteins. This chapter reviews the recent progress in graphene-based optical biosensors and discusses the opportunities and challenges in this field.

  1. Biosentinel: Developing a Space Radiation Biosensor

    NASA Technical Reports Server (NTRS)

    Santa Maria, Sergio R.; Marina, Diana B.; Parra, Macarena P.; Boone, Travis D.; Tan, Ming; Ricco, Antonio J.; Straume, Tore N.; Lusby, Terry C.; Harkness, T.; Reiss-Bubenheim, Debra; Brent, R.; Bhattacharya, Sharmila

    2014-01-01

    Ionizing radiation presents a major challenge to human exploration and long-term residence in space. The deep-space radiation spectrum includes highly energetic particles that generate double strand breaks (DSBs), deleterious DNA lesions that are usually repaired without errors via homologous recombination (HR), a conserved pathway in all eukaryotes. While progress identifying and characterizing biological radiation effects using Earth-based facilities has been significant, no terrestrial source duplicates the unique space radiation environment.We are developing a biosensor-based nanosatellite to fly aboard NASAs Space Launch System Exploration Mission 1, expected to launch in 2017 and reach a 1AU (astronomic unit) heliocentric orbit. Our biosensor (called BioSentinel) uses the yeast S. cerevisiae to measure DSBs in response to ambient space radiation. The BioSentinel strain contains engineered genetic defects that prevent growth until and unless a radiation-induced DSB near a reporter gene activates the yeasts HR repair mechanisms. Thus, culture growth and metabolic activity directly indicate a successful DSB-and-repair event. In parallel, HR-defective and wild type strains will provide survival data. Desiccated cells will be carried within independent culture microwells, built into 96-well microfluidic cards. Each microwell set will be activated by media addition at different time points over 18 months, and cell growth will be tracked continuously via optical density. One reserve set will be activated only in the occurrence of a solar particle event. Biological measurements will be compared to data provided by onboard physical dosimeters and to Earth-based experiments.BioSentinel will conduct the first study of biological response to space radiation outside Low Earth Orbit in over 40 years. BioSentinel will thus address strategic knowledge gaps related to the biological effects of space radiation and will provide an adaptable platform to perform human

  2. Biosensors: new approaches in drug discovery

    NASA Astrophysics Data System (ADS)

    Keusgen, Michael

    2002-09-01

    The development of biosensors for analytical purposes has attracted a great deal of attention in recent years. A biosensor is defined as an analytical device consisting of a biological component (e.g., enzyme, antibody, entire cell, DNA) and a physical transducer (e.g., electrode, optical device). Biosensors are mostly designed for routine analysis, such as clinical diagnosis, quality control of food, in-process control of fermentations, and in environmental analysis. Many of these sensors are also suitable for screening purposes in order to find new drugs. Such systems should yield information either about compounds with known bioactivity or about the bioactivity of samples with known or unknown chemical composition. Biosensors intended for the latter purpose are essentially based on whole cells carrying receptors and ion channels at their surfaces. Miniaturization of structures, primarily based on silicon, allows integration of many sensors into arrays, which may be suitable for the screening of natural and chemical products as well as combinatorial libraries. Until now, no commercially available sensors of this kind exist but they are expected in the near future. Different biosensors, based on enzymes, antibodies, cells, artificial membranes and entire animal tissues, which can be used in drug discovery and may lead to efficient screening systems in the future, are described in this review.

  3. Dynamic Modulation of DNA Hybridization Using Allosteric DNA Tetrahedral Nanostructures.

    PubMed

    Song, Ping; Li, Min; Shen, Juwen; Pei, Hao; Chao, Jie; Su, Shao; Aldalbahi, Ali; Wang, Lihua; Shi, Jiye; Song, Shiping; Wang, Lianhui; Fan, Chunhai; Zuo, Xiaolei

    2016-08-16

    The fixed dynamic range of traditional biosensors limits their utility in several real applications. For example, viral load monitoring requires the dynamic range spans several orders of magnitude; whereas, monitoring of drugs requires extremely narrow dynamic range. To overcome this limitation, here, we devised tunable biosensing interface using allosteric DNA tetrahedral bioprobes to tune the dynamic range of DNA biosensors. Our strategy takes the advantage of the readily and flexible structure design and predictable geometric reconfiguration of DNA nanotechnology. We reconfigured the DNA tetrahedral bioprobes by inserting the effector sequence into the DNA tetrahedron, through which, the binding affinity of DNA tetrahedral bioprobes can be tuned. As a result, the detection limit of DNA biosensors can be programmably regulated. The dynamic range of DNA biosensors can be tuned (narrowed or extended) for up to 100-fold. Using the regulation of binding affinity, we realized the capture and release of biomolecules by tuning the binding behavior of DNA tetrahedral bioprobes. PMID:27435955

  4. Replaceable Microfluidic Cartridges for a PCR Biosensor

    NASA Technical Reports Server (NTRS)

    Francis, Kevin; Sullivan, Ron

    2005-01-01

    The figure depicts a replaceable microfluidic cartridge that is a component of a miniature biosensor that detects target deoxyribonucleic acid (DNA) sequences. The biosensor utilizes (1) polymerase chain reactions (PCRs) to multiply the amount of DNA to be detected, (2) fluorogenic polynucleotide probe chemicals for labeling the target DNA sequences, and (3) a high-sensitivity epifluorescence-detection optoelectronic subsystem. Microfluidics is a relatively new field of device development in which one applies techniques for fabricating microelectromechanical systems (MEMS) to miniature systems for containing and/or moving fluids. Typically, microfluidic devices are microfabricated, variously, from silicon or polymers. The development of microfluidic devices for applications that involve PCR and fluorescence-based detection of PCR products poses special challenges

  5. A novel PDMS micro membrane biosensor based on the analysis of surface stress.

    PubMed

    Sang, Shengbo; Witte, Hartmut

    2010-07-15

    The biological and medical application of biosensors is more and more important with the development of technology and society. Detection of cells and biological molecules utilizing biosensors based on the analysis of surface stress would facilitate inexpensive and high-throughput test and diagnosis. This paper presents a biocompatible surface stress-based polydimethylsiloxane (PDMS) micro membrane biosensor. Each biosensor chip consists of two available PDMS micro membranes, one acts as active membrane and the other as reference. Biosensors were functionalized using different functional materials respectively: MUA (11 Mercapto 1 undecanoicacid), MUO (11 Mercapto 1 undecanol) and DOT (Dodecane thiol). Two biosensor test systems were built based on a white light interferometer and a fiber optic interferometer respectively. Finally, testing experiments using Escherichia coli (E. coli) were performed based on the biosensor test systems we built. The results of the experiments showed that the MUA is a better functional material to functionalize the biosensor membranes than MUO and DOT for E. coli detection, some properties of E. coli, such as healthily living and dead status, can be analyzed based on the PDMS micro membrane biosensors.

  6. Introduction to biosensors

    PubMed Central

    Bhalla, Nikhil; Jolly, Pawan; Formisano, Nello

    2016-01-01

    Biosensors are nowadays ubiquitous in biomedical diagnosis as well as a wide range of other areas such as point-of-care monitoring of treatment and disease progression, environmental monitoring, food control, drug discovery, forensics and biomedical research. A wide range of techniques can be used for the development of biosensors. Their coupling with high-affinity biomolecules allows the sensitive and selective detection of a range of analytes. We give a general introduction to biosensors and biosensing technologies, including a brief historical overview, introducing key developments in the field and illustrating the breadth of biomolecular sensing strategies and the expansion of nanotechnological approaches that are now available. PMID:27365030

  7. Introduction to biosensors.

    PubMed

    Bhalla, Nikhil; Jolly, Pawan; Formisano, Nello; Estrela, Pedro

    2016-06-30

    Biosensors are nowadays ubiquitous in biomedical diagnosis as well as a wide range of other areas such as point-of-care monitoring of treatment and disease progression, environmental monitoring, food control, drug discovery, forensics and biomedical research. A wide range of techniques can be used for the development of biosensors. Their coupling with high-affinity biomolecules allows the sensitive and selective detection of a range of analytes. We give a general introduction to biosensors and biosensing technologies, including a brief historical overview, introducing key developments in the field and illustrating the breadth of biomolecular sensing strategies and the expansion of nanotechnological approaches that are now available. PMID:27365030

  8. Built to disappear.

    PubMed

    Bauer, Siegfried; Kaltenbrunner, Martin

    2014-06-24

    Microelectronics dominates the technological and commercial landscape of today's electronics industry; ultrahigh density integrated circuits on rigid silicon provide the computing power for smart appliances that help us organize our daily lives. Integrated circuits function flawlessly for decades, yet we like to replace smart phones and tablet computers every year. Disposable electronics, built to disappear in a controlled fashion after the intended lifespan, may be one of the potential applications of transient single-crystalline silicon nanomembranes, reported by Hwang et al. in this issue of ACS Nano. We briefly outline the development of this latest branch of electronics research, and we present some prospects for future developments. Electronics is steadily evolving, and 20 years from now we may find it perfectly normal for smart appliances to be embedded everywhere, on textiles, on our skin, and even in our body. PMID:24892500

  9. Low-cost and highly efficient DNA biosensor for heavy metal ion using specific DNAzyme-modified microplate and portable glucometer-based detection mode.

    PubMed

    Zhang, Jin; Tang, Ying; Teng, Liumei; Lu, Minghua; Tang, Dianping

    2015-06-15

    A simple and low-cost DNA sensing platform based on Pb(2+)-specific DNAzyme-modified microplate was successfully developed for highly sensitive monitoring of lead ion (Pb(2+), one kind of toxic heavy metal ion) in the environmental samples coupling with a portable personal glucometer (PGM)-based detection mode. The detection cell was first prepared simply by means of immobilizing the DNAzyme on the streptavidin-modified microplate. Gold nanoparticle labeled with single-stranded DNA and invertase (Enz-AuNP-DNA) was utilized as the signal-transduction tag to produce PGM substrate (glucose). Upon addition of lead ion into the microplate, the substrate strand of the immobilized DNAzyme was catalytically cleaved by target Pb(2+), and the newly generated single-strand DNA in the microplate could hybridize again with the single-stranded DNA on the Enz-AuNP-DNA. Accompanying with the Enz-AuNP-DNA, the carried invertase could convert sucrose into glucose. The as-produced glucose could be monitored by using a widely accessible PGM for in situ amplified digital readout. Based on Enz-AuNP-DNA amplification strategy, as low as 1.0 pM Pb(2+) could be detected under the optimal conditions. Moreover, the methodology also showed good reproducibility and high selectivity toward target Pb(2+) against other metal ions because of highly specific Pb(2+)-dependent DNAzyme, and was applicable for monitoring Pb(2+) in the naturally contaminated sewage and spiked drinking water samples.

  10. Low-cost and highly efficient DNA biosensor for heavy metal ion using specific DNAzyme-modified microplate and portable glucometer-based detection mode.

    PubMed

    Zhang, Jin; Tang, Ying; Teng, Liumei; Lu, Minghua; Tang, Dianping

    2015-06-15

    A simple and low-cost DNA sensing platform based on Pb(2+)-specific DNAzyme-modified microplate was successfully developed for highly sensitive monitoring of lead ion (Pb(2+), one kind of toxic heavy metal ion) in the environmental samples coupling with a portable personal glucometer (PGM)-based detection mode. The detection cell was first prepared simply by means of immobilizing the DNAzyme on the streptavidin-modified microplate. Gold nanoparticle labeled with single-stranded DNA and invertase (Enz-AuNP-DNA) was utilized as the signal-transduction tag to produce PGM substrate (glucose). Upon addition of lead ion into the microplate, the substrate strand of the immobilized DNAzyme was catalytically cleaved by target Pb(2+), and the newly generated single-strand DNA in the microplate could hybridize again with the single-stranded DNA on the Enz-AuNP-DNA. Accompanying with the Enz-AuNP-DNA, the carried invertase could convert sucrose into glucose. The as-produced glucose could be monitored by using a widely accessible PGM for in situ amplified digital readout. Based on Enz-AuNP-DNA amplification strategy, as low as 1.0 pM Pb(2+) could be detected under the optimal conditions. Moreover, the methodology also showed good reproducibility and high selectivity toward target Pb(2+) against other metal ions because of highly specific Pb(2+)-dependent DNAzyme, and was applicable for monitoring Pb(2+) in the naturally contaminated sewage and spiked drinking water samples. PMID:25576929

  11. Triggered optical biosensor

    DOEpatents

    Song, Xuedong; Swanson, Basil I.

    2001-10-02

    An optical biosensor is provided for the detection of a multivalent target biomolecule, the biosensor including a substrate having a bilayer membrane thereon, a recognition molecule situated at the surface, the recognition molecule capable of binding with the multivalent target biomolecule, the recognition molecule further characterized as including a fluorescence label thereon and as being movable at the surface and a device for measuring a fluorescence change in response to binding between the recognition molecule and the multivalent target biomolecule.

  12. Electrochemiluminescent biosensor of ATP using tetrahedron structured DNA and a functional oligonucleotide for Ru(phen)3(2+) intercalation and target identification.

    PubMed

    Bu, Nan-Nan; Gao, Ai; He, Xi-Wen; Yin, Xue-Bo

    2013-05-15

    Restricted target accessibility and surface-induced perturbation of the aptamer structure are the main limitations in single-stranded DNA aptamer-based electrochemical sensors. Chemical labeling of the aptamer with a probe at the end of aptamer is inefficient and time-consuming. In this work, tetrahedron-structured DNA (ts-DNA) and a functionalized oligonucleotide (FO) were used to develop an electrochemiluminescence (ECL) aptasensor with adenosine triphosphate (ATP) as a model target. The ts-DNA was formed with three thiolated oligonucleotides and one oligonucleotide containing anti-ATP aptamer. The FO contained a complementary strand to the anti-ATP aptamer and an intermolecular duplex for Ru(phen)3(2+) intercalation. After the ts-DNA was immobilized on the electrode surface through gold-thiol interactions, hybridization between the anti-ATP aptamer and its complementary strand introduced the intercalated Ru(phen)3(2+) to the electrode. ECL emission from Ru(phen)3(2+) was observed with tripropylamine as a co-reactant. Once ATP reacted with its aptamer, the aptamer-complimentary strand duplex dissociated and the intermolecular duplex containing Ru(phen)3(2+) was released. The difference in emission before and after reaction with ATP was used to quantify ATP with a detection limit of 0.2nM. The ts-DNA increased the sensitivity compared to conventional methods, and the intercalation strategy avoided a complex chemical labeling procedure.

  13. Creation of carbon nanotube based bioSensors through dielectrophoretic assembly

    NASA Astrophysics Data System (ADS)

    Mani, Nilan S.; Kim, Steve; Annam, Kaushik; Bane, Danielle; Subramanyam, Guru

    2015-08-01

    Due to their excellent electrical, optical, and mechanical properties, nanosized single wall carbon nanotubes (SWNTs) have attracted significant attention as a transducing element in nano-bio sensor research. Controlled assembly, device fabrication, and bio-functionalization of the SWNTs are crucial in creating the sensors. In this study, working biosensor platforms were created using dielectrophoretic assembly of single wall carbon nanotubes (SWNTs) as a bridge between two gold electrodes. SWNTs in a commercial SDS surfactant solution were dispensed in the gap between the two gold electrodes, followed by applying an ac voltage across the two electrodes. The dielectrophoresis aligns the CNTs and forms a bridge between the two electrodes. A copious washing and a subsequent annealing of the devices at 200 °C remove the surfactants and create an excellent semiconducting (p-type) bridge between the two electrodes. A liquid gated field effect transistor (LGFET) was built using DI water as the gate dielectric and the SWNT bridge as the channel. Negative gate voltages of the FET increased the drain current and applying a positive gate voltage of +0.5V depleted the channel of charges and turned the device off. The biosensor was verified using both the two terminal and three terminal devices. Genomic salmon DNA dissolved in DI water was applied on the SWNT bridge in both type of devices. In the two terminal device, the conductance of the bridge dropped by 65x after the binding of the DNA. In the LGFET, the transconductance of the device decreased 2X after the binding of the DNA. The binding of the DNA also suppressed hysteresis in the Drain Current vs Gate Voltage characteristics of the LGFET.

  14. Recent research trends of radio-frequency biosensors for biomolecular detection.

    PubMed

    Lee, Hee-Jo; Yook, Jong-Gwan

    2014-11-15

    This article reviews radio-frequency (RF) biosensors based on passive and/or active devices and circuits. In particular, we focus on RF biosensors designed for detection of various biomolecules such as biotin-streptavidin, DNA hybridization, IgG, and glucose. The performance of these biosensors has been enhanced by the introduction of various sensing schemes with diverse nanomaterials (e.g., carbon nanotubes, graphene oxide, magnetic and gold nanoparticles, etc.). In addition, the RF biosensing platforms that can be associated with an RF active system are discussed. Finally, the challenges of RF biosensors are presented and suggestions are made for their future direction and prospects. PMID:24934746

  15. Enzyme-free fluorescent biosensor for the detection of DNA based on core-shell Fe3O4 polydopamine nanoparticles and hybridization chain reaction amplification.

    PubMed

    Li, Na; Hao, Xia; Kang, Bei Hua; Xu, Zhen; Shi, Yan; Li, Nian Bing; Luo, Hong Qun

    2016-03-15

    A novel, highly sensitive assay for quantitative determination of DNA is developed based on hybridization chain reaction (HCR) amplification and the separation via core-shell Fe3O4 polydopamine nanoparticles (Fe3O4@PDA NPs). In this assay, two hairpin probes are designed, one of which is labeled with a 6-carboxyfluorescein (FAM). Without target DNA, auxiliary hairpin probes are stable in solution. However, when target DNA is present, the HCR between the two hairpins is triggered. The HCR products have sticky ends of 24 nt, which are much longer than the length of sticky ends of auxiliary hairpins (6 nt) and make the adsorption much easier by Fe3O4@PDA NPs. With the addition of Fe3O4@PDA NPs, HCR products could be adsorbed because of the strong interaction between their sticky ends and Fe3O4@PDA NPs. As a result, supernatant of the solution with target DNA emits weak fluorescence after separation by magnet, which is much lower than that of the blank solution. The detection limit of the proposed method is as low as 0.05 nM. And the sensing method exhibits high selectivity for the determination between perfectly complementary sequence and target with single base-pair mismatch. Importantly, the application of the sensor for DNA detection in human serum shows that the proposed method works well for biological samples.

  16. Photoinduced electron transfer of DNA/Ag nanoclusters modulated by G-quadruplex/hemin complex for the construction of versatile biosensors.

    PubMed

    Zhang, Libing; Zhu, Jinbo; Guo, Shaojun; Li, Tao; Li, Jing; Wang, Erkang

    2013-02-20

    Photoinduced electron transfer (PET) has been observed for the first time between DNA/Ag fluorescent nanoclusters (NCs) and G-quadruplex/hemin complexes, accompanied by a decrease in the fluorescence of the DNA/Ag NCs. In this PET process, a parallel G-quadruplex and the sensing sequences are blocked by a duplex. The specific combination of targets with the sensing sequence triggers the release of the G-quadruplex and allows it to fold properly and bind hemin to form a stable G-quadruplex/hemin complex. The complex proves favorable for PET because it makes the G-quadruplex bind hemin tightly, which promotes the electron transfer from the DNA/Ag NCs to the hemin Fe(III) center, thus resulting in a decrease in the fluorescence intensity of the DNA/Ag NCs. This novel PET system enables the specific and versatile detection of target biomolecules such as DNA and ATP with high sensitivity based on the choices of different target sequences.

  17. Development of mercury (II) ion biosensors based on mercury-specific oligonucleotide probes.

    PubMed

    Li, Lanying; Wen, Yanli; Xu, Li; Xu, Qin; Song, Shiping; Zuo, Xiaolei; Yan, Juan; Zhang, Weijia; Liu, Gang

    2016-01-15

    Mercury (II) ion (Hg(2+)) contamination can be accumulated along the food chain and cause serious threat to the public health. Plenty of research effort thus has been devoted to the development of fast, sensitive and selective biosensors for monitoring Hg(2+). Thymine was demonstrated to specifically combine with Hg(2+) and form a thymine-Hg(2+)-thymine (T-Hg(2+)-T) structure, with binding constant even higher than T-A Watson-Crick pair in DNA duplex. Recently, various novel Hg(2+) biosensors have been developed based on T-rich Mercury-Specific Oligonucleotide (MSO) probes, and exhibited advanced selectivity and excellent sensitivity for Hg(2+) detection. In this review, we explained recent development of MSO-based Hg(2+) biosensors mainly in 3 groups: fluorescent biosensors, colorimetric biosensors and electrochemical biosensors.

  18. Synthesis and fluorescence studies of thiazole orange tethered onto oligonucleotide: development of a self-contained DNA biosensor on a fiber optic surface.

    PubMed

    Wang, Xiaofeng; Krull, Ulrich J

    2005-03-15

    Thiazole orange dyes were derivatized with ethylene glycol linkers of various lengths, and were covalently linked to the 5' end of the oligonucleotides after solid-phase synthesis. The labeled oligonucleotides exhibited enhanced fluorescence upon hybridization to complementary DNA sequences at the surfaces of optical fibers, providing for a self-contained labeling strategy. It was determined that the melt temperatures of DNA hybrids using one mixed polypyrimidine base oligonucleotide sequence were dependent on the length of the tethers, and that the melt temperature could be shifted by more than 10 degrees C when tethers were introduced.

  19. Nuclear reactors built, being built, or planned 1992

    SciTech Connect

    Not Available

    1993-07-01

    Nuclear Reactors Built, Being Built, or Planned contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1992. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from US and foreign embassies; and from foreign governmental nuclear departments. Information is presented on five parts: Civilian, Production, Military, Export and Critical Assembly.

  20. An electrochemiluminescence biosensor for 8-oxo-7,8-dihydro-2'-deoxyguanosine quantification and DNA repair enzyme activity analysis using a novel bifunctional probe.

    PubMed

    Wu, Yiping; Yang, Xiqiang; Zhang, Bintian; Guo, Liang-Hong

    2015-07-15

    A new electrochemiluminescence (ECL) sensor was developed for 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) quantification and Escherichia coli formamidopyrimidine-DNA glycosylase (FPG) activity assay. The sensor employed a novel spermine conjugated ruthenium tris-(bipyridine) derivative (spermine-Ru) which binds specifically with 8-oxodGuo through a one-step reaction and also acts as an ECL signal reporter. In the sensor, an 8-oxodGuo-containing ds-DNA film was first immobilized on a gold electrode by self-assembly. The DNA film was then incubated with spermine-Ru under oxidative condition for 8-oxodGuo labeling. The ECL intensity was found to correlate with the amount of 8-oxodGuo on the surface and the detection limit was estimated to be about 1 lesion in 500 DNA bases. Addition of FPG resulted in some loss of the signal due to the excision of 8-oxodGuo by the enzyme. An inverse relationship between ECL intensity and FPG concentration was observed in a range from 0 to 4.0U/µL, demonstrating that this sensor could be used for FPG activity assay. A number of metal ions were screened by the sensor for their inhibition effect on FPG activity. Among them, Hg(2+) and methyl Hg(II) shown very potent inhibition, with IC50 values of 4.04µM and 4.34nM respectively. The result may suggest that interference on the DNA repair system could be another mechanism for the high toxicity of MeHg.

  1. Future of biosensors: a personal view.

    PubMed

    Scheller, Frieder W; Yarman, Aysu; Bachmann, Till; Hirsch, Thomas; Kubick, Stefan; Renneberg, Reinhard; Schumacher, Soeren; Wollenberger, Ulla; Teller, Carsten; Bier, Frank F

    2014-01-01

    Biosensors representing the technological counterpart of living senses have found routine application in amperometric enzyme electrodes for decentralized blood glucose measurement, interaction analysis by surface plasmon resonance in drug development, and to some extent DNA chips for expression analysis and enzyme polymorphisms. These technologies have already reached a highly advanced level and need minor improvement at most. The dream of the "100-dollar" personal genome may come true in the next few years provided that the technological hurdles of nanopore technology or of polymerase-based single molecule sequencing can be overcome. Tailor-made recognition elements for biosensors including membrane-bound enzymes and receptors will be prepared by cell-free protein synthesis. As alternatives for biological recognition elements, molecularly imprinted polymers (MIPs) have been created. They have the potential to substitute antibodies in biosensors and biochips for the measurement of low-molecular-weight substances, proteins, viruses, and living cells. They are more stable than proteins and can be produced in large amounts by chemical synthesis. Integration of nanomaterials, especially of graphene, could lead to new miniaturized biosensors with high sensitivity and ultrafast response. In the future individual therapy will include genetic profiling of isoenzymes and polymorphic forms of drug-metabolizing enzymes especially of the cytochrome P450 family. For defining the pharmacokinetics including the clearance of a given genotype enzyme electrodes will be a useful tool. For decentralized online patient control or the integration into everyday "consumables" such as drinking water, foods, hygienic articles, clothing, or for control of air conditioners in buildings and cars and swimming pools, a new generation of "autonomous" biosensors will emerge.

  2. Future of biosensors: a personal view.

    PubMed

    Scheller, Frieder W; Yarman, Aysu; Bachmann, Till; Hirsch, Thomas; Kubick, Stefan; Renneberg, Reinhard; Schumacher, Soeren; Wollenberger, Ulla; Teller, Carsten; Bier, Frank F

    2014-01-01

    Biosensors representing the technological counterpart of living senses have found routine application in amperometric enzyme electrodes for decentralized blood glucose measurement, interaction analysis by surface plasmon resonance in drug development, and to some extent DNA chips for expression analysis and enzyme polymorphisms. These technologies have already reached a highly advanced level and need minor improvement at most. The dream of the "100-dollar" personal genome may come true in the next few years provided that the technological hurdles of nanopore technology or of polymerase-based single molecule sequencing can be overcome. Tailor-made recognition elements for biosensors including membrane-bound enzymes and receptors will be prepared by cell-free protein synthesis. As alternatives for biological recognition elements, molecularly imprinted polymers (MIPs) have been created. They have the potential to substitute antibodies in biosensors and biochips for the measurement of low-molecular-weight substances, proteins, viruses, and living cells. They are more stable than proteins and can be produced in large amounts by chemical synthesis. Integration of nanomaterials, especially of graphene, could lead to new miniaturized biosensors with high sensitivity and ultrafast response. In the future individual therapy will include genetic profiling of isoenzymes and polymorphic forms of drug-metabolizing enzymes especially of the cytochrome P450 family. For defining the pharmacokinetics including the clearance of a given genotype enzyme electrodes will be a useful tool. For decentralized online patient control or the integration into everyday "consumables" such as drinking water, foods, hygienic articles, clothing, or for control of air conditioners in buildings and cars and swimming pools, a new generation of "autonomous" biosensors will emerge. PMID:24196315

  3. Biosensors: sense and sensibility.

    PubMed

    Turner, Anthony P F

    2013-04-21

    This review is based on the Theophilus Redwood Medal and Award lectures, delivered to Royal Society of Chemistry meetings in the UK and Ireland in 2012, and presents a personal overview of the field of biosensors. The biosensors industry is now worth billions of United States dollars, the topic attracts the attention of national initiatives across the world and tens of thousands of papers have been published in the area. This plethora of information is condensed into a concise account of the key achievements to date. The reasons for success are examined, some of the more exciting emerging technologies are highlighted and the author speculates on the importance of biosensors as a ubiquitous technology of the future for health and the maintenance of wellbeing.

  4. Integrating and amplifying signal from riboswitch biosensors.

    PubMed

    Goodson, Michael S; Harbaugh, Svetlana V; Chushak, Yaroslav G; Kelley-Loughnane, Nancy

    2015-01-01

    Biosensors offer a built-in energy supply and inherent sensing machinery that when exploited correctly may surpass traditional sensors. However, biosensor systems have been hindered by a narrow range of ligand detection capabilities, a relatively low signal output, and their inability to integrate multiple signals. Integration of signals could increase the specificity of the sensor and enable detection of a combination of ligands that may indicate environmental or developmental processes when detected together. Amplifying biosensor signal output will increase detector sensitivity and detection range. Riboswitches offer the potential to widen the diversity of ligands that may be detected, and advances in synthetic biology are illuminating myriad possibilities in signal processing using an orthogonal parts-based engineering approach. In this chapter, we describe the design, building, and testing of a riboswitch-based Boolean logic AND gate in bacteria, where an output requires the activation of two riboswitches, and the biological circuitry required to amplify the output of the AND gate using natural extracellular bacterial communication signals to "wire" cells together. PMID:25605381

  5. Biosensors and other medical and environmental probes

    SciTech Connect

    Jacobson, K.B.

    1996-12-31

    The author presents a overview of work at Oak Ridge National Laboratory directed toward the development of biosensors which can be used to monitor for an array of medical and environmental effects. The article describes the variety of problems which have been addressed by development of such sensors, and the range of staff who have been actively involved in this effort. The first such sensor developed at ORNL was an optical fiber whose end was treated with an antibody which would react with the carcinogen benzo(a)pyrene (BaP). Section titles from the article provide an idea of the breadth of applications addressed: medical telesensors; microcantilevers; detecting cancer and health abnormalities; bioreporters; miniaturized devices; biosensors and DNA analysis; lipids in bacteria and human fingerprints; and anthropometry.

  6. Electrochemical biosensors for hormone analyses.

    PubMed

    Bahadır, Elif Burcu; Sezgintürk, Mustafa Kemal

    2015-06-15

    Electrochemical biosensors have a unique place in determination of hormones due to simplicity, sensitivity, portability and ease of operation. Unlike chromatographic techniques, electrochemical techniques used do not require pre-treatment. Electrochemical biosensors are based on amperometric, potentiometric, impedimetric, and conductometric principle. Amperometric technique is a commonly used one. Although electrochemical biosensors offer a great selectivity and sensitivity for early clinical analysis, the poor reproducible results, difficult regeneration steps remain primary challenges to the commercialization of these biosensors. This review summarizes electrochemical (amperometric, potentiometric, impedimetric and conductometric) biosensors for hormone detection for the first time in the literature. After a brief description of the hormones, the immobilization steps and analytical performance of these biosensors are summarized. Linear ranges, LODs, reproducibilities, regenerations of developed biosensors are compared. Future outlooks in this area are also discussed.

  7. Nuclear reactors built, being built, or planned 1993

    SciTech Connect

    Not Available

    1993-08-01

    Nuclear Reactors Built, Being Built, or Planned contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1993. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: (1) a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; (2) tables of data for reactors operating, being built, or planned; and (3) tables of data for reactors that have been shut down permanently or dismantled. The reactors are subdivided into the following parts: civilian, production, military, export, and critical assembly.

  8. Recent Trends in Biosensors

    NASA Astrophysics Data System (ADS)

    Karube, Isao

    The determination of organic compounds in foods is very important in food industries. A various compounds are contained in foods, selective determination methods are required for food processing and analysis. Electrochemical monitoring devices (biosensors) employing immobilized biocatalysts such as immobilized enzymes, organelles, microorganisms, and tissue have definite advantages. The enzyme Sensors consisted of immobilized enzymes and electrochemical devices. Enzyme sensors could be used for the determination of sugars, amino acids, organic acids, alcohols, lipids, nucleic acid derivatives, etc.. Furthermore, a multifunctional biosensor for the determination of several compounds has been developed for food processing. On the other hand, microbial sensors consisted of immobilized microorganisms and electrodes have been used for industrial and environmental analysis. Microbial sensors were applied for the determination of sugars, organic acids, alcohols, amino acids, mutagens, me thane, ammonia, and BOD. Furthermore, micro-biosensors using immobilized biocatalysts and ion sensitive field effect transistor or microelectrodes prepared by silicon fabrication technologies have been developed for medical ap. plication and food processing. This review summarizes the design and application of biosensors.

  9. Biosensors for bioprocesses

    SciTech Connect

    Van Brunt, J.

    1987-05-01

    The advent of biosensors has been touted as the marriage of the century - a marriage of microelectronics and biotechnology. But exactly what is a biosensor. Actually, the term is used interchangeably for two sometimes very different classes of devices - those that measure biological molecules and particles and those that use biomolecules as part of the sensing mechanism. The basic conceptual design of a biosensor is simple: a biological receptor is coupled to an electronic tranducer in such a way that the transducer converts biochemical activity at one end into electrical activity at the other. The biological component is usually an enzyme (for selective chemical catalysis) or an antibody (for highly selective binding), although cell membrane receptors, tissue slices, and microbial cells are used as well. The electronic component measures voltage (potentiometric), current (amperometric), light, sound, temperaure, or mass (piezoelectric). Biosensors display several unique features that make them especially attractive. They are small. They are simple to use many procedures require one step, no additional reagents, and no radioactivity. They are portable. And they are inexpensive and perfect for data processing.

  10. Biosensors and bioelectronics on smartphone for portable biochemical detection.

    PubMed

    Zhang, Diming; Liu, Qingjun

    2016-01-15

    Smartphone has been widely integrated with sensors, such as test strips, sensor chips, and hand-held detectors, for biochemical detections due to its portability and ubiquitous availability. Utilizing built-in function modules, smartphone is often employed as controller, analyzer, and displayer for rapid, real-time, and point-of-care monitoring, which can significantly simplify design and reduce cost of the detecting systems. This paper presents a review of biosensors and bioelectronics on smartphone for portable biochemical detections. The biosensors and bioelectronics based on smartphone can mainly be classified into biosensors using optics, surface plasmon resonance, electrochemistry, and near-field communication. The developments of these biosensors and bioelectronics on smartphone are reviewed along with typical biochemical detecting cases. Sensor strategies, detector attachments, and coupling methods are highlighted to show designs of the compact, lightweight, and low-cost sensor systems. The performances and advantages of these designs are introduced with their applications in healthcare diagnosis, environment monitoring, and food evaluation. With advances in micro-manufacture, sensor technology, and miniaturized electronics, biosensor and bioelectronic devices on smartphone can be used to perform biochemical detections as common and convenient as electronic tag readout in foreseeable future.

  11. BioSentinel: Mission Development of a Radiation Biosensor to Gauge DNA Damage and Repair Beyond Low Earth Orbit on a 6U Nanosatellite

    NASA Technical Reports Server (NTRS)

    Sanchez, Hugo; Lewis, Brian; Hanel, Robert

    2015-01-01

    We are designing and developing a 6U (10 x 22 x 34 cm; 14 kg) nanosatellite as a secondary payload to fly aboard NASAs Space Launch System (SLS) Exploration Mission (EM) 1, scheduled for launch in late 2017. For the first time in over forty years, direct experimental data from biological studies beyond low Earth orbit (LEO) will be obtained during BioSentinels 12- to 18-month mission. BioSentinel will measure the damage and repair of DNA in a biological organism and allow us to compare that to information from onboard physical radiation sensors. In order to understand the relative contributions of the space environments two dominant biological perturbations, reduced gravity and ionizing radiation, results from deep space will be directly compared to data obtained in LEO (on ISS) and on Earth. These data points will be available for validation of existing biological radiation damage and repair models, and for extrapolation to humans, to assist in mitigating risks during future long-term exploration missions beyond LEO. The BioSentinel Payload occupies 4U of the spacecraft and will utilize the monocellular eukaryotic organism Saccharomyces cerevisiae (yeast) to report DNA double-strand-break (DSB) events that result from ambient space radiation. DSB repair exhibits striking conservation of repair proteins from yeast to humans. Yeast was selected because of 1) its similarity to cells in higher organisms, 2) the well-established history of strains engineered to measure DSB repair, 3) its spaceflight heritage, and 4) the wealth of available ground and flight reference data. The S. cerevisiae flight strain will include engineered genetic defects to prevent growth and division until a radiation-induced DSB activates the yeasts DNA repair mechanisms. The triggered culture growth and metabolic activity directly indicate a DSB and its successful repair. The yeast will be carried in the dry state within the 1-atm PL container in 18 separate fluidics cards with each card

  12. BioSentinel: Mission Development of a Radiation Biosensor to Gauge DNA Damage and Repair Beyond Low Earth Orbit on a 6U Nanosatellite.

    NASA Technical Reports Server (NTRS)

    Lewis, Brian; Hanel, Robert; Bhattacharya, Sharmila; Ricco, Antonion J.; Agasid, Elwood; Reiss-Bubenheim, Debra; Straume, Tore; Parra, Macerena; Boone, Travis; Santa Maria, Sergio; Tan, Ming; Marina, Diana; Friedericks, Charlie; Schooley, Aaron; Wu, Shang; Sorgenfrei, Matthew; Rademacher, Abe; Lusby, Terry; Kuroda, Vanessa; Pires, Craig; Benton, Josh; Forman, Doug; Klamm, Ben; Martinez, Andres; Wickizer, Brittany; Sanchez, Hugo; Swan, Bobbie Gale; Semones, Edward; Wheeler, Scott; Ott, C. Mark; Castro, Sarah

    2015-01-01

    We are designing and developing a "6U" (10 x 22 x 34 cm; 14 kg) nanosatellite as a secondary payload to fly aboard NASA's Space Launch System (SLS) Exploration Mission (EM) 1, scheduled for launch in late 2017. For the first time in over forty years, direct experimental data from biological studies beyond low Earth orbit (LEO) will be obtained during BioSentinel's 12- to 18- month mission. BioSentinel will measure the damage and repair of DNA in a biological organism and allow us to compare that to information from onboard physical radiation sensors. In order to understand the relative contributions of the space environment's two dominant biological perturbations, reduced gravity and ionizing radiation, results from deep space will be directly compared to data obtained in LEO (on ISS) and on Earth. These data points will be available for validation of existing biological radiation damage and repair models, and for extrapolation to humans, to assist in mitigating risks during future long-term exploration missions beyond LEO. The BioSentinel Payload occupies 4U of the spacecraft and will utilize the monocellular eukaryotic organism Saccharomyces cerevisiae (yeast) to report DNA double-strand-break (DSB) events that result from ambient space radiation. DSB repair exhibits striking conservation of repair proteins from yeast to humans. Yeast was selected because of 1) its similarity to cells in higher organisms, 2) the well-established history of strains engineered to measure DSB repair, 3) its spaceflight heritage, and 4) the wealth of available ground and flight reference data. The S. cerevisiae flight strain will include engineered genetic defects to prevent growth and division until a radiation-induced DSB activates the yeast's DNA repair mechanisms. The triggered culture growth and metabolic activity directly indicate a DSB and its successful repair. The yeast will be carried in the dry state within the 1-atm P/L container in 18 separate fluidics cards with each

  13. Nanomaterial-Based Electrochemical Biosensors and Bioassays

    SciTech Connect

    Liu, Guodong; Mao, Xun; Gurung, Anant; Baloda, Meenu; Lin, Yuehe; He, Yuqing

    2010-08-31

    This book chapter summarizes the recent advance in nanomaterials for electrochemical biosensors and bioassays. Biofunctionalization of nanomaterials for biosensors fabrication and their biomedical applications are discussed.

  14. Graphene Based Electrochemical Sensors and Biosensors: A Review

    SciTech Connect

    Shao, Yuyan; Wang, Jun; Wu, Hong; Liu, Jun; Aksay, Ilhan A.; Lin, Yuehe

    2010-05-01

    Graphene, emerging as a true 2-dimensional material, has received increasing attention due to its unique physicochemical properties (high surface area, excellent conductivity, high mechanical strength, and ease of functionalization and mass production). This article selectively reviews recent advances in graphene-based electrochemical sensors and biosensors. In particular, graphene for direct electrochemistry of enzyme, its electrocatalytic activity toward small biomolecules (hydrogen peroxide, NADH, dopamine, etc.), and graphene-based enzyme biosensors have been summarized in more detail; Graphene-based DNA sensing and environmental analysis have been discussed. Future perspectives in this rapidly developing field are also discussed.

  15. Functionalized nanopipettes: toward label-free, single cell biosensors

    PubMed Central

    Actis, Paolo; Mak, Andy C.

    2010-01-01

    Nanopipette technology has been proven to be a label-free biosensor capable of identifying DNA and proteins. The nanopipette can include specific recognition elements for analyte discrimination based on size, shape, and charge density. The fully electrical read-out and the ease and low-cost fabrication are unique features that give this technology an enormous potential. Unlike other biosensing platforms, nanopipettes can be precisely manipulated with submicron accuracy and used to study single cell dynamics. This review is focused on creative applications of nanopipette technology for biosensing. We highlight the potential of this technology with a particular attention to integration of this biosensor with single cell manipulation platforms. PMID:20730113

  16. Cellular biosensors for drug discovery.

    PubMed

    Durick, K; Negulescu, P

    2001-09-01

    Recent advances in cell biology, fluorescent probe chemistry, miniaturization and automation have allowed the use of mammalian cells in a variety of medical and industrial applications. Here we describe the generation of cell-based biosensors, engineered to optically report specific biological activity. Cellular biosensors are comprised of living cells and can be used in various applications, including screening chemical libraries for drug discovery and environmental sensing. Panels of biosensors may also be useful for elucidating the function of novel genes. Here we describe two examples of the construction and use of engineered cell lines as biosensors for drug discovery.

  17. Reagentless measurement of aminoglycoside antibiotics in blood serum via an electrochemical, ribonucleic acid aptamer-based biosensor.

    PubMed

    Rowe, Aaron A; Miller, Erin A; Plaxco, Kevin W

    2010-09-01

    Biosensors built using ribonucleic acid (RNA) aptamers show promise as tools for point-of-care medical diagnostics, but they remain vulnerable to nuclease degradation when deployed in clinical samples. To explore methods for protecting RNA-based biosensors from such degradation we have constructed and characterized an electrochemical, aptamer-based sensor for the detection of aminoglycosidic antibiotics. We find that while this sensor achieves low micromolar detection limits and subminute equilibration times when challenged in buffer, it deteriorates rapidly when immersed directly in blood serum. In order to circumvent this problem, we have developed and tested sensors employing modified versions of the same aptamer. Our first effort to this end entailed the methylation of all of the 2'-hydroxyl groups outside of the aptamer's antibiotic binding pocket. However, while devices employing this modified aptamer are as sensitive as those employing an unmodified parent, the modification fails to confer greater stability when the sensor is challenged directly in blood serum. As a second potentially naive alternative, we replaced the RNA bases in the aptamer with their more degradation-resistant deoxyribonucleic acid (DNA) equivalents. Surprisingly and unlike control DNA-stem loops employing other sequences, this DNA aptamer retains the ability to bind aminoglycosides, albeit with poorer affinity than the parent RNA aptamer. Unfortunately, however, while sensors fabricated using this DNA aptamer are stable in blood serum, its lower affinity pushes their detection limits above the therapeutically relevant range. Finally, we find that ultrafiltration through a low-molecular-weight-cutoff spin column rapidly and efficiently removes the relevant nucleases from serum samples spiked with gentamicin, allowing the convenient detection of this aminoglycoside at clinically relevant concentrations using the original RNA-based sensor.

  18. Carbon nanotube biosensors

    PubMed Central

    Tîlmaciu, Carmen-Mihaela; Morris, May C.

    2015-01-01

    Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular, carbon nanotubes (CNTs) can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical, and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites, or disease biomarkers. Here we provide a comprehensive review on these carbon nanostructures, in which we describe their structural and physical properties, functionalization and cellular uptake, biocompatibility, and toxicity issues. We further review historical developments in the field of biosensors, and describe the different types of biosensors which have been developed over time, with specific focus on CNT-conjugates engineered for biosensing applications, and in particular detection of cancer biomarkers. PMID:26579509

  19. Carbon Nanotube Biosensors

    NASA Astrophysics Data System (ADS)

    Tilmaciu, Carmen-Mihaela; Morris, May

    2015-10-01

    Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular Carbon Nanotubes (CNTs) can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites or disease biomarkers. Here we provide a comprehensive review on these carbon nanostructures, in which we will describe their structural and physical properties, discuss functionalization and cellular uptake, biocompatibility and toxicity issues. We further review historical developments in the field of biosensors, and describe the different types of biosensors which have been developed over time, with specific focus on CNT-conjugates engineered for biosensing applications, and in particular detection of cancer biomarkers.

  20. Fiber based optofluidic biosensors

    NASA Astrophysics Data System (ADS)

    Lismont, M.; Vandewalle, N.; Joris, B.; Dreesen, L.

    2014-09-01

    Medicinal diagnosis requires the development of innovative devices allowing the detection of small amounts of biological species. Among the large variety of available biosensors, the ones based on fluorescence phenomenon are really promising. Here, we show a prototype of the basic unit of a multi-sensing biosensor combining optics and microfluidics benefits. This unit makes use of two crossed optical fibers: the first fiber is used to carry small probe molecules droplets and excite fluorescence, while the second one is devoted to target molecules droplets transport and fluorescence detection. Within this scheme, the interaction takes place in each fiber node. The main benefits of this detection setup are the absence of fibers functionalization, the use of microliter volumes of target and probe species, their separation before interaction, and a better detection limit compared to cuvettes setups.

  1. Towards optoelectronic urea biosensors.

    PubMed

    Pokrzywnicka, Marta; Koncki, Robert; Tymecki, Łukasz

    2015-03-01

    Integration of immobilized enzymes with light-emitting diodes (LEDs) leads to the development of optoelectronic enzyme-based biosensors. In this work, urease, used as a model enzyme, immobilized in the form of an open-tubular microbioreactor or biosensing membrane that has been integrated with two red LEDs. It forms complete, fiberless, miniaturized, and extremely economic biooptoelectronic devices useful for nonstationary measurements under flow analysis conditions. Both enzyme-based biodevices, operating according to the paired emitter detector diode (PEDD) principle, allow relatively fast, highly sensitive, and well-reproducible urea detection in the millimolar range of concentrations. Potential analytical applications of the developed urea bioPEDDs have been announced. Both presented constructions will be easily adapted for the development of other optoelectronic biosensors exploring various enzyme-based schemes of biodetection. PMID:25619983

  2. Biosensors: recent trends.

    PubMed

    Graham, A; Moo-Young, M

    1985-01-01

    One of the major bottlenecks in automation and process control of industrial bioprocesses is the lack of suitable sensing devices to accurately measure the concentrations of biomolecules. The measurement of ions (e.g., H(+), NH(4)(+)) and gases (e.g., O(2), CO(2), NH(3)) using standard ion-selective and gas sensing electrodes respectively, is well established. Chemical analysis of biomolecules off-line is generally unreliable, labour intensive and may lead to contamination of the biological systems. Problems of maintaining sterile conditions are especially important when dealing with slow growing mammalian or plant cells in culture. Active research in the development of biosensors for monitoring fermentation processes, food production and pollution control, and for medical and veterinary applications is currently underway. This paper reviews recent approaches toward the development of biosensors which involve a biochemical interaction to measure the concentrations of biomolecules, primarily for the on-line monitoring and control of fermentation processes.

  3. Bacteriophage biosensors for antibiotic-resistant bacteria.

    PubMed

    Sorokulova, Irina; Olsen, Eric; Vodyanoy, Vitaly

    2014-03-01

    An increasing number of disease-causing bacteria are resistant to one or more anti-bacterial drugs utilized for therapy. Early and speedy detection of these pathogens is therefore very important. Traditional pathogen detection techniques, that include microbiological and biochemical assays are long and labor-intensive, while antibody or DNA-based methods require substantial sample preparation and purification. Biosensors based on bacteriophages have demonstrated remarkable potential to surmount these restrictions and to offer rapid, efficient and sensitive detection technique for antibiotic-resistant bacteria.

  4. Fiber Optic Surface Plasmon Resonance-Based Biosensor Technique: Fabrication, Advancement, and Application.

    PubMed

    Liang, Gaoling; Luo, Zewei; Liu, Kunping; Wang, Yimin; Dai, Jianxiong; Duan, Yixiang

    2016-05-01

    Fiber optic-based biosensors with surface plasmon resonance (SPR) technology are advanced label-free optical biosensing methods. They have brought tremendous progress in the sensing of various chemical and biological species. This review summarizes four sensing configurations (prism, grating, waveguide, and fiber optic) with two ways, attenuated total reflection (ATR) and diffraction, to excite the surface plasmons. Meanwhile, the designs of different probes (U-bent, tapered, and other probes) are also described. Finally, four major types of biosensors, immunosensor, DNA biosensor, enzyme biosensor, and living cell biosensor, are discussed in detail for their sensing principles and applications. Future prospects of fiber optic-based SPR sensor technology are discussed. PMID:27119268

  5. Graphene-based biosensors

    NASA Astrophysics Data System (ADS)

    Lebedev, A. A.; Davydov, V. Yu.; Novikov, S. N.; Litvin, D. P.; Makarov, Yu. N.; Klimovich, V. B.; Samoilovich, M. P.

    2016-07-01

    Results of developing and testing graphene-based sensors capable of detecting protein molecules are presented. The biosensor operation was checked using an immunochemical system comprising fluorescein dye and monoclonal antifluorescein antibodies. The sensor detects fluorescein concentration on a level of 1-10 ng/mL and bovine serum albumin-fluorescein conjugate on a level of 1-5 ng/mL. The proposed device has good prospects for use for early diagnostics of various diseases.

  6. Nuclear reactors built, being built, or planned, 1991

    SciTech Connect

    Simpson, B.

    1992-07-01

    This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1991. The book is divided into three major sections: Section 1 consists of a reactor locator map and reactor tables; Section 2 includes nuclear reactors that are operating, being built, or planned; and Section 3 includes reactors that have been shut down permanently or dismantled. Sections 2 and 3 contain the following classification of reactors: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is an American company -- working either independently or in cooperation with a foreign company (Part 4, in each section). Critical assembly refers to an assembly of fuel and assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5).

  7. Nuclear reactors built, being built, or planned 1996

    SciTech Connect

    1997-08-01

    This publication contains unclassified information about facilities, built, being built, or planned in the United States for domestic use or export as of December 31, 1996. The Office of Scientific and Technical Information, U.S. Department of Energy, gathers this information annually from Washington headquarters, and field offices of DOE; from the U.S. Nuclear Regulatory Commission (NRC); from the U. S. reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from U.S. and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: (1) a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; (2) tables of data for reactors operating, being built, or planned; and (3) tables of data for reactors that have been shut down permanently or dismantled.

  8. Thermoresponsive amperometric glucose biosensor.

    PubMed

    Pinyou, Piyanut; Ruff, Adrian; Pöller, Sascha; Barwe, Stefan; Nebel, Michaela; Alburquerque, Natalia Guerrero; Wischerhoff, Erik; Laschewsky, André; Schmaderer, Sebastian; Szeponik, Jan; Plumeré, Nicolas; Schuhmann, Wolfgang

    2016-03-01

    The authors report on the fabrication of a thermoresponsive biosensor for the amperometric detection of glucose. Screen printed electrodes with heatable gold working electrodes were modified by a thermoresponsive statistical copolymer [polymer I: poly(ω-ethoxytriethylenglycol methacrylate-co-3-(N,N-dimethyl-N-2-methacryloyloxyethyl ammonio) propanesulfonate-co-ω-butoxydiethylenglycol methacrylate-co-2-(4-benzoyl-phenoxy)ethyl methacrylate)] with a lower critical solution temperature of around 28 °C in aqueous solution via electrochemically induced codeposition with a pH-responsive redox-polymer [polymer II: poly(glycidyl methacrylate-co-allyl methacrylate-co-poly(ethylene glycol)methacrylate-co-butyl acrylate-co-2-(dimethylamino)ethyl methacrylate)-[Os(bpy)2(4-(((2-(2-(2-aminoethoxy)ethoxy)ethyl)amino)methyl)-N,N-dimethylpicolinamide)](2+)] and pyrroloquinoline quinone-soluble glucose dehydrogenase acting as biological recognition element. Polymer II bears covalently bound Os-complexes that act as redox mediators for shuttling electrons between the enzyme and the electrode surface. Polymer I acts as a temperature triggered immobilization matrix. Probing the catalytic current as a function of the working electrode temperature shows that the activity of the biosensor is dramatically reduced above the phase transition temperature of polymer I. Thus, the local modulation of the temperature at the interphase between the electrode and the bioactive layer allows switching the biosensor from an on- to an off-state without heating of the surrounding analyte solution. PMID:26702635

  9. DNA.

    ERIC Educational Resources Information Center

    Felsenfeld, Gary

    1985-01-01

    Structural form, bonding scheme, and chromatin structure of and gene-modification experiments with deoxyribonucleic acid (DNA) are described. Indicates that DNA's double helix is variable and also flexible as it interacts with regulatory and other molecules to transfer hereditary messages. (DH)

  10. Comparative study of binding constants from Love wave surface acoustic wave and surface plasmon resonance biosensors using kinetic analysis.

    PubMed

    Lee, Sangdae; Kim, Yong-Il; Kim, Ki-Bok

    2013-11-01

    Biosensors are used in a variety of fields for early diagnosis of diseases, measurement of toxic contaminants, quick detection of pathogens, and separation of specific proteins or DNA. In this study, we fabricated and evaluated the capability of a high sensitivity Love wave surface acoustic wave (SAW) biosensor. The experimental setup was composed of the fabricated 155-MHz Love wave SAW biosensor, a signal measurement system, a liquid flow system, and a temperature-control system. Subsequently, we measured the lower limit of detection (LOD) of the 155-MHz Love wave SAW biosensor, and calculated the association and dissociation constants between protein G and anti-mouse IgG using kinetic analysis. We compared these results with those obtained using a commercial surface plasmon resonance (SPR) biosensor. We found that the LOD of the SAW biosensor for anti-mouse IgG and mouse IgG was 0.5 and 1 microg/ml, respectively, and the resultant equilibrium association and dissociation constants were similar to the corresponding values obtaining using the commercial SPR biosensor. Thus, we conclude that the fabricated 155-MHz Love wave SAW biosensor exhibited the high sensitivity of the commercial SPR biosensor and was able to analyze the binding properties of the ligand and receptor by kinetic analysis similarly to the commercial SPR biosensor.

  11. Carbon Nanotube Biosensors for Space Molecule Detection and Clinical Molecular Diagnostics

    NASA Technical Reports Server (NTRS)

    Han, Jie

    2001-01-01

    Both space molecule detection and clinical molecule diagnostics need to develop ultra sensitive biosensors for detection of less than attomole molecules such as amino acids for DNA. However all the electrode sensor systems including those fabricated from the existing carbon nanotubes, have a background level of nA (nanoAmp). This has limited DNA or other molecule detection to nA level or molecules whose concentration is, much higher than attomole level. A program has been created by NASA and NCI (National Cancer Institute) to exploit the possibility of carbon nanotube based biosensors to solve this problem for both's interest. In this talk, I will present our effort on the evaluation and novel design of carbon nanotubes as electrode biosensors with strategies to minimize background currents while maximizing signal intensity.The fabrication of nanotube electrode arrays, immobilization of molecular probes on nanotube electrodes and in vitro biosensor testing will also be discussed.

  12. ESF AS-BUILT CONFIGURATION

    SciTech Connect

    NA

    2005-03-17

    The calculations contained in this document were developed by the ''Mining Group of the Design & Engineering Organization'' and are intended solely for the use of the ''Design & Engineering Organization'' in its work regarding the subsurface repository. Yucca Mountain Project personnel from the ''Mining Group'' should be consulted before use of the calculations for purposes other than those stated herein or use by individuals other than authorized personnel in the ''Design & Engineering Organization''. The purpose of this calculation is to provide design inputs that can be used to develop an as-built drawing of the Exploratory Studies Facility (ESF) for the planning and development of the subsurface repository. This document includes subsurface as-built surveys, recommendation to complete as-built surveys, and Management and Operating Contractor (M&O) Subsurface Design Drawings as inputs. This calculation is used to provide data and information for an as-built ESF subsurface drawing and is not used in the development of results or conclusions, therefore all inputs are considered as indirect.

  13. Schools Built with Fallout Shelter.

    ERIC Educational Resources Information Center

    Office of Civil Defense (DOD), Washington, DC.

    Fallout protection can be built into a school building with little or no additional cost, using areas that are in continual use in the normal functioning of the building. A general discussion of the principles of shelter design is given along with photographs, descriptions, drawings, and cost analysis for a number of recently constructed schools…

  14. An electrochemical peptide cleavage-based biosensor for matrix metalloproteinase-2 detection with exonuclease III-assisted cycling signal amplification.

    PubMed

    Wang, Ding; Yuan, Yali; Zheng, Yingning; Chai, Yaqin; Yuan, Ruo

    2016-05-01

    In this work, an electrochemical peptide biosensor was developed for matrix metalloproteinase-2 (MMP-2) detection by conversion of a peptide cleavage event into DNA detection with exonuclease III (Exo III)-assisted cycling signal amplification.

  15. Nuclear reactors built, being built, or planned: 1995

    SciTech Connect

    1996-08-01

    This report contains unclassified information about facilities built, being built, or planned in the US for domestic use or export as of December 31, 1995. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from US and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: (1) a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; (2) tables of data for reactors operating, being built, or planned; and (3) tables of data for reactors that have been shut down permanently or dismantled. The reactors are subdivided into the following parts: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is a US company--working either independently or in cooperation with a foreign company (Part 4). Critical assembly refers to an assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5).

  16. Nuclear reactors built, being built, or planned, 1994

    SciTech Connect

    1995-07-01

    This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1994. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from US and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; tables of data for reactors operating, being built, or planned; and tables of data for reactors that have been shut down permanently or dismantled. The reactors are subdivided into the following parts: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is a US company -- working either independently or in cooperation with a foreign company (Part 4). Critical assembly refers to an assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5).

  17. Biosensor based on nanocomposite material for pathogenic virus detection.

    PubMed

    Van Thu, Vu; Dung, Phuong Trung; Tam, Le Thi; Tam, Phuong Dinh

    2014-03-01

    This paper introduces a DNA biosensor based on a DNA/chitosan/multi-walled carbon nanotube nanocomposite for pathogenic virus detection. An easy, cost-effective approach to the immobilization of probe DNA sequences on the sensor surface was performed. Cyclic voltammograms were used to characterize the probe DNA sequence immobilization. Complementary sequence hybridization was examined by electrochemical impedance spectroscopy. Results revealed that the developed DNA sensor can detect a target DNA concentration as low as 0.01×10(-12) M. The sensitivity of the prepared sensor was 52.57 kΩ/fM. The reusability and storage stability of the DNA sensor were also investigated. Results showed that the electron-transfer resistance decreased to approximately 35% after 8 weeks and to approximately 80% after 12 weeks of storage.

  18. Development of solution-gated graphene transistor model for biosensors

    PubMed Central

    2014-01-01

    The distinctive properties of graphene, characterized by its high carrier mobility and biocompatibility, have stimulated extreme scientific interest as a promising nanomaterial for future nanoelectronic applications. In particular, graphene-based transistors have been developed rapidly and are considered as an option for DNA sensing applications. Recent findings in the field of DNA biosensors have led to a renewed interest in the identification of genetic risk factors associated with complex human diseases for diagnosis of cancers or hereditary diseases. In this paper, an analytical model of graphene-based solution gated field effect transistors (SGFET) is proposed to constitute an important step towards development of DNA biosensors with high sensitivity and selectivity. Inspired by this fact, a novel strategy for a DNA sensor model with capability of single-nucleotide polymorphism detection is proposed and extensively explained. First of all, graphene-based DNA sensor model is optimized using particle swarm optimization algorithm. Based on the sensing mechanism of DNA sensors, detective parameters (Ids and Vgmin) are suggested to facilitate the decision making process. Finally, the behaviour of graphene-based SGFET is predicted in the presence of single-nucleotide polymorphism with an accuracy of more than 98% which guarantees the reliability of the optimized model for any application of the graphene-based DNA sensor. It is expected to achieve the rapid, quick and economical detection of DNA hybridization which could speed up the realization of the next generation of the homecare sensor system. PMID:24517158

  19. Development of solution-gated graphene transistor model for biosensors.

    PubMed

    Karimi, Hediyeh; Yusof, Rubiyah; Rahmani, Rasoul; Hosseinpour, Hoda; Ahmadi, Mohammad T

    2014-02-11

    : The distinctive properties of graphene, characterized by its high carrier mobility and biocompatibility, have stimulated extreme scientific interest as a promising nanomaterial for future nanoelectronic applications. In particular, graphene-based transistors have been developed rapidly and are considered as an option for DNA sensing applications. Recent findings in the field of DNA biosensors have led to a renewed interest in the identification of genetic risk factors associated with complex human diseases for diagnosis of cancers or hereditary diseases. In this paper, an analytical model of graphene-based solution gated field effect transistors (SGFET) is proposed to constitute an important step towards development of DNA biosensors with high sensitivity and selectivity. Inspired by this fact, a novel strategy for a DNA sensor model with capability of single-nucleotide polymorphism detection is proposed and extensively explained. First of all, graphene-based DNA sensor model is optimized using particle swarm optimization algorithm. Based on the sensing mechanism of DNA sensors, detective parameters (Ids and Vgmin) are suggested to facilitate the decision making process. Finally, the behaviour of graphene-based SGFET is predicted in the presence of single-nucleotide polymorphism with an accuracy of more than 98% which guarantees the reliability of the optimized model for any application of the graphene-based DNA sensor. It is expected to achieve the rapid, quick and economical detection of DNA hybridization which could speed up the realization of the next generation of the homecare sensor system.

  20. Development of solution-gated graphene transistor model for biosensors.

    PubMed

    Karimi, Hediyeh; Yusof, Rubiyah; Rahmani, Rasoul; Hosseinpour, Hoda; Ahmadi, Mohammad T

    2014-01-01

    : The distinctive properties of graphene, characterized by its high carrier mobility and biocompatibility, have stimulated extreme scientific interest as a promising nanomaterial for future nanoelectronic applications. In particular, graphene-based transistors have been developed rapidly and are considered as an option for DNA sensing applications. Recent findings in the field of DNA biosensors have led to a renewed interest in the identification of genetic risk factors associated with complex human diseases for diagnosis of cancers or hereditary diseases. In this paper, an analytical model of graphene-based solution gated field effect transistors (SGFET) is proposed to constitute an important step towards development of DNA biosensors with high sensitivity and selectivity. Inspired by this fact, a novel strategy for a DNA sensor model with capability of single-nucleotide polymorphism detection is proposed and extensively explained. First of all, graphene-based DNA sensor model is optimized using particle swarm optimization algorithm. Based on the sensing mechanism of DNA sensors, detective parameters (Ids and Vgmin) are suggested to facilitate the decision making process. Finally, the behaviour of graphene-based SGFET is predicted in the presence of single-nucleotide polymorphism with an accuracy of more than 98% which guarantees the reliability of the optimized model for any application of the graphene-based DNA sensor. It is expected to achieve the rapid, quick and economical detection of DNA hybridization which could speed up the realization of the next generation of the homecare sensor system. PMID:24517158

  1. Development of solution-gated graphene transistor model for biosensors

    NASA Astrophysics Data System (ADS)

    Karimi, Hediyeh; Yusof, Rubiyah; Rahmani, Rasoul; Hosseinpour, Hoda; Ahmadi, Mohammad T.

    2014-02-01

    The distinctive properties of graphene, characterized by its high carrier mobility and biocompatibility, have stimulated extreme scientific interest as a promising nanomaterial for future nanoelectronic applications. In particular, graphene-based transistors have been developed rapidly and are considered as an option for DNA sensing applications. Recent findings in the field of DNA biosensors have led to a renewed interest in the identification of genetic risk factors associated with complex human diseases for diagnosis of cancers or hereditary diseases. In this paper, an analytical model of graphene-based solution gated field effect transistors (SGFET) is proposed to constitute an important step towards development of DNA biosensors with high sensitivity and selectivity. Inspired by this fact, a novel strategy for a DNA sensor model with capability of single-nucleotide polymorphism detection is proposed and extensively explained. First of all, graphene-based DNA sensor model is optimized using particle swarm optimization algorithm. Based on the sensing mechanism of DNA sensors, detective parameters ( I ds and V gmin) are suggested to facilitate the decision making process. Finally, the behaviour of graphene-based SGFET is predicted in the presence of single-nucleotide polymorphism with an accuracy of more than 98% which guarantees the reliability of the optimized model for any application of the graphene-based DNA sensor. It is expected to achieve the rapid, quick and economical detection of DNA hybridization which could speed up the realization of the next generation of the homecare sensor system.

  2. High-sensitive label-free biosensors based on single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Maehashi, Kenzo; Matsumoto, Kazuhiko

    2006-02-01

    DNA hybridization has sensitively been detected using carbon nanotube field-effect transistors (CNTFETs) in real time. After full-complementary DNA introduction, the source-drain current gradually increased while monitoring in real time. Full-complementary DNA with concentration as low as 1 fmol/L solution could be effectively detected. Our CNTFET-based biochip is a promising candidate for the development of an integrated, high-throughput, multiplexed DNA biosensor for medical, forensic and environmental diagnostics.

  3. Towards single-spot multianalyte molecular beacon biosensors.

    PubMed

    Strohsahl, Christopher M; Du, Hui; Miller, Benjamin L; Krauss, Todd D

    2005-09-15

    The separate developments of microarray patterning of DNA oligonucleotides, and of DNA hairpins as sensitive probes for oligonucleotide identification in solution, have had a tremendous impact on basic biological research and clinical applications. Herein, we will discuss several successful efforts to develop oligonucleotide sensors based on the surface immobilization of functionalized DNA hairpins. We also will discuss the development of prototypical single-spot multianalyte "Molecular Beacon" biosensors. Importantly, we show that organic fluorophores will likely be inadequate in moving this technology forward and new approaches, such as the use of nanotechnology, will be needed.

  4. Built Environment Wind Turbine Roadmap

    SciTech Connect

    Smith, J.; Forsyth, T.; Sinclair, K.; Oteri, F.

    2012-11-01

    The market currently encourages BWT deployment before the technology is ready for full-scale commercialization. To address this issue, industry stakeholders convened a Rooftop and Built-Environment Wind Turbine Workshop on August 11 - 12, 2010, at the National Wind Technology Center, located at the U.S. Department of Energy’s National Renewable Energy Laboratory in Boulder, Colorado. This report summarizes the workshop.

  5. Electrochemical biosensors and nanobiosensors

    PubMed Central

    Hammond, Jules L.; Formisano, Nello; Carrara, Sandro; Tkac, Jan

    2016-01-01

    Electrochemical techniques have great promise for low-cost miniaturised easy-to-use portable devices for a wide range of applications–in particular, medical diagnosis and environmental monitoring. Different techniques can be used for biosensing, with amperometric devices taking the central role due to their widespread application in glucose monitoring. In fact, glucose biosensing takes an approximately 70% share of the biosensor market due to the need for diabetic patients to monitor their sugar levels several times a day, making it an appealing commercial market. In this review, we present the basic principles of electrochemical biosensor devices. A description of the different generations of glucose sensors is used to describe in some detail the operation of amperometric sensors and how the introduction of mediators can enhance the performance of the sensors. Electrochemical impedance spectroscopy is a technique being increasingly used in devices due to its ability to detect variations in resistance and capacitance upon binding events. Novel advances in electrochemical sensors, due to the use of nanomaterials such as carbon nanotubes and graphene, are presented as well as future directions that the field is taking. PMID:27365037

  6. Multiplexed Biosensors for Mycotoxins.

    PubMed

    Maragos, Chris M

    2016-07-01

    Significant progress has been made in the development of biosensors that can be used to detect low-MW toxins produced by fungi (mycotoxins). The number of formats that have been investigated is impressive and is an indication of the importance attached to finding easy-to-use, accurate, and rapid methods for detecting these toxins in commodities and foods. This review explores the details of multiplexed biosensors based on many formats, including multiplexed immunoassays, suspension arrays, membrane-based devices (flow-through and immunochromatographic), and planar microarrays. Each assay format has its own strengths and areas that need improvement. Certain formats, such as multiplexed immunochromatographic devices, are well developed and relatively easy to use, and in some cases, commercial products are being sold. Others, such as the suspension arrays and microarrays, are laboratory-based assays that, although more complicated, are also more amenable to a larger scale of multiplexing. The diversity of such efforts and the multitude of formats under investigation suggest that multiple solutions will be found to satisfy the need for multiplexed toxin detection. PMID:27455928

  7. Electrochemical biosensors and nanobiosensors.

    PubMed

    Hammond, Jules L; Formisano, Nello; Estrela, Pedro; Carrara, Sandro; Tkac, Jan

    2016-06-30

    Electrochemical techniques have great promise for low-cost miniaturised easy-to-use portable devices for a wide range of applications-in particular, medical diagnosis and environmental monitoring. Different techniques can be used for biosensing, with amperometric devices taking the central role due to their widespread application in glucose monitoring. In fact, glucose biosensing takes an approximately 70% share of the biosensor market due to the need for diabetic patients to monitor their sugar levels several times a day, making it an appealing commercial market.In this review, we present the basic principles of electrochemical biosensor devices. A description of the different generations of glucose sensors is used to describe in some detail the operation of amperometric sensors and how the introduction of mediators can enhance the performance of the sensors. Electrochemical impedance spectroscopy is a technique being increasingly used in devices due to its ability to detect variations in resistance and capacitance upon binding events. Novel advances in electrochemical sensors, due to the use of nanomaterials such as carbon nanotubes and graphene, are presented as well as future directions that the field is taking.

  8. Electrochemical biosensors and nanobiosensors.

    PubMed

    Hammond, Jules L; Formisano, Nello; Estrela, Pedro; Carrara, Sandro; Tkac, Jan

    2016-06-30

    Electrochemical techniques have great promise for low-cost miniaturised easy-to-use portable devices for a wide range of applications-in particular, medical diagnosis and environmental monitoring. Different techniques can be used for biosensing, with amperometric devices taking the central role due to their widespread application in glucose monitoring. In fact, glucose biosensing takes an approximately 70% share of the biosensor market due to the need for diabetic patients to monitor their sugar levels several times a day, making it an appealing commercial market.In this review, we present the basic principles of electrochemical biosensor devices. A description of the different generations of glucose sensors is used to describe in some detail the operation of amperometric sensors and how the introduction of mediators can enhance the performance of the sensors. Electrochemical impedance spectroscopy is a technique being increasingly used in devices due to its ability to detect variations in resistance and capacitance upon binding events. Novel advances in electrochemical sensors, due to the use of nanomaterials such as carbon nanotubes and graphene, are presented as well as future directions that the field is taking. PMID:27365037

  9. Improved Biosensors for Soils

    NASA Astrophysics Data System (ADS)

    Silberg, J. J.; Masiello, C. A.; Cheng, H. Y.

    2014-12-01

    Microbes drive processes in the Earth system far exceeding their physical scale, affecting crop yields, water quality, the mobilization of toxic materials, and fundamental aspects of soil biogeochemistry. The tools of synthetic biology have the potential to significantly improve our understanding of microbial Earth system processes: for example, synthetic microbes can be be programmed to report on environmental conditions that stimulate greenhouse gas production, metal oxidation, biofilm formation, pollutant degradation, and microbe-plant symbioses. However, these tools are only rarely deployed in the lab. This research gap arises because synthetically programmed microbes typically report on their environment by producing molecules that are detected optically (e.g., fluorescent proteins). Fluorescent reporters are ideal for petri-dish applications and have fundamentally changed how we study human health, but their usefulness is quite limited in soils where detecting fluorescence is challenging. Here we describe the construction of gas-reporting biosensors, which release nonpolar gases that can be detected in the headspace of incubation experiments. These constructs can be used to probe microbial processes within soils in real-time noninvasive lab experiments. These biosensors can be combined with traditional omics-based approaches to reveal processes controlling soil microbial behavior and lead to improved environmental management decisions.

  10. DNA

    ERIC Educational Resources Information Center

    Stent, Gunther S.

    1970-01-01

    This history for molecular genetics and its explanation of DNA begins with an analysis of the Golden Jubilee essay papers, 1955. The paper ends stating that the higher nervous system is the one major frontier of biological inquiry which still offers some romance of research. (Author/VW)

  11. New design incinerator being built

    SciTech Connect

    Not Available

    1980-09-01

    A $14 million garbage-burning facility is being built by Reedy Creek Utilities Co. in cooperation with DOE at Lake Buena Vista, Fla., on the edge of Walt Disney World. The nation's first large-volume slagging pyrolysis incinerator will burn municipal waste in a more beneficial way and supply 15% of the amusement park's energy demands. By studying the new incinerators slag-producing capabilities, engineers hope to design similar facilities for isolating low-level nuclear wastes in inert, rocklike slag.

  12. Novel trends in affinity biosensors: current challenges and perspectives

    NASA Astrophysics Data System (ADS)

    Arugula, Mary A.; Simonian, Aleksandr

    2014-03-01

    Molecular biorecognition processes facilitate physical and biochemical interactions between molecules in all crucial metabolic pathways. Perhaps the target analyte and the biorecognition element interactions have the most impactful use in biosensing applications. Traditional analytical sensing systems offer excellent biorecognition elements with the ability to detect and determine the presence of analytes. High affinity antibodies and DNA play an important role in the development of affinity biosensors based on electrochemical, optical and mass sensitive approaches. Advancements in this area routinely employ labels, label free, nanoparticles, multifunctional matrices, carbon nanotubes and other methods to meet the requirements of its own application. However, despite increasing affinity ceilings for conventional biosensors, the field draws back in meeting specifically important demands, such as long-term stability, ultrasensitivity, rapid detection, extreme selectivity, strong biological base, calibration, in vivo measurements, regeneration, satisfactory performance and ease of production. Nevertheless, recent efforts through this line have produced novel high-tech nanosensing systems such as ‘aptamers’ and ‘phages’ which exhibit high-throughput sensing. Aptamers and phages are powerful tools that excel over antibodies in sensibility, stability, multi-detection, in vivo measurements and regeneration. Phages are superior in stability, screening for affinity-based target molecules ranging from small to proteins and even cells, and easy production. In this review, we focus mainly on recent developments in affinity-based biosensors such as immunosensors, DNA sensors, emphasizing aptasensors and phage-based biosensors basing on novel electrochemical, optical and mass sensitive detection techniques. We also address enzyme inhibition-based biosensors and the current problems associated with the above sensors and their future perspectives.

  13. Noninvasive biosensor for hypoglycemia

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.; Whitchurch, Ashwin K.; Sarukesi, Karunakaran

    2003-01-01

    Hypoglycemia-abnormal decrease in blood sugar- is a major obstacle in the management of diabetes and prevention of long-term complications, and it may impose serious effects on the brain, including impairment of memory and other cognitive functions. This is especially a concern in early childhood years when the nervous system is still developing. Hypoglycemic unawareness (in which the body"s normal ability to signal low blood sugar doesn"t work and an oncoming low blood sugar episode proceeds undetected) is a particularly frightening problem for many people with diabetes. Researchers have now uncovered evidence that repeated bouts of insulin-induced hypoglycemia can harm the brain over time, causing confusion, abnormal behavior, loss of consciousness, and seizures. Extreme cases have resulted in coma and death. In this paper, a non-invasive biosensor in a wrist watch along with a wireless data downloading system is proposed.

  14. The electrophotonic silicon biosensor

    PubMed Central

    Juan-Colás, José; Parkin, Alison; Dunn, Katherine E.; Scullion, Mark G.; Krauss, Thomas F.; Johnson, Steven D.

    2016-01-01

    The emergence of personalized and stratified medicine requires label-free, low-cost diagnostic technology capable of monitoring multiple disease biomarkers in parallel. Silicon photonic biosensors combine high-sensitivity analysis with scalable, low-cost manufacturing, but they tend to measure only a single biomarker and provide no information about their (bio)chemical activity. Here we introduce an electrochemical silicon photonic sensor capable of highly sensitive and multiparameter profiling of biomarkers. Our electrophotonic technology consists of microring resonators optimally n-doped to support high Q resonances alongside electrochemical processes in situ. The inclusion of electrochemical control enables site-selective immobilization of different biomolecules on individual microrings within a sensor array. The combination of photonic and electrochemical characterization also provides additional quantitative information and unique insight into chemical reactivity that is unavailable with photonic detection alone. By exploiting both the photonic and the electrical properties of silicon, the sensor opens new modalities for sensing on the microscale. PMID:27624590

  15. The electrophotonic silicon biosensor.

    PubMed

    Juan-Colás, José; Parkin, Alison; Dunn, Katherine E; Scullion, Mark G; Krauss, Thomas F; Johnson, Steven D

    2016-01-01

    The emergence of personalized and stratified medicine requires label-free, low-cost diagnostic technology capable of monitoring multiple disease biomarkers in parallel. Silicon photonic biosensors combine high-sensitivity analysis with scalable, low-cost manufacturing, but they tend to measure only a single biomarker and provide no information about their (bio)chemical activity. Here we introduce an electrochemical silicon photonic sensor capable of highly sensitive and multiparameter profiling of biomarkers. Our electrophotonic technology consists of microring resonators optimally n-doped to support high Q resonances alongside electrochemical processes in situ. The inclusion of electrochemical control enables site-selective immobilization of different biomolecules on individual microrings within a sensor array. The combination of photonic and electrochemical characterization also provides additional quantitative information and unique insight into chemical reactivity that is unavailable with photonic detection alone. By exploiting both the photonic and the electrical properties of silicon, the sensor opens new modalities for sensing on the microscale. PMID:27624590

  16. The electrophotonic silicon biosensor

    NASA Astrophysics Data System (ADS)

    Juan-Colás, José; Parkin, Alison; Dunn, Katherine E.; Scullion, Mark G.; Krauss, Thomas F.; Johnson, Steven D.

    2016-09-01

    The emergence of personalized and stratified medicine requires label-free, low-cost diagnostic technology capable of monitoring multiple disease biomarkers in parallel. Silicon photonic biosensors combine high-sensitivity analysis with scalable, low-cost manufacturing, but they tend to measure only a single biomarker and provide no information about their (bio)chemical activity. Here we introduce an electrochemical silicon photonic sensor capable of highly sensitive and multiparameter profiling of biomarkers. Our electrophotonic technology consists of microring resonators optimally n-doped to support high Q resonances alongside electrochemical processes in situ. The inclusion of electrochemical control enables site-selective immobilization of different biomolecules on individual microrings within a sensor array. The combination of photonic and electrochemical characterization also provides additional quantitative information and unique insight into chemical reactivity that is unavailable with photonic detection alone. By exploiting both the photonic and the electrical properties of silicon, the sensor opens new modalities for sensing on the microscale.

  17. An enzyme-amplified lateral flow strip biosensor for visual detection of microRNA-224.

    PubMed

    Gao, Xuefei; Xu, Li-Ping; Wu, Tingting; Wen, Yongqiang; Ma, Xinlei; Zhang, Xueji

    2016-01-01

    An enzyme-based dual-labeled nanoprobe is designed to fabricate a sensitive enzyme-amplified lateral flow biosensor for visual detection of mircoRNA-224 (miRNA-224). The recognition DNA probe (detection probe) and signal amplification enzyme (Horseradish peroxidase, HRP) are immobilized on gold nanoparticle (GNPs) surface, simultaneously. The capture DNA probes are immobilized on the test zone of the lateral flow biosensor. When miRNA-224 is present, the enzyme-based dual-labeled nanoprobes will be captured by forming the "sandwich structure" on the test zone of the lateral flow biosensor, enabling the visual detection for miRNA-224. Sensitivity is amplified by applying the 3,3,5,5-tetramethylbenzidine enzymatic substrate (TMB/H2O2 enzymatic substrate) onto the test zone. The enzymatic reactions between the HRP and the TMB/H2O2 enzymatic substrate will produce blue products, which deposit on the nanoprobe surface to enhance the visual effect and the corresponding response intensities of the test zone. This enzyme-amplified lateral flow biosensor shows a low limit of detection (LOD) (7.5 pM) toward miRNA-224 in the buffer solution, which is improved by 10-fold than that of the single-labeled lateral flow biosensor. This biosensor has been successfully used for the detection of the target miRNA-224 detection in A549 cell lysate.

  18. Rapid construction of metabolite biosensors using domain-insertion profiling

    PubMed Central

    Nadler, Dana C.; Morgan, Stacy-Anne; Flamholz, Avi; Kortright, Kaitlyn E.; Savage, David F.

    2016-01-01

    Single-fluorescent protein biosensors (SFPBs) are an important class of probes that enable the single-cell quantification of analytes in vivo. Despite advantages over other detection technologies, their use has been limited by the inherent challenges of their construction. Specifically, the rational design of green fluorescent protein (GFP) insertion into a ligand-binding domain, generating the requisite allosteric coupling, remains a rate-limiting step. Here, we describe an unbiased approach, termed domain-insertion profiling with DNA sequencing (DIP-seq), that combines the rapid creation of diverse libraries of potential SFPBs and high-throughput activity assays to identify functional biosensors. As a proof of concept, we construct an SFPB for the important regulatory sugar trehalose. DIP-seq analysis of a trehalose-binding-protein reveals allosteric hotspots for GFP insertion and results in high-dynamic range biosensors that function robustly in vivo. Taken together, DIP-seq simultaneously accelerates metabolite biosensor construction and provides a novel tool for interrogating protein allostery. PMID:27470466

  19. Rapid construction of metabolite biosensors using domain-insertion profiling.

    PubMed

    Nadler, Dana C; Morgan, Stacy-Anne; Flamholz, Avi; Kortright, Kaitlyn E; Savage, David F

    2016-07-29

    Single-fluorescent protein biosensors (SFPBs) are an important class of probes that enable the single-cell quantification of analytes in vivo. Despite advantages over other detection technologies, their use has been limited by the inherent challenges of their construction. Specifically, the rational design of green fluorescent protein (GFP) insertion into a ligand-binding domain, generating the requisite allosteric coupling, remains a rate-limiting step. Here, we describe an unbiased approach, termed domain-insertion profiling with DNA sequencing (DIP-seq), that combines the rapid creation of diverse libraries of potential SFPBs and high-throughput activity assays to identify functional biosensors. As a proof of concept, we construct an SFPB for the important regulatory sugar trehalose. DIP-seq analysis of a trehalose-binding-protein reveals allosteric hotspots for GFP insertion and results in high-dynamic range biosensors that function robustly in vivo. Taken together, DIP-seq simultaneously accelerates metabolite biosensor construction and provides a novel tool for interrogating protein allostery.

  20. Thiol- and biotin-labeled probes for oligonucleotide quartz crystal microbalance biosensors of microalga alexandrium minutum.

    PubMed

    Lazerges, Mathieu; Perrot, Hubert; Rabehagasoa, Niriniony; Compère, Chantal

    2012-01-01

    Two quartz crystal microbalance oligonucleotide biosensors of a toxic microalga gene sequence (Alexandrium Minutum) have been designed. Grafting on a gold surface of 20-base thiol- or biotin-labeled probe, and selective hybridization with the complementary 20-base target, have been monitored in situ with a 27 MHz quartz crystal microbalance under controlled hydrodynamic conditions. The frequency of the set up is stable to within a few hertz, corresponding to the nanogram scale, for three hour experiments. DNA recognition by the two biosensors is efficient and selective. Hybridization kinetic curves indicate that the biosensor designed with the thiol-labeled probe is more sensitive, and that the biosensor designed with the biotin-labeled probe has a shorter time response and a higher hybridization efficiency. PMID:25585927

  1. Thiol- and Biotin-Labeled Probes for Oligonucleotide Quartz Crystal Microbalance Biosensors of Microalga Alexandrium Minutum

    PubMed Central

    Lazerges, Mathieu; Perrot, Hubert; Rabehagasoa, Niriniony; Compère, Chantal

    2012-01-01

    Two quartz crystal microbalance oligonucleotide biosensors of a toxic microalga gene sequence (Alexandrium Minutum) have been designed. Grafting on a gold surface of 20-base thiol- or biotin-labeled probe, and selective hybridization with the complementary 20-base target, have been monitored in situ with a 27 MHz quartz crystal microbalance under controlled hydrodynamic conditions. The frequency of the set up is stable to within a few hertz, corresponding to the nanogram scale, for three hour experiments. DNA recognition by the two biosensors is efficient and selective. Hybridization kinetic curves indicate that the biosensor designed with the thiol-labeled probe is more sensitive, and that the biosensor designed with the biotin-labeled probe has a shorter time response and a higher hybridization efficiency. PMID:25585927

  2. BIOSENSORS FOR ENVIRONMENTAL MONITORING: A REGULATORY PERSPECTIVE

    EPA Science Inventory

    Biosensors show the potential to complement laboratory-based analytical methods for environmental applications. Although biosensors for potential environmental-monitoring applications have been reported for a wide range of environmental pollutants, from a regulatory perspective, ...

  3. NANOSCALE BIOSENSORS IN ECOSYSTEM EXPOSURE RESEARCH

    EPA Science Inventory

    This powerpoint presentation presented information on nanoscale biosensors in ecosystem exposure research. The outline of the presentation is as follows: nanomaterials environmental exposure research; US agencies involved in nanosensor research; nanoscale LEDs in biosensors; nano...

  4. Gated Ion Channel-Based Biosensor Device

    NASA Astrophysics Data System (ADS)

    Separovic, Frances; Cornell, Bruce A.

    A biosensor device based on the ion channel gramicidin A (gA) incorporated into a bilayer membrane is described. This generic immunosensing device utilizes gA coupled to an antibody and assembled in a lipid membrane. The membrane is chemically tethered to a gold electrode, which reports on changes in the ionic conduction of the lipid bilayer. Binding of a target molecule in the bathing solution to the antibody causes the gramicidin channels to switch from predominantly conducting dimers to predominantly nonconducting monomers. Conventional a.c. impedance spectroscopy between the gold and a counter electrode in the bathing solution is used to measure changes in the ionic conductivity of the membrane. This approach permits the quantitative detection of a range of target species, including bacteria, proteins, toxins, DNA sequences, and drug molecules.

  5. Electrochemical biosensors for medicine and ecology.

    PubMed

    Bogdanovskaya, V A; Tarasevich, M R

    1996-01-01

    Research results obtained in the last 3 years in the area of electrochemical amperometric biosensors are presented. Selective electrochemical biosensors are proposed on the basis of investigations of electrode materials, electrolyte content, selective properties of polymer materials and mediators influence. Biosensor parameters for determination of glucose, phenol and biological oxygen demand are described.

  6. Biosensor for metal analysis and speciation

    DOEpatents

    Aiken, Abigail M.; Peyton, Brent M.; Apel, William A.; Petersen, James N.

    2007-01-30

    A biosensor for metal analysis and speciation is disclosed. The biosensor comprises an electron carrier immobilized to a surface of an electrode and a layer of an immobilized enzyme adjacent to the electrode. The immobilized enzyme comprises an enzyme having biological activity inhibited by a metal to be detected by the biosensor.

  7. Gold Nanoparticle Coated Silica Nanorods for Sensitive Visual Detection of microRNA on a Lateral Flow Strip Biosensor.

    PubMed

    Takalkar, Sunitha; Xu, Hui; Chen, Jiao; Baryeh, Kwaku; Qiu, Wanwei; Zhao, Julia X; Liu, And Guodong

    2016-01-01

    We present a rapid and highly sensitive approach for visual detection of microRNA (miRNA) using a gold nanoparticles coated silica nanorod label and lateral flow strip biosensor. Gold nanoparticles were decorated on the silica nanorod surface by a seeding and growth procedure. A single strand DNA probe was immobilized on the gold nanoparticles-silica nanorod surface by a self-assembling process, and the formed DNA-gold nanoparticles-silica nanorod conjugate was used to construct the lateral flow nucleic acid biosensor for detecting miRNA. The captured gold nanoparticles-silica nanorods by sandwich-type hybridization reactions (DNA-RNA-DNA) on the test zone of the lateral flow nucleic acid biosensor produced the characteristic color bands, enabling visual detection of miRNA. After systematic optimization, the new lateral flow nucleic acid biosensor was capable of detecting 10 pM of the miRNA target without instrumentation, which is six times lower than that obtained with the gold nanoparticle-based lateral flow nucleic acid biosensor. The gold nanoparticles coated silica nanorod thus provides a new and sensitive nanolabel for visual detection of biological molecules on the lateral flow biosensor. PMID:27302581

  8. A third-order mode high frequency biosensor with atomic resolution.

    PubMed

    Cai, Hua-Lin; Yang, Yi; Chen, Xiao; Mohammad, Mohammad Ali; Ye, Tian-Xiang; Guo, Cang-Ran; Yi, Li-Ting; Zhou, Chang-Jian; Liu, Jing; Ren, Tian-Ling

    2015-09-15

    An atomic resolution ultra-high sensitivity surface acoustic wave (SAW) biosensor for DNA sequences and cells detection is proposed. Interdigitated transducers (IDTs) fabricated on LiNbO3 substrate achieve a high quality factor (Q) of over 4000 at a frequency of 6.4 GHz (third-order harmonic mode) using an optimized design and process. The biosensor shows excellent linear responses to target DNA in the range from 1 μg/ml to 1 ng/ml with a high sensitivity of 6.7 × 10(-16)g/cm(2)/Hz, hence the difference of a single hybridized DNA base can also be distinguished. With such a high mass resolution, the biosensor is capable of quantitative detection of living cancer cells. The frequency responses of single mouse mammary adenocarcinoma (EMT6) cell and mouse fibroblast (3T3) cell are studied. The interferences in the experiments show insignificant influence on the frequency shift, which verifies the high selectivity of the biosensor. The biosensor is also able to repeat the sensing ability after rough cleaning, therefore cost reduction is achieved from the recycling process in practical applications. The detection limit is defined from the noise analysis of the device, atomic resolution is realized according to the calculation, thereby initiating a potential tool for high-precision medical diagnoses and phenomena observation at the atomic-level.

  9. Smart built-in test

    NASA Technical Reports Server (NTRS)

    Richards, Dale W.

    1990-01-01

    The work which built-in test (BIT) is asked to perform in today's electronic systems increases with every insertion of new technology or introduction of tighter performance criteria. Yet the basic purpose remains unchanged -- to determine with high confidence the operational capability of that equipment. Achievement of this level of BIT performance requires the management and assimilation of a large amount of data, both realtime and historical. Smart BIT has taken advantage of advanced techniques from the field of artificial intelligence (AI) in order to meet these demands. The Smart BIT approach enhances traditional functional BIT by utilizing AI techniques to incorporate environmental stress data, temporal BIT information and maintenance data, and realtime BIT reports into an integrated test methodology for increased BIT effectiveness and confidence levels. Future research in this area will incorporate onboard fault-logging of BIT output, stress data and Smart BIT decision criteria in support of a singular, integrated and complete test and maintenance capability. The state of this research is described along with a discussion of directions for future development.

  10. Plants as Environmental Biosensors

    PubMed Central

    Ranatunga, Don Rufus A

    2006-01-01

    Plants are continuously exposed to a wide variety of perturbations including variation of temperature and/or light, mechanical forces, gravity, air and soil pollution, drought, deficiency or surplus of nutrients, attacks by insects and pathogens, etc., and hence, it is essential for all plants to have survival sensory mechanisms against such perturbations. Consequently, plants generate various types of intracellular and intercellular electrical signals mostly in the form of action and variation potentials in response to these environmental changes. However, over a long period, only certain plants with rapid and highly noticeable responses for environmental stresses have received much attention from plant scientists. Of particular interest to our recent studies on ultra fast action potential measurements in green plants, we discuss in this review the evidence supporting the foundation for utilizing green plants as fast biosensors for molecular recognition of the direction of light, monitoring the environment, and detecting the insect attacks as well as the effects of pesticides, defoliants, uncouplers, and heavy metal pollutants. PMID:19521490

  11. Biosensors for termite control

    NASA Astrophysics Data System (ADS)

    Farkhanda, M.

    2013-12-01

    Termites are major urban pests in Pakistan and cause damage to wooden structures and buildings. Termite management has two parts: prevention and control. The most difficult part of termite control is termite detection as most of them are subterranean in Pakistan and have tunneling habit.Throughout the world, chemical termiticides are going to be replaced by baits, microwave and sensor technology. Termite species are distinct biologically and have specific foraging behaviors. Termite Detection Radar, Moisture meter and Remote Thermal Sensor with Laser are available throughout the world. These can detect termites underground and use fewer chemicals than traditional methods. For wooden buildings, a termite sensor and an intrusion detection system for detecting termites are designed. A pair of electrodes is disposed inside the container. A pair of terminals is connected to these electrodes, these extend outside the container. Termites are detected by a change of conductivity between the electrodes, when termites are detected a warning device generates a warning signal. In Pakistan, there is dire need to develop such biosensoring devices locally, then apply control methods that would save money and protect the environment.

  12. Biosensor for dengue virus detection: sensitive, rapid, and serotype specific.

    PubMed

    Baeumner, Antje J; Schlesinger, Nicole A; Slutzki, Naomi S; Romano, Joseph; Lee, Eun Mi; Montagna, Richard A

    2002-03-15

    A serotype-specific RNA biosensor was developed for the rapid detection of Dengue virus (serotypes 1-4) in blood samples. After RNA amplification, the biosensor allows the rapid detection of Dengue virus RNA in only 15 min. In addition, the biosensor is portable, inexpensive, and very easy to use, making it an ideal detection system for point-of-care and field applications. The biosensor is coupled to the isothermal nucleic acid sequence-based amplification (NASBA) technique with which small amounts of virus RNA are amplified using a simple water bath. During the NASBA reaction, a generic sequence is attached to all RNA molecules as described earlier (Wu, S. J.; Lee, E. M.; Putvatana, R.; Shurtliff, R. N.; Porter, K R.; Suharyono, W.; Watt, D. M.; King, C. C.; Murphy, G. S.; Hayes, C. G.; Romano, J. W. J. Clin. Microbiol. 2001, 39, 2794-2798.). It has been shown earlier that Dengue virus can be detected specifically using two DNA probes: a first probe hybridized with the attached generic sequence and, therefore, bound to every amplified RNA molecule; and a second probe either bound to all four Dengue virus serotypes or chosen to be specific for only one serotype. These probes were utilized in the biosensor described in this publication. For a generic Dengue virus biosensor, the second probe is complementary to a conserved region found in all Dengue serotypes. For identification of the individual Dengue virus serotypes, four serotype-specific probes were developed (Wu, S. J.; Lee, E. M.; Putvatana, R.; Shurtiff, R. N.; Porter, K. R.; Suharyono, W.; Watt, D. M.; King, C. C.; Murphy, G. S.; Hayes, C. G.; Romano, J. W. J. Clin. Microbiol. 2001, 39, 2794-2798.). The biosensor is a membrane-based DNA/RNA hybridization system using liposome amplification. The generic DNA probe (reporter probe) is coupled to the outside of dye-encapsulating liposomes. The conserved or Dengue serotype specific probes (capture probes) are immobilized on a polyethersulfone membrane strip

  13. Enzyme catalytic amplification of miRNA-155 detection with graphene quantum dot-based electrochemical biosensor.

    PubMed

    Hu, Tianxing; Zhang, Le; Wen, Wei; Zhang, Xiuhua; Wang, Shengfu

    2016-03-15

    A specific and sensitive method was developed for quantitative detection of miRNA by integrating horseradish peroxidase (HRP)-assisted catalytic reaction with a simple electrochemical RNA biosensor. The electrochemical biosensor was constructed by a double-stranded DNA structure. The structure was formed by the hybridization of thiol-tethered oligodeoxynucleotide probes (capture DNA), assembled on the gold electrode surface, with target DNA and aminated indicator probe (NH2-DNA). After the construction of the double-stranded DNA structure, the activated carboxyl groups of graphene quantum dots (GQDs) assembled on NH2-DNA. GQDs were used as a new platform for HRP immobilization through noncovalent assembly. HRP modified biosensor can effectively catalyze the hydrogen peroxide (H2O2)-mediated oxidation of 3,3',5,5'-tetramethylbenzidine (TMB), accompanied by a change from colorless to blue in solution color and an increased electrochemical current signal. Due to GQDs and enzyme catalysis, the proposed biosensor could sensitively detect miRNA-155 from 1 fM to 100 pM with a detection limit of 0.14 fM. High performance of the biosensor is attributed to the large surface-to-volume ratio, excellent compatibility of GQDs. For these advantages, the proposed method holds great potential for analysis of other interesting tumor makers.

  14. Enzyme catalytic amplification of miRNA-155 detection with graphene quantum dot-based electrochemical biosensor.

    PubMed

    Hu, Tianxing; Zhang, Le; Wen, Wei; Zhang, Xiuhua; Wang, Shengfu

    2016-03-15

    A specific and sensitive method was developed for quantitative detection of miRNA by integrating horseradish peroxidase (HRP)-assisted catalytic reaction with a simple electrochemical RNA biosensor. The electrochemical biosensor was constructed by a double-stranded DNA structure. The structure was formed by the hybridization of thiol-tethered oligodeoxynucleotide probes (capture DNA), assembled on the gold electrode surface, with target DNA and aminated indicator probe (NH2-DNA). After the construction of the double-stranded DNA structure, the activated carboxyl groups of graphene quantum dots (GQDs) assembled on NH2-DNA. GQDs were used as a new platform for HRP immobilization through noncovalent assembly. HRP modified biosensor can effectively catalyze the hydrogen peroxide (H2O2)-mediated oxidation of 3,3',5,5'-tetramethylbenzidine (TMB), accompanied by a change from colorless to blue in solution color and an increased electrochemical current signal. Due to GQDs and enzyme catalysis, the proposed biosensor could sensitively detect miRNA-155 from 1 fM to 100 pM with a detection limit of 0.14 fM. High performance of the biosensor is attributed to the large surface-to-volume ratio, excellent compatibility of GQDs. For these advantages, the proposed method holds great potential for analysis of other interesting tumor makers. PMID:26453906

  15. A biosensor for ferric ion.

    PubMed

    Barrero, J M; Morino-Bondi, M C; Pérez-Conde, M C; Cámara, C

    1993-11-01

    A new biosensor for monitoring iron has been developed. The active solid phase is pyoverdin, a natural fluorescent pigment biosynthesized by Pseudomonas fluorescens immobilized on controlled pore glass (CPG) and packed in a quartz flow-through cell. The biosensor is very selective for iron(III) and can be easily regenerated in about 2 min by passing 1M HCl through the cell. The optimum conditions and analytical characteristics (detection limit, precision and linear range) for the new sensor in solution (DL = 10 ng/ml) and in immobilized form (DL = 3 ng/ml) are reported. The biosensor has good stability and can be used continuously over a period for at least 3 months (over 1000 determinations). The sensor was successfully applied to determine iron in different water samples. There were no significant differences between the new method and the Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) reference method at the 95% confidence level. PMID:18965830

  16. Fluidics cube for biosensor miniaturization

    NASA Technical Reports Server (NTRS)

    Dodson, J. M.; Feldstein, M. J.; Leatzow, D. M.; Flack, L. K.; Golden, J. P.; Ligler, F. S.

    2001-01-01

    To create a small, portable, fully automated biosensor, a compact means of fluid handling is required. We designed, manufactured, and tested a "fluidics cube" for such a purpose. This cube, made of thermoplastic, contains reservoirs and channels for liquid samples and reagents and operates without the use of any internal valves or meters; it is a passive fluid circuit that relies on pressure relief vents to control fluid movement. We demonstrate the ability of pressure relief vents to control fluid movement and show how to simply manufacture or modify the cube. Combined with the planar array biosensor developed at the Naval Research Laboratory, it brings us one step closer to realizing our goal of a handheld biosensor capable of analyzing multiple samples for multiple analytes.

  17. Aptamer-based electrochemical biosensor for interferon gamma detection.

    PubMed

    Liu, Ying; Tuleouva, Nazgul; Ramanculov, Erlan; Revzin, Alexander

    2010-10-01

    In this paper, we describe the development of an electrochemical DNA aptamer-based biosensor for detection of interferon (IFN)-γ. A DNA hairpin containing IFN-γ-binding aptamer was thiolated, conjugated with methylene blue (MB) redox tag, and immobilized on a gold electrode by self-assembly. Binding of IFN-γ caused the aptamer hairpin to unfold, pushing MB redox molecules away from the electrode and decreasing electron-transfer efficiency. The change in redox current was quantified using square wave voltammetry (SWV) and was found to be highly sensitive to IFN-γ concentration. The limit of detection for optimized biosensor was 0.06 nM with linear response extending to 10 nM. This aptasensor was specific to IFN-γ in the presence of overabundant serum proteins. Importantly, the same aptasensor could be regenerated by disrupting aptamer-IFN-γ complex in urea buffer and reused multiple times. Unlike standard sandwich immunoassays, the aptasensor described here allowed one to detect IFN-γ binding directly without the need for multiple washing steps and reagents. An electrochemical biosensor for simple and sensitive detection of IFN-γ demonstrated in this paper will have future applications in immunology, cancer research, and infectious disease monitoring.

  18. Biosensors for hepatitis B virus detection.

    PubMed

    Yao, Chun-Yan; Fu, Wei-Ling

    2014-09-21

    A biosensor is an analytical device used for the detection of analytes, which combines a biological component with a physicochemical detector. Recently, an increasing number of biosensors have been used in clinical research, for example, the blood glucose biosensor. This review focuses on the current state of biosensor research with respect to efficient, specific and rapid detection of hepatitis B virus (HBV). The biosensors developed based on different techniques, including optical methods (e.g., surface plasmon resonance), acoustic wave technologies (e.g., quartz crystal microbalance), electrochemistry (amperometry, voltammetry and impedance) and novel nanotechnology, are also discussed. PMID:25253948

  19. Biosensors for hepatitis B virus detection

    PubMed Central

    Yao, Chun-Yan; Fu, Wei-Ling

    2014-01-01

    A biosensor is an analytical device used for the detection of analytes, which combines a biological component with a physicochemical detector. Recently, an increasing number of biosensors have been used in clinical research, for example, the blood glucose biosensor. This review focuses on the current state of biosensor research with respect to efficient, specific and rapid detection of hepatitis B virus (HBV). The biosensors developed based on different techniques, including optical methods (e.g., surface plasmon resonance), acoustic wave technologies (e.g., quartz crystal microbalance), electrochemistry (amperometry, voltammetry and impedance) and novel nanotechnology, are also discussed. PMID:25253948

  20. Surface plasmon enhanced effects in photonic biosensors

    NASA Astrophysics Data System (ADS)

    Yuan, Wu

    We have developed a novel design of multi-pass surface plasmon resonance (SPR) biosensor with differential phase interrogation based on multi-pass interferometry. This new configuration provides an intrinsic phase amplification effect of over two-fold by placing the SPR sensor head in a signal arm of the interferometer so that the interrogating optical beam will traverse the sensor surface infinite number of times. Experimental interferometers based on the Michelson and Fabry-Perot configurations have been employed to experimentally verify this amplification effect through the comparison with the Mach-Zehnder configuration. Results obtained from the salt-water mixtures, antibody-antigen, and protein-DNA binding reaction have confirmed the expected phase measurement enhancement. We have demonstrated that the sensitivity limit of intensity-based SPR biosensors can be enhanced when we combine the contributions from phase with that of amplitude instead of just detecting the amplitude or phase variation only. Experimental results indicate that an enhancement factor of as much as 20 times is achievable, yet with no compromise in measurement dynamic range. While existing SPR biosensor systems are predominantly based on the angular scheme, which relies on detecting intensity variations associated with amplitude changes only, the proposed scheme may serve as a direct system upgrade approach for these systems. In addition, a surface plasmon enhanced ellipsometry (SPEE) biosensor scheme based on the use of a photoelastic modulator (PEM) has been explored. We showed that the polarization parameters of a laser beam, tan psi, cos Delta and ellipse orientation angle φ, can be directly measured by detecting the modulation signals at the 1st and 2nd harmonics of the modulation frequency under a certain birefringence geometry. This leads to an accurate measurement of refractive index variations within the evanescent field region close to the gold sensor surface, thereby enabling

  1. Microbial biosensors for organophosphate pesticides.

    PubMed

    Mulchandani, Ashok; Rajesh

    2011-09-01

    Organophosphates, amongst the most toxic substance known, are used widely in agriculture around the world. Their extensive use, however, has resulted in their occurrence in the water and food supply threatening humans and animals. Therefore, there is a need for determination of these neurotoxic compounds sensitively, selectively, and rapidly in the field. The present work is a brief review on the recent advancements in amperometric, potentiometric, and optical biosensors using genetically engineered microorganisms expressing organophosphate hydrolyzing enzyme intracellularly or anchored on the cell surface for the detection of organophosphate pesticides. The benefits and limitations associated with such microbial biosensors are delineated.

  2. Enzymatic Polymerization on DNA Modified Gold Nanowire for Label-Free Detection of Pathogen DNA

    PubMed Central

    Jeong, Jaepil; Kim, Hyejin; Lee, Jong Bum

    2015-01-01

    This paper presents a label-free biosensor for the detection of single-stranded pathogen DNA through the target-enhanced gelation between gold nanowires (AuNW) and the primer DNAs branched on AuNW. The target DNA enables circularization of the linear DNA template, and the primer DNA is elongated continuously via rolling circle amplification. As a result, in the presence of the target DNA, a macroscopic hydrogel was fabricated by the entanglement of the elongated DNA with AuNWs as a scaffold fiber for effective gelation. In contrast, very small separate particles were generated in the absence of the target DNA. This label-free biosensor might be a promising tool for the detection of pathogen DNAs without any devices for further analysis. Moreover, the biosensor based on the weaving of AuNW and DNAs suggests a novel direction for the applications of AuNWs in biological engineering. PMID:26084045

  3. Biosensors in Clinical Practice: Focus on Oncohematology

    PubMed Central

    Fracchiolla, Nicola S.; Artuso, Silvia; Cortelezzi, Agostino

    2013-01-01

    Biosensors are devices that are capable of detecting specific biological analytes and converting their presence or concentration into some electrical, thermal, optical or other signal that can be easily analysed. The first biosensor was designed by Clark and Lyons in 1962 as a means of measuring glucose. Since then, much progress has been made and the applications of biosensors are today potentially boundless. This review is limited to their clinical applications, particularly in the field of oncohematology. Biosensors have recently been developed in order to improve the diagnosis and treatment of patients affected by hematological malignancies, such as the biosensor for assessing the in vitro pre-treatment efficacy of cytarabine in acute myeloid leukemia, and the fluorescence resonance energy transfer-based biosensor for assessing the efficacy of imatinib in chronic myeloid leukemia. The review also considers the challenges and future perspectives of biosensors in clinical practice. PMID:23673681

  4. Bioelectrochemical interface engineering: toward the fabrication of electrochemical biosensors, biofuel cells, and self-powered logic biosensors.

    PubMed

    Zhou, Ming; Dong, Shaojun

    2011-11-15

    Over the past decade, researchers have devoted considerable attention to the integration of living organisms with electronic elements to yield bioelectronic devices. Not only is the integration of DNA, enzymes, or whole cells with electronics of scientific interest, but it has many versatile potential applications. Researchers are using these ideas to fabricate biosensors for analytical applications and to assemble biofuel cells (BFCs) and biomolecule-based devices. Other research efforts include the development of biocomputing systems for information processing. In this Account, we focus on our recent progress in engineering at the bioelectrochemical interface (BECI) for the rational design and construction of important bioelectronic devices, ranging from electrochemical (EC-) biosensors to BFCs, and self-powered logic biosensors. Hydrogels and sol-gels provide attractive materials for the immobilization of enzymes because they make EC-enzyme biosensors stable and even functional in extreme environments. We use a layer-by-layer (LBL) self-assembly technique to fabricate multicomponent thin films on the BECI at the nanometer scale. Additionally, we demonstrate how carbon nanomaterials have paved the way for new and improved EC-enzyme biosensors. In addition to the widely reported BECI-based electrochemical impedance spectroscopy (EIS)-type aptasensors, we integrate the LBL technique with our previously developed "solid-state probe" technique for redox probes immobilization on electrode surfaces to design and fabricate BECI-based differential pulse voltammetry (DPV)-type aptasensors. BFCs can directly harvest energy from ambient biofuels as green energy sources, which could lead to their application as simple, flexible, and portable power sources. Porous materials provide favorable microenvironments for enzyme immobilization, which can enhance BFC power output. Furthermore, by introducing aptamer-based logic systems to BFCs, such systems could be applied as self

  5. Bioelectrochemical interface engineering: toward the fabrication of electrochemical biosensors, biofuel cells, and self-powered logic biosensors.

    PubMed

    Zhou, Ming; Dong, Shaojun

    2011-11-15

    Over the past decade, researchers have devoted considerable attention to the integration of living organisms with electronic elements to yield bioelectronic devices. Not only is the integration of DNA, enzymes, or whole cells with electronics of scientific interest, but it has many versatile potential applications. Researchers are using these ideas to fabricate biosensors for analytical applications and to assemble biofuel cells (BFCs) and biomolecule-based devices. Other research efforts include the development of biocomputing systems for information processing. In this Account, we focus on our recent progress in engineering at the bioelectrochemical interface (BECI) for the rational design and construction of important bioelectronic devices, ranging from electrochemical (EC-) biosensors to BFCs, and self-powered logic biosensors. Hydrogels and sol-gels provide attractive materials for the immobilization of enzymes because they make EC-enzyme biosensors stable and even functional in extreme environments. We use a layer-by-layer (LBL) self-assembly technique to fabricate multicomponent thin films on the BECI at the nanometer scale. Additionally, we demonstrate how carbon nanomaterials have paved the way for new and improved EC-enzyme biosensors. In addition to the widely reported BECI-based electrochemical impedance spectroscopy (EIS)-type aptasensors, we integrate the LBL technique with our previously developed "solid-state probe" technique for redox probes immobilization on electrode surfaces to design and fabricate BECI-based differential pulse voltammetry (DPV)-type aptasensors. BFCs can directly harvest energy from ambient biofuels as green energy sources, which could lead to their application as simple, flexible, and portable power sources. Porous materials provide favorable microenvironments for enzyme immobilization, which can enhance BFC power output. Furthermore, by introducing aptamer-based logic systems to BFCs, such systems could be applied as self

  6. Electrical Percolation Based Biosensors

    PubMed Central

    Bruck, Hugh Alan; Yang, Minghui; Kostov, Yordan; Rasooly, Avraham

    2013-01-01

    A new approach to label free biosensing has been developed based on the principle of “electrical percolation”. In electrical percolation, long-range electrical connectivity is formed in randomly oriented and distributed systems of discrete elements. By applying this principle to biological interactions, it is possible to measure biological components both directly and electronically. The main element for electrical percolation biosensor is the biological semiconductor (BSC) which is a multi-layer 3-D carbon nanotube-antibody network. In the BSC, molecular interactions, such as binding of antigens to the antibodies, disrupt the network continuity causing increased resistance of the network. BSCs can be fabricated by immobilizing conducting elements, such as pre-functionalized single-walled carbon nanotubes (SWNTs)-antibody complex, directly onto a substrate, such as a Poly(methyl methacrylate) (PMMA) surface (also known as plexi-glass or Acrylic). BSCs have been demonstrated for direct (label-free) electronic measurements of antibody-antigen binding using SWNTs. If the concentration of the SWNT network is slightly above the electrical percolation threshold, then binding of a specific antigen to the pre-functionalized SWNT dramatically increases the electrical resistance due to changes in the tunneling between the SWNTs. Using anti-Staphylococcal enterotoxin B (SEB) IgG as a “gate” and SEB as an “actuator”, it was demonstrated that the BSC was able to detect SEB at concentrations of 1 ng/ml. Based on this concept, an automated configuration for BSCs is described here that enables real time continuous detection. The new BSC configuration may permit assembly of multiple sensors on the same chip to create “Biological Central Processing Units (CPUs)” with multiple biological elements, capable of processing and sorting out information on multiple analytes simultaneously. PMID:24041756

  7. A luminescent nisin biosensor

    NASA Astrophysics Data System (ADS)

    Immonen, Nina; Karp, Matti

    2006-02-01

    Nisin is a lantibiotic, an antibacterial peptide produced by certain Lactococcus lactis strains that kills or inhibits the growth of other bacteria. Nisin is widely used as a food preservative, and its long-time use suggests that it can be generally regarded as safe. We have developed a method for determining the amount of nisin in food samples that is based on luminescent biosensor bacteria. Bacterial luciferase operon luxABCDE was inserted into plasmid pNZ8048, and the construct was transformed by electroporation into Lc. lactis strain NZ9800, whose ability to produce nisin has been erased by deletion of the gene nisA. The operon luxABCDE has been modified to be functional in gram-positive bacteria to confer a bioluminescent phenotype without the requirement of adding an exogenous substrate. In the plasmid pNZ8048, the operon was placed under control of the nisin-inducible nisA promoter. The chromosomal nisRK genes of Lc. lactis NZ9800 allow it to sense nisin in the environment and relay this signal via signal transduction proteins NisK and NisR to initiate transcription from nisA promoter. In the case of our sensor bacteria, this leads to production of luciferase and, thus, luminescence that can be directly measured from living bacteria. Luminescence can be detected as early as within minutes of induction. The nisin assay described here provides a detection limit in the sub-picogram level per ml, and a linear area between 1 - 1000 pg/ml. The sensitivity of this assay exceeds the performance of all previously published methods.

  8. Molecular-beacon-based array for sensitive DNA analysis.

    PubMed

    Yao, Gang; Tan, Weihong

    2004-08-15

    Molecular beacon (MB) DNA probes provide a new way for sensitive label-free DNA/protein detection in homogeneous solution and biosensor development. However, a relatively low fluorescence enhancement after the hybridization of the surface-immobilized MB hinders its effective biotechnological applications. We have designed new molecular beacon probes to enable a larger separation between the surface and the surface-bound MBs. Using these MB probes, we have developed a DNA array on avidin-coated cover slips and have improved analytical sensitivity. A home-built wide-field optical setup was used for imaging the array. Our results show that linker length, pH, and ionic strength have obvious effects on the performance of the surface-bound MBs. The fluorescence enhancement of the new MBs after hybridization has been increased from 2 to 5.5. The MB-based DNA array could be used for DNA detection with high sensitivity, enabling simultaneous multiple-target bioanalysis in a variety of biotechnological applications.

  9. Multiplex Pathogen Identification for Polymicrobial Urinary Tract Infections Using Biosensor Technology: A Prospective Clinical Study

    PubMed Central

    Mach, Kathleen E.; Du, Christine B.; Phull, Hardeep; Haake, David A.; Shih, Mei-Chiung; Baron, Ellen Jo; Liao, Joseph C.

    2014-01-01

    Purpose Rapid diagnosis of urinary tract infection would have a significant beneficial impact on clinical management, particularly in patients with structural or functional urinary tract abnormalities who are highly susceptible to recurrent polymicrobial infections. We examined the analytical validity of an electrochemical biosensor array for rapid molecular diagnosis of urinary tract infection in a prospective clinical study in patients with neurogenic bladder. Materials and Methods The electrochemical biosensor array was functionalized with DNA probes against 16S rRNA of the most common uropathogens. Spinal cord injured patients at a Veterans Affairs hospital were recruited into the study. Urine samples were generally tested on the biosensor within 1 to 2 hours of collection. Biosensor results were compared with those obtained using standard clinical microbiology laboratory methods. Results We successfully developed a 1-hour biosensor assay for multiplex identification of pathogens. From July 2007 to December 2008 we recruited 116 patients, yielding a total of 109 urine samples suitable for analysis and comparison between biosensor assay and standard urine culture. Of the samples 74% were positive, of which 42% were polymicrobial. We identified 20 organisms, of which Escherichia coli, Pseudomonas aeruginosa and Enterococcus species were the most common. Biosensor assay specificity and positive predictive value were 100%. Pathogen detection sensitivity was 89%, yielding a 76% negative predictive value. Conclusions To our knowledge we report the first prospective clinical study to successfully identify pathogens within a point of care time frame using an electrochemical biosensor platform. Additional efforts to improve the limit of detection and probe design are needed to further enhance assay sensitivity. PMID:19837423

  10. Detection of SEB gene by bilayer lipid membranes nucleic acid biosensor supported by modified patch-clamp pipette electrode.

    PubMed

    Liu, Nan; Gao, Zhixian; Zhou, HuanYing; Yue, Mingxiang

    2007-04-15

    This work reports a kind of novel bilayer lipid membranes (BLMs) nucleic acid biosensor supported by modified patch-clamp pipette electrode was developed to detect staphylococcus enterotoxins B (SEB) gene. BLMs were formed within 15 min and able to be operated at least 24 h. Hydrophobic dodecane tail (C12) modified 18 bp single-stranded DNA (ssDNA) probe was immobilized on BLMs. The electrochemical currents versus the different concentration of ssDNA probe immobilized on BLMs indicated linearly correlation. The BLMs nucleic acid biosensor was fabricated by selecting the ssDNA probe as the signal sensing element with the concentration of 273.65 ng/mL. The electrochemical performance of the biosensor for the detection of SEB was investigated. The result showed that linear relationship was found between the current and ln(concentration) from 20 to 5000 ng/mL and the detection limit was 20 ng/mL. In addition, the biosensor was specific response to SEB gene and showed no significant current alteration in electrolyte which containing no SEB gene. Finally, Atom Force Microscope (AFM) images could be observed and used to evaluate the superficial microstructure of BLMs, ssDNA immobilized on BLMs and BLMs after hybridization. The BLMs nucleic acid biosensor supported by modified patch-clamp pipette electrode will become a highly sensitive, rapid, selective analytical tool for detection of Staphylococcus aureus, which produce SEB. PMID:17092700

  11. DESIGN OF INTEGRATING WAVEGUIDE BIOSENSOR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Integrating Waveguide Biosensor allows for rapid and sensitive detection of pathogenic agents, cells and proteins via immunoassay or PCR products. The analytes are captured on the surface of the waveguide and then tagged with fluorescent labels. The waveguides are illuminated by excitation light...

  12. A High-Content Assay for Biosensor Validation and for Examining Stimuli that Affect Biosensor Activity.

    PubMed

    Slattery, Scott D; Hahn, Klaus M

    2014-12-01

    Biosensors are valuable tools used to monitor many different protein behaviors in vivo. Demand for new biosensors is high, but their development and characterization can be difficult. During biosensor design, it is necessary to evaluate the effects of different biosensor structures on specificity, brightness, and fluorescence responses. By co-expressing the biosensor with upstream proteins that either stimulate or inhibit the activity reported by the biosensor, one can determine the difference between the biosensor's maximally activated and inactivated state, and examine response to specific proteins. We describe here a method for biosensor validation in a 96-well plate format using an automated microscope. This protocol produces dose-response curves, enables efficient examination of many parameters, and unlike cell suspension assays, allows visual inspection (e.g., for cell health and biosensor or regulator localization). Optimization of single-chain and dual-chain Rho GTPase biosensors is addressed, but the assay is applicable to any biosensor that can be expressed or otherwise loaded in adherent cells. The assay can also be used for purposes other than biosensor validation, using a well-characterized biosensor as a readout for effects of upstream molecules.

  13. Lipase and phospholipase biosensors: a review.

    PubMed

    Herrera-López, Enrique J

    2012-01-01

    Recent advances in the field of biology, electronics, and nanotechnology have improved the development of biosensors. A biosensor is a device composed of a biological recognition element and a sensor element. Biosensor applications are becoming increasingly important in areas such as biotechnology, pharmaceutics, food, and environment. Lipases and phospholipases are enzymes which have been used widely in food industry, oleochemical industry, biodegradable polymers, detergents, and other applications. In the medical industry, lipases and phospholipases are used as diagnostic tools to detect triglycerides, cholesterol, and phospholipids levels in blood samples. Therefore, the development of lipase and phospholipase biosensors is of paramount importance in the clinical area. This chapter introduces the reader into the preliminaries of biosensor and reviews recent developments of lipase and phospholipase biosensors. PMID:22426738

  14. A biosensor for organoarsenical herbicides and growth promoters

    PubMed Central

    Chen, Jian; Sun, Samio; Li, Chen-Zhong; Zhu, Yong-Guan; Rosen, Barry P.

    2014-01-01

    The toxic metalloid arsenic is widely distributed in food, water, and soil. While inorganic arsenic enters the environment primarily from geochemical sources, methylarsenicals either result from microbial biotransformation of inorganic arsenic or are introduced anthropogenically. Methylarsenicals such as monosodium methylarsonic acid (MSMA) have been extensively utilized as herbicides, and aromatic arsenicals such as roxarsone (Rox) are used as growth promoters for poultry and swine. Organoarsenicals are degraded to inorganic arsenic. The toxicological effects of arsenicals depend on their oxidation state, chemical composition, and bioavailability. Here we report that the active forms are the trivalent arsenic-containing species. We constructed a whole-cell biosensor utilizing a modified ArsR repressor that is highly selective toward trivalent methyl and aromatic arsenicals, with essentially no response to inorganic arsenic. The biosensor was adapted for in vitro detection of organoarsenicals using fluorescence anisotropy of ArsR-DNA interactions. It detects bacterial biomethylation of inorganic arsenite both in vivo and in vitro with detection limits of 10−7 M and linearity to 10−6 M for phenylarsenite and 5×10−6 M for methylarsenite. The biosensor detects reduced forms of MSMA and roxarsone and offers a practical, low cost method for detecting activate forms and breakdown products of organoarsenical herbicides and growth promoters. PMID:24359149

  15. Recent Development in Optical Fiber Biosensors

    PubMed Central

    Bosch, María Espinosa; Sánchez, Antonio Jesús Ruiz; Rojas, Fuensanta Sánchez; Ojeda, Catalina Bosch

    2007-01-01

    Remarkable developments can be seen in the field of optical fibre biosensors in the last decade. More sensors for specific analytes have been reported, novel sensing chemistries or transduction principles have been introduced, and applications in various analytical fields have been realised. This review consists of papers mainly reported in the last decade and presents about applications of optical fiber biosensors. Discussions on the trends in optical fiber biosensor applications in real samples are enumerated.

  16. Zinc oxide interdigitated electrode for biosensor application

    NASA Astrophysics Data System (ADS)

    Sin L., L.; Arshad, M. K. Md.; Fathil, M. F. M.; Adzhri, R.; M. Nuzaihan M., N.; Ruslinda, A. R.; Gopinath, Subash C. B.; Hashim, U.

    2016-07-01

    In biosensors, zinc oxide (ZnO) thin film plays a crucial role in term of stability, sensitivity, biocompatibility and low cost. Interdigitated electrode (IDE) design is one of the device architecture in biosensor for label free, stability and sensitivity. In this paper, we discuss the fabrication of zinc oxide deposited on the IDE as a transducer for sensing of biomolecule. The formation of APTES had increase the performance of the surface functionalization..Furthermore we extend the discuss on the surface functionalization process which is utilized for probe attachment onto the surface of biosensor through surface immobilization process, thus enables the sensing of biomolecules for biosensor application.

  17. Artificial DNA and surface plasmon resonance

    PubMed Central

    D'Agata, Roberta; Spoto, Giuseppe

    2012-01-01

    The combined use of surface plasmon resonance (SPR) and modified or mimic oligonucleotides have expanded diagnostic capabilities of SPR-based biosensors and have allowed detailed studies of molecular recognition processes. This review summarizes the most significant advances made in this area over the past 15 years.   Functional and conformationally restricted DNA analogs (e.g., aptamers and PNAs) when used as components of SPR biosensors contribute to enhance the biosensor sensitivity and selectivity. At the same time, the SPR technology brings advantages that allows forbetter exploration of underlying properties of non-natural nucleic acid structures such us DNAzymes, LNA and HNA. PMID:22821257

  18. Built Environment Education in Art Education.

    ERIC Educational Resources Information Center

    Guilfoil, Joanne K., Ed.; Sandler, Alan R., Ed.

    This anthology brings the study of the built environment, its design, social and cultural functions, and the criticism thereof into focus. Following a preface and introduction, 22 essays are organized in three parts. Part 1 includes: (1) "Landscape Art and the Role of the Natural Environment in Built Environment Education" (Heather Anderson); (2)…

  19. BioSentinel: Developing a Space Radiation Biosensor

    NASA Technical Reports Server (NTRS)

    Santa Maria, Sergio R.

    2015-01-01

    BioSentinel is an autonomous fully self-contained science mission that will conduct the first study of the biological response to space radiation outside low Earth orbit (LEO) in over 40 years. The 4-unit (4U) BioSentinel biosensor system, is housed within a 6-Unit (6U) spacecraft, and uses yeast cells in multiple independent microfluidic cards to detect and measure DNA damage that occurs in response to ambient space radiation. Cell growth and metabolic activity will be measured using a 3-color LED detection system and a metabolic indicator dye with a dedicated thermal control system per fluidic card.

  20. R&D 100 Winner 2010: Acoustic Wave Biosensors

    ScienceCinema

    Larson, Richard; Branch, Darren; Edwards, Thayne

    2016-07-12

    The acoustic wave biosensor is innovative device that is a handheld, battery-powered, portable detection system capable of multiplex identification of a wide range of medically relevant pathogens and their biomolecular signatures — viruses, bacteria, proteins, and DNA — at clinically relevant levels. This detection occurs within minutes — not hours — at the point of care, whether that care is in a physician's office, a hospital bed, or at the scene of a biodefense or biomedical emergency.

  1. Portable evanescent wave fiber biosensor for highly sensitive detection of Shigella.

    PubMed

    Xiao, Rui; Rong, Zhen; Long, Feng; Liu, Qiqi

    2014-11-11

    A portable evanescent wave fiber biosensor was developed to achieve the rapid and highly sensitive detection of Shigella. In this study, a DNA probe was covalently immobilized onto fiber-optic biosensors that can hybridize with a fluorescently labeled complementary DNA. The sensitivity of detection for synthesized oligonucleotides can reach 10(-10) M. The surface of the sensor can be regenerated with 0.5% sodium dodecyl sulfate solution (pH 1.9) for over 30 times without significant deterioration of performance. The total analysis time for a single sample, including the time for measurement and surface regeneration, was less than 6 min. We employed real-time polymerase chain reaction (PCR) and compared the results of both methods to investigate the actual Shigella DNA detection capability of the fiber-optic biosensor. The fiber-optic biosensor could detect as low as 10(2) colony-forming unit/mL Shigella. This finding was comparable with that by real-time PCR, which suggests that this method is a potential alternative to existing detection methods.

  2. Portable evanescent wave fiber biosensor for highly sensitive detection of Shigella

    NASA Astrophysics Data System (ADS)

    Xiao, Rui; Rong, Zhen; Long, Feng; Liu, Qiqi

    2014-11-01

    A portable evanescent wave fiber biosensor was developed to achieve the rapid and highly sensitive detection of Shigella. In this study, a DNA probe was covalently immobilized onto fiber-optic biosensors that can hybridize with a fluorescently labeled complementary DNA. The sensitivity of detection for synthesized oligonucleotides can reach 10-10 M. The surface of the sensor can be regenerated with 0.5% sodium dodecyl sulfate solution (pH 1.9) for over 30 times without significant deterioration of performance. The total analysis time for a single sample, including the time for measurement and surface regeneration, was less than 6 min. We employed real-time polymerase chain reaction (PCR) and compared the results of both methods to investigate the actual Shigella DNA detection capability of the fiber-optic biosensor. The fiber-optic biosensor could detect as low as 102 colony-forming unit/mL Shigella. This finding was comparable with that by real-time PCR, which suggests that this method is a potential alternative to existing detection methods.

  3. Biosensors based on nanomechanical systems.

    PubMed

    Tamayo, Javier; Kosaka, Priscila M; Ruz, José J; San Paulo, Álvaro; Calleja, Montserrat

    2013-02-01

    The advances in micro- and nanofabrication technologies enable the preparation of increasingly smaller mechanical transducers capable of detecting the forces, motion, mechanical properties and masses that emerge in biomolecular interactions and fundamental biological processes. Thus, biosensors based on nanomechanical systems have gained considerable relevance in the last decade. This review provides insight into the mechanical phenomena that occur in suspended mechanical structures when either biological adsorption or interactions take place on their surface. This review guides the reader through the parameters that change as a consequence of biomolecular adsorption: mass, surface stress, effective Young's modulus and viscoelasticity. The mathematical background needed to correctly interpret the output signals from nanomechanical biosensors is also outlined here. Other practical issues reviewed are the immobilization of biomolecular receptors on the surface of nanomechanical systems and methods to attain that in large arrays of sensors. We then describe some relevant realizations of biosensor devices based on nanomechanical systems that harness some of the mechanical effects cited above. We finally discuss the intrinsic detection limits of the devices and the limitation that arises from non-specific adsorption. PMID:23152052

  4. Biosensor of endotoxin and sepsis

    NASA Astrophysics Data System (ADS)

    Shao, Yang; Wang, Xiang; Wu, Xi; Gao, Wei; He, Qing-hua; Cai, Shaoxi

    2001-09-01

    To investigate the relation between biosensor of endotoxin and endotoxin of plasma in sepsis. Method: biosensor of endotoxin was designed with technology of quartz crystal microbalance bioaffinity sensor ligand of endotoxin were immobilized by protein A conjugate. When a sample soliton of plasma containing endotoxin 0.01, 0.03, 0.06, 0.1, 0.5, 1.0Eu, treated with perchloric acid and injected into slot of quartz crystal surface respectively, the ligand was released from the surface of quartz crystal to form a more stable complex with endotoxin in solution. The endotoxin concentration corresponded to the weight change on the crystal surface, and caused change of frequency that occurred when desorbed. The result was biosensor of endotoxin might detect endotoxin of plasma in sepsis, measurements range between 0.05Eu and 0.5Eu in the stop flow mode, measurement range between 0.1Eu and 1Eu in the flow mode. The sensor of endotoxin could detect the endotoxin of plasm rapidly, and use for detection sepsis in clinically.

  5. Biosensors based on nanomechanical systems.

    PubMed

    Tamayo, Javier; Kosaka, Priscila M; Ruz, José J; San Paulo, Álvaro; Calleja, Montserrat

    2013-02-01

    The advances in micro- and nanofabrication technologies enable the preparation of increasingly smaller mechanical transducers capable of detecting the forces, motion, mechanical properties and masses that emerge in biomolecular interactions and fundamental biological processes. Thus, biosensors based on nanomechanical systems have gained considerable relevance in the last decade. This review provides insight into the mechanical phenomena that occur in suspended mechanical structures when either biological adsorption or interactions take place on their surface. This review guides the reader through the parameters that change as a consequence of biomolecular adsorption: mass, surface stress, effective Young's modulus and viscoelasticity. The mathematical background needed to correctly interpret the output signals from nanomechanical biosensors is also outlined here. Other practical issues reviewed are the immobilization of biomolecular receptors on the surface of nanomechanical systems and methods to attain that in large arrays of sensors. We then describe some relevant realizations of biosensor devices based on nanomechanical systems that harness some of the mechanical effects cited above. We finally discuss the intrinsic detection limits of the devices and the limitation that arises from non-specific adsorption.

  6. Alginate cryogel based glucose biosensor

    NASA Astrophysics Data System (ADS)

    Fatoni, Amin; Windy Dwiasi, Dian; Hermawan, Dadan

    2016-02-01

    Cryogel is macroporous structure provides a large surface area for biomolecule immobilization. In this work, an alginate cryogel based biosensor was developed to detect glucose. The cryogel was prepared using alginate cross-linked by calcium chloride under sub-zero temperature. This porous structure was growth in a 100 μL micropipette tip with a glucose oxidase enzyme entrapped inside the cryogel. The glucose detection was based on the colour change of redox indicator, potassium permanganate, by the hydrogen peroxide resulted from the conversion of glucose. The result showed a porous structure of alginate cryogel with pores diameter of 20-50 μm. The developed glucose biosensor was showed a linear response in the glucose detection from 1.0 to 5.0 mM with a regression of y = 0.01x+0.02 and R2 of 0.994. Furthermore, the glucose biosensor was showed a high operational stability up to 10 times of uninterrupted glucose detections.

  7. Rapid visual detection of eight meat species using optical thin-film biosensor chips.

    PubMed

    Wang, Wei; Zhu, Yepei; Chen, Ying; Xu, Xinglian; Zhou, Guanghong

    2015-01-01

    Adulteration of meat products has become a very serious issue nowadays. To protect consumer rights, food labeling is required in many countries, and efficient and accurate detection methods are essential as well. This paper reports an innovative method for the rapid detection and identification of meat species based on a silicon-based optical thin-film biosensor chip with which color change results can be perceived by the naked eye without any expensive instruments. This biosensor system can simultaneously and specifically detect eight meat species, including deer, rabbit, duck, chicken, beef, horse, sheep, and pork. The absolute detection limit of this method was 0.5 pg of deer/beef DNA, and the practical detection limit was 0.001%. The biosensor detection can be completed within 30 min after PCR amplification. Therefore, this assay permits specific, sensitive, rapid, and simple detection of meat species in raw or cooked meat products.

  8. Four-channel label-free photonic crystal biosensor using nanocavity resonators

    NASA Astrophysics Data System (ADS)

    Olyaee, Saeed; Najafgholinezhad, Samira; Alipour Banaei, Hamed

    2013-09-01

    In this paper, we design and characterize a novel small size four-channel biosensor based on the two-dimensional photonic crystal with introducing waveguides and nano-cavities in the hexagonal lattice of air pores in the silicon slab. By removing a group of air pores, waveguides are achieved, and nano-cavities are shaped by modifying the radius of air pores. Highly parallel operation of this biosensor due to the special architecture is the capability of the designed structure. The biomaterials which are suspended in a liquid medium inside nano-cavities cause effective refractive index changes which lead to the resonant wavelength shift in the output terminal. According to results, with increasing the refractive index of nano-cavities, resonant wavelengths shifts to longer values. For biochemical sensing like DNA molecule and protein and for the refractive index detection, this novel designed biosensor can be utilized.

  9. Post-Translational Modification of Bionanoparticles as a Modular Platform for Biosensor Assembly.

    PubMed

    Sun, Qing; Chen, Qi; Blackstock, Daniel; Chen, Wilfred

    2015-08-25

    Context driven biosensor assembly with modular targeting and detection moieties is gaining significant attentions. Although protein-based nanoparticles have emerged as an excellent platform for biosensor assembly, current strategies of decorating bionanoparticles with targeting and detection moieties often suffer from unfavorable spacing and orientation as well as bionanoparticle aggregation. Herein, we report a highly modular post-translational modification approach for biosensor assembly based on sortase A-mediated ligation. This approach enables the simultaneous modifications of the Bacillus stearothermophilus E2 nanoparticles with different functional moieties for antibody, enzyme, DNA aptamer, and dye decoration. The resulting easy-purification platform offers a high degree of targeting and detection modularity with signal amplification. This flexibility is demonstrated for the detection of both immobilized antigens and cancer cells. PMID:26235232

  10. Nanoscale Biosensor Based on Silicon Photonic Cavity for Home Healthcare Diagnostic Application

    NASA Astrophysics Data System (ADS)

    Ebrahimy, Mehdi N.; Moghaddam, Aydin B.; Andalib, Alireza; Naziri, Mohammad; Ronagh, Nazli

    2015-09-01

    In this paper, a new ultra-compact optical biosensor based on photonic crystal (phc) resonant cavity is proposed. This sensor has ability to work in chemical optical processes for the determination and analysis of liquid material. Here, we used an optical filter based on two-dimensional phc resonant cavity on a silicon layer and an active area is created in center of cavity. According to results, with increasing the refractive index of cavity, resonant wavelengths shift so that this phenomenon provides the ability to measure the properties of materials. This novel designed biosensor has more advantage to operate in the biochemical process for example sensing protein and DNA molecule refractive index. This nanoscale biosensor has quality factor higher than 1.5 × 104 and it is suitable to be used in the home healthcare diagnostic applications.

  11. Immobilization free electrochemical biosensor for folate receptor in cancer cells based on terminal protection.

    PubMed

    Ni, Jiancong; Wang, Qingxiang; Yang, Weiqiang; Zhao, Mengmeng; Zhang, Ying; Guo, Longhua; Qiu, Bin; Lin, Zhenyu; Yang, Huang-Hao

    2016-12-15

    The determination of folate receptor (FR) that over expressed in vast quantity of cancerous cells frequently is significant for the clinical diagnosis and treatment of cancers. Many DNA-based electrochemical biosensors have been developed for FR detection with high selectivity and sensitivity, but most of them need complicated immobilization of DNA on the electrode surface firstly, which is tedious and therefore results in the poor reproducibility. In this study, a simple, sensitive, and selective electrochemical FR biosensor in cancer cells has been proposed, which combines the advantages of the convenient immobilization-free homogeneous indium tin oxide (ITO)-based electrochemical detection strategy and the high selectivity of the terminal protection of small molecule linked DNA. The small molecule of folic acid (FA) and an electroactive molecule of ferrocence (Fc) were tethered to 3'- and 5'-end of an arbitrary single-stranded DNA (ssDNA), respectively, forming the FA-ssDNA-Fc complex. In the absence of the target FR, the FA-ssDNA-Fc was degraded by exonuclease I (Exo I) from 3'-end and produced a free Fc, diffusing freely to the ITO electrode surface and resulting in strong electrochemical signal. When the target FR was present, the FA-ssDNA-Fc was bound to FR through specific interaction with FA anchored at the 3'-end, effectively protecting the ssDNA strand from hydrolysis by Exo I. The FR-FA-ssDNA-Fc could not diffuse easily to the negatively charged ITO electrode surface due to the electrostatic repulsion between the DNA strand and the negatively charged ITO electrode, so electrochemical signal reduced. The decreased electrochemical signal has a linear relationship with the logarithm of FR concentration in range of 10fM to 10nM with a detection limit of 3.8fM (S/N=3). The proposed biosensor has been applied to detect FR in HeLa cancer cells, and the decreased electrochemical signal has a linear relationship with the logarithm of cell concentration ranging

  12. Multicolor and Erasable DNA Photolithography

    PubMed Central

    2015-01-01

    The immobilization of DNA molecules onto a solid support is a crucial step in biochip research and related applications. In this work, we report a DNA photolithography method based on photocleavage of 2-nitrobenzyl linker-modified DNA strands. These strands were subjected to ultraviolet light irradiation to generate multiple short DNA strands in a programmable manner. Coupling the toehold-mediated DNA strand-displacement reaction with DNA photolithography enabled the fabrication of a DNA chip surface with multifunctional DNA patterns having complex geometrical structures at the microscale level. The erasable DNA photolithography strategy was developed to allow different paintings on the same chip. Furthermore, the asymmetrical modification of colloidal particles was carried out by using this photolithography strategy. This strategy has broad applications in biosensors, nanodevices, and DNA-nanostructure fabrication. PMID:24988147

  13. Multicolor and erasable DNA photolithography.

    PubMed

    Huang, Fujian; Xu, Huaguo; Tan, Weihong; Liang, Haojun

    2014-07-22

    The immobilization of DNA molecules onto a solid support is a crucial step in biochip research and related applications. In this work, we report a DNA photolithography method based on photocleavage of 2-nitrobenzyl linker-modified DNA strands. These strands were subjected to ultraviolet light irradiation to generate multiple short DNA strands in a programmable manner. Coupling the toehold-mediated DNA strand-displacement reaction with DNA photolithography enabled the fabrication of a DNA chip surface with multifunctional DNA patterns having complex geometrical structures at the microscale level. The erasable DNA photolithography strategy was developed to allow different paintings on the same chip. Furthermore, the asymmetrical modification of colloidal particles was carried out by using this photolithography strategy. This strategy has broad applications in biosensors, nanodevices, and DNA-nanostructure fabrication.

  14. Biosensoric potential of microbial fuel cells.

    PubMed

    Schneider, György; Kovács, Tamás; Rákhely, Gábor; Czeller, Miklós

    2016-08-01

    Recent progress in microbial fuel cell (MFC) technology has highlighted the potential of these devices to be used as biosensors. The advantages of MFC-based biosensors are that they are phenotypic and can function in either assay- or flow-through formats. These features make them appropriate for contiguous on-line monitoring in laboratories and for in-field applications. The selectivity of an MFC biosensor depends on the applied microorganisms in the anodic compartment where electron transfer (ET) between the artificial surface (anode) and bacterium occurs. This process strongly determines the internal resistance of the sensoric system and thus influences signal outcome and response time. Despite their beneficial characteristics, the number of MFC-based biosensoric applications has been limited until now. The aim of this mini-review is to turn attention to the biosensoric potential of MFCs by summarizing ET mechanisms on which recently established and future sensoric devices are based.

  15. A creatinine biosensor based on admittance measurement

    NASA Astrophysics Data System (ADS)

    Ching, Congo Tak-Shing; Sun, Tai-Ping; Jheng, Deng-Yun; Tsai, Hou-Wei; Shieh, Hsiu-Li

    2015-08-01

    Regular check of blood creatinine level is very important as it is a measurement of renal function. Therefore, the objective of this study is to develop a simple and reliable creatinine biosensor based on admittance measurement for precise determination of creatinine. The creatinine biosensor was fabricated with creatinine deiminase immobilized on screen-printed carbon electrodes. Admittance measurement at a specific frequency ranges (22.80 - 84.71 Hz) showed that the biosensor has an excellent linear (r2 > 0.95) response range (50 - 250 uM), which covers the normal physiological and pathological ranges of blood creatinine levels. Intraclass correlation coefficient (ICC) showed that the biosensor has excellent reliability and validity (ICC = 0.98). In conclusion, a simple and reliable creatinine biosensor was developed and it is capable of precisely determining blood creatinine levels in both the normal physiological and pathological ranges.

  16. Nanomaterials based biosensors for cancer biomarker detection

    NASA Astrophysics Data System (ADS)

    Malhotra, Bansi D.; Kumar, Saurabh; Mouli Pandey, Chandra

    2016-04-01

    Biosensors have enormous potential to contribute to the evolution of new molecular diagnostic techniques for patients suffering with cancerous diseases. A major obstacle preventing faster development of biosensors pertains to the fact that cancer is a highly complex set of diseases. The oncologists currently rely on a few biomarkers and histological characterization of tumors. Some of the signatures include epigenetic and genetic markers, protein profiles, changes in gene expression, and post-translational modifications of proteins. These molecular signatures offer new opportunities for development of biosensors for cancer detection. In this context, conducting paper has recently been found to play an important role towards the fabrication of a biosensor for cancer biomarker detection. In this paper we will focus on results of some of the recent studies obtained in our laboratories relating to fabrication and application of nanomaterial modified paper based biosensors for cancer biomarker detection.

  17. Built Environment Analysis Tool: April 2013

    SciTech Connect

    Porter, C.

    2013-05-01

    This documentation describes the tool development. It was created to evaluate the effects of built environment scenarios on transportation energy and greenhouse gas (GHG) emissions. This documentation also provides guidance on how to apply the tool.

  18. Principles of As-Built Engineering

    SciTech Connect

    Dolin, R.M.; Hefele, J.

    1996-11-01

    As-Built Engineering is a product realization methodology founded on the notion that life-cycle engineering should be based on what is actually produced and not on what is nominally designed. As-Built Engineering is a way of thinking about the production realization process that enables customization in mass production environments. It questions the relevance of nominal based methods of engineering and the role that tolerancing plays in product realization. As-Built Engineering recognizes that there will always be errors associated with manufacturing that cannot be controlled and therefore need to be captured in order to fully characterize each individual product`s unique attributes. One benefit of As-Built Engineering is the ability to provide actual product information to designers and analysts enabling them to verify their assumptions using actual part and assembly data. Another benefit is the ability to optimize new and re-engineered assemblies.

  19. The Built Environment Predicts Observed Physical Activity

    PubMed Central

    Kelly, Cheryl; Wilson, Jeffrey S.; Schootman, Mario; Clennin, Morgan; Baker, Elizabeth A.; Miller, Douglas K.

    2014-01-01

    Background: In order to improve our understanding of the relationship between the built environment and physical activity, it is important to identify associations between specific geographic characteristics and physical activity behaviors. Purpose: Examine relationships between observed physical activity behavior and measures of the built environment collected on 291 street segments in Indianapolis and St. Louis. Methods: Street segments were selected using a stratified geographic sampling design to ensure representation of neighborhoods with different land use and socioeconomic characteristics. Characteristics of the built environment on-street segments were audited using two methods: in-person field audits and audits based on interpretation of Google Street View imagery with each method blinded to results from the other. Segments were dichotomized as having a particular characteristic (e.g., sidewalk present or not) based on the two auditing methods separately. Counts of individuals engaged in different forms of physical activity on each segment were assessed using direct observation. Non-parametric statistics were used to compare counts of physically active individuals on each segment with built environment characteristic. Results: Counts of individuals engaged in physical activity were significantly higher on segments with mixed land use or all non-residential land use, and on segments with pedestrian infrastructure (e.g., crosswalks and sidewalks) and public transit. Conclusion: Several micro-level built environment characteristics were associated with physical activity. These data provide support for theories that suggest changing the built environment and related policies may encourage more physical activity. PMID:24904916

  20. TIGER: the universal biosensor

    NASA Astrophysics Data System (ADS)

    Hofstadler, Steven A.; Sampath, Rangarajan; Blyn, Lawrence B.; Eshoo, Mark W.; Hall, Thomas A.; Jiang, Yun; Drader, Jared J.; Hannis, James C.; Sannes-Lowery, Kristin A.; Cummins, Lendell L.; Libby, Brian; Walcott, Demetrius J.; Schink, Amy; Massire, Christian; Ranken, Raymond; Gutierrez, Jose; Manalili, Sheri; Ivy, Cristina; Melton, Rachael; Levene, Harold; Barrett-Wilt, Greg; Li, Feng; Zapp, Vanessa; White, Neill; Samant, Vivek; McNeil, John A.; Knize, Duane; Robbins, David; Rudnick, Karl; Desai, Anjali; Moradi, Emily; Ecker, David J.

    2005-03-01

    In this work, we describe a strategy for the detection and characterization of microorganisms associated with a potential biological warfare attack or a natural outbreak of an emerging infectious disease. This approach, termed TIGER (Triangulation Identification for the Genetic Evaluation of Risks), relies on mass spectrometry-derived base composition signatures obtained from PCR amplification of broadly conserved regions of the microbial genome(s) in a sample. The sample can be derived from air filtration devices, clinical samples, or other sources. Core to this approach are "intelligent PCR primers" that target broadly conserved regions of microbial genomes that flank variable regions. This approach requires that high-performance mass measurements be made on PCR products in the 80-140 bp size range in a high-throughput, robust modality. As will be demonstrated, the concept is equally applicable to bacteria and viruses and could be further applied to fungi and protozoa. In addition to describing the fundamental strategy of this approach, several specific examples of TIGER are presented that illustrate the impact this approach could have on the way biological weapons attacks are detected and the way that the etiologies of infectious diseases are determined. The first example illustrates how any bacterial species might be identified, using Bacillus anthracis as the test agent. The second example demonstrates how DNA-genome viruses are identified using five members of Poxviridae family, whose members includes Variola virus, the agent responsible for smallpox. The third example demonstrates how RNA-genome viruses are identified using the Alphaviruses (VEE, WEE, and EEE) as representative examples. These examples illustrate how the TIGER technology can be applied to create a universal identification strategy for all pathogens, including those that infect humans, livestock, and plants.

  1. Quantum dot-based microfluidic biosensor for cancer detection

    NASA Astrophysics Data System (ADS)

    Ghrera, Aditya Sharma; Pandey, Chandra Mouli; Ali, Md. Azahar; Malhotra, Bansi Dhar

    2015-05-01

    We report results of the studies relating to fabrication of an impedimetric microfluidic-based nucleic acid sensor for quantification of DNA sequences specific to chronic myelogenous leukemia (CML). The sensor chip is prepared by patterning an indium-tin-oxide (ITO) coated glass substrate via wet chemical etching method followed by sealing with polydimethylsiloxane (PDMS) microchannel for fluid control. The fabricated microfluidic chip comprising of a patterned ITO substrate is modified by depositing cadmium selenide quantum dots (QCdSe) via Langmuir-Blodgett technique. Further, the QCdSe surface has been functionalized with specific DNA probe for CML detection. The probe DNA functionalized QCdSe integrated miniaturized system has been used to monitor target complementary DNA concentration by measuring the interfacial charge transfer resistance via hybridization. The presence of complementary DNA in buffer solution significantly results in decreased electro-conductivity of the interface due to presence of a charge barrier for transport of the redox probe ions. The microfluidic DNA biosensor exhibits improved linearity in the concentration range of 10-15 M to 10-11 M.

  2. Quantum dot-based microfluidic biosensor for cancer detection

    SciTech Connect

    Ghrera, Aditya Sharma; Pandey, Chandra Mouli; Ali, Md. Azahar; Malhotra, Bansi Dhar

    2015-05-11

    We report results of the studies relating to fabrication of an impedimetric microfluidic–based nucleic acid sensor for quantification of DNA sequences specific to chronic myelogenous leukemia (CML). The sensor chip is prepared by patterning an indium–tin–oxide (ITO) coated glass substrate via wet chemical etching method followed by sealing with polydimethylsiloxane (PDMS) microchannel for fluid control. The fabricated microfluidic chip comprising of a patterned ITO substrate is modified by depositing cadmium selenide quantum dots (QCdSe) via Langmuir–Blodgett technique. Further, the QCdSe surface has been functionalized with specific DNA probe for CML detection. The probe DNA functionalized QCdSe integrated miniaturized system has been used to monitor target complementary DNA concentration by measuring the interfacial charge transfer resistance via hybridization. The presence of complementary DNA in buffer solution significantly results in decreased electro-conductivity of the interface due to presence of a charge barrier for transport of the redox probe ions. The microfluidic DNA biosensor exhibits improved linearity in the concentration range of 10{sup −15} M to 10{sup −11} M.

  3. Microfabricated silicon biosensors for microphysiometry

    NASA Technical Reports Server (NTRS)

    Bousse, L. J.; Libby, J. M.; Parce, J. W.

    1993-01-01

    Microphysiometers are biosensor devices that measure the metabolic rate of living cells by detecting the rate of extracellular acidification caused by a small number of cells. The cells are entrapped in a microvolume chamber, whose bottom surface is a silicon sensor chip. In a further miniaturization step, we have recently fabricated multichannel flow-through chips that will allow greater throughput and multiplicity. Microphysiometer technology can be applied to the detection of microorganisms. We describe the sensitive detection of bacteria and yeast. Further applications of microphysiometry to the characterization of microorganisms can be anticipated.

  4. Meeting current public health needs: optical biosensors for pathogen detection and analysis

    NASA Astrophysics Data System (ADS)

    Yang, Minghui; Sapsford, Kim E.; Sergeev, Nikolay; Sun, Steven; Rasooly, Avraham

    2009-02-01

    Pathogen detection and analysis is critical for medicine, food safety, agriculture, public health and biosecurity. Many current microbial detection approaches are based on century-old culturing methods which, while reliable, are slow, provide relatively little information about the pathogens and are not adaptable to high throughput operations. Optical biodetection represents a potential alternative. Most ELISA and chromatography systems are based on optical methods that are also used for analysis of molecular interactions, such as DNA hybridization and protein-protein interactions (e.g. microarrays or SPR biosensors). Various optical biosensor platforms have been developed that have many of the characteristics essential for modern pathogen molecular analysis including sensitivity, speed of analysis, multi-channel capability, relative simplicity and low cost. Here we provide several examples of the use of optical biosensor technology for pathogen detection and analysis including high throughput DNA microarray analysis, SPR-based rapid direct detection of bacterial toxins, CCD-based fluorescent activity analysis of microbial toxins and a simple ECL-based CCD detection system. However, while effective for molecular analysis, most of these technologies are not as sensitive as traditional culturing methods for detecting microorganisms. There is a need to combine optical biosensors with traditional methods to speed culture-based detection and to provide more information regarding the pathogens.

  5. Design and testing of aptamer-based electrochemical biosensors for proteins and small molecules.

    PubMed

    Cheng, Alan K H; Sen, Dipankar; Yu, Hua-Zhong

    2009-11-01

    The fabrication of aptamer-based electrochemical biosensors as an emerging technology has made the detection of small and macromolecular analytes easier, faster, and more suited for the ongoing transition from fundamental analytical science to the early detection of protein biomarkers. Aptamers are synthetic oligonucleotides that have undergone iterative rounds of in vitro selection for binding with high affinity to specific analytes of choice; a sensitive yet simple method to utilize aptamers as recognition entities for the development of biosensors is to transduce the signal electrochemically. In this review article, we attempt to summarize the state-of-the-art research progresses that have been published in recent years; in particular, we focus on the electrochemical biosensors that incorporate aptamers for sensing small organic molecules and proteins. Based on differences in the design of the DNA/RNA-modified electrodes, we classify aptamer-based electrochemical sensors into three categories, for which the analyte detection relies on: (a) configurational change, i.e., the analyte binding induces either an assembly or dissociation of the sensor construct; (b) conformational change, i.e., the analyte binding induces an alteration in the conformation (folding) of the surface immobilized aptamer strands; and (c) conductivity change, i.e., the analyte binding "switches on" the conductivity of the surface-bound aptamer-DNA constructs. In each section, we will discuss the performance of these novel biosensors with representative examples reported in recent literature.

  6. Ultrasensitive Electrochemical Biosensor for HIV Gene Detection Based on Graphene Stabilized Gold Nanoclusters with Exonuclease Amplification.

    PubMed

    Wang, Yijia; Bai, Xiaoning; Wen, Wei; Zhang, Xiuhua; Wang, Shengfu

    2015-08-26

    Because human immunodeficiency virus (HIV) has been one of the most terrible viruses in recent decades, early diagnosis of the HIV gene is of great importance for all scientists around the world. In our work, we developed a novel electrochemical biosensor based on one-step ultrasonic synthesized graphene stabilized gold nanocluster (GR/AuNC) modified glassy carbon electrode (GCE) with an exonuclease III (Exo III)-assisted target recycling amplification strategy for the detection of HIV DNA. It is the first time that GR/AuNCs have been used as biosensor platform and aptamer with cytosine-rich base set as capture probe to construct the biosensor. With the combination of cytosine-rich capture probe, good conductivity and high surfaces of GR/AuNCs, and Exo III-assisted target recycling amplification, we realized high sensitivity and good selectivity detection of target HIV DNA with a detection limit of 30 aM (S/N = 3). Furthermore, the proposed biosensor has a promising potential application for target detection in human serum analysis.

  7. Plasmonic biosensor for label-free G-quadruplexes detection

    NASA Astrophysics Data System (ADS)

    Qiu, Suyan; Zhao, Fusheng; Santos, Greggy M.; Shih, Wei-Chuan

    2016-03-01

    G-quadruplex, readily formed by the G-rich sequence, potentially distributes in over 40 % of all human genes, such as the telomeric DNA with the G-rich sequence found at the end of the chromosome. The G-quadruplex structure is supposed to possess a diverse set of critical functions in the mammalian genome for transcriptional regulation, DNA replication and genome stability. However, most of the currently available methods for G-quadruplex identification are restricted to fluorescence techniques susceptible to poor sensitivity. It is essential to propose methods with higher sensitivity to specifically recognize the G-quadruplexes. In this study, we demonstrate a label-free plasmonic biosensor for G-quadruplex detection by relying on the advantages of nanoporous gold (NPG) disks that provide high-density plasmonic hot spots, suitable for molecular recognition capability without the requirement for labeling processes.

  8. Built-In Mechanical Stress in Viral Shells

    PubMed Central

    Carrasco, C.; Luque, A.; Hernando-Pérez, M.; Miranda, R.; Carrascosa, J.L.; Serena, P.A.; de Ridder, M.; Raman, A.; Gómez-Herrero, J.; Schaap, I.A.T.; Reguera, D.; de Pablo, P.J.

    2011-01-01

    Mechanical properties of biological molecular aggregates are essential to their function. A remarkable example are double-stranded DNA viruses such as the ϕ29 bacteriophage, that not only has to withstand pressures of tens of atmospheres exerted by the confined DNA, but also uses this stored elastic energy during DNA translocation into the host. Here we show that empty prolated ϕ29 bacteriophage proheads exhibit an intriguing anisotropic stiffness which behaves counterintuitively different from standard continuum elasticity predictions. By using atomic force microscopy, we find that the ϕ29 shells are approximately two-times stiffer along the short than along the long axis. This result can be attributed to the existence of a residual stress, a hypothesis that we confirm by coarse-grained simulations. This built-in stress of the virus prohead could be a strategy to provide extra mechanical strength to withstand the DNA compaction during and after packing and a variety of extracellular conditions, such as osmotic shocks or dehydration. PMID:21320456

  9. Comparative advantages of mechanical biosensors

    PubMed Central

    Arlett, J.L.; Myers, E.B.; Roukes, M.L.

    2013-01-01

    Mechanical interactions are fundamental to biology. Mechanical forces of chemical origin determine motility and adhesion on the cellular scale, and govern transport and affinity on the molecular scale. Biological sensing in the mechanical domain provides unique opportunities to measure forces, displacements and mass changes from cellular and subcellular processes. Nanomechanical systems are particularly well matched in size with molecular interactions, and provide a basis for biological probes with single-molecule sensitivity. Here we review micro- and nanoscale biosensors, with a particular focus on fast mechanical biosensing in fluid by mass- and force-based methods, and the challenges presented by non-specific interactions. We explain the general issues that will be critical to the success of any type of next-generation mechanical biosensor, such as the need to improve intrinsic device performance, fabrication reproducibility and system integration. We also discuss the need for a greater understanding of analyte–sensor interactions on the nanoscale and of stochastic processes in the sensing environment. PMID:21441911

  10. Biosensor Approach to Psychopathology Classification

    PubMed Central

    Koshelev, Misha; Lohrenz, Terry; Vannucci, Marina; Montague, P. Read

    2010-01-01

    We used a multi-round, two-party exchange game in which a healthy subject played a subject diagnosed with a DSM-IV (Diagnostic and Statistics Manual-IV) disorder, and applied a Bayesian clustering approach to the behavior exhibited by the healthy subject. The goal was to characterize quantitatively the style of play elicited in the healthy subject (the proposer) by their DSM-diagnosed partner (the responder). The approach exploits the dynamics of the behavior elicited in the healthy proposer as a biosensor for cognitive features that characterize the psychopathology group at the other side of the interaction. Using a large cohort of subjects (n = 574), we found statistically significant clustering of proposers' behavior overlapping with a range of DSM-IV disorders including autism spectrum disorder, borderline personality disorder, attention deficit hyperactivity disorder, and major depressive disorder. To further validate these results, we developed a computer agent to replace the human subject in the proposer role (the biosensor) and show that it can also detect these same four DSM-defined disorders. These results suggest that the highly developed social sensitivities that humans bring to a two-party social exchange can be exploited and automated to detect important psychopathologies, using an interpersonal behavioral probe not directly related to the defining diagnostic criteria. PMID:20975934

  11. Remote sensing using an airborne biosensor

    SciTech Connect

    Ligler, F.S.; Anderson, G.P.; Davidson, P.T.; Stenger, D.A.; Ives, J.T.; King, K.D.; Page, G.; Whelan, J.P.

    1998-08-15

    There is no current method for remote identification of aerosolized bacteria. In particular, such a capability is required to warn of a biological warfare attack prior to human exposure. A fiber optic biosensor, capable of running four simultaneous immunoassays, was integrated with an automated fluidics unit, a cyclone-type air sampler, a radio transceiver, and batteries on a small, remotely piloted airplane capable of carrying a 4.5-kg payload. The biosensor system was able to collect aerosolized bacteria in flight, identify them, and transmit the data to the operator on the ground. The results demonstrate the feasibility of integrating a biosensor into a portable, remotely operated system for environmental analysis.

  12. Aptamer-based biosensors: biomedical applications.

    PubMed

    Deisingh, A K

    2006-01-01

    This chapter considers the use of aptamer-based biosensors (generally termed 'aptasensors') in various biomedical applications. A comparison of antibodies and aptamers is made with respect to their use in the development of biosensors. A brief introduction to biosensor design and theory is provided to illustrate the principles of the field. Various transduction approaches, viz. optical, fluorescence, acoustic wave and electrochemical, are discussed. Specific biomedical applications described include RNA folding, high-throughput screening of drugs, use as receptors for measuring biological concentrations, detection of platelet-derived growth factor, protein binding and detection of HIV-1 Tat protein.

  13. Design strategies for aptamer-based biosensors.

    PubMed

    Han, Kun; Liang, Zhiqiang; Zhou, Nandi

    2010-01-01

    Aptamers have been widely used as recognition elements for biosensor construction, especially in the detection of proteins or small molecule targets, and regarded as promising alternatives for antibodies in bioassay areas. In this review, we present an overview of reported design strategies for the fabrication of biosensors and classify them into four basic modes: target-induced structure switching mode, sandwich or sandwich-like mode, target-induced dissociation/displacement mode and competitive replacement mode. In view of the unprecedented advantages brought about by aptamers and smart design strategies, aptamer-based biosensors are expected to be one of the most promising devices in bioassay related applications.

  14. Early Lung Cancer Diagnosis by Biosensors

    PubMed Central

    Zhang, Yuqian; Yang, Dongliang; Weng, Lixing; Wang, Lianhui

    2013-01-01

    Lung cancer causes an extreme threat to human health, and the mortality rate due to lung cancer has not decreased during the last decade. Prognosis or early diagnosis could help reduce the mortality rate. If microRNA and tumor-associated antigens (TAAs), as well as the corresponding autoantibodies, can be detected prior to clinical diagnosis, such high sensitivity of biosensors makes the early diagnosis and prognosis of cancer realizable. This review provides an overview of tumor-associated biomarker identifying methods and the biosensor technology available today. Laboratorial researches utilizing biosensors for early lung cancer diagnosis will be highlighted. PMID:23892596

  15. Enhanced efficiency of a capillary-based biosensor over an optical fiber biosensor for detecting calpastatin.

    PubMed

    Bratcher, C L; Grant, S A; Vassalli, J T; Lorenzen, C L

    2008-06-15

    A capillary-based optical biosensor has been developed to detect calpastatin, an indicator of meat tenderness. Longissimus muscle samples (n=11) were extracted from beef carcasses at 0 and 48h post-mortem. These samples were assayed for calpastatin by traditional laboratory methods and with a newly developed capillary tube biosensor as well as for Warner-Bratzler shear force (WBSF) and crude protein and the responses were compared. Additionally, the response from the capillary-based biosensor was compared to a previously developed optical fiber biosensor. When the 0 and 48h sampling periods were combined, the capillary tube biosensor was moderately accurate in predicting calpastatin activity (R(2)=0.6058). There was less variation in the 0h capillary tube biosensor compared to the 0h pre-column (P=0.006) and post-column optical fiber biosensors (P=0.047), therefore the capillary tube biosensor is a more precise system of measurement. This research further advances the development of a calpastatin biosensor and makes online assessment one step closer to reality.

  16. Built Environment Energy Analysis Tool Overview (Presentation)

    SciTech Connect

    Porter, C.

    2013-04-01

    This presentation provides an overview of the Built Environment Energy Analysis Tool, which is designed to assess impacts of future land use/built environment patterns on transportation-related energy use and greenhouse gas (GHG) emissions. The tool can be used to evaluate a range of population distribution and urban design scenarios for 2030 and 2050. This tool was produced as part of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  17. Knowledge from data in the built environment.

    PubMed

    Starkey, Christopher; Garvin, Chris

    2013-08-01

    Data feedback is changing our relationship to the built environment. Both traditional and new sources of data are developing rapidly, compelled by efforts to optimize the performance of human habitats. However, there are many obstacles to the successful implementation of information-centered environments that continue to hinder widespread adoption. This paper identifies these obstacles and challenges and describes emerging data-rich analytic techniques in infrastructure, buildings, and building portfolios. Further, it speculates on the impact that a robust data sphere may have on the built environment and posits that linkages to other data sets may enable paradigm shifts in sustainability and resiliency.

  18. Platform for a better built environment.

    PubMed

    Baillie, Jonathan

    2014-08-01

    IHEEM's recently established Architecture and Design of the Built Environment Technical Platform (ADBETP) is now firmly up and running, and, as one of its members, Gary Mortimer, general manager, Facilities & Estates, at NHS Grampian, puts it, is 'determined to bring tangible, positive, and sustainable benefits to the NHS built environment to support the effective delivery of changing clinical needs'. Equally, the Platform hopes its activities will 'add value to IHEEM members, technical professionals in health construction and operational management, and other healthcare professionals working in NHS buildings'.

  19. Determination of endotoxin through an aptamer-based impedance biosensor.

    PubMed

    Su, Wenqiong; Lin, Meng; Lee, Hyuck; Cho, MiSuk; Choe, Woo-Seok; Lee, Youngkwan

    2012-02-15

    Lipopolysaccharide (LPS) often referred to endotoxin is an undesirable impurity frequently entrained with various recombinant protein therapeutics and plasmid DNA (pDNA) vaccines of bacterial origin. The inherent toxicities (e.g. fever, hypotension, shock and death) of LPS render its early and sensitive detection essential for several biological assays and/or parenteral administrations of biotherapeutics. In this study, an electrochemical biosensor using an LPS specific single stranded DNA (ssDNA) aptamer as a probe was developed. Amine-terminated aptamer exhibiting high affinity (K(d)=11.9 nM) to LPS was immobilized on a gold electrode using 3-mercaptopropionic acid (MPA) as a linker. Each step of the modification process was characterized by cyclic voltammetry (CV) and electrochemical impendence spectroscopy (EIS). A good linear relationship of the changes in the charge-transfer resistance (ΔR(et)) and the logarithmic value of LPS concentration was demonstrated in a broad dynamic detection range of 0.001-1 ng/ml. Furthermore, the aptasensor showed a high selectivity to LPS despite the presence of pDNA, RNA and bovine serum albumin (BSA) and could be regenerated in low pH condition, offering a promising option for detecting LPS often present in a complex milieu.

  20. Determination of endotoxin through an aptamer-based impedance biosensor.

    PubMed

    Su, Wenqiong; Lin, Meng; Lee, Hyuck; Cho, MiSuk; Choe, Woo-Seok; Lee, Youngkwan

    2012-02-15

    Lipopolysaccharide (LPS) often referred to endotoxin is an undesirable impurity frequently entrained with various recombinant protein therapeutics and plasmid DNA (pDNA) vaccines of bacterial origin. The inherent toxicities (e.g. fever, hypotension, shock and death) of LPS render its early and sensitive detection essential for several biological assays and/or parenteral administrations of biotherapeutics. In this study, an electrochemical biosensor using an LPS specific single stranded DNA (ssDNA) aptamer as a probe was developed. Amine-terminated aptamer exhibiting high affinity (K(d)=11.9 nM) to LPS was immobilized on a gold electrode using 3-mercaptopropionic acid (MPA) as a linker. Each step of the modification process was characterized by cyclic voltammetry (CV) and electrochemical impendence spectroscopy (EIS). A good linear relationship of the changes in the charge-transfer resistance (ΔR(et)) and the logarithmic value of LPS concentration was demonstrated in a broad dynamic detection range of 0.001-1 ng/ml. Furthermore, the aptasensor showed a high selectivity to LPS despite the presence of pDNA, RNA and bovine serum albumin (BSA) and could be regenerated in low pH condition, offering a promising option for detecting LPS often present in a complex milieu. PMID:22182428

  1. Schooling Built on the Multiple Intelligences

    ERIC Educational Resources Information Center

    Kunkel, Christine D.

    2009-01-01

    This article features a school built on multiple intelligences. As the first multiple intelligences school in the world, the Key Learning Community shapes its students' days to include significant time in the musical, spatial and bodily-kinesthetic intelligences, as well as the more traditional areas of logical-mathematical and linguistics. In…

  2. Children in the Built Environment: A Bibliography.

    ERIC Educational Resources Information Center

    Department of Housing and Urban Development, Washington, DC. Office of International Affairs.

    Documents cited in this annotated bibliography focus on the often neglected problems of children in the "built environment": at home, at play, at school, and in the community. Twenty entries are from foreign countries; 74 are from the United States. It is hoped that these references will be useful to all who are interested in problems and programs…

  3. Direct electrochemical sensor for label-free DNA detection based on zero current potentiometry.

    PubMed

    Wu, Nai-ying; Gao, Wei; He, Xu-lun; Chang, Zhu; Xu, Mao-tian

    2013-01-15

    A direct electrochemical DNA biosensor based on zero current potentiometry was fabricated by immobilization of ssDNA onto gold nanoparticles (AuNPs) coated pencil graphite electrode (PGE). One ssDNA/AuNPs/PGE was connected in series between clips of working and counter electrodes of a potentiostat, and then immersed into the solution together with a reference electrode, establishing a novel DNA biosensor for specific DNA detection. The variation of zero current potential difference (ΔE(zcp)) before and after hybridization of the self-assembled probe DNA with the target DNA was used as a signal to characterize and quantify the target DNA sequence. The whole DNA biosensor fabrication process was characterized by cyclic voltammetry and electrochemical impedance spectroscopy with the use of ferricyanide as an electrochemical redox indicator. Under the optimized conditions, ΔE(zcp) was linear with the concentrations of the complementary target DNA in the range from 10nM to 1μM, with a detection limit of 6.9nM. The DNA biosensor showed a good reproducibility and selectivity. Prepared DNA biosensor is facile and sensitive, and it eliminates the need of using exogenous reagents to monitor the oligonucleotides hybridization.

  4. Developing trends in aptamer-based biosensor devices and their applications.

    PubMed

    MacKay, Scott; Wishart, David; Xing, James Z; Chen, Jie

    2014-02-01

    Aptamers are, in general, easier to produce, easier to store and are able to bind to a wider variety of targets than antibodies. For these reasons, aptamers are gaining increasing popularity in environmental monitoring as well as disease detection and disease management applications. This review article examines the research and design of RNA and DNA aptamer based biosensor systems and applications as well as their potential for integration in effective biosensor devices. As single stranded DNA or RNA molecules that can bind to specific targets, aptamers are well suited for biomolecular recognition and sensing applications. Beyond being able to be designed for a near endless number of specific targets, aptamers can also be made which change their conformation in a predictable and consistent way upon binding. This can lead to many unique and effective detection methods using a variety of optical and electrochemical means.

  5. Quantitative Investigation of Protein-Nucleic Acid Interactions by Biosensor Surface Plasmon Resonance

    PubMed Central

    Wang, Shuo; Poon, Gregory M. K.; Wilson, W. David

    2015-01-01

    Biosensor-surface plasmon resonance (SPR) technology has emerged as a powerful label-free approach for the study of nucleic acid interactions in real time. The method provides simultaneous equilibrium and kinetic characterization for biomolecular interactions with minimal materials and without an external probe. A detailed and practical guide for protein-DNA interaction analyses using biosensor-SPR methods is presented. Details of the SPR technology and basic fundamentals are described with recommendations on the preparation of the SPR instrument, sensor chips and samples, as well as extensive information on experimental design, quantitative and qualitative data analyses and presentation. A specific example of the interaction of a transcription factor with DNA is shown with results evaluated by both kinetic and steady-state SPR methods. PMID:26404159

  6. PRINCIPLES OF AFFINITY-BASED BIOSENSORS

    EPA Science Inventory

    Despite the amount of resources that have been invested by national and international academic, government, and commercial sectors to develop affinity-based biosensor products, little obvious success has been realized through commercialization of these devices for specific applic...

  7. Surface plasmon resonance biosensors: advances and applications

    NASA Astrophysics Data System (ADS)

    Homola, Jirí

    2009-10-01

    Surface plasmon resonance (SPR) biosensors represent the most advanced label-free optical affinity biosensor technology. In the last decade numerous SPR sensor platforms have been developed and applied in the life sciences and bioanalytics. This contribution reviews the state of the art in the development of SPR (bio)sensor technology and presents selected results of research into SPR biosensors at the Institute of Photonics and Electronics, Prague. The developments discussed in detail include a miniature fiber optic SPR sensor for localized measurements, a compact SPR sensor for field use and a multichannel SPR sensor for high-throughput screening. Examples of applications for the detection of analytes related to medical diagnostics (biomarkers, hormones, antibodies), environmental monitoring (endocrine disrupting compounds), and food safety (pathogens and toxins) are given.

  8. Enzyme Nanoparticles-Based Electronic Biosensor

    SciTech Connect

    Liu, Guodong; Lin, Yuehe; Ostatna, V.; Wang, Joseph

    2005-06-28

    A novel method for fabricating electronic biosensors based on coupling enzyme nanoparticles and self assembly technology is illustrated. Redox horseradish peroxidase nanoparticles were prepared by desolvation with ethanol and subsequent crosslinking with glutaraldehyde. The cross-linked enzyme nanoparticles were functionalized by cysteine to introduce thiol groups on the nanoparticle surface. Immobilized enzyme nanoparticle on the gold electrode by self-assembly kept redox and electrocatalytic activities, and was used to develop reagentless biosensors for H2O2 detection without promoters and mediators. The new approach is simple, low cost and circumvents complications associated with solution systems. It is a universal immobilization method for biosensor, biomedical devices, biofuel cells and enzymatic bioreactors fabrication and expected to open new opportunities for biosensor, clinical diagnostics, and for bioanalysis, in general.

  9. Recent Advances in Nanotechnology Applied to Biosensors

    PubMed Central

    Zhang, Xueqing; Guo, Qin; Cui, Daxiang

    2009-01-01

    In recent years there has been great progress the application of nanomaterials in biosensors. The importance of these to the fundamental development of biosensors has been recognized. In particular, nanomaterials such as gold nanoparticles, carbon nanotubes, magnetic nanoparticles and quantum dots have been being actively investigated for their applications in biosensors, which have become a new interdisciplinary frontier between biological detection and material science. Here we review some of the main advances in this field over the past few years, explore the application prospects, and discuss the issues, approaches, and challenges, with the aim of stimulating a broader interest in developing nanomaterial-based biosensors and improving their applications in disease diagnosis and food safety examination. PMID:22399954

  10. Non-antibody protein-based biosensors

    PubMed Central

    2016-01-01

    Biosensors that depend on a physical or chemical measurement can be adversely affected by non-specific interactions. For example, a biosensor designed to measure specifically the levels of a rare analyte can give false positive results if there is even a small amount of interaction with a highly abundant but irrelevant molecule. To overcome this limitation, the biosensor community has frequently turned to antibody molecules as recognition elements because they are renowned for their exquisite specificity. Unfortunately antibodies can often fail when immobilised on inorganic surfaces, and alternative biological recognition elements are needed. This article reviews the available non-antibody-binding proteins that have been successfully used in electrical and micro-mechanical biosensor platforms. PMID:27365032

  11. Electronic transport in methylated fragments of DNA

    SciTech Connect

    Almeida, M. L. de; Oliveira, J. I. N.; Lima Neto, J. X.; Gomes, C. E. M.; Fulco, U. L. Albuquerque, E. L.; Freire, V. N.; Caetano, E. W. S.; Moura, F. A. B. F. de; Lyra, M. L.

    2015-11-16

    We investigate the electronic transport properties of methylated deoxyribonucleic-acid (DNA) strands, a biological system in which methyl groups are added to DNA (a major epigenetic modification in gene expression), sandwiched between two metallic platinum electrodes. Our theoretical simulations apply an effective Hamiltonian based on a tight-binding model to obtain current-voltage curves related to the non-methylated/methylated DNA strands. The results suggest potential applications in the development of novel biosensors for molecular diagnostics.

  12. Electronic transport in methylated fragments of DNA

    NASA Astrophysics Data System (ADS)

    de Almeida, M. L.; Oliveira, J. I. N.; Lima Neto, J. X.; Gomes, C. E. M.; Fulco, U. L.; Albuquerque, E. L.; Freire, V. N.; Caetano, E. W. S.; de Moura, F. A. B. F.; Lyra, M. L.

    2015-11-01

    We investigate the electronic transport properties of methylated deoxyribonucleic-acid (DNA) strands, a biological system in which methyl groups are added to DNA (a major epigenetic modification in gene expression), sandwiched between two metallic platinum electrodes. Our theoretical simulations apply an effective Hamiltonian based on a tight-binding model to obtain current-voltage curves related to the non-methylated/methylated DNA strands. The results suggest potential applications in the development of novel biosensors for molecular diagnostics.

  13. Biosensors for Inorganic and Organic Arsenicals

    PubMed Central

    Chen, Jian; Rosen, Barry P.

    2014-01-01

    Arsenic is a natural environmental contaminant to which humans are routinely exposed and is strongly associated with human health problems, including cancer, cardiovascular and neurological diseases. To date, a number of biosensors for the detection of arsenic involving the coupling of biological engineering and electrochemical techniques has been developed. The properties of whole-cell bacterial or cell-free biosensors are summarized in the present review with emphasis on their sensitivity and selectivity. Their limitations and future challenges are highlighted. PMID:25587436

  14. Gold coated ZnO nanorod biosensor for glucose detection

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Anuradha; Jain, Chhavi; Rao, V. Padmanapan; Banerjee, S.

    2012-06-01

    Gold coated ZnO nanorod based biosensor has been fabricated for its glucose detecting abilities and compared with that of ZnO nanorod based biosensor. SEM images of electrochemically grown ZnO nanorods show hexagonally grown ZnO nanorods on an ITO substrate. Electrochemical analysis show that gold coated ZnO based biosensors have higher sensitivity, lower limit of detection and a wider linear range for glucose detection. The results demonstrate that gold coated ZnO nanorod based biosensors are a promising material for biosensor applications over single component ZnO nanorod based biosensor.

  15. Integrated optical biosensor system (IOBS)

    SciTech Connect

    Grace, Karen M.; Sweet, Martin R.; Goeller, Roy M.; Morrison, Leland Jean; Grace, Wynne Kevin; Kolar, Jerome D.

    2007-10-30

    An optical biosensor has a first enclosure with a pathogen recognition surface, including a planar optical waveguide and grating located in the first enclosure. An aperture is in the first enclosure for insertion of sample to be investigated to a position in close proximity to the pathogen recognition surface. A laser in the first enclosure includes means for aligning and means for modulating the laser, the laser having its light output directed toward said grating. Detection means are located in the first enclosure and in optical communication with the pathogen recognition surface for detecting pathogens after interrogation by the laser light and outputting the detection. Electronic means is located in the first enclosure and receives the detection for processing the detection and outputting information on the detection, and an electrical power supply is located in the first enclosure for supplying power to the laser, the detection means and the electronic means.

  16. Surface-functionalized Microelectrofluidic Biosensors

    NASA Astrophysics Data System (ADS)

    Stanton, Michael A.; Ferreira, Guilherme N. M.; Fraikin, Jean-Luc; Cleland, A. N.

    2010-03-01

    We are developing all-electronic, label-free biosensors for the rapid, selective and label-free detection of viruses and viral proteins. We are using a thiol-based self assembled monolayer (SAM) on gold as the functional element, sensed using radiofrequency reflectometry, with the functionalized sensor embedded in a microfluidic channel. We are exploring using mixed-length SAMs to bind single-chain fragments and single domain antibodies for the recognition of HIV1 and other virus targets. RF reflectometry is used to measure impedance changes in the sensors, which occur upon binding of viral or antibody targets. With an active sensing volume of a few hundred attoliters and sensitivity to impedance changes of order 1 part in 10^5 we expect to be able to detect the binding of small numbers of viral antibodies or viral particles.

  17. Overview of affinity biosensors in food analysis.

    PubMed

    Patel, Pradip D

    2006-01-01

    The 4 major driving forces that are expected to lead to increased use of affinity biosensors that meet crucial industrial test specifications, e.g., fast, reliable, cost-effective, and use of low-skilled personnel, are (1) strict legislative framework, e.g., recent changes proposed to the European food safety and hygiene legislation, EC No. 178/2002; (2) industrial shift from quality control to quality assurance procedures, e.g., Hazard Analysis Critical Control Point, ensuring effective positioning in the global competitive trade; (3) just-in-time production resulting in 'right' product every time; and (4) consumer demand for safe and wholesome products. The affinity biosensors field has expanded significantly over the past decade, with a projected global biosensors market growth from $6.1 billion in 2004 to $8.2 billion in 2009, representing major industrial sectors (e.g., Pharma, Medicare, and Food). This brief review is targeted to affinity biosensors developed for the food industry and includes research and development leading to biosensors for microbiological and chemical analytes of industrial concern, commercial biosensors products on the market, and examples of future prospects in this diagnostic field.

  18. Overview of affinity biosensors in food analysis.

    PubMed

    Patel, Pradip D

    2006-01-01

    The 4 major driving forces that are expected to lead to increased use of affinity biosensors that meet crucial industrial test specifications, e.g., fast, reliable, cost-effective, and use of low-skilled personnel, are (1) strict legislative framework, e.g., recent changes proposed to the European food safety and hygiene legislation, EC No. 178/2002; (2) industrial shift from quality control to quality assurance procedures, e.g., Hazard Analysis Critical Control Point, ensuring effective positioning in the global competitive trade; (3) just-in-time production resulting in 'right' product every time; and (4) consumer demand for safe and wholesome products. The affinity biosensors field has expanded significantly over the past decade, with a projected global biosensors market growth from $6.1 billion in 2004 to $8.2 billion in 2009, representing major industrial sectors (e.g., Pharma, Medicare, and Food). This brief review is targeted to affinity biosensors developed for the food industry and includes research and development leading to biosensors for microbiological and chemical analytes of industrial concern, commercial biosensors products on the market, and examples of future prospects in this diagnostic field. PMID:16792079

  19. Biosensor technology: technology push versus market pull.

    PubMed

    Luong, John H T; Male, Keith B; Glennon, Jeremy D

    2008-01-01

    Biosensor technology is based on a specific biological recognition element in combination with a transducer for signal processing. Since its inception, biosensors have been expected to play a significant analytical role in medicine, agriculture, food safety, homeland security, environmental and industrial monitoring. However, the commercialization of biosensor technology has significantly lagged behind the research output as reflected by a plethora of publications and patenting activities. The rationale behind the slow and limited technology transfer could be attributed to cost considerations and some key technical barriers. Analytical chemistry has changed considerably, driven by automation, miniaturization, and system integration with high throughput for multiple tasks. Such requirements pose a great challenge in biosensor technology which is often designed to detect one single or a few target analytes. Successful biosensors must be versatile to support interchangeable biorecognition elements, and in addition miniaturization must be feasible to allow automation for parallel sensing with ease of operation at a competitive cost. A significant upfront investment in research and development is a prerequisite in the commercialization of biosensors. The progress in such endeavors is incremental with limited success, thus, the market entry for a new venture is very difficult unless a niche product can be developed with a considerable market volume.

  20. Environmental applications of photoluminescence-based biosensors.

    PubMed

    Reardon, Kenneth F; Zhong, Zhong; Lear, Kevin L

    2009-01-01

    For monitoring and treatment of soil and water, environmental scientists and engineers require measurements of the concentration of chemical contaminants. Although laboratory-based methods relying on gas or liquid chromatography can yield very accurate measurements, they are also complex, time consuming, expensive, and require sample pretreatment. Furthermore, they are not readily adapted for in situ measurements.Sensors are devices that can provide continuous, in situ measurements, ideally without the addition of reagents. A biosensor incorporates a biological component coupled to a transducer, which translates the interaction between the analyte and the biocomponent into a signal that can be processed and reported. A wide range of transducers have been employed in biosensors, the most common of which are electrochemical and optical. In this contribution, we focus on photoluminescence-based biosensors of potential use in the applications described above.Following a review of photoluminescence and a discussion of the optoelectronic hardware part of these biosensor systems, we provide explanations and examples of optical biosensors for specific chemical groups: hydrocarbons and alcohols, halogenated organics, nitro-, phospho-, sulfo-, and other substituted organics, and metals and other inorganics. We also describe approaches that have been taken to describe chemical mixtures as a whole (biological oxygen demand and toxicity) since most environmental samples contain mixtures of unknown (and changing) composition. Finally, we end with some thoughts on future research directions that are necessary to achieve the full potential of environmental biosensors.

  1. Locked nucleic acid based beacons for surface interaction studies and biosensor development.

    PubMed

    Martinez, Karen; Estevez, M-Carmen; Wu, Yanrong; Phillips, Joseph A; Medley, Colin D; Tan, Weihong

    2009-05-01

    DNA sensors and microarrays permit fast, simple, and real-time detection of nucleic acids through the design and use of increasingly sensitive, selective, and robust molecular probes. Specifically, molecular beacons (MBs) have been employed for this purpose; however, their potential in the development of solid-surface-based biosensors has not been fully realized. This is mainly a consequence of the beacon's poor stability because of the hairpin structure once immobilized onto a solid surface, commonly resulting in a low signal enhancement. Here, we report the design of a new MB that overcomes some of the limitations of MBs for surface immobilization. Essentially, this new design adds locked nucleic acid bases (LNAs) to the beacon structure, resulting in a LNA molecular beacon (LMB) with robust stability after surface immobilization. To test the efficacy of LMBs against that of regular molecular beacons (RMBs), the properties of selectivity, sensitivity, thermal stability, hybridization kinetics, and robustness for the detection of target sequences were compared and evaluated. A 25-fold enhancement was achieved for the LMB on surface with detection limits reaching the low nanomolar range. In addition, the LMB-based biosensor was shown to possess better stability, reproducibility, selectivity, and robustness when compared to the RMB. Therefore, as an alternative to conventional DNA and as a prospective tool for use in both DNA microarrays and biosensors, these results demonstrate the potential of the locked nucleic acid bases for nucleic acid design for surface immobilization.

  2. Locked nucleic acid based beacons for surface interaction studies and biosensor development

    PubMed Central

    Martinez, Karen; Estevez, M.-Carmen; Wu, Yanrong; Phillips, Joseph A.; Medley, Colin D.; Tan, Weihong

    2011-01-01

    DNA sensors and microarrays permit fast, simple and real-time detection of nucleic acids through the design and use of increasingly sensitive, selective and robust molecular probes. Specifically, molecular beacons (MBs) have been employed for this purpose; however, their potential in the development of solid-surface-based biosensors has not been fully realized. This is mainly a consequence of the beacon’s poor stability due to the hairpin structure once immobilized onto a solid surface, commonly resulting in a low signal enhancement. Here, we report the design of a new MB that overcomes some of the limitations of MBs for surface immobilization. Essentially, this new design adds locked nucleic acid bases (LNAs) to the beacon structure, resulting in a LNA molecular beacon (LMB) with robust stability after surface immobilization. To test the efficacy of LMBs against that of regular molecular beacons (RMBs), the properties of selectivity, sensitivity, thermal stability, hybridization kinetics and robustness for the detection of target sequences were compared and evaluated. A 25-fold enhancement was achieved for the LMB on surface with detection limits reaching the low nanomolar range. In addition, the LMB-based biosensor was shown to possess better stability, reproducibility, selectivity and robustness when compared to the RMB. Therefore, as an alternative to conventional DNA and as a prospective tool for use in both DNA microarrays and biosensors, these results demonstrate the potential of the locked nucleic acid bases for nucleic acid design for surface immobilization. PMID:19351140

  3. ADMET biosensors: up-to-date issues and strategies.

    PubMed

    Fang, Yan; Offenhaeusser, Andrease

    2004-12-01

    This insight review introduces the new concepts, theories, technology, instruments, frontier issues, and key strategies of ADMET (absorption, distribution, metabolism, elimination, and toxicity) biosensors, from the fermi to the quantum levels. Information about ADMET, originating from one author's invention, a patented pharmacotherapy for rescuing cardio-cerebral vascular stunning and regulating vascular endothelial growth-factor signaling at the post-genomic level, can be detected by a new generation of ADMET biosensor. This is a single-cell/single-molecule field-effect transistor (FET) hybrid system, where single molecules or single cells are assembled at the FET surface in a high density array manner via complementary metal-oxide-semiconductor (CMOS)-compatible technologies. Within a given nanometer distance, ADMET-mediated oxidation-reduction (redox) potentials, electrochemistry responses, and electron transfer processes can be simultaneously and directly probed by the gates of field-effect transistor arrays. The nanometer details of the functional coupling principles and characterization technologies of DNA single-molecule/single-cell FETs, as well as the design of lab-on-a-chip instruments, are indicated. Four frontier issues and key strategies are elucidated in detail. This can lead to innovative technology for high-throughout screening of labs-on-chips to resolve the pharmaceutical industry's current bottleneck via novel, FET-based drug discovery and single-molecule/single-cell screening methods, which can bring about a pharmaceutical industry revolution in the 21st century. PMID:15567991

  4. Enabling fluorescent biosensors for the forensic identification of body fluids.

    PubMed

    Frascione, Nunzianda; Gooch, James; Daniel, Barbara

    2013-11-12

    The search for body fluids often forms a crucial element of many forensic investigations. Confirming fluid presence at a scene can not only support or refute the circumstantial claims of a victim, suspect or witness, but may additionally provide a valuable source of DNA for further identification purposes. However, current biological fluid testing techniques are impaired by a number of well-characterised limitations; they often give false positives, cannot be used simultaneously, are sample destructive and lack the ability to visually locate fluid depositions. These disadvantages can negatively affect the outcome of a case through missed or misinterpreted evidence. Biosensors are devices able to transduce a biological recognition event into a measurable signal, resulting in real-time analyte detection. The use of innovative optical sensing technology may enable the highly specific and non-destructive detection of biological fluid depositions through interaction with several fluid-endogenous biomarkers. Despite considerable impact in a variety of analytical disciplines, biosensor application within forensic analyses may be considered extremely limited. This article aims to explore a number of prospective biosensing mechanisms and to outline the challenges associated with their adaptation towards detection of fluid-specific analytes.

  5. Angle-resolved diffraction grating biosensor based on porous silicon

    NASA Astrophysics Data System (ADS)

    Lv, Changwu; Jia, Zhenhong; Liu, Yajun; Mo, Jiaqing; Li, Peng; Lv, Xiaoyi

    2016-03-01

    In this study, an optical biosensor based on a porous silicon composite structure was fabricated using a simple method. This structure consists of a thin, porous silicon surface diffraction grating and a one-dimensional porous silicon photonic crystal. An angle-resolved diffraction efficiency spectrum was obtained by measuring the diffraction efficiency at a range of incident angles. The angle-resolved diffraction efficiency of the 2nd and 3rd orders was studied experimentally and theoretically. The device was sensitive to the change of refractive index in the presence of a biomolecule indicated by the shift of the diffraction efficiency spectrum. The sensitivity of this sensor was investigated through use of an 8 base pair antifreeze protein DNA hybridization. The shifts of the angle-resolved diffraction efficiency spectrum showed a relationship with the change of the refractive index, and the detection limit of the biosensor reached 41.7 nM. This optical device is highly sensitive, inexpensive, and simple to fabricate. Using shifts in diffraction efficiency spectrum to detect biological molecules has not yet been explored, so this study establishes a foundation for future work.

  6. Measuring the Built Environment for Physical Activity

    PubMed Central

    Brownson, Ross C.; Hoehner, Christine M.; Day, Kristen; Forsyth, Ann; Sallis, James F.

    2009-01-01

    Physical inactivity is one of the most important public health issues in the U.S. and internationally. Increasingly, links are being identified between various elements of the physical—or built—environment and physical activity. To understand the impact of the built environment on physical activity, the development of high-quality measures is essential. Three categories of built environment data are being used: (1) perceived measures obtained by telephone interview or self-administered questionnaires; (2) observational measures obtained using systematic observational methods (audits); and (3) archival data sets that are often layered and analyzed with GIS. This review provides a critical assessment of these three types of built-environment measures relevant to the study of physical activity. Among perceived measures, 19 questionnaires were reviewed, ranging in length from 7 to 68 questions. Twenty audit tools were reviewed that cover community environments (i.e., neighborhoods, cities), parks, and trails. For GIS-derived measures, more than 50 studies were reviewed. A large degree of variability was found in the operationalization of common GIS measures, which include population density, land-use mix, access to recreational facilities, and street pattern. This first comprehensive examination of built-environment measures demonstrates considerable progress over the past decade, showing diverse environmental variables available that use multiple modes of assessment. Most can be considered first-generation measures, so further development is needed. In particular, further research is needed to improve the technical quality of measures, understand the relevance to various population groups, and understand the utility of measures for science and public health. PMID:19285216

  7. The built environment and mental health.

    PubMed

    Evans, Gary W

    2003-12-01

    The built environment has direct and indirect effects on mental health. High-rise housing is inimical to the psychological well-being of women with young children. Poor-quality housing appears to increase psychological distress, but methodological issues make it difficult to draw clear conclusions. Mental health of psychiatric patients has been linked to design elements that affect their ability to regulate social interaction (e.g., furniture configuration, privacy). Alzheimer's patients adjust better to small-scale, homier facilities that also have lower levels of stimulation. They are also better adjusted in buildings that accommodate physical wandering. Residential crowding (number of people per room) and loud exterior noise sources (e.g., airports) elevate psychological distress but do not produce serious mental illness. Malodorous air pollutants heighten negative affect, and some toxins (e.g., lead, solvents) cause behavioral disturbances (e.g., self-regulatory ability, aggression). Insufficient daylight is reliably associated with increased depressive symptoms. Indirectly, the physical environment may influence mental health by altering psychosocial processes with known mental health sequelae. Personal control, socially supportive relationships, and restoration from stress and fatigue are all affected by properties of the built environment. More prospective, longitudinal studies and, where feasible, randomized experiments are needed to examine the potential role of the physical environment in mental health. Even more challenging is the task of developing underlying models of how the built environment can affect mental health. It is also likely that some individuals may be more vulnerable to mental health impacts of the built environment. Because exposure to poor environmental conditions is not randomly distributed and tends to concentrate among the poor and ethnic minorities, we also need to focus more attention on the health implications of multiple

  8. Development of an acoustic wave based biosensor for vapor phase detection of small molecules

    NASA Astrophysics Data System (ADS)

    Stubbs, Desmond

    For centuries scientific ingenuity and innovation have been influenced by Mother Nature's perfect design. One of her more elusive designs is that of the sensory olfactory system, an array of highly sensitive receptors responsible for chemical vapor recognition. In the animal kingdom this ability is magnified among canines where ppt (parts per trillion) sensitivity values have been reported. Today, detection dogs are considered an essential part of the US drug and explosives detection schemes. However, growing concerns about their susceptibility to extraneous odors have inspired the development of highly sensitive analytical detection tools or biosensors known as "electronic noses". In general, biosensors are distinguished from chemical sensors in that they use an entity of biological origin (e.g. antibody, cell, enzyme) immobilized onto a surface as the chemically-sensitive film on the device. The colloquial view is that the term "biosensors" refers to devices which detect the presence of entities of biological origin, such as proteins or single-stranded DNA and that this detection must take place in a liquid. Our biosensor utilizes biomolecules, specifically IgG monoclonal antibodies, to achieve molecular recognition of relatively small molecules in the vapor phase.

  9. Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of biosensors for healthcare.

    PubMed

    Kumar, Sandeep; Ahlawat, Wandit; Kumar, Rajesh; Dilbaghi, Neeraj

    2015-08-15

    Technological advancements worldwide at rapid pace in the area of materials science and nanotechnology have made it possible to synthesize nanoparticles with desirable properties not exhibited by the bulk material. Among variety of available nanomaterials, graphene, carbon nanotubes, zinc oxide and gold nanopartilces proved to be elite and offered amazing electrochemical biosensing. This encourages us to write a review which highlights the recent achievements in the construction of genosensor, immunosensor and enzymatic biosensor based on the above nanomaterials. Carbon based nanomaterials offers a direct electron transfer between the functionalized nanomaterials and active site of bioreceptor without involvement of any mediator which not only amplifies the signal but also provide label free sensing. Gold shows affinity towards immunological molecules and is most routinely used for immunological sensing. Zinc oxide can easily immobilize proteins and hence offers a large group of enzyme based biosensor. Modification of the working electrode by introduction of these nanomaterials or combination of two/three of above nanomaterials together and forming a nanocomposite reflected the best results with excellent stability, reproducibility and enhanced sensitivity. Highly attractive electrochemical properties and electrocatalytic activity of these elite nanomaterials have facilitated achievement of enhanced signal amplification needed for the construction of ultrasensitive electrochemical affinity biosensors for detection of glucose, cholesterol, Escherichia coli, influenza virus, cancer, human papillomavirus, dopamine, glutamic acid, IgG, IgE, uric acid, ascorbic acid, acetlycholine, cortisol, cytosome, sequence specific DNA and amino acids. Recent researches for bedside biosensors are also discussed.

  10. Amperometric Glucose Biosensor Based on Self-Assembling Glucose Oxidase on Carbon Nanotubes

    SciTech Connect

    Liu, Guodong; Lin, Yuehe

    2006-01-01

    A flow injection amperometric glucose biosensor based on electrostatic self-assembling glucose oxidase (GOx) on a carbon nanotube (CNT)-modified glassy carbon transducer is described. GOx is immobilized on the negatively charged CNT surface by alternatively assembling a cationic polydiallyldimethylammonium chloride (PDDA) layer and a GOx layer. The unique sandwich-like layer structure (PDDA/GOx/PDDA/CNT) formed by self-assembling provides a favorable microenvironment to keep the bioactivity of GOx and to prevent enzyme molecule leakage. The direct electrochemistry behavior of GOx and electrocatalysis of H2O2 on the fabricated PDDA/GOx/PDDA/CNT electrode demonstrated that such a biosensor fabrication method preserves the activity of enzyme molecules and the mechanical and electrocatalytic properties of carbon nanotubes, enabling sensitive determination of glucose. Flow injection amperometric detection of glucose is carried out at -100 mV (vs Ag/AgCl) in 0.05 M phosphate buffer solution (pH 7.4) with wide linear response range of 15 uM- 6 mM and a detection limit of 7 uM. The PDDA/GOx/PDDA/CNT/GC biosensor showed excellent properties for the sensitive determination of glucose with good reproducibility, remarkable stability, and free of interference from other co-existing electroactive species. The present methods can be applied to assemble other enzyme molecules and biological molecules, such as antibody, antigen, and DNA, to the CNT surface for wide biosensor and bioassay applications.

  11. Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of biosensors for healthcare.

    PubMed

    Kumar, Sandeep; Ahlawat, Wandit; Kumar, Rajesh; Dilbaghi, Neeraj

    2015-08-15

    Technological advancements worldwide at rapid pace in the area of materials science and nanotechnology have made it possible to synthesize nanoparticles with desirable properties not exhibited by the bulk material. Among variety of available nanomaterials, graphene, carbon nanotubes, zinc oxide and gold nanopartilces proved to be elite and offered amazing electrochemical biosensing. This encourages us to write a review which highlights the recent achievements in the construction of genosensor, immunosensor and enzymatic biosensor based on the above nanomaterials. Carbon based nanomaterials offers a direct electron transfer between the functionalized nanomaterials and active site of bioreceptor without involvement of any mediator which not only amplifies the signal but also provide label free sensing. Gold shows affinity towards immunological molecules and is most routinely used for immunological sensing. Zinc oxide can easily immobilize proteins and hence offers a large group of enzyme based biosensor. Modification of the working electrode by introduction of these nanomaterials or combination of two/three of above nanomaterials together and forming a nanocomposite reflected the best results with excellent stability, reproducibility and enhanced sensitivity. Highly attractive electrochemical properties and electrocatalytic activity of these elite nanomaterials have facilitated achievement of enhanced signal amplification needed for the construction of ultrasensitive electrochemical affinity biosensors for detection of glucose, cholesterol, Escherichia coli, influenza virus, cancer, human papillomavirus, dopamine, glutamic acid, IgG, IgE, uric acid, ascorbic acid, acetlycholine, cortisol, cytosome, sequence specific DNA and amino acids. Recent researches for bedside biosensors are also discussed. PMID:25899923

  12. Built-Environment Wind Turbine Roadmap

    SciTech Connect

    Smith, J.; Forsyth, T.; Sinclair, K.; Oteri, F.

    2012-11-01

    Although only a small contributor to total electricity production needs, built-environment wind turbines (BWTs) nonetheless have the potential to influence the public's consideration of renewable energy, and wind energy in particular. Higher population concentrations in urban environments offer greater opportunities for project visibility and an opportunity to acquaint large numbers of people to the advantages of wind projects on a larger scale. However, turbine failures will be equally visible and could have a negative effect on public perception of wind technology. This roadmap provides a framework for achieving the vision set forth by the attendees of the Built-Environment Wind Turbine Workshop on August 11 - 12, 2010, at the U.S. Department of Energy's National Renewable Energy Laboratory. The BWT roadmap outlines the stakeholder actions that could be taken to overcome the barriers identified. The actions are categorized as near-term (0 - 3 years), medium-term (4 - 7 years), and both near- and medium-term (requiring immediate to medium-term effort). To accomplish these actions, a strategic approach was developed that identifies two focus areas: understanding the built-environment wind resource and developing testing and design standards. The authors summarize the expertise and resources required in these areas.

  13. 2. EAST ELEVATION OF IPA FACTORY; TWOSTORY SECTION BUILT IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. EAST ELEVATION OF IPA FACTORY; TWO-STORY SECTION BUILT IN 1892 AND PARTIALLY DESTROYED PARAPET SECTION BUILT CA. 1948. BRICK CHIMNEY ALSO BUILT CA. 1948. - Illinois Pure Aluminum Company, 109 Holmes Street, Lemont, Cook County, IL

  14. One Bedroom Units: Floor Plan, South Elevation (As Built), North ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    One Bedroom Units: Floor Plan, South Elevation (As Built), North Elevation (As Built), Section A-A (As Built), Section AA (Existing) - Aluminum City Terrace, East Hill Drive, New Kensington, Westmoreland County, PA

  15. Forensic DNA and bioinformatics.

    PubMed

    Bianchi, Lucia; Liò, Pietro

    2007-03-01

    The field of forensic science is increasingly based on biomolecular data and many European countries are establishing forensic databases to store DNA profiles of crime scenes of known offenders and apply DNA testing. The field is boosted by statistical and technological advances such as DNA microarray sequencing, TFT biosensors, machine learning algorithms, in particular Bayesian networks, which provide an effective way of evidence organization and inference. The aim of this article is to discuss the state of art potentialities of bioinformatics in forensic DNA science. We also discuss how bioinformatics will address issues related to privacy rights such as those raised from large scale integration of crime, public health and population genetic susceptibility-to-diseases databases.

  16. FRET based biosensor for detection of active NF-kB

    NASA Astrophysics Data System (ADS)

    Baldini, Francesco; Citti, Lorenzo; Domenici, Claudio; Giannetti, Ambra; Tedeschi, Lorena; Vo-Dinh, Tuan; Wabuyele, Musundi B.

    2005-05-01

    The Nuclear Factor kB is a transcription factor, ubiquitously expressed, involved in the regulation of a large number of genes and in a variety of human disease including inflammation, asthma, atherosclerosis, AIDS, septic shock, arthritis and cancer. The critical need for a simple and direct method to evaluate the quantity of active NF-kB in a biological sample can be addressed using a suitable and reusable biosensor. For this purpose, a novel method, using fluorescence resonance energy transfer (FRET), to detect the active form of NF-kB binding a specific DNA sequence has been developed. A single-stranded DNA (ssDNA) with auto-complementary sequence has been properly designed and synthesized. In order to evaluate FRET due to the DNA/protein binding interaction taking place between double-stranded DNA (dsDNA) immobilized in a capillary wall and NF-kB proteins, a highly sensitive FRET-based biosensor system developed in our laboratory was used. Preliminary results show that our system was capable of detecting the active form of NF-kB protein with a detection efficiency of about 90% and that the system has a good regenerability.

  17. Optimization of Xenon Biosensors for Detection of ProteinInteractions

    SciTech Connect

    Lowery, Thomas J.; Garcia, Sandra; Chavez, Lana; Ruiz, E.Janette; Wu, Tom; Brotin, Thierry; Dutasta, Jean-Pierre; King, David S.; Schultz, Peter G.; Pines, Alex; Wemmer, David E..

    2005-08-03

    Hyperpolarized 129Xe NMR can detect the presence of specific low-concentration biomolecular analytes by means of the xenon biosensor, which consists of a water-soluble, targeted cryptophane-A cage that encapsulates xenon. In this work we use the prototypical biotinylated xenon biosensor to determine the relationship between the molecular composition of the xenon biosensor and the characteristics of protein-bound resonances. The effects of diastereomer overlap, dipole-dipole coupling, chemical shift anisotropy, xenon exchange, and biosensor conformational exchange on protein-bound biosensor signal were assessed. It was found that optimal protein-bound biosensor signal can be obtained by minimizing the number of biosensor diastereomers and using a flexible linker of appropriate length. Both the linewidth and sensitivity of chemical shift to protein binding of the xenon biosensor were found to be inversely proportional to linker length.

  18. Low cost flatbed scanner label-free biosensor

    NASA Astrophysics Data System (ADS)

    Aygun, Ugur; Avci, Oguzhan; Seymour, Elif; Sevenler, Derin D.; Urey, Hakan; Ünlü, M. Selim; Ozkumur, Ayca Yalcin

    2016-03-01

    In this paper, we demonstrate utilization of a commercial flatbed document scanner as a label-free biosensor for highthroughput imaging of DNA and protein microarrays. We implemented an interferometric sensing technique through use of a silicon/oxide layered substrate, and easy to implement hardware modifications such as re-aligning moving parts and inserting a custom made sample plate. With a cost as low as 100USD, powered by a USB cable, and scan speed of 30 seconds for a 4mm x 4 mm area with ~10μm lateral resolution, the presented system offers a super low cost, easy to use alternative to commercially available label-free systems.

  19. Device considerations for development of conductance-based biosensors

    PubMed Central

    Lee, Kangho; Nair, Pradeep R.; Scott, Adina; Alam, Muhammad A.; Janes, David B.

    2009-01-01

    Design and fabrication of electronic biosensors based on field-effect-transistor (FET) devices require understanding of interactions between semiconductor surfaces and organic biomolecules. From this perspective, we review practical considerations for electronic biosensors with emphasis on molecular passivation effects on FET device characteristics upon immobilization of organic molecules and an electrostatic model for FET-based biosensors. PMID:24753627

  20. Recovery Based Nanowire Field-Effect Transistor Detection of Pathogenic Avian Influenza DNA

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Heng; Chu, Chia-Jung; Teng, Kang-Ning; Su, Yi-Jr; Chen, Chii-Dong; Tsai, Li-Chu; Yang, Yuh-Shyong

    2012-02-01

    Fast and accurate diagnosis is critical in infectious disease surveillance and management. We proposed a DNA recovery system that can easily be adapted to DNA chip or DNA biosensor for fast identification and confirmation of target DNA. This method was based on the re-hybridization of DNA target with a recovery DNA to free the DNA probe. Functionalized silicon nanowire field-effect transistor (SiNW FET) was demonstrated to monitor such specific DNA-DNA interaction using high pathogenic strain virus hemagglutinin 1 (H1) DNA of avian influenza (AI) as target. Specific electric changes were observed in real-time for AI virus DNA sensing and device recovery when nanowire surface of SiNW FET was modified with complementary captured DNA probe. The recovery based SiNW FET biosensor can be further developed for fast identification and further confirmation of a variety of influenza virus strains and other infectious diseases.

  1. Natural bacterial communities serve as quantitative geochemical biosensors

    SciTech Connect

    Smith, Mark B.; Rocha, Andrea M.; Smillie, Chris S.; Olesen, Scott W.; Paradis, Charles; Wu, Liyou; Campbell, James H.; Fortney, Julian L.; Mehlhorn, Tonia L.; Lowe, Kenneth A.; Earles, Jennifer E.; Phillips, Jana; Techtmann, Steve M.; Joyner, Dominique C.; Elias, Dwayne A.; Bailey, Kathryn L.; Hurt, Richard A.; Preheim, Sarah P.; Sanders, Matthew C.; Yang, Joy; Mueller, Marcella A.; Brooks, Scott; Watson, David B.; Zhang, Ping; He, Zhili; Dubinsky, Eric A.; Adams, Paul D.; Arkin, Adam P.; Fields, Matthew W.; Zhou, Jizhong; Alm, Eric J.; Hazen, Terry C.

    2015-05-12

    Biological sensors can be engineered to measure a wide range of environmental conditions. Here we show that statistical analysis of DNA from natural microbial communities can be used to accurately identify environmental contaminants, including uranium and nitrate at a nuclear waste site. In addition to contamination, sequence data from the 16S rRNA gene alone can quantitatively predict a rich catalogue of 26 geochemical features collected from 93 wells with highly differing geochemistry characteristics. We extend this approach to identify sites contaminated with hydrocarbons from the Deepwater Horizon oil spill, finding that altered bacterial communities encode a memory of prior contamination, even after the contaminants themselves have been fully degraded. We show that the bacterial strains that are most useful for detecting oil and uranium are known to interact with these substrates, indicating that this statistical approach uncovers ecologically meaningful interactions consistent with previous experimental observations. Future efforts should focus on evaluating the geographical generalizability of these associations. Taken as a whole, these results indicate that ubiquitous, natural bacterial communities can be used as in situ environmental sensors that respond to and capture perturbations caused by human impacts. These in situ biosensors rely on environmental selection rather than directed engineering, and so this approach could be rapidly deployed and scaled as sequencing technology continues to become faster, simpler, and less expensive. Here we show that DNA from natural bacterial communities can be used as a quantitative biosensor to accurately distinguish unpolluted sites from those contaminated with uranium, nitrate, or oil. These results indicate that bacterial communities can be used as environmental sensors that respond to and capture perturbations caused by human impacts.

  2. Development of smart functional surfaces for biosensor applications

    NASA Astrophysics Data System (ADS)

    Sokkalinga Balasubramanian, Shankar Ganesh

    Biosensing platforms and antimicrobial coatings were developed to combat problems associated with infectious diseases. Particularly, a lytic bacteriophage based surface plasmon resonance (SPR) biosensor was developed to detect food borne pathogen Staphylococcus aureus (S.aureus) in real-time with high specificity. Lytic bacteriophages are naturally developed molecular probes that infect bacteria. They are environmentally stable and inexpensive to produce compared to commercially available antibodies. The sensitivity of SPR biosensors were further improved specifically by poly-L-lysine grafted polyethylene glycol (PLL-g-PEG) polymer. This polymer reduces non-specific adsorption of S.aureus on SPR gold surface by ˜97%. When used as a blocking buffer in affinity sensing of model antigen, beta-galactosidase by filamentous bacteriophage, this polymer improved the detection sensitivity by 2 to 3 orders of magnitude. A facile approach was developed for sensor surface regeneration by controlling the immobilization and removal of antibodies from SPR gold surface. This was facilitated by the electro-reductive nature of alkanethiols. By combining SPR with electrochemical methods, the molecular assembly/disassembly processes were monitored in real-time with great control. Finally, single-walled carbon nanotube (SWNT) biocomposites were prepared using DNA and lysozyme (LSZ) to develop mechanically strong antimicrobial coatings. Coulombic interactions between DNA and LSZ were exploited to fabricate multilayer antimicrobial coatings using a technique called layer-by-layer assembly. This produced large scale biomimetic coatings with significant antimicrobial activity, high Young's modulus and controlled morphology which combines the individual attributes of SWNTs and natural materials.

  3. Natural bacterial communities serve as quantitative geochemical biosensors

    DOE PAGESBeta

    Smith, Mark B.; Rocha, Andrea M.; Smillie, Chris S.; Olesen, Scott W.; Paradis, Charles; Wu, Liyou; Campbell, James H.; Fortney, Julian L.; Mehlhorn, Tonia L.; Lowe, Kenneth A.; et al

    2015-05-12

    Biological sensors can be engineered to measure a wide range of environmental conditions. Here we show that statistical analysis of DNA from natural microbial communities can be used to accurately identify environmental contaminants, including uranium and nitrate at a nuclear waste site. In addition to contamination, sequence data from the 16S rRNA gene alone can quantitatively predict a rich catalogue of 26 geochemical features collected from 93 wells with highly differing geochemistry characteristics. We extend this approach to identify sites contaminated with hydrocarbons from the Deepwater Horizon oil spill, finding that altered bacterial communities encode a memory of prior contamination,more » even after the contaminants themselves have been fully degraded. We show that the bacterial strains that are most useful for detecting oil and uranium are known to interact with these substrates, indicating that this statistical approach uncovers ecologically meaningful interactions consistent with previous experimental observations. Future efforts should focus on evaluating the geographical generalizability of these associations. Taken as a whole, these results indicate that ubiquitous, natural bacterial communities can be used as in situ environmental sensors that respond to and capture perturbations caused by human impacts. These in situ biosensors rely on environmental selection rather than directed engineering, and so this approach could be rapidly deployed and scaled as sequencing technology continues to become faster, simpler, and less expensive. Here we show that DNA from natural bacterial communities can be used as a quantitative biosensor to accurately distinguish unpolluted sites from those contaminated with uranium, nitrate, or oil. These results indicate that bacterial communities can be used as environmental sensors that respond to and capture perturbations caused by human impacts.« less

  4. Nanomaterial-mediated Biosensors for Monitoring Glucose

    PubMed Central

    Taguchi, Masashige; Ptitsyn, Andre; McLamore, Eric S.

    2014-01-01

    Real-time monitoring of physiological glucose transport is crucial for gaining new understanding of diabetes. Many techniques and equipment currently exist for measuring glucose, but these techniques are limited by complexity of the measurement, requirement of bulky equipment, and low temporal/spatial resolution. The development of various types of biosensors (eg, electrochemical, optical sensors) for laboratory and/or clinical applications will provide new insights into the cause(s) and possible treatments of diabetes. State-of-the-art biosensors are improved by incorporating catalytic nanomaterials such as carbon nanotubes, graphene, electrospun nanofibers, and quantum dots. These nanomaterials greatly enhance biosensor performance, namely sensitivity, response time, and limit of detection. A wide range of new biosensors that incorporate nanomaterials such as lab-on-chip and nanosensor devices are currently being developed for in vivo and in vitro glucose sensing. These real-time monitoring tools represent a powerful diagnostic and monitoring tool for measuring glucose in diabetes research and point of care diagnostics. However, concerns over the possible toxicity of some nanomaterials limit the application of these devices for in vivo sensing. This review provides a general overview of the state of the art in nanomaterial-mediated biosensors for in vivo and in vitro glucose sensing, and discusses some of the challenges associated with nanomaterial toxicity. PMID:24876594

  5. Single-molecule surface studies of fibrinogen and DNA on semiconductors

    NASA Astrophysics Data System (ADS)

    Kong, Xianhua

    Understanding of protein adsorption onto non-biological substrates is of fundamental interest in science, but also has great potential technological applications in medical devices and biosensors. This study explores the non-specific interaction, at the single molecule level, of a blood protein and DNA with semiconductor surfaces through the use of a custom built, non rastering electron emission microscope and a scanning probe microscope. The specifics and history of electron emission are described as well as the equipment used in this study. The protein examined in this study is human plasma fibrinogen, which plays an important role in haemostatis and thrombosis, and deoxyribonucleic acid (DNA) is also studied. A novel technique for determining the photothreshold of biomolecules on single molecule level is developed and applied to fibrinogen molecules adsorbed on oxidized silicon surfaces, using photo-electron emission microscopy (PEEM). Three theoretical models are employed and compared to analyze the experimental photothreshold data. The non-specific adsorption of human plasma fibrinogen on oxidized p- and n- type silicon (100) surfaces is investigated to characterize both hydrophobic interactions and electrostatic forces. The experimental results indicate that hydrophobic interactions are one of the driving forces for protein adsorption and the electrostatic interactions also play a role in the height of the fibrinogen molecules adsorbed on the surface. PEEM images establish a photo threshold of 5.0 +/- 0.2 eV for fibrinogen on both n-type and p-type Si (100) surfaces. We suggest that the photothreshold results from surface state associated Fermi level (EF) pinning and there exists negative charge transfer from the adsorbed fibrinogen onto the p-type silicon substrates, while on n-type silicon substrates negative charge is transferred in the opposite direction. The adsorption of deoxyribonucleic acid (DNA) on mica and silicon is studied in liquid and ambient

  6. MRI Biosensors: A Short Primer

    PubMed Central

    Louie, Angelique

    2013-01-01

    Interest in Magnetic Resonance Imaging (MRI) contrast agents for molecular imaging of biological function experienced a surge of excitement approximately 20 years ago with the development of the first activatable contrast agents that could act as biosensors and turn “on” in response to a specific biological activity. This brief tutorial, based on a short course lecture from the 2011 ISMRM meeting, provides an overview of underlying principles governing the design of biosensing contrast agents. We describe mechanisms by which a magnetic resonance imaging (MRI) contrast agent can be made into a sensor for both T1 and T2 types contrast agents. Examples of biological activities that can interact with a contrast agent are discussed using specific examples from the recent literature to illustrate the primary mechanisms of action that have been utilized to achieve activation. MRI sensors for pH, ion binding, enzyme cleavage, and oxidation-reduction are presented. This article is not meant to be an exhaustive review, but an illustrative primer to explain how activation can be achieved for an MRI contrast agent. Chemical exchange saturation transfer (CEST) is not covered as these agents were covered in a separate lecture. PMID:23996662

  7. Cell buffer with built-in test

    NASA Technical Reports Server (NTRS)

    Ott, William E. (Inventor)

    2004-01-01

    A cell buffer with built-in testing mechanism is provided. The cell buffer provides the ability to measure voltage provided by a power cell. The testing mechanism provides the ability to test whether the cell buffer is functioning properly and thus providing an accurate voltage measurement. The testing mechanism includes a test signal-provider to provide a test signal to the cell buffer. During normal operation, the test signal is disabled and the cell buffer operates normally. During testing, the test signal is enabled and changes the output of the cell buffer in a defined way. The change in the cell buffer output can then be monitored to determine if the cell buffer is functioning correctly. Specifically, if the voltage output of the cell buffer changes in a way that corresponds to the provided test signal, then the functioning of the cell buffer is confirmed. If the voltage output of the cell buffer does not change correctly, then the cell buffer is known not to be operating correctly. Thus, the built in testing mechanism provides the ability to quickly and accurately determine if the cell buffer is operating correctly. Furthermore, the testing mechanism provides this functionality without requiring excessive device size and complexity.

  8. Electrochemical biosensor for Ni(2+) detection based on a DNAzyme-CdSe nanocomposite.

    PubMed

    Yang, Ying; Yuan, Zheng; Liu, Xing-Pei; Liu, Qiao; Mao, Chang-Jie; Niu, He-Lin; Jin, Bao-Kang; Zhang, Sheng-Yi

    2016-03-15

    The detection and speciation analysis of metal-ion is very important for environmental monitoring. A novel electrochemical biosensor for Nickel(II) detection based on a DNAzyme-CdSe nanocomposite was developed. We firstly hybridized with capture probe (DNA1) and sequentially with DNA (DNA2) on the gold electrode. Then CdSe QDs were incorporated the specific recognition of DNA2 by covalent assembling. Upon addition of nickel ion into the above system, the substrate strand of the immobilized DNAzyme was catalytically cleaved by target Ni(2+), resulting in disassociation of the shorter DNA fragments containing CdSe QDs. The remaining CdSe QDs on the electrode surface detected by differential pulse anodic stripping voltammetry (DPASV). Under optimal conditions, the as-prepared sensor exhibited high sensitivity and fast response to Ni(2+) with the linear range from 20 nM to 0.2mM and a low detection limit of 6.67 nM. The prepared biosensor also shows good stability and good reproducibility and high selectivity toward target Ni(2+) against other metal ions because of highly specific Ni(2+)-dependent DNAzyme. Thus, our strategy has a good potential in the environment surveys. PMID:26385732

  9. Ultra-sensitive biosensor for K-ras gene detection using enzyme capped gold nanoparticles conjugates for signal amplification.

    PubMed

    Fang, Xian; Bai, Lijuan; Han, Xiaowei; Wang, Jiao; Shi, Anqi; Zhang, Yuzhong

    2014-09-01

    In this study, an ultra-sensitive hairpin DNA-based electrochemical DNA biosensor for K-ras gene detection is described. Gold nanoparticles (Au-NPs) and horseradish peroxidase (HRP)-streptavidin capped Au-NPs (HAS) conjugates are used for signal amplification. Initially, hairpin DNA dually labeled with thiol at its 5' end and with biotin at its 3' end is immobilized on the surface of Au-NPs modified electrode, and the hairpin DNA is in a "closed" state; hence, the HAS conjugates are shielded from being approached by the biotin due to steric hindrance. However, in the presence of target DNA, the target DNA hybridizes with the loop structure of hairpin DNA and causes conformational change, resulting in biotin forced away from the electrode surface, thereby becoming accessible for the HAS conjugates. Thus, the HAS conjugates are linked to the electrode surface via the specific interaction between biotin and streptavidin. Electrochemical detection was performed in phosphate-buffered saline (PBS) containing tetramethylbenzidine (TMB) and H2O2. Under optimal conditions, the peak current differences (ΔI) are linear with the target DNA in the range from 0.1 fM to 1 nM with a detection limit of 0.035 fM. Furthermore, this biosensor also demonstrates its excellent specificity for single-base mismatched DNA. PMID:24939462

  10. Antibodies and antibody-derived analytical biosensors

    PubMed Central

    Sharma, Shikha; Byrne, Hannah

    2016-01-01

    The rapid diagnosis of many diseases and timely initiation of appropriate treatment are critical determinants that promote optimal clinical outcomes and general public health. Biosensors are now being applied for rapid diagnostics due to their capacity for point-of-care use with minimum need for operator input. Antibody-based biosensors or immunosensors have revolutionized diagnostics for the detection of a plethora of analytes such as disease markers, food and environmental contaminants, biological warfare agents and illicit drugs. Antibodies are ideal biorecognition elements that provide sensors with high specificity and sensitivity. This review describes monoclonal and recombinant antibodies and different immobilization approaches crucial for antibody utilization in biosensors. Examples of applications of a variety of antibody-based sensor formats are also described. PMID:27365031

  11. Thin Hydrogel Films for Optical Biosensor Applications

    PubMed Central

    Mateescu, Anca; Wang, Yi; Dostalek, Jakub; Jonas, Ulrich

    2012-01-01

    Hydrogel materials consisting of water-swollen polymer networks exhibit a large number of specific properties highly attractive for a variety of optical biosensor applications. This properties profile embraces the aqueous swelling medium as the basis of biocompatibility, non-fouling behavior, and being not cell toxic, while providing high optical quality and transparency. The present review focuses on some of the most interesting aspects of surface-attached hydrogel films as active binding matrices in optical biosensors based on surface plasmon resonance and optical waveguide mode spectroscopy. In particular, the chemical nature, specific properties, and applications of such hydrogel surface architectures for highly sensitive affinity biosensors based on evanescent wave optics are discussed. The specific class of responsive hydrogel systems, which can change their physical state in response to externally applied stimuli, have found large interest as sophisticated materials that provide a complex behavior to hydrogel-based sensing devices. PMID:24957962

  12. Biosensors for antioxidant evaluation in biological systems.

    PubMed

    Mello, Lucilene Dornelles; Kisner, Alexandre; Goulart, Marilia Oliveira Fonseca; Kubota, Lauro Tatsuo

    2013-02-01

    The prevention of oxidative reactions in a biological medium as well as the role of reactive oxygen species (ROS) in chronic degenerative diseases are questions that continue to be investigated. Electrochemical biosensors have shown attractive features to evaluate the oxidative stress condition at a level comparable to chromatographic and spectroscopic techniques. The biosensors developed so far are based on direct analysis of specific indicators such as biomarkers of oxidative stress on the monitoring of reactive oxygen species the free radicals in cells or tissues, aiming to obtain a correlation between the index obtained from these indicators with the oxidative stress levels in cells. In this review we will provide an overview of the development of electrochemical biosensors to evaluate the content of antioxidants and reactive oxygen species in physiological systems. Some discussion regarding the analysis of antioxidant capacity at the single cell level is also presented.

  13. Antibodies and antibody-derived analytical biosensors.

    PubMed

    Sharma, Shikha; Byrne, Hannah; O'Kennedy, Richard J

    2016-06-30

    The rapid diagnosis of many diseases and timely initiation of appropriate treatment are critical determinants that promote optimal clinical outcomes and general public health. Biosensors are now being applied for rapid diagnostics due to their capacity for point-of-care use with minimum need for operator input. Antibody-based biosensors or immunosensors have revolutionized diagnostics for the detection of a plethora of analytes such as disease markers, food and environmental contaminants, biological warfare agents and illicit drugs. Antibodies are ideal biorecognition elements that provide sensors with high specificity and sensitivity. This review describes monoclonal and recombinant antibodies and different immobilization approaches crucial for antibody utilization in biosensors. Examples of applications of a variety of antibody-based sensor formats are also described. PMID:27365031

  14. Food allergen detection with biosensor immunoassays.

    PubMed

    Yman, Ingrid Malmheden; Eriksson, Anders; Johansson, M Annette; Hellenäs, Karl-Erik

    2006-01-01

    An optical biosensor was used to develop both direct and sandwich immunoassays for the detection of proteins from milk, egg, hazelnut, peanut, shellfish, and sesame in food samples. Affinity-purified polyclonal antibodies raised against the proteins were immobilized on the biosensor chip. Food samples were injected and the proteins that bound to the antibodies on the surface were detected by a shift in the resonance angle. By adding a second antibody in a sandwich assay, matrix effects could be overcome and the sensitivity and selectivity enhanced. Detection of allergen levels down to 1-12.5 microg/g in food samples was demonstrated for the various assays. Good agreement of results was also obtained from parallel analysis with alternative immunoassays, including rocket immunoelectrophoresis, enzyme immunoassay, and immunoblotting. The present study demonstrates that the sensitivity of the described biosensor technique is comparable to the most sensitive enzymed-linked immunosorbent assays.

  15. Single electrode biosensor for simultaneous determination of interferon gamma and lysozyme.

    PubMed

    Xia, Jianfei; Song, Daimin; Wang, Zonghua; Zhang, Feifei; Yang, Min; Gui, Rijun; Xia, Lin; Bi, Sai; Xia, Yanzhi; Li, Yanhui; Xia, Linhua

    2015-06-15

    Simultaneous detection of multiple biomarkers holds great promise for acute leukemia evaluation. Here, a novel biosensor is developed for simultaneous electrochemical detection of interferon gamma (IFN-γ) and lysozyme (Lys) based on aptamer recognition by coupling "signal-on" and "signal-off" modes. On one Au electrode, two kinds of signaling probes labeled by the thiolated ferrocene (Fc)- and methy blue (MB)- were designed to hybridize with IFN-γ and Lys aptamers respectively to form partial complementary DNA duplexes. In the presence of IFN-γ and Lys, the target-aptamer interaction led to the release of aptamer from duplex DNA structure. The single-stranded signaling probes thus suffered from the conformation changes, which resulted in the decreased (or increased) oxidation peak current of Fc (or MB) according to the "signal-off (or signal-on)" mode. Electrodes were characterized using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Under the optimized conditions, the signal changes were quantified using square wave voltammetry (SWV). This proposed biosensor for IFN-γ and Lys possessed linear detection range from 0.01 to 10 nM and 0.1 to 100 nM, with the detection limits of 1.14×10(-3) nM and 0.0164 nM, respectively. Moreover, this biosensor was readily regenerated and proved successful toward the practical analysis. The proposed strategy could provide more integrated and reliable information for acute leukemia evaluation.

  16. Direct application of gold nanoparticles to one-pot electrochemical biosensors.

    PubMed

    Chen, Guifang; Tong, Hui; Gao, Tao; Chen, Yangyang; Li, Genxi

    2014-11-01

    Gold nanoparticles (AuNPs) have been widely employed for the fabrication of electrochemical biosensors. In most cases, AuNPs are immobilized on the surface of an electrode, so they are difficult to be regenerated, making the use of the biosensor unfriendly. In this work, by adopting AuNPs directly as the electrolytes, we have developed a novel AuNPs-based electrochemical detection system. In brief, AuNPs-catalyzed oxidation of glucose is combined with a HRP-catalyzed reaction as well as an electrocatalytic reaction to compose cascade reactions in the electrolyte. Thus, the intensity of the electrocatalytic signals has quantitative relation with the concentration of glucose, and favors the sensitive detection of glucose. Furthermore, because the catalysis of AuNPs may be blocked under the interaction with single-stranded DNA and unblocked in the presence of a complementary sequence, detection of DNA and even single-nucleotide polymorphism can thereby been achieved. This one-pot detection system can be operated and regenerated very easily, since all the components are integrated in the electrolytes of AuNPs, and the unmodified electrode can be reused after being rinsed. This concept by integrating the advantages of sensitive electrochemical detection with the easy-to-operate nanocolloidal system may also promote the development of other kinds of electrochemical biosensors.

  17. Transcription factor-based biosensors enlightened by the analyte

    PubMed Central

    Fernandez-López, Raul; Ruiz, Raul; de la Cruz, Fernando; Moncalián, Gabriel

    2015-01-01

    Whole cell biosensors (WCBs) have multiple applications for environmental monitoring, detecting a wide range of pollutants. WCBs depend critically on the sensitivity and specificity of the transcription factor (TF) used to detect the analyte. We describe the mechanism of regulation and the structural and biochemical properties of TF families that are used, or could be used, for the development of environmental WCBs. Focusing on the chemical nature of the analyte, we review TFs that respond to aromatic compounds (XylS-AraC, XylR-NtrC, and LysR), metal ions (MerR, ArsR, DtxR, Fur, and NikR) or antibiotics (TetR and MarR). Analyzing the structural domains involved in DNA recognition, we highlight the similitudes in the DNA binding domains (DBDs) of these TF families. Opposite to DBDs, the wide range of analytes detected by TFs results in a diversity of structures at the effector binding domain. The modular architecture of TFs opens the possibility of engineering TFs with hybrid DNA and effector specificities. Yet, the lack of a crisp correlation between structural domains and specific functions makes this a challenging task. PMID:26191047

  18. Green laser excited surface plasmon resonance biosensor utilizing highly sensitive phase interrogation detection

    NASA Astrophysics Data System (ADS)

    Chen, How-Foo; Hsu, Wei-Chen; Wang, Ya-Jung; Yen, Ta-Jen

    2010-04-01

    Surface plasmon resonance (SPR) biosensors have been widely used for dynamical analysis of molecular affinity, bacterium screening, and drug discovery due to its advantages of label-free detection, dynamic interaction analysis, small sample volume, and ultra sensitivity (feasibility of single molecular detection). Recently, SPR biosensing for cell imaging known as SPR microscopy (SPRM) has attracted great attention due to the characteristics of SPR biosensors. However, it is well known that the trends of sensitivity and spatial resolution are opposite to each other: Surface plasmon waves (SPWs) with shorter wavelength which provides higher spatial resolution has less sensitivity. It is known that the spatial resolution of SPRM is limited by the propagation length of surface plasmon wave (SPW) along the metaldielectric interface. SPW excited by 632.8 nm light has the propagation length of 3 um. This length becomes longer when a longer wavelength is selected. While most of SPR biosensors are built with 632.8 nm or longer wavelength for high sensitivity, using 532nm light to excite SPWs is desired for submicron resolution since the propagation length is around 150 nm. Different from current phase interrogation methods, the proposed phase interrogation method is highly sensitive and suitable for CCD imaging. Although it is generally believed that SPWs with wavelength 532nm has poor sensitivity, the experimental result showed that the setup can reach the sensitivity lower than 2×10-6 RIU when sucrose is used as the test sample.

  19. Biosensor technology for pesticides--a review.

    PubMed

    Verma, Neelam; Bhardwaj, Atul

    2015-03-01

    Pesticides, due to their lucrative outcomes, are majorly implicated in agricultural fields for crop production enhancement. Due to their pest removal properties, pesticides of various classes have been designed to persist in the environment over a longer duration after their application to achieve maximum effectiveness. Apart from their recalcitrant structure and agricultural benefits, pesticides also impose acute toxicological effects onto the other various life forms. Their accumulation in the living system may prove to be detrimental if established in higher concentrations. Thus, their prompt and accurate analysis is a crucial matter of concern. Conventional techniques like chromatographic techniques (HPLC, GC, etc.) used for pesticides detection are associated with various limitations like stumpy sensitivity and efficiency, time consumption, laboriousity, requirement of expensive equipments and highly trained technicians, and many more. So there is a need to recruit the methods which can detect these neurotoxic compounds sensitively, selectively, rapidly, and easily in the field. Present work is a brief review of the pesticide effects, their current usage scenario, permissible limits in various food stuffs and 21st century advancements of biosensor technology for pesticide detection. Due to their exceptional performance capabilities, easiness in operation and on-site working, numerous biosensors have been developed for bio-monitoring of various environmental samples for pesticide evaluation immensely throughout the globe. Till date, based on sensing element (enzyme based, antibody based, etc.) and type of detection method used (Electrochemical, optical, and piezoelectric, etc.), a number of biosensors have been developed for pesticide detection. In present communication, authors have summarized 21st century's approaches of biosensor technology for pesticide detection such as enzyme-based biosensors, immunosensors, aptamers, molecularly imprinted polymers, and

  20. Assembling Amperometric Biosensors for Clinical Diagnostics

    PubMed Central

    Belluzo, María Soledad; Ribone, María Élida; Lagier, Claudia Marina

    2008-01-01

    Clinical diagnosis and disease prevention routinely require the assessment of species determined by chemical analysis. Biosensor technology offers several benefits over conventional diagnostic analysis. They include simplicity of use, specificity for the target analyte, speed to arise to a result, capability for continuous monitoring and multiplexing, together with the potentiality of coupling to low-cost, portable instrumentation. This work focuses on the basic lines of decisions when designing electron-transfer-based biosensors for clinical analysis, with emphasis on the strategies currently used to improve the device performance, the present status of amperometric electrodes for biomedicine, and the trends and challenges envisaged for the near future.

  1. Biosensor architectures for high-fidelity reporting of cellular signaling.

    PubMed

    Dushek, Omer; Lellouch, Annemarie C; Vaux, David J; Shahrezaei, Vahid

    2014-08-01

    Understanding mechanisms of information processing in cellular signaling networks requires quantitative measurements of protein activities in living cells. Biosensors are molecular probes that have been developed to directly track the activity of specific signaling proteins and their use is revolutionizing our understanding of signal transduction. The use of biosensors relies on the assumption that their activity is linearly proportional to the activity of the signaling protein they have been engineered to track. We use mechanistic mathematical models of common biosensor architectures (single-chain FRET-based biosensors), which include both intramolecular and intermolecular reactions, to study the validity of the linearity assumption. As a result of the classic mechanism of zero-order ultrasensitivity, we find that biosensor activity can be highly nonlinear so that small changes in signaling protein activity can give rise to large changes in biosensor activity and vice versa. This nonlinearity is abolished in architectures that favor the formation of biosensor oligomers, but oligomeric biosensors produce complicated FRET states. Based on this finding, we show that high-fidelity reporting is possible when a single-chain intermolecular biosensor is used that cannot undergo intramolecular reactions and is restricted to forming dimers. We provide phase diagrams that compare various trade-offs, including observer effects, which further highlight the utility of biosensor architectures that favor intermolecular over intramolecular binding. We discuss challenges in calibrating and constructing biosensors and highlight the utility of mathematical models in designing novel probes for cellular signaling.

  2. Tester-assisted built in test

    NASA Astrophysics Data System (ADS)

    Guntheroth, Kurt

    It is noted that board makers invest considerable time and money writing extensive self-tests and that this investment can be multiplied by selecting ATE (automatic test equipment) that complements and extends the power of the self-test. The tester can diagnose boards in situations where a fault prevents the self-test from running. If the tester monitors such resources as processor, memory, and I/O, confidence in test results is improved. The tester can be used during development of the self-test and to turn on prototypes before the self-test is complete. The author argues that emulative functional testers outperform other types of ATE on boards with BIST (built-in self-test) and lists features of emulative functional testers that are most important to users of BIST.

  3. The Large Built Water Clock Of Amphiaraeion.

    NASA Astrophysics Data System (ADS)

    Theodossiou, E.; Katsiotis, M.; Manimanis, V. N.; Mantarakis, P.

    A very well preserved ancient water clock was discovered during excavations at the Amphiaraeion, in Oropos, Greece. The Amphiaraeion, a famous religious and oracle center of the deified healer Amphiaraus, was active from the pre-classic period until the replacement of the ancient religion by Christianity in the 5th Century A.D.. The foretelling was supposedly done through dreams sent by the god to the believers sleeping in a special gallery. In these dreams the god suggesting to them the therapy for their illness or the solution to their problems. The patients, then threw coins into a spring of the sanctuary. In such a place, the measurement of time was a necessity. Therefore, time was kept with both a conical sundial and a water clock in the form of a fountain. According to archeologists, the large built structure that measured the time for the sanctuary dates from the 4th Century B.C.

  4. Quantification of the surface stress in microcantilever biosensors: revisiting Stoney's equation.

    PubMed

    Tamayo, Javier; Ruz, Jose J; Pini, Valerio; Kosaka, Priscila; Calleja, Montserrat

    2012-11-30

    Microcantilever biosensors in the static operation mode translate molecular recognition into a surface stress signal. Surface stress is derived from the nanomechanical cantilever bending by applying Stoney's equation, derived more than 100 years ago. This equation ignores the clamping effect on the cantilever deformation, which induces significant errors in the quantification of the biosensing response. This leads to discrepancies in the surface stress induced by biomolecular interactions in measurements with cantilevers with different sizes and geometries. So far, more accurate solutions have been precluded by the formidable complexity of the theoretical problem that involves solving the two-dimensional biharmonic equation. In this paper, we present an accurate and simple analytical expression to quantify the response of microcantilever biosensors. The equation exhibits an excellent agreement with finite element simulations and DNA immobilization experiments on gold-coated microcantilevers. PMID:23103805

  5. Thermoresponsive magnetic nano-biosensors for rapid measurements of inorganic arsenic and cadmium.

    PubMed

    Siddiki, Mohammad Shohel Rana; Shimoaoki, Shun; Ueda, Shunsaku; Maeda, Isamu

    2012-01-01

    Green fluorescent protein-tagged sensor proteins, ArsR-GFP and CadC-GFP, have been produced as biosensors for simple and low-cost quantification of As(III) or Cd(II). In this study, the sensor protein-promoter DNA complexes were reconstructed on the surfaces of magnetic particles of different sizes. After the surface modification all the particles could be attracted by magnets, and released different amounts of GFP-tagged protein, according to the metal concentrations within 5 min, which caused significant increases in fluorescence. A detection limit of 1 µg/L for As(III) and Cd(II) in purified water was obtained only with the nanoparticles exhibiting enough magnetization after heat treatment for 1 min. Therefore, thermoresponsive magnetic nano-biosensors offer great advantages of rapidity and sensitivity for the measurement of the toxic metals in drinking water.

  6. An aptamer-based electrochemical biosensor for the detection of Salmonella.

    PubMed

    Ma, Xiaoyuan; Jiang, Yihui; Jia, Fei; Yu, Ye; Chen, Jie; Wang, Zhouping

    2014-03-01

    Salmonella is one of the most common causes of food-associated disease. An electrochemical biosensor was developed for Salmonella detection using a Salmonella-specific recognition aptamer. The biosensor was based on a glassy carbon electrode modified with graphene oxide and gold nanoparticles. Then, the aptamer ssDNA sequence could be linked to the electrode. Each assembly step was accompanied by changes to the electrochemical parameters. After incubation of the modified electrode with Salmonella, the electrochemical properties between the electrode and the electrolyte changed accordingly. The electrochemical impedance spectrum was measured to quantify the Salmonella. The results revealed that, when more Salmonella were added to the reaction system, the current between the electrode and electrolyte decreased; in other words, the impendence gradually increased. A detection limit as low as 3 cfu/mL was obtained. This novel method is specific and fast, and it has the potential for real sample detection.

  7. Quantification of the surface stress in microcantilever biosensors: revisiting Stoney's equation.

    PubMed

    Tamayo, Javier; Ruz, Jose J; Pini, Valerio; Kosaka, Priscila; Calleja, Montserrat

    2012-11-30

    Microcantilever biosensors in the static operation mode translate molecular recognition into a surface stress signal. Surface stress is derived from the nanomechanical cantilever bending by applying Stoney's equation, derived more than 100 years ago. This equation ignores the clamping effect on the cantilever deformation, which induces significant errors in the quantification of the biosensing response. This leads to discrepancies in the surface stress induced by biomolecular interactions in measurements with cantilevers with different sizes and geometries. So far, more accurate solutions have been precluded by the formidable complexity of the theoretical problem that involves solving the two-dimensional biharmonic equation. In this paper, we present an accurate and simple analytical expression to quantify the response of microcantilever biosensors. The equation exhibits an excellent agreement with finite element simulations and DNA immobilization experiments on gold-coated microcantilevers.

  8. An ultrasensitive label-free electrochemical biosensor for microRNA-21 detection based on a 2'-O-methyl modified DNAzyme and duplex-specific nuclease assisted target recycling.

    PubMed

    Zhang, Xi; Wu, Dongzhi; Liu, Zhijing; Cai, Shuxian; Zhao, Yanping; Chen, Mei; Xia, Yaokun; Li, Chunyan; Zhang, Jing; Chen, Jinghua

    2014-10-21

    Based on a highly efficient 2'-O-methyl modified G-quadruplex-hemin DNAzyme and duplex-specific nuclease (DSN) assisted target recycling, a novel label-free electrochemical biosensor for microRNA-21 (miR-21) detection is developed here. By employing the strategy, this DNA biosensor can detect as low as 8 aM miR-21 and exhibits high discrimination ability even against a single-base mismatch.

  9. Photocatalytic oxide films in the built environment

    NASA Astrophysics Data System (ADS)

    Österlund, Lars; Topalian, Zareh

    2014-11-01

    The possibility to increase human comfort in buildings is a powerful driving force for the introduction of new technology. Among other things our sense of comfort depends on air quality, temperature, lighting level, and the possibility of having visual contact between indoors and outdoors. Indeed there is an intimate connection between energy, comfort, and health issues in the built environment, leading to a need for intelligent building materials and green architecture. Photocatalytic materials can be applied as coatings, filters, and be embedded in building materials to provide self-cleaning, antibacterial, air cleaning, deodorizing, and water cleaning functions utilizing either solar light or artificial illumination sources - either already present in buildings, or by purposefully designed luminaries. Huge improvements in indoor comfort can thus be made, and also alleviate negative health effects associated with buildings, such as the sick-house syndrome. At the same time huge cost savings can be made by reducing maintenance costs. Photocatalytic oxides can be chemically modified by changing their acid-base surface properties, which can be used to overcome deactivation problems commonly encountered for TiO2 in air cleaning applications. In addition, the wetting properties of oxides can be tailored by surface chemical modifications and thus be made e.g. oleophobic and water repellent. Here we show results of surface acid modified TiO2 coatings on various substrates by means of photo-fixation of surface sulfate species by a method invented in our group. In particular, we show that such surface treatments of photocatalytic concrete made by mixing TiO2 nanoparticles in reactive concrete powders result in concrete surfaces with beneficial self-cleaning properties. We propose that such approaches are feasible for a number of applications in the built environment, including glass, tiles, sheet metals, plastics, etc.

  10. A novel firefly luciferase biosensor enhances the detection of apoptosis induced by ESAT-6 family proteins of Mycobacterium tuberculosis

    SciTech Connect

    Shi, Junwei; Zhang, Huan; Fang, Liurong; Xi, Yongqiang; Zhou, Yanrong; Luo, Rui; Wang, Dang Xiao, Shaobo; Chen, Huanchun

    2014-10-03

    Highlights: • We developed a novel firefly luciferase based biosensor to detect apoptosis. • The novel biosensor 233-DnaE-DEVDG was reliable, sensitive and convenient. • 233-DnaE-DEVDG faithfully indicated ESAT-6 family proteins of Mycobacterium tuberculosis induced apoptosis. • EsxA, esxT and esxL in ESAT-6 family proteins induced apoptosis. • Activation of nuclear factor-κB (NF-κB) participated in esxT-induced apoptosis. - Abstract: The activation of caspase-3 is a key surrogate marker for detecting apoptosis. To quantitate caspase-3 activity, we constructed a biosensor comprising a recombinant firefly luciferase containing a caspase-3 cleavage site. When apoptosis was induced, caspase-3 cleavage of the biosensor activated firefly luciferase by a factor greater than 25. The assay conveniently detected apoptosis in real time, indicating that it will facilitate drug discovery. We screened ESAT-6 family proteins of Mycobacterium tuberculosis and found that esxA, esxT and esxL induced apoptosis. Further, activation of nuclear factor-κB (NF-κB) and the NF-κB-regulated genes encoding tumor necrosis factor-α (TNF-α) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) participated in esxT-induced apoptosis. We conclude that this assay is useful for high-throughput screening to identify and characterize proteins and drugs that regulate apoptosis.

  11. Biosensor Systems for Homeland Security

    SciTech Connect

    Bruckner-Lea, Cindy J.

    2004-05-30

    The detection of biological agents is important to minimize the effects of pathogens that can harm people, livestock, or plants. In addition to pathogens distributed by man, there is a need to detect natural outbreaks. Recent outbreaks of SARS, mad cow disease, pathogenic E. coli and Salmonella, as well as the discovery of letters filled with anthrax spores have highlighted the need for biosensor systems to aid in prevention, early warning, response, and recovery. Rapid detection can be used to prevent exposure; and detection on a longer timescale can be used to minimize exposure, define treatment, and determine whether contaminated areas are clean enough for reuse. The common types of biological agents of concern include bacteria, spores, and viruses (Figure 1). From a chemist’s point of view, pathogens are essentially complex packages of chemicals that are assembled into organized packages with somewhat predictable physical characteristics such as size and shape. Pathogen detection methods can be divided into three general approaches: selective detection methods for specific identification such as nucleic acid analysis and structural recognition, semi-selective methods for broad-spectrum detection (e.g. physical properties, metabolites, lipids), and function-based methods (e.g. effect of the pathogen on organisms, tissues, or cells). The requirements for biodetection systems depend upon the application. While detect to warn sensors may require rapid detection on the order one minute, detection times of many minutes or hours may be suitable for determining appropriate treatments or for forensic analysis. Of course ideal sensor systems will meet the needs of many applications, and will be sensitive, selective, rapid, and simultaneously detect all agents of concern. They will also be reliable with essentially no false negatives or false positives, small, easy to use, and low cost with minimal consumables.

  12. Sensitive bifunctional aptamer-based electrochemical biosensor for small molecules and protein.

    PubMed

    Deng, Chunyan; Chen, Jinhua; Nie, Lihua; Nie, Zhou; Yao, Shouzhuo

    2009-12-15

    In this paper, a bifunctional electrochemical biosensor for highly sensitive detection of small molecule (adenosine) or protein (lysozyme) was developed. Two aptamer units for adenosine and lysozyme were immobilized on the gold electrode by the formation of DNA/DNA duplex. The detection of adenosine or lysozyme could be carried out by virtue of switching structures of aptamers from DNA/DNA duplex to DNA/target complex. The change of the interfacial feature of the electrode was characterized by cyclic voltammertic (CV) response of surface-bound [Ru(NH(3))(6)](3+). On the other hand, DNA functionalized Au nanoparticles (DNA-AuNPs) were used to enhance the sensitivity of the aptasensor because DNA-AuNPs modified interface could load more [Ru(NH(3))(6)](3+) cations. Thus, the assembly of two aptamer-contained DNA strands integrated with the DNA-AuNPs amplification not only improves the sensitivity of the electrochemical aptasensor but also presents a simple and general model for bifunctional aptasensor. The proposed aptasensor has low detection limit (0.02 nM for adenosine and 0.01 microg mL(-1) for lysozyme) and exhibits several advantages such as high sensitivity and bifunctional recognition.

  13. Biosensors for Whole-Cell Bacterial Detection

    PubMed Central

    Rushworth, Jo V.; Hirst, Natalie A.; Millner, Paul A.

    2014-01-01

    SUMMARY Bacterial pathogens are important targets for detection and identification in medicine, food safety, public health, and security. Bacterial infection is a common cause of morbidity and mortality worldwide. In spite of the availability of antibiotics, these infections are often misdiagnosed or there is an unacceptable delay in diagnosis. Current methods of bacterial detection rely upon laboratory-based techniques such as cell culture, microscopic analysis, and biochemical assays. These procedures are time-consuming and costly and require specialist equipment and trained users. Portable stand-alone biosensors can facilitate rapid detection and diagnosis at the point of care. Biosensors will be particularly useful where a clear diagnosis informs treatment, in critical illness (e.g., meningitis) or to prevent further disease spread (e.g., in case of food-borne pathogens or sexually transmitted diseases). Detection of bacteria is also becoming increasingly important in antibioterrorism measures (e.g., anthrax detection). In this review, we discuss recent progress in the use of biosensors for the detection of whole bacterial cells for sensitive and earlier identification of bacteria without the need for sample processing. There is a particular focus on electrochemical biosensors, especially impedance-based systems, as these present key advantages in terms of ease of miniaturization, lack of reagents, sensitivity, and low cost. PMID:24982325

  14. Electrochemical biosensors using aptamers for theranostics.

    PubMed

    Abe, Koichi; Yoshida, Wataru; Ikebukuro, Kazunori

    2014-01-01

    Theranostics, a new term consisting of the words "therapy" and "diagnostics," represents the concept of selecting specific patients for appropriate drug administration using diagnostics. For the development of a molecular targeting drug, the theranostics approach is effective. Therefore, the market for molecular diagnostics is likely to grow at an extraordinary rate over the next 10 years. In this review, we focus on aptamer-based electrochemical biosensors for theranostics. Aptamers are molecular recognition elements that can bind to various target molecules from small compounds to proteins with affinities and specificities comparable to those of antibodies. Inasmuch as various molecules would be targeted for analysis using theranostics, aptamer-based biosensors would be an attractive format because they can be developed for various molecules using the same sensing format. Although a diverse sensing system can be constructed, we focus on electrochemical biosensors in this review because they can measure biomarkers rapidly in a miniaturized sensing system with low cost, such as blood glucose sensors. We summarize the sensing systems of aptamer-based electrochemical biosensors and discuss their advantages for theranostics.

  15. Boar taint detection using parasitoid biosensors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To evaluate the potential for a non-stinging wasp to be used as a biosensor in the pig industry, we trained wasps to 3 individual chemicals associated with boar taint. Training consisted of presenting the odors to hungry wasps while they were feeding on sugar. This associates the chemical with a fo...

  16. Microbial Biosensors for Selective Detection of Disaccharides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seven microbial strains were screened for their ability to detect disaccharides as components of Clark-type oxygen biosensors. Sensors responded to varying degrees to maltose, cellobiose, sucrose, and melibiose, but none responded strongly to lactose. Although microbial sensors are relatively nons...

  17. Methods for using redox liposome biosensors

    DOEpatents

    Cheng, Quan; Stevens, Raymond C.

    2002-01-01

    The present invention provides methods and compositions for detecting the presence of biologically-important analytes by using redox liposome biosensors. In particular, the present invention provides liposome/sol-gel electrodes suitable for the detection of a wide variety of organic molecules, including but not limited to bacterial toxins.

  18. Clinical Assessment Applications of Ambulatory Biosensors

    ERIC Educational Resources Information Center

    Haynes, Stephen N.; Yoshioka, Dawn T.

    2007-01-01

    Ambulatory biosensor assessment includes a diverse set of rapidly developing and increasingly technologically sophisticated strategies to acquire minimally disruptive measures of physiological and motor variables of persons in their natural environments. Numerous studies have measured cardiovascular variables, physical activity, and biochemicals…

  19. Capillary electrophoresis coupled to biosensor detection.

    PubMed

    Bossi, A; Piletsky, S A; Righetti, P G; Turner, A P

    2000-09-15

    The present review highlights some modern aspects of biosensor revelation, a detection method which has already found a large number of applications in healthcare, food industry and environmental analysis. First, the concept of bio-recognition, which is at the heart of biosensor technology, is discussed, with emphasis on host-guest-like recognition mechanisms. This detection device has been successfully coupled, in its first applications, to chromatographic columns, which allow a high resolution of complex mixtures of analytes prior to interaction with the biosensing unit. The properties of the transducing elements, which should generate a signal (e.g., electrochemical, thermal, acoustic, optical) of proper intensity and of relative fast rise, are additionally evaluated and discussed. The review then focuses on potential applications of biosensing units in capillary electrophoresis (CE) devices. CE appears to be an excellent separation methodology to be coupled to biosensor detection, since it is based on miniaturized electrophoretic chambers, fast analysis times, complete automation in sample handling and data treatment and requires extremely small sample volumes. Although only a few applications of CE-based biosensors have been described up to the present, it is anticipated that this hyphenated technique could have a considerable expansion in the coming years.

  20. Nanoscale bacteriophage biosensors beyond phage display.

    PubMed

    Lee, Jong-Wook; Song, Jangwon; Hwang, Mintai P; Lee, Kwan Hyi

    2013-01-01

    Bacteriophages are traditionally used for the development of phage display technology. Recently, their nanosized dimensions and ease with which genetic modifications can be made to their structure and function have put them in the spotlight towards their use in a variety of biosensors. In particular, the expression of any protein or peptide on the extraluminal surface of bacteriophages is possible by genetically engineering the genome. In addition, the relatively short replication time of bacteriophages offers researchers the ability to generate mass quantities of any given bacteriophage-based biosensor. Coupled with the emergence of various biomarkers in the clinic as a means to determine pathophysiological states, the development of current and novel technologies for their detection and quantification is imperative. In this review, we categorize bacteriophages by their morphology into M13-based filamentous bacteriophages and T4- or T7-based icosahedral bacteriophages, and examine how such advantages are utilized across a variety of biosensors. In essence, we take a comprehensive approach towards recent trends in bacteriophage-based biosensor applications and discuss their outlook with regards to the field of biotechnology.