Science.gov

Sample records for dna cationic polymers

  1. Time-resolved fluorescence spectroscopic investigation of cationic polymer/DNA complex formation

    NASA Astrophysics Data System (ADS)

    D'Andrea, Cosimo; Bassi, Andrea; Taroni, Paola; Pezzoli, Daniele; Volonterio, Alessandro; Candiani, Gabriele

    2011-07-01

    Since DNA is not internalized efficiently by cells, the success of gene therapy depends on the availability of carriers to efficiently deliver genetic material into target cells. Gene delivery vectors can be broadly categorized into viral and non-viral ones. Non-viral gene delivery systems are represented by cationic lipids and polymers rely on the basics of supramolecular chemistry termed "self-assembling": at physiological pH, they are cations and spontaneously form lipoplexes (for lipids) and polyplexes (for polymers) complexing nucleic acids. In this scenario, cationic polymers are commonly used as non-viral vehicles. Their effectiveness is strongly related to key parameters including DNA binding ability and stability in different environments. Time-resolved fluorescence spectroscopy of SYBR Green I (DNA dye) was carried out to characterize cationic polymer/DNA complex (polyplex) formation dispersed in aqueous solution. Both fluorescence amplitude and lifetime proved to be very sensitive to the polymer/DNA ratio (N/P ratio, +/-).

  2. Cationic polymers for DNA origami coating - examining their binding efficiency and tuning the enzymatic reaction rates

    NASA Astrophysics Data System (ADS)

    Kiviaho, Jenny K.; Linko, Veikko; Ora, Ari; Tiainen, Tony; Järvihaavisto, Erika; Mikkilä, Joona; Tenhu, Heikki; Nonappa, Affc; Kostiainen, Mauri A.

    2016-06-01

    DNA origamis are fully tailored, programmable, biocompatible and readily functionalizable nanostructures that provide an excellent foundation for the development of sophisticated drug-delivery systems. However, the DNA origami objects suffer from certain drawbacks such as low cell-transfection rates and low stability. A great deal of studies on polymer-based transfection agents, mainly focusing on polyplex formation and toxicity, exists. In this study, the electrostatic binding between a brick-like DNA origami and cationic block-copolymers was explored. The effect of the polymer structure on the binding was investigated and the toxicity of the polymer-origami complexes evaluated. The study shows that all of the analyzed polymers had a suitable binding efficiency irrespective of the block structure. It was also observed that the toxicity of polymer-origami complexes was insignificant at the biologically relevant concentration levels. Besides brick-like DNA origamis, tubular origami carriers equipped with enzymes were also coated with the polymers. By adjusting the amount of cationic polymers that cover the DNA structures, we showed that it is possible to control the enzyme kinetics of the complexes. This work gives a starting point for further development of biocompatible and effective polycation-based block copolymers that can be used in coating different DNA origami nanostructures for various bioapplications.DNA origamis are fully tailored, programmable, biocompatible and readily functionalizable nanostructures that provide an excellent foundation for the development of sophisticated drug-delivery systems. However, the DNA origami objects suffer from certain drawbacks such as low cell-transfection rates and low stability. A great deal of studies on polymer-based transfection agents, mainly focusing on polyplex formation and toxicity, exists. In this study, the electrostatic binding between a brick-like DNA origami and cationic block-copolymers was explored. The

  3. Resonance light scattering method for the determination of DNA with cationic methacrylate based polymer nanoparticle probes.

    PubMed

    Zou, Qi-Chao; Zhang, Jin-Zhi; Chai, Shi-Gan

    2011-11-01

    Narrowly distributed cationic poly (methyl methacrylate-co-diacetone acrylamide) (P(MMA-DAAM)) nanoparticles were successfully prepared by microemulsion polymerization. Photon correlation spectrometer (PCS) measurement and transmission electron microscope (TEM) observation revealed that z-average particle size of P(MMA-DAAM) is ∼27.5 nm. It was found that these cationic nanoparticles interact with DNA through electrostatic interaction to form P(MMA-DAAM)-DNA complex, which significantly enhances the resonance light scattering (RLS) signal. Therefore, a novel method using this polymer nanoparticle as a new probe for the detection of DNA by RLS technique is developed in this paper. The results showed this method is very convenient, sensitive, and reproducible.

  4. Blood compatibility of novel water soluble hyperbranched polyglycerol-based multivalent cationic polymers and their interaction with DNA.

    PubMed

    Kainthan, Rajesh Kumar; Gnanamani, Muthiah; Ganguli, Munia; Ghosh, Tanay; Brooks, Donald E; Maiti, Souvik; Kizhakkedathu, Jayachandran N

    2006-11-01

    A novel class of hyperbranched polymers based on polyglycerol (PG) and poly(ethylene glycol) (PEG) are synthesized by multibranching anionic ring opening polymerization. Multivalent cationic sites are added to these polymers by a post-amination and quarternization reactions. Blood compatibility studies using these polymers at different concentrations showed insignificant effects on complement activation, platelet activation, coagulation, erythrocyte aggregation and hemolysis compared to branched cationic polyethyleneimine (PEI). The degree of quarternization does not have large influence on the blood compatibility of the new polymers. Cytotoxicity of these polymers is significantly lower than that of PEI and is a function of quarternized nitrogen present in the polymer. Also, these polymers bind DNA in the nanomolar range and are able to condense DNA to highly compact, stable, water soluble nanoparticles in the range of 60-80 nm. Gel electrophoresis studies showed that they form electroneutral complexes with DNA around N/P ratio 1 irrespective of the percentage of quarternization under the conditions studied.

  5. Multi-colored fibers by self-assembly of DNA, histone proteins, and cationic conjugated polymers.

    PubMed

    Wang, Fengyan; Liu, Zhang; Wang, Bing; Feng, Liheng; Liu, Libing; Lv, Fengting; Wang, Yilin; Wang, Shu

    2014-01-07

    The development of biomolecular fiber materials with imaging ability has become more and more useful for biological applications. In this work, cationic conjugated polymers (CCPs) were used to construct inherent fluorescent microfibers with natural biological macromolecules (DNA and histone proteins) through the interfacial polyelectrolyte complexation (IPC) procedure. Isothermal titration microcalorimetry results show that the driving forces for fiber formation are electrostatic and hydrophobic interactions, as well as the release of counterions and bound water molecules. Color-encoded IPC fibers were also obtained based on the co-assembly of DNA, histone proteins, and blue-, green-, or red- (RGB-) emissive CCPs by tuning the fluorescence resonance energy-transfer among the CCPs at a single excitation wavelength. The fibers could encapsulate GFP-coded Escherichia coli BL21, and the expression of GFP proteins was successfully regulated by the external environment of the fibers. These multi-colored fibers show a great potential in biomedical applications, such as biosensor, delivery, and release of biological molecules and tissue engineering.

  6. Highly sensitive colorimetric sensor for Hg(2+) detection based on cationic polymer/DNA interaction.

    PubMed

    Zhu, Yingyue; Cai, Yilin; Zhu, Yibo; Zheng, Lixue; Ding, Jianying; Quan, Ying; Wang, Limei; Qi, Bin

    2015-07-15

    The detection of ultralow concentrations of mercury is a currently significant challenge. Here, a novel strategy is proposed: the colorimetric detection of Hg(2+) based on the aggregation of gold nanoparticles (AuNPs) driven by a cationic polymer. In this three-component system, DNA combines electrostatically with phthalic diglycol diacrylate (PDDA) in a solution of AuNPs. In the presence of Hg(2+), thymine (T)-Hg(2+)-T induced hairpin turns are formed in the DNA strands, which then do not interact with PDDA, enabling the freed PDDA to subsequently facilitate aggregation of the AuNPs. Thus, according to the change in color from wine-red to blue-purple upon AuNPs aggregation, a colorimetric sensor is established to detect Hg(2+). Under optimal conditions, the color change is clearly seen with the naked eye. A linear range of 0.25-500nM was obtained by absorption spectroscopy with a detection limit of approximately 0.15nM. Additionally, the proposed method shows high selectivity toward Hg(2+) in the presence of other heavy metal ions. Real sample analysis was evaluated with the use of lake water and the results suggest good potential for practical application.

  7. Quantitative Measurement of Cationic Polymer Vector and Polymer/pDNA Polyplex Intercalation into the Cell Plasma Membrane

    PubMed Central

    Vaidyanathan, Sriram; Anderson, Kevin B.; Merzel, Rachel L.; Jacobovitz, Binyamin; Kaushik, Milan P.; Kelly, Christina N.; van Dongen, Mallory A.; Dougherty, Casey A.; Orr, Bradford G.; Holl, Mark M. Banaszak

    2016-01-01

    Cationic gene delivery agents (vectors) are important for delivering nucleotides, but are also responsible for cytotoxicity. Cationic polymers (L-PEI, jetPEI, and G5 PAMAM) at 1x to 100x the concentrations required for translational activity (protein expression) induced the same increase in plasma membrane current of HEK 293A cells (30-50 nA) as measured by whole cell patch-clamp. This indicates saturation of the cell membrane by the cationic polymers. The increased currents induced by the polymers are not reversible for over 15 minutes. Irreversibility on this time scale is consistent with a polymer-supported pore or carpet model and indicates that the cell is unable to clear the polymer from the membrane. For polyplexes, although the charge concentration was the same (at N: P ration of 10:1), G5 PAMAM and jetPEI polyplexes induced a much larger current increase (40- 50 nA) than L-PEI polyplexes (< 20 nA). Both free cationic lipid and lipid polyplexes induced a lower increase in current than cationic polymers (< 20 nA). To quantify the membrane bound material, partition constants were measured for both free vectors and polyplexes into the HEK 293A cell membrane using a dye influx assay. The partition constants of free vectors increased with charge density of the vectors. Polyplex partition constants did not show such a trend. The long lasting cell plasma permeability induced by exposure to the polymer vectors or the polyplexes provides a plausible mechanism for the toxicity and inflammatory response induced by exposure to these materials. PMID:25952271

  8. Quantitative Measurement of Cationic Polymer Vector and Polymer-pDNA Polyplex Intercalation into the Cell Plasma Membrane.

    PubMed

    Vaidyanathan, Sriram; Anderson, Kevin B; Merzel, Rachel L; Jacobovitz, Binyamin; Kaushik, Milan P; Kelly, Christina N; van Dongen, Mallory A; Dougherty, Casey A; Orr, Bradford G; Banaszak Holl, Mark M

    2015-06-23

    Cationic gene delivery agents (vectors) are important for delivering nucleotides, but are also responsible for cytotoxicity. Cationic polymers (L-PEI, jetPEI, and G5 PAMAM) at 1× to 100× the concentrations required for translational activity (protein expression) induced the same increase in plasma membrane current of HEK 293A cells (30-50 nA) as measured by whole cell patch-clamp. This indicates saturation of the cell membrane by the cationic polymers. The increased currents induced by the polymers are not reversible for over 15 min. Irreversibility on this time scale is consistent with a polymer-supported pore or carpet model and indicates that the cell is unable to clear the polymer from the membrane. For polyplexes, although the charge concentration was the same (at N/P ratio of 10:1), G5 PAMAM and jetPEI polyplexes induced a much larger current increase (40-50 nA) than L-PEI polyplexes (<20 nA). Both free cationic lipid and lipid polyplexes induced a lower increase in current than cationic polymers (<20 nA). To quantify the membrane bound material, partition constants were measured for both free vectors and polyplexes into the HEK 293A cell membrane using a dye influx assay. The partition constants of free vectors increased with charge density of the vectors. Polyplex partition constants did not show such a trend. The long lasting cell plasma permeability induced by exposure to the polymer vectors or the polyplexes provides a plausible mechanism for the toxicity and inflammatory response induced by exposure to these materials.

  9. Viscoelastic cationic polymers containing the urethane linkage

    NASA Technical Reports Server (NTRS)

    Rembaum, A. (Inventor)

    1972-01-01

    A method for the synthesis and manufacturing of elastomeric compositions and articles containing quaternary nitrogen centers and condensation residues along the polymeric backbone of the centers is presented. Linear and cross-linked straight chain and block polymers having a wide damping temperature range were synthesized. Formulae for the viscoelastic cationic polymers are presented.

  10. Exploring Alkaline Stable Organic Cations for Polymer Hydroxide Exchange Membranes

    DTIC Science & Technology

    2015-04-29

    Organic Cations for Polymer Hydroxide Exchange Membranes Hydroxide exchange membranes (HEMs) are important polymer electrolytes for electrochemical...Exploring Alkaline Stable Organic Cations for Polymer Hydroxide Exchange Membranes Report Title Hydroxide exchange membranes (HEMs) are important polymer ...constructing HEMs. EXPLORING ALKALINE STABLE ORGANIC CATIONS FOR POLYMER HYDROXIDE EXCHANGE MEMBRANES by Bingzi Zhang

  11. Tubular cationized pullulan hydrogels as local reservoirs for plasmid DNA.

    PubMed

    San Juan, Aurélie; Ducrocq, Grégory; Hlawaty, Hanna; Bataille, Isabelle; Guénin, Erwann; Letourneur, Didier; Feldman, Laurent J

    2007-12-01

    In the present study, we measured the ability of various cationized pullulan tubular hydrogels to retain plasmid DNA, and tested the ability of retained plasmid DNA to transfect vascular smooth muscle cells (VSMCs). Cationized pullulans were obtained by grafting at different charge densities ethylamine (EA) or diethylaminoethylamine (DEAE) on the pullulan backbone. Polymers were characterized by elemental analysis, acid-base titration, size exclusion chromatography, Fourier-transform infrared spectroscopy, and proton nuclear magnetic resonance. The complexation of cationized pullulans in solution with plasmid DNA was evidenced by fluorescence quenching with PicoGreen. Cationized pullulans were then chemically crosslinked with phosphorus oxychloride to obtain tubular cationized pullulan hydrogels. Native pullulan tubes did not retain loaded plasmid DNA. In contrast, the ability of cationized pullulan tubes to retain plasmid DNA was dependent on both the amine content and the type of amine. The functional integrity of plasmid DNA in cationized pullulan tubes was demonstrated by in vitro transfection of VSMCs. Hence, cationized pullulan hydrogels can be designed as tubular structures with high affinity for plasmid DNA, which may provide new biomaterials to enhance the efficiency of local arterial gene transfer strategies.

  12. Cationic acrylamide emulsion polymer brine thickeners

    SciTech Connect

    Gleason, P.A.; Piccoline, M.A.

    1986-12-02

    This patent describes a thickened, solids free, aqueous drilling and servicing brine having a density of at least 14.4 ppg. comprising (a) an aqueous solution of at least one water-soluble salt of a multivalent metal, and (b) a cationic water-in-oil emulsion polymer of acrylamide or methacrylamide and a cationic monomer selected from the group consisting of a dialkylaminoalkyl acrylamide or methacrylamide, a trialkylaminoalkyl acrylamide or methacrylamide, a trialkylaminoalkyl acrylate or methacrylate, and a dialkyldialkyl ammonium halide. The acrylamide or methacrylamide to cationic monomer molar ratio of the polymer is about 70:30 to 95:5, the polymer having an I.V. in 1.0N KCl of about 1.0 to 7.0 dl/g and being present in a compatible and viscosifying amount; the thickened brine characterized by being substantially non-dilatent.

  13. Cationic Antimicrobial Polymers and Their Assemblies

    PubMed Central

    Carmona-Ribeiro, Ana Maria; de Melo Carrasco, Letícia Dias

    2013-01-01

    Cationic compounds are promising candidates for development of antimicrobial agents. Positive charges attached to surfaces, particles, polymers, peptides or bilayers have been used as antimicrobial agents by themselves or in sophisticated formulations. The main positively charged moieties in these natural or synthetic structures are quaternary ammonium groups, resulting in quaternary ammonium compounds (QACs). The advantage of amphiphilic cationic polymers when compared to small amphiphilic molecules is their enhanced microbicidal activity. Besides, many of these polymeric structures also show low toxicity to human cells; a major requirement for biomedical applications. Determination of the specific elements in polymers, which affect their antimicrobial activity, has been previously difficult due to broad molecular weight distributions and random sequences characteristic of radical polymerization. With the advances in polymerization control, selection of well defined polymers and structures are allowing greater insight into their structure-antimicrobial activity relationship. On the other hand, antimicrobial polymers grafted or self-assembled to inert or non inert vehicles can yield hybrid antimicrobial nanostructures or films, which can act as antimicrobials by themselves or deliver bioactive molecules for a variety of applications, such as wound dressing, photodynamic antimicrobial therapy, food packing and preservation and antifouling applications. PMID:23665898

  14. Lipopolysaccharide Neutralization by Cationic-Amphiphilic Polymers through Pseudoaggregate Formation.

    PubMed

    Uppu, Divakara S S M; Haldar, Jayanta

    2016-03-14

    Synthetic polymers incorporating the cationic charge and hydrophobicity to mimic the function of antimicrobial peptides (AMPs) have been developed. These cationic-amphiphilic polymers bind to bacterial membranes that generally contain negatively charged phospholipids and cause membrane disintegration resulting in cell death; however, cationic-amphiphilic antibacterial polymers with endotoxin neutralization properties, to the best of our knowledge, have not been reported. Bacterial endotoxins such as lipopolysaccharide (LPS) cause sepsis that is responsible for a great amount of mortality worldwide. These cationic-amphiphilic polymers can also bind to negatively charged and hydrophobic LPS and cause detoxification. Hence, we envisaged that cationic-amphiphilic polymers can have both antibacterial as well as LPS binding properties. Here we report synthetic amphiphilic polymers with both antibacterial as well as endotoxin neutralizing properties. Levels of proinflammatory cytokines in human monocytes caused by LPS stimulation were inhibited by >80% when coincubated with these polymers. These reductions were found to be dependent on concentration and, more importantly, on the side-chain chemical structure due to variations in the hydrophobicity profiles of these polymers. These cationic-amphiphilic polymers bind and cause LPS neutralization and detoxification. Investigations of polymer interaction with LPS using fluorescence spectroscopy and dynamic light scattering (DLS) showed that these polymers bind but neither dissociate nor promote LPS aggregation. We show that polymer binding to LPS leads to sort of a pseudoaggregate formation resulting in LPS neutralization/detoxification. These findings provide an unusual mechanism of LPS neutralization using novel synthetic cationic-amphiphilic polymers.

  15. Cell compatible arginine containing cationic polymer: one-pot synthesis and preliminary biological assessment.

    PubMed

    Zavradashvili, Nino; Memanishvili, Tamar; Kupatadze, Nino; Baldi, Lucia; Shen, Xiao; Tugushi, David; Wandrey, Christine; Katsarava, Ramaz

    2014-01-01

    Synthetic cationic polymers are of interest as both nonviral vectors for intracellular gene delivery and antimicrobial agents. For both applications synthetic polymers containing guanidine groups are of special interest since such kind of organic compounds/polymers show a high transfection potential along with antibacterial activity. It is important that the delocalization of the positive charge of the cationic group in guanidine significantly decreases the toxicity compared to the ammonium functionality. One of the most convenient ways for incorporating guanidine groups is the synthesis of polymers composed of the amino acid arginine (Arg) via either application of Arg-based monomers or chemical modification of polymers with derivatives of Arg. It is also important to have biodegradable cationic polymers that will be cleared from the body after their function as transfection or antimicrobial agent is fulfilled. This chapter deals with a two-step/one-pot synthesis of a new biodegradable cationic polymer-poly(ethylene malamide) containing L-arginine methyl ester covalently attached to the macrochains in β-position of the malamide residue via the α-amino group. The goal cationic polymer was synthesized by in situ interaction of arginine methyl ester dihydrochloride with intermediary poly(ethylene epoxy succinimide) formed by polycondensation of di-p-nitrophenyl-trans-epoxy succinate with ethylenediamine. The cell compatibility study with Chinese hamster ovary (CHO) and insect Schneider 2 cells (S2) within the concentration range of 0.02-500 mg/mL revealed that the new polymer is not cytotoxic. It formed nanocomplexes with pDNA (120-180 nm in size) at low polymer/DNA weight ratios (WR = 5-10). A preliminarily transfection efficiency of the Arg-containing new cationic polymer was assessed using CHO, S2, H5, and Sf9 cells.

  16. Cationic polymers and their self-assembly for antibacterial applications.

    PubMed

    Deka, Smriti Rekha; Sharma, Ashwani Kumar; Kumar, Pradee

    2015-01-01

    The present article focuses on the amphiphilic cationic polymers as antibacterial agents. These polymers undergo self-assembly in aqueous conditions and impart biological activity by efficiently interacting with the bacterial cell wall, hence, used in preparing chemical disinfectants and biocides. Both cationic charge as well as hydrophobic segments facilitate interactions with the bacterial cell surface and initiate its disruption. The perturbation in transmembrane potential causes leakage of cytosolic contents followed by cell death. Out of two categories of macromolecules, peptide oligomers and cationic polymers, which have extensively been used as antibacterials, we have elaborated on the current advances made in the area of cationic polymer-based (naturally occurring and commonly employed synthetic polymers and their modified analogs) antibacterial agents. The development of polymer-based antibacterials has helped in addressing challenges posed by the drug-resistant bacterial infections. These polymers provide a new platform to combat such infections in the most efficient manner. This review presents concise discussion on the amphiphilic cationic polymers and their modified analogs having low hemolytic activity and excellent antibacterial activity against array of fungi, bacteria and other microorganisms.

  17. 21 CFR 872.3480 - Polyacrylamide polymer (modified cationic) denture adhesive.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Polyacrylamide polymer (modified cationic) denture... polymer (modified cationic) denture adhesive. (a) Identification. A polyacrylamide polymer (modified cationic) denture adhesive is a device composed of polyacrylamide polymer (modified cationic) intended...

  18. 21 CFR 872.3480 - Polyacrylamide polymer (modified cationic) denture adhesive.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Polyacrylamide polymer (modified cationic) denture... polymer (modified cationic) denture adhesive. (a) Identification. A polyacrylamide polymer (modified cationic) denture adhesive is a device composed of polyacrylamide polymer (modified cationic) intended...

  19. 21 CFR 872.3480 - Polyacrylamide polymer (modified cationic) denture adhesive.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Polyacrylamide polymer (modified cationic) denture... polymer (modified cationic) denture adhesive. (a) Identification. A polyacrylamide polymer (modified cationic) denture adhesive is a device composed of polyacrylamide polymer (modified cationic) intended...

  20. 21 CFR 872.3480 - Polyacrylamide polymer (modified cationic) denture adhesive.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Polyacrylamide polymer (modified cationic) denture... polymer (modified cationic) denture adhesive. (a) Identification. A polyacrylamide polymer (modified cationic) denture adhesive is a device composed of polyacrylamide polymer (modified cationic) intended...

  1. 21 CFR 872.3480 - Polyacrylamide polymer (modified cationic) denture adhesive.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Polyacrylamide polymer (modified cationic) denture... polymer (modified cationic) denture adhesive. (a) Identification. A polyacrylamide polymer (modified cationic) denture adhesive is a device composed of polyacrylamide polymer (modified cationic) intended...

  2. Liquid Crystalline Polymers by Cationic Polymerization,

    DTIC Science & Technology

    1986-01-01

    cation mechanism of Scholl reaction the Lewis acid and by the benzylic carbocations . Hydride transfer to benzylic carbenium ions leads to methyl groups...reviewed. Examples from ring-opening, carbocationic , and radical-cation poly- merizations and oligomerizations are discussed. Accesion For DrIC TAB3...Examples from ring- opening, carbocationic , and radical-cation polymeri- zations and oligomerizations are discussed. INTRODUCTION This paper will

  3. Independent adsorption of monovalent cations and cationic polymers at PE/PG lipid membranes

    NASA Astrophysics Data System (ADS)

    Khomich, Daria A.; Nesterenko, Alexey M.; Kostritskii, Andrei Yu; Kondinskaia, Diana A.; Ermakov, Yuri A.; Gurtovenko, Andrey A.

    2017-01-01

    Synthetic cationic polymers constitute a wide class of polymeric biocides. Commonly their antimicrobial effect is associated to their interaction with bacterial membranes. In the present study we analyze the interaction of various cationic polymers with model bacterial membranes comprised of a mixture of phosphatidylethanolamine (PE) and phosphatidylglycerol (PG). We describe a polymer-membrane interaction as a process of modification of the surface charge. It is well known that small monovalent inorganic cations (Na+, K+) cannot overcharge the surface of a bilayer containing anionic lipids. In contrast, polycations are able to overcharge anionic membranes and demonstrate a very large input to the electric field distribution at the membrane-water interface. We aimed here to study the electrostatic effects associated with the interaction of polycations of different types with a model lipid membrane whose composition closely resembles that of bacterial membranes (PE:PG = 1:4). Four different cationic polymers (polyvinylamine, polyallylamine, poly-L-lysine and polyethylenimine) were adsorbed at a model PE/PG bilayer in MD simulations. Adsorption of sodium cations was inspected separately for PE/PG bilayers of different composition and cation’s binding parameters were determined. From computational experiments and consequent theoretical analysis we concluded that sodium adsorption at anionic binding sites does not depend on the presence of polycations. Therefore, we hypothesize that antimicrobial activity of the studied cationic polymers should depend on the ionic composition of the medium.

  4. 21 CFR 872.3420 - Carboxymethylcellulose sodium and cationic polyacrylamide polymer denture adhesive.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... polyacrylamide polymer denture adhesive. 872.3420 Section 872.3420 Food and Drugs FOOD AND DRUG ADMINISTRATION....3420 Carboxymethylcellulose sodium and cationic polyacrylamide polymer denture adhesive. (a) Identification. A carboxymethylcellulose sodium and cationic polyacrylamide polymer denture adhesive is a...

  5. 21 CFR 872.3420 - Carboxymethylcellulose sodium and cationic polyacrylamide polymer denture adhesive.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... polyacrylamide polymer denture adhesive. 872.3420 Section 872.3420 Food and Drugs FOOD AND DRUG ADMINISTRATION....3420 Carboxymethylcellulose sodium and cationic polyacrylamide polymer denture adhesive. (a) Identification. A carboxymethylcellulose sodium and cationic polyacrylamide polymer denture adhesive is a...

  6. 21 CFR 872.3420 - Carboxymethylcellulose sodium and cationic polyacrylamide polymer denture adhesive.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... polyacrylamide polymer denture adhesive. 872.3420 Section 872.3420 Food and Drugs FOOD AND DRUG ADMINISTRATION....3420 Carboxymethylcellulose sodium and cationic polyacrylamide polymer denture adhesive. (a) Identification. A carboxymethylcellulose sodium and cationic polyacrylamide polymer denture adhesive is a...

  7. 21 CFR 872.3420 - Carboxymethylcellulose sodium and cationic polyacrylamide polymer denture adhesive.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... polyacrylamide polymer denture adhesive. 872.3420 Section 872.3420 Food and Drugs FOOD AND DRUG ADMINISTRATION....3420 Carboxymethylcellulose sodium and cationic polyacrylamide polymer denture adhesive. (a) Identification. A carboxymethylcellulose sodium and cationic polyacrylamide polymer denture adhesive is a...

  8. 21 CFR 872.3420 - Carboxymethylcellulose sodium and cationic polyacrylamide polymer denture adhesive.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... polyacrylamide polymer denture adhesive. 872.3420 Section 872.3420 Food and Drugs FOOD AND DRUG ADMINISTRATION....3420 Carboxymethylcellulose sodium and cationic polyacrylamide polymer denture adhesive. (a) Identification. A carboxymethylcellulose sodium and cationic polyacrylamide polymer denture adhesive is a...

  9. Chiral DNA packaging in DNA-cationic liposome assemblies.

    PubMed

    Zuidam, N J; Barenholz, Y; Minsky, A

    1999-09-03

    Recent studies have indicated that the structural features of DNA-lipid assemblies, dictated by the lipid composition and cationic lipid-to-DNA ratio, critically affect the efficiency of these complexes in acting as vehicles for cellular delivery of genetic material. Using circular dichroism we find that upon binding DNA, positively-charged liposomes induce a secondary conformational transition of the DNA molecules from the native B form to the C motif. Liposomes composed of positively-charged and neutral 'helper' lipids, found to be particularly effective as transfecting agents, induce - in addition to secondary conformational changes - DNA condensation into a left-handed cholesteric-like phase. A structural model is presented according to which two distinct, yet inter-related modes of DNA packaging coexist within such assemblies. The results underline the notion that subtle changes in the components of a supramolecular assembly may substantially modulate the interplay of interactions which dictate its structure and functional properties.

  10. Mechanical properties of DNA-like polymers

    PubMed Central

    Peters, Justin P.; Yelgaonkar, Shweta P.; Srivatsan, Seergazhi G.; Tor, Yitzhak; James Maher, L.

    2013-01-01

    The molecular structure of the DNA double helix has been known for 60 years, but we remain surprisingly ignorant of the balance of forces that determine its mechanical properties. The DNA double helix is among the stiffest of all biopolymers, but neither theory nor experiment has provided a coherent understanding of the relative roles of attractive base stacking forces and repulsive electrostatic forces creating this stiffness. To gain insight, we have created a family of double-helical DNA-like polymers where one of the four normal bases is replaced with various cationic, anionic or neutral analogs. We apply DNA ligase-catalyzed cyclization kinetics experiments to measure the bending and twisting flexibilities of these polymers under low salt conditions. Interestingly, we show that these modifications alter DNA bending stiffness by only 20%, but have much stronger (5-fold) effects on twist flexibility. We suggest that rather than modifying DNA stiffness through a mechanism easily interpretable as electrostatic, the more dominant effect of neutral and charged base modifications is their ability to drive transitions to helical conformations different from canonical B-form DNA. PMID:24013560

  11. Divalent cation shrinks DNA but inhibits its compaction with trivalent cation

    NASA Astrophysics Data System (ADS)

    Tongu, Chika; Kenmotsu, Takahiro; Yoshikawa, Yuko; Zinchenko, Anatoly; Chen, Ning; Yoshikawa, Kenichi

    2016-05-01

    Our observation reveals the effects of divalent and trivalent cations on the higher-order structure of giant DNA (T4 DNA 166 kbp) by fluorescence microscopy. It was found that divalent cations, Mg(2+) and Ca(2+), inhibit DNA compaction induced by a trivalent cation, spermidine (SPD(3+)). On the other hand, in the absence of SPD(3+), divalent cations cause the shrinkage of DNA. As the control experiment, we have confirmed the minimum effect of monovalent cation, Na(+) on the DNA higher-order structure. We interpret the competition between 2+ and 3+ cations in terms of the change in the translational entropy of the counterions. For the compaction with SPD(3+), we consider the increase in translational entropy due to the ion-exchange of the intrinsic monovalent cations condensing on a highly charged polyelectrolyte, double-stranded DNA, by the 3+ cations. In contrast, the presence of 2+ cation decreases the gain of entropy contribution by the ion-exchange between monovalent and 3+ ions.

  12. Cationic Polymers Developed for Alkaline Fuel Cell Applications

    DTIC Science & Technology

    2015-01-20

    cell (AEMFC) adopts cationic group-functionalized polymers as the solid electrolyte instead of liquid potassium hydroxide or sodium hydroxide used in...hydroxide or sodium hydroxide used in the traditional AFC, avoiding leakage problems, bicarbonate and carbonate salt induced electrode degradation...the solid electrolyte instead of liquid potassium hydroxide or sodium hydroxide used in the traditional AFC, avoiding leakage problems, bicarbonate

  13. Complexation Between Cationic Diblock Copolymers and Plasmid DNA

    NASA Astrophysics Data System (ADS)

    Jung, Seyoung; Reineke, Theresa; Lodge, Timothy

    Deoxyribonucleic acids (DNA), as polyanions, can spontaneously bind with polycations to form polyelectrolyte complexes. When the polycation is a diblock copolymer with one cationic block and one uncharged hydrophilic block, the polyelectrolyte complexes formed with plasmid DNA (pDNA) are often colloidally stable, and show great promise in the field of polymeric gene therapy. While the resulting properties (size, stability, and toxicity to biological systems) of the complexes have been studied for numerous cationic diblocks, the fundamentals of the pDNA-diblock binding process have not been extensively investigated. Herein, we report how the cationic block content of a diblock influences the pDNA-diblock interactions. pDNA with 7164 base pairs and poly(2-deoxy-2-methacrylamido glucopyranose)-block-poly(N-(2-aminoethyl) methacrylamide) (PMAG-b-PAEMA) are used as the model pDNA and cationic diblock, respectively. To vary the cationic block content, two PMAG-b-PAEMA copolymers with similar PMAG block lengths but distinct PAEMA block lengths and a PAEMA homopolymer are utilized. We show that the enthalpy change from pDNA-diblock interactions is dependent on the cationic diblock composition, and is closely associated with both the binding strength and the pDNA tertiary structure.

  14. Amylose-Based Cationic Star Polymers for siRNA Delivery

    PubMed Central

    Nishimura, Tomoki; Umezaki, Kaori; Mukai, Sada-atsu; Sawada, Shin-ichi; Akiyoshi, Kazunari

    2015-01-01

    A new siRNA delivery system using a cationic glyco-star polymer is described. Spermine-modified 8-arm amylose star polymer (with a degree of polymerization of approximately 60 per arm) was synthesized by chemoenzymatic methods. The cationic star polymer effectively bound to siRNA and formed spherical complexes with an average hydrodynamic diameter of 230 nm. The cationic 8-arm star polymer complexes showed superior cellular uptake characteristics and higher gene silencing effects than a cationic 1-arm polymer. These results suggest that amylose-based star polymers are a promising nanoplatform for glycobiomaterials. PMID:26539548

  15. DNA: Polymer and molecular code

    NASA Astrophysics Data System (ADS)

    Shivashankar, G. V.

    1999-10-01

    The thesis work focusses upon two aspects of DNA, the polymer and the molecular code. Our approach was to bring single molecule micromanipulation methods to the study of DNA. It included a home built optical microscope combined with an atomic force microscope and an optical tweezer. This combined approach led to a novel method to graft a single DNA molecule onto a force cantilever using the optical tweezer and local heating. With this method, a force versus extension assay of double stranded DNA was realized. The resolution was about 10 picoN. To improve on this force measurement resolution, a simple light backscattering technique was developed and used to probe the DNA polymer flexibility and its fluctuations. It combined the optical tweezer to trap a DNA tethered bead and the laser backscattering to detect the beads Brownian fluctuations. With this technique the resolution was about 0.1 picoN with a millisecond access time, and the whole entropic part of the DNA force-extension was measured. With this experimental strategy, we measured the polymerization of the protein RecA on an isolated double stranded DNA. We observed the progressive decoration of RecA on the l DNA molecule, which results in the extension of l , due to unwinding of the double helix. The dynamics of polymerization, the resulting change in the DNA entropic elasticity and the role of ATP hydrolysis were the main parts of the study. A simple model for RecA assembly on DNA was proposed. This work presents a first step in the study of genetic recombination. Recently we have started a study of equilibrium binding which utilizes fluorescence polarization methods to probe the polymerization of RecA on single stranded DNA. In addition to the study of material properties of DNA and DNA-RecA, we have developed experiments for which the code of the DNA is central. We studied one aspect of DNA as a molecular code, using different techniques. In particular the programmatic use of template specificity makes

  16. Hybrid materials from intermolecular associations between cationic lipid and polymers.

    PubMed

    Pereira, Edla M A; Kosaka, Priscila M; Rosa, Heloísa; Vieira, Débora B; Kawano, Yoshio; Petri, Denise F S; Carmona-Ribeiro, Ana M

    2008-08-07

    Intermolecular associations between a cationic lipid and two model polymers were evaluated from preparation and characterization of hybrid thin films cast on silicon wafers. The novel materials were prepared by spin-coating of a chloroformic solution of lipid and polymer on silicon wafer. Polymers tested for miscibility with the cationic lipid dioctadecyldimethylammonium bromide (DODAB) were polystyrene (PS) and poly(methyl methacrylate) (PMMA). The films thus obtained were characterized by ellipsometry, wettability, optical and atomic force microscopy, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and activity against Escherichia coli. Whereas intermolecular ion-dipole interactions were available for the PMMA-DODAB interacting pair producing smooth PMMA-DODAB films, the absence of such interactions for PS-DODAB films caused lipid segregation, poor film stability (detachment from the silicon wafer) and large rugosity. In addition, the well-established but still remarkable antimicrobial DODAB properties were transferred to the novel hybrid PMMA/DODAB coating, which is demonstrated to be highly effective against E. coli.

  17. A comparison of plasmid DNA delivery efficiency and cytotoxicity of two cationic diblock polyoxazoline copolymers.

    PubMed

    Lehner, Roman; Liu, Kegang; Wang, Xueya; Wolf, Marc; Hunziker, Patrick

    2017-04-28

    Cationic polymers as non-viral gene delivery carriers are widely used because of their strong condensing properties and long-term safety, but acute cytotoxicity is a persistent challenge. In this study, two types of polyplexes were prepared by co-formulating plasmid DNA and two cationic diblock copolymers PABOXA5-b-PMOXA33-PA (primary amine) and PABOXA5-b-PMOXA33-TA (tertiary amine) to check their transfection efficacies in HeLa cells and HEK293T cells, respectively. The plasmid DNA/PABOXA5-b-PMOXA33-PA polyplex showed higher transfection efficacy compared to the plasmid DNA/PABOXA5-b-PMOXA33-TA polyplex under an N/P ratio of 40. Both polymers exhibited low toxicity, attributed to the shielding effect of a hydrophilic, noncharged block. Mechanistic insight into differential transfection efficiencies of the polymers were gained by visualization and comparison of the condensates via transmission electron and atomic force microscopy. The results provide information suited for further structure optimization of polymers that are aimed for targeted gene delivery.

  18. Efficient gene transfection using novel cationic polymers poly(hydroxyalkylene imines).

    PubMed

    Zaliauskiene, Lolita; Bernadisiute, Ula; Vareikis, Ausvydas; Makuska, Ricardas; Volungeviciene, Ieva; Petuskaite, Agne; Riauba, Laurynas; Lagunavicius, Arunas; Zigmantas, Sarunas

    2010-09-15

    A series of novel cationic polymers poly(hydroxyalkylene imines) were synthesized and tested for their ability to transfect cells in vitro and in vivo. Poly(hydroxyalkylene imines), in particular, poly(2-hydroxypropylene imine) (pHP), poly(2-hydroxypropylene imine ethylene imine) (pHPE), and poly(hydroxypropylene imine propylene imine) (pHPP) were synthesized by polycondensation reaction from 1,3-diamino-2-propanol and the appropriate dibromide. Electron microscopic examination demonstrated that the resulting polymers condensed DNA into toroid shape complexes of 100-150 nm in size. Transfection studies showed that all three polymers were able to deliver genetic material into the cell, with pHP being superior to pHPP and pHPE. pHP acted as an efficient gene delivery agent in a variety of different cell lines and outcompeted most of the widely used polymer or lipid based transfection reagents. Intravenous administration of pHP-DNA polyplexes in mice followed by the reporter gene analysis showed that the reagent was suitable for in vivo applications. In summary, the results indicate that pHP is a new efficient reagent for gene delivery in vitro and in vivo.

  19. Design and synthesis of a novel cationic thiolated polymer.

    PubMed

    Rahmat, Deni; Sakloetsakun, Duangkamon; Shahnaz, Gul; Perera, Glen; Kaindl, Reinhard; Bernkop-Schnürch, Andreas

    2011-06-15

    The purpose of this study was to design and characterize a novel cationic thiolated polymer. In this regard a hydroxyethylcellulose-cysteamine conjugate (HEC-cysteamine) was synthesized. Oxidative ring opening with periodate and reductive amination with cysteamine were performed in order to immobilize free thiol groups to HEC. The resulting HEC-cysteamine displayed 2035 ± 162 μmol immobilized free thiol groups and 185 ± 64 μmol disulfide bonds per gram of polymer being soluble in both acidic and basic conditions. Unlike the unmodified HEC, in case of HEC-cysteamine, a three-fold increase in the viscosity was observed when equal volumes of the polymer were mixed with mucin solution. Tablets based on HEC-cysteamine remained attached on freshly excised porcine mucosa for 8 0h and displayed increased disintegration time of 2h. Swelling behavior of HEC-cysteamine tablets in 0.1M phosphate buffer pH 6.8 indicated swelling ratio of 19 within 8h. In contrast, tablets comprising unmodified HEC detached from the mucosa within few seconds and immediately disintegrated. In addition, they did not exhibit swelling behavior. The transport of rhodamine 123 across freshly excised rat intestine enhanced by a value of approximately 1.6-fold (p-value = 0.0024) in the presence of 0.5% (m/v) HEC-cysteamine as compared to buffer control. Result from cytotoxicity test of HEC-cysteamine applied to Caco-2 cells in concentration of 0.5% (m/v) revealed 82.4 ± 4.60% cell viability. According to these results, HEC-cysteamine seems to be a promising polymer for various pharmaceutical applications especially for intestinal drug delivery.

  20. Measuring Cation Dependent DNA Polymerase Fidelity Landscapes by Deep Sequencing

    PubMed Central

    Kording, Konrad; Schmidt, Daniel; Martin-Alarcon, Daniel; Tyo, Keith; Boyden, Edward S.; Church, George

    2012-01-01

    High-throughput recording of signals embedded within inaccessible micro-environments is a technological challenge. The ideal recording device would be a nanoscale machine capable of quantitatively transducing a wide range of variables into a molecular recording medium suitable for long-term storage and facile readout in the form of digital data. We have recently proposed such a device, in which cation concentrations modulate the misincorporation rate of a DNA polymerase (DNAP) on a known template, allowing DNA sequences to encode information about the local cation concentration. In this work we quantify the cation sensitivity of DNAP misincorporation rates, making possible the indirect readout of cation concentration by DNA sequencing. Using multiplexed deep sequencing, we quantify the misincorporation properties of two DNA polymerases – Dpo4 and Klenow exo− – obtaining the probability and base selectivity of misincorporation at all positions within the template. We find that Dpo4 acts as a DNA recording device for Mn2+ with a misincorporation rate gain of ∼2%/mM. This modulation of misincorporation rate is selective to the template base: the probability of misincorporation on template T by Dpo4 increases >50-fold over the range tested, while the other template bases are affected less strongly. Furthermore, cation concentrations act as scaling factors for misincorporation: on a given template base, Mn2+ and Mg2+ change the overall misincorporation rate but do not alter the relative frequencies of incoming misincorporated nucleotides. Characterization of the ion dependence of DNAP misincorporation serves as the first step towards repurposing it as a molecular recording device. PMID:22928047

  1. Cationic Liposome-DNA Complexes: From supramolecular assembly toward gene delivery

    NASA Astrophysics Data System (ADS)

    Evans, Heather M.; Ahmad, A.; Ewert, K.; Martin, A.; Safinya, Cr

    2003-03-01

    Cationic liposomes (CL) present a viable alternative to viral delivery of therapeutic DNA and peptides to cells. We complex CL with DNA to deliver foreign DNA (genes) to cells. Typical self-assembly of CL-DNA shown by x-ray diffraction reveals multilamellar lipids with DNA intercalated between the lipid layers, having a DNA interaxial spacing d(DNA)[1]. The length d(DNA) can be tuned at the subnanometer level (from 35 down to 5 angstroms) by control of the membrane charge density and other parameters. Three distinct DNA-DNA interaction regimes were found due to repulsive long-range electrostatic forces, repulsive short-range hydration forces, and a polymer induced attractive depletion force [2-4]. We correlate d(DNA) to transfection in mammalian cells. These compact DNA structures suggest use for high density storage of genetic information, as well as for biological templates. Supported by NSF DMR-0203755, NIH GM59288. 1. J Radler et al, Science 275, 810 (1997). 2. AJ Lin et al, Biophys. J. (in press). 3. K Ewert, A Ahmad, H Evans et al, J. Med. Chem. 45, 5023 (2002). 4. A Martin et al, (submitted).

  2. Adsorption of Divalent Cations on DNA

    PubMed Central

    Morfin, Isabelle; Horkay, Ferenc; Basser, Peter J.; Bley, Françoise; Hecht, Anne-Marie; Rochas, Cyrille; Geissler, Erik

    2004-01-01

    The distribution of divalent ions in semidilute solutions of high-molecular-mass DNA containing both sodium chloride and strontium chloride in near-physiological conditions is studied by small-angle x-ray scattering and by small-angle neutron scattering. Both small-angle neutron scattering and small-angle x-ray scattering reveal a continuous increase in the scattering intensity at low q with increasing divalent ion concentration, while at high q the scattering curves converge. The best fit to the data is found for a configuration in which DNA strands of cross-sectional radius 10 Å are surrounded by a counterion sheath of outer radius ∼13.8 Å, independent of the strontium chloride concentration. When the strontium chloride is replaced by calcium chloride, similar results are obtained, but the thickness of the sheath increases when the divalent salt concentration decreases. These results correspond in both cases to partial localization of the counterions within a layer that is thinner than the effective Debye screening length. PMID:15454479

  3. Fluorescence quenching of water-soluble conjugated polymer by metal cations and its application in sensor.

    PubMed

    Chen, Yan-Guo; Zhao, Dan; He, Zhi-Ke; Ai, Xin-Ping

    2007-02-01

    The effects of different metal cations on the fluorescence of water-soluble conjugated polymer (CP) and their quenching mechanism have been explored. Most transition metal cations, especially noble metal cations, such as Pd2+, Ru3+, and Pt2+ possessed higher quenching efficiency to CP fluorescence than that of the main group metal cations and other transition metal cations, which have filled or half-full outmost electron layer configurations. Base on this, rapid, sensitive detection of noble metal cations can be realized and a novel quencher-tether-ligand (QTL) probe was developed to detect avidin and streptavidin.

  4. One-step Conjugation of Glycyrrhetinic Acid to Cationic Polymers for High-performance Gene Delivery to Cultured Liver Cell

    PubMed Central

    Cong, Yue; Shi, Bingyang; Lu, Yiqing; Wen, Shihui; Chung, Roger; Jin, Dayong

    2016-01-01

    Gene therapies represent a promising therapeutic route for liver cancers, but major challenges remain in the design of safe and efficient gene-targeting delivery systems. For example, cationic polymers show good transfection efficiency as gene carriers, but are hindered by cytotoxicity and non-specific targeting. Here we report a versatile method of one-step conjugation of glycyrrhetinic acid (GA) to reduce cytotoxicity and improve the cultured liver cell -targeting capability of cationic polymers. We have explored a series of cationic polymer derivatives by coupling different ratios of GA to polypropylenimine (PPI) dendrimer. These new gene carriers (GA-PPI dendrimer) were systematically characterized by UV-vis,1H NMR titration, electron microscopy, zeta potential, dynamic light-scattering, gel electrophoresis, confocal microscopy and flow cytometry. We demonstrate that GA-PPI dendrimers can efficiently load and protect pDNA, via formation of nanostructured GA-PPI/pDNA polyplexes. With optimal GA substitution degree (6.31%), GA-PPI dendrimers deliver higher liver cell transfection efficiency (43.5% vs 22.3%) and lower cytotoxicity (94.3% vs 62.5%, cell viability) than the commercial bench-mark DNA carrier bPEI (25kDa) with cultured liver model cells (HepG2). There results suggest that our new GA-PPI dendrimer are a promising candidate gene carrier for targeted liver cancer therapy. PMID:26902258

  5. Cation charge dependence of the forces driving DNA assembly.

    PubMed

    DeRouchey, Jason; Parsegian, V Adrian; Rau, Donald C

    2010-10-20

    Understanding the strength and specificity of interactions among biologically important macromolecules that control cellular functions requires quantitative knowledge of intermolecular forces. Controlled DNA condensation and assembly are particularly critical for biology, with separate repulsive and attractive intermolecular forces determining the extent of DNA compaction. How these forces depend on the charge of the condensing ion has not been determined, but such knowledge is fundamental for understanding the basis of DNA-DNA interactions. Here, we measure DNA force-distance curves for a homologous set of arginine peptides. All forces are well fit as the sum of two exponentials with 2.4- and 4.8-Å decay lengths. The shorter-decay-length force is always repulsive, with an amplitude that varies slightly with length or charge. The longer-decay-length force varies strongly with cation charge, changing from repulsion with Arg¹ to attraction with Arg². Force curves for a series of homologous polyamines and the heterogeneous protein protamine are quite similar, demonstrating the universality of these forces for DNA assembly. Repulsive amplitudes of the shorter-decay-length force are species-dependent but nearly independent of charge within each species. A striking observation was that the attractive force amplitudes for all samples collapse to a single curve, varying linearly with the inverse of the cation charge.

  6. Graphene oxide-cationic polymer conjugates: Synthesis and application as gene delivery vectors.

    PubMed

    Teimouri, Mohsen; Nia, Azadeh Hashem; Abnous, Khalil; Eshghi, Hossein; Ramezani, Mohammad

    2016-01-01

    Nanomedicine as the interface between nanotechnology and medical sciences is a new area that has attracted the attention of vast groups of researchers. Carbon nanomaterials are common platform for synthesis of nanoparticles for biomedical applications due to their low cytotoxicity and feasible internalization into mammalian cell lines (Yang et al., 2007; Arora et al., 2014; Oh and Park, 2014). Synthesis of vectors based on various cationic polymers polyethylenimine (PEI), polypropylenimine (PPI) and polyamidoamine (PAMAM) and their derivatives were considered as a strategy for transferring plasmid DNA and treatment of genetic diseases. Considering the low cytotoxicity of graphene, chemical modification of its surface has led to fabrication of novel gene delivery systems based on graphene and graphene oxide. Herein we report the synthesis of three groups of vectors based on conjugation of graphene oxide (GO) with alkylated derivatives of three different cationic polymers (polyethylenimine (PEI), polypropylenimine (PPI) and polyamidoamine (PAMAM)) through different linkers including surface carboxyl group, glycine and spermidine. Two main challenges in design of gene delivery vectors is decreasing cytotoxicity while improving the transfection efficiency. All synthesized vectors showed significantly lower cellular toxicity compared to bare polymer. A plasmid encoding green fluorescent protein (GFP) was used to evaluate the transfection efficiency of nanoparticles both qualitatively using live cell fluorescent imaging and quantitatively using flow cytometry and each vector was compared to its polymer base. Most successful conjugation strategy was observed in the case of PEI conjugates among which most efficient vector was PEI-GO conjugate bearing glycine linker. This vector was 9 fold more effective in terms of the percent of EGFP transfected cells.

  7. Computational and analytical modeling of cationic lipid-DNA complexes.

    PubMed

    Farago, Oded; Grønbech-Jensen, Niels

    2007-05-01

    We present a theoretical study of the physical properties of cationic lipid-DNA (CL-DNA) complexes--a promising synthetically based nonviral carrier of DNA for gene therapy. The study is based on a coarse-grained molecular model, which is used in Monte Carlo simulations of mesoscopically large systems over timescales long enough to address experimental reality. In the present work, we focus on the statistical-mechanical behavior of lamellar complexes, which in Monte Carlo simulations self-assemble spontaneously from a disordered random initial state. We measure the DNA-interaxial spacing, d(DNA), and the local cationic area charge density, sigma(M), for a wide range of values of the parameter (c) representing the fraction of cationic lipids. For weakly charged complexes (low values of (c)), we find that d(DNA) has a linear dependence on (c)(-1), which is in excellent agreement with x-ray diffraction experimental data. We also observe, in qualitative agreement with previous Poisson-Boltzmann calculations of the system, large fluctuations in the local area charge density with a pronounced minimum of sigma(M) halfway between adjacent DNA molecules. For highly-charged complexes (large (c)), we find moderate charge density fluctuations and observe deviations from linear dependence of d(DNA) on (c)(-1). This last result, together with other findings such as the decrease in the effective stretching modulus of the complex and the increased rate at which pores are formed in the complex membranes, are indicative of the gradual loss of mechanical stability of the complex, which occurs when (c) becomes large. We suggest that this may be the origin of the recently observed enhanced transfection efficiency of lamellar CL-DNA complexes at high charge densities, because the completion of the transfection process requires the disassembly of the complex and the release of the DNA into the cytoplasm. Some of the structural properties of the system are also predicted by a continuum

  8. Optical tweezers reveal a dynamic mechanical response of cationic peptide-DNA complexes

    NASA Astrophysics Data System (ADS)

    Lee, Amy; Zheng, Tai; Sucayan, Sarah; Chou, Szu-Ting; Tricoli, Lucas; Hustedt, Jason; Kahn, Jason; Mixson, A. James; Seog, Joonil

    2013-03-01

    Nonviral carriers have been developed to deliver nucleic acids by forming nanoscale complexes; however, there has been limited success in achieving high transfection efficiency. Our hypothesis is that a factor affecting gene delivery efficiency is the mechanical response of the condensed complex. To begin to test this hypothesis, we directly measured the mechanical properties of DNA-carrier complexes using optical tweezers. Histidine-lysine (HK) polymer, Asparagine-lysine (NK) polymer and poly-L-lysine were used to form complexes with a single DNA molecule. As carriers were introduced, a sudden decrease in DNA extension occurrs at a force level which is defined as critical force (Fc). Fc is carrier and concentration dependent. Pulling revealed reduction in DNA extension length for HK-DNA complexes. The characteristics of force profiles vary by agent and can be dynamically manipulated by changes in environmental conditions such as ionic strength of the buffer as well as pH. Heparin can remove cationic reagents which are otherwise irreversibly bound to DNA. The implications for optimizing molecular interactions to enhance transfection efficiency will be discussed.

  9. Influence of polymer charge on the shear yield stress of silica aggregated with adsorbed cationic polymers.

    PubMed

    Zhou, Ying; Yu, Hai; Wanless, Erica J; Jameson, Graeme J; Franks, George V

    2009-08-15

    Flocs were produced by adding three cationic polymers (10% charge density, 3.0x10(5) g/mol molecular weight; 40% charge density, 1.1x10(5) g/mol molecular weight; and 100% charge density, 1.2x10(5) g/mol molecular weight) to 90 nm diameter silica particles. The shear yield stresses of the consolidated sediment beds from settled and centrifuged flocs were determined via the vane technique. The polymer charge density plays an important role in influencing the shear yield stresses of sediment beds. The shear yield stresses of sediment beds from flocs induced by the 10% charged polymer were observed to increase with an increase in polymer dose, initial solid concentration and background electrolyte concentration at all volume fractions. In comparison, polymer dose has a marginal effect on the shear yield stresses of sediment beds from flocs induced by the 40% and 100% charged polymers. The shear yield stresses of sediments from flocs induced by the 40% charged polymer are independent of salt concentration whereas the addition of salt decreases the shear yield stresses of sediments from flocs induced by the 100% charged polymer. When flocculated at the optimum dose for each polymer (12 mg/g silica for the 10% charged polymer at 0.03 M NaCl, 12 mg/g for 40% and 2 mg/g for 100%), shear yield stress increases as polymer charge increases. The effects observed are related to the flocculation mechanism (bridging, patch attraction or charge neutralisation) and the magnitude of the adhesive force. Comparison of shear and compressive yield stresses show that the network is only slightly weaker in shear than in compression. This is different than many other systems (mainly salt and pH coagulation) which have shear yield stress much less than compressive yield stress. The existing models relating the power law exponent of the volume fraction dependence of the shear yield stress to the network fractal structure are not satisfactory to predict all the experimental behaviour.

  10. Like-charge attraction and opposite-charge decomplexation between polymers and DNA molecules

    NASA Astrophysics Data System (ADS)

    Buyukdagli, Sahin

    2017-02-01

    We scrutinize the effect of polyvalent ions on polymer-DNA interactions. We extend a recently developed test-charge theory [S. Buyukdagli et al., Phys. Rev. E 94, 042502 (2016), 10.1103/PhysRevE.94.042502] to the case of a stiff polymer interacting with a DNA molecule in an electrolyte mixture. The theory accounts for one-loop level electrostatic correlation effects such as the ionic cloud deformation around the strongly charged DNA molecule as well as image-charge forces induced by the low DNA permittivity. Our model can reproduce and explain various characteristics of the experimental phase diagrams for polymer solutions. First, the addition of polyvalent cations to the electrolyte solution results in the attraction of the negatively charged polymer by the DNA molecule. The glue of the like-charge attraction is the enhanced shielding of the polymer charges by the dense counterion layer at the DNA surface. Second, through the shielding of the DNA-induced electrostatic potential, mono- and polyvalent cations of large concentration both suppress the like-charge attraction. Within the same formalism, we also predict a new opposite-charge repulsion effect between the DNA molecule and a positively charged polymer. In the presence of polyvalent anions such as sulfate or phosphate, their repulsion by the DNA charges leads to the charge screening deficiency of the region around the DNA molecule. This translates into a repulsive force that results in the decomplexation of the polymer from DNA. This opposite-charge repulsion phenomenon can be verified by current experiments and the underlying mechanism can be beneficial to gene therapeutic applications where the control over polymer-DNA interactions is the key factor.

  11. Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process

    PubMed Central

    Reshetnikov, Roman V.; Sponer, Jiri; Rassokhina, Olga I.; Kopylov, Alexei M.; Tsvetkov, Philipp O.; Makarov, Alexander A.; Golovin, Andrey V.

    2011-01-01

    A combination of explicit solvent molecular dynamics simulation (30 simulations reaching 4 µs in total), hybrid quantum mechanics/molecular mechanics approach and isothermal titration calorimetry was used to investigate the atomistic picture of ion binding to 15-mer thrombin-binding quadruplex DNA (G-DNA) aptamer. Binding of ions to G-DNA is complex multiple pathway process, which is strongly affected by the type of the cation. The individual ion-binding events are substantially modulated by the connecting loops of the aptamer, which play several roles. They stabilize the molecule during time periods when the bound ions are not present, they modulate the route of the ion into the stem and they also stabilize the internal ions by closing the gates through which the ions enter the quadruplex. Using our extensive simulations, we for the first time observed full spontaneous exchange of internal cation between quadruplex molecule and bulk solvent at atomistic resolution. The simulation suggests that expulsion of the internally bound ion is correlated with initial binding of the incoming ion. The incoming ion then readily replaces the bound ion while minimizing any destabilization of the solute molecule during the exchange. PMID:21893589

  12. Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process.

    PubMed

    Reshetnikov, Roman V; Sponer, Jiri; Rassokhina, Olga I; Kopylov, Alexei M; Tsvetkov, Philipp O; Makarov, Alexander A; Golovin, Andrey V

    2011-12-01

    A combination of explicit solvent molecular dynamics simulation (30 simulations reaching 4 µs in total), hybrid quantum mechanics/molecular mechanics approach and isothermal titration calorimetry was used to investigate the atomistic picture of ion binding to 15-mer thrombin-binding quadruplex DNA (G-DNA) aptamer. Binding of ions to G-DNA is complex multiple pathway process, which is strongly affected by the type of the cation. The individual ion-binding events are substantially modulated by the connecting loops of the aptamer, which play several roles. They stabilize the molecule during time periods when the bound ions are not present, they modulate the route of the ion into the stem and they also stabilize the internal ions by closing the gates through which the ions enter the quadruplex. Using our extensive simulations, we for the first time observed full spontaneous exchange of internal cation between quadruplex molecule and bulk solvent at atomistic resolution. The simulation suggests that expulsion of the internally bound ion is correlated with initial binding of the incoming ion. The incoming ion then readily replaces the bound ion while minimizing any destabilization of the solute molecule during the exchange.

  13. The role of PEG architecture and molecular weight in the gene transfection performance of PEGylated poly(dimethylaminoethyl methacrylate) based cationic polymers.

    PubMed

    Venkataraman, Shrinivas; Ong, Wei Lin; Ong, Zhan Yuin; Joachim Loo, Say Chye; Ee, Pui Lai Rachel; Yang, Yi Yan

    2011-03-01

    In this study, we report the synthesis of well-defined model PEGylated poly(dimethylaminoethyl methacrylate) based cationic polymers composed of different PEG architecture with controlled PEG and nitrogen content via reversible addition-fragmentation chain transfer (RAFT) polymerization, and study the effects of PEG architecture and polymer molecular weight on gene delivery and cytotoxicity. Investigation of the physico-chemical interactions of these model cationic polymers with DNA demonstrated that all these polymers effectively complexed with DNA, and PEG topology did not significantly affect the abilities of the polymers to complex and release DNA. However the size and zeta potential of the complexes were found to be influenced by PEG architecture. The polymers with the block-like configurations formed nanosized DNA complexes. In contrast, considerably higher molecular weight was necessary for the copolymer with the statistical configuration of short PEG chains to form such a small complex. Cell line-dependent influence of PEG architecture on cellular uptake, gene expression efficiency and cell viability of the polymer-DNA complexes was observed. The diblock copolymer-DNA complexes induced higher gene expression than the brush-like block copolymer-DNA complexes, and the statistical copolymer-DNA complexes mediated much lower gene expression than the block-like copolymers-DNA complexes. Increasing the molecular weight of statistical polymer to some extent improved gene expression efficiency. The statistical copolymer was less cytotoxic as compared to the block-like copolymers. These findings provide important insights into the effect of PEGylation nature on gene expression, which will be useful for the design of PEGylated gene delivery polymers.

  14. Electrochemical uranyl cation biosensor with DNA oligonucleotides as receptor layer.

    PubMed

    Jarczewska, Marta; Ziółkowski, Robert; Górski, Łukasz; Malinowska, Elżbieta

    2014-04-01

    The present study aims at the further development of the uranyl oligonucleotide-based voltammetric biosensor, which takes advantage of strong interaction between UO2(2+) and phosphate DNA backbone. Herein we report the optimization of working parameters of previously elaborated electrochemical DNA biosensor. It is shown that the sensor sensitivity is highly dependent on the oligonucleotide probe length and the incubation time of sensor in a sample solution. Consequently, the highest sensitivity was obtained for 10-nucleotide sequence and 60 min incubation time. The lower detection limit towards uranyl cation for developed biosensor was 30 nM. The influence of mixed monolayers and the possibility of developing a non-calibration device were also investigated. The selectivity of the proposed biosensor was significantly improved via elimination of adenine nucleobases from the DNA probe. Moreover, the regeneration procedure was elaborated and tested to prolong the use of the same biosensor for 4 subsequent determinations of UO2(2+).

  15. The phase behavior of cationic lipid-DNA complexes.

    PubMed Central

    May, S; Harries, D; Ben-Shaul, A

    2000-01-01

    We present a theoretical analysis of the phase behavior of solutions containing DNA, cationic lipids, and nonionic (helper) lipids. Our model allows for five possible structures, treated as incompressible macroscopic phases: two lipid-DNA composite (lipoplex) phases, namely, the lamellar (L(alpha)(C)) and hexagonal (H(II)(C)) complexes; two binary (cationic/neutral) lipid phases, that is, the bilayer (L(alpha)) and inverse-hexagonal (H(II)) structures, and uncomplexed DNA. The free energy of the four lipid-containing phases is expressed as a sum of composition-dependent electrostatic, elastic, and mixing terms. The electrostatic free energies of all phases are calculated based on Poisson-Boltzmann theory. The phase diagram of the system is evaluated by minimizing the total free energy of the three-component mixture with respect to all the compositional degrees of freedom. We show that the phase behavior, in particular the preferred lipid-DNA complex geometry, is governed by a subtle interplay between the electrostatic, elastic, and mixing terms, which depend, in turn, on the lipid composition and lipid/DNA ratio. Detailed calculations are presented for three prototypical systems, exhibiting markedly different phase behaviors. The simplest mixture corresponds to a rigid planar membrane as the lipid source, in which case, only lamellar complexes appear in solution. When the membranes are "soft" (i.e., low bending modulus) the system exhibits the formation of both lamellar and hexagonal complexes, sometimes coexisting with each other, and with pure lipid or DNA phases. The last system corresponds to a lipid mixture involving helper lipids with strong propensity toward the inverse-hexagonal phase. Here, again, the phase diagram is rather complex, revealing a multitude of phase transitions and coexistences. Lamellar and hexagonal complexes appear, sometimes together, in different regions of the phase diagram. PMID:10733951

  16. Novel DNA Polymer for Amplification Pretargeting

    PubMed Central

    2015-01-01

    In this Letter, different from conventional pretargeting, an additional novel DNA polymer with multiple copies of a target was first designed to be administrated between the antitumor antibody, and the labeled effector served as an amplification pretargeting strategy. Two phosphorothioate DNA strands, a bridging and a target strand, were hybridized to form a polymer. Polymer size, as a function of molar ratios, was then monitored by size exclusion HPLC and electrophoretic mobility shift assay. Moreover, binding efficiency of polymers with the radiolabeled effector and polymer size after hybridization were measured by HPLC as well. As the polymer was expected to produce more binding sites that would be targeted by effectors, amplification pretargeting can greatly improve accumulation of effectors in tumor. This novel proof-of-concept was then well demonstrated by the in vitro test of signal amplification in antibody-binding protein L coated plate and LS174T cells. Compared to conventional pretargeting, significantly increasing radioactive signal was observed in this designed amplification pretargeting, which would serve as a useful paradigm of the potential of oligomer polymers to improve pretargeting and other related approaches. PMID:26396682

  17. Mechanistic aspects of hydration of guanine radical cations in DNA.

    PubMed

    Rokhlenko, Yekaterina; Cadet, Jean; Geacintov, Nicholas E; Shafirovich, Vladimir

    2014-04-23

    The mechanistic aspects of hydration of guanine radical cations, G(•+) in double- and single-stranded oligonucleotides were investigated by direct time-resolved spectroscopic monitoring methods. The G(•+) radical one-electron oxidation products were generated by SO4(•-) radical anions derived from the photolysis of S2O8(2-) anions by 308 nm laser pulses. In neutral aqueous solutions (pH 7.0), after the complete decay of SO4(•-) radicals (∼5 μs after the actinic laser flash) the transient absorbance of neutral guanine radicals, G(-H)(•) with maximum at 312 nm, is dominant. The kinetics of decay of G(-H)(•) radicals depend strongly on the DNA secondary structure. In double-stranded DNA, the G(-H)(•) decay is biphasic with one component decaying with a lifetime of ∼2.2 ms and the other with a lifetime of ∼0.18 s. By contrast, in single-stranded DNA the G(-H)(•) radicals decay monophasically with a ∼ 0.28 s lifetime. The ms decay component in double-stranded DNA is correlated with the enhancement of 8-oxo-7,8-dihydroguanine (8-oxoG) yields which are ∼7 greater than in single-stranded DNA. In double-stranded DNA, it is proposed that the G(-H)(•) radicals retain radical cation character by sharing the N1-proton with the N3-site of C in the [G(•+):C] base pair. This [G(-H)(•):H(+)C ⇆ G(•+):C] equilibrium allows for the hydration of G(•+) followed by formation of 8-oxoG. By contrast, in single-stranded DNA, deprotonation of G(•+) and the irreversible escape of the proton into the aqueous phase competes more effectively with the hydration mechanism, thus diminishing the yield of 8-oxoG, as observed experimentally.

  18. Drug carrier systems based on water-soluble cationic beta-cyclodextrin polymers.

    PubMed

    Li, Jianshu; Xiao, Huining; Li, Jiehua; Zhong, YinPing

    2004-07-08

    This study was designed to synthesize, characterize and investigate the drug inclusion property of a series of novel cationic beta-cyclodextrin polymers (CPbetaCDs). Proposed water-soluble polymers were synthesized from beta-cyclodextrin (beta-CD), epichlorohydrin (EP) and choline chloride (CC) through a one-step polymerization procedure by varying molar ratio of EP and CC to beta-CD. Physicochemical properties of the polymers were characterized with colloidal titration, nuclear magnetic resonance spectroscopy (NMR), gel permeation chromatography (GPC) and aqueous solubility determination. The formation of naproxen/CPbetaCDs inclusion complexes was confirmed by NMR and fourier transform infrared spectroscopy (FT-IR). Cationic beta-CD polymers showed better hemolytic activities than parent beta-CD and neutral beta-CD polymer in hemolysis test. The morphological study of erythrocytes revealed a cell membrane invagination induced by the cationic groups. The effects of molecular weight and charge density of the polymers on their inclusion and release performance of naproxen were also investigated through phase-solubility and dissolution studies. It was found that the cationic beta-CD polymers with high molecular weight or low charge density exhibited better drug inclusion and dissolution abilities.

  19. In vitro transfection of plasmid DNA by cationized gelatin prepared from different amine compounds.

    PubMed

    Kushibiki, Toshihiro; Tomoshige, Ryuji; Iwanaga, Kazunori; Kakemi, Masawo; Tabata, Yasuhiko

    2006-01-01

    The objective of this paper is to compare the in vitro transfection efficiency of a luciferase plasmid DNA using cationized gelatin prepared from different amine compounds. The compounds used here were ethylenediamine, putrescine, spermidine and spermine, chemically introduced to the carboxyl group of gelatin for the cationization. Complexation of the cationized gelatin with the plasmid DNA was performed by simply mixing the two materials at various N+/P- mixing ratios (the molar number ratio of amino groups of gelatin to the phosphate groups of DNA) in aqueous solution. Gel retardation studies revealed that the formation of cationized-gelatin-plasmid DNA complexes depended on the N+/P- mixing ratio. The stronger interaction of plasmid DNA with the cationized gelatin of spermine compared to the other cationized gelatins was observed by an ethidium bromide intercalation assay and Scatchard binding analysis. When the transfection efficiency of plasmid DNA complexed with the various cationized gelatins at different N+/P- mixing ratios was evaluated for mouse L929 fibroblasts, the highest transfection efficiency was observed for the complex prepared from the cationized gelatin of spermine at a N+/P- mixing ratio of 2. The present study indicates that there is an optimal N+/P- mixing ratio and a type of amine compound or cationization extent of cationized gelatin to enhance the transfection efficiency of plasmid DNA.

  20. Cationic Lipid-Coated Polyplexes (Lipopolyplexes) for DNA and Small RNA Delivery.

    PubMed

    Ewe, Alexander; Aigner, Achim

    2016-01-01

    The delivery of nucleic acids (NA) like DNA for cell transfection or siRNAs for gene knockdown is of major interest for in vitro studies as well as for applications in vivo. The same is true for other small RNA molecules like miRNAs or miRNA inhibitors (antimiRs). Important nonviral gene delivery vectors include liposomes and cationic polymers. With regard to cationic polymers, polyethylenimines (PEIs) are well established for the delivery of NA, by acting as nanoscale delivery platforms (polyplexes). Their combination with liposomes comprising different phospholipids leads to the formation of lipopolyplexes and can further improve their efficacy and biocompatibility, by combining the favorable properties of lipid systems (high stability, efficient cellular uptake, low cytotoxicity) and PEI (NA condensation, facilitated endosomal release).In this chapter, optimal lipopolyplex compositions containing different liposomes and certain branched or linear low-molecular weight PEIs are given. This also includes optimal parameters for lipopolyplex generation, based on various PEIs, N/P ratios, lipids, lipid/PEI ratios, and preparation conditions.Importantly, certain lipopolyplexes retain their biological activity and physicochemical integrity upon prolonged storage at room temperature (RT), in the presence of serum and upon nebulization, thus extending their usefulness toward various applications in vivo.

  1. Controlled release of plasmid DNA from hydrogels prepared from gelatin cationized by different amine compounds.

    PubMed

    Kushibiki, Toshihiro; Tomoshige, Ryuji; Iwanaga, Kazunori; Kakemi, Masawo; Tabata, Yasuhiko

    2006-05-15

    This paper is an investigation to compare the in vivo controlled release of a plasmid DNA from biodegradable hydrogels prepared from gelatin cationized by different amine compounds, ethylenediamine, putrescine, spermidine, and spermine and the consequent profile of gene expression. Cationized gelatin prepared through the chemical introduction of each amine compound was crosslinked by various concentrations of glutaraldehyde to obtain cationized gelatin hydrogels for the carrier of plasmid DNA release. When the cationized gelatin hydrogels incorporating 125I-labeled plasmid DNA were implanted into the femoral muscle of mice, the radioactivity remaining decreased with time and the retention period of radioactivity prolonged with a decrease in the water content of hydrogels. When 125I-labeled cationized gelatin hydrogels with the higher water content was implanted, the radioactivity remaining was decreased faster with time. The remaining time profile of plasmid DNA radioactivity was in good accordance with that of hydrogel radioactivity, irrespective of the type of cationized gelatin. Following intramuscular implantation, any cationized gelatin hydrogel incorporating plasmid DNA enhanced the expression level of plasmid DNA to a significantly higher extent than the free plasmid DNA injection. In addition, prolonged time period of gene expression was observed although there was no significant difference in the expressed period between the cationized gelatin hydrogels. It was concluded that plasmid DNA of biological activity was released from every cationized gelatin hydrogel accompanied with the in vivo degradation, resulting in enhanced and prolonged gene expression.

  2. Understanding the salinity effect on cationic polymers in inducing flocculation of the microalga Neochloris oleoabundans.

    PubMed

    't Lam, G P; Giraldo, J B; Vermuë, M H; Olivieri, G; Eppink, M H M; Wijffels, R H

    2016-05-10

    A mechanistic study was performed to evaluate the effect of salinity on cationic polymeric flocculants, that are used for the harvesting of microalgae. The polyacrylamide Synthofloc 5080H and the polysaccharide Chitosan were employed for the flocculation of Neochloris oleoabundans. In seawater conditions, a maximum biomass recovery of 66% was obtained with a dosage of 90mg/L Chitosan. This recovery was approximately 25% lower compared to Synthofloc 5080H reaching recoveries greater than 90% with dosages of 30mg/L. Although different recoveries were obtained with both flocculants, the polymers exhibit a similar apparent polymer length, as was evaluated from viscosity measurements. While both flocculants exhibit similar polymer lengths in increasing salinity, the zeta potential differs. This indicates that polymeric charge dominates flocculation. With increased salinity, the effectivity of cationic polymeric flocculants decreases due to a reduction in cationic charge. This mechanism was confirmed through a SEM analysis and additional experiments using flocculants with various charge densities.

  3. Polymers modified with double-tailed fluorous compounds for efficient DNA and siRNA delivery.

    PubMed

    He, Bingwei; Wang, Yitong; Shao, Naimin; Chang, Hong; Cheng, Yiyun

    2015-08-01

    Cationic polymers are widely used as gene carriers, however, these polymers are usually associated with low transfection efficacy and non-negligible toxicity. Fluorination on polymers significantly improves their performances in gene delivery, but a high density of fluorous chains must be conjugated on a single polymer. Here we present a new strategy to construct fluorinated polymers with minimal fluorous chains for efficient DNA and siRNA delivery. A double-tailed fluorous compound 2-chloro-4,6-bis[(perfluorohexyl)propyloxy]-1,3,5-triazine (CBT) was conjugated on dendrimers of different generations and low molecular weight polyethylenimine via a facile synthesis. The yielding products with average numbers of 1-2 conjugated CBT moieties showed much improved EGFP and luciferase transfection efficacy compared to unmodified polymers. In addition, these polymers show high siRNA delivery efficacy on different cell lines. Among the synthesized polymers, generation 1 (G1) dendrimer modified with an average number of 1.9 CBT moieties (G1-CBT1.9) shows the highest efficacy when delivering both DNA and siRNA and its efficacy approaches that of Lipofectamine 2000. G1-CBT1.9 also shows efficient gene silencing in vivo. All of the CBT-modified polymers exhibit minimal toxicity on the cells at their optimal transfection conditions. This study provides a new strategy to design efficient fluorous polymers for DNA and siRNA delivery.

  4. [Bactericid and fungicid polymers in dentistry. Polyethyleneimine, a new effective antibacterial and antifungal cationic polymer and its dental application].

    PubMed

    Géczi, Zoltán; Kispélyi, Barbara; Pál, Károly; Hermann, Péter

    2016-06-01

    In the past years antibacterial and antifungal polymers had become the focus of medical research. Polyethylenimine (PEI) and poliamidoamin had been proven the most effective polymers. The data shown in this short review discuss the chemical structure, pharmacological effects and medical use of PEI. Report in the international literature only gives examples of experimental dental appliance of PEI in sealers and filling materials. Because of the growing interest in the subject of PEI we find it important to inform the domestic dental society of cationic polymers.

  5. Re-polarizing Myeloid-derived Suppressor Cells (MDSCs) with Cationic Polymers for Cancer Immunotherapy

    PubMed Central

    He, Wei; Liang, Pei; Guo, Guangxing; Huang, Zhen; Niu, Yiming; Dong, Lei; Wang, Chunming; Zhang, Junfeng

    2016-01-01

    Our evolving understandings of cell-material interactions provide insights for using polymers to modulate cell behaviour that may lead to therapeutic applications. It is known that in certain cancers, myeloid-derived suppressor cells (MDSCs) play vital roles in promoting tumour progression, chiefly because of their ‘alternatively activated’ (or M2) phenotype that orchestrates immunosuppression. In this study, we demonstrated that two cationic polymerscationic dextran (C-dextran) and polyethyleneimine (PEI) – could directly remodel these cells into an anti-tumour, ‘classically activated’ (or M1) phenotype, thereby stimulating these cells to express tumouricidal cytokines, reactivating the T cell functions, and prolonging the lifespan of the mice model. Our investigations with knock-out mice further indicate that the functions of these cationic polymers require the involvement of toll-like receptor 4-mediated signalling. Taken together, our study suggests that these cationic polymers can effectively and directly re-polarize MDSCs from an immunosuppressive characteristic to an anti-tumour phenotype, leading to successful restoration of immune surveillance in the tumour microenvironment and elimination of tumour cells. Our findings may have immediate impact on further development of polymer-based therapeutics for cancer immunotherapy. PMID:27074905

  6. Ultrasound enhances in vivo tumor expression of plasmid DNA by PEG-introduced cationized dextran.

    PubMed

    Hosseinkhani, Hossein; Tabata, Yasuhiko

    2005-11-28

    This study is an investigation to experimentally confirm whether or not ultrasound (US) irradiation is effective in enhancing the in vivo gene expression of plasmid DNA in tumor. Dextran was cationized by introducing spermine to the hydroxyl groups to allow to polyionically complex with a plasmid DNA. The cationized dextran prepared was additionally modified with poly(ethylene glycol) (PEG) molecules which have an active ester and methoxy groups at each terminal, to obtain cationized dextran with different percentages of PEG introduced. Various cationized dextrans with or without PEG introduction were mixed with a plasmid DNA of LacZ to form cationized dextran-plasmid DNA complexes. Electrophoretical examination revealed that the plasmid DNA was complexed both with the cationized dextran and PEG-introduced cationized dextran, irrespective of the PEG introduction percentage, although the higher N/P ratio was needed for plasmid DNA complexation with the latter. By complexation with the cationized dextran, the zeta potential of plasmid DNA was changed to be positive. The charge of PEG-introduced cationized dextran-plasmid DNA complexes became close to 0 mV as their percentage of PEG introduced increased, although the molecular size was about 250 nm, irrespective of the PEG introduction. When cationized dextran-plasmid DNA complexes with or without PEG introduction were intravenously injected to mice carrying a subcutaneous Meth-AR-1 fibrosarcoma mass and the subsequent US irradiation to the tumor mass percutaneously, the PEG-introduced cationized dextran-plasmid DNA complex plus US irradiation enhanced the tumor level of gene expression to a significantly high extent compared with the cationized dextran-plasmid DNA complex and free plasmid DNA with or without US irradiation. The enhanced level depended on the time period and timing of US irradiation. Fluorescent microscopic studies revealed that the localization of plasmid DNA and the gene expression were observed in

  7. Is DNA a Good Model Polymer?

    PubMed Central

    Tree, Douglas R.; Muralidhar, Abhiram; Doyle, Patrick S.; Dorfman, Kevin D.

    2013-01-01

    The details surrounding the cross-over from wormlike-specific to universal polymeric behavior has been the subject of debate and confusion even for the simple case of a dilute, unconfined wormlike chain. We have directly computed the polymer size, form factor, free energy and Kirkwood diffusivity for unconfined wormlike chains as a function of molecular weight, focusing on persistence lengths and effective widths that represent single-stranded and double-stranded DNA in a high ionic strength buffer. To do so, we use a chain-growth Monte Carlo algorithm, the Pruned-Enriched Rosenbluth Method (PERM), which allows us to estimate equilibrium and near-equilibrium dynamic properties of wormlike chains over an extremely large range of contour lengths. From our calculations, we find that very large DNA chains (≈ 1,000,000 base pairs depending on the choice of size metric) are required to reach flexible, swollen non-draining coils. Furthermore, our results indicate that the commonly used model polymer λ-DNA (48,500 base pairs) does not exhibit “ideal” scaling, but exists in the middle of the transition to long-chain behavior. We subsequently conclude that typical DNA used in experiments are too short to serve as an accurate model of long-chain, universal polymer behavior. PMID:24347685

  8. Investigation of the influence on conformational transition of DNA induced by cationic lipid vesicles

    NASA Astrophysics Data System (ADS)

    Zhang, Zheling; Huang, Weimin; Wang, Erkang; Dong, Shaojun

    2003-01-01

    Recent studies have focused on the structural features of DNA-lipid assemblies. In this paper we take nile blue A (NBA) as a probe molecule to study the influence of the conformational transition of DNA induced by didodecyldimethylammonium bromide (DDAB) cationic vesicles to the interaction between DNA and the probe molecules. We find that upon binding to DNA, a secondary conformational transition of DNA induced by the cationic liposome from the native B-form to the C-form resulted in the change of binding modes of NBA to DNA and different complexes are formed between DNA, DDAB and NBA.

  9. Preparation of metallic cation conducting polymers based on sterically hindered phenols containing polymeric systems

    DOEpatents

    Skotheim, T.A.; Okamoto, Yoshiyuki; Lee, H.S.

    1989-11-21

    The present invention relates to ion-conducting solvent-free polymeric systems characterized as being cationic single ion conductors. The solvent-free polymer electrolytes comprise a flexible polymer backbone to which is attached a metal salt, such as a lithium, sodium or potassium salt, of a sterically hindered phenol. The solid polymer electrolyte may be prepared either by (1) attaching the hindered phenol directly to a flexible polymeric backbone, followed by neutralization of the phenolic OH's or (2) reacting the hindered phenol with a polymer precursor which is then polymerized to form a flexible polymer having phenolic OH's which are subsequently neutralized. Preferably the hindered phenol-modified polymeric backbone contains a polyether segment. The ionic conductivity of these solvent-free polymer electrolytes has been measured to be in the range of 10[sup [minus]4] to 10[sup [minus]7] S cm[sup [minus]1] at room temperature.

  10. Preparation of metallic cation conducting polymers based on sterically hindered phenols containing polymeric systems

    DOEpatents

    Skotheim, Terje A.; Okamoto, Yoshiyuki; Lee, Hung S.

    1989-01-01

    The present invention relates to ion-conducting solvent-free polymeric systems characterized as being cationic single ion conductors. The solvent-free polymer electrolytes comprise a flexible polymer backbone to which is attached a metal salt, such as a lithium, sodium or potassium salt, of a sterically hindered phenol. The solid polymer electrolyte may be prepared either by (1) attaching the hindered phenol directly to a flexible polymeric backbone, followed by neutralization of the phenolic OH's or (2) reacting the hindered phenol with a polymer precursor which is then polymerized to form a flexible polymer having phenolic OH's which are subsequently neutralized. Preferably the hindered phenol-modified polymeric backbone contains a polyether segment. The ionic conductivity of these solvent-free polymer electrolytes has been measured to be in the range of 10.sup.-4 to 10.sup.-7 S cm.sup.-1 at room temperature.

  11. Cationic polymers for successful flocculation of marine microalgae.

    PubMed

    't Lam, G P; Vermuë, M H; Olivieri, G; van den Broek, L A M; Barbosa, M J; Eppink, M H M; Wijffels, R H; Kleinegris, D M M

    2014-10-01

    Flocculation of microalgae is a promising technique to reduce the costs and energy required for harvesting microalgae. Harvesting marine microalgae requires suitable flocculants to induce the flocculation under marine conditions. This study demonstrates that cationic polymeric flocculants can be used to harvest marine microalgae. Different organic flocculants were tested to flocculate Phaeodactylum tricornutum and Neochloris oleoabundans grown under marine conditions. Addition of 10 ppm of the commercial available flocculants Zetag 7557 and Synthofloc 5080H to P. tricornutum showed a recovery of, respectively, 98% ± 2.0 and 94% ± 2.9 after flocculation followed by 2h sedimentation. Using the same flocculants and dosage for harvesting N. oleoabundans resulted in a recovery of 52% ± 1.5 and 36% ± 11.3. This study shows that cationic polymeric flocculants are a viable option to pre-concentrate marine cultivated microalgae via flocculation prior to further dewatering.

  12. Cationic-modified cyclodextrin nanosphere/anionic polymer as flocculation/sorption systems.

    PubMed

    Xiao, Huining; Cezar, Norlito

    2005-03-15

    Simultaneous removal of dissolved and colloidal substances has been a challenging task. The cationic-modified beta-cyclodextrin nanospheres synthesized in this work, in conjunction with a water-soluble polyacrylamide-based anionic polymer, potentially provide a novel approach to address the problem. The cyclodextrin was rendered cationic using (2,3-epoxypropyl)trimethylammonium chloride as a reagent. The cationicity of the modified cyclodextrin and the reaction between cyclodextrin and the reagent were characterized by electrophoresis measurement, polyelectrolyte titration, and NMR. As a dual-component flocculation system, the cationic cyclodextrin/anionic polymer significantly induced clay flocculation, lowering the relative turbidity of the clay suspension over a wide pH range. Meanwhile, as a nanospherical absorbent, the modified cyclodextrins exhibited strong affinity toward aromatic compounds via inclusion complex formation in the hydrophobic cavities, which was monitored by UV spectroscopy. These systems facilitated the simultaneous removal of dissolved and colloidal substances, which was unachievable previously. In addition, the interaction between anionic polymers and the clay particles pretreated with cationic cyclodextrin was investigated in order to reveal the flocculation mechanism.

  13. Cationic β-cyclodextrin polymer applied to a dual cyclodextrin polyelectrolyte multilayer system.

    PubMed

    Junthip, Jatupol; Tabary, Nicolas; Leclercq, Laurent; Martel, Bernard

    2015-08-01

    A polyelectrolyte multilayer film (PEM) based on cationic and anionic β-cyclodextrin polyelectrolytes was coated onto a textile substrate for future drug delivery purposes. We firstly synthesized a novel cationic β-cyclodextrin polymer (polyEPG-CD) by crosslinking β-cyclodextrin (βCD) with epichlorohydrin (EP) under basic conditions, in the presence of glycidyltrimetrylammonium chloride (GTMAC) as cationizing group. The influence of preparation conditions has been investigated in order to preferably obtain a water soluble fraction whose charge density and molecular weights were optimal for the layer-by-layer (LbL) deposition process. The different cationic cyclodextrin polymers obtained were characterized by FTIR, NMR, colloidal titration, conductimetry, thermogravimetric analysis and size exclusion chromatography. Besides, the counterpart polyelectrolyte was a β-cyclodextrin polymer crosslinked with citric acid, polyCTR-CD, whose synthesis and characterization have been previously reported. Finally we realized the Layer by Layer (LbL) build-up of the PEM coating onto the textile support, using the dip coating method, by alternatively soaking it in cationic polyEPG-CD and anionic polyCTR-CD solutions. This multilayer self-assembly was monitored by SEM, gravimetry and OWLS in function of both polyelectrolytes concentrations and ratios. Solutions parameters such as pH, ionic strenght were also discussed.

  14. Polymer multilayer tattooing for enhanced DNA vaccination

    NASA Astrophysics Data System (ADS)

    Demuth, Peter C.; Min, Younjin; Huang, Bonnie; Kramer, Joshua A.; Miller, Andrew D.; Barouch, Dan H.; Hammond, Paula T.; Irvine, Darrell J.

    2013-04-01

    DNA vaccines have many potential benefits but have failed to generate robust immune responses in humans. Recently, methods such as in vivo electroporation have demonstrated improved performance, but an optimal strategy for safe, reproducible, and pain-free DNA vaccination remains elusive. Here we report an approach for rapid implantation of vaccine-loaded polymer films carrying DNA, immune-stimulatory RNA, and biodegradable polycations into the immune-cell-rich epidermis, using microneedles coated with releasable polyelectrolyte multilayers. Films transferred into the skin following brief microneedle application promoted local transfection and controlled the persistence of DNA and adjuvants in the skin from days to weeks, with kinetics determined by the film composition. These ‘multilayer tattoo’ DNA vaccines induced immune responses against a model HIV antigen comparable to electroporation in mice, enhanced memory T-cell generation, and elicited 140-fold higher gene expression in non-human primate skin than intradermal DNA injection, indicating the potential of this strategy for enhancing DNA vaccination.

  15. Discovery of Cationic Polymers for Non-viral Gene Delivery using Combinatorial Approaches

    PubMed Central

    Barua, Sutapa; Ramos, James; Potta, Thrimoorthy; Taylor, David; Huang, Huang-Chiao; Montanez, Gabriela; Rege, Kaushal

    2015-01-01

    Gene therapy is an attractive treatment option for diseases of genetic origin, including several cancers and cardiovascular diseases. While viruses are effective vectors for delivering exogenous genes to cells, concerns related to insertional mutagenesis, immunogenicity, lack of tropism, decay and high production costs necessitate the discovery of non-viral methods. Significant efforts have been focused on cationic polymers as non-viral alternatives for gene delivery. Recent studies have employed combinatorial syntheses and parallel screening methods for enhancing the efficacy of gene delivery, biocompatibility of the delivery vehicle, and overcoming cellular level barriers as they relate to polymer-mediated transgene uptake, transport, transcription, and expression. This review summarizes and discusses recent advances in combinatorial syntheses and parallel screening of cationic polymer libraries for the discovery of efficient and safe gene delivery systems. PMID:21843141

  16. Enhancing Cation Diffusion and Suppressing Anion Diffusion via Lewis-Acidic Polymer Electrolytes.

    PubMed

    Savoie, Brett M; Webb, Michael A; Miller, Thomas F

    2017-02-02

    Solid polymer electrolytes (SPEs) have the potential to increase both the energy density and stability of lithium-based batteries, but low Li(+) conductivity remains a barrier to technological viability. SPEs are designed to maximize Li(+) diffusivity relative to the anion while maintaining sufficient salt solubility. It is thus remarkable that poly(ethylene oxide) (PEO), the most widely used SPE, exhibits Li(+) diffusivity that is an order of magnitude smaller than that of typical counterions at moderate salt concentrations. We show that Lewis-basic polymers like PEO favor slow cation and rapid anion diffusion, while this relationship can be reversed in Lewis-acidic polymers. Using molecular dynamics, polyboranes are identified that achieve up to 10-fold increases in Li(+) diffusivities and significant decreases in anion diffusivities, relative to PEO in the dilute-ion regime. These results illustrate a general principle for increasing Li(+) diffusivity and transference number with chemistries that exhibit weaker cation and stronger anion coordination.

  17. Thermodynamics of cationic lipid binding to DNA and DNA condensation: roles of electrostatics and hydrophobicity.

    PubMed

    Matulis, Daumantas; Rouzina, Ioulia; Bloomfield, Victor A

    2002-06-26

    Alkylammonium binding to DNA was studied by isothermal titration calorimetry. Experimental data, obtained as functions of alkyl chain length, salt concentration, DNA concentration, and temperature, provided a detailed thermodynamic description of lipid-DNA binding reactions leading to DNA condensation. Lipid binding, counterion displacement, and DNA condensation were highly cooperative processes, driven by a large increase in entropy and opposed by a relatively small endothermic enthalpy at room temperature. Large negative heat capacity change indicated a contribution from hydrophobic interactions between aliphatic tails. An approximation of lipid-DNA binding as dominated by two factors-ionic and hydrophobic interactions-yielded a model that was consistent with experimental data. Chemical group contributions to the energetics of binding were determined and could be used to predict energetics of other lipid binding to DNA. Electrostatic and hydrophobic contributions to Gibbs free energy, enthalpy, entropy, and heat capacity could be distinguished by applying additivity principles. Binding of lipids with two, three, and four aliphatic tails was investigated and compared to single-tailed lipid binding. Structurally, the model suggests that lipid cationic headgroups and aliphatic tails distribute evenly and lay down on DNA surface without the formation of micelles.

  18. Cationic comb-type copolymers for DNA analysis

    NASA Astrophysics Data System (ADS)

    Kim, Won Jong; Sato, Yuichi; Akaike, Toshihiro; Maruyama, Atsushi

    2003-12-01

    Genetic diagnoses, such as single nucleotide polymorphism (SNP) typing, allow elucidation of gene-based physiological differences, such as susceptibility to diseases and response to drugs, among individuals. Many detection technologies, including allele-specific hybridization, allele-specific primer extension and oligonucleotide ligation, are being used to discriminate SNP alleles. These methods still have many unsolved practical issues. In general they require adequate and specific hybridizations of primer or probe DNAs with target DNAs. This frequently needs optimization of the probe/primer structures and operating conditions. In nature, highly homology-sensitive hybridization is assisted by a nucleic acid chaperone that reduces the energy barrier associated with breakage and reassociation of nucleic base pairs. Here we report a simple, quick, precise but enzyme-free method for SNP analysis. The method uses cationic comb-type copolymers (CCCs) producing high nucleic acid chaperone activities. A single-base mismatch in 20-mer DNA can be detected within a few minutes at ambient temperatures (25-37 °C). Even without careful optimization processes, the method has the sensitivity to detect the mismatches causing subtle changes (ΔTm ~ 1 °C) in duplex thermal stability. CCCs may have various bioanalytical applications where precise hybridization of nucleic acids is needed.

  19. Intermolecular forces between low generation PAMAM dendrimer condensed DNA helices: role of cation architecture.

    PubMed

    An, Min; Parkin, Sean R; DeRouchey, Jason E

    2014-01-28

    In recent years, dendriplexes, complexes of cationic dendrimers with DNA, have become attractive DNA delivery vehicles due to their well-defined chemistries. To better understand the nature of the forces condensing dendriplexes, we studied low generation poly(amidoamine) (PAMAM) dendrimer-DNA complexes and compared them to comparably charged linear arginine peptides. Using osmotic stress coupled with X-ray scattering, we have investigated the effect of molecular chain architecture on DNA-DNA intermolecular forces that determine the net attraction and equilibrium interhelical distance within these polycation condensed DNA arrays. In order to compact DNA, linear cations are believed to bind in DNA grooves and to interact with the phosphate backbone of apposing helices. We have previously shown a length dependent attraction resulting in higher packaging densities with increasing charge for linear cations. Hyperbranched polycations, such as polycationic dendrimers, presumably would not be able to bind to DNA and correlate their charges in the same manner as linear cations. We show that attractive and repulsive force amplitudes in PAMAM-DNA assemblies display significantly different trends than comparably charged linear arginines resulting in lower DNA packaging densities with increasing PAMAM generation. The salt and pH dependencies of packaging in PAMAM dendrimer-DNA and linear arginine-DNA complexes were also investigated. Significant differences in the force curve behaviour and salt and pH sensitivities suggest that different binding modes may be present in DNA condensed by dendrimers when compared to linear polycations.

  20. Cationic phenylene ethynylene polymers and oligomers exhibit efficient antiviral activity.

    PubMed

    Wang, Ying; Canady, Taylor D; Zhou, Zhijun; Tang, Yanli; Price, Dominique N; Bear, David G; Chi, Eva Y; Schanze, Kirk S; Whitten, David G

    2011-07-01

    The antiviral activities of poly(phenylene ethynylene) (PPE)-based cationic conjugated polyelectrolytes (CPE) and oligo-phenylene ethynylenes (OPE) were investigated using two model viruses, the T4 and MS2 bacteriophages. Under UV/visible light irradiation, significant antiviral activity was observed for all of the CPEs and OPEs; without irradiation, most of these compounds exhibited high inactivation activity against the MS2 phage and moderate inactivation ability against the T4 phage. Transmission electron microscopy (TEM) and SDS polyacrylamide gel electrophoresis (SDS-PAGE) reveal that the CPEs and OPEs exert their antiviral activity by partial disassembly of the phage particle structure in the dark and photochemical damage of the phage capsid protein under UV/visible light irradiation.

  1. A linear-dendritic cationic vector for efficient DNA grasp and delivery.

    PubMed

    Yang, Bin; Sun, Yun-xia; Yi, Wen-jie; Yang, Juan; Liu, Chen-wei; Cheng, Han; Feng, Jun; Zhang, Xian-zheng; Zhuo, Ren-xi

    2012-07-01

    This paper presents an attempt to design an efficient and biocompatible cationic gene vector via structural optimization that favors the efficient utilization of amine groups for DNA condensation. To this end, a linear-dendritic block copolymer of methoxyl-poly(ethylene glycol)-dendritic polyglycerol-graft-tris(2-aminoethyl)amine (mPEG-DPG-g-TAEA) was prepared with specially designed multiple functions including strong DNA affinity, endosomal buffering and expected serum-tolerance. Based on the transfection in serum-free and serum-conditioned media, the influences of the polymer structures including the degree of polymerization of DPG and TAEA substitution degree were explored. As compared to polyethylenimine (M(w)=5 kDa) (PEI5k) with similar molecular weight and higher amine density, mPEG-DPG-g-TAEA displayed comparably high DNA affinity due to the special linear-dendritic architecture. Consequently, at very low N/P ratio, mPEG-DPG-g-TAEA vectors could mediate efficient in vitro luciferase expression at levels that are comparable with or even superior to the commercially available Lipofectamine™ 2000, while being apparently higher than PEI5k. The designed vectors exhibit considerably higher cell biocompatibility and better resistance against bovine serum albumin adsorption than PEI5k. The stability of the complexes on coincubation with heparin was found to be largely dependent on the polymer structure. As concluded from the comparative transfection study in the absence/presence of chloroquine, it is likely that the polycation itself could produce endosomal buffering. This linear-dendritic vector shows promising potential for the application of gene delivery.

  2. Do the cations in clay and the polymer matrix affect quantum dot fluorescent properties?

    PubMed

    Wei, Wenjun; Liu, Cui; Liu, Jiyan; Liu, Xueqing; Zou, Linling; Cai, Shaojun; Shi, Hong; Cao, Yuan-Cheng

    2016-06-01

    This paper studied the effects of cations and polymer matrix on the fluorescent properties of quantum dots (QDs). The results indicated that temperature has a greater impact on fluorescence intensity than clay cations (mainly K(+) and Na(+) ). Combined fluorescence lifetime and steady-state spectrometer tests showed that QD lifetimes all decreased when the cation concentration was increased, but the quantum yields were steady at various cation concentrations of 0, 0.05, 0.5 and 1 M. Poly(ethylene oxide) (PEO), poly(vinyl alcohol) (PVA) and diepoxy resin were used to study the effects of polymers on QD lifetime and quantum yield. The results showed that the lifetime for QDs 550 nm in PEO and PVA was 17.33 and 17.12 ns, respectively; for the epoxy resin, the lifetime was 0.74 ns, a sharp decrease from 24.47 ns. The quantum yield for QDs 550 nm changed from 34.22% to 7.45% and 7.81% in PEO and PVA, respectively; for the epoxy resin the quantum yield was 2.25%. QDs 580 nm and 620 nm showed the same results as QDs 550 nm. This study provides useful information on the design, synthesis and application of QDs-polymer luminescent materials. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Activation of DNA strand exchange by cationic comb-type copolymers: effect of cationic moieties of the copolymers

    PubMed Central

    Choi, Sung Won; Kano, Arihiro; Maruyama, Atsushi

    2008-01-01

    We have previously reported that poly(l-lysine)-graft-dextran cationic comb-type copolymers accelerate strand exchange reaction between duplex DNA and its complementary single strand by >4 orders of magnitude, while stabilizing duplex. However, the stabilization of the duplex is considered principally unfavourable for the accelerating activity since the strand exchange reaction requires, at least, partial melting of the initial duplex. Here we report the effects of different cationic moieties of cationic comb-type copolymers on the accelerating activity. The copolymer having guanidino groups exhibited markedly higher accelerating effect on strand exchange reactions than that having primary amino groups. The high accelerating effect of the former is considered to be due to its lower stabilizing effect on duplex DNA, resulting from its increased affinity to single-stranded DNA. The difference in affinity was clearly demonstrated by a fluorescence correlation spectroscopy study; the interaction of the former with single-stranded DNA still remained high even at 1 M NaCl, while that of the latter completely disappeared. These results suggest that some modes of interactions, such as hydrogen bonding, other than electrostatic interactions between the copolymers having guanidino groups and DNAs may be involved in strand exchange activation. PMID:18033803

  4. Mode of formation and structural features of DNA-cationic liposome complexes used for transfection.

    PubMed

    Gershon, H; Ghirlando, R; Guttman, S B; Minsky, A

    1993-07-20

    Complexes formed between cationic liposomes and nucleic acids represent a highly efficient vehicle for delivery of DNA and RNA molecules into a large variety of eukaryotic cells. By using fluorescence, gel electrophoresis, and metal-shadowing electron microscopy techniques, the factors that affect the, yet unclear, interactions between DNA and cationic liposomes as well as the structural features of the resulting complexes have been elucidated. A model is suggested according to which cationic liposomes bind initially to DNA molecules to form clusters of aggregated vesicles along the nucleic acids. At a critical liposome density, two processes occur, namely, DNA-induced membrane fusion, indicated by lipid mixing studies, and liposome-induced DNA collapse, pointed out by the marked cooperativity of the encapsulation processes, by their modulations by DNA-condensing agents, and also by their conspicuous independence upon DNA length. The DNA collapse leads to the formation of condensed structures which can be completely encapsulated within the fused lipid bilayers in a fast, highly cooperative process since their exposed surface is substantially smaller than that of extended DNA molecules. The formation of the transfecting DNA-liposome complexes in which the nucleic acids are fully encapsulated within a positively-charged lipid bilayer is proposed, consequently, to be dominated by mutual effects exerted by the DNA and the cationic liposomes, leading to interrelated lipid fusion and DNA collapse.

  5. Effect of powdered activated carbon (PAC) and cationic polymer on biofouling mitigation in hybrid MBRs.

    PubMed

    Jamal Khan, S; Visvanathan, C; Jegatheesan, V

    2012-06-01

    In this study, the influence of powdered activated carbon (PAC) and cationic polymer (MPE50) was investigated on the fouling propensity in hybrid MBRs. Three laboratory scale MBRs were operated simultaneously including MBR(Control), MBR(PAC), and MBR(Polymer). Optimum dosages of PAC and polymer to the MBR(PAC) and MBR(Polymer), respectively were determined using jar tests. It was found that the MBR(PAC) exhibited low fouling tendency and prolonged filtration as compared to the other MBRs. Improved filtration in MBR(PAC) was attributed to the flocculation and adsorption phenomena. The effective stability of the biomass by PAC in the form of biological activated carbon (BAC) was verified by the increase in mean particle size. The BAC aided sludge layer exhibited porous cake structure resulting in the prolong filtration. However, both the membrane hybrid systems revealed effective adsorption of organic matter by 40% reduction in the soluble EPS concentration.

  6. Comparing Gene Silencing and Physiochemical Properties in siRNA Bound Cationic Star-Polymer Complexes.

    PubMed

    Dearnley, Megan; Reynolds, Nicholas P; Cass, Peter; Wei, Xiaohu; Shi, Shuning; Mohammed, A Aalam; Le, Tam; Gunatillake, Pathiraja; Tizard, Mark L; Thang, San H; Hinton, Tracey M

    2016-11-14

    The translation of siRNA into clinical therapies has been significantly delayed by issues surrounding the delivery of naked siRNA to target cells. Here we investigate siRNA delivery by cationic acrylic polymers developed by Reversible Addition-Fragmentation chain Transfer (RAFT) mediated free radical polymerization. We investigated cell uptake and gene silencing of a series of siRNA-star polymer complexes both in the presence and absence of a protein "corona". Using a multidisciplinary approach including quantitative nanoscale mechanical-atomic force microscopy, dynamic light scattering and nanoparticle tracking analysis we have characterized the nanoscale morphology, stiffness, and surface charge of the complexes with and without the protein corona. This is one of the first examples of a comprehensive physiochemical analysis of siRNA-polymer complexes being performed alongside in vitro biological assays, allowing us to describe a set of desirable physical features of cationic polymer complexes that promote gene silencing. Multifaceted studies such as this will improve our understanding of structure-function relationships in nanotherapeutics, facilitating the rational design of polymer-mediated siRNA delivery systems for novel treatment strategies.

  7. The polymer physics of single DNA confined in nanochannels.

    PubMed

    Dai, Liang; Renner, C Benjamin; Doyle, Patrick S

    2016-06-01

    In recent years, applications and experimental studies of DNA in nanochannels have stimulated the investigation of the polymer physics of DNA in confinement. Recent advances in the physics of confined polymers, using DNA as a model polymer, have moved beyond the classic Odijk theory for the strong confinement, and the classic blob theory for the weak confinement. In this review, we present the current understanding of the behaviors of confined polymers while briefly reviewing classic theories. Three aspects of confined DNA are presented: static, dynamic, and topological properties. The relevant simulation methods are also summarized. In addition, comparisons of confined DNA with DNA under tension and DNA in semidilute solution are made to emphasize universal behaviors. Finally, an outlook of the possible future research for confined DNA is given.

  8. Cationic polymer drilling fluid can sometimes replace oil-based mud

    SciTech Connect

    Beihoffer, T.W.; Dorrough, D.S.; Deem, C.K.; Schmidt, D.D.; Bray, R.P. )

    1992-03-16

    A recently developed cationic polymer/brine drilling fluid (CBF) system, tested in a number of wells drilled in the U.S. and the North Sea, can replace oil-based fluids in certain applications. This paper reports that the field tests have shown CBF to be more inhibitive than other water-based muds used in the same areas. To date, the primary applications have been in large diameter hole sections drilled through Tertiary shales with high semectite clay content. The CBF system uses a cationic polymer and potassium chloride for shale inhibition, starch for fluid loss control, and a biopolymer for rheology. Tests have been developed to quantitatively measure the concentrations of the inhibitive additives in the fluid, allowing the fluid to be run with a high degree of control.

  9. Use of cationic polymers to reduce pathogen levels during dairy manure separation.

    PubMed

    Liu, Zong; Carroll, Zachary S; Long, Sharon C; Gunasekaran, Sundaram; Runge, Troy

    2016-01-15

    Various separation technologies are used to deal with the enormous amounts of animal waste that large livestock operations generate. When the recycled waste stream is land applied, it is essential to lower the pathogen load to safeguard the health of livestock and humans. We investigated whether cationic polymers, used as a flocculent in the solid/liquid separation process, could reduce the pathogen indicator load in the animal waste stream. The effects of low charge density cationic polyacrylamide (CPAM) and high charge density cationic polydicyandiamide (PDCD) were investigated. Results demonstrated that CPAM was more effective than PDCD for manure coagulation and flocculation, while PDCD was more effective than CPAM in reducing the pathogen indicator loads. However, their combined use, CPAM followed by PDCD, resulted in both improved solids separation and pathogen indicator reduction.

  10. DNA interaction and photocleavage properties of porphyrins containing cationic substituents at the peripheral position.

    PubMed

    Mettath, S; Munson, B R; Pandey, R K

    1999-01-01

    A series of mono- and disubstituted cationic porphyrins (1-8) were synthesized and investigated for their ability to bind and cleave DNA in the presence of light. In these porphyrins, the cationic substituents were introduced at various peripheral positions, i.e., the non-meso positions of the porphyrin system. The modes of binding of these porphyrins to DNA were investigated by UV-vis spectroscopy, circular dichroism, and an unwinding assay. The intrinsic binding constants Kb of these porphyrins to calf thymus DNA was found to be in the range 10(4)-10(5) M-1. Two of the zinc(II) complexes of non-meso-substituted cationic porphyrins (5 and 8) were found to bind to DNA via intercalation, which is in contrast to the previously reported outside-binding mode for the Zn(II) complexes of meso-substituted cationic porphyrins. Except for monocationic porphyrin 1 and Ni(II) dicationic porphyrin 6, all the other porphyrins were found to be efficient photocleavers of DNA. The DNA photocleavage characteristics of this series of cationic porphyrins were found to depend on the structural characteristics of the poprhyrins such as (a) length of the side chain of the cationic substituents (2 vs 4), (b) the position of the side chain on the porphyrin ring (4 vs 7), and (c) the presence of the chelating metal in 3, 5, and 8 as compared to the nonmetallo porphyrins 2, 4, and 7, respectively.

  11. Synthesis and Characterization of Phosphonium-Containing Cationic Poly(styrene) Polymers

    DTIC Science & Technology

    2009-12-01

    ionomeric system designed as an anion exchange membrane for these types of applications. Styrene monomer has been copolymerized with 4... Ionomer , phophonium, cationic, RAFT, polymer 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF PAGES 14 19a...drastically altered even at low phosphonium contents. Homopolymer poly(styrene) typically has a glass transition temperature (Tg) around 100 °C; low

  12. Permethyl Cobaltocenium (Cp*2Co+) as an Ultra-Stable Cation for Polymer Hydroxide-Exchange Membranes

    PubMed Central

    Gu, Shuang; Wang, Junhua; Kaspar, Robert B.; Fang, Qianrong; Zhang, Bingzi; Bryan Coughlin, E.; Yan, Yushan

    2015-01-01

    Hydroxide (OH−)-exchange membranes (HEMs) are important polymer electrolytes enabling the use of affordable and earth-abundant electrocatalysts for electrochemical energy-conversion devices such as HEM fuel cells, HEM electrolyzers, and HEM solar hydrogen generators. Many HEM cations exist, featuring desirable properties, but new cations are still needed to increase chemical stability at elevated temperatures. Here we introduce the permethyl cobaltocenium [(C5Me5)2Co(III)+ or Cp*2Co+] as an ultra-stable organic cation for polymer HEMs. Compared with the parent cobaltocenium [(C5H5)2Co(III)+ or Cp2Co+], Cp*2Co+ has substantially higher stability and basicity. With polysulfone as an example, we demonstrated the feasibility of covalently linking Cp*2Co+ cation to polymer backbone and prepared Cp*2Co+-functionalized membranes as well. The new cation may be useful in designing more durable HEM electrochemical devices. PMID:26119573

  13. Protection of oxidative hair color fading from shampoo washing by hydrophobically modified cationic polymers.

    PubMed

    Zhou, Y; Foltis, L; Moore, D J; Rigoletto, R

    2009-01-01

    The fading of oxidative color in hair as a result of daily shampoo washing activities has become a common problem and a source of frequent complaints by consumers. The fading occurs primarily through hair dye solubility in water. One aspect of the current study investigates the physical and chemical factors that influence hair color fading during the washing process. This is accomplished by testing hair dye dissolution in water from dyed hair samples with variation of surfactant type, pH, and hair type. Furthermore, a new approach to preventing color fading is developed aiming to provide an effective barrier function for hair dye from dissolving into water. The preliminary investigation of a series of polymers with various functional groups indicates that polymers with hydrophobically modified and cationic functionalities are most effective in preventing hair dye dissolution in water. It is also evident that a synergistic effect of the polymer's hydrophobic moieties and cationic charges are important on hair color protection during shampoo washing processes. A primary example of a polymer within this category is a cationic terpolymer of vinylpyrrolidone, dimethylaminopropyl methacrylamide, and methacryloylaminopropyl lauryldimonium chloride (INCI: Polyquaternium-55). The color protection benefit of this polymer is evaluated using newly developed methodologies for evaluating hair color changes, such as hair color fading tests through multiple shampoo washes with mannequin heads and hair tresses, both derived from human hair, colorimetry, and quantitative digital image analysis. In addition, new infrared spectroscopic imaging techniques are used to detect the hair dye deposition behavior inside hair fibers both with and without the color protection treatment. Both visual and instrumental measurement results indicate that Polyquaternium-55 provides a high level of color protection when formulated in a hair color protection regimen with up to 50% color protection. This

  14. A Promising Combo Gene Delivery System Developed from (3-Aminopropyl)triethoxysilane-Modified Iron Oxide Nanoparticles and Cationic Polymers

    NASA Astrophysics Data System (ADS)

    Zhang, Zubin; Song, Lina; Dong, Jinlai; Guo, Dawei; Du, Xiaolin; Cao, Biyin; Zhang, Yu; Gu, Ning; Mao, Xinliang

    2013-05-01

    (3-Aminopropyl)triethoxysilane-modified iron oxide nanoparticles (APTES-IONPs) have been evaluated for various biomedical applications, including medical imaging and drug delivery. Cationic polymers (CPs) such as Lipofectamine and TurboFect are widely used for research in gene delivery, but their toxicity and low in vivo efficiency limited their further application. In the present study, we synthesized water-soluble APTES-IONPs and developed a combo gene delivery system based on APTES-IONPs and CPs. This system significantly increased gene-binding capacity, protected genes from degradation, and improved gene transfection efficiency for DNA and siRNA in both adherent and suspension cells. Because of its great biocompatibility, high gene-carrying ability, and very low cytotoxicity, this combo gene delivery system will be expected for a wide application, and it might provide a new method for gene therapy.

  15. Ultrasound enhancement of in vitro transfection of plasmid DNA by a cationized gelatin.

    PubMed

    Hosseinkhani, Hossein; Aoyama, Teruyoshi; Ogawa, Osamu; Tabata, Yasuhiko

    2002-05-01

    In vitro transfection efficiency of a plasmid DNA for rat gastric mucosal (RGM)-1 cells was enhanced by ultrasound (US) irradiation. Ethylenediamine was introduced to the carboxyl groups of gelatin to prepare a cationized gelatin as the vector of plasmid DNA encoding luciferase. An electrophoresis experiment revealed that the cationized gelatin was mixed with plasmid DNA at the weight ratio of 5.0 to form a cationized gelatin-plasmid DNA complex. The complex obtained was about 200nm in diameter with a positive charge. When incubated with the cationized gelatin-plasmid DNA complex and subsequently exposed to US, RGM-1 cells exhibited a significantly enhanced luciferase activity although the extent increased with an increase in the DNA concentration, in contrast to the cationized gelatin alone with or without US irradiation and US irradiation alone. US irradiation was also effective in enhancing the activity by free plasmid DNA although the extent was less than that of the complex. The US-induced enhancement of luciferase activity was influenced by the exposure time period, frequency, and intensity of US. The activity enhancement became higher to be significant at the irradiation time period of 60 s and thereafter decreased. A series of cytotoxicity experiments revealed that an increase in the irradiation time period and intensity of US decreased the viability of cells themselves. It is possible that US irradiation under an appropriate condition enables cells to accelerate the permeation of the cationized gelatin-plasmid DNA complex through the cell membrane, resulted in enhanced transfection efficiency of plasmid DNA. These findings clearly indicate that US exposure is a simple and promising method to enhance the gene expression of plasmid DNA.

  16. A thermosensitive carrageenan-based polymer: synthesis, characterization and interactions with a cationic surfactant.

    PubMed

    Gaweł, Kamila; Karewicz, Anna; Bielska, Dorota; Szczubiałka, Krzysztof; Rysak, Katarzyna; Bonarek, Piotr; Nowakowska, Maria

    2013-07-01

    Novel polyelectrolytes were obtained by grafting N-isopropylacrylamide (NIPAM) on the ι-carrageenan (CAR) chain. Two polymers with different grafting degrees were synthesized. The polymers were found to show the lower critical solution temperature (LCST) close to that of PNIPAM. The LCST values were dependent on the concentration of salt and cationic surfactant. The interactions of CAR-graft-PNIPAM with a model cationic surfactant-dodecyltrimethyl ammonium chloride (DTAC) in water and 0.15M NaCl were studied. It was found that both ι-carrageenan and CAR-graft-PNIPAM polymers interact with DTAC. The presence of CAR-graft-PNIPAM in the solution of DTAC induces formation of surfactant aggregates at the critical aggregation concentration much lower than the cmc of the surfactant. Cac increased with ionic strength. The values of cac for CAR-graft-PNIPAM - DTAC system and standard free enthalpy changes attributed to the complexation process were determined. The results obtained for CAR-graft-PNIPAM were compared with these for the non-modified ι-carrageenan. The surfactant interactions with non-modified and grafted polymers were found to be different in nature.

  17. Binding of DNA to zwitterionic lipid layers mediated by divalent cations.

    PubMed

    Mengistu, Demmelash H; Bohinc, Klemen; May, Sylvio

    2009-09-10

    Divalent cations, i.e., calcium, magnesium, and others, are able to enhance the ability of DNA to interact with membranes that are composed of zwitterionic lipids such as phosphatidylcholine. The resulting condensed complexes offer potential applications as nontoxic gene delivery vehicles. The present study suggests a generic theoretical model to describe the energetics and structural features of a zwitterionic lipid-DNA complex in the presence of divalent cations. Specifically, we consider the adsorption of a single molecule of double-stranded DNA onto a planar zwitterionic lipid layer. Our theoretical model is based on the continuum Poisson-Boltzmann formalisms, which we modified so as to account for the two opposite charges and orientational freedom of the zwitterionic lipid headgroups. We find a substantially more favorable adsorption free energy of the DNA if divalent cations are present. In addition, our model predicts the divalent cations to preferentially interact with the phosphate groups of the zwitterionic lipids, given these lipids are located in close vicinity to the DNA. This is accompanied by a small but notable reorientation of the zwitterionic headgroups toward the DNA. We demonstrate that the binding of DNA onto a zwitterionic lipid layer is not driven by the release of counterions. Instead, the binding leads to a partial redistribution of the divalent cations, from the phosphate groups of the DNA (prior to the binding) to the phosphate groups of the zwitterionic lipids (after the binding). Our results thus suggest a general physical mechanism underlying complex formation between DNA and zwitterionic lipids in terms of mean-field electrostatics, i.e., neither involving correlations nor specific interactions of the divalent cations.

  18. Cationic polymer brush-modified cellulose nanocrystals for high-affinity virus binding.

    PubMed

    Rosilo, Henna; McKee, Jason R; Kontturi, Eero; Koho, Tiia; Hytönen, Vesa P; Ikkala, Olli; Kostiainen, Mauri A

    2014-10-21

    Surfaces capable of high-affinity binding of biomolecules are required in several biotechnological applications, such as purification, transfection, and sensing. Therein, the rod-shaped, colloidal cellulose nanocrystals (CNCs) are appealing due to their large surface area available for functionalization. In order to exploit electrostatic binding, their intrinsically anionic surfaces have to be cationized as biological supramolecules are predominantly anionic. Here we present a facile way to prepare cationic CNCs by surface-initiated atom-transfer radical polymerization of poly(N,N-dimethylaminoethyl methacrylate) and subsequent quaternization of the polymer pendant amino groups. The cationic polymer brush-modified CNCs maintained excellent dispersibility and colloidal stability in water and showed a ζ-potential of +38 mV. Dynamic light scattering and electron microscopy showed that the modified CNCs electrostatically bind cowpea chlorotic mottle virus and norovirus-like particles with high affinity. Addition of only a few weight percent of the modified CNCs in water dispersions sufficed to fully bind the virus capsids to form micrometer-sized assemblies. This enabled the concentration and extraction of the virus particles from solution by low-speed centrifugation. These results show the feasibility of the modified CNCs in virus binding and concentrating, and pave the way for their use as transduction enhancers for viral delivery applications.

  19. Reducing the Cation Exchange Capacity of Lithium Clay to Form Better Dispersed Polymer-Clay Nanocomposites

    NASA Technical Reports Server (NTRS)

    Liang, Maggie

    2004-01-01

    Polymer-clay nanocomposites have exhibited superior strength and thermo- oxidative properties as compared to pure polymers for use in air and space craft; however, there has often been difficulty completely dispersing the clay within the matrices of the polymer. In order to improve this process, the cation exchange capacity of lithium clay is first lowered using twenty-four hour heat treatments of no heat, 130 C, 150 C, or 170 C to fixate the lithium ions within the clay layers so that they are unexchangeable. Generally, higher temperatures have generated lower cation exchange capacities. An ion exchange involving dodecylamine, octadecylamine, or dimethyl benzidine (DMBZ) is then employed to actually expand the clay galleries. X-ray diffraction and transmission electron microscopy can be used to determine whether the clay has been successfully exfoliated. Finally, resins of DMBZ with clay are then pressed into disks for characterization using dynamic mechanical analyzer and oven- aging techniques in order to evaluate their glass transition, modulus strength, and thermal-oxidative stability in comparison to neat DMBZ. In the future, they may also be tested as composites for flexural and laminar shear strength.

  20. Self-assembly of three-dimensional supramolecular polymers through cooperative tetrathiafulvalene radical cation dimerization.

    PubMed

    Tian, Jia; Ding, Yu-Di; Zhou, Tian-You; Zhang, Kang-Da; Zhao, Xin; Wang, Hui; Zhang, Dan-Wei; Liu, Yi; Li, Zhan-Ting

    2014-01-07

    The self-assembly of a new type of three-dimensional (3D) supramolecular polymers from tetrahedral monomers in both organic and aqueous media is described. We have designed and synthesized two tetraphenylmethane derivatives T1 and T2, both of which bear four tetrathiafulvalene (TTF) units. When the TTF units were oxidized to the radical cation TTF(.+) , their pre-organized tetrahedral arrangement remarkably enhanced their intermolecular dimerization, leading to the formation of new 3D spherical supramolecular polymers. The structure of the supramolecular polymers has been inferred on the basis of UV/Vis absorption, electron paramagnetic resonance, cyclic voltammetry, and dynamic light scattering (DLS) analysis, as well as by comparing these properties with those of the self-assembled structures of mono-, di-, and tritopic control compounds. DLS experiments revealed that the spherical supramolecular polymers had hydrodynamic diameters of 68 nm for T1 (75 μM) in acetonitrile and 105 nm for T2 (75 μM) in water/acetonitrile (1:1). The 3D spherical structures of the supramolecular polymers formed in different solvents were also supported by SEM and AFM experiments.

  1. Polycation-DNA complexes for gene delivery: a comparison of the biopharmaceutical properties of cationic polypeptides and cationic lipids.

    PubMed

    Pouton, C W; Lucas, P; Thomas, B J; Uduehi, A N; Milroy, D A; Moss, S H

    1998-04-30

    DNA plasmids formed particulate complexes with a variety of cationic polyamino acids and cationic lipids, which were used to transfect mammalian cells in culture. Complexation was studied by assaying for exclusion of ethidium using a fluorometric assay, which indicated that complexation with cationic polyamino acids took place with utilisation of the majority of charged functional groups. The particle sizes and zeta potentials of a range of complexes were determined. Generally polyamino acids formed uniform particles 80-120 nm in diameter in water, but their particle size increased on dilution of the particles in electrolytes or cell culture media. The efficiency of transfection was compared using complexes of pRSVlacZ, a reporter construct which expressed beta-galactosidase under the control of the Rous sarcoma virus promoter. Positively charged DNA/polyamino acid complexes were taken up by cells but required an endosomolytic agent, such as chloroquine, to facilitate transfection. Polyornithine complexes resulted in the highest levels of expression, in comparison with other homopolyamino acids (polyornithine>poly-L-lysine=poly-D-lysine>polyarginine). Copolyamino acids of lysine and alanine condensed DNA but were less active in transfection experiments. Copoly(L-Lys, L-Ala 1:1) was inactive even in the presence of chloroquine. In contrast DNA/cationic lipid complexes transfected cells spontaneously, and chloroquine did not improve the extent of expression, rather it usually reduced efficiency. There was little correlation between comparative efficiencies of lipid complexes between cell lines suggesting that the nature of the cell membrane and differences in mechanisms of internalisation were determinants of efficiency. In an effort to explore better cell culture models for gene delivery, monolayers of Caco-2 cells were transfected in filter culture. As the cells differentiated and formed a polarized monolayer, expression of beta-galactosidase was reduced until at

  2. Spectroscopic study on interaction between three cationic surfactants with different alkyl chain lengths and DNA.

    PubMed

    Guo, Lili; Zhang, Zhaohong; Qiao, Heng; Liu, Miao; Shen, Manli; Yuan, Tianxin; Chen, Jing; Dionysiou, Dionysios D

    2015-01-01

    In this study, the interaction between cationic surfactants with different alkyl chain lengths, such as hexyltrimethyl ammonium bromide (HTAB), dodecyltrimethyl ammonium bromide (DTAB) and cetyltrimethyl ammonium bromide (CTAB), and DNA was investigated by UV-vis spectroscopy, fluorescence spectroscopy and viscosity techniques. The results showed that these three cationic surfactants with different hydrocarbon chain lengths could all interact with DNA. Their binding modes were estimated and their interaction strength was compared. In addition, the effects of the surfactant, NaCl and phosphate ion concentrations on the interaction were reviewed. It is wished that this work would provide some valuable references to investigate the influence of cationic surfactants with different alkyl chain lengths on DNA.

  3. Novel fluorescent biosensor for α-glucosidase inhibitor screening based on cationic conjugated polymers.

    PubMed

    Cao, Ali; Tang, Yanli; Liu, Yue

    2012-08-01

    A new fluorescent biosensor has been designed to screen α-glucosidase inhibitors (AGIs) sensitively by utilizing signal amplification effect of conjugated polymers. The fluorescence of cationic poly(fluorenylene phenylene) (PFP) was quenched in the presence of para-nitrophenyl-α-d-glucopyranoside and α-glucosidase, and turned on upon addition of AGIs. Thus, a new method was developed for AGIs screening based on the fluorescence turn-off/turn-on. The IC(50) values obtained for inhibitors were compared with that reported using absorption spectroscopy. All results present the new method is more sensitive and promising in screening AGIs and inhibitors of other enzymes whose hydrolysis product is 4-nitrophenol.

  4. Effect of amine type on the expression of plasmid DNA by cationized dextran.

    PubMed

    Jo, Jun-ichiro; Nagane, Kentaro; Yamamoto, Masaya; Tabata, Yasuhiko

    2010-01-01

    The objective of this study is to prepare a non-viral carrier of gene expression from the polysaccharide dextran and evaluate the effect of amine compounds introduced to dextran on the level of gene expression. Dextran with a molecular weight of 74 x 10(3) was cationized by the chemical introduction of different amine compounds. The cationized dextran was complexed with a plasmid DNA and the vitro gene transfection was investigated for HeLa cells. The level of gene expression depended on the amine compound introduced to dextran. The highest level was observed for the complex of spermine-introduced dextran and plasmid DNA. The highest cellular internalization and the best buffering effect were observed among every cationized dextran. Every complex did not show any cytotoxicity. It is concluded that the superior properties of spermine-introduced dextran enabled the plasmid DNA to enhance the expression level to a great extent compared with other cationized dextrans. Cationized dextran is a promising non-viral carrier of plasmid DNA.

  5. Novel phosphorus-containing cyclodextrin polymers and their affinity for calcium cations and hydroxyapatite.

    PubMed

    Wintgens, Véronique; Dalmas, Florent; Sébille, Bernard; Amiel, Catherine

    2013-10-15

    Novel phosphorous-containing β-cyclodextrin (βCD) polymers (CDP) were synthesized easily under "green chemistry" conditions. A simple polycondensation between the hydroxyl groups of βCD and non-toxic sodium trimetaphosphate (STMP) under basic conditions led to soluble, non-reticulated CDPs with molecular weights (Mw) higher than 10(4) g mol(-1), the actual value depending on the NaOH:βCD and STMP:βCD weight ratios. The presence of both βCD and phosphate groups in the polymer allows for strong interactions with amphiphilic probes, such as 1-adamantyl acetic acid, or with divalent cations, such as Ca(2+), whose strengths were characterized by isothermal titration microcalorimetry. The obtained phosphated compounds also display high affinity towards hydroxyapatite (HA), leading to HA nanoparticles that could easily be recovered by CDPs, as demonstrated by transmission electron microscopy and quantitative determination of the total amount of phosphated molecules fixed on HA.

  6. A novel cationic microbubble coated with stearic acid-modified polyethylenimine to enhance DNA loading and gene delivery by ultrasound.

    PubMed

    Jin, Qiaofeng; Wang, Zhiyong; Yan, Fei; Deng, Zhiting; Ni, Fei; Wu, Junru; Shandas, Robin; Liu, Xin; Zheng, Hairong

    2013-01-01

    A novel cationic microbubble (MB) for improvement of the DNA loading capacity and the ultrasound-mediated gene delivery efficiency has been developed; it has been prepared with commercial lipids and a stearic acid modified polyethylenimine 600 (Stearic-PEI600) polymer synthesized via acylation reaction of branched PEI600 and stearic acid mediated by N, N'-carbonyldiimidazole (CDI). The MBs' concentration, size distribution, stability and zeta potential (ζ-potential) were measured and the DNA loading capacity was examined as a function of the amount of Stearic-PEI600. The gene transfection efficiency and cytotoxicity were also examined using breast cancer MCF-7 cells via the reporter plasmid pCMV-Luc, encoding the firefly luciferase gene. The results showed that the Stearic-PEI600 polymer caused a significant increase in magnitude of ζ-potential of MBs. The addition of DNA into cationic MBs can shift ζ-potentials from positive to negative values. The DNA loading capacity of the MBs grew linearly from (5±0.2) ×10⁻³ pg/µm² to (20±1.8) ×10⁻³ pg/µm² when Stearic-PEI600 was increased from 5 mol% to 30 mol%. Transfection of MCF-7 cells using 5% PEI600 MBs plus ultrasound exposure yielded 5.76±2.58×10³ p/s/cm²/sr average radiance intensity, was 8.97- and 7.53-fold higher than those treated with plain MBs plus ultrasound (6.41±5.82) ×10² p/s/cm²/sr, (P<0.01) and PEI600 MBs without ultrasound (7.65±6.18) ×10² p/s/cm²/sr, (P<0.01), respectively. However, the PEI600 MBs showed slightly higher cytotoxicity than plain MBs. The cells treated with PEI600-MBs and plain MBs plus ultrasound showed 59.5±6.1% and 71.4±7.1% cell viability, respectively. In conclusion, our study demonstrated that the novel cationic MBs were able to increase DNA loading capacity and gene transfection efficiency and could be potentially applied in targeted gene delivery and therapy.

  7. Hydrophobically-associating cationic polymers as micro-bubble surface modifiers in dissolved air flotation for cyanobacteria cell separation.

    PubMed

    Yap, R K L; Whittaker, M; Diao, M; Stuetz, R M; Jefferson, B; Bulmus, V; Peirson, W L; Nguyen, A V; Henderson, R K

    2014-09-15

    Dissolved air flotation (DAF), an effective treatment method for clarifying algae/cyanobacteria-laden water, is highly dependent on coagulation-flocculation. Treatment of algae can be problematic due to unpredictable coagulant demand during blooms. To eliminate the need for coagulation-flocculation, the use of commercial polymers or surfactants to alter bubble charge in DAF has shown potential, termed the PosiDAF process. When using surfactants, poor removal was obtained but good bubble adherence was observed. Conversely, when using polymers, effective cell removal was obtained, attributed to polymer bridging, but polymers did not adhere well to the bubble surface, resulting in a cationic clarified effluent that was indicative of high polymer concentrations. In order to combine the attributes of both polymers (bridging ability) and surfactants (hydrophobicity), in this study, a commercially-available cationic polymer, poly(dimethylaminoethyl methacrylate) (polyDMAEMA), was functionalised with hydrophobic pendant groups of various carbon chain lengths to improve adherence of polymer to a bubble surface. Its performance in PosiDAF was contrasted against commercially-available poly(diallyl dimethyl ammonium chloride) (polyDADMAC). All synthesised polymers used for bubble surface modification were found to produce positively charged bubbles. When applying these cationic micro-bubbles in PosiDAF, in the absence of coagulation-flocculation, cell removals in excess of 90% were obtained, reaching a maximum of 99% cell removal and thus demonstrating process viability. Of the synthesised polymers, the polymer containing the largest hydrophobic functionality resulted in highly anionic treated effluent, suggesting stronger adherence of polymers to bubble surfaces and reduced residual polymer concentrations.

  8. Targeting of plasmid DNA to renal interstitial fibroblasts by cationized gelatin.

    PubMed

    Kushibiki, Toshihiro; Nagata-Nakajima, Natsuki; Sugai, Manabu; Shimizu, Akira; Tabata, Yasuhiko

    2005-10-01

    Renal interstitial fibrosis is the common pathway of chronic renal disease, while it causes end-stage renal failure. A lot of cytokines and biologically active substances are well recognized to be the candidates of primary mediators to induce accumulation of extracelluar matrix (ECM) in the interstitial fibrotic area. Interstitial fibroblasts are played a crucial role in the accumulation of excess ECM during renal interstitial fibrogenesis. Therefore, the targeting of therapeutic drugs and genes to interstitial renal fibroblasts is effective in suppressing the progress of interstitial renal failure. However, despite various approaches and techniques, few successful results have been reported on the in vivo targeting for interstitial fibroblasts. The objective of this study is to deliver an enhanced green fluorescent protein (EGFP) plasmid DNA, as a model plasmid DNA, into renal interstitial space by a cationized gelatin. After the plasmid DNA with or without complexation of the cationized gelatin was injected to the left kidney of mice via the ureter, unilateral ureteral obstruction (UUO) was performed for the mice injected to induce the renal interstitial fibrosis. When the EGFP plasmid DNA complexed with the cationized gelatin was injected, EGFP expression was observed in the fibroblasts in the interstitial area of renal cortex. It is concluded that the retrograde injection of EGFP plasmid DNA complexed with the cationized gelatin is available to target the interstitial renal fibroblasts which are currently considered as the cell source responsible for excessive ECM synthesis.

  9. Electronic polymers and DNA self-assembled in nanowire transistors.

    PubMed

    Hamedi, Mahiar; Elfwing, Anders; Gabrielsson, Roger; Inganäs, Olle

    2013-02-11

    Aqueous self-assembly of DNA and molecular electronic materials can lead to the creation of innumerable copies of identical devices, and inherently programmed complex nanocircuits. Here self-assembly of a water soluble and highly conducting polymer PEDOT-S with DNA in aqueous conditions is shown. Orientation and assembly of the conducting DNA/PEDOT-S complex into electrochemical DNA nanowire transistors is demonstrated.

  10. Cation-containing Polymers with Co-continuous Microphase-Separated Morphologies for Rapid Transport Membranes

    NASA Astrophysics Data System (ADS)

    Beyer, Frederick; Price, Samuel; Savage, Alice; Ren, Xiaoming; Pomerantz, Natalie; Zukas, Walter

    2015-03-01

    Cation-containing polymer membranes are the subject of renewed research for their potential to enable the use of alkaline fuel cells, and are also of interest for their water vapor transport properties. Charge and water vapor transport are both heavily dependent on membrane morphology and the development of hydrophilic channels throughout the material. Reaction induced phase separation has been shown to create such morphologies when used with uncharged copolymers and crosslinking monomers. Here we have applied this same technique but used ion-containing block copolymers of 4-vinylbenzyltrimethylammonium chloride and styrene to create a cation-containing polymer membrane having a microphase-separated, co-continuous morphology, as characterized by small-angle X-ray scattering (SAXS) and high-angle annular dark field scanning transmission electron microscopy (HAADF STEM). These materials show excellent charge transport behavior and water vapor transport properties, surpassing commercially available materials. These results and efforts to improve other important physical characteristics for membrane applications will be presented.

  11. Decondensation behavior of DNA chains induced by multivalent cations at high salt concentrations: Molecular dynamics simulations and experiments

    NASA Astrophysics Data System (ADS)

    Jiang, Yang-Wei; Ran, Shi-Yong; He, Lin-Li; Wang, Xiang-Hong; Zhang, Lin-Xi

    2015-11-01

    Using molecular dynamics simulations and atomic force microscopy (AFM), we study the decondensation process of DNA chains induced by multivalent cations at high salt concentrations in the presence of short cationic chains in solutions. The typical simulation conformations of DNA chains with varying salt concentrations for multivalent cations imply that the concentration of salt cations and the valence of multivalent cations have a strong influence on the process of DNA decondensation. The DNA chains are condensed in the absence of salt or at low salt concentrations, and the compacted conformations of DNA chains become loose when a number of cations and anions are added into the solution. It is explicitly demonstrated that cations can overcompensate the bare charge of the DNA chains and weaken the attraction interactions between the DNA chains and short cationic chains at high salt concentrations. The condensation-decondensation transitions of DNA are also experimentally observed in mixing spermidine with λ-phage DNA at different concentrations of NaCl/MgCl2 solutions. Project supported by the National Natural Science Foundation of China (Grant No. 31340026), the Natural Science Foundation of Zhejiang Province, China (Grant Nos. Z13F20019 and LQ12E01003), and the Science and Technology Project of Zhejiang Science and Technology Department, China (Grant No. 2014C31147).

  12. Cationic polymer brush-modified cellulose nanocrystals for high-affinity virus binding

    NASA Astrophysics Data System (ADS)

    Rosilo, Henna; McKee, Jason R.; Kontturi, Eero; Koho, Tiia; Hytönen, Vesa P.; Ikkala, Olli; Kostiainen, Mauri A.

    2014-09-01

    Surfaces capable of high-affinity binding of biomolecules are required in several biotechnological applications, such as purification, transfection, and sensing. Therein, the rod-shaped, colloidal cellulose nanocrystals (CNCs) are appealing due to their large surface area available for functionalization. In order to exploit electrostatic binding, their intrinsically anionic surfaces have to be cationized as biological supramolecules are predominantly anionic. Here we present a facile way to prepare cationic CNCs by surface-initiated atom-transfer radical polymerization of poly(N,N-dimethylaminoethyl methacrylate) and subsequent quaternization of the polymer pendant amino groups. The cationic polymer brush-modified CNCs maintained excellent dispersibility and colloidal stability in water and showed a ζ-potential of +38 mV. Dynamic light scattering and electron microscopy showed that the modified CNCs electrostatically bind cowpea chlorotic mottle virus and norovirus-like particles with high affinity. Addition of only a few weight percent of the modified CNCs in water dispersions sufficed to fully bind the virus capsids to form micrometer-sized assemblies. This enabled the concentration and extraction of the virus particles from solution by low-speed centrifugation. These results show the feasibility of the modified CNCs in virus binding and concentrating, and pave the way for their use as transduction enhancers for viral delivery applications.Surfaces capable of high-affinity binding of biomolecules are required in several biotechnological applications, such as purification, transfection, and sensing. Therein, the rod-shaped, colloidal cellulose nanocrystals (CNCs) are appealing due to their large surface area available for functionalization. In order to exploit electrostatic binding, their intrinsically anionic surfaces have to be cationized as biological supramolecules are predominantly anionic. Here we present a facile way to prepare cationic CNCs by surface

  13. Patterned Thread-like Micelles and DNA-Tethered Nanoparticles: A Structural Study of PEGylated Cationic Liposome–DNA Assemblies

    PubMed Central

    Majzoub, Ramsey N.; Ewert, Kai K.; Jacovetty, Erica L.; Carragher, Bridget; Potter, Clinton S.; Li, Youli; Safinya, Cyrus R.

    2015-01-01

    The self-assembly of oppositely charged biomacromolecules has been extensively studied due to its pertinence in the design of functional nanomaterials. Using cryo electronic microscopy (cryo-EM), optical light scattering and fluorescence microscopy, we investigated the structure and phase behavior of PEGylated (PEG: poly(ethylene-glycol)) cationic liposome–DNA nanoparticles (CL–DNA NPs) as a function of DNA length, topology (linear and circular) and ρchg (the molar charge ratio of cationic lipid to anionic DNA). Although all NPs studied showed a lamellar internal nanostructure, NPs formed with short (~ 2 kbps), linear, polydisperse DNA were defect-rich and contained smaller domains. Unexpectedly, we found distinctly different equilibrium structures away from the isoelectric point. At ρchg > 1, in the excess cationic lipid regime, thread-like micelles rich in PEG-lipid were found to coexist with NPs, cationic liposomes and spherical micelles. At high concentrations these PEGylated thread-like micelles formed a well-ordered, patterned morphology with highly uniform inter-micellar spacing. At ρchg < 1, in the excess DNA regime and with no added salt, individual NPs were tethered together via long, linear DNA (48 kbps λ-phage DNA) into a biopolymer-mediated floc. Our results provide insight on what equilibrium nanostructures can form when oppositely charged macromolecules self-assemble in aqueous media. Self-assembled, well-ordered thread-like micelles and tethered nanoparticles may have a broad range of applications in bionanotechnology, including nanoscale lithograpy and the development of lipid-based multi-functional nanoparticle networks. PMID:26048043

  14. Interaction between cationic agents and small interfering RNA and DNA molecules

    NASA Astrophysics Data System (ADS)

    Unksov, I. N.; Slita, A. V.; Petrova, A. V.; Pereviazko, I.; Bakulev, V. M.; Rolich, V. I.; Bondarenko, A. B.; Kasyanenko, N. A.

    2016-11-01

    Azobenzene containing surfactant AzoTAB was used for investigation of binding in cationic- agent + nucleic acid in NaCl salt aqueous solutions. Two nucleic acids, macromolecular DNA and small interfering RNA, were examined upon the interaction with the surfactant. For DNA the interaction was studied using spectral methods and the methods of viscometry and flow birefringence measurement. For siRNA the possibility of surfactant-based delivery was checked in vitro.

  15. Screening nylon-3 polymers, a new class of cationic amphiphiles, for siRNA delivery.

    PubMed

    Nadithe, Venkatareddy; Liu, Runhui; Killinger, Bryan A; Movassaghian, Sara; Kim, Na Hyung; Moszczynska, Anna B; Masters, Kristyn S; Gellman, Samuel H; Merkel, Olivia M

    2015-02-02

    Amphiphilic nucleic acid carriers have attracted strong interest. Three groups of nylon-3 copolymers (poly-β-peptides) possessing different cationic/hydrophobic content were evaluated as siRNA delivery agents in this study. Their ability to condense siRNA was determined in SYBR Gold assays. Their cytotoxicity was tested by MTT assays, their efficiency of delivering Alexa Fluor-488-labeled siRNA intracellularly in the presence and absence of uptake inhibitors was assessed by flow cytometry, and their transfection efficacies were studied by luciferase knockdown in a cell line stably expressing luciferase (H1299/Luc). Endosomal release was determined by confocal laser scanning microscopy and colocalization with lysotracker. All polymers efficiently condensed siRNA at nitrogen-to-phosphate (N/P) ratios of 5 or lower, as reflected in hydrodynamic diameters smaller than that at N/P 1. Although several formulations had negative zeta potentials at N/P 1, G2C and G2D polyplexes yielded >80% uptake in H1299/Luc cells, as determined by flow cytometry. Luciferase knockdown (20-65%) was observed after transfection with polyplexes made of the high molecular weight polymers that were the most hydrophobic. The ability of nylon-3 polymers to deliver siRNA intracellularly even at negative zeta potential implies that they mediate transport across cell membranes based on their amphiphilicity. The cellular uptake route was determined to strongly depend on the presence of cholesterol in the cell membrane. These polymers are, therefore, very promising for siRNA delivery at reduced surface charge and toxicity. Our study identified nylon-3 formulations at low N/P ratios for effective gene knockdown, indicating that nylon-3 polymers are a new, promising type of gene delivery agent.

  16. PEGylation enhances tumor targeting of plasmid DNA by an artificial cationized protein with repeated RGD sequences, Pronectin.

    PubMed

    Hosseinkhani, Hossein; Tabata, Yasuhiko

    2004-05-31

    The objective of this study is to investigate feasibility of a non-viral gene carrier with repeated RGD sequences (Pronectin F+) in tumor targeting for gene expression. The Pronectin F+ was cationized by introducing spermine (Sm) to the hydroxyl groups to allow to polyionically complex with plasmid DNA. The cationized Pronectin F+ prepared was additionally modified with poly(ethylene glycol) (PEG) molecules which have active ester and methoxy groups at the terminal, to form various PEG-introduced cationized Pronectin F+. The cationized Pronectin F+ with or without PEGylation at different extents was mixed with a plasmid DNA of LacZ to form respective cationized Pronectin F+-plasmid DNA complexes. The plasmid DNA was electrophoretically complexed with cationized Pronectin F+ and PEG-introduced cationized Pronectin F+, irrespective of the PEGylation extent, although the higher N/P ratio of complexes was needed for complexation with the latter Pronectin F+. The molecular size and zeta potential measurements revealed that the plasmid DNA was reduced in size to about 250 nm and the charge was changed to be positive by the complexation with cationized Pronectin F+. For the complexation with PEG-introduced cationized Pronectin F+, the charge of complex became neutral being almost 0 mV with the increasing PEGylation extents, while the molecular size was similar to that of cationized Pronectin F+. When cationized Pronectin F+-plasmid DNA complexes with or without PEGylation were intravenously injected to mice carrying a subcutaneous Meth-AR-1 fibrosarcoma mass, the PEG-introduced cationized Pronectin F+-plasmid DNA complex specifically enhanced the level of gene expression in the tumor, to a significantly high extent compared with the cationized Pronectin F+-plasmid DNA complexes and free plasmid DNA. The enhanced level of gene expression depended on the percentage of PEG introduced, the N/P ratio, and the plasmid DNA dose. A fluorescent microscopic study revealed that the

  17. Self-assembly of two-dimensional DNA origami lattices using cation-controlled surface diffusion.

    PubMed

    Woo, Sungwook; Rothemund, Paul W K

    2014-09-10

    DNA origami has proven useful for organizing diverse nanoscale components into patterns with 6 nm resolution. However for many applications, such as nanoelectronics, large-scale organization of origami into periodic lattices is desired. Here, we report the self-assembly of DNA origami rectangles into two-dimensional lattices based on stepwise control of surface diffusion, implemented by changing the concentrations of cations on the surface. Previous studies of DNA–mica binding identified the fractional surface density of divalent cations (ñ(s2))as the parameter which best explains the behaviour of linear DNA on mica. We show that for ñ(s2) between 0.04 and 0.1, over 90% of DNA rectangles were incorporated into lattices and that, compared with other functions of cation concentration, ñ(s2) best captures the behaviour of DNA rectangles. This work shows how a physical understanding of DNA–mica binding can be used to guide studies of the higher-order assembly of DNA nanostructures, towards creating large-scale arrays of nanodevices for technology.

  18. Microfluidic Assembly of Cationic-β-Cyclodextrin:Hyaluronic Acid-Adamantane Host:Guest pDNA Nanoparticles

    PubMed Central

    Kulkarni, Aditya; VerHeul, Ross; DeFrees, Kyle; Collins, Christopher J.; Schuldt, Ryan A.; Vlahu, Alexander; Thompson, David H.

    2013-01-01

    Traditionally, transfection complexes are typically formed by bulk mixing, producing particles with high polydispersity and limited control over vector size. Herein, we demonstrate the use of a commercial micro-reactor to assemble pDNA:cationic cyclodextrin:pendant polymer nanoparticles using a layer-by-layer approach. Our studies reveal that the particles formulated via microfluidic assembly have much smaller sizes, lower polydispersity, lower ζ-potentials, and comparable cell viability and transfection profiles in HeLa cells than bulk mixed particles. The complexes also show a flow rate-dependent stability, with particles formed at slower flow rates giving rise to more stable complexes as determined by heparin challenge. Our findings suggest that microfluidic reactors offer an attractive method for assembling reproducible, size-controlled complexes from multi-component transfection complex assemblies. PMID:24349706

  19. Synthesis of linear and cyclic peptide-PEG-lipids for stabilization and targeting of cationic liposome-DNA complexes.

    PubMed

    Ewert, Kai K; Kotamraju, Venkata Ramana; Majzoub, Ramsey N; Steffes, Victoria M; Wonder, Emily A; Teesalu, Tambet; Ruoslahti, Erkki; Safinya, Cyrus R

    2016-03-15

    Because nucleic acids (NAs) have immense potential value as therapeutics, the development of safe and effective synthetic NA vectors continues to attract much attention. In vivo applications of NA vectors require stabilized, nanometer-scale particles, but the commonly used approaches of steric stabilization with a polymer coat (e.g., PEGylation; PEG=poly(ethylene glycol)) interfere with attachment to cells, uptake, and endosomal escape. Conjugation of peptides to PEG-lipids can improve cell attachment and uptake for cationic liposome-DNA (CL-DNA) complexes. We present several synthetic approaches to peptide-PEG-lipids and discuss their merits and drawbacks. A lipid-PEG-amine building block served as the common key intermediate in all synthetic routes. Assembling the entire peptide-PEG-lipid by manual solid phase peptide synthesis (employing a lipid-PEG-carboxylic acid) allowed gram-scale synthesis but is mostly applicable to linear peptides connected via their N-terminus. Conjugation via thiol-maleimide or strain-promoted (copper-free) azide-alkyne cycloaddition chemistry is highly amenable to on-demand preparation of peptide-PEG-lipids, and the appropriate PEG-lipid precursors are available in a single chemical step from the lipid-PEG-amine building block. Azide-alkyne cycloaddition is especially suitable for disulfide-bridged peptides such as iRGD (cyclic CRGDKGPDC). Added at 10 mol% of a cationic/neutral lipid mixture, the peptide-PEG-lipids stabilize the size of CL-DNA complexes. They also affect cell attachment and uptake of nanoparticles in a peptide-dependent manner, thereby providing a platform for preparing stabilized, affinity-targeted CL-DNA nanoparticles.

  20. Applying zeta potential measurements to characterize the adsorption on montmorillonite of organic cations as monomers, micelles, or polymers.

    PubMed

    Zadaka, Dikla; Radian, Adi; Mishael, Yael G

    2010-12-01

    A systematic study was carried out to characterize the adsorption of organic cations as monomers, micelles, or polymers on montmorillonite by monitoring zeta potential (ξ) as a function of cation loading on the clay. In general, the clay's ξ became less negative as cation loading increased. A fairly good linear correlation between adsorption of organic cations on the clay, up to the cation exchange capacity (CEC) of the clay, and ξ potential of the composites was fitted. However, when the adsorption of the larger cation exceeded the CEC, a nonlinear increase in ξ was measured. The degree of this increase corresponds to the cation size and affinity to the clay (in the order surfactantcations, ξ reached zero at polycation loadings that were significantly lower than the CEC. The zeta-adsorption plot of the polycations reached a well-defined plateau which correlates to the zeta potential of the polycations. The effect of electrolytes on ξ of the crude clay was monitored, and as expected, the extent of the effect increased with valency (Na(+)cation radius (Na(+)

  1. Cationic Thiolated Poly(aspartamide) Polymer as a Potential Excipient for Artificial Tear Formulations

    PubMed Central

    Budai-Szűcs, Mária; Horvát, Gabriella; Szilágyi, Barnabás Áron; Gyarmati, Benjámin; Szilágyi, András; Berkó, Szilvia; Szabó-Révész, Piroska; Sandri, Giuseppina; Bonferoni, Maria Cristina; Caramella, Carla; Soós, Judit; Facskó, Andrea; Csányi, Erzsébet

    2016-01-01

    Dry eye disease is a relatively common ocular problem, which causes eye discomfort and visual disorders leading to a decrease in the quality of life. The aim of this study was to find a possible excipient for eye drop formulations, which is able to stabilize the tear film. A cationic thiolated polyaspartamide polymer, poly[(N-mercaptoethylaspartamide)-co-(N-(N′,N′-dimethylaminoethyl)aspartamide)] (ThioPASP-DME), was used as a potential vehicle. Besides satisfying the basic requirements, the chemical structure of ThioPASP-DME is similar to those of ocular mucins as it is a protein-like polymer bearing a considerable number of thiol groups. The solution of the polymer is therefore able to mimic the physiological properties of the mucins and it can interact with the mucus layer via disulphide bond formation. The resultant mucoadhesion provides a prolonged residence time and ensures protective effect for the corneal/conjunctival epithelium. ThioPASP-DME also has an antioxidant effect due to the presence of the thiol groups. The applicability of ThioPASP-DME as a potential excipient in eye drops was determined by means of ocular compatibility tests and through examinations of the interactions with the mucosal surface. The results indicate that ThioPASP-DME can serve as a potential eye drop excipient for the therapy of dry eye disease. PMID:27313866

  2. Cationic Thiolated Poly(aspartamide) Polymer as a Potential Excipient for Artificial Tear Formulations.

    PubMed

    Budai-Szűcs, Mária; Horvát, Gabriella; Szilágyi, Barnabás Áron; Gyarmati, Benjámin; Szilágyi, András; Berkó, Szilvia; Szabó-Révész, Piroska; Sandri, Giuseppina; Bonferoni, Maria Cristina; Caramella, Carla; Soós, Judit; Facskó, Andrea; Csányi, Erzsébet

    2016-01-01

    Dry eye disease is a relatively common ocular problem, which causes eye discomfort and visual disorders leading to a decrease in the quality of life. The aim of this study was to find a possible excipient for eye drop formulations, which is able to stabilize the tear film. A cationic thiolated polyaspartamide polymer, poly[(N-mercaptoethylaspartamide)-co-(N-(N',N'-dimethylaminoethyl)aspartamide)] (ThioPASP-DME), was used as a potential vehicle. Besides satisfying the basic requirements, the chemical structure of ThioPASP-DME is similar to those of ocular mucins as it is a protein-like polymer bearing a considerable number of thiol groups. The solution of the polymer is therefore able to mimic the physiological properties of the mucins and it can interact with the mucus layer via disulphide bond formation. The resultant mucoadhesion provides a prolonged residence time and ensures protective effect for the corneal/conjunctival epithelium. ThioPASP-DME also has an antioxidant effect due to the presence of the thiol groups. The applicability of ThioPASP-DME as a potential excipient in eye drops was determined by means of ocular compatibility tests and through examinations of the interactions with the mucosal surface. The results indicate that ThioPASP-DME can serve as a potential eye drop excipient for the therapy of dry eye disease.

  3. Effect of cationic charge and hydrophobic index of cellulose-based polymers on the semipermanent dyestuff process for hair.

    PubMed

    Ballarin, B; Galli, S; Mogavero, F; Morigi, M

    2011-06-01

    In this work, the effects of a new class of polymers generally used in hair and skin cleansing products, the SoftCAT (SofCAT SL and SoftCAT SX), on the dye uptake on the hair fibre and the fading effects has been studied. These polymers, based on quaternary ammonium salts of hydroxyethylcellulose, are cationic products that differ in viscosity, hydrophobic substitution index (HS) and/or cationic substitution (CS, % N). UV-Vis spectroscopy has been used to analyse the extracted dyes from the hair cuticle and the cortex. The results indicate that the presence of polymers in the dye bath improve both the quality of the dyeing process and the anti-fading effect during the washing cycles. This phenomenon is postulated to be attributable to the polymers hydrophobically bonding with the dyes and so facilitating their increased penetration into the hair.

  4. Effect of polymer chain length on membrane perturbation activity of cationic phenylene ethynylene oligomers and polymers.

    PubMed

    Wang, Ying; Jones, Emmalee M; Tang, Yanli; Ji, Eunkyung; Lopez, Gabriel P; Chi, Eva Y; Schanze, Kirk S; Whitten, David G

    2011-09-06

    The interactions of poly(phenylene ethynylene)- (PPE-) based cationic conjugated polyelectrolytes (CPEs) and oligo(phenylene ethynylene)s (OPEs) with different model lipid membrane systems were investigated to gain insight into the relationship between molecular structure and membrane perturbation ability. The CPE and OPE compounds exhibit broad-spectrum antimicrobial activity, and cell walls and membranes are believed to be their main targets. To better understand how the size, in terms of the number of repeat units, of the CPEs and OPEs affects their membrane disruption activities, a series of PPE-based CPEs and OPEs were synthesized and studied. A number of photophysical techniques were used to investigate the interactions of CPEs and OPEs with model membranes, including unilamellar vesicles and lipid monolayers at the air/water interface. CPE- or OPE-induced dye leakage from vesicles reveals that the CPEs and OPEs selectively perturb model bacterial membranes and that their membrane perturbation abilities are highly dependent on molecular size. Consistent with dye-leakage assay results, the CPEs and OPEs also exhibit chain-length-dependent ability to insert into 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DPPG) monolayers. Our results suggest that, for PPE-based CPE and OPE antimicrobials, chain length can be tuned to optimize their membrane perturbation ability.

  5. Isothermal titration calorimetric analysis of the interaction between cationic lipids and plasmid DNA.

    PubMed

    Lobo, B A; Davis, A; Koe, G; Smith, J G; Middaugh, C R

    2001-02-01

    The effects of buffer and ionic strength upon the enthalpy of binding between plasmid DNA and a variety of cationic lipids used to enhance cellular transfection were studied using isothermal titration calorimetry at 25.0 degrees C and pH 7.4. The cationic lipids DOTAP (1,2-dioleoyl-3-trimethyl ammonium propane), DDAB (dimethyl dioctadecyl ammonium bromide), DOTAP:cholesterol (1:1), and DDAB:cholesterol (1:1) bound endothermally to plasmid DNA with a negligible proton exchange with buffer. In contrast, DOTAP: DOPE (L-alpha-dioleoyl phosphatidyl ethanolamine) (1:1) and DDAB:DOPE (1:1) liposomes displayed a negative enthalpy and a significant uptake of protons upon binding to plasmid DNA at neutral pH. These findings are most easily explained by a change in the apparent pKa of the amino group of DOPE upon binding. Complexes formed by reverse addition methods (DNA into lipid) produced different thermograms, sizes, zeta potentials, and aggregation behavior, suggesting that structurally different complexes were formed in each titration direction. Titrations performed in both directions in the presence of increasing ionic strength revealed a progressive decrease in the heat of binding and an increase in the lipid to DNA charge ratio at which aggregation occurred. The unfavorable binding enthalpy for the cationic lipids alone and with cholesterol implies an entropy-driven interaction, while the negative enthalpies observed with DOPE-containing lipid mixtures suggest an additional contribution from changes in protonation of DOPE.

  6. Synthesis and characterization of a new class of cationic protein polymers for multivalent display and biomaterial applications.

    PubMed

    Davis, Nicolynn E; Karfeld-Sulzer, Lindsay S; Ding, Sheng; Barron, Annelise E

    2009-05-11

    Monodisperse protein polymers engineered by biosynthetic techniques are well suited to serve as a basis for creating comb-like polymer architectures for biomaterial applications. We have developed a new class of linear, cationic, random-coil protein polymers designed to act as scaffolds for multivalent display. These polymers contain evenly spaced lysine residues that allow for chemical or enzymatic conjugation of pendant functional groups. Circular dichroism spectroscopy and turbidity experiments have confirmed that these proteins have a random coil structure and are soluble up to at least 65 degrees C. Cell viability assays suggest these constructs are nontoxic in solution up to a concentration of 100 microM. We have successfully attached a small bioactive peptide, a peptoid-peptide hybrid, a poly(ethylene glycol) polymer, and a fluorophore to the protein polymers by chemical or enzymatic coupling, demonstrating their suitability to serve as multivalent scaffolds in solutions or as gels.

  7. The greater negative charge density of DNA in tris-borate buffers does not enhance DNA condensation by multivalent cations.

    PubMed

    Schwinefus, J J; Bloomfield, V A

    2000-12-01

    As indicated by recent measurements of the electrophoretic free solution mobility, DNA appears to have a greater helical charge density in Tris-borate-EDTA (TBE) buffers than in Tris-acetate-EDTA (TAE) buffers. Since electrostatic forces play a major role in DNA packaging processes, we have investigated the condensation of closed circular plasmid DNA using total intensity and dynamic light scattering in Tris-borate, Tris-acetate, and Tris-cacodylate buffers with cobaltic hexa-amine (III) [Co(NH(3))(3+)(6)]. We find that neither the critical concentration of Co(NH(3))(3+)(6) nor the hydrodynamic radii of the resulting condensates vary significantly in the buffer systems studied here despite the prediction that DNA condensation should occur at significantly lower Co(NH(3))(3+)(6) concentrations in Tris-borate buffers. Assuming a persistence length behavior similar to B-DNA in the presence of multivalent cations, a decrease in the attractive counterion correlation pressure decay length in Tris-borate buffers does not account for our observations. It is possible that the binding of multivalent cations to DNA may hinder borate association with the DNA double helix.

  8. Antibacterial Low Molecular Weight Cationic Polymers: Dissecting the Contribution of Hydrophobicity, Chain Length and Charge to Activity.

    PubMed

    Grace, James L; Huang, Johnny X; Cheah, Soon-Ee; Truong, Nghia P; Cooper, Matthew A; Li, Jian; Davis, Thomas P; Quinn, John F; Velkov, Tony; Whittaker, Michael R

    2016-01-01

    The balance of cationicity and hydrophobicity can profoundly affect the performance of antimicrobial polymers. To this end a library of 24 cationic polymers with uniquely low degrees of polymerization was synthesized via Cu(0)-mediated polymerization, using three different cationic monomers and two initiators: providing two different hydrocarbon chain tail lengths (C2 and C12). The polymers exhibited structure-dependent antibacterial activity when tested against a selection of bacteria, viz, Staphylococcus aureus ATCC 29213, Klebsiella pneumoniae ATCC 13883, Acinetobacter baumannii ATCC 19606, and Pseudomonas aeruginosa ATCC 27853 as a representative palette of Gram-positive and Gram-negative ESKAPE pathogens. The five best-performing polymers were identified for additional testing against the polymyxin-resistant A. baumannii ATCC 19606R strain. Polymers having the lowest DP and a C12 hydrophobic tail were shown to provide the broadest antimicrobial activity against the bacteria panel studied as evidenced by lower minimum inhibitory concentrations (MICs). An optimal polymer composition was identified, and its mechanism of action investigated via membrane permeability testing against Escherichia coli. Membrane disruption was identified as the most probable mechanism for bacteria cell killing.

  9. Fingerprinting DNA oxidation processes: IR characterization of the 5-methyl-2'-deoxycytidine radical cation.

    PubMed

    Bucher, Dominik B; Pilles, Bert M; Pfaffeneder, Toni; Carell, Thomas; Zinth, Wolfgang

    2014-02-24

    Methylated cytidine plays an important role as an epigenetic signal in gene regulation. Its oxidation products are assumed to be involved in active demethylation processes but also in damaging DNA. Here, we report the photochemical production of the 5-methyl-2'-deoxycytidine radical cation via a two-photon ionization process. The radical cation is detected by time-resolved IR spectroscopy and identified by band assignment using density functional theory calculations. Two final oxidation products are characterized with liquid chromatography coupled to mass spectrometry.

  10. Arsenite and arsenate removal from wastewater using cationic polymer-modified waste tyre rubber.

    PubMed

    Imyim, Apichat; Sirithaweesit, Thitayati; Ruangpornvisuti, Vithaya

    2016-01-15

    Waste tyre rubber (WTR) granulate was modified with a cationic polymer, poly(3-acrylamidopropyl)trimethylammonium chloride (p(APTMACl)). The resulting WTR/p(APTMACl) was utilized for the adsorption of arsenite, As(III) and arsenate, As(V) from aqueous medium in both batch and column methods. The level of adsorption increased gradually with increasing monomer concentration and contact time. The adsorption behavior obeyed the Freundlich model, and the rate of adsorption could be predicted by employing the pseudo-second order model. In the column method, As(V) could be adsorbed onto the sorbent more effectively than As(III). Remarkable desorption of As(III) and As(V) (99 and 92%, respectively) from the adsorbent was achieved using 0.10 M HCl as eluent. An approach of evaluation of adsorption capacity uncertainty is proposed.

  11. Thermodynamics of cationic lipid-DNA complex formation as studied by isothermal titration calorimetry.

    PubMed

    Pozharski, Edwin; MacDonald, Robert C

    2002-07-01

    The detailed analysis of the cationic lipid-DNA complex formation by means of isothermal titration calorimetry is presented. Most experiments were done using 1,2-dioleyl-sn-glycero-3-ethylphosphocholine (EDOPC), but basic titrations were also done using DOTAP, DOTAP:DOPC, and DOTAP:DOPE mixtures. Complex formation was endothermic with less than 1 kcal absorbed per mole of lipid or DNA charge. This enthalpy change was attributed to DNA-DNA mutual repulsion within the lamellar complex. The exception was DOTAP:DOPE-containing lipoplex for which the enthalpy of formation was exothermic, presumably because of DOPE amine group protonation. Experimental conditions, namely, direction and titration increment as well as concentration of titrant, which dictate the structure of resulting lipoplex (whether lamellar complex or DNA-coated vesicle), were found to affect the apparent thermodynamics of complex formation. The structure, in turn, influences the biological properties of the lipoplex. If the titration of lipid into DNA was carried out in large increments, the DeltaH was larger than when the injection increments were smaller, a finding that is consistent with increased vesicle disruption under large increments and which is expected theoretically. Cationic lipid-DNA binding was weak in high ionic strength solutions, however, the effective binding constant is within micromolar range because of macromolecular nature of the interaction.

  12. Thermodynamics of cationic lipid-DNA complex formation as studied by isothermal titration calorimetry.

    PubMed Central

    Pozharski, Edwin; MacDonald, Robert C

    2002-01-01

    The detailed analysis of the cationic lipid-DNA complex formation by means of isothermal titration calorimetry is presented. Most experiments were done using 1,2-dioleyl-sn-glycero-3-ethylphosphocholine (EDOPC), but basic titrations were also done using DOTAP, DOTAP:DOPC, and DOTAP:DOPE mixtures. Complex formation was endothermic with less than 1 kcal absorbed per mole of lipid or DNA charge. This enthalpy change was attributed to DNA-DNA mutual repulsion within the lamellar complex. The exception was DOTAP:DOPE-containing lipoplex for which the enthalpy of formation was exothermic, presumably because of DOPE amine group protonation. Experimental conditions, namely, direction and titration increment as well as concentration of titrant, which dictate the structure of resulting lipoplex (whether lamellar complex or DNA-coated vesicle), were found to affect the apparent thermodynamics of complex formation. The structure, in turn, influences the biological properties of the lipoplex. If the titration of lipid into DNA was carried out in large increments, the DeltaH was larger than when the injection increments were smaller, a finding that is consistent with increased vesicle disruption under large increments and which is expected theoretically. Cationic lipid-DNA binding was weak in high ionic strength solutions, however, the effective binding constant is within micromolar range because of macromolecular nature of the interaction. PMID:12080142

  13. Bell Curve for Transfection by Lamellar Cationic Lipid--DNA Complexes

    NASA Astrophysics Data System (ADS)

    Ahmad, A.; Evans, Heather M.; Ewert, K.; George, C. X.; Samuel, C. E.; Safinya, C. R.

    2004-03-01

    Cationic liposomes (CL) present a viable alternative to viral delivery of therapeutic DNA to cells. We combine CL with DNA in order to form complexes that can deliver foreign DNA (genes) to cells. In trying to improve the transfection efficiency (TE) of lamellar CL-DNA complexes, we have identified universal trends depending on the headgroup size and charge of the cationic lipid. By using new multivalent lipids ranging from 2+ to 16+ (e.g. Ewert et al, J. Med. Chem. 2002; 45: 5023) we are able to access a wide range of membrane charge density values, or σ _M. TE plots vs. σ M for multivalent lipids merge onto a universal curve with a Gaussian shape. The optimal σ M depends on the overall CL/DNA charge. The universal TE curve shows three regimes related to cellular obstacles: at low σ _M, TE is limited by endosomal escape of CL-DNA, while at high σ M TE is limited by complex dissociation and DNA release into the cytoplasm. Funded by NIH GM-59288 and NSF DMR-0203755.

  14. Use of statistical modeling to predict the effect of formulation composition on coacervation, silicone deposition, and conditioning sensory performance of cationic cassia polymers.

    PubMed

    Lepilleur, Carole; Mullay, John; Kyer, Carol; McCalister, Pam; Clifford, Ted

    2011-01-01

    Formulation composition has a dramatic influence on coacervate formation in conditioning shampoo. The purpose of this study is to correlate the amount of coacervate formation of novel cationic cassia polymers to the corresponding conditioning profiles on European brown hair using silicone deposition, cationic polymer deposition and sensory evaluation. A design of experiments was conducted by varying the levels of three surfactants (sodium lauryl ether sulfate, sodium lauryl sulfate, and cocamidopropyl betaine) in formulations containing cationic cassia polymers of different cationic charge density (1.7 and 3.0m Eq/g). The results show formulation composition dramatically affects physical properties, coacervation, silicone deposition, cationic polymer deposition and hair sensory attributes. Particularly, three parameters are of importance in determining silicone deposition: polymer charge, surfactant (micelle) charge and total amount of surfactant (micelle aspect ratio). Both sensory panel testing and silicone deposition results can be predicted with a high confidence level using statistical models that incorporate these parameters.

  15. Determination of the cationic amphiphilic drug-DNA binding mode and DNA-assisted fluorescence resonance energy transfer amplification

    NASA Astrophysics Data System (ADS)

    Yaseen, Zahid; Banday, Abdul Rouf; Hussain, Mohammed Aamir; Tabish, Mohammad; Kabir-ud-Din

    2014-03-01

    Understanding the mechanism of drug-DNA binding is crucial for predicting the potential genotoxicity of drugs. Agarose gel electrophoresis, absorption, steady state fluorescence, and circular dichroism have been used in exploring the interaction of cationic amphiphilic drugs (CADs) such as amitriptyline hydrochloride (AMT), imipramine hydrochloride (IMP), and promethazine hydrochloride (PMT) with calf thymus or pUC19 DNA. Agarose gel electrophoresis assay, along with absorption and steady state fluorescence studies, reveal interaction between the CADs and DNA. A comparative study of the drugs with respect to the effect of urea, iodide induced quenching, and ethidium bromide (EB) exclusion assay reflects binding of CADs to the DNA primarily in an intercalative fashion. Circular dichroism data also support the intercalative mode of binding. Besides quenching, there is fluorescence exchange energy transfer (FRET) in between CADs and EB using DNA as a template.

  16. New hydrolyzable pH-responsive cationic polymers for gene delivery: a preliminary study.

    PubMed

    Veron, Laurent; Ganée, Arnaud; Charreyre, Marie-Thérèse; Pichot, Christian; Delair, Thierry

    2004-04-19

    Here we want to report the synthesis and the characterization of 2-methylacrylic acid 2-(3-imidazol-1-yl-propionyloxy)ethyl ester (IPEMA), a new methacrylate derivative monomer bearing an hydrolyzable side chain terminated by an imidazole group. The kp/kt(1/2) value for its homopolymerization in N,N-dimethylformamide at 60 degrees C was found to be 0.120 mol(-1/2) x L(1/2) x s(-1/2). The free radical copolymerization of N,N-dimethylaminoethyl methacrylate and this monomer was studied in N,N-dimethylformamide at 60 degrees C, the reactivity ratios of this couple of monomers were determined to be r(DMAEMA) = 1.13 +/- 0.09 and r(IPEMA) = 0.82 +/- 0.09 (using distinct calculation methods). Molecular weights analysis, parallely with refractive index increments measurements, were performed to characterize the obtained polymers. Potentiometric titrations showed the ability of these copolymers to act as a 'proton sponge'. Preliminary study of the copolymers hydrolysis proved that imidazole units could be slowly cleaved from the polymer backbone at 37 degrees C in neutral aqueous buffer. Agarose gel electrophoresis of plasmid DNA/polymer complexes demonstrated the DNA complexing properties of these imidazole-based copolymers.

  17. Arginine-based cationic liposomes for efficient in vitro plasmid DNA delivery with low cytotoxicity

    PubMed Central

    Sarker, Satya Ranjan; Aoshima, Yumiko; Hokama, Ryosuke; Inoue, Takafumi; Sou, Keitaro; Takeoka, Shinji

    2013-01-01

    Background Currently available gene delivery vehicles have many limitations such as low gene delivery efficiency and high cytotoxicity. To overcome these drawbacks, we designed and synthesized two cationic lipids comprised of n-tetradecyl alcohol as the hydrophobic moiety, 3-hydrocarbon chain as the spacer, and different counterions (eg, hydrogen chloride [HCl] salt or trifluoroacetic acid [TFA] salt) in the arginine head group. Methods Cationic lipids were hydrated in 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer to prepare cationic liposomes and characterized in terms of their size, zeta potential, phase transition temperature, and morphology. Lipoplexes were then prepared and characterized in terms of their size and zeta potential in the absence or presence of serum. The morphology of the lipoplexes was determined using transmission electron microscopy and atomic force microscopy. The gene delivery efficiency was evaluated in neuronal cells and HeLa cells and compared with that of lysine-based cationic assemblies and Lipofectamine™ 2000. The cytotoxicity level of the cationic lipids was investigated and compared with that of Lipofectamine™ 2000. Results We synthesized arginine-based cationic lipids having different counterions (ie, HCl-salt or TFA-salt) that formed cationic liposomes of around 100 nm in size. In the absence of serum, lipoplexes prepared from the arginine-based cationic liposomes and plasmid (p) DNA formed large aggregates and attained a positive zeta potential. However, in the presence of serum, the lipoplexes were smaller in size and negative in zeta potential. The morphology of the lipoplexes was vesicular. Arginine-based cationic liposomes with HCl-salt showed the highest transfection efficiency in PC-12 cells. However, arginine-based cationic liposomes with TFA salt showed the highest transfection efficiency in HeLa cells, regardless of the presence of serum, with very low associated cytotoxicity. Conclusion The gene

  18. Star-like supramolecular polymers fabricated by a Keplerate cluster with cationic terminated polymers and their self-assembly into vesicles.

    PubMed

    Zhang, Qian; He, Lipeng; Wang, Hui; Zhang, Cheng; Liu, Weisheng; Bu, Weifeng

    2012-07-18

    The electrostatic combination of a Keplerate cluster, [Mo(132)O(372)(CH(3)COO)(30)(H(2)O)(72)](42-) with cationic terminated poly(styrene) yields polyoxometalate-based supramolecular star polymers, which can further self-assemble into vesicular aggregates in CHCl(3)-MeOH mixed solvent.

  19. Ionic polymer-metal composite actuators obtained from radiation-grafted cation- and anion-exchange membranes.

    PubMed

    Park, Jong Hyuk; Han, Man Jae; Song, Dae Seock; Jho, Jae Young

    2014-12-24

    Two series of ionic polymer-metal composites (IPMCs), one cationic and one anionic, are designed and prepared from radiation-grafted ion-exchange membranes. Through examination of the properties of the membranes synthesized from the two grafting monomers and the two base polymers, acrylic acid-grafted poly(vinylidene fluoride-co-hexafluoropropylene) and quarternized 4-vinylpyridine-grafted poly(ethylene-co-tetrafluoroethylene) with the appropriate amount of ionic groups are employed for the fabrication of cation and anion IPMCs, respectively. The bending displacement of the cation IPMC is comparable to Nafion-based IPMC under direct- and alternating-current voltage, but back-relaxation is not observed. The actuation performance of the anion IPMC is highly improved over those reported earlier in the literature for the other anion IPMCs.

  20. Hypercrosslinked strong cation-exchange polymers for selective extraction of serum purine metabolites associated with gout.

    PubMed

    Xu, Yating; Liu, Ju; Zhang, Hongyang; Jiang, Min; Cao, Lingling; Zhang, Min; Sun, Wei; Ruan, Shengli; Hu, Ping

    2016-05-01

    In this study, hypercrosslinked strong cation-exchange polymer resins (HXLPP-SCX) were synthesized and employed as selective sorbents for the solid-phase extraction (SPE) of basic purine metabolites associated with gout. The HXLPP-SCX material was prepared based on hypercrosslinking reactions and sulfonated with concentrated H2SO4. This synthetic procedure is facile and efficient without using highly toxic reagent. The resulting resins were characterized in the form of monodisperse microspheres (mean diameters of 3‒5μm) with narrow pore size (2.1nm) and relatively high specific surface areas (801m(2)/g). The polymers also possess high ion-exchange capacity (IEC, 2.22mmol/g) and good adsorption and selectivity performances for basic compounds. The resins used as SPE sorbents permit the selective enrichment of three pivotal purine metabolites (hypoxanthine, xanthine and inosine) in human serum followed by HPLC analysis. Method validation including linearity range, sensitivity, accuracy and reproducibility were evaluated. This method was exemplarily applied in the analysis of serum purines in gout patients and healthy controls. The present results demonstrate a promising potential of this HXLPP-SCX material for the clinical sample pretreatment.

  1. Microneedle-mediated transcutaneous immunization with plasmid DNA coated on cationic PLGA nanoparticles

    PubMed Central

    Kumar, Amit; Wonganan, Piyanuch; Sandoval, Michael A.; Li, Xinran; Zhu, Saijie; Cui, Zhengrong

    2012-01-01

    Previously, it was shown that microneedle-mediated transcutaneous immunization with plasmid DNA can potentially induce a stronger immune response than intramuscular injection of the same plasmid DNA. In the present study, we showed that the immune responses induced by transcutaneous immunization by applying plasmid DNA onto a skin area pretreated with solid microneedles were significantly enhanced by coating the plasmid DNA on the surface of cationic nanoparticles. In addition, the net surface charge of the DNA-coated nanoparticles significantly affected their in vitro skin permeation and their ability to induce immune responses in vivo. Transcutaneous immunization with plasmid DNA-coated net positively charged anoparticles elicited a stronger immune response than with plasmid DNA-coated net negatively charged nanoparticles or by intramuscular immunization with plasmid DNA alone. Transcutaneous immunization with plasmid DNA-coated net positively charged nanoparticles induced comparable immune responses as intramuscular injection of them, but transcutaneous immunization was able to induce specific mucosal immunity and a more balanced T helper type 1 and type 2 response. The ability of the net positively charged DNA-coated nanoparticles to induce a strong immune response through microneedle-mediated transcutaneous immunization may be attributed to their ability to increase the expression of the antigen gene encoded by the plasmid and to more effectively stimulate the maturation of antigen-presenting cells. PMID:22921518

  2. Scutellarin-graft cationic β-cyclodextrin-polyrotaxane: Synthesis, characterization and DNA condensation.

    PubMed

    Qin, Qi; Ma, Xue; Liao, Xiali; Yang, Bo

    2017-02-01

    As a prerequisite of gene delivery in living cells, DNA condensation has attracted more and more attention. In order to improve the efficiencies of polyamine-β-cyclodextrin-based cationic polyrotaxanes (PR-EDA and PR-DETA) as DNA condensation materials, we have designed and prepared two novel scutellarin-grafted cationic polyrotaxanes (PR-EDA-SCU and PR-DETA-SCU), in which scutellarins (SCU), the planar molecules, were conjugated on the cyclodextrin molecules of PR-EDA and PR-DETA. These materials were characterized by 1D and 2D NMR, XRD, TG and DSC. The electrophoresis assays showed that pDNA condensation efficiencies of PR-EDA and PR-DETA were better than that of PR-EDA and PR-DETA. The complexes of PR-EDA, PR-DETA, PR-EDA-SCU and PR-DETA-SCU with pDNA were further investigated by zeta potential and atomic force microscopy analysis. The results indicated that the planar structure of SCU played an important role in improvement of pDNA condensation efficiencies of PR-EDA-SCU and PR-DETA-SCU. The satisfactory pDNA condensation abilities of PR-EDA-SCU and PR-DETA-SCU could be helpful in designing non-viral gene delivery vectors to control gene expression and delivery.

  3. Effects of cation on electrical responses of ionic polymer-metal composite sensors at various ambient humidities

    NASA Astrophysics Data System (ADS)

    Zhu, Zicai; Horiuchi, Tetsuya; Takagi, Kentaro; Takeda, Jun; Chang, Longfei; Asaka, Kinji

    2016-08-01

    In this study, we investigated the effects of various cations on the electrical responses of ionic polymer-metal composite (IPMC) sensors at various ambient humidities. Four typical Au-Nafion IPMC samples were prepared with H+, Li+, Na+, and K+ cations. The voltage and current responses of the IPMCs were investigated under static and dynamic bending displacements. The orders of the voltage and current amplitudes were generally Li+ > Na+ > K+ > H+ and depended on the cation transport properties and the water content. The static voltage response first increased to a peak and then slowly decreased to a steady state. A negative steady-state voltage was initially observed for the IPMC with H+ cations under near saturation conditions. The voltage amplitude increased monotonously with increasing frequency from 0.1 to 10 Hz at a high relative humidity (RH, ˜90%), first increased and then decreased at moderate humidity (RH, ˜50%), and decreased continuously at low humidity (RH, ˜20%). The static current response first rapidly increased to a peak and then quickly decayed. During current decay, free oscillation decay occurred at high humidity and attenuated with decreasing humidity. This was confirmed to be the result of cation movement in the IPMC. There are three necessary conditions for oscillation: sufficient migrated cations, high cation mobility, and high stiffness of the polymer network. For the dynamic current response, the amplitude increased with increasing frequency (0.1-10 Hz) and showed good linearity. The underlying physics, mainly involving cation forward migration and back diffusion caused by mechano-chemo-electrical coupling, was clarified.

  4. Enzymatic synthesis of organic-polymer-grafted DNA.

    PubMed

    Baccaro, Anna; Marx, Andreas

    2010-01-04

    To create bioorganic hybrid materials, interdisciplinary work in the fields of chemistry, biology and materials science is conducted. DNA block copolymers are promising hybrid materials due to the combination of properties intrinsic to both the polymer and the nucleic acid blocks. Until now, the coupling of DNA and organic polymers has been exercised post-synthetically in solution or on solid support. Herein, we report the first enzyme-catalysed synthesis of DNA-organic polymer chimeras. For this purpose, four novel 2'-deoxyuridine triphosphates carrying polymer-like moieties linked to the nucleobase were synthesised. Linear polyethylene glycol monomethyl ethers of different sizes (1) and branched polyamido dendrons with varying terminal groups (2) were chosen as building blocks. We investigated the ability of DNA polymerases to accept the copolymers in comparison to the natural substrate and showed, through primer extensions, polymerase chain reactions and rolling circle amplification, that these building blocks could serve as a surrogate for the natural thymidine. By this method, DNA hybrid materials with high molecular weight, modification density, and defined structure are accessible.

  5. Selective transport of cationized fluorescent topoisomerase into nuclei of live cells for DNA damage studies.

    PubMed

    Minchew, Candace L; Didenko, Vladimir V

    2014-01-01

    The targeted delivery of fluorescently labeled, DNA-modifying proteins into cellular nuclei permits investigation of DNA damage and chromatin function in living cells. Commercially available protein delivery vectors cannot provide selective intranuclear transportation and primarily unload their cargo in the cytoplasm. Here we describe a simple approach for specific intranuclear transportation of vaccinia topoisomerase protein based on its cationization. The delivered protein can be observed and monitored by fluorescence microscopy. The technique is cost-efficient and time-saving. It can be useful in live cell studies.

  6. In vivo release of plasmid DNA from composites of oligo(poly(ethylene glycol)fumarate) and cationized gelatin microspheres.

    PubMed

    Kasper, F Kurtis; Kushibiki, Toshihiro; Kimura, Yu; Mikos, Antonios G; Tabata, Yasuhiko

    2005-10-20

    Composites of cationized gelatin microspheres (CGMS), crosslinked with either 3 mM or 6 mM glutaraldehyde solution, and a novel hydrogel material, oligo(poly(ethylene glycol)fumarate) (OPF) were fabricated and investigated toward prolonging the release of plasmid DNA in vivo relative to the constituent materials. The composites and constituent materials were investigated in a subcutaneous murine model to assess the release of 125I-labeled plasmid DNA and 125I-labeled cationized gelatin in vivo. The time profiles of the radioactivity remaining were employed to compare the profiles of DNA release and cationized gelatin degradation. Both composite formulations (incorporating either 3 mM or 6 mM CGMS) prolonged the bioavailability of plasmid DNA relative to both injected plasmid DNA solution and the respective non-embedded cationized gelatin microspheres. Injected plasmid DNA solution persisted in the subject for only 7-10 days, whereas the persistence of DNA from composites of OPF and either 3 mM or 6 mM CGMS extended to at least day 42. The 3 mM and 6 mM CGMS each increased the persistence of DNA slightly, relative to injection of DNA solution, to between 28 and 35 days. Interestingly, the release profile of plasmid DNA from composites was not significantly different from the release of DNA from OPF alone. The release of plasmid DNA from the composites was in accord with the degradation of the microspheres within the OPF. These results show that composites of OPF and cationized gelatin microspheres are able to prolong the availability of plasmid DNA in vivo relative to cationized gelatin microspheres alone and provide a promising candidate material for the sustained, controlled release of plasmid DNA.

  7. Antibacterial effect of cationic porphyrazines and anionic phthalocyanine and their interaction with plasmid DNA

    NASA Astrophysics Data System (ADS)

    Hassani, Leila; Hakimian, Fatemeh; Safaei, Elham; Fazeli, Zahra

    2013-11-01

    Resistance to antibiotics is a public health issue and identification of new antibacterial agents is one of the most important goals of pharmacological research. Among the novel developed antibacterial agents, porphyrin complexes and their derivatives are ideal candidates for use in medical applications. Phthalocyanines differ from porphyrins by having nitrogen atoms link the individual pyrrol units. The aza analogues of the phthalocyanines (azaPcs) such as tetramethylmetalloporphyrazines are heterocyclic Pc analogues. In this investigation, interaction of an anionic phthalocyanine (Cu(PcTs)) and two cationic tetrapyridinoporphyrazines including [Cu(2,3-tmtppa)]4+ and [Cu(3,4-tmtppa)]4+ complexes with plasmid DNA was studied using spectroscopic and gel electrophoresis methods. In addition, antibacterial effect of the complexes against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria was investigated using dilution test method. The results indicated that both porphyrazines have significant antibacterial properties, but Cu(PcTs) has weak antibacterial effect. Compairing the binding of the phthalocyanine and the porphyrazines to DNA demonstrated that the interaction of cationic porphyrazines is stronger than the anionic phthalocyanine remarkably. The extent of hypochromicity and red shift of absorption spectra indicated preferential intercalation of the two porphyrazine into the base pairs of DNA helix. Gel electrophoresis result implied Cu(2,3-tmtppa) and Cu(3,4-tmtppa) are able to perform cleavage of the plasmid DNA. Consequently, DNA binding and cleavage might be one of the antibacterial mechanisms of the complexes.

  8. Dendritic star polymers for efficient DNA binding and stimulus-dependent DNA release.

    PubMed

    Yin, Meizhen; Ding, Ke; Gropeanu, Radu A; Shen, Jie; Berger, Rüdiger; Weil, Tanja; Müllen, Klaus

    2008-11-01

    Water-soluble core-shell star polymers consisting of a dendritic polyphenylene core and an outer shell containing a defined number of amino groups have been synthesized via atom transfer radical polymerization (ATRP). All macromolecules efficiently interacted with a diverse set of DNA fragments, and stable complexes were formed and visualized by atomic force microscopy. The observed tight binding of DNA, which was found in the sub-nanomolar range, was mainly attributed to strong electrostatic interactions. Complex stoichiometries between the polyelectrolytes were controlled via the number of amino groups of the star polymers, and well-defined nanoscopic architectures were formed. DNA was released from the complexes after treatment with high concentrations of sodium chloride in aqueous solution. Such star polymers, which allow the binding and release of DNA, represent attractive candidates for the development of novel anion-exchange resins for DNA purification or as nonviral vector systems for gene delivery.

  9. Homogeneous fluorescent specific PCR for the authentication of medicinal snakes using cationic conjugated polymers

    PubMed Central

    Jiang, Chao; Yuan, Yuan; Liu, Libing; Hou, Jingyi; Jin, Yan; Huang, Luqi

    2015-01-01

    A label-free, homogenous and sensitive one-step method for the molecular authentication of medicinal snakes has been developed by combining a rapid PCR technique with water-soluble cationic conjugated polyelectrolytes (CCPs). Three medicinal snake materials (Deinagkistrodon acutus, Zaocys dhumnades and Bungarus multicinctus; a total of 35 specimens) and 48 snake specimens with similar morphologies and textures were clearly distinguished by the naked eye by utilizing a CCP-based assay in a high-throughput manner. The identification of medicinal snakes in patented Chinese drugs was successfully performed using this detection system. In contrast to previous fluorescence-labeled oligonucleotide detection and direct DNA stain hybridization assays, this method does not require designing dye-labeled primers, and unfavorable dimer fluorescence is avoided in this homogenous method. PMID:26537289

  10. Homogeneous fluorescent specific PCR for the authentication of medicinal snakes using cationic conjugated polymers.

    PubMed

    Jiang, Chao; Yuan, Yuan; Liu, Libing; Hou, Jingyi; Jin, Yan; Huang, Luqi

    2015-11-05

    A label-free, homogenous and sensitive one-step method for the molecular authentication of medicinal snakes has been developed by combining a rapid PCR technique with water-soluble cationic conjugated polyelectrolytes (CCPs). Three medicinal snake materials (Deinagkistrodon acutus, Zaocys dhumnades and Bungarus multicinctus; a total of 35 specimens) and 48 snake specimens with similar morphologies and textures were clearly distinguished by the naked eye by utilizing a CCP-based assay in a high-throughput manner. The identification of medicinal snakes in patented Chinese drugs was successfully performed using this detection system. In contrast to previous fluorescence-labeled oligonucleotide detection and direct DNA stain hybridization assays, this method does not require designing dye-labeled primers, and unfavorable dimer fluorescence is avoided in this homogenous method.

  11. Inhibition of RNA-dependent DNA polymerase of Rous sarcoma virus by thiosemicarbazones and several cations.

    PubMed

    Levinson, W; Faras, A; Woodson, B; Jackson, J; Bishop, J M

    1973-01-01

    The RNA-dependent DNA polymerase of Rous sarcoma virus is inhibited by N-methyl isatin beta-thiosemicarbazone and by thiosemicarbazide, but not by semicarbazide. These inhibitors also inactivate, upon contact with the virion, the transforming ability of Rous sarcoma virus. Sulfhydryl donors, such as 2-mercapto-ethanol, can prevent these effects. The RNA-directed activity of the purified polymerase is inhibited to a greater degree than is the DNA-directed activity. Two cations, Cu(++) and Hg(++), can inhibit RNA-dependent DNA polymerase and inactivate the transforming ability of the virus. Synergism between N-methyl isatin beta-thiosemicarbazone and Cu(++) occurs, since treatment of the virus with a low dose of either N-methyl isatin beta-thiosemicarbazone or Cu(++) has little effect; however, when the two compounds are mixed together, significant inactivation occurs. This observation supports the hypothesis that the antiviral action of thiosemicarbazones is a function of their ability to act as a ligand for metallic ions. Several cations (Ag(+), Co(++), Zn(++), Cd(++), and Ni(++)) significantly inactivate the RNA-dependent DNA polymerase, but have little effect on the transforming ability. In view of this result, the conclusion that the enzyme activity is required for transformation remains open to question.

  12. Interaction of cationic phthalocyanines with DNA. Importance of the structure of the substituents.

    PubMed

    López Zeballos, N C; Gauna, G A; García Vior, M C; Awruch, J; Dicelio, L E

    2014-07-05

    The interaction of novel zinc (II) cationic phthalocyanines with CT-DNA was studied using absorption and fluorescence spectroscopy, as well as thermal denaturation profiles. Results showed an electrostatic interaction between the phthalocyanines and CT-DNA. The properties of these phthalocyanines were compared taking the structure of the macrocycle peripheral substituents into account. 2,9(10),16(17),23(24)-tetrakis[(N-butyl-N-methylammonium)ethylsulfanyl]phthalocyaninatozinc(II) tetraiodide (Pc6) had a greater affinity for the CT-DNA helix than its bioisoster 2,9(10),16(17),23(24)-tetrakis[(N-dibutyl-N-methylammonium)ethoxy]phthalocyaninatozinc(II) tetraiodide (Pc7). 2,9(10),16(17),23(24)-tetrakis[(2-trimethylammonium)ethyl-sulfanyl]phthalocyaninatozinc(II) tetraiodide (Pc13) also carried a sulfur atom like Pc6, but linked to bulky substituents such as trimethylammonium groups. The planar aromatic region of the cationic phthalocyanines in this study appears to be unable to facilitate their intercalation with CT-DNA.

  13. Competitive interaction of monovalent cations with DNA from 3D-RISM

    PubMed Central

    Giambaşu, George M.; Gebala, Magdalena K.; Panteva, Maria T.; Luchko, Tyler; Case, David A.; York, Darrin M.

    2015-01-01

    The composition of the ion atmosphere surrounding nucleic acids affects their folding, condensation and binding to other molecules. It is thus of fundamental importance to gain predictive insight into the formation of the ion atmosphere and thermodynamic consequences when varying ionic conditions. An early step toward this goal is to benchmark computational models against quantitative experimental measurements. Herein, we test the ability of the three dimensional reference interaction site model (3D-RISM) to reproduce preferential interaction parameters determined from ion counting (IC) experiments for mixed alkali chlorides and dsDNA. Calculations agree well with experiment with slight deviations for salt concentrations >200 mM and capture the observed trend where the extent of cation accumulation around the DNA varies inversely with its ionic size. Ion distributions indicate that the smaller, more competitive cations accumulate to a greater extent near the phosphoryl groups, penetrating deeper into the grooves. In accord with experiment, calculated IC profiles do not vary with sequence, although the predicted ion distributions in the grooves are sequence and ion size dependent. Calculations on other nucleic acid conformations predict that the variation in linear charge density has a minor effect on the extent of cation competition. PMID:26304542

  14. Interaction of a cationic acrylate polymer with caseins: biphasic effect of Eudragit E100 on the stability of casein micelles.

    PubMed

    Ausar, Salvador F; Bianco, Ismael D; Castagna, Leonardo F; Alasino, Roxana V; Beltramo, Dante M

    2003-07-16

    When whole or skim milk was incubated with the cationic acrylate polymer Eudragit E100, a biphasic effect on the stability of casein micelles was observed. A precipitation phase was observed at low polymer/casein ratios. Strikingly, a solubilization phase of the aggregates was observed when the ratios of polymer/casein were increased. Purified alpha(s)-, beta-, and kappa-caseins or dephosphorylated caseins were equally precipitated and resolubilized by the cationic polymer, indicating no special selectivity for a particular protein or phosphate residue for these events. An increase in the size of the aggregates as the optimum precipitating amount of Eudragit E100 was reached suggests a crossbridging of the micelles by the polymer. The inhibition of the precipitation phase by high ionic strength indicates that electrostatic interactions play a critical role in complex formation. Furthermore, a dramatic reduction in size of the protein colloidal particles upon solubilization of the aggregates was observed by dynamic light scattering, indicating a dissociation of the micellar structure. Taken together, the results indicate that at low concentration Eudragit E100 may act as a precipitant of casein micelles, mainly by ionic interaction and at high concentration as an amphipathic agent, solubilizing casein micelles with a disruption of their internal structure.

  15. Dual-Colored DNA Comb Polymers for Single Molecule Rheology

    NASA Astrophysics Data System (ADS)

    Mai, Danielle; Marciel, Amanda; Schroeder, Charles

    2014-03-01

    We report the synthesis and characterization of branched biopolymers for single molecule rheology. In our work, we utilize a hybrid enzymatic-synthetic approach to graft ``short'' DNA branches to ``long'' DNA backbones, thereby producing macromolecular DNA comb polymers. The branches and backbones are synthesized via polymerase chain reaction with chemically modified deoxyribonucleotides (dNTPs): ``short'' branches consist of Cy5-labeled dNTPs and a terminal azide group, and ``long'' backbones contain dibenzylcyclooctyne-modified (DBCO) dNTPs. In this way, we utilize strain-promoted, copper-free cycloaddition ``click'' reactions for facile grafting of azide-terminated branches at DBCO sites along backbones. Copper-free click reactions are bio-orthogonal and nearly quantitative when carried out under mild conditions. Moreover, comb polymers can be labeled with an intercalating dye (e.g., YOYO) for dual-color fluorescence imaging. We characterized these materials using gel electrophoresis, HPLC, and optical microscopy, with atomic force microscopy in progress. Overall, DNA combs are suitable for single molecule dynamics, and in this way, our work holds the potential to improve our understanding of topologically complex polymer melts and solutions.

  16. A Transition to a Compact Form of DNA in Polymer Solutions

    PubMed Central

    Lerman, L. S.

    1971-01-01

    In the presence of over-threshold concentrations of simple neutral polymers and salts, DNA undergoes a cooperative change in its solution structure. Sedimentation studies at low DNA concentrations show that phage DNA molecules collapse into particles approaching the compactness of the contents of phage heads. The interaction between DNA and polymers is thought to be nonspecifically replusive. PMID:5288774

  17. Lipid and cationic polymer based transduction of botulinum holotoxin, or toxin protease alone, extends the target cell range and improves the efficiency of intoxication.

    PubMed

    Kuo, Chueh-Ling; Oyler, George; Shoemaker, Charles B

    2010-01-01

    Botulinum neurotoxin (BoNT) heavy chain (Hc) facilitates receptor-mediated endocytosis into neuronal cells and transport of the light chain (Lc) protease to the cytosol where neurotransmission is inhibited as a result of SNARE protein cleavage. Here we show that the role of BoNT Hc in cell intoxication can be replaced by commercial lipid-based and polycationic polymer DNA transfection reagents. BoNT "transduction" by these reagents permits efficient intoxication of neuronal cells as well as some non-neuronal cell lines normally refractory to BoNT. Surprisingly, the reagents facilitate delivery of recombinant BoNT Lc protease to the cytosol of both neuronal and non-neuronal cells in the absence of BoNT Hc, and with sensitivities approaching that of BoNT holotoxin. Transduction of BoNT, as with natural intoxication, is inhibited by bafilomycin A1, methylamine and ammonium chloride indicating that both pathways require endosome acidification. DNA transfection reagents facilitate intoxication by holotoxins, or isolated Lc proteases, of all three BoNT serotypes tested (A, B, E). These results suggest that lipid and cationic polymer transfection reagents facilitate cytosolic delivery of BoNT holotoxins and isolated Lc proteases by an endosomal uptake pathway.

  18. Modulation of pyridinium cationic lipid-DNA complex properties by pyridinium gemini surfactants and its impact on lipoplex transfection properties.

    PubMed

    Sharma, Vishnu Dutt; Lees, Julia; Hoffman, Nicholas E; Brailoiu, Eugen; Madesh, Muniswamy; Wunder, Stephanie L; Ilies, Marc A

    2014-02-03

    The study presents the effects of blending a cationic gemini surfactant into cationic lipid bilayers and its impact on the plasmid DNA compaction and delivery process. Using nanoDSC, dynamic light scattering, zeta potential, and electrophoretic mobility measurements, together with transfection (2D- and 3D-) and viability assays, we identified the main physicochemical parameters of the lipid bilayers, liposomes, and lipoplexes that are affected by the gemini surfactant addition. We also correlated the cationic bilayer composition with the dynamics of the DNA compaction process and with transfection efficiency, cytotoxicity, and the internalization mechanism of the resultant nucleic acid complexes. We found that the blending of gemini surfactant into the cationic bilayers fluidized the supramolecular assemblies, reduced the amount of positive charge required to fully compact the plasmid DNA and, in certain cases, changed the internalization mechanism of the lipoplexes. The transfection efficiency of select ternary lipoplexes derived from cationic gemini surfactants and lipids was several times superior to the transfection efficiency of corresponding binary lipoplexes, also surpassing standard transfection systems. The overall impact of gemini surfactants into the formation and dynamic of cationic bilayers was found to depend heavily on the presence of colipids, their nature, and amount present in lipoplexes. The study confirmed the possibility of combining the specific properties of pyridinium gemini surfactants and cationic lipids synergistically to obtain efficient synthetic transfection systems with negligible cytotoxicity useful for therapeutic gene delivery.

  19. Effect of plasticizer on surface of free films prepared from aqueous solutions of salts of cationic polymers with different plasticizers

    NASA Astrophysics Data System (ADS)

    Bajdik, János; Fehér, Máté; Pintye-Hódi, Klára

    2007-06-01

    Acquisition of a more detailed understanding of all technological processes is currently a relevant tendency in pharmaceutical technology and hence in industry. A knowledge of film formation from dispersion of polymers is very important during the coating of solid dosage forms. This process and the structure of the film can be influenced by different additives. In the present study, taste-masking films were prepared from aqueous citric acid solutions of a cationic polymer (Eudragit ® E PO) with various hydrophilic plasticizers (glycerol, propylene glycol and different poly(ethylene glycols)). The mechanical properties, film thickness, wetting properties and surface free energy of the free films were studied. The aim was to evaluate the properties of surface of free films to predict the arrangement of macromolecules in films formed from aqueous solutions of salts of cationic polymers. A high molecular weight of the plasticizer decreased the work of deformation. The surface free energy and the polarity were highest for the film without plasticizer; the hydrophilic additives decreased these parameters. The direction of the change in polarity (a hydrophilic component caused a decrease in the polarity) was unexpected. It can be explained by the change in orientation of the macromolecules, a hydrophobic surface being formed. Examination of the mechanical properties and film thickness can furnish additional results towards a knowledge of film formation by this not frequently applied type of polymer from aqueous solution.

  20. Preparation, characterization, and DNA interaction studies of cationic europium luminescent copolymer.

    PubMed

    Deng, Ziwei; Hu, Xiaoxi; Wang, Yun; Yin, Yanzhen; Peng, Bo; Xu, Zushun

    2015-01-01

    This paper proposed a simple synthetic strategy towards a novel cationic europium luminescent copolymer, poly(METAC-co-NIPAm-co-Eu(AA)3Phen) (PMNEu), and investigation about their complexation ability with DNA. In this approach, first, Eu(AA)3Phen complex monomer containing Eu(3+), acrylic acid (AA), and 1,10-phenanthroline (Phen) was synthesized, and subsequently, free radical copolymerization of Eu(AA)3Phen complex monomer with other two functional monomers, [2-(methacryloyloxy) ethyl] trimethylammonium chloride (METAC) and N-isopropylarylamide (NIPAm), was carried out in methanol using azodiisobutyronitrile (AIBN) as the initiator. (1)HNMR, GPC, fluorescence spectroscopy, UV-vis spectroscopy, and TEM were used to investigate the chemical structures, molecular weight and molecular weight distribution, fluorescence properties, UV spectra, and morphologies of PMNEu copolymer, respectively. Furthermore, the interaction of PMNEu with DNA was also studied with fluorescence spectroscopy, UV-vis spectroscopy, and agarose gel electrophoresis. These results indicated that PMNEu could interact with DNA via an electrostatic bonding mode and the bonding constant was 2.2 × 10(5) L/mol. Additionally, TEM observation showed that pure PMNEu formed micelles in water solution, while the size-controllable aggregations of PMNEu with DNA were obtained when PMNEu was mixed with DNA at various concentration ratios. A good biocompability of PMNEu was demonstrated through in vitro cytotoxicity assays.

  1. A multicolor photoinitiator for cationic polymerization and interpenetrated polymer network synthesis: 2,7-di-tert-butyldimethyldihydropyrene.

    PubMed

    Tehfe, Mohamad-Ali; Dumur, Frédéric; Vilà, Neus; Graff, Bernadette; Mayer, Cédric R; Fouassier, Jean Pierre; Gigmes, Didier; Lalevée, Jacques

    2013-07-12

    For polymer synthesis upon visible light, actual photoinitiator operates in a restricted part of the spectrum. As a consequence, several photoinitiators are necessary to harvest all of the emitted visible photons. Herein, 2,7-di-tert-butyldimethyldihydropyrene is used for the first time as a multicolor photoinitiator for the cationic polymerization of epoxides. Upon addition of diphenyliodonium hexafluorophosphate and optionally N-vinylcarbazole, the originality of this approach is to allow efficient monomer conversions under various excitation light sources in the 360-650 nm wavelength range: halogen lamps, and light-emitting and laser diodes. The synthesis of an interpenetrated polymer network from an epoxide/acrylate blend using a red light at 635 nm is also feasible. The formed polymer material exhibits a photochromic character.

  2. Phosphate removal and recovery from water using nanocomposite of immobilized magnetite nanoparticles on cationic polymer.

    PubMed

    Abo Markeb, Ahmad; Alonso, Amanda; Dorado, Antonio David; Sánchez, Antoni; Font, Xavier

    2016-08-01

    A novel nanocomposite (NC) based on magnetite nanoparticles (Fe3O4-NPs) immobilized on the surface of a cationic exchange polymer, C100, using a modification of the co-precipitation method was developed to obtain magnetic NCs for phosphate removal and recovery from water. High-resolution transmission electron microscopy-energy-dispersive spectroscopy, scanning electron microscopy , X-ray diffraction, and inductively coupled plasma optical emission spectrometry were used to characterize the NCs. Continuous adsorption process by the so-called breakthrough curves was used to determine the adsorption capacity of the Fe3O4-based NC. The adsorption capacity conditions were studied under different conditions (pH, phosphate concentration, and concentration of nanoparticles). The optimum concentration of iron in the NC for phosphate removal was 23.59 mgFe/gNC. The sorption isotherms of this material were performed at pH 5 and 7. Taking into account the real application of this novel material in real water, the experiments were performed at pH 7, achieving an adsorption capacity higher than 4.9 mgPO4-P/gNC. Moreover, Freundlich, Langmuir, and a combination of them fit the experimental data and were used for interpreting the influence of pH on the sorption and the adsorption mechanism for this novel material. Furthermore, regeneration and reusability of the NC were tested, obtaining 97.5% recovery of phosphate for the first cycle, and at least seven cycles of adsorption-desorption were carried out with more than 40% of recovery. Thus, this work described a novel magnetic nanoadsorbent with properties for phosphate recovery in wastewater.

  3. Zwitterionic peptide anchored to conducting polymer PEDOT for the development of antifouling and ultrasensitive electrochemical DNA sensor.

    PubMed

    Wang, Guixiang; Han, Rui; Su, Xiaoli; Li, Yinan; Xu, Guiyun; Luo, Xiliang

    2017-06-15

    Zwitterionic peptides were anchored to a conducting polymer of citrate doped poly(3,4-ethylenedioxythiophene) (PEDOT) via the nickel cation coordination, and the obtained peptide modified PEDOT, with excellent antifouling ability and good conductivity, was further used for the immobilization of a DNA probe to construct an electrochemical biosensor for the breast cancer marker BRCA1. The DNA biosensor was highly sensitive (with detection limit of 0.03fM) and selective, and it was able to detect BRCA1 in 5% (v/v) human plasma with satisfying accuracy and low fouling. The marriage of antifouling and biocompatible peptides with conducting polymers opened a new avenue to construct electrochemical biosensors capable of assaying targets in complex biological media with high sensitivity and without biofouling.

  4. Investigation on interaction of DNA and several cationic surfactants with different head groups by spectroscopy, gel electrophoresis and viscosity technologies.

    PubMed

    Guo, Qing; Zhang, Zhaohong; Song, Youtao; Liu, Shuo; Gao, Wei; Qiao, Heng; Guo, Lili; Wang, Jun

    2017-02-01

    In this study, the interaction between DNA and several cationic surfactants with different head groups such as ethyl hexadecyl dimethyl ammonium bromide (EHDAB), hexadecyl dimethyl benzyl ammonium chloride (HDBAC), and cetyl pyridinium bromide (CPB) were investigated by UV-vis absorption, fluorescence and circular dichroism (CD) spectroscopy, gel electrophoresis, and viscosity technologies. The results show that these cationic surfactants can interact with DNA and major binding modes are electrostatic and hydrophobic. Also, CPB and HDBAC molecules interact with DNA by partial intercalation, and CPB has slightly stronger intercalation than HDBAC, while EHDAB interacts with DNA by non-intercalation. The different head groups of the surfactant molecules can influence the interaction strength. CPB has the stronger interaction with DNA than the others. Moreover, surfactant concentration, the ratio of DNA and fluorescence probe, ionic strength can influence the interaction. The surfactants may interact with DNA by the competition reactions with BR for DNA-BR. The increase of ionic strength may favor the surface binding between DNA and surfactants to some extent. This work provides deep mechanistic insight on the toxicity of cationic surfactants with different head groups to DNA molecules.

  5. Role of the central cations in the mechanical unfolding of DNA and RNA G-quadruplexes

    PubMed Central

    Bergues-Pupo, Ana Elisa; Arias-Gonzalez, J. Ricardo; Morón, María Carmen; Fiasconaro, Alessandro; Falo, Fernando

    2015-01-01

    Cations are known to mediate diverse interactions in nucleic acids duplexes but they are critical in the arrangement of four-stranded structures. Here, we use all-atom molecular dynamics simulations with explicit solvent to analyse the mechanical unfolding of representative intramolecular G-quadruplex structures: a parallel, a hybrid and an antiparallel DNA and a parallel RNA, in the presence of stabilising cations. We confirm the stability of these conformations in the presence of \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$\\rm {K}^+$\\end{document} central ions and observe distortions from the tetrad topology in their absence. Force-induced unfolding dynamics is then investigated. We show that the unfolding events in the force-extension curves are concomitant to the loss of coordination between the central ions and the guanines of the G-quadruplex. We found lower ruptures forces for the parallel configuration with respect to the antiparallel one, while the behaviour of the force pattern of the parallel RNA appears similar to the parallel DNA. We anticipate that our results will be essential to interpret the fine structure rupture profiles in stretching assays at high resolution and will shed light on the mechanochemical activity of G-quadruplex-binding machinery. PMID:26170233

  6. Role of the central cations in the mechanical unfolding of DNA and RNA G-quadruplexes.

    PubMed

    Bergues-Pupo, Ana Elisa; Arias-Gonzalez, J Ricardo; Morón, María Carmen; Fiasconaro, Alessandro; Falo, Fernando

    2015-09-03

    Cations are known to mediate diverse interactions in nucleic acids duplexes but they are critical in the arrangement of four-stranded structures. Here, we use all-atom molecular dynamics simulations with explicit solvent to analyse the mechanical unfolding of representative intramolecular G-quadruplex structures: a parallel, a hybrid and an antiparallel DNA and a parallel RNA, in the presence of stabilising cations. We confirm the stability of these conformations in the presence of [Formula: see text] central ions and observe distortions from the tetrad topology in their absence. Force-induced unfolding dynamics is then investigated. We show that the unfolding events in the force-extension curves are concomitant to the loss of coordination between the central ions and the guanines of the G-quadruplex. We found lower ruptures forces for the parallel configuration with respect to the antiparallel one, while the behaviour of the force pattern of the parallel RNA appears similar to the parallel DNA. We anticipate that our results will be essential to interpret the fine structure rupture profiles in stretching assays at high resolution and will shed light on the mechanochemical activity of G-quadruplex-binding machinery.

  7. Effect of cationic side-chains on intracellular delivery and cytotoxicity of pH sensitive polymer-doxorubicin nanocarriers

    NASA Astrophysics Data System (ADS)

    Fang, Chen; Kievit, Forrest M.; Cho, Yong-Chan; Mok, Hyejung; Press, Oliver W.; Zhang, Miqin

    2012-10-01

    Fine-tuning the design of polymer-doxorubicin conjugates permits optimization of an efficient nanocarrier to greatly increase intracellular uptake and cytotoxicity. Here, we report synthesis of a family of self-assembled polymer-doxorubicin nanoparticles and an evaluation of the effects of various types of side-chains on intracellular uptake and cytotoxicity of the nanocarriers for lymphoma cells. Monomers with three different cationic side-chains (CA) and pKa's, i.e., a guanidinium group (Ag), an imidazole group (Im), and a tertiary amine group (Dm), were comparatively investigated. The cationic monomer, poly(ethylene glycol) (PEG), and doxorubicin (Dox) were reacted with 1,4-(butanediol) diacrylate (BUDA) to prepare a poly(β-amino ester) (PBAE) polymer via Michael addition. All three polymer-Dox conjugates spontaneously formed nanoparticles (NP) through hydrophobic interactions between doxorubicin in aqueous solution, resulting in NP-Im/Dox, NP-Ag/Dox, and NP-Dm/Dox, with hydrodynamic sizes below 80 nm. Doxorubicin was linked to all 3 types of NPs with a hydrazone bond to assure selective release of doxorubicin only at acidic pH, as it occurs in the tumor microenvironment. Both NP-Im/Dox and NP-Ag/Dox exhibited much higher intracellular uptake by Ramos cells (Burkitt's lymphoma) than NP-Dm/Dox, suggesting that the type of side chain in the NPs determines the extent of intracellular uptake. As a result, NP-Im/Dox and NP-Ag/Dox showed cytotoxicity that was comparable to free Dox in vitro. Our findings suggest that the nature of surface cationic group on nanocarriers may profoundly influence their intracellular trafficking and resulting therapeutic efficacy. Thus, it is a crucial factor to be considered in the design of novel carriers for intracellular drug delivery.

  8. Adsorption of Synthetic Cationic Polymers on Model Phospholipid Membranes: Insight from Atomic-Scale Molecular Dynamics Simulations.

    PubMed

    Kostritskii, Andrei Yu; Kondinskaia, Diana A; Nesterenko, Alexey M; Gurtovenko, Andrey A

    2016-10-11

    Although synthetic cationic polymers represent a promising class of effective antibacterial agents, the molecular mechanisms behind their antimicrobial activity remain poorly understood. To this end, we employ atomic-scale molecular dynamics simulations to explore adsorption of several linear cationic polymers of different chemical structure and protonation (polyallylamine (PAA), polyethylenimine (PEI), polyvinylamine (PVA), and poly-l-lysine (PLL)) on model bacterial membranes (4:1 mixture of zwitterionic phosphatidylethanolamine (PE) and anionic phosphatidylglycerol (PG) lipids). Overall, our findings show that binding of polycations to the anionic membrane surface effectively neutralizes its charge, leading to the reorientation of water molecules close to the lipid/water interface and to the partial release of counterions to the water phase. In certain cases, one has even an overcharging of the membrane, which was shown to be a cooperative effect of polymer charges and lipid counterions. Protonated amine groups of polycations are found to interact preferably with head groups of anionic lipids, giving rise to formation of hydrogen bonds and to a noticeable lateral immobilization of the lipids. While all the above findings are mostly defined by the overall charge of a polymer, we found that the polymer architecture also matters. In particular, PVA and PEI are able to accumulate anionic PG lipids on the membrane surface, leading to lipid segregation. In turn, PLL whose charge twice exceeds charges of PVA/PEI does not induce such lipid segregation due to its considerably less compact architecture and relatively long side chains. We also show that partitioning of a polycation into the lipid/water interface is an interplay between its protonation level (the overall charge) and hydrophobicity of the backbone. Therefore, a possible strategy in creating highly efficient antimicrobial polymeric agents could be in tuning these polycation's properties through proper

  9. Conformation Transformation Determined by Different Self-Assembled Phases in a DNA Complex with Cationic Polyhedral Oligomeric Silsesquioxane Lipid

    SciTech Connect

    Cui,L.; Chen, D.; Zhu, L.

    2008-01-01

    In this work, a novel cube-shaped cationic lipid based on the imidazolium salt of polyhedral oligomeric silsesquioxane (POSS) was complexed with double-stranded DNA. Because of the negative spontaneous curvature of the cationic POSS imidazolium lipid, an inverted hexagonal phase resulted above the melting point of POSS crystals. Depending on the competition between the crystallization of POSS molecules and the negative spontaneous curvature of cationic POSS imidazolium lipids, different self-assembled phase morphologies were obtained. A lamellar phase was obtained when the POSS crystallization was relatively slow. When the POSS crystallization was fast, an inverted hexagonal phase was obtained with POSS lamellar crystals grown in the interstitials of DNA cylinders. On the basis of a circular dichroism study, double-stranded DNA adopted the B-form helical conformation in the inverted hexagonal phase, whereas the helical conformation was largely destroyed in the lamellar phase.

  10. Cellular uptake pathways of lipid-modified cationic polymers in gene delivery to primary cells.

    PubMed

    Hsu, Charlie Y M; Uludağ, Hasan

    2012-11-01

    Hydrophobic modifications have emerged as a promising approach to improve the efficiency of non-viral gene delivery vectors (GDV). Functional GDVs from non-toxic polymers have been created with this approach but the mechanism(s) behind lipid-mediated enhancement in transfection remains to be clarified. Using a linoleic acid-substituted 2 kDa polyethylenimine (PEI2LA), we aimed to define the cellular uptake pathways and intracellular trafficking of plasmid DNA in normal human foreskin fibroblast cells. Several pharmacological compounds were applied to selectively inhibit uptake by clathrin-mediated endocytosis (CME), caveolin-mediated endocytosis (CvME) and macropinocytosis. We found that PEI2LA complexes were taken up predominantly through CME, and to a lesser extent by CvME. In contrast, its precursor molecule, PEI2 complexes was internalized primarily by CvME and macropinocytosis. The commonly used 25 kDa PEI 25 complexes utilized all endocytic pathways, suggesting its efficiency is derived from a different set of transfection pathways than PEI2LA. We further applied several endosome disruptive agents and found that hypertonic media enhanced the transfection of PEI2LA by 6.5-fold. We infer that lipid substitution changes the normal uptake pathways significantly and transfection with hydrophobically modified GDVs may be further enhanced by incorporating endosome disruptive elements into vector design.

  11. Thermal treatment effects imposed on solid DNA cationic lipid complex with hexadecyltrimethylammonium chloride, observed by variable angle spectroscopic ellipsometry

    SciTech Connect

    Nizioł, Jacek

    2014-12-21

    DNA cationic lipid complexes are materials of properties required for applications in organic electronics and optoelectronics. Often, their thermal stability demonstrated by thermogravimetry is cited in the literature as important issue. However, little is known about processes occurring in heated solid DNA cationic lipid complexes. In frame of this work, thin films of Deoxyribonucleic acid-hexadecyltrimethylammonium chloride (DNA-CTMA) were deposited on silicon wafers. Samples were thermally annealed, and simultaneously, their optical functions were measured by spectroscopic ellipsometry. At lower temperatures, thermal expansion coefficient of solid DNA-CTMA was negative, but at higher temperatures positive. Thermally induced modification of absorption spectrum in UV-vis was observed. It occurred at a range of temperatures higher than this of DNA denaturation in solution. The observed phenomenon was irreversible, at least in time scale of the experiment (one day)

  12. DNA-functionalized gold nanoparticles in macromolecularly crowded polymer solutions.

    PubMed

    Shin, Jeehae; Zhang, Xu; Liu, Juewen

    2012-11-15

    DNA-functionalized gold nanoparticles (AuNPs) are one of the most commonly used reagents in nanobiotechnology. They are important not only for practical applications in analytical chemistry and drug delivery, but also for fundamental understanding of nanoscience. For biological samples such as blood serum or for intracellular applications, the effects of crowded cellular proteins and nucleic acids need to be considered. The thermodynamic effect of crowding is to induce nanoparticle aggregation. But before such aggregation can take place, there might also be a depletion repulsive barrier. Polyethylene glycol (PEG) is one of the most frequently used polymers to mimic the crowded cellular environment. We show herein that while DNA-functionalized AuNPs are very stable in buffer (e.g., no PEG) and citrate-capped AuNPs are very stable in PEG, DNA-functionalized AuNPs are unstable in PEG and are easily aggregated. Although such aggregation in PEG is mediated by DNA, no sharp melting transition typical for DNA-linked AuNPs is observed. We attribute this broad melting to depletion force instead of DNA base pairing. The effects of PEG molecular weight, concentration and temperature have been studied in detail and we also find an interesting PEG phase separation and AuNP partition into the water-rich phase at high temperature.

  13. The electrokinetic characterization of gold nanoparticles, functionalized with cationic functional groups, and its' interaction with DNA.

    PubMed

    Lazarus, Geraldine Genevive; Revaprasadu, Neerish; López-Viota, Julián; Singh, Moganavelli

    2014-09-01

    Gold nanoparticles have attracted strong biomedical interest for drug delivery due to their low toxic nature, surface plasmon resonance and capability of increasing the stability of the payload. However, gene transfection represents another important biological application. Considering that cellular barriers keep enclosed their secret to deliver genes using nanoparticles, an important step can be achieved by studying the functionalization of nanoparticles with DNA. In the present contribution the synthesis of nanoparticles consisting of a gold core coated with one or more layers of amino acid (l-lysine), and cationic polyelectrolytes (poly-ethyleneimine and poly-l-lysine) is reported. All nanoparticles were subjected to dynamic light scattering, electrophoretic mobility measurements, UV-vis optical spectrophotometry analysis and transmission electron microscopy imaging. In addition, the adsorption of DNA plasmid (pSGS) with linear and supercoiled configurations was studied for those gold nanoparticles under the most suitable surface modifications. Preliminary results showed that the gold nanoparticles functionalized with poly-ethyleneimine and poly-l-lysine, respectively, and bound to linear DNA configurations, present in absolute value a higher electrophoretic mobility irrespective of the pH of the media, compared to the supercoiled and nicked configuration. The findings from this study suggest that poly-ethyleneimine and poly-l-lysine functionalized gold nanoparticles are biocompatible and may be promising in the chemical design and future optimization of nanostructures for biomedical applications such as gene and drug delivery.

  14. Theoretical investigation on DNA/RNA base pairs mediated by copper, silver, and gold cations.

    PubMed

    Marino, Tiziana; Russo, Nino; Toscano, Marirosa; Pavelka, Matej

    2012-02-14

    B3LYP density functional based computations were performed in order to characterize the interactions present in some Cu(+), Ag(+), and Au(+) metal ion-mediated DNA and RNA base pairs from both structural and electronic points of view. Examined systems involve as ligands canonical Watson-Crick, Hoogsteen and Wobble base pairs. Two artificial Hoogsteen base pairs were also taken into account. Binding energy values indicate that complexes involving silver cations are less stable than those in which copper or gold are present, and propose a similar behaviour for these two latter ions. The nature of the bond linking metal ions and bases was described by the NBO analysis that suggests metal coordinative interactions to be covalent. An evaluation of the dispersion contributions for the investigated systems was performed with the B3LYP-D3 functional.

  15. Role of cholesterol on the transfection barriers of cationic lipid/DNA complexes

    NASA Astrophysics Data System (ADS)

    Pozzi, Daniela; Cardarelli, Francesco; Salomone, Fabrizio; Marchini, Cristina; Amenitsch, Heinz; Barbera, Giorgia La; Caracciolo, Giulio

    2014-08-01

    Most lipid formulations need cholesterol for efficient transfection, but the precise motivation remains unclear. Here, we have investigated the effect of cholesterol on the transfection efficiency (TE) of cationic liposomes made of 1,2-dioleoyl-3-trimethylammonium-propane and dioleoylphosphocholine in Chinese hamster ovary cells. The transfection mechanisms of cholesterol-containing lipoplexes have been investigated by TE, synchrotron small angle X-ray scattering, and laser scanning confocal microscopy experiments. We prove that cholesterol-containing lipoplexes enter the cells using different endocytosis pathways. Formulations with high cholesterol content efficiently escape from endosomes and exhibit a lamellar-nonlamellar phase transition in mixture with biomembrane mimicking lipid formulations. This might explain both the DNA release ability and the high transfection efficiency. These studies highlight the enrichment in cholesterol as a decisive factor for transfection and will contribute to the rational design of lipid nanocarriers with superior TE.

  16. Electrochemical DNA Hybridization Sensors Based on Conducting Polymers

    PubMed Central

    Rahman, Md. Mahbubur; Li, Xiao-Bo; Lopa, Nasrin Siraj; Ahn, Sang Jung; Lee, Jae-Joon

    2015-01-01

    Conducting polymers (CPs) are a group of polymeric materials that have attracted considerable attention because of their unique electronic, chemical, and biochemical properties. This is reflected in their use in a wide range of potential applications, including light-emitting diodes, anti-static coating, electrochromic materials, solar cells, chemical sensors, biosensors, and drug-release systems. Electrochemical DNA sensors based on CPs can be used in numerous areas related to human health. This review summarizes the recent progress made in the development and use of CP-based electrochemical DNA hybridization sensors. We discuss the distinct properties of CPs with respect to their use in the immobilization of probe DNA on electrode surfaces, and we describe the immobilization techniques used for developing DNA hybridization sensors together with the various transduction methods employed. In the concluding part of this review, we present some of the challenges faced in the use of CP-based DNA hybridization sensors, as well as a future perspective. PMID:25664436

  17. Influence of cationic molecules on the hairpin to duplex equilibria of self-complementary DNA and RNA oligonucleotides

    PubMed Central

    Nakano, Shu-ichi; Kirihata, Toshimasa; Fujii, Satoshi; Sakai, Hiroshi; Kuwahara, Masayasu; Sawai, Hiroaki; Sugimoto, Naoki

    2007-01-01

    A self-complementary nucleotide sequence can form both a unimolecular hairpin and a bimolecular duplex. In this study, the secondary structures of the self-complementary DNA and RNA oligonucleotides with different sequences and lengths were investigated under various solution conditions by gel electrophoresis, circular dichroism (CD) and electron paramagnetic resonance (EPR) spectroscopy and a ultraviolet (UV) melting analysis. The DNA sequences tended to adopt a hairpin conformation at low cation concentrations, but a bimolecular duplex was preferentially formed at an elevated cationic strength. On the other hand, fully matched RNA sequences adopted a bimolecular duplex regardless of the cation concentration. The thermal melting experiments indicated a greater change in the melting temperature of the bimolecular duplexes (by ∼20°C) than that of the hairpin (by ∼10°C) by increasing the NaCl concentration from 10 mM to 1 M. Hairpin formations were also observed for the palindrome DNA sequences derived from Escherichia coli, but association of the complementary palindrome sequences was observed when spermine, one of the major cationic molecules in a cell, existed at the physiological concentration. The results indicate the role of cations for shifting the structural equilibrium toward a nucleotide assembly and implicate nucleotide structures in cells. PMID:17169988

  18. Fe(III) nucleation in the presence of bivalent cations and oxyanions leads to subnanoscale 7 Å polymers.

    PubMed

    van Genuchten, Case M; Gadgil, Ashok J; Peña, Jasquelin

    2014-10-21

    Highly disordered Fe(III) phases formed in the presence of bivalent cations and oxyanions represent important components of the global Fe cycle due to their potential for rapid turnover and their critical roles in controlling the speciation of major and trace elements. However, a poor understanding of the formation pathway and structure of these Fe phases has prevented assessments of their thermodynamic properties and biogeochemical reactivity. In this work, we derive structural models for the Fe(III)-As(V)-Ca and Fe(III)-P-Ca polymers formed from Fe(II) oxidation and Fe(III) polymerization in the presence of As(V)/P and Ca. The polymer phase consists of a less than 7 Å coherent network of As(V)/P coordinated to Fe(III) polyhedra, with varying amounts of Ca bound directly and indirectly to the oxyanion. This phase forms at the onset of Fe(II) oxidation and, because of its large oxyanion:Fe solids ratio, depletes the oxyanion concentration with only small amounts of Fe. Our results demonstrate that when a steady supply of Fe(III) is provided from an Fe(II) source, these Fe(III) polymers, which dominate oxyanion uptake, form with little dependence on the initial oxyanion concentration. The formation mechanisms and structures of the oxyanion-rich Fe(III) polymers determined in this study enable future thermodynamic investigations of these phases, which are required to model the interrelated biogeochemical cycles of Fe, As(V)/P, and Ca.

  19. Molecularly Imprinted Polymers with DNA Aptamer Fragments as Macromonomers.

    PubMed

    Zhang, Zijie; Liu, Juewen

    2016-03-01

    Molecularly imprinted polymers (MIPs) are produced in the presence of a template molecule. After removing the template, the cavity can selectively rebind the template. MIPs are attractive functional materials with a low cost and high stability, but traditional MIPs often suffer from low binding affinity. This study employs DNA aptamer fragments as macromonomers to improve MIPs. The DNA aptamer for adenosine was first split into two halves, fluorescently labeled, and copolymerized into MIPs. With a fluorescence quenching assay, the importance of imprinting was confirmed. Further studies were carried out using isothermal titration calorimetry (ITC). Compared to the mixture of the free aptamer fragments, their MIPs doubled the binding affinity. Each free aptamer fragment alone cannot bind adenosine, whereas MIPs containing each fragment are effective binders. We further shortened one of the aptamer fragments, and the DNA length was pushed to as short as six nucleotides, yielding MIPs with a dissociation constant of 27 μM adenosine. This study provides a new method for preparing functional MIP materials by combining high-affinity biopolymer fragments with low-cost synthetic monomers, allowing higher binding affinity and providing a method for signaling binding based on DNA chemistry.

  20. Waves of DNA: Propagating excitations in extended nanoconfined polymers

    NASA Astrophysics Data System (ADS)

    Klotz, Alexander R.; de Haan, Hendrick W.; Reisner, Walter W.

    2016-10-01

    We use a nanofluidic system to investigate the emergence of thermally driven collective phenomena along a single polymer chain. In our approach, a single DNA molecule is confined in a nanofluidic slit etched with arrays of embedded nanocavities; the cavity lattice is designed so that a single chain occupies multiple cavities. Fluorescent video-microscopy data shows fluctuations in intensity between cavities, including waves of excess fluorescence that propagate across the cavity-straddling molecule, corresponding to propagating fluctuations of contour overdensity in the cavities. The transfer of DNA between neighboring pits is quantified by examining the correlation in intensity fluctuations between neighboring cavities. Correlations grow from an anticorrelated minimum to a correlated maximum before decaying, corresponding to a transfer of contour between neighboring cavities at a fixed transfer time scale. The observed dynamics can be modeled using Langevin dynamics simulations and a minimal lattice model of coupled diffusion. This study shows how confinement-based sculpting of the polymer equilibrium configuration, by renormalizing the physical system into a series of discrete cavity states, can lead to new types of dynamic collective phenomena.

  1. Characterization of activated sludge exocellular polymers using several cation-associated extraction methods.

    PubMed

    Park, Chul; Novak, John T

    2007-04-01

    Evaluation of prior research and preliminary investigations in our laboratory led to the development of an extraction strategy that can be used to target different cations in activated sludge floc and extract their associated extracellular polymeric substances (EPS). The methods we used were the cation exchange resin (CER) procedure, base extraction, and sulfide addition to extract EPS linked with divalent cations, Al, and Fe, respectively. A comparison of sludge cations before and after CER extraction revealed that most of Ca(2+) and Mg(2+) were removed while Fe and Al remained intact, suggesting that this method is highly selective for Ca(2+) and Mg(2+)-bound EPS. The correlation between sludge Fe and sulfide-extracted EPS was indicative of selectivity of this method for Fe-bound EPS. The base extraction was less specific than the other methods but it was the method releasing the largest amount of Al into the extract, indicating that the method extracted Al-bound EPS. Concomitantly, the composition of extracted EPS and the amino acid composition differed for the three methods, indicating that EPS associated with different metals were not the same. The change in EPS following anaerobic and aerobic digestion was also characterized by the three extraction methods. CER-extracted EPS were reduced after aerobic digestion while they changed little by anaerobic digestion. On the other hand, anaerobic digestion was associated with the decrease in sulfide-extracted EPS. These results suggest that different types of cation-EPS binding mechanisms exist in activated sludge and that each cation-associated EPS fraction imparts unique digestion characteristics to activated sludge.

  2. DFT studies of all fluorothiophenes and their cations as candidate monomers for conductive polymers

    SciTech Connect

    Shirani, Hossein; Jameh-Bozorghi, Saeed; Yousefi, Ali

    2015-01-22

    In this paper, electronic, structural, and properties of mono-, di-, tri-, and tetrafluorothiophenes and their radical cations are studied using the density functional theory and B3LYP method with 6-311++G** basis set. Also, the effects of the number and position of the substituent of fluorine atoms on the properties of the thiophene ring have been studied using optimized structures obtained for these molecules and their radical cations; vibrational frequencies, spin-density distribution, size and direction of the dipole moment vector, ionization potential, electric Polarizabilities, HOMO–LUMO gaps and NICS values of these compounds have been calculated and analyzed.

  3. Is the formation of cationic lipid-DNA complexes a thermodynamically driven phenomenon? Structure and phase behavior of DC-Chol/DNA complexes say not

    NASA Astrophysics Data System (ADS)

    Caracciolo, Giulio; Pozzi, Daniela; Caminiti, Ruggero

    2006-07-01

    The currently accepted mechanism of formation of cationic lipid-DNA complexes (lipoplexes) relies on the basic assumption that equilibrium structure of lipoplexes is regulated by thermodynamics. The main consequence is that neutral lipoplexes are one phase whereas positively (or negatively) charged ones coexist with excess lipid (or excess DNA). The authors report a small angle x-ray diffraction study on the structure of lipoplexes made of the cationic lipid 3β-[N-(N ,N-dimethylaminoethane)-carbamoyl]cholesterol and calf thymus Na-DNA. Here the authors show that positively charged lipoplexes can coexist with unbound DNA and they claim that steric size effects are definitely important to determine the equilibrium structure of lipoplexes.

  4. Polymer damage mitigation---predictive lifetime models of polymer insulation degradation and biorenewable thermosets through cationic polymerization for self-healing applications

    NASA Astrophysics Data System (ADS)

    Hondred, Peter Raymond

    repairing damage before the damage causes a failure in the polymer's function. In this work, the healing agent (adhesive) is developed using bio-renewable oils instead of solely relying on petroleum based feedstocks. Several bio-renewable thermosetting polymers were successfully prepared from tung oil through cationic polymerization for the use as the healing agent in self-healing microencapsulated applications. Modifications to both the monomers in the resin and the catalyst for polymerization were made and the subsequent changes to mechanical, thermal, and structural properties were identified. Furthermore, compressive lap shear testing was used to confirm that the adhesive properties would be beneficial for self-healing applications. Finally, scanning electron microscopy of the crack plane was used to study the fracture mechanism of the crack.

  5. The use of x-ray fluorescent spectroscopy to study the influence of cationic polymers on silicone oil deposition from shampoo.

    PubMed

    Gruber, J V; Lamoureux, B R; Joshi, N; Moral, L

    2001-01-01

    In this study, x-ray fluorescent spectroscopy was employed, in a non-destructive way, to analyze the influence that water-soluble, cationic hydroxyethylcellulose (i.e., polyquaternium-10) has on the deposition of silicone oil (dimethicone) onto hair. Virgin brown hair tresses were washed with various model shampoos that contained emulsified dimethicone. The shampoos were modified only by the addition or absence of polyquaternium-10. The results indicate that the cationic polymers do influence silicone oil deposition onto hair during the shampooing process. In the absence of cationic polymer, the silicone oils deposit readily, but appear to show "build-up" phenomena upon repeated washings. When a cationic polymer is present in the continuous phase of the shampoo, the build-up phenomena is significantly diminished, and silicone oil deposition remains relatively constant in repeated washings. In addition, we have noted that the molecular weight of the cationic polymer can have a strong effect on silicone oil deposition. It appears that the higher the molecular weight of the polyquaternium-10, the greater the amount of silicone deposition onto the surface of the hair. To demonstrate that the analysis technique has potential applications in commercial shampoos, we examined a commercial "2-in-1" shampoo that contains dimethicone and polyquaternium-10 and found that the data for our simple model shampoos and the commercial shampoo correlated closely.

  6. Membrane filtration of the liquid fraction from a solid-liquid separator for swine manure using a cationic polymer as flocculating agent.

    PubMed

    Masse, L; Mondor, M; Dubreuil, J

    2013-01-01

    The liquid fraction from a solid-liquid separator for swine manure, which used a cationic polymer to promote particle flocculation, was processed by one nanofiltration and two reverse osmosis spiral-wound membranes. Eight different liquid fraction batches (750 to 1750 L) were concentrated at volumetric concentration ratios (VCRs, initial to final volumes) ranging from 2.3 to 4.2. Membrane fouling intensity was highly variable, as water flux recovery after concentration cycles ranged from 13% to 88%. The most severe fouling was caused by a liquid fraction that had relatively low suspended solids (SS) (774 mg/L) and was concentrated at a low VCR of 2.6. Raw manure collected the same day also contained low SS, suggesting that fewer sites were available for polymer adsorption and thus more polymer remained in the liquid. However, because of the high opacity of the samples, residual polymer could not be detected in any feed or concentrate samples. Fouling was not totally irreversible as over 97% of membrane flux could be recovered by cleaning with acidic and alkaline solutions. Further tests with spiked liquid fractions indicated that fouling due to residual polymer in solution started to occur at a polymer concentration of 3 and 11 mg/L in initial and concentrated effluents, respectively. If a cationic polymer is used to pretreat manure, the amount of added polymer would have to be closely related to SS content as opposed to manure volume, in order to leave very little residual polymer in solution.

  7. Exfoliation of Layered Magnesium Aluminum Silicate Platelets in Polymer Hosts Enabled by Cation Chemistry and Temperature

    DTIC Science & Technology

    2010-10-21

    Preprints. 14. ABSTRACT Montmorillonite -smectite clay consists of anisotropic clay platelets, generally a nanometer in thickness by hundreds of...Cation Chemistry and Temperature GregO!)’ R. Yandek, Palrick N. RUlh. Joseph M. Mabry Montmorillonite -smedite clay consists 01 anisotropic clay

  8. Kinetic study of the binding of triplex-forming oligonucleotides containing partial cationic modifications to double-stranded DNA.

    PubMed

    Hari, Yoshiyuki; Ijitsu, Shin; Akabane-Nakata, Masaaki; Yoshida, Takuya; Obika, Satoshi

    2014-07-15

    Several triplex-forming oligonucleotides (TFOs) partially modified with 2'-O-(2-aminoethyl)- or 2'-O-(2-guanidinoethyl)-nucleotides were synthesized and their association rate constants (kon) with double-stranded DNA were estimated by UV spectrophotometry. Introduction of cationic modifications in the 5'-region of the TFOs significantly increased the kon values compared to that of natural TFO, while no enhancement in the rate of triplex DNA formation was observed when the modifications were in the middle and at the 3'-region. The kon value of a TFO with three adjacent cationic modifications at the 5'-region was found to be 3.4 times larger than that of a natural one. These results provide useful information for overcoming the inherent sluggishness of triplex DNA formation.

  9. CNT loading into cationic cholesterol suspensions show improved DNA binding and serum stability and ability to internalize into cancer cells

    NASA Astrophysics Data System (ADS)

    Chhikara, Bhupender S.; Misra, Santosh K.; Bhattacharya, Santanu

    2012-02-01

    Methods which disperse single-walled carbon nanotubes (SWNTs) in water as ‘debundled’, while maintaining their unique physical properties are highly useful. We present here a family of cationic cholesterol compounds (Chol+) {Cholest-5en-3β-oxyethyl pyridinium bromide (Chol-PB+), Cholest-5en-3β-oxyethyl N-methyl pyrrolidinium bromide (Chol-MPB+), Cholest-5en-3β-oxyethyl N-methyl morpholinium bromide (Chol-MMB+) and Cholest-5en-3β-oxyethyl diazabicyclo octanium bromide (Chol-DOB+)}. Each of these could be easily dispersed in water. The resulting cationic cholesterol (Chol+) suspensions solubilized single-walled carbon nanotubes (SWCNTs) by the non-specific physical adsorption of Chol+ to form stable, transparent, dark aqueous suspensions at room temperature. Electron microscopy reveals the existence of highly segregated CNTs in these samples. Zeta potential measurements showed an increase in potential of cationic cholesterol aggregates on addition of CNTs. The CNT-Chol+ suspensions were capable of forming stable complexes with genes (DNA) efficiently. The release of double-helical DNA from such CNT-Chol+ complexes could be induced upon the addition of anionic micellar solution of SDS. Furthermore, the CNT-based DNA complexes containing cationic cholesterol aggregates showed higher stability in fetal bovine serum media at physiological conditions. Confocal studies confirm that CNT-Chol+ formulations adhere to HeLa cell surfaces and get internalized more efficiently than the cationic cholesterol suspensions alone (devoid of any CNTs). These cationic cholesterol-CNT suspensions therefore appear to be a promising system for further use in biological applications.

  10. Enhanced non-inflammasome mediated immune responses by mannosylated zwitterionic-based cationic liposomes for HIV DNA vaccines.

    PubMed

    Qiao, Chenmeng; Liu, Jiandong; Yang, Jun; Li, Yan; Weng, Jie; Shao, Yiming; Zhang, Xin

    2016-04-01

    Human immunodeficiency virus (HIV) DNA vaccine can induce cellular and humoral immunity. A safe and effective HIV DNA vaccine is urgent need to prevent the spread of acquired immune deficiency syndrome (AIDS). The major drawback of DNA vaccines is the low immunogenicity, which is caused by the poor delivery to antigen presenting cells and insufficient antigen expression. Sparked by the capability of endosomal/lysosomal escape of the zwitterionic lipid distearoyl phosphoethanol-amine-polycarboxybetaine (DSPE-PCB), we attempted to develop a zwitterionic-based cationic liposome with enhanced immunogenicity of DNA vaccines. The mannosylated zwitterionic-based cationic liposome (man-ZCL) was constructed as a DNA vaccine adjuvant for HIV vaccination. Man-ZCL could complex with DNA antigens to form a tight structure and protect them from nuclei enzyme degradation. Benefited from the capability of the specific mannose receptor mediated antigen processing cells targeting and enhanced endosomal/lysosomal escape, the man-ZCL lipoplexes were supposed to promote antigen presentation and the immunogenicity of DNA vaccines. In vitro and in vivo results revealed that man-ZCL lipoplexes showed enhanced anti-HIV immune responses and lower toxicity compared with CpG/DNA and Lipo2k/DNA, and triggered a Th1/Th2 mixed immunity. An antigen-depot effect was observed in the administration site, and this resulted in enhanced retention of DNA antigens in draining lymph nodes. Most importantly, the man-ZCL could assist to activate T cells through a non-inflammasome pathway. These findings suggested that the man-ZCL could be potentially applied as a safe and efficient DNA adjuvant for HIV vaccines.

  11. Cationic antimicrobial peptides in psoriatic skin cooperate to break innate tolerance to self-DNA.

    PubMed

    Lande, Roberto; Chamilos, Georgios; Ganguly, Dipyaman; Demaria, Olivier; Frasca, Loredana; Durr, Sophie; Conrad, Curdin; Schröder, Jens; Gilliet, Michel

    2015-01-01

    Psoriasis is a T-cell-mediated skin autoimmune disease characterized by the aberrant activation of dermal dendritic cells (DCs) and the sustained epidermal expression of antimicrobial peptides. We have previously identified a link between these two events by showing that the cathelicidin antimicrobial peptide LL37 has the ability to trigger self-nucleic acid mediated activation of plasmacytoid DCs (pDCs) in psoriatic skin. Whether other cationic antimicrobial peptides exert similar activities is unknown. By analyzing heparin-binding HPLC fractions of psoriatic scales, we found that human beta-defensin (hBD)2, hBD3, and lysozyme are additional triggers of pDC activation in psoriatic skin lesions. Like LL37, hBD2, hBD3, and lysozyme are able to condense self-DNA into particles that are endocytosed by pDCs, leading to activation of TLR9. In contrast, other antimicrobial peptides expressed in psoriatic skin including elafin, hBD1, and psoriasin (S100A7) did not show similar activities. hBD2, hBD3, and lysozyme were detected in psoriatic skin lesions in the vicinity of pDCs and found to cooperate with LL37 to induce high levels of IFN production by pDCs, suggesting their concerted role in the pathogenesis of psoriasis.

  12. Membranes of cationic gemini lipids based on cholesterol with hydroxyl headgroups and their interactions with DNA and phospholipid.

    PubMed

    Biswas, Joydeep; Bajaj, Avinash; Bhattacharya, Santanu

    2011-01-27

    Two series of cholesterol-based cationic gemini lipids with and without hydroxyl functions at the headgroups possessing different lengths of polymethylene [-(CH(2))(n)-] (n = 3, 4, 5, 6, 12) spacer have been synthesized. Each gemini lipid formed stable suspension in water. The suspensions of these gemini lipids in water were investigated using transmission electron microscopy, dynamic light scattering, zeta potential measurements and X-ray diffraction to characterize the nature of the individual aggregates formed therein. The aggregation properties of these gemini lipids in water were found to strongly depend upon the length of the spacer and the presence of hydroxyl group at the headgroup region. Lipoplex formation (DNA binding) and the release of the DNA from such lipoplexes were performed to understand the nature of interactions that prevail between these cationic cholesterol aggregates and duplex DNA. The interactions between such gemini lipids and DNA depend both on the presence of OH on the headgroups and the spacer length between the headgroups. Finally, we studied the effect of incorporation of each cationic gemini lipid into dipalmitoyl phosphatidylcholine vesicles using differential scanning calorimetry. The properties of the resulting mixed membranes were found again to depend upon the nature of the headgroup and the spacer chain length.

  13. Successful gene transfer into dendritic cells with cationized gelatin and plasmid DNA complexes via a phagocytosis-dependent mechanism.

    PubMed

    Inada, Satoshi; Fujiwara, Hitoshi; Atsuji, Kiyoto; Takashima, Kazuhiro; Araki, Yasunobu; Kubota, Takeshi; Tabata, Yasuhiko; Yamagishi, Hisakazu

    2006-01-01

    The use of gene-modified dendritic cells (DC) is a powerful tool to enhance antitumor immune responses stimulated by these cells in cancer immunotherapy. Cationized gelatin is preferably incorporated via phagocytosis and is gradually degraded by proteolysis while buffering lysosomal activity. This may be appropriate for gene transfer into phagocytic cells, such as immature DC. In the present study, successful transfection into monocyte-derived immature DC was demonstrated using cationized gelatin and plasmid DNA complexes. A high transfection efficiency, approaching 16%, was obtained upon transfection of the enhanced green fluorescent protein (EGFP) gene as evaluated by flow cytometry. Transgene expression of EGFP and murine interleukin 12 were also detected by RT-PCR. The antigen-presenting capacity of the transfected DC was equal to that of untransfected DC as evaluated by the allogeneic mixed lymphocyte reaction. Cationized gelatin has the potential to be a unique non-viral vector for gene transfer into DC.

  14. Synergy of Two Assembly Languages in DNA Nanostructures: Self-Assembly of Sequence-Defined Polymers on DNA Cages.

    PubMed

    Chidchob, Pongphak; Edwardson, Thomas G W; Serpell, Christopher J; Sleiman, Hanadi F

    2016-04-06

    DNA base-pairing is the central interaction in DNA assembly. However, this simple four-letter (A-T and G-C) language makes it difficult to create complex structures without using a large number of DNA strands of different sequences. Inspired by protein folding, we introduce hydrophobic interactions to expand the assembly language of DNA nanotechnology. To achieve this, DNA cages of different geometries are combined with sequence-defined polymers containing long alkyl and oligoethylene glycol repeat units. Anisotropic decoration of hydrophobic polymers on one face of the cage leads to hydrophobically driven formation of quantized aggregates of DNA cages, where polymer length determines the cage aggregation number. Hydrophobic chains decorated on both faces of the cage can undergo an intrascaffold "handshake" to generate DNA-micelle cages, which have increased structural stability and assembly cooperativity, and can encapsulate small molecules. The polymer sequence order can control the interaction between hydrophobic blocks, leading to unprecedented "doughnut-shaped" DNA cage-ring structures. We thus demonstrate that new structural and functional modes in DNA nanostructures can emerge from the synergy of two interactions, providing an attractive approach to develop protein-inspired assembly modules in DNA nanotechnology.

  15. Binding of Polycarboxylic Acids to Cationic Mixed Micelles: Effects of Polymer Counterion Binding and Polyion Charge Distribution.

    PubMed

    Yoshida; Sokhakian; Dubin

    1998-09-15

    Mixed micelles of cetyltrimethylammonium chloride (CTAC) and n-dodecyl hexaoxyethylene glycol monoether (C12E8) bind to polyanions when the mole fraction of the cationic surfactant exceeds a critical value (Yc). Yc corresponds to a critical micelle surface charge density at which polyelectrolyte will bind to this colloidal particle. Turbidimetric titrations were used to determine Yc for such cationic-nonionic micelles in the presence of acrylic acid and acrylamido-2-methylpropane sulfonate homopolymers (PAA and PAMPS, respectively) and their copolymers with acrylamide, as function of pH, ionic strength, and polyelectrolyte counterion. In 0.20 M NaCl, Yc for PAA is found to be remarkably insensitive to pH, i.e., virtually independent of the apparent polymer charge density xiapp. On the other hand, the expected inverse relationship between Yc and xiapp is observed either for PAA when NaCl is replaced by TMACl (tetramethylammonium chloride), or when xiapp is manipulated using acrylic acid/acrylamide copolymers at high pH. The effective charge density of PAA is thus seen to be suppressed by specific sodium ion binding, indicating that the influence of salts on the interaction of polycarboxylic acids with colloidal particles may differ qualitatively from their effect on the analogous behavior of strong polyanions. Comparisons between homo- and copolymers of acrylic acid were carried out also to test the hypothesis that the "mobility" of charges on PAA at moderate pH (degree of ionization less than unity) could make this "annealed" polymer exhibit the behavior of a more highly charged one. The results, while consistent with this expectation, were obscured by the likely effect of copolymer sequence distributions. Copyright 1998 Academic Press.

  16. Polymer monoliths with low hydrophobicity for strong cation-exchange capillary liquid chromatography of peptides and proteins.

    PubMed

    Gu, Binghe; Li, Yun; Lee, Milton L

    2007-08-01

    Two polymer monoliths were designed and synthesized from commercially available monomers with an attempt to decrease hydrophobicity for strong cation-exchange chromatography. One was prepared from the copolymerization of sulfoethyl methacrylate and poly(ethylene glycol) diacrylate, and the other was synthesized from vinylsulfonic acid and poly(ethylene glycol) diacrylate. Both of the monoliths were synthesized inside 75-microm i.d., UV-transparent fused-silica capillaries by photopolymerization. The hydrophobicities of the two monoliths were systematically evaluated using standard synthetic undecapeptides under ion-exchange conditions and propyl paraben under reversed-phase conditions. The poly(sulfoethyl methacrylate) monolith demonstrated similar hydrophobicity as a monolith prepared from copolymerization of 2-acrylamido-2-methyl-1-propanesulfonic acid and poly(ethylene glycol) diacrylate, and 40% acetonitrile was required to suppress any hydrophobic interactions with peptides under ion-exchange conditions. However, with the use of vinylsulfonic acid as the functional monomer, a monolith with very low hydrophobicity was obtained, making it suitable for strong cation-exchange liquid chromatography of both peptides and proteins. It was found that monolith hydrophobicity could be adjusted by selection of monomers that differ in hydrocarbon content and type of vinyl group. Finally, excellent separations of model protein standards and high-density lipoproteins were achieved using the poly(vinylsulfonic acid) monolith. Five subclasses of high-density lipoproteins were resolved using a simple linear NaCl gradient.

  17. Controlling DNA compaction with cationic amphiphiles for efficient delivery systems A step forward towards non-viral Gene Therapy

    NASA Astrophysics Data System (ADS)

    Savarala, Sushma

    The synthesis of pyridinium cationic lipids, their counter-ion exchange, and the transfection of lipoplexes consisting of these lipids with firefly luciferase plasmid DNA (6.7 KDa), into lung, prostate and breast cancer cell lines was investigated. The transfection ability of these newly synthesized compounds was found to be twice as high as DOTAP/cholesterol and Lipofectamine TM (two commercially available successful transfection agents). The compaction of the DNA onto silica (SiO2) nanoparticles was also investigated. For this purpose, it was necessary to study the stability and fusion studies of colloidal systems composed of DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine), a zwitterionic lipid, and mixtures of DMPC with cationic DMTAP (1,2-dimyristoyl-3-trimethylammonium-propane).

  18. One-dimensional polymers based on silver(I) cations and organometallic cyclo-P3 ligand complexes.

    PubMed

    Gregoriades, Laurence J; Wegley, Brian K; Sierka, Marek; Brunner, Eike; Gröger, Christian; Peresypkina, Eugenia V; Virovets, Alexander V; Zabel, Manfred; Scheer, Manfred

    2009-10-05

    The synthesis and characterization of the first supramolecular aggregates incorporating the organometallic cyclo-P3 ligand complexes [CpRMo(CO)2(eta3-P3)] (CpR=Cp (C5H5; 1a), Cp* (C5(CH3)5; 1b)) as linking units is described. The reaction of the Cp derivative 1a with AgX (X=CF3SO3, Al{OC(CF3)3}4) yields the one-dimensional (1D) coordination polymers [Ag{CpMo(CO)2(mu,eta3:eta1:eta1-P3)}2]n[Al{OC(CF3)3}4]n (2) and [Ag{CpMo(CO)2(mu,eta3:eta1:eta1-P3)}3]n[X]n (X=CF3SO3 (3a), Al{OC(CF3)3}4 (3b)). The solid-state structures of these polymers were revealed by X-ray crystallography and shown to comprise polycationic chains well-separated from the weakly coordinating anions. If AgCF3SO3 is used, polymer 3a is obtained regardless of reactant stoichiometry whereas in the case of Ag[Al{OC(CF3)3}4], reactant stoichiometry plays a decisive role in determining the structure and composition of the resulting product. Moreover, polymers 3a, b are the first examples of homoleptic silver complexes in which Ag(I) centers are found octahedrally coordinated to six phosphorus atoms. The Cp* derivative 1b reacts with Ag[Al{OC(CF3)3}4] to yield the 1D polymer [Ag{Cp*Mo(CO)2(mu,eta3:eta2:eta1-P3)}2]n[Al{OC(CF3)3}4]n (4), the crystal structure of which differs from that of polymer 2 in the coordination mode of the cyclo-P3 ligands: in 2, the Ag+ cations are bridged by the cyclo-P3 ligands in a eta1:eta1 (edge bridging) fashion whereas in 4, they are bridged exclusively in a eta2:eta1 mode (face bridging). Thus, one third of the phosphorus atoms in 2 are not coordinated to silver while in 4, all phosphorus atoms are engaged in coordination with silver. Comprehensive spectroscopic and analytical measurements revealed that the polymers 2, 3a, b, and 4 depolymerize extensively upon dissolution and display dynamic behavior in solution, as evidenced in particular by variable temperature 31P NMR spectroscopy. Solid-state 31P magic angle spinning (MAS) NMR measurements, performed on the polymers 2, 3

  19. Novel Salted Anionic-Cationic Polymethacrylate Polymer Blends for Sustained Release of Acidic And Basic Drugs.

    PubMed

    Obeidat, Wasfy M; Qasim, Duaa; Nokhodchi, Ali; Al-Jabery, Ahmad; Sallam, Al-Sayed

    2016-05-02

    Since a unique matrix tablet formulation that independently controls the release of various drug types is in a great demand, the objective of this research was to develop a sustained release matrix tablet as a universal dosage form using a binary mixture of the salt forms of Eudragit polymers rather than their interpolyelectrolyte complexes. Tablets were prepared by wet granulation and compressed at different compression forces, depending on drug type. Dissolution tests were conducted using USP XXII rotating paddle apparatus at 50 rpm at 37°C in consecutive pH stages. Tablets containing Ibuprofen (IB) as a model acidic drug and Metronidazole (MD) as a model basic drug showed controlled/sustained release behavior. For IB tablets containing 80% Ibuprofen and 5% (w/w) polymeric combination; the time for 50% of the drug release was about 24 hours compared to 8.5 hours for plain tablets containing 80% IB. In case of MD, the drug release extended to about 7 hours for tablets containing 80% MD and 5% (w/w) polymeric combination, compared to about 1 hour for plain tablets containing 80% MD. In terms of extending the release of medications, the dissolution profiles of the tablets containing polymeric salts forms were found to be statistically superior to tablets prepared by direct compression of the polymers in their powdered base forms, and superior to tablets containing the same polymers granulated using isopropyl alcohol. The findings indicated the significance of combining the polymers in their salt forms in controlling the release of various drug types from matrices.

  20. Characterization of Highly Sulfonated SIBS Polymer Partially Neutralized With Mg(+2) Cations

    DTIC Science & Technology

    2008-08-01

    properties for chem-bio protective clothing. The major component of the triblock copolymer is polyisobutylene ( PIB ), which comprises 70% by weight of...the base polymer. The PIB gives the material low-temperature flexibility as well as excellent barrier properties. The polystyrene (PS) makes up 30...immiscibility of the two components results in a microphase separation where domains of PS are formed in the rubbery PIB matrix (5, 6). The fraction

  1. Behavior of cationic surfactants and short-chain alcohols in mixed surface layers at water-air and polymer-water interfaces with regard to polymer wettability II. Wettability of polymers.

    PubMed

    Zdziennicka, Anna; Jańczuk, Bronisław

    2010-10-15

    The wettability of polytetrafluoroethylene (PTFE) and polymethylmethacrylate (PMMA) by aqueous solutions of cetyltrimethylammonium bromide (CTAB) mixtures with short-chain alcohols such as methanol, ethanol, and propanol, as well as for 1-hexadecylpyridinium bromide (CPyB) with the same alcohols, was studied on the basis of advancing contact-angle measurements by the sessile drop method over a wide range of alcohol and cationic surfactant concentrations where they can be present in solution in monomeric or aggregated form. It should be noted that the contact angles for aqueous solution mixtures of cationic surfactants with propanol on PTFE surfaces were measured earlier and presented in our previous paper. From the obtained contact-angle values the relationships between cos theta and surface tension of the solutions (gamma(LV)) and that between adhesion tension and gamma(LV) were considered. The relationship between the cos theta and the reciprocal of gamma(LV) was also discussed. From these relationships the critical surface tension of PTFE and PMMA wetting and the correlation between the adsorption of cationic surfactant and alcohol mixtures at water-air and polymer-water interfaces were deduced. On the basis of the contact angles and components and parameters of the surface tension of surfactants, alcohols, and polymers also the Gibbs and Guggenheim-Adam isotherm of adsorption and the effective concentration of alcohols and surfactants at polymer-water interfaces were calculated. Next, the work of adhesion of solution to polymer surface with regard to the surface monolayer composition was discussed. The analysis of the contact angles with regard to adsorption of surfactants and alcohols at polymer-water and water-air interfaces allowed us to conclude that the PTFE wetting depends only on the contribution of the acid-base interactions to the surface tension of aqueous solutions of cationic surfactant and alcohol mixtures, and the adhesion work of solution to its

  2. Quaternized cashew gum: An anti-staphylococcal and biocompatible cationic polymer for biotechnological applications.

    PubMed

    Quelemes, Patrick V; de Araújo, Alyne R; Plácido, Alexandra; Delerue-Matos, Cristina; Maciel, Jeanny S; Bessa, Lucinda J; Ombredane, Alicia S; Joanitti, Graziella A; Soares, Maria José Dos S; Eaton, Peter; da Silva, Durcilene A; Leite, José Roberto S A

    2017-02-10

    Chemical modifications to cashew gum (CG) structure have been previously reported to obtain new physicochemical characteristics, however until now there were no reports of modifications by introduction of new functional groups to add cationic character. This study presents a quaternization route for CG using a quaternary ammonium reagent. The chemical features of the quaternized cashew gum derivatives (QCG) were analyzed by: FTIR, elemental analysis, degree of substitution, Zeta potential, (1)H NMR and (1)H-(13)C correlation (HSQC). QCG were evaluated for their anti-staphylococcal activity by determining minimum inhibitory and bactericidal concentrations against pathogenic Staphylococcus spp. and by imaging using atomic force microscopy. Moreover, the mammalian cell biocompatibility were also assessed through hemolytic and cell toxicity assays. QCG presented promising antimicrobial activity against methicillin-resistant S. aureus and biocompatibility on tested cells. These results show that QCG could be a promising tool in the development of biomaterials with an anti-septic action.

  3. Selective release of excreted DNA sequences from phytohemagglutinin-stimulated human peripheral blood lymphocytes. Effects of trypsin and divalent cations.

    PubMed Central

    Distelhorst, C W; Cramer, K; Rogers, J C

    1978-01-01

    We studied the synthesis of excreted DNA sequences and their release from phytohemagglutinin-stimulated human peripheral blood lymphocytes under conditions permitting optimal cell growth. Cells were labeled by constant exposure to low specific activity [3H]thymidine. Excreted DNA sequences were synthesized during the period of logarithmic cell growth and moved slowly from the high molecular weight chromosomal DNA fraction into the low molecular weight cell DNA fraction (Hirt supernate) from which they could be specifically released by treating the cells briefly with small amounts of various proteases; 1 microgram/ml trypsin for 5 min was optimal. On day 5 of culture, 13.3 +/- 6.9% of the total cellular acid-precipitable [3H]thymidine was released by this treatment. Trypsin-induced release was partially and reversibly inhibited by incubating the cells for 16 h with 5 mM dibutyryl-cyclic AMP. Cells incubated in the absence of divalent cations spontaneously released this Hirt supernatant DNA; after maximal release had occurred under these circumstances, additional trypsin treatment caused no further release of DNA. Trypsin-induced DNA release could be completely and reversibly inhibited by incubating the cells in the presence of 10 mM calcium. Trypsin-released DNA was isolated and analyzed by reassociation kinetics. A major component, representing 54% of the DNA, reassociated with a C0t1/2 of 68 mol.s/liter (the value at which DNA association is 50% complete). The reassociation of this DNA was studied in the presence of an excess of DNA isolated from stimulated lymphocytes on day 3 in culture, and in the presence of an excess of resting lymphocyte DNA. The high molecular weight fraction of day-3 cell DNA contained three times more copies of the trypsin-released DNA major component as compared to resting lymphocyte DNA. Hirt supernatant DNA isolated from day-5 stimulated lymphocytes reassociated in an intermediate component representing 34% of the DNA with a Cot1/2 of

  4. Cationic polymer lubricant (CPL): A new bond and mobile boundary lubricant with self-healing capabilities

    NASA Astrophysics Data System (ADS)

    Liao, Erik Hsiao

    The boundary film formation and lubrication effects of low-molecular-weight silicone molecules with cationic side groups were studied. Poly-(N,N,N-trimethylamine-3- propylmethylsiloxane-co-dimethylsiloxane) iodide was synthesized and deposited on silicon oxide surfaces to form a bound-and-mobile lubricant film. The effects of the ionically bound layer and mobile multilayers were investigated. Both nano- and macro-scale tribological tests revealed superior lubrication performance of the silicon molecule with cationic side chains over the neutral silicon molecule (which was modeled with polydimethylsiloxane with the same molecule weight). The multilayer films exhibited characteristic topographic features due to ionic interactions within the polymeric film. In the macro-scale, the effects of ionic content, environmental condition, and advantage of the bound layer on self-healing will be discussed to demonstrate the wear resistance and selfhealing capability. The multilayer spreading rates were estimated to be ~10-11 m2/s. In the nanoscale, the results of disjoining pressure and viscosity measurements help understand the lateral spreading of the mobile layer and identify the mobile species. The mobile species are the reduced tertiary amine form of CPL. The hydrophobic but hygroscopic properties of CPL are also investigated with SFG and ATR-IR. The CPL-coated surfaces are hydrophobic which prevents the detrimental effects of humidity on wear of silicon. In addition, the hygroscopic nature of CPL allows humidity to be absorbed into the film, which enhances the self-healing capabilities. Finally, by texturing the silicon surface with nanowells, self-healing is enhanced when the nanowells are filled with CPL. The nanowells serve as CPL reservoirs that are readily available for self-healing within the wear track for faster cycle intervals. However, the nanowells deteriorate the self-healing from surrounding the contact region due to the refilling of the empty nanowells.

  5. Ultrasound-Mediated Gene Delivery with Cationic Versus Neutral Microbubbles: Effect of DNA and Microbubble Dose on In Vivo Transfection Efficiency

    PubMed Central

    Panje, Cedric M.; Wang, David S.; Pysz, Marybeth A.; Paulmurugan, Ramasamy; Ren, Ying; Tranquart, Francois; Tian, Lu; Willmann, Jürgen K.

    2012-01-01

    Objective: To assess the effect of varying microbubble (MB) and DNA doses on the overall and comparative efficiencies of ultrasound (US)-mediated gene delivery (UMGD) to murine hindlimb skeletal muscle using cationic versus neutral MBs. Materials and Methods: Cationic and control neutral MBs were characterized for size, charge, plasmid DNA binding, and ability to protect DNA against endonuclease degradation. UMGD of a codon optimized firefly luciferase (Fluc) reporter plasmid to endothelial cells (1 MHz, 1 W/cm², 20% duty cycle, 1 min) was performed in cell culture using cationic, neutral, or no MBs. In vivo UMGD to mouse hindlimb muscle was performed by insonation (1 MHz, 2 W/cm², 50% duty cycle, 5 min) after intravenous administration of Fluc combined with cationic, neutral, or no MBs. Gene delivery efficiency was assessed by serial in vivo bioluminescence imaging. Efficiency of in vivo UMGD with cationic versus neutral MBs was systematically evaluated by varying plasmid DNA dose (10, 17.5, 25, 37.5, and 50 µg) while maintaining a constant MB dose of 1x108 MBs and by changing MB dose (1x107, 5x107, 1x108, or 5x108 MBs) while keeping a constant DNA dose of 50 µg. Results: Cationic and size-matched control neutral MBs differed significantly in zeta potential with cationic MBs being able to bind plasmid DNA (binding capacity of 0.03 pg/MB) and partially protect DNA from nuclease degradation while neutral MBs could not. Cationic MBs enhanced UMGD compared to neutral MBs as well as no MB and no US controls both in cell culture (P < 0.001) and in vivo (P < 0.05). Regardless of MB type, in vivo UMGD efficiency increased dose-dependently with DNA dose and showed overall maximum transfection with 50 µg DNA. However, there was an inverse correlation (ρ = -0.90; P = 0.02) between DNA dose and the degree of enhanced UMGD efficiency observed with using cationic MBs instead of neutral MBs. The delivery efficiency advantage associated with cationic MBs was most prominent

  6. Fibrous polymer grafted magnetic chitosan beads with strong poly(cation-exchange) groups for single step purification of lysozyme.

    PubMed

    Bayramoglu, Gulay; Tekinay, Turgay; Ozalp, V Cengiz; Arica, M Yakup

    2015-05-15

    Lysozyme is an important polypetide used in medical and food applications. We report a novel magnetic strong cation exchange beads for efficient purification of lysozyme from chicken egg white. Magnetic chitosan (MCHT) beads were synthesized via phase inversion method, and then grafted with poly(glycidyl methacrylate) (p(GMA)) via the surface-initiated atom transfer radical polymerization (SI-ATRP). Epoxy groups of the grafted polymer, were modified into strong cation-exchange groups (i.e., sulfonate groups) in the presence of sodium sulfite. The MCTH and MCTH-g-p(GMA)-SO3H beads were characterized by ATR-FTIR, SEM, and VSM. The sulphonate groups content of the modified MCTH-g-p(GMA)-4 beads was found to be 0.53mmolg(-1) of beads by the potentiometric titration method. The MCTH-g-p(GMA)-SO3H beads were first used as an ion-exchange support for adsorption of lysozyme from aqueous solution. The influence of different experimental parameters such as pH, contact time, and temperature on the adsorption process was evaluated. The maximum adsorption capacity was found to be 208.7mgg(-1) beads. Adsorption of lysozyme on the MCTH-g-p(GMA)-SO3H beads fitted to Langmuir isotherm model and followed the pseudo second-order kinetic. More than 93% of the adsorbed lysozyme was desorbed using Na2CO3 solution (pH 11.0). The purity of the lysozyme was checked by HPLC and SDS gel electrophoresis. In addition, the MCTH-g-p(GMA)-SO3H beads prepared in this work showed promising potential for separation of various anionic molecules.

  7. Enhanced suppression of tumor growth using a combination of NK4 plasmid DNA-PEG engrafted cationized dextran complex and ultrasound irradiation.

    PubMed

    Hosseinkhani, H; Kushibiki, T; Matsumoto, K; Nakamura, T; Tabata, Y

    2006-05-01

    This investigation aims to determine experimentally whether or not ultrasound (US) irradiation is effective in enhancing the in vivo gene expression of NK4 plasmid DNA and suppressing tumor growth. NK4, composed of the NH2-terminal hairpin and subsequent four-kringle domains of hepatocyte growth factor (HGF), acts as an HGF-antagonist and angiogenesis inhibitor. Dextran was cationized by introducing spermine to the hydroxyl groups to allow for polyionic complexation with NK4 plasmid DNA. The cationized dextran was additionally modified with poly(ethylene glycol) (PEG) molecules giving PEG engrafted cationized dextran. Significant suppression of tumor growth was observed when PEG engrafted cationized dextran-NK4 plasmid DNA complexes were intravenously injected into mice carrying a subcutaneous Lewis lung carcinoma tumor mass with subsequent US irradiation when compared with the cationized dextran-NK4 plasmid DNA complex and naked NK4 plasmid DNA with or without US irradiation. We conclude that complexation with PEG-engrafted cationized dextran in combination with US irradiation is a promising way to target the NK4 plasmid DNA to the tumor for gene expression.

  8. UVA-visible photo-excitation of guanine radical cations produces sugar radicals in DNA and model structures

    PubMed Central

    Adhikary, Amitava; Malkhasian, Aramice Y. S.; Collins, Sean; Koppen, Jessica; Becker, David; Sevilla, Michael D.

    2005-01-01

    This work presents evidence that photo-excitation of guanine radical cations results in high yields of deoxyribose sugar radicals in DNA, guanine deoxyribonucleosides and deoxyribonucleotides. In dsDNA at low temperatures, formation of C1′• is observed from photo-excitation of G•+ in the 310–480 nm range with no C1′• formation observed ≥520 nm. Illumination of guanine radical cations in 2′dG, 3′-dGMP and 5′-dGMP in aqueous LiCl glasses at 143 K is found to result in remarkably high yields (∼85–95%) of sugar radicals, namely C1′•, C3′• and C5′•. The amount of each of the sugar radicals formed varies dramatically with compound structure and temperature of illumination. Radical assignments were confirmed using selective deuteration at C5′ or C3′ in 2′-dG and at C8 in all the guanine nucleosides/tides. Studies of the effect of temperature, pH, and wavelength of excitation provide important information about the mechanism of formation of these sugar radicals. Time-dependent density functional theory calculations verify that specific excited states in G•+ show considerable hole delocalization into the sugar structure, in accord with our proposed mechanism of action, namely deprotonation from the sugar moiety of the excited molecular radical cation. PMID:16204456

  9. Local modes in a DNA polymer with hydrogen bond defect.

    PubMed Central

    Saxena, V K; Van Zandt, L L

    1994-01-01

    Vibrations of a homopolymer DNA with localized hydrogen bond defects have been examined using the recently developed decaying mode theory for long-chain polymers with local structural defects. For a poly(dA)-poly(dT) homopolymer having perturbed hydrogen bonds in one base pair, a localized mode at 63.2 cm-1 has been found. This mode has a very nearly pure H-bond stretch or "breathing" character, although the backbones do not separate. This agrees in frequency with a similar result found by other authors using a different approach. We search the full microwave frequency range for other local modes for several models of weakened H bonds. Besides the local mode with breathing characteristics, local modes with other characteristic motions were found, but only for asymmetrically perturbed bonds. We find in general that local modes are not very robust, requiring quite specific, narrow ranges in parameter space. They are also not abundant, there being only three in our most prolific model. PMID:7696483

  10. Chelation of Membrane-Bound Cations by Extracellular DNA Activates the Type VI Secretion System in Pseudomonas aeruginosa

    PubMed Central

    Wilton, Mike; Wong, Megan J. Q.; Tang, Le; Liang, Xiaoye; Moore, Richard; Parkins, Michael D.; Lewenza, Shawn

    2016-01-01

    Pseudomonas aeruginosa employs its type VI secretion system (T6SS) as a highly effective and tightly regulated weapon to deliver toxic molecules to target cells. T6SS-secreted proteins of P. aeruginosa can be detected in the sputum of cystic fibrosis (CF) patients, who typically present a chronic and polymicrobial lung infection. However, the mechanism of T6SS activation in the CF lung is not fully understood. Here we demonstrate that extracellular DNA (eDNA), abundant within the CF airways, stimulates the dynamics of the H1-T6SS cluster apparatus in Pseudomonas aeruginosa PAO1. Addition of Mg2+ or DNase with eDNA abolished such activation, while treatment with EDTA mimicked the eDNA effect, suggesting that the eDNA-mediated effect is due to chelation of outer membrane-bound cations. DNA-activated H1-T6SS enables P. aeruginosa to nonselectively attack neighboring species regardless of whether or not it was provoked. Because of the importance of the T6SS in interspecies interactions and the prevalence of eDNA in the environments that P. aeruginosa inhabits, our report reveals an important adaptation strategy that likely contributes to the competitive fitness of P. aeruginosa in polymicrobial communities. PMID:27271742

  11. Chelation of Membrane-Bound Cations by Extracellular DNA Activates the Type VI Secretion System in Pseudomonas aeruginosa.

    PubMed

    Wilton, Mike; Wong, Megan J Q; Tang, Le; Liang, Xiaoye; Moore, Richard; Parkins, Michael D; Lewenza, Shawn; Dong, Tao G

    2016-08-01

    Pseudomonas aeruginosa employs its type VI secretion system (T6SS) as a highly effective and tightly regulated weapon to deliver toxic molecules to target cells. T6SS-secreted proteins of P. aeruginosa can be detected in the sputum of cystic fibrosis (CF) patients, who typically present a chronic and polymicrobial lung infection. However, the mechanism of T6SS activation in the CF lung is not fully understood. Here we demonstrate that extracellular DNA (eDNA), abundant within the CF airways, stimulates the dynamics of the H1-T6SS cluster apparatus in Pseudomonas aeruginosa PAO1. Addition of Mg(2+) or DNase with eDNA abolished such activation, while treatment with EDTA mimicked the eDNA effect, suggesting that the eDNA-mediated effect is due to chelation of outer membrane-bound cations. DNA-activated H1-T6SS enables P. aeruginosa to nonselectively attack neighboring species regardless of whether or not it was provoked. Because of the importance of the T6SS in interspecies interactions and the prevalence of eDNA in the environments that P. aeruginosa inhabits, our report reveals an important adaptation strategy that likely contributes to the competitive fitness of P. aeruginosa in polymicrobial communities.

  12. Capillary electrophoretic separation of DNA restriction fragments using dilute polymer solutions

    SciTech Connect

    Braun, B.; Blanch, W.; Prausnitz, J.M.

    1997-02-01

    Because the mechanism of DNA separation in capillary electrophoresis is not well understood, selection of polymers is a {open_quotes}trial-and-error{close_quotes} procedure. We investigated dilute-solution DNA separations by capillary electrophoresis using solutions of four polymers that differ in size, shape and stiffness. Hydroxyethylcellulose of high molecular weight provides excellent separation of large DNA fragments (2027 bp - 23130 bp). Polyvinylpyrrolidone separates DNA from 72 bp to 23 kbp and star-(polyethylene oxide), like linear poly (ethylene oxide), provides separation of fragments up to 1353 bp.

  13. DNA-SMART: Biopatterned Polymer Film Microchannels for Selective Immobilization of Proteins and Cells.

    PubMed

    Schneider, Ann-Kathrin; Nikolov, Pavel M; Giselbrecht, Stefan; Niemeyer, Christof M

    2017-02-22

    A novel SMART module, dubbed "DNA-SMART" (DNA substrate modification and replication by thermoforming) is reported, where polymer films are premodified with single-stranded DNA capture strands, microthermoformed into 3D structures, and postmodified with complementary DNA-protein conjugates to realize complex biologically active surfaces within microfluidic devices. As a proof of feasibility, it is demonstrated that microchannels presenting three different proteins on their inner curvilinear surface can be used for selective capture of cells under flow conditions.

  14. Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm matrix.

    PubMed

    Jennings, Laura K; Storek, Kelly M; Ledvina, Hannah E; Coulon, Charlène; Marmont, Lindsey S; Sadovskaya, Irina; Secor, Patrick R; Tseng, Boo Shan; Scian, Michele; Filloux, Alain; Wozniak, Daniel J; Howell, P Lynne; Parsek, Matthew R

    2015-09-08

    Biofilm formation is a complex, ordered process. In the opportunistic pathogen Pseudomonas aeruginosa, Psl and Pel exopolysaccharides and extracellular DNA (eDNA) serve as structural components of the biofilm matrix. Despite intensive study, Pel's chemical structure and spatial localization within mature biofilms remain unknown. Using specialized carbohydrate chemical analyses, we unexpectedly found that Pel is a positively charged exopolysaccharide composed of partially acetylated 1→4 glycosidic linkages of N-acetylgalactosamine and N-acetylglucosamine. Guided by the knowledge of Pel's sugar composition, we developed a tool for the direct visualization of Pel in biofilms by combining Pel-specific Wisteria floribunda lectin staining with confocal microscopy. The results indicate that Pel cross-links eDNA in the biofilm stalk via ionic interactions. Our data demonstrate that the cationic charge of Pel is distinct from that of other known P. aeruginosa exopolysaccharides and is instrumental in its ability to interact with other key biofilm matrix components.

  15. Analysis of ustiloxins in rice using polymer cation exchange cleanup followed by liquid chromatography-tandem mass spectrometry.

    PubMed

    Cao, Zhao-Yun; Sun, Li-Hua; Mou, Ren-Xiang; Lin, Xiao-Yan; Zhou, Rong; Ma, You-Ning; Chen, Ming-Xue

    2016-12-09

    Ustiloxins are cyclopeptide mycotoxins produced by the pathogenic fungus Ustilaginoidea virens of rice false smut. Quantification of ustiloxins is essential to assess the food safety of rice infected by rice false smut disease. This paper describes a sensitive method for the simultaneous quantification of ustiloxins A, B, C, D and F in rice grains using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Since notable matrix enhancement effects (21%-78%) occurred for all of the target analytes (except for ustiloxin A), several solid phase extraction materials were tested for their ability to retain ustiloxins from aqueous solutions prior to the LC-MS/MS analysis, including C18 sorbents, polymer anion exchange sorbents resin (PAX), and polymer cation exchange resin (PCX). The PCX resin was adopted due to its higher extraction capability and selectivity for all targets compared to others, and in this case, almost no matrix effects (-5% to 8%) were observed for all of the ustiloxins monitored. The developed method reached limits of quantification of 0.2-2ngg(-1), and linearity was statistically verified over two orders of magnitude with regression coefficients (R(2))>0.991. The mean recoveries were from 85% to 109%, and the inter-day precisions (n=11) were less than 16%, with intra-day precisions (n=6) within 12%. Analysis of samples showed that ustiloxin A was the dominant species, with the content ranging from 5.5 to 273.8ngg(-1), followed by ustiloxin B (≤88.7ngg(-1)), while concentrations of ustiloxins C, D and F were slightly lower (≤43.2ngg(-1)). To our knowledge, this is the first report on the determination and analysis of five ustiloxins simultaneously in a single analysis.

  16. Interaction of a cationic gemini surfactant with DNA and with sodium poly(styrene sulphonate) at the air/water interface: a neutron reflectometry study.

    PubMed

    Vongsetskul, T; Taylor, D J F; Zhang, J; Li, P X; Thomas, R K; Penfold, J

    2009-04-07

    The interactions between a dicationic gemini surfactant with a six-hydrocarbon spacer (1,2-bis(dodecyldimethyl-ammonio)hexane dibromide, C12C6C12Br2) and anionic polyelectrolyte DNA or sodium (polystyrene sulfonate) (NaPSS) at the air/solution interface have been studied and compared using neutron reflectometry together with surface tension. In the presence of the dichained cationic gemini surfactant, DNA and NaPSS display very different adsorption behaviors. The DNA/gemini mixtures show adsorption behavior very similar to that of DNA/C12TAB mixtures, with enhanced surfactant adsorption at low concentrations and thick structured layers at higher concentrations. However, for the NaPSS/gemini mixtures the amount of gemini at the surface is reduced relative to that in the absence of NaPSS at concentrations below the cmc. These differences in adsorption behavior are attributed to differences in the molecular structure and flexibility of the two polyanions. NaPSS is relatively hydrophobic and flexible enough to form bulk-phase polymer-micelle complexes with the gemini surfactant at low surfactant concentrations, whereas the adsorption of surface complexes is much less favorable because the dications on the gemini would require adjacent bulky pendant charges on the NaPSS to be oriented toward the surface. This would force the NaPSS to bend significantly whereas it is more favorable for the NaPSS to adopt an extended conformation at the surface. Thus, surfactant is actually removed from the surface to form bulk-phase complexes. In contrast with NaPSS, DNA has a far more rigid structure, and the charges on the backbone are at fixed intervals, factors that make the formation of surface DNA-monomer complexes much more favorable than bulk-phase DNA-micelle complexes. Finally, a short-chain sample of NaPSS consisting of only five to six segments adsorbs very strongly at the surface with the gemini to form more extensive layered structures than have previously been observed

  17. Two-step kinetic study on the adsorption and desorption of reactive dyes at cationic polymer/bentonite.

    PubMed

    Li, Qian; Yue, Qin-Yan; Su, Yuan; Gao, Bao-Yu; Li, Jing

    2009-06-15

    The adsorption kinetics of two reactive dyes, namely, Reactive Blue K-GL and Reactive Yellow K-4G onto the new cationic polymer/bentonite, i.e., polyepicholorohydrin-dimethylamine/bentonite (EPI-DMA/bentonite), were studied under different conditions. The result indicated that the adsorption processes were found to follow the two-step kinetic rate equation with two different adsorption rate constants (k(1) and k(2)) and also to follow the intraparticle diffusion model with two different diffusion rate constants (k(int,1) and k(int,2)). The corresponding values of energies of activation of adsorption, enthalpies of activation and entropies of activation for both the two adsorption kinetic steps have been calculated, suggesting that the adsorption processes were endothermic and physical. The desorption kinetics of two dyes from EPI-DMA/bentonite were studied in NaOH solution with different concentrations, which were also found to obey the two-step kinetic rate equation with two different desorption rate constants (k(d,1) and k(d,2)).

  18. Cationic Glycopolymers for the Delivery of pDNA to Human Dermal Fibroblasts and Rat Mesenchymal Stem Cells

    PubMed Central

    Kizjakina, Karina; Bryson, Joshua M.; Grandinetti, Giovanna; Reineke, Theresa M.

    2014-01-01

    Progenitor and pluripotent cell types offer promise as regenerative therapies but transfecting these sensitive cells has proven difficult. Herein, a series of linear trehalose-oligoethyleneamine “click” copolymers were synthesized and examined for their ability to deliver plasmid DNA (pDNA) to two progenitor cell types, human dermal fibroblasts (HDFn) and rat mesenchymal stem cells (RMSC). Seven polymer vehicle analogs were synthesized in which three parameters were systematically varied: the number of secondary amines (4–6) within the polymer repeat unit (Tr433, Tr530, and Tr632), the end group functionalities [PEG (Tr4128PEG-a, Tr4118PEG-b), triphenyl (Tr4107-c), or azido (Tr499-d)], and the molecular weight (degree of polymerization of about 30 or about 100) and the biological efficacy of these vehicles was compared to three controls: Lipofectamine 2000, JetPEI, and Glycofect. The trehalose polymers were all able to bind and compact pDNA polyplexs, and promote pDNA uptake and gene expression [luciferase and enhanced green fluorescent protein (EGFP)] with these primary cell types and the results varied significantly depending on the polymer structure. Interestingly, in both cell types, Tr433 and Tr530 yielded the highest luciferase gene expression. However, when comparing the number of cells transfected with a reporter plasmid encoding enhanced green fluorescent protein, Tr433 and Tr4107-c yielded the highest number of HDFn cells positive for EGFP. Interestingly, with RMSC, all of the higher molecular weight analogs (Tr4128PEG-a, Tr4118PEG-b, Tr4107-c, Tr499-d) yielded high percentages of cells positive for EGFP (30–40%). PMID:22138032

  19. DNA-Grafted Supramolecular Polymers: Helical Ribbon Structures Formed by Self-Assembly of Pyrene-DNA Chimeric Oligomers.

    PubMed

    Vyborna, Yuliia; Vybornyi, Mykhailo; Rudnev, Alexander V; Häner, Robert

    2015-06-26

    The controlled arraying of DNA strands on adaptive polymeric platforms remains a challenge. Here, the noncovalent synthesis of DNA-grafted supramolecular polymers from short chimeric oligomers is presented. The oligomers are composed of an oligopyrenotide strand attached to the 5'-end of an oligodeoxynucleotide. The supramolecular polymerization of these oligomers in an aqueous medium leads to the formation of one-dimensional (1D) helical ribbon structures. Atomic force and transmission electron microscopy show rod-like polymers of several hundred nanometers in length. DNA-grafted polymers of the type described herein will serve as models for the development of structurally and functionally diverse supramolecular platforms with applications in materials science and diagnostics.

  20. Synthesis of cationic carbosilane dendrimers via click chemistry and their use as effective carriers for DNA transfection into cancerous cells.

    PubMed

    Arnáiz, Eduardo; Doucede, Lorena I; García-Gallego, Sandra; Urbiola, Koldo; Gómez, Rafael; Tros de Ilarduya, Conchita; de la Mata, F Javier

    2012-03-05

    New amine-terminated carbosilane dendrimers have been prepared by a Huisgen cycloaddition ("click chemistry" reaction) of azide-terminated carbosilane dendrimers with two different propargyl amines. The corresponding cationic derivatives with peripheral ammonium groups were obtained by subsequent addition of MeI. Quaternized dendrimers are soluble and stable in water or other protic solvents for long time periods, and have been studied as nonviral vectors for the transfection of DNA to cancer cells. In this study DNA-dendrimeric nanoparticles (dendriplexes) formulated with two different families of cationic carbosilane dendrimers (family 1 (G1, G2 and G3) and family 2 (G1, G2)) were characterized and evaluated for their ability to transfect cells in vitro and in vivo. Dendriplex derived from second generation dendrimer of family 1 (F1G2 5/1 (+/-)) increased the efficiency of plasmid-mediated gene transfer in HepG2 cells as compared to naked DNA and the commercial control dendrimer. Also, intravenously administered dendriplex F1G3 20/1 (+/-) is superior in terms of gene transfer efficiency in vivo.

  1. A 1D anionic lanthanide coordination polymer as an adsorbent material for the selective uptake of cationic dyes from aqueous solutions.

    PubMed

    Du, Pei-Yao; Li, Hui; Fu, Xin; Gu, Wen; Liu, Xin

    2015-08-14

    A 1D anionic lanthanide coordination polymer {[(CH(3))(2)NH(2)] [(H(2)abtc)(2)Ho(H(2)O)]}n () (H(4)abtc = 3,3',5,5'-azobenzene-tetracarboxylic acid) has been synthesized under hydrothermal reaction conditions. The protonated [(CH(3))(2)NH(2)](+) is generated from decomposed DMA during the reaction, and balances the negative charge of the framework. The as-obtained samples were characterized using single-crystal and powder X-ray diffraction and TGA. Interestingly, 1 can selectively capture cationic dye molecules from mixtures of dye molecules containing different charges in aqueous solutions. Furthermore, 1 exhibits a different adsorption efficiency toward different cationic dyes (crystal violet, rhodamine B, safranine T and methylene blue). Among the studied dyes, methylene blue has a higher adsorption efficiency in comparison to the others. Thus, complex 1 could serve as a good candidate material for the selective removal of cationic dyes during the treatment of wastewater.

  2. Characterization of cationic polymers by asymmetric flow field-flow fractionation and multi-angle light scattering-A comparison with traditional techniques.

    PubMed

    Wagner, Michael; Pietsch, Christian; Tauhardt, Lutz; Schallon, Anja; Schubert, Ulrich S

    2014-01-17

    In the field of nanomedicine, cationic polymers are the subject of intensive research and represent promising carriers for genetic material. The detailed characterization of these carriers is essential since the efficiency of gene delivery strongly depends on the properties of the used polymer. Common characterization methods such as size exclusion chromatography (SEC) or mass spectrometry (MS) suffer from problems, e.g. missing standards, or even failed for cationic polymers. As an alternative, asymmetrical flow field-flow fractionation (AF4) was investigated. Additionally, analytical ultracentrifugation (AUC) and (1)H NMR spectroscopy, as well-established techniques, were applied to evaluate the results obtained by AF4. In this study, different polymers of molar masses between 10 and 120kgmol(-1) with varying amine functionalities in the side chain or in the polymer backbone were investigated. To this end, some of the most successful gene delivery agents, namely linear poly(ethylene imine) (LPEI) (only secondary amines in the backbone), branched poly(ethylene imine) (B-PEI) (secondary and tertiary amino groups in the backbone, primary amine end groups), and poly(l-lysine) (amide backbone and primary amine side chains), were characterized. Moreover, poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA), poly(2-(amino)ethyl methacrylate) (PAEMA), and poly(2-(tert-butylamino)ethyl methacrylate) (PtBAEMA) as polymers with primary, secondary, and tertiary amines in the side chain, have been investigated. Reliable results were obtained for all investigated polymers by AF4. In addition, important factors for all methods were evaluated, e.g. the influence of different elution buffers and AF4 membranes. Besides this, the correct determination of the partial specific volume and the suppression of the polyelectrolyte effect are the most critical issues for AUC investigations.

  3. DNA‐Accelerated Catalysis of Carbene‐Transfer Reactions by a DNA/Cationic Iron Porphyrin Hybrid

    PubMed Central

    Rioz‐Martínez, Ana; Oelerich, Jens; Ségaud, Nathalie

    2016-01-01

    Abstract A novel DNA‐based hybrid catalyst comprised of salmon testes DNA and an iron(III) complex of a cationic meso‐tetrakis(N‐alkylpyridyl)porphyrin was developed. When the N‐methyl substituents were placed at the ortho position with respect to the porphyrin ring, high reactivity in catalytic carbene‐transfer reactions was observed under mild conditions, as demonstrated in the catalytic enantioselective cyclopropanation of styrene derivatives with ethyl diazoacetate (EDA) as the carbene precursor. A remarkable feature of this catalytic system is the large DNA‐induced rate acceleration observed in this reaction and the related dimerization of EDA. It is proposed that high effective molarity of all components of the reaction in or near the DNA is one of the key contributors to this unique reactivity. This study demonstrates that the concept of DNA‐based asymmetric catalysis can be expanded into the realm of organometallic chemistry. PMID:27730731

  4. 2-Methacryloyloxyethyl phosphorylcholine polymer (MPC)-coating improves the transfection activity of GALA-modified lipid nanoparticles by assisting the cellular uptake and intracellular dissociation of plasmid DNA in primary hepatocytes.

    PubMed

    Ukawa, Masami; Akita, Hidetaka; Masuda, Tomoya; Hayashi, Yasuhiro; Konno, Tomohiro; Ishihara, Kazuhiko; Harashima, Hideyoshi

    2010-08-01

    We previously reported that modification of GALA peptide on the surface of liposomes enhanced fusion with endosomal membrane, and cytoplasmic release of encapsulated macromolecules. We report herein that an additional coating of GALA-modified liposomes with 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer resulted in a two order of magnitude enhancement in the transfection activity of encapsulating plasmid DNA (pDNA). Quantification of the delivered gene copies in whole cells and isolated nuclei revealed that the increase of transfection activity can be attributed to improved efficiencies in cellular uptake and post-nuclear delivery processes. Imaging studies revealed that the intracellular dissociation of pDNA from the lipid envelope is enhanced by GALA modification and further coating with MPC polymer in a stepwise manner. The MPC polymer-coating decreased the zeta-potential of GALA-modified liposomes, suggesting that it assisted in the functional display of negatively charged GALA on the cationic liposomes by providing shielding from mutual electrostatic interactions. Collectively, these data indicate that MPC polymer-coating induced the fusogenic activity of the GALA-modified envelope with endosomes, leading to a more effective cytoplasmic release pDNA. The extensive fusion of the lipid envelope may also reduce electrostatic interactions between mRNA and cationic lipid components, thereby resulting in an enhancement in the translation process.

  5. Shock waves and DNA-cationic lipid assemblies: a synergistic approach to express exogenous genes in human cells.

    PubMed

    Millán-Chiu, Blanca; Camacho, Giselle; Varela-Echavarría, Alfredo; Tamariz, Elisa; Fernández, Francisco; López-Marín, Luz M; Loske, Achim M

    2014-07-01

    Cationic lipid/DNA complexes (lipoplexes) represent a powerful tool for cell transfection; however, their use is still limited by important concerns, including toxicity and poor internalization into deep tissues. In this work, we investigated the use of shock wave-induced acoustic cavitation in vitro for the transfection of lipoplexes in human embryo kidney 293 cells. We selected shock waves with the ability to internalize 10-kDa fluorescein isothiocyanate-dextran into cells while maintaining survival rates above 50%. Cell transfection was tested using the green fluorescent protein-encoding plasmid pCX::GFPGPI2. Confocal microscopy and fluorescence-assisted cell sorting analyses revealed successful transfection after treatments ranging from 1 to 3 min using 60 to 180 shock waves at peak amplitudes of 12.3 ± 1.5 MPa. Interestingly, the combination of shock waves and lipoplexes induced a 3.1- and 3.8-fold increase in the expression of the reporter gene compared with the use of lipoplexes or shock waves alone, respectively. These results indicate that cationic DNA assembly and shock waves act in a synergistic manner to promote transfection of human cells, revealing a potential approach for non-invasive site-specific gene therapy.

  6. Cationized bovine serum albumin as gene carrier: Influence of specific secondary structure on DNA complexibility and gene transfection.

    PubMed

    Du, Jianwei; Li, Bangbang; Zhang, Peng; Wang, Youxiang

    2016-07-01

    In this research, BSA, one of the natural rigid globular proteins with ca. 51% of α-helix secondary structure, was utilized to prepare cationized BSA (cBSA) as gene carrier. Tetraethylenepentamine (TEPA) or polyethylenimine (PEI1800) was grafted to BSA with different grafting levels. Based on the circular dichoism (CD) spectra, all cBSA remained α-helical structure to some degree. This was exciting to endow cBSA with quite different DNA complexibility and cellular biology behavior from the random coiled and flexible polycations such as PEI and poly-l-lysine (PLL). Strangely, the DNA condensability decreased with the increment of TEPA or PEI1800 grafting level. Also, the cBSA could condense DNA effectively to form irregular nanoparticles around 50-200nm above N/P ratio of 10. On account of the excellent hydration of BSA, the cBSA/DNA complexes revealed good colloidal stability under physiological salt condition. Cell culture experiments indicated this BSA-based gene carrier possessed good cellular compatibility. Surprisingly, cBSA/DNA complexes could be uptaken excellently by up to 90% cells. This might be owing to the agitation effect of α-helical structure and the positive potential of these complexes. BSA-PEI1800/DNA complexes with quick endosome escape even had transfection efficiency as high as PEI25k/DNA complexes. Overall, this paper provided us the potential of cBSA as gene carrier and might have some instructions in the design of protein-based gene delivery system.

  7. DNA-controlled partition of carbon nanotubes in polymer aqueous two-phase systems.

    PubMed

    Ao, Geyou; Khripin, Constantine Y; Zheng, Ming

    2014-07-23

    Sorting single-wall carbon nanotubes (SWCNTs) of different chiralities is both scientifically interesting and technologically important. Recent studies have shown that polymer aqueous two-phase extraction is a very effective way to achieve nanotube sorting. However, works published to date have demonstrated only separation of surfactant-dispersed SWCNTs, and the mechanism of chirality-dependent SWCNT partition is not well understood. Here we report a systematic study of spontaneous partition of DNA-wrapped SWCNTs in several polymer aqueous two-phase systems. We show that partition of DNA-SWCNT hybrids in a given polymer two-phase system is strongly sequence-dependent and can be further modulated by salt and polymer additives. With the proper combination of DNA sequence, polymer two-phase system, and partition modulators, as many as 15 single-chirality nanotube species have been effectively purified from a synthetic mixture. As an attempt to provide a unified partition mechanism of SWCNTs dispersed by surfactants and by DNA, we present a qualitative analysis of solvation energy for SWCNT colloids in a polymer-modified aqueous phase. Our observation and analysis highlight the sensitive dependence of the hydration energy on the spatial distribution of hydrophilic functionalities.

  8. In situ synthesis and characterization of silver/polymer nanocomposites by thermal cationic polymerization processes at room temperature: initiating systems based on organosilanes and starch nanocrystals.

    PubMed

    Tehfe, Mohamad-Ali; Jamois, Romain; Cousin, Patrice; Elkoun, Saïd; Robert, Mathieu

    2015-04-14

    New methods for the preparation of silver nanoparticles/polymer nanocomposite materials by thermal cationic polymerization of ε-caprolactone (ε-CL) or α-pinene oxide (α-PO) at room temperature (RT) and under air were developed. The new initiating systems were based on silanes (Si), starch nanocrystals (StN) and metal salts. Excellent polymerization profiles were revealed. It was shown that silver nanoparticles (Ag(0) NPs) were in situ formed and that the addition of StN improves the polymerization efficiency. The as-synthesized nanocomposite materials contained spherical nanoparticles homogeneously dispersed in the polymer matrices. Polymers and nanoparticles were characterized by gel permeation chromatography (GPC), X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV-vis spectroscopy. A coherent picture of the involved chemical mechanisms is presented.

  9. Comparison of the cellular transport mechanism of cationic, star-shaped polymers and liposomes in HaCat cells

    PubMed Central

    Luo, Heng-Cong; Li, Na; Yan, Li; Mai, Kai-jin; Sun, Kan; Wang, Wei; Lao, Guo-Juan; Yang, Chuan; Zhang, Li-Ming; Ren, Meng

    2017-01-01

    Several biological barriers must be overcome to achieve efficient nonviral gene delivery. These barriers include target cell uptake, lysosomal degradation, and dissociation from the carrier. In this study, we compared the differences in the uptake mechanism of cationic, star-shaped polymer/MMP-9siRNA complexes (β-CD-(D3)7/MMP-9siRNA complexes: polyplexes) and commercial liposome/MMP-9siRNA complexes (Lipofectamine® 2000/MMP-9siRNA complexes: liposomes). The uptake pathway and transfection efficiency of the polyplexes and liposomes were determined by fluorescence microscopy, flow cytometry, and reverse transcriptase-polymerase chain reaction. The occurrence of intracellular processing was assessed by confocal laser scanning microscopy. Endosomal acidification inhibitors were used to explore the endosomal escape mechanisms of the polyplexes and lysosomes. We concluded that the polyplexes were internalized by non-caveolae- and non-clathrin-mediated pathways, with no lysosomal trafficking, thereby inducing successful transfection, while the majority of liposomes were internalized by clathrin-dependent endocytosis (CDE), caveolae-mediated endocytosis, and macropinocytosis, and only CDE induced successful transfection. Liposomes might escape more quickly than polyplexes, and the digestion effect of acidic organelles on liposomes was faint compared to the polyplexes, although both complexes escaped from endolysosomes via the proton sponge mechanism. This may be the key aspect that leads to the lower transfection efficiency of the β-CD-(D3)7/MMP-9siRNA complexes. The present study may offer some insights for the rational design of novel delivery systems with increased transfection efficiency but decreased toxicity. PMID:28223800

  10. Syntheses, structures, molecular and cationic recognitions and catalytic properties of two lanthanide coordination polymers based on a flexible tricarboxylate

    SciTech Connect

    Zhu, Yu; Wang, Yan-Mei; Xu, Ji; Liu, Pan; Weththasinha, H.A.B.M.D.; Wu, Yun-Long; Lu, Xiao-Qing; Xie, Ji-Min

    2014-11-15

    Two lanthanide coordination polymers, namely, ([La(TTTA)(H{sub 2}O){sub 2}]·2H{sub 2}O){sub n} (La-TTTA) and [Nd(TTTA)(H{sub 2}O){sub 2}]·2H{sub 2}O){sub n} (Nd-TTTA) have been hydrothermally synthesized through the reaction of lanthanide ions (La{sup 3+} and Nd{sup 3+}) with the flexible tripodal ligand 2,2′,2″-[1,3,5-triazine-2,4,6-triyltris(thio)]tris-acetic acid (H{sub 3}TTTA). La-TTTA and Nd-TTTA are isostructural and both show three dimensional structures. La-TTTA and Nd-TTTA show good recognition of amine molecules via quenching the luminescent intensities in amines emulsions. They can also recognize Fe{sup 3+}, Cu{sup 2+}, Mg{sup 2+}, Cr{sup 3+} and Co{sup 2+} ions with the quenching the peak around 361 nm when the compounds immersed in ionic solutions. The two compounds act as efficient Lewis acid catalysts for the cyanosilylation of benzaldehyde and derivatives in high yields shortly due to the strong Lewis acidity and the possible open sites of the lanthanide ions. - Graphical abstract: We have synthesized two isostructural 3D compounds based on H{sub 3}TTTA. They are chemical sensor of amine solvents and cations. They have higher yields and TOFs to catalyze cyanosilylation reactions. - Highlights: • The compounds show recognition of amine molecules via quenching luminescent intensities. • The compounds recognize Fe{sup 3+}, Cu{sup 2+}, Mg{sup 2+}, Cr{sup 3+} and Co{sup 2+} ions via quenching the peak around 361 nm. • They act as efficient Lewis acid catalysts for the cyanosilylation reactions in high yields.

  11. Comparison of the cellular transport mechanism of cationic, star-shaped polymers and liposomes in HaCat cells.

    PubMed

    Luo, Heng-Cong; Li, Na; Yan, Li; Mai, Kai-Jin; Sun, Kan; Wang, Wei; Lao, Guo-Juan; Yang, Chuan; Zhang, Li-Ming; Ren, Meng

    2017-01-01

    Several biological barriers must be overcome to achieve efficient nonviral gene delivery. These barriers include target cell uptake, lysosomal degradation, and dissociation from the carrier. In this study, we compared the differences in the uptake mechanism of cationic, star-shaped polymer/MMP-9siRNA complexes (β-CD-(D3)7/MMP-9siRNA complexes: polyplexes) and commercial liposome/MMP-9siRNA complexes (Lipofectamine(®) 2000/MMP-9siRNA complexes: liposomes). The uptake pathway and transfection efficiency of the polyplexes and liposomes were determined by fluorescence microscopy, flow cytometry, and reverse transcriptase-polymerase chain reaction. The occurrence of intracellular processing was assessed by confocal laser scanning microscopy. Endosomal acidification inhibitors were used to explore the endosomal escape mechanisms of the polyplexes and lysosomes. We concluded that the polyplexes were internalized by non-caveolae- and non-clathrin-mediated pathways, with no lysosomal trafficking, thereby inducing successful transfection, while the majority of liposomes were internalized by clathrin-dependent endocytosis (CDE), caveolae-mediated endocytosis, and macropinocytosis, and only CDE induced successful transfection. Liposomes might escape more quickly than polyplexes, and the digestion effect of acidic organelles on liposomes was faint compared to the polyplexes, although both complexes escaped from endolysosomes via the proton sponge mechanism. This may be the key aspect that leads to the lower transfection efficiency of the β-CD-(D3)7/MMP-9siRNA complexes. The present study may offer some insights for the rational design of novel delivery systems with increased transfection efficiency but decreased toxicity.

  12. Effect of ionic strength and cationic DNA affinity binders on the DNA sequence selective alkylation of guanine N7-positions by nitrogen mustards

    SciTech Connect

    Hartley, J.A.; Forrow, S.M.; Souhami, R.L. )

    1990-03-27

    Large variations in alkylation intensities exist among guanines in a DNA sequence following treatment with chemotherapeutic alkylating agents such as nitrogen mustards, and the substituent attached to the reactive group can impose a distinct sequence preference for reaction. In order to understand further the structural and electrostatic factors which determine the sequence selectivity of alkylation reactions, the effect of increase ionic strength, the intercalator ethidium bromide, AT-specific minor groove binders distamycin A and netropsin, and the polyamine spermine on guanine N7-alkylation by L-phenylalanine mustard (L-Pam), uracil mustard (UM), and quinacrine mustard (QM) was investigated with a modification of the guanine-specific chemical cleavage technique for DNA sequencing. The result differed with both the nitrogen mustard and the cationic agent used. The effect, which resulted in both enhancement and suppression of alkylation sites, was most striking in the case of netropsin and distamycin A, which differed from each other. DNA footprinting indicated that selective binding to AT sequences in the minor groove of DNA can have long-range effects on the alkylation pattern of DNA in the major groove.

  13. Selective DNA Recognition and Cytotoxicity of Water-Soluble Helical Metallosupramolecular Polymers.

    PubMed

    Rana, Utpal; Chakraborty, Chanchal; Pandey, Rakesh K; Hossain, Md Delwar; Nagano, Reiko; Morita, Hiromi; Hattori, Shinya; Minowa, Takashi; Higuchi, Masayoshi

    2016-10-19

    Water-soluble helical Fe(II)-based metallosupramolecular polymers ((P)- and (M)-polyFe) were synthesized by 1:1 complexation of Fe(II) ions and bis(terpyridine)s bearing a (R)- and (S)-BINOL spacer, respectively. The binding affinity to calf thymus DNA (ct-DNA) was investigated by titration measurements. (P)-PolyFe with the same helicity as B-DNA showed 40-fold higher binding activity (Kb = 13.08 × 10(7) M(-1)) to ct-DNA than (M)-polyFe. The differences in binding affinity were supported by electrochemical impedance spectroscopy analysis. The charge-transfer resistance (Rct) of (P)-polyFe increased from 2.5 to 3.9 kΩ upon DNA binding, while that of (M)-polyFe was nearly unchanged. These results indicate that ionically strong binding of (P)-polyFe to DNA chains decreased the mobility of ions in the conjugate. Unique rod-like images were obtained by atomic force microscopy measurement of the DNA conjugate with (P)-polyFe, likely because of the rigid binding between DNA chains and the polymer. Differences in polymer chirality lead to significantly different cytotoxicity levels in A549 cells. (P)-PolyFe showed higher binding affinity to B-DNA and much higher cytotoxicity than (M)-polyFe. The helicity in metallosupramolecular polymer chains was important not only for chiral recognition of DNA but also for coordination to a biological target in the cellular environment.

  14. Structural dynamics and cation interactions of DNA quadruplex molecules containing mixed guanine/cytosine quartets revealed by large-scale MD simulations.

    PubMed

    Spacková, N; Berger, I; Sponer, J

    2001-04-11

    Large-scale molecular dynamics (MD) simulations have been utilized to study G-DNA quadruplex molecules containing mixed GCGC and all-guanine GGGG quartet layers. Incorporation of mixed GCGC quartets into G-DNA stems substantially enhances their sequence variability. The mixed quadruplexes form rigid assemblies that require integral monovalent cations for their stabilization. The interaction of cations with the all-guanine quartets is the leading contribution for the stability of the four-stranded assemblies, while the mixed quartets are rather tolerated within the structure. The simulations predict that two cations are preferred to stabilize a four-layer quadruplex stem composed of two GCGC and two all-guanine quartets. The distribution of cations in the structure is influenced by the position of the GCGC quartets within the quadruplex, the presence and arrangement of thymidine loops connecting the guanine/cytosine stretches forming the stems, and the cation type present (Na(+) or K(+)). The simulations identify multiple nanosecond-scale stable arrangements of the thymidine loops present in the molecules investigated. In these thymidine loops, several structured pockets are identified capable of temporarily coordinating cations. However, no stable association of cations to a loop has been observed. The simulations reveal several paths through the thymidine loop regions that can be followed by the cations when exchanging between the central ion channel in the quadruplex stem and the surrounding solvent. We have carried out 20 independent simulations while the length of simulations reaches a total of 90 ns, rendering this study one of the most extensive MD investigations carried out on nucleic acids so far. The trajectories provide a largely converged characterization of the structural dynamics of these four-stranded G-DNA molecules.

  15. Influence of biological media on the structure and behavior of ferrocene-containing cationic lipid/DNA complexes used for DNA delivery.

    PubMed

    Golan, Sharon; Aytar, Burcu S; Muller, John P E; Kondo, Yukishige; Lynn, David M; Abbott, Nicholas L; Talmon, Yeshayahu

    2011-06-07

    Biological media affect the physicochemical properties of cationic lipid-DNA complexes (lipoplexes) and can influence their ability to transfect cells. To develop new lipids for efficient DNA delivery, the influence of serum-containing media on the structures and properties of the resulting lipoplexes must be understood. To date, however, a clear and general picture of how serum-containing media influences the structures of lipoplexes has not been established. Some studies suggest that serum can disintegrate lipoplexes formed using certain types of cationic lipids, resulting in the inhibition of transfection. Other studies have demonstrated that lipoplexes formulated from other lipids are stable in the presence of serum and are able to transfect cells efficiently. In this article, we describe the influence of serum-containing media on lipoplexes formed using the redox-active cationic lipid bis(n-ferrocenylundecyl)dimethylammonium bromide (BFDMA). This lipoplex system promotes markedly decreased levels of transgene expression in COS-7 cells as serum concentrations are increased from 0 to 2, 5, 10, and 50% (v/v). To understand the cause of this decrease in transfection efficiency, we used cryogenic transmission electron microscopy (cryo-TEM) and measurements of zeta potential to characterize lipoplexes in cell culture media supplemented with 0, 2, 5, 10, and 50% serum. Cryo-TEM revealed that in serum-free media BFDMA lipoplexes form onionlike, multilamellar nanostructures. However, the presence of serum in the media caused disassociation of the intact multilamellar lipoplexes. At low serum concentrations (2 and 5%), DNA threads appeared to separate from the complex, leaving the nanostructure of the lipoplexes disrupted. At higher serum concentration (10%), disassociation increased and bundles of multilamellae were discharged from the main multilamellar complex. In contrast, lipoplexes characterized in serum-free aqueous salt (Li(2)SO(4)) medium and in OptiMEM cell

  16. Cationized gelatin delivery of a plasmid DNA expressing small interference RNA for VEGF inhibits murine squamous cell carcinoma.

    PubMed

    Matsumoto, Goichi; Kushibiki, Toshihiro; Kinoshita, Yukihiko; Lee, Ushaku; Omi, Yasushi; Kubota, Eiro; Tabata, Yasuhiko

    2006-04-01

    Double-stranded RNA (dsRNA) plays a major role in RNA interference (RNAi), a process in which segments of dsRNA are initially cleaved by the Dicer into shorter segments (21-23 nt) called small interfering RNA (siRNA). These siRNA then specifically target homologous mRNA molecules causing them to be degraded by cellular ribonucleases. RNAi down regulates endogenous gene expression in mammalian cells. Vascular endothelial growth factor (VEGF) is a key molecule in vasculogenesis as well as in angiogenesis. Tumor growth is an angiogenesis-dependent process, and therapeutic strategies aimed at inhibiting angiogenesis are theoretically attractive. To investigate the feasibility of using siRNA for VEGF in the specific knockdown of VEGF mRNA, thereby inhibiting angiogenesis, we have performed experiments with a DNA vector based on a siRNA system that targets VEGF (siVEGF). It almost completely inhibited the expression of three different isoforms (VEGF120, VEGF164 and VEGF188) of VEGF mRNA and the secretion of VEGF protein in mouse squamous cell carcinoma NRS-1 cells. The siVEGF released from cationized gelatin microspheres suppressed tumor growth in vivo. A marked reduction in vascularity accompanied the inhibition of a siVEGF-transfected tumor. Fluorescent microscopic study showed that the complex of siVEGF with cationized gelatin microspheres was still present around the tumor 10 days after injection, while free siVEGF had vanished by that time. siVEGF gene therapy increased the fraction of vessels covered by pericytes and induced expression of angiopoietin-1 by pericytes. These data suggest that cationized-gelatin microspheres containing siVEGF can be used to normalize tumor vasculature and inhibit tumor growth in a NRS-1 squamous cell carcinoma xenograft model.

  17. Evaluation of strong cation-exchange polymers for the determination of drugs by solid-phase extraction-liquid chromatography-tandem mass spectrometry.

    PubMed

    Fontanals, Núria; Miralles, Núria; Abdullah, Norhayati; Davies, Arlene; Gilart, Núria; Cormack, P A G

    2014-05-23

    This paper presents eight distinct strong cation-exchange resins, all of which were derived from precursor resins that had been synthesised using either precipitation polymerisation or non-aqueous dispersion polymerisation. The precursor resins were transformed into the corresponding strong cation-exchange resins by hypercrosslinking followed by polymer analogous reactions, to yield materials with high specific surface areas and strong cation-exchange character. These novel resins were then evaluated as strong cation-exchange (SCX) sorbents in the solid-phase extraction (SPE) of a group of drugs from aqueous samples. Following preliminary experiments, the two best-performing resins were then evaluated in solid-phase extraction-liquid chromatography-tandem mass spectrometry (SPE/LC-MS/MS) to determine a group of drugs from sewage samples. In general, use of these sorbents led to excellent recovery values (75-100%) for most of the target drugs and negligible matrix effects (ME) (<20% ion suppression/enhancement of the analyte signal), when 50mL and 25mL of effluent and influent sewage water samples, respectively, were percolated through the resins. Finally, a validated method based on SPE/LC-MS/MS was used to quantify the target drugs present in different sewage samples.

  18. Structure and properties of Li-ion conducting polymer gel electrolytes based on ionic liquids of the pyrrolidinium cation and the bis(trifluoromethanesulfonyl)imide anion

    NASA Astrophysics Data System (ADS)

    Pitawala, Jagath; Navarra, Maria Assunta; Scrosati, Bruno; Jacobsson, Per; Matic, Aleksandar

    2014-01-01

    We have investigated the structure and physical properties of Li-ion conducting polymer gel electrolytes functionalized with ionic liquid/lithium salt mixtures. The membranes are based on poly(vinylidene fluoride-co-hexafluoropropylene) copolymer, PVdF-HFP, and two ionic liquids: pyrrolidinium cations, N-butyl-N-methylpyrrolidinium (PyR14+), N-butyl-N-ethylpyrrolidinium (PyR24+), and bis(trifluoromethanesulfonyl)imide anion (TFSI). The ionic liquids where doped with 0.2 mol kg-1 LiTFSI. The resulting membranes are freestanding, flexible, and nonvolatile. The structure of the polymer and the interactions between the polymer and the ionic liquid electrolyte have been studied using Raman spectroscopy. The ionic conductivity of the membranes has been studied using dielectric spectroscopy whereas the thermal properties were investigated using differential scanning caloriometry (DSC). These results show that there is a weak, but noticeable, influence on the physical properties of the ionic liquid by the confinement in the membrane. We observe a change in the Li-ion coordination, conformation of the anion, the fragility and a slight increase of the glass transition temperatures for IL/LiTFSI mixtures in the membranes compared to the neat mixtures. The effect can be related to the confinement of the liquid in the membrane and/or to interactions with the PVdF-HFP polymer matrix where the crystallinity is decreased compared to the starting polymer powder.

  19. Interaction between a cationic porphyrin and ctDNA investigated by SPR, CV and UV-vis spectroscopy.

    PubMed

    Xu, Zi-Qiang; Zhou, Bo; Jiang, Feng-Lei; Dai, Jie; Liu, Yi

    2013-10-01

    The interaction between ctDNA and a cationic porphyrin was studied in this work. The binding process was monitored by surface plasmon resonance (SPR) spectroscopy in detail. The association, dissociation rate constants and the binding constants calculated by global analysis were 2.4×10(2)±26.4M(-1)s(-1), 0.011±0.0000056s(-1) and 2.18×10(4)M(-1), respectively. And the results were confirmed by cyclic voltammetry and UV-vis absorption spectroscopy. The binding constants obtained from cyclic voltammetry and UV-vis absorption spectroscopy were 8.28×10(4)M(-1) and 6.73×10(4)M(-1) at 298K, respectively. The covalent immobilization methodology of ctDNA onto gold surface modified with three different compounds was also investigated by SPR. These compounds all contain sulfydryl but with different terminated functional groups. The results indicated that the 11-MUA (HS(CH2)10COOH)-modified gold film is more suitable for studying the DNA-drug interaction.

  20. Cationic Lipid-Nucleic Acid Complexes for Gene Delivery And Silencing: Pathways And Mechanisms for Plasmid Dna And Sirna

    SciTech Connect

    Ewert, K.K.; Zidovska, A.; Ahmad, A.; Bouxsein, N.F.; Evans, H.M.; McAllister, C.S.; Samuel, C.E.; Safinya, C.R.; /SLAC

    2012-07-17

    Motivated by the promises of gene therapy, there is great interest in developing non-viral lipid-based vectors for therapeutic applications due to their low immunogenicity, low toxicity, ease of production, and the potential of transferring large pieces of DNA into cells. In fact, cationic liposome (CL) based vectors are among the prevalent synthetic carriers of nucleic acids (NAs) currently used in gene therapy clinical trials worldwide. These vectors are studied both for gene delivery with CL-DNA complexes and gene silencing with CL-siRNA (short interfering RNA) complexes. However, their transfection efficiencies and silencing efficiencies remain low compared to those of engineered viral vectors. This reflects the currently poor understanding of transfection-related mechanisms at the molecular and self-assembled levels, including a lack of knowledge about interactions between membranes and double stranded NAs and between CL-NA complexes and cellular components. In this review we describe our recent efforts to improve the mechanistic understanding of transfection by CL-NA complexes, which will help to design optimal lipid-based carriers of DNA and siRNA for therapeutic gene delivery and gene silencing.

  1. Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm matrix

    PubMed Central

    Jennings, Laura K.; Storek, Kelly M.; Ledvina, Hannah E.; Coulon, Charlène; Marmont, Lindsey S.; Sadovskaya, Irina; Secor, Patrick R.; Tseng, Boo Shan; Scian, Michele; Filloux, Alain; Wozniak, Daniel J.; Howell, P. Lynne; Parsek, Matthew R.

    2015-01-01

    Biofilm formation is a complex, ordered process. In the opportunistic pathogen Pseudomonas aeruginosa, Psl and Pel exopolysaccharides and extracellular DNA (eDNA) serve as structural components of the biofilm matrix. Despite intensive study, Pel’s chemical structure and spatial localization within mature biofilms remain unknown. Using specialized carbohydrate chemical analyses, we unexpectedly found that Pel is a positively charged exopolysaccharide composed of partially acetylated 1→4 glycosidic linkages of N-acetylgalactosamine and N-acetylglucosamine. Guided by the knowledge of Pel’s sugar composition, we developed a tool for the direct visualization of Pel in biofilms by combining Pel-specific Wisteria floribunda lectin staining with confocal microscopy. The results indicate that Pel cross-links eDNA in the biofilm stalk via ionic interactions. Our data demonstrate that the cationic charge of Pel is distinct from that of other known P. aeruginosa exopolysaccharides and is instrumental in its ability to interact with other key biofilm matrix components. PMID:26311845

  2. Structural basis for stabilization of Z-DNA by cobalt hexaammine and magnesium cations

    NASA Technical Reports Server (NTRS)

    Gessner, R. V.; Quigley, G. J.; Wang, A. H.; van der Marel, G. A.; van Boom, J. H.; Rich, A.

    1985-01-01

    In the equilibrium between B-DNA and Z-DNA in poly(dC-dG), the [Co(NH3)6]3+ ion stabilizes the Z form 4 orders of magnitude more effectively than the Mg2+ ion. The structural basis of this difference is revealed in Z-DNA crystal structures of d(CpGpCpGpCpG) stabilized by either Na+/Mg2+ or Na+/Mg2+ plus [Co(NH3)6]3+. The crystals diffract X-rays to high resolution, and the structures were refined at 1.25 A. The [Co(NH3)6]3+ ion forms five hydrogen bonds onto the surface of Z-DNA, bonding to a guanine O6 and N7 as well as to a phosphate group in the ZII conformation. The Mg2+ ion binds through its hydration shell with up to three hydrogen bonds to guanine N7 and O6. Higher charge, specific fitting of more hydrogen bonds, and a more stable complex all contribute to the great effectiveness of [Co(NH3)6]3+ in stabilizing Z-DNA.

  3. Cationic Nanoparticles Assembled from Natural-Based Steroid Lipid for Improved Intracellular Transport of siRNA and pDNA

    PubMed Central

    Sheng, Ruilong; Zhuang, Xiaoqing; Wang, Zhao; Cao, Amin; Lin, Kaili; Zhu, Julian X. X.

    2016-01-01

    Developing new functional biomaterials from biocompatible natural-based resources for gene/drug delivery has attracted increasing attention in recent years. In this work, we prepared a series of cationic nanoparticles (Diosarg-DOPE NPs) by assembly of a natural steroid diosgenin-based cationic lipid (Diosarg) with commercially-available helper lipid 1,2-dioleoyl-sn-glycero-3-phosphorethanolamine (DOPE). These cationic Diosarg-DOPE NPs were able to efficiently bind siRNA and plasmid DNA (pDNA) via electrostatic interactions to form stable, nano-sized cationic lipid nanoparticles instead of lamellar vesicles in aqueous solution. The average particle size, zeta potentials and morphologies of the siRNA and pDNA complexes of the Diosarg-DOPE NPs were examined. The in vitro cytotoxicity of NPs depends on the dose and assembly ratio of the Diosarg and DOPE. Notably, the intracellular transportation efficacy of the exogenesis siRNA and pDNA could be greatly improved by using the Diosarg-DOPE NPs as the cargoes in H1299 cell line. The results demonstrated that the self-assembled Diosarg-DOPE NPs could achieve much higher intracellular transport efficiency for siRNA or pDNA than the cationic lipid Diosarg, indicating that the synergetic effect of different functional lipid components may benefit the development of high efficiency nano-scaled gene carriers. Moreover, it could be noted that the traditional “lysosome localization” involved in the intracellular trafficking of the Diosarg and Diosarg-DOPE NPs, indicating the co-assembly of helper lipid DOPE, might not significantly affect the intracellular localization features of the cationic lipids. PMID:28335197

  4. Equilibrium properties of DNA and other semiflexible polymers confined in nanochannels

    NASA Astrophysics Data System (ADS)

    Muralidhar, Abhiram

    Recent developments in next-generation sequencing (NGS) techniques have opened the door for low-cost, high-throughput sequencing of genomes. However, these developments have also exposed the inability of NGS to track large scale genomic information, which are extremely important to understand the relationship between genotype and phenotype. Genome mapping offers a reliable way to obtain information about large-scale structural variations in a given genome. A promising variant of genome mapping involves confining single DNA molecules in nanochannels whose cross-sectional dimensions are approximately 50 nm. Despite the development and commercialization of nanochannel-based genome mapping technology, the polymer physics of DNA in confinement is only beginning to be understood. Apart from its biological relevance, DNA is also used as a model polymer in experiments by polymer physicists. Indeed, the seminal experiments by Reisner et al. (2005) of DNA confined in nanochannels of different widths revealed discrepancies with the classical theories of Odijk and de Gennes for polymer confinement. Picking up from the conclusions of the dissertation of Tree (2014), this dissertation addresses a number of key outstanding problems in the area of nanoconfined DNA. Adopting a Monte Carlo chain growth technique known as the pruned-enriched Rosenbluth method, we examine the equilibrium and near-equilibrium properties of DNA and other semiflexible polymers in nanochannel confinement. We begin by analyzing the dependence of molecular weight on various thermodynamic properties of confined semiflexible polymers. This allows us to point out the finite size effects that can occur when using low molecular weight DNA in experiments. We then analyze the statistics of backfolding and hairpin formation in the context of existing theories and discuss how our results can be used to engineer better conditions for genome mapping. Finally, we elucidate the diffusion behavior of confined

  5. [Investigation of the structure of magnesium and lithium salts of T2 phage DNA by the method of x-ray diffraction. The possible mechanisms of the participation of cations in the structural transformation of double-stranded DNA].

    PubMed

    Skuratovskii, I Ia; Bartenev, V N

    1978-01-01

    The secondary structure of DNA is known to be largely determined by the kind of counterion bound to it. We have used the X-ray diffraction method to study the structure of magnesium and lithium salts of T2 phage DNA in oriented fibres. The structural behaviour of this glucosylated DNA in the form of magnesium and lithium salts was shown to be identical to the behaviour of the same salts of "normal" calf thymus DNA throughout the studied range of relative humidities (44-95%). However these two DNAs in the form of sodium salt are known to behave quite differently. One can presume that Mg2+ and Li+ influence the structural behaviour of double-stranded DNA so effectively as to be able to "ignore" the fact that T2 phage DNA contains glucoside residues. The results of this work and the already known facts concerning the structure of DNA in the form of various cation salts (in solution and in "solid" fibres) indicate that the structural behaviour of double-stranded DNA is mainly determined by the cation located in the region of the narrow groove of the double helix. If cations are graded according to the efficiency of their influence on the structural behaviour of DNA in fibres, the scale will coincide with that of their DNA-binding strength in water solution, that is: Mg2+ greater than Li+ greater than Na+ greater than K+ greater than Rb+. A qualitative consideration of electrostatic interaction between the cations and the negatively charged DNA strands leads one to suppose that this interaction must obstruct the transition of individual DNA molecules from the B-form to the A-form. Aggregation of self-aggregation of DNA molecules is presumed necessary to enable them to adopt the A-conformation.

  6. Theory for the capillary electrophoretic separation of DNA in polymer solutions.

    PubMed

    Jung, Ho Jin; Bae, Young Chan

    2002-08-23

    We present a mathematical model based on the models of Hubert et al. [Macromolecules 29 (1996) 1006] and Sunada and Blanch [Electrophoresis, 19 (1998) 3128] to describe the electrophoretic mobility of DNA by a transient entanglement coupling mechanism. The proposed model takes into account the interactions between molecules in the capillary and the cross-section of collision between DNA and polymer molecules. The results show that the calculated values agree remarkably well with our electrophoretic mobility data.

  7. Assessment of SYBR green I dye-based fluorescence assay for screening antimalarial activity of cationic peptides and DNA intercalating agents.

    PubMed

    Bhatia, Rakesh; Gautam, Ankur; Gautam, Shailendra K; Mehta, Divya; Kumar, Vinod; Raghava, Gajendra P S; Varshney, Grish C

    2015-05-01

    The SYBR green I (SG) dye-based fluorescence assay for screening antimalarial compounds is based on direct quantitation of parasite DNA. We show that DNA-interacting cationic cell-penetrating peptides (CPPs) and intercalating agents compete with SG dye to bind to DNA. Therefore, readouts of this assay, unlike those of the [(3)H]hypoxanthine incorporation assay, for the antimalarial activity of the above DNA binding agents may be erroneous. In the case of CPPs, false readouts can be improved by the removal of excess peptides.

  8. Cationic phosphoramidate α-oligonucleotides efficiently target single-stranded DNA and RNA and inhibit hepatitis C virus IRES-mediated translation

    PubMed Central

    Michel, Thibaut; Martinand-Mari, Camille; Debart, Françoise; Lebleu, Bernard; Robbins, Ian; Vasseur, Jean-Jacques

    2003-01-01

    A potential means to improve the efficacy of steric-blocking antisense oligonucleotides (ON) is to increase their affinity for a target RNA. The grafting of cationic amino groups to the backbone of the ON is one way to achieve this, as it reduces the electrostatic repulsion between the ON and its target. We have examined the duplex stabilising effects of introducing cationic phosphoramidate internucleoside linkages into ON with a non-natural α-anomeric configuration. Cationic α-ON bound with high affinity to single-stranded DNA and RNA targets. Duplex stabilisation was proportional to the number of cationic modifications, with fully cationic ON having particularly high thermal stability. The average stabilisation was greatly increased at low ionic strength. The duplex formed between cationic α-ON and their RNA targets were not substrates for RNase H. The penalty in Tm inflicted by a single mismatch, however, was high; suggesting that they are well suited as sequence-specific, steric-blocking, antisense agents. Using a well-described target sequence in the internal ribosome entry site of the human hepatitis C virus, we have confirmed this potential in a cell-free translation assay as well as in a whole cell assay. Interestingly, no vectorisation was necessary for the cationic α-ON in cell culture. PMID:12954764

  9. Nanostructure-induced DNA condensation

    NASA Astrophysics Data System (ADS)

    Zhou, Ting; Llizo, Axel; Wang, Chen; Xu, Guiying; Yang, Yanlian

    2013-08-01

    The control of the DNA condensation process is essential for compaction of DNA in chromatin, as well as for biological applications such as nonviral gene therapy. This review endeavours to reflect the progress of investigations on DNA condensation effects of nanostructure-based condensing agents (such as nanoparticles, nanotubes, cationic polymer and peptide agents) observed by using atomic force microscopy (AFM) and other techniques. The environmental effects on structural characteristics of nanostructure-induced DNA condensates are also discussed.

  10. The Relation between the Physical Properties of Self-Assembling Cationic Lipid:DNA Complexes and Gene Delivery

    NASA Astrophysics Data System (ADS)

    Ahmad, A.; Slack, N. L.; Evans, Heather M.; Lin, Alison; Martin, A.; Safinya, C. R.

    2000-03-01

    The use of cationic lipids (CL) as carriers of genes (DNA sequences) for delivery in cells is a promising alternative to viral-carriers. Previous work on CL:DNA complexes has focused on binary mixtures of lipids and has shown that the optimal gene delivery vehicle may be mediated by physical properties of the lipid self-assembly(1). Using x-ray diffraction and biological assays, we show that membrane charge density and geometric shape may be universal parameters for successful gene delivery by binary CL mixtures in vitro. Preliminary results from complexes containing novel ternary CL mixtures further elucidate key parameters for gene delivery. Funded by NIH R01-GM59288-01 and R37-AI12520-24, UCBiotechnology Research and Education Program (97-02), NSF-DMR-9972246. 1. J. Raedler et al, Science 275, 810 (1997), Koltover et al Science 281, 78-81 (1998), Koltover et al, Biophysical Journal 77, 95 (1999), A. J. Lin, N. L. Slack, A. Ahmad, I. Koltover, C. X. George, C. E. Samuel, C. R. Safinya, Journal of Drug Targeting (to appear)

  11. Cationic solid-lipid nanoparticles are as efficient as electroporation in DNA vaccination against visceral leishmaniasis in mice.

    PubMed

    Saljoughian, N; Zahedifard, F; Doroud, D; Doustdari, F; Vasei, M; Papadopoulou, B; Rafati, S

    2013-12-01

    The use of an appropriate delivery system has recently emerged as a promising approach for the development of effective vaccination against visceral leishmaniasis (VL). Here, we compare two vaccine delivery systems, namely electroporation and cationic solid-lipid nanoparticle (cSLN) formulation, to administer a DNA vaccine harbouring the L. donovani A2 antigen along with L. infantum cysteine proteinases [CPA and CPB without its unusual C-terminal extension (CPB(-CTE) )] and evaluate their potential against L. infantum challenge. Prime-boost administration of the pcDNA-A2-CPA-CPB(-CTE) delivered by either electroporation or cSLN formulation protects BALB/c mice against L. infantum challenge and that protective immunity is associated with high levels of IFN-γ and lower levels of IL-10 production, leading to a strong Th1 immune response. At all time points, the ratio of IFN-γ: IL-10 induced upon restimulation with rA2-rCPA-rCPB and F/T antigens was significantly higher in vaccinated animals. Moreover, Th2-efficient protection was elicited through a high humoral immune response. Nitric oxide production, parasite burden and histopathological analysis were also in concordance with other findings. Overall, these data indicate that similar to the electroporation delivery system, cSLNs as a nanoscale vehicle of Leishmania antigens could improve immune response, hence indicating the promise of these strategies against visceral leishmaniasis.

  12. Cloning and expression of the cDNA of chicken cation-independent mannose-6-phosphate receptor.

    PubMed Central

    Zhou, M; Ma, Z; Sly, W S

    1995-01-01

    We cloned and sequenced the 8767-bp full-length cDNA for the chicken cation-independent mannose-6-phosphate receptor (CI-MPR), of interest because, unlike its mammalian homologs, it does not bind insulin-like growth factor II (IGF-II). The cDNA encodes a protein of 2470 aa that includes a putative signal sequence, an extracytoplasmic domain consisting of 15 homologous repeat sequences, a 23-residue transmembrane sequence, and a 161-residue cytoplasmic sequence. Overall, it shows 60% sequence identity with human and bovine CI-MPR homologs, and all but two of 122 cysteine residues are conserved. However, it shows much less homology in the N-terminal signal sequence, in repeat 11, which is proposed to contain the IGF-II-binding site in mammalian CI-MPR homologs, and in the 14-aa residue segment in the cytoplasmic sequence that has been proposed to mediate G-protein-coupled signal transduction in response to IGF-II binding by the human CI-MPR. Transient expression in COS-7 cells produced a functional CI-MPR which exhibited mannose-6-phosphate-inhibitable binding and mediated endocytosis of recombinant human beta-glucuronidase. Expression of the functional chicken CI-MPR in mice lacking the mammalian CI-MPR should clarify the controversy over the physiological role of the IGF-II-binding site in mammalian CI-MPR homologs. Images Fig. 4 PMID:7568213

  13. Coulomb Forces on DNA Polymers in Charged Fluidic Nanoslits

    NASA Astrophysics Data System (ADS)

    Ren, Yongqiang; Stein, Derek

    2011-02-01

    We investigate the repulsive electrostatic interactions between a DNA polyelectrolyte and the charged walls of a fluidic nanoslit. The scaling of the DNA coil size with the physical slit height revealed electrostatic depletion regions that reduced the effective slit height. These regions exceeded the Debye screening length of the buffer, λDbuffer, and saturated at ≈50nm when λDbuffer reached 10 nm. We explain these results by modeling a semiflexible charged rod near a charged wall and the electrostatic screening by the polyelectrolyte. These results demonstrate the surprisingly long range over which a nanofluidic device can exert field-effect control over confined molecules.

  14. An integrated process for removing the inhibitors of the prehydrolysis liquor of kraft-based dissolving pulp process via cationic polymer treatment.

    PubMed

    Saeed, Abrar; Fatehi, Pedram; Ni, Yonghao

    2012-07-01

    The prehydrolysis liquor (PHL) of the kraft-based dissolving pulp production process contains various amounts of hemicelluloses that can be utilized in the production of value-added products. In this work, a new process was proposed for removing the inhibitors of PHL via employing a flocculation concept to facilitate the utilization of hemicelluloses. Lignin, lignocelluloses/cationic polymer complexes, and possibly ethanol are the main products of this process. This process has been experimentally evaluated with an industrially produced PHL and cationic polymers. The results showed that 16% of lignin, 19% of acetic acid, 43% of furfural, and insignificant amount of sugars were removed from PHL via pretreating PHL with acid and lime at pH 7. Furthermore, by adding 0.4-0.5 mg g(-1) polydiallyldimethylammonium chloride (PDADMAC) or chitosan to the pretreated PHL, 12-14% acetic acid, 40-50% furfural, 5-6% monomeric sugars, and 25% oligomeric sugars were removed from the PHL. The complexes made from these components may be applied as organic fillers in various industries. Alternatively, by adding 1.2 or 1.4 mg g(-1) PDADMAC or chitosan to the pretreated PHL, 30 or 35% of lignin was removed, respectively, which induced complexes that could be used as a fuel source. The composition of the complexes formed was also determined in this work.

  15. Novel cationic vesicle platform derived from vernonia oil for efficient delivery of DNA through plant cuticle membranes.

    PubMed

    Wiesman, Zeev; Dom, Naomi Ben; Sharvit, Efrat; Grinberg, Sarina; Linder, Charles; Heldman, Eli; Zaccai, Michele

    2007-05-31

    Novel cationic amphiphilic compounds were prepared from vernonia oil, a natural epoxidized triglyceride, and studied with respect to vesicle formation, encapsulation of biomaterials such as DNA, and their physical stability and transport through isolated plant cuticle membranes. The amphiphiles studied were a single-headed compound III (a quaternary ammonium head group with two alkyl chains) and a triple-headed compound IV, which is essentially three molecules of compound III bound together through a glycerol moiety. Vesicles of the two amphiphiles, prepared by sonication in water and solutions of uranyl acetate or the herbicide 2,4-D (2,4-dichloropenoxy acetic acid), were examined by TEM, SEM, AFM, and confocal laser systems and had a spherical shape which encapsulated the solutes with diameters between 40 and 110 nm. Vesicles from amphiphile IV could be made large enough to encapsulate a condensed 5.2kb DNA plasmid (pJD328). Vesicles of amphiphile IV were also shown to pass intact across isolated plant cuticle membranes and the rate of delivery of encapsulated radio-labeled 2,4-D through isolated plant cuticle membranes obtained with these vesicles was clearly greater in comparison to liposomes prepared from dipalmitopyl phosphatidylcholine (DPPC) and the control, nonencapsulated 2,4-D. Vesicles from amphiphiles III and IV were found to be more stable than those of liposomes from DPPC. The data indicate the potential of vesicles prepared from the novel amphiphile IV to be a relatively efficient nano-scale delivery system to transport DNA and other bioactive agents through plant biological barriers. This scientific approach may open the way for further development of efficient in vivo plant transformation systems.

  16. A look at the effect of sequence complexity on pressure destabilisation of DNA polymers.

    PubMed

    Rayan, Gamal; Macgregor, Robert B

    2015-04-01

    Our previous studies on the helix-coil transition of double-stranded DNA polymers have demonstrated that molar volume change (ΔV) accompanying the thermally-induced transition can be positive or negative depending on the experimental conditions, that the pressure-induced transition is more cooperative than the heat-induced transition [Rayan and Macgregor, J Phys Chem B2005, 109, 15558-15565], and that the pressure-induced transition does not occur in the absence of water [Rayan and Macgregor, Biophys Chem, 2009, 144, 62-66]. Additionally, we have shown that ΔV values obtained by pressure-dependent techniques differ from those obtained by ambient pressure techniques such as PPC [Rayan et al. J Phys Chem B2009, 113, 1738-1742] thus shedding light on the effects of pressure on DNA polymers. Herein, we examine the effect of sequence complexity, and hence cooperativity on pressure destabilisation of DNA polymers. Working with Clostridium perfringes DNA under conditions such that the estimated ΔV of the helix-coil transition corresponds to -1.78 mL/mol (base pair) at atmospheric pressure, we do not observe the pressure-induced helix-coil transition of this DNA polymer, whereas synthetic copolymers poly[d(A-T)] and poly[d(I-C)] undergo cooperative pressure-induced transitions at similar ΔV values. We hypothesise that the reason for the lack of pressure-induced helix-coil transition of C. perfringens DNA under these experimental conditions lies in its sequence complexity.

  17. Multiple primer extension by DNA polymerase on a novel plastic DNA array coated with a biocompatible polymer.

    PubMed

    Kinoshita, Kenji; Fujimoto, Kentaro; Yakabe, Toru; Saito, Shin; Hamaguchi, Yuzo; Kikuchi, Takayuki; Nonaka, Ken; Murata, Shigenori; Masuda, Daisuke; Takada, Wataru; Funaoka, Sohei; Arai, Susumu; Nakanishi, Hisao; Yokoyama, Kanehisa; Fujiwara, Kazuhiko; Matsubara, Kenichi

    2007-01-01

    DNA microarrays are routinely used to monitor gene expression profiling and single nucleotide polymorphisms (SNPs). However, for practically useful high performance, the detection sensitivity is still not adequate, leaving low expression genes undetected. To resolve this issue, we have developed a new plastic S-BIO PrimeSurface with a biocompatible polymer; its surface chemistry offers an extraordinarily stable thermal property for a lack of pre-activated glass slide surface. The oligonucleotides immobilized on this substrate are robust in boiling water and show no significant loss of hybridization activity during dissociation treatment. This allowed us to hybridize the templates, extend the 3' end of the immobilized DNA primers on the S-Bio by DNA polymerase using deoxynucleotidyl triphosphates (dNTP) as extender units, release the templates by denaturalization and use the same templates for a second round of reactions similar to that of the PCR method. By repeating this cycle, the picomolar concentration range of the template oligonucleotide can be detected as stable signals via the incorporation of labeled dUTP into primers. This method of Multiple Primer EXtension (MPEX) could be further extended as an alternative route for producing DNA microarrays for SNP analyses via simple template preparation such as reverse transcript cDNA or restriction enzyme treatment of genome DNA.

  18. Synthesis of biodegradable polymer-mesoporous silica composite microspheres for DNA prime-protein boost vaccination.

    PubMed

    Ho, Jenny; Huang, Yi; Danquah, Michael K; Wang, Huanting; Forde, Gareth M

    2010-03-18

    DNA vaccines or proteins are capable of inducing specific immunity; however, the translation to the clinic has generally been problematic, primarily due to the reduced magnitude of immune response and poor pharmacokinetics. Herein we demonstrate a composite microsphere formulation, composed of mesoporous silica spheres (MPS) and poly(D,L-lactide-co-glycolide) (PLGA), enables the controlled delivery of a prime-boost vaccine via the encapsulation of plasmid DNA (pDNA) and protein in different compartments. Method with modified dual-concentric-feeding needles attached to a 40 kHz ultrasonic atomizer was studied. These needles focus the flow of two different solutions, which passed through the ultrasonic atomizer. The process synthesis parameters, which are important to the scale-up of composite microspheres, were also studied. These parameters include polymer concentration, feed flowrate, and volumetric ratio of polymer and pDNA-PEI/MPS-BSA. This fabrication technique produced composite microspheres with mean D[4,3] ranging from 6 to 34 microm, depending upon the microsphere preparation. The resultant physical morphology of composite microspheres was largely influenced by the volumetric ratio of pDNA-PEI/MPS-BSA to polymer, and this was due to the precipitation of MPS at the surface of the microspheres. The encapsulation efficiencies were predominantly in the range of 93-98% for pDNA and 46-68% for MPS. In the in vitro studies, the pDNA and protein showed different release kinetics in a 40 day time frame. The dual-concentric-feeding in ultrasonic atomization was shown to have excellent reproducibility. It was concluded that this fabrication technique is an effective method to prepare formulations containing a heterologous prime-boost vaccine in a single delivery system.

  19. Structuring polymers for delivery of DNA-based therapeutics: updated insights.

    PubMed

    Gupta, Madhu; Tiwari, Shailja; Vyas, Suresh

    2012-01-01

    Gene therapy offers greater opportunities for treating numerous incurable diseases from genetic disorders, infections, and cancer. However, development of appropriate delivery systems could be one of the most important factors to overcome numerous biological barriers for delivery of various therapeutic molecules. A number of nonviral polymer-mediated vectors have been developed for DNA delivery and offer the potential to surmount the associated problems of their viral counterpart. To address the concerns associated with safety issues, a wide range of polymeric vectors are available and have been utilized successfully to deliver their therapeutics in vivo. Today's research is mainly focused on the various natural or synthetic polymer-based delivery carriers that protect the DNA molecule from degradation, which offer specific targeting to the desired cells after systemic administration, have transfection efficiencies equivalent to virus-mediated gene delivery, and have long-term gene expression through sustained-release mechanisms. This review explores an updated overview of different nonviral polymeric delivery system for delivery of DNA-based therapeutics. These polymeric carriers have been evaluated in vitro and in vivo and are being utilized in various stages of clinical evaluation. Continued research and understanding of the principles of polymer-based gene delivery systems will enable us to develop new and efficient delivery systems for the delivery of DNA-based therapeutics to achieve the goal of efficacious and specific gene therapy for a vast array of clinical disorders as the therapeutic solutions of tomorrow.

  20. Analysis of self-assembled cationic lipid-DNA gene carrier complexes using flow field-flow fractionation and light scattering.

    PubMed

    Lee, H; Williams, S K; Allison, S D; Anchordoquy, T J

    2001-02-15

    Self-assembled cationic lipid-DNA complexes have shown an ability to facilitate the delivery of heterologous DNA across outer cell membranes and nuclear membranes (transfection) for gene therapy applications. While the size of the complex and the surface charge (which is a function of the lipid-to-DNA mass ratio) are important factors that determine transfection efficiency, lipid-DNA complex preparations are heterogeneous with respect to particle size and net charge. This heterogeneity contributes to the low transfection efficiency and instability of cationic lipid-DNA vectors. Efforts to define structure-activity relations and stable vector populations have been hampered by the lack of analytical techniques that can separate this type of particle and analyze both the physical characteristics and biological activity of the resulting fractions. In this study, we investigated the feasibility of flow field-flow fractionation (flow FFF) to separate cationic lipid-DNA complexes prepared at various lipid-DNA ratios. The compatibility of the lipid-DNA particles with several combinations of FFF carrier liquids and channel membranes was assessed. In addition, changes in elution profiles (or size distributions) were monitored as a function of time using on-line ultraviolet, multiangle light scattering, and refractive index detectors. Multiangle light scattering detected the formation of particle aggregates during storage, which were not observed with the other detectors. In comparison to population-averaged techniques, such as photon correlation spectroscopy, flow FFF allows a detailed examination of subtle changes in the physical properties of nonviral vectors and provides a basis for the definition of structure-activity relations for this novel class of pharmaceutical agents.

  1. Mucosal application of cationic poly(D,L-lactide-co-glycolide) microparticles as carriers of DNA vaccine and adjuvants to protect chickens against infectious bursal disease.

    PubMed

    Negash, Tamiru; Liman, Martin; Rautenschlein, Silke

    2013-08-12

    Infectious bursal disease virus (IBDV) is an immunosuppressive virus of chickens. The virus protein (VP) 2 induces neutralizing antibodies, which protect chickens against the disease. The aim of this study was to develop a cationic poly(d,l-lactide-co-glycolide) (PLGA) microparticle (MP) based IBDV-VP2 DNA vaccine (MP-IBDV-DNA) for chickens to be delivered orally and by eye drop route. The tested IBDV-VP2 DNA vaccines were immunogenic for specific-pathogen-free chickens and induced an antibody response after intramuscular application. Co-inoculation with a plasmid encoding chicken IL-2 (chIL-2) or CpG-ODN did not significantly improve protection against IBDV challenge. However, the application of a MP-IBDV-DNA vaccine alone or in combination with a delayed oral and eye drop application of cationic MP loaded with CpG-ODN or chIL-2 improved protection against challenge. The MP-IBDV-DNA-vaccinated chickens showed less pathological and histopathological bursal lesions, a reduced IBDV antigen load as well as T-cell influx into the bursa of Fabricius (BF) compared to the other groups (p<0.05). The addition of chIL-2 loaded MP improved challenge virus clearance from the BF as demonstrated by lower neutralizing antibody titers and reduced IL-4 and IFN-α mRNA expression in the bursa at 7 days postchallenge compared to the other challenged groups. Overall, the efficacy of the IBDV-DNA vaccine was improved by adsorption of the DNA vaccine onto cationic PLGA-MP, which also allowed mucosal application of the DNA vaccine.

  2. DNA-based vaccination against hepatitis B virus using dissolving microneedle arrays adjuvanted by cationic liposomes and CpG ODN.

    PubMed

    Qiu, Yuqin; Guo, Lei; Zhang, Suohui; Xu, Bai; Gao, Yunhua; Hu, Yan; Hou, Jun; Bai, Bingke; Shen, Honghui; Mao, Panyong

    2016-09-01

    DNA vaccines are simple to produce and can generate strong cellular and humoral immune response, making them attractive vaccine candidates. However, a major shortcoming of DNA vaccines is their poor immunogenicity when administered intramuscularly. Transcutaneous immunization (TCI) via microneedles is a promising alternative delivery route to enhance the vaccination efficacy. A novel dissolving microneedle array (DMA)-based TCI system loaded with cationic liposomes encapsulated with hepatitis B DNA vaccine and adjuvant CpG ODN was developed and characterized. The pGFP expression in mouse skin using DMA was imaged over time. In vivo immunity tests in mice were performed to observe the capability of DMA to induce immune response after delivery of DNA. The results showed that pGFP could be delivered into skin by DMA and expressed in skin. Further, the amount of expressed GFP was likely to peak at day 4. The immunity tests showed that the DMA-based DNA vaccination could induce effective immune response. CpG ODN significantly improved the immune response and achieved the shift of immune type from predominate Th2 type to a balance Th1/Th2 type. The cationic liposomes could further improve the immunogenicity of DNA vaccine. In conclusion, the novel DMA-based TCI system can effectively deliver hepatitis B DNA vaccine into skin, inducing effective immune response and change the immune type by adjuvant CpG ODN.

  3. Interaction between cationic surfactant of 1-methyl-3-tetradecylimidazolium bromide and anionic polymer of sodium polystyrene sulfonate

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Kang, Wenpei; Sun, Dezhi; Liu, Jie; Wei, Xilian

    2013-08-01

    The interaction between long-chain imidazolium ionic liquid (C14mimBr) and anionic polyelectrolyte of sodium polystyrene sulfonate (NaPSS) has been studied using surface tension, isothermal titration microcalorimetry (ITC), dynamic light scatting (DLS) and conductance methods. The result shows that the surface tension plots have a pronounced hump in the surface tension at surfactant concentrations below the critical micelle concentration (cmc) of the surfactant. The cooperative adsorption of surfactant and polymer on the surface (PSS) and the formation of polymer/surfactant aggregate in bulk solution (PSM) provide a rational explanation about it. The formation of surfactant/polymer complexes is affected by the concentration of the surfactant or NaPSS, which is also ascertained by ITC and DLS measurements. Further, the thermodynamic parameters are derived from calorimetric titration and conductance curves, and the effects of polymer concentration and temperature on the parameters are evaluated in detail.

  4. Membrane perturbation activity of cationic phenylene ethynylene oligomers and polymers: selectivity against model bacterial and mammalian membranes.

    PubMed

    Wang, Ying; Tang, Yanli; Zhou, Zhijun; Ji, Eunkyung; Lopez, Gabriel P; Chi, Eva Y; Schanze, Kirk S; Whitten, David G

    2010-08-03

    Poly(phenylene ethyneylene) (PPE)-based cationic conjugated polyelectrolytes (CPEs) and cationic phenylene ethynylene oligomers (OPEs) exhibit broad-spectrum antimicrobial activity, and their main target is believed to be the cell membrane. To understand better how these antimicrobial molecules interact with membranes, a series of PPE-based CPEs and OPEs with different side chains were studied. Large unilamellar vesicles with lipid compositions mimicking those of mammalian or bacterial membranes were used as model membranes. Among the CPEs and OPEs tested, the anionic CPE, PPE-SO(3)(2-) and the smallest cationic OPE-1 are inactive against all vesicles. Other cationic CPEs and OPEs show significant membrane perturbation ability against bacterial membrane mimics but are inactive against a mammalian cell membrane mimic with the exception of PPE-DABCO and two end-only-functionalized OPEs, which also disrupted a mammalian cell membrane mimic. The results suggest that the phospholipid composition of vesicles dominates the interaction of CPE and OPE with lipid membranes.

  5. Cation-Dependent Stabilization of Electrogenerated Naphthalene Diimide Dianions in Porous Polymer Thin Films and Their Application to Electrical Energy Storage.

    PubMed

    DeBlase, Catherine R; Hernández-Burgos, Kenneth; Rotter, Julian M; Fortman, David J; Abreu, Dieric dos S; Timm, Ronaldo A; Diógenes, Izaura C N; Kubota, Lauro T; Abruña, Héctor D; Dichtel, William R

    2015-11-02

    Porous polymer networks (PPNs) are attractive materials for capacitive energy storage because they offer high surface areas for increased double-layer capacitance, open structures for rapid ion transport, and redox-active moieties that enable faradaic (pseudocapacitive) energy storage. Here we demonstrate a new attractive feature of PPNs--the ability of their reduced forms (radical anions and dianions) to interact with small radii cations through synergistic interactions arising from densely packed redox-active groups, only when prepared as thin films. When naphthalene diimides (NDIs) are incorporated into PPN films, the carbonyl groups of adjacent, electrochemically generated, NDI radical anions and dianions bind strongly to K(+), Li(+), and Mg(2+), shifting the formal potentials of NDI's second reduction by 120 and 460 mV for K(+) and Li(+)-based electrolytes, respectively. In the case of Mg(2+), NDI's two redox waves coalesce into a single two-electron process with shifts of 240 and 710 mV, for the first and second reductions, respectively, increasing the energy density by over 20 % without changing the polymer backbone. In contrast, the formal reduction potentials of NDI derivatives in solution are identical for each electrolyte, and this effect has not been reported for NDI previously. This study illustrates the profound influence of the solid-state structure of a polymer on its electrochemical response, which does not simply reflect the solution-phase redox behavior of its monomers.

  6. Phase behavior and molecular thermodynamics of coacervation in oppositely charged polyelectrolyte/surfactant systems: a cationic polymer JR 400 and anionic surfactant SDS mixture.

    PubMed

    Li, Dongcui; Kelkar, Manish S; Wagner, Norman J

    2012-07-17

    Coacervation in mixtures of polyelectrolytes and surfactants with opposite charge is common in nature and is also technologically important to consumer health care products. To understand the complexation behavior of these systems better, we combine multiple experimental techniques to systematically study the polymer/surfactant binding interactions and the phase behavior of anionic sodium dodecyl sulfate (SDS) surfactant in cationic JR 400 polymer aqueous solutions. The phase-behavior study resolves a discrepancy in the literature by identifying a metastable phase between the differing redissolution phase boundaries reported in the literature for the surfactant-rich regime. Isothermal titration calorimetry analyzed within the framework of the simple Satake-Yang model identifies binding parameters for the surfactant-lean phase, whereas a calculation for polymer-bound micelles coexisting with free micelles is analyzed in the surfactant-rich redissolution regime. This analysis provides a preliminary understanding of the interactions governing the observed phase behavior. The resulting thermodynamic properties, including binding constants and the molar Gibbs free energies, enthalpies, and entropies, identify the relative importance of both hydrophobic and electrostatic interactions and provide a first approximation for the corresponding microstructures in the different phases. Our study also addresses the stability and metastability of oppositely charged polyelectrolytes and surfactant mixtures.

  7. The intracellular delivery of plasmid DNA using cationic reducible carbon nanotube - Disulfide conjugates of polyethylenimine.

    PubMed

    Nia, Azadeh Hashem; Eshghi, Hossein; Abnous, Kalil; Ramezani, Mohammad

    2017-03-30

    A series of polyethylenimine conjugates of single-walled carbon nanotube (PEI-SWNT) containing bioreducible disulfide bonds was synthesized and evaluated for their transfection efficiency. Different molecular weights of polyethylenimine (PEI) were thiolated with different mole ratio of 2-iminothiolane (2-IT). Single-walled carbon nanotube (SWNT) was first carboxylated and then three different cysteine-functionalized SWNT formulations were synthesized via introduced linkers: a) carbonyl group b) spermidine c) 1,8-diamino 3,6-dioxo octane. The final nanocarriers were fabricated upon conjugation of thiolated PEIs and thiolated SWNT via oxidative disulfide bond formation. All PEI-disulfide-SWNT conjugates were capable of DNA condensation and showed improved viability and transfection efficiency compared to PEI itself. Transfection efficiencies were up to 1500 times greater than PEI 25kDa (C/P=0.8). The results of this study suggest that the synthesized formulations based on SWNT-CO-Cysteine and PEI 1.8kDa were the most efficient carriers. Considering the decreased cytotoxicity and higher transfection levels, the conjugates bear the potential for effective delivery of genetic materials.

  8. Degradable Polymer-Coated Gold Nanoparticles for Co-Delivery of DNA and siRNA

    PubMed Central

    Bishop, Corey J.; Tzeng, Stephany Y.; Green, Jordan J.

    2014-01-01

    Gold nanoparticles have utility for in vitro, ex vivo, and in vivo imaging applications as well as for serving as a scaffold for therapeutic delivery and theranostic applications. Starting with gold nanoparticles as a core, layer-by-layer degradable polymer coatings enable co-delivery of both DNA and short interfering RNA simultaneously. To engineer release kinetics, polymers which degrade through two different mechanisms can be utilized to construct hybrid inorganic/polymeric particles. During fabrication of the nanoparticles, the zeta potential reverses upon the addition of each oppositely charged polyelectrolyte layer and the final nanoparticle size reaches approximately 200 nm in diameter. When the hybrid gold/polymer/nucleic acid nanoparticles are added to human primary brain cancer cells in vitro, they are internalizable by cells and reach the cytoplasm and nucleus as visualized by transmission electron microscopy and observed through exogenous gene expression. This nanoparticle delivery leads to both exogenous DNA expression and siRNA-mediated knockdown, with the knockdown efficacy superior to that of Lipofectamine® 2000, a commercially available transfection reagent. These gold/polymer/nucleic acid hybrid nanoparticles are an enabling theranostic platform technology capable of delivering combinations of genetic therapies to human cells. PMID:25246314

  9. Degradable polymer-coated gold nanoparticles for co-delivery of DNA and siRNA.

    PubMed

    Bishop, Corey J; Tzeng, Stephany Y; Green, Jordan J

    2015-01-01

    Gold nanoparticles have utility for in vitro, ex vivo and in vivo imaging applications as well as for serving as a scaffold for therapeutic delivery and theranostic applications. Starting with gold nanoparticles as a core, layer-by-layer degradable polymer coatings enable the simultaneous co-delivery of DNA and short interfering RNA (siRNA). To engineer release kinetics, polymers which degrade through two different mechanisms can be utilized to construct hybrid inorganic/polymeric particles. During fabrication of the nanoparticles, the zeta potential reverses upon the addition of each oppositely charged polyelectrolyte layer and the final nanoparticle size reaches approximately 200nm in diameter. When the hybrid gold/polymer/nucleic acid nanoparticles are added to human primary brain cancer cells in vitro, they are internalizable by cells and reach the cytoplasm and nucleus as visualized by transmission electron microscopy and observed through exogenous gene expression. This nanoparticle delivery leads to both exogenous DNA expression and siRNA-mediated knockdown, with the knockdown efficacy superior to that of Lipofectamine® 2000, a commercially available transfection reagent. These gold/polymer/nucleic acid hybrid nanoparticles are an enabling theranostic platform technology capable of delivering combinations of genetic therapies to human cells.

  10. Controlled Release from Recombinant Polymers

    PubMed Central

    Price, Robert; Poursaid, Azadeh; Ghandehari, Hamidreza

    2014-01-01

    Recombinant polymers provide a high degree of molecular definition for correlating structure with function in controlled release. The wide array of amino acids available as building blocks for these materials lend many advantages including biorecognition, biodegradability, potential biocompatibility, and control over mechanical properties among other attributes. Genetic engineering and DNA manipulation techniques enable the optimization of structure for precise control over spatial and temporal release. Unlike the majority of chemical synthetic strategies used, recombinant DNA technology has allowed for the production of monodisperse polymers with specifically defined sequences. Several classes of recombinant polymers have been used for controlled drug delivery. These include, but are not limited to, elastin-like, silk-like, and silk-elastinlike proteins, as well as emerging cationic polymers for gene delivery. In this article, progress and prospects of recombinant polymers used in controlled release will be reviewed. PMID:24956486

  11. Controlled release from recombinant polymers.

    PubMed

    Price, Robert; Poursaid, Azadeh; Ghandehari, Hamidreza

    2014-09-28

    Recombinant polymers provide a high degree of molecular definition for correlating structure with function in controlled release. The wide array of amino acids available as building blocks for these materials lend many advantages including biorecognition, biodegradability, potential biocompatibility, and control over mechanical properties among other attributes. Genetic engineering and DNA manipulation techniques enable the optimization of structure for precise control over spatial and temporal release. Unlike the majority of chemical synthetic strategies used, recombinant DNA technology has allowed for the production of monodisperse polymers with specifically defined sequences. Several classes of recombinant polymers have been used for controlled drug delivery. These include, but are not limited to, elastin-like, silk-like, and silk-elastinlike proteins, as well as emerging cationic polymers for gene delivery. In this article, progress and prospects of recombinant polymers used in controlled release will be reviewed.

  12. Targeting peptide nucleic acid (PNA) oligomers to mitochondria within cells by conjugation to lipophilic cations: implications for mitochondrial DNA replication, expression and disease

    PubMed Central

    Muratovska, Aleksandra; Lightowlers, Robert N.; Taylor, Robert W.; Turnbull, Douglass M.; Smith, Robin A. J.; Wilce, Jacqueline A.; Martin, Stephen W.; Murphy, Michael P.

    2001-01-01

    The selective manipulation of mitochondrial DNA (mtDNA) replication and expression within mammalian cells has proven difficult. One promising approach is to use peptide nucleic acid (PNA) oligomers, nucleic acid analogues that bind selectively to complementary DNA or RNA sequences inhibiting replication and translation. However, the potential of PNAs is restricted by the difficulties of delivering them to mitochondria within cells. To overcome this problem we conjugated a PNA 11mer to a lipophilic phosphonium cation. Such cations are taken up by mitochondria through the lipid bilayer driven by the membrane potential across the inner membrane. As anticipated, phosphonium–PNA (ph–PNA) conjugates of 3.4–4 kDa were imported into both isolated mitochondria and mitochondria within human cells in culture. This was confirmed by using an ion-selective electrode to measure uptake of the ph–PNA conjugates; by cell fractionation in conjunction with immunoblotting; by confocal microscopy; by immunogold-electron microscopy; and by crosslinking ph–PNA conjugates to mitochondrial matrix proteins. In all cases dissipating the mitochondrial membrane potential with an uncoupler prevented ph–PNA uptake. The ph–PNA conjugate selectively inhibited the in vitro replication of DNA containing the A8344G point mutation that causes the human mtDNA disease ‘myoclonic epilepsy and ragged red fibres’ (MERRF) but not the wild-type sequence that differs at a single nucleotide position. Therefore these modified PNA oligomers retain their selective binding to DNA and the lipophilic cation delivers them to mitochondria within cells. When MERRF cells were incubated with the ph–PNA conjugate the ratio of MERRF to wild-type mtDNA was unaffected, even though the ph–PNA content of the mitochondria was sufficient to inhibit MERRF mtDNA replication in a cell-free system. This unexpected finding suggests that nucleic acid derivatives cannot bind their complementary sequences during mtDNA

  13. Theory of DNA electrophoresis in physical gels and entangled polymer solutions

    NASA Astrophysics Data System (ADS)

    Duke, Thomas; Viovy, Jean Louis

    1994-03-01

    A scaling theory is presented for the electrophoretic mobility of DNA in sieving media that form dynamically evolving meshworks, such as physical gels and solutions of entangled polymers. In such media, the topological constraints on the DNA's motion are perpetually changing as cross links break and rejoin or as the polymers diffuse. It is shown that if the rate of constraint release falls within a certain range (which depends on the field strength), fractionation can be extended to higher molecular weights than would be feasible using a permanent gel of equivalent pore size. This improvement is a consequence of the disruptive effect that constraint release has on the mechanism of molecular orientation. Numerical simulations support the predictions of the theory. The possibility of realizing such a system in practice, with the aim of improving on current electrophoresis methods, is commented upon. It is suggested that semidilute polymer solutions may be a versatile medium for the rapid separation of long single-stranded DNA molecules, and the particular quality of solution required is identified.

  14. Surface functionalized SiO2 nanoparticles with cationic polymers via the combination of mussel inspired chemistry and surface initiated atom transfer radical polymerization: Characterization and enhanced removal of organic dye.

    PubMed

    Huang, Qiang; Liu, Meiying; Mao, Liucheng; Xu, Dazhuang; Zeng, Guangjian; Huang, Hongye; Jiang, Ruming; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen

    2017-03-28

    Monodispersed SiO2 particles functionalized with cationic polymers poly-((3-acrylamidopropyl)trimethylammonium chloride) (PAPTCl) were prepared using mussel inspired surface modification strategy and surface initiated atom transfer radical polymerization (SI-ATRP). Fourier transform infrared spectroscopy, transmission electron microscope, thermogravimetric analysis, X-ray photoelectron spectroscopy, and zeta potential were employed to characterize these SiO2 samples. The adsorption performance of the functionalized SiO2 (donated as SiO2-PDA-PAPTCl) towards anionic organic dye Congo red (CR) was investigated to evaluate their potential environmental applications. We demonstrated that the surface of SiO2 particles can be successfully functionalized with cationic PAPTCl. The adsorption capability of as-prepared SiO2 was found to increases from 28.70 and 106.65mg/g after surface grafted with cationic polymers. The significant enhancement in the adsorption capability of SiO2-PDA-PAPTCl is mainly attributed to the introduction of cationic polymers. More importantly, this strategy is expected to be promising for fabrication of many other functional polymer nanocomposites for environmental applications due to the universality of mussel inspired chemistry and well designability and good monomer adaptability of SI-ATRP.

  15. pH triggered superior selective adsorption and separation of both cationic and anionic dyes and photocatalytic activity on a fully exfoliated titanate layer-natural polymer based nanocomposite.

    PubMed

    Sarkar, Amit Kumar; Saha, Arka; Panda, Asit Baran; Pal, Sagar

    2015-11-18

    A fully exfoliated titanate layer-natural polymer amylopectin based nanocomposite, with pH responsive superior selective adsorption, separation of both cationic (MB: 599 mg g(-1) at pH 9) and anionic (MO: 558 mg g(-1) at pH 3) dyes and photodegradation properties, has been realized through simultaneous in situ layered titanate formation, exfoliation and polymerization.

  16. Comparative DNA isolation behaviours of silica and polymer based sorbents in batch fashion: monodisperse silica microspheres with bimodal pore size distribution as a new sorbent for DNA isolation.

    PubMed

    Günal, Gülçin; Kip, Çiğdem; Eda Öğüt, S; İlhan, Hasan; Kibar, Güneş; Tuncel, Ali

    2017-03-22

    Monodisperse silica microspheres with bimodal pore-size distribution were proposed as a high performance sorbent for DNA isolation in batch fashion under equilibrium conditions. The proposed sorbent including both macroporous and mesoporous compartments was synthesized 5.1 μm in-size, by a "staged shape templated hydrolysis and condensation method". Hydrophilic polymer based sorbents were also obtained in the form of monodisperse-macroporous microspheres ca 5.5 μm in size, with different functionalities, by a developed "multi-stage microsuspension copolymerization" technique. The batch DNA isolation performance of proposed material was comparatively investigated using polymer based sorbents with similar morphologies. Among all sorbents tried, the best DNA isolation performance was achieved with the monodisperse silica microspheres with bimodal pore size distribution. The collocation of interconnected mesoporous and macroporous compartments within the monodisperse silica microspheres provided a high surface area and reduced the intraparticular mass transfer resistance and made easier both the adsorption and desorption of DNA. Among the polymer based sorbents, higher DNA isolation yields were achieved with the monodisperse-macroporous polymer microspheres carrying trimethoxysilyl and quaternary ammonium functionalities. However, batch DNA isolation performances of polymer based sorbents were significantly lower with respect to the silica microspheres.

  17. Rapid renaturation of complementary DNA strands mediated by cationic detergents: a role for high-probability binding domains in enhancing the kinetics of molecular assembly processes.

    PubMed Central

    Pontius, B W; Berg, P

    1991-01-01

    The rate of renaturation for complementary DNA strands can be enhanced greater than 10(4)-fold by the addition of simple cationic detergents, and the reaction is qualitatively and quantitatively very similar to that found with purified heterogeneous nuclear ribonucleoprotein A1 protein. Under optimal conditions, renaturation rates are greater than 2000-fold faster than reactions run in 1 M NaCl at 68 degrees C. The reaction is second-order with respect to DNA concentration, and reaction rates approach or equal the rate with which complementary strands are expected to encounter each other in solution. Renaturation can even be observed well above the expected melting temperature of the duplex DNA, demonstrating that some cationic detergents have DNA double-helix-stabilizing properties. The reaction is also extremely rapid in the presence of up to a 10(6)-fold excess of noncomplementary sequences, establishing that renaturation is specific and relatively independent of heterologous DNA. This finding also implies that up to several thousand potential target sequences can be sampled per strand per second. Such reagents may be useful for procedures that require rapid nucleic acid renaturation, and these results suggest ways to identify and design other compounds that increase the kinetics of association reactions. Moreover, this work provides further support for a model relating the existence of flexible, weakly interacting, repeating domains to their function in rapid molecular assembly processes in vitro and in vivo. PMID:1896475

  18. Self-Assembled Multivalent (SAMul) Polyanion Binding - Impact of Hydrophobic Modifications in the Micellar Core on DNA and Heparin Binding at the Peripheral Cationic Ligands.

    PubMed

    Albanyan, Buthaina; Laurini, Erik; Posocco, Paola; Pricl, Sabrina; Smith, David K

    2017-03-20

    This paper reports a small family of cationic surfactants designed to bind polyanions such as DNA and heparin. Each molecule has the same hydrophilic cationic ligand, and a hydrophobic aliphatic group with eighteen carbon atoms with either one, two or three alkene groups within the hydrophobic chain (C18-1, C18-2 and C18-3). Dynamic light scattering indicates that more alkenes lead to geometric distortion, giving rise to larger self-assembled multivalent (SAMul) nanostructures. Mallard Blue and Ethidium Bromide dye displacement assays demonstrate that heparin and DNA have markedly different binding preferences, with heparin binding most effectively to C18-1, and DNA to C18-3, even though the molecular structural differences of these SAMul systems are buried in the hydrophobic core. Multiscale modelling suggests that adaptive heparin maximises enthalpically-favourable interactions with C18-1, while shape-persistent DNA forms a similar number of interactions with each ligand display, but with slightly less entropic cost for binding to C18-3 - fundamental thermodynamic differences in SAMul binding of heparin or DNA. This study therefore provides unique insight into electrostatic molecular recognition between highly charged nanoscale surfaces in biologically-relevant systems.

  19. Effect of metallic cations on the efficiency of DNA amplification. Implications for nucleic acid replication during early stages of life

    NASA Astrophysics Data System (ADS)

    Arribas, María; de Vicente, Aránzazu; Arias, Armando; Lázaro, Ester

    2005-04-01

    The process of catalysis of biochemical reactions has been essential since the first organic molecules appeared on Earth. As the complexity of the ensemble of primitive biomolecules was very low, primitive catalysts had necessarily to be very simple molecules or ions. The evolution of catalysts had to be in parallel with the evolution of the molecular species reacting. An example of this parallel evolution is nucleic acid polymerization. Synthesis of primitive short oligonucleotides could have been catalysed by metal ions either in solution or on the surface of minerals such as montmorillonite clays. Some oligonucleotides could start to function as templates for the synthesis of complementary copies and there is experimental evidence supporting the role also played by metal ions in this process. In later stages of evolution, a group of enzymatic proteins, nucleic acid polymerases, has been selected to catalyse nucleic acid replication. The presence of Mg2+ in the active centre of these enzymes suggests that evolution has preserved some of the primitive catalysts, including them as cofactors of more complex molecules. However, the reasons why Mg2+ was selected among other ions that possibly were present in primitive environments are unknown. In this paper we try to approach this question by analysing the amplification efficiency of the polymerase chain reaction of a DNA fragment in the presence of different metal ions. In some cases the conditions of the reaction have been displaced from optimum (by the presence of nucleotide imbalances and a suboptimal Mg2+concentration). The results obtained permit one to draw interesting conclusions about how some metallic cations can help replication to proceed in conditions of limited substrate availability, a circumstance that could have been frequent at prebiotic stages, when nucleic acid synthesis was dependent on the physico-chemical conditions of the environment.

  20. Physical tuning of cellulose-polymer interactions utilizing cationic block copolymers based on PCL and quaternized PDMAEMA.

    PubMed

    Utsel, Simon; Bruce, Carl; Pettersson, Torbjörn; Fogelström, Linda; Carlmark, Anna; Malmström, Eva; Wågberg, Lars

    2012-12-01

    In this work, the objective was to synthesize and evaluate the properties of a compatibilizer based on poly(ε-caprolactone) aimed at tuning the surface properties of cellulose fibers used in fiber-reinforced biocomposites. The compatibilizer is an amphiphilic block copolymer consisting of two different blocks which have different functions. One block is cationic, quaternized poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and can therefore electrostatically attach to anionic reinforcing materials such as cellulose-based fibers/fibrils under mild conditions in water. The other block consists of poly(ε-caprolactone) (PCL) which can decrease the surface energy of a cellulose surface and also has the ability to form physical entanglements with a PCL surface thereby improving the interfacial adhesion. Atom Transfer Radical Polymerization (ATRP) and Ring-Opening Polymerization (ROP) were used to synthesize three block copolymers with the same length of the cationic PDMAEMA block but with different lengths of the PCL blocks. The block copolymers form cationic micelles in water which can adsorb to anionic surfaces such as silicon oxide and cellulose-model surfaces. After heat treatment, the contact angles of water on the treated surfaces increased significantly, and contact angles close to those of pure PCL were obtained for the block copolymers with longer PCL blocks. AFM force measurements showed a clear entangling behavior between the block copolymers and a PCL surface at about 60 °C, which is important for the formation of an adhesive interface in the final biocomposites. This demonstrates that this type of amphiphilic block copolymer can be used to improve interactions in biocomposites between anionic reinforcing materials such as cellulose-based fibers/fibrils and less polar matrices such as PCL.

  1. Poly-Cross-Linked PEI Through Aromatically Conjugated Imine Linkages as a New Class of pH-Responsive Nucleic Acids Packing Cationic Polymers

    PubMed Central

    Chen, Shun; Jin, Tuo

    2016-01-01

    Cationic polyimines polymerized through aromatically conjugated bis-imine linkages and intra-molecular cross-linking were found to be a new class of effective transfection materials for their flexibility in structural optimization, responsiveness to intracellular environment, the ability to facilitate endosome escape and cytosol release of the nucleic acids, as well as self-metabolism. When three phthalaldehydes of different substitution positions were used to polymerize highly branched low-molecular weight polyethylenimine (PEI 1.8K), the product through ortho-phthalimines (named PPOP) showed significantly higher transfection activity than its two tere- and iso-analogs (named PPTP and PPIP). Physicochemical characterization confirmed the similarity of three polyimines in pH-responded degradability, buffer capacity, as well as the size and Zeta potential of the polyplexes formed from the polymers. A mechanistic speculation may be that the ortho-positioned bis-imine linkage of PPOP may only lead to the straight trans-configuration due to steric hindrance, resulting in larger loops of intra-polymer cross-linking and more flexible backbone. PMID:26869931

  2. Amino-functionalized alkaline clay with cationic star-shaped polymer as adsorbents for removal of Cr(VI) in aqueous solution

    NASA Astrophysics Data System (ADS)

    Pan, Yuanfeng; Cai, Pingxiong; Farmahini-Farahani, Madjid; Li, Yiduo; Hou, Xiaobang; Xiao, Huining

    2016-11-01

    Pentaerythritol (PER) was esterified with 2-bromoisobutyryl bromide to synthesize a four-arm initiator 4Br-PER for atom transfer radical polymerization (ATRP). Star-shaped copolymers (P(AM-co-DMAEMA)4, CSP) were prepared via ATRP using dimethyl aminoethyl methacrylate (DMAEMA) and acrylamide (AM) as comonomers, while Br-PER and CuBr/2,2‧-bipyridine (BPY) as the initiator and the catalyst, respectively. The resulting four-arm initiator and star-shaped polymer (CSP) were characterized with FT-IR, 1H NMR and Ubbelohde viscometry. Alkaline clay (AC) was immobilized with CSPs to yield amino groups, and the cationic star polymer-immobilized alkaline clay (CSP-AC) was applied to remove Cr(VI) from the aqueous solution in batch experiments. Various influencing factors, including pH, contact time and immobilization amount of CSP on adsorption capacity of CSP-AC for Cr(VI) were also investigated. The results demonstrated that Cr(VI) adsorption was highly pH dependent. The optimized pH value was 4.0. The adsorption isotherms of the adsorbent fit the Langmuir model well, with the maximum adsorption capacity of 137.9 mg/g at 30 °C. The material should be a promising adsorbent for Cr(VI) removal, with the advantages of high adsorption capacity.

  3. Synthesis and application of hypercrosslinked polymers with weak cation-exchange character for the selective extraction of basic pharmaceuticals from complex environmental water samples.

    PubMed

    Bratkowska, D; Marcé, R M; Cormack, P A G; Sherrington, D C; Borrull, F; Fontanals, N

    2010-03-05

    The synthesis of high specific surface area sorbents (HXLPP-WCX) in the form of hypercrosslinked polymer microspheres with narrow particle size distributions, average particle diameters around 6 microm, and weak cation-exchange (WCX) character, is described. The WCX character arises from carboxylic acid moieties in the polymers, derived from the comonomer methacrylic acid. A novel HXLPP-WCX sorbent with an attractive set of chemical and physical properties was then used in an off-line solid-phase extraction (SPE) protocol for the selective extraction of a group of basic compounds from complex environmental samples, a priority being the clean separation of the basic compounds of interest from acidic compounds and interferences. The separation power of the new sorbent for basic pharmaceuticals was compared to two commercially available, mixed-mode sorbents, namely Oasis WCX and Strata-X-CW. Under identical experimental conditions, HXLPP-WCX was found to deliver both higher capacity and better selectivity in SPE than either of the two commercially available materials. In an optimised SPE protocol, the HXLPP-WCX sorbent gave rise to quantitative and selective extractions of low microg l(-1) levels of basic pharmaceuticals present in 500 ml of river water and 250 ml of effluent waste water.

  4. Synthesis of a new conjugated polymer for DNA alkylation and gene regulation.

    PubMed

    Nie, Chenyao; Zhu, Chunlei; Feng, Liheng; Lv, Fengting; Liu, Libing; Wang, Shu

    2013-06-12

    A new polyfluorene derivative containing pendent alkylating chlorambucil (PFP-Cbl) was synthesized and characterized. Under direct incubation with DNA in vitro, PFP-Cbl could undergo an efficient DNA alkylating reaction and induce DNA cross-linking. In vitro transcription and translation experiment exhibited that the PFP-Cbl significantly down-regulated the gene expression of luciferase reporter plasmid. The down-regulation of gene expression was also verified through the transfection experiment of p-EGFP plasmid, which showed decreased green fluorescent protein (GFP) in cells. Meanwhile, the self-luminous property of PFP-Cbl could make it able to trace the internalized PFP-Cbl and plasmid complexes resulted from cross-linking in cells by fluorescent microscopy. Combining the features of alkylating function, multivalent binding sites, and fluorescent characteristics, PFP-Cbl provides a new insight in the area of gene regulation and extends the new applications of conjugated polymers (CPs).

  5. Contribution of hydrophobic/hydrophilic modification on cationic chains of poly(ε-caprolactone)-graft-poly(dimethylamino ethylmethacrylate) amphiphilic co-polymer in gene delivery.

    PubMed

    Han, Shangcong; Wan, Haiying; Lin, Daoshu; Guo, Shutao; Dong, Hongxu; Zhang, Jianhua; Deng, Liandong; Liu, Ruming; Tang, Hua; Dong, Anjie

    2014-02-01

    Nanoparticles (NPs) assembled from amphiphilic polycations have been certified as potential carriers for gene delivery. Structural modification of polycation moieties may be an efficient route to further enhance gene delivery efficiency. In this study two electroneutral monomers with different hydrophobicities, 2-hydroxyethyl methacrylate (HEMA) and 2-hydroxyethyl acrylate (HEA), were incorporated into the cationic poly(dimethylamino ethyl methacrylate) (PDMAEMA) side-chains of amphiphilic poly(ε-caprolactone)-graft-poly(dimethylamino ethylmethacrylate) (PCD) by random co-polymerization, to obtain poly(ε-caprolactone)-graft-poly(dimethylamino ethyl methacrylate-co-2-hydroxyethyl methacrylate) (PCD-HEMA) and poly(ε-caprolactone)-graft-poly(dimethylamino ethyl methacrylate-co-2-hydroxyethyl acrylate) (PCD-HEA). Minimal HEA or HEMA moieties in PDMAEMA do not lead to statistically significant changes in particle size, zeta potential, DNA condensation properties and buffering capacity of the naked NPs. However, the incorporation of HEMA and HEA lead to reductions and increases, respectively, in the surface hydrophilicity of the naked NPs and NPs/DNA complexes, which was confirmed by water contact angle assay. These simple modifications of PDMAEMA with HEA and HEMA moieties significantly affect the gene transfection efficiency on HeLa cells in vitro: PCD-HEMA NP/DNA complexes show a much higher transfection efficiency than PCD NPs/DNA complexes, while PCD-HEA NPs/DNA complexes show a lower transfection efficiency than PCD NP/DNA complexes. Fluorescence activated cell sorter and confocal laser scanning microscope results indicate that the incorporation of hydrophobic HEMA moieties facilitates an enhancement in both cellular uptake and endosomal/lysosomal escape, leading to a higher transfection efficiency. Moreover, the process of endosomal/lysosomal escape confirmed in our research that PCD and its derivatives do not just rely on the proton sponge mechanism, but also

  6. The effect of ambient humidity on the electrical response of ion-migration-based polymer sensor with various cations

    NASA Astrophysics Data System (ADS)

    Zhu, Zicai; Horiuchi, Tetsuya; Kruusamäe, Karl; Chang, Longfei; Asaka, Kinji

    2016-05-01

    A water-based ionic polymer-metal composite (IPMC) sensor, induced by ion migration, is a promising alternative to natural sensing systems. Focusing on water effects, this paper investigated the voltage responses of Au-Nafion IPMC at multiple fixed levels of ambient humidity under a small step bending deformation. The voltage includes two processes: a fast rising and a subsequent slow decay. As the relative ambient humidity decreases, the peak voltage first increases and then decreases because the mass storage capacity of IPMC, related to the compressed state of a polymer network, reaches the optimum at a moderate water content (30 ˜ 90%RH), whereas the proportion of decay related to hydration effect decreases as the level of relative humidity is decreased. The detailed physics has been revealed qualitatively based on transport theory, and a fitting equation has been proposed to approximate the general electrical response.

  7. Three-Dimensional Imaging of Lipid Gene-Carriers: Membrane Charge Density Controls Universal Transfection Behavior in Lamellar Cationic Liposome-DNA Complexes

    PubMed Central

    Lin, Alison J.; Slack, Nelle L.; Ahmad, Ayesha; George, Cyril X.; Samuel, Charles E.; Safinya, Cyrus R.

    2003-01-01

    Cationic liposomes (CLs) are used worldwide as gene vectors (carriers) in nonviral clinical applications of gene delivery, albeit with unacceptably low transfection efficiencies (TE). We present three-dimensional laser scanning confocal microscopy studies revealing distinct interactions between CL-DNA complexes, for both lamellar LαC and inverted hexagonal HIIC nanostructures, and mouse fibroblast cells. Confocal images of LαC complexes in cells identified two regimes. For low membrane charge density (σM), DNA remained trapped in CL-vectors. By contrast, for high σM, released DNA was observed in the cytoplasm, indicative of escape from endosomes through fusion. Remarkably, firefly luciferase reporter gene studies in the highly complex LαC-mammalian cell system revealed an unexpected simplicity where, at a constant cationic to anionic charge ratio, TE data for univalent and multivalent cationic lipids merged into a single curve as a function of σM, identifying it as a key universal parameter. The universal curve for transfection by LαC complexes climbs exponentially over ≈ four decades with increasing σM below an optimal charge density (σM*), and saturates for \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\sigma}_{{\\mathrm{M}}}>{\\sigma}_{M}^{{^\\ast}}\\end{equation*}\\end{document} at a value rivaling the high transfection efficiency of HIIC complexes. In contrast, the transfection efficiency of HIIC complexes is independent of σM. The exponential dependence of TE on σM for LαC complexes, suggests the existence of a kinetic barrier against endosomal fusion, where an increase in σM lowers the barrier. In the saturated TE regime, for both LαC complexes and HIIC, confocal microscopy reveals the dissociation of lipid and DNA. However, the lipid-released DNA is

  8. Bottom-Up Fabrication of Nanopatterned Polymers on DNA Origami by In Situ Atom-Transfer Radical Polymerization.

    PubMed

    Tokura, Yu; Jiang, Yanyan; Welle, Alexander; Stenzel, Martina H; Krzemien, Katarzyna M; Michaelis, Jens; Berger, Rüdiger; Barner-Kowollik, Christopher; Wu, Yuzhou; Weil, Tanja

    2016-05-04

    Bottom-up strategies to fabricate patterned polymers at the nanoscale represent an emerging field in the development of advanced nanodevices, such as biosensors, nanofluidics, and nanophotonics. DNA origami techniques provide access to distinct architectures of various sizes and shapes and present manifold opportunities for functionalization at the nanoscale with the highest precision. Herein, we conduct in situ atom-transfer radical polymerization (ATRP) on DNA origami, yielding differently nanopatterned polymers of various heights. After cross-linking, the grafted polymeric nanostructures can even stably exist in solution without the DNA origami template. This straightforward approach allows for the fabrication of patterned polymers with low nanometer resolution, which provides access to unique DNA-based functional hybrid materials.

  9. Variation in whole DNA methylation in red maple (Acer rubrum) populations from a mining region: association with metal contamination and cation exchange capacity (CEC) in podzolic soils.

    PubMed

    Kalubi, K N; Mehes-Smith, M; Spiers, G; Omri, A

    2017-02-15

    Although a number of publications have provided convincing evidence that abiotic stresses such as drought and high salinity are involved in DNA methylation reports on the effects of metal contamination, pH, and cation exchange on DNA modifications are limited. The main objective of the present study is to determine the relationship between metal contamination and Cation exchange capacity (CEC) on whole DNA modifications. Metal analysis confirms that nickel and copper are the main contaminants in sampled sites within the Greater Sudbury Region (Ontario, Canada) and liming has increased soil pH significantly even after 30 years following dolomitic limestone applications. The estimated CEC values varied significantly among sites, ranging between 1.8 and 10.5 cmol(+) kg(-1), with a strong relationship being observed between CEC and pH (r = 0.96**). Cation exchange capacity, significantly lower in highly metal contaminated sites compared to both reference and less contaminated sites, was higher in the higher organic matter limed compared to unlimed sites. There was a significant variation in the level of cytosine methylation among the metal-contaminated sites. Significant and strong negative correlations between [5mdC]/[dG] and bioavailable nickel (r = -0.71**) or copper (r = -0.72**) contents were observed. The analysis of genomic DNA for adenine methylation in this study showed a very low level of [6N-mdA]/dT] in Acer rubrum plants analyzed ranging from 0 to 0.08%. Significant and very strong positive correlation was observed between [6N-mdA]/dT] and soil bioavailable nickel (r = 0.78**) and copper (r = 0.88**) content. This suggests that the increased bioavailable metal levels associated with contamination by nickel and copper particulates are associated with cytosine and adenine methylation.

  10. Persistent draining crossover in DNA and other semi-flexible polymers: Evidence from hydrodynamic models and extensive measurements on DNA solutions.

    PubMed

    Mansfield, Marc L; Tsortos, Achilleas; Douglas, Jack F

    2015-09-28

    Although the scaling theory of polymer solutions has had many successes, this type of argument is deficient when applied to hydrodynamic solution properties. Since the foundation of polymer science, it has been appreciated that measurements of polymer size from diffusivity, sedimentation, and solution viscosity reflect a convolution of effects relating to polymer geometry and the strength of the hydrodynamic interactions within the polymer coil, i.e., "draining." Specifically, when polymers are expanded either by self-excluded volume interactions or inherent chain stiffness, the hydrodynamic interactions within the coil become weaker. This means there is no general relationship between static and hydrodynamic size measurements, e.g., the radius of gyration and the hydrodynamic radius. We study this problem by examining the hydrodynamic properties of duplex DNA in solution over a wide range of molecular masses both by hydrodynamic modeling using a numerical path-integration method and by comparing with extensive experimental observations. We also considered how excluded volume interactions influence the solution properties of DNA and confirm that excluded volume interactions are rather weak in duplex DNA in solution so that the simple worm-like chain model without excluded volume gives a good leading-order description of DNA for molar masses up to 10(7) or 10(8) g/mol or contour lengths between 5 μm and 50 μm. Since draining must also depend on the detailed chain monomer structure, future work aiming to characterize polymers in solution through hydrodynamic measurements will have to more carefully consider the relation between chain molecular structure and hydrodynamic solution properties. In particular, scaling theory is inadequate for quantitative polymer characterization.

  11. Persistent draining crossover in DNA and other semi-flexible polymers: Evidence from hydrodynamic models and extensive measurements on DNA solutions

    NASA Astrophysics Data System (ADS)

    Mansfield, Marc L.; Tsortos, Achilleas; Douglas, Jack F.

    2015-09-01

    Although the scaling theory of polymer solutions has had many successes, this type of argument is deficient when applied to hydrodynamic solution properties. Since the foundation of polymer science, it has been appreciated that measurements of polymer size from diffusivity, sedimentation, and solution viscosity reflect a convolution of effects relating to polymer geometry and the strength of the hydrodynamic interactions within the polymer coil, i.e., "draining." Specifically, when polymers are expanded either by self-excluded volume interactions or inherent chain stiffness, the hydrodynamic interactions within the coil become weaker. This means there is no general relationship between static and hydrodynamic size measurements, e.g., the radius of gyration and the hydrodynamic radius. We study this problem by examining the hydrodynamic properties of duplex DNA in solution over a wide range of molecular masses both by hydrodynamic modeling using a numerical path-integration method and by comparing with extensive experimental observations. We also considered how excluded volume interactions influence the solution properties of DNA and confirm that excluded volume interactions are rather weak in duplex DNA in solution so that the simple worm-like chain model without excluded volume gives a good leading-order description of DNA for molar masses up to 107 or 108 g/mol or contour lengths between 5 μm and 50 μm. Since draining must also depend on the detailed chain monomer structure, future work aiming to characterize polymers in solution through hydrodynamic measurements will have to more carefully consider the relation between chain molecular structure and hydrodynamic solution properties. In particular, scaling theory is inadequate for quantitative polymer characterization.

  12. Modulation of Gene Expression by Polymer Nanocapsule Delivery of DNA Cassettes Encoding Small RNAs.

    PubMed

    Yan, Ming; Wen, Jing; Liang, Min; Lu, Yunfeng; Kamata, Masakazu; Chen, Irvin S Y

    2015-01-01

    Small RNAs, including siRNAs, gRNAs and miRNAs, modulate gene expression and serve as potential therapies for human diseases. Delivery to target cells remains the fundamental limitation for use of these RNAs in humans. To address this challenge, we have developed a nanocapsule delivery technology that encapsulates small DNA molecules encoding RNAs into a small (30 nm) polymer nanocapsule. For proof of concept, we transduced DNA expression cassettes for three small RNAs. In one application, the DNA cassette encodes an shRNA transcriptional unit that downregulates CCR5 and protects from HIV-1 infection. The DNA cassette nanocapsules were further engineered for timed release of the DNA cargo for prolonged knockdown of CCR5. Secondly, the nanocapsules provide an efficient means for delivery of gRNAs in the CRISPR/Cas9 system to mutate integrated HIV-1. Finally, delivery of microRNA-125b to mobilized human CD34+ cells enhances survival and expansion of the CD34+ cells in culture.

  13. Four homochiral coordination polymers contain N-acetyl-L-tyrosine and different N-donor ligand: Influence of metal cations, ancillary ligands and coordination modes

    SciTech Connect

    Li, Meng-Li; Song, Hui-Hua

    2013-10-15

    Using the chiral ligand N-acetyl-L-tyrosine (Hacty) and maintaining identical reaction conditions, Zn(II), Co(II), and Cd(II) salts provided four novel homochiral coordination polymers ([Zn(acty)(bipy){sub 2}(H{sub 2}O){sub 2}]·NO{sub 3}·2H{sub 2}O){sub n}1, ([Co(acty)(bipy){sub 2}(H{sub 2}O){sub 2}]·NO{sub 3}·2H{sub 2}O){sub n}2, ([Cd(acty){sub 2}(bipy)H{sub 2}O]·H{sub 2}O){sub n}3, and ([Cd(acty)(bpe){sub 2}(Ac)]·6H{sub 2}O){sub n}4 (bipy=4,4′-bipyridine; bpe=1,2-di(4-pyridyl)ethane) in the presence of ancillary ligands. Compounds 1 and 2 are isostructural 1D chain structures. The neighboring chains are further linked into a 3D supramolecular structure via π⋯π stacking and hydrogen bond interactions. Compound 3 shows a 2D network and 4 generates 1D infinite chains along the c-axis. Compounds 3 and 4 are further connected into 3D supramolecular network by hydrogen bond interactions. More importantly, coordination in acyl oxygen atoms and ancillary ligands (bpe) as monodentate decorating ligands in 4 are rarely reported. Ancillary ligands and metal cations significantly influence the structure of the complexes. The photoluminescence properties of 1, 3, and 4 were studied at room temperature. Circular dichroism (CD) of the complexes have been investigated. - Graphical abstract: Four new homochiral coordination polymers were prepared and structurally characterized, which investigate the influence of the ancillary ligands and metal ions on the design and synthesis of coordination polymers. Display Omitted - Highlights: • It is rarely reported that the chiral coordination polymers prepared with N-acetyl-L-tyrosine ligands. • The alkalescent acetyl oxygen atom is difficult to participate in coordination but it is happened in the N-acetyl-L-tyrosine ligands. • The ancillary ligands (4,4′-bipy and bpe) are present in an unusual coordination modes, monodentate decorating ligands in 1, 2 and 4. • Structure comparative analyses results indicate that the

  14. Complexation of bioreducible cationic polymers with gold nanoparticles for improving stability in serum and application on nonviral gene delivery.

    PubMed

    Chuang, Chun-Chiao; Chang, Chien-Wen

    2015-04-15

    Widespread applications of conventional polymeric gene carriers are greatly hampered by their inefficient transfection performance under serum-containing environment. Aiming to overcome this limitation, we propose a bioreducible polyethylenimine-gold nanocomplex system (SSPEI-Au NC), which can be prepared by a simple layer-by-layer (LBL) assembly procedure. SSPEI-Au NC contains sequentially deposited layers of bioreducible polyethylenimine (SSPEI) and poly(γ-glutamic acid) (γ-PGA) for efficient binding and delivery of plasmid DNA (pDNA). SSPEI-Au NC was characterized for various physicochemical properties, including: UV-vis spectra, TEM imaging, hydrodynamic size, and pDNA binding ability. The SSPEI-Au NC were efficiently uptaken by mammalian cells as observed using dark-field microscopy. Comparing to nondegradable PEI25k, the bioreducible SSPEI-Au NC exhibited superior transfection capability under serum-containing condition while causing lower cytotoxicity on mammalian cell lines. The effect of serum on SSPEI-Au NC dispersity was studied using UV-vis spectrometry and the results suggest that serum-assisted colloidal stability of SSPEI-Au NC contributed to its serum-resistant transfection.

  15. Enhanced anti-fibrotic activity of plasmid DNA expressing small interference RNA for TGF-beta type II receptor for a mouse model of obstructive nephropathy by cationized gelatin prepared from different amine compounds.

    PubMed

    Kushibiki, Toshihiro; Nagata-Nakajima, Natsuki; Sugai, Manabu; Shimizu, Akira; Tabata, Yasuhiko

    2006-02-21

    The objective of this study is to increase the transfection efficiency of a plasmid DNA expressing small interference RNA (siRNA) for transforming growth factor-beta receptor (TGF-betaR) by various cationized gelatins of non-viral carrier and evaluate the anti-fibrotic effect with a mouse model of unilateral ureteral obstruction (UUO). Ethylenediamine, putrescine, spermidine or spermine was chemically introduced to the carboxyl groups of gelatin for the cationization. The plasmid DNA of TGF-betaR siRNA expression vector with or without complexation of each cationized gelatin was injected to the left kidney of mice via the ureter to prevent the progression of renal fibrosis of UUO mice. Irrespective of the type of cationized gelatin, the injection of plasmid DNA-cationized gelatin complex significantly decreased the renal level of TGF-betaR over-expression and the collagen content of mice kidney, in marked contrast to free plasmid DNA injection. It is concluded that retrograde injection of TGF-betaR siRNA expression vector plasmid DNA complexed with the cationized gelatin is available to suppress the progression of renal interstitial fibrosis.

  16. Endosomal Escape and Transfection Efficiency of PEGylated Cationic Lipid–DNA Complexes Prepared with an Acid-Labile PEG-Lipid

    PubMed Central

    Chan, Chia-Ling; Majzoub, Ramsey N.; Shirazi, Rahau S.; Ewert, Kai K.; Chen, Yen-Ju; Liang, Keng S.

    2012-01-01

    Cationic liposome–DNA (CL–DNA) complexes are being pursued as nonviral gene delivery systems for use in applications that include clinic trials. However, to compete with viral vectors for systemic delivery in vivo, their efficiencies and pharmacokinetics need to be improved. The addition of poly (ethylene glycol)-lipids (PEGylation) prolongs circulation lifetimes of liposomes, but inhibits cellular uptake and endosomal escape of CL–DNA complexes. We show that this limits their transfection efficiency (TE) in a manner dependent on the amount of PEG-lipid, the lipid/DNA charge ratio, and the lipid membrane charge density. To improve endosomal escape of PEGylated CL–DNA complexes, we prepared an acid-labile PEG-lipid (HPEG2K-lipid, PEG MW 2000) which is designed to lose its PEG chains at the pH of late endosomes. The HPEG2K-lipid and a similar but acid-stable PEG-lipid were used to prepare PEGylated CL–DNA complexes. TLC and dynamic light scattering showed that HPEG2K-CL–DNA complexes are stable at pH 7.4 for more than 24 hours, but the PEG chains are cleaved at pH 5 within one hour, leading to complex aggregation. The acid-labile HPEG2K-CL–DNA complexes showed enhanced TE over complexes stabilized with the acid-stable PEG-lipid. Live-cell imaging showed that both types of complexes were internalized to quantitatively similar particle distributions within the first 2 hours of incubation with cells. Thus, we attribute the increased TE of the HPEG2K-CL–DNA complexes to efficient endosomal escape, enabled by the acid-labile HPEG2K-lipid which sheds its PEG chains in the low-pH environment of late endosomes, effectively switching on the electrostatic interactions that promote fusion of the membranes of complex and endosome. PMID:22469293

  17. Oxidation of guanine in double-stranded DNA by [Ru(bpy)2dppz]Cl2 in cationic reverse micelles.

    PubMed

    Evans, Sarah E; Grigoryan, Armine; Szalai, Veronika A

    2007-10-01

    DNA oxidation has been investigated in the medium of cationic reverse micelles (RMs). The oxidative chemistry is photochemically initiated using the DNA intercalator bis(bipyridine)dipyridophenazine ruthenium(II) chloride ([Ru(bpy)2dppz]Cl2) bound to duplex DNA in the RMs. High-resolution polyacrylamide gel electrophoresis (PAGE) is used to reveal and quantify guanine (G) oxidation products, including 8-oxo-7,8-dihydroguanine (8OG). In buffer solution, the addition of the oxidative quenchers potassium ferricyanide or pentaamminechlorocobalt(III) dichloride leads to an increase in the amount of piperidine-labile G oxidation products generated via one-electron oxidation. In RMs, however, the yield of oxidatively generated damage is attenuated. With or without ferricyanide quencher in the RMs, the yield of oxidatively generated products is approximately the same. Inclusion of the cationic quencher [CoCl(NH3)5]2+ in the RMs increases the amount of oxidation products generated but not to the extent that it does in buffer solution. Under anaerobic conditions, all of the samples in RMs, with or without added oxidative quenchers, show decreased levels of piperidine-labile oxidation products, suggesting that the primary oxidant in RMs is singlet oxygen. G oxidation is enhanced in D2O and deuterated heptane and is diminished in the presence of sodium azide in RMs, also supporting 1O2 as the main G oxidant in RMs. Isotopic labeling experiments show that the oxygen atom in 8OG produced in RMs is not from water. The observed change in the G oxidation mechanism from a one-electron process in buffer to mostly 1O2 in RMs illustrates the importance of both DNA structure and DNA environment on the chemistry of G oxidation.

  18. Polymer-cobalt(III) complexes: structural analysis of metal chelates on DNA interaction and comparative cytotoxic activity.

    PubMed

    Nehru, Selvan; Arunachalam, Sankaralingam; Arun, Renganathan; Premkumar, Kumpati

    2014-01-01

    A new series of pendant-type polymer-cobalt(III) complexes, [Co(LL)2(BPEI)Cl](2+), (where BPEI = branched polyethyleneimine, LL = dipyrido[3,2-a:2',3'-c](6,7,8,9-tetrahydro)phenazine (dpqc), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq) and imidazo[4,5-f]1,10-phenanthroline (ip)) each with three different degrees of coordination have been synthesized and characterized. Studies to know the mode and strength of interaction between these polymer-metal complexes and calf thymus DNA have been performed by UV-Visible absorption and emission techniques. Among these series, each polymer metal complex having higher binding strength with DNA has been selected to test against human cancer/normal cell lines. On the basis of these spectral studies, it is proposed that our polymer-metal complexes bind with DNA mainly through intercalation along with some electrostatic binding. The order of binding strength for the complexes with ligand, dpqc > dpq > ip. The analysis of the results suggests that polymer-cobalt(III) complexes with higher degree of coordination effectively binds with DNA due to the presence of large number of positively charged cobalt(III) chelates in the polymer chain which cooperatively act to increase the overall binding strength. These polymer-cobalt(III) complexes with hydrophobic ligands around the cobalt(III) metal centre favour the base stacking interactions via intercalation. All the complexes show very good anticancer activities and increasing of binding strength results in higher inhibition value. The polymer-cobalt(III) complex with dpqc ligand possess two fold increased anticancer activity when compared to complexes with other ligands against MCF-7 cells. Besides, the complexes were insensitive towards the growth of normal cells (HEK-293) at the IC50 concentration.

  19. Characterization of a germline Vk gene encoding cationic anti-DNA antibody and role of receptor editing for development of the autoantibody in patients with systemic lupus erythematosus.

    PubMed

    Suzuki, N; Harada, T; Mihara, S; Sakane, T

    1996-10-15

    We found previously that cationic anti-DNA autoantibodies (autoAbs) have nephritogenic potential and usage of a specific germline Vk gene, A30, has major influences on cationic charge of the autoAb in human lupus nephritis. In the present study, we have characterized A30 germline Vk gene using cosmid cloning technique in patients with SLE. A30 gene locus locates in less than 250 kb from the Ck region, and the cationic anti-DNA mRNA used the upstream Jk2 gene, indicating that cationic anti-DNA mRNA is a product of primary gene rearrangement. By using PCR technique, we found that A30 gene locus in the genome was defective in eight out of nine SLE patients without nephritis. In contrast, all nine patients with lupus nephritis had intact A30 gene. The presence and absence of A30 gene was associated with the development of lupus nephritis or not (P < 0.01, by Fisher's exact test, two-sided). It was thus suggested that absence of functional A30 gene may rescue from developing lupus nephritis in the patients. A30 is reported to be a potentially functional but rarely expressed Vk gene in humans. It is possible that normal B cells edit primarily rearranged A30 gene with autoreactive potentials by receptor editing mechanism for changing the affinity of the B cell Ag receptor to avoid self-reactivity, whereas SLE B cells may have a defect in this mechanism. Indeed, we found that normal B cells edit A30-Jk2 gene in their genome possibly by inversion mechanism, whereas SLE B cells contain rearranged A30-Jk2-Ck gene in the genome and express A30-associated mRNA, suggesting that receptor editing mechanism is also defective in patients with SLE. Our study suggests that polymorphism of Ig Vk locus, and failure of receptor editing may contribute to the development of pathogenic anti-DNA responses in humans.

  20. Characterization of a germline Vk gene encoding cationic anti-DNA antibody and role of receptor editing for development of the autoantibody in patients with systemic lupus erythematosus.

    PubMed Central

    Suzuki, N; Harada, T; Mihara, S; Sakane, T

    1996-01-01

    We found previously that cationic anti-DNA autoantibodies (autoAbs) have nephritogenic potential and usage of a specific germline Vk gene, A30, has major influences on cationic charge of the autoAb in human lupus nephritis. In the present study, we have characterized A30 germline Vk gene using cosmid cloning technique in patients with SLE. A30 gene locus locates in less than 250 kb from the Ck region, and the cationic anti-DNA mRNA used the upstream Jk2 gene, indicating that cationic anti-DNA mRNA is a product of primary gene rearrangement. By using PCR technique, we found that A30 gene locus in the genome was defective in eight out of nine SLE patients without nephritis. In contrast, all nine patients with lupus nephritis had intact A30 gene. The presence and absence of A30 gene was associated with the development of lupus nephritis or not (P < 0.01, by Fisher's exact test, two-sided). It was thus suggested that absence of functional A30 gene may rescue from developing lupus nephritis in the patients. A30 is reported to be a potentially functional but rarely expressed Vk gene in humans. It is possible that normal B cells edit primarily rearranged A30 gene with autoreactive potentials by receptor editing mechanism for changing the affinity of the B cell Ag receptor to avoid self-reactivity, whereas SLE B cells may have a defect in this mechanism. Indeed, we found that normal B cells edit A30-Jk2 gene in their genome possibly by inversion mechanism, whereas SLE B cells contain rearranged A30-Jk2-Ck gene in the genome and express A30-associated mRNA, suggesting that receptor editing mechanism is also defective in patients with SLE. Our study suggests that polymorphism of Ig Vk locus, and failure of receptor editing may contribute to the development of pathogenic anti-DNA responses in humans. PMID:8878436

  1. Electrophoretic mobility of linear and star-branched DNA in semidilute polymer solutions.

    PubMed

    Saha, Sourav; Heuer, Daniel M; Archer, Lynden A

    2006-08-01

    Electrophoresis of large linear T2 (162 kbp) and 3-arm star-branched (N(Arm) = 48.5 kbp) DNA in linear polyacrylamide (LPA) solutions above the overlap concentration c* has been investigated using a fluorescence visualization technique that allows both the conformation and mobility mu of the DNA to be determined. LPA solutions of moderate polydispersity index (PI approximately 1.7-2.1) and variable polymer molecular weight Mw (0.59-2.05 MDa) are used as the sieving media. In unentangled semidilute solutions (c* < c < c(e)), we find that the conformational dynamics of linear and star-branched DNA in electric fields are strikingly different; the former migrating in predominantly U- or I-shaped conformations, depending on electric field strength E, and the latter migrating in a squid-like profile with the star-arms outstretched in the direction opposite to E and dragging the branch point through the sieving medium. Despite these visual differences, mu for linear and star-branched DNA of comparable size are found to be nearly identical in semidilute, unentangled LPA solutions. For LPA concentrations above the entanglement threshold (c > c(e)), the conformation of migrating linear and star-shaped DNA manifest only subtle changes from their unentangled solution features, but mu for the stars decreases strongly with increasing LPA concentration and molecular weight, while mu for linear DNA becomes nearly independent of c and Mw. These findings are discussed in the context of current theories for electrophoresis of large polyelectrolytes.

  2. Syntheses, structures, molecular and cationic recognitions and catalytic properties of two lanthanide coordination polymers based on a flexible tricarboxylate

    NASA Astrophysics Data System (ADS)

    Zhu, Yu; Wang, Yan-Mei; Xu, Ji; Liu, Pan; Weththasinha, H. A. B. M. D.; Wu, Yun-Long; Lu, Xiao-Qing; Xie, Ji-Min

    2014-11-01

    Two lanthanide coordination polymers, namely, {[La(TTTA)(H2O)2]·2H2O}n (La-TTTA) and [Nd(TTTA)(H2O)2]·2H2O}n (Nd-TTTA) have been hydrothermally synthesized through the reaction of lanthanide ions (La3+ and Nd3+) with the flexible tripodal ligand 2,2‧,2″-[1,3,5-triazine-2,4,6-triyltris(thio)]tris-acetic acid (H3TTTA). La-TTTA and Nd-TTTA are isostructural and both show three dimensional structures. La-TTTA and Nd-TTTA show good recognition of amine molecules via quenching the luminescent intensities in amines emulsions. They can also recognize Fe3+, Cu2+, Mg2+, Cr3+ and Co2+ ions with the quenching the peak around 361 nm when the compounds immersed in ionic solutions. The two compounds act as efficient Lewis acid catalysts for the cyanosilylation of benzaldehyde and derivatives in high yields shortly due to the strong Lewis acidity and the possible open sites of the lanthanide ions.

  3. Comparison of epichlorohydrin-dimethylamine with other cationic organic polymers as coagulation aids of polyferric chloride in coagulation-ultrafiltration process.

    PubMed

    Sun, Shenglei; Gao, Baoyu; Yue, Qinyan; Li, Ruihua; Song, Wen; Bu, Fan; Zhao, Shuang; Jia, Ruibao; Song, Wuchang

    2016-04-15

    Epichlorohydrin-dimethylamine (DAM-ECH) copolymer was acquired by polycondensation of hazardous reagents: epichlorohydrin (analytical reagent, A.R.) and dimethylamine (A.R.) with ethanediamine (A.R.) as cross-linker. Its coagulation and membrane performance as coagulation aid of polyferric chloride (PFC) was evaluated by comparing with other two cationic coagulation aids: poly dimethyl diallyl ammonium chloride (PDMDAAC) and polyacrylamide (PAM) in humic acid-kaolin (HA-Kaolin) simulated water treatment. Firstly, optimum dosages of PFC&DAM-ECH, PFC&PDMDAAC and PFC&PAM were identified according to their coagulation performance. Then their impacts (under optimum dosages) on membrane fouling of regenerated cellulose (RC) ultra-membrane disc in coagulation-ultrafiltration (C-UF) process were reviewed. Results revealed that small addition of DAM-ECH was the effective on turbidity and DOC removal polymer. Furthermore, in the following ultra-filtration process, external membrane fouling resistance was demonstrated to be the dominant portion of the total membrane fouling resistance under all circumstances. Meanwhile, the internal membrane fouling resistance was determined by residual of micro-particles(1) that cannot be intercepted by cake layer or ultrafiltration membrane.

  4. A comparative study on the properties, mechanisms and process designs for the adsorption of non-ionic or anionic dyes onto cationic-polymer/bentonite.

    PubMed

    Li, Qian; Yue, Qin-Yan; Sun, Hong-Jian; Su, Yuan; Gao, Bao-Yu

    2010-07-01

    The adsorption properties and mechanisms of a cationic-polymer/bentonite complex (EPI-DMA/bentonite), prepared from polyepicholorohydrin-dimethylamine and bentonite, for non-ionic dyes (Disperse Blue SBL and Vat Scarlet R) and anionic dyes (Reactive Violet K-3R and Acid Dark Blue 2G) were investigated in this study. The solution pH, presence of salt and surfactant can significantly affect the dye removal efficiency. The equilibrium data were analyzed using the Langmuir and Freundlich models. The Langmuir model is the most suitable to describe non-ionic dye adsorption, but for anionic dyes the Freundlich model is best. The kinetic data for the adsorption of different dyes were analyzed using pseudo first- and second-order equations, and the experimental data conformed to the pseudo second-order kinetic model better. The possibility of intraparticle diffusion was also examined by using the intraparticle diffusion equation. The single-stage batch adsorber design for the adsorption of both types of dyes onto EPI-DMA/bentonite was studied based on the Langmuir isotherm model for non-ionic dyes and the Freundlich isotherm model for anionic dyes. The results showed that the required amount of EPI-DMA/bentonite for 95% dye removal in 5 L dye solution with a concentration of 50 mg/L is 378.0 g for DB SBL, 126.5 g for VS R, 9.7 g for RV K-3R and 15.5 g for ADB 2G.

  5. Evaluation of effects of bivalent cations on the formation of purine-rich triple-helix DNA by ESI-FT-MS.

    PubMed

    Wan, Cuihong; Cui, Meng; Song, Fengrui; Liu, Zhiqiang; Liu, Shuying

    2009-07-01

    The GGA triplet repeats are widely dispersed throughout eukaryotic genomes. (GGA)n or (GGT)n oligonucleotides can interact with double-stranded DNA containing (GGA:CCT)n to form triple-stranded DNA. The effects of 8 divalent metal ions (3 alkaline-earth metals and 5 transition metals) on formation of these purine-rich triple-helix DNA were investigated by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-MS). In the absence of metal ions, no triplex but single-strand, duplex, and purine homodimer ions were observed in mass spectra. The triple-helix DNA complexes were observed only in the presence of certain divalent ions. The effects of different divalent cations on the formation of purine-rich triplexes were compared. Transition-metal ions, especially Co(2+) and Ni(2+), significantly boost the formation of triple-helix DNA, whereas alkaline-earth metal ions have no positive effects on triplex formation. In addition, Ba(2+) is notably beneficial to the formation of homodimer instead of triplex.

  6. Controlling the surface‐mediated release of DNA using ‘mixed multilayers’

    PubMed Central

    Appadoo, Visham; Carter, Matthew C. D.

    2016-01-01

    Abstract We report the design of erodible ‘mixed multilayer’ coatings fabricated using plasmid DNA and combinations of both hydrolytically degradable and charge‐shifting cationic polymer building blocks. Films fabricated layer‐by‐layer using combinations of a model poly(β‐amino ester) (polymer 1) and a model charge‐shifting polymer (polymer 2) exhibited DNA release profiles that were substantially different than those assembled using DNA and either polymer 1 or polymer 2 alone. In addition, the order in which layers of these two cationic polymers were deposited during assembly had a profound impact on DNA release profiles when these materials were incubated in physiological buffer. Mixed multilayers ∼225 nm thick fabricated by depositing layers of polymer 1/DNA onto films composed of polymer 2/DNA released DNA into solution over ∼60 days, with multi‐phase release profiles intermediate to and exhibiting some general features of polymer 1/DNA or polymer 2/DNA films (e.g., a period of rapid release, followed by a more extended phase). In sharp contrast, ‘inverted’ mixed multilayers fabricated by depositing layers of polymer 2/DNA onto films composed of polymer 1/DNA exhibited release profiles that were almost completely linear over ∼60‐80 days. These and other results are consistent with substantial interdiffusion and commingling (or mixing) among the individual components of these compound materials. Our results reveal this mixing to lead to new, unanticipated, and useful release profiles and provide guidance for the design of polymer‐based coatings for the local, surface‐mediated delivery of DNA from the surfaces of topologically complex interventional devices, such as intravascular stents, with predictable long‐term release profiles. PMID:27981243

  7. Real-time single-molecule electronic DNA sequencing by synthesis using polymer-tagged nucleotides on a nanopore array

    PubMed Central

    Fuller, Carl W.; Kumar, Shiv; Porel, Mintu; Chien, Minchen; Bibillo, Arek; Stranges, P. Benjamin; Dorwart, Michael; Tao, Chuanjuan; Li, Zengmin; Guo, Wenjing; Shi, Shundi; Korenblum, Daniel; Trans, Andrew; Aguirre, Anne; Liu, Edward; Harada, Eric T.; Pollard, James; Bhat, Ashwini; Cech, Cynthia; Yang, Alexander; Arnold, Cleoma; Palla, Mirkó; Hovis, Jennifer; Chen, Roger; Morozova, Irina; Kalachikov, Sergey; Russo, James J.; Kasianowicz, John J.; Davis, Randy; Roever, Stefan; Church, George M.; Ju, Jingyue

    2016-01-01

    DNA sequencing by synthesis (SBS) offers a robust platform to decipher nucleic acid sequences. Recently, we reported a single-molecule nanopore-based SBS strategy that accurately distinguishes four bases by electronically detecting and differentiating four different polymer tags attached to the 5′-phosphate of the nucleotides during their incorporation into a growing DNA strand catalyzed by DNA polymerase. Further developing this approach, we report here the use of nucleotides tagged at the terminal phosphate with oligonucleotide-based polymers to perform nanopore SBS on an α-hemolysin nanopore array platform. We designed and synthesized several polymer-tagged nucleotides using tags that produce different electrical current blockade levels and verified they are active substrates for DNA polymerase. A highly processive DNA polymerase was conjugated to the nanopore, and the conjugates were complexed with primer/template DNA and inserted into lipid bilayers over individually addressable electrodes of the nanopore chip. When an incoming complementary-tagged nucleotide forms a tight ternary complex with the primer/template and polymerase, the tag enters the pore, and the current blockade level is measured. The levels displayed by the four nucleotides tagged with four different polymers captured in the nanopore in such ternary complexes were clearly distinguishable and sequence-specific, enabling continuous sequence determination during the polymerase reaction. Thus, real-time single-molecule electronic DNA sequencing data with single-base resolution were obtained. The use of these polymer-tagged nucleotides, combined with polymerase tethering to nanopores and multiplexed nanopore sensors, should lead to new high-throughput sequencing methods. PMID:27091962

  8. Real-time single-molecule electronic DNA sequencing by synthesis using polymer-tagged nucleotides on a nanopore array.

    PubMed

    Fuller, Carl W; Kumar, Shiv; Porel, Mintu; Chien, Minchen; Bibillo, Arek; Stranges, P Benjamin; Dorwart, Michael; Tao, Chuanjuan; Li, Zengmin; Guo, Wenjing; Shi, Shundi; Korenblum, Daniel; Trans, Andrew; Aguirre, Anne; Liu, Edward; Harada, Eric T; Pollard, James; Bhat, Ashwini; Cech, Cynthia; Yang, Alexander; Arnold, Cleoma; Palla, Mirkó; Hovis, Jennifer; Chen, Roger; Morozova, Irina; Kalachikov, Sergey; Russo, James J; Kasianowicz, John J; Davis, Randy; Roever, Stefan; Church, George M; Ju, Jingyue

    2016-05-10

    DNA sequencing by synthesis (SBS) offers a robust platform to decipher nucleic acid sequences. Recently, we reported a single-molecule nanopore-based SBS strategy that accurately distinguishes four bases by electronically detecting and differentiating four different polymer tags attached to the 5'-phosphate of the nucleotides during their incorporation into a growing DNA strand catalyzed by DNA polymerase. Further developing this approach, we report here the use of nucleotides tagged at the terminal phosphate with oligonucleotide-based polymers to perform nanopore SBS on an α-hemolysin nanopore array platform. We designed and synthesized several polymer-tagged nucleotides using tags that produce different electrical current blockade levels and verified they are active substrates for DNA polymerase. A highly processive DNA polymerase was conjugated to the nanopore, and the conjugates were complexed with primer/template DNA and inserted into lipid bilayers over individually addressable electrodes of the nanopore chip. When an incoming complementary-tagged nucleotide forms a tight ternary complex with the primer/template and polymerase, the tag enters the pore, and the current blockade level is measured. The levels displayed by the four nucleotides tagged with four different polymers captured in the nanopore in such ternary complexes were clearly distinguishable and sequence-specific, enabling continuous sequence determination during the polymerase reaction. Thus, real-time single-molecule electronic DNA sequencing data with single-base resolution were obtained. The use of these polymer-tagged nucleotides, combined with polymerase tethering to nanopores and multiplexed nanopore sensors, should lead to new high-throughput sequencing methods.

  9. Conducting polymer based DNA biosensor for the detection of the Bacillus cereus group species

    NASA Astrophysics Data System (ADS)

    Velusamy, Vijayalakshmi; Arshak, Khalil; Korostynska, Olga; Oliwa, Kamila; Adley, Catherine

    2009-05-01

    Biosensor designs are emerging at a significant rate and play an increasingly important role in foodborne pathogen detection. Conducting polymers are excellent tools for the fabrication of biosensors and polypyrrole has been used in the detection of biomolecules due to its unique properties. The prime intention of this paper was to pioneer the design and fabrication of a single-strand (ss) DNA biosensor for the detection of the Bacillus cereus (B.cereus) group species. Growth of B. cereus, results in production of several highly active toxins. Therefore, consumption of food containing >106 bacteria/gm may results in emetic and diarrhoeal syndromes. The most common source of this bacterium is found in liquid food products, milk powder, mixed food products and is of particular concern in the baby formula industry. The electrochemical deposition technique, such as cyclic voltammetry, was used to develop and test a model DNA-based biosensor on a gold electrode electropolymerized with polypyrrole. The electrically conducting polymer, polypyrrole is used as a platform for immobilizing DNA (1μg) on the gold electrode surface, since it can be more easily deposited from neutral pH aqueous solutions of pyrrolemonomers. The average current peak during the electrodeposition event is 288μA. There is a clear change in the current after hybridization of the complementary oligonucleotide (6.35μA) and for the noncomplementary oligonucleotide (5.77μA). The drop in current after each event was clearly noticeable and it proved to be effective.

  10. Internal charge transfer based ratiometric interaction of anionic surfactant with calf thymus DNA bound cationic surfactant: Study I

    NASA Astrophysics Data System (ADS)

    Mukherjee, Abhijit; Chaudhuri, Tandrima; Moulik, Satya Priya; Banerjee, Manas

    2016-01-01

    Cetyl trimethyl ammonium bromide (CTAB) binds calf thymus (ct-) DNA like anionic biopolymers electrostatically and established equilibrium both in the ground as well as in excited state in aqueous medium at pH 7. Anionic sodium dodecyl sulfate (SDS) does not show even hydrophobic interaction with ct-DNA at low concentration. On contrary, SDS can establish well defined equilibrium with DNA bound CTAB in ground state where the same CTAB-DNA isosbestic point reappears. First report of internal charge transfer (ICT) based binding of CTAB with ct-DNA as well as ICT based interaction of anionic SDS with DNA bound CTAB that shows dynamic quenching contribution also. The reappearance of anodic peak and slight increase in cathodic peak current with increasing concentration (at lower range) of anionic SDS, possibly reflect the release of CTAB from DNA bound CTAB by SDS.

  11. Polymers.

    ERIC Educational Resources Information Center

    Tucker, David C.

    1986-01-01

    Presents an open-ended experiment which has students exploring polymer chemistry and reverse osmosis. This activity involves construction of a polymer membrane, use of it in a simple osmosis experiment, and application of its principles in solving a science-technology-society problem. (ML)

  12. A chemiluminescence biosensor based on the adsorption recognition function between Fe3O4@SiO2@GO polymers and DNA for ultrasensitive detection of DNA.

    PubMed

    Sun, Yuanling; Li, Jianbo; Wang, Yanhui; Ding, Chaofan; Lin, Yanna; Sun, Weiyan; Luo, Chuannan

    2017-05-05

    In this work, a chemiluminescence (CL) biosensor was prepared for ultrasensitive determination of deoxyribonucleic acid (DNA) based on the adsorption recognition function between core-shell Fe3O4@SiO2 - graphene oxide (Fe3O4@SiO2@GO) polymers and DNA. The Fe3O4@SiO2@GO polymers were composed by GO and magnetite nanoparticles. And the core-shell polymers were confirmed by Scanning Electron Microscope (SEM), X-Ray Powder Diffraction (XRD) and Fourier Transform Infrared (FTIR). Then Fe3O4@SiO2@GO was modified by DNA. Based on the principle of complementary base, Fe3O4@SiO2@GO-DNA was introduced to the CL system and the selectivity, sensitivity of DNA detection was significantly improved. The adsorption properties of Fe3O4@SiO2@GO to DNA were researched through the adsorption equilibrium, adsorption kinetic and thermodynamics. Under optimized CL conditions, DNA could be assayed with the linear concentration range of 5.0×10(-12)-2.5×10(-11)mol/L. The detection limit was 1.7×10(-12)mol/L (3δ) and the relative standard deviation (RSD) was 3.1%. The biosensor was finally used for the determination of DNA in laboratory samples and recoveries ranged from 99% to 103%. The satisfactory results revealed the potential application of Fe3O4@SiO2@GO-DNA-CL biosensor in the diagnosis and the treatment of human genetic diseases.

  13. Stretching and imaging of single DNA chains on a hydrophobic polymer surface made of amphiphilic alternating comb-copolymer.

    PubMed

    Liu, Rongrong; Wong, Sheau Tyug; Lau, Peggy Pei Zhi; Tomczak, Nikodem

    2014-02-26

    Functionalization of amine derivatized glass slides with a poly(maleic anhydride)-based comb-copolymer to facilitate stretching, aligning, and imaging of individual dsDNA chains is presented. The polymer-coated surface is hydrophobic due to the presence of the long alkyl side chains along the polymer backbone. The surface is also characterized by low roughness and a globular morphology. Stretched and aligned bacteriophage λ-DNA chains were obtained using a robust method based on stretching by a receding water meniscus at pH 7.8 without the need for small droplet volumes or precoating the surface with additional layers of (bio)molecules. Although the dye to DNA base pairs ratio did not influence substantially the stretching length distributions, a clear peak at stretching lengths close to the contour length of the dsDNA is visible at larger staining ratios.

  14. Self-assembly of DNA origami particles in suspension of non-absorbing depleting polymers

    NASA Astrophysics Data System (ADS)

    Siavashpouri, Mahsa; Zakhary, Mark; Wachauf, Christian; Dietz, Hendrik; Dogic, Zvonimir

    2015-03-01

    The connection between the macroscopic properties of a liquid crystalline material and the microscopic features of the constituent molecules is the essential theme that permeates the field of liquid crystals. Previous studies have shown that monodisperse rod-like colloids such as filamentous bacteriophage self-assemble into 1D twisted ribbons in presence of attractive interactions mediated by non-absorbing polymers. The microscopic properties of the colloidal particles play an important role in determining the physical properties of these mesoscopic assemblages. Using structural DNA nanotechnology, we present the design and structure of DNA origami six-helix bundles with tunable microscopic properties, which can be used as a new building block for the self-assembly of rod-like colloidal particles. We demonstrate that formation of higher order structures from the assembly of colloidal rods is universal. By tuning the chirality, aspect ratio and flexibility of the DNA origami particles we can control the physical properties of the entire self-assembled structures.

  15. Mannitol influence on the separation of DNA fragments by capillary electrophoresis in entangled polymer solutions.

    PubMed

    Han, F; Xue, J; Lin, B

    1998-08-01

    A new kind of sieving matrix is presented in this paper to allow satisfactory separation of DNA fragments in a relatively low viscous solution. When a certain amount of mannitol was added to cellulose solution not concentrated enough to separate PGEM-3Zf(+)/HaeIII standards well, a polymer solution with low viscosity but with very good separation effects was obtained. The separation result of this sieving buffer was comparable with those using highly concentrated cellulose solutions. The sieving ability of solutions with different cellulose concentrations and different amounts of mannitol has been investigated. It was proved that 0.5% was the minimum hydroxypropylmethylcellulose (HPMC) concentration that could be used to separate DNA fragments satisfactorily. HPMC solutions with a concentration of less than 0.5% could not separate the standard DNA fragments even in the presence of mannitol. It was found that 6% was the optimized mannitol concentration because either more or less mannitol will lead a decrease of resolution. The principle of the positive influence of mannitol has also been discussed.

  16. Well-defined star polymers for co-delivery of plasmid DNA and imiquimod to dendritic cells.

    PubMed

    Lin, Wenjing; Hanson, Samuel; Han, Wenqing; Zhang, Xiaofang; Yao, Na; Li, Hongru; Zhang, Lijuan; Wang, Chun

    2017-01-15

    Co-delivery of antigen-encoding plasmid DNA (pDNA) and immune-modulatory molecules has importance in advancing gene-based immunotherapy and vaccines. Here novel star polymer nanocarriers were synthesized for co-delivery of pDNA and imiquimod (IMQ), a poorly soluble small-molecule adjuvant, to dendritic cells. Computational modeling and experimental results revealed that the polymers formed either multimolecular or unimolecular core-shell-type micelles in water, depending on the nature of the outer hydrophilic shell. Micelles loaded with both IMQ and pDNA were able to release IMQ in response to intracellular pH of the endo-lysosome and transfect mouse dendritic cells (DC2.4 line) in vitro. Importantly, IMQ-loaded micelle/pDNA complexes displayed much enhanced transfection efficiency than IMQ-free complexes. These results demonstrate the feasibility of co-delivery of pDNA and IMQ to antigen-presenting cells by multifunctional polymer nanocarriers with potential use in gene-based vaccine approaches.

  17. Fractionation of protein, RNA, and plasmid DNA in centrifugal precipitation chromatography using cationic surfactant CTAB containing inorganic salts NaCl and NH(4)Cl.

    PubMed

    Tomanee, Panarat; Hsu, James T; Ito, Yoichiro

    2004-10-05

    Centrifugal precipitation chromatography (CPC) is a separation system that mainly employs a moving concentration gradient of precipitating agent along a channel and solutes of interest undergo repetitive precipitation-dissolution, fractionate at different locations, and elute out from the channel according to their solubility in the precipitating agent solution. We report here for the first time the use of a CPC system for fractionation of protein, RNA, and plasmid DNA in clarified lysate produced from bacterial culture. The cationic surfactant cetyltrimethylammonium bromide (CTAB) was initially used as a precipitating agent; however, all biomolecules showed no differential solubility in the moving concentration gradient of this surfactant and, as a result, no separation of protein, RNA, and plasmid DNA occurred. To overcome this problem, inorganic salts such as NaCl and NH(4)Cl were introduced into solution of CTAB. The protein and RNA were found to have higher solubility with the addition of these salts and separated from the plasmid DNA. Decreasing surface charge density of CTAB upon addition of NaCl and NH(4)Cl was believed to lead to lower surfactant complexation, and therefore caused differential solubility and fractionation of these biomolecules. Addition of CaCl(2) did not improve solubility and separation of RNA from plasmid DNA.

  18. Human genomic DNA isolation from whole blood using a simple microfluidic system with silica- and polymer-based stationary phases.

    PubMed

    Günal, Gülçin; Kip, Çiğdem; Öğüt, Sevim Eda; Usta, Duygu Deniz; Şenlik, Erhan; Kibar, Güneş; Tuncel, Ali

    2017-05-01

    Monodisperse-porous silica microspheres 5.1μm in size with a bimodal pore-size distribution (including both mesoporous and macroporous compartments) were obtained using a newly developed staged-shape templated hydrolysis and condensation protocol. Synthesized silica microspheres and monodisperse-porous polymer-based microspheres with different functionalities, synthesized by staged-shape template polymerization, were comparatively tested as sorbents for human genomic DNA (hgDNA) isolation in a microfluidic system. Microcolumns with a permeability range of 1.8-8.5×10(-13)m(2) were fabricated by the slurry-packing of silica- or polymer-based microspheres. The monodisperse-porous silica microspheres showed the best performance in hgDNA isolation in an aqueous buffer medium; >2500ng of hgDNA was recovered with an isolation yield of about 50%, using an hgDNA feed concentration of 100ng/μL. Monodisperse-porous silica microspheres were also evaluated as a sorbent for genomic DNA isolation from human whole blood in the microfluidic system; 14ng of hgDNA was obtained from 10μL of whole blood lysate with an isolation yield of 64%. Based on these results, we conclude that monodisperse-porous silica microspheres with a bimodal pore size distribution are a promising sorbent for the isolation of hgDNA in larger amounts and with higher yields compared to the sorbents previously tried in similar microfluidic systems.

  19. A Photoactivatable AIE Polymer for Light-Controlled Gene Delivery: Concurrent Endo/Lysosomal Escape and DNA Unpacking.

    PubMed

    Yuan, Youyong; Zhang, Chong-Jing; Liu, Bin

    2015-09-21

    Endo/lysosomal escape of gene vectors and the subsequent unpacking of nucleic acids in cytosol are two major challenges for efficient gene delivery. Herein, we report a polymeric gene delivery vector, which consists of a photosensitizer (PS) with aggregation-induced emission (AIE) characteristics and oligoethylenimine (OEI) conjugated via an aminoacrylate (AA) linker that can be cleaved by reactive oxygen species (ROS). In aqueous media, the polymer could self-assemble into bright red fluorescent nanoparticles (NPs), which can efficiently bind to DNA through electrostatic interaction for gene delivery. Upon visible light irradiation, the generated ROS can break the endo/lysosomal membrane and the polymer, resulting in light-controlled endo/lysosomal escape and unpacking of DNA for efficient gene delivery. The smart polymer represents the first successful gene vector to simultaneously address both challenges with a single light excitation process.

  20. Biogenesis and the growth of DNA-like polymer chains: A computer simulation

    NASA Astrophysics Data System (ADS)

    Herrmann, Hans J.; Tsallis, Constantino

    1988-11-01

    We study, through computer simulation, a crucial step of biogenesis, namely the growth of self-replicating codified DNA-like polymers starting from a mixture of oligomers. We have adopted the growth scheme that has been recently proposed by Ferreira and Tsallis which incorporates usual ideas of autocatalysis through complementary pairs and within which a central role is played by the hydrogen-like links (characterized by the probabilities pAT and PCG of chemical bonding of the A-T and C-G pairs respectively) between the two chains of the growing polymer. We find that the average equilibrium polymeric length ξ diverges, for any fixed ratio (1 - pAT)/(1 - pCG), as ξ ∝ 1/√1 - pAT. Selection of patterns may happen at all stages and in particular at chemical equilibrium. Selection occurs via two different mechanisms: (i) away from the critical point pAT = pCG = 1 if PAT ≠ PCG; (ii) both on and away from the critical point if the initial concentrations of nucleotides (A, T, C and G or their precursors) are different.

  1. Bioinspired affinity DNA polymers on nanoparticles for drug sequestration and detoxification.

    PubMed

    Chen, Niancao; Huang, Yike; Wang, Yong

    2014-12-01

    Nanomaterials with the ability of sequestering target molecules hold great potential for a variety of applications. To ensure the stable sequestration, most of these nanomaterials have been traditionally designed with a clear boundary or compact structures and behave as closed systems. While this feature is beneficial to applications such as drug delivery, it may pose a challenge to applications where fast molecular transport from the environment to nanomaterials is critical. Thus, this study was aimed at exploring a nanomaterial with affinity DNA polymers and nanoparticles as an open system with function similar to jellyfish tentacles in sequestering target molecules from surroundings. The results show that this nanomaterial can effectively and rapidly sequester both small molecule drugs and large molecule biologics and resultantly mitigate their biological effects. Thus, this nanomaterial holds potential as a universal nanoscale antidote for drug removal and detoxification. While this nanomaterial was evaluated by using drug removal and detoxification as a model, the synthesis of periodically oriented affinity polymers on a nanoparticle with the capability of sequestering target molecules may be tuned for broad applications such as separation, sensing, imaging and drug delivery.

  2. Single-Molecule Force Spectroscopy of DNA-Based Reversible Polymer Bridges: Surface Robustness and Homogeneity

    PubMed Central

    Serpe, Michael J.; Whitehead, Jason R.; Rivera, Monica; Clark, Robert L.; Craig, Stephen L.

    2011-01-01

    Single-molecule force spectroscopy, as implemented in an atomic force microscope, provides a rarely-used method by which to monitor dynamic processes that occur near surfaces. Here, a methodology is presented and characterized that facilitates the study of polymer bridging across nanometer-sized gaps. The model system employed is that of DNA-based reversible polymers, and an automated procedure is introduced that allows the AFM tip-surface contact point to be automatically determined, and the distance d between opposing surfaces to be actively controlled. Using this methodology, the importance of several experimental parameters was systematically studied, e.g. the frequency of repeated tip/surface contacts, the area of the substrate surface sampled by the AFM, and the use of multiple AFM tips and substrates. Experiments revealed the surfaces to be robust throughout pulling experiments, so that multiple touches and pulls could be carried out on a single spot with no measurable affect on the results. Differences in observed bridging probabilities were observed, both on different spots on the same surface and, more dramatically, from one day to another. Data normalization via a reference measurement allows data from multiple days to be directly compared. PMID:21966095

  3. DNA-binding and oxidative properties of cationic phthalocyanines and their dimeric complexes with anionic phthalocyanines covalently linked to oligonucleotides.

    PubMed

    Kuznetsova, A A; Lukyanets, E A; Solovyeva, L I; Knorre, D G; Fedorova, O S

    2008-12-01

    Design of chemically modified oligonucleotides for regulation of gene expression has attracted considerable attention over the past decades. One actively pursued approach involves antisense or antigene oligonucleotide constructs carrying reactive groups, many of these based on transition metal complexes. The complexes of Fe(II) and Co(II) with phthalocyanines are extremely good catalysts of oxidation of organic compounds with molecular oxygen and hydrogen peroxide. The binding of positively charged Fe(II) and Co(II) phthalocyanines with single- and double-stranded DNA was investigated. It was shown that these phthalocyanines interact with nucleic acids through an outside binding mode. The site-directed modification of single-stranded DNA by O2 and H2O2 in the presence of dimeric complexes of negatively and positively charged Fe(II) and Co(II) phthalocyanines was investigated. These complexes were formed directly on single-stranded DNA through interaction between negatively charged phthalocyanine in conjugate and positively charged phthalocyanine in solution. The resulting oppositely charged phthalocyanine complexes showed significant increase of catalytic activity compared with monomeric forms of phthalocyanines Fe(II) and Co(II). These complexes catalyzed the DNA oxidation with high efficacy and led to direct DNA strand cleavage. It was determined that oxidation of DNA by molecular oxygen catalyzed by complex of Fe(II)-phthalocyanines proceeds with higher rate than in the case of Co(II)-phthalocyanines but the latter led to a greater extent of target DNA modification.

  4. A new optimized formulation of cationic solid lipid nanoparticles intended for gene delivery: development, characterization and DNA binding efficiency of TCERG1 expression plasmid.

    PubMed

    Fàbregas, Anna; Sánchez-Hernández, Noemí; Ticó, Josep Ramon; García-Montoya, Encarna; Pérez-Lozano, Pilar; Suñé-Negre, Josep M; Hernández-Munain, Cristina; Suñé, Carlos; Miñarro, Montserrat

    2014-10-01

    Solid lipid nanoparticles (SLNs) are being considered as a new approach for therapeutics for many known diseases. In addition to drug delivery, their use as non-viral vectors for gene delivery can be achieved by the inclusion of cationic lipids, which provide a positive surface potential that favours binding to the DNA backbone. This work is based on the idea that the optimization of the components is required as the first step in simplifying the qualitative and quantitative composition of SLNs as much as possible without affecting the essential properties that define SLNs as optimal non-viral vectors for gene delivery. We selected the best lipids and surfactants in terms of particle size and zeta potential and characterized the properties of the resulting nanoparticles using X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The SLNs had a particle size of approximately 120 nm and a positive surface charge of 42 mV. In addition, we analysed the main physicochemical characteristics of the bulk components of the nanoparticles using X-ray diffraction (XRD), differential scanning calorimetry (DSC) and mass spectrometry (MS). The suitability of the optimized SLNs for DNA binding was evaluated after the lyophilisation process using a carboxyl-terminal region of the TCERG1 gene, a human factor that has been implicated in several diseases. We show that the SLNs presented high efficiency in the binding of DNA, and importantly, they presented no toxicity when assayed in an in vivo system.

  5. DNA damage induced by bare and loaded microporous coordination polymers from their ground and electronic excited states.

    PubMed

    Yañuk, Juan G; Alomar, María L; Gonzalez, M Micaela; Simon, Francisco; Erra-Balsells, Rosa; Rafti, Matías; Cabrerizo, Franco M

    2015-05-21

    We report on interactions of cell free double-stranded DNA (dsDNA) with a selected subgroup of Microporous Coordination Polymers (MCPs). In particular, we have studied the influence of different metal ion constituents and chemically modified linkers using a set of five benzene carboxylate-based MCPs. Our results suggest that the DNA moiety can be structurally modified in two different ways: by direct MCPs-dsDNA interaction and/or through photosensitized processes. The extent of the observed damage was found to be strongly dependent on the charge density of the material. The potential use of the MCPs tested as inert carriers of photosensitizers was demonstrated by analyzing the interaction between dsDNA and harmine-loaded Cr-based materials, both in the absence of light and upon UVA irradiation.

  6. Hydrophobic self-assembly of a perylenediimide-linked DNA dumbbell into supramolecular polymers.

    PubMed

    Neelakandan, Prakash P; Pan, Zhengzheng; Hariharan, Mahesh; Zheng, Yan; Weissman, Haim; Rybtchinski, Boris; Lewis, Frederick D

    2010-11-10

    The self-assembly of DNA dumbbell conjugates possessing hydrophobic perylenediimide (PDI) linkers separated by an eight-base pair A-tract has been investigated. Cryo-TEM images obtained from dilute solutions of the dumbbell in aqueous buffer containing 100 mM NaCl show the presence of structures corresponding to linear end-to-end assemblies of 10-30 dumbbell monomers. The formation of assemblies of this size is consistent with analysis of the UV-vis and fluorescence spectra of these solutions for the content of PDI monomer and dimer chromophores. Assembly size is dependent upon the concentration of dumbbell and salt as well as the temperature. Kinetic analysis of the assembly process by means of salt-jump stopped-flow measurements shows that it occurs by a salt-triggered isodesmic mechanism in which the rate constants for association and dissociation in 100 mM NaCl are 3.2 × 10(7) M(-1)s(-1) and 1.0 s(-1), respectively, faster than the typical rate constants for DNA hybridization. TEM and AFM images of samples deposited from solutions having higher concentrations of dumbbell and NaCl display branched assemblies with linear regions >1 μm in length and diameters indicative of the formation of small bundles of dumbbell end-to-end assemblies. These observations provide the first example of the use of hydrophobic association for the assembly of small DNA duplex conjugates into supramolecular polymers and larger branched aggregates.

  7. Induction of a cationic shift in IgG anti-DNA autoantibodies. Role of T helper cells with classical and novel phenotypes in three murine models of lupus nephritis

    PubMed Central

    1987-01-01

    We investigated the underlying mechanisms of systemic autoimmune disease in MRL-+/+, (NZB X NZW)F1, and (NZB X SWR)F1 mice, since these strains develop glomerulonephritis without the superimposition of any secondary lupus-accelerating genes. All three strains manifested a common immunoregulatory defect specific for the production of pathogenic anti-DNA autoantibodies that are of IgG class and cationic in charge. At or just before the age they began to develop lupus nephritis, spleen cells of the mice contained a subpopulation of Th cells that selectively induced their B cells in vitro to produce highly cationic IgG autoantibodies to both single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA). By contrast, T cells from younger preautoimmune mice were incapable of providing this help. Moreover, only B cells of the older lupus mice could be induced to secrete cationic anti-DNA antibodies of IgG class. B cells of young lupus mice could not produce the cationic autoantibodies even with the help of T cells from the older mice, nor upon stimulation with mitogens. In the older lupus mice we found two sets of Th cells that spontaneously induced the cationic shift in autoantibodies; one set belonged to the classical Th category with L3T4+,Lyt-2- phenotype, whereas the other surprisingly belonged to a double-negative (L3T4-,Lyt-2-), Lyt-1+ subpopulation. The latter set of unusual Th cells were unexpected in these lupus mice since they lacked the lpr (lympho-proliferation) gene. Thus three apparently different murine models of systemic lupus erythematosus possess a common underlying mechanism specific for the spontaneous production of pathogenic anti-DNA autoantibodies. PMID:2952749

  8. How does the spacer length of cationic gemini lipids influence the lipoplex formation with plasmid DNA? Physicochemical and biochemical characterizations and their relevance in gene therapy.

    PubMed

    Muñoz-Úbeda, Mónica; Misra, Santosh K; Barrán-Berdón, Ana L; Datta, Sougata; Aicart-Ramos, Clara; Castro-Hartmann, Pablo; Kondaiah, Paturu; Junquera, Elena; Bhattacharya, Santanu; Aicart, Emilio

    2012-12-10

    Lipoplexes formed by the pEGFP-C3 plasmid DNA (pDNA) and lipid mixtures containing cationic gemini surfactant of the 1,2-bis(hexadecyl dimethyl ammonium) alkanes family referred to as C16CnC16, where n=2, 3, 5, or 12, and the zwitterionic helper lipid, 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) have been studied from a wide variety of physical, chemical, and biological standpoints. The study has been carried out using several experimental methods, such as zeta potential, gel electrophoresis, small-angle X-ray scattering (SAXS), cryo-TEM, gene transfection, cell viability/cytotoxicity, and confocal fluorescence microscopy. As reported recently in a communication (J. Am. Chem. Soc. 2011, 133, 18014), the detailed physicochemical and biological studies confirm that, in the presence of the studied series lipid mixtures, plasmid DNA is compacted with a large number of its associated Na+ counterions. This in turn yields a much lower effective negative charge, qpDNA−, a value that has been experimentally obtained for each mixed lipid mixture. Consequently, the cationic lipid (CL) complexes prepared with pDNA and CL/DOPE mixtures to be used in gene transfection require significantly less amount of CL than the one estimated assuming a value of qDNA−=−2. This drives to a considerably lower cytotoxicity of the gene vector. Depending on the CL molar composition, α, of the lipid mixture, and the effective charge ratio of the lipoplex, ρeff, the reported SAXS data indicate the presence of two or three structures in the same lipoplex, one in the DOPE-rich region, other in the CL-rich region, and another one present at any CL composition. Cryo-TEMand SAXS studies with C16CnC16/DOPE-pDNA lipoplexes indicate that pDNA is localized between the mixed lipid bilayers of lamellar structures within a monolayer of ∼2 nm. This is consistent with a highly compacted supercoiled pDNA conformation compared with that of linear DNA. Transfection studies were carried out

  9. DNA Self-Assembling Nanostructures Induced by Trivalent Ions and Polycations

    NASA Astrophysics Data System (ADS)

    Kasyanenko, Nina; Afanasieva, Daria

    The purpose of this work is to compare DNA condensation induced by small multivalent ions and polycations. DNA complexes with trivalent ions Fe3+, La3+, [Co(NH3)6]3+, spermidine and cationic polymers in a solution were investigated. The influence of cations on the volume, persistent length, and secondary structure of DNA was studied. A comparison of DNA packaging induced by trivalent ions and polycations was made. DNA complexes with trivalent metal ions and polycations were characterized by means of low gradient viscometry, dynamic light scattering, circular dichroism, UV spectrometry, flow birefringence, and atomic force microscopy.

  10. A novel cation exchange polymer as a reversed-dispersive solid phase extraction sorbent for the rapid determination of rhodamine B residue in chili powder and chili oil.

    PubMed

    Chen, Dawei; Zhao, Yunfeng; Miao, Hong; Wu, Yongning

    2014-12-29

    This paper presents a new analytical method for the determination of rhodamine B (RB) residue in chili powder and chili oil based on a novel reversed-dispersive solid phase extraction (r-dSPE) and ultra high performance liquid chromatography–high resolution mass spectrometry (UHPLC–HRMS). Chili powder and chili oil samples were first extracted with acetonitrile/water (1:1, v/v) and acetonitrile, respectively. Then, RB from the extract was adsorbed to the polymer cation exchange (PCX) sorbent with the characteristics of ion exchange and reversed-phase retention. Subsequently, the analyte in PCX sorbent was eluted with ammonium hydroxide/methanol (1:99, v/v) through a simple unit device equipped with 1 mL syringe and 0.22 μm nylon syringe filter. All of the samples were analyzed by UHPLC–HRMS/MS on a Waters Acquity BEH C18 column with 0.1% formic acid and 4 mM ammonium formate in water/acetonitrile as the mobile phase with gradient elution. The matrix effect, recovery, and repeatability, within laboratory reproducibility, and the LODs and LOQs of the r-dSPE cleanup method were investigated. The method showed a good linearity (R2 > 0.999) in the ranges of 0.01–1 μg/L and 1–100 μg/L for the analyte. The LODs of RB for chili powder and chili oil samples were 0.5 μg/kg. The average recoveries of RB from the samples spiked at four different concentrations (2, 20, 500 and 5000 μg/kg) were in a range from 76.7 to 104.9%. Results showed that the proposed method was simple, fast, economical and effective for the determination of RB in chili powder and chili oil. Considering the excellent sorptive performance of PCX for RB, further work should be done to evaluate the usefulness of the PCX in r-dSPE for the clean-up and analyses of other trace-level alkaline contaminants.

  11. Cationic star-shaped polymer as an siRNA carrier for reducing MMP-9 expression in skin fibroblast cells and promoting wound healing in diabetic rats

    PubMed Central

    Li, Na; Luo, Heng-Cong; Yang, Chuan; Deng, Jun-Jie; Ren, Meng; Xie, Xiao-Ying; Lin, Diao-Zhu; Yan, Li; Zhang, Li-Ming

    2014-01-01

    Background Excessive expression of matrix metalloproteinase-9 (MMP-9) is deleterious to the cutaneous wound-healing process in the context of diabetes. The aim of the present study was to explore whether a cationic star-shaped polymer consisting of β-cyclodextrin (β-CD) core and poly(amidoamine) dendron arms (β-CD-[D3]7) could be used as the gene carrier of small interfering RNA (siRNA) to reduce MMP-9 expression for enhanced diabetic wound healing. Methods The cytotoxicity of β-CD-(D3)7 was investigated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (MMT) method in the rat CRL1213 skin fibroblast cell line. The transfection efficiency of β-CD-(D3)7/MMP-9-small interfering RNA (siRNA) complexes was determined by confocal microscopy and flow cytometry. Quantitative real time (RT) polymerase chain reaction was performed to measure the gene expression of MMP-9 after the transfection by β-CD-(D3)7/MMP-9-siRNA complexes. The β-CD-(D3)7/MMP-9-siRNA complexes were injected on the wounds of streptozocin-induced diabetic rats. Wound closure was measured on days 4 and 7 post-wounding. Results β-CD-(D3)7 exhibited low cytotoxicity in fibroblast cells, and easily formed the complexes with MMP-9-siRNA. The β-CD-(D3)7/MMP-9-siRNA complexes were readily taken up by fibroblast cells, resulting in the downregulation of MMP-9 gene expression (P<0.01). Animal experiments revealed that the treatment by β-CD-(D3)7/MMP-9-siRNA complexes enhanced wound closure in diabetic rats on day 7 post-wounding (P<0.05). Conclusion β-CD-(D3)7 may be used as an efficient carrier for the delivery of MMP-9-siRNA to reduce MMP-9 expression in skin fibroblast cells and promote wound healing in diabetic rats. PMID:25075185

  12. Comparison of different cationized proteins as biomaterials for nanoparticle-based ocular gene delivery.

    PubMed

    Zorzi, Giovanni K; Párraga, Jenny E; Seijo, Begoña; Sanchez, Alejandro

    2015-11-01

    Cationized polymers have been proposed as transfection agents for gene therapy. The present work aims to improve the understanding of the potential use of different cationized proteins (atelocollagen, albumin and gelatin) as nanoparticle components and to investigate the possibility of modulating the physicochemical properties of the resulting nanoparticle carriers by selecting specific protein characteristics in an attempt to improve current ocular gene-delivery approaches. The toxicity profiles, as well as internalization and transfection efficiency, of the developed nanoparticles can be modulated by modifying the molecular weight of the selected protein and the amine used for cationization. The most promising systems are nanoparticles based on intermediate molecular weight gelatin cationized with the endogenous amine spermine, which exhibit an adequate toxicological profile, as well as effective association and protection of pDNA or siRNA molecules, thereby resulting in higher transfection efficiency and gene silencing than the other studied formulations.

  13. DNA barcoding via counterstaining with AT/GC sensitive ligands in injection-molded all-polymer nanochannel devices.

    PubMed

    Østergaard, Peter Friis; Matteucci, Marco; Reisner, Walter; Taboryski, Rafael

    2013-02-21

    Nanochannel technology, coupled with a suitable DNA labeling chemistry, is a powerful approach for performing high-throughput single-molecule mapping of genomes. Yet so far nanochannel technology has remained inaccessible to the broader research community due to high fabrication cost and/or requirement of specialized facilities/skill-sets. In this article we show that nanochannel-based mapping can be performed in all polymer chips fabricated via injection molding: a fabrication process so inexpensive that the devices can be considered disposable. Fluorescent intensity variations can be obtained from molecules extended in the polymer nanochannels via chemical counterstaining against YOYO-1. In particular, we demonstrate that the counterstaining induced fluorescent intensity variations to a large degree appear to be proportional to the theoretically computed sequence-maps of both local AT and GC variation along DNA sequences.

  14. Molecular Processes Leading to “Necking” in Extensional Flow of Polymer Solutions: Using Microfluidics and Single DNA Imaging

    PubMed Central

    2016-01-01

    We study the necking and pinch-off dynamics of liquid droplets that contain a semidilute polymer solution of polyacrylamide close to overlap concentration by combining microfluidics and single DNA observation. Polymeric droplets are stretched by passing them through the stagnation point of a T-shaped microfluidic junction. In contrast with the sudden breakup of Newtonian droplets, a stable neck is formed between the separating ends of the droplet which delays the breakup process. Initially, polymeric filaments experience exponential thinning by forming a stable neck with extensional flow within the filament. Later, thin polymeric filaments develop a structure resembling a series of beads-on-a-string along their length and finally rupture during the final stages of the thinning process. To unravel the molecular picture behind these phenomena, we integrate a T-shaped microfluidic device with advanced fluorescence microscopy to visualize stained DNA molecules at the stagnation point within the necking region. We find that the individual polymer molecules suddenly stretch from their coiled conformation at the onset of necking. The extensional flow inside the neck is strong enough to deform and stretch polymer chains; however, the distribution of polymer conformations is broad, and it remains stationary in time during necking. Furthermore, we study the dynamics of single molecules during formation of beads-on-a-string structure. We observe that polymer chains gradually recoil inside beads while polymer chains between beads remain stretched to keep the connection between beads. The present work effectively extends single molecule experiments to free surface flows, which provides a unique opportunity for molecular-scale observation within the polymeric filament during necking and rupture. PMID:28216791

  15. Molecular Processes Leading to "Necking" in Extensional Flow of Polymer Solutions: Using Microfluidics and Single DNA Imaging.

    PubMed

    Sachdev, Shaurya; Muralidharan, Aswin; Boukany, Pouyan E

    2016-12-27

    We study the necking and pinch-off dynamics of liquid droplets that contain a semidilute polymer solution of polyacrylamide close to overlap concentration by combining microfluidics and single DNA observation. Polymeric droplets are stretched by passing them through the stagnation point of a T-shaped microfluidic junction. In contrast with the sudden breakup of Newtonian droplets, a stable neck is formed between the separating ends of the droplet which delays the breakup process. Initially, polymeric filaments experience exponential thinning by forming a stable neck with extensional flow within the filament. Later, thin polymeric filaments develop a structure resembling a series of beads-on-a-string along their length and finally rupture during the final stages of the thinning process. To unravel the molecular picture behind these phenomena, we integrate a T-shaped microfluidic device with advanced fluorescence microscopy to visualize stained DNA molecules at the stagnation point within the necking region. We find that the individual polymer molecules suddenly stretch from their coiled conformation at the onset of necking. The extensional flow inside the neck is strong enough to deform and stretch polymer chains; however, the distribution of polymer conformations is broad, and it remains stationary in time during necking. Furthermore, we study the dynamics of single molecules during formation of beads-on-a-string structure. We observe that polymer chains gradually recoil inside beads while polymer chains between beads remain stretched to keep the connection between beads. The present work effectively extends single molecule experiments to free surface flows, which provides a unique opportunity for molecular-scale observation within the polymeric filament during necking and rupture.

  16. Hydration of cations: a key to understanding of specific cation effects on aggregation behaviors of PEO-PPO-PEO triblock copolymers.

    PubMed

    Lutter, Jacob C; Wu, Tsung-yu; Zhang, Yanjie

    2013-09-05

    This work reports results from the interactions of a series of monovalent and divalent cations with a triblock copolymer, poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO). Phase transition temperatures of the polymer in the presence of chloride salts with six monovalent and eight divalent cations were measured using an automated melting point apparatus. The polymer undergoes a two-step phase transition, consisting of micellization of the polymer followed by aggregation of the micelles, in the presence of all the salts studied herein. The results suggest that hydration of cations plays a key role in determining the interactions between the cations and the polymer. The modulation of the phase transition temperature of the polymer by cations can be explained as a balance between three interactions: direct binding of cations to the oxygen in the polymer chains, cations sharing one water molecule with the polymer in their hydration layer, and cations interacting with the polymer via two water molecules. Monovalent cations Na(+), K(+), Rb(+), and Cs(+) do not bind to the polymer, while Li(+) and NH4(+) and all the divalent cations investigated including Mg(2+), Ca(2+), Sr(2+), Ba(2+), Co(2+), Ni(2+), Cu(2+), and Cd(2+) bind to the polymer. The effects of the cations correlate well with their hydration thermodynamic properties. Mechanisms for cation-polymer interactions are discussed.

  17. Inhibition of Cellular Entry of Lymphocytic Choriomeningitis Virus by Amphipathic DNA Polymers

    PubMed Central

    Lee, Andrew M.; Rojek, Jillian M.; Gundersen, Anette; Ströher, Ute; Juteau, Jean-Marc; Vaillant, Andrew; Kunz, Stefan

    2008-01-01

    The prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) represents a powerful experimental model for the study of the basic virology and pathogenesis of arenaviruses. In the present study, we used the LCMV model to evaluate the anti-viral potential of phosphorothioate oligonucleotides against arenaviruses. Our findings indicate that amphipathic DNA polymers (APs) are potent inhibitors of infection with a series of LCMV isolates with IC50 in the low nanomolar range. APs target the surface glycoprotein (GP) of LCMV and block viral entry and cell-cell propagation of the virus, without affecting later steps in replication or release of progeny virus from infected cells. The anti-viral action of APs is sequence-independent but is critically dependent on their size and hydrophobicity. Mechanistically, we provide evidence that APs disrupt the interaction between LCMVGP and its cellular receptor, α-dystroglycan. Exposure of LCMV to APs does not affect the stability of the GP virion spike and has no effect on the conformation of a neutralizing antibody epitope, suggesting rather subtle changes in the conformation and/or conformational dynamics of the viral GP. PMID:18022208

  18. Effect of the alkaline cation size on the conductivity in gel polymer electrolytes and their influence on photo electrochemical solar cells.

    PubMed

    Bandara, T M W J; Fernando, H D N S; Furlani, M; Albinsson, I; Dissanayake, M A K L; Ratnasekera, J L; Mellander, B-E

    2016-04-28

    The nature and concentration of cationic species in the electrolyte exert a profound influence on the efficiency of nanocrystalline dye-sensitized solar cells (DSSCs). A series of DSSCs based on gel electrolytes containing five alkali iodide salts (LiI, NaI, KI, RbI and CsI) and polyacrylonitrile with plasticizers were fabricated and studied, in order to investigate the dependence of solar cell performance on the cation size. The ionic conductivity of electrolytes with relatively large cations, K(+), Rb(+) and Cs(+), was higher and essentially constant, while for the electrolytes containing the two smaller cations, Na(+) and Li(+), the conductivity values were lower. The temperature dependence of conductivity in this series appears to follow the Vogel-Tamman-Fulcher equation. The sample containing the smallest cation shows the lowest conductivity and the highest activation energy of ∼36.5 meV, while K(+), Rb(+) and Cs(+) containing samples show an activation energy of ∼30.5 meV. DSSCs based on the gel electrolyte and a TiO2 double layer with the N719 dye exhibited an enhancement in the open circuit voltage with increasing cation size. This can be attributed to the decrease in the recombination rate of electrons and to the conduction band shift resulting from cation adsorption by TiO2. The maximum efficiency value, 3.48%, was obtained for the CsI containing cell. The efficiencies shown in this study are lower compared to values reported in the literature, and this can be attributed to the use of a single salt and the absence of other additives, since the focus of the present study was to analyze the cation effect. The highest short circuit current density of 9.43 mA cm(-2) was shown by the RbI containing cell. The enhancement of the solar cell performance with increasing size of the cation is discussed in terms of the effect of the cations on the TiO2 anode and ion transport in the electrolyte. In liquid electrolyte based DSSCs, the short circuit current density

  19. Cationic Liposomes Modified with Polyallylamine as a Gene Carrier: Preparation, Characterization and Transfection Efficiency Evaluation

    PubMed Central

    Kazemi Oskuee, Reza; Mahmoudi, Asma; Gholami, Leila; Rahmatkhah, Alireza; Malaekeh-Nikouei, Bizhan

    2016-01-01

    Purpose: Cationic polymers and cationic liposomes have shown to be effective non-viral gene delivery vectors. In this study, we tried to improve the transfection efficiency by employing the advantages of both. Methods: For this purpose, modified polyallylamines (PAAs) were synthesized. These modifications were done through the reaction of PAA (15 KDa) with acrylate and 6-bromoalkanoic acid derivatives. Liposomes comprising of these cationic polymers and cationic lipid were prepared and extruded through polycarbonate filters to obtain desired size. Liposome-DNA nanocomplexes were prepared in three carrier to plasmid (C/P) ratios. Size, zeta potential and DNA condensation ability of each complex were characterized separately and finally transfection efficiency and cytotoxicity of prepared vectors were evaluated in Neuro2A cell line. Results: The results showed that mean particle size of all these nanocomplexes was lower than 266 nm with surface charge of 22.0 to 33.9 mV. Almost the same condensation pattern was observed in all vectors and complete condensation was occurred at C/P ratio of 1.5. The lipoplexes containing modified PAA 15 kDa with 10% hexyl acrylate showed the highest transfection efficacy and lowest cytotoxicity in C/P ratio of 0.5. Conclusion: In some cases nanocomplexes consisting of cationic liposome and modified PAA showed better transfection activity and lower cytotoxicity compared to PAA. PMID:28101458

  20. Low-molecular-weight polyethylenimine enhanced gene transfer by cationic cholesterol-based nanoparticle vector.

    PubMed

    Hattori, Yoshiyuki; Maitani, Yoshie

    2007-09-01

    Both polyethylenimine (PEI) polymers and cationic nanoparticles have been widely used for non-viral DNA transfection. Previously, we reported that cationic nanoparticles composed of cholesteryl-3beta-carboxyamidoethylene-N-hydroxyethylamine and Tween 80 (NP-OH) could deliver plasmid DNA (pDNA) with high transfection efficiency. To increase the transfection activity of NP-OH, we investigated the potential synergism of PEI and NP-OH for the transfection of DNA into human prostate tumor PC-3, human cervices tumor Hela, and human lung adenocarcinoma A549 cells. The transfection efficiency with low-molecular PEI (MW 600) was low, but that with a combination of NP-OH and PEI was higher than with NP-OH alone, being comparable to commercially available lipofectamine 2,000 and lipofectamine LTX, with very low cytotoxicity. Low-molecular weight PEI could not compact pDNA in size, but rather might help to dissociate pDNA from the complex and release pDNA from the endosome to cytoplasm by the proton sponge effect. Therefore, the combination of cationic cholesterol-based nanoparticles and a low-molecular PEI has potential as a non-viral DNA vector for gene delivery.

  1. Targetable Endolytic Protein-Based Polymers for Systemic Breast Cancer Gene Therapy

    DTIC Science & Technology

    2005-08-01

    with 1 positive charge is perhaps due to the active contribution of histidine residues 28, 29 in DNA condensation via hydrogen bond formation2...plausible that not only cationic residues are important in DNA condensation, residues such as histidine which can form a hydrogen bond with DNA may...silk-like blocks necessary for formation of hydrogen bonds between the polymer chains also increases (Figure 3C). Three SELP 415K analogs with 6, 8 and

  2. Bioreducible cross-linked nanoshell enhances gene transfection of polycation/DNA polyplex in vivo.

    PubMed

    Piao, Ji-Gang; Ding, Sheng-Gang; Yang, Lu; Hong, Chun-Yan; You, Ye-Zi

    2014-08-11

    In this study, we have prepared a self-cross-linking PEG-based branched polymer, which easily forms a bioreducible nanoshell around polyplexes of cationic polymer and DNA, simply via heating the polyplex dispersions in the presence of this self-cross-linking branched polymer. This nanoshell can prevent the polyplex from dissociation and aggregation in physiological fluids without inhibiting the electrostatic interactions between the polymer and DNA. Furthermore, glutathione (GSH) can act as a stimulus to open the nanoshell after it has entered the cell. The polyplexes coated with the bioreducible nanoshell show an obvious enhancement in gene transfection in vivo compared with bare polyplexes.

  3. Optical mapping of single-molecule human DNA in disposable, mass-produced all-polymer devices

    NASA Astrophysics Data System (ADS)

    Østergaard, Peter Friis; Lopacinska-Jørgensen, Joanna; Nyvold Pedersen, Jonas; Tommerup, Niels; Kristensen, Anders; Flyvbjerg, Henrik; Silahtaroglu, Asli; Marie, Rodolphe; Taboryski, Rafael

    2015-10-01

    We demonstrate all-polymer injection molded devices for optical mapping of denaturation-renaturation (DR) patterns on long, single DNA-molecules from the human genome. The devices have channels with ultra-low aspect ratio, only 110 nm deep while 20 μm wide, and are superior to the silica devices used previously in the field. With these polymer devices, we demonstrate on-chip recording of DR images of DNA-molecules stretched to more than 95% of their contour length. The stretching is done by opposing flows Marie et al (2013 Proc. Natl Acad. Sci. USA 110 4893-8). The performance is validated by mapping 20 out of 24 Mbp-long DNA fragments to the human reference genome. We optimized fabrication of the devices to a yield exceeding 95%. This permits a substantial economies-of-scale driven cost-reduction, leading to device costs as low as 3 USD per device, about a factor 70 lower than the cost of silica devices. This lowers the barrier to a wide use of DR mapping of native, megabase-size DNA molecules, which has a huge potential as a complementary method to next-generation sequencing.

  4. Delivery of plasmid DNA encoding bone morphogenetic protein-2 with a biodegradable branched polycationic polymer in a critical-size rat cranial defect model.

    PubMed

    Chew, Sue Anne; Kretlow, James D; Spicer, Patrick P; Edwards, Austin W; Baggett, L Scott; Tabata, Yasuhiko; Kasper, F Kurtis; Mikos, Antonios G

    2011-03-01

    This study investigated the delivery of plasmid DNA (pDNA) encoding bone morphogenetic protein-2 in the form of polyplexes with a biodegradable branched triacrylate/amine polycationic polymer (TAPP) that were complexed with gelatin microparticles (GMPs) loaded within a porous tissue engineering scaffold. More specifically, the study investigated the interplay between TAPP degradation, gelatin degradation, pDNA release, and bone formation in a critical-size rat cranial defect model. The pDNA release kinetics in vitro were not affected by the crosslinking density of the GMPs but depended, rather, on the degradation rates of the TAPPs. Besides the initial release of polyplexes not bound to the GMPs and the minimal release of polyplexes through diffusion or dissociation from the GMPs, the pDNA was likely released as naked pDNA or as part of an incomplete polyplex, after the degradation of fragments of the polycationic polymer. After 30 days, significantly higher amounts of pDNA were released (93%-98%) from composite scaffolds containing naked pDNA or pDNA complexed with P-AEPZ (synthesized with 1-[2-aminoethyl]piperazine, a faster degrading TAPP) compared with those containing pDNA complexed with P-DED (synthesized with N,N-dimethylethylenediamine, a slower degrading TAPP) (74%-82%). Composite scaffolds containing GMPs complexed with TAPP/pDNA polyplexes did not result in enhanced bone formation, as analyzed by microcomputed tomography and histology, in a critical-size rat cranial defect at 12 weeks postimplantation compared with those loaded with naked pDNA. The results demonstrate that polycationic polymers with a slow degradation rate can prolong the release of pDNA from the composite scaffolds and suggest that a gene delivery system comprising biodegradable polycationic polymers should be designed to release the pDNA in an intact polyplex form.

  5. Reactions of 5-methylcytosine cation radicals in DNA and model systems: thermal deprotonation from the 5-methyl group vs. excited state deprotonation from sugar

    PubMed Central

    Adhikary, Amitava; Kumar, Anil; Palmer, Brian J.; Todd, Andrew D.; Heizer, Alicia N.; Sevilla, Michael D.

    2014-01-01

    Purpose To study the formation and subsequent reactions of the 5-methyl-2′-deoxycytidine cation radical (5-Me-2′-dC•+) in nucleosides and DNA-oligomers and compare to one electron oxidized thymidine. Materials and methods Employing electron spin resonance (ESR), cation radical formation and its reactions were investigated in 5-Me-2′-dC, thymidine (Thd) and their derivatives, in fully double stranded (ds) d[GC*GC*GC*GC*]2 and in the 5-Me-C/A mismatched, d[GGAC*AAGC:CCTAATCG], where C* = 5-Me-C. Results We report 5-Me-2′-dC•+ production by one-electron oxidation of 5-Me-2′-dC by Cl2•− via annealing in the dark at 155 K. Progressive annealing of 5-Me-2′-dC•+ at 155 K produces the allylic radical (C-CH2•). However, photoexcitation of 5-Me-2′-dC•+ by 405 nm laser or by photoflood lamp leads to only C3′• formation. Photoexcitation of N3-deprotonated thyminyl radical in Thd and its 5′-nucleotides leads to C3′• formation but not in 3′-TMP which resulted in the allylic radical (U-CH2•) and C5′• production. For excited 5-Me-2′,3′-ddC•+, absence of the 3′-OH group does not prevent C3′• formation. For d[GC*GC*GC*GC*]2 and d[GGAC*AAGC:CCTAATCG], intra-base paired proton transferred form of G cation radical (G(N1-H)•:C(+H+)) is found with no observable 5-Me-2′-dC•+ formation. Photoexcitation of (G(N1-H)•:C(+H+)) in d[GC*GC*GC*GC*]2 produced only C1′• and not the expected photoproducts from 5-Me-2′-dC•+. However, photoexcitation of (G(N1-H)•:C(+H+)) in d[GGAC*AAGC:CCTAATCG] led to C5′• and C1′• formation. Conclusions C-CH2• formation from 5-Me-2′-dC•+ occurs via ground state deprotonation from C5-methyl group on the base. In the excited 5-Me-2′-dC•+ and 5-Me-2′,3′-ddC•+, spin and charge localization at C3′ followed by deprotonation leads to C3′• formation. Thus, deprotonation from C3′ in the excited cation radical is kinetically controlled and sugar C-H bond energies are

  6. Localization of a hole on an adenine-thymine radical cation in B-form DNA in water.

    PubMed

    Kravec, S M; Kinz-Thompson, C D; Conwell, E M

    2011-05-19

    A quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulation has been carried out using CP2K for a hole introduced into a B-form DNA molecule consisting of 10 adenine-thymine (A/T) pairs in water. At the beginning of the simulation, the hole wave function is extended over several adenines. Within 20-25 fs, the hole wave function contracts so that it is localized on a single A. At 300 K, it stays on this A for the length of the simulation, several hundred fs, with the wave function little changed. In a range of temperatures below 300 K, proton transfer from A to T is seen to take place within the A/T occupied by the hole; it is completed by ∼40 fs after the contraction. We show that the contraction is due to polarization of the water by the hole. This polarization also plays a role in the proton transfer. Implications for transport are considered.

  7. Human granulocyte-macrophage colony-stimulating factor DNA cationic-lipid complexed autologous tumour cell vaccination in the treatment of canine B-cell multicentric lymphoma.

    PubMed

    Turek, M M; Thamm, D H; Mitzey, A; Kurzman, I D; Huelsmeyer, M K; Dubielzig, R R; Vail, D M

    2007-12-01

    This study describes the development of an human granulocyte-macrophage colony-stimulating factor DNA cationic-lipid complexed autologous tumour cell vaccine (hGM-CSF CLDC ATCV) and its implementation, following a chemotherapy treatment protocol, in a randomized, placebo-controlled, double-blinded clinical trial in pet dogs with naturally occurring lymphoma. We hypothesized that the use of this vaccine would result in an antitumour immune response leading to improved first remission duration and overall survival in dogs with B-cell lymphoma when compared with chemotherapy alone. Immune stimulation generated by hGM-CSF CLDC ATCV was assessed by means of surrogate in vivo analysis (delayed-type hypersensitivity [DTH]) as well as an ex vivo cellular assay (lymphocyte proliferation assay). The vaccine approach considered in the current report did not result in clinically improved outcomes. A small measure of immunomodulation was documented by DTH and several modifications to the approach are suggested. This report illustrates the feasibility of clinical trials with vaccine strategies using companion animals with non-Hodgkin's lymphoma.

  8. Cationic Amphiphiles Increase Activity of Aminoglycoside Antibiotic Tobramycin in the Presence of Airway Polyelectrolytes

    SciTech Connect

    Purdy Drew, Kirstin R.; Sanders, Lori K.; Culumber, Zachary W.; Zribi, Olena; Wong, Gerard C.L.

    2009-06-17

    It is empirically known that anionic polyelectrolytes present in cystic fibrosis (CF) airways due to bacterial infection significantly decrease the activity of cationic antimicrobials via electrostatic binding. In this work, we use synchrotron small-angle X-ray scattering to investigate the interaction between tobramycin, an aminoglycoside antibiotic commonly administered to CF patients via inhalation, with DNA, which is found in high concentrations in the CF airway. We find that interactions between DNA and tobramycin are significantly modified by the presence of mixtures of amphiphilic molecules. We measure a hierarchy of self-assembled structures formed between tobramycin, DNA, and the amphiphile mixtures and show how interactions between these components can be controlled. Results indicate that mixtures of cationic and negative curvature amphiphiles optimized for DNA binding via charge matching and curvature matching can competitively displace bound tobramycin from DNA and thereby drastically suppress tobramycin-DNA binding and resultant antimicrobial inactivation. Growth inhibition assays confirm the increased activity of tobramycin in the presence of DNA with the addition of the amphiphiles. These results suggest that optimized cationic amphiphile solutions have the potential to enhance antimicrobial function in highly infected environments that contain increased concentrations of anionic inflammatory polymers.

  9. Cationic Amphiphiles Increase Activity of Aminoglycoside Antibiotic Tobramycin in the Presence of Airway Polyelectrolytes

    SciTech Connect

    Drew, K.R.Purdy; Sanders, L.K.; Culumber, Z.W.; Zribi, O.; Wong, G.C.L.

    2009-05-21

    It is empirically known that anionic polyelectrolytes present in cystic fibrosis (CF) airways due to bacterial infection significantly decrease the activity of cationic antimicrobials via electrostatic binding. In this work, we use synchrotron small-angle X-ray scattering to investigate the interaction between tobramycin, an aminoglycoside antibiotic commonly administered to CF patients via inhalation, with DNA, which is found in high concentrations in the CF airway. We find that interactions between DNA and tobramycin are significantly modified by the presence of mixtures of amphiphilic molecules. We measure a hierarchy of self-assembled structures formed between tobramycin, DNA, and the amphiphile mixtures and show how interactions between these components can be controlled. Results indicate that mixtures of cationic and negative curvature amphiphiles optimized for DNA binding via charge matching and curvature matching can competitively displace bound tobramycin from DNA and thereby drastically suppress tobramycin-DNA binding and resultant antimicrobial inactivation. Growth inhibition assays confirm the increased activity of tobramycin in the presence of DNA with the addition of the amphiphiles. These results suggest that optimized cationic amphiphile solutions have the potential to enhance antimicrobial function in highly infected environments that contain increased concentrations of anionic inflammatory polymers.

  10. Cationic Antimicrobial Peptides and Biogenic Silver Nanoparticles Kill Mycobacteria without Eliciting DNA Damage and Cytotoxicity in Mouse Macrophages

    PubMed Central

    Mohanty, Soumitra; Jena, Prajna; Mehta, Ranjit; Pati, Rashmirekha; Banerjee, Birendranath; Patil, Satish

    2013-01-01

    With the emergence of multidrug-resistant mycobacterial strains, better therapeutic strategies are required for the successful treatment of the infection. Although antimicrobial peptides (AMPs) and silver nanoparticles (AgNPs) are becoming one of the popular antibacterial agents, their antimycobacterial potential is not fully evaluated. In this study, we synthesized biogenic-silver nanoparticles using bacterial, fungal, and plant biomasses and analyzed their antibacterial activities in combination with AMPs against mycobacteria. Mycobacterium smegmatis was found to be more susceptible to AgNPs compared to M. marinum. We found that NK-2 showed enhanced killing effect with NP-1 and NP-2 biogenic nanoparticles at a 0.5-ppm concentration, whereas LLKKK-18 showed antibacterial activity only with NP-2 at 0.5-ppm dose against M. smegmatis. In case of M. marinum NK-2 did not show any additive activity with NP-1 and NP-2 and LLKKK-18 alone completely inhibited the bacterial growth. Both NP-1 and NP-2 also showed increased killing of M. smegmatis in combination with the antituberculosis drug rifampin. The sizes and shapes of the AgNPs were determined by transmission electron microscopy and dynamic light scattering. AgNPs showed no cytotoxic or DNA damage effects on macrophages at the mycobactericidal dose, whereas treatment with higher doses of AgNPs caused toxicity and micronuclei formation in cytokinesis blocked cells. Macrophages actively endocytosed fluorescein isothiocyanate-labeled AgNPs resulting in nitric oxide independent intracellular killing of M. smegmatis. Apoptosis and cell cycle studies showed that treatment with higher dose of AgNPs arrested macrophages at the G1-phase. In summary, our data suggest the combined effect of biogenic-AgNPs and antimicrobial peptides as a promising antimycobacterial template. PMID:23689720

  11. Surface modification of electrospun cellulose acetate nanofibers via RAFT polymerization for DNA adsorption.

    PubMed

    Demirci, Serkan; Celebioglu, Asli; Uyar, Tamer

    2014-11-26

    We report on a facile and robust method by which surface of electrospun cellulose acetate (CA) nanofibers can be chemically modified with cationic polymer brushes for DNA adsorption. The surface of CA nanofibers was functionalized by growing poly[(ar-vinylbenzyl)trimethylammonium chloride)] [poly(VBTAC)] brushes through a multi-step chemical sequence that ensures retention of mechanically robust nanofibers. Initially, the surface of the CA nanofibers was modified with RAFT chain transfer agent. Poly(VBTAC) brushes were then prepared via RAFT-mediated polymerization from the nanofiber surface. DNA adsorption capacity of CA nanofibrous web surface functionalized with cationic poly(VBTAC) brushes was demonstrated. The reusability of these webs was investigated by measuring the adsorption capacity for target DNA in a cyclic manner. In brief, CA nanofibers surface-modified with cationic polymer brushes can be suitable as membrane materials for filtration, purification, and/or separation processes for DNA.

  12. The electronic role of DNA-functionalized carbon nanotubes: efficacy for in situ polymerization of conducting polymer nanocomposites.

    PubMed

    Ma, Yufeng; Chiu, Pui Lam; Serrano, Arnaldo; Ali, Shah R; Chen, Alex M; He, Huixin

    2008-06-25

    We have found that the polymerization process was 4,500 times faster when a self-doped polyaniline nanocomposite was fabricated using in situ polymerization in the presence of single-stranded DNA-dispersed and -functionalized single-walled carbon nanotubes (ssDNA-SWNTs). More importantly, the quality of the composite was significantly improved: fewer short oligomers were produced, and the self-doped polyaniline backbone had a longer conjugation length and existed in the more stable and conductive emeraldine state. The functionality of the boronic acid group in the composite and the highly improved electronic performance may lead to broad applications of the composite in flexible electronic devices. Blending of preformed polymer with carbon nanotubes is straightforward and widely used to fabricate nanocomposites. We demonstrate that this simple mixing approach might not fully and synergistically combine the merits of each individual component. Surprisingly, these advantages also cannot be obtained using in situ polymerization with preoxidized ssDNA-SWNTs, which is renowned as the "seed" method for production of conducting-polymer nanowires. The electronic structures of the carbon nanotubes and the monomer-nanotube interaction during polymerization greatly impact the kinetics of nanocomposite fabrication and the electronic performance of the resulting composites.

  13. Nucleic acid chemistry in the organic phase: from functionalized oligonucleotides to DNA side chain polymers.

    PubMed

    Liu, Kai; Zheng, Lifei; Liu, Qing; de Vries, Jan Willem; Gerasimov, Jennifer Y; Herrmann, Andreas

    2014-10-08

    DNA-incorporating hydrophobic moieties can be synthesized by either solid-phase or solution-phase coupling. On a solid support the DNA is protected, and hydrophobic units are usually attached employing phosphoramidite chemistry involving a DNA synthesizer. On the other hand, solution coupling in aqueous medium results in low yields due to the solvent incompatibility of DNA and hydrophobic compounds. Hence, the development of a general coupling method for producing amphiphilic DNA conjugates with high yield in solution remains a major challenge. Here, we report an organic-phase coupling strategy for nucleic acid modification and polymerization by introducing a hydrophobic DNA-surfactant complex as a reactive scaffold. A remarkable range of amphiphile-DNA structures (DNA-pyrene, DNA-triphenylphosphine, DNA-hydrocarbon, and DNA block copolymers) and a series of new brush-type DNA side-chain homopolymers with high DNA grafting density are produced efficiently. We believe that this method is an important breakthrough in developing a generalized approach to synthesizing functional DNA molecules for self-assembly and related technological applications.

  14. A sandwich-hybridization assay for simultaneous determination of HIV and tuberculosis DNA targets based on signal amplification by quantum dots-PowerVision™ polymer coding nanotracers.

    PubMed

    Yan, Zhongdan; Gan, Ning; Zhang, Huairong; Wang, De; Qiao, Li; Cao, Yuting; Li, Tianhua; Hu, Futao

    2015-09-15

    A novel sandwich-hybridization assay for simultaneous electrochemical detection of multiple DNA targets related to human immune deficiency virus (HIV) and tuberculosis (TB) was developed based on the different quantum dots-PowerVision(TM) polymer nanotracers. The polymer nanotracers were respectively fabricated by immobilizing SH-labeled oligonucleotides (s-HIV or s-TB), which can partially hybrid with virus DNA (HIV or TB), on gold nanoparticles (Au NPs) and then modified with PowerVision(TM) (PV) polymer-encapsulated quantum dots (CdS or PbS) as signal tags. PV is a dendrimer enzyme linked polymer, which can immobilize abundant QDs to amplify the stripping voltammetry signals from the metal ions (Pb or Cd). The capture probes were prepared through the immobilization of SH-labeled oligonucleotides, which can complementary with HIV and TB DNA, on the magnetic Fe3O4@Au (GMPs) beads. After sandwich-hybridization, the polymer nanotracers together with HIV and TB DNA targets were simultaneously introduced onto the surface of GMPs. Then the two encoding metal ions (Cd(2+) and Pb(2+)) were used to differentiate two viruses DNA due to the different subsequent anodic stripping voltammetric peaks at -0.84 V (Cd) and -0.61 V (Pb). Because of the excellent signal amplification of the polymer nanotracers and the great specificity of DNA targets, this assay could detect targets DNA as low as 0.2 femtomolar and exhibited excellent selectivity with the dynamitic range from 0.5 fM to 500 pM. Those results demonstrated that this electrochemical coding assay has great potential in applications for screening more viruses DNA while changing the probes.

  15. Label-free photoelectrochemical detection of double-stranded HIV DNA by means of a metallointercalator-functionalized electrogenerated polymer.

    PubMed

    Haddache, Fatima; Le Goff, Alan; Reuillard, Bertrand; Gorgy, Karine; Gondran, Chantal; Spinelli, Nicolas; Defrancq, Eric; Cosnier, Serge

    2014-11-17

    The design of photoactive functionalized electrodes for the sensitive transduction of double-stranded DNA hybridization is reported. Multifunctional complex [Ru(bpy-pyrrole)2 (dppn)](2+) (bpy-pyrrole=4-methyl-4'-butylpyrrole-2,2'-bipyridine, dppn=benzo[i]dipyrido[3,2-a:2',3'-c]phenazine) exhibiting photosensitive, DNA-intercalating, and electropolymerizable properties was synthesized and characterized. The pyrrole groups undergo oxidative electropolymerization on planar electrodes forming a metallopolymer layer on the electrode. Thanks to the photoelectrochemical and intercalating properties of the immobilized Ru(II) complex, the binding of a double-stranded HIV DNA target was photoelectrochemically detected on planar electrodes. Photocurrent generation through visible irradiation was correlated to the interaction between double-stranded DNA and the metallointercalator polymer. These interactions were well fitted by using a Langmuir isotherm, which allowed a dissociation constant of 2×10(6)  L mol(-1) to be estimated. The low detection limit of 1 fmol L(-1) and sensitivity of 0.01 units per decade demonstrate excellent suitability of these modified electrodes for detection of duplex DNA.

  16. Water-soluble polymers bearing phosphorylcholine group and other zwitterionic groups for carrying DNA derivatives.

    PubMed

    Lin, Xiaojie; Ishihara, Kazuhiko

    2014-01-01

    Water-soluble polymers with equal positive and negative charges in the same monomer unit, such as the phosphorylcholine group and other zwitterionic groups, exhibit promising potential in gene delivery with appreciable transfection efficiency, compared with the traditional poly(ethylene glycol)-based polycation-gene complexes. These zwitterionic polymers with various architectural structures and properties have been synthesized by various polymerization methods, such as conventional radical polymerization, atom-transfer radical-polymerization, reversible addition-fragmentation chain-transfer polymerization, and nitroxide-mediated radical polymerization. These techniques have been used to efficiently facilitate gene therapy by fabrication of non-viral vectors with high cytocompatibility, large gene-carrying capacity, effective cell-membrane permeability, and in vivo gene-loading/releasing functionality. Zwitterionic polymer-based gene delivery vectors systems can be categorized into soluble-polymer/gene mixing, molecular self-assembly, and polymer-gene conjugation systems. This review describes the preparation and characterization of various zwitterionic polymer-based gene delivery vectors, specifically water-soluble phospholipid polymers for carrying gene derivatives.

  17. Transfer-matrix calculations of DNA polymer micromechanics under tension and torque constraints

    NASA Astrophysics Data System (ADS)

    Efremov, Artem K.; Winardhi, Ricksen S.; Yan, Jie

    2016-09-01

    Recent development of single-molecule manipulation technologies has made it possible to exert constant force and torque on individual DNA biopolymers to probe their elastic characteristics and structural stability. It has been previously shown that depending on the nature of applied mechanical constraints, DNA can exist in several forms including B-, L-, and P-DNA. However, there is still a lack of understanding of how structural heterogeneity of DNA, which may naturally arise due to sequence-dependent DNA properties, protein binding, or DNA damage, influences local stability of the above DNA states. To provide a more complete and detailed description of the DNA mechanics, we developed a theoretical framework based on transfer-matrix calculations and demonstrated how it can be used to predict the DNA behavior upon application of a wide range of force and torque constraints. The resulting phase diagram shows DNA structural transitions that are in good agreement with previous experimental and theoretical studies. We further discuss how the constructed formalism can be extended to include local inhomogeneities in the DNA physical properties, thus making it possible to investigate the effect of DNA sequence as well as protein binding on DNA structural stability.

  18. Fluorescent core-shell star polymers based bioassays for ultrasensitive DNA detection by surface plasmon fluorescence spectroscopy.

    PubMed

    Feng, Chuan Liang; Yin, Meizhen; Zhang, Di; Zhu, Shenmin; Caminade, Anne Marie; Majoral, Jean Pierre; Müllen, Klaus

    2011-04-19

    Multilayers containing a perylene diimide labelled star polymers (FSP) donor adjacent to phosphorus dendrimer layer on a silver substrate were constructed by layer by layer (LBL) approach. Using Surface Plasmon Enhanced Fluorescence Spectroscopy (SPFS) technique, a time-resolved ultrasensitive and selective detection of DNA targets relying on enhanced optical fields associated with energy transfer (ET) were achieved under the excitation at 543 nm. The detection limit is about 8 orders of magnitude better than the achieved one under the excitation at 632 nm, which is ascribed to no energy transfer from the donor to the acceptor under the excitation at 632 nm, resulting in much weak detection signal in turn.

  19. Behavior of cationic surfactants and short chain alcohols in mixed surface layers at water-air and polymer-water interfaces with regard to polymer wettability. I. Adsorption at water-air interface.

    PubMed

    Zdziennicka, Anna; Jańczuk, Bronisław

    2010-09-01

    Measurements of the surface tension of aqueous solutions were carried out at 293K for mixtures of cetyltrimethylammonium bromide (CTAB) with short chain alcohols such as methanol and ethanol, as well as for 1-hexadecylpyridinium bromide (CPyB) with the same alcohols. The concentration of CTAB and CPyB in aqueous solutions was in the range from 10(-5) to 10(-3) M, and methanol and ethanol was in the range from 0 to 21.1M and from 0 to 11.97M, respectively. Moreover, the surface tension of aqueous solution mixtures of cationic surfactants with propanol in the concentration range from 0 to 6.67M was also taken into consideration. The obtained isotherms of the surface tension were compared to those calculated from the Szyszkowski and Connors equations. The constants in these equations were determined by the least squares method. It appeared that they depended on the type of surfactant and alcohol. From comparison of the experimental and theoretical isotherms of the surface tension it is possible, at first approximation, to describe the relationship between the surface tension of aqueous solutions of cationic surfactants with short chain alcohol mixtures as a function of alcohol molar fraction in the bulk phase by the Szyszkowski and Connors equations. Furthermore, changes of the surface tension of aqueous solutions of CTAB and CPyB with alcohol mixtures at each constant concentration of cationic surfactant can be predicted by the Fainerman and Miller equation, if it is possible to determine the molar area of cationic surfactant and alcohol in the mixed monolayer. Based on the surface tension isotherms the Gibbs surface excess concentration of cationic surfactants and alcohols at water-air interface was determined, and in the case of alcohol, this concentration excess was recalculated for that of Guggenheim-Adam. The Guggenheim-Adam surface excess concentration was applied for determination of the real concentration of alcohol in the mixed surface monolayer. The real

  20. Biodegradable cationic poly(carbonates): Effect of varying side chain hydrophobicity on key aspects of gene transfection.

    PubMed

    Ong, Zhan Yuin; Yang, Chuan; Cheng, Wei; Voo, Zhi Xiang; Chin, Willy; Hedrick, James L; Yang, Yi Yan

    2017-03-18

    The degree of hydrophobicity in cationic polymers plays an important but often underappreciated role in the safety and efficacy of gene delivery processes. In order to further elucidate structure-activity relationships of biodegradable cationic poly(carbonate) gene carriers, we synthesized a series of narrowly dispersed homo-polymers via metal-free organocatalytic living ring-opening polymerization (ROP) of cyclic carbonate monomers bearing either alkyl (propyl, hexyl or nonyl) or 4-methyl benzyl halide side chains. The polymers were then quaternized using bis-tertiary amines to install both quaternary ammoniums and tertiary amines for DNA binding and endosomal escape, respectively. Among the polymers with similar molecular lengths and charge densities, it was found that an increase in side chain alkyl spacer length from 3 to 6 carbons significantly enhanced cellular uptake and luciferase gene expression in HepG2 and HeLa cell lines without causing overt hemolysis and cytotoxicity. A further increase of side chain alkyl length to 9 carbons, however, led to a drastic decline in gene expression due to increased cellular toxicity, which was correlated with an increased disruption and lysis of red blood cell membranes. Interestingly, the incorporation of an aromatic 4-methyl benzyl spacer increased DNA binding strength, reduced particle sizes of resultant DNA complexes, and enhanced cellular uptake, leading to improved luciferase gene expression, albeit with higher levels of hemolysis and cytotoxicity. Taken together, the findings of this study demonstrate that a delicate balance between cationic charge density and hydrophobicity could be achieved by utilizing a hexyl spacer in the side chains of cationic poly(carbonates), hence providing insights on the future development of non-viral cationic polymeric gene delivery systems.

  1. Rational designed bipolar, conjugated polymer-DNA composite beacon for the sensitive detection of proteins and ions.

    PubMed

    Jia, Yongmei; Zuo, Xiaolei; Lou, Xiaoding; Miao, Mao; Cheng, Yong; Min, Xuehong; Li, Xinchun; Xia, Fan

    2015-04-07

    Nature owns remarkable capabilities in sensing target molecules, while the artificial biosensor lags far behind nature. Inspired by nature, we devise a new sensing platform that can specifically bind the molecules and synchronously initiate a specific signal response. We rationally designed a type of bipolar probe that is comprised of a hydrophilic DNA part and a hydrophobic conjugated polymer (CP) unit. In aqueous solution, they can form micelles with a hydrophobic CP core and a hydrophilic DNA shell. The aggregation-caused quenching suppresses the fluorescence of CP. Adding telomerase, the hydropathical profile of the bipolar probes is drastically regulated that results in the collapse of micelles and liberates fluorescence simultaneously. The probe has been used in both mimic systems and real urine samples (38 samples). We achieve sensitive and specific detection of telomerase and obtain clearly classification for normal people and cancer patients. It can also be used in a signal off sensor that is used to detect mercury ions.

  2. Electrophoretic mobility of semi-flexible double-stranded DNA in defect-controlled polymer networks: Mechanism investigation and role of structural parameters.

    PubMed

    Khairulina, Kateryna; Li, Xiang; Nishi, Kengo; Shibayama, Mitsuhiro; Chung, Ung-il; Sakai, Takamasa

    2015-06-21

    Our previous studies have reported an empirical model, which explains the electrophoretic mobility (μ) of double-stranded DNA (dsDNA) as a combination of a basic migration term (Rouse-like or reptation) and entropy loss term in polymer gels with ideal network structure. However, this case is of exception, considering a large amount of heterogeneity in the conventional polymer gels. In this study, we systematically tune the heterogeneity in the polymer gels and study the migration of dsDNA in these gels. Our experimental data well agree with the model found for ideal networks. The basic migration mechanism (Rouse-like or reptation) persists perfectly in the conventional heterogeneous polymer gel system, while the entropy loss term continuously changes with increase in the heterogeneity. Furthermore, we found that in the limit where dsDNA is shorter than dsDNA persistence length, the entropy loss term may be related to the collisional motions between DNA fragments and the cross-links.

  3. Fabrication of piezoelectric components for a tunable and efficient device for DNA delivery into mammalian cells.

    PubMed

    Hung, Wei-Chih; Feng, Guo-Hua; Cherng, Jong-Yuh

    2014-03-01

    We fabricated three piezoelectric components (PZT) that can produce ultrasonic waves with various generated power in order to improve the delivery of DNA molecule and polymer/DNA complexes into cells. Two cationic polymers (PEI and PDMAEMA) were interacted with DNA to form nano-scaled DNA/polymer complexes with/without the help of PZT devices. The application of PZT devices under optimal conditions helped to avoid cytotoxicity and greatly increased the transfection (DNA delivery) efficiency of these complexes in mammalian cells. The cytotoxicity and transfection efficiency were found to be correlated with the PZT-generated power, waveforms and duration of ultrasonic treatment. There was no observable cytotoxicity in our experimental models and, a maximum transfection efficiency 700% greater than that of polymer/DNA complexes without applying ultrasound was achieved. The transfection efficiency of plain polymer/DNA complexes (without PZT treatment) corresponded to a 630-fold increase in comparison to the naked DNA. The waveforms of generated ultrasound greatly influenced the transfection efficiency, while cytotoxicity was not significantly affected. This means that, for optimal DNA delivery, duration of the peak voltage (Vmax/Div) also plays a role. In addition, the generated waves from PZT do not cause dissociation of polymer/DNA complexes or a change in the particle sizes of these complexes. In conclusion, these results suggest that the operation of PZT devices can be a tunable/safe way to greatly improve DNA delivery for gene therapy.

  4. Dibenzothiophene-S,S-dioxide and Bispyridinium-Based Cationic Polyfluorene Derivative as an Efficient Cathode Modifier for Polymer Solar Cells.

    PubMed

    Chen, Guiting; Liu, Sha; Xu, Jin; He, Ruifeng; He, Zhicai; Wu, Hong-Bin; Yang, Wei; Zhang, Bin; Cao, Yong

    2017-02-08

    A novel n-type conjugated polymer containing dibenzothiophene-S,S-dioxide (FSO), bispyridinium, and fluorene scaffolds in the backbone (PFSOPyCl) was synthesized and used in the cathode interfacial layers (CILs) of conventional polymer solar cells (PSCs). The high electron affinities and large planar structures of the FSO and bispyridinium units endowed this polymer with good energy level alignments with [6,6]-phenyl-C71 butyric acid methyl ester (PC71BM) and metal cathode, and excellent electron transport and extraction properties. Polymer solar cells (PSCs) based on the poly[N-9″-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT):PC71BM system with PFSOPyCl CIL exhibited simultaneous enhancement in open-circuit voltage (Voc), short-circuit current density (Jsc), and fill factor (FF), while the power conversion efficiency increased from 5.47% to 6.79%, relative to the bare Al device. Besides, PSC based on the poly[4,8-bis(2-ethylhexyloxyl)benzo[1,2-b:4,5-b']dithio-phene-2,6-diyl-alt-ethylhexyl-3-fluorothithieno [3,4-b]thiophene-2-carboxylate-4,6-diyl] (PTB7):PC71BM system achieved a PCE of 8.43% when using PFSOPyCl as CIL. Hence, PFSOPyCl is a promising candidate CIL for PSCs.

  5. "Giant surfactants" created by the fast and efficient functionalization of a DNA tetrahedron with a temperature-responsive polymer.

    PubMed

    Wilks, Thomas R; Bath, Jonathan; de Vries, Jan Willem; Raymond, Jeffery E; Herrmann, Andreas; Turberfield, Andrew J; O'Reilly, Rachel K

    2013-10-22

    Copper catalyzed azide-alkyne cycloaddition (CuAAC) was employed to synthesize DNA block copolymers (DBCs) with a range of polymer blocks including temperature-responsive poly(N-isoproylacrylamide) (poly(NIPAM)) and highly hydrophobic poly(styrene). Exceptionally high yields were achieved at low DNA concentrations, in organic solvents, and in the absence of any solid support. The DNA segment of the DBC remained capable of sequence-specific hybridization: it was used to assemble a precisely defined nanostructure, a DNA tetrahedron, with pendant poly(NIPAM) segments. In the presence of an excess of poly(NIPAM) homopolymer, the tetrahedron-poly(NIPAM) conjugate nucleated the formation of large, well-defined nanoparticles at 40 °C, a temperature at which the homopolymer precipitated from solution. These composite nanoparticles were observed by dynamic light scattering and cryoTEM, and their hybrid nature was confirmed by AFM imaging. As a result of the large effective surface area of the tetrahedron, only very low concentrations of the conjugate were required in order for this surfactant-like behavior to be observed.

  6. Highlighting the Role of Polymer Length, Carbohydrate Size, and Nucleic Acid Type in Potency of Glycopolycation Agents for pDNA and siRNA Delivery

    PubMed Central

    Xue, Lian; Ingle, Nilesh P.; Reineke, Theresa M.

    2013-01-01

    While nucleic acids such as small interfering RNA (siRNA) and plasmid DNA (pDNA) are promising research tools and therapeutic modalities, their potential in medical applications is limited by a fundamental mechanistic understanding and inadequate efficiency. Herein, two series of carbohydrate-based polycations were synthesized and examined that varied in the degree of polymerization (n)—one containing trehalose [Tr4(n) series: Tr4(23), Tr4(55), Tr4(77)] and the other containing beta-cyclodextrin [CD4(n) series: CD4(10), CD4(26), CD4(39), CD4(143), CD4(239)]. In addition, two monosaccharide models were examined for comparison that contain tartaramidoamine (T4) and galactaramidoamine (G4 or Glycofect) repeats. Delivery profiles for pDNA were compared with those obtained for siRNA delivery and reveal that efficacy differs significantly as a function of carbohydrate type, nucleic acid type and dose, polymer length, and presence of excess polymer in the formulation. The Tr4 polymers yielded higher efficacy for pDNA delivery, yet, the CD4 polymers achieved higher siRNA delivery and gene down regulation. The T4 and Glycofect derivatives, while efficient for pDNA delivery, were completely ineffective for siRNA delivery. A strong polymer length and dose dependence on target gene knockdown was observed for all polymers tested. Also, free polymer in solution (uncomplexed) was demonstrated to be a key factor in promoting siRNA uptake and gene down regulation. PMID:24028685

  7. Therapeutic option of plasmid-DNA based gene transfer.

    PubMed

    Taniyama, Yoshiaki; Azuma, Junya; Kunugiza, Yasuo; Iekushi, Kazuma; Rakugi, Hiromi; Morishita, Ryuichi

    2012-01-01

    Gene therapy offers a novel approach for the prevention and treatment of a variety of diseases, but it is not yet a common method in clinical cases because of various problems. Viral vectors show high efficiency of gene transfer, but they have some problems with toxicity and immunity. On the other hand, plasmid deoxyribonucleic acid (DNA)-based gene transfer is very safe, but its efficiency is relatively low. Especially, plasmid DNA gene therapy is used for cardiovascular disease because plasmid DNA transfer is possible for cardiac or skeletal muscle. Clinical angiogenic gene therapy using plasmid DNA gene transfer has been attempted in patients with peripheral artery disease, but a phase III clinical trial did not show sufficient efficiency. In this situation, more efficient plasmid DNA gene transfer is needed all over the world. This review focuses on plasmid DNA gene transfer and its enhancement, including ultrasound with microbubbles, electroporation, hydrodynamic method, gene gun, jet injection, cationic lipids and cationic polymers.

  8. Self-assembled alignment of nanorod by using DNA brush (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ijiro, Kuniharu; Nakamura, Satoshi; Mitomo, Hideyuki; Pike, Andrew; Matsuo, Yasutaka; Niikura, Kenichi

    2016-09-01

    Surface modification with polymer is widely applied to various kinds of applications. Recently, polymer brushes, which is a layer of polymers attached with one end to a surface, have attracted much attention as functionalized surfaces. In particular, ionic polymer brushes provide ultra-low friction or anti-fouling because they act as highly hydrated soft film. Almost ionic polymer brushes have been prepared from synthetic polymers. Few biopolymers have been investigated for polymer brush studies. DNA which is one of ionic biopolymers has unique functions and conformations which synthetic polymers don't have. We found that cationic gold nanorods (30 x 10 nm) were adsorbed to DNA bush (148 bp) prepared on a glass surface in an aqueous solution by observation using extinction spectra. When the cationic charge density of gold nanorods were decreased, nanorods were immobilized perpendicularly to the substrate by binding to DNA elongated. This indicates that self-assembled alignment of gold nanorods can be achieved by using DNA brush. Formed aligned gold nanorods can be used for plasmonic color analysis.

  9. Efficient Capture and Isolation of Tumor-Related Circulating Cell-Free DNA from Cancer Patients Using Electroactive Conducting Polymer Nanowire Platforms

    PubMed Central

    Jeon, SeungHyun; Lee, HyungJae; Bae, Kieun; Yoon, Kyong-Ah; Lee, Eun Sook; Cho, Youngnam

    2016-01-01

    Circulating cell-free DNA (cfDNA) is currently recognized as a key non-invasive biomarker for cancer diagnosis and progression and therapeutic efficacy monitoring. Because cfDNA has been detected in patients with diverse types of cancers, the use of efficient strategies to isolate cfDNA not only provides valuable insights into tumour biology, but also offers the potential for developing new cancer-specific targets. However, the challenges associated with conventional cfDNA extraction methods prevent their further clinical applications. Here, we developed a nanostructured conductive polymer platform for the efficient capture and release of circulating cfDNA and demonstrated its potential clinical utility using unprocessed plasma samples from patients with breast and lung cancers. Our results confirmed that the platform's enhanced efficiency allows tumor-specific circulating cfDNA to be recovered at high yield and purity. PMID:27162553

  10. Hybrid polymer-grafted multiwalled carbon nanotubes for in vitro gene delivery.

    PubMed

    Nunes, Antonio; Amsharov, Nadja; Guo, Chang; Van den Bossche, Jeroen; Santhosh, Padmanabhan; Karachalios, Theodoros K; Nitodas, Stephanos F; Burghard, Marko; Kostarelos, Kostas; Al-Jamal, Khuloud T

    2010-10-18

    Carbon nanotubes (CNTs) consist of carbon atoms arranged in sheets of graphene rolled up into cylindrical shapes. This class of nanomaterials has attracted attention because of their extraordinary properties, such as high electrical and thermal conductivity. In addition, development in CNT functionalization chemistry has led to an enhanced dispersibility in aqueous physiological media which indeed broadens the spectrum for their potential biological applications including gene delivery. The aim of this study is to determine the capability of different cationic polymer-grafted multiwalled carbon nanotubes (MWNTs) (polymer-g-MWNTs) to efficiently complex and transfer plasmid DNA (pCMV-βGal) in vitro without promoting cytotoxicity. Carboxylated MWNT is chemically conjugated to the cationic polymers polyethylenimine (PEI), polyallylamine (PAA), or a mixture of the two polymers. In order to explore the potential of these polymer-g-MWNTs as gene delivery systems, we first study their capacity to complex plasmid DNA (pDNA) using agarose gel electrophoresis. Gel migration studies confirm pDNA binding to polymer-g-MWNT with different affinities, highest for PEI-g-MWNT and PEI/PAA-g-CNT constructs. β-galactosidase expression is assessed in human lung epithelial (A549) cells, and the cytotoxicity is determined by modified LDH assay after 24 h incubation period. Additionally, PEI-g-MWNT and/or PEI/PAA-g-MWNT reveal an improvement in gene expression when compared to the naked pDNA or to the equivalent amounts of PEI polymer alone. Mechanistically, pDNA was delivered by the polymer-g-MWNT constructs via a different pathway compared to those used by polyplexes. In conclusion, polymer-g-MWNTs may be considered in the future as a versatile tool for efficient gene transfer in cancer cells in vitro, provided their toxicological profile is established.

  11. Single-walled carbon nanotubes-polymer modified graphite electrodes for DNA hybridization.

    PubMed

    Muti, Mihrican; Kuralay, Filiz; Erdem, Arzum

    2012-03-01

    Single-walled carbon nanotubes (SWCNT)-poly(vinylferrocenium) (PVF(+)) modified pencil graphite electrodes (PGEs) were developed in our study for the electrochemical monitoring of a sequence-selective DNA hybridization event. Firstly, SWCNT-PVF(+) modified PGE, PVF(+) modified PGE and unmodified PGE were characterized using scanning electron microscopy (SEM). The electrochemical behavior of these electrodes was then investigated using electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV). The SWCNT-PVF(+) modified PGEs were optimized for improved DNA sensing ability by measuring the guanine oxidation signal. In order to obtain the full coverage immobilization of the DNA probe following the optimum working conditions, the effect of amino-linked, thiol-linked and, bare oligonucleotides (ODNs), and the concentration of the DNA probe on the response of the modified electrode were examined. After optimization studies, the sequence-selective DNA hybridization was evaluated in the case of hybridization between an amino-linked probe and its complementary (target), a noncomplementary (NC) sequence, calf thymus double stranded DNA (dsDNA), and target/mismatch (MM) mixtures in the ratio of 1:1. SWCNT-PVF(+) modified PGEs presented very effective discrimination of DNA hybridization owing to their superior selectivity and sensitivity.

  12. Carbon nanotube/polymer composite electrodes for flexible, attachable electrochemical DNA sensors.

    PubMed

    Li, Jianfeng; Lee, Eun-Cheol

    2015-09-15

    All-solution-processed, easily-made, flexible multi-walled carbon nanotube (MWCNT)/polydimethylsiloxane (PDMS)-based electrodes were fabricated and used for electrochemical DNA sensors. These electrodes could serve as a recognition layer for DNA, without any surface modification, through π-π interactions between the MWCNTs and DNA, greatly simplifying the fabrication process for DNA sensors. The electrodes were directly connected to an electrochemical analyzer in the differential pulse voltammetry (DPV) and cyclic voltammetry (CV) measurements, where methylene blue was used as a redox indicator. Since neither functional groups nor probe DNA were immobilized on the surfaces of the electrodes, the sensor can be easily regenerated by washing these electrodes with water. The limit of detection was found to be 1.3 × 10(2)pM (S/N=3), with good DNA sequence differentiation ability. Fast fabrication of a DNA sensor was also achieved by cutting and attaching the MWCNT-PDMS composite electrodes at an analyte solution-containable region. Our results pave the way for developing user-fabricated easily attached DNA sensors at low costs.

  13. Polymers & People

    ERIC Educational Resources Information Center

    Lentz, Linda; Robinson, Thomas; Martin, Elizabeth; Miller, Mary; Ashburn, Norma

    2004-01-01

    Each Tuesday during the fall of 2002, teams of high school students from three South Carolina counties conducted a four-hour polymer institute for their peers. In less than two months, over 300 students visited the Charleston County Public Library in Charleston, South Carolina, to explore DNA, nylon, rubber, gluep, and other polymers. Teams of…

  14. Solvent-modified ultrafast decay dynamics in conjugated polymer/dye labeled single stranded DNA

    NASA Astrophysics Data System (ADS)

    Kim, Inhong; Kang, Mijeong; Woo, Han Young; Oh, Jin-Woo; Kyhm, Kwangseuk

    2015-07-01

    We have investigated that organic solvent (DMSO, dimethyl sulfoxide) modifies energy transfer efficiency between conjugated polymers (donors) and fluorescein-labeled single stranded DNAs (acceptors). In a mixture of buffer and organic solvent, fluorescence of the acceptors is significantly enhanced compared to that of pure water solution. This result can be attributed to change of the donor-acceptor environment such as decreased hydrophobicity of polymers, screening effect of organic solvent molecules, resulting in an enhanced energy transfer efficiency. Time-resolved fluorescence decay of the donors and the acceptors was modelled by considering the competition between the energy harvesting Foerster resonance energy transfer and the energy-wasting quenching. This enables to quantity that the Foerster distance (R0 = 43.3 Å) and resonance energy transfer efficiency (EFRET = 58.7 %) of pure buffer solution become R0 = 38.6 Å and EFRET = 48.0 % when 80% DMSO/buffer mixture is added.

  15. Reducible, dibromomaleimide-linked polymers for gene delivery.

    PubMed

    Tan, James-Kevin Y; Choi, Jennifer L; Wei, Hua; Schellinger, Joan G; Pun, Suzie H

    2015-01-01

    Polycations have been successfully used as gene transfer vehicles both in vitro and in vivo; however, their cytotoxicity has been associated with increasing molecular weight. Polymers that can be rapidly degraded after internalization are typically better tolerated by mammalian cells compared to their non-degradable counterparts. Here, we report the use of a dibromomaleimide-alkyne (DBM-alkyne) linking agent to reversibly bridge cationic polymer segments for gene delivery and to provide site-specific functionalization by azide-alkyne cycloaddition chemistry. A panel of reducible and non-reducible, statistical copolymers of (2-dimethylamino)ethyl methacrylate (DMAEMA) and oligo(ethylene glycol)methyl ether methacrylate (OEGMA) were synthesized and evaluated. When complexed with plasmid DNA, the reducible and non-reducible polymers had comparable DNA condensation properties, sizes, and transfection efficiencies. When comparing cytotoxicity, the DBM-linked, reducible polymers were significantly less toxic than the non-reducible polymers. To demonstrate polymer functionalization by click chemistry, the DBM-linked polymers were tagged with an azide-fluorophore and were used to monitor cellular uptake. Overall, this polymer system introduces the use of a reversible linker, DBM-alkyne, to the area of gene delivery and allows for facile, orthogonal, and site-specific functionalization of gene delivery vehicles.

  16. Cationic Pd(II)/Pt(II) 5,5-diethylbarbiturate complexes with bis(2-pyridylmethyl)amine and terpyridine: Synthesis, structures,DNA/BSA interactions, intracellular distribution, cytotoxic activity and induction of apoptosis.

    PubMed

    Icsel, Ceyda; Yilmaz, Veysel T; Kaya, Yunus; Durmus, Selvi; Sarimahmut, Mehmet; Buyukgungor, Orhan; Ulukaya, Engin

    2015-11-01

    Four new cationic Pd(II) and Pt(II) 5,5-diethylbarbiturate (barb) complexes, [M(barb)(bpma)]X·H2O [M = Pd(II), X = Cl (1); M = Pt(II), X = NO3(-) (2)] and [M(barb)(terpy)]NO3·0.5H2O [M = Pd(II) (3); M = Pt(II) (4)], where bpma = bis(2-pyridylmethyl)amine and terpy = terpyridine, were synthesized and characterized by elemental analysis, IR, UV–vis, NMR, ESI-MS and X-ray crystallography. The DNA binding properties of the cationic complexes were investigated by spectroscopic titrations, displacement experiments, viscosity, DNA melting and electrophoresis measurements. The results revealed that the complexes effectively bind to FS-DNA (fish sperm DNA) via intercalative/minor groove binding modes with intrinsic binding constants (Kb) in the range of 0.50 × 10(4)–1.67 × 10(5) M(-1). Absorption, emission and synchronous fluorescence measurements showed strong association of the complexes with protein (BSA) through a static mechanism. The mode of interaction of complexes towards DNA and protein was also supported by molecular docking. Complexes 1 and 3 showed significant nuclear uptake in HT-29 cells. In addition, 1 and 3 showed higher inhibition than cisplatin on the growth of MCF-7 and HT-29 cells and induced apoptosis on these cells much more effectively than the rest of the complexes as evidenced by pyknotic nuclear morphology. The levels of caspase-cleaved cytokeratin 18 (M30 antigen) in HT-29 cells treated with 1 and 3 increased in a dose-dependent manner, suggesting apoptosis. Moreover, qRT-PCR experiments showed that 1 and 3 caused significant increases in the expression of TNFRSF10B in HT-29 cells, indicating the initiation of apoptosis via cell surface death receptors.

  17. Shape Transformation Following Reduction-Sensitive PEG Cleavage of Polymer/DNA Nanoparticles

    PubMed Central

    Williford, John-Michael; Ren, Yong; Huang, Kevin; Pan, Deng; Mao, Hai-Quan

    2014-01-01

    PEGylated polycation/DNA micellar nanoparticles have been developed that can undergo shape transformation upon cleavage of the PEG grafts in response to an environmental cue. As a proof-of-principle, DNA nanoparticles with higher PEG grafting density adopting long, worm- and rod-like morphologies, transition to more condensed nanoparticles with spherical and short-rod morphologies upon cleavage of a fraction of the PEG grafts from the copolymer. This shape transformation leads to increased surface charges, correlating with improved transfection efficiency. PMID:25530853

  18. N,N,N-trimethylchitosan modified with well defined multifunctional polymer modules used as pDNA delivery vector.

    PubMed

    Ren, Hongqi; Liu, Shuai; Yang, Jixiang; Zhang, Xian; Zhou, Hao; Chen, Jiatong; Guo, Tianying

    2016-02-10

    A novel non-viral gene carrier based on N,N,N-trimethylchitosan (TMC) has been fabricated. First, well-defined copolymer P(PEGMA-co-DMAEMA) was synthesized through reversible addition fragmentation chain transfer (RAFT) polymerization of poly(ethylene glycol) methyl ether methacrylate (PEGMA) and N,N-(2-dimethylamino)ethyl methacrylamide (DMAEMA). Then allyl group grafting N,N,N-trimethylchitosan (Allyl-TMC) was synthesized via the reaction between allyl bromide and hydroxyl of TMC. Finally, P(PEGMA-co-DMAEMA) and folate were ordinally grafted onto Allyl-TMC to obtain TMC-g-P(PEGMA-co-DMAEMA)-FA. In comparison with pristine chitosan, TMC-g-P(PEGMA-co-DMAEMA)-FA has achieved both better water solubility and stronger pDNA packaging ability, which can contribute to improving gene transfection. Gene delivery efficiency of a series of TMC based functional polymers with different chitosan molecular weights has been tested. The results show that 20k-TMC-g-P(PEGMA-co-DMAEMA)-FA/pDNA complex at the weight ratio of 20 achieve the highest transfection efficiency in 293 T cells. This work presents a new strategy to modify chitosan efficiently as gene carrier material.

  19. A polymer, random walk model for the size-distribution of large DNA fragments after high linear energy transfer radiation

    NASA Technical Reports Server (NTRS)

    Ponomarev, A. L.; Brenner, D.; Hlatky, L. R.; Sachs, R. K.

    2000-01-01

    DNA double-strand breaks (DSBs) produced by densely ionizing radiation are not located randomly in the genome: recent data indicate DSB clustering along chromosomes. Stochastic DSB clustering at large scales, from > 100 Mbp down to < 0.01 Mbp, is modeled using computer simulations and analytic equations. A random-walk, coarse-grained polymer model for chromatin is combined with a simple track structure model in Monte Carlo software called DNAbreak and is applied to data on alpha-particle irradiation of V-79 cells. The chromatin model neglects molecular details but systematically incorporates an increase in average spatial separation between two DNA loci as the number of base-pairs between the loci increases. Fragment-size distributions obtained using DNAbreak match data on large fragments about as well as distributions previously obtained with a less mechanistic approach. Dose-response relations, linear at small doses of high linear energy transfer (LET) radiation, are obtained. They are found to be non-linear when the dose becomes so large that there is a significant probability of overlapping or close juxtaposition, along one chromosome, for different DSB clusters from different tracks. The non-linearity is more evident for large fragments than for small. The DNAbreak results furnish an example of the RLC (randomly located clusters) analytic formalism, which generalizes the broken-stick fragment-size distribution of the random-breakage model that is often applied to low-LET data.

  20. Electrophoretic detection and separation of mutant DNA using replaceable polymer matrices

    DOEpatents

    Karger, B.L.; Thilly, W.G.; Foret, F.; Khrapko, K.; Koehavong, P.; Cohen, A.S.; Giese, R.W.

    1997-05-27

    The disclosure relates to a method for resolving double-stranded DNA species differing by at least one base pair. Each of the species is characterized by an iso-melting domain with a unique melting temperature contiguous with a melting domain of higher thermal stability. 18 figs.

  1. Electrophoretic detection and separation of mutant DNA using replaceable polymer matrices

    DOEpatents

    Karger, Barry L.; Thilly, William G.; Foret, Frantisek; Khrapko, Konstaintin; Koehavong, Phouthone; Cohen, Aharon S.; Giese, Roger W.

    1997-01-01

    The disclosure relates to a method for resolving double-stranded DNA species differing by at least one base pair. Each of the species is characterized by an iso-melting domain with a unique melting temperature contiguous with a melting domain of higher thermal stability.

  2. Using Temperature-Sensitive Smart Polymers to Regulate DNA-mediated Nanoassembly

    NASA Astrophysics Data System (ADS)

    Hamner, Kristen L.

    Nanoparticle (NP) self-assembly has been proven as an effective route to organize nanoscale building blocks into ordered structures for potential technological applications. In order to successfully exploit the self-assembly processes a high level of direction and control is required. In my dissertation research, I synthesized a temperature responsive copolymer (p) to modify gold nanoparticles (AuNP) for controlling self-assembly. The copolymers' ability to regulate DNA-mediated NP self-assembly is a particular focus. In Chapter 2, the results show that by the addition of the p to create thermally responsive NP interfaces allows for controlled aggregation behavior and interparticle distances defined by the transition temperature (TC) of the p, to aid in NP assembly and help to regulate DNA-mediated interactions between NP. The work in Chapter 3 revealed that the reconfigurable conformation of the p sterically regulates the assembly: at T < TC, the chains extended beyond the hydrodynamic reach of the single stranded DNA and prohibited recognition, while at T > TC, assembly was observed, due the hydrophobic collapse of the p and the subsequent exposure of the complementary DNA bases. In Chapter 4, to gain insight into the mechanism, the rate of assembly was monitored, with DNA lengths that had hydrodynamic diameters more comparable to that of the p, and found the p was capable of slowing the kinetics. I further investigated to find that the addition of p extended the interparticle distances while disrupting the long range ordering. Finally, how the temperature responsive behavior of the p acted on the interparticle distances was probed, and it was found that without p, the interparticle distances expanded, while the addition of p compressed the interparticle distances.

  3. Amphiphilic cationic [dendritic poly(L-lysine)]-block-poly(L-lactide)-block-[dendritic poly(L-lysine)]s in aqueous solution: self-aggregation and interaction with DNA as gene delivery carriers.

    PubMed

    Zhu, Yingdan; Sheng, Ruilong; Luo, Ting; Li, Hui; Sun, Wenyan; Li, Yang; Cao, Amin

    2011-02-11

    A new series of triblock [dendritic poly(L-lysine)]-block-PLLA-block-[dendritic poly(L-lysine)]s (DL(2) -PLLA-DL(2) ) with PLLA block lengths of 11.5-26.5 and double 2-generation PLL dendrons DL(2) as model cationic amphiphiles were synthesized and characterized. Their CAC, self-aggregation and plasmid DNA binding affinities in pure water and PBS were studied. The PLLA block length dependence of particle size, morphology and ξ potential for organized pDNA/amphiphile polyplex aggregates were examined. Finally, toxicities of these DL(2) -PLLA-DL(2) amphiphiles and their polyplexes were assayed by MTT with HeLa, SMMC-7721 and COS-7 cells, and COS-7 cell luciferase and eGFP gene transfection efficacies with these amphiphiles as the delivery carriers were investigated.

  4. Synthesis, characterisation and electrical properties of supramolecular DNA-templated polymer nanowires of 2,5-(bis-2-thienyl)-pyrrole.

    PubMed

    Watson, Scott M D; Hedley, Joseph H; Galindo, Miguel A; Al-Said, Said A F; Wright, Nick G; Connolly, Bernard A; Horrocks, Benjamin R; Houlton, Andrew

    2012-09-17

    Supramolecular polymer nanowires have been prepared by using DNA-templating of 2,5-(bis-2-thienyl)-pyrrole (TPT) by oxidation with FeCl(3) in a mixed aqueous/organic solvent system. Despite the reduced capacity for strong hydrogen bonding in polyTPT compared to other systems, such as polypyrrole, the templating proceeds well. FTIR spectroscopic studies confirm that the resulting material is not a simple mixture and that the two types of polymer interact. This is indicated by shifts in bands associated with both the phosphodiester backbone and the nucleobases. XPS studies further confirm the presence of DNA and TPT, as well as dopant Cl(-) ions. Molecular dynamics simulations on a [{dA(24):dT(24)}/{TPT}(4)] model support these findings and indicate a non-coplanar conformation for oligoTPT over much of the trajectory. AFM studies show that the resulting nanowires typically lie in the 7-8 nm diameter range and exhibit a smooth, continuous, morphology. Studies on the electrical properties of the prepared nanowires by using a combination of scanned conductance microscopy, conductive AFM and variable temperature two-terminal I-V measurements show, that in contrast to similar DNA/polymer systems, the conductivity is markedly reduced compared to bulk material. The temperature dependence of the conductivity shows a simple Arrhenius behaviour consistent with the hopping models developed for redox polymers.

  5. Polymer light-emitting diodes based on cationic iridium(III) complexes with a 1,10-phenanthroline derivative containing a bipolar carbazole-oxadiazole unit as the auxiliary ligand

    NASA Astrophysics Data System (ADS)

    Tang, Huaijun; Wei, Liying; Meng, Guoyun; Li, Yanhu; Wang, Guanze; Yang, Furui; Wu, Hongbin; Yang, Wei; Cao, Yong

    2014-11-01

    A 1,10-phenanthroline derivative (co-phen) containing a bipolar carbazole-oxadiazole unit was synthesized and used as the auxiliary ligand in cationic iridium(III) complexes [(ppy)2Ir(co-phen)]PF6 (ppy: 2-phenylpyridine) and [(npy)2Ir(co-phen)]PF6 (npy: 2-(naphthalen-1-yl)pyridine). Two complexes have high thermal stability with the glass-transition temperatures (Tg) of 207 °C and 241 °C, and the same 5% weight-reduction temperatures (ΔT5%) of 402 °C. Both of them were used as phosphorescent dopants in solution-processed polymer light-emitting diodes (PLEDs): ITO/PEDOT: PSS/PVK: PBD: complex (mass ratios 100: 40: x, x = 1.0, 2.0, and 4.0)/CsF/Al. The maximum luminances of the PLEDs using [(ppy)2Ir(co-phen)]PF6 and [(npy)2Ir(co-phen)]PF6 were 12567 cd m-2 and 11032 cd m-2, the maximum luminance efficiencies were 17.3 cd A-1 and 20.4 cd A-1, the maximum power efficiencies were 9.8 lm W-1 and 10.3 lm W-1, and the maximum external quantum efficiencies were 9.3% and 11.4% respectively. The CIE color coordinates were around (0.37, 0.57) and (0.44, 0.54) respectively, corresponding to the yellow green region.

  6. Preparation of a novel weak cation exchange/hydrophobic interaction chromatography dual-function polymer-based stationary phase for protein separation using "thiol-ene click chemistry".

    PubMed

    Yang, Fan; Bai, Quan; Zhao, Kailou; Gao, Dong; Tian, Lei

    2015-02-01

    A novel dual-function mixed-mode stationary phase based on poly(glycidyl methacrylate-co-ethylene dimethacrylate) microspheres was synthesized by thiol-ene click chemistry and characterized by infrared spectroscopy and elemental analysis. The new system displays both hydrophobic interaction chromatography (HIC) character in a high salt concentration mobile phase, and weak cation exchange (WCX) chromatography character in a low salt concentration mobile phase. It can be used to separate proteins in both ion-exchange chromatography (IEC) mode and HIC mode. The resolution and selectivity of the stationary phase were evaluated in both HIC mode and IEC mode using protein standards. In comparison with the conventional WCX and HIC columns, the results were satisfactory and acceptable. Protein mass and bioactivity recoveries of more than 96% can be achieved in both HIC mode and IEC mode using this column. The results indicate that the novel dual-function mixed-mode column in many cases can replace the use of two individual WCX and HIC columns. In addition, the effects on protein separation of different ligand structures in the dual-function stationary phase and the pH of the mobile phase used were also investigated in detail. The results show that electrostatic interaction of the ligand with proteins must match the hydrophobicity of the ligand, which is an important factor to prepare the dual-function stationary phase. On the basis of this dual-function mixed-mode chromatography column, a new two-dimensional liquid chromatography technology with a single column system was also developed in this study, and was used to renature and purify recombinant human interferon-γ from inclusion bodies. The mass recovery, purity, and specific bioactivity obtained for the purified recombinant human interferon-γ were 87.2%, 92.4%, and 2.8 × 10(7) IU/mg, respectively, in IEC mode, and 83.4%, 95.2%, and 4.3 × 10(7) IU/mg, respectively, in HIC mode. The results indicate that the

  7. Recyclable magnetic nanoparticle grafted with pH-responsive polymer for adsorption with DNA

    NASA Astrophysics Data System (ADS)

    Theamdee, Pawinee; Rutnakornpituk, Boonjira; Wichai, Uthai; Rutnakornpituk, Metha

    2014-07-01

    Magnetite nanoparticles (MNPs) grafted with positively charged poly(2-(diethylamino) ethyl methacrylate (PDEAEMA) were prepared via a combination of atom transfer radical polymerization (ATRP) and "click" reaction and used as recyclable nanosupports for adsorption with DNA. Alkyne-terminated PDEAEMA was synthesized via ATRP and then "grafted to" azide-functionalized MNPs. Quaternized PDEAEMA-grafted MNPs were used as recyclable nanosupports for adsorption with negatively charged DNA via electrostatic interactions. The particles with the size of 3-8 nm in diameter were well dispersible in water. They responded to the change in their solution pH as observed by a consistent decrease in hydrodynamic size when solution pH changed from basic to acidic pH. Recycling efficiency of the MNPs was investigated by determining the percent adsorption of the particles after multiple cycles of the adsorption-separation-desorption process. Adsorption ability of the MNPs to T9 DNA tagged with fluorescein at 5'-position (FAM-dT9) retained higher than 80 % after 5-recycling process, indicating that these novel positively charged MNPs might be efficiently used as magnetic nanosupports for any negative biomolecules with good recycling efficiency.

  8. Investigation of a thiolated polymer in gene delivery

    NASA Astrophysics Data System (ADS)

    Bacalocostantis, Irene

    Thiol-containing bioreducible polymers show significant potential as delivery vectors in gene therapy, a rapidly growing field which seeks to treat genetic-based disorders by delivering functional synthetic genes to diseased cells. Studies have shown that thiolated polymers exhibit improved biodegradability and prolonged in vivo circulation times over non-thiolated polymers. However, the extent to which thiol concentrations impact the carrier's delivery potential has not been well explored. The aim of this dissertation is to investigate how relative concentrations of free thiols and disulfide crosslinks impact a polymeric carriers delivery performance with respect to DNA packaging, complex stability, cargo protection, gene release, internalization efficiency and cytotoxicity. To accomplish this goal, several fluorescent polymers containing varying concentrations of thiol groups were synthesized by conjugating thiol-pendant chains onto the primary amines of cationic poly(allylamine). In vitro delivery assays and characterization techniques were employed to assess the effect of thiols in gene delivery.

  9. The role of polymer nanolayer architecture on the separation performance of anion-exchange membrane adsorbers: part II. DNA and virus separations.

    PubMed

    Bhut, Bharat V; Weaver, Justin; Carter, Andrew R; Wickramasinghe, S Ranil; Husson, Scott M

    2011-11-01

    The surface-initiated polymerization protocol developed in part I was used to prepare strong anion-exchange membranes with variable polymer chain graft densities and degrees of polymerization for DNA and virus particle separations. A focus of part II was to evaluate the role of polymer nanolayer architecture on DNA and virus binding. Salmon sperm-DNA (SS-DNA) was used as model nucleic acid to measure the dynamic-binding capacities at 10% breakthrough. The dynamic-binding capacity increases linearly with increasing poly ([2-(methacryloyloxy)ethyl]trimethylammonium chloride) chain density up to the highest chain density used in this study. The new membranes yielded threefold higher SS-DNA-binding capacity (30 mg/mL) than a leading commercial membrane with the same functional group chemistry. Elution of bound DNA yielded a sharp peak, and resulted in a 13-fold increase relative to the feed concentration. This concentration effect further demonstrates the highly favorable transport properties of the newly designed Q-type membranes. However, unlike findings in part I on protein binding, SS-DNA binding was not fully reversible. Minute virus of mice (MVM) was used as model virus to evaluate the virus clearance performance of newly designed Q-type membranes. Log reduction of virus (LRV) of MVM increased with increasing polymer chain density. Membranes exhibited >4.5 LRV for the given MVM impurity load and may be capable of higher LRV values, as the MVM concentration in the flow-through fraction of these samples was below the limit of detection of the assay.

  10. Electronic structure and carrier transfer in B-DNA monomer polymers and dimer polymers: Stationary and time-dependent aspects of a wire model versus an extended ladder model

    NASA Astrophysics Data System (ADS)

    Lambropoulos, K.; Chatzieleftheriou, M.; Morphis, A.; Kaklamanis, K.; Lopp, R.; Theodorakou, M.; Tassi, M.; Simserides, C.

    2016-12-01

    We employ two tight-binding (TB) approaches to systematically study the electronic structure and hole or electron transfer in B-DNA monomer polymers and dimer polymers made up of N monomers (base pairs): (I) at the base-pair level, using the onsite energies of base pairs and the hopping integrals between successive base pairs, i.e., a wire model and (II) at the single-base level, using the onsite energies of the bases and the hopping integrals between neighboring bases, i.e., an extended ladder model since we also include diagonal hoppings. We solve a system of M (matrix dimension) coupled equations [(I) M =N , (II) M =2 N ] for the time-independent problem, and a system of M coupled first order differential equations for the time-dependent problem. We perform a comparative study of stationary and time-dependent aspects of the two TB variants, using realistic sets of parameters. The studied properties include HOMO and LUMO eigenspectra, occupation probabilities, density of states and HOMO-LUMO gaps as well as mean over time probabilities to find the carrier at each site [(I) base pair or (II) base], Fourier spectra, which reflect the frequency content of charge transfer, and pure mean transfer rates from a certain site to another. The two TB approaches give coherent, complementary aspects of electronic properties and charge transfer in B-DNA monomer polymers and dimer polymers.

  11. Electronic structure and carrier transfer in B-DNA monomer polymers and dimer polymers: Stationary and time-dependent aspects of a wire model versus an extended ladder model.

    PubMed

    Lambropoulos, K; Chatzieleftheriou, M; Morphis, A; Kaklamanis, K; Lopp, R; Theodorakou, M; Tassi, M; Simserides, C

    2016-12-01

    We employ two tight-binding (TB) approaches to systematically study the electronic structure and hole or electron transfer in B-DNA monomer polymers and dimer polymers made up of N monomers (base pairs): (I) at the base-pair level, using the onsite energies of base pairs and the hopping integrals between successive base pairs, i.e., a wire model and (II) at the single-base level, using the onsite energies of the bases and the hopping integrals between neighboring bases, i.e., an extended ladder model since we also include diagonal hoppings. We solve a system of M (matrix dimension) coupled equations [(I) M=N, (II) M=2N] for the time-independent problem, and a system of M coupled first order differential equations for the time-dependent problem. We perform a comparative study of stationary and time-dependent aspects of the two TB variants, using realistic sets of parameters. The studied properties include HOMO and LUMO eigenspectra, occupation probabilities, density of states and HOMO-LUMO gaps as well as mean over time probabilities to find the carrier at each site [(I) base pair or (II) base], Fourier spectra, which reflect the frequency content of charge transfer, and pure mean transfer rates from a certain site to another. The two TB approaches give coherent, complementary aspects of electronic properties and charge transfer in B-DNA monomer polymers and dimer polymers.

  12. Well-defined DNA-mimic brush polymers bearing adenine moieties: synthesis, layer-by-layer self-assembly, and biocompatibility.

    PubMed

    Kim, Jin Chul; Jung, Jungwoon; Rho, Yecheol; Kim, Mihee; Kwon, Wonsang; Kim, Heesoo; Kim, Ik Jung; Kim, Jung Ran; Ree, Moonhor

    2011-07-11

    Two new DNA-mimicking brush polymers were synthesized: poly[oxy(11-(3-(9-adeninyl)propionato)-undecanyl-1-thiomethyl)ethylene] (PECH-AP) and poly[oxy(11-(5-(9-adenylethyloxy)-4-oxopentanoato)undecanyl-1-thiomethyl)ethylene] (PECH-AS). These polymers were found to be thermally stable up to 220 °C and could be applied easily by conventional coating processes to produce good quality films. Interestingly, both brush polymers formed molecular multibilayer structures to provide an adenine-rich surface. Despite the structural similarities, PECH-AS surprisingly exhibited higher hydrophilicity and better water sorption properties than PECH-AP. These differences were attributed to the chemical structures in the bristles of the polymers. The adenine-rich surfaces of the polymer films demonstrated selective protein adsorption, suppressed bacterial adherence, facilitated HEp-2 cell adhesion, and exhibited good biocompatibility in mice. However, the high hydrophilicity and good water sorption characteristics of the PECH-AS film suggest that this brush polymer is better suited to applications requiring good biocompatibility and reduced chance of bacterial infection compared with the PECH-AP film.

  13. Cellulose acetate butyrate-pH/thermosensitive polymer microcapsules containing aminated poly(vinyl alcohol) microspheres for oral administration of DNA.

    PubMed

    Fundueanu, Gheorghe; Constantin, Marieta; Bortolotti, Fabrizio; Cortesi, Rita; Ascenzi, Paolo; Menegatti, Enea

    2007-04-01

    The aim of this work is to safely transport bioadhesive microspheres loaded with DNA to intestine and to test their bioadhesive properties. Poly(vinyl alcohol) (PVA) microspheres were prepared by dispersion reticulation with glutaraldehyde and further aminated. These microspheres were firstly loaded with plasmid DNA by electrostatic interactions and then entrapped in cellulose acetate butyrate (CAB) microcapsules for gastric protection. The entrapped PVA microspheres do not have enough force by swelling to produce the rupture of CAB shell, therefore the resistance of microcapsules was weakened by incorporating different amount of the pH/thermosensitive polymer (SP) based on poly(N-isopropylacrylamide-co-methyl methacrylate-co-methacrylic acid) (NIPAAm-co-MM-co-MA). This polymer is insoluble in gastric juice at pH 1.2 and 37 degrees C, but quickly solubilized in intestinal fluids (pH 6.8 and pH 7.4). Therefore, DNA loaded PVA microspheres were not expelled in acidic media but were almost entirely discharged in small intestine or colon. The integrity of DNA after entrapment was tested by agarose gel electrophoresis indicating that no DNA degradation occurs during encapsulation. The percentage of adhered microspheres on the mucus surface of everted intestinal tissue was 65+/-18% for aminated PVA microspheres without DNA and almost 50+/-15% for those loaded with DNA. Non-aminated PVA microspheres display the lowest adhesive properties (33+/-12%). In conclusion DNA loaded microspheres were progressively discharged in intestine. The integrity of DNA was not modified after entrapment and release, as proved by agarose gel electrophoresis. Both loaded and un-loaded aminated microspheres display good bioadhesive properties.

  14. From rigid base pairs to semiflexible polymers: coarse-graining DNA.

    PubMed

    Becker, Nils B; Everaers, Ralf

    2007-08-01

    The elasticity of double-helical DNA on a nm length scale is captured in detail by the rigid base-pair model, whose conformation variables are the relative positions and orientations of adjacent base pairs. Corresponding sequence-dependent elastic potentials have been obtained from all-atom MD simulation and from high-resolution structural data. On the scale of 100 nm, DNA is successfully described by a continuous wormlike chain model with homogeneous elastic properties, characterized by a set of four elastic constants which have been measured in single-molecule experiments. We present here a theory that links these experiments on different scales, by systematically coarse-graining the rigid base-pair model to an effective wormlike chain description. The average helical geometry of the molecule is accounted for exactly, and repetitive as well as random sequences are considered. Structural disorder is shown to produce a small, additive and short-range correction to thermal conformation fluctuations as well as to entropic elasticity. We also discuss the limits of applicability of the homogeneous wormlike chain on short scales, quantifying the anisotropy of bending stiffness, the non-Gaussian bend angle distribution and the variability of stiffness, all of which are noticeable below a helical turn. The coarse-grained elastic parameters show remarkable overall agreement with experimental wormlike chain stiffness. For the best-matching potential, bending persistence lengths of dinucleotide repeats span a range of 37-53 nm, with a random DNA value of 43 nm. While twist stiffness is somewhat underestimated and stretch stiffness is overestimated, the counterintuitive negative sign and the magnitude of the twist-stretch coupling agree with recent experimental findings.

  15. alpha,beta-poly(asparthylhydrazide)-glycidyltrimethylammonium chloride copolymers (PAHy-GTA): novel polymers with potential for DNA delivery.

    PubMed

    Pedone, E; Cavallaro, G; Richardson, S C; Duncan, R; Giammona, G

    2001-11-09

    Hydrophilic polycations form complexes when mixed with plasmids. Following functionalisation with glycidyltrimethylammonium chloride (GTA) alpha,beta-poly(asparthylhydrazide) (PAHy), a water-soluble synthetic macromolecule, becomes polycationic and potentially useful for systemic gene delivery. Initially the biocompatibility of PAHy and PAHy-GTA derivatives with different degrees of positive charge substitution were studied and it was shown that PAHy-GTA was neither haemolytic nor cytotoxicity up to 1 mg/ml. After intravenous injection (125)I-labelled PAHy-GTA derivative containing 46 mol% (PAHy-GTA(b)) of trimethylammonium groups did not accumulate in the liver (4.1+/-0.9% of the recovered dose after 1 h) but was subjected to renal excretion (45+/-21% of the recovered dose was in the kidneys after 1 h). PAHy-GTA formed complexes with DNA (gel retardation) and they protected against degradation by DNase II. Finally the ability of the PAHy-GTA(b) derivative to mediate the transfection of HepG2 cells using the marker gene beta-galactosidase was studied. The optimum plasmid/polymer mass ratio was examined in comparison to LipofectACE, Lipofectin and polyethylenimine.

  16. Effects of cationic hydroxyethyl cellulose on glucose tolerance and obesity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cholestyramine is a cationic polymer prescribed to lower cholesterol in humans. We investigated the effects of cationic hydroxyethyl cellulose (cHEC) on weight loss and metabolic disorders associated with obesity using both hamster and diet-induced obese mouse models. Golden Syrian hamsters and ob...

  17. Cationically polymerizable monomers derived from renewable sources

    SciTech Connect

    Crivello, J.V.

    1991-10-01

    The objective of this project is to make use of products obtained from renewable plant sources as monomers for the direct production of polymers which can be used for a wide range of plastic applications. In this report is described progress in the synthesis and polymerization of cationically polymerizable monomers and oligomers derived from botanical oils, terpenes, natural rubber, and lignin. Nine different botanical oils were obtained from various sources, characterized and then epoxidized. Their photopolymerization was carried out using cationic photoinitiators and the mechanical properties of the resulting polymers characterized. Preliminary biodegradation studies are being conducted on the photopolymerized films from several of these oils. Limonene was cationically polymerized to give dimers and the dimers epoxidized to yield highly reactive monomers suitable for coatings, inks and adhesives. The direct phase transfer epoxidation of squalene and natural rubber was carried out. The modified rubbers undergo facile photocrosslinking in the presence of onium salts to give crosslinked elastomers. 12 refs., 3 figs., 10 tabs.

  18. Reducible cationic lipids for gene transfer.

    PubMed Central

    Wetzer, B; Byk, G; Frederic, M; Airiau, M; Blanche, F; Pitard, B; Scherman, D

    2001-01-01

    One of the main challenges of gene therapy remains the increase of gene delivery into eukaryotic cells. We tested whether intracellular DNA release, an essential step for gene transfer, could be facilitated by using reducible cationic DNA-delivery vectors. For this purpose, plasmid DNA was complexed with cationic lipids bearing a disulphide bond. This reduction-sensitive linker is expected to be reduced and cleaved in the reducing milieu of the cytoplasm, thus potentially improving DNA release and consequently transfection. The DNA--disulphide-lipid complexation was monitored by ethidium bromide exclusion, and the size of complexes was determined by dynamic light scattering. It was found that the reduction kinetics of disulphide groups in DNA--lipid complexes depended on the position of the disulphide linker within the lipid molecule. Furthermore, the internal structure of DNA--lipid particles was examined by small-angle X-ray scattering before and after lipid reduction. DNA release from lipid complexes was observed after the reduction of disulphide bonds of several lipids. Cell-transfection experiments suggested that complexes formed with selected reducible lipids resulted in up to 1000-fold higher reporter-gene activity, when compared with their analogues without disulphide bonds. In conclusion, reduction-sensitive groups introduced into cationic lipid backbones potentially allow enhanced DNA release from DNA--lipid complexes after intracellular reduction and represent a tool for improved vectorization. PMID:11389682

  19. Reducible cationic lipids for gene transfer.

    PubMed

    Wetzer, B; Byk, G; Frederic, M; Airiau, M; Blanche, F; Pitard, B; Scherman, D

    2001-06-15

    One of the main challenges of gene therapy remains the increase of gene delivery into eukaryotic cells. We tested whether intracellular DNA release, an essential step for gene transfer, could be facilitated by using reducible cationic DNA-delivery vectors. For this purpose, plasmid DNA was complexed with cationic lipids bearing a disulphide bond. This reduction-sensitive linker is expected to be reduced and cleaved in the reducing milieu of the cytoplasm, thus potentially improving DNA release and consequently transfection. The DNA--disulphide-lipid complexation was monitored by ethidium bromide exclusion, and the size of complexes was determined by dynamic light scattering. It was found that the reduction kinetics of disulphide groups in DNA--lipid complexes depended on the position of the disulphide linker within the lipid molecule. Furthermore, the internal structure of DNA--lipid particles was examined by small-angle X-ray scattering before and after lipid reduction. DNA release from lipid complexes was observed after the reduction of disulphide bonds of several lipids. Cell-transfection experiments suggested that complexes formed with selected reducible lipids resulted in up to 1000-fold higher reporter-gene activity, when compared with their analogues without disulphide bonds. In conclusion, reduction-sensitive groups introduced into cationic lipid backbones potentially allow enhanced DNA release from DNA--lipid complexes after intracellular reduction and represent a tool for improved vectorization.

  20. Experimental and theoretical studies on the DNA-binding of cationic yttrium(III) complex containing 2,2‧-bipyridine

    NASA Astrophysics Data System (ADS)

    Khorasani-Motlagh, Mozhgan; Noroozifar, Meissam; Akbari, Alireza; Mirkazehi-Rigi, Sohaila

    2015-03-01

    The interaction of DNA with [Y(bpy)(OH2)6]+3, where bpy is 2,2‧-bipyridine has been studied at physiological pH in Tris-HCl buffer. Fluorescence and absorption spectroscopy, agarose gel electrophoresis as well as EB quenching experiments are used to study DNA binding of the complex. The results reveal that DNA have the strong ability to bind with Y(III) complex. The binding constant, Kb and the Stern-Volmer quenching constant, KSV are determined. For characterization of the binding mode between the Y(III) complex and DNA various procedures such as: iodide quenching assay, salt effect and thermodynamical investigation are used. The results suggest that minor groove binding should be the interaction mode of complex to DNA. A gel electrophoresis assay demonstrates the ability of the complex to cleave the DNA via oxidative pathway. Electronic structure of [Y(bpy)(OH2)6]+3 was also carried out applying the density functional theory (DFT) method and applied to explain some obtained experimental observations.

  1. Low-dimensional compounds containing bioactive ligands. Part VIII: DNA interaction, antimicrobial and antitumor activities of ionic 5,7-dihalo-8-quinolinolato palladium(II) complexes with K(+) and Cs(+) cations.

    PubMed

    Farkasová, Veronika; Drweesh, Sayed Ali; Lüköová, Andrea; Sabolová, Danica; Radojević, Ivana D; Čomić, Ljiljana R; Vasić, Sava M; Paulíková, Helena; Fečko, Stanislav; Balašková, Tatiana; Vilková, Mária; Imrich, Ján; Potočňák, Ivan

    2017-02-01

    Starting from well-defined NH2(CH3)2[PdCl2(XQ)] complexes, coordination compounds of general formula Cat[PdCl2(XQ)] have been prepared by cationic exchange of NH2(CH3)2(+) and Cat cations, where XQ are biologically active halogen derivatives of quinolin-8-ol (5-chloro-7-iodo-quinolin-8-ol (CQ), 5,7-dibromo-quinolin-8-ol (dBrQ) and 5,7-dichloro-quinolin-8-ol (dClQ)) and Cat is K(+) or Cs(+). The cation exchange of all prepared complexes, K[PdCl2(CQ)] (1), K[PdCl2(dClQ)] (2), K[PdCl2(dBrQ)] (3), Cs[PdCl2(CQ)] (4), Cs[PdCl2(dClQ)] (5) and Cs[PdCl2(dBrQ)] (6) was approved using IR spectroscopy, their structures in DMSO solution were elucidated by one- and two-dimensional NMR experiments, whereas their stability in solution was verified by UV-VIS spectroscopy. Interaction of complexes to ctDNA was investigated using UV-VIS and fluorescence emission spectroscopy. The minimum inhibitory concentration and the minimum microbicidal concentration values were detected against 15 bacterial strains and 4 yeast strains to examine the antimicrobial activity for the complexes. The in vitro antitumor properties of the complexes were studied by testing the complexes on leukemic cell line L1210, ovarian cancer cell line A2780 and non-cancerous cell line HEK293. The majority of the prepared compounds exhibited moderate antimicrobial and very high cytotoxic activity.

  2. Amphipathic DNA polymers exhibit antiviral activity against systemic Murine Cytomegalovirus infection

    PubMed Central

    2009-01-01

    Background Phosphorothioated oligonucleotides (PS-ONs) have a sequence-independent, broad spectrum antiviral activity as amphipathic polymers (APs) and exhibit potent in vitro antiviral activity against a broad spectrum of herpesviruses: HSV-1, HSV-2, HCMV, VZV, EBV, and HHV-6A/B, and in vivo activity in a murine microbiocide model of genital HSV-2 infection. The activity of these agents against animal cytomegalovirus (CMV) infections in vitro and in vivo was therefore investigated. Results In vitro, a 40 mer degenerate AP (REP 9) inhibited both murine CMV (MCMV) and guinea pig CMV (GPCMV) with an IC50 of 0.045 μM and 0.16 μM, respectively, and a 40 mer poly C AP (REP 9C) inhibited MCMV with an IC50 of 0.05 μM. Addition of REP 9 to plaque assays during the first two hours of infection inhibited 78% of plaque formation whereas addition of REP 9 after 10 hours of infection did not significantly reduce the number of plaques, indicating that REP 9 antiviral activity against MCMV occurs at early times after infection. In a murine model of CMV infection, systemic treatment for 5 days significantly reduced virus replication in the spleens and livers of infected mice compared to saline-treated control mice. REP 9 and REP 9C were administered intraperitoneally for 5 consecutive days at 10 mg/kg, starting 2 days prior to MCMV infection. Splenomegaly was observed in infected mice treated with REP 9 but not in control mice or in REP 9 treated, uninfected mice, consistent with mild CpG-like activity. When REP 9C (which lacks CpG motifs) was compared to REP 9, it exhibited comparable antiviral activity as REP 9 but was not associated with splenomegaly. This suggests that the direct antiviral activity of APs is the predominant therapeutic mechanism in vivo. Moreover, REP 9C, which is acid stable, was effective when administered orally in combination with known permeation enhancers. Conclusion These studies indicate that APs exhibit potent, well tolerated antiviral activity

  3. Chemical vectors for gene delivery: a current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers

    PubMed Central

    Midoux, Patrick; Pichon, Chantal; Yaouanc, Jean-Jacques; Jaffrès, Paul-Alain

    2009-01-01

    DNA/cationic lipid (lipoplexes), DNA/cationic polymer (polyplexes) and DNA/cationic polymer/cationic lipid (lipopolyplexes) electrostatic complexes are proposed as non-viral nucleic acids delivery systems. These DNA-nanoparticles are taken up by the cells through endocytosis processes, but the low capacity of DNA to escape from endosomes is regarded as the major limitations of their transfection efficiency. Here, we present a current report on a particular class of carriers including the polymers, peptides and lipids, which is based on the exploitation of the imidazole ring as an endosome destabilization device to favour the nucleic acids delivery in the cytosol. The imidazole ring of histidine is a weak base that has the ability to acquire a cationic charge when the pH of the environment drops bellow 6. As it has been demonstrated for poly(histidine), this phenomena can induce membrane fusion and/or membrane permeation in an acidic medium. Moreover, the accumulation of histidine residues inside acidic vesicles can induce a proton sponge effect, which increases their osmolarity and their swelling. The proof of concept has been shown with polylysine partially substituted with histidine residues that has caused a dramatic increase by 3–4.5 orders of magnitude of the transfection efficiency of DNA/polylysine polyplexes. Then, several histidine-rich polymers and peptides as well as lipids with imidazole, imidazolinium or imidazolium polar head have been reported to be efficient carriers to deliver nucleic acids including genes, mRNA or SiRNA in vitro and in vivo. More remarkable, histidylated carriers are often weakly cytotoxic, making them promising chemical vectors for nucleic acids delivery. This article is part of a themed section on Vector Design and Drug Delivery. For a list of all articles in this section see the end of this paper, or visit: http://www3.interscience.wiley.com/journal/121548564/issueyear?year=2009 PMID:19459843

  4. Copolymers of ethylene imine and N-(2-hydroxyethyl)-ethylene imine as tools to study effects of polymer structure on physicochemical and biological properties of DNA complexes.

    PubMed

    Fischer, Dagmar; von Harpe, Anke; Kunath, Klaus; Petersen, Holger; Li, Youxin; Kissel, Thomas

    2002-01-01

    A series of five poly[(ethylene imine)-co-N-(2-hydroxyethyl-ethylene imine)] copolymers with similar molecular weights and different degrees of branching was established to study structure-function relationship with regard to physicochemical and biological properties as gene delivery systems. Copolymers were synthesized by acid-catalyzed ring-opening copolymerization of aziridine and N-(2-hydroxyethyl)-aziridine in aqueous solution and characterized by GPC-MALLS, (1)H- and (13)C NMR, IR, potentiometric titration, and ion exchange chromatography. Complexation of DNA was determined by agarose gel electrophoresis, and complex sizes were quantitated by PCS. Cytotoxicity of the copolymers in fibroblasts was assessed by MTT-assay, LDH-assay, and hemolysis. The transfection efficiency was determined using the reporter plasmid pGL3 in 3T3 mouse fibroblasts. The copolymers obtained by solution polymerization had relatively low molecular weights of about 2000 Da, and the degree of branching increased with increasing ethylene imine ratio. The pK(a) as well as the buffer capacity increased proportional to the number of primary and secondary amines. Higher branched polymers showed stronger complexation and condensation of DNA, formed smaller polymer/DNA complexes, and induced the expression of plasmids to a higher extent than less branched polymers. In vitro cytotoxic effects and the hemolysis of erythrocytes decreased with decreased branching. Our results indicate that the basicity and degree of protonation of the polymers depending on their amount of primary and secondary amines seem to be important factors both for their transfection efficiency and for their cytotoxicity in gene transfer.

  5. Generation of a Focused Poly(amino ether) Library: Polymer-mediated Transgene Delivery and Gold-Nanorod based Theranostic Systems

    PubMed Central

    Vu, Lucas; Ramos, James; Potta, Thrimoorthy; Rege, Kaushal

    2012-01-01

    A focused library of twenty-one cationic poly(amino ethers) was synthesized following ring-opening polymerization of two diglycidyl ethers by different oligoamines. The polymers were screened in parallel for plasmid DNA (pDNA) delivery, and transgene expression efficacies of individual polymers were compared to those of 25 kDa polyethylenimine (PEI), a current standard for polymer-mediated transgene delivery. Seven lead polymers that demonstrated higher transgene expression than PEI in pancreatic and prostate cancer cells lines were identified from the screen. All seven lead polymers showed highest transgene expression at a polymer:pDNA weight ratio of 5:1 in the MIA PaCa-2 pancreatic cancer cell line. Among the conditions studied, transgene expression efficacy correlated with minimal polymer cytotoxicity but not polyplex sizes. In addition, this study indicated that methylene spacing between amine centers in the monomers, amine content, and molecular weight of the polymers are all significant factors and should be considered when designing polymers for transgene delivery. A lead effective polymer was employed for coating gold nanorods, leading to theranostic nanoassemblies that possess combined transgene delivery and optical imaging capabilities, leading to potential theranostic systems. PMID:23382773

  6. [Verification of a decrease in the rigidity of the phage lambda DNA polymeric chain in low ionic strength aqueous solutions by testing the polymer-polymer interlink interactions].

    PubMed

    Arutiunian, A V; Ivanova, M A; Kurliand, D I; Kapshin, Iu S; Landa, S B; Poshekhonov, S T; Drobchenko, E A; Shevelev, I V

    2011-01-01

    Changes in the rigidity of the polymetric chain of phage lambda double-strand DNA have been studied by laser correlation spectroscopy. It was shown that, as the ionic strength increases, the effect of the screening of the hydrodynamic interaction of the links of the polymeric chain specific for polymeric coils arises in a DNA solution. It is assumed that the screening occurs when the threshold of the overlapping of DNA coils is achieved. The overlapping of coils is the result of a previously observed significant rise of DNA coil size from abnormally small DNA coils in low ionic strength buffers (about 10(-2) M Na+ or less) to maximum possible large coils in the 5SSC and 5SSC-like buffers. Further analysis of the far interlink interactions in linear lambda phage DNA coils in similar buffers at pH 7 and 4 confirms the earlier proposal about the role of H+ ions in the appearance of abnormally small DNA coils. The abnormal decrease in the DNA coil size in low ionic strength buffers is not a specific feature of lambda phage DNA only.

  7. A colorimetric strategy based on a water-soluble conjugated polymer for sensing pH-driven conformational conversion of DNA i-motif structure.

    PubMed

    Wang, Lihua; Liu, Xingfen; Yang, Qing; Fan, Quli; Song, Shiping; Fan, Chunhai; Huang, Wei

    2010-03-15

    Using a water-soluble conjugated polymer (CP) as a sensing probe, we developed a rapid colorimetric detection strategy for pH-driven conformational conversion of DNA i-motif structure. Two sensing configurations were designed: one used CP only to detect the conversion between i-motif and random-coiled state of a C-rich single-strand DNA, the other used CP and a complementary single-strand DNA to investigate the conversion of duplex to i-motif equilibrium. All the conversions would lead to color change observed directly with naked eyes within a few minutes. The limitation of detection (LOD) is as low as 40 nM. More importantly, reversible conformational conversions by adjusting the pH of the system could also be detected.

  8. Does DNA exert an active role in generating cell-sized spheres in an aqueous solution with a crowding binary polymer?

    PubMed

    Tsumoto, Kanta; Arai, Masafumi; Nakatani, Naoki; Watanabe, Shun N; Yoshikawa, Kenichi

    2015-02-09

    We report the spontaneous generation of a cell-like morphology in an environment crowded with the polymers dextran and polyethylene glycol (PEG) in the presence of DNA. DNA molecules were selectively located in the interior of dextran-rich micro-droplets, when the composition of an aqueous two-phase system (ATPS) was near the critical condition of phase-segregation. The resulting micro-droplets could be controlled by the use of optical tweezers. As an example of laser manipulation, the dynamic fusion of two droplets is reported, which resembles the process of cell division in time-reverse. A hypothetical scenario for the emergence of a primitive cell with DNA is briefly discussed.

  9. Small-Angle Neutron Scattering Studies on the Multilamellae Formed by Mixing Lamella-Forming Cationic Diblock Copolymers with Lipids and Their Interaction with DNA.

    PubMed

    Yang, Po-Wei; Lin, Tsang-Lang; Liu, I-Ting; Hu, Yuan; Jeng, U-Ser; Gilbert, Elliot Paul

    2016-02-23

    We demonstrate that the lamella-forming polystyrene-block-poly(N-methyl-4-vinylpyridinium iodine) (PS-b-P4VPQ), with similar sizes of the PS and P4VPQ blocks, can be dispersed in the aqueous solutions by forming lipid/PS-b-P4VPQ multilamellae. Using small-angle neutron scattering (SANS) and 1,2-dipalmitoyl-d62-sn-glycero-3-phosphocholine (d62-DPPC) in D2O, a broad correlation peak is found in the scattering profile that signifies the formation of the loosely ordered d62-DPPC/PS-b-P4VPQ multilamellae. The thicknesses of the hydrophobic and hydrophilic layers of the d62-DPPC/PS-b-P4VPQ multilamellae are close to the PS layer and the condensed brush layer thicknesses as determined from previous neutron reflectometry studies on the PS-b-P4VPQ monolayer at the air-water interface. Such well-dispersed d62-DPPC/PS-b-P4VPQ multilamellae are capable of forming multilamellae with DNA in aqueous solution. It is found that the encapsulation of DNA in the hydrophilic layer of the d62-DPPC/PS-b-P4VPQ multilamellae slightly increases the thickness of the hydrophilic layer. Adding CaCl2 can enhance the DNA adsorption in the hydrophilic brush layer, and it is similar to that observed in the neutron reflectometry study of the DNA adsorption by the PS-b-P4VPQ monolayer.

  10. Nanoscopic structure of DNA condensed for gene delivery.

    PubMed Central

    Dunlap, D D; Maggi, A; Soria, M R; Monaco, L

    1997-01-01

    Scanning force microscopy was used to examine DNA condensates prepared with varying stoichiometries of lipospermine or polyethylenimine in physiological solution. For the first time, individual DNA strands were clearly visualized in incomplete condensates without drying. Using lipospermine at sub-saturating concentrations, discrete nuclei of condensation were observed often surrounded by folded loops of DNA. Similar packing of DNA loops occurred for polyethylenimine-induced condensation. Increasing the amount of the condensing agent led to the progressive coalescence or aggregation of initial condensation nuclei through folding rather than winding the DNA. At over-saturating charge ratios of the cationic lipid or polymer to DNA, condensates had sizes smaller than or equal to those measured previously in electron micrographs. Polyethylenimine condensates were more compact than lipospermine condensates and both produced more homogeneously compacted plasmids when used in a 2-4-fold charge excess. The size and morphology of the condensates may affect their efficiency in transfection. PMID:9224610

  11. DNA.

    ERIC Educational Resources Information Center

    Felsenfeld, Gary

    1985-01-01

    Structural form, bonding scheme, and chromatin structure of and gene-modification experiments with deoxyribonucleic acid (DNA) are described. Indicates that DNA's double helix is variable and also flexible as it interacts with regulatory and other molecules to transfer hereditary messages. (DH)

  12. On the effects of intercalators in DNA condensation: a force spectroscopy and gel electrophoresis study.

    PubMed

    Rocha, M S; Cavalcante, A G; Silva, R; Ramos, E B

    2014-05-08

    In this work we have characterized the effects of the intercalator ethidium bromide (EtBr) on the DNA condensation process by using force spectroscopy and gel electrophoresis. We have tested two condensing agents: spermine (spm(4+)), a tetravalent cationic amine which promotes cation-induced DNA condensation, and poly(ethylene glycol) (PEG), a neutral polymer which promotes DNA ψ-condensation. Two different types of experiments were performed. In the first type, bare DNA molecules disperse in solution are first treated with EtBr for intercalation, and then the condensing agent is added to the sample with the purpose of verifying the effects of the intercalator in hindering DNA condensation. In the second experiment type, the bare DNA molecules are first condensed, and then the intercalator is added to the sample in order to verify its influence on the previously condensed DNA. The results obtained with the two different experimental techniques used agree very well, indicating that previously intercalated EtBr can hinder both cation-induced and ψ-condensation, being more efficient in the first case. On the other hand, EtBr has little effect on the previously formed cation-induced condensates, but is efficient in unfolding the ψ-condensates.

  13. Cationic lipid-formulated DNA vaccine against hepatitis B virus: immunogenicity of MIDGE-Th1 vectors encoding small and large surface antigen in comparison to a licensed protein vaccine.

    PubMed

    Endmann, Anne; Klünder, Katharina; Kapp, Kerstin; Riede, Oliver; Oswald, Detlef; Talman, Eduard G; Schroff, Matthias; Kleuss, Christiane; Ruiters, Marcel H J; Juhls, Christiane

    2014-01-01

    Currently marketed vaccines against hepatitis B virus (HBV) based on the small (S) hepatitis B surface antigen (HBsAg) fail to induce a protective immune response in about 10% of vaccinees. DNA vaccination and the inclusion of PreS1 and PreS2 domains of HBsAg have been reported to represent feasible strategies to improve the efficacy of HBV vaccines. Here, we evaluated the immunogenicity of SAINT-18-formulated MIDGE-Th1 vectors encoding the S or the large (L) protein of HBsAg in mice and pigs. In both animal models, vectors encoding the secretion-competent S protein induced stronger humoral responses than vectors encoding the L protein, which was shown to be retained mainly intracellularly despite the presence of a heterologous secretion signal. In pigs, SAINT-18-formulated MIDGE-Th1 vectors encoding the S protein elicited an immune response of the same magnitude as the licensed protein vaccine Engerix-B, with S protein-specific antibody levels significantly higher than those considered protective in humans, and lasting for at least six months after the third immunization. Thus, our results provide not only the proof of concept for the SAINT-18-formulated MIDGE-Th1 vector approach but also confirm that with a cationic-lipid formulation, a DNA vaccine at a relatively low dose can elicit an immune response similar to a human dose of an aluminum hydroxide-adjuvanted protein vaccine in large animals.

  14. Cationized gelatin hydrogels mixed with plasmid DNA induce stronger and more sustained gene expression than atelocollagen at calvarial bone defects in vivo.

    PubMed

    Komatsu, K; Shibata, T; Shimada, A; Ideno, H; Nakashima, K; Tabata, Y; Nifuji, A

    2016-01-01

    Gene transduction of exogenous factors at local sites in vivo is a promising approach to promote regeneration of tissue defects owing to its simplicity and capacity for expression of a variety of genes. Gene transduction by viral vectors is highly efficient; however, there are safety concerns associated with viruses. As a method for nonviral gene transduction, plasmid DNA delivery is safer and simpler, but requires an efficient carrier substance. Here, we aimed to develop a simple, efficient method for bone regeneration by gene transduction and to identify optimal conditions for plasmid DNA delivery at bone defect sites. We focused on carrier substances and compared the efficiencies of two collagen derivatives, atelocollagen, and gelatin hydrogel, as substrates for plasmid DNA delivery in vivo. To assess the efficiencies of these substrates, we examined exogenous expression of green fluorescence protein (GFP) by fluorescence microscopy, polymerase chain reaction, and immunohistochemistry. GFP expression at the bone defect site was higher when gelatin hydrogel was used as a substrate to deliver plasmids than when atelocollagen was used. Moreover, the gelatin hydrogel was almost completely absorbed at the defect site, whereas some atelocollagen remained. When a plasmid harboring bone morphogenic protein 2 was delivered with the substrate to bony defect sites, more new bone formation was observed in the gelatin group than in the atelocollagen group. These results suggested that the gelatin hydrogel was more efficient than atelocollagen as a substrate for local gene delivery and may be a superior material for induction of bone regeneration.

  15. Cationic derivatives of dextran and hydroxypropylcellulose as novel potential heparin antagonists.

    PubMed

    Kamiński, Kamil; Płonka, Monika; Ciejka, Justyna; Szczubiałka, Krzysztof; Nowakowska, Maria; Lorkowska, Barbara; Korbut, Ryszard; Lach, Radosław

    2011-10-13

    Cationic derivatives of dextran (Dex) and hydroxypropylcellulose (HPC) were studied as potential alternatives of protamine sulfate (PS) used in the reversal of anticoagulant activity of heparin. The modification was performed by the attachment of cationic groups to the Dex main chain or by grafting short side chains of a polycation onto HPC. The cationic derivatives of these polysaccharides were found to bind heparin with the efficiency increasing with growing degree of cationic modification. The degree of cationic modification and consequently the ζ potential of the polymers do not have to be high to achieve effective heparin binding. The size of the complexes of cationic Dex with unfractionated heparin (UFH) is a few micrometers. For complexes of cationic HPC and UFH the size is much below 1 μm, both below and above the lower critical solution temperature of HPC. None of the cationic polysaccharides studied caused hemolysis. The concentrations of the polymers inducing the aggregation of human erythrocytes in vitro were determined.

  16. Aggregation of nucleosomes by divalent cations.

    PubMed Central

    de Frutos, M; Raspaud, E; Leforestier, A; Livolant, F

    2001-01-01

    Conditions of precipitation of nucleosome core particles (NCP) by divalent cations (Ca(2+) and Mg(2+)) have been explored over a large range of nucleosome and cation concentrations. Precipitation of NCP occurs for a threshold of divalent cation concentration, and redissolution is observed for further addition of salt. The phase diagram looks similar to those obtained with DNA and synthetic polyelectrolytes in the presence of multivalent cations, which supports the idea that NCP/NCP interactions are driven by cation condensation. In the phase separation domain the effective charge of the aggregates was determined by measurements of their electrophoretic mobility. Aggregates formed in the presence of divalent cations (Mg(2+)) remain negatively charged over the whole concentration range. They turn positively charged when aggregation is induced by trivalent (spermidine) or tetravalent (spermine) cations. The higher the valency of the counterions, the more significant is the reversal of the effective charge of the aggregates. The sign of the effective charge has no influence on the aspect of the phase diagram. We discuss the possible reasons for this charge reversal in the light of actual theoretical approaches. PMID:11463653

  17. The cubyl cation rearrangements.

    PubMed

    Jalife, Said; Mondal, Sukanta; Cabellos, Jose Luis; Martinez-Guajardo, Gerardo; Fernandez-Herrera, Maria A; Merino, Gabriel

    2016-02-25

    Born-Oppenheimer molecular dynamics simulations and high-level ab initio computations predict that the cage-opening rearrangement of the cubyl cation to the 7H(+)-pentalenyl cation is feasible in the gas phase. The rate-determining step is the formation of the cuneyl cation with an activation barrier of 25.3 kcal mol(-1) at the CCSD(T)/def2-TZVP//MP2/def2-TZVP level. Thus, the cubyl cation is kinetically stable enough to be formed and trapped at moderate temperatures, but it may be rearranged at higher temperatures.

  18. Preparation of poly(ethylene glycol)-introduced cationized gelatin as a non-viral gene carrier.

    PubMed

    Kushibiki, Toshihiro; Tabata, Yasuhiko

    2005-01-01

    The objective of this study was to prepare cationized gelatins grafted with poly(ethylene glycol) (PEG) (PEG-cationized gelatin) and evaluate the in vivo efficiency as a non-viral gene carrier. Cationized gelatin was prepared by chemical introduction of ethylenediamine to the carboxyl groups of gelatin. PEG with one terminal of active ester group was coupled to the amino groups of cationized gelatin to prepare PEG-cationized gelatins. Electrophoretic experiments revealed that the PEG-cationized gelatin with low PEGylation degrees was complexed with a plasmid DNA of luciferase, in remarked contrast to that with high PEGylation degrees. When the plasmid DNA complexed with the cationized gelatin or PEG-cationized gelatin was mixed with deoxyribonuclease I (DNase I) in solution to evaluate the resistance to enzymatic degradation, stronger protection effect of the PEG-cationized gelatin was observed than that of the cationized gelatin. The complex of plasmid DNA and PEG-cationized gelatin had an apparent molecular size of about 300 nm and almost zero surface charge. These findings indicate that the PEG-cationized gelatin-plasmid DNA complex has a nano-order structure where the plasmid DNA is covered with PEG molecules. When the PEG-cationized gelatin-plasmid DNA complex was intramuscularly injected, the level of gene expression was significantly increased compared with the injection of plasmid DNA solution. It is concluded that the PEG-cationized gelatin was a promising non-viral gene carrier to enhance gene expression in vivo.

  19. "Click" chemistry mediated construction of cationic curdlan nanocarriers for efficient gene delivery.

    PubMed

    Han, Jingfen; Wang, Xia; Liu, Lixia; Li, Dongxue; Suyaola, Suyaola; Wang, Tianyue; Baigude, Huricha

    2017-05-01

    A cationic group has been quantitatively and selectively introduced into C6 position of each glucose units of Curdlan by "Click Chemistry" successfully. The resulting cationic Curdlan-Imidazole-lysine polymers (Cur-6-100Lys) exhibit excellent water solubility. Structure of the Cur-6-100Lys complexes was verified by FTIR and NMR spectroscopic measurements, and analysis of Cur-6-100Lys by GPC, DLS and SEM revealed that they have stoichiometric, nanosized spheroidal structures. Cytotoxicity measurement, electrophoretic mobility shift assay and EGFP-pDNA transfection have been carried out respectively. The results clearly show that Cur-6-100Lys nanocarriers have bound to dsDNA promptly, are less cytotoxic to both 7901 cells and HeLa cells, and are readily able to transport EGFP-pDNA into HepG2 cells. Our studies indicated that Cur-6-100Lys can potentially be used as a versatile nano platform for efficient gene delivery in living cells.

  20. An immersed boundary method for Brownian dynamics simulation of polymers in complex geometries: application to DNA flowing through a nanoslit with embedded nanopits.

    PubMed

    Zhang, Yu; de Pablo, Juan J; Graham, Michael D

    2012-01-07

    This work presents an immersed boundary method that allows fast Brownian dynamics simulation of solutions of polymer chains and other Brownian objects in complex geometries with fluctuating hydrodynamics. The approach is based on the general geometry Ewald-like method, which solves the Stokes equation with distributed regularized point forces in O(N) or O(NlogN) operations, where N is the number of point forces in the system. Time-integration is performed using a midpoint algorithm and Chebyshev polynomial approximation proposed by Fixman. This approach is applied to the dynamics of a genomic DNA molecule driven by flow through a nanofluidic slit with an array of nanopits on one wall of the slit. The dynamics of the DNA molecule was studied as a function of the Péclet number and chain length (the base case being λ-DNA). The transport characteristics of the hopping dynamics in this device differ at low and high Péclet number, and for long DNA, relative to the pit size, the dynamics is governed by the segments residing in the pit. By comparing with results that neglect them, hydrodynamic interactions are shown to play an important quantitative role in the hopping dynamics.

  1. Positively charged polymer brush-functionalized filter paper for DNA sequence determination following Dot blot hybridization employing a pyrrolidinyl peptide nucleic acid probe.

    PubMed

    Laopa, Praethong S; Vilaivan, Tirayut; Hoven, Voravee P

    2013-01-07

    As inspired by the Dot blot analysis, a well known technique in molecular biology and genetics for detecting biomolecules, a new paper-based platform for colorimetric detection of specific DNA sequences employing peptide nucleic acid (PNA) as a probe has been developed. In this particular study, a pyrrolidinyl PNA bearing a conformationally rigid d-prolyl-2-aminocyclopentanecarboxylic acid backbone (acpcPNA) was used as a probe. The filter paper was modified to be positively charged with grafted polymer brushes of quaternized poly(dimethylamino)ethyl methacrylate (QPDMAEMA) prepared by surface-initiated polymerization of 2-(dimethylamino)ethyl methacrylate from the filter paper via ARGET ATRP followed by quaternization with methyl iodide. Following the Dot blot format, a DNA target was first immobilized via electrostatic interactions between the positive charges of the QPDMAEMA brushes and negative charges of the phosphate backbone of DNA. Upon hybridization with the biotinylated pyrrolidinyl peptide nucleic acid (b-PNA) probe, the immobilized DNA can be detected by naked eye observation of the yellow product generated by the enzymatic reaction employing HRP-labeled streptavidin. It has been demonstrated that this newly developed assay was capable of discriminating between complementary and single base mismatch targets at a detection limit of at least 10 fmol. In addition, the QPDMAEMA-grafted filter paper exhibited a superior performance to the commercial membranes, namely Nylon 66 and nitrocellulose.

  2. A multi-field approach to DNA condensation

    NASA Astrophysics Data System (ADS)

    Ran, Shi-Yong; Jia, Jun-Li

    2015-12-01

    DNA condensation is an important process in many fields including life sciences, polymer physics, and applied technology. In the nucleus, DNA is condensed into chromosomes. In polymer physics, DNA is treated as a semi-flexible molecule and a polyelectrolyte. Many agents, including multi-valent cations, surfactants, and neutral poor solvents, can cause DNA condensation, also referred to as coil-globule transition. Moreover, DNA condensation has been used for extraction and gene delivery in applied technology. Many physical theories have been presented to elucidate the mechanism underlying DNA condensation, including the counterion correlation theory, the electrostatic zipper theory, and the hydration force theory. Recently several single-molecule studies have focused on DNA condensation, shedding new light on old concepts. In this document, the multi-field concepts and theories related to DNA condensation are introduced and clarified as well as the advances and considerations of single-molecule DNA condensation experiments are introduced. Project supported by the National Natural Science Foundation of China (Grant Nos. 21204065 and 20934004) and the Natural Science Foundation of Zhejiang Province, China (Grant No. Y4110357).

  3. Synthesis and characterization of N-ethyl-N'-(3-dimethylaminopropyl)-guanidinyl-polyethylenimine polymers and investigation of their capability to deliver DNA and siRNA in mammalian cells.

    PubMed

    Mahato, Manohar; Sharma, Ashwani K; Kumar, Pradeep

    2013-09-01

    Recent advancements in polymeric gene delivery have raised the potential of gene therapy as treatment for various acquired and inherited diseases. Here, we report on the synthesis and characterization of N-ethyl-N'-(3-dimethylaminopropyl)-guanidinyl-polyethylenimine (sGP) polymers and investigation of their capability to carry DNA and siRNA in vitro. Zinc triflate-mediated activation of primary amines of branched polyethylenimine (bPEI) followed by reaction with varying amounts of N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide (EDAC) resulted in the generation of a small series of trisubstituted guanidinyl-modified polyethylenimine polymers. Determination of primary amines on modified polymers by TNBS assay revealed 62-84% of the attempted conjugation of EDAC onto bPEI. These modified polymers were shown to condense plasmid DNA and retard its mobility on 0.8% agarose gel. Further, these polymers were evaluated for their capability to carry pDNA into the cells by performing transfection assay on various mammalian cells. All the modified polymer/pDNA complexes exhibited significantly higher levels of gene expression with one of the complexes, sGP3/pDNA complex, displayed ~1.45 to 3.0 orders of magnitude higher transfection efficiency than that observed in the native bPEI and the commercial transfection reagent, Lipofectamine™. The efficacy of sGP3 polymer was further assessed by siRNA delivery, which resulted in ~81% suppression of the target gene. In conclusion, these studies demonstrate the potential of these substituted guanidinyl-modified PEIs as efficient gene delivery vectors.

  4. DNA

    ERIC Educational Resources Information Center

    Stent, Gunther S.

    1970-01-01

    This history for molecular genetics and its explanation of DNA begins with an analysis of the Golden Jubilee essay papers, 1955. The paper ends stating that the higher nervous system is the one major frontier of biological inquiry which still offers some romance of research. (Author/VW)

  5. Discovery of metabolically stabilized electronegative polyacridine-PEG peptide DNA open polyplexes.

    PubMed

    Fernandez, Christian A; Baumhover, Nicholas J; Anderson, Kevin; Rice, Kevin G

    2010-04-21

    Cationic condensing peptides and polymers bind electrostatically to DNA to form cationic polyplexes. While many cationic polyplexes are able to achieve in vitro transfection mediated through electrostatic interactions, few have been able to mediate gene transfer in vivo. The present study describes the development and testing of polyacridine PEG-peptides that bind to plasmid DNA by intercalation resulting in electronegative open polyplex DNA. Polyacridine PEG-peptides were prepared by chemically conjugating 6-(9-acridinylamino) hexanoic acid onto side chains of Lys in PEG-Cys-Trp-(Lys)(3, 4, or 5). The resulting PEG-Cys-Trp-(Lys-(Acr))(3, 4, or 5) peptides bound tightly to DNA by polyintercalation, rather than electrostatic binding. Unlike polycationic polyplexes, polyacridine PEG-peptide polyplexes were anionic and open coiled, as revealed by zeta potential and atomic force microscopy. PEG-Cys-Trp-(Lys-(Acr))(5) showed the highest DNA binding affinity and the greatest ability to protect DNA from metabolism by DNase. Polyacridine PEG-peptide DNA open polyplexes were dosed intramuscularly and electroporated in mice to demonstrate their functional activity in gene transfer. These results establish polyacridine PEG-peptide DNA open polyplexes as a novel gene delivery method for in vivo use.

  6. Cationic liposome-DNA complexes (CLDC) adjuvant enhances the immunogenicity and cross-protective efficacy of a pre-pandemic influenza A H5N1 vaccine in mice.

    PubMed

    Dong, Libo; Liu, Feng; Fairman, Jeffery; Hong, David K; Lewis, David B; Monath, Thomas; Warner, John F; Belser, Jessica A; Patel, Jenish; Hancock, Kathy; Katz, Jacqueline M; Lu, Xiuhua

    2012-01-05

    The development of pre-pandemic influenza A H5N1 vaccines that confer both antigen-sparing and cross-clade protection are a high priority given the limited worldwide capacity for influenza vaccine production, and the antigenic and genetic heterogeneity of circulating H5N1 viruses. The inclusion of potent adjuvants in vaccine formulations may achieve both of these aims. Here we show that the addition of JVRS-100, an adjuvant consisting of cationic liposome-DNA complexes (CLDC) to a clade 1-derived H5N1 split vaccine induced significantly higher virus-specific antibody than unadjuvanted formulations, with a >30-fold dose-sparing effect and induction of increased antigen-specific CD4(+) T-cell responses in mice. All mice that received one dose of adjuvanted vaccine and subsequent H5N1 viral challenges exhibited mild illness, lower lung viral titers, undetectable spleen and brain viral titers, and 100% survival after either homologous clade 1 or heterologous clade 2 H5N1 viral challenges, whereas unadjuvanted vaccine recipients showed significantly increased weight loss, viral titers, and mortality. The protective immunity induced by JVRS-100 adjuvanted H5N1 vaccine was shown to last for over one year without significant waning. Thus, JVRS-100 adjuvanted H5N1 vaccine elicited enhanced humoral and T-cell responses, dose-sparing, and cross-clade protection in mice. CLDC holds promise as an adjuvant for human pre-pandemic inactivated H5N1 vaccines.

  7. A cationic liposome-DNA complexes adjuvant (JVRS-100) enhances the immunogenicity and cross-protective efficacy of pre-pandemic influenza A (H5N1) vaccine in ferrets.

    PubMed

    Liu, Feng; Sun, Xiangjie; Fairman, Jeffery; Lewis, David B; Katz, Jacqueline M; Levine, Min; Tumpey, Terrence M; Lu, Xiuhua

    2016-05-01

    Influenza A (H5N1) viruses continue to pose a public health threat. As inactivated H5N1 vaccines are poorly immunogenic, adjuvants are needed to improve the immunogenicity of H5N1 vaccine in humans. Here, we investigated the immunogenicity and cross-protective efficacy in ferrets of a clade 2.2-derived vaccine with addition of JVRS-100, an adjuvant consisting of cationic liposome-DNA complexes (CLDC). After the first vaccination, significantly higher levels of hemagglutination-inhibition (HAI) and neutralizing antibody titers were detected in ferrets immunized with adjuvanted vaccine compared to unadjuvanted vaccine. Following a second dose of adjuvanted vaccine, HAI antibody titers of ≥ 40 were detected against viruses from multiple H5N1 clades. HAI antibodies against newly isolated H5N2 and H5N8 viruses were also augmented by JVRS-100. Ferrets were challenged with a heterologous H5N1 virus. All ferrets that received two doses of adjuvanted vaccine exhibited mild illness, significantly reduced nasal wash virus titers and protection from lethal challenge. In contrast, ferrets that received unadjuvanted vaccine showed greater weight loss, high viral titers and 3 of 6 animals succumbed to the lethal challenge. Our results indicate that the addition of JVRS-100 to H5N1 vaccine enhanced immunogenicity and cross-protection against lethal H5N1 virus disease in ferrets. JVRS-100 warrants further investigation as a potential adjuvant for influenza vaccines.

  8. Cationically polymerizable monomers derived from renewable sources. Final report

    SciTech Connect

    1995-09-01

    Objective is to use products from plant sources as monomers for direct production of polymers for plastic applications. (Epoxidized triglycerides as renewable monomers in photoinitiated cationic polymerization.) High-volume American agricultural products such as soybean, cotton or linseed oils or forestry products such as lignin and cellulose derived chemicals were targeted for use either directly or with slight modification for producing the plastics. Cationic photopolymerization will be used.

  9. Counterion effects on fluorescence energy transfer in conjugated polyelectrolyte-based DNA detection.

    PubMed

    Nag, Okhil Kumar; Kang, Mijeong; Hwang, Sungu; Suh, Hongsuk; Woo, Han Young

    2009-04-30

    Cationic poly[9,9'-bis[6''-(N,N,N-trimethylammonium)hexyl]fluorene-co-alt-phenylene]s with five different counterions (CIs) were synthesized and studied as fluorescence resonance energy transfer (FRET) donors (D) to dye-labeled DNA (FRET acceptor, A). The polymers with different CIs show the same pi-conjugated electronic structure with similar absorption (lambda(abs) = approximately 380 nm) and photoluminescence (lambda(PL) = approximately 420 nm) emission spectra in water. The CIs accompanying the polymer chain are expected to affect the D/A complexation and modify the D-A intermolecular separation by acting as a spacer. Polymers with different CIs function differently as FRET excitation donors to fluorescein (Fl)-labeled single-stranded DNA (ssDNA-Fl). The FRET-induced Fl emission was enhanced significantly by the larger CI-exchanged polymers. The polymers with the CIs of tetrakis(1-imidazolyl)borate (FPQ-IB) and tetraphenylborate (FPQ-PB) showed a 2-4-fold enhancement in the FRET-induced signal compared with the polymer with bromide (FPQ-BR). The delayed FRET signal saturation and low association constants (K(a)) with ssDNA-Fl (3.53 x 10(6) M(-1) for FPQ-BR and 1.80 x 10(6) M(-1) for FPQ-PB) were measured for the polymers with larger CIs. The delayed acceptor saturation strengthens the antenna effect and reduces self-quenching of Fl by increasing the polymer concentration near Fl. The weak polymer/ssDNA-Fl association reduces the amount of energy-wasting charge transfer by increasing D-A intermolecular separation. The combined effects lead to increase the overall FRET-induced signal.

  10. Optimisation of synthetic vector systems for cancer gene therapy - the role of the excess of cationic dendrimer under physiological conditions.

    PubMed

    Santander-Ortega, M J; de la Fuente, M; Lozano, M V; Tsui, M L; Bolton, K; Uchegbu, I F; Schätzlein, A G

    2014-01-01

    We have previously demonstrated in a therapeutic study that a single systemic course of DAB-Am16 dendriplexes loaded with plasmid expressing TNFα over a period of time of 10 days led to a regression of 100% of tumours and to long term cures of up to 80% of animals. However, the formulation had a relatively low colloidal stability requiring administration soon after nanoparticle preparation. Similar to other cationic polyplex and dendrimer DNA delivery systems, DAB-AM16 dendrimer formulations contained a substantial proportion of free polymer; this free polymer is present independently of the specific polymer:DNA ratio and increases with increasing proportion of polymer (N:P charge ratio) in the formulation. It has previously been shown for this and other systems that the excess of polymer plays a role in promoting the transfection efficiency of synthetic vectors. This has been linked to effects of the polymer on the efficiency of intracellular processing, e.g. endosomal release. However, the free polymer may have additional effects that are relevant to the efficiency of the formulation. This study therefore considered the effect of free dendrimer on the colloidal stability of the complexes, the interaction of the complex with the formulation medium, and with biological components, i.e. electrolytes and serum proteins after administration. Analysis of the total potential of interaction shows that, even at high N:P ratios, the excess of free dendrimer in the medium is not enough to induce the aggregation of the formulation due to depletion forces. This finding is unusual and can be attributed to the particularly low Mw of these dendrimers (1.6 kDa). On the other hand, formulations are highly sensitive to the strength of the dendrimer:DNA interactions. These can be controlled by the degree of protonation (α) of the dendrimer which is strongly dependent on bulk pH. Modulation of the protonation level to α≥0.4 allows reproducible production of colloidally stable

  11. Cationic Polymerization of Vinyl Ethers Controlled by Visible Light.

    PubMed

    Kottisch, Veronika; Michaudel, Quentin; Fors, Brett P

    2016-12-07

    Photoinitiated cationic polymerizations are widely used in industrial processes; however, gaining photocontrol over chain growth would expand the utility of these methods and facilitate the design of novel complex architectures. We report herein a cationic polymerization regulated by visible light. This polymerization proceeds under mild conditions: a combination of a metal-free photocatalyst, a chain-transfer agent, and light irradiation enables the synthesis of various poly(vinyl ether)s with good control over molecular weight and dispersity as well as excellent chain-end fidelity. Significantly, photoreversible cation formation in this system enables efficient control over polymer chain growth with light.

  12. Uniformly cationized protein efficiently reaches the cytosol of mammalian cells.

    PubMed

    Futami, Midori; Watanabe, Yasuyoshi; Asama, Takashi; Murata, Hitoshi; Tada, Hiroko; Kosaka, Megumi; Yamada, Hidenori; Futami, Junichiro

    2012-10-17

    Protein cationization techniques are powerful protein transduction methods for mammalian cells. As we demonstrated previously, cationized proteins with limited conjugation to polyethylenimine have excellent ability to enter into cells by adsorption-mediated endocytosis [Futami, J., et al. (2005) J. Biosci. Bioeng. 99, 95-103]. In this study, we show that proteins with extensive and uniform cationization covering the protein surface reach the cytoplasm and nucleus more effectively than proteins with limited cationic polymers or proteins that are fused to cationic peptides. Although extensive modification of carboxylates results in loss of protein function, chicken avidin retains biotin-binding ability even after extensive amidation of carboxylates. Using this cationized avidin carrier system, the protein transduction ability of variously cationized avidins was investigated using biotinylated protein as a probe. The results revealed that cationized avidins bind rapidly to the cell surface followed by endocytotic uptake. Small amounts of uniformly cationized avidin showed direct penetration into the cytoplasm within a 15 min incubation. This penetration route seemed to be energy dependent and functioned under cellular physiological conditions. A biotinylated exogenous transcription factor protein that penetrated cells was demonstrated to induce target gene expression in living cells.

  13. Cationic dialkylarylphosphates: a new family of bio-inspired cationic lipids for gene delivery.

    PubMed

    Le Corre, Stéphanie S; Belmadi, Nawal; Berchel, Mathieu; Le Gall, Tony; Haelters, Jean-Pierre; Lehn, Pierre; Montier, Tristan; Jaffrès, Paul-Alain

    2015-01-28

    In this work that aims to synthesize and evaluate new cationic lipids as vectors for gene delivery, we report the synthesis of a series of cationic lipids in which a phosphate functional group acts as a linker to assemble on a molecular scale, two lipid chains and one cationic polar head. The mono or dicationic moiety is connected to the phosphate group by an aryl spacer. In this work, two synthesis strategies were evaluated. The first used the Atherton-Todd coupling reaction to introduce a phenolic derivative to dioleylphosphite. The second strategy used a sequential addition of lipid alcohol and a phenolic derivative on POCl3. The two methods are efficient, but the latter allows larger yields. Different polar head groups were introduced, thus producing amphiphilic compounds possessing either one permanent (N-methyl-imidazolium, pyridinium, trimethylammonium) or two permanent cationic charges. All these cationic lipids were formulated as liposomal solutions and characterized (size and zeta potential). They formed stable liposomal solutions both in water (at pH 7.0) and in a weakly acidic medium (at pH 5.5). Finally, this new generation of cationic lipids was used to deliver DNA into various human-derived epithelial cells cultured in vitro. Compared with Lipofectamine used as a reference commercial lipofection reagent, some cationic dialkylarylphosphates were able to demonstrate potent gene transfer abilities, and noteworthily, monocationic derivatives were much more efficient than dicationic analogues.

  14. The Effect of Hsab Principle on Electrochemical Properties of Polymer-In Electrolytes with Aliphatic Polymer

    NASA Astrophysics Data System (ADS)

    Kim, Min-Kyung; Lee, Yu-Jin; Jo, Nam-Ju

    To obtain high ambient ionic conductivity of solid polymer electrolyte (SPE), we introduce polymer-in-salt system with ion hopping mechanism contrary to traditional salt-in-polymer system with segmental motion mechanism. In polymer-in-salt system, the interaction between polymer and salt is important because polymer-in-salt electrolyte contains a large amount of salt. Thus, we try to solve the origin of interaction between polymer and salt by using hard/soft acid base (HSAB) principle. The SPEs are made up of two types of polymers (poly(ethylene oxide) (PEO, hard base) and poly(ethylene imine) (PEI, softer base than PEO)) and four types of salts (LiCF3SO3 (hard cation/hard anion), LiCl (hard cation/soft anion), AgCF3SO3 (soft cation/hard anion), and AgCl (soft cation/soft anion)) according to HSAB principle. In salt-in-polymer system, ionic conductivities of SPEs were affected by HSAB principle but in polymer-in-salt system, they were influenced by the ion hopping property of salt rather than the solubility of polymer for salt according to HSAB principle. The highest ionic conductivities of PEO-based and PEI-based SPEs were 5.13 × 10-4Scm-1 and 7.32 × 10-4Scm-1 in polymer-in-salt system, respectively.

  15. Calcium-activated gene transfection from DNA/poly(amic acid-co-imide) complexes.

    PubMed

    Wu, Szu-Yuan; Chang, Li-Ting; Peng, Sydeny; Tsai, Hsieh-Chih

    2015-01-01

    In this study, we synthesized a water-soluble poly(amic acid-co-imide) (PA-I) from ethylenediaminetetraacetic dianhydride (EDTA) and 2,2'-(ethylenedioxy)bis(ethylamine) that possesses comparable transfection efficiency to that of polyethylenimine (PEI), when prepared in combination with divalent calcium cations. The polycondensation of monomers afforded poly(amic acid) (PA) precursors, and subsequent thermal imidization resulted in the formation of PA-I. At a polymer/DNA ratio (indicated by the molar ratio of nitrogen in the polymer to phosphate in DNA) of 40, complete retardation of the DNA band was observed by gel electrophoresis, indicating the strong association of DNA with PA-I. A zeta potential of -22 mV was recorded for the PA-I polymer solution, and no apparent cytotoxicity was observed at concentrations up to 500 μg·mL(-1). In the presence of divalent Ca(2+), the transfection efficiency of PA-I was higher than that of PA, due to the formation of a copolymer/Ca(2+)/DNA polyplex and the reduction in negative charge due to thermal cyclization. Interestingly, a synergistic effect of Ca(2+) and the synthesized copolymer on DNA transfection was observed. The use of Ca(2+) or copolymer alone resulted in unsatisfactory delivery, whereas the formation of three-component polyplexes synergistically increased DNA transfection. Our findings demonstrated that a PA-I/Ca(2+)/DNA polyplex could serve as a promising candidate for gene delivery.

  16. Synthesis of linear polyethylenimine derivatives for DNA transfection.

    PubMed

    Brissault, Blandine; Kichler, Antoine; Guis, Christine; Leborgne, Christian; Danos, Olivier; Cheradame, Hervé

    2003-01-01

    A series of linear polymers containing varying amounts of ethylenimine or N-propylethylenimine units were synthesized by hydrolysis and/or reduction of polyethyloxazolines. The pK(a)s of the polyamines were determined potentiometrically. Gel mobility shift assay showed that the efficiency of DNA complexation was related to the fraction of amino groups that are protonated at neutral pH. The effects of cationic charge density and molar weight of the polymers on the transfection efficiency were evaluated on HepG2 cells. The results obtained with different copolymers show that the transfection efficiency primarily depends on the fraction of ethylenimine units included in the polymer albeit the molar weight is also of importance. On the basis of the results obtained with poly(N-propylethylenimines), we also demonstrate that the high transfection efficiency of polyethylenimines does not solely rely on their capacity to capture protons which are transferred into the endo-lysosomes during acidification.

  17. Fish DNA-modified clays: Towards highly flame retardant polymer nanocomposite with improved interfacial and mechanical performance

    PubMed Central

    Zabihi, Omid; Ahmadi, Mojtaba; Khayyam, Hamid; Naebe, Minoo

    2016-01-01

    Deoxyribonucleic Acid (DNA) has been recently found to be an efficient renewable and environmentally-friendly flame retardant. In this work, for the first time, we have used waste DNA from fishing industry to modify clay structure in order to increase the clay interactions with epoxy resin and take benefit of its additional thermal property effect on thermo-physical properties of epoxy-clay nanocomposites. Intercalation of DNA within the clay layers was accomplished in a one-step approach confirmed by FT-IR, XPS, TGA, and XRD analyses, indicating that d-space of clay layers was expanded from ~1.2 nm for pristine clay to ~1.9 nm for clay modified with DNA (d-clay). Compared to epoxy nanocomposite containing 2.5%wt of Nanomer I.28E organoclay (m-clay), it was found that at 2.5%wt d-clay loading, significant enhancements of ~14%, ~6% and ~26% in tensile strength, tensile modulus, and fracture toughness of epoxy nanocomposite can be achieved, respectively. Effect of DNA as clay modifier on thermal performance of epoxy nanocomposite containing 2.5%wt d-clay was evaluated using TGA and cone calorimetry analysis, revealing significant decreases of ~4000 kJ/m2 and ~78 kW/m2 in total heat release and peak of heat release rate, respectively, in comparison to that containing 2.5%wt of m-clay. PMID:27917901

  18. Fish DNA-modified clays: Towards highly flame retardant polymer nanocomposite with improved interfacial and mechanical performance

    NASA Astrophysics Data System (ADS)

    Zabihi, Omid; Ahmadi, Mojtaba; Khayyam, Hamid; Naebe, Minoo

    2016-12-01

    Deoxyribonucleic Acid (DNA) has been recently found to be an efficient renewable and environmentally-friendly flame retardant. In this work, for the first time, we have used waste DNA from fishing industry to modify clay structure in order to increase the clay interactions with epoxy resin and take benefit of its additional thermal property effect on thermo-physical properties of epoxy-clay nanocomposites. Intercalation of DNA within the clay layers was accomplished in a one-step approach confirmed by FT-IR, XPS, TGA, and XRD analyses, indicating that d-space of clay layers was expanded from ~1.2 nm for pristine clay to ~1.9 nm for clay modified with DNA (d-clay). Compared to epoxy nanocomposite containing 2.5%wt of Nanomer I.28E organoclay (m-clay), it was found that at 2.5%wt d-clay loading, significant enhancements of ~14%, ~6% and ~26% in tensile strength, tensile modulus, and fracture toughness of epoxy nanocomposite can be achieved, respectively. Effect of DNA as clay modifier on thermal performance of epoxy nanocomposite containing 2.5%wt d-clay was evaluated using TGA and cone calorimetry analysis, revealing significant decreases of ~4000 kJ/m2 and ~78 kW/m2 in total heat release and peak of heat release rate, respectively, in comparison to that containing 2.5%wt of m-clay.

  19. Polymer chemistry: Proteins in a pill

    NASA Astrophysics Data System (ADS)

    Maynard, Heather D.

    2013-07-01

    Protein drugs are important therapies for many different diseases, but very few can be administered orally. Now, a cationic dendronized polymer has been shown to stabilize a therapeutic protein for delivery to the gut.

  20. Characterization of novel cationic amphiphiles for gene delivery

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxiang

    Gene therapy has drawn vast interest for treating, preventing, or controlling a myriad of diseases. The two most common methods for gene delivery use either synthetic or viral vectors. Viral vectors (infection) are by far the most effective and efficient means of DNA delivery, but their use is tempered by safety and immunogenicity concerns. Consequently, there has been a significant effort to develop and evaluate non- viral vectors, which include cationic amphiphiles and polymers, and more recently anionic amphiphiles. Non-viral vectors have the advantages of ease of production, better stability and low immunogenicity. At the same time, they also have a number of limitations, including low in vitro and in vivo transfection efficiencies, and cytotoxicity in many instances. My research project has been focused on design, development and characterizations of novel amphiphilic lipids for gene delivery. Through rational design and characterization of the amphiphile structures, it not only yielded vectors showing high transfection activities, but also provided information of the structure-activity relationship. These results provide us with a better understanding on the transfection process and future directions to further optimize the amphiphile structures. More specifically, my dissertation research included the following three parts: (i) characterization of novel lipopeptides possessing di- or tri- peptide head groups; (ii) determination of the effect of spacer (between the cationic domain and the hydrophobic domain of charge-reversal amphiphiles) length, rigidity and hydrophilicity on gene delivery; (iii) identification of the cellular uptake pathway and the transfection mechanism of a known enzyme-sensitive charge-reversal amphiphile.

  1. Tailor-made poly(amidoamine)s for controlled complexation and condensation of DNA.

    PubMed

    Hartmann, Laura; Häfele, Stefanie; Peschka-Süss, Regine; Antonietti, Markus; Börner, Hans G

    2008-01-01

    A set of polymer carriers for DNA delivery was synthesized by combining monodisperse, sequence-defined poly(amidoamine) (PAA) segments with poly(ethylene oxide) (PEO) blocks. The precise definition of the PAA segments provides the possibility of correlating the chemical structure (monomer sequence) with the resulting biological properties. Three different PAA-PEO conjugates were synthesized by solid-phase supported synthesis, and the cationic nature of the PAA segments was systematically varied. This allows for the tailoring of interactions with double-stranded plasmid DNA (dsDNA). The potential of the PAA-PEO conjugates as non-viral vectors for gene delivery is demonstrated by investigating the dsDNA complexation and condensation properties. Depending on the applied carrier, a transition in polyplex (polymer-DNA ion complex) structures is observed. This reaches from extended ring-like structures to highly compact toroidal structures, where supercoiling of the DNA is induced. An aggregation model is proposed that is based on structural investigations of the polyplexes with atomic force microscopy (AFM) and dynamic light scattering (DLS). While the cationic PAA segment mediates primarily the contact of the carrier to the dsDNA, the PEO block stabilizes the polyplex and generates a "stealth" aggregate, as was suggested by Zeta potentials that were close to zero. The controlled aggregation leads to stable, single-plasmid complexes, and stabilizes the DNA structure itself. This is shown by ethidium bromide intercalation assays and DNase digestion assays. The presented PAA-PEO systems allow for the formation of well-defined single-plasmid polyplexes, preventing hard DNA compression and strongly polydisperse polyplexes. Moreover carrier polymers and the resulting polyplexes exhibit no cytotoxicity, as was shown by viability tests; this makes the carriers potentially suitable for in vivo delivery applications.

  2. Interaction of Hyaluronan with Cationic Nanoparticles.

    PubMed

    Bano, Fouzia; Carril, Mónica; Di Gianvincenzo, Paolo; Richter, Ralf P

    2015-08-04

    The polysaccharide hyaluronan (HA) is a main component of peri- and extracellular matrix, and an attractive molecule for materials design in tissue engineering and nanomedicine. Here, we study the morphology of complexes that form upon interaction of nanometer-sized amine-coated gold particles with this anionic, linear, and regular biopolymer in solution and grafted to a surface. We find that cationic nanoparticles (NPs) have profound effects on HA morphology on the molecular and supramolecular scale. Quartz crystal microbalance (QCM-D) shows that depending on their relative abundance, cationic NPs promote either strong compaction or swelling of films of surface-grafted HA polymers (HA brushes). Transmission electron and atomic force microscopy reveal that the NPs do also give rise to complexes of distinct morphologies-compact nanoscopic spheres and extended microscopic fibers-upon interaction with HA polymers in solution. In particular, stable and hydrated spherical complexes of single HA polymers with NPs can be prepared when balancing the ionizable groups on HA and NPs. The observed self-assembly phenomena could be useful for the design of drug delivery vehicles and a better understanding of the reorganization of HA-rich synthetic or biological matrices.

  3. Stimuli-responsive polymers in gene delivery.

    PubMed

    Piskin, Erhan

    2005-07-01

    Recent interest in clinical therapy has been directed to deliver nucleic acids (DNA, RNA or short-chain oligonucleotides) that alter gene expression within a specific cell population, thereby manipulating cellular processes and responses, which in turn stimulate immune responses or tissue regeneration, or blocks expression at the level of transcription or translation for treatment of several diseases. Both ex vivo and in vivo gene delivery can be achieved mostly by using a delivery system (vector). Viral vectors exhibit high gene expression, but also have very significant side effects. Mainly cationic polymeric systems are used as nonviral vectors, although usually with low levels of transfection. Through the use of stimuli-responsive polymers as novel vectors for gene delivery, two benefits can be obtained: high gene expression efficiency and more selective gene expression.

  4. Electrospray ionization tandem mass spectrometry of ammonium cationized polyethers.

    PubMed

    Nasioudis, Andreas; Heeren, Ron M A; van Doormalen, Irene; de Wijs-Rot, Nicolette; van den Brink, Oscar F

    2011-05-01

    Quaternary ammonium salts (Quats) and amines are known to facilitate the MS analysis of high molar mass polyethers by forming low charge state adduct ions. The formation, stability, and behavior upon collision-induced dissociation (CID) of adduct ions of polyethers with a variety of Quats and amines were studied by electrospray ionization quadrupole time-of-flight, quadrupole ion trap, and linear ion trap tandem mass spectrometry (MS/MS). The linear ion trap instrument was part of an Orbitrap hybrid mass spectrometer that allowed accurate mass MS/MS measurements. The Quats and amines studied were of different degree of substitution, structure, and size. The stability of the adduct ions was related to the structure of the cation, especially the amine's degree of substitution. CID of singly/doubly charged primary and tertiary ammonium cationized polymers resulted in the neutral loss of the amine followed by fragmentation of the protonated product ions. The latter reveals information about the monomer unit, polymer sequence, and endgroup structure. In addition, the detection of product ions retaining the ammonium ion was observed. The predominant process in the CID of singly charged quaternary ammonium cationized polymers was cation detachment, whereas their doubly charged adduct ions provided the same information as the primary and tertiary ammonium cationized adduct ions. This study shows the potential of specific amines as tools for the structural elucidation of high molar mass polyethers.

  5. Electrospray Ionization Tandem Mass Spectrometry of Ammonium Cationized Polyethers

    NASA Astrophysics Data System (ADS)

    Nasioudis, Andreas; Heeren, Ron M. A.; van Doormalen, Irene; de Wijs-Rot, Nicolette; van den Brink, Oscar F.

    2011-05-01

    Quaternary ammonium salts (Quats) and amines are known to facilitate the MS analysis of high molar mass polyethers by forming low charge state adduct ions. The formation, stability, and behavior upon collision-induced dissociation (CID) of adduct ions of polyethers with a variety of Quats and amines were studied by electrospray ionization quadrupole time-of-flight, quadrupole ion trap, and linear ion trap tandem mass spectrometry (MS/MS). The linear ion trap instrument was part of an Orbitrap hybrid mass spectrometer that allowed accurate mass MS/MS measurements. The Quats and amines studied were of different degree of substitution, structure, and size. The stability of the adduct ions was related to the structure of the cation, especially the amine's degree of substitution. CID of singly/doubly charged primary and tertiary ammonium cationized polymers resulted in the neutral loss of the amine followed by fragmentation of the protonated product ions. The latter reveals information about the monomer unit, polymer sequence, and endgroup structure. In addition, the detection of product ions retaining the ammonium ion was observed. The predominant process in the CID of singly charged quaternary ammonium cationized polymers was cation detachment, whereas their doubly charged adduct ions provided the same information as the primary and tertiary ammonium cationized adduct ions. This study shows the potential of specific amines as tools for the structural elucidation of high molar mass polyethers.

  6. Cationic Polymerization of Vegetable Oils in Supercritical Carbon Dioxide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polymers derived from vegetable oils have been prepared in supercritical carbon dioxide (scCO2) medium by cationic polymerization. Boron trifluoride diethyl etherate BF3.O(C2H2)2 are used as initiator. Influences of polymerization temperature, initiator amount, and carbon dioxide pressure on the m...

  7. Competition between kaolinite flocculation and stabilization in divalent cation solutions dosed with anionic polyacrylamides.

    PubMed

    Lee, Byung Joon; Schlautman, Mark A; Toorman, Erik; Fettweis, Michael

    2012-11-01

    Divalent cations have been reported to develop bridges between anionic polyelectrolytes and negatively-charged colloidal particles, thereby enhancing particle flocculation. However, results from this study of kaolinite suspensions dosed with various anionic polyacrylamides (PAMs) reveal that Ca(2+) and Mg(2+) can lead to colloid stabilization under some conditions. To explain the opposite but coexisting processes of flocculation and stabilization with divalent cations, a conceptual flocculation model with (1) particle-binding divalent cationic bridges between PAM molecules and kaolinite particles and (2) polymer-binding divalent cationic bridges between PAM molecules is proposed. The particle-binding bridges enhanced flocculation and aggregated kaolinite particles in large, easily-settleable flocs whereas the polymer-binding bridges increased steric stabilization by developing polymer layers covering the kaolinite surface. Both the particle-binding and polymer-binding divalent cationic bridges coexist in anionic PAM- and kaolinite-containing suspensions and thus induce the counteracting processes of particle flocculation and stabilization. Therefore, anionic polyelectrolytes in divalent cation-enriched aqueous solutions can sometimes lead to the stabilization of colloidal particles due to the polymer-binding divalent cationic bridges.

  8. Optimization of Brush-like Cationic Copolymers for Non-viral Gene Delivery

    PubMed Central

    Wei, Hua; Pahang, JoshuelA; Pun, Suzie H.

    2012-01-01

    Polyethylenimine (PEI) is one of the most broadly used polycations for gene delivery due to its high transfection efficiency and commercial availability but materials are cytotoxic and often polydisperse. The goal of current work is to develop an alternative family of polycations based on controlled living radical polymerization (CLRP) and to optimize the polymer structure for efficient gene delivery. In this study, well-defined poly(glycidyl methacrylate)(P(GMA)) homopolymers were synthesized using reversible addition fragmentation chain transfer (RAFT) polymerization followed by decoration using three different types of oligoamines, i.e., tetraethylenepentamine (TEPA), pentaethylenehexamine (PEHA), and tris(2-aminoethyl)amine (TREN), respectively, to generate various P(GMA-oligoamine) homopolycations. The effect of P(GMA) backbone length and structure of oligoamine on gene transfer efficiency was then determined. The optimal polymer, P(GMA-TEPA)50, provided comparable transfection efficiency but lower cytotoxicity than PEI. P(GMA-TEPA)50 was then used as the cationic block in di-block copolymers containing hydrophilic N-(2-hydroxypropyl) methacrylamide (HPMA) and oligo(ethylene glycol) monomethyl ether methacrylate (OEGMA). Polyplexes of block copolymers were stable against aggregation in physiological salt condition and in Opti-MEM due to the shielding effect of P(HPMA) and P(OEGMA). However, the presence of the HPMA/OEGMA block significantly decreased the transfection efficacy of P(GMA-TEPA)50homopolycation. To compensate for reduced cell uptake caused by the hydrophilic shell of polyplex, the integrin-binding peptide, RGD, was conjugated to the hydrophilic chain end of P(OEGMA)15-b-P(GMA-TEPA)50 copolymer by Michael-type addition reaction. At low polymer to DNA ratios, the RGD-functionalized polymer showed increased gene delivery efficiency to HeLa cells compared to analogous polymers lacking RGD. PMID:23240866

  9. Biophysical characterization of quaternary pyridinium functionalized polynorbornenes for DNA complexation and their cellular interactions.

    PubMed

    Guler Gokce, Zeliha; Zuhal Birol, Semra; Eren, Tarık; Ercelen Ceylan, Sebnem

    2017-04-01

    Cationic polymers with hydrophobic side chains have gained great interest as DNA carriers since they form a compact complex with negatively charged DNA phosphate groups and interact with the cell membrane. Amphiphilic polyoxanorbornenes with different quaternary alkyl pyridinium side chains with ethyl-p(OPy2) and hexyl units-p(OPy6) bearing 10 kDa MWT were synthesized by living Ring-Opening Metathesis Polymerization method. The physicochemical characteristics: critical micellar concentration, size distribution, surface charge, and condensation of polymer/DNA complex were investigated. Morphology of complexes was monitored by Atomic force microscopy. Cytotoxicity and interaction of these complexes with model lipid vesicles mimicking the cell membrane were examined. These polymers were enabled to form small sized complexes of DNA, which interact with model membrane vesicles. It was found that the nature of hydrophobicity of the homopolymers significantly impacts rates of DNA complexation and the surface charge of the resulting complexes. These results highlight the prospect of the further examinations of these polymers as gene carriers.

  10. Physical and biological properties of cationic triesters of phosphatidylcholine

    PubMed Central

    MacDonald, RC; Ashley, GW; Shida, MM; Rakhmanova, VA; Tarahovsky, YS; Pantazatos, DP; Kennedy, MT; Pozharski, EV; Baker, KA; Jones, RD; Rosenzweig, HS; Choi, KL; Qiu, R; McIntosh, TJ

    1999-01-01

    The properties of a new class of phospholipids, alkyl phosphocholine triesters, are described. These compounds were prepared from phosphatidylcholines through substitution of the phosphate oxygen by reaction with alkyl trifluoromethylsulfonates. Their unusual behavior is ascribed to their net positive charge and absence of intermolecular hydrogen bonding. The O-ethyl, unsaturated derivatives hydrated to generate large, unilamellar liposomes. The phase transition temperature of the saturated derivatives is very similar to that of the precursor phosphatidylcholine and quite insensitive to ionic strength. The dissociation of single molecules from bilayers is unusually facile, as revealed by the surface activity of aqueous liposome dispersions. Vesicles of cationic phospholipids fused with vesicles of anionic lipids. Liquid crystalline cationic phospholipids such as 1, 2-dioleoyl-sn-glycero-3-ethylphosphocholine triflate formed normal lipid bilayers in aqueous phases that interacted with short, linear DNA and supercoiled plasmid DNA to form a sandwich-structured complex in which bilayers were separated by strands of DNA. DNA in a 1:1 (mol) complex with cationic lipid was shielded from the aqueous phase, but was released by neutralizing the cationic charge with anionic lipid. DNA-lipid complexes transfected DNA into cells very effectively. Transfection efficiency depended upon the form of the lipid dispersion used to generate DNA-lipid complexes; in the case of the O-ethyl derivative described here, large vesicle preparations in the liquid crystalline phase were most effective. PMID:10545361

  11. Novel alkyd-type coating resins produced using cationic polymerization

    SciTech Connect

    Chisholm, Bret J.; Kalita, Harjyoti; Alam, Samim; Jayasooriyamu, Anurad; Fernando, Shashi; Samanata, Satyabrata; Bahr, James; Selvakumar, Sermadurai; Sibi, Mukund; Vold, Jessica; Ulven, Chad

    2015-05-06

    Novel, partially bio-based poly(vinyl ether) copolymers derived from soybean oil and cyclohexyl vinyl ether (CHVE) were produced by cationic polymerization and investigated for application as alkyd-type surface coatings. Compared to conventional alkyd resins, which are produced by high temperature melt condensation polymerization, the poly(v9nyl ether)s provide several advantages. These advantages include milder, more energy efficient polymer synthesis, elimination of issues associated with gelation during polymer synthesis, production of polymers with well-defined composition and relatively narrow molecular weight distribution, and elimination of film formation and physical property issues associated with entrained monomers, dimers, trimers, etc. The results of the studied showed that the thermal, mechanical, and physical properties of the coatings produced from these novel polymers varied considerably as a function of polymer composition and cure temperature. Overall, the results suggest a good potential for these novel copolymers to be used for coatings cured by autoxidation.

  12. Achieving high gene delivery performance with caveolae-mediated endocytosis pathway by (l)-arginine/(l)-histidine co-modified cationic gene carriers.

    PubMed

    Li, Hui; Luo, Ting; Sheng, Ruilong; Sun, Jingjing; Wang, Zhao; Cao, Amin

    2016-12-01

    Developing new amphiphilic polymers with natural product moieties has been regarded as a promising way to achieve biocompatibility and certain biological functions. In prior work, we developed some natural (l)-arginine modified cationic polymers (PAHMAA-Rs) as cationic gene carriers. For the sake of continuing optimize the gene delivery performance, herein, a new series of (l)-arginine and (l)-histidine co-modified cationic poly (ω-aminohexyl methacrylamide)s (PAHMAA-R-H) were synthesized and characterized with (1)H NMR, GPC-SLS and FT-IR. Their proton buffering capacities were studied by acid-base titration assay. pDNA binding affinity and self-assembly properties of the polyplexes were analyzed by agarose gel retardation assay, DLS and AFM, respectively. In vitro cytotoxicity of the PAHMAA-R-H was determined by MTT and LDH assays in H1299 cells, the gene transfection efficacy and intracellular uptake capability were evaluated by luciferase assay and FACS, respectively. Moreover, the endocytosis pathways and intracellular distribution of the polyplexes were investigated by using specific endocytic inhibitors and fluorescent co-localization techniques. The results demonstrated that co-modification of (l)-arginine and (l)-histidine onto the PAHMAA polymer could enhance proton buffering capacity, shield surface charge, decrease cytotoxicity, and improve gene transfection efficiency and serum-compatibility. Moreover, the gene transfection and intracellular uptake behaviors were disclosed strongly rely on the (l)-arginine/(l)-histidine modification ratios. The polyplexes tend to be internalized through caveolae-mediated endocytosis gateway and localized with endosomes/lysosomes in H1299 cells. Notably, among the polymers, the PAHMAA-R18-H6 exhibited remarkable gene delivery efficiency and serum compatibility, which made it promising gene transfection agent for practical application.

  13. Polymer films

    DOEpatents

    Granick, Steve; Sukhishvili, Svetlana A.

    2004-05-25

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  14. Polymer films

    DOEpatents

    Granick, Steve; Sukhishvili, Svetlana A.

    2008-12-30

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  15. A method for the production of weakly acidic cation exchange resins

    NASA Astrophysics Data System (ADS)

    Heller, H.; Werner, F.; Mitschker, A.; Diehl, H. V.; Schaefer, A.

    1991-12-01

    The invention relates to a nonpolluting method for the production of weakly acidic cation exchange resins by saponification of cross-linked acrylonitrile bead polymers, with an alkaline saponification agent at elevated temperature, according to which method the bead polymer and alkaline saponification agent are jointly added only at elevated temperature.

  16. Mechanism of rate enhancement of wood fiber saccharification by cationic polyelectrolytes.

    PubMed

    Mora, Sandeep; Lu, Jian; Banerjee, Sujit

    2011-09-01

    Cationic polyelectrolytes can increase the cellulase-induced hydrolysis rates of bleached wood fiber. We show that the polymer associates mainly with the amorphous region of fiber and acts principally on endoglucanase. Fiber/water partitioning of the enzyme follows a Langmuir isotherm for the untreated fiber but a Freundlich isotherm is obeyed for the polymer-treated fiber.

  17. Potential of D-Octaarginine-Linked Polymers as an in Vitro Transfection Tool for Biomolecules.

    PubMed

    Mohri, Kohta; Morimoto, Naoki; Maruyama, Megumi; Nakamoto, Norimasa; Hayashi, Emi; Nagata, Kengo; Miyata, Kohei; Ochiai, Kyohei; Hiwatari, Ken-ichiro; Tsubaki, Kazufumi; Tobita, Etsuo; Ishimaru, Yuki; Maeda, Sadaaki; Sakuma, Shinji

    2015-08-19

    We have been investigating the potential use of cell-penetrating peptide-linked polymers as a novel penetration enhancer. Since previous in vivo studies demonstrated that poly(N-vinylacetamide-co-acrylic acid) bearing D-octaarginine, a typical cell-penetrating peptide, enhanced membrane permeation of biomolecules, its potential as an in vitro transfection tool was evaluated in this study. A plasmid DNA encoding green fluorescent protein (pGFP-C1), β-galactosidase, and bovine serum albumin (BSA) were used as model biomolecules. Anionic pGFP-C1 interacted electrostatically with cationic d-octaarginine-linked polymers. When the ratio of mass concentration of polymers to that of pGFP-C1 reached 2.5, complexes whose size and zeta potential were approximately 200 nm and 15 mV, respectively, were obtained. GFP expression was observed in cells incubated with complexes prepared under conditions in which the polymer/pDNA concentration ratio exceeded 2.5. The expression level elevated with an increase in the concentration ratio, but physicochemical properties of the complexes remained unchanged. Results suggested that free polymers contributed to pGFP-C1 internalization. Another cell study demonstrated that β-galactosidase premixed with polymers was taken up into cells in its active tetrameric form. Similar electrostatic interaction-driven complex formation was observed for BSA charged negatively in neutral solution. However, it appeared that the internalization processes of BSA differed from those of pGFP-C1. A mass concentration-dependent increase in internalized BSA was observed, irrespective of the polymer/protein concentration ratio. Due to frail interactions, polymers that were released from the complexes and subsequently immobilized on cell membranes might also contribute to membrane permeation of BSA.

  18. Model system for multifunctional delivery nanoplatforms based on DNA-Polymer complexes containing silver nanoparticles and fluorescent dye.

    PubMed

    Kasyanenko, Nina; Bakulev, Vladimir; Perevyazko, Igor; Nekrasova, Tatiana; Nazarova, Olga; Slita, Alexandr; Zolotova, Yulia; Panarin, Euginii

    2016-10-20

    Creation of multifunctional nanoplatforms is one of the new approaches to complex treatment and diagnosis with the monitoring of the curative process. Inclusion of various components into the drug delivery system may reduce toxicity and enhance or modify the therapeutic effects of medicines. In particular, some properties of metal nanoparticles and nanoclusters provide the ability to create new systems for treatment and diagnosis of diseases, biocatalysis and imaging of objects. For example, the ability of metal nanoparticles to enhance the quantum yield of luminescence can be used in bioimaging and therapy. The aim of the research was to construct and examine a multicomponent system based on DNA-polycation compact structure with the inclusion of silver nanoparticles and luminescent dye as a model system for delivery of genes and drugs with the possibility of modification and enhancement of their action.

  19. The study of polyplex formation and stability by time-resolved fluorescence spectroscopy of SYBR Green I-stained DNA.

    PubMed

    D'Andrea, Cosimo; Pezzoli, Daniele; Malloggi, Chiara; Candeo, Alessia; Capelli, Giulio; Bassi, Andrea; Volonterio, Alessandro; Taroni, Paola; Candiani, Gabriele

    2014-12-01

    Polyplexes are nanoparticles formed by the self-assembly of DNA/RNA and cationic polymers specifically designed to deliver exogenous genetic material to cells by a process called transfection. There is a general consensus that a subtle balance between sufficient extracellular protection and intracellular release of nucleic acids is a key factor for successful gene delivery. Therefore, there is a strong need to develop suitable tools and techniques for enabling the monitoring of the stability of polyplexes in the biological environment they face during transfection. In this work we propose time-resolved fluorescence spectroscopy in combination with SYBR Green I-DNA dye as a reliable tool for the in-depth characterization of the DNA/vector complexation state. As a proof of concept, we provide essential information on the assembly and disassembly of complexes formed between DNA and each of three cationic polymers, namely a novel promising chitosan-graft-branched polyethylenimine copolymer (Chi-g-bPEI), one of its building block 2 kDa bPEI and the gold standard transfectant 25 kDa bPEI. Our results highlight the higher information content provided by the time-resolved studies of SYBR Green I/DNA, as compared to conventional steady state measurements of ethidium bromide/DNA that enabled us to draw relationships among fluorescence lifetime, polyplex structural changes and transfection efficiency.

  20. Multilayered polyelectrolyte films promote the direct and localized delivery of DNA to cells.

    PubMed

    Jewell, Christopher M; Zhang, Jingtao; Fredin, Nathaniel J; Lynn, David M

    2005-08-18

    Multilayered polyelectrolyte films fabricated from plasmid DNA and a hydrolytically degradable synthetic polycation can be used to direct the localized transfection of cells without the aid of a secondary transfection agent. Multilayered assemblies 100 nm thick consisting of alternating layers of synthetic polymer and plasmid DNA encoding for enhanced green fluorescent protein (EGFP) were deposited on quartz substrates using a layer-by-layer fabrication procedure. The placement of film-coated slides in contact with COS-7 cells growing in serum-containing culture medium resulted in gene expression in cells localized under the film-coated portion of the slides. The average percentage of cells expressing EGFP relative to the total number of cells ranged from 4.6% to 37.9%, with an average of 18.6%+/-8.2%, as determined by fluorescence microscopy. In addition to providing a mechanism for the immobilization of