Science.gov

Sample records for dna cleavage studies

  1. DNA binding, photo-induced DNA cleavage and cytotoxicity studies of lomefloxacin and its transition metal complexes

    NASA Astrophysics Data System (ADS)

    Ragheb, Mohamed A.; Eldesouki, Mohamed A.; Mohamed, Mervat S.

    2015-03-01

    This work was focused on a study of the DNA binding and cleavage properties of lomefloxacin (LMF) and its ternary transition metal complexes with glycine. The nature of the binding interactions between compounds and calf thymus DNA (CT-DNA) was studied by electronic absorption spectra, fluorescence spectra and thermal denaturation experiments. The obtained results revealed that LMF and its complexes could interact with CT-DNA via partial/moderate intercalative mode. Furthermore, the DNA cleavage activities of the compounds were investigated by gel electrophoresis. Mechanistic studies of DNA cleavage suggest that singlet oxygen (1O2) is likely to be the cleaving agent via an oxidative pathway, except for Cu(II) complex which proceeds via both oxidative and hydrolytic pathways. Antimicrobial and antitumor activities of the compounds were also studied against some kinds of bacteria, fungi and human cell lines.

  2. Analgesic, anti-pyretic and DNA cleavage studies of novel pyrimidine derivatives of coumarin moiety.

    PubMed

    Keri, Rangappa S; Hosamani, Kallappa M; Shingalapur, Ramya V; Hugar, Mallinath H

    2010-06-01

    A novel series of 4-[4-(6-phenyl-pyrimidin-4-yl)-phenoxymethyl]-chromen-2-ones [5-7(a-e)] were synthesized from various 4-bromomethyl coumarins 1(a-e). The synthesized compounds were screened for in-vivo analgesic and anti-pyretic activities at a dose of 25 and 100 mg/kg body weight (b.w), respectively. Among them, compounds 5(d), 6(c) and 7(d) exhibited significant analgesic activity comparable with standard drug analgin using Tail-flick model. Compounds 5(a) and 7(a-d) showed significant anti-pyretic activities comparable with standard drug aspirin using yeast-induced pyrexia model. DNA cleavage study by agarose gel electrophoresis method was also studied. Qualitative SAR studies indicate that, compounds with amino group at 2-position of pyrimidine ring enhances analgesic and anti-pyretic activities and compounds with hydroxyl and thio group at 2-position of pyrimidine ring increase DNA cleavage activities. PMID:20356657

  3. Synthesis, DNA binding, photo-induced DNA cleavage, cytotoxicity studies of a family of heavy rare earth complexes.

    PubMed

    Chen, Gong-Jun; Wang, Zhi-Gang; Qiao, Xin; Xu, Jing-Yuan; Tian, Jin-Lei; Yan, Shi-Ping

    2013-10-01

    As a continuing investigation of our previous studies about the influence of the different rare earth metal ions on the bioactivity, a family of heavy rare earth metal complexes, [RE(acac)3(dpq)] (RE=Tb (1), Dy (2), Ho (3), Er (4), Tm (5), Yb (6), Lu (7)) and [RE(acac)3(dppz)]·CH3OH (RE=Tb (8), Dy (9), Ho (10), Er (11), Tm (12), Yb (13), Lu (14) viz. acetylacetonate (acac), dipyrido[3,2-d:20,30-f]quinoxaline (dpq), dipyrido[3,2-a:20,30-c] phenazine (dppz)), has been synthesized and their biological activities were also investigated. On the irradiation with UV-A light of 365nm or ambient light, all complexes exhibit efficient DNA cleavage activity via the mechanistic pathway involving the formation of singlet oxygen and hydroxyl radical as the reactive species. In addition, the in vitro cytotoxicity of these complexes on HeLa cells has been examined by MTT assay, which indicate that these compounds have the potential to act as effective anticancer drugs. The results of the above biological experiments also reveal that the choice of different rare earth metal ions has little influence on the DNA binding, DNA cleavage and cytotoxicity.

  4. Synthesis, DNA recognition and cleavage studies of novel tetrapeptide complexes, Cu(II)/Zn(II)-Ala-Pro-Ala-Pro

    NASA Astrophysics Data System (ADS)

    Arjmand, Farukh; Jamsheera, A.; Mohapatra, D. K.

    2013-05-01

    New tetrapeptide complexes Cu(II)·Ala-Pro-Ala-Pro (1) and Zn(II)·Ala-Pro-Ala-Pro (2) were synthesized from the reaction of tetrapeptide, Ala-Pro-Ala-Pro and CuCl2/ZnCl2 and were thoroughly characterized by elemental analysis, IR,1H and 13C NMR (in case of 2), ESI-MS, UV and molar conductance measurements. The solution stability study was carried out employing UV-vis absorption titrations over a broad range of pH which suggested the stability of the complexes in solution. In vitro interaction of complexes 1 and 2 with CT-DNA was studied employing UV-vis, fluorescence, circular dichroic and viscometry studies. To throw insight into molecular binding event at the target site, UV-vis titrations of 1 and 2 with mononucleotides of interest viz.; 5'-GMP and 5'-TMP were carried out. Cleavage activity of the complexes with pBR322 plasmid DNA was evaluated by agarose gel electrophoresis and, the electrophoresis pattern demonstrated that both the complexes 1 and 2 are efficient cleavage agents. Further, the Cu(II) complex displayed efficient oxidative cleavage of supercoiled DNA while various reactive oxygen species are responsible for the cleavage in Zn(II) complex.

  5. DNA Methylation Reduces Binding and Cleavage by Bleomycin

    PubMed Central

    2015-01-01

    In a recent study, we described the enhanced double-strand cleavage of hairpin DNAs by Fe·bleomycin (Fe·BLM) that accompanies increasingly strong binding of this antitumor agent and suggested that this effect may be relevant to the mechanism by which BLM mediates its antitumor effects. Because the DNA in tumor cells is known to be hypomethylated on cytidine relative to that in normal cells, it seemed of interest to study the possible effects of methylation status on BLM-induced double-strand DNA cleavage. Three hairpin DNAs found to bind strongly to bleomycin, and their methylated counterparts, were used to study the effect of methylation on bleomycin-induced DNA degradation. Under conditions of limited DNA cleavage, there was a significant overall decrease in the cleavage of methylated hairpin DNAs. Cytidine methylation was found to result in decreased BLM-induced cleavage at the site of methylation and to result in enhanced cleavage at adjacent nonmethylated sites. For two of the three hairpin DNAs studied, methylation was accompanied by a dramatic decrease in the binding affinity for Fe·BLM, suggesting the likelihood of diminished double-strand cleavage. The source of the persistent binding of BLM by the third hairpin DNA was identified. Also identified was the probable molecular mechanism for diminished binding and cleavage of the methylated DNAs by BLM. The possible implications of these findings for the antitumor selectivity of bleomycin are discussed. PMID:25187079

  6. Synthesis, DNA binding, and cleavage studies of Co(III) complexes with fused aromatic NO/NN-containing ligands.

    PubMed

    Sudhamani, Chittanahalli N; Bhojya Naik, Halehatty S; Girija, D

    2012-01-01

    Four new Co(III) complexes, namely [Co(cq)(3)](PF(6))(3), [Co(phen)(2)(cq)](PF(6))(3), [Co(bnp)(3)] (PF(6))(3), and [Co(phen)(2)(bnp)](PF(6))(3) (where cq = chromeno[2,3-b]quinoline, phen = 1,10-phenanthroline and bnp = dibenzo[b,g][1,8]naphthyridine), were synthesized and structurally characterized. Spectroscopic data suggested an octahedral geometry for all the complexes. Binding studies of these complexes with double-stranded (ds)DNA were analyzed by absorption spectra, viscosity, and thermal denaturation studies. The results revealed that the metal complex intercalates into the DNA base stack as intercalator. The oxidative cleavage activities of the complexes were studied with supercoiled pUC19 DNA using gel electrophoresis and the results show that the complexes have potent nuclease activity.

  7. Spectroscopy: The study of DNA cleavage by newly synthesized polydentate macrocyclic ligand and its copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Gupta, Lokesh Kumar; Chandra, Sulekh

    2008-11-01

    A novel hexadentate nitrogen donor [N 6] macrocyclic ligand, i.e. 2,6,12,16,21,22-hexaaza-3,5,13,15-tetramethyl-4,14-diethyl-tricyclo-[15.3.1.1(7-11)]docosane-1(21),2,5,7(22),8,10,12,15,17,19-decaene ( L), has been synthesized. Copper(II) complexes with this ligand have been prepared and subjected to elemental analyses, molar conductance measurements, magnetic susceptibility measurements, mass, 1H NMR (ligand), IR, electronic, and EPR spectral studies. On the basis of molar conductance the complexes may be formulated as [Cu(L)X 2] [X = Cl -, Br -, NO 3- and CH 3COO -] due to their nonelectrolytic nature in N, N'-dimethylformamide (DMF). All the complexes are of the high spin type and are six coordinated. On the basis of IR, electronic and EPR spectral studies tetragonal geometry has been assigned to the Cu(II) complexes. The interaction of these complexes with calf thymus DNA has been explored by using absorption, emission, viscosity measurements, electrochemical studies and DNA cleavage. All the experimental results suggest that the complexes bind to DNA and also promote the cleavage plasmid pBR 322, in the presence of H 2O 2 and ascorbic acid.

  8. Real-time monitoring of double-stranded DNA cleavage using molecular beacons.

    PubMed

    Ma, Changbei; Tang, Zhiwen; Huo, Xiqin; Yang, Xiaohai; Li, Wei; Tan, Weihong

    2008-07-15

    Traditional methods to assay enzymatic cleavage of DNA are discontinuous, time-consuming and laborious. Here, we report a new approach for real-time monitoring of double-stranded DNA cleavage by restriction endonuclease based on nucleic acid ligation using molecular beacon. Upon cleavage of DNA, the cleavage product can be ligated by DNA ligase, which results in a fluorescence enhancement of the molecular beacon. This method permits real-time monitoring of DNA cleavage and makes it easy to characterize the activity of restriction endonuclease and to study the cleavage reaction kinetics.

  9. DNA binding, DNA cleavage and cytotoxicity studies of a new water soluble copper(II) complex: The effect of ligand shape on the mode of binding

    NASA Astrophysics Data System (ADS)

    Kashanian, Soheila; Khodaei, Mohammad Mehdi; Roshanfekr, Hamideh; Shahabadi, Nahid; Mansouri, Ghobad

    2012-02-01

    The interaction of native calf thymus DNA (CT-DNA) with [Cu(ph 2phen)(phen-dione)Cl]Cl was studied at physiological pH by spectrophotometric, spectrofluorometric, circular dichroism, and viscometric techniques. Considerable hypochromicity and red shift are observed in the UV absorption band of the Cu complex. Binding constants ( Kb) of DNA with the complex were calculated at different temperatures. Thermodynamic parameters, enthalpy and entropy changes were calculated according to Van't Hoff equation, which indicated that reaction is predominantly enthalpically driven. All these results indicate that Cu(II) complex interacts with CT-DNA via intercalative mode. Also, this new complex induced cleavage in pUC18 plasmid DNA as indicated in gel electrophoresis and showed excellent antitumor activity against K562 (human chronic myeloid leukemia) and human T lymphocyte carcinoma-Jurkat cell lines.

  10. Synthesis, characterization, DNA-binding and cleavage studies of polypyridyl copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Gubendran, Ammavasi; Rajesh, Jegathalaprathaban; Anitha, Kandasamy; Athappan, Periyakaruppan

    2014-10-01

    Six new mixed-ligand copper(II) complexes were synthesized namely [Cu(phen)2OAc]ClO4ṡH2O(1), [Cu(bpy)2OAc]ClO4ṡH2O(2), [Cu(o-ampacac)(phen)]ClO4(3), [Cu(o-ampbzac)(phen)]ClO4(4), [Cu(o-ampacac)(bpy)]ClO4(5), and [Cu(o-ampbzac)(bpy)]ClO4(6) (phen = 1,10-phenanthroline, bpy = 2, 2‧-bipyridine, o-ampacac = (Z)-4-(2-hydroxylamino)pent-3-ene-2-one,o-ampbzac = (Z)-4-(2-hydroxylamino)-4-phenylbut-3-ene-2-one)and characterized by UV-Vis, IR, EPR and cyclic voltammetry. Ligands were characterized by NMR spectra. Single crystal X-ray studies of the complex 1 shows Cu(II) ions are located in a highly distorted octahedral environment. Absorption spectral studies reveal that the complexes 1-6 exhibit hypochromicity during the interaction with DNA and binding constant values derived from spectral and electrochemical studies indicate that complexes 1, 2 and 3 bind strongly with DNA possibly by an intercalative mode. Electrochemical studies reveal that the complexes 1-4 prefer to bind with DNA in Cu(I) rather than Cu(II) form. The shift in the formal potentials E1/2 and CD spectral studies suggest groove or electrostatic binding mode for the complexes 4-6. Complex 1 can cleave supercoiled (SC) pUC18 DNA efficiently into nicked form II under photolytic conditions and into an open circular form (form II) and linear form (form III) in the presence of H2O2 at pH 8.0 and 37 °C, while the complex 2 does not cleave DNA under similar conditions.

  11. Synthesis, characterization, antimicrobial, DNA binding and cleavage studies of mixed ligand Cu(II), Co(II) complexes.

    PubMed

    Leela, D Shiva; Ushaiah, B; Anupama, G; Sunitha, M; Kumari, C Gyana

    2015-01-01

    The mixed ligand complexes MLA of Cu(II) and Co(II) with Schiff base derived from 4-amino antipyrine and 5-NO(2) salicylaldehyde (2,3 -dimethyl-1-phenyl-4-(2-hydroxy-5-nitro benzylideneamino)-pyrazol-5-one) as ONO donor (L) and A = 2,2 bipyridine (bpy),1,10 phenonthroline (1,10 phen) as N, N donor ligands have been prepared, owing to their biological and other applications. The structural features have arrived from their elemental analyses, magnetic susceptibility, molar conductance, Mass, IR, UV-VIS, powdered XRD and ESR spectral studies, that established MLA type of composition for the metal complexes. The electronic absorption spectral data of the complexes suggest an octahedral geometry around the central metal ion. The interaction of the complexes with Calf Thymus (CT) DNA has been studied using absorption spectra, viscosity measurements and fluorescence spectra. The binding constants (K(b)) of the complexes were determined as 2.1 × 10(6) M(-1) for complex 1, 2.5x10(6)M(-1) for complex 2, 1.16 × 10(6) M(-1) for complex 3,1.25x10(6)M(-1) for complex 4, DNA cleavage experiments performed on pBR-322 plasmids using metal complexes in the presence of H(2)O(2) showed that all the complexes afford a pronounced DNA cleavage. Molecular modelling studies were also performed to confirm the geometries of the complexes. The ligand and their metal complexes were screened for their antimicrobial activity against bacteria. The results showed that the metal complexes are biologically active. PMID:25548074

  12. Fluorescence Titrations of Bio-relevant Complexes with DNA: Synthesis, Structural Investigation, DNA Binding/Cleavage, Antimicrobial and Molecular Docking Studies.

    PubMed

    Arun, Thesingu Rajan; Subramanian, Ramasamy; Packianathan, Seemon; Raman, Natarajan

    2015-07-01

    In the present work, we attempted to develop new metal complexes (Cu(II), Co(II), Ni(II) and Zn(II)) of the imine ligand which was synthesized from 9,10-phenanthrenequinone and para-anisidine. With an intention to make the complexes most stable, very special chelating amino acid has been coordinated to the metal centre. The resultant metal complexes have been characterized by variety of techniques including FT-IR, UV-Vis., (1)H NMR, (13)C NMR, powder XRD, EPR and mass spectral studies. The interaction of the complexes with DNA has been effectively examined and explored by fluorescence titration, UV-Vis absorption, viscometer titration, cyclic voltammetry (CV) and differential pulse voltammetry. Moreover, molecular docking analysis has been performed to understand the nature of binding of the complexes with DNA. These studies prove that CT DNA interaction of the complexes follows intercalation mode. The metal complexes exhibit effective cleavage of pUC19 DNA by an oxidative cleavage mechanism. The antimicrobial screening indicates that these complexes are good antimicrobial agents against various organisms.

  13. Synthesis of new steroidal imidazo [1,2-a] pyridines: DNA binding studies, cleavage activity and in vitro cytotoxicity.

    PubMed

    Dar, Ayaz Mahmood; Shamsuzzaman; Gatoo, Manzoor Ahmad

    2015-12-01

    A one-pot strategy for the catalytic synthesis of series of new 5α-cholestan-6-spiro-5'-phenylamino-2H-imidazo [1',2'-a] pyridines (4-14) has been investigated. The synthesized products were obtained in good yields (85-90%) and the protocol uses Multi-component Reaction (MCR) involving steroidal ketones, 2-aminopyridines, isocyanides and propylphosphonic anhydride (®T3P) as a catalyst. After characterization by spectral and analytical data, the interaction studies of compounds (4-6) with DNA were studied by UV-vis, fluorescence spectroscopy, gel electrophoresis and molecular docking. The compounds bind to DNA preferentially through electrostatic and hydrophobic interactions with Kb; 2.35×10(4), 3.71×10(4) and 3.24×10(4) M(-1), respectively, indicating the higher binding affinity of compound 5 towards DNA. Gel electrophoresis showed the concentration dependent cleavage activity of compounds 4-6 with DNA. Molecular docking studies suggested that compounds bind through minor groove to DNA. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay depicted promising anti-proliferative activity of compound 4-9 against different given cancer cells. In Western blotting, the expressions of relevant apoptotic markers depicted an apoptosis by steroidal imidazopyridines in A549 cells. Annexin V-FITC/PI staining data indicated that compounds could effectively induce apoptosis in A549 cells in a dose-dependent manner. FACS analysis shows that the compound 6 bring about cell cycle arrest at 2.62 μM concentration.

  14. Synthesis, characterization, DNA interactions, DNA cleavage, radical scavenging activity, antibacterial, anti-proliferative and docking studies of new transition metal complexes.

    PubMed

    Chennam, Kishan Prasad; Ravi, Mudavath; Ushaiah, B; Srinu, V; Eslavath, Ravi Kumar; Devi, Ch Sarala

    2016-01-01

    The compound N-(2-hydroxybenzylidene)-1-ethyl-1, 4-dihydro-7-methyl-4-oxo-1, 8 naphthyridine-3-carbohydrazide (LH) and its Cu (II), Co (II) and Zn (II) complexes were synthesized and characterized. The absorption spectral titrations and competitive DNA binding studies depicted those complexes of title compound bind to CT-DNA through intercalation. Interestingly [Cu (II)-(L2)] showed relatively high binding constant value (6.61 x 10(5) M(-1)) compared to [Co (II)-(L2)] (4.378× 10(5) M(-1)) and [Zn (II)-(L2)] (3.1x10(5) M(-1)). Ligand and its complexes were also examined for DNA nuclease activity against pBR-322 plasmid DNA, which showed that [Cu (II)-(L2)] had the best hydrolytic cleavage property displaying prominent double-strand DNA cleavage. In addition, antioxidant activities of the ligand and its metal complexes investigated through scavenging effects for DPPH radical in- vitro, indicated their potentiality as good antioxidants. The in vitro anti-bacterial study inferred the better anti-bacterial activity of [Cu (II)-(L2)] and this was also correlated theoretically by employing docking studies wherein [Cu (II)-(L2)] displayed good Gold score and Chem score. Finally the in vitro anti- proliferative activity of studied compounds was tested against HeLa and MCF-7 cell lines. Interestingly [Cu (II)-(L2)] displayed lower IC50 value and lower percentage of viability in both HeLa and MCF-7 cell lines.

  15. Synthesis, characterization, DNA binding, DNA cleavage and antimicrobial studies of Schiff base ligand and its metal complexes.

    PubMed

    Mendu, Padmaja; Kumari, C Gyana; Ragi, Rajesh

    2015-03-01

    A series of Cu(II), Ni(II), Co(II), Mn(II) and Zn(II) complexes have been synthesized from the Schiff base ligand L. The Schiff base ligand 4-chloro-2-((4-oxo-4H-chromen-3yl) methylene amino) benzoic acid (L) has been synthesized by the reaction between chromone-3-carbaldehyde and 4-chloro-2-amino benzoic acid. The nature of bonding and geometry of the transition metal complexes as well as ligand L have been deduced from elemental analysis, FT-IR, UV-vis, (1)H NMR, (13)C NMR, ESR spectral studies, mass, magnetic susceptibility and molar conductance measurements. The complexes are found to have ML2 composition and are neutral in DMSO. Based on elemental, conductance and spectral studies, six-coordinated geometry was assigned for these complexes. The ligand L acts as tridentate and coordinates through nitrogen atom of azomethine group, hydroxyl of the carboxyl group and oxygen atom of keto group of γ-pyrone ring. The interaction of Cu(II) complex with CT-DNA was carried out by UV-vis, fluorescence titrations and viscosity measurements. The complex binds to DNA through intercalative binding mode. The nuclease activity of the above metal complexes shows that Cu(II) and Co(II) complexes cleave DNA through redox chemistry. The biological activity of the ligand and its complexes have been studied on four bacteria E. coli, B. subtilis, pseudomonas and Edwardella and two fungi penicillium and trichoderma by well disc and fusion method and found that the metal complexes are more active than the free Schiff base ligand.

  16. Microwave assisted synthesis, spectroscopic, electrochemical and DNA cleavage studies of lanthanide(III) complexes with coumarin based imines.

    PubMed

    Kapoor, Puja; Fahmi, Nighat; Singh, R V

    2011-12-01

    The present work stems from our interest in the synthesis, characterization and biological evaluation of lanthanide(III) complexes of a class of coumarin based imines which have been prepared by the interaction of hydrated lanthanide(III) chloride with the sodium salts of 3-acetylcoumarin thiosemicarbazone (ACTSZH) and 3-acetylcoumarin semicarbazone (ACSZH) in 1:3 molar ratio using thermal as well as microwave method. Characterization of the ligands as well as the metal complexes have been carried out by elemental analysis, melting point determinations, molecular weight determinations, magnetic moment, molar conductance, IR, (1)H NMR, (13)C NMR, electronic, EPR, X-ray powder diffraction and mass spectral studies. Spectral studies confirm ligands to be monofunctional bidentate and octahedral environment around metal ions. The redox behavior of one of the synthesized metal complex was investigated by cyclic voltammetry. Further, free ligands and their metal complexes have been screened for their antimicrobial as well as DNA cleavage activity. The results of these findings have been presented and discussed.

  17. Microwave assisted synthesis, spectroscopic, electrochemical and DNA cleavage studies of lanthanide(III) complexes with coumarin based imines

    NASA Astrophysics Data System (ADS)

    Kapoor, Puja; Fahmi, Nighat; Singh, R. V.

    2011-12-01

    The present work stems from our interest in the synthesis, characterization and biological evaluation of lanthanide(III) complexes of a class of coumarin based imines which have been prepared by the interaction of hydrated lanthanide(III) chloride with the sodium salts of 3-acetylcoumarin thiosemicarbazone (ACTSZH) and 3-acetylcoumarin semicarbazone (ACSZH) in 1:3 molar ratio using thermal as well as microwave method. Characterization of the ligands as well as the metal complexes have been carried out by elemental analysis, melting point determinations, molecular weight determinations, magnetic moment, molar conductance, IR, 1H NMR, 13C NMR, electronic, EPR, X-ray powder diffraction and mass spectral studies. Spectral studies confirm ligands to be monofunctional bidentate and octahedral environment around metal ions. The redox behavior of one of the synthesized metal complex was investigated by cyclic voltammetry. Further, free ligands and their metal complexes have been screened for their antimicrobial as well as DNA cleavage activity. The results of these findings have been presented and discussed.

  18. DNA Cleavage, Cytotoxic Activities, and Antimicrobial Studies of Ternary Copper(II) Complexes of Isoxazole Schiff Base and Heterocyclic Compounds

    PubMed Central

    Chityala, Vijay Kumar; Sathish Kumar, K.; Macha, Ramesh; Tigulla, Parthasarathy; Shivaraj

    2014-01-01

    Novel mixed ligand bivalent copper complexes [Cu. L. A. ClO4] and [Cu. L. A] where “L” is Schiff bases, namely 2-((3,4-dimethylisoxazol-5-ylimino)methyl)-4-bromophenol (DMIIMBP)/2-((3,4-dimethylisoxazol-5-ylimino)methyl)-4-chlorophenol (DMIIMCP), and “A” is heterocyclic compound, such as 1,10-phenanthroline (phen)/2,21-bipyridyl (bipy)/8-hydroxyquinoline (oxine)/5-chloro-8-hydroxyquinoline (5-Cl-oxine), have been synthesized. These complexes have been characterized by IR, UV-Vis, ESR, elemental analysis, magnetic moments, TG, and DTA. On the basis of spectral studies and analytical data, five-coordinated square pyramidal/four-coordinated square planar geometry is assigned to all complexes. The ligands and their ternary complexes with Cu(II) have been screened for antimicrobial activity against bacteria and fungi by paper disc method. The antimicrobial studies of Schiff bases and their metal complexes showed significant activity and further it is observed that the metal complexes showed more activity than corresponding Schiff bases. In vitro antitumor activity of Cu(II) complexes was assayed against human cervical carcinoma (HeLa) cancer cells and it was observed that few complexes exhibit good antitumor activity on HeLa cell lines. The DNA cleavage studies have also been carried out on pBR 322 and it is observed that these Cu(II) complexes are capable of cleaving supercoiled plasmid DNA in the presence of H2O2 and UV light. PMID:24895493

  19. Synthesis and characterization, antimicrobial activity, DNA binding and DNA cleavage studies of new 5-chloro-2-[4-phenylthiazol-2-yl-iminomethyl]phenol metal complexes

    NASA Astrophysics Data System (ADS)

    Alaghaz, Abdel-Nasser M. A.; Zayed, Mohamed E.; Alharbi, Suliman A.

    2015-02-01

    New Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Cd(II) complexes derived from bidentate Schiff base ligand, 5-chloro-2-[4-phenylthiazol-2-yl-iminomethyl]phenol (HL) have been synthesized. The molar ratio for all synthesized complexes is M: L = 1:2 which was established from the results of chemical analysis. The complexes have been characterized by elemental analysis, spectral (IR, UV-Vis, (1H and 13C) NMR, mass, ESR, XRD, CV, fluorescence, and magnetic as well as thermal analysis measurements. The IR spectra of the prepared complexes were suggested that the Schiff base ligand behaves as a bi-dentate ligand through the azomethine nitrogen atom and phenolic oxygen atom. The crystal field splitting, Racah repulsion and nepheloauxetic parameters and determined from the electronic spectra of the complexes. The presence of co-ordinated water molecules were confirmed by thermal studies. The spectroscopic studies suggest the octahedral geometry. From the modeling studies, the bond length, bond angle, core-core interaction, heat of formation, electronic energy, binding energy, HOMO, LUMO and dipole moment had been calculated to confirm the geometry of the ligand and their investigated complexes. Also, the thermal behavior and the kinetic parameters of degradation were determined using Coats-Redfern, Horowitz-Metzger and Piloyan-Novikova methods. Moreover, the in vitro antibacterial studies of all compounds screened against pathogenic bacteria (two Gram +ve and three Gram -ve) and three antifungal to assess their inhibiting potential. The assay indicated that the inhibition potential is metal ion dependent. The interaction of the complexes with calf thymus DNA (CT-DNA) has been investigated by UV absorption method, and the mode of CT-DNA binding to the complexes has been explored. Furthermore, the DNA cleavage activity by the complexes was performed.

  20. Using molecular beacons as a sensitive fluorescence assay for enzymatic cleavage of single-stranded DNA.

    PubMed

    Li, J J; Geyer, R; Tan, W

    2000-06-01

    Traditional methods to assay enzymatic cleavage of DNA are discontinuous and time consuming. In contrast, recently developed fluorescence methods are continuous and convenient. However, no fluorescence method has been developed for single-stranded DNA digestion. Here we introduce a novel method, based on molecular beacons, to assay single-stranded DNA cleavage by single strand-specific nucleases. A molecular beacon, a hairpin-shaped DNA probe labeled with a fluorophore and a quencher, is used as the substrate and enzymatic cleavage leads to fluorescence enhancement in the molecular beacon. This method permits real time detection of DNA cleavage and makes it easy to characterize the activity of DNA nucleases and to study the steady-state cleavage reaction kinetics. The excellent sensitivity, reproducibility and convenience will enable molecular beacons to be widely useful for the study of single-stranded DNA cleaving reactions.

  1. Drosophila topoisomerase II double-strand DNA cleavage: analysis of DNA sequence homology at the cleavage site.

    PubMed Central

    Sander, M; Hsieh, T S

    1985-01-01

    In order to study the sequence specificity of double-strand DNA cleavage by Drosophila topoisomerase II, we have mapped and sequenced 16 strong and 47 weak cleavage sites in the recombinant plasmid p pi 25.1. Analysis of the nucleotide and dinucleotide frequencies in the region near the site of phosphodiester bond breakage revealed a nonrandom distribution. The nucleotide frequencies observed would occur by chance with a probability less than 0.05. The consensus sequence we derived is 5'GT.A/TAY decrease ATT.AT..G 3', where a dot means no preferred nucleotide, Y is for pyrimidine, and the arrow shows the point of bond cleavage. On average, strong sites match the consensus better than weak sites. Images PMID:2987816

  2. Two water-soluble copper(II) complexes: synthesis, characterization, DNA cleavage, protein binding activities and in vitro anticancer activity studies.

    PubMed

    Lu, Jing; Sun, Qian; Li, Jun-Ling; Jiang, Lin; Gu, Wen; Liu, Xin; Tian, Jin-Lei; Yan, Shi-Ping

    2014-08-01

    Two water-soluble ternary copper(II) complexes of [Cu(L)Cl](ClO4) (1) and [Cu(L)Br2] (2) (L=(2-((quinolin-8-ylimino)methyl)pyridine)) were prepared and characterized by various physico-chemical techniques. Both 1 and 2 were structurally characterized by X-ray crystallography. The crystal structures show the presence of a distorted square-pyramidal CuN3Cl2 (1) or CuN3Br2 (2) geometry in which Schiff-base L acts as a neutral tridentate ligand. Both complexes present intermolecular π-π stacking interactions between quinoline and pyridine rings. The interaction of two complexes with CT-DNA (calf thymus-DNA) and BSA (bovine serum albumin) was studied by means of various spectroscopy methods, which revealed that 1 and 2 could interact with CT-DNA through intercalation mode, and could quench the intrinsic fluorescence of BSA in a static quenching process. Furthermore, the competition experiment using Hoechst 33258 indicated that two complexes may bind to CT-DNA by a minor groove. DNA cleavage experiments indicate that the complexes exhibit efficient DNA cleavage activities without any external agents, and hydroxyl radical (HO) and singlet oxygen ((1)O2) may serve as the major cleavage active species. Notably, the in vitro cytotoxicity of the complexes on three human tumor cells lines (HeLa, MCF-7, and A549) demonstrates that two compounds have broad-spectrum antitumor activity with quite low IC50 ranges of 0.43-1.85μM. Based on the cell cycle experiments, 1 and 2 could delay or inhibit cell cycle progression through the S phase.

  3. DNA photoreacts by nucleobase ring cleavage to form labile isocyanates.

    PubMed

    Buschhaus, Laura; Rolf, Josefin; Kleinermanns, Karl

    2013-11-14

    Differential infrared absorption spectroscopy was used to study the formation of isocyanates and further photo-products in the oligonucleotides dG10, dC10 and dT10 and in their mononucleosides by ultraviolet light at 266 nm. We find that α-cleavage takes place in oligonucleotides and mononucleosides both in films and in solution. The very intense and spectrally isolated isocyanate (N=C=O) asymmetric stretch vibration at 2277 cm(-1) is used as a spectroscopic marker for detection of the photo-product. The band disappears upon reaction with small amounts of water vapour as expected for isocyanates. Quantum yields for isocyanate formation by nucleobase ring cleavage in the α-position to the carbonyl group are ∼5 × 10(-5) in the mononucleosides and up to 5 × 10(-4) in the oligonucleotides. In the mixed oligonucleotides dG10/dC10 and dA10/dT10 the quantum yield of α-cleavage drops by a factor of 10 compared to the single oligonucleotides. Implications for DNA repair and photo-induced DNA-protein cross-linking via isocyanate reaction with NH2 groups of amino acids are discussed.

  4. Characterization of Bleomycin-Mediated Cleavage of a Hairpin DNA Library

    PubMed Central

    Segerman, Zachary J.; Roy, Basab; Hecht, Sidney M.

    2013-01-01

    A study of BLM A5 was conducted using a previously isolated library of hairpin DNAs found to bind strongly to metal free BLM. The ability of Fe(II)•BLM to effect cleavage on both the 3' and 5'-arms of the hairpin DNAs was characterized. The strongly bound DNAs were found to be efficient substrates for Fe•BLM A5-mediated hairpin DNA cleavage. Surprisingly, the most prevalent site of BLM-mediated cleavage was found to be the 5′-AT-3′ dinucleotide sequence. This dinucleotide sequence, and other sequences generally not cleaved well by BLM when examined using arbitrarily chosen DNA substrates, were apparent when examining the library of ten hairpin DNAs. In total, 132 sites of DNA cleavage were produced by exposure of the hairpin DNA library to Fe•BLM A5. The existence of multiple sites of cleavage on both the 3′- and 5′-arms of the hairpin DNAs suggested that some of these might be double-strand cleavage events. Accordingly, an assay was developed with which to test the propensity of the hairpin DNAs to undergo double-strand DNA damage. One hairpin DNA was characterized using this method, and gave results consistent with earlier reports of double-strand DNA cleavage, but with a sequence selectivity different from those reported previously. PMID:23834496

  5. Synthesis, Characterization, Antimicrobial, DNA Cleavage, and Antioxidant Studies of Some Metal Complexes Derived from Schiff Base Containing Indole and Quinoline Moieties

    PubMed Central

    Karekal, Mahendra Raj; Biradar, Vivekanand; Bennikallu Hire Mathada, Mruthyunjayaswamy

    2013-01-01

    A new Schiff base of 5-chloro-3-phenyl-1H-indole-2-carboxyhydrazide and 3-formyl-2-hydroxy-1H-quinoline (HL), and its Cu(II), Co(II), Ni(II), Zn(II), Cd(II), and Hg(II) complexes have been synthesized and characterized in the light of microanalytical, IR, H1 NMR, UV-Vis, FAB-mass, ESR, XRD, and TGA spectral studies. The magnetic susceptibility measurements and low conductivity data provide evidence for monomeric and neutral nature of the complexes. On the basis of spectral studies and analytical data, it is evident that the Schiff base acts as tridentate ligand. The Cu(II), Co(II), and Ni(II) complexes were octahedral, whereas Zn(II), Cd(II), and Hg(II) complexes were tetrahedral in nature. The redox behavior of the Cu(II) complex was investigated by electrochemical method using cyclic voltammetry. In order to evaluate the effect of metal ions upon chelation, both the ligand and its metal complexes were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The DNA cleavage experiment performed using agarose gel electrophoresis method showed the cleavage of DNA by all the metal complexes. The free radical scavenging activity of newly synthesized compounds has been determined at a different concentration range by means of their interaction with the stable free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH). PMID:24194692

  6. Synthesis, Characterization, and Biological Activities of Pendant Arm-Pyridyltetrazole Copper(II) Complexes: DNA Binding/Cleavage Activity and Cytotoxic Studies.

    PubMed

    Mustafa, Shaik; Rao, Bommuluri Umamaheswara; Surendrababu, Manubolu Surya; Raju, Kalidindi Krishnam; Rao, Gollapalli Nageswara

    2015-10-01

    2-(1H-Tetrazol-5-yl)pyridine (L) has been reacted separately with Me2NCH2CH2Cl⋅HCl and ClCH2CH2OH to yield two regioisomers in each case, N,N-dimethyl-2-[5-(pyridin-2-yl)-1H-tetrazol-1-yl]ethanamine (L1)/N,N-dimethyl-2-[5-(pyridin-2-yl)-2H-tetrazol-2-yl]ethanamine (L2) and 2-[5-(pyridin-2-yl)-1H-tetrazol-1-yl]ethanol (L3)/2-[5-(pyridin-2-yl)-2H-tetrazol-2-yl]ethanol (L4), respectively. These ligands, L1-L4, have been coordinated with CuCl2 ⋅H2O in 1 : 1 composition to furnish the corresponding complexes 1-4. EPR Spectra of Cu complexes 1 and 3 were characteristic of square planar geometry, with nuclear hyperfine spin 3/2. Single X-ray crystallographic studies of 3 revealed that the Cu center has a square planar structure. DNA binding studies were carried out by UV/VIS absorption; viscosity and thermal denaturation studies revealed that each of these complexes are avid binders of calf thymus DNA. Investigation of nucleolytic cleavage activities of the complexes was carried out on double-stranded pBR322 circular plasmid DNA by using a gel electrophoresis experiment under various conditions, where cleavage of DNA takes place by oxidative free-radical mechanism (OH(⋅)). In vitro anticancer activities of the complexes against MCF-7 (human breast adenocarcinoma) cells revealed that the complexes inhibit the growth of cancer cells. The IC50 values of the complexes showed that Cu complexes exhibit comparable cytotoxic activities compared to the standard drug cisplatin.

  7. Quantification of DNA cleavage specificity in Hi-C experiments.

    PubMed

    Meluzzi, Dario; Arya, Gaurav

    2016-01-01

    Hi-C experiments produce large numbers of DNA sequence read pairs that are typically analyzed to deduce genomewide interactions between arbitrary loci. A key step in these experiments is the cleavage of cross-linked chromatin with a restriction endonuclease. Although this cleavage should happen specifically at the enzyme's recognition sequence, an unknown proportion of cleavage events may involve other sequences, owing to the enzyme's star activity or to random DNA breakage. A quantitative estimation of these non-specific cleavages may enable simulating realistic Hi-C read pairs for validation of downstream analyses, monitoring the reproducibility of experimental conditions and investigating biophysical properties that correlate with DNA cleavage patterns. Here we describe a computational method for analyzing Hi-C read pairs to estimate the fractions of cleavages at different possible targets. The method relies on expressing an observed local target distribution downstream of aligned reads as a linear combination of known conditional local target distributions. We validated this method using Hi-C read pairs obtained by computer simulation. Application of the method to experimental Hi-C datasets from murine cells revealed interesting similarities and differences in patterns of cleavage across the various experiments considered.

  8. DNA structural alterations induced by bis-netropsins modulate human DNA topoisomerase I cleavage activity and poisoning by camptothecin.

    PubMed

    Sukhanova, Alyona; Grokhovsky, Sergei; Ermishov, Michael; Mochalov, Konstantin; Zhuze, Alexei; Oleinikov, Vladimir; Nabiev, Igor

    2002-07-01

    Bis-netropsins (bis-Nts) are efficient catalytic inhibitors of human DNA topoisomerase I (top I). These DNA minor groove binders are considered to serve as suppressors of top I-linked DNA breaks, which is generally believed to be related to their affinity to DNA. In this study, it was found that bis-Nts exhibit sequence-specificity of suppression of the strong top I-specific DNA cleavage sites and that this sequence-specificity is determined by differential ligand-induced structural alterations of DNA. Raman scattering analysis of bis-Nts interactions with double-stranded oligonucleotides, each containing the site of specific affinity to one of bis-Nts and a distinctly located top I degenerate consensus, demonstrated that bis-Nts induce not only structural changes in duplex DNA at their loading position, but also conformational changes in a distant top I-specific DNA cleavage site. The ability to alter the DNA structure correlates with the anti-top I inhibitory activities of the ligands. In addition, DNA structural alterations induced by bis-Nts were shown to be responsible for modulation of the camptothecin (CPT)-mediated DNA cleavage by top I. This effect is expressed in the bis-Nts-induced enhancement of some of the CPT-dependent DNA cleavage sites as well as in the CPT-induced enhancement of some of the top I-specific DNA cleavage sites suppressed by bis-Nts in the absence of CPT. PMID:12106608

  9. Synthesis, characterization, in vitro antimicrobial and DNA cleavage studies of Co(II), Ni(II) and Cu(II) complexes with ONOO donor coumarin Schiff bases

    NASA Astrophysics Data System (ADS)

    Patil, Sangamesh A.; Unki, Shrishila N.; Kulkarni, Ajaykumar D.; Naik, Vinod H.; Badami, Prema S.

    2011-01-01

    A series of Co(II), Ni(II) and Cu(II) complexes have been synthesized with Schiff bases derived from 2-hydroxy-1-naphthaldehyde and 2-oxo-2H-chromene-3-carbohydrazide/6-bromo-2-oxo-2H-chromene-3-carbohydrazide. The chelation of the complexes has been proposed in the light of analytical, spectral (IR, UV-Vis, 1H NMR, ESR, FAB-mass and fluorescence), magnetic and thermal studies. The measured molar conductance values indicate that, the complexes are non-electrolytic in nature. The redox behavior of the complexes was investigated with electrochemical method by using cyclic voltammetry. The Schiff bases and their metal complexes have been screened for their in vitro antibacterial ( Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Salmonella typhi) and antifungal activities ( Candida albicans, Cladosporium and Aspergillus niger) by MIC method. The DNA cleavage is studied by agarose gel electrophoresis method.

  10. Cleavage of mispaired heteroduplex DNA substrates by numerous restriction enzymes.

    PubMed

    Langhans, Mark T; Palladino, Michael J

    2009-01-01

    The utility of restriction endonucleases as a tool in molecular biology is in large part due to the high degree of specificity with which they cleave well-characterized DNA recognition sequences. The specificity of restriction endonucleases is not absolute, yet many commonly used assays of biological phenomena and contemporary molecular biology techniques rely on the premise that restriction enzymes will cleave only perfect cognate recognition sites. In vitro, mispaired heteroduplex DNAs are commonly formed, especially subsequent to polymerase chain reaction amplification. We investigated a panel of restriction endonucleases to determine their ability to cleave mispaired heteroduplex DNA substrates. Two straightforward, non-radioactive assays are used to evaluate mispaired heteroduplex DNA cleavage: a PCR amplification method and an oligonucleotide-based assay. These assays demonstrated that most restriction endonucleases are capable of site-specific double-strand cleavage with heteroduplex mispaired DNA substrates, however, certain mispaired substrates do effectively abrogate cleavage to undetectable levels. These data are consistent with mispaired substrate cleavage previously reported for Eco RI and, importantly, extend our knowledge of mispaired heteroduplex substrate cleavage to 13 additional enzymes.

  11. In vitro evolution of preferred topoisomerase II DNA cleavage sites.

    PubMed

    Burden, D A; Osheroff, N

    1999-02-19

    Topoisomerase II is an essential enzyme that is the target for several clinically important anticancer drugs. Although this enzyme must create transient double-stranded breaks in the genetic material in order to carry out its indispensable DNA strand passage reaction, the factors that underlie its nucleotide cleavage specificity remain an enigma. Therefore, to address the critical issue of enzyme specificity, a modified systematic evolution of ligands by exponential enrichment (SELEX) protocol was employed to select/evolve DNA sequences that were preferentially cleaved by Drosophila melanogaster topoisomerase II. Levels of DNA scission rose substantially (from 3 to 20%) over 20 rounds of SELEX. In vitro selection/evolution converged on an alternating purine/pyrmidine sequence that was highly AT-rich (TATATATACATATATATA). The preference for this sequence was more pronounced for Drosophila topoisomerase II over other species and was increased in the presence of DNA cleavage-enhancing anticancer drugs. Enhanced cleavage appeared to be based on higher rates of DNA scission rather than increased binding affinity or decreased religation rates. The preferred sequence for topoisomerase II-mediated DNA cleavage is dramatically overrepresented ( approximately 10,000-fold) in the euchromatic genome of D. melanogaster, implying that it may be a site for the physiological action of this enzyme.

  12. Quinoxaline based bio-active mixed ligand transition metal complexes: Synthesis, characterization, electrochemical, antimicrobial, DNA binding, cleavage, antioxidant and molecular docking studies.

    PubMed

    Dhanaraj, C Justin; Johnson, Jijo

    2015-10-01

    Co(II), Ni(II), Cu(II) and Zn(II) mixed ligand complexes have been synthesized from N(2), N(3)-bis(4-nitrophenyl)quinoxaline-2,3-diamine and 1,10-phenanthroline. The compounds were characterized by elemental analyses, molar conductance, magnetic susceptibility, IR, UV-Vis., (1)H NMR, mass and ESR spectra. Octahedral geometry has been assigned for Co(II), Ni(II) and Zn(II) complexes and distorted octahedral geometry for Cu(II) complex. Electrochemical behavior of the synthesized complexes was studied using cyclic voltammetry. Grain size and surface morphologies of the complexes were determined by powder XRD and SEM analyses. The mixed ligand metal complexes were screened for antimicrobial activity against bacterial species Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Staphylococcus aureus; fungal species Aspergillus niger, and Candida albicans by disc diffusion method. The DNA binding and DNA cleavage activities of the compounds were determined using electronic absorption titration and agarose gel electrophoresis respectively. The superoxide radical scavenging and free radical scavenging activities of the Cu(II) complex was also evaluated. Molecular docking studies of the synthesized mixed ligand metal complexes were carried out against B-DNA dodecamer and the protein Plasmodium falciparum dihydrofolate reductase (pf DHFR).

  13. Synthesis, Characterization, Antimicrobial, DNA Cleavage, and In Vitro Cytotoxic Studies of Some Metal Complexes of Schiff Base Ligand Derived from Thiazole and Quinoline Moiety

    PubMed Central

    Yernale, Nagesh Gunvanthrao; Bennikallu Hire Mathada, Mruthyunjayaswamy

    2014-01-01

    A novel Schiff base ligand N-(4-phenylthiazol-2yl)-2-((2-thiaxo-1,2-dihydroquinolin-3-yl)methylene)hydrazinecarboxamide (L) obtained by the condensation of N-(4-phenylthiazol-2-yl)hydrazinecarboxamide with 2-thioxo-1,2-dihydroquinoline-3-carbaldehyde and its newly synthesized Cu(II), Co(II), Ni(II), and Zn(II) complexes have been characterized by elemental analysis and various spectral studies like FT-IR, 1H NMR, ESI mass, UV-Visible, ESR, TGA/DTA, and powder X-ray diffraction studies. The Schiff base ligand (L) behaves as tridentate ONS donor and forms the complexes of type [ML(Cl)2] with square pyramidal geometry. The Schiff base ligand (L) and its metal complexes have been screened in vitro for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The DNA cleavage activity of ligand and its metal complexes were studied using plasmid DNA pBR322 as a target molecule by gel electrophoresis method. The brine shrimp bioassay was also carried out to study the in vitro cytotoxicity properties for the ligand and its metal complexes against Artemia salina. The results showed that the biological activities of the ligand were found to be increased on complexation. PMID:24729778

  14. Photocatalytic cleavage of single TiO2/DNA nanoconjugates.

    PubMed

    Tachikawa, Takashi; Asanoi, Yoshiaki; Kawai, Kiyohiko; Tojo, Sachiko; Sugimoto, Akira; Fujitsuka, Mamoru; Majima, Tetsuro

    2008-01-01

    TiO(2)/DNA nanoconjugates were successfully fabricated by using the catechol moiety as a binding functional group, which was confirmed by steady-state absorption and fluorescence spectroscopies. Upon UV irradiation, the photocatalytic cleavage of the TiO(2)/DNA nanoconjugates was observed at the single-molecule level by using wide-field fluorescence microscopy. The decrease in the number of conjugates, which was estimated from the luminescent spots due to semiconductor quantum dots modified at the DNA strand, was significantly inhibited by a single A/C mismatch in the DNA sequences. This result strongly suggests that the migration of holes, which are injected from the photoexcited TiO(2) into the DNA, through the DNA bases plays an important role in the photocatalytic cleavage of the conjugates. The influences of the photogenerated reactive oxygen species (ROS) on the cleavage efficiency were also examined. According to the experimental results, it was concluded that oxidation of the catechol moiety and/or the DNA damage are key reactions in this process.

  15. In vitro DNA binding, pBR322 plasmid cleavage and molecular modeling study of chiral benzothiazole Schiff-base-valine Cu(II) and Zn(II) complexes to evaluate their enantiomeric biological disposition for molecular target DNA.

    PubMed

    Alizadeh, Rahman; Afzal, Mohd; Arjmand, Farukh

    2014-10-15

    Bicyclic heterocyclic compounds viz. benzothiazoles are key components of deoxyribonucleic acid (DNA) molecules and participate directly in the encoding of genetic information. Benzothiazoles, therefore, represent a potent and selective class of antitumor compounds. The design and synthesis of chiral antitumor chemotherapeutic agents of Cu(II) and Zn(II), L- and -D benzothiazole Schiff base-valine complexes 1a &b and 2a &b, respectively were carried out and thoroughly characterized by spectroscopic and analytical techniques. Interaction of 1a and b and 2a and b with CT DNA by employing UV-vis, florescence, circular dichroic methods and cleavage studies of 1a with pBR322 plasmid, molecular docking were done in order to demonstrate their enantiomeric disposition toward the molecular drug target DNA. Interestingly, these studies unambiguously demonstrated the greater potency of L-enantiomer in comparison to D-enantiomer.

  16. In vitro DNA binding, pBR322 plasmid cleavage and molecular modeling study of chiral benzothiazole Schiff-base-valine Cu(II) and Zn(II) complexes to evaluate their enantiomeric biological disposition for molecular target DNA

    NASA Astrophysics Data System (ADS)

    Alizadeh, Rahman; Afzal, Mohd; Arjmand, Farukh

    2014-10-01

    Bicyclic heterocyclic compounds viz. benzothiazoles are key components of deoxyribonucleic acid (DNA) molecules and participate directly in the encoding of genetic information. Benzothiazoles, therefore, represent a potent and selective class of antitumor compounds. The design and synthesis of chiral antitumor chemotherapeutic agents of Cu(II) and Zn(II), L- and -D benzothiazole Schiff base-valine complexes 1a &b and 2a &b, respectively were carried out and thoroughly characterized by spectroscopic and analytical techniques. Interaction of 1a and b and 2a and b with CT DNA by employing UV-vis, florescence, circular dichroic methods and cleavage studies of 1a with pBR322 plasmid, molecular docking were done in order to demonstrate their enantiomeric disposition toward the molecular drug target DNA. Interestingly, these studies unambiguously demonstrated the greater potency of L-enantiomer in comparison to D-enantiomer.

  17. Distinct mechanisms for DNA cleavage by myoglobin with a designed heme active center.

    PubMed

    Zhao, Yuan; Du, Ke-Jie; Gao, Shu-Qin; He, Bo; Wen, Ge-Bo; Tan, Xiangshi; Lin, Ying-Wu

    2016-03-01

    Heme proteins perform diverse biological functions, of which myoglobin (Mb) is a representative protein. In this study, the O2 carrier Mb was shown to cleave double stranded DNA upon aerobic dithiothreitol-induced reduction, which is fine-tuned by an additional distal histidine, His29 or His43, engineered in the heme active center. Spectroscopic (UV-vis and EPR) and inhibition studies suggested that free radicals including singlet oxygen and hydroxyl radical are responsible for efficient DNA cleavage via an oxidative cleavage mechanism. On the other hand, L29E Mb, with a distinct heme active center involving three water molecules in the met form, was found to exhibit an excellent DNA cleavage activity that was not depending on O2. Inhibition and ligation studies demonstrated for the first time that L29E Mb cleaves double stranded DNA into both the nicked circular and linear forms via a hydrolytic cleavage mechanism, which resembles native endonucleases. This study provides valuable insights into the distinct mechanisms for DNA cleavage by heme proteins, and lays down a base for creating artificial DNA endonucleases by rational design of heme proteins. Moreover, this study suggests that the diverse functions of heme proteins can be fine-tuned by rational design of the heme active center with a hydrogen-bonding network.

  18. DNA cleavage, antibacterial, antifungal and anthelmintic studies of Co(II), Ni(II) and Cu(II) complexes of coumarin Schiff bases: Synthesis and spectral approach

    NASA Astrophysics Data System (ADS)

    Patil, Sangamesh A.; Prabhakara, Chetan T.; Halasangi, Bhimashankar M.; Toragalmath, Shivakumar S.; Badami, Prema S.

    2015-02-01

    The metal complexes of Co(II), Ni(II) and Cu(II) have been synthesized from 6-formyl-7,8-dihydroxy-4-methylcoumarin with o-toluidine/3-aminobenzotrifluoride. The synthesized Schiff bases and their metal complexes were structurally characterized based on IR, 1H NMR, 13C NMR, UV-visible, ESR, magnetic, thermal, fluorescence, mass and ESI-MS studies. The molar conductance values indicate that complexes are non-electrolytic in nature. Elemental analysis reveals ML2·2H2O [M = Co(II), Ni(II) and Cu(II)] stoichiometry, where 'L' stands for a singly deprotonated ligand. The presence of co-ordinated water molecules were confirmed by thermal studies. The spectroscopic studies suggest the octahedral geometry. Redox behavior of the complexes were confirmed by cyclic voltammetry. All the synthesized compounds were screened for their antibacterial (Escherichia coli, Pseudomonas auregenosa, klebsiella, Proteus, Staphylococcus aureus and salmonella) antifungal (Candida, Aspergillus niger and Rhizopus), anthelmintic (Pheretima posthuma) and DNA cleavage (Calf Thymus DNA) activity.

  19. Co(II), Ni(II) and Cu(II) complexes with coumarin-8-yl Schiff-bases: Spectroscopic, in vitro antimicrobial, DNA cleavage and fluorescence studies

    NASA Astrophysics Data System (ADS)

    Patil, Sangamesh A.; Unki, Shrishila N.; Kulkarni, Ajaykumar D.; Naik, Vinod H.; Badami, Prema S.

    2011-09-01

    A new series of Co(II), Ni(II) and Cu(II) complexes of the type ML·2H 2O of Schiff-bases derived from m-substituted thiosemicarbazides and 8-acetyl-7-hydroxy-4-methylcoumarin have been synthesized and characterized by spectroscopic studies. Schiff-bases exhibit thiol-thione tautomerism wherein sulphur plays an important role in the coordination. The coordination possibility of the Schiff-bases towards metal ions have been proposed in the light of elemental analyses, spectral (IR, UV-vis, FAB-mass, ESR and fluorescence), magnetic and thermal studies. The low molar conductance values in DMF indicate that, the metal complexes are non-electrolytes. The cyclic voltammetric studies suggested that, the Cu(II) and Ni(II) complexes are of single electron transfer quasi-reversible nature. The Schiff-bases and its metal complexes have been evaluated for their in vitro antibacterial ( Escherichia coli, Staphilococcus aureus, Bascillus subtilis and Salmonella typhi) and antifungal activities ( Candida albicans, Cladosporium and Aspergillus niger) by MIC method. The Schiff-base I and its metal complexes exhibited DNA cleavage activity on isolated DNA of A. niger.

  20. Synthesis, spectral, thermal, fluorescence, antimicrobial, anthelmintic and DNA cleavage studies of mononuclear metal chelates of bi-dentate 2H-chromene-2-one Schiff base.

    PubMed

    Prabhakara, Chetan T; Patil, Sangamesh A; Kulkarni, Ajaykumar D; Naik, Vinod H; Manjunatha, M; Kinnal, Shivshankar M; Badami, Prema S

    2015-07-01

    The Co(II), Ni(II) and Cu(II) complexes have been synthesized with Schiff base (HL), derived from 8-formyl-7-hydroxy-4-methylcoumarin with benzylamine. The Schiff base and its metal complexes were structurally characterized based on IR, (1)H NMR, (13)C NMR, UV-visible, ESR, magnetic, thermal, fluorescence, mass and ESI-MS studies. The complexes are completely soluble in DMF and DMSO. The molar conductance values indicate that, all synthesized metal complexes are non-electrolytic in nature. Elemental analysis reveals [ML2(H2O)2] stoichiometry, here MCo(II), Ni(II) and Cu(II), L=deprotonated ligand. The coordination between metal ion and Schiff base was supported by IR data, through deprotonation of phenolic oxygen of coumarin and azomethine nitrogen atoms. Solution electronic spectral results unveiled that all the synthesized complexes posses six coordinated geometry around metal ion. Thermal studies suggest the presence of coordinated water molecules. The Schiff base and its metal complexes have been screened for their antibacterial (Escherichia coli, Pseudomonas aureginosa, Klebsiella pneumoniae and Staphylococcus aureus) and antifungal (Penicillium chrysogenum and Aspergillus niger), anthelmintic (Pheretima posthuma) and DNA cleavage (Calf Thymus DNA) activities.

  1. DNA cleavage, antimicrobial studies and a DFT-based QSAR study of new antimony(III) complexes as glutathione reductase inhibitor.

    PubMed

    Tunç, Turgay; Koç, Yasemin; Açık, Leyla; Karacan, Mehmet Sayım; Karacan, Nurcan

    2015-02-01

    New antimony(III) complexes, [Sb(2-aminopyridine)2Cl3] (1a), [Sb(2-aminopyridine)2Br3] (1b), [Sb(5-methyl-2-aminopyridine)2Cl3] (2a), [Sb(5-methyl-2-aminopyridine)2Br3] (2b), [Sb(2-aminopyrimidine)2Cl3] (3a), [Sb(2-aminopyrimidine)2Br3] (3b), [Sb(4,6-dimethoxy-2-aminopyrimidine)2Cl3] (4a), [Sb(4,6-dimethoxy-2-aminopyrimidine)2Br3] (4b), [Sb(2-amino-1,3,5-triazine)2Cl3] (5a), [Sb(2-amino-1,3,5-triazine)2Br3] (5b), [Sb(2-guanidinobenzimidazole) Cl3] (6a), [Sb(2-guanidinobenzimidazole)Br3] (6b) [Sb(2- benzyl-2-thiopseudeourea)2Cl3] (7a) and [Sb(2- benzyl-2-thiopseudeourea)2Br3] (7b) were synthesized. Their structures were characterized by elemental analysis, molecular conductivity, FT-IR, (1)H NMR, LC-MS techniques. Glutathione reductase inhibitor activity, antimicrobial activity and DNA cleavage studies of the complexes were determined. The geometrical structures of the complexes were optimized by DFT/B3LYP method with LANL2DZ as basis set. Calculation results indicated that the equilibrium geometries of all complexes have square pyramidal shape. About 350 molecular descriptors (constitutional, topological, geometrical, electrostatic and quantum chemical parameters) of the complexes were calculated by DFT/B3LYP/LANL2DZ method with CODESSA software. Calculated molecular parameters were correlated to glutathione reductase inhibitory activity values (pIC50) of all complexes by Best Multi-Linear Regression (BMLR) method. Obtained two-parameter QSAR equation shows that increase in "maximum partial charge for a H atom" and decrease in HOMO-LUMO gap would be favorable for the glutathione reductase inhibitory activity. PMID:25459701

  2. DNA cleavage, antimicrobial studies and a DFT-based QSAR study of new antimony(III) complexes as glutathione reductase inhibitor

    NASA Astrophysics Data System (ADS)

    Tunç, Turgay; Koç, Yasemin; Açık, Leyla; Karacan, Mehmet Sayım; Karacan, Nurcan

    2015-02-01

    New antimony(III) complexes, [Sb(2-aminopyridine)2Cl3] (1a), [Sb(2-aminopyridine)2Br3] (1b), [Sb(5-methyl-2-aminopyridine)2Cl3] (2a), [Sb(5-methyl-2-aminopyridine)2Br3] (2b), [Sb(2-aminopyrimidine)2Cl3] (3a), [Sb(2-aminopyrimidine)2Br3] (3b), [Sb(4,6-dimethoxy-2-aminopyrimidine)2Cl3] (4a), [Sb(4,6-dimethoxy-2-aminopyrimidine)2Br3] (4b), [Sb(2-amino-1,3,5-triazine)2Cl3] (5a), [Sb(2-amino-1,3,5-triazine)2Br3] (5b), [Sb(2-guanidinobenzimidazole) Cl3] (6a), [Sb(2-guanidinobenzimidazole)Br3] (6b) [Sb(2- benzyl-2-thiopseudeourea)2Cl3] (7a) and [Sb(2- benzyl-2-thiopseudeourea)2Br3] (7b) were synthesized. Their structures were characterized by elemental analysis, molecular conductivity, FT-IR, 1H NMR, LC-MS techniques. Glutathione reductase inhibitor activity, antimicrobial activity and DNA cleavage studies of the complexes were determined. The geometrical structures of the complexes were optimized by DFT/B3LYP method with LANL2DZ as basis set. Calculation results indicated that the equilibrium geometries of all complexes have square pyramidal shape. About 350 molecular descriptors (constitutional, topological, geometrical, electrostatic and quantum chemical parameters) of the complexes were calculated by DFT/B3LYP/LANL2DZ method with CODESSA software. Calculated molecular parameters were correlated to glutathione reductase inhibitory activity values (pIC50) of all complexes by Best Multi-Linear Regression (BMLR) method. Obtained two-parameter QSAR equation shows that increase in "maximum partial charge for a H atom" and decrease in HOMO-LUMO gap would be favorable for the glutathione reductase inhibitory activity.

  3. A designer bleomycin with significantly improved DNA cleavage activity.

    PubMed

    Huang, Sheng-Xiong; Feng, Zhiyang; Wang, Liyan; Galm, Ute; Wendt-Pienkowski, Evelyn; Yang, Dong; Tao, Meifeng; Coughlin, Jane M; Duan, Yanwen; Shen, Ben

    2012-08-15

    The bleomycins (BLMs) are used clinically in combination with a number of other agents for the treatment of several types of tumors, and the BLM, etoposide, and cisplatin treatment regimen cures 90-95% of metastatic testicular cancer patients. BLM-induced pneumonitis is the most feared, dose-limiting side effect of BLM in chemotherapy, which can progress into lung fibrosis and affect up to 46% of the total patient population. There have been continued efforts to develop new BLM analogues in the search for anticancer drugs with better clinical efficacy and lower lung toxicity. We have previously cloned and characterized the biosynthetic gene clusters for BLMs from Streptomyces verticillus ATCC15003, tallysomycins from Streptoalloteichus hindustanus E465-94 ATCC31158, and zorbamycin (ZBM) from Streptomyces flavoviridis SB9001. Comparative analysis of the three biosynthetic machineries provided the molecular basis for the formulation of hypotheses to engineer novel analogues. We now report engineered production of three new analogues, 6'-hydroxy-ZBM, BLM Z, and 6'-deoxy-BLM Z and the evaluation of their DNA cleavage activities as a measurement for their potential anticancer activity. Our findings unveiled: (i) the disaccharide moiety plays an important role in the DNA cleavage activity of BLMs and ZBMs, (ii) the ZBM disaccharide significantly enhances the potency of BLM, and (iii) 6'-deoxy-BLM Z represents the most potent BLM analogue known to date. The fact that 6'-deoxy-BLM Z can be produced in reasonable quantities by microbial fermentation should greatly facilitate follow-up mechanistic and preclinical studies to potentially advance this analogue into a clinical drug.

  4. A Designer Bleomycin with Significantly Improved DNA Cleavage Activity

    PubMed Central

    Huang, Sheng-Xiong; Feng, Zhiyang; Wang, Liyan; Galm, Ute; Wendt-Pienkowski, Evelyn; Yang, Dong; Tao, Meifeng; Coughlin, Jane M; Duan, Yanwen; Shen, Ben

    2012-01-01

    The bleomycins (BLMs) are used clinically in combination with a number of other agents for the treatment of several types of tumors, and the BLM, etoposide, and cisplatin treatment regimen cures 90–95% of metastatic testicular cancer patients. BLM-induced pneumonitis is the most feared, dose-limiting side effect of BLM in chemotherapy, which can progress into lung fibrosis and affect up to 46% of the total patient population. There have been continued efforts to develop new BLM analogues in the search for anticancer drugs with better clinical efficacy and lower lung toxicity. We have previously cloned and characterized the biosynthetic gene clusters for BLMs from Streptomyces verticillus ATCC15003, tallysomycins from Streptoalloteichus hindustanus E465-94 ATCC31158, and zorbamycin (ZBM) from Streptomyces flavoviridis SB9001. Comparative analysis of the three biosynthetic machineries provided the molecular basis for the formulation of hypotheses to engineer novel analogues. We now report engineered production of three new analogues, 6′-hydroxy-ZBM, BLM Z, and 6′-deoxy-BLM Z and the evaluation of their DNA cleavage activities as a measurement for their potential anticancer activity. Our findings unveiled: (i) the disaccharide moiety plays an important role in the DNA cleavage activity of BLMs and ZBMs, (ii) the ZBM disaccharide significantly enhances the potency of BLM, and (iii) 6′-deoxy-BLM Z represents the most potent BLM analogue known to date. The fact that 6′-deoxy-BLM Z can be produced in reasonable quantities by microbial fermentation should greatly facilitate follow-up mechanistic and preclinical studies to potentially advance this analogue into a clinical drug. PMID:22831455

  5. Synthesis, characterization, optical band gap, in vitro antimicrobial activity and DNA cleavage studies of some metal complexes of pyridyl thiosemicarbazone

    NASA Astrophysics Data System (ADS)

    Yousef, T. A.; Abu El-Reash, G. M.; El-Gammal, O. A.; Bedier, R. A.

    2013-03-01

    A new series of Cr(III), Mn(II), Ni(II), Zn(II) and Hg(II) complexes of Schiff-bases derived from the condensation of 4-(2-pyridyl)-3-thiosemicarbazide and pyruvic acid (H2PTP) have been synthesized and characterized by spectroscopic studies. Schiff-base exhibit thiol-thione tautomerism wherein sulfur plays an important role in the coordination. The coordination possibility of the Schiff-bases towards metal ions have been proposed in the light of elemental analysis, spectral (IR, UV-vis, 1H NMR and 13C NMR), magnetic and thermal studies. IR spectra show that H2PTP is coordinated to the metal ions in a mononegative tridentate manner except in Cr(III) complex in which the ligand exhibits mononegative bidentate manner. The parameters total energy, binding energy, isolated atomic energy, electronic energy, heat of formation, dipole moment, HOMO and LUMO were calculated for the ligand and its complexes. Furthermore, the kinetic and thermodynamic parameters for the different decomposition steps were calculated using the Coats-Redfern and Horowitz-Metzger methods. Also, the optical band gap (Eg) of the metal complexes has been calculated. The optical transition energy (Eg) is direct and equals 3.20, 3.27 and 3.26 eV for Cr, Mn and Ni complexes, respectively. The synthesized ligand, in comparison to its metal complexes is screened for its antibacterial activity against the bacterial species, Bacillus thuringiensis, Staphylococcus aureus, Pseudomonas aeuroginosa and Escherichia coli. The results show that the metal complexes be more potent in activity antibacterial than the parent Shciff base ligand towards one or more bacterial species. Finally, the biochemical studies showed that, Mn complex have powerful and complete degradation effect on DNA.

  6. Isolation and restriction endonuclease cleavage of Anaplasma marginale DNA in situ in agarose.

    PubMed Central

    Krueger, C M; Buening, G M

    1988-01-01

    Bacterial restriction endonucleases were used to produce DNA cleavage patterns that could be useful as tools to study the relatedness among Anaplasma marginale isolates. Bovine erythrocytes infected with A. marginale were lysed, washed, and embedded in agarose. The embedded erythrocytes and bacterial pathogens were partially digested by sequential infiltration of the agarose with acetone, lysozyme, sodium dodecyl sulfate, and proteinase K. The unfragmented genomic DNA was left supported and protected in a porous matrix. The DNA was digested in situ in agarose under the following conditions: (i) brief treatment with phenol, (ii) brief washing with distilled water, and (iii) adjustment of restriction enzyme digestion mixture to compensate for the volume of the agarose. The cleaved DNA was electrophoresed horizontally to produce a DNA cleavage pattern. Of 19 restriction enzymes screened, 12 produced distinct DNA bands from the genomes of each of the five A. marginale isolates examined. The DNA cleavage pattern produced from each isolate with a given restriction enzyme was reproducible. However, the DNA cleavage patterns produced from different isolates with a given restriction enzyme were not necessarily identical. This procedure could be modified for general bacterial DNA isolation, in situ agarose digestion, and manipulations. Images PMID:2838504

  7. Catalysts of DNA Strand Cleavage at Apurinic/Apyrimidinic Sites

    PubMed Central

    Minko, Irina G.; Jacobs, Aaron C.; de Leon, Arnie R.; Gruppi, Francesca; Donley, Nathan; Harris, Thomas M.; Rizzo, Carmelo J.; McCullough, Amanda K.; Lloyd, R. Stephen

    2016-01-01

    Apurinic/apyrimidinic (AP) sites are constantly formed in cellular DNA due to instability of the glycosidic bond, particularly at purines and various oxidized, alkylated, or otherwise damaged nucleobases. AP sites are also generated by DNA glycosylases that initiate DNA base excision repair. These lesions represent a significant block to DNA replication and are extremely mutagenic. Some DNA glycosylases possess AP lyase activities that nick the DNA strand at the deoxyribose moiety via a β- or β,δ-elimination reaction. Various amines can incise AP sites via a similar mechanism, but this non-enzymatic cleavage typically requires high reagent concentrations. Herein, we describe a new class of small molecules that function at low micromolar concentrations as both β- and β,δ-elimination catalysts at AP sites. Structure-activity relationships have established several characteristics that appear to be necessary for the formation of an iminium ion intermediate that self-catalyzes the elimination at the deoxyribose ring. PMID:27363485

  8. Catalysts of DNA Strand Cleavage at Apurinic/Apyrimidinic Sites.

    PubMed

    Minko, Irina G; Jacobs, Aaron C; de Leon, Arnie R; Gruppi, Francesca; Donley, Nathan; Harris, Thomas M; Rizzo, Carmelo J; McCullough, Amanda K; Lloyd, R Stephen

    2016-01-01

    Apurinic/apyrimidinic (AP) sites are constantly formed in cellular DNA due to instability of the glycosidic bond, particularly at purines and various oxidized, alkylated, or otherwise damaged nucleobases. AP sites are also generated by DNA glycosylases that initiate DNA base excision repair. These lesions represent a significant block to DNA replication and are extremely mutagenic. Some DNA glycosylases possess AP lyase activities that nick the DNA strand at the deoxyribose moiety via a β- or β,δ-elimination reaction. Various amines can incise AP sites via a similar mechanism, but this non-enzymatic cleavage typically requires high reagent concentrations. Herein, we describe a new class of small molecules that function at low micromolar concentrations as both β- and β,δ-elimination catalysts at AP sites. Structure-activity relationships have established several characteristics that appear to be necessary for the formation of an iminium ion intermediate that self-catalyzes the elimination at the deoxyribose ring. PMID:27363485

  9. Half-sandwich RuCl2(η(6)-p-cymene) core complexes containing sulfur donor aroylthiourea ligands: DNA and protein binding, DNA cleavage and cytotoxic studies.

    PubMed

    Jeyalakshmi, Kumaramangalam; Haribabu, Jebiti; Bhuvanesh, Nattamai S P; Karvembu, Ramasamy

    2016-08-01

    A series of Ru(ii)(η(6)-p-cymene) complexes (1-4) bearing the general formula [RuCl2(η(6)-p-cymene)L] (L = monodentate aroylthiourea ligand) has been synthesized and characterized by analytical and various spectroscopic techniques. The neutral monodentate coordination of aroylthiourea with Ru via an S atom was confirmed by single crystal X-ray diffraction study. The complexes were tested for their ability to interact with DNA and protein. The complexes bound with calf thymus DNA (CT DNA) with the intrinsic binding constant value in the order of 10(4) M(-1). The intercalative mode of binding was confirmed by the ethidium bromide (EB) displacement study. The interaction of the complexes with CT DNA was further supported by viscosity measurements and circular dichroic (CD) spectra. The Ru(ii) complexes cleaved the supercoiled DNA without the need of any external agent. The spectroscopic evidence showed good binding efficacy of the complexes with BSA (Bovine Serum Albumin). The alterations in the secondary structure of BSA by the Ru(ii) complexes were confirmed by synchronous fluorescence spectra. Cytotoxicity examination by MTT assay was carried out in two cancer cell lines (MCF7 and A549) and one non-cancerous cell line (L929). Complex 4 showed significant activity [IC50 = 52.3 (MCF7) and 54.6 (A549) μM] which was comparable with that of similar known complexes. The morphological changes assessed by Hoechst staining revealed that the cell death occurred by apoptosis. PMID:27435011

  10. DNA cleavage, antimicrobial, spectroscopic and fluorescence studies of Co(II), Ni(II) and Cu(II) complexes with SNO donor coumarin Schiff bases

    NASA Astrophysics Data System (ADS)

    Patil, Sangamesh A.; Naik, Vinod H.; Kulkarni, Ajaykumar D.; Badami, Prema S.

    2010-01-01

    A series of Co(II), Ni(II) and Cu(II) complexes of the type ML 2 have been synthesized with Schiff bases derived from methylthiosemicarbazone and 5-formyl-6-hydroxy coumarin/8-formyl-7-Hydroxy-4-methylcoumarin. The complexes are insoluble in common organic solvents but soluble in DMF and DMSO. The measured molar conductance values in DMF indicate that, the complexes are non-electrolytes in nature. In view of analytical, spectral (IR, UV-vis, ESR, FAB-mass and fluorescence), magnetic and thermal studies, it has been concluded that, all the metal complexes possess octahedral geometry in which ligand is coordinated to metal ion through azomethine nitrogen, thione sulphur and phenolic oxygen atom via deprotonation. The redox behavior of the metal complexes was investigated by using cyclic voltammetry. The Schiff bases and their complexes have been screened for their antibacterial ( Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella typhi) and antifungal activities ( Aspergillus niger, Aspergillus flavus and Cladosporium) by Minimum Inhibitory Concentration method. The DNA cleavage is studied by agarose gel electrophoresis method.

  11. DNA cleavage enzymes for treatment of persistent viral infections: Recent advances and the pathway forward

    SciTech Connect

    Weber, Nicholas D.; Aubert, Martine; Dang, Chung H.; Stone, Daniel; Jerome, Keith R.

    2014-04-15

    Treatment for most persistent viral infections consists of palliative drug options rather than curative approaches. This is often because long-lasting viral DNA in infected cells is not affected by current antivirals, providing a source for viral persistence and reactivation. Targeting latent viral DNA itself could therefore provide a basis for novel curative strategies. DNA cleavage enzymes can be used to induce targeted mutagenesis of specific genes, including those of exogenous viruses. Although initial in vitro and even in vivo studies have been carried out using DNA cleavage enzymes targeting various viruses, many questions still remain concerning the feasibility of these strategies as they transition into preclinical research. Here, we review the most recent findings on DNA cleavage enzymes for human viral infections, consider the most relevant animal models for several human viral infections, and address issues regarding safety and enzyme delivery. Results from well-designed in vivo studies will ideally provide answers to the most urgent remaining questions, and allow continued progress toward clinical application. - Highlights: • Recent in vitro and in vivo results for DNA cleavage enzymes targeting persistent viral infections. • Analysis of the best animal models for testing enzymes for HBV, HSV, HIV and HPV. • Challenges facing in vivo delivery of therapeutic enzymes for persistent viral infections. • Safety issues to be addressed with proper animal studies.

  12. Synthesis, photochemistry, DNA cleavage/binding and cytotoxic properties of fluorescent quinoxaline and quinoline hydroperoxides.

    PubMed

    Chowdhury, Nilanjana; Gangopadhyay, Moumita; Karthik, S; Pradeep Singh, N D; Baidya, Mithu; Ghosh, S K

    2014-01-01

    Novel fluorescent quinoxaline and quinoline hydroperoxides were shown to perform dual role as both fluorophores for cell imaging and photoinduced DNA cleaving agents. Photophysical studies of newly synthesized quinoxaline and quinoline hydroperoxides showed that they all exhibited moderate to good fluorescence. Photolysis of quinoxaline and quinoline hydroperoxides in acetonitrile using UV light above 350nm resulted in the formation of corresponding ester compounds via γ-hydrogen abstraction by excited carbonyl chromophore. Single strand DNA cleavage was achieved on irradiation of newly synthesized hydroperoxides by UV light (⩾350nm). Both hydroxyl radicals and singlet oxygen were identified as reactive oxygen species (ROS) responsible for the DNA cleavage. Further, we showed quinoline hydroperoxide binds to ct-DNA via intercalative mode. In vitro biological studies revealed that quinoline hydroperoxide has good biocompatibility, cellular uptake property and cell imaging ability. Finally, we showed that quinoline hydroperoxide can permeate into cells efficiently and may cause cytotoxicity upon irradiation by UV light.

  13. Molecular mechanism of photosensitization. XI. Membrane damage and DNA cleavage photoinduced by enoxacin.

    PubMed

    Sortino, S; Condorelli, G; De Guidi, G; Giuffrida, S

    1998-11-01

    The photosensitizing activity of enoxacin, 1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)- 1,8-naphthyridine-3-carboxilic acid (ENX), toward membranes and DNA has been studied, taking into account human erythrocyte photohemolysis, unilamellar liposome alterations and plasmid pBR322 DNA photocleavage. Hydroxyl radicals and an aromatic carbene generated from ENX photodefluorination seem to be the active intermediates involved in the photosensitization process. The steady-state photolysis products do not participate in the process. The mechanism of photosensitization responsible for the membrane damage depends on the oxygen concentration and follows a different path with respect to that operative for DNA cleavage. Between oxygenated radicals, the hydroxyl seems the species mainly responsible for membrane damage, whereas DNA cleavage is mainly produced by the carbene intermediate. A molecular mechanism of the photosensitization induced by ENX is proposed.

  14. Specific, nonproductive cleavage of packaged bacteriophage T7 DNA in vivo.

    PubMed

    Khan, S A; Hayes, S J; Watson, R H; Serwer, P

    1995-07-10

    The morphogenesis of bacteriophage T7 includes assembly of a procapsid that subsequently both packages DNA and changes in structure. The DNA packaged by T7 is concatemeric and is cleaved to mature length during packaging. In the present study, packaged DNA obtained from T7-infected cells was analyzed after release from DNase-treated capsids. After fractionation by agarose gel electrophoresis, in-gel probing with oligonucleotides reveals that some of this DNA is shorter than mature T7 DNA; most of this short DNA has the T7 right end, but not the left end. Some of this short, packaged DNA is the product of left-to-right injection of DNA at the beginning of a T7 infection. However, subsequently produced short, packaged DNA has characteristics of a DNA that was produced during DNA packaging (incompletely packaged DNA or ipDNA). In contrast to results previously obtained in vitro, the profile of right-end-containing ipDNA is sometimes dominated by discrete bands. Some of the band-forming right-end-containing ipDNA appears with the kinetics of an abortive end product of packaging; cleavage in vivo appears to have arrested DNA packaging in this case. Other band-forming right-end-containing ipDNA appears with kinetics that have some characteristics expected of a precursor to the mature DNA; cleavage appears to have occurred after arrest of packaging in this case. The findings here of both left-to-right injection and right-to-left packaging is the most direct demonstration of polarity for these events in vivo. PMID:7618276

  15. Synthesis, spectroscopic, molecular orbital calculation, cytotoxic, molecular docking of DNA binding and DNA cleavage studies of transition metal complexes with N-benzylidene-N'-salicylidene-1,1-diaminopropane

    NASA Astrophysics Data System (ADS)

    Al-Mogren, Muneerah M.; Alaghaz, Abdel-Nasser M. A.; Elbohy, Salwa A. H.

    2013-10-01

    Eight mononuclear chromium(III), manganese(II), iron(III), cobalt(II), nickel(II), copper(II), zinc(II) and cadmium(II) complexes of Schiff's base ligand were synthesized and determined by different physical techniques. The complexes are insoluble in common organic solvents but soluble in DMF and DMSO. The measured molar conductance values in DMSO indicate that the complexes are non-electrolytic in nature. All the eight metal complexes have been fully characterized with the help of elemental analyses, molecular weights, molar conductance values, magnetic moments and spectroscopic data. The analytical data helped to elucidate the structure of the metal complexes. The Schiff base is found to act as tridentate ligand using N2O donor set of atoms leading to an octahedral geometry for the complexes around all the metal ions. Quantum chemical calculations were performed with semi-empirical method to find the optimum geometry of the ligand and its complexes. Additionally in silico, the docking studies and the calculated pharmacokinetic parameters show promising futures for application of the ligand and complexes as high potency agents for DNA binding activity. The interaction of the complexes with calf thymus DNA (CT-DNA) has been investigated by UV absorption method, and the mode of CT-DNA binding to the complexes has been explored. Furthermore, the DNA cleavage activity by the complexes was performed. The Schiff base and their complexes have been screened for their antibacterial activity against bacterial strains [Staphylococcus aureus (RCMB010027), Staphylococcus epidermidis (RCMB010024), Bacillis subtilis (RCMB010063), Proteous vulgaris (RCMB 010085), Klebsiella pneumonia (RCMB 010093) and Shigella flexneri (RCMB 0100542)] and fungi [(Aspergillus fumigates (RCMB 02564), Aspergillus clavatus (RCMB 02593) and Candida albicans (RCMB05035)] by disk diffusion method. All the metal complexes have potent biocidal activity than the free ligand.

  16. DNA CLEAVAGE AND DETECTION OF DNA RADICALS FORMED FROM HYDRALAZINE AND COPPER (II) BY ESR AND IMMUNO-SPIN TRAPPING

    PubMed Central

    Sinha, Birandra K.; Leinisch, Fabian; Bhattacharjee, Suchandra; Mason, Ronald P.

    2014-01-01

    Metal ion-catalyzed oxidation of hydrazine and its derivatives leads to the formation of the hydrazyl radical and subsequently to oxy-radicals in the presence of molecular oxygen. Here we have examined the role of Cu2+-catalyzed oxidation of hydralazine in the induction of DNA damage. Neither 5, 5-dimethyl-1-pyrroline-N-oxide (DMPO) nor dimethyl sulfoxide (DMSO) were effective in inhibiting hydralazine-Cu2+-induced DNA damage. Singlet oxygen did not appear to participate in this DNA cleavage. The one-electron oxidation of hydralazine also leads to the formation of DNA radicals as confirmed by immuno-spin trapping with 5, 5-dimethyl-1-pyrroline-N-oxide. Electron spin resonance (ESR) and spin trapping studies further confirmed the formation of DNA radicals; predominantly 2′-deoxyadenosine radical adducts were detected, while some radicals were also detected with other nucleosides. Our results suggest that free hydroxyl radicals may not be the main damaging species causing DNA cleavage, and possibly, Cu-peroxide complexes, formed from Cu+-H2O2, areresponsible for this hydralazine-Cu2+-induced DNA cleavage. PMID:24502259

  17. DNA cleavage and detection of DNA radicals formed from hydralazine and copper (II) by ESR and immuno-spin trapping.

    PubMed

    Sinha, Birandra K; Leinisch, Fabian; Bhattacharjee, Suchandra; Mason, Ronald P

    2014-04-21

    Metal ion-catalyzed oxidation of hydrazine and its derivatives leads to the formation of the hydrazyl radical and subsequently to oxy-radicals in the presence of molecular oxygen. Here, we have examined the role of Cu(2+)-catalyzed oxidation of hydralazine in the induction of DNA damage. Neither 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) nor dimethyl sulfoxide (DMSO) was effective in inhibiting hydralazine-Cu(2+)-induced DNA damage. Singlet oxygen did not appear to participate in this DNA cleavage. The one-electron oxidation of hydralazine also leads to the formation of DNA radicals as confirmed by immuno-spin trapping with 5,5-dimethyl-1-pyrroline-N-oxide. Electron spin resonance (ESR) and spin-trapping studies further confirmed the formation of DNA radicals; predominantly, 2'-deoxyadenosine radical adducts were detected, while some radicals were also detected with other nucleosides. Our results suggest that free hydroxyl radicals may not be the main damaging species causing DNA cleavage and that possibly Cu-peroxide complexes, formed from Cu(+)-H2O2, are responsible for this hydralazine-Cu(2+)-induced DNA cleavage.

  18. A single molecule assay for measuring site-specific DNA cleavage.

    PubMed

    Gambino, Stefano; Mousley, Briana; Cathcart, Lindsay; Winship, Janelle; Loparo, Joseph J; Price, Allen C

    2016-02-15

    Sequence-specific DNA cleavage is a key step in a number of genomic transactions. Here, we report a single-molecule technique that allows the simultaneous measurement of hundreds of DNAs, thereby collecting significant statistics in a single experiment. Microbeads are tethered with single DNA molecules in a microfluidic channel. After the DNA cleavage reaction is initiated, the time of cleavage of each DNA is recorded using video microscopy. We demonstrate the utility of our method by measuring the cleavage kinetics of NdeI, a type II restriction endonuclease.

  19. DNA cleavage enzymes for treatment of persistent viral infections: recent advances and the pathway forward

    PubMed Central

    Weber, Nicholas D.; Aubert, Martine; Dang, Chung H.; Stone, Daniel; Jerome, Keith R.

    2014-01-01

    Treatment for most persistent viral infections consists of palliative drug options rather than curative approaches. This is often because long-lasting viral DNA in infected cells is not affected by current antivirals, providing a source for viral persistence and reactivation. Targeting latent viral DNA itself could therefore provide a basis for novel curative strategies. DNA cleavage enzymes can be used to induce targeted mutagenesis of specific genes, including those of exogenous viruses. Although initial in vitro and even in vivo studies have been carried out using DNA cleavage enzymes targeting various viruses, many questions still remain concerning the feasibility of these strategies as they transition into preclinical research. Here, we review the most recent findings on DNA cleavage enzymes for human viral infections, consider the most relevant animal models for several human viral infections, and address issues regarding safety and enzyme delivery. Results from well-designed in vivo studies will ideally provide answers to the most urgent remaining questions, and allow continued progress toward clinical application. PMID:24485787

  20. Structural basis for DNA cleavage by the potent antiproliferative agent (–)-lomaiviticin A

    PubMed Central

    Woo, Christina M.; Li, Zhenwu; Herzon, Seth B.

    2016-01-01

    (–)-Lomaiviticin A (1) is a complex antiproliferative metabolite that inhibits the growth of many cultured cancer cell lines at low nanomolar–picomolar concentrations. (–)-Lomaiviticin A (1) possesses a C2-symmetric structure that contains two unusual diazotetrahydrobenzo[b]fluorene (diazofluorene) functional groups. Nucleophilic activation of each diazofluorene within 1 produces vinyl radical intermediates that affect hydrogen atom abstraction from DNA, leading to the formation of DNA double-strand breaks (DSBs). Certain DNA DSB repair-deficient cell lines are sensitized toward 1, and 1 is under evaluation in preclinical models of these tumor types. However, the mode of binding of 1 to DNA had not been determined. Here we elucidate the structure of a 1:1 complex between 1 and the duplex d(GCTATAGC)2 by NMR spectroscopy and computational modeling. Unexpectedly, we show that both diazofluorene residues of 1 penetrate the duplex. This binding disrupts base pairing leading to ejection of the central AT bases, while placing the proreactive centers of 1 in close proximity to each strand. DNA binding may also enhance the reactivity of 1 toward nucleophilic activation through steric compression and conformational restriction (an example of shape-dependent catalysis). This study provides a structural basis for the DNA cleavage activity of 1, will guide the design of synthetic DNA-activated DNA cleavage agents, and underscores the utility of natural products to reveal novel modes of small molecule–DNA association. PMID:26929332

  1. Histidine-Based Lipopeptides Enhance Cleavage of Nucleic Acids: Interactions with DNA and Hydrolytic Properties.

    PubMed

    Bélières, M; Déjugnat, C; Chouini-Lalanne, N

    2015-12-16

    Interaction studies and cleavage activity experiments were carried out between plasmid DNA and a series of histidine-based lipopeptides. Specific fluorescent probes (ethidium bromide, Hoechst 33342, and pyrene) were used to monitor intercalation, minor groove binding, and self-assembly of lipopeptides, respectively. Association between DNA and lipopeptides was thus evidenced, highlighting the importance of both histidine and hydrophobic tail in the interaction process. DNA cleavage in the presence of lipopeptides was then detected by gel electrophoresis and quantified, showing the importance of histidine and the involvement of its side-chain imidazole in the hydrolysis mechanism. These systems could then be developed as synthetic nucleases while raising concern of introducing histidine in the design of lipopeptide-based transfection vectors.

  2. Polymerase Synthesis and Restriction Enzyme Cleavage of DNA Containing 7-Substituted 7-Deazaguanine Nucleobases.

    PubMed

    Mačková, Michaela; Boháčová, Soňa; Perlíková, Pavla; Poštová Slavětínská, Lenka; Hocek, Michal

    2015-10-12

    Previous studies of polymerase synthesis of base-modified DNAs and their cleavage by restriction enzymes have mostly related only to 5-substituted pyrimidine and 7-substituted 7-deazaadenine nucleotides. Here we report the synthesis of a series of 7-substituted 7-deazaguanine 2'-deoxyribonucleoside 5'-O-triphosphates (dG(R) TPs), their use as substrates for polymerase synthesis of modified DNA and the influence of the modification on their cleavage by type II restriction endonucleases (REs). The dG(R) TPs were generally good substrates for polymerases but the PCR products could not be visualised on agarose gels by intercalator staining, due to fluorescence quenching. The presence of 7-substituted 7-deazaguanine residues in recognition sequences of REs in most cases completely blocked the cleavage.

  3. Synthesis, spectroscopic, antimicrobial, DNA binding and cleavage studies of some metal complexes involving symmetrical bidentate N, N donor Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Arish, D.; Nair, M. Sivasankaran

    2011-11-01

    The Schiff base ligand, N, N'-bis-(4-isopropylbenzaldimine)-1,2-diaminoethane (L), obtained by the condensation of 4-isopropylbenzaldehyde and 1,2-diaminoethane, has been used to synthesize the complexes of the type [ML 2X 2] [M = Co(II), Ni(II) and Zn(II); X = Cl and OAc]. The newly synthesized ligand (L) and its complexes have been characterized on the basis of elemental analyses, mass, 1H and 13C-NMR, molar conductance, IR, UV-vis, magnetic moment, CV and thermal analyses, powder XRD and SEM. IR spectral data show that the ligand is coordinated to the metal ions in a bidentate manner. The geometrical structures of these complexes are found to be octahedral. Interestingly, reaction with Cu(II) ion with this ligand undergoes hydrolytic cleavage to form ethylenediamine copper(II) complex and the corresponding aldehyde. The antimicrobial results indicate that the chloro complexes exhibit more activity than the acetato complexes. The complexes bind to CT-DNA by intercalation modes. Novel chloroform soluble ZnL 2Cl 2 complex exhibits tremendous antimicrobial, DNA binding and cleaving properties.

  4. DNA targeting and cleavage by an engineered metalloprotein dimer.

    PubMed

    Wong-Deyrup, Siu Wah; Prasannan, Charulata; Dupureur, Cynthia M; Franklin, Sonya J

    2012-03-01

    Nature has illustrated through numerous examples that protein dimerization has structural and functional advantages. We previously reported the design and characterization of an engineered "metallohomeodomain" protein (C2) based on a chimera of the EF-hand Ca-binding motif and the helix-turn-helix motif of homeodomains (Lim and Franklin in Protein Sci. 15:2159-2165, 2004). This small metalloprotein binds the hard metal ions Ca(II) and Ln(III) and interacts with DNA with modest sequence preference and affinity, yet exhibits only residual DNA cleavage activity. Here we have achieved substantial improvement in function by constructing a covalent dimer of this C2 module (F2) to create a larger multidomain protein. As assayed via fluorescence spectroscopy, this F2 protein binds Ca(II) more avidly (25-fold) than C2 on a per-domain basis; in gel shift selection experiments, metallated F2 exhibits a specificity toward 5'-TAATTA-3' sequences. Finally, Ca(2)F2 cleaves plasmid DNA and generates a linear product in a Ca(II)-dependent way, unlike the CaC2 monomer. To the best of our knowledge this activation of Ca(II) in the context of an EF-hand binding motif is unique and represents a significant step forward in the design of artificial metallonucleases by utilizing biologically significant metal ions.

  5. Efficient nuclear DNA cleavage in human cancer cells by synthetic bleomycin mimics.

    PubMed

    Li, Qian; van der Wijst, Monique G P; Kazemier, Hinke G; Rots, Marianne G; Roelfes, Gerard

    2014-04-18

    Iron complexes of N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)-methylamine (N4Py) have proven to be excellent synthetic mimics of the Bleomycins (BLMs), which are a family of natural antibiotics used clinically in the treatment of certain cancers. However, most investigations of DNA cleavage activity of these and related metal complexes were carried out in cell-free systems using plasmid DNA as substrate. The present study evaluated nuclear DNA cleavage activity and cell cytotoxicity of BLM and its synthetic mimics based on the ligand N4Py. The N4Py-based reagents induced nuclear DNA cleavage in living cells as efficiently as BLM and Fe(II)-BLM. Treatment of 2 cancer cell lines and 1 noncancerous cell line indicated improved cytotoxicity of N4Py when compared to BLM. Moreover, some level of selectivity was observed for N4Py on cancerous versus noncancerous cells. It was demonstrated that N4Py-based reagents and BLM induce cell death via different mechanistic pathways. BLM was shown to induce cell cycle arrest, ultimately resulting in mitotic catastrophe. In contrast, N4Py-based reagents were shown to induce apoptosis effectively. To the best of our knowledge, the present study is the first demonstration of efficient nuclear DNA cleavage activity of a synthetic BLM mimic within cells. The results presented here show that it is possible to design synthetic bioinorganic model complexes that are at least as active as the parent natural product and thereby are potentially interesting alternatives for BLM to induce antitumor activity.

  6. Effects of Olive Metabolites on DNA Cleavage Mediated by Human Type II Topoisomerases

    PubMed Central

    2016-01-01

    Several naturally occurring dietary polyphenols with chemopreventive or anticancer properties are topoisomerase II poisons. To identify additional phytochemicals that enhance topoisomerase II-mediated DNA cleavage, a library of 341 Mediterranean plant extracts was screened for activity against human topoisomerase IIα. An extract from Phillyrea latifolia L., a member of the olive tree family, displayed high activity against the human enzyme. On the basis of previous metabolomics studies, we identified several polyphenols (hydroxytyrosol, oleuropein, verbascoside, tyrosol, and caffeic acid) as potential candidates for topoisomerase II poisons. Of these, hydroxytyrosol, oleuropein, and verbascoside enhanced topoisomerase II-mediated DNA cleavage. The potency of these olive metabolites increased 10–100-fold in the presence of an oxidant. Hydroxytyrosol, oleuropein, and verbascoside displayed hallmark characteristics of covalent topoisomerase II poisons. (1) The activity of the metabolites was abrogated by a reducing agent. (2) Compounds inhibited topoisomerase II activity when they were incubated with the enzyme prior to the addition of DNA. (3) Compounds were unable to poison a topoisomerase IIα construct that lacked the N-terminal domain. Because hydroxytyrosol, oleuropein, and verbascoside are broadly distributed across the olive family, extracts from the leaves, bark, and fruit of 11 olive tree species were tested for activity against human topoisomerase IIα. Several of the extracts enhanced enzyme-mediated DNA cleavage. Finally, a commercial olive leaf supplement and extra virgin olive oils pressed from a variety of Olea europea subspecies enhanced DNA cleavage mediated by topoisomerase IIα. Thus, olive metabolites appear to act as topoisomerase II poisons in complex formulations intended for human dietary consumption. PMID:26132160

  7. Effects of Olive Metabolites on DNA Cleavage Mediated by Human Type II Topoisomerases.

    PubMed

    Vann, Kendra R; Sedgeman, Carl A; Gopas, Jacob; Golan-Goldhirsh, Avi; Osheroff, Neil

    2015-07-28

    Several naturally occurring dietary polyphenols with chemopreventive or anticancer properties are topoisomerase II poisons. To identify additional phytochemicals that enhance topoisomerase II-mediated DNA cleavage, a library of 341 Mediterranean plant extracts was screened for activity against human topoisomerase IIα. An extract from Phillyrea latifolia L., a member of the olive tree family, displayed high activity against the human enzyme. On the basis of previous metabolomics studies, we identified several polyphenols (hydroxytyrosol, oleuropein, verbascoside, tyrosol, and caffeic acid) as potential candidates for topoisomerase II poisons. Of these, hydroxytyrosol, oleuropein, and verbascoside enhanced topoisomerase II-mediated DNA cleavage. The potency of these olive metabolites increased 10-100-fold in the presence of an oxidant. Hydroxytyrosol, oleuropein, and verbascoside displayed hallmark characteristics of covalent topoisomerase II poisons. (1) The activity of the metabolites was abrogated by a reducing agent. (2) Compounds inhibited topoisomerase II activity when they were incubated with the enzyme prior to the addition of DNA. (3) Compounds were unable to poison a topoisomerase IIα construct that lacked the N-terminal domain. Because hydroxytyrosol, oleuropein, and verbascoside are broadly distributed across the olive family, extracts from the leaves, bark, and fruit of 11 olive tree species were tested for activity against human topoisomerase IIα. Several of the extracts enhanced enzyme-mediated DNA cleavage. Finally, a commercial olive leaf supplement and extra virgin olive oils pressed from a variety of Olea europea subspecies enhanced DNA cleavage mediated by topoisomerase IIα. Thus, olive metabolites appear to act as topoisomerase II poisons in complex formulations intended for human dietary consumption. PMID:26132160

  8. Computational redesign of endonuclease DNA binding and cleavage specificity

    NASA Astrophysics Data System (ADS)

    Ashworth, Justin; Havranek, James J.; Duarte, Carlos M.; Sussman, Django; Monnat, Raymond J.; Stoddard, Barry L.; Baker, David

    2006-06-01

    The reprogramming of DNA-binding specificity is an important challenge for computational protein design that tests current understanding of protein-DNA recognition, and has considerable practical relevance for biotechnology and medicine. Here we describe the computational redesign of the cleavage specificity of the intron-encoded homing endonuclease I-MsoI using a physically realistic atomic-level forcefield. Using an in silico screen, we identified single base-pair substitutions predicted to disrupt binding by the wild-type enzyme, and then optimized the identities and conformations of clusters of amino acids around each of these unfavourable substitutions using Monte Carlo sampling. A redesigned enzyme that was predicted to display altered target site specificity, while maintaining wild-type binding affinity, was experimentally characterized. The redesigned enzyme binds and cleaves the redesigned recognition site ~10,000 times more effectively than does the wild-type enzyme, with a level of target discrimination comparable to the original endonuclease. Determination of the structure of the redesigned nuclease-recognition site complex by X-ray crystallography confirms the accuracy of the computationally predicted interface. These results suggest that computational protein design methods can have an important role in the creation of novel highly specific endonucleases for gene therapy and other applications.

  9. Sequence selective double strand DNA cleavage by peptide nucleic acid (PNA) targeting using nuclease S1.

    PubMed Central

    Demidov, V; Frank-Kamenetskii, M D; Egholm, M; Buchardt, O; Nielsen, P E

    1993-01-01

    A novel method for sequence specific double strand DNA cleavage using PNA (peptide nucleic acid) targeting is described. Nuclease S1 digestion of double stranded DNA gives rise to double strand cleavage at an occupied PNA strand displacement binding site, and under optimized conditions complete cleavage can be obtained. The efficiency of this cleavage is more than 10 fold enhanced when a tandem PNA site is targeted, and additionally enhanced if this site is in trans rather than in cis orientation. Thus in effect, the PNA targeting makes the single strand specific nuclease S1 behave like a pseudo restriction endonuclease. Images PMID:8502550

  10. Recycling of protein subunits during DNA translocation and cleavage by Type I restriction-modification enzymes.

    PubMed

    Simons, Michelle; Szczelkun, Mark D

    2011-09-01

    The Type I restriction-modification enzymes comprise three protein subunits; HsdS and HsdM that form a methyltransferase (MTase) and HsdR that associates with the MTase and catalyses Adenosine-5'-triphosphate (ATP)-dependent DNA translocation and cleavage. Here, we examine whether the MTase and HsdR components can 'turnover' in vitro, i.e. whether they can catalyse translocation and cleavage events on one DNA molecule, dissociate and then re-bind a second DNA molecule. Translocation termination by both EcoKI and EcoR124I leads to HsdR dissociation from linear DNA but not from circular DNA. Following DNA cleavage, the HsdR subunits appear unable to dissociate even though the DNA is linear, suggesting a tight interaction with the cleaved product. The MTases of EcoKI and EcoAI can dissociate from DNA following either translocation or cleavage and can initiate reactions on new DNA molecules as long as free HsdR molecules are available. In contrast, the MTase of EcoR124I does not turnover and additional cleavage of circular DNA is not observed by inclusion of RecBCD, a helicase-nuclease that degrades the linear DNA product resulting from Type I cleavage. Roles for Type I restriction endonuclease subunit dynamics in restriction alleviation in the cell are discussed.

  11. Translocation-coupled DNA cleavage by the Type ISP restriction-modification enzymes.

    PubMed

    Chand, Mahesh K; Nirwan, Neha; Diffin, Fiona M; van Aelst, Kara; Kulkarni, Manasi; Pernstich, Christian; Szczelkun, Mark D; Saikrishnan, Kayarat

    2015-11-01

    Production of endonucleolytic double-strand DNA breaks requires separate strand cleavage events. Although catalytic mechanisms for simple, dimeric endonucleases are known, there are many complex nuclease machines that are poorly understood. Here we studied the single polypeptide Type ISP restriction-modification (RM) enzymes, which cleave random DNA between distant target sites when two enzymes collide after convergent ATP-driven translocation. We report the 2.7-Å resolution X-ray crystal structure of a Type ISP enzyme-DNA complex, revealing that both the helicase-like ATPase and nuclease are located upstream of the direction of translocation, an observation inconsistent with simple nuclease-domain dimerization. Using single-molecule and biochemical techniques, we demonstrate that each ATPase remodels its DNA-protein complex and translocates along DNA without looping it, leading to a collision complex in which the nuclease domains are distal. Sequencing of the products of single cleavage events suggests a previously undescribed endonuclease model, where multiple, stochastic strand-nicking events combine to produce DNA scission.

  12. Translocation-coupled DNA cleavage by the Type ISP restriction-modification enzymes.

    PubMed

    Chand, Mahesh K; Nirwan, Neha; Diffin, Fiona M; van Aelst, Kara; Kulkarni, Manasi; Pernstich, Christian; Szczelkun, Mark D; Saikrishnan, Kayarat

    2015-11-01

    Production of endonucleolytic double-strand DNA breaks requires separate strand cleavage events. Although catalytic mechanisms for simple, dimeric endonucleases are known, there are many complex nuclease machines that are poorly understood. Here we studied the single polypeptide Type ISP restriction-modification (RM) enzymes, which cleave random DNA between distant target sites when two enzymes collide after convergent ATP-driven translocation. We report the 2.7-Å resolution X-ray crystal structure of a Type ISP enzyme-DNA complex, revealing that both the helicase-like ATPase and nuclease are located upstream of the direction of translocation, an observation inconsistent with simple nuclease-domain dimerization. Using single-molecule and biochemical techniques, we demonstrate that each ATPase remodels its DNA-protein complex and translocates along DNA without looping it, leading to a collision complex in which the nuclease domains are distal. Sequencing of the products of single cleavage events suggests a previously undescribed endonuclease model, where multiple, stochastic strand-nicking events combine to produce DNA scission. PMID:26389736

  13. Rates of Chemical Cleavage of DNA and RNA Oligomers Containing Guanine Oxidation Products

    PubMed Central

    2016-01-01

    The nucleobase guanine in DNA (dG) and RNA (rG) has the lowest standard reduction potential of the bases, rendering it a major site of oxidative damage in these polymers. Mapping the sites at which oxidation occurs in an oligomer via chemical reagents utilizes hot piperidine for cleaving oxidized DNA and aniline (pH 4.5) for cleaving oxidized RNA. In the present studies, a series of time-dependent cleavages of DNA and RNA strands containing various guanine lesions were examined to determine the strand scission rate constants. The guanine base lesions 8-oxo-7,8-dihydroguanine (OG), spiroiminodihydantoin (Sp), 5-guanidinohydantoin (Gh), 2,2,4-triamino-2H-oxazol-5-one (Z), and 5-carboxamido-5-formamido-2-iminohydantoin (2Ih) were evaluated in piperidine-treated DNA and aniline-treated RNA. These data identified wide variability in the chemical lability of the lesions studied in both DNA and RNA. Further, the rate constants for cleaving lesions in RNA were generally found to be significantly smaller than for lesions in DNA. The OG nucleotides were poorly cleaved in DNA and RNA; Sp nucleotides were slowly cleaved in DNA and did not cleave significantly in RNA; Gh and Z nucleotides cleaved in both DNA and RNA at intermediate rates; and 2Ih oligonucleotides cleaved relatively quickly in both DNA and RNA. The data are compared and contrasted with respect to future experimental design. PMID:25853314

  14. Cleavage patterns of Drosophila melanogaster satellite DNA by restriction enzymes.

    PubMed Central

    Shen, C J; Wiesehahn, G; Hearst, J E

    1976-01-01

    The five satellite DNAs of Drosophila melanogaster have been isolated by the combined use of different equilibrium density gradients and hydrolyzed by seven different restriction enzymes; Hae III, Hind II + Hind III, Hinf, Hpa II, EcoR I and EcoR II. The 1.705 satellite is not hydrolyzed by any of the enzymes tested. Hae III is the only restriction enzyme that cuts the 1.672 and 1.686 satellites. The cleavage products from either of these reactions has a heterogeneous size distribution. Part of the 1.688 satellite is cut by Hae III and by Hinf into three discrete fragments with M.W. that are multiples of 2.3 X 10(5) daltons (approximately 350 base pairs). In addition, two minor bands are detected in the 1.688-Hinf products. The mole ratios of the trimer, dimer and monomer are: 1:6.30 : 63.6 for 1.688-Hae III and 1 : 22.0 : 403 for 1.688-Hinf. Circular mitochondrial DNA (rho = 1.680) is cut into discrete fragments by all of the enzymes tested and molecular weights of these fragments have been determined. Images PMID:818625

  15. Studies of viomycin, an anti-tuberculosis antibiotic: copper(ii) coordination, DNA degradation and the impact on delta ribozyme cleavage activity.

    PubMed

    Stokowa-Sołtys, K; Barbosa, N A; Kasprowicz, A; Wieczorek, R; Gaggelli, N; Gaggelli, E; Valensin, G; Wrzesiński, J; Ciesiołka, J; Kuliński, T; Szczepanik, W; Jeżowska-Bojczuk, M

    2016-05-17

    Viomycin is a basic peptide antibiotic, which is among the most effective agents against multidrug-resistant tuberculosis. In this paper we provide the characteristics of its acid base properties, coordination preferences towards the Cu(ii) ions, as well as the reactivity of the resulting complexes against plasmid DNA and HDV ribozyme. Careful coordination studies throughout the wide pH range allow for the characterisation of all the Cu(ii)-viomycin complex species. The assignment of proton chemical shifts was achieved by NMR experiments, while the DTF level of theory was applied to support molecular structures of the studied complexes. The experiments with the plasmid DNA reveal that at the physiological levels of hydrogen peroxide the Cu(ii)-viomycin complex is more aggressive against DNA than uncomplexed metal ions. Moreover, the degradation of DNA by viomycin can be carried out without the presence of transition metal ions. In the studies of antigenomic delta ribozyme catalytic activity, viomycin and its complex are shown to modulate the ribozyme functioning. The molecular modelling approach allows the indication of two different locations of viomycin binding sites to the ribozyme. PMID:27143296

  16. Non-specific protein–DNA interactions control I-CreI target binding and cleavage

    PubMed Central

    Molina, Rafael; Redondo, Pilar; Stella, Stefano; Marenchino, Marco; D’Abramo, Marco; Gervasio, Francesco Luigi; Charles Epinat, Jean; Valton, Julien; Grizot, Silvestre; Duchateau, Phillipe; Prieto, Jesús; Montoya, Guillermo

    2012-01-01

    Homing endonucleases represent protein scaffolds that provide powerful tools for genome manipulation, as these enzymes possess a very low frequency of DNA cleavage in eukaryotic genomes due to their high specificity. The basis of protein–DNA recognition must be understood to generate tailored enzymes that target the DNA at sites of interest. Protein–DNA interaction engineering of homing endonucleases has demonstrated the potential of these approaches to create new specific instruments to target genes for inactivation or repair. Protein–DNA interface studies have been focused mostly on specific contacts between amino acid side chains and bases to redesign the binding interface. However, it has been shown that 4 bp in the central DNA sequence of the 22-bp substrate of a homing endonuclease (I-CreI), which do not show specific protein–DNA interactions, is not devoid of content information. Here, we analyze the mechanism of target discrimination in this substrate region by the I-CreI protein, determining how it can occur independently of the specific protein–DNA interactions. Our data suggest the important role of indirect readout in this substrate region, opening the possibility for a fully rational search of new target sequences, thus improving the development of redesigned enzymes for therapeutic and biotechnological applications. PMID:22495931

  17. DNA cleavage photoinduced by new water-soluble zinc porphyrins linked to 9-methoxyellipticine.

    PubMed

    Sentagne, C; Meunier, B; Paillous, N

    1992-10-15

    Two hybrid molecules based on a water-soluble zinc porphyrin covalently linked to 9-methoxyellipticine, 1 and 2, were studied as photoactivable DNA cleavers. The behaviour and efficiency of these photosensitizers were compared with the constitutive units of the hybrid molecules: meso-tetrakis(4-N-methylpyridiniumyl)porphyrinato-zinc(II) tetraacetate (ZnTMPyP, 3) and 9-methoxy-N2methylellipticinium acetate (9-OMe-NME, 4). On irradiation at 436 nm, the efficiency of these hybrids is similar to that of ZnTMPyP and 50-fold greater than that of haematoporphyrin derivative (HPD). This photoinduced DNA cleavage is markedly reduced in the absence of oxygen and also depends on the DNA base pair to porphyrin ratio. It is inhibited by N-acetylhistidine and sodium azide, unaffected by mannitol and superoxide dismutase (SOD) and enhanced when changing H2O for D2O. The same scavenger effects are observed on irradiation at 514 nm. At 313 nm, the efficiency of hybrids 1 and 2 is intermediate between those of ZnTMPyP and 9-OMe-NME. In these conditions, a slight inhibitory effect of mannitol is observed, suggesting the participation of radicals probably derived from partial decomposition of the porphyrins. At these three wavelengths, singlet oxygen seems to be the main species responsible for DNA cleavage. In contrast with expectation, the great affinity of these molecules for DNA does not enhance their efficiency as DNA cleavers. This effect is discussed taking into account the long lifetime of singlet oxygen which may be generated far from the target. These molecules which are only photoactivable in the presence of DNA appear to be an efficient "molecular light switch". PMID:1469512

  18. Hairpin DNA Sequences Bound Strongly by Bleomycin Exhibit Enhanced Double-Strand Cleavage

    PubMed Central

    2014-01-01

    Clinically used bleomycin A5 has been employed in a study of double-strand cleavage of a library of 10 hairpin DNAs originally selected on the basis of their strong binding to bleomycin. Each of the DNAs underwent double-strand cleavage at more than one site, and all of the cleavage sites were within, or in close proximity to, an eight-base-pair region of the duplex that had been randomized to create the original library. A total of 31 double-strand cleavage sites were identified on the 10 DNAs, and 14 of these sites were found to represent coupled cleavage sites, that is, events in which one of the two strands was always cleaved first, followed by the associated site on the opposite strand. Most of these coupled sites underwent cleavage by a mechanism described previously by the Povirk laboratory and afforded cleavage patterns entirely analogous to those reported. However, at least one coupled cleavage event was noted that did not conform to the pattern of those described previously. More surprisingly, 17 double-strand cleavages were found not to result from coupled double-strand cleavage, and we posit that these cleavages resulted from a new mechanism not previously described. Enhanced double-strand cleavages at these sites appear to be a consequence of the dynamic nature of the interaction of Fe·BLM A5 with the strongly bound hairpin DNAs. PMID:24548300

  19. Synthesis, spectroscopic characterization and structural investigation of a new charge transfer complex of 2,6-diaminopyridine with 4-nitrophenylacetic acid: Antimicrobial, DNA binding/cleavage and antioxidant studies

    NASA Astrophysics Data System (ADS)

    Murugesan, Venkatesan; Saravanabhavan, Munusamy; Sekar, Marimuthu

    2015-08-01

    A new hydrogen-bonded charge-transfer complex (CT) formed by the reaction between donor, 2,6-diaminopyridine and acceptor, 4-nitrophenylacetic acid in methanol at room temperature. The crystal was characterized by elemental analysis, IR, NMR spectroscopic studies and thermal studies. The elemental analysis of CT complex, obtained data revealed that the formation of 1:1 ratio CT complex was proposed. Infrared and NMR studies confirm the chemical constituents and molecular structure of the synthesized complex crystal. The high thermal stability is due to the molecular frame work through H-bonding interactions. Structural investigation indicates that cation and anion are linked through strong N+-H⋯O- type of hydrogen bond. The hydrogen bonded charge transfer crystal was screened for its pharmacology, such as antimicrobial, DNA binding/cleavage and antioxidant studies. The CT complex was screened for its antibacterial and antifungal activity against various bacterial and fungal species, which shows good antimicrobial activity. The DNA binding results indicated that the compound could interact with DNA through intercalation. It should have weak to moderate capacity of scavenging with DPPH.

  20. Synthesis, spectroscopic characterization and structural investigation of a new charge transfer complex of 2,6-diaminopyridine with 4-nitrophenylacetic acid: Antimicrobial, DNA binding/cleavage and antioxidant studies.

    PubMed

    Murugesan, Venkatesan; Saravanabhavan, Munusamy; Sekar, Marimuthu

    2015-08-01

    A new hydrogen-bonded charge-transfer complex (CT) formed by the reaction between donor, 2,6-diaminopyridine and acceptor, 4-nitrophenylacetic acid in methanol at room temperature. The crystal was characterized by elemental analysis, IR, NMR spectroscopic studies and thermal studies. The elemental analysis of CT complex, obtained data revealed that the formation of 1:1 ratio CT complex was proposed. Infrared and NMR studies confirm the chemical constituents and molecular structure of the synthesized complex crystal. The high thermal stability is due to the molecular frame work through H-bonding interactions. Structural investigation indicates that cation and anion are linked through strong N(+)-H⋯O(-) type of hydrogen bond. The hydrogen bonded charge transfer crystal was screened for its pharmacology, such as antimicrobial, DNA binding/cleavage and antioxidant studies. The CT complex was screened for its antibacterial and antifungal activity against various bacterial and fungal species, which shows good antimicrobial activity. The DNA binding results indicated that the compound could interact with DNA through intercalation. It should have weak to moderate capacity of scavenging with DPPH.

  1. Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage.

    PubMed

    Jiang, Fuguo; Taylor, David W; Chen, Janice S; Kornfeld, Jack E; Zhou, Kaihong; Thompson, Aubri J; Nogales, Eva; Doudna, Jennifer A

    2016-02-19

    Bacterial adaptive immunity and genome engineering involving the CRISPR (clustered regularly interspaced short palindromic repeats)-associated (Cas) protein Cas9 begin with RNA-guided DNA unwinding to form an RNA-DNA hybrid and a displaced DNA strand inside the protein. The role of this R-loop structure in positioning each DNA strand for cleavage by the two Cas9 nuclease domains is unknown. We determine molecular structures of the catalytically active Streptococcus pyogenes Cas9 R-loop that show the displaced DNA strand located near the RuvC nuclease domain active site. These protein-DNA interactions, in turn, position the HNH nuclease domain adjacent to the target DNA strand cleavage site in a conformation essential for concerted DNA cutting. Cas9 bends the DNA helix by 30°, providing the structural distortion needed for R-loop formation.

  2. Variola virus topoisomerase: DNA cleavage specificity and distribution of sites in Poxvirus genomes.

    PubMed

    Minkah, Nana; Hwang, Young; Perry, Kay; Van Duyne, Gregory D; Hendrickson, Robert; Lefkowitz, Elliot J; Hannenhalli, Sridhar; Bushman, Frederic D

    2007-08-15

    Topoisomerase enzymes regulate superhelical tension in DNA resulting from transcription, replication, repair, and other molecular transactions. Poxviruses encode an unusual type IB topoisomerase that acts only at conserved DNA sequences containing the core pentanucleotide 5'-(T/C)CCTT-3'. In X-ray structures of the variola virus topoisomerase bound to DNA, protein-DNA contacts were found to extend beyond the core pentanucleotide, indicating that the full recognition site has not yet been fully defined in functional studies. Here we report quantitation of DNA cleavage rates for an optimized 13 bp site and for all possible single base substitutions (40 total sites), with the goals of understanding the molecular mechanism of recognition and mapping topoisomerase sites in poxvirus genome sequences. The data allow a precise definition of enzyme-DNA interactions and the energetic contributions of each. We then used the resulting "action matrix" to show that favorable topoisomerase sites are distributed all along the length of poxvirus DNA sequences, consistent with a requirement for local release of superhelical tension in constrained topological domains. In orthopox genomes, an additional central cluster of sites was also evident. A negative correlation of predicted topoisomerase sites was seen relative to early terminators, but no correlation was seen with early or late promoters. These data define the full variola virus topoisomerase recognition site and provide a new window on topoisomerase function in vivo.

  3. Specific detection of the cleavage activity of mycobacterial enzymes using a quantum dot based DNA nanosensor

    NASA Astrophysics Data System (ADS)

    Jepsen, Morten Leth; Harmsen, Charlotte; Godbole, Adwait Anand; Nagaraja, Valakunja; Knudsen, Birgitta R.; Ho, Yi-Ping

    2015-12-01

    We present a quantum dot based DNA nanosensor specifically targeting the cleavage step in the reaction cycle of the essential DNA-modifying enzyme, mycobacterial topoisomerase I. The design takes advantages of the unique photophysical properties of quantum dots to generate visible fluorescence recovery upon specific cleavage by mycobacterial topoisomerase I. This report, for the first time, demonstrates the possibility to quantify the cleavage activity of the mycobacterial enzyme without the pre-processing sample purification or post-processing signal amplification. The cleavage induced signal response has also proven reliable in biological matrices, such as whole cell extracts prepared from Escherichia coli and human Caco-2 cells. It is expected that the assay may contribute to the clinical diagnostics of bacterial diseases, as well as the evaluation of treatment outcomes.We present a quantum dot based DNA nanosensor specifically targeting the cleavage step in the reaction cycle of the essential DNA-modifying enzyme, mycobacterial topoisomerase I. The design takes advantages of the unique photophysical properties of quantum dots to generate visible fluorescence recovery upon specific cleavage by mycobacterial topoisomerase I. This report, for the first time, demonstrates the possibility to quantify the cleavage activity of the mycobacterial enzyme without the pre-processing sample purification or post-processing signal amplification. The cleavage induced signal response has also proven reliable in biological matrices, such as whole cell extracts prepared from Escherichia coli and human Caco-2 cells. It is expected that the assay may contribute to the clinical diagnostics of bacterial diseases, as well as the evaluation of treatment outcomes. Electronic supplementary information (ESI) available: Characterization of the QD-based DNA Nanosensor. See DOI: 10.1039/c5nr06326d

  4. Spermidine-condensed phi X174 DNA cleavage by micrococcal nuclease: torus cleavage model and evidence for unidirectional circumferential DNA wrapping.

    PubMed Central

    Marx, K A; Reynolds, T C

    1982-01-01

    Spermidine-condensed phi X174 replicative form (RF) II DNA was digested with micrococcal nuclease to yield seven identifiable DNA bands forming an arithmetic fragment-length series. The DNA monomer unit length was found to be 780 +/- 80 base pairs. This result is most consistent with a proposed model for micrococcal nuclease cleavage of a DNA torus organized by the unidirectional, circumferential wrapping of B-geometry DNA. By a topological consideration, the blunt-end-rod-fusion model for torus formation [Eickbush, T. H. & Moudrianakis, E. N. (1978) Cell 13, 295-306] is shown to be inconsistent with our empirical solution results. We propose a continuous, circumferential DNA wrapping model in which a significant fraction of the collapsed circular phi X174 RFII DNA molecules form regular toruses comprised of seven complete, unidirectional double-helical wraps. Images PMID:6216482

  5. Detection of Strand Cleavage And Oxidation Damage Using Model DNA Molecules Captured in a Nanoscale Pore

    NASA Technical Reports Server (NTRS)

    Vercoutere, W.; Solbrig, A.; DeGuzman, V.; Deamer, D.; Akeson, M.

    2003-01-01

    We use a biological nano-scale pore to distinguish among individual DNA hairpins that differ by a single site of oxidation or a nick in the sugar-phosphate backbone. In earlier work we showed that the protein ion channel alpha-hemolysin can be used as a detector to distinguish single-stranded from double-stranded DNA, single base pair and single nucleotide differences. This resolution is in part a result of sensitivity to structural changes that influence the molecular dynamics of nucleotides within DNA. The strand cleavage products we examined here included a 5-base-pair (5-bp) hairpin with a 5-prime five-nucleotide overhang, and a complementary five-nucleotide oligomer. These produced predictable shoulder-spike and rapid near-full blockade signatures, respectively. When combined, strand annealing was monitored in real time. The residual current level dropped to a lower discrete level in the shoulder-spike blockade signatures, and the duration lengthened. However, these blockade signatures had a shorter duration than the unmodified l0bp hairpin. To test the pore sensitivity to nucleotide oxidation, we examined a 9-bp hairpin with a terminal 8-oxo-deoxyguanosine (8-oxo-dG), or a penultimate 8-oxo-dG. Each produced blockade signatures that differed from the otherwise identical control 9bp hairpins. This study showed that DNA structure is modified sufficiently by strand cleavage or oxidation damage at a single site to alter in a predictable manner the ionic current blockade signatures produced. This technique improves the ability to assess damage to DNA, and can provide a simple means to help characterize the risks of radiation exposure. It may also provide a method to test radiation protection.

  6. Antibacterial studies, DNA oxidative cleavage, and crystal structures of Cu(II) and Co(II) complexes with two quinolone family members, ciprofloxacin and enoxacin.

    PubMed

    Jiménez-Garrido, N; Perelló, L; Ortiz, R; Alzuet, G; González-Alvarez, M; Cantón, E; Liu-González, M; García-Granda, S; Pérez-Priede, M

    2005-03-01

    Nine coordination compounds of Cu(II) and Co(II) with Ciprofloxacin (HCp) and Enoxacin (HEx) as ligands have been prepared and characterized. Single crystal structural determinations of [Cu(HCp)2(ClO4)2].6H2O (1) and [Co(HEx)2(Ex)]Cl.2CH(3)OH.12H2O (4) are reported. The crystal of 1 is composed of [Cu(HCp)2(ClO4)2] units with the two perchlorate anions semicoordinated, and uncoordinated water molecules. The copper ion, at a crystallographic inversion centre, is in a tetragonally distorted octahedral environment. The structure of 4 consists of cationic monomeric [Co(HEx)2(Ex)]+ units, chloride anions, and uncoordinated methanol and water molecules. The complex is six-coordinate, with a slightly distorted octahedral environment around the metal centre. Some complexes of ciprofloxacin and enoxacin were screened for their activity against several bacteria, showing activity similar to that of the corresponding free ligands. All compounds tested were more active against Gram-negative bacteria than against Gram-positive bacteria. Ciprofloxacin hydrochloride and its complexes were more active than enoxacin and its complexes. In addition, the bactericidal studies against Staphylococcus aureus ATCC 25923 reveal that one complex exhibits the "paradoxical effect" (diminution in the number of bacteria killed at high drug concentration), which has been described and related to the mechanism of action of quinolones, but three other complexes do not, suggesting different mechanisms of bactericidal action. The ability of Cu(HCp)2(NO3)2.6H2O to cleave DNA has been determined. The results show that the complex behaves as an efficient chemical nuclease with ascorbate/hydrogen peroxide activation. Mechanistic studies using different inhibiting reagents reveal that hydroxyl radicals are involved in the DNA scission process mediated by this compound.

  7. A strategy to sequence repetitive DNA based on partial restriction enzyme cleavage

    SciTech Connect

    Abath, F.G.C.; Holder, A.A.

    1995-06-01

    The strategy to sequence repetitive DNA described in this article is based on partial restriction enzyme cleavage. It is an alternative to using nested deletion with exonuclease III or similiar enzymes in which progressively more remote regions of the target DNA are brought into range for sequencing by universal primers. 4 refs., 1 tab.

  8. Deglycobleomycin: solid-phase synthesis and DNA cleavage by the resin-bound ligand.

    PubMed

    Smith, Kenneth L; Tao, Zhi-Fu; Hashimoto, Shigeki; Leitheiser, Christopher J; Wu, Xihan; Hecht, Sidney M

    2002-04-01

    [structure: see text] A greatly improved solid-phase synthesis of deglycobleomycin using a Dde-based linker is reported. The resin-bound deglycobleomycin could be completely deblocked and assayed for DNA plasmid relaxation, sequence-selective DNA cleavage, and light production from a molecular beacon.

  9. Copper(II) complexes with 4-hydroxyacetophenone-derived acylhydrazones: Synthesis, characterization, DNA binding and cleavage properties

    NASA Astrophysics Data System (ADS)

    Gup, Ramazan; Gökçe, Cansu; Aktürk, Selçuk

    2015-01-01

    Two new Cu(II) complexes of Schiff base-hydrazone ligands, hydroxy-N‧-[(1Z)-1-(4-hydroxyphenyl)ethylidene]benzohydrazide [H3L1] and ethyl 2-(4-(1-(2-(4-(2-ethoxy-2-oxoethoxy)benzoyl)hydrazono)ethyl)phenoxy)acetate (HL2) have been synthesized and then characterized by microcopy and spectral studies. X-ray powder diffraction illustrates that [Cu(L2)2] complex is crystalline in nature whereas [Cu(H2L1)2]·2H2O has an amorphous structure. Binding of the copper complexes with Calf thymus DNA (CT-DNA) has been investigated by UV-visible spectra, exhibiting non-covalent binding to CT-DNA. DNA cleavage experiments have been also investigated by agarose gel electrophoresis in the presence and absence of an oxidative agent (H2O2). The effect of complex concentration on the DNA cleavage reaction has been also studied. Both copper complexes show nuclease activity, which significantly depends on concentrations of the complexes, in the presence of H2O2 through oxidative mechanism whereas they slightly cleavage DNA in the absence an oxidative agent.

  10. Synthesis of isatin thiosemicarbazones derivatives: In vitro anti-cancer, DNA binding and cleavage activities

    NASA Astrophysics Data System (ADS)

    Ali, Amna Qasem; Teoh, Siang Guan; Salhin, Abdussalam; Eltayeb, Naser Eltaher; Khadeer Ahamed, Mohamed B.; Majid, A. M. S. Abdul

    New derivatives of thiosemicarbazone Schiff base with isatin moiety were synthesized L1-L6. The structures of these compounds were characterized based on the spectroscopic techniques. Compound L6 was further characterized by XRD single crystal. The interaction of these compounds with calf thymus (CT-DNA) exhibited high intrinsic binding constant (kb = 5.03-33.00 × 105 M-1) for L1-L3 and L5 and (6.14-9.47 × 104 M-1) for L4 and L6 which reflect intercalative activity of these compounds toward CT-DNA. This result was also confirmed by the viscosity data. The electrophoresis studies reveal the higher cleavage activity of L1-L3 than L4-L6. The in vitro anti-proliferative activity of these compounds against human colon cancer cell line (HCT 116) revealed that the synthesized compounds (L3, L6 and L2) exhibited good anticancer potency.

  11. DNA Enzyme-Decorated DNA Nanoladders as Enhancer for Peptide Cleavage-Based Electrochemical Biosensor.

    PubMed

    Kou, Bei-Bei; Zhang, Li; Xie, Hua; Wang, Ding; Yuan, Ya-Li; Chai, Ya-Qin; Yuan, Ruo

    2016-09-01

    Herein, we developed a label-free electrochemical biosensor for sensitive detection of matrix metalloproteinase-7 (MMP-7) based on DNA enzyme-decorated DNA nanoladders as enhancer. A peptide and single-stranded DNA S1-modified platinum nanoparticles (P1-PtNPs-S1), which served as recognition nanoprobes, were first immobilized on electrode. When target MMP-7 specifically recognized and cleaved the peptide, the PtNPs-S1 bioconjugates were successfully released from electrode. The remaining S1 on electrode then hybridized with ssDNA1 (I1) and ssDNA2 (I2), which could synchronously trigger two hybridization chain reactions (HCRs), resulting in the in situ formation of DNA nanoladders. The desired DNA nanoladders not only were employed as ideal nanocarriers for enzyme loading, but also maintained its catalytic activity. With the help of hydrogen peroxide (H2O2), manganese porphyrin (MnPP) with peroxidase-like activity accelerated the 4-chloro-1-naphthol (4-CN) oxidation with generation of insoluble precipitation on electrode, causing a very low differential pulse voltammetry (DPV) signal for quantitative determination of MMP-7. Under optimal conditions, the developed biosensor exhibited a wide linear ranging from 0.2 pg/mL to 20 ng/mL, and the detection limit was 0.05 pg/mL. This work successfully realized the combination of DNA signal amplification technique with artificial mimetic enzyme-catalyzed precipitation reaction in peptide cleavage-based protein detection, offering a promising avenue for the detection of other proteases. PMID:27532492

  12. Sequence-specific cleavage of single-stranded DNA: oligodeoxynucleotide-EDTA X Fe(II).

    PubMed Central

    Dreyer, G B; Dervan, P B

    1985-01-01

    The synthesis of a DNA hybridization probe 19 nucleotides in length, equipped with the metal chelator EDTA at C-5 of thymidine in position 10 (indicated by T*) is described. DNA-EDTA 1 has the sequence 5'-T-A-A-C-G-C-A-G-T*-C-A-G-G-C-A-C-C-G-T-3', which is complementary to a 19-nucleotide sequence in the plasmid pBR322. In the presence of Fe(II), O2, and dithiothreitol, DNA-EDTA 1 affords specific cleavage (25 degrees C, pH 7.4, 60 min) at its complementary sequence in a heat-denatured 167-base-pair restriction fragment. Cleavage occurs over a range of 16 nucleotides at the site of hybridization of 1, presumably due to a diffusible reactive species. No other cleavage sites are observed in the 167-base-pair restriction fragment. The procedure used to synthesize DNA-EDTA probes is based on the incorporation of a thymidine modified at C-5 with the triethyl ester of EDTA. By using routine phosphoramidite procedures, thymidine-EDTA can be incorporated into oligodeoxynucleotides of any desired length and sequence. Because the efficiency of the DNA cleavage reaction is dependent on the addition of both Fe(II) and reducing agent (dithiothreitol), the initiation of the cleavage reaction can be controlled. These DNA-EDTA X Fe(II) probes should be useful for the sequence-specific cleavage of single-stranded DNA (and most likely RNA) under mild conditions. Images PMID:3919391

  13. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage

    PubMed Central

    Komor, Alexis C.; Kim, Yongjoo B.; Packer, Michael S.; Zuris, John A.; Liu, David R.

    2016-01-01

    Current genome-editing technologies introduce double-stranded (ds) DNA breaks at a target locus as the first step to gene correction.1,2 Although most genetic diseases arise from point mutations, current approaches to point mutation correction are inefficient and typically induce an abundance of random insertions and deletions (indels) at the target locus from the cellular response to dsDNA breaks.1,2 Here we report the development of base editing, a new approach to genome editing that enables the direct, irreversible conversion of one target DNA base into another in a programmable manner, without requiring dsDNA backbone cleavage or a donor template. We engineered fusions of CRISPR/Cas9 and a cytidine deaminase enzyme that retain the ability to be programmed with a guide RNA, do not induce dsDNA breaks, and mediate the direct conversion of cytidine to uridine, thereby effecting a C→T (or G→A) substitution. The resulting “base editors” convert cytidines within a window of approximately five nucleotides (nt), and can efficiently correct a variety of point mutations relevant to human disease. In four transformed human and murine cell lines, second- and third-generation base editors that fuse uracil glycosylase inhibitor (UGI), and that use a Cas9 nickase targeting the non-edited strand, manipulate the cellular DNA repair response to favor desired base-editing outcomes, resulting in permanent correction of ∼15-75% of total cellular DNA with minimal (typically ≤ 1%) indel formation. Base editing expands the scope and efficiency of genome editing of point mutations. PMID:27096365

  14. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage.

    PubMed

    Komor, Alexis C; Kim, Yongjoo B; Packer, Michael S; Zuris, John A; Liu, David R

    2016-05-19

    Current genome-editing technologies introduce double-stranded (ds) DNA breaks at a target locus as the first step to gene correction. Although most genetic diseases arise from point mutations, current approaches to point mutation correction are inefficient and typically induce an abundance of random insertions and deletions (indels) at the target locus resulting from the cellular response to dsDNA breaks. Here we report the development of 'base editing', a new approach to genome editing that enables the direct, irreversible conversion of one target DNA base into another in a programmable manner, without requiring dsDNA backbone cleavage or a donor template. We engineered fusions of CRISPR/Cas9 and a cytidine deaminase enzyme that retain the ability to be programmed with a guide RNA, do not induce dsDNA breaks, and mediate the direct conversion of cytidine to uridine, thereby effecting a C→T (or G→A) substitution. The resulting 'base editors' convert cytidines within a window of approximately five nucleotides, and can efficiently correct a variety of point mutations relevant to human disease. In four transformed human and murine cell lines, second- and third-generation base editors that fuse uracil glycosylase inhibitor, and that use a Cas9 nickase targeting the non-edited strand, manipulate the cellular DNA repair response to favour desired base-editing outcomes, resulting in permanent correction of ~15-75% of total cellular DNA with minimal (typically ≤1%) indel formation. Base editing expands the scope and efficiency of genome editing of point mutations. PMID:27096365

  15. Copper-obatoclax derivative complexes mediate DNA cleavage and exhibit anti-cancer effects in hepatocellular carcinoma.

    PubMed

    Su, Jung-Chen; Chang, Jung-Hua; Huang, Jui-Wen; Chen, Peter P-Y; Chen, Kuen-Feng; Tseng, Ping-Hui; Shiau, Chung-Wai

    2015-02-25

    Obatoclax is an indole-pyrrole compound that induces cancer cell apoptosis through targeting the anti-apoptotic Bcl-2 protein family. Previously, we developed a series of obatoclax derivatives and studied their STAT3 inhibition-dependent activity against cancer cell lines. The obatoclax analog, prodigiosin, has been reported to mediate DNA cleavage in cancer cells by coordinating with copper complexes. To gain an understanding of copper-obatoclax complex activity, we applied obatoclax derivatives to examine their copper-mediated nuclease activity as a means to establish a basis for structure activity relationship. Replacement of the indole ring of obatoclax with furanyl, thiophenyl or Boc-indolyl rings reduced the DNA cleavage ability. The same effect was achieved through the replacement of the obatoclax pyrrolyl ring with thiazolidinedione and thioacetal. Among the compounds tested, we demonstrated that the complex of obatoclax or compound 7 with copper exhibited potent DNA strand scission which correlated with HCC cell growth inhibition.

  16. Cleavage of a model DNA replication fork by a methyl-specific endonuclease.

    PubMed

    Ishikawa, Ken; Handa, Naofumi; Sears, Lauren; Raleigh, Elisabeth A; Kobayashi, Ichizo

    2011-07-01

    Epigenetic DNA methylation is involved in many biological processes. An epigenetic status can be altered by gain or loss of a DNA methyltransferase gene or its activity. Repair of DNA damage can also remove DNA methylation. In response to such alterations, DNA endonucleases that sense DNA methylation can act and may cause cell death. Here, we explored the possibility that McrBC, a methylation-dependent DNase of Escherichia coli, cleaves DNA at a replication fork. First, we found that in vivo restriction by McrBC of bacteriophage carrying a foreign DNA methyltransferase gene is increased in the absence of homologous recombination. This suggests that some cleavage events are repaired by recombination and must take place during or after replication. Next, we demonstrated that the enzyme can cleave a model DNA replication fork in vitro. Cleavage of a fork required methylation on both arms and removed one, the other or both of the arms. Most cleavage events removed the methylated sites from the fork. This result suggests that acquisition of even rarely occurring modification patterns will be recognized and rejected efficiently by modification-dependent restriction systems that recognize two sites. This process might serve to maintain an epigenetic status along the genome through programmed cell death.

  17. Synthesis, spectroscopic, antimicrobial and DNA cleavage studies of new Co(II), Ni(II), Cu(II), Cd(II), Zn(II) and Hg(II) complexes with naphthofuran-2-carbohydrazide Schiff base

    NASA Astrophysics Data System (ADS)

    Halli, Madappa B.; Sumathi, R. B.

    2012-08-01

    A series of Co(II), Ni(II), Cu(II), Cd(II), Zn(II) and Hg(II) complexes have been synthesized with newly synthesized Schiff base derived from naphthofuran-2-carbohydrazide and cinnamaldehyde. The elemental analyses of the complexes are confined to the stoichiometry of the type MLCl2 [M = Co(II) and Cu(II)], ML2Cl2 [M = Ni(II), Cd(II), Zn(II) and Hg(II)] respectively, where L is Schiff base ligand. Structures have been proposed from elemental analyses, IR, electronic, mass, 1H NMR, ESR spectral data, magnetic, and thermal studies. The measured low molar conductance values in DMF indicate that the complexes are non-electrolytes. Spectroscopic studies suggest coordination occurs through azomethine nitrogen and carbonyl oxygen of the ligand with the metal ions. The Schiff base and its complexes have been screened for their antibacterial (Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Salmonella typhi) and antifungal (Aspergillus niger, Aspergillus flavus, Cladosporium and Candida albicans) activities by minimum inhibitory concentration (MIC) method. The DNA cleavage studies by agarose gel electrophoresis method was studied for all the complexes.

  18. Synthesis, characterization, DNA binding, DNA cleavage, protein binding and cytotoxic activities of Ru(II) complexes.

    PubMed

    Thota, Sreekanth; Vallala, Srujana; Yerra, Rajeshwar; Rodrigues, Daniel Alencar; Raghavendra, Nulgumnalli Manjunathaiah; Barreiro, Eliezer J

    2016-01-01

    We report on the synthesis of novel Ru(II) compounds (Ru-1 to Ru-8) bearing R-pdc, 4-Cl-pbinh ligands (where R=4-CF3, 4-F, 4-OH pdc=3-phenyl-5-(1H-pyrrol-2-yl)-4,5-dihydro-1H-pyrazole-1-carbothioamide, pbinh=phenoxybenzylidene isonicotinyl hydrazides) and their in vitro antitumor activity toward the cell lines murine leukemia L1210, human lymphocyte CEM, human epithelial cervical carcinoma HeLa, BEL-7402 and Molt4/C8. Some of the complexes exhibited more potent antiproliferative activity against cell lines than the standard drug cisplatin. Ruthenium complex Ru-2 displayed potent cytotoxicity with than that of cisplatin. DNA-binding, DNA cleavage and protein binding properties of ruthenium complexes with these ligands are reported. Interactions of these ruthenium complexes with DNA revealed an intercalative mode of binding between them. Synchronous fluorescence spectra proved that the interaction of ruthenium complexes with bovine serum albumin (BSA) resulted in a conformational change of the latter.

  19. Evolutionary tree for apes and humans based on cleavage maps of mitochondrial DNA.

    PubMed Central

    Ferris, S D; Wilson, A C; Brown, W M

    1981-01-01

    The high rate of evolution of mitochondrial DNA makes this molecule suitable for genealogical research on such closely related species as humans and apes. Because previous approaches failed to establish the branching order of the lineages leading to humans, gorillas, and chimpanzees, we compared human mitochondrial DNA to mitochondrial DNA from five species of ape (common chimpanzee, pygmy chimpanzee, gorilla, orangutan, and gibbon). About 50 restriction endonuclease cleavage sites were mapped in each mitochondrial DNA, and the six maps were aligned with respect to 11 invariant positions. Differences among the maps were evident at 121 positions. Both conserved and variable sites are widely dispersed in the mitochondrial genome. Besides site differences, ascribed to point mutations, there is evidence for one rearrangement: the gorilla map is shorter than the other owing to the deletion of 95 base pairs near the origin of replication. The parsimony method of deriving all six maps from a common ancestor produced a genealogical tree in which the common and pygmy chimpanzee maps are the most closely related pair; the closest relative of this pair is the gorilla map; most closely related to this trio is the human map. This tree is only slightly more parsimonious than some alternative trees. Although this study has given a magnified view of the genetic differences among humans and apes, the possibility of a three-way split among the lineages leading to humans, gorillas, and chimpanzees still deserves serious consideration. Images PMID:6264476

  20. The DNA cleavage reaction of DNA gyrase. Comparison of stable ternary complexes formed with enoxacin and CcdB protein.

    PubMed

    Scheirer, K E; Higgins, N P

    1997-10-24

    The potent synthetic fluoroquinolones and the natural CcdB protein encoded by the F plasmid both inhibit bacterial growth by attacking DNA gyrase and by stimulating enzyme-induced breaks in bacterial DNA. The cleavage mechanisms of these structurally diverse compounds were analyzed by purifying and characterizing stable ternary complexes of enoxacin and CcdB protein with gyrase bound to a strong gyrase binding site from bacteriophage Mu. Three differences between enoxacin- and CcdB-derived complexes were discovered. 1) Enoxacin binds to the DNA active site and alters the breakage/reunion activity of the enzyme. CcdB binds gyrase-DNA complexes but does not influence enzymatic activity directly. 2) Complexes that produce DNA cleavage with enoxacin are reversible, whereas similar complexes made with CcdB protein are not. 3) Enoxacin stimulates cleavage of both relaxed and supercoiled forms of DNA in the absence of ATP, whereas CcdB induces cleavage only after many cycles of ATP-dependent breakage and reunion. These differences in mechanisms can be explained by a model in which enoxacin induces formation of a novel "cleavable" complex, whereas CcdB protein traps a very rare "cleaved" conformation of the enzyme.

  1. Efficient plasmid DNA cleavage by a mononuclear copper(II) complex.

    PubMed

    Sissi, Claudia; Mancin, Fabrizio; Gatos, Maddalena; Palumbo, Manlio; Tecilla, Paolo; Tonellato, Umberto

    2005-04-01

    The Cu(II) complex of the ligand all-cis-2,4,6-triamino-1,3,5-trihydroxycyclohexane (TACI) is a very efficient catalyst of the cleavage of plasmid DNA in the absence of any added cofactor. The maximum rate of degradation of the supercoiled plasmid DNA form, obtained at pH 8.1 and 37 degrees C, in the presence of 48 microM TACI.Cu(II), is 2.3 x 10(-3) s(-1), corresponding to a half-life time of only 5 min for the cleavage of form I (supercoiled) to form II (relaxed circular). The dependence of the rate of plasmid DNA cleavage from the TACI.Cu(II) complex concentration follows an unusual and very narrow bell-like profile, which suggests an high DNA affinity of the complexes but also a great tendency to form unreactive dimers. The reactivity of the TACI.Cu(II) complexes is not affected by the presence of several scavengers for reactive oxygen species or when measured under anaerobic conditions. Moreover, no degradation of the radical reporter Rhodamine B is observed in the presence of such complexes. These results are consistent with the operation of a prevailing hydrolytic pathway under the normal conditions used, although the failure to obtain enzymatic religation of the linearized DNA does not allow one to rule out the occurrence of a nonhydrolytic oxygen-independent cleavage. A concurrent oxidative mechanism becomes competitive upon addition of reductants or in the presence of high levels of molecular oxygen: under such conditions, in fact, a remarkable increase in the rate of DNA cleavage is observed. PMID:15792466

  2. Homodinuclear lanthanide complexes of phenylthiopropionic acid: synthesis, characterization, cytotoxicity, DNA cleavage, and antimicrobial activity.

    PubMed

    Shiju, C; Arish, D; Kumaresan, S

    2013-03-15

    Lanthanide complexes of La(III), Pr(III), Nd(III), Sm(III), and Ho(III) with phenylthiopropionic acid were synthesized and characterized by elemental analysis, mass, IR, electronic spectra, molar conductance, TGA, and powder XRD. The results show that the lanthanide complexes are homodinuclear in nature. The two lanthanide ions are bridged by eight oxygen atoms from four carboxylate groups. Thermal decomposition profiles are consistent with the proposed formulations. Powder XRD studies show that all the complexes are amorphous in nature. Antimicrobial studies indicate that these complexes exhibit more activity than the ligand itself. The DNA cleavage activity of the ligand and its complexes were assayed on Escherichia coli DNA using gel electrophoresis in the presence of H(2)O(2). The result shows that the Pr(III) and Nd(III) complexes have completely cleaved the DNA. The anticancer activities of the complexes have also been studied towards human cervical cancer cell line (HeLa) and colon cancer cells (HCT116) and it was found that the La(III) and Nd(III) complexes are more active than the corresponding Pr(III), Sm(III), Ho(III) complexes, and the free ligand on both the cancer cells.

  3. Homodinuclear lanthanide complexes of phenylthiopropionic acid: Synthesis, characterization, cytotoxicity, DNA cleavage, and antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Shiju, C.; Arish, D.; Kumaresan, S.

    2013-03-01

    Lanthanide complexes of La(III), Pr(III), Nd(III), Sm(III), and Ho(III) with phenylthiopropionic acid were synthesized and characterized by elemental analysis, mass, IR, electronic spectra, molar conductance, TGA, and powder XRD. The results show that the lanthanide complexes are homodinuclear in nature. The two lanthanide ions are bridged by eight oxygen atoms from four carboxylate groups. Thermal decomposition profiles are consistent with the proposed formulations. Powder XRD studies show that all the complexes are amorphous in nature. Antimicrobial studies indicate that these complexes exhibit more activity than the ligand itself. The DNA cleavage activity of the ligand and its complexes were assayed on Escherichia coli DNA using gel electrophoresis in the presence of H2O2. The result shows that the Pr(III) and Nd(III) complexes have completely cleaved the DNA. The anticancer activities of the complexes have also been studied towards human cervical cancer cell line (HeLa) and colon cancer cells (HCT116) and it was found that the La(III) and Nd(III) complexes are more active than the corresponding Pr(III), Sm(III), Ho(III) complexes, and the free ligand on both the cancer cells.

  4. Fluorometric identification of 5-methylcytosine modification in DNA: combination of photosensitized oxidation and invasive cleavage.

    PubMed

    Yamada, Hisatsugu; Tanabe, Kazuhito; Nishimoto, Sei-ichi

    2008-01-01

    An efficient fluorometric detection system of DNA methylation has been developed by a combination of a photooxidative DNA cleavage reaction with 2-methyl-1,4-naphthoquinone (NQ) chromophore and an invasive cleavage reaction with human Flap endonuclease-1. Enzymatic treatment of a mixture of photochemically fragmented target oligodeoxynucleotides (ODNs) at 5-methylcytosine mC) and hairpin-like probe oligomer possessing a fluorophore (F) and a quencher (D) resulted in a dramatic enhancement of fluorescence. In contrast, fluorescence emission for the ODN containing cytosine but not mC at the target sequence was extremely weak. In addition, by monitoring the fluorescence change, this system allows for the detection of mC in DNA at subfemtomole amounts. This system would provide a highly sensitive protocol for determining the methylation status in DNA by fluorescence emission.

  5. Topoisomerase I-Mediated DNA Cleavage Induced by the Minor Groove-Directed Binding of Bibenzimidazoles to a Distal Site

    PubMed Central

    Khan, Qasim A.; Pilch, Daniel S.

    2007-01-01

    Summary Many agents (e.g., camptothecins, indolocarbazoles, indenoisoquinolines, and dibenzonaphthyridines) stimulate topoisomerase I-mediated DNA cleavage (a behavior termed topoisomerase I poisoning) by interacting with both the DNA and the enzyme at the site of cleavage (typically by intercalation between the −1 and +1 base pairs). The bibenzimidazoles, which include Hoechst 33258 and 33342, are a family of DNA minor groove-directed agents that also stimulate topoisomerase I-mediated DNA cleavage. However, the molecular mechanism by which these ligands poison TOP1 is poorly understood. Toward this goal, we have used a combination of mutational, footprinting, and DNA binding affinity analyses to define the DNA binding site for Hoechst 33258 and a related derivative that results in optimal induction of TOP1-mediated DNA cleavage. We show that this DNA binding site is located downstream from the site of DNA cleavage, encompassing the base pairs from position +4 to +8. The distal nature of this binding site relative to the site of DNA cleavage suggests that minor groove-directed agents like the bibenzimidazoles poison TOP1 via a mechanism distinct from compounds like the camptothecins, which interact at the site of cleavage. PMID:17095016

  6. DNA cleavage by oxymyoglobin and cysteine-introduced metmyoglobin.

    PubMed

    Deshpande, Megha Subhash; Junedi, Sendy; Prakash, Halan; Nagao, Satoshi; Yamanaka, Masaru; Hirota, Shun

    2014-12-11

    Double stranded DNA was cleaved oxidatively by incubation with oxygenated myoglobin, and Lys96Cys sperm whale myoglobin in its stable ferric form functioned as an artificial nuclease under air by formation of an oxygenated species, owing to electron transfer from the SH group of the introduced cysteine to the heme. PMID:25327831

  7. Relaxase DNA binding and cleavage are two distinguishable steps in conjugative DNA processing that involve different sequence elements of the nic site.

    PubMed

    Lucas, María; González-Pérez, Blanca; Cabezas, Matilde; Moncalian, Gabriel; Rivas, Germán; de la Cruz, Fernando

    2010-03-19

    TrwC, the relaxase of plasmid R388, catalyzes a series of concerted DNA cleavage and strand transfer reactions on a specific site (nic) of its origin of transfer (oriT). nic contains the cleavage site and an adjacent inverted repeat (IR(2)). Mutation analysis in the nic region indicated that recognition of the IR(2) proximal arm and the nucleotides located between IR(2) and the cleavage site were essential for supercoiled DNA processing, as judged either by in vitro nic cleavage or by mobilization of a plasmid containing oriT. Formation of the IR(2) cruciform and recognition of the distal IR(2) arm and loop were not necessary for these reactions to take place. On the other hand, IR(2) was not involved in TrwC single-stranded DNA processing in vitro. For single-stranded DNA nic cleavage, TrwC recognized a sequence embracing six nucleotides upstream of the cleavage site and two nucleotides downstream. This suggests that TrwC DNA binding and cleavage are two distinguishable steps in conjugative DNA processing and that different sequence elements are recognized by TrwC in each step. IR(2)-proximal arm recognition was crucial for the initial supercoiled DNA binding. Subsequent recognition of the adjacent single-stranded DNA binding site was required to position the cleavage site in the active center of the protein so that the nic cleavage reaction could take place.

  8. Single-molecule analysis of RAG-mediated V(D)J DNA cleavage

    PubMed Central

    Lovely, Geoffrey A.; Brewster, Robert C.; Schatz, David G.; Baltimore, David; Phillips, Rob

    2015-01-01

    The recombination-activating gene products, RAG1 and RAG2, initiate V(D)J recombination during lymphocyte development by cleaving DNA adjacent to conserved recombination signal sequences (RSSs). The reaction involves DNA binding, synapsis, and cleavage at two RSSs located on the same DNA molecule and results in the assembly of antigen receptor genes. We have developed single-molecule assays to examine RSS binding by RAG1/2 and their cofactor high-mobility group-box protein 1 (HMGB1) as they proceed through the steps of this reaction. These assays allowed us to observe in real time the individual molecular events of RAG-mediated cleavage. As a result, we are able to measure the binding statistics (dwell times) and binding energies of the initial RAG binding events and characterize synapse formation at the single-molecule level, yielding insights into the distribution of dwell times in the paired complex and the propensity for cleavage on forming the synapse. Interestingly, we find that the synaptic complex has a mean lifetime of roughly 400 s and that its formation is readily reversible, with only ∼40% of observed synapses resulting in cleavage at consensus RSS binding sites. PMID:25831509

  9. A strategy for development of electrochemical DNA biosensor based on site-specific DNA cleavage of restriction endonuclease.

    PubMed

    Chen, Jinghua; Zhang, Jing; Yang, Huanghao; Fu, Fengfu; Chen, Guonan

    2010-09-15

    A new strategy for development of electrochemical DNA biosensor based on site-specific DNA cleavage of restriction endonuclease and using quantum dots as reporter was reported in this paper. The biosensor was fabricated by immobilizing a capture hairpin probe, thiolated single strand DNA labeled with biotin group, on a gold electrode. BfuCI nuclease, which is able to specifically cleave only double strand DNA but not single strand DNA, was used to reduce background current and improve the sensitivity. We demonstrated that the capture hairpin probe can be cleaved by BfuCI nuclease in the absence of target DNA, but cannot be cleaved in the presence of target DNA. The difference before and after enzymatic cleavage was then monitored by electrochemical method after the quantum dots were dissolved from the hybrids. Our results suggested that the usage of BfuCI nuclease obviously improved the sensitivity and selectivity of the biosensor. We successfully applied this method to the sequence-selective discrimination between perfectly matched and mismatched target DNA including a single-base mismatched target DNA, and detected as low as 3.3 × 10(-14) M of complementary target DNA. Furthermore, our above strategy was also verified with fluorescent method by designing a fluorescent molecular beacon (MB), which combined the capture hairpin probe and a pair of fluorophore (TAMRA) and quencher (DABCYL). The fluorescent results are consistent with that of electroanalysis, further indicating that the proposed new strategy indeed works as we expected.

  10. Effect of Maternal Age on the Ratio of Cleavage and Mitochondrial DNA Copy Number in Early Developmental Stage Bovine Embryos

    PubMed Central

    TAKEO, Shun; GOTO, Hiroya; KUWAYAMA, Takehito; MONJI, Yasunori; IWATA, Hisataka

    2012-01-01

    Abstract Age-associated deterioration in both the quality and quantity of mitochondria occurs in older women. The main aim of this study was to examine the effect of age on mitochondrial DNA copy number (mtDNA number) in early developmental stage bovine embryos as well as the dynamics of mtDNA number during early embryo development. Real-time PCR was used to determine mtDNA number. In vitro-produced embryos 48 h after insemination derived from Japanese black cows, ranging in age from 25 to 209 months were categorized based on their cleavage status. There was an overall negative relationship between the age of the cow and cleavage status, to the extent that the ratio of embryos cleaved over the 4-cell stage was greater in younger cows. The mtDNA number did not differ among the cleaved status of embryos. In the next experiment, oocytes collected from each donor cow were divided into 2 groups containing 10 oocytes each, in order to compare the mtDNA number of mature oocytes and early developmental stage embryos within individuals. Upon comparing the mtDNA number between oocytes at the M2 stage and early developmental stage 48 h post insemination, mtDNA number was found to decrease in most cows, but was found to increase in some cows. In conclusion, age affects the cleaving ability of oocytes, and very old cows (> 180 months) tend to have lower mtDNA numbers in their oocytes. The change in mtDNA number during early development varied among individual cows, although overall, it showed a tendency to decrease. PMID:23269452

  11. CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus.

    PubMed

    Ramanan, Vyas; Shlomai, Amir; Cox, David B T; Schwartz, Robert E; Michailidis, Eleftherios; Bhatta, Ankit; Scott, David A; Zhang, Feng; Rice, Charles M; Bhatia, Sangeeta N

    2015-01-01

    Chronic hepatitis B virus (HBV) infection is prevalent, deadly, and seldom cured due to the persistence of viral episomal DNA (cccDNA) in infected cells. Newly developed genome engineering tools may offer the ability to directly cleave viral DNA, thereby promoting viral clearance. Here, we show that the CRISPR/Cas9 system can specifically target and cleave conserved regions in the HBV genome, resulting in robust suppression of viral gene expression and replication. Upon sustained expression of Cas9 and appropriately chosen guide RNAs, we demonstrate cleavage of cccDNA by Cas9 and a dramatic reduction in both cccDNA and other parameters of viral gene expression and replication. Thus, we show that directly targeting viral episomal DNA is a novel therapeutic approach to control the virus and possibly cure patients. PMID:26035283

  12. CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus

    PubMed Central

    Ramanan, Vyas; Shlomai, Amir; Cox, David B.T.; Schwartz, Robert E.; Michailidis, Eleftherios; Bhatta, Ankit; Scott, David A.; Zhang, Feng; Rice, Charles M.; Bhatia, Sangeeta N.

    2015-01-01

    Chronic hepatitis B virus (HBV) infection is prevalent, deadly, and seldom cured due to the persistence of viral episomal DNA (cccDNA) in infected cells. Newly developed genome engineering tools may offer the ability to directly cleave viral DNA, thereby promoting viral clearance. Here, we show that the CRISPR/Cas9 system can specifically target and cleave conserved regions in the HBV genome, resulting in robust suppression of viral gene expression and replication. Upon sustained expression of Cas9 and appropriately chosen guide RNAs, we demonstrate cleavage of cccDNA by Cas9 and a dramatic reduction in both cccDNA and other parameters of viral gene expression and replication. Thus, we show that directly targeting viral episomal DNA is a novel therapeutic approach to control the virus and possibly cure patients. PMID:26035283

  13. Functional domains within the a sequence involved in the cleavage-packaging of herpes simplex virus DNA.

    PubMed Central

    Deiss, L P; Chou, J; Frenkel, N

    1986-01-01

    Newly replicated herpes simplex virus (HSV) DNA consists of head-to-tail concatemers which are cleaved to generate unit-length genomes bounded by the terminally reiterated a sequence. Constructed defective HSV vectors (amplicons) containing a viral DNA replication origin and the a sequence are similarly replicated into large concatemers which are cleaved at a sequences punctuating the junctions between adjacent repeat units, concurrent with the packaging of viral DNA into nucleocapsids. In the present study we tested the ability of seed amplicons containing specific deletions in the a sequence to become cleaved and packaged and hence be propagated in virus stocks. These studies revealed that two separate signals, located within the Ub and Uc elements of the a sequence, were essential for amplicon propagation. No derivative defective genomes were recovered from seed constructs which lacked the Uc signal. In contrast, propagation of seed constructs lacking the Ub signal resulted in the selection of defective genomes with novel junctions, containing specific insertions of a sequences derived from the helper virus DNA. Comparison of published sequences of concatemeric junctions of several herpesviruses supported a uniform mechanism for the cleavage-packaging process, involving the measurement from two highly conserved blocks of sequences (pac-1 and pac-2) which were homologous to the required Uc and Ub sequences. These results form the basis for general models for the mechanism of cleavage-packaging of herpesvirus DNA. Images PMID:3016323

  14. Functional Coupling of Duplex Translocation to DNA Cleavage in a Type I Restriction Enzyme

    PubMed Central

    Csefalvay, Eva; Lapkouski, Mikalai; Guzanova, Alena; Csefalvay, Ladislav; Baikova, Tatsiana; Bialevich, Vitali; Shamayeva, Katsiaryna; Janscak, Pavel; Kuta Smatanova, Ivana; Panjikar, Santosh; Carey, Jannette; Weiserova, Marie; Ettrich, Rüdiger

    2015-01-01

    Type I restriction-modification enzymes are multifunctional heteromeric complexes with DNA cleavage and ATP-dependent DNA translocation activities located on motor subunit HsdR. Functional coupling of DNA cleavage and translocation is a hallmark of the Type I restriction systems that is consistent with their proposed role in horizontal gene transfer. DNA cleavage occurs at nonspecific sites distant from the cognate recognition sequence, apparently triggered by stalled translocation. The X-ray crystal structure of the complete HsdR subunit from E. coli plasmid R124 suggested that the triggering mechanism involves interdomain contacts mediated by ATP. In the present work, in vivo and in vitro activity assays and crystal structures of three mutants of EcoR124I HsdR designed to probe this mechanism are reported. The results indicate that interdomain engagement via ATP is indeed responsible for signal transmission between the endonuclease and helicase domains of the motor subunit. A previously identified sequence motif that is shared by the RecB nucleases and some Type I endonucleases is implicated in signaling. PMID:26039067

  15. Arginine as a general acid catalyst in serine recombinase-mediated DNA cleavage.

    PubMed

    Keenholtz, Ross A; Mouw, Kent W; Boocock, Martin R; Li, Nan-Sheng; Piccirilli, Joseph A; Rice, Phoebe A

    2013-10-01

    Members of the serine family of site-specific DNA recombinases use an unusual constellation of amino acids to catalyze the formation and resolution of a covalent protein-DNA intermediate. A recent high resolution structure of the catalytic domain of Sin, a particularly well characterized family member, provided a detailed view of the catalytic site. To determine how the enzyme might protonate and stabilize the 3'O leaving group in the strand cleavage reaction, we examined how replacing this oxygen with a sulfur affected the cleavage rate by WT and mutant enzymes. To facilitate direct comparison of the cleavage rates, key experiments used suicide substrates that prevented religation after cleavage. The catalytic defect associated with mutation of one of six highly conserved arginine residues, Arg-69 in Sin, was partially rescued by a 3' phosphorothiolate substrate. We conclude that Arg-69 has an important role in stabilizing the 3'O leaving group and is the prime candidate for the general acid that protonates the 3'O, in good agreement with the position it occupies in the high resolution structure of the active site of Sin.

  16. Methylation of either cytosine in the recognition sequence CGCG inhibits ThaI cleavage of DNA.

    PubMed Central

    Strobl, J S; Thompson, E B

    1984-01-01

    ThaI (CGCG) sites which overlap HhaI (GCGC) sites in phi X174 and pBR322 DNA were methylated in vitro with HhaI methylase and S-adenosylmethionine to yield CGmCG, mCGCG or mCGmCG (5-methylcytosine, mC). Methylation of either cytosine in the ThaI recognition sequence rendered the DNA resistant to ThaI cleavage. Rat pituitary cell genomic DNA was digested with ThaI or 2 other known methylation-sensitive enzymes, AvaI or XhoI. After electrophoresis and ethidium bromide straining of the DNA, all 3 enzymes showed the infrequent DNA cleavage characteristic of methylation-sensitive enzymes. Comparison of pituitary growth hormone (GH) genes bearing strain-specific degrees of methylation showed the less methylated gene to be more frequently cut by either AvaI or ThaI. ThaI resistant sites in GH genes were cleaved by ThaI after exposing cells to 5-azacytidine, an inhibitor of DNA methylation. We conclude that ThaI is a useful restriction enzyme for the analysis of mC at CGCG sequences in eukaryotic DNA. Images PMID:6209609

  17. Mapping DNA cleavage by the Type ISP restriction-modification enzymes following long-range communication between DNA sites in different orientations.

    PubMed

    van Aelst, Kara; Saikrishnan, Kayarat; Szczelkun, Mark D

    2015-12-01

    The prokaryotic Type ISP restriction-modification enzymes are single-chain proteins comprising an Mrr-family nuclease, a superfamily 2 helicase-like ATPase, a coupler domain, a methyltransferase, and a DNA-recognition domain. Upon recognising an unmodified DNA target site, the helicase-like domain hydrolyzes ATP to cause site release (remodeling activity) and to then drive downstream translocation consuming 1-2 ATP per base pair (motor activity). On an invading foreign DNA, double-strand breaks are introduced at random wherever two translocating enzymes form a so-called collision complex following long-range communication between a pair of target sites in inverted (head-to-head) repeat. Paradoxically, structural models for collision suggest that the nuclease domains are too far apart (>30 bp) to dimerise and produce a double-strand DNA break using just two strand-cleavage events. Here, we examined the organisation of different collision complexes and how these lead to nuclease activation. We mapped DNA cleavage when a translocating enzyme collides with a static enzyme bound to its site. By following communication between sites in both head-to-head and head-to-tail orientations, we could show that motor activity leads to activation of the nuclease domains via distant interactions of the helicase or MTase-TRD. Direct nuclease dimerization is not required. To help explain the observed cleavage patterns, we also used exonuclease footprinting to demonstrate that individual Type ISP domains can swing off the DNA. This study lends further support to a model where DNA breaks are generated by multiple random nicks due to mobility of a collision complex with an overall DNA-binding footprint of ∼30 bp.

  18. DNA of a circular minichromosome linearized by restriction enzymes or other reagents is resistant to further cleavage: an influence of chromatin topology on the accessibility of DNA.

    PubMed

    Kumala, Sławomir; Hadj-Sahraoui, Yasmina; Rzeszowska-Wolny, Joanna; Hancock, Ronald

    2012-10-01

    The accessibility of DNA in chromatin is an essential factor in regulating its activities. We studied the accessibility of the DNA in a ∼170 kb circular minichromosome to DNA-cleaving reagents using pulsed-field gel electrophoresis and fibre-fluorescence in situ hybridization on combed DNA molecules. Only one of several potential sites in the minichromosome DNA was accessible to restriction enzymes in permeabilized cells, and in growing cells only a single site at an essentially random position was cut by poisoned topoisomerase II, neocarzinostatin and γ-radiation, which have multiple potential cleavage sites; further sites were then inaccessible in the linearized minichromosomes. Sequential exposure to combinations of these reagents also resulted in cleavage at only a single site. Minichromosome DNA containing single-strand breaks created by a nicking endonuclease to relax any unconstrained superhelicity was also cut at only a single position by a restriction enzyme. Further sites became accessible after ≥95% of histones H2A, H2B and H1, and most non-histone proteins were extracted. These observations suggest that a global rearrangement of the three-dimensional packing and interactions of nucleosomes occurs when a circular minichromosome is linearized and results in its DNA becoming inaccessible to probes.

  19. Pathological phenotypes and in vivo DNA cleavage by unrestrained activity of a phosphorothioate-based restriction system in Salmonella.

    PubMed

    Cao, Bo; Cheng, Qiuxiang; Gu, Chen; Yao, Fen; DeMott, Michael S; Zheng, Xiaoqing; Deng, Zixin; Dedon, Peter C; You, Delin

    2014-08-01

    Prokaryotes protect their genomes from foreign DNA with a diversity of defence mechanisms, including a widespread restriction-modification (R-M) system involving phosphorothioate (PT) modification of the DNA backbone. Unlike classical R-M systems, highly partial PT modification of consensus motifs in bacterial genomes suggests an unusual mechanism of PT-dependent restriction. In Salmonella enterica, PT modification is mediated by four genes dptB-E, while restriction involves additional three genes dptF-H. Here, we performed a series of studies to characterize the PT-dependent restriction, and found that it presented several features distinct with traditional R-M systems. The presence of restriction genes in a PT-deficient mutant was not lethal, but instead resulted in several pathological phenotypes. Subsequent transcriptional profiling revealed the expression of > 600 genes was affected by restriction enzymes in cells lacking PT, including induction of bacteriophage, SOS response and DNA repair-related genes. These transcriptional responses are consistent with the observation that restriction enzymes caused extensive DNA cleavage in the absence of PT modifications in vivo. However, overexpression of restriction genes was lethal to the host in spite of the presence PT modifications. These results point to an unusual mechanism of PT-dependent DNA cleavage by restriction enzymes in the face of partial PT modification.

  20. Natural Products as Topoisomerase II Poisons: Effects of Thymoquinone on DNA Cleavage Mediated by Human Topoisomerase IIα

    PubMed Central

    2015-01-01

    The seeds of Nigella sativa (often referred to as black seed) have long been utilized as a medicinal herb in Middle Eastern, Northern African, and Indian cultures. Historically, black seed has been used to treat a variety of illnesses associated with inflammation. More recent studies have found that it induces apoptosis and displays anticancer activity in animal and cellular models. The major bioactive compound of black seed is thymoquinone, which shares structural features with 1,4-benzoquinone and other covalent topoisomerase II poisons. Because a number of anticancer drugs target type II topoisomerases, we determined the effects of thymoquinone and a series of related quinones on human topoisomerase IIα. Thymoquinone enhanced enzyme-mediated DNA cleavage ∼5-fold, which is similar to the increase seen with the anticancer drug etoposide. In order to enhance cleavage, compounds had to have at least two positions available for acylation. Furthermore, activity was decreased by the inclusion of electron-donating groups or bulky substituents. As predicted for a covalent topoisomerase II poison, the activity of thymoquinone (and related compounds) was abrogated by the addition of a reducing agent. Also, thymoquinone inhibited topoisomerase IIα activity when incubated with the enzyme prior to the addition of DNA. Cleavage complexes formed in the presence of the compound were stable for at least 8 h. Lastly, black seed extract and black seed oil both increased levels of enzyme-mediated DNA cleavage, suggesting that thymoquinone is active even in more complex herbal formulations. These findings indicate that thymoquinone can be added to the growing list of dietary and medicinal natural products with activity against human type II topoisomerases. PMID:24650156

  1. The activation of DNA damage detection and repair responses in cleavage-stage rat embryos by a damaged paternal genome.

    PubMed

    Grenier, Lisanne; Robaire, Bernard; Hales, Barbara F

    2012-06-01

    Male germ cell DNA damage, after exposure to radiation, exogenous chemicals, or chemotherapeutic agents, is a major cause of male infertility. DNA-damaged spermatozoa can fertilize oocytes; this is of concern because there is limited information on the capacity of early embryos to repair a damaged male genome or on the fate of these embryos if repair is inadequate. We hypothesized that the early activation of DNA damage response in the early embryo is a critical determinant of its fate. The objective of this study was to assess the DNA damage response and mitochondrial function as a measure of the energy supply for DNA repair and general health in cleavage-stage embryos sired by males chronically exposed to an anticancer alkylating agent, cyclophosphamide. Male rats were treated with saline or cyclophosphamide (6 mg/kg/day) for 4 weeks and mated to naturally cycling females. Pronuclear two- and eight-cell embryos were collected for immunofluorescence analysis of mitochondrial function and biomarkers of the DNA damage response: γH2AX foci, 53BP1 reactivity, and poly(ADP-ribose) polymer formation. Mitochondrial activities did not differ between embryos sired by control- and cyclophosphamide-exposed males. At the two-cell stage, there was no treatment-related increase in DNA double-strand breaks; by the eight-cell stage, a significant increase was noted, as indicated by increased medium and large γH2AX foci. This was accompanied by a dampened DNA repair response, detected as a decrease in the nuclear intensity of poly(ADP-ribose) polymers. The micronuclei formed in cyclophosphamide-sired embryos contained large γH2AX foci and enhanced poly(ADP-ribose) polymer and 53BP1 reactivity compared with their nuclear counterparts. Thus, paternal cyclophosphamide exposure activated a DNA damage response in cleavage-stage embryos. Furthermore, this damage response may be useful in assessing embryo quality and developmental competence. PMID:22454429

  2. Cleavage enhancement of specific chemical bonds in DNA by cisplatin radiosensitization.

    PubMed

    Xiao, Fangxing; Luo, Xinglan; Fu, Xianzhi; Zheng, Yi

    2013-05-01

    X-ray photoelectron spectroscopy (XPS) is harnessed as an in situ efficient characterization technique for monitoring chemical bond transformation in DNA and cisplatin-DNA complexes under synergic X-ray irradiation. By analyzing the variation of relative peak area of core elements of DNA as a function of irradiation time, we find that the most vulnerable scission sites in DNA are those containing phosphate and glycosidic bonds. Compared to DNA, the effective rate constants of the corresponding phosphodiester and glycosidic bond cleavages for cisplatin-DNA complexes are 1.8 and 1.9 folds larger. These damages and their enhancements are similar to those induced by low energy electrons (LEE). Consistently, the magnitude of the secondary electron distribution produced by the X-rays on the cisplatin-DNA complexes is considerably increased compared to that of pristine DNA. The data suggest that DNA radiosensization by cisplatin results not only from the sensitization of DNA to the action of LEE, but also from an increase the production of LEE at the site of binding of the cisplatin. The results provide new insights into the mechanisms of cisplatin-induced sensitization of DNA under X-ray irradiation, which could be helpful in the design of new cisplatin-based antitumor drugs.

  3. Mixed ligand copper(II) dicarboxylate complexes: the role of co-ligand hydrophobicity in DNA binding, double-strand DNA cleavage, protein binding and cytotoxicity.

    PubMed

    Loganathan, Rangasamy; Ramakrishnan, Sethu; Ganeshpandian, Mani; Bhuvanesh, Nattamai S P; Palaniandavar, Mallayan; Riyasdeen, Anvarbatcha; Akbarsha, Mohamad Abdulkadhar

    2015-06-14

    A few water soluble mixed ligand copper(ii) complexes of the type [Cu(bimda)(diimine)] , where bimda is N-benzyliminodiacetic acid and diimine is 2,2'-bipyridine (bpy, ) or 1,10-phenanthroline (phen, ) or 5,6-dimethyl-1,10-phenanthroline (5,6-dmp, ) or 3,4,7,8-tetramethyl-1,10-phenanthroline (3,4,7,8-tmp, ) and dipyrido[3,2-d: 2',3'-f]quinoxaline (dpq, ), have been successfully isolated and characterized by elemental analysis and other spectral techniques. The coordination geometry around copper(ii) in is described as distorted square based pyramidal while that in is described as square pyramidal. Absorption spectral titrations and competitive DNA binding studies reveal that the intrinsic DNA binding affinity of the complexes depends upon the diimine co-ligand, dpq () > 3,4,7,8-tmp () > 5,6-dmp () > phen () > bpy (). The phen and dpq co-ligands are involved in the π-stacking interaction with DNA base pairs while the 3,4,7,8-tmp/5,6-dmp and bpy co-ligands are involved in respectively hydrophobic and surface mode of binding with DNA. The small enhancement in the relative viscosity of DNA upon binding to supports the DNA binding modes proposed. Interestingly, and are selective in exhibiting a positive induced CD band (ICD) upon binding to DNA suggesting that they induce B to A conformational change. In contrast, and show CD responses which reveal their involvement in strong DNA binding. The complexes are unique in displaying prominent double-strand DNA cleavage while effects only single-strand DNA cleavage, and their ability to cleave DNA in the absence of an activator varies as > > > > . Also, all the complexes exhibit oxidative double-strand DNA cleavage activity in the presence of ascorbic acid, which varies as > > > > . The ability of the complexes to bind and cleave the protein BSA varies in the order > > > > . Interestingly, and cleave the protein non-specifically in the presence of H2O2 as an activator suggesting that they can act also as chemical proteases

  4. Mixed ligand copper(II) dicarboxylate complexes: the role of co-ligand hydrophobicity in DNA binding, double-strand DNA cleavage, protein binding and cytotoxicity.

    PubMed

    Loganathan, Rangasamy; Ramakrishnan, Sethu; Ganeshpandian, Mani; Bhuvanesh, Nattamai S P; Palaniandavar, Mallayan; Riyasdeen, Anvarbatcha; Akbarsha, Mohamad Abdulkadhar

    2015-06-14

    A few water soluble mixed ligand copper(ii) complexes of the type [Cu(bimda)(diimine)] , where bimda is N-benzyliminodiacetic acid and diimine is 2,2'-bipyridine (bpy, ) or 1,10-phenanthroline (phen, ) or 5,6-dimethyl-1,10-phenanthroline (5,6-dmp, ) or 3,4,7,8-tetramethyl-1,10-phenanthroline (3,4,7,8-tmp, ) and dipyrido[3,2-d: 2',3'-f]quinoxaline (dpq, ), have been successfully isolated and characterized by elemental analysis and other spectral techniques. The coordination geometry around copper(ii) in is described as distorted square based pyramidal while that in is described as square pyramidal. Absorption spectral titrations and competitive DNA binding studies reveal that the intrinsic DNA binding affinity of the complexes depends upon the diimine co-ligand, dpq () > 3,4,7,8-tmp () > 5,6-dmp () > phen () > bpy (). The phen and dpq co-ligands are involved in the π-stacking interaction with DNA base pairs while the 3,4,7,8-tmp/5,6-dmp and bpy co-ligands are involved in respectively hydrophobic and surface mode of binding with DNA. The small enhancement in the relative viscosity of DNA upon binding to supports the DNA binding modes proposed. Interestingly, and are selective in exhibiting a positive induced CD band (ICD) upon binding to DNA suggesting that they induce B to A conformational change. In contrast, and show CD responses which reveal their involvement in strong DNA binding. The complexes are unique in displaying prominent double-strand DNA cleavage while effects only single-strand DNA cleavage, and their ability to cleave DNA in the absence of an activator varies as > > > > . Also, all the complexes exhibit oxidative double-strand DNA cleavage activity in the presence of ascorbic acid, which varies as > > > > . The ability of the complexes to bind and cleave the protein BSA varies in the order > > > > . Interestingly, and cleave the protein non-specifically in the presence of H2O2 as an activator suggesting that they can act also as chemical proteases

  5. Novel metal-based pharmacologically dynamic agents of transition metal(II) complexes: Designing, synthesis, structural elucidation, DNA binding and photo-induced DNA cleavage activity

    NASA Astrophysics Data System (ADS)

    Raman, N.; Jeyamurugan, R.; Sakthivel, A.; Mitu, L.

    2010-01-01

    Novel Schiff base Cu(II), Ni(II), Co(II) and Zn(II) complexes have been designed and synthesized using the macrocyclic ligand derived from the condensation of diethylphthalate with Schiff base, obtained from benzene-1,2-diamine and 3-benzylidene-pentane-2,4-dione. The ligand and its complexes have been characterized by analytical and spectral techniques. DNA binding properties of these complexes have been investigated by UV-vis, viscosity measurements, cyclic voltammetric and differential pulse voltammogram studies. The intrinsic binding constants for Co(II), Ni(II), Cu(II) and Zn(II) complexes are 1.6 × 10 6, 1.8 × 10 6, 2.0 × 10 6 and 1.5 × 10 6 M -1 respectively which are obtained from electronic absorption experiment. Control DNA cleavage experiments using pUC19 supercoiled (SC) DNA and minor groove binder (distamycin) suggest the major groove binding tendency for the synthesized complexes. In the presence of a reducing agent like 3-mercaptopropionic acid (MPA), the synthesized complexes show chemical nuclease activity under dark reaction condition. The complexes also show efficient photo-induced DNA cleavage activity on irradiation with a monochromatic UV light of 360 nm in the presence of inhibitors. Control experiments show inhibition of cleavage in the presence of singlet oxygen quencher like sodium azide and enhancement of cleavage in D 2O, suggesting the formation of singlet oxygen as a reactive species in a type-II process.

  6. Cytotoxicity and DNA cleavage with core-shell nanocomposites functionalized by a KH domain DNA binding peptide

    NASA Astrophysics Data System (ADS)

    Bazak, Remon; Ressl, Jan; Raha, Sumita; Doty, Caroline; Liu, William; Wanzer, Beau; Salam, Seddik Abdel; Elwany, Samy; Paunesku, Tatjana; Woloschak, Gayle E.

    2013-11-01

    A nanoconjugate was composed of metal oxide nanoparticles decorated with peptides and fluorescent dye and tested for DNA cleavage following UV light activation. The peptide design was based on a DNA binding domain, the so called KH domain of the hnRNPK protein. This ``KH peptide'' enabled cellular uptake of nanoconjugates and their entry into cell nuclei. The control nanoconjugate carried no peptide; it consisted only of the metal oxide nanoparticle prepared as Fe3O4@TiO2 nanocomposite and the fluorescent dye alizarin red S. These components of either construct are responsible for nanoconjugate activation by UV light and the resultant production of reactive oxygen species (ROS). Production of ROS at different subcellular locations causes damage to different components of cells: only nanoconjugates inside cell nuclei can be expected to cause DNA cleavage. Degradation of cellular DNA with KH peptide decorated nanoconjugates exceeded the DNA damage obtained from control, no-peptide nanoconjugate counterparts. Moreover, caspase activation and cell death were more extensive in the same cells.A nanoconjugate was composed of metal oxide nanoparticles decorated with peptides and fluorescent dye and tested for DNA cleavage following UV light activation. The peptide design was based on a DNA binding domain, the so called KH domain of the hnRNPK protein. This ``KH peptide'' enabled cellular uptake of nanoconjugates and their entry into cell nuclei. The control nanoconjugate carried no peptide; it consisted only of the metal oxide nanoparticle prepared as Fe3O4@TiO2 nanocomposite and the fluorescent dye alizarin red S. These components of either construct are responsible for nanoconjugate activation by UV light and the resultant production of reactive oxygen species (ROS). Production of ROS at different subcellular locations causes damage to different components of cells: only nanoconjugates inside cell nuclei can be expected to cause DNA cleavage. Degradation of cellular DNA

  7. Recognition and cleavage of 5-methylcytosine DNA by bacterial SRA-HNH proteins.

    PubMed

    Han, Tiesheng; Yamada-Mabuchi, Megumu; Zhao, Gong; Li, Li; Liu, Guang; Ou, Hong-Yu; Deng, Zixin; Zheng, Yu; He, Xinyi

    2015-01-01

    SET and RING-finger-associated (SRA) domain is involved in establishment and maintenance of DNA methylation in eukaryotes. Proteins containing SRA domains exist in mammals, plants, even microorganisms. It has been established that mammalian SRA domain recognizes 5-methylcytosine (5mC) through a base-flipping mechanism. Here, we identified and characterized two SRA domain-containing proteins with the common domain architecture of N-terminal SRA domain and C-terminal HNH nuclease domain, Sco5333 from Streptomyces coelicolor and Tbis1 from Thermobispora bispora. Both sco5333 and tbis1 cannot establish in methylated Escherichia coli hosts (dcm(+)), and this in vivo toxicity requires both SRA and HNH domain. Purified Sco5333 and Tbis1 displayed weak DNA cleavage activity in the presence of Mg(2+), Mn(2+) and Co(2+) and the cleavage activity was suppressed by Zn(2+). Both Sco5333 and Tbis1 bind to 5mC-containing DNA in all sequence contexts and have at least a preference of 100 folds in binding affinity for methylated DNA over non-methylated one. We suggest that linkage of methyl-specific SRA domain and weakly active HNH domain may represent a universal mechanism in competing alien methylated DNA but to maximum extent minimizing damage to its own chromosome. PMID:25564526

  8. The peptide antibiotic microcin B17 induces double-strand cleavage of DNA mediated by E. coli DNA gyrase.

    PubMed

    Vizán, J L; Hernández-Chico, C; del Castillo, I; Moreno, F

    1991-02-01

    Microcin B17 (MccB17) is a bactericidal peptide antibiotic which inhibits DNA replication. Two Escherichia coli MccB17 resistant mutants were isolated and the mutations were shown to map to 83 min of the genetic map. Cloning of the mutations and Tn5 insertional analysis demonstrated that they were located inside gyrB. The approximate location of the mutations within gyrB was determined by constructing hybrid genes, as a previous step to sequencing. Both mutations were shown to consist of a single AT----GC transition at position 2251 of the gene, which produces a Trp751----Arg substitution in the amino acid sequence of the GyrB polypeptide. The inhibitory effect of MccB17 on replicative cell-free extracts was assayed. In this in vitro system, interaction of MccB17 with a component of the extracts induced double-strand cleavage of plasmid DNA. In vivo treatment with MccB17 also induced a well-defined cleavage pattern on chromosomal DNA. These effects were not observed with a MccB17-resistant, gyrB mutant. Altogether, our results indicate that MccB17 blocks DNA gyrase by trapping an enzyme-DNA cleavable complex. Thus, the mode of action of this peptide antibiotic resembles that of quinolones and a variety of antitumour drugs currently used in cancer chemotherapy. MccB17 is the first peptide shown to inhibit a type II DNA topoisomerase.

  9. Radical scavenging reactivity of catecholamine neurotransmitters and the inhibition effect for DNA cleavage.

    PubMed

    Kawashima, Tomonori; Ohkubo, Kei; Fukuzumi, Shunichi

    2010-01-14

    Neurotransmitters such as catecholamines (dopamine, L-dopa, epinephrine, norepinephrine) have phenol structure and scavenge reactive oxygen species (ROS) by hydrogen atom transfer (HAT) to ROS. Radical scavenging reactivity of neurotransmitters with galvinoxyl radical (GO*) and cumyloxyl radical (RO*) in acetonitrile at 298 K was determined by the UV-vis spectral change. The UV-vis spectral change for HAT from catecholamine neurotransmitters to GO* was measured by a photodiode array spectrophotometer, whereas HAT to much more reactive cumylperoxyl radical, which was produced by photoirradiation of dicumyl peroxide, was measured by laser flash photolysis. The second-order rate constants (k(GO)) were determined from the slopes of linear plots of the pseudo-first-order rate constants vs concentrations of neurotransmitters. The k(GO) value of hydrogen transfer from dopamine to GO* was determined to be 23 M(-1) s(-1), which is the largest among examined catecholamine neurotransmitters. This value is comparable to the value of a well-known antioxidant: (+)-catechine (27 M(-1) s(-1)). The k(GO) value of hydrogen transfer from dopamine to GO* increased in the presence of Mg(2+) with increasing concentration of Mg(2+). Such enhancement of the radical scavenging reactivity may result from the metal ion-promoted electron transfer from dopamine to the galvinoxyl radical. Inhibition of DNA cleavage with neurotransmitters was also examined using agarose gel electrophoresis of an aqueous solution containing pBR322 DNA, NADH, and catecholamine neurotransmitters under photoirradiation. DNA cleavage was significantly inhibited by the presence of catecholamine neurotransmitters that can scavenge hydroperoxyl radicals produced under photoirradiation of an aerated aqueous solution of NADH. The inhibition effect of dopamine on DNA cleavage was enhanced by the presence of Mg(2+) because of the enhancement of the radical scavenging reactivity. PMID:19938853

  10. Cytotoxicity and DNA cleavage with core-shell nanocomposites functionalized by a KH domain DNA binding peptide

    PubMed Central

    Ressl, Jan; Raha, Sumita; Doty, Caroline; Liu, William; Wanzer, Beau; Salam, Seddik Abdel; Elwany, Samy; Paunesku, Tatjana

    2013-01-01

    A nanoconjugate was composed of metal oxide nanoparticles decorated with peptides and fluorescent dye and tested for DNA cleavage following UV light activation. The peptide design was based on a DNA binding domain, the so called KH domain of the hnRNPK protein. This “KH peptide” enabled cellular uptake of nanoconjugates and their entry into cell nuclei. The control nanoconjugate carried no peptide; it consisted only of the metal oxide nanoparticle prepared an Fe3O4@TiO2 nanocomposite and the fluorescent dye alizarin red S. These components of either construct are responsible for nanoconjugate activation by UV light and the resultant production of reactive oxygen species (ROS). Production of ROS at different subcellular locations causes damage to different components of cells: only nanoconjugates inside cell nuclei can be expected to cause DNA cleavage. Degradation of cellular DNA with KH peptide decorated nanoconjugates exceeded the DNA damage obtained from control, no-peptide nanoconjugate counterparts. Moreover, caspase activation and cell death were more extensive in the same cells. PMID:23824281

  11. Cytotoxicity and DNA cleavage with core-shell nanocomposites functionalized by a KH domain DNA binding peptide.

    PubMed

    Bazak, Remon; Ressl, Jan; Raha, Sumita; Doty, Caroline; Liu, William; Wanzer, Beau; Salam, Seddik Abdel; Elwany, Samy; Paunesku, Tatjana; Woloschak, Gayle E

    2013-12-01

    A nanoconjugate was composed of metal oxide nanoparticles decorated with peptides and fluorescent dye and tested for DNA cleavage following UV light activation. The peptide design was based on a DNA binding domain, the so called KH domain of the hnRNPK protein. This "KH peptide" enabled cellular uptake of nanoconjugates and their entry into cell nuclei. The control nanoconjugate carried no peptide; it consisted only of the metal oxide nanoparticle prepared as Fe3O4@TiO2 nanocomposite and the fluorescent dye alizarin red S. These components of either construct are responsible for nanoconjugate activation by UV light and the resultant production of reactive oxygen species (ROS). Production of ROS at different subcellular locations causes damage to different components of cells: only nanoconjugates inside cell nuclei can be expected to cause DNA cleavage. Degradation of cellular DNA with KH peptide decorated nanoconjugates exceeded the DNA damage obtained from control, no-peptide nanoconjugate counterparts. Moreover, caspase activation and cell death were more extensive in the same cells.

  12. Selective enzymatic cleavage and labeling for sensitive capillary electrophoresis laser-induced fluorescence analysis of oxidized DNA bases.

    PubMed

    Li, Cuiping; Wang, Hailin

    2015-08-01

    Oxidatively generated DNA damage is considered to be a significant contributing factor to cancer, aging, and age-related human diseases. It is important to detect oxidatively generated DNA damage to understand and clinically diagnosis diseases caused by oxidative damage. In this study, using selective enzymatic cleavage and quantum dot (QD) labeling, we developed a novel capillary electrophoresis-laser induced fluorescence method for the sensitive detection of oxidized DNA bases. First, oxidized DNA bases are recognized and removed by one DNA base excision repair glycosylase, leaving apurinic and apyrimidinic sites (AP sites) at the oxidized positions. The AP sites are further excised by the AP nicking activity of the chosen glycosylase, generating a nucleotide gap with 5'- and 3'- phosphate groups. After dephosphorylation with one alkaline phosphatase, a biotinylated ddNTP is introduced into the nucleotide space within the DNA strand by DNA polymerase I. The biotin-tagged DNA is further labeled with a QD-streptavidin conjugate via non-covalent interactions. The DNA-bound QD is well-separated from excess DNA-unbound QD by highly efficient capillary electrophoresis and is sensitively detected by online coupled laser-induced fluorescence analysis. Using this method, we can assess the trace levels of oxidized DNA bases induced by the Fenton reaction and UV irradiation. Interestingly, the use of the formamidopyrimidine glycosylase (FPG) protein and endonuclease VIII enables the detection of oxidized purine and pyrimidine bases, respectively. Using the synthesized standard DNA, the approach has low limits of detection of 1.1×10(-19)mol in mass and 2.9pM in concentration.

  13. Ku-Mediated Coupling of DNA Cleavage and Repair during Programmed Genome Rearrangements in the Ciliate Paramecium tetraurelia

    PubMed Central

    Marmignon, Antoine; Bischerour, Julien; Silve, Aude; Fojcik, Clémentine; Dubois, Emeline; Arnaiz, Olivier; Kapusta, Aurélie; Malinsky, Sophie; Bétermier, Mireille

    2014-01-01

    During somatic differentiation, physiological DNA double-strand breaks (DSB) can drive programmed genome rearrangements (PGR), during which DSB repair pathways are mobilized to safeguard genome integrity. Because of their unique nuclear dimorphism, ciliates are powerful unicellular eukaryotic models to study the mechanisms involved in PGR. At each sexual cycle, the germline nucleus is transmitted to the progeny, but the somatic nucleus, essential for gene expression, is destroyed and a new somatic nucleus differentiates from a copy of the germline nucleus. In Paramecium tetraurelia, the development of the somatic nucleus involves massive PGR, including the precise elimination of at least 45,000 germline sequences (Internal Eliminated Sequences, IES). IES excision proceeds through a cut-and-close mechanism: a domesticated transposase, PiggyMac, is essential for DNA cleavage, and DSB repair at excision sites involves the Ligase IV, a specific component of the non-homologous end-joining (NHEJ) pathway. At the genome-wide level, a huge number of programmed DSBs must be repaired during this process to allow the assembly of functional somatic chromosomes. To understand how DNA cleavage and DSB repair are coordinated during PGR, we have focused on Ku, the earliest actor of NHEJ-mediated repair. Two Ku70 and three Ku80 paralogs are encoded in the genome of P. tetraurelia: Ku70a and Ku80c are produced during sexual processes and localize specifically in the developing new somatic nucleus. Using RNA interference, we show that the development-specific Ku70/Ku80c heterodimer is essential for the recovery of a functional somatic nucleus. Strikingly, at the molecular level, PiggyMac-dependent DNA cleavage is abolished at IES boundaries in cells depleted for Ku80c, resulting in IES retention in the somatic genome. PiggyMac and Ku70a/Ku80c co-purify as a complex when overproduced in a heterologous system. We conclude that Ku has been integrated in the Paramecium DNA cleavage

  14. Synthesis, spectral and quantum chemical studies and use of (E)-3-[(3,5-bis(trifluoromethyl)phenylimino)methyl]benzene-1,2-diol and its Ni(II) and Cu(II) complexes as an anion sensor, DNA binding, DNA cleavage, anti-microbial, anti-mutagenic and anti-cancer agent

    NASA Astrophysics Data System (ADS)

    Ünver, Hüseyin; Boyacıoğlu, Bahadır; Zeyrek, Celal Tuğrul; Yıldız, Mustafa; Demir, Neslihan; Yıldırım, Nuray; Karaosmanoğlu, Oğuzhan; Sivas, Hülya; Elmalı, Ayhan

    2016-12-01

    We report the synthesis of a novel Schiff base (E)-3-[(3,5-bis(trifluoromethyl) phenylimino)methyl] benzene-1,2-diol from the reaction of 2,3-dihydroxybenzaldehyde with 3,5-bis(trifluoromethyl)aniline, and its Ni(II) and Cu(II) complexes. The molecular structure of the Schiff base was experimentally determined using X-ray single-crystal data and was compared to the structure predicted by theoretical calculations using density functional theory (DFT), Hartree-Fock (HF) and Möller-Plesset second-order perturbation (MP2). In addition, nonlinear optical (NLO) effects of the compound was predicted using DFT. The antimicrobial activities of the compounds were investigated for their minimum inhibitory concentration. UV-Vis spectroscopy studies of the interactions between the compounds and calf thymus DNA (CT-DNA) showed that the compounds interacts with CT-DNA via intercalative binding. A DNA cleavage study showed that the Cu(II) complex cleaved DNA without any external agents. The compounds inhibited the base pair mutation in the absence of S9 with high inhibition rate. In addition, in vitro cytotoxicity of the Ni(II) complex towards HepG2 cell line was assayed by the MTT method. Also, the colorimetric response of the Schiff base in DMSO to the addition of equivalent amount of anions (F-, Br-, I-, CN-, SCN-, ClO4-, HSO4-, AcO-, H2PO4-, N3- and OH-) was investigated. In this regard, while the addition of F-, CN-, AcO- and OH- anions into the solution containing Schiff base resulted in a significant color change, the addition of Br-, I-, SCN-, ClO4-, HSO4-, H2PO4- and N3- anions resulted in no color change. The most discernable color change in the Schiff base was caused by CN-, which demonstrated that the ligand can be used to selectively detect CN-.

  15. Graphene quantums dots combined with endonuclease cleavage and bidentate chelation for highly sensitive electrochemiluminescent DNA biosensing.

    PubMed

    Lou, Jing; Liu, Shanshan; Tu, Wenwen; Dai, Zhihui

    2015-01-20

    A novel strategy for highly sensitive electrochemiluminescence (ECL) detection of DNA was proposed based on site-specific cleavage of BamHI endonuclease combined with the excellent ECL activity of graphene quantum dots (GQDs) and bidentate chelation of the dithiocarbamate DNA (DTC-DNA) probe assembly. The difference between photoluminescence and ECL spectral peaks suggested that a negligible defect existed on the GQDs surface for generation of an ECL signal. The formed DTC-DNA was directly attached to the gold surface by bidentate anchoring (S-Au-S bonds), which conferred a strong affinity between the ligands and the gold surface, increasing the robustness of DNA immobilization on the gold surface. BamHI endonuclease site-specifically recognized and cleaved the duplex symmetrical sequence, which made the double-stranded DNA fragments and GQDs break off from the electrode surface, inducing a decrease of the ECL signal. Using hepatitis C virus-1b genotype complementary DNA (HCV-1b cDNA) as a model, a novel signal-off ECL DNA biosensor was developed based on variation of the ECL intensity before and after digestion of the DNA hybrid. Electrochemical impedance spectroscopy confirmed the successful fabrication of the ECL DNA biosensor. This ECL biosensor for HCV-1b cDNA determination exhibited a linear range from 5 fM to 100 pM with a detection limit of 0.45 fM at a signal-to-noise ratio of 3 and showed satisfactory selectivity and good stability, which validated the feasibility of the designed strategy. The proposed strategy may be conveniently combined with other specific biological recognition events for expansion of the biosensing application, especially in clinical diagnoses. PMID:25523862

  16. The action of the bacterial toxin microcin B17. Insight into the cleavage-religation reaction of DNA gyrase.

    PubMed

    Pierrat, Olivier A; Maxwell, Anthony

    2003-09-12

    We have examined the effects of the bacterial toxin microcin B17 (MccB17) on the reactions of Escherichia coli DNA gyrase. MccB17 slows down but does not completely inhibit the DNA supercoiling and relaxation reactions of gyrase. A kinetic analysis of the cleavage-religation equilibrium of gyrase was performed to determine the effect of the toxin on the forward (cleavage) and reverse (religation) reactions. A simple mechanism of two consecutive reversible reactions with a nicked DNA intermediate was used to simulate the kinetics of cleavage and religation. The action of MccB17 on the kinetics of cleavage and religation was compared with that of the quinolones ciprofloxacin and oxolinic acid. With relaxed DNA as substrate, only a small amount of gyrase cleavage complex is observed with MccB17 in the absence of ATP, whereas the presence of the nucleotide significantly enhances the effect of the toxin on both the cleavage and religation reactions. In contrast, ciprofloxacin, oxolinic acid, and Ca2+ show lesser dependence on ATP to stabilize the cleavage complex. MccB17 enhances the overall rate of DNA cleavage by increasing the forward rate constant (k2) of the second equilibrium. In contrast, ciprofloxacin increases the amount of cleaved DNA by a combined effect on the forward and reverse rate constants of both equilibria. Based on these results and on the observations that MccB17 only slowly inhibits the supercoiling and relaxation reactions, we suggest a model of the interaction of MccB17 with gyrase.

  17. A "turn-on" fluorescent copper biosensor based on DNA cleavage-dependent graphene-quenched DNAzyme.

    PubMed

    Liu, Meng; Zhao, Huimin; Chen, Shuo; Yu, Hongtao; Zhang, Yaobin; Quan, Xie

    2011-06-15

    A novel and promising "turn-on" fluorescent Cu(2+) biosensor is designed based on graphene-DNAzyme catalytic beacon. Due to the essential surface and quenching properties of two-dimensional graphene, it can function as both "scaffold" and "quencher" of the Cu(2+)-dependent DNAzyme, facilitating the formation of self-assembled graphene-quenched DNAzyme complex. However, Cu(2+)-induced catalytic reaction disturbs the graphene-DNAzyme conformation, which will produce internal DNA cleavage-dependent effect. In this case, the quenched fluorescence in graphene-DNAzyme is quickly recovered to a large extent in 15 min. Compared with common DNAzyme-based sensors, the presented graphene-based catalytic beacon greatly improves the signal-to-background ratio, hence increasing the sensitivity (LOD=0.365 nM). Furthermore, the controllable DNA cleavage reaction provides an original and alternative internal method to regulate the interaction between graphene and DNA relative to the previous external sequence-specific hybridization-dependent regulation, which will open new opportunities for nucleic studies and sensing applications in the future.

  18. IKKα and IKKβ Regulation of DNA Damage-Induced Cleavage of Huntingtin

    PubMed Central

    Khoshnan, Ali; Ko, Jan; Tescu, Simona; Brundin, Patrick; Patterson, Paul H.

    2009-01-01

    Background Proteolysis of huntingtin (Htt) plays a key role in the pathogenesis of Huntington's disease (HD). However, the environmental cues and signaling pathways that regulate Htt proteolysis are poorly understood. One stimulus may be the DNA damage that accumulates in neurons over time, and the subsequent activation of signaling pathways such as those regulated by IκB kinase (IKK), which can influence neurodegeneration in HD. Methodology/Principal Findings We asked whether DNA damage induces the proteolysis of Htt and if activation of IKK plays a role. We report that treatment of neurons with the DNA damaging agent etoposide or γ-irradiation promotes cleavage of wild type (WT) and mutant Htt, generating N-terminal fragments of 80–90 kDa. This event requires IKKβ and is suppressed by IKKα. Elevated levels of IKKα, or inhibition of IKKβ expression by a specific small hairpin RNA (shRNA) or its activity by sodium salicylate, prevents Htt proteolysis and increases neuronal resistance to DNA damage. Moreover, IKKβ phosphorylates the anti-apoptotic protein Bcl-xL, a modification known to reduce Bcl-xL levels, and activates caspases that can cleave Htt. When IKKβ expression is blocked, etoposide treatment does not decrease Bcl-xL and activation of caspases is diminished. Similar to silencing of IKKβ, increasing the level of Bcl-xL in neurons prevents etoposide-induced caspase activation and Htt proteolysis. Conclusions/Significance These results indicate that DNA damage triggers cleavage of Htt and identify IKKβ as a prominent regulator. Moreover, IKKβ-dependent reduction of Bcl-xL is important in this process. Thus, inhibition of IKKβ may promote neuronal survival in HD as well as other DNA damage-induced neurodegenerative disorders. PMID:19488402

  19. Chromium(VI) reduction by catechol(amine)s results in DNA cleavage in vitro: relevance to chromium genotoxicity.

    PubMed

    Pattison, D I; Davies, M J; Levina, A; Dixon, N E; Lay, P A

    2001-05-01

    Catechols are found extensively in nature both as essential biomolecules and as the byproducts of normal oxidative damage of amino acids and proteins. They are also present in cigarette smoke and other atmospheric pollutants. Here, the interactions of reactive species generated in Cr(VI)/catechol(amine) mixtures with plasmid DNA have been investigated to model a potential route to Cr(VI)-induced genotoxicity. Reduction of Cr(VI) by 3,4-dihydroxyphenylalanine (DOPA) (1), dopamine (2), or adrenaline (3) produces species that cause extensive DNA damage, but the products of similar reactions with catechol (4) or 4-tert-butylcatechol (5) do not damage DNA. The Cr(VI)/catechol(amine) reactions have been studied at low added H(2)O(2) concentrations, which lead to enhanced DNA cleavage with 1 and induce DNA cleavage with 4. The Cr(V) and organic intermediates generated by the reactions of Cr(VI) with 1 or 4 in the presence of H(2)O(2) were characterized by EPR spectroscopy. The detected signals were assigned to Cr(V)-catechol, Cr(V)-peroxo, and mixed Cr(V)-catechol-peroxo complexes. Oxygen consumption during the reactions of Cr(VI) with 1, 2, 4, and 5 was studied, and H(2)O(2) production was quantified. Reactions of Cr(VI) with 1 and 2, but not 4 and 5, consume considerable amounts of dissolved O(2), and give extensive H(2)O(2) production. Extents of oxygen consumption and H(2)O(2) production during the reaction of Cr(VI) with enzymatically generated 1 and N-acetyl-DOPA (from the reaction of Tyr and N-acetyl-Tyr with tyrosinase, respectively) were correlated with the DNA cleaving abilities of the products of these reactions. The reaction of Cr(VI) with enzymatically generated 1 produced significant amounts of H(2)O(2) and caused significant DNA damage, but the N-acetyl-DOPA did not. The extent of in vitro DNA damage is reduced considerably by treatment of the Cr(VI)/catechol(amine) mixtures with catalase, which shows that the DNA damage is H(2)O(2)-dependent and that the

  20. A novel and unified two-metal mechanism for DNA cleavage by type II and IA topoisomerases.

    PubMed

    Schmidt, Bryan H; Burgin, Alex B; Deweese, Joseph E; Osheroff, Neil; Berger, James M

    2010-06-01

    Type II topoisomerases are required for the management of DNA tangles and supercoils, and are targets of clinical antibiotics and anti-cancer agents. These enzymes catalyse the ATP-dependent passage of one DNA duplex (the transport or T-segment) through a transient, double-stranded break in another (the gate or G-segment), navigating DNA through the protein using a set of dissociable internal interfaces, or 'gates'. For more than 20 years, it has been established that a pair of dimer-related tyrosines, together with divalent cations, catalyse G-segment cleavage. Recent efforts have proposed that strand scission relies on a 'two-metal mechanism', a ubiquitous biochemical strategy that supports vital cellular processes ranging from DNA synthesis to RNA self-splicing. Here we present the structure of the DNA-binding and cleavage core of Saccharomyces cerevisiae topoisomerase II covalently linked to DNA through its active-site tyrosine at 2.5A resolution, revealing for the first time the organization of a cleavage-competent type II topoisomerase configuration. Unexpectedly, metal-soaking experiments indicate that cleavage is catalysed by a novel variation of the classic two-metal approach. Comparative analyses extend this scheme to explain how distantly-related type IA topoisomerases cleave single-stranded DNA, unifying the cleavage mechanisms for these two essential enzyme families. The structure also highlights a hitherto undiscovered allosteric relay that actuates a molecular 'trapdoor' to prevent subunit dissociation during cleavage. This connection illustrates how an indispensable chromosome-disentangling machine auto-regulates DNA breakage to prevent the aberrant formation of mutagenic and cytotoxic genomic lesions.

  1. Crystal Structure of A. aeolicus Argonaute, a Site-Specific DNA-Guided Endoribonuclease, Provides Insights into RISC-Mediated mRNA Cleavage

    PubMed Central

    Yuan, Yu-Ren; Pei, Yi; Ma, Jin-Biao; Kuryavyi, Vitaly; Zhadina, Maria; Meister, Gunter; Chen, Hong-Ying; Dauter, Zbigniew; Tuschl, Thomas; Patel, Dinshaw J.

    2015-01-01

    Summary Argonaute (Ago) proteins constitute a key component of the RNA-induced silencing complex (RISC). We report the crystal structure of Aquifex aeolicus Ago (Aa-Ago) together with binding and cleavage studies, which establish this eubacterial Ago as a bona fide guide DNA strand-mediated site-specific RNA endonuclease. We have generated a stereochemically robust model of the complex, where the guide DNA-mRNA duplex is positioned within a basic channel spanning the bilobal interface, such that the 5′ phosphate of the guide strand can be anchored in a basic pocket, and the mRNA can be positioned for site-specific cleavage by RNase H-type divalent cation-coordinated catalytic Asp residues of the PIWI domain. Domain swap experiments involving chimeras of human Ago (hAgo1) and cleavage-competent hAgo2 reinforce the role of the PIWI domain in “slicer” activity. We propose a four-step Ago-mediated catalytic cleavage cycle model, which provides distinct perspectives into the mechanism of guide strand-mediated mRNA cleavage within the RISC. PMID:16061186

  2. Crystal structure of A. aeolicus argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage

    SciTech Connect

    Yuan,Y.; Pei, Y.; Ma, J.; Kuryavyi, V.; Zhadina, M.; Meister, G.; Chen, H.; Dauter, Z.; Tuschi, T.; Patel, D.

    2005-01-01

    Argonaute (Ago) proteins constitute a key component of the RNA-induced silencing complex (RISC). We report the crystal structure of Aquifex aeolicus Ago (Aa-Ago) together with binding and cleavage studies, which establish this eubacterial Ago as a bona fide guide DNA strand-mediated site-specific RNA endonuclease. We have generated a stereochemically robust model of the complex, where the guide DNA-mRNA duplex is positioned within a basic channel spanning the bilobal interface, such that the 5' phosphate of the guide strand can be anchored in a basic pocket, and the mRNA can be positioned for site-specific cleavage by RNase H-type divalent cation-coordinated catalytic Asp residues of the PIWI domain. Domain swap experiments involving chimeras of human Ago (hAgo1) and cleavage-competent hAgo2 reinforce the role of the PIWI domain in 'slicer' activity. We propose a four-step Ago-mediated catalytic cleavage cycle model, which provides distinct perspectives into the mechanism of guide strand-mediated mRNA cleavage within the RISC.

  3. Conversion of a helix-turn-helix motif sequence-specific DNA binding protein into a site-specific DNA cleavage agent.

    PubMed Central

    Ebright, R H; Ebright, Y W; Pendergrast, P S; Gunasekera, A

    1990-01-01

    Escherichia coli catabolite gene activator protein (CAP) is a helix-turn-helix motif sequence-specific DNA binding protein [de Crombrugghe, B., Busby, S. & Buc, H. (1984) Science 224, 831-838; and Pabo, C. & Sauer, R. (1984) Annu. Rev. Biochem. 53, 293-321]. In this work, CAP has been converted into a site-specific DNA cleavage agent by incorporation of the chelator 1,10-phenanthroline at amino acid 10 of the helix-turn-helix motif. [(N-Acetyl-5-amino-1,10-phenanthroline)-Cys178]CAP binds to a 22-base-pair DNA recognition site with Kobs = 1 x 10(8) M-1. In the presence of Cu(II) and reducing agent, [(N-acetyl-5-amino-1,10-phenanthroline)-Cys178]CAP cleaves DNA at four adjacent nucleotides on each DNA strand within the DNA recognition site. The DNA cleavage reaction has been demonstrated using 40-base-pair and 7164-base-pair DNA substrates. The DNA cleavage reaction is not inhibited by dam methylation of the DNA substrate. Such semisynthetic site-specific DNA cleavage agents have potential applications in chromosome mapping, cloning, and sequencing. Images PMID:2158096

  4. DNA cleavage is independent of synapsis during Streptomyces phage phiBT1 integrase-mediated site-specific recombination.

    PubMed

    Zhang, Lin; Wang, Lu; Wang, Jin; Ou, Xijun; Zhao, Guoping; Ding, Xiaoming

    2010-10-01

    Bacteriophage-encoded serine recombinases have great potential in genetic engineering but their catalytic mechanisms have not been adequately studied. Integration of ϕBT1 and ϕC31 via their attachment (att) sites is catalyzed by integrases of the large serine recombinase subtype. Both ϕBT1 and ϕC31 integrases were found to cleave single-substrate att sites without synaptic complex formation, and ϕBT1 integrase relaxed supercoiled DNA containing a single integration site. Systematic mutation of the central att site dinucleotide revealed that cleavage was independent of nucleotide sequence, but rejoining was crucially dependent upon complementarity of the cleavage products. Recombination between att sites containing dinucleotides with antiparallel complementarity led to antiparallel recombination. Integrase-substrate pre-incubation experiments revealed that the enzyme can form an attP-integrase tetramer complex that then captures naked attB DNA, and suggested that two alternative assembly pathways can lead to synaptic complex formation.

  5. Evaluation of DNA-binding, DNA cleavage, antioxidant and cytotoxic activity of mononuclear ruthenium(II) carbonyl complexes of benzaldehyde 4-phenyl-3-thiosemicarbazones

    NASA Astrophysics Data System (ADS)

    Sampath, Krishnan; Sathiyaraj, Subbaiyan; Jayabalakrishnan, Chinnasamy

    2013-11-01

    Two 4-phenyl-3-thiosemicarbazone ligands, (E)-2-(2-chlorobenzylidene)-N-phenylhydrazinecarbothioamide (HL1) and (E)-2-(2-nitrobenzylidene)-N-phenylhydrazinecarbothioamide (HL2), and its ruthenium(II) complexes were synthesized and characterized by physico-chemical and spectroscopic methods. The Schiff bases act as bidentate, monobasic chelating ligands with S and N as the donor sites and are preferably found in the thiol form in all the complexes studied. The molecular structure of HL1 and HL2 were determined by single crystal X-ray diffraction method. DNA binding of the compounds was investigated by absorption spectroscopy which indicated that the compounds bind to DNA via intercalation. The oxidative cleavage of the complexes with CT-DNA inferred that the effects of cleavage are dose dependent. Antioxidant study of the ligands and complexes showed significant antioxidant activity against DPPH radical. In addition, the in vitro cytotoxicity of the ligands and complexes assayed against HeLa and MCF-7 cell lines showed higher cytotoxic activity with the lower IC50 values indicating their efficiency in killing the cancer cells even at low concentrations.

  6. Mixed ligand ruthenium(III) complexes of benzaldehyde 4-methyl-3-thiosemicarbazones with triphenylphosphine/triphenylarsine co-ligands: Synthesis, DNA binding, DNA cleavage, antioxidative and cytotoxic activity

    NASA Astrophysics Data System (ADS)

    Sampath, K.; Sathiyaraj, S.; Raja, G.; Jayabalakrishnan, C.

    2013-08-01

    The new ruthenium(III) complexes with 4-methyl-3-thiosemicarbazone ligands, (E)-2-(2-chlorobenzylidene)-N-methylhydrazinecarbothioamide (HL1) and (E)-2-(2-nitrobenzylidene)-N-methylhydrazinecarbothioamide (HL2), were prepared and characterized by various physico-chemical and spectroscopic methods. The title compounds act as bidentate, monobasic chelating ligands with S and N as the donor sites and are preferably found in the thiol form in all the complexes studied. The molecular structure of HL1 and HL2 were determined by single crystal X-ray diffraction method. DNA binding of the ligands and complexes were investigated by absorption spectroscopy and IR spectroscopy. It reveals that the compounds bind to nitrogenous bases of DNA via intercalation. The oxidative cleavage of the complexes with CT-DNA inferred that the effects of cleavage are dose dependent. Antioxidant study of the ligands and complexes showed the significant antioxidant activity against DPPH radical. In addition, the in vitro cytotoxicity of the ligands and complexes against MCF-7 cell line was assayed which showed higher cytotoxic activity with the lower IC50 values indicating their efficiency in killing the cancer cells even at low concentrations.

  7. Use of Plasmon Coupling to Reveal the Dynamics of DNA Bending andCleavage by Single EcoRV Restriction Enzymes

    SciTech Connect

    Reinhard, Bjorn; Sheikholeslami, Sassan; Mastroianni, Alexander; Alivisatos, A. Paul; Liphardt, Jan

    2006-09-06

    Pairs of Au nanoparticles have recently been proposed asplasmon rulers based on the dependence of their light scattering on theinterparticle distance. Preliminary work has suggested that plasmonrulers can be used to measure and monitor dynamic distance changes overthe 1 to 100nm length scale in biology. Here, we substantiate thatplasmon rulers can be used to effectively measure dynamical biophysicalprocesses by applying the ruler to a system that has been investigatedextensively using ensemble kinetic measurements: the cleavage of DNA bythe restriction enzyme EcoRV. Temporal resolutions of up to 240 Hz wereobtained, and the end-to-end extension of up to 1000 individual dsDNAenzyme substrates could be monitored in parallel for hours. The singlemolecule cleavage trajectories acquired here agree well with valuesobtained in bulk through other methods, and confirm well-known featuresof the cleavage process, such as the fact that the DNA is bent prior tocleavage. New dynamical information is revealed as well, for instance,the degree of softening of the DNA just prior to cleavage. The unlimitedlife time, high temporal resolution, and high signal/noise make theplasmon ruler an excellent tool for studying macromolecular assembliesand conformational changes at the single molecule level.

  8. The tertiary structure of the four-way DNA junction affords protection against DNase I cleavage.

    PubMed Central

    Murchie, A I; Carter, W A; Portugal, J; Lilley, D M

    1990-01-01

    The accessibility of phosphodiester bonds in the DNA of four-way helical junctions has been probed with the nuclease DNase I. Regions of protection were observed on all four strands of the junctions, that tended to be longer on the strands that are exchanged between the coaxially stacked pairs of helices. The protected regions on the continuous strands of the stacked helices were not located exactly at the junction, but were displaced towards the 3' side of the strand. This is the region of backbone that becomes located in the major groove of the opposed helix in the non-crossed, right-handed structure for the junction, and might therefore be predicted to be protected against cleavage by an enzyme. However, the major grooves of the structure remain accessible to the much smaller probe dimethyl sulphate. Images PMID:2339051

  9. DNA cleavage at the AP site via β-elimination mediated by the AP site-binding ligands.

    PubMed

    Abe, Yukiko S; Sasaki, Shigeki

    2016-02-15

    DNA is continuously damaged by endogenous and exogenous factors such as oxidation and alkylation. In the base excision repair pathway, the damaged nucleobases are removed by DNA N-glycosylase to form the abasic sites (AP sites). The alkylating antitumor agent exhibits cytotoxicity through the formation of the AP site. Therefore blockage or modulation of the AP site repair pathway may enhance the antitumor efficacy of DNA alkylating agents. In this study, we have examined the effects of the nucleobase-polyamine conjugated ligands (G-, A-, C- and T-ligands) on the cleavage of the AP site. The G- and A-ligands cleaved DNA at the AP site by promoting β-elimination in a non-selective manner by the G-ligand, and in a selective manner for the opposing dT by the A-ligand. These results suggest that the nucleobase-polyamine conjugate ligands may have the potential for enhancement of the cytotoxicities of the AP site.

  10. Mitochondrial DNA cleavage patterns distinguish independent origin of Chinese domestic geese and Western domestic geese.

    PubMed

    Shi, X-W; Wang, J-W; Zeng, F-T; Qiu, X-P

    2006-06-01

    It has generally been assumed, based on morphology, that Chinese domestic goose breeds were derived from the swan goose (Anser cygnoides) and that European and American breeds were derived from the graylag goose (Anser anser). To test the validity of this assumption, we investigated the mtDNA cleavage patterns of 16 Chinese breeds and 2 European breeds as well as hybrids produced between a Chinese breed and a European breed. After 224 mtDNAs, isolated from the Chinese and European breeds, were digested by 19 restriction endonucleases, variations of the cleavage patterns were observed for four enzymes (EcoRV, HaeII, HincII, and KpnI). All Chinese breeds and their maternal hybrids except the Yili breed showed an identical haplotype, named haplotype I or the Chinese haplotype; the European breeds and the Yili breed showed another haplotype, named haplotype II or the western haplotype. None of the haplotype found in the Chinese type was detectable in the western type and vice versa. The two haplotypes were found to differ from each other at 8.0% of the sites surveyed and with a 0.72% sequence divergence. Using 2% substitution per million years calibrated from the genera Anser and Branta, the two domestic geese haplotypes were estimated to have diverged approximately 360,000 years ago, well outside the 3000-6000 years in domestic history. Our findings provide the first molecular genetic evidence to support the dual origin assumption of domestic geese in the world. Meanwhile, the four mtDNA restriction fragment length polymorphisms can be used as maternal genetic markers to distinguish the two types of domestic geese.

  11. Evaluation of DNA binding, DNA cleavage, protein binding, radical scavenging and in vitro cytotoxic activities of ruthenium(II) complexes containing 2,4-dihydroxy benzylidene ligands.

    PubMed

    Mohanraj, Maruthachalam; Ayyannan, Ganesan; Raja, Gunasekaran; Jayabalakrishnan, Chinnasamy

    2016-12-01

    The new ruthenium(II) complexes with hydrazone ligands, 4-Methyl-benzoic acid (2,4-dihydroxy-benzylidene)-hydrazide (HL(1)), 4-Methoxy-benzoic acid (2,4-dihydroxy-benzylidene)-hydrazide (HL(2)), 4-Bromo-benzoic acid (2,4-dihydroxy-benzylidene)-hydrazide (HL(3)), were synthesized and characterized by various spectro analytical techniques. The molecular structures of the ligands were confirmed by single crystal X-ray diffraction technique. The DNA binding studies of the ligands and complexes were examined by absorption, fluorescence, viscosity and cyclic voltammetry methods. The results indicated that the ligands and complexes could interact with calf thymus DNA (CT-DNA) through intercalation. The DNA cleavage activity of the complexes was evaluated by gel electrophoresis assay, which revealed that the complexes are good DNA cleaving agents. The binding interaction of the ligands and complexes with bovine serum albumin (BSA) was investigated using fluorescence spectroscopic method. Antioxidant studies showed that the complexes have a strong radical scavenging properties. Further, the cytotoxic effect of the complexes examined on cancerous cell lines showed that the complexes exhibit significant anticancer activity. PMID:27612830

  12. DNA cleavage by Type ISP Restriction-Modification enzymes is initially targeted to the 3'-5' strand.

    PubMed

    van Aelst, Kara; Šišáková, Eva; Szczelkun, Mark D

    2013-01-01

    The mechanism by which a double-stranded DNA break is produced following collision of two translocating Type I Restriction-Modification enzymes is not fully understood. Here, we demonstrate that the related Type ISP Restriction-Modification enzymes LlaGI and LlaBIII can cooperate to cleave DNA following convergent translocation and collision. When one of these enzymes is a mutant protein that lacks endonuclease activity, DNA cleavage of the 3'-5' strand relative to the wild-type enzyme still occurs, with the same kinetics and at the same collision loci as for a reaction between two wild-type enzymes. The DNA nicking activity of the wild-type enzyme is still activated by a protein variant entirely lacking the Mrr nuclease domain and by a helicase mutant that cannot translocate. However, the helicase mutant cannot cleave the DNA despite the presence of an intact nuclease domain. Cleavage by the wild-type enzyme is not activated by unrelated protein roadblocks. We suggest that the nuclease activity of the Type ISP enzymes is activated following collision with another Type ISP enzyme and requires adenosine triphosphate binding/hydrolysis but, surprisingly, does not require interaction between the nuclease domains. Following the initial rapid endonuclease activity, additional DNA cleavage events then occur more slowly, leading to further processing of the initial double-stranded DNA break.

  13. Arrest of replication fork progression at sites of topoisomerase II-mediated DNA cleavage in human leukemia CEM cells incubated with VM-26.

    PubMed

    Catapano, C V; Carbone, G M; Pisani, F; Qiu, J; Fernandes, D J

    1997-05-13

    Recent studies have shown that the anticancer drugs VM-26 and mitoxantrone stabilize preferentially the binding of topoisomerase IIalpha to replicating compared to nonreplicating DNA. To further understand the mechanisms by which cleavable complex-forming topoisomerase II inhibitors interfere with DNA replication, we examined the effects of VM-26 on this process in human leukemia CEM cells. Both the inhibition of DNA synthesis and cell survival were directly related to the total amount of drug-stabilized cleavable complexes formed in VM-26-treated cells. DNA chain elongation was also inhibited in a concentration-dependent fashion in these cells, which suggested that VM-26-stabilized cleavable complexes interfered with the movement of DNA replication forks. To test this hypothesis directly, we monitored replication fork progression at a specific site of VM-26-induced DNA cleavage. A topoisomerase II-mediated cleavage site was detected in the first exon of the c-myc gene in VM-26-treated cells. This cleavage site was downstream of a putative replication origin located in the 5' flanking region of the gene. Replication forks, which moved through this region of the c-myc gene in the 5' to 3' direction, were specifically arrested at this site in VM-26-treated cells, but not in untreated or aphidicolin-treated cells. These studies provide the first direct evidence that a VM-26-stabilized topoisomerase II-DNA cleavable complex acts as a replication fork barrier at a specific genomic site in mammalian cells. Furthermore, the data support the hypothesis that the replication fork arrest induced by cleavable complex-forming topoisomerase II inhibitors leads to the generation of irreversible DNA damage and cytotoxicity in proliferating cells.

  14. A Study on Spectro-Analytical Aspects, DNA - Interaction, Photo-Cleavage, Radical Scavenging, Cytotoxic Activities, Antibacterial and Docking Properties of 3 - (1 - (6 - methoxybenzo [d] thiazol - 2 - ylimino) ethyl) - 6 - methyl - 3H - pyran - 2, 4 - dione and its Metal Complexes.

    PubMed

    Ravi, Mudavath; Chennam, Kishan Prasad; Ushaiah, B; Eslavath, Ravi Kumar; Perugu, Shyam; Ajumeera, Rajanna; Devi, Ch Sarala

    2015-09-01

    The focus of the present work is on the design, synthesis, characterization, DNA-interaction, photo-cleavage, radical scavenging, in-vitro cytotoxicity, antimicrobial, docking and kinetic studies of Cu (II), Cd (II), Ce (IV) and Zr (IV) metal complexes of an imine derivative, 3 - (1 - (6 - methoxybenzo [d] thiazol - 2 - ylimino) ethyl) - 6 - methyl - 3H - pyran - 2, 4 - dione. The investigation of metal ligand interactions for the determination of composition of metal complexes, corresponding kinetic studies and antioxidant activity in solution was carried out by spectrophotometric methods. The synthesized metal complexes were characterized by EDX analysis, Mass, IR, (1)H-NMR, (13)C-NMR and UV-Visible spectra. DNA binding studies of metal complexes with Calf thymus (CT) DNA were carried out at room temperature by employing UV-Vis electron absorption, fluorescence emission and viscosity measurement techniques. The results revealed that these complexes interact with DNA through intercalation. The results of in vitro antibacterial studies showed the enhanced activity of chelating agent in metal chelated form and thus inferring scope for further development of new therapeutic drugs. Cell viability experiments indicated that all complexes showed significant dose dependent cytotoxicity in selected cell lines. The molecular modeling and docking studies were carried out with energy minimized structures of metal complexes to identify the receptor to metal interactions. PMID:26315729

  15. Synthetic prodigiosenes and the influence of C-ring substitution on DNA cleavage, transmembrane chloride transport and basicity.

    PubMed

    Rastogi, Soumya; Marchal, Estelle; Uddin, Imam; Groves, Brandon; Colpitts, Julie; McFarland, Sherri A; Davis, Jeffery T; Thompson, Alison

    2013-06-21

    Analogues of the tripyrrolic natural product prodigiosin bearing an additional methyl and a carbonyl group at the C-ring were synthesised and evaluated. In vitro anticancer activity screening (NCI) and the study of modes of action (copper-mediated cleavage of double-stranded DNA and transmembrane transport of chloride anions) showed that the presence of the methyl group is not detrimental to activity. Furthermore, although the presence of an ester conjugated to the prodigiosene C-ring seems to decrease both pK(a) and chloride transport efficiency compared to the natural product, these analogues still exhibit a high rate of chloride transport. All analogues exhibit good in vitro anticancer activity and reduced toxicity compared to the natural product: compare an acute systemic toxicity of 100 mg kg(-1) in mice vs. 4 mg kg(-1) for prodigiosin, pointing towards a larger therapeutic window than for the natural product.

  16. Salicylate, a catalytic inhibitor of topoisomerase II, inhibits DNA cleavage and is selective for the α isoform.

    PubMed

    Bau, Jason T; Kang, Zhili; Austin, Caroline A; Kurz, Ebba U

    2014-02-01

    Topoisomerase II (topo II) is a ubiquitous enzyme that is essential for cell survival through its role in regulating DNA topology and chromatid separation. Topo II can be poisoned by common chemotherapeutics (such as doxorubicin and etoposide), leading to the accumulation of cytotoxic enzyme-linked DNA double-stranded breaks. In contrast, nonbreak-inducing topo II catalytic inhibitors have also been described and have more limited use in clinical chemotherapy. These agents, however, may alter the efficacy of regimens incorporating topo II poisons. We previously identified salicylate, the primary metabolite of aspirin, as a novel catalytic inhibitor of topo II. We have now determined the mechanism by which salicylate inhibits topo II. As catalytic inhibitors can act at a number of steps in the topo II catalytic cycle, we used multiple independent, biochemical approaches to interrogate the catalytic cycle. Furthermore, as mammalian cells express two isoforms of topo II (α and β), we examined whether salicylate was isoform selective. Our results demonstrate that salicylate is unable to intercalate DNA, and does not prevent enzyme-DNA interaction, nor does it promote stabilization of topo IIα in closed clamps on DNA. Although salicylate decreased topo IIα ATPase activity in a dose-dependent noncompetitive manner, this was secondary to salicylate-mediated inhibition of DNA cleavage. Surprisingly, comparison of salicylate's effects using purified human topo IIα and topo IIβ revealed that salicylate selectively inhibits the α isoform. These findings provide a definitive mechanism for salicylate-mediated inhibition of topo IIα and provide support for further studies determining the basis for its isoform selectivity. PMID:24220011

  17. Persistent DNA binding, cleavage performance and eco-friendly catalytic nature of novel complexes having 2-aminobenzophenone precursor.

    PubMed

    Muniyandi, Vellaichamy; Pravin, Narayanaperumal; Subbaraj, Paramasivam; Raman, Natarajan

    2016-03-01

    This paper describes the synthesis of four novel bidentate metal(II) complexes having 2-aminobenzophenone precursor and a co-ligand (anthranilic acid). They are characterized by the usual spectral and analytical data. They adopt octahedral geometrical arrangements around the metal ions which have been confirmed by electronic absorption data. Moreover, the EPR study of Cu(II) complex has provided supportive evidence to the conclusion drawn on the basis of electronic spectrum and magnetic moment value. Powder XRD and SEM studies show that all the complexes are microcrystalline with homogenous morphology. The interaction of these complexes with CT-DNA has been explored by UV-absorption, fluorescence, viscosity, CV and CD techniques which reveal that the complexes could bind to CT-DNA through intercalation. The oxidative cleavage of the metal complexes with pBR322 DNA has also been investigated by gel electrophoresis. Moreover, the antimicrobial bustle shows that all metal chelates have superior activity than the free Schiff base ligand. The catalytic activity of the complexes has been evaluated towards the oxidation of aniline. All the complexes exhibit significant catalytic activity. Among them Cu(II) complex exhibits better catalytic activity than others. This catalytic process occurs at room temperature and it proceeds in water medium which suggests that this is an eco-friendly process. PMID:26784572

  18. Tunable DNA cleavage activity promoted by copper(ii) ternary complexes with N-donor heterocyclic ligands.

    PubMed

    Bortolotto, T; Silva-Caldeira, P P; Pich, C T; Pereira-Maia, E C; Terenzi, H

    2016-06-01

    Several small molecules have the capacity to cleave DNA promptly at high yields, even under mild conditions. Usually, this activity has no constraints, occurring without external or user control. Here, we demonstrate that UV-light exposure can greatly enhance the DNA cleavage activity promoted by four ternary copper(ii) complexes. A remarkable photocontrolled activity was achieved, which may be interesting for chemical and biochemical applications. PMID:27168172

  19. Kinetics of substrate recognition and cleavage by human 8-oxoguanine-DNA glycosylase

    PubMed Central

    Kuznetsov, Nikita A.; Koval, Vladimir V.; Zharkov, Dmitry O.; Nevinsky, Georgy A.; Douglas, Kenneth T.; Fedorova, Olga S.

    2005-01-01

    Human 8-oxoguanine-DNA glycosylase (hOgg1) excises 8-oxo-7,8-dihydroguanine (8-oxoG) from damaged DNA. We report a pre-steady-state kinetic analysis of hOgg1 mechanism using stopped-flow and enzyme fluorescence monitoring. The kinetic scheme for hOgg1 processing an 8-oxoG:C-containing substrate was found to include at least three fast equilibrium steps followed by two slow, irreversible steps and another equilibrium step. The second irreversible step was rate-limiting overall. By comparing data from Ogg1 intrinsic fluorescence traces and from accumulation of products of different types, the irreversible steps were attributed to two main chemical steps of the Ogg1-catalyzed reaction: cleavage of the N-glycosidic bond of the damaged nucleotide and β-elimination of its 3′-phosphate. The fast equilibrium steps were attributed to enzyme conformational changes during the recognition of 8-oxoG, and the final equilibrium, to binding of the reaction product by the enzyme. hOgg1 interacted with a substrate containing an aldehydic AP site very slowly, but the addition of 8-bromoguanine (8-BrG) greatly accelerated the reaction, which was best described by two initial equilibrium steps followed by one irreversible chemical step and a final product release equilibrium step. The irreversible step may correspond to β-elimination since it is the very step facilitated by 8-BrG. PMID:16024742

  20. Implications of caspase-dependent proteolytic cleavage of cyclin A1 in DNA damage-induced cell death

    SciTech Connect

    Woo, Sang Hyeok; Seo, Sung-Keum; An, Sungkwan; Choe, Tae-Boo; Hong, Seok-Il; Lee, Yun-Han; Park, In-Chul

    2014-10-24

    Highlights: • Caspase-1 mediates doxorubicin-induced downregulation of cyclin A1. • Active caspase-1 effectively cleaved cyclin A1 at D165. • Cyclin A1 expression is involved in DNA damage-induced cell death. - Abstract: Cyclin A1 is an A-type cyclin that directly binds to CDK2 to regulate cell-cycle progression. In the present study, we found that doxorubicin decreased the expression of cyclin A1 at the protein level in A549 lung cancer cells, while markedly downregulating its mRNA levels. Interestingly, doxorubicin upregulated caspase-1 in a concentration-dependent manner, and z-YAVD-fmk, a specific inhibitor of caspase-1, reversed the doxorubicin-induced decrease in cyclin A1 in A549 lung cancer and MCF7 breast cancer cells. Active caspase-1 effectively cleaved cyclin A1 at D165 into two fragments, which in vitro cleavage assays showed were further cleaved by caspase-3. Finally, we found that overexpression of cyclin A1 significantly reduced the cytotoxicity of doxorubicin, and knockdown of cyclin A1 by RNA interference enhanced the sensitivity of cells to ionizing radiation. Our data suggest a new mechanism for the downregulation of cyclin A1 by DNA-damaging stimuli that could be intimately involved in the cell death induced by DNA damage-inducing stimuli, including doxorubicin and ionizing radiation.

  1. Topoisomerase I-mediated DNA cleavage as a guide to the development of antitumor agents derived from the marine alkaloid lamellarin D: triester derivatives incorporating amino acid residues.

    PubMed

    Tardy, Christelle; Facompré, Michaël; Laine, William; Baldeyrou, Brigitte; García-Gravalos, Dolores; Francesch, Andrés; Mateo, Cristina; Pastor, Alfredo; Jiménez, José A; Manzanares, Ignacio; Cuevas, Carmen; Bailly, Christian

    2004-04-01

    The marine alkaloid lamellarin D (LAM-D) has been recently characterized as a potent poison of human topoisomerase I endowed with remarkable cytotoxic activities against tumor cells. We report here the first structure-activity relationship study in the LAM-D series. Two groups of triester compounds incorporating various substituents on the three phenolic OH at positions 8, 14 and 20 of 6H-[1]benzopyrano[4',3':4,5]pyrrolo[2,1-a]isoquinolin-6-one pentacyclic planar chromophore typical of the parent alkaloid were tested as topoisomerase I inhibitors. The non-amino compounds in group A showed no activity against topoisomerase I and were essentially non cytotoxic. In sharp contrast, compounds in group B incorporating amino acid residues strongly promoted DNA cleavage by human topoisomerase I. LAM-D derivatives tri-substituted with leucine, valine, proline, phenylalanine or alanine residues, or a related amino side chain, stabilize topoisomerase I-DNA complexes. The DNA cleavage sites detected at T downward arrow G or C downward arrow G dinucleotides with these molecules were identical to that of LAM-D but slightly different from those seen with camptothecin which stimulates topoisomerase I-mediated cleavage at T downward arrow G only. In the DNA relaxation and cleavage assays, the corresponding Boc-protected compounds and the analogues of the non-planar LAM-501 derivative lacking the 5-6 double bond in the quinoline B-ring showed no effect on topoisomerase I and were considerably less cytotoxic than the corresponding cationic compounds in the LAM-D series. The presence of positive charges on the molecules enhances DNA interaction but melting temperature studies indicate that DNA binding is not correlated with topoisomerase I inhibition or cytotoxicity. Cell growth inhibition by the 41 lamellarin derivatives was evaluated with a panel of tumor cells lines. With prostate (DU-145 and LN-CaP), ovarian (IGROV and IGROV-ET resistant to ecteinascidin-743) and colon (LoVo and

  2. Comparative reactivity of mismatched and unpaired bases in relation to their type and surroundings. Chemical cleavage of DNA mismatches in mutation detection analysis.

    PubMed

    Yakubovskaya, Marianna G; Belyakova, Anna A; Gasanova, Viktoria K; Belitsky, Gennady A; Dolinnaya, Nina G

    2010-07-01

    Systematic study of chemical reactivity of non-Watson-Crick base pairs depending on their type and microenvironment was performed on a model system that represents two sets of synthetic DNA duplexes with all types of mismatched and unmatched bases flanked by T.A or G.C pairs. Using comparative cleavage pattern analysis, we identified the main and additional target bases and performed quantitative study of the time course and efficacy of DNA modification caused by potassium permanganate or hydroxylamine. Potassium permanganate in combination with tetraethylammonium chloride was shown to induce DNA cleavage at all mismatched or bulged T residues, as well as at thymines of neighboring canonical pairs. Other mispaired (bulged) bases and thymine residues located on the second position from the mismatch site were not the targets for KMnO(4) attack. In contrast, hydroxylamine cleaved only heteroduplexes containing mismatched or unmatched C residues, and did not modify adjacent cytosines. However when G.C pairs flank bulged C residue, neighboring cytosines are also attacked by hydroxylamine due to defect migration. Chemical reactivity of target bases was shown to correlate strongly with the local disturbance of DNA double helix at mismatch or bulge site. With our model system, we were able to prove the absence of false-negative and false-positive results. Portion of heteroduplex reliably revealed in a mixture with corresponding homoduplex consists of 5% for bulge bases and "open" non-canonical pairs, and 10% for wobble base pairs giving minimal violations in DNA structure. This study provides a complete understanding of the principles of mutation detection methodology based on chemical cleavage of mismatches and clarifies the advantages and limitations of this approach in various biological and conformational studies of DNA.

  3. DNA cleavage activity of Fe(II)N4Py under photo irradiation in the presence of 1,8-naphthalimide and 9-aminoacridine: unexpected effects of reactive oxygen species scavengers.

    PubMed

    Li, Qian; Browne, Wesley R; Roelfes, Gerard

    2011-09-01

    The DNA cleavage activity of the iron(II) complex of the ligand N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine (N4Py) was investigated in the presence of the chromophores 1,8-naphthalimide (NI) and 9-aminoacridine (AA) under photo irradiation at 355 and 400.8 nm and compared to the activity of the complex without the chromophores. Whereas in most cases no synergistic effect of the added chromophores on DNA cleavage efficiency was observed, it was found that for Fe(II)N4Py, in combination with NI under irradiation at 355 nm, the DNA cleavage activity was increased. Surprisingly, it was found that the addition of reactive oxygen species (ROS) scavengers gave rise to significantly increased DNA cleavage efficiency, which is a highly counterintuitive observation since ROS are needed to achieve DNA cleavage. A hypothesis is put forward to explain, at least partly, these results. It is proposed that the addition of scavengers inhibits quenching of (3)NI*, thus making photo-induced electron transfer between (3)NI* and Fe(III)N4Py more efficient. This results in reduction of Fe(III)N4Py to Fe(II)N4Py, which can then react with ROS giving rise to DNA cleavage. Hence the role of the scavengers is to maintain a close to optimal concentration of ROS. The present study serves as an illustration of the care that needs to be exercised in interpreting the results of experiments using standard ROS scavengers, since especially in complex systems such as presented here they can give rise to unexpected phenomena. In the presence of 1,8-naphthalimide or 9-aminoacridine, ROS scavengers can increase the DNA cleavage efficiency of Fe(II)N4Py complex under photo irradiation.

  4. Bipartite recognition of target RNAs activates DNA cleavage by the Type III-B CRISPR–Cas system

    PubMed Central

    Elmore, Joshua R.; Sheppard, Nolan F.; Ramia, Nancy; Deighan, Trace; Li, Hong; Terns, Rebecca M.; Terns, Michael P.

    2016-01-01

    CRISPR–Cas systems eliminate nucleic acid invaders in bacteria and archaea. The effector complex of the Type III-B Cmr system cleaves invader RNAs recognized by the CRISPR RNA (crRNA ) of the complex. Here we show that invader RNAs also activate the Cmr complex to cleave DNA. As has been observed for other Type III systems, Cmr eliminates plasmid invaders in Pyrococcus furiosus by a mechanism that depends on transcription of the crRNA target sequence within the plasmid. Notably, we found that the target RNA per se induces DNA cleavage by the Cmr complex in vitro. DNA cleavage activity does not depend on cleavage of the target RNA but notably does require the presence of a short sequence adjacent to the target sequence within the activating target RNA (rPAM [RNA protospacer-adjacent motif]). The activated complex does not require a target sequence (or a PAM) in the DNA substrate. Plasmid elimination by the P. furiosus Cmr system also does not require the Csx1 (CRISPR-associated Rossman fold [CARF] superfamily) protein. Plasmid silencing depends on the HD nuclease and Palm domains of the Cmr2 (Cas10 superfamily) protein. The results establish the Cmr complex as a novel DNA nuclease activated by invader RNAs containing a crRNA target sequence and a rPAM. PMID:26848045

  5. AgNP-DNA@GQDs hybrid: new approach for sensitive detection of H2O2 and glucose via simultaneous AgNP etching and DNA cleavage.

    PubMed

    Wang, Lili; Zheng, Jing; Li, Yinhui; Yang, Sheng; Liu, Changhui; Xiao, Yue; Li, Jishan; Cao, Zhong; Yang, Ronghua

    2014-12-16

    A growing body of evidence suggests that hydrogen peroxide (H2O2) plays an active role in the regulation of various physiological processes. Development of sensitive probes for H2O2 is an urgent work. In this study, we proposed a DNA-mediated silver nanoparticle and graphene quantum dot hybrid nanocomposite (AgNP-DNA@GQDs) for sensitive fluorescent detection of H2O2. The sensing mechanism is based on the etching effect of H2O2 to AgNPs and the cleavage of DNA by as-generated hydroxyl radicals (•OH). The formation of AgNP-DNA@GQDs nanocomposite can result in fluorescence quenching of GQDs by AgNPs through the resonance energy transfer. Upon H2O2 addition, the energy transfer between AgNPs and GQDs mediated by DNA was weakened and obvious fluorescence recovery of GQDs could be observed. It is worth noting that the reaction product •OH between H2O2 and AgNPs could cleave the DNA-bridge and result in the disassembly of AgNP-DNA@GQDs to achieve further signal enhancement. With optimal conditions, the approach achieves a low detection limit of 0.10 μM for H2O2. Moreover, this nanocomposite is further extended to the glucose sensing in human urine combining with glucose oxidase (GOx) for the oxidation of glucose and formation of H2O2. The glucose concentrations in human urine are detected with satisfactory recoveries of 94.6-98.8% which holds potential for ultrasensitive quantitative analysis of glucose and supplies valuable information for diabetes mellitus research and clinical diagnosis. PMID:25390796

  6. Cleavage of a four-way DNA junction by a restriction enzyme spanning the point of strand exchange.

    PubMed Central

    Murchie, A I; Portugal, J; Lilley, D M

    1991-01-01

    The four-way DNA junction is believed to fold in the presence of metal ions into an X-shaped structure, in which there is pairwise coaxial stacking of helical arms. A restriction enzyme MboII has been used to probe this structure. A junction was constructed containing a recognition site for MboII in one helical arm, positioned such that stacking of arms would result in cleavage in a neighbouring arm. Strong cleavage was observed, at the sites expected on the basis of coaxial stacking. An additional cleavage was seen corresponding to the formation of an alternative stacking isomer, suggesting that the two isomeric forms are in dynamic equilibrium in solution. Images PMID:2001684

  7. Calcium influx-mediated translocation of m-calpain induces Ku80 cleavage and enhances the Ku80-related DNA repair pathway

    PubMed Central

    Baek, Kyung Hye; Yu, Han Vit; Kim, Eosu; Na, Younghwa; Kwon, Youngjoo

    2016-01-01

    Proteomic analysis of ionomycin-treated and untreated mammary epithelial MCF10A cells elucidated differences in Ku80 cleavage. Ku80, a subunit of the Ku protein complex, is an initiator of the non-homologous, end-joining (NHEJ), double-strand breaks (DSBs) repair pathway. The nuclear Ku80 was cleaved in a calcium concentration-dependent manner by m-calpain but not by m-calpain. The cleavage of nuclear Ku80 at its α/β domain was validated by Western blotting analysis using flag-tagged expression vectors of truncated versions of Ku80 and a flag antibody and was confirmed in m-calpain knock-down cells and in vitro cell-free evaluation with recombinant proteins of calpains, Ku70, and Ku80. In addition, the cleaved Ku80 still formed a Ku heterodimer and promoted DNA DSB repair activity. Taken together, these findings indicate that translocated m-calpain enhances the NHEJ pathway through the cleavage of Ku80. Based on the present study, m-calpain in DNA repair pathways might be a novel anticancer drug target, or its mechanism might be a possible route for resistance acquisition of DNA damage-inducing chemotherapeutics. PMID:27121057

  8. Beetroot betalain inhibits peroxynitrite-mediated tyrosine nitration and DNA strand cleavage.

    PubMed

    Sakihama, Yasuko; Maeda, Makiko; Hashimoto, Makoto; Tahara, Satoshi; Hashidoko, Yasuyuki

    2012-01-01

    Two major betalains, red-purple betacyanins and yellow betaxanthins, were isolated from red beetroots (Beta vulgaris L.), and their peroxynitrite (ONOO(-)) scavenging capacity was investigated. Apparent colours of the betalains were bleached by the addition of ONOO(-), and the absorbance decreases were suppressed in the presence of glutathione, a ONOO(-) scavenger. After bleaching, a new absorption maximum was observed at 350 nm in the spectrum of the resulting reaction mixture. New peaks were detected from HPLC analysis of the reaction products of betanin, a representative constituent of red beetroot betacyanins, treated with ONOO(-) monitoring at 350 nm, and the intensity of the major peak was positively correlated with ONOO(-) concentration. Betanin inhibited the ONOO(-) (0.5 mM)-dependent nitration of tyrosine (0.1 mM). Additionally, the IC(50) value of betanin (19.2 μM) was lower than that of ascorbate (79.6 μM). The presence of betanin (0.05-1.0 mM) also inhibited ONOO(-) (0.5 mM)-dependent DNA strand cleavage in a concentration-dependent manner. These results suggest that betalains can protect cells from nitrosative stress in addition to protecting them from oxidative stresses. PMID:22087762

  9. DNA binding, DNA cleavage and HSA interaction of several metal complexes containing N-(2-hydroxyethyl)-N'-benzoylthiourea and 1,10-phenanthroline ligands.

    PubMed

    Peng, Bo; Gao, Zhuantao; Li, Xibo; Li, Tingting; Chen, Guorong; Zhou, Min; Zhang, Ji

    2016-10-01

    Four novel ternary metal complexes of the type [M(Phen)(L1)2)] [phen = 1,10-phenanthroline, L1 = N-(2-hydroxyethyl)-N'-benzoylthiourea, M = Ni(II)(1), Co(II) (2), Cu(II) (3), Pd(II) (4)] were synthesized. The organic ligands and their corresponding organometallic complexes have been characterized using UV-vis absorption spectroscopy, element analysis, infrared radiation spectroscopy and fluorescence spectra. DNA binding and cleavage studies of these complexes were conducted in detail. In vitro DNA-binding properties were studied by electronic absorption spectra and fluorescence spectra methods. The results indicate that all of the ternary metal complexes can efficiently bind to DNA via intercalation mode. The DNA-binding constants for all ternary compounds are around 4 × 10(6) M(-1). The binding propensity of the complexes to human serum albumin (HSA) was also investigated. Agarose gel electrophoresis study revealed that the metal complexes could cleave super-coiled pBR322 DNA to a nicked form in the absence of external agents. In vitro anti bacterial studies show that copper complex has weak antibacterial activities. Copper complex exhibits a better biological activity among all complexes. This study provides a new perspective and evaluation on the role and importance of the effect factors on the medicinal properties of benzoylthiourea compounds. Synchronous fluorescence spectra of HSA (10 μM) as a function of concentration of the complexes 1-4.

  10. DNA binding, DNA cleavage and HSA interaction of several metal complexes containing N-(2-hydroxyethyl)-N'-benzoylthiourea and 1,10-phenanthroline ligands.

    PubMed

    Peng, Bo; Gao, Zhuantao; Li, Xibo; Li, Tingting; Chen, Guorong; Zhou, Min; Zhang, Ji

    2016-10-01

    Four novel ternary metal complexes of the type [M(Phen)(L1)2)] [phen = 1,10-phenanthroline, L1 = N-(2-hydroxyethyl)-N'-benzoylthiourea, M = Ni(II)(1), Co(II) (2), Cu(II) (3), Pd(II) (4)] were synthesized. The organic ligands and their corresponding organometallic complexes have been characterized using UV-vis absorption spectroscopy, element analysis, infrared radiation spectroscopy and fluorescence spectra. DNA binding and cleavage studies of these complexes were conducted in detail. In vitro DNA-binding properties were studied by electronic absorption spectra and fluorescence spectra methods. The results indicate that all of the ternary metal complexes can efficiently bind to DNA via intercalation mode. The DNA-binding constants for all ternary compounds are around 4 × 10(6) M(-1). The binding propensity of the complexes to human serum albumin (HSA) was also investigated. Agarose gel electrophoresis study revealed that the metal complexes could cleave super-coiled pBR322 DNA to a nicked form in the absence of external agents. In vitro anti bacterial studies show that copper complex has weak antibacterial activities. Copper complex exhibits a better biological activity among all complexes. This study provides a new perspective and evaluation on the role and importance of the effect factors on the medicinal properties of benzoylthiourea compounds. Synchronous fluorescence spectra of HSA (10 μM) as a function of concentration of the complexes 1-4. PMID:27571992

  11. Bifunctional alkylating agent-mediated MGMT-DNA cross-linking and its proteolytic cleavage in 16HBE cells.

    PubMed

    Cheng, Jin; Ye, Feng; Dan, Guorong; Zhao, Yuanpeng; Wang, Bin; Zhao, Jiqing; Sai, Yan; Zou, Zhongmin

    2016-08-15

    Nitrogen mustard (NM), a bifunctional alkylating agent (BAA), contains two alkyl arms and can act as a cross-linking bridge between DNA and protein to form a DNA-protein cross-link (DPC). O(6)-methylguanine-DNA methyltransferase (MGMT), a DNA repair enzyme for alkyl adducts removal, is found to enhance cell sensitivity to BAAs and to promote damage, possibly due to its stable covalent cross-linking with DNA mediated by BAAs. To investigate MGMT-DNA cross-link (mDPC) formation and its possible dual roles in NM exposure, human bronchial epithelial cell line 16HBE was subjected to different concentrations of HN2, a kind of NM, and we found mDPC was induced by HN2 in a concentration-dependent manner, but the mRNA and total protein of MGMT were suppressed. As early as 1h after HN2 treatment, high mDPC was achieved and the level maintained for up to 24h. Quick total DPC (tDPC) and γ-H2AX accumulation were observed. To evaluate the effect of newly predicted protease DVC1 on DPC cleavage, we applied siRNA of MGMT and DVC1, MG132 (proteasome inhibitor), and NMS-873 (p97 inhibitor) and found that proteolysis plays a role. DVC1 was proven to be more important in the cleavage of mDPC than tDPC in a p97-dependent manner. HN2 exposure induced DVC1 upregulation, which was at least partially contributed to MGMT cleavage by proteolysis because HN2-induced mDPC level and DNA damage was closely related with DVC1 expression. Homologous recombination (HR) was also activated. Our findings demonstrated that MGMT might turn into a DNA damage promoter by forming DPC when exposed to HN2. Proteolysis, especially DVC1, plays a crucial role in mDPC repair. PMID:27342729

  12. Cleavage of stalled forks by fission yeast Mus81/Eme1 in absence of DNA replication checkpoint.

    PubMed

    Froget, Benoît; Blaisonneau, Joël; Lambert, Sarah; Baldacci, Giuseppe

    2008-02-01

    During replication arrest, the DNA replication checkpoint plays a crucial role in the stabilization of the replisome at stalled forks, thus preventing the collapse of active forks and the formation of aberrant DNA structures. How this checkpoint acts to preserve the integrity of replication structures at stalled fork is poorly understood. In Schizosaccharomyces pombe, the DNA replication checkpoint kinase Cds1 negatively regulates the structure-specific endonuclease Mus81/Eme1 to preserve genomic integrity when replication is perturbed. Here, we report that, in response to hydroxyurea (HU) treatment, the replication checkpoint prevents S-phase-specific DNA breakage resulting from Mus81 nuclease activity. However, loss of Mus81 regulation by Cds1 is not sufficient to produce HU-induced DNA breaks. Our results suggest that unscheduled cleavage of stalled forks by Mus81 is permitted when the replisome is not stabilized by the replication checkpoint. We also show that HU-induced DNA breaks are partially dependent on the Rqh1 helicase, the fission yeast homologue of BLM, but are independent of its helicase activity. This suggests that efficient cleavage of stalled forks by Mus81 requires Rqh1. Finally, we identified an interplay between Mus81 activity at stalled forks and the Chk1-dependent DNA damage checkpoint during S-phase when replication forks have collapsed.

  13. The Structural Basis of Asymmetry in DNA Binding and Cleavage as Exhibited by the I-SmaMI LAGLIDADG Meganuclease.

    PubMed

    Shen, Betty W; Lambert, Abigail; Walker, Bradley C; Stoddard, Barry L; Kaiser, Brett K

    2016-01-16

    LAGLIDADG homing endonucleases ("meganucleases") are highly specific DNA cleaving enzymes that are used for genome engineering. Like other enzymes that act on DNA targets, meganucleases often display binding affinities and cleavage activities that are dominated by one protein domain. To decipher the underlying mechanism of asymmetric DNA recognition and catalysis, we identified and characterized a new monomeric meganuclease (I-SmaMI), which belongs to a superfamily of homologous enzymes that recognize divergent DNA sequences. We solved a series of crystal structures of the enzyme-DNA complex representing a progression of sequential reaction states, and we compared the structural rearrangements and surface potential distributions within each protein domain against their relative contribution to binding affinity. We then determined the effects of equivalent point mutations in each of the two enzyme active sites to determine whether asymmetry in DNA recognition is translated into corresponding asymmetry in DNA cleavage activity. These experiments demonstrate the structural basis for "dominance" by one protein domain over the other and provide insights into this enzyme's conformational switch from a nonspecific search mode to a more specific recognition mode.

  14. Virulence genes A, G, and D mediate the double-stranded border cleavage of T-DNA from the Agrobacterium Ti plasmid.

    PubMed

    Veluthambi, K; Jayaswal, R K; Gelvin, S B

    1987-04-01

    Agrobacterium tumefaciens transfers the T-DNA portion of its Ti plasmid to the nuclear genome of plant cells. Upon cocultivation of A. tumefaciens strain A348 with regenerating tobacco leaf protoplasts, restriction endonuclease fragments of the T-DNA were generated that are consistent with double-stranded cleavage of the T-DNA at the border sequences. The T-DNA border cleavage was also induced by acetosyringone, a compound that induces many of the virulence genes. T-DNA cleavage did not occur in Agrobacterium strains harboring Tn3-HoHo1 insertions in the virA, -D, or -G genes. Insertion mutations in virB, -C, or -E did not have any effect on the T-DNA cleavage. Complementation of the mutations in virA, -D, or -G with cosmids containing the respective wild-type genes restored the T-DNA cleavage. Since virA and -G are essential in regulating the expression of other vir genes in response to plant signal molecules, the virD gene product(s) appear to mediate double-stranded T-DNA border cleavage.

  15. Surface invasive cleavage assay on a maskless light-directed diamond DNA microarray for genome-wide human SNP mapping.

    PubMed

    Nie, Bei; Yang, Min; Fu, Weiling; Liang, Zhiqing

    2015-07-01

    The surface invasive cleavage assay, because of its innate accuracy and ability for self-signal amplification, provides a potential route for the mapping of hundreds of thousands of human SNP sites. However, its performance on a high density DNA array has not yet been established, due to the unusual "hairpin" probe design on the microarray and the lack of chemical stability of commercially available substrates. Here we present an applicable method to implement a nanocrystalline diamond thin film as an alternative substrate for fabricating an addressable DNA array using maskless light-directed photochemistry, producing the most chemically stable and biocompatible system for genetic analysis and enzymatic reactions. The surface invasive cleavage reaction, followed by degenerated primer ligation and post-rolling circle amplification is consecutively performed on the addressable diamond DNA array, accurately mapping SNP sites from PCR-amplified human genomic target DNA. Furthermore, a specially-designed DNA array containing dual probes in the same pixel is fabricated by following a reverse light-directed DNA synthesis protocol. This essentially enables us to decipher thousands of SNP alleles in a single-pot reaction by the simple addition of enzyme, target and reaction buffers.

  16. Human Holliday junction resolvase GEN1 uses a chromodomain for efficient DNA recognition and cleavage

    PubMed Central

    Lee, Shun-Hsiao; Princz, Lissa Nicola; Klügel, Maren Felizitas; Habermann, Bianca; Pfander, Boris; Biertümpfel, Christian

    2015-01-01

    Holliday junctions (HJs) are key DNA intermediates in homologous recombination. They link homologous DNA strands and have to be faithfully removed for proper DNA segregation and genome integrity. Here, we present the crystal structure of human HJ resolvase GEN1 complexed with DNA at 3.0 Å resolution. The GEN1 core is similar to other Rad2/XPG nucleases. However, unlike other members of the superfamily, GEN1 contains a chromodomain as an additional DNA interaction site. Chromodomains are known for their chromatin-targeting function in chromatin remodelers and histone(de)acetylases but they have not previously been found in nucleases. The GEN1 chromodomain directly contacts DNA and its truncation severely hampers GEN1’s catalytic activity. Structure-guided mutations in vitro and in vivo in yeast validated our mechanistic findings. Our study provides the missing structure in the Rad2/XPG family and insights how a well-conserved nuclease core acquires versatility in recognizing diverse substrates for DNA repair and maintenance. DOI: http://dx.doi.org/10.7554/eLife.12256.001 PMID:26682650

  17. Quantitative analysis of RNA cleavage during RNA-directed DNA synthesis by human immunodeficiency and avian myeloblastosis virus reverse transcriptases.

    PubMed Central

    DeStefano, J J; Mallaber, L M; Fay, P J; Bambara, R A

    1994-01-01

    We have determined the extent of RNA cleavage carried out during DNA synthesis by either human immunodeficiency virus (HIV) or avian myeloblastosis virus (AMV) reverse transcriptases (RTs). Conditions were chosen that allowed the analysis of the cleavage and synthesis performed by the RT during one binding event on a given template-primer. The maximum quantity of ribonuclease H (RNase H) sensitive template RNA left after synthesis by the RTs was determined by treatment with Escherichia coli RNase H. RNA cleavage products that were expected to be too short to remain hybridized, less than 13 nucleotides in length, were quantitated. Results showed that HIV- and AMV-RT degraded about 80% and less than 20%, respectively, of the potentially degradable RNA to these short products. Survival of longer, hybridized RNA was not a result of synthesis by a population of RTs that had selectively lost RNase H activity. Using an assay that evaluated the proportion of primers extended versus RNA templates cleaved during primer-extension by the RTs, we determined that essentially each molecule of HIV- and AMV-RT with polymerase also has RNase H activity. The results indicate that although both HIV- and AMV-RTs cleave the RNA template during synthesis, the number of cleavages per nucleotide addition with HIV-RT is much greater. They also suggest that some hybridized RNA segments remain right after the passage of the RT making the first DNA strand. In vivo, these segments would have to be cleaved or displaced in later reactions before second strand DNA synthesis could be completed. Images PMID:7524028

  18. Mixed ligand copper(II) complexes of 2,9-dimethyl-1,10-phenanthroline: tridentate 3N primary ligands determine DNA binding and cleavage and cytotoxicity.

    PubMed

    Ganeshpandian, Mani; Ramakrishnan, Sethu; Palaniandavar, Mallayan; Suresh, Eringathodi; Riyasdeen, Anvarbatcha; Akbarsha, Mohammad Abdulkadher

    2014-11-01

    A series of mononuclear mixed ligand copper(II) complexes of the type [Cu(L)(2,9-dmp)](ClO4)21-4, where L is a tridentate 3N ligand such as diethylenetriamine (L1) (1) or N-methyl-N'-(pyrid-2-yl-methyl)ethylenediamine (L2) (2) or di(2-picolyl)amine (L3) (3) or bis(pyrid-2-ylmethyl)-N-methylamine (L4) (4) and 2,9-dmp is 2,9-dimethyl-1,10-phenanthroline, has been isolated and characterized. The complexes 1 and 3 possess square-based pyramidal coordination geometry. Absorption spectral studies reveal that the intrinsic DNA binding affinity varies as 1>2>3>4. The higher DNA binding affinity of 1 arises from L1, which offers lower steric hindrance toward intercalation of 2,9-dmp co-ligand into DNA base pairs and is involved in hydrogen bonding interaction with DNA. Interestingly, all the complexes cleave pUC19 supercoiled DNA in the absence of an activating agent. They also exhibit oxidative (H2O2) DNA cleavage ability, which varies as 1>2>3>4, the highest cleavage efficiency of 1 being due to the largest amount of ROS it generates. The tryptophan emission-quenching experiment reveals that the stronger binding of 3 and 4 with bovine serum albumin (BSA) in the hydrophobic region, which is in line with DNA viscosity measurements. The IC50 values of 1-4 for MCF-7 breast cancer cell line are lower than that of cisplatin. Flow cytometry analysis reveals that 1 mediates the arrest of S and G2/M phases in the cell cycle progression at 24h harvesting time, which progresses into apoptosis. Hoechst 33258 staining studies indicate the higher potency of 1 to induce apoptosis.

  19. Phosphodiester and N-glycosidic bond cleavage in DNA induced by 4-15 eV electrons

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; Cloutier, Pierre; Hunting, Darel J.; Wagner, J. Richard; Sanche, Léon

    2006-02-01

    Thin molecular films of the short single strand of DNA, GCAT, were bombarded under vacuum by electrons with energies between 4 and 15 eV. Ex vacuo analysis by high-pressure liquid chromatography of the samples exposed to the electron beam revealed the formation of a multitude of products. Among these, 12 fragments of GCAT were identified by comparison with reference compounds and their yields were measured as a function of electron energy. For all energies, scission of the backbone gave nonmodified fragments containing a terminal phosphate, with negligible amounts of fragments without the phosphate group. This indicates that phosphodiester bond cleavage by 4-15 eV electrons involves cleavage of the C-O bond rather than the P-O bond. The yield functions exhibit maxima at 6 and 10-12 eV, which are interpreted as due to the formation of transient anions leading to fragmentation. Below 15 eV, these resonances dominate bond dissociation processes. All four nonmodified bases are released from the tetramer, by cleavage of the N-glycosidic bond, which occurs principally via the formation of core-excited resonances located around 6 and 10 eV. The formation of the other nonmodified products leading to cleavage of the phosphodiester bond is suggested to occur principally via two different mechanisms: (1) the formation of a core-excited resonance on the phosphate unit followed by dissociation of the transient anion and (2) dissociation of the CO bond of the phosphate group formed by resonance electron transfer from the bases. In each case, phosphodiester bond cleavage leads chiefly to the formation of stable phosphate anions and sugar radicals with minimal amounts of alkoxyl anions and phosphoryl radicals.

  20. In vitro cytotoxicity, DNA cleavage and SOD-mimic activity of copper(II) mixed-ligand quinolinonato complexes.

    PubMed

    Buchtík, Roman; Trávníček, Zdeněk; Vančo, Ján

    2012-11-01

    Six mixed-ligand copper(II) complexes with the composition [Cu(qui)(L)]BF(4)·xH(2)O (1-6), where Hqui=2-phenyl-3-hydroxy-4(1H)-quinolinone, L=2,2'-bipyridine (bpy) (1), 1,10-phenanthroline (phen) (2), bis(2-pyridyl)amine (ambpy) (3), 5-methyl-1,10-phenanthroline (mphen) (4), 5-nitro-1,10-phenanthroline (nphen) (5) and bathophenanthroline (bphen) (6), were prepared, fully characterized and studied for their in vitro cytotoxicity on human osteosarcoma (HOS) and human breast adenocarcinoma (MCF7) cancer cell lines. The overall promising results of the cytotoxicity were found for all the complexes, while the best results were achieved for complex 6, with IC(50)=2.6 ± 0.8 μM (HOS), and 1.3 ± 0.5 μM (MCF7). The interactions of the Cu(II) complexes 1-6 with calf thymus DNA were investigated by the UV-visible spectral titration. An agarose-gel electrophoretic method of oxidative damage determination to circular plasmid pUC19 was used to assess the ability of the complexes to act as chemical nucleases. A high effectiveness of DNA cleavage was observed for 2, 4 and 5. In vitro antioxidative activity of the complexes was studied by the superoxide dismutase-mimic (SOD-mimic) method. The best result was afforded by complex 1 with IC(50)=4.7 ± 1.0 μM, which corresponds to 10.2% of the native Cu,Zn-SOD enzyme activity. The ability of the tested complexes to interact with sulfur-containing biomolecules (cysteine and reduced glutathione) at physiological levels was proved by electrospray-ionization mass spectrometry (ESI-MS). PMID:23022693

  1. Identification of DNA cleavage- and recombination-specific hnRNP cofactors for activation-induced cytidine deaminase.

    PubMed

    Hu, Wenjun; Begum, Nasim A; Mondal, Samiran; Stanlie, Andre; Honjo, Tasuku

    2015-05-01

    Activation-induced cytidine deaminase (AID) is essential for antibody class switch recombination (CSR) and somatic hypermutation (SHM). AID originally was postulated to function as an RNA-editing enzyme, based on its strong homology with apolipoprotein B mRNA-editing enzyme, catalytic polypeptide 1 (APOBEC1), the enzyme that edits apolipoprotein B-100 mRNA in the presence of the APOBEC cofactor APOBEC1 complementation factor/APOBEC complementation factor (A1CF/ACF). Because A1CF is structurally similar to heterogeneous nuclear ribonucleoproteins (hnRNPs), we investigated the involvement of several well-known hnRNPs in AID function by using siRNA knockdown and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9-mediated disruption. We found that hnRNP K deficiency inhibited DNA cleavage and thereby induced both CSR and SHM, whereas hnRNP L deficiency inhibited only CSR and somewhat enhanced SHM. Interestingly, both hnRNPs exhibited RNA-dependent interactions with AID, and mutant forms of these proteins containing deletions in the RNA-recognition motif failed to rescue CSR. Thus, our study suggests that hnRNP K and hnRNP L may serve as A1CF-like cofactors in AID-mediated CSR and SHM.

  2. Co(II), Cu(II), Cd(II), Fe(III) and U(VI) complexes containing a NSNO donor ligand: Synthesis, characterization, optical band gap, in vitro antimicrobial and DNA cleavage studies

    NASA Astrophysics Data System (ADS)

    Yousef, T. A.; Abu El-Reash, G. M.; El-Gammal, O. A.; Bedier, R. A.

    2012-12-01

    A new series of [Co(HPTP)Cl(H2O)2], [Cu(HPTP)Cl], [Cd(HPTP)Cl](H2O)4, [Fe(PTP)Cl(H2O)2](H2O), [UO2(HPTP)(OAc)(H2O)2] complexes of Schiff-bases derived from 4-(2-pyridyl)-3-thiosemicarbazide and pyruvic acid (H2PTP) have been synthesized and characterized by spectroscopic studies. Schiff-base exhibit thiol-thione tautomerism wherein sulfur plays an important role in the coordination. The coordination possibility of the Schiff-bases towards metal ions have been proposed in the light of elemental analyses, spectral (IR, UV-vis, 1H NMR, 13C NMR and ESR), magnetic and thermal studies. IR spectra show that H2PTP is coordinated to the metal ions in a mono or binegative tridentate manner. The electronic spectra of the complexes and their magnetic moments provide information about geometries. The room temperature solid state ESR spectra of the Cu(II) complexes show dx2-y2 as a ground state, suggesting square-planar geometry around Cu(II) center. The molecular parameters: total energy, binding energy, isolated atomic energy, electronic energy, heat of formation, dipole moment, HOMO and LUMO were calculated for the ligand and its complexes. Furthermore, the kinetic and thermodynamic parameters for the different decomposition steps were calculated using the Coats-Redfern and Horowitz-Metzger methods. Also, the optical band gap (Eg) of the metal complexes has been calculated. The optical transition energy (Eg) is direct and equals 3.25, 3.26, 3.34 and 3.27 eV for Co, Cu, Fe and U complexes, respectively. The synthesized ligand, in comparison to its metal complexes is screened for its antibacterial activity against bacterial species, Bacillus thuringiensis, Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli. The activity data show that the metal complexes to be more potent/antibacterial than the parent Schiff base ligand against one or more bacterial species. Finally, the biochemical studies showed that, Cu, Cd and Fe complexes have powerful and complete

  3. Bacteriophage T4 Mutants Hypersensitive to an Antitumor Agent That Induces Topoisomerase-DNA Cleavage Complexes

    PubMed Central

    Woodworth, D. L.; Kreuzer, K. N.

    1996-01-01

    Many antitumor agents and antibiotics affect cells by interacting with type II topoisomerases, stabilizing a covalent enzyme-DNA complex. A pathway of recombination can apparently repair this DNA damage. In this study, transposon mutagenesis was used to identify possible components of the repair pathway in bacteriophage T4. Substantial increases in sensitivity to the antitumor agent m-AMSA [4'-(9-acridinyl-amino) methanesulfon-m-anisidide] were found with transposon insertion mutations that inactivate any of six T4-encoded proteins: UvsY (DNA synaptase accessory protein), UvsW (unknown function), Rnh (RNase H and 5' to 3' DNA exonuclease), α-gt (α-glucosyl transferase), gp47.1 (uncharacterized), and NrdB (β subunit of ribonucleotide reductase). The role of the rnh gene in drug sensitivity was further characterized. First, an in-frame rnh deletion mutation was constructed and analyzed, providing evidence that the absence of Rnh protein causes hypersensitivity to m-AMSA. Second, the m-AMSA sensitivity of the rnh-deletion mutant was shown to require a drug-sensitive T4 topoisomerase. Third, analysis of double mutants suggested that uvsW and rnh mutations impair a common step in the recombinational repair pathway for m-AMSA-induced damage. Finally, the rnh-deletion mutant was found to be hypersensitive to UV, implicating Rnh in recombinational repair of UV-induced damage. PMID:8807283

  4. Synthesis, spectral, crystal structure, thermal behavior, antimicrobial and DNA cleavage potential of two octahedral cadmium complexes: A supramolecular structure

    NASA Astrophysics Data System (ADS)

    Montazerozohori, M.; Musavi, S. A.; Masoudiasl, A.; Naghiha, A.; Dusek, M.; Kucerakova, M.

    2015-02-01

    Two new cadmium(II) complexes with the formula of CdL2(NCS)2 and CdL2(N3)2 (in which L is 2,2-dimethyl-N,N‧-bis-(3-phenyl-allylidene)-propane-1,3-diamine) have been synthesized and characterized by elemental analysis, molar conductivity measurements, FT/IR, UV-Visible, 1H and 13C NMR spectra and X-ray studies. The crystal structure analysis of CdL2(NCS)2 indicated that it crystallizes in orthorhombic system with space group of Pbca. Two Schiff base ligands are bonded to cadmium(II) ion as N2-donor chelate. Coordination geometry around the cadmium ion was found to be partially distorted octahedron. The Cd-Nimine bond distances are found in the range of 2.363(2)-2.427(2) Å while the Cd-Nisothiocyanate bond distances are 2.287(2) Å and 2.310(2) Å. The existence of C-H⋯π and C-H⋯S interactions in the CdL2(NCS)2 crystal leads to a supramolecular structure in its network. Then cadmium complexes were screened in vitro for their antibacterial and antifungal activities against two Gram-negative and two Gram-positive bacteria and also against Candida albicans as a fungus. Moreover, the compounds were subjected for DNA-cleavage potential by gel electrophoresis method. Finally thermo-gravimetric analysis of the complexes was applied for thermal behavior studies and then some thermo-kinetics activation parameters were evaluated.

  5. Synthesis, spectral, crystal structure, thermal behavior, antimicrobial and DNA cleavage potential of two octahedral cadmium complexes: a supramolecular structure.

    PubMed

    Montazerozohori, M; Musavi, S A; Masoudiasl, A; Naghiha, A; Dusek, M; Kucerakova, M

    2015-02-25

    Two new cadmium(II) complexes with the formula of CdL2(NCS)2 and CdL2(N3)2 (in which L is 2,2-dimethyl-N,N'-bis-(3-phenyl-allylidene)-propane-1,3-diamine) have been synthesized and characterized by elemental analysis, molar conductivity measurements, FT/IR, UV-Visible, (1)H and (13)C NMR spectra and X-ray studies. The crystal structure analysis of CdL2(NCS)2 indicated that it crystallizes in orthorhombic system with space group of Pbca. Two Schiff base ligands are bonded to cadmium(II) ion as N2-donor chelate. Coordination geometry around the cadmium ion was found to be partially distorted octahedron. The Cd-Nimine bond distances are found in the range of 2.363(2)-2.427(2)Å while the Cd-Nisothiocyanate bond distances are 2.287(2)Å and 2.310(2)Å. The existence of C-H⋯π and C-H⋯S interactions in the CdL2(NCS)2 crystal leads to a supramolecular structure in its network. Then cadmium complexes were screened in vitro for their antibacterial and antifungal activities against two Gram-negative and two Gram-positive bacteria and also against Candida albicans as a fungus. Moreover, the compounds were subjected for DNA-cleavage potential by gel electrophoresis method. Finally thermo-gravimetric analysis of the complexes was applied for thermal behavior studies and then some thermo-kinetics activation parameters were evaluated.

  6. Monitoring of Eco RI-catalyzed cleavage reaction of fluorescent-labeled heterochiral DNA.

    PubMed

    Urata, Hidehito; Tamaki, Chihiro; Matsuno, Miki; Wada, Shun-Ichi; Akagi, Masao

    2007-01-01

    We have found the unusual reactivity of a heterochiral oligodeoxynucleotide toward restriction endonuclease Eco RI. To conduct the kinetic analysis of the reaction, fluorescent-labeled single-stranded oligodeoxynucleotide molecular beacons were designed and synthesized. The beacons showed a remarkable fluorescence response by addition of Eco RI. The results promise that the beacon could be an effective tool for the kinetic analysis of Eco RI-catalyzed cleavage reaction of the heterochiral oligodeoxynucleotide.

  7. Synthesis of mononuclear copper(II) complexes of acyclic Schiff's base ligands: Spectral, structural, electrochemical, antibacterial, DNA binding and cleavage activity

    NASA Astrophysics Data System (ADS)

    Jayamani, Arumugam; Thamilarasan, Vijayan; Sengottuvelan, Nallathambi; Manisankar, Paramasivam; Kang, Sung Kwon; Kim, Young-Inn; Ganesan, Vengatesan

    2014-03-01

    The mononuclear copper(II) complexes (1&2) of ligands L1 [N,N";-bis(2-hydroxy-5-methylbenzyl)-1,4-bis(3-iminopropyl)piperazine] or L2 [N,N";-bis(2-hydroxy-5-bromobenzyl)-1,4-bis(3-iminopropyl) piperazine] have been synthesized and characterised. The single crystal X-ray study had shown that ligands L1 and L2 crystallize in a monoclinic crystal system with P21/c space group. The mononuclear copper(II) complexes show one quasireversible cyclic voltammetric response near cathodic region (-0.77 to -0.85 V) in DMF assignable to the Cu(II)/Cu(I) couple. Binding interaction of the complexes with calf thymus DNA (CT DNA) investigated by absorption studies and fluorescence spectral studies show good binding affinity to CT DNA, which imply both the copper(II) complexes can strongly interact with DNA efficiently. The copper(II) complexes showed efficient oxidative cleavage of plasmid pBR322 DNA in the presence of 3-mercaptopropionic acid as reducing agent through a mechanistic pathway involving formation of singlet oxygen as the reactive species. The Schiff bases and their Cu(II) complexes have been screened for antibacterial activities which indicates that the complexes exhibited higher antimicrobial activity than the free ligands.

  8. Inhibition of peroxynitrite-mediated DNA strand cleavage and hydroxyl radical formation by aspirin at pharmacologically relevant concentrations: Implications for cancer intervention

    SciTech Connect

    Chen, Wei; Zhu, Hong; Jia, Zhenquan; Li, Jianrong; Misra, Hara P.; Zhou, Kequan; Li, Yunbo

    2009-12-04

    Epidemiological studies have suggested that the long-term use of aspirin is associated with a decreased incidence of human malignancies, especially colorectal cancer. Since accumulating evidence indicates that peroxynitrite is critically involved in multistage carcinogenesis, this study was undertaken to investigate the ability of aspirin to inhibit peroxynitrite-mediated DNA damage. Peroxynitrite and its generator 3-morpholinosydnonimine (SIN-1) were used to cause DNA strand breaks in {phi}X-174 plasmid DNA. We demonstrated that the presence of aspirin at concentrations (0.25-2 mM) compatible with amounts in plasma during chronic anti-inflammatory therapy resulted in a significant inhibition of DNA cleavage induced by both peroxynitrite and SIN-1. Moreover, the consumption of oxygen caused by 250 {mu}M SIN-1 was found to be decreased in the presence of aspirin, indicating that aspirin might affect the auto-oxidation of SIN-1. Furthermore, EPR spectroscopy using 5,5-dimethylpyrroline-N-oxide (DMPO) as a spin trap demonstrated the formation of DMPO-hydroxyl radical adduct (DMPO-OH) from authentic peroxynitrite, and that aspirin at 0.25-2 mM potently diminished the radical adduct formation in a concentration-dependent manner. Taken together, these results demonstrate for the first time that aspirin at pharmacologically relevant concentrations can inhibit peroxynitrite-mediated DNA strand breakage and hydroxyl radical formation. These results may have implications for cancer intervention by aspirin.

  9. 8-Oxoguanine Affects DNA Backbone Conformation in the EcoRI Recognition Site and Inhibits Its Cleavage by the Enzyme

    PubMed Central

    Kiryutin, Alexey S.; Kasymov, Rustem D.; Petrova, Darya V.; Endutkin, Anton V.; Popov, Alexander V.; Yurkovskaya, Alexandra V.; Fedechkin, Stanislav O.; Brockerman, Jacob A.; Zharkov, Dmitry O.; Smirnov, Serge L.

    2016-01-01

    8-oxoguanine is one of the most abundant and impactful oxidative DNA lesions. However, the reasons underlying its effects, especially those not directly explained by the altered base pairing ability, are poorly understood. We report the effect of the lesion on the action of EcoRI, a widely used restriction endonuclease. Introduction of 8-oxoguanine inside, or adjacent to, the GAATTC recognition site embedded within the Drew—Dickerson dodecamer sequence notably reduced the EcoRI activity. Solution NMR revealed that 8-oxoguanine in the DNA duplex causes substantial alterations in the sugar—phosphate backbone conformation, inducing a BI→BII transition. Moreover, molecular dynamics of the complex suggested that 8-oxoguanine, although does not disrupt the sequence-specific contacts formed by the enzyme with DNA, shifts the distribution of BI/BII backbone conformers. Based on our data, we propose that the disruption of enzymatic cleavage can be linked with the altered backbone conformation and dynamics in the free oxidized DNA substrate and, possibly, at the protein—DNA interface. PMID:27749894

  10. Establishment of a non-radioactive cleavage assay to assess the DNA repair capacity towards oxidatively damaged DNA in subcellular and cellular systems and the impact of copper.

    PubMed

    Hamann, Ingrit; Schwerdtle, Tanja; Hartwig, Andrea

    2009-10-01

    Oxidative stress is involved in many diseases, and the search for appropriate biomarkers is one major focus in molecular epidemiology. 8-Oxoguanine (8-oxoG), a potentially mutagenic DNA lesion, is considered to be a sensitive biomarker for oxidative stress. Another approach consists in assessing the repair capacity towards 8-oxoG, mediated predominantly by the human 8-oxoguanine DNA glycosylase 1 (hOGG1). With respect to the latter, during the last few years so-called cleavage assays have been described, investigating the incision of (32)P-labelled and 8-oxoG damaged oligonucleotides by cell extracts. Within the present study, a sensitive non-radioactive test system based on a Cy5-labelled oligonucleotide has been established. Sources of incision activity are isolated proteins or extracts prepared from cultured cells and peripheral blood mononuclear cells (PBMC). After comparing different oligonucleotide structures, a hairpin-like structure was selected which was not degraded by cell extracts. Applying this test system the impact of copper on the activity of isolated hOGG1 and on hOGG activity in A549 cells was examined, showing a distinct inhibition of the isolated protein at low copper concentration as compared to a modest inhibition of hOGG activity in cells at beginning cytotoxic concentrations. For investigating PBMC, all reaction conditions, including the amounts of oligonucleotide and cell extract as well as the reaction time have been optimized. The incision activities of PBMC protein extracts obtained from different donors have been investigated, and inter-individual differences have been observed. In summary, the established method is as sensitive and even faster than the radioactive technique, and additionally, offers the advantage of reduced costs and low health risk. PMID:19505484

  11. Changes in solvation during DNA binding and cleavage are critical to altered specificity of the EcoRI endonuclease

    PubMed Central

    Robinson, Clifford R.; Sligar, Stephen G.

    1998-01-01

    Restriction endonucleases such as EcoRI bind and cleave DNA with great specificity and represent a paradigm for protein–DNA interactions and molecular recognition. Using osmotic pressure to induce water release, we demonstrate the participation of bound waters in the sequence discrimination of substrate DNA by EcoRI. Changes in solvation can play a critical role in directing sequence-specific DNA binding by EcoRI and are also crucial in assisting site discrimination during catalysis. By measuring the volume change for complex formation, we show that at the cognate sequence (GAATTC) EcoRI binding releases about 70 fewer water molecules than binding at an alternate DNA sequence (TAATTC), which differs by a single base pair. EcoRI complexation with nonspecific DNA releases substantially less water than either of these specific complexes. In cognate substrates (GAATTC) kcat decreases as osmotic pressure is increased, indicating the binding of about 30 water molecules accompanies the cleavage reaction. For the alternate substrate (TAATTC), release of about 40 water molecules accompanies the reaction, indicated by a dramatic acceleration of the rate when osmotic pressure is raised. These large differences in solvation effects demonstrate that water molecules can be key players in the molecular recognition process during both association and catalytic phases of the EcoRI reaction, acting to change the specificity of the enzyme. For both the protein–DNA complex and the transition state, there may be substantial conformational differences between cognate and alternate sites, accompanied by significant alterations in hydration and solvent accessibility. PMID:9482860

  12. Structural and functional analyses of an archaeal XPF/Rad1/Mus81 nuclease: asymmetric DNA binding and cleavage mechanisms.

    PubMed

    Nishino, Tatsuya; Komori, Kayoko; Ishino, Yoshizumi; Morikawa, Kosuke

    2005-08-01

    XPF/Rad1/Mus81/Hef proteins recognize and cleave branched DNA structures. XPF and Rad1 proteins cleave the 5' side of nucleotide excision repair bubble, while Mus81 and Hef cleave similar sites of the nicked Holliday junction, fork, or flap structure. These proteins all function as dimers and consist of catalytic and helix-hairpin-helix DNA binding (HhH) domains. We have determined the crystal structure of the HhH domain of Pyrococcus furiosus Hef nuclease (HefHhH), which revealed the distinct mode of protein dimerization. Our structural and biochemical analyses also showed that each of the catalytic and HhH domains binds to distinct regions within the fork-structured DNA: each HhH domain from two separate subunits asymmetrically binds to the arm region, while the catalytic domain binds near the junction center. Upon binding to DNA, Hef nuclease disrupts base pairs near the cleavage site. It is most likely that this bipartite binding mode is conserved in the XPF/Rad1/Mus81 nuclease family. PMID:16084390

  13. Tyrosyl-DNA phosphodiesterase I catalytic mutants reveal an alternative nucleophile that can catalyze substrate cleavage.

    PubMed

    Comeaux, Evan Q; Cuya, Selma M; Kojima, Kyoko; Jafari, Nauzanene; Wanzeck, Keith C; Mobley, James A; Bjornsti, Mary-Ann; van Waardenburg, Robert C A M

    2015-03-01

    Tyrosyl-DNA phosphodiesterase I (Tdp1) catalyzes the repair of 3'-DNA adducts, such as the 3'-phosphotyrosyl linkage of DNA topoisomerase I to DNA. Tdp1 contains two conserved catalytic histidines: a nucleophilic His (His(nuc)) that attacks DNA adducts to form a covalent 3'-phosphohistidyl intermediate and a general acid/base His (His(gab)), which resolves the Tdp1-DNA linkage. A His(nuc) to Ala mutant protein is reportedly inactive, whereas the autosomal recessive neurodegenerative disease SCAN1 has been attributed to the enhanced stability of the Tdp1-DNA intermediate induced by mutation of His(gab) to Arg. However, here we report that expression of the yeast His(nuc)Ala (H182A) mutant actually induced topoisomerase I-dependent cytotoxicity and further enhanced the cytotoxicity of Tdp1 His(gab) mutants, including H432N and the SCAN1-related H432R. Moreover, the His(nuc)Ala mutant was catalytically active in vitro, albeit at levels 85-fold less than that observed with wild type Tdp1. In contrast, the His(nuc)Phe mutant was catalytically inactive and suppressed His(gab) mutant-induced toxicity. These data suggest that the activity of another nucleophile when His(nuc) is replaced with residues containing a small side chain (Ala, Asn, and Gln), but not with a bulky side chain. Indeed, genetic, biochemical, and mass spectrometry analyses show that a highly conserved His, immediately N-terminal to His(nuc), can act as a nucleophile to catalyze the formation of a covalent Tdp1-DNA intermediate. These findings suggest that the flexibility of Tdp1 active site residues may impair the resolution of mutant Tdp1 covalent phosphohistidyl intermediates and provide the rationale for developing chemotherapeutics that stabilize the covalent Tdp1-DNA intermediate.

  14. Synthesis, structural characterisation, bio-potential efficiency and DNA cleavage applications of nicotinamide metal complexes

    NASA Astrophysics Data System (ADS)

    Surendra Dilip, C.; Siva Kumar, V.; John Venison, S.; Vetha potheher, I.; Rajalaxmi (a) Subahashini, D.

    2013-05-01

    Mixed ligand complexes were synthesised using nicotinamide as the primary ligand and nitrite as the secondary ligand were characterised by FT-IR, UV-Vis, 1H NMR, TG-DTA-DTG, X-ray powder diffraction and physical analytical studies. From the molar conductance, magnetic moment and electronic spectral data of the synthesised complexes a general formula of [M(ONO)2(NA)2] where M = Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) and [Cr2(ONO)6(NA)2] with a distorted octahedral structure were proposed. Thermal analyses show that the complexes lose molecules of hydration initially and subsequently expel anionic and organic ligands in continuous steps. The kinetic parameter values, such as, E*, ΔH*, ΔS* and ΔG* illustrate the spontaneous association of the metal and ligands in the formation of the complexes. The antimicrobial efficacy of the ligand and its complexes were examined by in vitro method against various pathogenic bacterial and fungal strains. The metal complexes were found to posses efficient antimicrobial properties compared to nicotinamide and a few of these complexes could turn out to be excellent models for the design of effective antibiotic drug substances. The intercalating interaction of Cu(II) complex with CT-DNA was inspected by absorption spectral and viscosity studies, thermal denaturation and electro-analytical experiments.

  15. Allosteric Regulation of DNA Cleavage and Sequence-Specificity through Run-On Oligomerization

    PubMed Central

    Lyumkis, Dmitry; Talley, Heather; Stewart, Andrew; Shah, Santosh; Park, Chad K.; Tama, Florence; Potter, Clinton S.; Carragher, Bridget; Horton, Nancy C.

    2014-01-01

    SgrAI is a sequence specific DNA endonuclease that functions through an unusual enzymatic mechanism that is allosterically activated 200-500 fold by effector DNA, with a concomitant expansion of its DNA sequence specificity. Using single-particle transmission electron microscopy to reconstruct distinct populations of SgrAI oligomers, we show that, in the presence of allosteric, activating DNA, the enzyme forms regular, repeating helical structures that are characterized by the addition of DNA-binding dimeric SgrAI subunits in a run-on manner. We also present the structure of oligomeric SgrAI at 8.6 Å resolution, demonstrating a novel conformational state of SgrAI in its activated form. Activated and oligomeric SgrAI displays key protein-protein interactions near the helix axis between its N-termini, as well as allosteric protein-DNA interactions that are required for enzymatic activation. The hybrid approach reveals an unusual mechanism of enzyme activation that explains SgrAI’s oligomerization and allosteric behavior. PMID:24055317

  16. Nanoparticulate carbon black in cigarette smoke induces DNA cleavage and Th17-mediated emphysema.

    PubMed

    You, Ran; Lu, Wen; Shan, Ming; Berlin, Jacob M; Samuel, Errol Lg; Marcano, Daniela C; Sun, Zhengzong; Sikkema, William Ka; Yuan, Xiaoyi; Song, Lizhen; Hendrix, Amanda Y; Tour, James M; Corry, David B; Kheradmand, Farrah

    2015-10-05

    Chronic inhalation of cigarette smoke is the major cause of sterile inflammation and pulmonary emphysema. The effect of carbon black (CB), a universal constituent of smoke derived from the incomplete combustion of organic material, in smokers and non-smokers is less known. In this study, we show that insoluble nanoparticulate carbon black (nCB) accumulates in human myeloid dendritic cells (mDCs) from emphysematous lung and in CD11c(+) lung antigen presenting cells (APC) of mice exposed to smoke. Likewise, nCB intranasal administration induced emphysema in mouse lungs. Delivered by smoking or intranasally, nCB persisted indefinitely in mouse lung, activated lung APCs, and promoted T helper 17 cell differentiation through double-stranded DNA break (DSB) and ASC-mediated inflammasome assembly in phagocytes. Increasing the polarity or size of CB mitigated many adverse effects. Thus, nCB causes sterile inflammation, DSB, and emphysema and explains adverse health outcomes seen in smokers while implicating the dangers of nCB exposure in non-smokers.

  17. Nanoparticulate carbon black in cigarette smoke induces DNA cleavage and Th17-mediated emphysema

    PubMed Central

    You, Ran; Lu, Wen; Shan, Ming; Berlin, Jacob M; Samuel, Errol LG; Marcano, Daniela C; Sun, Zhengzong; Sikkema, William KA; Yuan, Xiaoyi; Song, Lizhen; Hendrix, Amanda Y; Tour, James M; Corry, David B; Kheradmand, Farrah

    2015-01-01

    Chronic inhalation of cigarette smoke is the major cause of sterile inflammation and pulmonary emphysema. The effect of carbon black (CB), a universal constituent of smoke derived from the incomplete combustion of organic material, in smokers and non-smokers is less known. In this study, we show that insoluble nanoparticulate carbon black (nCB) accumulates in human myeloid dendritic cells (mDCs) from emphysematous lung and in CD11c+ lung antigen presenting cells (APC) of mice exposed to smoke. Likewise, nCB intranasal administration induced emphysema in mouse lungs. Delivered by smoking or intranasally, nCB persisted indefinitely in mouse lung, activated lung APCs, and promoted T helper 17 cell differentiation through double-stranded DNA break (DSB) and ASC-mediated inflammasome assembly in phagocytes. Increasing the polarity or size of CB mitigated many adverse effects. Thus, nCB causes sterile inflammation, DSB, and emphysema and explains adverse health outcomes seen in smokers while implicating the dangers of nCB exposure in non-smokers. DOI: http://dx.doi.org/10.7554/eLife.09623.001 PMID:26437452

  18. Label-free, isothermal and ultrasensitive electrochemical detection of DNA and DNA 3'-phosphatase using a cascade enzymatic cleavage strategy.

    PubMed

    Liu, Shufeng; Liu, Tao; Wang, Li

    2015-01-01

    Label-free and ultrasensitive electrochemical assays of target DNA and T4 polynucleotide kinase phosphatase (PNKP) were developed, which took full advantage of three enzymes to realize the signal readout and amplification. It can ultimately achieve the low detection limits of 10 fM and 1 mU mL(-1) for target DNA and PNKP, respectively.

  19. Flow cytometric assays for interrogating LAGLIDADG homing endonuclease DNA-binding and cleavage properties.

    PubMed

    Baxter, Sarah K; Lambert, Abigail R; Scharenberg, Andrew M; Jarjour, Jordan

    2013-01-01

    A fast, easy, and scalable method to assess the properties of site-specific nucleases is crucial to -understanding their in cellulo behavior in genome engineering or population-level gene drive applications. Here we describe an analytical platform that enables high-throughput, semiquantitative interrogation of the DNA-binding and catalytic properties of LAGLIDADG homing endonucleases (LHEs). Using this platform, natural or engineered LHEs are expressed on the surface of Saccharomyces cerevisiae yeast where they can be rapidly evaluated against synthetic DNA target sequences using flow cytometry.

  20. Mechanisms of photoinitiated cleavage of DNA by 1,8-naphthalimide derivatives.

    PubMed

    Rogers, J E; Abraham, B; Rostkowski, A; Kelly, L A

    2001-10-01

    Using water-soluble 1,8-naphthalimide derivatives, the mechanisms of photosensitized DNA damage have been elucidated. Specifically, a comparison of rate constants for the photoinduced relaxation of supercoiled to circular DNA, as a function of dissolved halide, oxygen and naphthalimide concentration, has been carried out. The singlet excited states of the naphthalimide derivatives were quenched by chloride, bromide and iodide. In all cases the quenching products were naphthalimide triplet states, produced by induced intersystem crossing within the collision complex. Similarly, the halides were found to quench the triplet excited state of the 1,8-naphthalimide derivatives by an electron transfer mechanism. Bimolecular rate constants were < 10(5) M-1 s-1 for quenching by bromide and chloride. As expected from thermodynamic considerations quenching by iodide was 6.7 x 10(9) and 8.8 x 10(9) M-1 s-1 for the two 1,8-naphthalimide derivatives employed. At sufficiently high ground-state concentration self-quenching of the naphthalimide triplet excited state also occurs. The photosensitized conversion of supercoiled to circular DNA is fastest when self-quenching reactions are favored. The results suggest that, in the case of 1,8-naphthalimide derivatives, radicals derived from quenching of the triplet state by ground-state chromophores are more effective in cleaving DNA than reactive oxygen species or radicals derived from halogen atoms. PMID:11683031

  1. RNA cleavage and chain elongation by Escherichia coli DNA-dependent RNA polymerase in a binary enzyme.RNA complex.

    PubMed Central

    Altmann, C R; Solow-Cordero, D E; Chamberlin, M J

    1994-01-01

    In the absence of DNA, Escherichia coli RNA polymerase (EC 2.7.7.6) can bind RNA to form an equimolar binary complex with the concomitant release of the sigma factor. We show now that E. coli RNA polymerase binds at a region near the 3' terminus of the RNA and that an RNA in such RNA.RNA polymerase complexes undergoes reactions previously thought to be unique to nascent RNA in ternary complexes with DNA. These include GreA/GreB-dependent cleavage of the RNA and elongation by 3'-terminal addition of NMP from NTP. Both of these reactions are inhibited by rifampicin. Hence, by several criteria, the RNA in binary complexes is bound to the polymerase in a manner quite similar to that in ternary complexes. These findings can be explained by a model for the RNA polymerase ternary complex in which the RNA is bound at the 3' terminus through two protein binding sites located up to 10 nt apart. In this model, the stability of RNA binding to the polymerase in the ternary complex is due primarily to its interaction with the protein. Images PMID:7513426

  2. Mass spectrometric and theoretical studies on dissociation of the Ssbnd S bond in the allicin: Homolytic cleavage vs heterolytic cleavage

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang

    2012-08-01

    On the basis of the tandem mass spectrometry (ESI-MS/MS) technique and DFT calculations, an experimental and theoretical investigation has been conducted into the gas-phase dissociation of the S1sbnd S1' bond in the allicin as well as that of the Ssbnd C (S1sbnd C2, S1'sbnd C2') bond. Meanwhile, the influence of protonation, alkali metal ion and electron transfer on the dissociation of the S1sbnd S1' bond has been taken into account. ESI-MS/MS experiments and DFT calculations show that in the neutral allicin, [allicin + Li]+ and [allicin + Na]+, the S1sbnd S1' bond favors homolytic cleavage, while in the allicin radical cation and protonated allicin, the S1sbnd S1' bond prefers heterolytic cleavage. In addition, alkali metal ions can strengthen the S1sbnd S1' bond in the allicin, while protonation or the loss of an electron will weaken the S1sbnd S1' bond.

  3. Copper.Lys-Gly-His-Lys mediated cleavage of tRNA(Phe): studies of reaction mechanism and cleavage specificity.

    PubMed

    Bradford, Seth; Kawarasaki, Yuta; Cowan, J A

    2009-06-01

    The reactivity of [Cu2+.Lys-Gly-His-Lys-NH2]2+ and [Cu2+.Lys-Gly-His-Lys]+ toward tRNA(Phe) has been evaluated. The amidated and carboxylate forms of the copper peptides display complex binding behavior with strong and weak sites evident (K(D1)(app) approximately 71 microM, K(D2)(app) approximately 211 microM for the amide form; and K(D1)(app) approximately 34 microM, K(D2)(app) approximately 240 microM for the carboxylate form), while Cu2+(aq) yielded K(D1)(app) approximately 81 microM and K(D2)(app) approximately 136 microM. The time-dependence of the reaction of [Cu2+.Lys-Gly-His-Lys]+ and [Cu2+.Lys-Gly-His-Lys-NH2]2+ with tRNA(Phe) yielded k(obs) approximately 0.075 h(-1) for both complexes. HPLC analysis of the reaction products demonstrated guanine as the sole base product. Mass spectrometric data shows a limited number of cleavage fragments with product peak masses consistent with chemistry occurring at a discrete site defined by the structurally contiguous D and TPsiC loops, and in a domain where high affinity magnesium centers have previously been observed to promote hydrolysis of the tRNA(Phe) backbone. This cleavage pattern is more selective than that previously observed by Long and coworkers for nickel complexes of a series of C-terminally amidated peptides (Gly-Gly-His, Lys-Gly-His, and Arg-Gly-His), and may reflect variations in structural recognition and a distinct reaction path by the nickel derivatives. The data emphasizes the optimal positioning of the metal-associated reactive oxygen species, relative to scissile bonds, as a major criterion for development of efficient catalytic nucleases or therapeutics. PMID:19386364

  4. Morphological and morphometric study of early-cleavage mice embryos resulting from in vitro fertilization at different cleavage stages after vitrification

    PubMed Central

    Homayoun, H.; Zahiri, Sh.; Hemayatkhah Jahromi, V.; Hassanpour Dehnavi, A.

    2016-01-01

    The aim of this study was to examine the possible morphological and morphometric changes resulting from vitrification of embryos at the cleavage stage. In this study, 30 mice early-cleavage embryos at different stages of cleavage, resulting from in vitro fertilization (IVF) techniques, were examined before and after vitrification. Digital images were taken from embryos before and after vitrification. Zona pellucida thickness, differences in zona pellucida thickness, and diameter and volume of blastomeres and embryos as morphometric parameters and current rating of appearance of embryos as morphological parameters, have been studied. According to our findings, there were significant mean differences in all morphometric parameters of the two groups except in the zona pellucid thickness (P≤0.05). With regard to the morphological parameter, the decrease in embryo quality was observed but it was not significant. According to the results, although little quantitative change observed is not necessarily synonymous with harmful intracellular damage, it seems that it is better to examine vitrification method more accurately. Because by making subtle changes in concentration and type of consumed solutions or techniques used, the changes may be minimized. PMID:27656231

  5. Morphological and morphometric study of early-cleavage mice embryos resulting from in vitro fertilization at different cleavage stages after vitrification.

    PubMed

    Homayoun, H; Zahiri, Sh; Hemayatkhah Jahromi, V; Hassanpour Dehnavi, A

    2016-01-01

    The aim of this study was to examine the possible morphological and morphometric changes resulting from vitrification of embryos at the cleavage stage. In this study, 30 mice early-cleavage embryos at different stages of cleavage, resulting from in vitro fertilization (IVF) techniques, were examined before and after vitrification. Digital images were taken from embryos before and after vitrification. Zona pellucida thickness, differences in zona pellucida thickness, and diameter and volume of blastomeres and embryos as morphometric parameters and current rating of appearance of embryos as morphological parameters, have been studied. According to our findings, there were significant mean differences in all morphometric parameters of the two groups except in the zona pellucid thickness (P≤0.05). With regard to the morphological parameter, the decrease in embryo quality was observed but it was not significant. According to the results, although little quantitative change observed is not necessarily synonymous with harmful intracellular damage, it seems that it is better to examine vitrification method more accurately. Because by making subtle changes in concentration and type of consumed solutions or techniques used, the changes may be minimized. PMID:27656231

  6. Enhancing Cell Nucleus Accumulation and DNA Cleavage Activity of Anti-Cancer Drug via Graphene Quantum Dots

    PubMed Central

    Wang, Chong; Wu, Congyu; Zhou, Xuejiao; Han, Ting; Xin, Xiaozhen; Wu, Jiaying; Zhang, Jingyan; Guo, Shouwu

    2013-01-01

    Graphene quantum dots (GQDs) maintain the intrinsic layered structural motif of graphene but with smaller lateral size and abundant periphery carboxylic groups, and are more compatible with biological system, thus are promising nanomaterials for therapeutic applications. Here we show that GQDs have a superb ability in drug delivery and anti-cancer activity boost without any pre-modification due to their unique structural properties. They could efficiently deliver doxorubicin (DOX) to the nucleus through DOX/GQD conjugates, because the conjugates assume different cellular and nuclear internalization pathways comparing to free DOX. Also, the conjugates could enhance DNA cleavage activity of DOX markedly. This enhancement combining with efficient nuclear delivery improved cytotoxicity of DOX dramatically. Furthermore, the DOX/GQD conjugates could also increase the nuclear uptake and cytotoxicity of DOX to drug-resistant cancer cells indicating that the conjugates may be capable to increase chemotherapy efficacy of anti-cancer drugs that are suboptimal due to the drug resistance. PMID:24092333

  7. Photo-Fenton reaction of graphene oxide: a new strategy to prepare graphene quantum dots for DNA cleavage.

    PubMed

    Zhou, Xuejiao; Zhang, Yan; Wang, Chong; Wu, Xiaochen; Yang, Yongqiang; Zheng, Bin; Wu, Haixia; Guo, Shouwu; Zhang, Jingyan

    2012-08-28

    Graphene quantum dots (GQDs) are great promising in various applications owing to the quantum confinement and edge effects in addition to their intrinsic properties of graphene, but the preparation of the GQDs in bulk scale is challenging. We demonstrated in this work that the micrometer sized graphene oxide (GO) sheets could react with Fenton reagent (Fe(2+)/Fe(3+)/H(2)O(2)) efficiently under an UV irradiation, and, as a result, the GQDs with periphery carboxylic groups could be generated with mass scale production. Through a variety of techniques including atomic force microscopy, X-ray photoelectron spectroscopy, gas chromatography, ultraperformance liquid chromatography-mass spectrometry, and total organic carbon measurement, the mechanism of the photo-Fenton reaction of GO was elucidated. The photo-Fenton reaction of GO was initiated at the carbon atoms connected with the oxygen containing groups, and C-C bonds were broken subsequently, therefore, the reaction rate depends strongly on the oxidization extent of the GO. Given the simple and efficient nature of the photo-Fenton reaction of GO, this method should provide a new strategy to prepare GQDs in mass scale. As a proof-of-concept experiment, the novel DNA cleavage system using as-generated GQDs was constructed. PMID:22813062

  8. Pulse radiolysis study of daunorubicin redox reactions: redox cycles or glycosidic cleavage

    SciTech Connect

    Houee-Levin, C.; Gardes-Albert, M.; Ferradini, C.

    1986-01-01

    Two aspects of daunorubicin reactivity were investigated by pulse radiolysis. The reactions of O/sub 2/ and O/sub 2/- with the semiquinone and the hydroquinone transients of daunorubicin were determined and their rate constants measured. Although O/sub 2/- can reduce the drug and its semiquinone form, it is a more powerful oxidant towards the two reduced transients. The hydroquinone daunorubicin glycosidic cleavage in aqueous solution was studied. Three intermediates were seen and characterized by their absorption spectra, their formation and decay kinetics. The competition between these two main processes was evaluated in the conditions of pulse radiolysis. Even under low O/sub 2/ partial pressures the redox cycles are much more rapid than the glycosidic cleavage and a relatively high O/sub 2/- steady state is settled. Biological implications are discussed.

  9. New ruthenium(II) arene complexes of anthracenyl-appended diazacycloalkanes: effect of ligand intercalation and hydrophobicity on DNA and protein binding and cleavage and cytotoxicity.

    PubMed

    Ganeshpandian, Mani; Loganathan, Rangasamy; Suresh, Eringathodi; Riyasdeen, Anvarbatcha; Akbarsha, Mohammad Abdulkadher; Palaniandavar, Mallayan

    2014-01-21

    A series of half-sandwich Ru(II) arene complexes of the type [Ru(η(6)-arene)(L)Cl](PF6) 1-4, where arene is benzene (1, 2) or p-cymene (3, 4) and L is N-methylhomopiperazine (L1) or 1-(anthracen-10-ylmethyl)-4-methylhomopiperazine (L2), has been isolated and characterized by using spectral methods. The X-ray crystal structures of 2, 3 and 4 reveal that the compounds possess a pseudo-octahedral "piano-stool" structure equipped with the arene ligand as the seat and the bidentate ligand and the chloride ion as the legs of the stool. The DNA binding affinity determined using absorption spectral titrations with CT DNA and competitive DNA binding studies varies as 4 > 2 > 3 > 1, depending upon both the arene and diazacycloalkane ligands. Complexes 2 and 4 with higher DNA binding affinities show strong hypochromism (56%) and a large red-shift (2, 10; 4, 11 nm), which reveals that the anthracenyl moiety of the ligand is stacked into the DNA base pairs and that the arene ligand hydrophobicity also dictates the DNA binding affinity. In contrast, the monocationic complexes 1 and 3 are involved in electrostatic binding in the minor groove of DNA. The enhancement in viscosities of CT DNA upon binding to 2 and 4 are higher than those for 1 and 3 supporting the DNA binding modes of interaction inferred. All the complexes cleave DNA effectively even in the absence of an external agent and the cleavage ability is enhanced in the presence of an activator like H2O2. Tryptophan quenching measurements suggest that the protein binding affinity of the complexes varies as 4 > 2 > 3 > 1, which is the same as that for DNA binding and that the fluorescence quenching of BSA occurs through a static mechanism. The positive ΔH(0) and ΔS(0) values for BSA binding of complexes indicate that the interaction between the complexes and BSA is mainly hydrophobic in nature and the energy transfer efficiency has been analysed according to the Förster non-radiative energy transfer theory. The

  10. Molecular docking studies of curcumin natural derivatives with DNA topoisomerase I and II-DNA complexes.

    PubMed

    Kumar, Anil; Bora, Utpal

    2014-12-01

    DNA topoisomerase I (topo I) and II (topo II) are essential enzymes that solve the topological problems of DNA by allowing DNA strands or double helices to pass through each other during cellular processes such as replication, transcription, recombination, and chromatin remodeling. Their critical roles make topoisomerases an attractive drug target against cancer. The present molecular docking study provides insights into the inhibition of topo I and II by curcumin natural derivatives. The binding modes suggested that curcumin natural derivatives docked at the site of DNA cleavage parallel to the axis of DNA base pairing. Cyclocurcumin and curcumin sulphate were predicted to be the most potent inhibitors amongst all the curcumin natural derivatives docked. The binding modes of cyclocurcumin and curcumin sulphate were similar to known inhibitors of topo I and II. Residues like Arg364, Asn722 and base A113 (when docked to topo I-DNA complex) and residues Asp479, Gln778 and base T9 (when docked to topo II-DNA complex) seem to play important role in the binding of curcumin natural derivatives at the site of DNA cleavage.

  11. Synthesis, spectroscopic characterisation, DNA cleavage, superoxidase dismutase activity and antibacterial properties of some transition metal complexes of a novel bidentate Schiff base derived from isatin and 2-aminopyrimidine

    NASA Astrophysics Data System (ADS)

    Nitha, L. P.; Aswathy, R.; Mathews, Niecy Elsa; Sindhu kumari, B.; Mohanan, K.

    2014-01-01

    Complexes of manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) with a Schiff base, formed by the condensation of isatin with 2-aminopyrimidine have been synthesised and characterised through elemental analysis, molar conductance measurements, magnetic susceptibility, IR, UV-Vis, 1HNMR, FAB mass and EPR spectral studies. The spectral data revealed that the ligand acts as neutral bidentate, coordinating to the metal ion through the carbonyl oxygen and azomethine nitrogen. Molar conductance values adequately support the electrolytic nature of the complexes. On the basis of the above observations the complexes have been formulated as [M(ISAP)2]X2, where M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); X = Cl, OAc; ISAP = 2-[N-indole-2-one]aminopyrimidine. The ligand and copper(II) complex were subjected to X-ray diffraction studies. The DNA cleavage study was monitored by gel electrophoresis method. The superoxide dismutase (SOD) mimetic activities of the ligand and the metal complexes were checked using NBT assay. The in vitro antibacterial activity of the synthesized compounds has been tested against gram negative and gram positive bacteria.

  12. Studying DNA in the Classroom.

    ERIC Educational Resources Information Center

    Zarins, Silja

    1993-01-01

    Outlines a workshop for teachers that illustrates a method of extracting DNA and provides instructions on how to do some simple work with DNA without sophisticated and expensive equipment. Provides details on viscosity studies and breaking DNA molecules. (DDR)

  13. DNA cleavage by CgII and NgoAVII requires interaction between N- and R-proteins and extensive nucleotide hydrolysis.

    PubMed

    Zaremba, Mindaugas; Toliusis, Paulius; Grigaitis, Rokas; Manakova, Elena; Silanskas, Arunas; Tamulaitiene, Giedre; Szczelkun, Mark D; Siksnys, Virginijus

    2014-12-16

    The stress-sensitive restriction-modification (RM) system CglI from Corynebacterium glutamicum and the homologous NgoAVII RM system from Neisseria gonorrhoeae FA1090 are composed of three genes: a DNA methyltransferase (M.CglI and M.NgoAVII), a putative restriction endonuclease (R.CglI and R.NgoAVII, or R-proteins) and a predicted DEAD-family helicase/ATPase (N.CglI and N.NgoAVII or N-proteins). Here we report a biochemical characterization of the R- and N-proteins. Size-exclusion chromatography and SAXS experiments reveal that the isolated R.CglI, R.NgoAVII and N.CglI proteins form homodimers, while N.NgoAVII is a monomer in solution. Moreover, the R.CglI and N.CglI proteins assemble in a complex with R2N2 stoichiometry. Next, we show that N-proteins have ATPase activity that is dependent on double-stranded DNA and is stimulated by the R-proteins. Functional ATPase activity and extensive ATP hydrolysis (∼170 ATP/s/monomer) are required for site-specific DNA cleavage by R-proteins. We show that ATP-dependent DNA cleavage by R-proteins occurs at fixed positions (6-7 nucleotides) downstream of the asymmetric recognition sequence 5'-GCCGC-3'. Despite similarities to both Type I and II restriction endonucleases, the CglI and NgoAVII enzymes may employ a unique catalytic mechanism for DNA cleavage. PMID:25429977

  14. Double-stranded cleavage of T-DNA and generation of single-stranded T-DNA molecules in Escherichia coli by a virD-encoded border-specific endonuclease from Agrobacterium tumefaciens.

    PubMed

    Jayaswal, R K; Veluthambi, K; Gelvin, S B; Slightom, J L

    1987-11-01

    The virD locus of Agrobacterium tumefaciens Ti plasmid pTiA6 was sequenced. Computer analysis of the sequence indicated five possible open reading frames (ORFs) within this locus. Two additional ORFs were identified distal to this locus. However, only two polypeptides of apparent molecular masses 16 and 56 kilodaltons, the products of ORFs 1 and 2, were detected in Escherichia coli, both in vivo and in an in vitro coupled transcription-translation system. The virD locus was cloned in expression vector pKK223.3 under control of a tac promoter and introduced into an E. coli strain harboring mini-Ti plasmid pAL1050. When induced with isopropyl-beta-D-thiogalactopyranoside, the virD gene products exhibited double-stranded T-DNA border-specific endonuclease activity. Deletion analysis demonstrated that this activity is encoded within the 5'-proximal 1.7-kilobase-pair portion of the virD locus that carries ORF 1 and most of ORF 2. Neither ORF 1 nor ORF 2 independently showed endonuclease activity; complementation studies indicated that the products of ORFs 1 and 2 together have this activity. The expression of this 1.7-kilobase-pair region of the virD locus caused double-stranded cleavage of the T-DNA at or near the borders and generated single-stranded T-DNA molecules with approximately equal frequencies in E. coli.

  15. Crystallization and preliminary X-ray diffraction analysis of two N-terminal fragments of the DNA-cleavage domain of topoisomerase IV from Staphylococcus aureus

    SciTech Connect

    Carr, Stephen B.; Makris, George; Phillips, Simon E. V.; Thomas, Christopher D.

    2006-11-01

    The crystallization and data collection of topoisomerase IV from S. aureus is described. Phasing by molecular replacement proved difficult owing to the presence of translational NCS and strategies used to overcome this are discussed. DNA topoisomerase IV removes undesirable topological features from DNA molecules in order to help maintain chromosome stability. Two constructs of 56 and 59 kDa spanning the DNA-cleavage domain of the A subunit of topoisomerase IV from Staphylococcus aureus (termed GrlA56 and GrlA59) have been crystallized. Crystals were grown at 291 K using the sitting-drop vapour-diffusion technique with PEG 3350 as a precipitant. Preliminary X-ray analysis revealed that GrlA56 crystals belong to space group P2{sub 1}, diffract to a resolution of 2.9 Å and possess unit-cell parameters a = 83.6, b = 171.5, c = 87.8 Å, β = 90.1°, while crystals of GrlA59 belong to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 41.5, b = 171.89, c = 87.9 Å. These crystals diffract to a resolution of 2.8 Å. This is the first report of the crystallization and preliminary X-ray analysis of the DNA-cleavage domain of a topoisomerase IV from a Gram-positive organism.

  16. RHEED study of the (1 1 0) cleavage surface of CdTe:Cr single crystals

    NASA Astrophysics Data System (ADS)

    Sagan, P.; Kuzma, M.

    2007-03-01

    The structure of (1 1 0) plane of Cr-doped CdTe single crystals has been studied by reflection high energy electron diffraction and scanning electron microscopy. Diffraction patterns consist of diffraction spots and Kikuchi lines. However, for very small incident angle, the Debye rings are observed. The constant lattice attributed to these rings is 0.8% less then for pure CdTe. These anomalous properties of the near surface layer are likely to occur due to the concentration of Cr atoms creating compressive surface strains or the effect of crystal cleavage.

  17. Influence of the a-ring on the redox and nuclease properties of the prodigiosins: importance of the bipyrrole moiety in oxidative DNA cleavage.

    PubMed

    Melvin, Matt S; Calcutt, M Wade; Noftle, Ronald E; Manderville, Richard A

    2002-05-01

    Prodigiosin (Prod, 1) is the parent member of a class of polypyrrole natural products that exhibit promising immunosuppressive and cytotoxic activity. They can facilitate copper-promoted oxidative double-strand (ds) DNA cleavage through reductive activation of Cu(II). This is triggered by oxidation of the electron-rich Prod molecule and may provide a basis for the cytotoxicity of the prodigiosins. To gain an understanding of this activity, we prepared several Prod analogues with various A-ring systems to examine their electrochemical properties in acetonitrile (MeCN) as a means to establish a basis for structure-reactivity relationships in copper-promoted nuclease activity. The intact bipyrrole (BP) chromophore is critical for the copper-mediated nuclease properties of the Prods. In fact, simple BP systems are shown to facilitate oxidative single-strand (ss) DNA cleavage. Replacement of the Prod A-pyrrole ring with alternative arenes (phenyl, furan-2-yl, or thiophen-2-yl) inhibits DNA strand scission and raises the half-peak oxidation potential (E(p/2)) of the Prod free base [E(p/2) = 0.44 V vs saturated calomel electrode (SCE) in MeCN] by ca. 200 mV. The same effect was achieved through attachment of an electron-withdrawing group (acetyl) at the 5'-position of the A-pyrrole ring. The structural modifications that inhibit DNA cleavage correlate with known structure-reactivity relationships of Prods against leukemia and melanoma cancer cells. The implications of our findings with regard to the cytotoxicity of the Prods are discussed.

  18. Reversible Top1 cleavage complexes are stabilized strand-specifically at the ribosomal replication fork barrier and contribute to ribosomal DNA stability.

    PubMed

    Krawczyk, Claudia; Dion, Vincent; Schär, Primo; Fritsch, Olivier

    2014-04-01

    Various topological constraints at the ribosomal DNA (rDNA) locus impose an extra challenge for transcription and DNA replication, generating constant torsional DNA stress. The topoisomerase Top1 is known to release such torsion by single-strand nicking and re-ligation in a process involving transient covalent Top1 cleavage complexes (Top1cc) with the nicked DNA. Here we show that Top1ccs, despite their usually transient nature, are specifically targeted to and stabilized at the ribosomal replication fork barrier (rRFB) of budding yeast, establishing a link with previously reported Top1 controlled nicks. Using ectopically engineered rRFBs, we establish that the rRFB sequence itself is sufficient for induction of DNA strand-specific and replication-independent Top1ccs. These Top1ccs accumulate only in the presence of Fob1 and Tof2, they are reversible as they are not subject to repair by Tdp1- or Mus81-dependent processes, and their presence correlates with Top1 provided rDNA stability. Notably, the targeted formation of these Top1ccs accounts for the previously reported broken replication forks at the rRFB. These findings implicate a novel and physiologically regulated mode of Top1 action, suggesting a mechanism by which Top1 is recruited to the rRFB and stabilized in a reversible Top1cc configuration to preserve the integrity of the rDNA.

  19. Modeling study on the cleavage step of the self-splicing reaction in group I introns

    NASA Technical Reports Server (NTRS)

    Setlik, R. F.; Garduno-Juarez, R.; Manchester, J. I.; Shibata, M.; Ornstein, R. L.; Rein, R.

    1993-01-01

    A three-dimensional model of the Tetrahymena thermophila group I intron is used to further explore the catalytic mechanism of the transphosphorylation reaction of the cleavage step. Based on the coordinates of the catalytic core model proposed by Michel and Westhof (Michel, F., Westhof, E. J. Mol. Biol. 216, 585-610 (1990)), we first converted their ligation step model into a model of the cleavage step by the substitution of several bases and the removal of helix P9. Next, an attempt to place a trigonal bipyramidal transition state model in the active site revealed that this modified model for the cleavage step could not accommodate the transition state due to insufficient space. A lowering of P1 helix relative to surrounding helices provided the additional space required. Simultaneously, it provided a better starting geometry to model the molecular contacts proposed by Pyle et al. (Pyle, A. M., Murphy, F. L., Cech, T. R. Nature 358, 123-128. (1992)), based on mutational studies involving the J8/7 segment. Two hydrated Mg2+ complexes were placed in the active site of the ribozyme model, using the crystal structure of the functionally similar Klenow fragment (Beese, L.S., Steitz, T.A. EMBO J. 10, 25-33 (1991)) as a guide. The presence of two metal ions in the active site of the intron differs from previous models, which incorporate one metal ion in the catalytic site to fulfill the postulated roles of Mg2+ in catalysis. The reaction profile is simulated based on a trigonal bipyramidal transition state, and the role of the hydrated Mg2+ complexes in catalysis is further explored using molecular orbital calculations.

  20. Evaluation of DNA Binding, Cleavage, and Cytotoxic Activity of Cu(II), Co(II), and Ni(II) Schiff Base Complexes of 1-Phenylindoline-2,3-dione with Isonicotinohydrazide

    PubMed Central

    Gomathi, Ramadoss; Ramu, Andy; Murugan, Athiappan

    2014-01-01

    One new series of Cu(II), Co(II), and Ni(II) Schiff base complexes was prepared through the condensation reaction between 1-phenylindoline-2,3-dione with isonicotinohydrazide followed by metalation, respectively. The Schiff base ligand(L), (E)-N′-(2-oxo-1-phenylindolin-3-lidene)isonicotinohydrazide, and its complexes were found soluble in DMF and DMSO solvents and characterized by using the modern analytical and spectral techniques such as elemental analysis, conductivity, magnetic moments, IR, NMR, UV-visible, Mass, CV, and EPR. The elemental analysis data of ligand and their complexes were well agreed with their calculated values in which metal and ligand stoichiometry ratio 1 : 2 was noted. Molar conductance values indicated that all the complexes were found to be nonelectrolytes. All the complexes showed octahedral geometry around the central metal ions. Herein, we better characterized DNA binding with the complexes by UV-visible and CD spectroscopy and cyclic voltammetry techniques. The DNA cleavage experiments were carried out by Agarose gel electrophoresis method and the cytotoxicity experiments by MTT assay method. Based on the DNA binding, cleavage, and cytotoxicity studies, Cu and Ni complexes were found to be good anticancer agents against AGS-human gastric cancer cell line. PMID:24744691

  1. Highly sensitive fluorescence assay of DNA methyltransferase activity via methylation-sensitive cleavage coupled with nicking enzyme-assisted signal amplification.

    PubMed

    Zhao, Yongxi; Chen, Feng; Wu, Yayan; Dong, Yanhua; Fan, Chunhai

    2013-04-15

    Herein, using DNA adenine methylation (Dam) methyltransferase (MTase) as a model analyte, a simple, rapid, and highly sensitive fluorescence sensing platform for monitoring the activity and inhibition of DNA MTase was developed on the basis of methylation-sensitive cleavage and nicking enzyme-assisted signal amplification. In the presence of Dam MTase, an elaborately designed hairpin probe was methylated. With the help of methylation-sensitive restriction endonuclease DpnI, the methylated hairpin probe could be cleaved to release a single-stranded DNA (ssDNA). Subsequently, this released ssDNA would hybridize with the molecular beacon (MB) to open its hairpin structure, resulting in the restoration of fluorescence signal as well as formation of the double-stranded recognition site for nicking enzyme Nt.BbvCI. Eventually, an amplified fluorescence signal was observed through the enzymatic recycling cleavage of MBs. Based on this unique strategy, a very low detection limit down to 0.06 U/mL was achieved within a short assay time (60 min) in one step, which is superior to those of most existing approaches. Owing to the specific site recognition of MTase toward its substrate, the proposed sensing system was able to readily discriminate Dam MTase from other MTase such as M.SssI and even detect the target in complex biological matrix. Furthermore, the application of the proposed sensing strategy for screening Dam MTase inhibitors was also demonstrated with satisfactory results. This novel method not only provides a promising platform for monitoring activity and inhibition of DNA MTases, but also shows great potentials in biological process researches, drugs discovery and clinical diagnostics.

  2. Bacteriophage GIL01 gp7 interacts with host LexA repressor to enhance DNA binding and inhibit RecA-mediated auto-cleavage.

    PubMed

    Fornelos, Nadine; Butala, Matej; Hodnik, Vesna; Anderluh, Gregor; Bamford, Jaana K; Salas, Margarita

    2015-09-01

    The SOS response in Eubacteria is a global response to DNA damage and its activation is increasingly associated with the movement of mobile genetic elements. The temperate phage GIL01 is induced into lytic growth using the host's SOS response to genomic stress. LexA, the SOS transcription factor, represses bacteriophage transcription by binding to a set of SOS boxes in the lysogenic promoter P1. However, LexA is unable to efficiently repress GIL01 transcription unless the small phage-encoded protein gp7 is also present. We found that gp7 forms a stable complex with LexA that enhances LexA binding to phage and cellular SOS sites and interferes with RecA-mediated auto-cleavage of LexA, the key step in the initiation of the SOS response. Gp7 did not bind DNA, alone or when complexed with LexA. Our findings suggest that gp7 induces a LexA conformation that favors DNA binding but disfavors LexA auto-cleavage, thereby altering the dynamics of the cellular SOS response. This is the first account of an accessory factor interacting with LexA to regulate transcription. PMID:26138485

  3. Theoretical study of the mechanism of the rearrangement-cleavage reactions of allylenammonium salts

    SciTech Connect

    Kletskii, M.E.; Minkin, V.I.; Babayan, A.T.

    1988-03-10

    In a theoretical study of the mechanism of the rearrangement-cleavage of tetra-substituted ammonium salts containing 1,2- and 3,4-unsaturated groups using the CNDO/2 and MINDO/3 semiempirical methods, calculations were carried out to determine the electron density in trimethylvinylammonium, trimethylethynylammonium, and phosphonium cations and the minimal energy pathways for the 3,3-sigmatropic shift reactions in the vinylallylammonium cation and of the product of the /alpha/-addition of a hydride ion to it (nucleophilic catalysis model). According to the calculation data, the nucleophilic attack of enammonium compounds in basic media is directed toward the /alpha/-position of the 1,2-unsaturated group. The driving force for the rearrangement-cleavage is the attack of the /alpha/-position by the nucleophile which results in intramolecular C-alkylation by a concerted 3,3-sigmatropic shift mechanism. The calculated activation barrier of the catalyzed reaction (15.8 kcal/mole) is 7.4 kcal/mole lower than in the absence of nucleophilic action.

  4. Mononuclear dioxomolybdenum(VI) thiosemicarbazonato complexes: Synthesis, characterization, structural illustration, in vitro DNA binding, cleavage, and antitumor properties.

    PubMed

    Hussein, Mouayed A; Guan, Teoh S; Haque, Rosenani A; Khadeer Ahamed, Mohamed B; Abdul Majid, Amin M S

    2015-02-01

    Four dioxomolybdenum(VI) complexes were synthesized by reacting [MoO2(acac)2] with N-ethyl-2-(5-bromo-2-hydroxybenzylidene) hydrazinecarbothioamide (1), N-ethyl-2-(5-allyl-3-methoxy-2-hydroxybenzylidene) hydrazinecarbothioamide (2), N-methyl-2-(3-tert-butyl-2-hydroxybenzylidene) hydrazinecarbothioamide (3), and N-ethyl-2-(3-methyl-2-hydroxybenzylidene) hydrazinecarbothioamide (4). The molecular structures of 1, 2, and all the synthesized complexes were determined using single crystal X-ray crystallography. The binding properties of the ligand and complexes with calf thymus DNA (CT-DNA) were investigated via UV, fluorescence titrations, and viscosity measurement. Gel electrophoresis revealed that all the complexes cleave pBR 322 plasmid DNA. The cytotoxicity of the complexes were studied against the HCT 116 human colorectal cell line. All the complexes exhibited more pronounced activity than the standard reference drug 5-fluorouracil (IC50 7.3μM). These studies show that dioxomolybdenum(VI) complexes could be potentially useful in chemotherapy.

  5. Mononuclear dioxomolybdenum(VI) thiosemicarbazonato complexes: Synthesis, characterization, structural illustration, in vitro DNA binding, cleavage, and antitumor properties

    NASA Astrophysics Data System (ADS)

    Hussein, Mouayed A.; Guan, Teoh S.; Haque, Rosenani A.; Khadeer Ahamed, Mohamed B.; Abdul Majid, Amin M. S.

    2015-02-01

    Four dioxomolybdenum(VI) complexes were synthesized by reacting [MoO2(acac)2] with N-ethyl-2-(5-bromo-2-hydroxybenzylidene) hydrazinecarbothioamide (1), N-ethyl-2-(5-allyl-3-methoxy-2-hydroxybenzylidene) hydrazinecarbothioamide (2), N-methyl-2-(3-tert-butyl-2-hydroxybenzylidene) hydrazinecarbothioamide (3), and N-ethyl-2-(3-methyl-2-hydroxybenzylidene) hydrazinecarbothioamide (4). The molecular structures of 1, 2, and all the synthesized complexes were determined using single crystal X-ray crystallography. The binding properties of the ligand and complexes with calf thymus DNA (CT-DNA) were investigated via UV, fluorescence titrations, and viscosity measurement. Gel electrophoresis revealed that all the complexes cleave pBR 322 plasmid DNA. The cytotoxicity of the complexes were studied against the HCT 116 human colorectal cell line. All the complexes exhibited more pronounced activity than the standard reference drug 5-fluorouracil (IC50 7.3 μM). These studies show that dioxomolybdenum(VI) complexes could be potentially useful in chemotherapy.

  6. Chamomile flower extract-directed CuO nanoparticle formation for its antioxidant and DNA cleavage properties.

    PubMed

    Duman, Fatih; Ocsoy, Ismail; Kup, Fatma Ozturk

    2016-03-01

    In this study, we report the synthesis of copper oxide nanoparticles (CuO NPs) using a medicinal plant (Matricaria chamomilla) flower extract as both reducing and capping agent and investigate their antioxidant activity and interaction with plasmid DNA (pBR322).The CuO NPs were characterized using Uv-Vis spectroscopy, FT-IR (Fourier transform infrared spectroscopy), DLS (dynamic light scattering), XRD (X-ray diffraction), EDX (energy-dispersive X-ray) spectroscopy and SEM (scanning electron microscopy). The CuO NPs exhibited nearly mono-distributed and spherical shapes with diameters of 140 nm size. UV-Vis absorption spectrum of CuO NPs gave a broad peak around 285 and 320 nm. The existence of functional groups on the surface of CuO NPs was characterized with FT-IR analysis. XRD pattern showed that the NPs are in the form of a face-centered cubic crystal. Zeta potential value was measured as -20 mV due to the presence of negatively charged functional groups in plant extract. Additionally, we demonstrated concentration-dependent antioxidant activity of CuO NPs and their interaction with plasmid DNA. We assumed that the CuO NPs both cleave and break DNA double helix structure. PMID:26706538

  7. Atomic Force Microscopy Studies on DNA Structural Changes Induced by Vincristine Sulfate and Aspirin

    NASA Astrophysics Data System (ADS)

    Zhu, Yi; Zeng, Hu; Xie, Jianming; Ba, Long; Gao, Xiang; Lu, Zuhong

    2004-04-01

    We report that atomic force microscopy (AFM) studies on structural variations of a linear plasmid DNA interact with various concentrations of vincristine sulfate and aspirin. The different binding images show that vincrinstine sulfate binding DNA chains caused some loops and cleavages of the DNA fragments, whereas aspirin interaction caused the width changes and conformational transition of the DNA fragments. Two different DNA structural alternations could be explained by the different mechanisms of the interactions with these two components. Our work indicates that the AFM is a powerful tool in studying the interaction between DNA and small molecules.

  8. Toward the design of a catalytic metallodrug: selective cleavage of G-quadruplex telomeric DNA by an anticancer copper-acridine-ATCUN complex.

    PubMed

    Yu, Zhen; Han, Menglu; Cowan, James A

    2015-02-01

    Telomeric DNA represents a novel target for the development of anticancer drugs. By application of a catalytic metallodrug strategy, a copper-acridine-ATCUN complex (CuGGHK-Acr) has been designed that targets G-quadruplex telomeric DNA. Both fluorescence solution assays and gel sequencing demonstrate the CuGGHK-Acr catalyst to selectively bind and cleave the G-quadruplex telomere sequence. The cleavage pathway has been mapped by matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) experiments. CuGGHK-Acr promotes significant inhibition of cancer cell proliferation and shortening of telomere length. Both senescence and apoptosis are induced in the breast cancer cell line MCF7. PMID:25504651

  9. Toward the Design of a Catalytic Metallodrug: Selective Cleavage of G-Quadruplex Telomeric DNA by an Anticancer Copper–Acridine–ATCUN Complex**

    PubMed Central

    Yu, Zhen; Han, Menglu

    2015-01-01

    Telomeric DNA represents a novel target for the development of anticancer drugs. By application of a catalytic metallodrug strategy, a copper–acridine–ATCUN complex (CuGGHK-Acr) has been designed that targets G-quadruplex telomeric DNA. Both fluorescence solution assays and gel sequencing demonstrate the CuGGHK-Acr catalyst to selectively bind and cleave the G-quadruplex telomere sequence. The cleavage pathway has been mapped by matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) experiments. CuGGHK-Acr promotes significant inhibition of cancer cell proliferation and shortening of telomere length. Both senescence and apoptosis are induced in the breast cancer cell line MCF7. PMID:25504651

  10. Photo-induced DNA cleavage activity and remarkable photocytotoxicity of lanthanide(III) complexes of a polypyridyl ligand.

    PubMed

    Hussain, Akhtar; Gadadhar, Sudarshan; Goswami, Tridib K; Karande, Anjali A; Chakravarty, Akhil R

    2012-01-21

    Lanthanide(III) complexes [Ln(pyphen)(acac)(2)(NO(3))] (1, 2), [Ln(pydppz)(acac)(2)(NO(3))] (3, 4) and [La(pydppz)(anacac)(2)(NO(3))] (5), where Ln is La(III) (in 1, 3, 5) and Gd(III) (in 2, 4), pyphen is 6-(2-pyridyl)-1,10-phenanthroline, pydppz is 6-(2-pyridyl)-dipyrido[3,2-a:2',3'-c]phenazine, anacac is anthracenylacetylacetonate and acac is acetylacetonate, were prepared, characterized and their DNA photocleavage activity and photocytotoxicity studied. The crystal structure of complex 2 displays a GdO(6)N(3) coordination. The pydppz complexes 3-5 show an electronic spectral band at ~390 nm in DMF. The La(III) complexes are diamagnetic, while the Gd(III) complexes are paramagnetic with seven unpaired electrons. The molar conductivity data suggest 1 : 1 electrolytic nature of the complexes in aqueous DMF. They are avid binders to calf thymus DNA giving K(b) in the range of 5.4 × 10(4)-1.2 × 10(6) M(-1). Complexes 3-5 efficiently cleave supercoiled DNA to its nicked circular form in UV-A light of 365 nm via formation of singlet oxygen ((1)O(2)) and hydroxyl radical (HO˙) species. Complexes 3-5 also exhibit significant photocytotoxic effect in HeLa cancer cells giving respective IC(50) value of 0.16(±0.01), 0.15(±0.01) and 0.26±(0.02) μM in UV-A light of 365 nm, while they are less toxic in dark with an IC(50) value of >3 μM. The presence of an additional pyridyl group makes the pydppz complexes more photocytotoxic than their dppz analogues. FACS analysis of the HeLa cells treated with complex 4 shows apoptosis as the major pathway of cell death. Nuclear localization of complex 5 having an anthracenyl moiety as a fluorophore is evidenced from the confocal microscopic studies.

  11. Spectroscopic and molecular docking studies on the interaction of troxerutin with DNA.

    PubMed

    Subastri, A; Ramamurthy, C H; Suyavaran, A; Mareeswaran, R; Lokeswara Rao, P; Harikrishna, M; Suresh Kumar, M; Sujatha, V; Thirunavukkarasu, C

    2015-01-01

    Troxerutin (TXER) is a derivative of naturally occurring bioflavonoid rutin. It possesses different biological activities in rising clinical world. The biological activity possessed by most of the drugs mainly targets on macromolecules. Hence, in the current study we have examined the interaction mechanism of TXER with calf thymus DNA (CT-DNA) by using various spectroscopic methods, isothermal titration calorimetry (ITC) and molecular docking studies. Further, DNA cleavage study was carried out to find the DNA protection activity of TXER. UV-absorption and emission spectroscopy showed low binding constant values via groove binding. Circular dichroism study indicates that TXER does not modify native B-form of DNA, and it retains the native B-conformation. Furthermore, no effective positive potential peak shift was observed in TXER-DNA complex during electrochemical analysis by which it represents an interaction of TXER with DNA through groove binding. Molecular docking study showed thymine guanine based interaction with docking score -7.09 kcal/mol. This result was compared to experimental ITC value. The DNA cleavage study illustrates that TXER does not cause any DNA damage as well as TXER showed DNA protection against hydroxyl radical induced DNA damage. From this study, we conclude that TXER interacts with DNA by fashion of groove binding.

  12. Mixed ligand copper(II) complexes of 1,10-phenanthroline with tridentate phenolate/pyridyl/(benz)imidazolyl Schiff base ligands: covalent vs non-covalent DNA binding, DNA cleavage and cytotoxicity.

    PubMed

    Rajarajeswari, Chandrasekaran; Ganeshpandian, Mani; Palaniandavar, Mallayan; Riyasdeen, Anvarbatcha; Akbarsha, Mohammad Abdulkadher

    2014-11-01

    A series of copper(II) complexes of the types [Cu(L)(phen)](ClO4) 1-2, where HL is a tridentate ligand with two nitrogen and one oxygen donor atoms (2NO) such as 2-(2-(1H-benzimidazol-2-yl)ethyliminomethyl)phenol (HL1) and 2-(2-(1H-benzimidazol-2-yl)ethyl-imino)methyl)-4-methylphenol (HL2), phen is 1,10-phenanthroline and [Cu(L)(phen)](ClO4)23-6, where L is a tridentate ligand with three nitrogen donor atoms (3N) such as (2-pyridin-2-ylethyl)pyridin-2-ylmethyleneamine (L3), 2-(1H-benzimidazol-2-yl)ethyl)-pyridin-2-yl-methyleneamine (L4), 2-(1H-benzimidazol-2-yl)ethyl)(1H-imidazol-2-ylmethylene)-amine (L5) and 2-(1H-benzimidazol-2-yl)ethyl)(4,4a-dihydroquinolin-2-ylmethylene)amine (L6), has been isolated and characterized by different spectral techniques. In single crystal X-ray structures, 1 possesses square pyramidal distorted trigonal bipyramidal (SPDTBP), geometry whereas 3 and 4 possess trigonal bipyramidal distorted square pyramidal (TBDSP) geometry. UV-Vis and fluorescence spectral studies reveal that the complexes 1-6 bind non-covalently to calf thymus DNA more strongly than the corresponding covalently bound chlorido complexes [Cu(2NO)Cl] 1a-2a and [Cu(3N)Cl2] 3a-6a. On prolonged incubation, all the complexes 1-6 exhibit double strand cleavage of supercoiled (SC) plasmid DNA in the absence of an activator. Also, they exhibit cytotoxicity against human breast cancer cell lines (HBL-100) more potent than their corresponding chlorido complexes 1a-6a, and have the potential to act as efficient cytotoxic drugs. PMID:25199844

  13. Mixed ligand complexation of some transition metal ions in solution and solid state: Spectral characterization, antimicrobial, antioxidant, DNA cleavage activities and molecular modeling

    NASA Astrophysics Data System (ADS)

    Shobana, Sutha; Dharmaraja, Jeyaprakash; Selvaraj, Shanmugaperumal

    2013-04-01

    Equilibrium studies of Ni(II), Cu(II) and Zn(II) mixed ligand complexes involving a primary ligand 5-fluorouracil (5-FU; A) and imidazoles viz., imidazole (him), benzimidazole (bim), histamine (hist) and L-histidine (his) as co-ligands(B) were carried out pH-metrically in aqueous medium at 310 ± 0.1 K with I = 0.15 M (NaClO4). In solution state, the stoichiometry of MABH, MAB and MAB2 species have been detected. The primary ligand(A) binds the central M(II) ions in a monodentate manner whereas him, bim, hist and his co-ligands(B) bind in mono, mono, bi and tridentate modes respectively. The calculated Δ log K, log X and log X' values indicate higher stability of the mixed ligand complexes in comparison to binary species. Stability of the mixed ligand complex equilibria follows the Irving-Williams order of stability. In vitro biological evaluations of the free ligand(A) and their metal complexes by well diffusion technique show moderate activities against common bacterial and fungal strains. Oxidative cleavage interaction of ligand(A) and their copper complexes with CT DNA is also studied by gel electrophoresis method in the presence of oxidant. In vitro antioxidant evaluations of the primary ligand(A), CuA and CuAB complexes by DPPH free radical scavenging model were carried out. In solid, the MAB type of M(II)sbnd 5-FU(A)sbnd his(B) complexes were isolated and characterized by various physico-chemical and spectral techniques. Both the magnetic susceptibility and electronic spectral analysis suggest distorted octahedral geometry. Thermal studies on the synthesized mixed ligand complexes show loss of coordinated water molecule in the first step followed by decomposition of the organic residues subsequently. XRD and SEM analysis suggest that the microcrystalline nature and homogeneous morphology of MAB complexes. Further, the 3D molecular modeling and analysis for the mixed ligand MAB complexes have also been carried out.

  14. A mechanistic study of Trichoderma reesei Cel7B catalyzed glycosidic bond cleavage.

    PubMed

    Zhang, Yu; Yan, Shihai; Yao, Lishan

    2013-07-25

    An ONIOM study is performed to illustrate the mechanism of Trichoderma reesei Cel7B catalyzed p-nitrophenyl lactoside hydrolysis. In both the glycosylation and deglycosylation steps, the reaction proceeds in a concerted way, meaning the nucleophilic attack and the glycosidic bond cleavage occur simultaneously. The glycosylation step is rate limiting with a barrier of 18.9 kcal/mol, comparable to the experimental value derived from the kcat measured in this work. The function of four residues R108, Y146, Y170, and D172, which form a hydrogen-bond network involving the substrate, is studied by conservative mutations. The mutants, including R108K, Y146F, Y170F, and D172N, decrease the enzyme activity by about 150-8000-fold. Molecular dynamics simulations show that the mutations disrupt the hydrogen-bond network, cause the substrate to deviate from active binding and hinder either the proton transfer from E201 to O4(+1) or the nucleophilic attack from E196 to C1(-1). PMID:23822607

  15. A mechanistic study of Trichoderma reesei Cel7B catalyzed glycosidic bond cleavage.

    PubMed

    Zhang, Yu; Yan, Shihai; Yao, Lishan

    2013-07-25

    An ONIOM study is performed to illustrate the mechanism of Trichoderma reesei Cel7B catalyzed p-nitrophenyl lactoside hydrolysis. In both the glycosylation and deglycosylation steps, the reaction proceeds in a concerted way, meaning the nucleophilic attack and the glycosidic bond cleavage occur simultaneously. The glycosylation step is rate limiting with a barrier of 18.9 kcal/mol, comparable to the experimental value derived from the kcat measured in this work. The function of four residues R108, Y146, Y170, and D172, which form a hydrogen-bond network involving the substrate, is studied by conservative mutations. The mutants, including R108K, Y146F, Y170F, and D172N, decrease the enzyme activity by about 150-8000-fold. Molecular dynamics simulations show that the mutations disrupt the hydrogen-bond network, cause the substrate to deviate from active binding and hinder either the proton transfer from E201 to O4(+1) or the nucleophilic attack from E196 to C1(-1).

  16. Activities of Human Immunodeficiency Virus (HIV) Integration Protein In vitro: Specific Cleavage and Integration of HIV DNA

    NASA Astrophysics Data System (ADS)

    Bushman, Frederic D.; Craigie, Robert

    1991-02-01

    Growth of human immunodeficiency virus (HIV) after infection requires the integration of a DNA copy of the viral RNA genome into a chromosome of the host. Here we present a simple in vitro system that carries out the integration reaction and the use of this system to probe the mechanism of integration. The only HIV protein necessary is the integration (IN) protein, which has been overexpressed in insect cells and then partially purified. DNA substrates are supplied as oligonucleotides that match the termini of the linear DNA product of reverse transcription. In the presence of HIV IN protein, oligonucleotide substrates are cleaved to generate the recessed 3' ends that are the precursor for integration, and the cleaved molecules are efficiently inserted into a DNA target. Analysis of reaction products reveals that HIV IN protein joins 3' ends of the viral DNA to 5' ends of cuts made by IN protein in the DNA target. We have also used this assay to characterize the sequences at the ends of the viral DNA involved in integration. The assay provides a simple screen for testing candidate inhibitors of HIV IN protein; some such inhibitors might have useful antiviral activity.

  17. DNA Binding, Cleavage and Antibacterial Activity of Mononuclear Cu(II), Ni(II) and Co(II) Complexes Derived from Novel Benzothiazole Schiff Bases.

    PubMed

    Vamsikrishna, Narendrula; Kumar, Marri Pradeep; Tejaswi, Somapangu; Rambabu, Aveli; Shivaraj

    2016-07-01

    A series of novel bivalent metal complexes M(L1)2 and M(L2)2 where M = Cu(II), Ni(II), Co(II) and L1 = 2-((benzo [d] thiazol-6-ylimino)methyl)-4-bromophenol [BTEMBP], L2 = 1-((benzo [d] thiazol-6-ylimino)methyl) naphthalen-2-ol [BTEMNAPP] were synthesized. All the compounds have been characterized by elemental analysis, SEM, Mass, (1)H NMR, (13)C NMR, UV-Vis, IR, ESR, spectral data and magnetic susceptibility measurements. Based on the analytical and spectral data four-coordinated square planar geometry is assigned to all the complexes. DNA binding properties of these complexes have been investigated by electronic absorption spectroscopy, fluorescence and viscosity measurements. It is observed that these binary complexes strongly bind to calf thymus DNA by an intercalation mode. DNA cleavage efficacy of these complexes was tested in presence of H2O2 and UV light by gel electrophoresis and found that all the complexes showed better nuclease activity. Finally the compounds were screened for antibacterial activity against few pathogens and found that the complexes have potent biocidal activity than their free ligands.

  18. Magnetic resonance imaging-based anatomical study of the multifidus-longissimus cleavage planes in the lumbar spine

    PubMed Central

    Li, Haijun; Yang, Lei; Chen, Jinhua; Xie, Hao; Tian, Weizhong; Cao, Xiaojian

    2016-01-01

    Purpose: The Wiltse approach allows spinal surgeries to be performed with minimal soft tissue trauma. The purpose of this study was to investigate the anatomy of the natural cleavage plane between multifidus and longissimus at different levels based on MRI images. Methods: MRI cross-sectional scans from L1 to S1 were collected from 205 out patients (103 males, 102 females). Based on the images, some parameters were defined and measured to describe the locations, curvature and directions of Wiltse approach. Besides, differences of these parameters between genders and segments were compared. Results: Among the total of 2460 one-sided images, cleavage planes between multifidus and longissimus were not able to be identified in 105 images. The locations, directions and curvature of the cleavage plane differed significantly among different segments but followed some regular pattern from L1-S1. The simultaneous rotation of the plane around its deepest points to the midline from S1 to L1 and the plane seemed to be the most curved at L3 and relatively straight for L5 and S1. Conclusions: With a better understanding of the natural cleavage plane between multifidus and longissimus, performers can correctly plan the distance of skin incisions from the midline and the direction of muscle dissection at each vertebral level, thus reducing trauma in the operation. PMID:27069544

  19. Characterization of FP22, a large streptomycete bacteriophage with DNA insensitive to cleavage by many restriction enzymes.

    PubMed

    Hahn, D R; McHenney, M A; Baltz, R H

    1990-12-01

    Bacteriophage FP22 has a very broad host range within streptomycetes and appeared to form lysogens of Streptomyces ambofaciens ATCC 15154. FP22 shared strong cross-immunity and antibody cross-reactivity with bacteriophage P23, but not with seven other streptomycete bacteriophages. FP22 particles had a head diameter of 71 nm and a tail length of 307 nm. The FP22 genome was 131 kb, which is the largest bacteriophage genome reported for streptomycetes. The G + C content of the genome was 46 mol% and restriction mapping indicated that FP22 DNA had discrete ends. NaCl- and pyrophosphate-resistant deletion mutants were readily isolated and the extent of the deletions defined at least 23 kb of dispensable DNA in two regions of the genome. The DNA was not cleaved by most restriction endonucleases (or isoschizomers) which have been identified in the streptomycetes, including the tetranucleotide cutter MboI (GATC).

  20. Molecular beacons for protein-DNA interaction studies.

    PubMed

    Li, Jun; Cao, Zehui Charles; Tang, Zhiwen; Wang, Kemin; Tan, Weihong

    2008-01-01

    Real-time monitoring of DNA-protein interactions involving molecular beacon (MB) and molecular beacon aptamer (MBA) was discussed in this chapter. MBs are single-stranded oligonucleotide probes with a hairpin structure. MBs have been designed for oligonucleotide recognition and protein-DNA interaction studies. Real-time monitoring of enzymatic reactions, such as cleavage, ligation, and phosphorylation of single-stranded DNA by specific enzyme, has been studied using MBs. Meanwhile, a new generation of molecular probes, MBA, was designed by combining the excellent signal transduction properties of MBs with the specificity of aptamers for protein recognition. Two different aptamers, the one for thrombin and that for platelet-derived growth factor, have been successfully used to construct MBA probes. The interaction between the proteins and the MBA probes was investigated by fluorescence resonance energy transfer, fluorescence anisotropy, and time-resolved fluorescence. This chapter has reviewed our recent progress in this area.

  1. Hydrolytic cleavage of double-strand DNA by the water-soluble dicobalt(III) complexes of 1,4,7-triazacyclononane-N-acetate.

    PubMed

    Qian, Jing; Ma, Xiaofang; Tian, Jinlei; Gu, Wen; Shang, Jing; Liu, Xin; Yan, Shiping

    2010-09-01

    Three water-soluble dicobalt(III) complexes, [Co(2)L(2)(micro-OH)(2)](ClO(4))(2).5H(2)O (1), [Co(2)L(2)(micro-OH)(2)](ClO(4))(2).CH(3)OH.H(2)O(2); [Co(2)L(2)(micro-OH)(2)](ClO(4))(2).4H(2)O(3) (L=1,4,7-triazacyclononane-N-acetate monoanion), were prepared to serve as nuclease mimics. The complexes were characterized by X-ray, IR and UV-vis spectroscopy as well as ESI-MS. Three complexes exhibit similar structures, just with different solvent molecules. The electrospray mass spectrum of 1 in solution indicates that dinuclear ion [Co(2)L(2)(micro-OH)(2)-H(+)] (+) (4) is the active species. In the absence of any reducing agent, the complexes cleave plasmid pBR322 DNA was performed and its hydrolytic mechanism was demonstrated with radical scavengers, anaerobic reaction and T4 ligase. The kinetic aspects of DNA cleavage under pseudo- or true-Michaelis-Menten conditions are also detailed, kinetic parameters (k(cat), K(M)) were calculated to be 3.57 h(-1), 6.92 x 10(-4)M; 0.28 h(-1), 1.9 x 10(-5)M for 4, respectively.

  2. Mechanism for catechol ring cleavage by non-heme iron intradiol dioxygenases: a hybrid DFT study.

    PubMed

    Borowski, Tomasz; Siegbahn, Per E M

    2006-10-01

    The mechanism of the catalytic reaction of protocatechuate 3,4-dioxygenase (3,4-PCD), a representative intradiol dioxygenase, was studied with the hybrid density functional method B3LYP. First, a smaller model involving only the iron first-shell ligands (His460, His462, and Tyr408) and the substrates (catechol and dioxygen) was used to probe various a priori plausible reaction mechanisms. Then, an extended model involving also the most important second-shell groups (Arg457, Gln477, and Tyr479) was used for the refinement of the preselected mechanisms. The computational results suggest that the chemical reactions constituting the catalytic cycle of intradiol dioxygenases involve: (1) binding of the substrate as a dianion, in agreement with experimental suggestions, (2) binding of dioxygen to the metal aided by an electron transfer from the substrate to O(2), (3) formation of a bridging peroxo intermediate and its conformational change, which opens the coordination site trans to His462, (4) binding of a neutral XOH ligand (H(2)O or Tyr447) at the open site, (5) proton transfer from XOH to the neighboring peroxo ligand yielding the hydroperoxo intermediate, (6) a Criegee rearrangement leading to the anhydride intermediate, and (7) hydrolysis of the anhydride to the final acyclic product. One of the most important results obtained is that the Criegee mechanism requires an in-plane orientation of the four atoms (two oxygen and two carbon atoms) mainly involved in the reaction. This orientation yields a good overlap between the two sigma orbitals involved, C-C sigma and O-O sigma, allowing an efficient electron flow between them. Another interesting result is that under some conditions, a homolytic O-O bond cleavage might compete with the Criegee rearrangement. The role of the second-shell residues and the substituent effects are also discussed.

  3. Interaction of DNA with Simple and Mixed Ligand Copper(II) Complexes of 1,10-Phenanthrolines as Studied by DNA-Fiber EPR Spectroscopy.

    PubMed

    Chikira, Makoto; Ng, Chew Hee; Palaniandavar, Mallayan

    2015-01-01

    The interaction of simple and ternary Cu(II) complexes of 1,10-phenanthrolines with DNA has been studied extensively because of their various interesting and important functions such as DNA cleavage activity, cytotoxicity towards cancer cells, and DNA based asymmetric catalysis. Such functions are closely related to the DNA binding modes of the complexes such as intercalation, groove binding, and electrostatic surface binding. A variety of spectroscopic methods have been used to study the DNA binding mode of the Cu(II) complexes. Of all these methods, DNA-fiber electron paramagnetic resonance (EPR) spectroscopy affords unique information on the DNA binding structures of the complexes. In this review we summarize the results of our DNA-fiber EPR studies on the DNA binding structure of the complexes and discuss them together with the data accumulated by using other measurements. PMID:26402668

  4. Interaction of DNA with Simple and Mixed Ligand Copper(II) Complexes of 1,10-Phenanthrolines as Studied by DNA-Fiber EPR Spectroscopy

    PubMed Central

    Chikira, Makoto; Ng, Chew Hee; Palaniandavar, Mallayan

    2015-01-01

    The interaction of simple and ternary Cu(II) complexes of 1,10-phenanthrolines with DNA has been studied extensively because of their various interesting and important functions such as DNA cleavage activity, cytotoxicity towards cancer cells, and DNA based asymmetric catalysis. Such functions are closely related to the DNA binding modes of the complexes such as intercalation, groove binding, and electrostatic surface binding. A variety of spectroscopic methods have been used to study the DNA binding mode of the Cu(II) complexes. Of all these methods, DNA-fiber electron paramagnetic resonance (EPR) spectroscopy affords unique information on the DNA binding structures of the complexes. In this review we summarize the results of our DNA-fiber EPR studies on the DNA binding structure of the complexes and discuss them together with the data accumulated by using other measurements. PMID:26402668

  5. Analytical methods to determine the comparative DNA binding studies of curcumin-Cu(II) complexes

    NASA Astrophysics Data System (ADS)

    Rajesh, Jegathalaprathaban; Rajasekaran, Marichamy; Rajagopal, Gurusamy; Athappan, Periakaruppan

    2012-11-01

    DNA interaction studies of two mononuclear [1:1(1); 1:2(2)] copper(II) complexes of curcumin have been studied. The interaction of these complexes with CT-DNA has been explored by physical methods to propose modes of DNA binding of the complexes. Absorption spectral titrations of complex 1 with CT-DNA shows a red-shift of 3 nm with the DNA binding affinity of Kb, 5.21 × 104 M-1 that are higher than that obtained for 2 (red-shift, 2 nm; Kb, 1.73 × 104 M-1) reveal that the binding occurs in grooves as a result of the interaction is via exterior phosphates. The CD spectra of these Cu(II) complexes show a red shift of 3-10 nm in the positive band with increase in intensities. This spectral change of induced CD due to the hydrophobic interaction of copper complexes with DNA is the characteristic of B to A conformational change. The EB displacement assay also reveals the same trend as observed in UV-Vis spectral titration. The addition of complexes 1 and 2 to the DNA bound ethidium bromide (EB) solutions causes an obvious reduction in emission intensities indicating that these complexes competitively bind to DNA with EB. The positive shift of both the Epc and E0' accompanied by reduction of peak currents in differential pulse voltammogram (DPV), upon adding different concentrations of DNA to the metal complexes, are obviously in favor of strong binding to DNA. The super coiled plasmid pUC18 DNA cleavage ability of Cu(II) complexes in the presence of reducing agent reveals the single strand DNA cleavage (ssDNA) is observed. The hydroxyl radical (HOrad ) and the singlet oxygen are believed to be the reactive species responsible for the cleavage.

  6. Cleavages and co-operation in the UK alcohol industry: A qualitative study

    PubMed Central

    2012-01-01

    Background It is widely believed that corporate actors exert substantial influence on the making of public health policy, including in the alcohol field. However, the industry is far from being monolithic, comprising a range of producers and retailers with varying and diverse interests. With a focus on contemporary debates concerning the minimum pricing of alcohol in the UK, this study examined the differing interests of actors within the alcohol industry, the cleavages which emerged between them on this issue and how this impacted on their ability to organise themselves collectively to influence the policy process. We conducted 35 semi-structured interviews between June and November 2010 with respondents from all sectors of the industry as well as a range of non-industry actors who had knowledge of the alcohol policy process, including former Ministers, Members of the UK Parliament and the Scottish Parliament, civil servants, members of civil society organisations and professionals. Methods The paper draws on an analysis of publicly available documents and 35 semi-structured interviews with respondents from the alcohol industry (on- and off-trade including retailers, producers of wines, spirits and beers and trade associations) and a range of non-industry actors with knowledge of the alcohol policy process (including former Ministers, Members of Parliament and of the Scottish Parliament, civil servants, members of civil society organisations and professional groups). Interviews were recorded, transcribed and analysed using Nvivo qualitative analysis software. Processes of triangulation between data sources and different types of respondent sought to ensure we gained as accurate a picture as possible of industry participation in the policy process. Results Divergences of interest were evident between producers and retailers and within the retail sector between the on and off trade. Divisions within the alcohol industry, however, existed not only between these

  7. Mutational analysis of active-site residues in the Mycobacterium leprae RecA intein, a LAGLIDADG homing endonuclease: Asp(122) and Asp(193) are crucial to the double-stranded DNA cleavage activity whereas Asp(218) is not.

    PubMed

    Singh, Pawan; Tripathi, Pankaj; Muniyappa, K

    2010-01-01

    Mycobacterium leprae recA harbors an in-frame insertion sequence that encodes an intein homing endonuclease (PI-MleI). Most inteins (intein endonucleases) possess two conserved LAGLIDADG (DOD) motifs at their active center. A common feature of LAGLIDADG-type homing endonucleases is that they recognize and cleave the same or very similar DNA sequences. However, PI-MleI is distinctive from other members of the family of LAGLIDADG-type HEases for its modular structure with functionally separable domains for DNA-binding and cleavage, each with distinct sequence preferences. Sequence alignment analyses of PI-MleI revealed three putative LAGLIDADG motifs; however, there is conflicting bioinformatics data in regard to their identity and specific location within the intein polypeptide. To resolve this conflict and to determine the active-site residues essential for DNA target site recognition and double-stranded DNA cleavage, we performed site-directed mutagenesis of presumptive catalytic residues in the LAGLIDADG motifs. Analysis of target DNA recognition and kinetic parameters of the wild-type PI-MleI and its variants disclosed that the two amino acid residues, Asp(122) (in Block C) and Asp(193) (in functional Block E), are crucial to the double-stranded DNA endonuclease activity, whereas Asp(218) (in pseudo-Block E) is not. However, despite the reduced catalytic activity, the PI-MleI variants, like the wild-type PI-MleI, generated a footprint of the same length around the insertion site. The D122T variant showed significantly reduced catalytic activity, and D122A and D193A mutations although failed to affect their DNA-binding affinities, but abolished the double-stranded DNA cleavage activity. On the other hand, D122C variant showed approximately twofold higher double-stranded DNA cleavage activity, compared with the wild-type PI-MleI. These results provide compelling evidence that Asp(122) and Asp(193) in DOD motif I and II, respectively, are bona fide active

  8. Fuzzy logic sensing of G-quadruplex DNA and its cleavage reagents based on reduced graphene oxide.

    PubMed

    Huang, Wei Tao; Zhang, Jian Rong; Xie, Wan Yi; Shi, Yan; Luo, Hong Qun; Li, Nian Bing

    2014-07-15

    Herein, by combining the merits of nanotechnology and fuzzy logic theory, we develop a simple, label-free, and general strategy based on an organic dye-graphene hybrid system for fluorescence intelligent sensing of G-quadruplexes (G4) formation, hydroxyl radical (HO∙), and Fe(2+) in vitro. By exploiting acridine orange (AO) dyes-graphene as a nanofilter and nanoswitch and the ability of graphene to interact with DNA with different structures, our approach can efficiently distinguish, quantitatively detect target analytes. In vitro assays with G4DNA demonstrated increases in fluorescence intensity of the AO-rGO system with a linear range of 16-338 nM and a detection limit as low as 2.0 nM. The requenched fluorescence of the G4TBA-AO-rGO system has a non-linear response to Fenton reagent. But this requenching reduces the fluorescence intensity in a manner proportional to the logarithm to the base 10 of the concentration of Fenton reagent in the range of 0.1-100 μM and 100-2000 μM, respectively. Furthermore, we develop a novel and intelligent sensing method based on fuzzy logic which mimics human reasoning, solves complex and non-linear problems, and transforms the numerical output into the language description output for potential application in biochemical systems, environmental monitoring systems, and molecular-level fuzzy logic computing system.

  9. Synthesis, photochemical properties and DNA binding studies of dna cleaving agents based on chiral dipyridine dihydrodioxins salts

    NASA Astrophysics Data System (ADS)

    Shamaev, Alexei

    activated by UV-light. The mechanism of o-quinone release and intramolecular ET was studied in detail by methods of Ultrafast Transient Absortion Spectroscopy and supported by high-level quantum mechanical calculations. The binding properties of chiral intercalators based on PDHD to various DNA oligonucleotides were studied by various methods and DNA cleavage properties indicating strong binding and cleaving ability of the synthesized PDHDs. Also, a new method for synthesis of cyclohexa[e]pyrenes which possibly capable of intramolecular ET and electron transfer-oxidative stress (ET-OS) DNA cleavage was developed and partially accomplished.

  10. Photophysical and photochemical studies of a novel amphiphilic zinc phthalocyanine and its interaction with calf thymus DNA

    NASA Astrophysics Data System (ADS)

    Yuan, Linxin; Gui, Li; Wang, Yue; Zhang, Quanquan; Zhou, Lin; Wei, Shaohua

    2016-04-01

    β-tetra (aminophenoxy) sulfonic substituted zinc phthalocyanines (SNZnPc), a novel amphiphilic zinc phthalocyanine (Pc), was synthesized. The photophysical, photochemical, and photobiology properties were studied. Results indicated that the synthesized SNZnPc has good amphiphilic property and high reactive oxygen species (ROSs) generation ability. Furthermore, SNZnPc has strong affinity to calf thymus DNA (CT-DNA) through intercalation ways and can effectively cleavage CT-DNA after irradiation by light with appropriate wavelength.

  11. Photophysical and photochemical studies of a novel amphiphilic zinc phthalocyanine and its interaction with calf thymus DNA.

    PubMed

    Yuan, Linxin; Gui, Li; Wang, Yue; Zhang, Quanquan; Zhou, Lin; Wei, Shaohua

    2016-04-01

    β-tetra (aminophenoxy) sulfonic substituted zinc phthalocyanines (SNZnPc), a novel amphiphilic zinc phthalocyanine (Pc), was synthesized. The photophysical, photochemical, and photobiology properties were studied. Results indicated that the synthesized SNZnPc has good amphiphilic property and high reactive oxygen species (ROSs) generation ability. Furthermore, SNZnPc has strong affinity to calf thymus DNA (CT-DNA) through intercalation ways and can effectively cleavage CT-DNA after irradiation by light with appropriate wavelength.

  12. [Markerless DNA deletion based on Red recombination and in vivo I-Sec I endonuclease cleavage in Escherichia coli chromosome].

    PubMed

    Zhu, Meiqin; Yu, Jian; Zhou, Changlin; Fang, Hongqing

    2016-01-01

    Red-based recombineering has been widely used in Escherichia coli genome modification through electroporating PCR fragments into electrocompetent cells to replace target sequences. Some mutations in the PCR fragments may be brought into the homologous regions near the target. To solve this problem in markeless gene deletion we developed a novel method characterized with two-step recombination and a donor plasmid. First, generated by PCR a linear DNA cassette which comprises a I-Sec I site-containing marker gene and homologous arms was electroporated into cells for marker-substitution deletion of the target sequence. Second, after a donor plasmid carrying the I-Sec I site-containing fusion homologous arm was chemically transformed into the marker-containing cells, the fusion arms and the marker was simultaneously cleaved by I-Sec I endonuclease and the marker-free deletion was stimulated by double-strand break-mediated intermolecular recombination. Eleven nonessential regions in E. coli DH1 genome were sequentially deleted by our method, resulting in a 10.59% reduced genome size. These precise deletions were also verified by PCR sequencing and genome resequencing. Though no change in the growth rate on the minimal medium, we found the genome-reduced strains have some alteration in the acid resistance and for the synthesis of lycopene. PMID:27363204

  13. [Markerless DNA deletion based on Red recombination and in vivo I-Sec I endonuclease cleavage in Escherichia coli chromosome].

    PubMed

    Zhu, Meiqin; Yu, Jian; Zhou, Changlin; Fang, Hongqing

    2016-01-01

    Red-based recombineering has been widely used in Escherichia coli genome modification through electroporating PCR fragments into electrocompetent cells to replace target sequences. Some mutations in the PCR fragments may be brought into the homologous regions near the target. To solve this problem in markeless gene deletion we developed a novel method characterized with two-step recombination and a donor plasmid. First, generated by PCR a linear DNA cassette which comprises a I-Sec I site-containing marker gene and homologous arms was electroporated into cells for marker-substitution deletion of the target sequence. Second, after a donor plasmid carrying the I-Sec I site-containing fusion homologous arm was chemically transformed into the marker-containing cells, the fusion arms and the marker was simultaneously cleaved by I-Sec I endonuclease and the marker-free deletion was stimulated by double-strand break-mediated intermolecular recombination. Eleven nonessential regions in E. coli DH1 genome were sequentially deleted by our method, resulting in a 10.59% reduced genome size. These precise deletions were also verified by PCR sequencing and genome resequencing. Though no change in the growth rate on the minimal medium, we found the genome-reduced strains have some alteration in the acid resistance and for the synthesis of lycopene.

  14. Ab initio studies of the reaction of hydrogen transfer from DNA to the calicheamicinone diradical.

    PubMed Central

    Sapse, A. M.; Rothchild, R.; Kumar, R.; Lown, J. W.

    2001-01-01

    BACKGROUND: The biological activity of enediyne chemotherapeutic (anti-cancer) agents is attributed to their ability to cleave duplex DNA. Part of the reaction of cleavage is the abstraction of hydrogens from the deoxyribose moiety of DNA by the biradical formed via a Bergman rearrangement. METHODS: The mechanism of the reaction of abstraction of two hydrogen atoms from two deoxyribophosphate molecules by the calicheamicinone biradical is studied with ab initio calculations at Hartree-Fock and post-Hartree-Fock level. The Titan program is used to perform the calculations. RESULTS: It is found that the reactions are exothermic and thus thermodynamically reasonable. CONCLUSIONS: The mechanism of DNA cleavage by the enediyne-containing drugs is likely to proceed by the abstraction of the hydrogens from deoxyribose by the biradical formed by the drug. Further studies should determine in which way the modification of the drug's structure would make this reaction even more exothermic and, thus, more likely to occur. PMID:11844867

  15. Determining the Architecture of a Protein-DNA Complex by Combining FeBABE Cleavage Analyses, 3-D Printed Structures, and the ICM Molsoft Program.

    PubMed

    James, Tamara; Hsieh, Meng-Lun; Knipling, Leslie; Hinton, Deborah

    2015-01-01

    Determining the structure of a protein-DNA complex can be difficult, particularly if the protein does not bind tightly to the DNA, if there are no homologous proteins from which the DNA binding can be inferred, and/or if only portions of the protein can be crystallized. If the protein comprises just a part of a large multi-subunit complex, other complications can arise such as the complex being too large for NMR studies, or it is not possible to obtain the amounts of protein and nucleic acids needed for crystallographic analyses. Here, we describe a technique we used to map the position of an activator protein relative to the DNA within a large transcription complex. We determined the position of the activator on the DNA from data generated using activator proteins that had been conjugated at specific residues with the chemical cleaving reagent, iron bromoacetamidobenzyl-EDTA (FeBABE). These analyses were combined with 3-D models of the available structures of portions of the activator protein and B-form DNA to obtain a 3-D picture of the protein relative to the DNA. Finally, the Molsoft program was used to refine the position, revealing the architecture of the protein-DNA within the transcription complex. PMID:26404142

  16. C-O cleavage of aromatic oxygenates over ruthenium catalysts. A computational study of reactions at step sites.

    PubMed

    Chiu, Cheng-chau; Genest, Alexander; Borgna, Armando; Rösch, Notker

    2015-06-21

    We studied the C-O cleavage of phenolate and catecholate at step sites of a Ru catalyst using periodic DFT methods at the GGA level. Both C-O scission steps are associated with activation barriers of about 75 kJ mol(-1), hence are significantly more facile than the analogous reactions on Ru terraces. With these computational results, we offer an interpretation of recent experiments on the hydrodeoxygenation of guaiacol (2-methoxyphenol) over Ru/C. We hypothesize that the experimentally observed dependency of the product selectivity on the H2 pressure is related to the availability of step sites on a Ru catalyst.

  17. Mixed-ligand copper(ii) Schiff base complexes: the role of the co-ligand in DNA binding, DNA cleavage, protein binding and cytotoxicity.

    PubMed

    Lian, Wen-Jing; Wang, Xin-Tian; Xie, Cheng-Zhi; Tian, He; Song, Xue-Qing; Pan, He-Ting; Qiao, Xin; Xu, Jing-Yuan

    2016-05-31

    Four novel mononuclear Schiff base copper(ii) complexes, namely, [Cu(L)(OAc)]·H2O (), [Cu(HL)(C2O4)(EtOH)]·EtOH (), [Cu(L)(Bza)] () and [Cu(L)(Sal)] () (HL = 1-(((2-((2-hydroxypropyl)amino)ethyl)imino)methyl)naphthalene-2-ol), Bza = benzoic acid, Sal = salicylic acid), were synthesized and characterized by X-ray crystallography, elemental analysis and infrared spectroscopy. Single-crystal diffraction analysis revealed that all the complexes were mononuclear molecules, in which the Schiff base ligand exhibited different coordination modes and conformations. The N-HO and O-HO inter- and intramolecular hydrogen bonding interactions linked these molecules into multidimensional networks. Their interactions with calf thymus DNA (CT-DNA) were investigated by UV-visible and fluorescence spectrometry, as well as by viscosity measurements. The magnitude of the Kapp values of the four complexes was 10(5), indicating a moderate intercalative binding mode between the complexes and DNA. Electrophoresis results showed that all these complexes induced double strand breaks of pUC19 plasmid DNA in the presence of H2O2 through an oxidative pathway. In addition, the fluorescence spectrum of human serum albumin (HSA) with the complexes suggested that the quenching mechanism of HSA by the complexes was a static process. Moreover, the antiproliferative activity of the four complexes against HeLa (human cervical carcinoma) and HepG-2 (human liver hepatocellular carcinoma) cells evaluated by colorimetric cell proliferation assay and clonogenic assay revealed that all four complexes had improved cytotoxicity against cancer cells. Inspiringly, complex , with salicylic acid as the auxiliary ligand, displayed a stronger anticancer activity, suggesting that a synergistic effect of the Schiff base complex and the nonsteroidal anti-inflammatory drug may be involved in the cell killing process. The biological features of mixed-ligand copper(ii) Schiff base complexes and how acetic auxiliary

  18. Water-soluble DNA minor groove binders as potential chemotherapeutic agents: synthesis, characterization, DNA binding and cleavage, antioxidation, cytotoxicity and HSA interactions.

    PubMed

    Fu, Xia-Bing; Liu, Dan-Dan; Lin, Yuan; Hu, Wei; Mao, Zong-Wan; Le, Xue-Yi

    2014-06-21

    Two new water-soluble copper(ii)-dipeptide complexes: [Cu(glygly)(PyTA)]ClO4·1.5H2O (1) and [Cu(glygly)(PzTA)]ClO4·1.5H2O (2) (glygly = glycylglycine anion, PyTA = 2,4-diamino-6-(2'-pyridyl)-1,3,5-triazine and PzTA = 2,4-diamino-6-(2'-pyrazino)-1,3,5-triazine), utilizing two interrelated DNA base-like ligands (PyTA and PzTA), have been synthesized and characterized. The structure elucidation for 1 performed by single crystal X-ray diffraction showed a one dimensional chain conformation in which the central copper ions arrange in a five-coordinate distorted square-pyramidal geometry. Spectroscopic titration, viscosity and electrophoresis measurements revealed that the complexes bound to DNA via an outside groove binding mode, and cleaved pBR322 DNA efficiently in the presence of ascorbate, probably via an oxidative mechanism with the involvement of ˙OH and ˙O2(-). Notably, the complexes exhibited considerable in vitro cytotoxicity against four human carcinoma cell lines (HepG2, HeLa, A549 and U87) with IC50 values ranging from 41.68 to 159.17 μM, in addition to their excellent SOD mimics (IC50 ~ 0.091 and 0.114 μM). Besides, multispectroscopic evidence suggested their HSA-binding at the cavity containing Trp-214 in subdomain IIA with moderate affinity, mainly via hydrophobic interaction. Further, the molecular docking technique utilized for ascertaining the mechanism and mode of action towards DNA and HSA theoretically verified the experimental results. PMID:24770345

  19. DNA binding, photoactivated DNA cleavage and cytotoxic activity of Cu(II) and Co(II) based Schiff-base azo photosensitizers

    NASA Astrophysics Data System (ADS)

    Pradeepa, S. M.; Bhojya Naik, H. S.; Vinay Kumar, B.; Indira Priyadarsini, K.; Barik, Atanu; Prabhakara, M. C.

    2015-04-01

    A new class of Cu(II) and Co(II) complexes of azo-containing Schiff base of the type [Cu(L1)2] and [Co(L1)2], where L1 = 4-[(E)-{2-hydroxy-3-[(E)-(4-bromophenyl)diazenyl]benzylidene}amino]benzoic acid have been synthesized and characterized. Extension of conjugation and the presence of free carboxylic acid group of the ligand L1 increased the wavelength of the complexes from visible region to the near IR region (620-850 nm). The Cu(II) and Co(II) complexes interacted with CT-DNA via intercalative mode with the respective Kb value of 3.2 × 104 M-1 and 2.9 × 104 M-1 and acted as proficient photocleavers of SC pUC19 DNA in UV-A light, forming 1O2 as the reactive oxygen species with the quantum yield of 0.38 and 0.36, respectively. Furthermore, the Cu(II) and Co(II) complexes showed photocytotoxicity toward two selected tumor cell lines MCF-7 and A549 by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) method, and the Cu(II) complex exhibits higher photocytotoxicity than Co(II) complex against each of the selected cell lines, this result is identical with their DNA binding ability order.

  20. Synthesis, characterization, DNA binding, cleavage activity, cytotoxicity and molecular docking of new nano water-soluble [M(5-CH₂PPh₃-3,4-salpyr)](ClO₄)₂ (M = Ni, Zn) complexes.

    PubMed

    Mandegani, Zeinab; Asadi, Zahra; Asadi, Mozaffar; Karbalaei-Heidari, Hamid Reza; Rastegari, Banafsheh

    2016-04-21

    Some new water soluble complexes [N,N'-bis{5-[(triphenyl phosphonium chloride)-methyl]salicylidine}-3,4-diaminopyridine] M(ii), which are formulated as nano-[Zn(5-CH2PPh3-3,4-salpyr)](ClO4)2 (), [Zn(5-CH2PPh3-3,4-salpyr)](ClO4)2 (), nano-[Ni(5-CH2PPh3-3,4-salpyr)](ClO4)2 (), [Ni(5-CH2PPh3-3,4-salpyr)](ClO4)2 (), and [N,N'-bis{5-[(triphenyl phosphonium chloride)-methyl]salicylidine}-2,3-diaminopyridine]Ni(ii) [Ni(5-CH2PPh3-2,3-salpyr)](ClO4)2 () have been isolated and characterized by elemental analysis, FT-IR, (1)H NMR, (13)C NMR, (31)P NMR, and UV-vis spectroscopy. The morphology and size of the nano complexes were determined using FE-SEM and TEM. In vitro DNA binding studies were investigated by UV-vis absorption spectroscopy, viscosity measurements, CD spectroscopy, cyclic voltammetry, emission spectra and gel electrophoresis, which suggest that the metal complexes act as efficient DNA binders. The absorption spectroscopy of the compounds with DNA reveals that the DNA binding affinity (Kb) has this order: > > > > > Ligand. The metal complexes show DNA binding stronger than the ligand, which is expected due to the nature of the metal. The nano complexes display DNA binding stronger than the other complexes which is related to the effect of size on binding affinity and the Ni(ii) complexes reveal DNA binding stronger than the corresponding Zn(ii) analogues, which is expected due to their z* effect and geometry. The prominent double strand DNA cleavage abilities of compound are observed in the absence of H2O2 with efficiencies of more than 50% even at 70 μM complex concentration. Surprisingly, Zn(ii) complexes (compounds & ) exhibit a higher cytotoxicity (IC50: 7.3 & 10.9 μM at 24 h; IC50: 4.6 & 8.7 μM at 48 h) against human hepatoma (HepG2) and HeLa cell lines than the Ni(ii) complexes (compounds , & ) and 5-fluorouracil as control in spite of their inability to cleave DNA. Finally, DNA binding interactions were performed by docking studies. Density functional

  1. Identification and mutagenesis of the TACE and γ-secretase cleavage sites in the colony-stimulating factor 1 receptor.

    PubMed

    Vahidi, Arrash; Glenn, Gary; van der Geer, Peter

    2014-07-18

    Stimulation of macrophages with phorbolesters, bacterial DNA, or lipopolysaccharides causes regulated intramembrane proteolysis or RIPping of the CSF-1 receptor. This process involves TACE-mediated cleavage in the extracellular domain, followed by γ-secretase-mediated cleavage within the transmembrane region. In the current study, we have identified the TACE cleavage site, which is present twelve residues from the carboxy-terminal end of the extracellular domain. Replacement of fourteen residues at the end of the extracellular domain blocked TACE cleavage. In addition, we identified the γ-secretase cleavage site, which is present four residues from the carboxy-terminal end of the transmembrane region. Replacement of six residues surrounding this site strongly reduced intramembrane cleavage. Our results provide new insights into the molecular physiology of the CSF-1 receptor and contribute to our understanding of substrate selection by TACE and γ-secretase.

  2. Photoleucine Survives Backbone Cleavage by Electron Transfer Dissociation. A Near-UV Photodissociation and Infrared Multiphoton Dissociation Action Spectroscopy Study

    NASA Astrophysics Data System (ADS)

    Shaffer, Christopher J.; Martens, Jonathan; Marek, Aleš; Oomens, Jos; Tureček, František

    2016-07-01

    We report a combined experimental and computational study aimed at elucidating the structure of N-terminal fragment ions of the c type produced by electron transfer dissociation of photo-leucine (L*) peptide ions GL*GGKX. The c 4 ion from GL*GGK is found to retain an intact diazirine ring that undergoes selective photodissociation at 355 nm, followed by backbone cleavage. Infrared multiphoton dissociation action spectra point to the absence in the c 4 ion of a diazoalkane group that could be produced by thermal isomerization of vibrationally hot ions. The c 4 ion from ETD of GL*GGK is assigned an amide structure by a close match of the IRMPD action spectrum and calculated IR absorption. The energetics and kinetics of c 4 ion dissociations are discussed.

  3. Mass Spectrometry and Theoretical Studies on N-C Bond Cleavages in the N-Sulfonylamidino Thymine Derivatives

    NASA Astrophysics Data System (ADS)

    Kobetić, Renata; Kazazić, Snježana; Kovačević, Borislav; Glasovac, Zoran; Krstulović, Luka; Bajić, Miroslav; Žinić, Biserka

    2015-05-01

    The reactivity of new biologically active thymine derivatives substituted with 2-(arylsulfonamidino)ethyl group at N1 and N3 position was investigated in the gas phase using CID experiments (ESI-MS/MS) and by density functional theory (DFT) calculations. Both derivatives show similar chemistry in the negative mode with a retro-Michael addition (Path A-) being the most abundant reaction channel, which correlate well with the fluoride induced retro-Michael addition observed in solution. The difference in the fragmentation of N-3 substituted thymine 5 and N-1 substituted thymine 1 in the positive mode relates to the preferred cleavage of the sulfonyl group ( m/z 155, Path B) in N-3 isomer and the formation of the acryl sulfonamidine 3 ( m/z 309) via Path A in N-1 isomer. Mechanistic studies of the cleavage reaction conducted by DFT calculations give the trend of the calculated activation energies that agree well with the experimental observations. A mechanism of the retro-Michael reaction was interpreted as a McLafferty type of fragmentation, which includes Hβ proton shift to one of the neighboring oxygen atoms in a 1,5-fashion inducing N1(N3)-Cα bond scission. This mechanism was found to be kinetically favorable over other tested mechanisms. Significant difference in the observed fragmentation pattern of N-1 and N-3 isomers proves the ESI-MS/MS technique as an excellent method for tracking the fate of similar sulfonamidine drugs. Also, the observed N-1 and/or N-3 thymine alkylation with in situ formed reactive acryl sulfonamidine 3 as a Michael acceptor may open interesting possibilities for the preparation of other N-3 substituted pyrimidines.

  4. Use of IHF--mediated Achilles' heel cleavage (IHF-AC) method for mapping ihf sites.

    PubMed

    Kur, J

    1993-01-01

    We have shown that Integration Host Factor of E. coli can successfully be used in the IHF-mediated Achilles' Heel Cleavage (IHF-AC) technique (Kur et al., 1992b), for generating rare natural cleavage sites. The first step of this procedure is methylation of DNA in the presence of IHF, when the overlapping ihf/restriction sites are protected from methylation, and in the second step the DNA is cut by the cognate restriction enzyme. The extent of cleavage could be controlled by varying the IHF:DNA ratio and temperature. The aim of the present study is to demonstrate that IHF-AC procedure might serve as a useful tool for finding new protein-binding sites which overlap known restriction sites. I have used this approach in conjunction with several MTases to find several other unknown IHF-binding sites.

  5. Smoking Leaves Lasting Marks on DNA: Study

    MedlinePlus

    ... fullstory_161060.html Smoking Leaves Lasting Marks on DNA: Study Changes related to disease found in more ... cigarettes can leave a lasting imprint on human DNA, altering more than 7,000 genes in ways ...

  6. Kinetic characteristics of Escherichia coli RNase H1: cleavage of various antisense oligonucleotide-RNA duplexes.

    PubMed Central

    Crooke, S T; Lemonidis, K M; Neilson, L; Griffey, R; Lesnik, E A; Monia, B P

    1995-01-01

    1. The effects of variations in substrates on the kinetic properties of Escherichia coli RNase H were studied using antisense oligonucleotides of various types hybridized to complementary oligoribonucleotides. The enzyme displayed minimal sequence preference, initiated cleavage through an endonucleolytic mechanism near the 3' terminus of the RNA in a DNA-RNA chimera and then was processively exonucleolytic. Phosphorothioate oligodeoxynucleotides hybridized to RNA supported cleavage more effectively than phosphodiester oligodeoxynucleotides. Oligonucleotides comprised of 2'-methoxy-, 2'-fluoro- or 2'-propoxy-nucleosides did not support RNase H1 activity. 2. The Km and Vmax. of cleavage of RNA duplexes with full phosphorothioate oligodeoxynucleotides were compared with methoxy-deoxy 'gapmers', i.e.; oligonucleotides with 2'-methoxy wings surrounding a deoxynucleotide centre. Such structural modifications resulted in substantial increases in affinity, but significant reductions in cleavage efficiency. The initial rates of cleavage increased as the deoxynucleotide gap size was increased. Multiple deoxynucleotide gaps increased the Vmax. but had little effect on Km. 3. The effects of several base modifications on the site of initial cleavage, processivity and initial rate of cleavage were also studied. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8526876

  7. Synthesis, characterization and multi-spectroscopic DNA interaction studies of a new platinum complex containing the drug metformin

    NASA Astrophysics Data System (ADS)

    Shahabadi, Nahid; Heidari, Leila

    2014-07-01

    A new platinum(II) complex; [Pt(Met)(DMSO)Cl]Cl in which Met = metformin and DMSO: dimethylsulfoxide, was synthesized and characterized by 1H NMR, IR, UV-Vis spectra, molar conductivity and computational methods. Binding interaction of this complex with calf thymus (CT) DNA has been investigated by using absorption, emission, circular dichroism, viscosity measurements, differential pulse voltammetry and cleavage studies by agarose gel electrophoresis. UV-Vis absorption studies showed hyperchromism. CD studies showed less perturbation on the base stacking and helicity bands in the CD spectrum of CT-DNA (B → C structural transition). In fluorimeteric studies, the Pt(II) complex can bind with DNA-NR complex and forms a new non-fluorescence adduct. The anodic peak current in the differential pulse voltammogram of the Pt(II) complex decreased gradually with the addition of DNA. Cleavage experiments showed that the Pt(II) complex does not induce any cleavage under the experimental setup. Finally all results indicated that Pt(II) complex interact with DNA via groove binding mode.

  8. A new ternary copper(II) complex derived from 2-(2";-pyridyl)benzimidazole and glycylglycine: Synthesis, characterization, DNA binding and cleavage, antioxidation and HSA interaction

    NASA Astrophysics Data System (ADS)

    Fu, Xia-Bing; Lin, Zi-Hua; Liu, Hai-Feng; Le, Xue-Yi

    2014-03-01

    A new ternary copper(II)-dipeptide complex [Cu(glygly)(HPB)(Cl)]ṡ2H2O (glygly = glycylglycine anion, HPB = 2-(2";-pyridyl)benzimidazole) has been synthesized and characterized. The DNA interaction of the complex was studied by spectroscopic methods, viscosity, and electrophoresis measurements. The antioxidant activity was also investigated using the pyrogallol autoxidation assay. Besides, the interaction of the complex with human serum albumin (HSA) in vitro was examined by multispectroscopic techniques. The complex partially intercalated to CT-DNA with a high binding constant (Kb = 7.28 × 105 M-1), and cleaved pBR322 DNA efficiently via an oxidative mechanism in the presence of Vc, with the HO· and O2-rad as the active species, and the SOD as a promoter. Furthermore, the complex shows a considerable SOD-like activity with the IC50 value of 3.8386 μM. The complex exhibits desired binding affinity to HSA, in which hydrogen bond or vander Waals force played a major role. The alterations of HSA secondary structure induced by the complex were confirmed by UV-visible, CD, synchronous fluorescence and 3D fluorescence spectroscopy.

  9. Synthesis, characterization, antimicrobial, DNA-cleavage and antioxidant activities of 3-((5-chloro-2-phenyl-1H-indol-3-ylimino)methyl)quinoline-2(1H)-thione and its metal complexes

    NASA Astrophysics Data System (ADS)

    Vivekanand, B.; Mahendra Raj, K.; Mruthyunjayaswamy, B. H. M.

    2015-01-01

    Schiff base 3-((5-chloro-2-phenyl-1H-indol-3-ylimino)methyl)quinoline-2(1H)-thione and its Cu(II), Co(II), Ni(II), Zn(II) and Fe(III), complexes have been synthesized and characterized by elemental analysis, UV-Visible, IR, 1H NMR, 13C NMR and mass spectra, molar conductance, magnetic susceptibility, ESR and TGA data. The ligand and its metal complexes have been screened for their antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa, antifungal activity against Aspergillus niger and Aspergillus flavus in minimum inhibition concentration (MIC) by cup plate method respectively, antioxidant activity using 1,1-diphenyl-2-picryl hydrazyl (DPPH), which was compared with that of standard drugs vitamin-C and vitamin-E and DNA cleavage activity using calf-thymus DNA.

  10. Molecular dynamics study displays near in-line attack conformations in the hammerhead ribozyme self-cleavage reaction

    PubMed Central

    Torres, Rhonda A.; Bruice, Thomas C.

    1998-01-01

    We have performed molecular dynamics (MD) calculations by using one of the recently solved crystal structures of a hammerhead ribozyme. By rotating the α, β, γ, δ, ɛ, and ζ torsion angles of the phosphate linkage of residue 17, the nucleobase at the cleavage site was slightly rotated out of the active site toward the solution. Unconstrained MD simulations exceeding 1 ns were performed on this starting structure solvated in water with explicit counter ions and two Mg2+ ions at the active site. Our results reveal that near attack conformations consistently were formed in the simulation. These near attack conformations are characterized by assumption of the 2′-hydroxyl to a near in-line position for attack on the -O-(PO2−)-O- phosphorous. Also during the time course of the MD study, one Mg2+ moved immediately to associate with a pro-R phosphate oxygen in the conserved core region, and the second Mg2+ remained associated with the pro-R oxygen on the phosphate linkage undergoing hydrolysis. These results are in accord with a one-metal ion mechanism of catalysis and give insight into the possible roles of many of the conserved residues in the ribozyme. PMID:9736692

  11. Mapping Homing Endonuclease Cleavage Sites Using In Vitro Generated Protein

    PubMed Central

    Belfort, Marlene

    2015-01-01

    Mapping the precise position of endonucleolytic cleavage sites is a fundamental experimental technique used to describe the function of a homing endonuclease. However, these proteins are often recalcitrant to cloning and over-expression in biological systems because of toxicity induced by spurious DNA cleavage events. In this chapter we outline the steps to successfully express a homing endonuclease in vitro and use this product in nucleotide-resolution cleavage assays. PMID:24510259

  12. Simple Bond Cleavage

    SciTech Connect

    Gary S. Groenewold

    2005-08-01

    Simple bond cleavage is a class of fragmentation reactions in which a single bond is broken, without formation of new bonds between previously unconnected atoms. Because no bond making is involved, simple bond cleavages are endothermic, and activation energies are generally higher than for rearrangement eliminations. The rate of simple bond cleavage reactions is a strong function of the internal energy of the molecular ion, which reflects a loose transition state that resembles reaction products, and has a high density of accessible states. For this reason, simple bond cleavages tend to dominate fragmentation reactions for highly energized molecular ions. Simple bond cleavages have negligible reverse activation energy, and hence they are used as valuable probes of ion thermochemistry, since the energy dependence of the reactions can be related to the bond energy. In organic mass spectrometry, simple bond cleavages of odd electron ions can be either homolytic or heterolytic, depending on whether the fragmentation is driven by the radical site or the charge site. Simple bond cleavages of even electron ions tend to be heterolytic, producing even electron product ions and neutrals.

  13. Exploring the active site of the Streptococcus pneumoniae topoisomerase IV–DNA cleavage complex with novel 7,8-bridged fluoroquinolones

    PubMed Central

    Laponogov, Ivan; Pan, Xiao-Su; Veselkov, Dennis A.; Cirz, Ryan T.; Wagman, Allan; Moser, Heinz E.

    2016-01-01

    As part of a programme of synthesizing and investigating the biological properties of new fluoroquinolone antibacterials and their targeting of topoisomerase IV from Streptococcus pneumoniae, we have solved the X-ray structure of the complexes of two new 7,8-bridged fluoroquinolones (with restricted C7 group rotation favouring tight binding) in complex with the topoisomerase IV from S. pneumoniae and an 18-base-pair DNA binding site—the E-site—found by our DNA mapping studies to bind drug strongly in the presence of topoisomerase IV (Leo et al. 2005 J. Biol. Chem. 280, 14 252–14 263, doi:10.1074/jbc.M500156200). Although the degree of antibiotic resistance towards fluoroquinolones is much lower than that of β-lactams and a range of ribosome-bound antibiotics, there is a pressing need to increase the diversity of members of this successful clinically used class of drugs. The quinolone moiety of the new 7,8-bridged agents ACHN-245 and ACHN-454 binds similarly to that of clinafloxocin, levofloxacin, moxifloxacin and trovofloxacin but the cyclic scaffold offers the possibility of chemical modification to produce interactions with other topoisomerase residues at the active site. PMID:27655731

  14. Metabolic cleavage of frangufoline in rodents: in vitro and in vivo study.

    PubMed

    Suh, D Y; Kim, Y C; Kang, Y H; Han, Y N; Han, B H

    1997-03-01

    Frangufoline, a sedative 14-membered frangulanine-type cyclopeptide alkaloid, was found to be rapidly converted, via enzymatic process, in vitro and in vivo in rodents to M1 ((S)-(N,N-dimethylphenylalanyl)-(2S,3S)-3-[(p-formylphenoxy) leucyl]-(S)-leucine); which is a substituted linear tripeptide. The reaction did not require low molecular weight cofactors, and mammalian serum failed to catalyze the reaction. Structure-reactivity study of cyclopeptide alkaloid analogs suggested that the enamide bond is the site being cleaved, and the reaction was inhibited by organophosphorus esters such as BPNP and by eserine at higher concentrations but not by eserine at lower concentrations or by EDTA and PCMB. On the basis of these results, a possible mechanism for metabolic conversion of frangufoline to M1 was proposed, in which oxidation of the vinyl group and enzyme-catalyzed hydrolysis of the adjacent amide bond, possibly by B-esterase-like enzyme, proceed in a concerted manner.

  15. Effect of sociocultural cleavage on genetic differentiation: a study from North India.

    PubMed

    Khan, Faisal; Pandey, Atul Kumar; Borkar, Meenal; Tripathi, Manorma; Talwar, Sudha; Bisen, P S; Agrawal, Suraksha

    2008-06-01

    Indian populations possess an exclusive genetic profile primarily due to the many migratory events, which caused an extensive range of genetic diversity, and also due to stringent and austere sociocultural barriers that structure these populations into different endogamous groups. In the present study we attempt to explore the genetic relationships between various endogamous North Indian populations and to determine the effect of stringent social regulations on their gene pool. Twenty STR markers were genotyped in 1,800 random North Indians from 9 endogamous populations belonging to upper-caste and middle-caste Hindus and Muslims. All nine populations had high allelic diversity (176 alleles) and average observed heterozygosity (0.742 +/- 0.06), suggesting strong intrapopulation diversity. The average F(ST) value over all loci was as low as 0.0084. However, within-group F(ST) and genetic distance analysis showed that populations of the same group were genetically closer to each other. The genetic distance of Muslims from middle castes (F(ST) = 0.0090; DA = 0.0266) was significantly higher than that of Muslims from upper castes (F(ST) = 0.0050; DA = 0.0148). Phylogenetic trees (neighbor-joining and maximum-likelihood) show the basal cluster pattern of three clusters corresponding to Muslims, upper-caste, and middle-caste populations, with Muslims clustered with upper-caste populations. Based on the results, we conclude that the extensive gene flow through a series of migrations and invasions has created an enormous amount of genetic diversity. The interpopulation differences are minimal but have a definite pattern, in which populations of different socioreligious groups have more genetic similarity within the same group and are genetically more distant from populations of other groups. Finally, North Indian Muslims show a differential genetic relationship with upper- and middle-caste populations. PMID:19130797

  16. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.

    2000-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  17. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor L.; Brow, Mary Ann D.; Dahlberg, James E.

    2007-12-11

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  18. Cleavage of nucleic acids

    SciTech Connect

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow; Mary Ann D.; Dahlberg, James E.

    2010-11-09

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  19. Recovery of the poisoned topoisomerase II for DNA religation: coordinated motion of the cleavage core revealed with the microsecond atomistic simulation

    PubMed Central

    Huang, Nan-Lan; Lin, Jung-Hsin

    2015-01-01

    Type II topoisomerases resolve topological problems of DNA double helices by passing one duplex through the reversible double-stranded break they generated on another duplex. Despite the wealth of information in the cleaving operation, molecular understanding of the enzymatic DNA ligation remains elusive. Topoisomerase poisons are widely used in anti-cancer and anti-bacterial therapy and have been employed to entrap the intermediates of topoisomerase IIβ with religatable DNA substrate. We removed drug molecules from the structure and conducted molecular dynamics simulations to investigate the enzyme-mediated DNA religation. The drug-unbound intermediate displayed transitions toward the resealing-compliant configuration: closing distance between the cleaved DNA termini, B-to-A transformation of the double helix, and restoration of the metal-binding motif. By mapping the contact configurations and the correlated motions between enzyme and DNA, we identified the indispensable role of the linker preceding winged helix domain (WHD) in coordinating the movements of TOPRIM, the nucleotide-binding motifs, and the bound DNA substrate during gate closure. We observed a nearly vectorial transition in the recovery of the enzyme and identified the previously uncharacterized roles of Asn508 and Arg677 in DNA rejoining. Our findings delineate the dynamic mechanism of the DNA religation conducted by type II topoisomerases. PMID:26150421

  20. cDNA cloning, primary structure and gene expression for H-protein, a component of the glycine-cleavage system (glycine decarboxylase) of pea (Pisum sativum) leaf mitochondria.

    PubMed Central

    Macherel, D; Lebrun, M; Gagnon, J; Neuburger, M; Douce, R

    1990-01-01

    We have isolated and characterized cDNA clones encoding the H-protein of the glycine-cleavage system of pea (Pisum sativum) leaf mitochondria. The deduced primary structure revealed that the 131-amino-acid polypeptide is cytoplasmically synthesized with a 34-amino-acid mitochondrial targeting peptide. The lipoate-binding site was assigned to be lysine-63, as deduced from a sequence comparison with several lipoate-bearing proteins. The expression of the gene encoding H-protein was shown to occur specifically in the leaf tissue, with light exerting an additional effect by increasing the mRNA levels severalfold. Two polyadenylation sites were found in the mRNA, and a single-copy gene encoding the H-protein was detected in pea genome. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:2363710

  1. DNA Interaction Studies of Selected Polyamine Conjugates

    PubMed Central

    Szumilak, Marta; Merecz, Anna; Strek, Malgorzata; Stanczak, Andrzej; Inglot, Tadeusz W.; Karwowski, Boleslaw T.

    2016-01-01

    The interaction of polyamine conjugates with DNA double helix has been studied. Binding properties were examined by ethidium bromide (EtBr) displacement and DNA unwinding/topoisomerase I/II (Topo I/II) activity assays, as well as dsDNA thermal stability studies and circular dichroism spectroscopy. Genotoxicity of the compounds was estimated by a comet assay. It has been shown that only compound 2a can interact with dsDNA via an intercalative binding mode as it displaced EtBr from the dsDNA-dye complex, with Kapp = 4.26 × 106 M−1; caused an increase in melting temperature; changed the circular dichroism spectrum of dsDNA; converted relaxed plasmid DNA into a supercoiled molecule in the presence of Topo I and reduced the amount of short oligonucleotide fragments in the comet tail. Furthermore, preliminary theoretical study has shown that interaction of the discussed compounds with dsDNA depends on molecule linker length and charge distribution over terminal aromatic chromophores. PMID:27657041

  2. pBR322 plasmid DNA modified with 2-acetylaminofluorene derivatives: transforming activity and in vitro strand cleavage by the Escherichia coli uvrABC endonuclease.

    PubMed Central

    Fuchs, R P; Seeberg, E

    1984-01-01

    Covalently closed circular plasmid DNA was treated with three reactive derivatives of 2-acetylaminofluorene: N-acetoxy-N-2-acetylaminofluorene (N-Aco-AAF), its 7-iodo derivative (N-Aco- AAIF ) and N-hydroxy-N-2-aminofluorene (N-OH-AF), and tested as substrates for the Escherichia coli uvrABC endonuclease and for transformation frequencies on wild-type, uvrA, recA, uvrArecA and polA mutant strains. The uvrABC endonuclease reacted with all three substrates with high efficiency, implicating this enzyme in the repair of DNA containing all three types of adducts. However, only AAF- and AAIF -DNA showed greatly reduced survival on uvrA mutants (five adducts/lethal hit) relative to wild-type (20 adducts/lethal hit). AF-DNA survived equally well on uvrA mutant and wild-type cells, and at a much higher level of modification (60 adducts/lethal hit). A mutation in recA had only a minor effect on the survival of either DNA. The polA mutation reduced the survival of the AAF-treated DNA to the same extent as the uvrA mutation (five adducts/lethal hit). Also AF-DNA showed reduced survival on polA mutant cells versus wild-type. However, many more adducts (20/lethal hit) were tolerated than for AAF-DNA, indicating that AF lesions in the template do not efficiently block replication of DNA. PMID:6373248

  3. Fluorescence studies, DNA binding properties and antimicrobial activity of a dysprosium(III) complex containing 1,10-phenanthroline.

    PubMed

    Khorasani-Motlagh, Mozhgan; Noroozifar, Meissam; Moodi, Asieh; Niroomand, Sona

    2013-10-01

    Luminescence and binding properties of dysprosium(III) complex containing 1,10-phenanthroline (phen), [Dy(phen)2(OH2)3Cl]Cl2⋅H2O with DNA has been studied by electronic absorption, emission spectroscopy and viscosity measurement. The thermodynamic studies suggest that the interaction process to be endothermic and entropically driven, which indicates that the dysprosium(III) complex might interact with DNA by a non intercalation binding mode. Additionally, the competitive fluorescence study with ethidium bromide and also the effect of iodide ion and salt concentration on fluorescence of the complex-DNA system is investigated. Experimental results indicate that the Dy(III) complex strongly binds to DNA, presumably via groove binding mode. Furthermore, the complex shows a potent antibacterial activity and DNA cleavage ability.

  4. CRISPR/Cas9 DNA cleavage at SNP-derived PAM enables both in vitro and in vivo KRT12 mutation-specific targeting.

    PubMed

    Courtney, D G; Moore, J E; Atkinson, S D; Maurizi, E; Allen, E H A; Pedrioli, D M L; McLean, W H I; Nesbit, M A; Moore, C B T

    2016-01-01

    CRISPR/Cas9-based therapeutics hold the possibility for permanent treatment of genetic disease. The potency and specificity of this system has been used to target dominantly inherited conditions caused by heterozygous missense mutations through inclusion of the mutated base in the short-guide RNA (sgRNA) sequence. This research evaluates a novel approach for targeting heterozygous single-nucleotide polymorphisms (SNPs) using CRISPR/Cas9. We determined that a mutation within KRT12, which causes Meesmann's epithelial corneal dystrophy (MECD), leads to the occurrence of a novel protospacer adjacent motif (PAM). We designed an sgRNA complementary to the sequence adjacent to this SNP-derived PAM and evaluated its potency and allele specificity both in vitro and in vivo. This sgRNA was found to be highly effective at reducing the expression of mutant KRT12 mRNA and protein in vitro. To assess its activity in vivo we injected a combined Cas9/sgRNA expression construct into the corneal stroma of a humanized MECD mouse model. Sequence analysis of corneal genomic DNA revealed non-homologous end-joining repair resulting in frame-shifting deletions within the mutant KRT12 allele. This study is the first to demonstrate in vivo gene editing of a heterozygous disease-causing SNP that results in a novel PAM, further highlighting the potential for CRISPR/Cas9-based therapeutics.

  5. DNA hydration studied by neutron fiber diffraction

    SciTech Connect

    Fuller, W.; Forsyth, V.T.; Mahendrasingam, A.; Langan, P.; Pigram, W.J.

    1994-12-31

    The development of neutron high angle fiber diffraction to investigate the location of water around the deoxyribonucleic acid (DNA) double-helix is described. The power of the technique is illustrated by its application to the D and A conformations of DNA using the single crystal diffractometer, D19, at the Institute Laue-Langevin, Grenoble and the time of flight diffractometer, SXD, at the Rutherford Appleton ISIS Spallation Neutron Source. These studies show the existence of bound water closely associated with the DNA. The patterns of hydration in these two DNA conformations are quite distinct and are compared to those observed in X-ray single crystal studies of two-stranded oligodeoxynucleotides. Information on the location of water around the DNA double-helix from the neutron fiber diffraction studies is combined with that on the location of alkali metal cations from complementary X-ray high angle fiber diffraction studies at the Daresbury Laboratory SRS using synchrotron radiation. These analyses emphasize the importance of viewing DNA, water and ions as a single system with specific interactions between the three components and provide a basis for understanding the effect of changes in the concentration of water and ions in inducing conformations] transitions in the DNA double-helix.

  6. The Relationship between Cell Number, Division Behavior and Developmental Potential of Cleavage Stage Human Embryos: A Time-Lapse Study

    PubMed Central

    Gong, Fei; Lu, Changfu; Zhang, Shuoping; Lu, Guangxiu; Lin, Ge

    2016-01-01

    Day 3 cleavage embryo transfer is routine in many assisted reproductive technology centers today. Embryos are usually selected according to cell number, cell symmetry and fragmentation for transfer. Many studies have showed the relationship between cell number and embryo developmental potential. However, there is limited understanding of embryo division behavior and their association with embryo cell number and developmental potential. A retrospective and observational study was conducted to investigate how different division behaviors affect cell number and developmental potential of day 3 embryos by time-lapse imaging. Based on cell number at day 3, the embryos (from 104 IVF/intracytoplasmic sperm injection (ICSI) treatment cycles, n = 799) were classified as follows: less than 5 cells (< 5C; n = 111); 5–6 cells (5–6C; n = 97); 7–8 cells (7–8C; n = 442), 9–10 cells (9–10C; n = 107) and more than 10 cells (>10C; n = 42). Division behavior, morphokinetic parameters and blastocyst formation rate were analyzed in 5 groups of day 3 embryos with different cell numbers. In <5C and 5–6C embryos, fragmentation (FR; 62.2% and 30.9%, respectively) was the main cause for low cell number. The majority of 7–8C embryos exhibited obvious normal behaviors (NB; 85.7%) during development. However, the incidence of DC in 9–10C and >10C embryos increased compared to 7–8C embryos (45.8%, 33.3% vs. 11.1%, respectively). In ≥5C embryos, FR and DC significantly reduced developmental potential, whereas <5C embryos showed little potential irrespective of division behaviors. In NB embryos, the blastocyst formation rate increased with cell number from 7.4% (<5C) to 89.3% (>10C). In NB embryos, the cell cycle elongation or shortening was the main cause for abnormally low or high cell number, respectively. After excluding embryos with abnormal division behaviors, the developmental potential, implantation rate and live birth rate of day 3 embryos increased with cell number

  7. An ab initio Study of Decay Mechanism of Adenine: the Facile Path of the Amino NH Bond Cleavage

    NASA Astrophysics Data System (ADS)

    Conti, Irene; Garavelli, Marco; Orlandi, Giorgio

    2007-12-01

    A comprehensive study of the radiationless decay processes of the lowest excited singlet states in the isolated 9H-Adenine has been performed at the CASPT2//CASSCF level. The minimum energy paths of the La, Lb and nπ* singlet states along different skeletal distortions have been computed and the Conical Intersections (CIs) involving these states have been determined. The fast deactivation path of La along a skeletal deformation, which leads to a S0/La CI, as previously discussed, is confirmed. Moreover, low-lying CIs between S0 and πσ* singlet states have been characterized, where σ* is the antibonding orbital localized on a N-H bond of the amino (πσNH2*) or of the azine group (πσN9H*). We have found that the repulsive πσNH2* state associated with an amino N-H bond can be populated through a barrierless way. Therefore, the decay path shows a bifurcation leading to two possible ways of radiationless deactivation: on one hand a non-photochemical decay through the S0/La or S0/nπ* CIs and on the other hand a photochemical process via the possible access to the S0/πσNH2* CI that produces N-H cleavage. In this way, we can explain the H atom loss found upon UV excitation. We have considered also the decay of higher energy bright states. We have found that these states can decay also by converting to the repulsive πσN9H* state associated with the azine NH bond. This new channel suggests an increase of H-atom photoproduction yield by excitating Adenine with lower wavelength radiations. The study of the decay processes of an Adenine molecule in the double strand d(A)10ṡd(T)10 in water solvent is currently underway: Adenine is treated by the Quantum Mechanical (QM) approach and the remaining molecules are described at the Molecular Mechanics (MM) level. We use the COBRAMM program that is a tunable QM/MM approach to complex molecular architectures developed by our research group.

  8. The Relationship between Cell Number, Division Behavior and Developmental Potential of Cleavage Stage Human Embryos: A Time-Lapse Study.

    PubMed

    Kong, Xiangyi; Yang, Shuting; Gong, Fei; Lu, Changfu; Zhang, Shuoping; Lu, Guangxiu; Lin, Ge

    2016-01-01

    Day 3 cleavage embryo transfer is routine in many assisted reproductive technology centers today. Embryos are usually selected according to cell number, cell symmetry and fragmentation for transfer. Many studies have showed the relationship between cell number and embryo developmental potential. However, there is limited understanding of embryo division behavior and their association with embryo cell number and developmental potential. A retrospective and observational study was conducted to investigate how different division behaviors affect cell number and developmental potential of day 3 embryos by time-lapse imaging. Based on cell number at day 3, the embryos (from 104 IVF/intracytoplasmic sperm injection (ICSI) treatment cycles, n = 799) were classified as follows: less than 5 cells (< 5C; n = 111); 5-6 cells (5-6C; n = 97); 7-8 cells (7-8C; n = 442), 9-10 cells (9-10C; n = 107) and more than 10 cells (>10C; n = 42). Division behavior, morphokinetic parameters and blastocyst formation rate were analyzed in 5 groups of day 3 embryos with different cell numbers. In <5C and 5-6C embryos, fragmentation (FR; 62.2% and 30.9%, respectively) was the main cause for low cell number. The majority of 7-8C embryos exhibited obvious normal behaviors (NB; 85.7%) during development. However, the incidence of DC in 9-10C and >10C embryos increased compared to 7-8C embryos (45.8%, 33.3% vs. 11.1%, respectively). In ≥5C embryos, FR and DC significantly reduced developmental potential, whereas <5C embryos showed little potential irrespective of division behaviors. In NB embryos, the blastocyst formation rate increased with cell number from 7.4% (<5C) to 89.3% (>10C). In NB embryos, the cell cycle elongation or shortening was the main cause for abnormally low or high cell number, respectively. After excluding embryos with abnormal division behaviors, the developmental potential, implantation rate and live birth rate of day 3 embryos increased with cell number.

  9. Achievements and Peculiarities in Studies of Ancient DNA and DNA from Complicated Forensic Specimens

    PubMed Central

    Grigorenko, A.P.; Borinskaya, S.A.; Yankovsky, N.K.

    2009-01-01

    Studies of ancient DNA specimens started 25 years ago. At that time short mitochondrial DNA (mtDNA) fragments were the main targets in ancient DNA studies. The last three years were especially productive in the development of new methods of DNA purification and analysis. Complete mtDNA molecules and relatively large fragments of nuclear DNA are the targets of ancient DNA studies today. Ancient DNA studies allowed us to study organisms that went extinct more than ten thousand years ago, to reconstruct their phenotypic traits and evolution. Ancient DNA analyses can help understand the development of ancient human populations and how they migrated. A new evolutionary hypothesis and reconstruction of the biota history have been re-created from recent ancient DNA data. Some peculiarities and problems specific to the study of ancient DNA were revealed, such as very limited amounts of DNA available for study, the short length of the DNA fragments, breaks and chemical modifications in DNA molecules that result in "postmortem" mutations or complete blockage of DNA replication in vitro. The same specific features of DNA analysis were revealed for specimens from complicated forensic cases that result in the lack of experimental data or interpretation problems.. Here, we list the specific features of ancient DNA methodology and describe some achievements in fundamental and applied research of ancient DNA, including our own work in the field. PMID:22649615

  10. A Short DNA Sequence Confers Strong Bleomycin Binding to Hairpin DNAs

    PubMed Central

    2015-01-01

    Bleomycins A5 and B2 were used to study the structural features in hairpin DNAs conducive to strong BLM–DNA interaction. Two members of a 10-hairpin DNA library previously found to bind most tightly to these BLMs were subsequently noted to share the sequence 5′-ACGC (complementary strand sequence 5′-GCGT). Each underwent double-strand cleavage at five sites within, or near, an eight base pair region of the DNA duplex which had been randomized to create the original library. A new hairpin DNA library was selected based on affinity for immobilized Fe(III)·BLM A5. Two of the 30 newly identified DNAs also contained the sequence 5′-ACGC/5′-GCGT. These DNAs bound to the Fe(II)·BLMs more tightly than any DNA characterized previously. Surface plasmon resonance confirmed tight Fe(III)·BLM B2 binding and gave an excellent fit for a 1:1 binding model, implying the absence of significant secondary binding sites. Fe(II)·BLM A5 was used to assess sites of double-strand DNA cleavage. Both hairpin DNAs underwent double-strand cleavage at five sites within or near the original randomized eight base region. For DNA 12, four of the five double-strand cleavages involved independent single-strand cleavage reactions; DNA 13 underwent double-strand DNA cleavage by independent single-strand cleavages at all five sites. DNA 14, which bound Fe·BLM poorly, was converted to a strong binder (DNA 15) by insertion of the sequence 5′-ACGC/5′-GCGT. These findings reinforce the idea that tighter DNA binding by Fe·BLM leads to increased double-strand cleavage by a novel mechanism and identify a specific DNA motif conducive to strong BLM binding and cleavage. PMID:25188011

  11. Fluorescence spectroscopic studies of DNA dynamics

    SciTech Connect

    Scalettar, B.A.

    1987-04-01

    Random solvent induced motions of DNA are manifest as nanosecond torsional oscillations of the helix backbone, nanosecond through millisecond bending deformations and overall rotational and translational diffusion of the polymer. Fluorescence spectroscopy is used to study this spectrum of DNA motions while ethidium monoazide was covalently bounded. The steady state fluorescence depolarization data indicate that the covalent monoazide/DNA complex exhibits internal motions characterized by an average angular amplitude of 26 degrees confirming reports of fast torsional oscillations in noncovalent ethidium bromide/DNA systems. Data obtained by use of a new polarized photobleaching recovery technique (FPR) reflect both the rotational dynamics of the polymer and the reversible photochemistry of the dye. To isolate the reorientational motion of the DNA, the FPR experiments were ran in two modes that differ only in the polarization of the bleaching light. A quotient function constructed from the data obtained in these two modes monitors only the rotational component of the FPR recovery. In specific applications those bending deformations of long DNA molecules that have characteristic relaxation times on the order of 100 microseconds have been resolved. A fluorescence correlation technique that relates fluctuations in particle number to center-of-mass motion was used to measure translational diffusion on coefficients of the plasmid PBR322 and a short oligomeric DNA. A theory that describes angular correlation in systems exhibiting cyclic, biologically directed reorientation and random Brownian rotation is developed.

  12. Self-assembly Controls Self-cleavage of HHR from ASBVd (‑): a Combined SANS and Modeling Study

    NASA Astrophysics Data System (ADS)

    Leclerc, Fabrice; Zaccai, Giuseppe; Vergne, Jacques; Řìhovà, Martina; Martel, Anne; Maurel, Marie-Christine

    2016-07-01

    In the Avocado Sunblotch Viroid (ASBVd: 249-nt) from the Avsunviroidae family, a symmetric rolling-circle replication operates through an autocatalytic mechanism mediated by hammerhead ribozymes (HHR) embedded in both polarity strands. The concatenated multimeric ASBVd (+) and ASBVd (‑) RNAs thus generated are processed by cleavage to unit-length where ASBVd (‑) self-cleaves with more efficiency. Absolute scale small angle neutron scattering (SANS) revealed a temperature-dependent dimer association in both ASBVd (‑) and its derived 79-nt HHR (‑). A joint thermodynamic analysis of SANS and catalytic data indicates the rate-determining step corresponds to the dimer/monomer transition. 2D and 3D models of monomeric and dimeric HHR (‑) suggest that the inter-molecular contacts stabilizing the dimer (between HI and HII domains) compete with the intra-molecular ones stabilizing the active conformation of the full-length HHR required for an efficient self-cleavage. Similar competing intra- and inter-molecular contacts are proposed in ASBVd (‑) though with a remoter region from an extension of the HI domain.

  13. Self-assembly Controls Self-cleavage of HHR from ASBVd (−): a Combined SANS and Modeling Study

    PubMed Central

    Leclerc, Fabrice; Zaccai, Giuseppe; Vergne, Jacques; Řìhovà, Martina; Martel, Anne; Maurel, Marie-Christine

    2016-01-01

    In the Avocado Sunblotch Viroid (ASBVd: 249-nt) from the Avsunviroidae family, a symmetric rolling-circle replication operates through an autocatalytic mechanism mediated by hammerhead ribozymes (HHR) embedded in both polarity strands. The concatenated multimeric ASBVd (+) and ASBVd (−) RNAs thus generated are processed by cleavage to unit-length where ASBVd (−) self-cleaves with more efficiency. Absolute scale small angle neutron scattering (SANS) revealed a temperature-dependent dimer association in both ASBVd (−) and its derived 79-nt HHR (−). A joint thermodynamic analysis of SANS and catalytic data indicates the rate-determining step corresponds to the dimer/monomer transition. 2D and 3D models of monomeric and dimeric HHR (−) suggest that the inter-molecular contacts stabilizing the dimer (between HI and HII domains) compete with the intra-molecular ones stabilizing the active conformation of the full-length HHR required for an efficient self-cleavage. Similar competing intra- and inter-molecular contacts are proposed in ASBVd (−) though with a remoter region from an extension of the HI domain. PMID:27456224

  14. Self-assembly Controls Self-cleavage of HHR from ASBVd (-): a Combined SANS and Modeling Study

    NASA Astrophysics Data System (ADS)

    Leclerc, Fabrice; Zaccai, Giuseppe; Vergne, Jacques; Řìhovà, Martina; Martel, Anne; Maurel, Marie-Christine

    2016-07-01

    In the Avocado Sunblotch Viroid (ASBVd: 249-nt) from the Avsunviroidae family, a symmetric rolling-circle replication operates through an autocatalytic mechanism mediated by hammerhead ribozymes (HHR) embedded in both polarity strands. The concatenated multimeric ASBVd (+) and ASBVd (-) RNAs thus generated are processed by cleavage to unit-length where ASBVd (-) self-cleaves with more efficiency. Absolute scale small angle neutron scattering (SANS) revealed a temperature-dependent dimer association in both ASBVd (-) and its derived 79-nt HHR (-). A joint thermodynamic analysis of SANS and catalytic data indicates the rate-determining step corresponds to the dimer/monomer transition. 2D and 3D models of monomeric and dimeric HHR (-) suggest that the inter-molecular contacts stabilizing the dimer (between HI and HII domains) compete with the intra-molecular ones stabilizing the active conformation of the full-length HHR required for an efficient self-cleavage. Similar competing intra- and inter-molecular contacts are proposed in ASBVd (-) though with a remoter region from an extension of the HI domain.

  15. Self-assembly Controls Self-cleavage of HHR from ASBVd (-): a Combined SANS and Modeling Study.

    PubMed

    Leclerc, Fabrice; Zaccai, Giuseppe; Vergne, Jacques; Řìhovà, Martina; Martel, Anne; Maurel, Marie-Christine

    2016-01-01

    In the Avocado Sunblotch Viroid (ASBVd: 249-nt) from the Avsunviroidae family, a symmetric rolling-circle replication operates through an autocatalytic mechanism mediated by hammerhead ribozymes (HHR) embedded in both polarity strands. The concatenated multimeric ASBVd (+) and ASBVd (-) RNAs thus generated are processed by cleavage to unit-length where ASBVd (-) self-cleaves with more efficiency. Absolute scale small angle neutron scattering (SANS) revealed a temperature-dependent dimer association in both ASBVd (-) and its derived 79-nt HHR (-). A joint thermodynamic analysis of SANS and catalytic data indicates the rate-determining step corresponds to the dimer/monomer transition. 2D and 3D models of monomeric and dimeric HHR (-) suggest that the inter-molecular contacts stabilizing the dimer (between HI and HII domains) compete with the intra-molecular ones stabilizing the active conformation of the full-length HHR required for an efficient self-cleavage. Similar competing intra- and inter-molecular contacts are proposed in ASBVd (-) though with a remoter region from an extension of the HI domain. PMID:27456224

  16. An inter-laboratory study to determine the effectiveness of procedures for discriminating amphibole asbestos fibers from amphibole cleavage fragments in fiber counting by phase-contrast microscopy.

    PubMed

    Harper, Martin; Lee, Eun Gyung; Slaven, James E; Bartley, David L

    2012-07-01

    The US Occupational Safety and Health Administration (OSHA) and Mine Safety and Health Administration do not regulate cleavage fragments of amphibole and serpentine minerals as asbestos, even when particles meet the dimensional criteria for counting under standard phase-contrast microscopy methods. The OSHA ID-160 method cautions that discriminatory counting is difficult and should not be attempted unless necessary and no procedure is provided for differentiation. A standard published by the American Society for Testing and Materials (ASTM International D7200-06) includes an attempt to codify a procedure but recognizes that the procedure should be validated in an inter-laboratory study. The US National Institute for Occupational Safety and Health has carried out such a study with multiple laboratories using slides made from riebeckite and crocidolite, grunerite and amosite, tremolite and tremolite asbestos, and actinolite and actinolite asbestos using two different measurement aids (graticules). The asbestos fibers had dimensions consistent with those reported for air samples from actual amphibole asbestos operations, and the cleavage fragments were also dimensionally consistent with those found in non-asbestos mining and milling operations. The procedure for discriminating asbestos fibers from other mineral particles in the ASTM Standard calls for the recognition of characteristics supposedly common to asbestos. For the asbestos fibers created in this study, these characteristics were found not to be common and generally a function of length. More importantly, different laboratories did not recognize these features consistently. Laboratories were much more consistent in measuring dimensions, but excessive overlap in the lengths of asbestos fibers and cleavage fragments rendered length a poor criterion for discrimination. The ASTM discrimination procedure as written could not be supported on the basis of this study. Width was a much more consistent parameter for

  17. Leukocyte protease binding to nucleic acids promotes nuclear localization and cleavage of nucleic acid binding proteins.

    PubMed

    Thomas, Marshall P; Whangbo, Jennifer; McCrossan, Geoffrey; Deutsch, Aaron J; Martinod, Kimberly; Walch, Michael; Lieberman, Judy

    2014-06-01

    Killer lymphocyte granzyme (Gzm) serine proteases induce apoptosis of pathogen-infected cells and tumor cells. Many known Gzm substrates are nucleic acid binding proteins, and the Gzms accumulate in the target cell nucleus by an unknown mechanism. In this study, we show that human Gzms bind to DNA and RNA with nanomolar affinity. Gzms cleave their substrates most efficiently when both are bound to nucleic acids. RNase treatment of cell lysates reduces Gzm cleavage of RNA binding protein targets, whereas adding RNA to recombinant RNA binding protein substrates increases in vitro cleavage. Binding to nucleic acids also influences Gzm trafficking within target cells. Preincubation with competitor DNA and DNase treatment both reduce Gzm nuclear localization. The Gzms are closely related to neutrophil proteases, including neutrophil elastase (NE) and cathepsin G. During neutrophil activation, NE translocates to the nucleus to initiate DNA extrusion into neutrophil extracellular traps, which bind NE and cathepsin G. These myeloid cell proteases, but not digestive serine proteases, also bind DNA strongly and localize to nuclei and neutrophil extracellular traps in a DNA-dependent manner. Thus, high-affinity nucleic acid binding is a conserved and functionally important property specific to leukocyte serine proteases. Furthermore, nucleic acid binding provides an elegant and simple mechanism to confer specificity of these proteases for cleavage of nucleic acid binding protein substrates that play essential roles in cellular gene expression and cell proliferation.

  18. [Comparative study of aromatic ring meta-cleavage enzymes in Pseudomonas strains with plasmid and chromosomal genetic control of the catabolism of biphenyl and m-toluate].

    PubMed

    Selifonov, S A; Starozoĭtov, I I

    1990-12-01

    It was shown that two different enzymes of aromatic ring oxidative meta-cleavage (2,3-dihydroxybiphenyl-1,2-dioxygenase), DBO and catechol-2,3-dioxygenase, C230) function in Pseudomonas strains with a plasmid and chromosomal genetic control of biphenyl and toluate catabolism. A comparative analysis of DBO's and C230's expressed by the pBS241 biphenyl degradative plasmid in P. putida BS893, pBS311 in P. putida U83, chromosomal genes in P. putida BF and C230 from P. putida PaW160 (pWWO) was carried out. It was found that the DBO's of all strains under study are highly specialized enzymes in respect of 2,3-dihydroxybiphenyl cleavage and are also able to cleave 3-methyl-catechol and catechol (but not 4-methylcatechol) at low rates. In contrast with DBO's, in Pseudomonas strains the substrate specificities of all C230's are variable. The C230's expressed by the D-plasmids pBS241 and pBC311 have a moderate affinity for catechol, 3-methyl- and 4-methylcatechol, but are unable to cleave 2,3-dihydroxybiphenyl. The C230 which is encoded by the chromosomal structure gene from P. putida BF is very similar to C230 which codes for the TOL-plasmid pWWO. These plasmid differ from C230's expressed by biphenyl D-plasmids due to their capability to cleave 2,3-dihydroxybiphenyl in addition to catechol cleavage. All DBO's and C230's under study possess a number of properties that are typical for the enzymes having an oxidative meta-cleaving effect. The different roles of these enzymes in biphenyl and toluate catabolism in Pseudomonas strains are discussed.

  19. Cleavage maps for human cytomegalovirus DNA strain AD169 for restriction endonucleases EcoRI, BglII, and HindIII.

    PubMed Central

    Spector, D H; Hock, L; Tamashiro, J C

    1982-01-01

    We have used cloned EcoRI fragments of the human CMV (HCMV) genome, strain AD169, to prepare restriction endonuclease maps of the DNA. Individual 32P-labeled cloned fragments were hybridized to Southern blots of HCMV DNA cleaved to completion with the restriction endonucleases BglII and HindIII and cleaved partially with EcoRI. By determining which EcoRI fragments hybridized to the same band on a Southern blot, we were able to establish linkage groups. This information coupled with the data derived from digestion of the cloned fragments with the enzymes BglII and HindIII (Tamashiro et al., J. Virol. 42:547-557, 1982) provided the basis for the construction of detailed maps for the enzymes EcoRI, BglII, and HindIII. We also identified the EcoRI fragments derived from the termini of this genome and mapped them with respect to the BglII and HindIII terminal fragments. From our mapping data, we conclude that the genome of HCMV is approximately 240 kilobases in length and is divided into long (198 kilobases) and short (42 kilobases) regions. Both regions consist of a unique sequence bounded by inverted repeats (11 to 12 kilobases for the long region and 2 to 3 kilobases for the short region). Furthermore, the long and short regions can invert relative to each other. Images PMID:6283173

  20. Solvent influence on cellulose 1,4-β-glycosidic bond cleavage: a molecular dynamics and metadynamics study.

    PubMed

    Loerbroks, Claudia; Boulanger, Eliot; Thiel, Walter

    2015-03-27

    We explore the influence of two solvents, namely water and the ionic liquid 1-ethyl-3-methylimidazolium acetate (EmimAc), on the conformations of two cellulose models (cellobiose and a chain of 40 glucose units) and the solvent impact on glycosidic bond cleavage by acid hydrolysis by using molecular dynamics and metadynamics simulations. We investigate the rotation around the glycosidic bond and ring puckering, as well as the anomeric effect and hydrogen bonds, in order to gauge the effect on the hydrolysis mechanism. We find that EmimAc eases hydrolysis through stronger solvent-cellulose interactions, which break structural and electronic barriers to hydrolysis. Our results indicate that hydrolysis in cellulose chains should start from the ends and not in the centre of the chain, which is less accessible to solvent. PMID:25689773

  1. Sperm DNA damage and its relation with leukocyte DNA damage.

    PubMed

    Babazadeh, Zahra; Razavi, Shahnaz; Tavalaee, Marziyeh; Deemeh, Mohammad Reza; Shahidi, Maryam; Nasr-Esfahani, Mohammad Hossein

    2010-01-01

    DNA fragmentation in human sperm has been related to endogenous and exogenous factors. Exogenous factors can also affect leukocyte DNA integrity. This study evaluated the relation between sperm DNA damage and leukocyte DNA integrity, as a predictor of exogenous factors. DNA damage in the sperm and leukocytes of 41 individuals undergoing ICSI were measured by Comet assay. In addition, sperm chromatin dispersion (SCD) was carried out on semen samples. A positive correlation was observed between the DNA integrity of sperm with leukocytes. When patients were divided into low and high DNA exposure groups, sperm DNA fragmentation was significantly different between the two groups. Cleavage rate and embryo quality showed significant correlation with leukocyte DNA integrity. The results showed that leukocyte DNA integrity could be used to identify individuals at high risk in order to reduce the extent of DNA damage in patients before ICSI in order to improve the subsequent outcome of this procedure.

  2. Sm(III)nitrate-catalyzed one-pot synthesis of furano[3,2c]-1,2,3,4-tetrahydroquinolines and DNA photocleavage studies

    NASA Astrophysics Data System (ADS)

    Bindu, P. J.; Mahadevan, K. M.; Ravikumar Naik, T. R.

    2012-08-01

    The synthesis and DNA photocleavage studies of furano[3,2-c]-1,2,3,4-tetrahydroquinolines have been reported. Sm(III)nitrate was found to be an efficient for the Diels-Alder reaction of aryl amines with 2,3-dihydrofuran to offer the corresponding furano[3,2-c]-1,2,3,4-tetrahydroquinolines derivatives as a mixture of cis/trans stereoisomers in moderate yields. The aqueous solubility of acid catalyst can be recycled without significant loss of activity. The DNA photocleavage studies shows that, the cis/trans stereoisomers are good DNA cleavage mimic in terms of molecular structure.

  3. Structural Studies of E. coli Topoisomerase III-DNA Complexes Reveal a Novel Type IA Topoisomerase-DNA Conformational Intermediate

    SciTech Connect

    Changela, Anita; DiGate, Russell J.; Mondragon, Alfonso

    2010-03-05

    Escherichia coli DNA topoisomerase III belongs to the type IA family of DNA topoisomerases, which transiently cleave single-stranded DNA (ssDNA) via a 5{prime} phosphotyrosine intermediate. We have solved crystal structures of wild-type E. coli topoisomerase III bound to an eight-base ssDNA molecule in three different pH environments. The structures reveal the enzyme in three distinct conformational states while bound to DNA. One conformation resembles the one observed previously with a DNA-bound, catalytically inactive mutant of topoisomerase III where DNA binding realigns catalytic residues to form a functional active site. Another conformation represents a novel intermediate in which DNA is bound along the ssDNA-binding groove but does not enter the active site, which remains in a catalytically inactive, closed state. A third conformation shows an intermediate state where the enzyme is still in a closed state, but the ssDNA is starting to invade the active site. For the first time, the active site region in the presence of both the catalytic tyrosine and ssDNA substrate is revealed for a type IA DNA topoisomerase, although there is no evidence of ssDNA cleavage. Comparative analysis of the various conformational states suggests a sequence of domain movements undertaken by the enzyme upon substrate binding.

  4. Sequence features associated with the cleavage efficiency of CRISPR/Cas9 system

    PubMed Central

    Liu, Xiaoxi; Homma, Ayaka; Sayadi, Jamasb; Yang, Shu; Ohashi, Jun; Takumi, Toru

    2016-01-01

    The CRISPR-Cas9 system has recently emerged as a versatile tool for biological and medical research. In this system, a single guide RNA (sgRNA) directs the endonuclease Cas9 to a targeted DNA sequence for site-specific manipulation. In addition to this targeting function, the sgRNA has also been shown to play a role in activating the endonuclease activity of Cas9. This dual function of the sgRNA likely underlies observations that different sgRNAs have varying on-target activities. Currently, our understanding of the relationship between sequence features of sgRNAs and their on-target cleavage efficiencies remains limited, largely due to difficulties in assessing the cleavage capacity of a large number of sgRNAs. In this study, we evaluated the cleavage activities of 218 sgRNAs using in vitro Surveyor assays. We found that nucleotides at both PAM-distal and PAM-proximal regions of the sgRNA are significantly correlated with on-target efficiency. Furthermore, we also demonstrated that the genomic context of the targeted DNA, the GC percentage, and the secondary structure of sgRNA are critical factors contributing to cleavage efficiency. In summary, our study reveals important parameters for the design of sgRNAs with high on-target efficiencies, especially in the context of high throughput applications. PMID:26813419

  5. High-Throughput Genotyping of Green Algal Mutants Reveals Random Distribution of Mutagenic Insertion Sites and Endonucleolytic Cleavage of Transforming DNA[W][OPEN

    PubMed Central

    Zhang, Ru; Patena, Weronika; Armbruster, Ute; Gang, Spencer S.; Blum, Sean R.; Jonikas, Martin C.

    2014-01-01

    A high-throughput genetic screening platform in a single-celled photosynthetic eukaryote would be a transformative addition to the plant biology toolbox. Here, we present ChlaMmeSeq (Chlamydomonas MmeI-based insertion site Sequencing), a tool for simultaneous mapping of tens of thousands of mutagenic insertion sites in the eukaryotic unicellular green alga Chlamydomonas reinhardtii. We first validated ChlaMmeSeq by in-depth characterization of individual insertion sites. We then applied ChlaMmeSeq to a mutant pool and mapped 11,478 insertions, covering 39% of annotated protein coding genes. We observe that insertions are distributed in a manner largely indistinguishable from random, indicating that mutants in nearly all genes can be obtained efficiently. The data reveal that sequence-specific endonucleolytic activities cleave the transforming DNA and allow us to propose a simple model to explain the origin of the poorly understood exogenous sequences that sometimes surround insertion sites. ChlaMmeSeq is quantitatively reproducible, enabling its use for pooled enrichment screens and for the generation of indexed mutant libraries. Additionally, ChlaMmeSeq allows genotyping of hits from Chlamydomonas screens on an unprecedented scale, opening the door to comprehensive identification of genes with roles in photosynthesis, algal lipid metabolism, the algal carbon-concentrating mechanism, phototaxis, the biogenesis and function of cilia, and other processes for which C. reinhardtii is a leading model system. PMID:24706510

  6. Triptycenes: a novel synthetic class of bifunctional anticancer drugs that inhibit nucleoside transport, induce DNA cleavage and decrease the viability of leukemic cells in the nanomolar range in vitro.

    PubMed

    Perchellet, E M; Magill, M J; Huang, X; Brantis, C E; Hua, D H; Perchellet, J P

    1999-09-01

    In contrast to their inactive parent compound triptycene (code name TT0), several triptycene (TT) analogs (code names TT1 to TT13), most of them new compounds, were synthesized and shown to prevent L1210 leukemic cells from synthesizing macromolecules and growing in vitro. The most potent rigid tetracyclic quinones synthesized so far are TT2 and its C2-brominated derivative, TT13. The antitumor activity of TT2 has been compared to that of daunomycin (DAU), a clinically valuable anthracycline antibiotic which is structurally different from TT2 but also contains a quinone moiety. TT2 inhibits the proliferation (IC50: 300 nM at day 2 and 150 nM at day 4) and viability (IC50: 250 nM at day 2 and 100 nM at day 4) of L1210 cells to the same maximal degree as DAU, suggesting that the cytostatic and cytotoxic activities of TT2 are a combination of drug concentration and duration of drug exposure. Since TT2 does not increase the mitotic index of L1210 cells at 24 h like vincristine, it is unlikely to be an antimitotic drug that disrupts microtubule dynamics. Like DAU, a 1.5-3 h pretreatment with TT2 is sufficient to inhibit the rates of DNA, RNA and protein syntheses determined over 30-60 min periods of pulse-labeling in L1210 cells in vitro (IC50: 6 microM). In contrast to DAU, which is inactive, a 15 min pretreatment with TT2 has the advantage of also inhibiting the cellular transport of nucleosides occuring over a 30 s period in vitro (IC50: 6 microM), suggesting that TT2 prevents the incorporation of [3H]thymidine into DNA because it rapidly blocks the uptake of [3H]thymidine by the tumor cells. After 24 h, TT2 induces as much DNA cleavage as camptothecin and DAU, two anti-cancer drugs producing DNA strand breaks and known to respectively inhibit DNA topoisomerase I and II activities. Interestingly, the abilities of TT2 to block nucleoside transport, inhibit DNA synthesis and induce DNA fragmentation are irreversible upon drug removal, suggesting that this compound may

  7. Growth phase dependency of chromatin cleavage and degradation by bleomycin.

    PubMed Central

    Moore, C W; Jones, C S; Wall, L A

    1989-01-01

    Preferential cleavage of Saccharomyces cerevisiae chromosomes in internucleosomal (linker) regions and nonspecific degradation of chromatin by an anticancer antibiotic which degrades DNA were investigated and found to increase in consecutive stages of growth. Cleavage of DNA in internucleosomal regions and intensities and multiplicities of nucleosomal bands were dependent on drug concentration, growth phase of the cells, and length of incubation. Cellular DNA was least degraded during logarithmic phase. After cells progressed only one generation in logarithmic phase, low concentrations (6.7 x 10(-7) to 3.4 x 10(-6) M) of bleomycin produced approximately three to seven times more DNA breaks. Internucleosomal cleavage was highest, and the most extended oligonucleosomal series and extensive chromatin degradation were observed during stationary phase. It is concluded that the growth phase of cells is critical in determining amounts of the highly preferential cleavage in internucleosomal regions and overall breakage and degradation of DNA. Mononucleosomal bands were most intense, indicating the greatest accumulation of DNA of this size. Mean mononucleosomal lengths were 165.9 +/- 3.9 base pairs, in agreement with yeast mononucleosomal lengths. As high-molecular-weight chromatin was digested by bleomycin, oligonucleosomes and, eventually, mononucleosomes became digested. Therefore, it is also concluded that bleomycin degradation of oligonucleosomes and trimming of DNA linker regions proceed to degradation of the monosomes (core plus linker DNA). Images PMID:2479336

  8. Insights into the mechanism of X-ray-induced disulfide-bond cleavage in lysozyme crystals based on EPR, optical absorption and X-ray diffraction studies

    SciTech Connect

    Sutton, Kristin A.; Black, Paul J.; Mercer, Kermit R.; Garman, Elspeth F.; Owen, Robin L.; Snell, Edward H.; Bernhard, William A.

    2013-12-01

    Electron paramagnetic resonance (EPR) and online UV–visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage, to confirm a multi-track radiation-damage process and to develop a model of that process. Electron paramagnetic resonance (EPR) and online UV–visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage. Online UV–visible spectroscopy showed that upon X-irradiation, disulfide radicalization appeared to saturate at an absorbed dose of approximately 0.5–0.8 MGy, in contrast to the saturating dose of ∼0.2 MGy observed using EPR at much lower dose rates. The observations suggest that a multi-track model involving product formation owing to the interaction of two separate tracks is a valid model for radiation damage in protein crystals. The saturation levels are remarkably consistent given the widely different experimental parameters and the range of total absorbed doses studied. The results indicate that even at the lowest doses used for structural investigations disulfide bonds are already radicalized. Multi-track considerations offer the first step in a comprehensive model of radiation damage that could potentially lead to a combined computational and experimental approach to identifying when damage is likely to be present, to quantitate it and to provide the ability to recover the native unperturbed structure.

  9. Isotope-Labeling Studies Support the Electrophilic Compound I Iron Active Species, FeO(3+), for the Carbon-Carbon Bond Cleavage Reaction of the Cholesterol Side-Chain Cleavage Enzyme, Cytochrome P450 11A1.

    PubMed

    Yoshimoto, Francis K; Jung, I-Ji; Goyal, Sandeep; Gonzalez, Eric; Guengerich, F Peter

    2016-09-21

    The enzyme cytochrome P450 11A1 cleaves the C20-C22 carbon-carbon bond of cholesterol to form pregnenolone, the first 21-carbon precursor of all steroid hormones. Various reaction mechanisms are possible for the carbon-carbon bond cleavage step of P450 11A1, and most current proposals involve the oxoferryl active species, Compound I (FeO(3+)). Compound I can either (i) abstract an O-H hydrogen atom or (ii) be attacked by a nucleophilic hydroxy group of its substrate, 20R,22R-dihydroxycholesterol. The mechanism of this carbon-carbon bond cleavage step was tested using (18)O-labeled molecular oxygen and purified P450 11A1. P450 11A1 was incubated with 20R,22R-dihydroxycholesterol in the presence of molecular oxygen ((18)O2), and coupled assays were used to trap the labile (18)O atoms in the enzymatic products (i.e., isocaproaldehyde and pregnenolone). The resulting products were derivatized and the (18)O content was analyzed by high-resolution mass spectrometry. P450 11A1 showed no incorporation of an (18)O atom into either of its carbon-carbon bond cleavage products, pregnenolone and isocaproaldehyde . The positive control experiments established retention of the carbonyl oxygens in the enzymatic products during the trapping and derivatization processes. These results reveal a mechanism involving an electrophilic Compound I species that reacts with nucleophilic hydroxy groups in the 20R,22R-dihydroxycholesterol intermediate of the P450 11A1 reaction to produce the key steroid pregnenolone.

  10. Structural basis of cohesin cleavage by separase

    PubMed Central

    Lin, Zhonghui; Luo, Xuelian; Yu, Hongtao

    2016-01-01

    Accurate chromosome segregation requires timely dissolution of chromosome cohesion after chromosomes are properly attached to the mitotic spindle. Separase is absolutely essential for cohesion dissolution in organisms from yeast to man1,2. It cleaves the kleisin subunit of cohesin and opens the cohesin ring to allow chromosome segregation. Cohesin cleavage is spatiotemporally controlled by separase-associated regulatory proteins, including the inhibitory chaperone securin3–6, and by phosphorylation of both the enzyme and substrates7–12. Dysregulation of this process causes chromosome missegregation and aneuploidy, contributing to cancer and birth defects. Despite its essential functions, atomic structures of separase have not been determined. Here, we report crystal structures of the separase protease domain from Chaetomium thermophilum, alone or covalently bound to unphosphorylated and phosphorylated inhibitory peptides derived from a cohesin cleavage site. These structures reveal how separase recognizes cohesin and how cohesin phosphorylation by polo-like kinase 1 (Plk1) enhances cleavage. Consistent with a previous cellular study13, mutating two securin residues in a conserved motif that partially matches the separase cleavage consensus converts securin from a separase inhibitor to a substrate. Our study establishes atomic mechanisms of substrate cleavage by separase and suggests competitive inhibition by securin. PMID:27027290

  11. X-ray diffraction study of the molecular propolis films deposited from an alcohol solution onto the cleavage surfaces of layered V2VI3 compounds

    NASA Astrophysics Data System (ADS)

    Drapak, S. I.; Gavrylyuk, S. V.; Kaminskii, V. M.; Kovalyuk, Z. D.

    2008-09-01

    The structures of the molecular propolis films deposited from an alcohol solution on the (0001) cleavage surface of layered bismuth selenide and telluride are studied by X-ray diffraction. Despite the chemical interaction between the semiconductor substrates and the organic-substance components, the molecular structural ordering of the propolis films is shown to be identical to that in the films of this substance on the surface of amorphous glass substrates. The chemical and deformation interaction between the organic substance and the layered V2VI3 compounds is found to result in the formation of an organic-inorganic sandwich nanostructure at a distance of ˜0.3 μm from the layered crystal-propolis film interface.

  12. Interactions of Isophorone Derivatives with DNA: Spectroscopic Studies

    PubMed Central

    Deiana, Marco; Matczyszyn, Katarzyna; Massin, Julien; Olesiak-Banska, Joanna; Andraud, Chantal; Samoc, Marek

    2015-01-01

    Interactions of three new isophorone derivatives, Isoa Isob and Isoc with salmon testes DNA have been investigated using UV-Vis, fluorescence and circular dichroism spectroscopic methods. All the studied compounds interact with DNA through intercalative binding mode. The stoichiometry of the isophorone/DNA adducts was found to be 1:1. The fluorescence quenching data revealed a binding interaction with the base pairs of DNA. The CD data indicate that all the investigated isophorones induce DNA modifications. PMID:26069963

  13. DNA studies using atomic force microscopy: capabilities for measurement of short DNA fragments.

    PubMed

    Pang, Dalong; Thierry, Alain R; Dritschilo, Anatoly

    2015-01-01

    Short DNA fragments, resulting from ionizing radiation induced DNA double strand breaks (DSBs), or released from cells as a result of physiological processes and circulating in the blood stream, may play important roles in cellular function and potentially in disease diagnosis and early intervention. The size distribution of DNA fragments contribute to knowledge of underlining biological processes. Traditional techniques used in radiation biology for DNA fragment size measurements lack the resolution to quantify short DNA fragments. For the measurement of cell-free circulating DNA (ccfDNA), real time quantitative Polymerase Chain Reaction (q-PCR) provides quantification of DNA fragment sizes, concentration and specific gene mutation. A complementary approach, the imaging-based technique using Atomic Force Microscopy (AFM) provides direct visualization and measurement of individual DNA fragments. In this review, we summarize and discuss the application of AFM-based measurements of DNA fragment sizes. Imaging of broken plasmid DNA, as a result of exposure to ionizing radiation, as well as ccfDNA in clinical specimens offer an innovative approach for studies of short DNA fragments and their biological functions. PMID:25988169

  14. DNA studies using atomic force microscopy: capabilities for measurement of short DNA fragments

    PubMed Central

    Pang, Dalong; Thierry, Alain R.; Dritschilo, Anatoly

    2015-01-01

    Short DNA fragments, resulting from ionizing radiation induced DNA double strand breaks (DSBs), or released from cells as a result of physiological processes and circulating in the blood stream, may play important roles in cellular function and potentially in disease diagnosis and early intervention. The size distribution of DNA fragments contribute to knowledge of underlining biological processes. Traditional techniques used in radiation biology for DNA fragment size measurements lack the resolution to quantify short DNA fragments. For the measurement of cell-free circulating DNA (ccfDNA), real time quantitative Polymerase Chain Reaction (q-PCR) provides quantification of DNA fragment sizes, concentration and specific gene mutation. A complementary approach, the imaging-based technique using Atomic Force Microscopy (AFM) provides direct visualization and measurement of individual DNA fragments. In this review, we summarize and discuss the application of AFM-based measurements of DNA fragment sizes. Imaging of broken plasmid DNA, as a result of exposure to ionizing radiation, as well as ccfDNA in clinical specimens offer an innovative approach for studies of short DNA fragments and their biological functions. PMID:25988169

  15. A comparative immunogenicity study in rabbits of disulfide-stabilized, proteolytically cleaved, soluble trimeric human immunodeficiency virus type 1 gp140, trimeric cleavage-defective gp140 and monomeric gp120

    SciTech Connect

    Beddows, Simon; Franti, Michael; Dey, Antu K.; Kirschner, Marc; Iyer, Sai Prasad N.; Fisch, Danielle C.; Ketas, Thomas; Yuste, Eloisa; Desrosiers, Ronald C.; Klasse, Per Johan; Maddon, Paul J.; Olson, William C.; Moore, John P. . E-mail: jpm2003@med.cornell.edu

    2007-04-10

    The human immunodeficiency virus type 1 (HIV-1) surface envelope glycoprotein (Env) complex, a homotrimer containing gp120 surface glycoprotein and gp41 transmembrane glycoprotein subunits, mediates the binding and fusion of the virus with susceptible target cells. The Env complex is the target for neutralizing antibodies (NAbs) and is the basis for vaccines intended to induce NAbs. Early generation vaccines based on monomeric gp120 subunits did not confer protection from infection; one alternative approach is therefore to make and evaluate soluble forms of the trimeric Env complex. We have directly compared the immunogenicity in rabbits of two forms of soluble trimeric Env and monomeric gp120 based on the sequence of HIV-1{sub JR-FL}. Both protein-only and DNA-prime, protein-boost immunization formats were evaluated, DNA-priming having little or no influence on the outcome. One form of trimeric Env was made by disrupting the gp120-gp41 cleavage site by mutagenesis (gp140{sub UNC}), the other contains an intramolecular disulfide bond to stabilize the cleaved gp120 and gp41 moieties (SOSIP.R6 gp140). Among the three immunogens, SOSIP.R6 gp140 most frequently elicited neutralizing antibodies against the homologous, neutralization-resistant strain, HIV-1{sub JR-FL}. All three proteins induced NAbs against more sensitive strains, but the breadth of activity against heterologous primary isolates was limited. When antibodies able to neutralize HIV-1{sub JR-FL} were detected, antigen depletion studies showed they were not directed at the V3 region but were targeted at other, undefined gp120 and also non-gp120 epitopes.

  16. The use of genomic DNA fingerprinting in studies of the epidemiology of bacteria in periodontitis.

    PubMed

    Genco, R J; Loos, B G

    1991-07-01

    Recent studies of microbial epidemiology emphasizing the genetic organization and distribution of organisms associated with orofacial infections have led to new insights into the possible origins of pathogenicity. Studies into genetic heterogeneity, acquisition and transmission of these organisms have been markedly advanced by the utilization of the powerful technique of genomic DNA fingerprinting. Characteristic fingerprints for each bacterial isolate can be produced by cleavage of high molecular weight genomic DNA by restriction endonucleases. It is assumed that each DNA fingerprint represents a clonal type. In this report, we review and analyze studies of the epidemiology of bacteria associated with orofacial infections with an emphasis on periodontal disease. Studies of nontypable (NT) Haemophilus influenzae associated with recurrent otitis media illustrate the utility of this technique. DNA fingerprinting clearly demonstrates genetic heterogeneity of NT H. influenzae isolates, and clonality of infection of any individual. Furthermore, DNA fingerprinting has shown that the same clonal type is seen in siblings concurrently suffering from otitis media, suggesting horizontal transmission within the family. Studies of mutans Streptococci also show extensive genetic heterogeneity and show vertical transmission of a predominant clonal type only from mother to infant, but not from father to infant. Studies of Actinobacillus actinomycetemcomitans show considerable genetic heterogeneity among monkey isolates. Thus far, three clonal types have been reported with DNA fingerprinting among isolates from periodontal patients, but additional genetic heterogeneity can be found using specific DNA fragments as probes in hybridization experiments. Intrafamilial transmission of A. actinomycetemcomitans has been demonstrated. Porphyromonas (Bacteroides) gingivalis shows extensive genetic heterogeneity and case reports suggest clonal infection of any one individual. In contrast

  17. Calcium waves along the cleavage furrows in cleavage-stage Xenopus embryos and its inhibition by heparin

    PubMed Central

    1996-01-01

    Calcium signaling is known to be associated with cytokinesis; however, the detailed spatio-temporal pattern of calcium dynamics has remained unclear. We have studied changes of intracellular free calcium in cleavage-stage Xenopus embryos using fluorescent calcium indicator dyes, mainly Calcium Green-1. Cleavage formation was followed by calcium transients that localized to cleavage furrows and propagated along the furrows as calcium waves. The calcium transients at the cleavage furrows were observed at each cleavage furrow at least until blastula stage. The velocity of the calcium waves at the first cleavage furrow was approximately 3 microns/s, which was much slower than that associated with fertilization/egg activation. These calcium waves traveled only along the cleavage furrows and not in the direction orthogonal to the furrows. These observations imply that there exists an intracellular calcium-releasing activity specifically associated with cleavage furrows. The calcium waves occurred in the absence of extracellular calcium and were inhibited in embryos injected with heparin an inositol 1,4,5-trisphosphate (InsP3) receptor antagonist. These results suggest that InsP3 receptor-mediated calcium mobilization plays an essential role in calcium wave formation at the cleavage furrows. PMID:8858172

  18. Binding and cleavage of nucleic acids by the "hairpin" ribozyme.

    PubMed

    Chowrira, B M; Burke, J M

    1991-09-01

    The "hairpin" ribozyme derived from the minus strand of tobacco ringspot virus satellite RNA [(-)sTRSV] efficiently catalyzes sequence-specific RNA hydrolysis in trans (Feldstein et al., 1989; Hampel & Triz, 1989; Haseloff & Gerlach, 1989). The ribozyme does not cleave DNA. An RNA substrate analogue containing a single deoxyribonucleotide residue 5' to the cleavage site (A-1) binds to the ribozyme efficiently but cannot be cleaved. A DNA substrate analogue with a ribonucleotide at A-1 is cleaved; thus A-1 provides the only 2'-OH required for cleavage. These results support cleavage via a transphosphorylation mechanism initiated by attack of the 2'-OH of A-1 on the scissile phosphodiester. The ribozyme discriminates between DNA and RNA in both binding and cleavage. Results indicate that the 2'-OH of A-1 functions in complex stabilization as well as cleavage. The ribozyme efficiently cleaves a phosphorothioate diester linkage, suggesting that the pro-Rp oxygen at the scissile phosphodiester does not coordinate Mg2+. PMID:1909564

  19. Biotic and abiotic carbon to sulfur bond cleavage

    SciTech Connect

    Frost, J.W.

    1991-01-01

    Mechanisms for cleavage of RCH{sub 2}-S bonds catalyzed by Escherichia coli can best be categorized by whether an alcohol RCH{sub 2}OH or an aldehyde RCHO are the products of the degradation. A study of the chemical processes involved has been used to establish the best formulation of carbon to sulfur bond cleavage. 2 figs.

  20. Gallium(III)-Containing, Sandwich-Type Heteropolytungstates: Synthesis, Solution Characterization, and Hydrolytic Studies toward Phosphoester and Phosphoanhydride Bond Cleavage.

    PubMed

    Kandasamy, Balamurugan; Vanhaecht, Stef; Nkala, Fiona Marylyn; Beelen, Tessa; Bassil, Bassem S; Parac-Vogt, Tatjana N; Kortz, Ulrich

    2016-09-19

    The gallium(III)-containing heteropolytungstates [Ga4(H2O)10(β-XW9O33)2](6-) (X = As(III), 1; Sb(III), 2) were synthesized in aqueous acidic medium by reaction of Ga(3+) ions with the trilacunary, lone-pair-containing [XW9O33](9-). Polyanions 1 and 2 are isostructural and crystallized as the hydrated sodium salts Na6[Ga4(H2O)10(β-AsW9O33)2]·28H2O (Na-1) and Na6[Ga4(H2O)10(β-SbW9O33)2]·30H2O (Na-2) in the monoclinic space group P21/c, with unit cell parameters a = 16.0218(12) Å, b = 15.2044(10) Å, c = 20.0821(12) Å, and β = 95.82(0)°, as well as a = 16.0912(5) Å, b = 15.2178(5) Å, c = 20.1047(5) Å, and β = 96.2(0)°, respectively. The corresponding tellurium(IV) derivative [Ga4(H2O)10(β-TeW9O33)2](4-) (3) was also prepared, by direct reaction of sodium tungstate, tellurium(IV) oxide, and gallium nitrate. Polyanion 3 crystallized as the mixed rubidium/sodium salt Rb2Na2[Ga4(H2O)10(β-TeW9O33)2]·28H2O (RbNa-3) in the triclinic space group P1̅ with unit cell parameters a = 12.5629(15) Å, b = 13.2208(18) Å, c = 15.474(2) Å, α = 80.52(1)°, β = 84.37(1)°, and γ = 65.83(1)°. All polyanions 1-3 were characterized in the solid state by single-crystal XRD, FT-IR, TGA, and elemental analysis, and polyanion 2 was also characterized in solution by (183)W NMR and UV-vis spectroscopy. Polyanion 2 was used as a homogeneous catalyst toward adenosine triphosphate (ATP) and the DNA model substrate 4-nitrophenylphosphate, monitored by (1)H and (31)P NMR spectroscopy. The encapsulated gallium(III) centers in 2 promote the Lewis acidic synergistic activation of the hydrolysis of ATP and DNA model substrates at a higher rate in near-physiological conditions. A strong interaction of 2 with the P-O bond of ATP was evidenced by changes in chemical shift values and line broadening of the (31)P nucleus in ATP upon addition of the polyanion. PMID:27563715

  1. DNA-Based Vaccine Guards Against Zika in Monkey Study

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_161106.html DNA-Based Vaccine Guards Against Zika in Monkey Study ... THURSDAY, Sept. 22, 2016 (HealthDay News) -- An experimental DNA-based vaccine protected monkeys from infection with the ...

  2. Invasive cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.

    2002-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  3. Invasive cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.

    1999-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  4. Study of the DNA damage checkpoint using Xenopus egg extracts.

    PubMed

    Willis, Jeremy; DeStephanis, Darla; Patel, Yogin; Gowda, Vrushab; Yan, Shan

    2012-01-01

    On a daily basis, cells are subjected to a variety of endogenous and environmental insults. To combat these insults, cells have evolved DNA damage checkpoint signaling as a surveillance mechanism to sense DNA damage and direct cellular responses to DNA damage. There are several groups of proteins called sensors, transducers and effectors involved in DNA damage checkpoint signaling (Figure 1). In this complex signaling pathway, ATR (ATM and Rad3-related) is one of the major kinases that can respond to DNA damage and replication stress. Activated ATR can phosphorylate its downstream substrates such as Chk1 (Checkpoint kinase 1). Consequently, phosphorylated and activated Chk1 leads to many downstream effects in the DNA damage checkpoint including cell cycle arrest, transcription activation, DNA damage repair, and apoptosis or senescence (Figure 1). When DNA is damaged, failing to activate the DNA damage checkpoint results in unrepaired damage and, subsequently, genomic instability. The study of the DNA damage checkpoint will elucidate how cells maintain genomic integrity and provide a better understanding of how human diseases, such as cancer, develop. Xenopus laevis egg extracts are emerging as a powerful cell-free extract model system in DNA damage checkpoint research. Low-speed extract (LSE) was initially described by the Masui group. The addition of demembranated sperm chromatin to LSE results in nuclei formation where DNA is replicated in a semiconservative fashion once per cell cycle. The ATR/Chk1-mediated checkpoint signaling pathway is triggered by DNA damage or replication stress. Two methods are currently used to induce the DNA damage checkpoint: DNA damaging approaches and DNA damage-mimicking structures. DNA damage can be induced by ultraviolet (UV) irradiation, γ-irradiation, methyl methanesulfonate (MMS), mitomycin C (MMC), 4-nitroquinoline-1-oxide (4-NQO), or aphidicolin. MMS is an alkylating agent that inhibits DNA replication and activates the ATR

  5. Interaction studies of Epirubicin with DNA using spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Charak, Sonika; Jangir, Deepak K.; Tyagi, Gunjan; Mehrotra, Ranjana

    2011-08-01

    Epirubicin (EPR) is an anticancer chemotherapeutic drug which exerts its cytotoxic effect by inhibiting DNA synthesis and DNA replication. We report the structural and conformational effect of EPR binding on DNA duplex under physiological conditions. Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible (UV-visible) spectroscopy and circular dichroism (CD) spectroscopy were used to determine the binding mode and binding constant of EPR with DNA. The effect of EPR-DNA complexation on stability and secondary structure of DNA was studied. FTIR measurements showed that EPR-DNA interaction occurs through guanine and cytosine bases. External binding of EPR with DNA was observed through phosphate backbone. UV-visible measurements revealed the intercalative mode of binding of EPR with DNA. The binding constant was estimated to be K = 3.4 × 10 4 which is indicative of moderate binding between EPR and DNA helix. FTIR and CD studies suggested partial transition from B-conformation of DNA to A-conformation of DNA after EPR binding to DNA duplex.

  6. School Desegregation and Racial Cleavage, 1954-1970: A Review of the Literature

    ERIC Educational Resources Information Center

    Carithers, Martha W.

    1970-01-01

    Reviews the empirical studies dealing with school desegregation and racial cleavage which have appeared since the 1954 Supreme Court decision. Focuses on patterns and consequences of interracial association, and attitude change relevant to racial cleavage. (DM)

  7. Screening for mutations by enzyme mismatch cleavage with T4 endonuclease VII.

    PubMed Central

    Youil, R; Kemper, B W; Cotton, R G

    1995-01-01

    Each of four possible sets of mismatches (G.A/C.T, C.C/G.G, A.A/T.T, and C.A/G.T) containing the 8 possible single-base-pair mismatches derived from isolated mutations were examined to test the ability of T4 endonuclease VII to consistently detect mismatches in heteroduplexes. At least two examples of each set of mismatches were studied for cleavage in the complementary pairs of heteroduplexes formed between normal and mutant DNA. Four deletion mutations were also included in this study. The various PCR-derived products used in the formation of heteroduplexes ranged from 133 to 1502 bp. At least one example of each set showed cleavage of at least one strand containing a mismatch. Cleavage of at least one strand of the pairs of heteroduplexes occurred in 17 of the 18 known single-base-pair mutations tested, with an A.A/T.T set not being cleaved in any mismatched strand. We propose that this method may be effective in detecting and positioning almost all mutational changes when DNA is screened for mutations. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7816853

  8. Cleavage oriented iron single crystal fracture toughness

    NASA Astrophysics Data System (ADS)

    Hribernik, Michael Louis

    Fundamental understanding of atomic level mechanisms controlling cleavage fracture in bcc metals, and the corresponding brittle to ductile transition (BDT) has been a long sought, 'grand challenge' of science. This is particularly true for the BDT in Fe, which is among vital elements that underpin our technological civilization. A key obstacle to developing an understanding of the BDT in Fe is the absence of a reliable database on the temperature dependence of toughness in Fe. In ferritic alloys, the micro-arrest toughness of ferrite, Kmu(T), is hypothesized to control macroscopic cleavage. As a surrogate for Kmu(T), special techniques were developed to measure the arrest toughness, Ka(T), for cleavage oriented, Fe single crystals. Further, the mechanisms controlling cleavage and the BDT should be reflected in the loading rate dependence of static-dynamic initiation toughness, K Ic and KId. Thus KIc/d(T) were also measured for K-rate from 10-1 to 104 MPa√m/s. These studies led to the following conclusions: (1) Ka is semi-brittle, increasing from an average of ≈ 3.5 MPa√m at -196°C to ≈ 9 MPa√m at 0°C. (2) The (100) Ka are similar in the [010] and [011] and orientations, but cleavage does not occur on (110) planes. (3) The Ka for unalloyed Fe is about 150°C lower than that for Fe-3wt%Si, suggesting that equivalent Ka may occur at equivalent lattice sigmay. (4) Higher K-rate shift K Ic/d(T) curves to higher T. (5) The shifts of the KIc/d(T) and Ka(T) curves can be understood and modeled based on dislocation dynamics concepts for the glide of screw dislocations with a stress (and T) controlled activation energy, Ea, with a maximum value of about ≈ 0.5 eV. (6) This Ea is consistent with a double kink nucleation mechanism. Etch pit, slip trace and ledge patterns on side, fracture and sectioned surfaces of the crystals were characterized to study dislocation activity associated with cleavage and the BDT. The results showed extensive dislocation activity on

  9. C-O bond cleavage of dimethyl ether by transition metal ions: a systematic study on catalytic properties of metals and performance of DFT functionals.

    PubMed

    Liu, Cong; Peterson, Charles; Wilson, Angela K

    2013-06-20

    Studies were focused on late 3d and 4d transition metal ion (Fe, Co, Ni, Cu, Ru, Rh, Pd, and Ag) mediated activation of dimethyl ether, to investigate the intrinsic catalytic properties of metals on C-O bond cleavage. A set of density functional (DFT) methods (BLYP, B3LYP, M06, M06-L, B97-1, B97-D, TPSS, and PBE0) with aug-cc-pVTZ were utilized, and the results were calibrated with CCSD(T)/CBS. The utility of CCSD(T)/CBS calculations for these systems was validated by MRCI/aug-cc-pVTZ calculations. Calculations showed an interesting energetic trend as a function of metal; earlier transition metals tend to give smaller reaction barriers and more exergonic reactions than later metals. This applies to both 3d and 4d systems. For the performance of DFT functionals, PBE0 gave the lowest root mean squared deviations (RMSDs) in terms of both reaction energies and barriers for both 3d and 4d systems, compared to the other functionals. Our studies found that the percentage of Hartree-Fock (HF) exchange plays an important role in the accuracy of DFT methods for these systems, and 26% HF exchange for 3d systems and 34% HF exchange for 4d systems gave the lowest RMSDs.

  10. Cleavage factor Im (CFIm) as a regulator of alternative polyadenylation.

    PubMed

    Hardy, Jessica G; Norbury, Chris J

    2016-08-15

    Most mammalian protein coding genes are subject to alternative cleavage and polyadenylation (APA), which can generate distinct mRNA 3'UTRs with differing regulatory potential. Although this process has been intensely studied in recent years, it remains unclear how and to what extent cleavage site selection is regulated under different physiological conditions. The cleavage factor Im (CFIm) complex is a core component of the mammalian cleavage machinery, and the observation that its depletion causes transcriptome-wide changes in cleavage site use makes it a key candidate regulator of APA. This review aims to summarize current knowledge of the CFIm complex, and explores the evidence surrounding its potential contribution to regulation of APA. PMID:27528751

  11. Internal guide RNA interactions interfere with Cas9-mediated cleavage.

    PubMed

    Thyme, Summer B; Akhmetova, Laila; Montague, Tessa G; Valen, Eivind; Schier, Alexander F

    2016-01-01

    The CRISPR/Cas system uses guide RNAs (gRNAs) to direct sequence-specific DNA cleavage. Not every gRNA elicits cleavage and the mechanisms that govern gRNA activity have not been resolved. Low activity could result from either failure to form a functional Cas9-gRNA complex or inability to recognize targets in vivo. Here we show that both phenomena influence Cas9 activity by comparing mutagenesis rates in zebrafish embryos with in vitro cleavage assays. In vivo, our results suggest that genomic factors such as CTCF inhibit mutagenesis. Comparing near-identical gRNA sequences with different in vitro activities reveals that internal gRNA interactions reduce cleavage. Even though gRNAs containing these structures do not yield cleavage-competent complexes, they can compete with active gRNAs for binding to Cas9. These results reveal that both genomic context and internal gRNA interactions can interfere with Cas9-mediated cleavage and illuminate previously uncharacterized features of Cas9-gRNA complex formation. PMID:27282953

  12. Internal guide RNA interactions interfere with Cas9-mediated cleavage

    PubMed Central

    Thyme, Summer B.; Akhmetova, Laila; Montague, Tessa G.; Valen, Eivind; Schier, Alexander F.

    2016-01-01

    The CRISPR/Cas system uses guide RNAs (gRNAs) to direct sequence-specific DNA cleavage. Not every gRNA elicits cleavage and the mechanisms that govern gRNA activity have not been resolved. Low activity could result from either failure to form a functional Cas9–gRNA complex or inability to recognize targets in vivo. Here we show that both phenomena influence Cas9 activity by comparing mutagenesis rates in zebrafish embryos with in vitro cleavage assays. In vivo, our results suggest that genomic factors such as CTCF inhibit mutagenesis. Comparing near-identical gRNA sequences with different in vitro activities reveals that internal gRNA interactions reduce cleavage. Even though gRNAs containing these structures do not yield cleavage-competent complexes, they can compete with active gRNAs for binding to Cas9. These results reveal that both genomic context and internal gRNA interactions can interfere with Cas9-mediated cleavage and illuminate previously uncharacterized features of Cas9–gRNA complex formation. PMID:27282953

  13. Global analyses of endonucleolytic cleavage in mammals reveal expanded repertoires of cleavage-inducing small RNAs and their targets

    PubMed Central

    Cass, Ashley A.; Bahn, Jae Hoon; Lee, Jae-Hyung; Greer, Christopher; Lin, Xianzhi; Kim, Yong; Hsiao, Yun-Hua Esther; Xiao, Xinshu

    2016-01-01

    In mammals, small RNAs are important players in post-transcriptional gene regulation. While their roles in mRNA destabilization and translational repression are well appreciated, their involvement in endonucleolytic cleavage of target RNAs is poorly understood. Very few microRNAs are known to guide RNA cleavage. Endogenous small interfering RNAs are expected to induce target cleavage, but their target genes remain largely unknown. We report a systematic study of small RNA-mediated endonucleolytic cleavage in mouse through integrative analysis of small RNA and degradome sequencing data without imposing any bias toward known small RNAs. Hundreds of small cleavage-inducing RNAs and their cognate target genes were identified, significantly expanding the repertoire of known small RNA-guided cleavage events. Strikingly, both small RNAs and their target sites demonstrated significant overlap with retrotransposons, providing evidence for the long-standing speculation that retrotransposable elements in mRNAs are leveraged as signals for gene targeting. Furthermore, our analysis showed that the RNA cleavage pathway is also present in human cells but affecting a different repertoire of retrotransposons. These results show that small RNA-guided cleavage is more widespread than previously appreciated. Their impact on retrotransposons in non-coding regions shed light on important aspects of mammalian gene regulation. PMID:26975654

  14. Ribonuclease L and metal-ion–independent endoribonuclease cleavage sites in host and viral RNAs

    PubMed Central

    Cooper, Daphne A.; Jha, Babal K.; Silverman, Robert H.; Hesselberth, Jay R.; Barton, David J.

    2014-01-01

    Ribonuclease L (RNase L) is a metal-ion–independent endoribonuclease associated with antiviral and antibacterial defense, cancer and lifespan. Despite the biological significance of RNase L, the RNAs cleaved by this enzyme are poorly defined. In this study, we used deep sequencing methods to reveal the frequency and location of RNase L cleavage sites within host and viral RNAs. To make cDNA libraries, we exploited the 2′, 3′-cyclic phosphate at the end of RNA fragments produced by RNase L and other metal-ion–independent endoribonucleases. We optimized and validated 2′, 3′-cyclic phosphate cDNA synthesis and Illumina sequencing methods using viral RNAs cleaved with purified RNase L, viral RNAs cleaved with purified RNase A and RNA from uninfected and poliovirus-infected HeLa cells. Using these methods, we identified (i) discrete regions of hepatitis C virus and poliovirus RNA genomes that were profoundly susceptible to RNase L and other single-strand specific endoribonucleases, (ii) RNase L-dependent and RNase L-independent cleavage sites within ribosomal RNAs (rRNAs) and (iii) 2′, 3′-cyclic phosphates at the ends of 5S rRNA and U6 snRNA. Monitoring the frequency and location of metal-ion–independent endoribonuclease cleavage sites within host and viral RNAs reveals, in part, how these enzymes contribute to health and disease. PMID:24500209

  15. Insights into the mechanism of X-ray-induced disulfide-bond cleavage in lysozyme crystals based on EPR, optical absorption and X-ray diffraction studies

    PubMed Central

    Sutton, Kristin A.; Black, Paul J.; Mercer, Kermit R.; Garman, Elspeth F.; Owen, Robin L.; Snell, Edward H.; Bernhard, William A.

    2013-01-01

    Electron paramagnetic resonance (EPR) and online UV–visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage. Online UV–visible spectroscopy showed that upon X-irradiation, disulfide radicalization appeared to saturate at an absorbed dose of approximately 0.5–0.8 MGy, in contrast to the saturating dose of ∼0.2 MGy observed using EPR at much lower dose rates. The observations suggest that a multi-track model involving product formation owing to the interaction of two separate tracks is a valid model for radiation damage in protein crystals. The saturation levels are remarkably consistent given the widely different experimental parameters and the range of total absorbed doses studied. The results indicate that even at the lowest doses used for structural investigations disulfide bonds are already radicalized. Multi-track considerations offer the first step in a comprehensive model of radiation damage that could potentially lead to a combined computational and experimental approach to identifying when damage is likely to be present, to quantitate it and to provide the ability to recover the native unperturbed structure. PMID:24311579

  16. Insights into the mechanism of X-ray-induced disulfide-bond cleavage in lysozyme crystals based on EPR, optical absorption and X-ray diffraction studies.

    PubMed

    Sutton, Kristin A; Black, Paul J; Mercer, Kermit R; Garman, Elspeth F; Owen, Robin L; Snell, Edward H; Bernhard, William A

    2013-12-01

    Electron paramagnetic resonance (EPR) and online UV-visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage. Online UV-visible spectroscopy showed that upon X-irradiation, disulfide radicalization appeared to saturate at an absorbed dose of approximately 0.5-0.8 MGy, in contrast to the saturating dose of ∼0.2 MGy observed using EPR at much lower dose rates. The observations suggest that a multi-track model involving product formation owing to the interaction of two separate tracks is a valid model for radiation damage in protein crystals. The saturation levels are remarkably consistent given the widely different experimental parameters and the range of total absorbed doses studied. The results indicate that even at the lowest doses used for structural investigations disulfide bonds are already radicalized. Multi-track considerations offer the first step in a comprehensive model of radiation damage that could potentially lead to a combined computational and experimental approach to identifying when damage is likely to be present, to quantitate it and to provide the ability to recover the native unperturbed structure.

  17. Role of aromatic structure in pathways of hydrogen transfer and bond cleavage in coal liquefaction: Theoretical studies

    SciTech Connect

    Franz, J.A.; Autrey, T.; Camaioni, D.M.; Watts, J.D.; Bartlett, R.J.

    1995-09-01

    The mechanisms by which strong carbon-carbon bonds between aromatic rings and side chains are cleaved under hydropyrolysis conditions remain a subject of wide interest to fuel science. Recently, the authors have studied in detail an alternate pathway for hydrogen atom transfer to {pi}-systems, radical hydrogen transfer (RHT). RHT is the direct, bimolecular transfer of hydrogen from the {beta}-position of an organic radical to the target {pi}-system. In the initial theoretical study, they examined the reaction ethyl radical + ethylene = ethylene + ethyl at the spin-projected UMP2/6-31G** level of theory. Recently, they have used a calibrated ROHF-MNDO-PM3 method to predict thermoneutral RHT barriers for hydrogen transfer between hydroaryl radicals and the corresponding arene. Because of the inherent limitations of semiempirical methods such as ROHF-MNDO-PM3, they have extended the initial work with the ethyl + ethylene study to examine this reaction at the ROHF-MBPT[2]-6-31G** and ROHF-CCSD[T]-6-31G** levels of ab initio theory. The primary objective was to determine how intrinsic RHT barriers change with conjugative stabilization of the radicals. The spin-restricted ROHF approach has been applied to study several RHT reactions, and they present completed ROHF results for the ethyl + ethylene system and preliminary results for the methallyl + butadiene system. The methallyl + butadiene system serves as a model for highly stabilized hydroaryl radicals: the methallyl radical exhibits a C-H bond strength of 46.5 kcal/mol compared to 9-hydroanthracenyl, 43.1 kcal/mol.

  18. An antitumor drug-induced topoisomerase cleavage complex blocks a bacteriophage T4 replication fork in vivo.

    PubMed

    Hong, G; Kreuzer, K N

    2000-01-01

    Many antitumor and antibacterial drugs inhibit DNA topoisomerases by trapping covalent enzyme-DNA cleavage complexes. Formation of cleavage complexes is important for cytotoxicity, but evidence suggests that cleavage complexes themselves are not sufficient to cause cell death. Rather, active cellular processes such as transcription and/or replication are probably necessary to transform cleavage complexes into cytotoxic lesions. Using defined plasmid substrates and two-dimensional agarose gel analysis, we examined the collision of an active replication fork with an antitumor drug-trapped cleavage complex. Discrete DNA molecules accumulated on the simple Y arc, with branch points very close to the topoisomerase cleavage site. Accumulation of the Y-form DNA required the presence of a topoisomerase cleavage site, the antitumor drug, the type II topoisomerase, and a T4 replication origin on the plasmid. Furthermore, all three arms of the Y-form DNA were replicated, arguing strongly that these are trapped replication intermediates. The Y-form DNA appeared even in the absence of two important phage recombination proteins, implying that Y-form DNA is the result of replication rather than recombination. This is the first direct evidence that a drug-induced topoisomerase cleavage complex blocks the replication fork in vivo. Surprisingly, these blocked replication forks do not contain DNA breaks at the topoisomerase cleavage site, implying that the replication complex was inactivated (at least temporarily) and that topoisomerase resealed the drug-induced DNA breaks. The replication fork may behave similarly at other types of DNA lesions, and thus cleavage complexes could represent a useful (site-specific) model for chemical- and radiation-induced DNA damage.

  19. Cleavage of Hemagglutinin-Bearing Lentiviral Pseudotypes and Their Use in the Study of Influenza Virus Persistence

    PubMed Central

    Sawoo, Olivier; Dublineau, Amélie; Batéjat, Christophe; Zhou, Paul; Manuguerra, Jean-Claude; Leclercq, India

    2014-01-01

    Influenza A viruses (IAVs) are a major cause of infectious respiratory human diseases and their transmission is dependent upon the environment. However, the role of environmental factors on IAV survival outside the host still raises many questions. In this study, we used lentiviral pseudotypes to study the influence of the hemagglutinin protein in IAV survival. High-titered and cleaved influenza-based lentiviral pseudoparticles, through the use of a combination of two proteases (HAT and TMPRSS2) were produced. Pseudoparticles bearing hemagglutinin proteins derived from different H1N1, H3N2 and H5N1 IAV strains were subjected to various environmental parameters over time and tested for viability through single-cycle infectivity assays. We showed that pseudotypes with different HAs have different persistence profiles in water as previously shown with IAVs. Our results also showed that pseudotypes derived from H1N1 pandemic virus survived longer than those derived from seasonal H1N1 virus from 1999, at high temperature and salinity, as previously shown with their viral counterparts. Similarly, increasing temperature and salinity had a negative effect on the survival of the H3N2 and H5N1 pseudotypes. These results showed that pseudotypes with the same lentiviral core, but which differ in their surface glycoproteins, survived differently outside the host, suggesting a role for the HA in virus stability. PMID:25166303

  20. Pharmacogenomic study using bio- and nanobioelectrochemistry: Drug-DNA interaction.

    PubMed

    Hasanzadeh, Mohammad; Shadjou, Nasrin

    2016-04-01

    Small molecules that bind genomic DNA have proven that they can be effective anticancer, antibiotic and antiviral therapeutic agents that affect the well-being of millions of people worldwide. Drug-DNA interaction affects DNA replication and division; causes strand breaks, and mutations. Therefore, the investigation of drug-DNA interaction is needed to understand the mechanism of drug action as well as in designing DNA-targeted drugs. On the other hand, the interaction between DNA and drugs can cause chemical and conformational modifications and, thus, variation of the electrochemical properties of nucleobases. For this purpose, electrochemical methods/biosensors can be used toward detection of drug-DNA interactions. The present paper reviews the drug-DNA interactions, their types and applications of electrochemical techniques used to study interactions between DNA and drugs or small ligand molecules that are potentially of pharmaceutical interest. The results are used to determine drug binding sites and sequence preference, as well as conformational changes due to drug-DNA interactions. Also, the intention of this review is to give an overview of the present state of the drug-DNA interaction cognition. The applications of electrochemical techniques for investigation of drug-DNA interaction were reviewed and we have discussed the type of qualitative or quantitative information that can be obtained from the use of each technique.

  1. Novel Pt(II) complexes containing pyrrole oxime; synthesis, characterization and DNA binding studies

    NASA Astrophysics Data System (ADS)

    Erdogan, Deniz Altunoz; Özalp-Yaman, Şeniz

    2014-05-01

    Since the discovery of anticancer activity and subsequent clinical success of cisplatin (cis-[PtCl2(NH3)2]), platinum-based compounds have since been widely synthesized and studied as potential chemotherapeutic agents. In this sense, three novel nuclease active Pt(II) complexes with general formula; [Pt(NH3)Cl(L)] (1), [Pt(L)2] (2), and K[PtCl2(L)] (3) in which L is 1-H-pyrrole-2-carbaldehyde oxime were synthesized. Characterization of complexes was performed by elemental analysis, FT-IR, 1H NMR and mass spectroscopy measurements. Interaction of complexes (1-3) with calf thymus deoxyribonucleic acid (ct-DNA) was investigated by using electrochemical, spectroelectrochemical methods and cleavage studies. The hyperchromic change in the electronic absorption spectrum of the Pt(II) complexes indicates an electrostatic interaction between the complexes and ct-DNA. Binding constant values between 4.42 × 103 and 5.09 × 103 M-1 and binding side size values between 2 and 3 base pairs were determined from cyclic voltammetry (CV) and differential pulse voltammetry (DPV) studies.

  2. Dependence of DNA-protein cross-linking via guanine oxidation upon local DNA sequence as studied by restriction endonuclease inhibition.

    PubMed

    Madison, Amanda L; Perez, Zitadel A; To, Phuong; Maisonet, Tiffany; Rios, Eunice V; Trejo, Yuri; Ochoa-Paniagua, Carmen; Reno, Anita; Stemp, Eric D A

    2012-01-10

    Oxidative damage plays a causative role in many diseases, and DNA-protein cross-linking is one important consequence of such damage. It is known that GG and GGG sites are particularly prone to one-electron oxidation, and here we examined how the local DNA sequence influences the formation of DNA-protein cross-links induced by guanine oxidation. Oxidative DNA-protein cross-linking was induced between DNA and histone protein via the flash quench technique, a photochemical method that selectively oxidizes the guanine base in double-stranded DNA. An assay based on restriction enzyme cleavage was developed to detect the cross-linking in plasmid DNA. Following oxidation of pBR322 DNA by flash quench, several restriction enzymes (PpuMI, BamHI, EcoRI) were then used to probe the plasmid surface for the expected damage at guanine sites. These three endonucleases were strongly inhibited by DNA-protein cross-linking, whereas the AT-recognizing enzyme AseI was unaffected in its cleavage. These experiments also reveal the susceptibility of different guanine sites toward oxidative cross-linking. The percent inhibition observed for the endonucleases, and their pBR322 cleavage sites, decreased in the order: PpuMI (5'-GGGTCCT-3' and 5'-AGGACCC-3') > BamHI (5'-GGATCC-3') > EcoRI (5'-GAATTC-3'), a trend consistent with the observed and predicted tendencies for guanine to undergo one-electron oxidation: 5'-GGG-3' > 5'-GG-3' > 5'-GA-3'. Thus, it appears that in mixed DNA sequences the guanine sites most vulnerable to oxidative cross-linking are those that are easiest to oxidize. These results further indicate that equilibration of the electron hole in the plasmid DNA occurs on a time scale faster than that of cross-linking.

  3. Initiation of bacteriophage Φ29 DNA packaging studied by optical tweezers manipulation of single DNA molecules

    NASA Astrophysics Data System (ADS)

    Rickgauer, John Peter; Fuller, Derek N.; Hu, Bo; Grimes, Shelley; Jardine, Paul J.; Anderson, Dwight L.; Smith, Douglas E.

    2006-08-01

    A key step in the life cycle of many viruses, including bacteriophages, adenoviruses, and herpesviruses, is the packaging of replicated viral genomes into pre-assembled proheads by the action of ATP-dependent portal motor complexes. Here we present a method that allows the initiation of packaging by single complexes to be studied using optical tweezers. A procedure is developed for assembling phage Φ29 prohead-motor complexes, which are demonstrated to bind and begin translocation of a target DNA molecule within only a few seconds. We show that the Φ29 DNA terminal protein (gene product 3), which functions to prime DNA replication, also has a dramatic effect on packaging. The DNA tether length measured immediately after binding varied from ~30-100% of the full length, yet shortened monotonically, indicating that packaging does not strictly begin at the terminal end of the DNA. Removal of the terminal protein eliminated this variability, causing packaging to initiate at or very near the end of the DNA. These findings, taken together with electron microscopy data, suggest that rather than simply threading into the portal, the motor captures and dynamically tensions a DNA loop, and that the function of the terminal protein is to load DNA segments on both sides of the loop junction onto separate DNA translocating units.

  4. A high-throughput screen for detection of compound-dependent phosphodiester bond cleavage at abasic sites.

    PubMed

    Rideout, Marc C; Liet, Benjamin; Gasparutto, Didier; Berthet, Nathalie

    2016-11-15

    We have employed a DNA molecular beacon with a real abasic site, namely a 2-deoxyribose, in a fluorescent high-throughput assay to identify artificial nucleases that cleave at abasic sites. We screened a 1280 compound chemical library and identified a compound that functions as an artificial nuclease. We validated a key structure-activity relationship necessary for abasic site cleavage using available analogs of the identified artificial nuclease. We also addressed the activity of the identified compound with dose titrations in the absence and presence of a source of non-specific DNA. Finally, we characterized the phosphodiester backbone cleavage at the abasic site using denaturing gel electrophoresis. This study provides a useful template for researchers seeking to rapidly identify new artificial nucleases. PMID:27594348

  5. A high-throughput screen for detection of compound-dependent phosphodiester bond cleavage at abasic sites.

    PubMed

    Rideout, Marc C; Liet, Benjamin; Gasparutto, Didier; Berthet, Nathalie

    2016-11-15

    We have employed a DNA molecular beacon with a real abasic site, namely a 2-deoxyribose, in a fluorescent high-throughput assay to identify artificial nucleases that cleave at abasic sites. We screened a 1280 compound chemical library and identified a compound that functions as an artificial nuclease. We validated a key structure-activity relationship necessary for abasic site cleavage using available analogs of the identified artificial nuclease. We also addressed the activity of the identified compound with dose titrations in the absence and presence of a source of non-specific DNA. Finally, we characterized the phosphodiester backbone cleavage at the abasic site using denaturing gel electrophoresis. This study provides a useful template for researchers seeking to rapidly identify new artificial nucleases.

  6. A method to study in vivo stability of DNA nanostructures☆

    PubMed Central

    Surana, Sunaina; Bhatia, Dhiraj; Krishnan, Yamuna

    2013-01-01

    DNA nanostructures are rationally designed, synthetic, nanoscale assemblies obtained from one or more DNA sequences by their self-assembly. Due to the molecularly programmable as well as modular nature of DNA, such designer DNA architectures have great potential for in cellulo and in vivo applications. However, demonstrations of functionality in living systems necessitates a method to assess the in vivo stability of the relevant nanostructures. Here, we outline a method to quantitatively assay the stability and lifetime of various DNA nanostructures in vivo. This exploits the property of intact DNA nanostructures being uptaken by the coelomocytes of the multicellular model organism Caenorhabditis elegans. These studies reveal that the present fluorescence based assay in coelomocytes of C. elegans is an useful in vivo test bed for measuring DNA nanostructure stability. PMID:23623822

  7. Raman spectroscopic study of plasma-treated salmon DNA

    SciTech Connect

    Lee, Geon Joon; Kim, Yong Hee; Choi, Eun Ha; Kwon, Young-Wan

    2013-01-14

    In this research, we studied the effect of plasma treatment on the optical/structural properties of the deoxyribonucleic acid (DNA) extracted from salmon sperm. DNA-cetyltrimethylammonium (CTMA) films were obtained by complexation of DNA with CTMA. Circular dichroism (CD) and Raman spectra indicated that DNA retained its double helical structure in the solid film. The Raman spectra exhibited several vibration modes corresponding to the nuclear bases and the deoxyribose-phosphate backbones of the DNA, as well as the alkylchains of CTMA. Dielectric-barrier-discharge (DBD) plasma treatment induced structural modification and damage to the DNA, as observed by changes in the ultraviolet-visible absorption, CD, and Raman spectra. The optical emission spectra of the DBD plasma confirmed that DNA modification was induced by plasma ions such as reactive oxygen species and reactive nitrogen species.

  8. Efficient cleavage of DNA oligonucleotides by a non-FokI-type zinc finger nuclease containing one His₄-type finger domain derived from the first finger domain of Sp1.

    PubMed

    Negi, Shigeru; Yoshioka, Michiko; Mima, Hiroko; Mastumoto, Makoto; Suzuki, Michiko; Yokoyama, Mao; Kano, Koji; Sugiura, Yukio

    2015-10-01

    In this study, we sought to improve the hydrolytic activity of a His4-type single finger domain (f2), which was previously derived from the second finger domain (f2') of the Sp1 zinc finger protein (Sp1wt), which has 3 tandem finger domains (f1', f2', and f3'). To this end, 2 His4-type single finger domains were generated by mutating 2 Cys residues participating in Zn(II) coordination with the His residues in the first (f1') and third finger (f3') domains of Sp1wt. Circular dichroism spectroscopy results showed that the first and second His4-type zinc finger domains (f1 and f2) adopted folded ββα structures in the presence of Zn(II), but that the third His4-type zinc finger domain (f3) did not. Non-FokI-type zinc finger nucleases containing 3 or 4 finger domains were also prepared by combining a His4-type zinc finger domain with the Sp1wt scaffold. We studied their DNA-binding abilities and hydrolytic activities against DNA oligonucleotides by performing gel-mobility-shift assays. The results showed that f1 had higher hydrolytic activity for a DNA oligonucleotide with a GC box (5'-GGG GCG GGG-3'), compared with that of f2, although both His4-type single finger domains had similar DNA-binding affinities. The difference in the hydrolytic activity between f1 and f2 was ascribed not only to the zinc coordinate structure, but also to its folding structure and the stability of finger domain. PMID:26316464

  9. Quantum mechanical studies of DNA and LNA.

    PubMed

    Koch, Troels; Shim, Irene; Lindow, Morten; Ørum, Henrik; Bohr, Henrik G

    2014-04-01

    Quantum mechanical (QM) methodology has been employed to study the structure activity relations of DNA and locked nucleic acid (LNA). The QM calculations provide the basis for construction of molecular structure and electrostatic surface potentials from molecular orbitals. The topologies of the electrostatic potentials were compared among model oligonucleotides, and it was observed that small structural modifications induce global changes in the molecular structure and surface potentials. Since ligand structure and electrostatic potential complementarity with a receptor is a determinant for the bonding pattern between molecules, minor chemical modifications may have profound changes in the interaction profiles of oligonucleotides, possibly leading to changes in pharmacological properties. The QM modeling data can be used to understand earlier observations of antisense oligonucleotide properties, that is, the observation that small structural changes in oligonucleotide composition may lead to dramatic shifts in phenotypes. These observations should be taken into account in future oligonucleotide drug discovery, and by focusing more on non RNA target interactions it should be possible to utilize the exhibited property diversity of oligonucleotides to produce improved antisense drugs.

  10. Quantum Mechanical Studies of DNA and LNA

    PubMed Central

    Shim, Irene; Lindow, Morten; Ørum, Henrik

    2014-01-01

    Quantum mechanical (QM) methodology has been employed to study the structure activity relations of DNA and locked nucleic acid (LNA). The QM calculations provide the basis for construction of molecular structure and electrostatic surface potentials from molecular orbitals. The topologies of the electrostatic potentials were compared among model oligonucleotides, and it was observed that small structural modifications induce global changes in the molecular structure and surface potentials. Since ligand structure and electrostatic potential complementarity with a receptor is a determinant for the bonding pattern between molecules, minor chemical modifications may have profound changes in the interaction profiles of oligonucleotides, possibly leading to changes in pharmacological properties. The QM modeling data can be used to understand earlier observations of antisense oligonucleotide properties, that is, the observation that small structural changes in oligonucleotide composition may lead to dramatic shifts in phenotypes. These observations should be taken into account in future oligonucleotide drug discovery, and by focusing more on non RNA target interactions it should be possible to utilize the exhibited property diversity of oligonucleotides to produce improved antisense drugs. PMID:24491259

  11. Single molecule study of a processivity clamp sliding on DNA

    SciTech Connect

    Laurence, T A; Kwon, Y; Johnson, A; Hollars, C; O?Donnell, M; Camarero, J A; Barsky, D

    2007-07-05

    Using solution based single molecule spectroscopy, we study the motion of the polIII {beta}-subunit DNA sliding clamp ('{beta}-clamp') on DNA. Present in all cellular (and some viral) forms of life, DNA sliding clamps attach to polymerases and allow rapid, processive replication of DNA. In the absence of other proteins, the DNA sliding clamps are thought to 'freely slide' along the DNA; however, the abundance of positively charged residues along the inner surface may create favorable electrostatic contact with the highly negatively charged DNA. We have performed single-molecule measurements on a fluorescently labeled {beta}-clamp loaded onto freely diffusing plasmids annealed with fluorescently labeled primers of up to 90 bases. We find that the diffusion constant for 1D diffusion of the {beta}-clamp on DNA satisfies D {le} 10{sup -14} cm{sup 2}/s, much slower than the frictionless limit of D = 10{sup -10} cm{sup 2}/s. We find that the {beta} clamp remains at the 3-foot end in the presence of E. coli single-stranded binding protein (SSB), which would allow for a sliding clamp to wait for binding of the DNA polymerase. Replacement of SSB with Human RP-A eliminates this interaction; free movement of sliding clamp and poor binding of clamp loader to the junction allows sliding clamp to accumulate on DNA. This result implies that the clamp not only acts as a tether, but also a placeholder.

  12. Molecular dynamics study on DNA oligonucleotide translocation through carbon nanotubes.

    PubMed

    Pei, Q X; Lim, C G; Cheng, Y; Gao, Huajian

    2008-09-28

    Molecular dynamics simulations are performed to study the translocation of a DNA oligonucleotide in a carbon nanotube (CNT) channel consisting of CNTs of two different diameters. A strong gravitational acceleration field is applied to the DNA molecule and water solvent as an external driving force for the translocation. It is observed that both the CNT channel size and the strength of gravitational field have significant influence on the DNA translocation process. It is found that the DNA oligonucleotide is unable to pass through the (8,8) CNT even under strong gravitational fields, which extends previous finding that DNA cannot be self-inserted into a (8,8) CNT. It is shown that the DNA can pass through the (10,10)-(12,12) and (12,12)-(14,14) CNTs with stronger gravitational field resulting in faster translocation. The translocation time tau is found to follow the inverse power law relationship with the gravitational acceleration a as tau approximately a(-1.21). The energetic analysis of the translocation process shows that there is an energy barrier for DNA translocation into the (10,10) tube from the (14,14) tube, which is in contrast to previous report that DNA can be self-inserted into a (10,10) tube from outside the CNT. This difference with previous report shows that the dynamic behavior of DNA translocation inside a CNT channel is quite different from that of DNA translocation into a CNT from outside the CNT.

  13. A Study of DNA Adsorption Kinetics on OTS Surfaces

    NASA Astrophysics Data System (ADS)

    Barone, Joseph; Fang, Xiaohua; Li, Bingquan; Seo, Young-Soo; Samuilov, Vladimir; Rafailovich, Miriam; Sokolov, Jonathan

    2003-03-01

    The evaporation kinetics of droplets containing DNA were studied as a function of DNA molecular weight, DNA concentration, and buffer concentration.The contact angle and overall droplet morphology were observed using a KSV contact angle goniometer as a function of time. Simultaneously, the DNA distribution and adsorption kinetics were measured with confocal microscopy. The DNA droplets were deposited on hydrophobic OTS-covered silicon surfaces and stained with ethidium bromide solution. Up to three stages were found during DNA droplet drying process, depending on the DNA concentration. The results also show that a ring is formed at the air/solid /liquid interface in a manner similar to that reported for a colloidal suspension by Robert D. Deegan et.a. [Physical Review E, Vol 62, No.1, July 2000, p756-765] The absorbed amount of DNA was obtained by measuring the intensity in the ring. The dynamics and DNA morphology are affected by both the molecular weight and the DNA concentration. Supported by NSF-MRSEC program (DMR-9632525)

  14. A comparative study between cleavage stage embryo transfer at day 3 and blastocyst stage transfer at day 5 in in-vitro fertilization/intra-cytoplasmic sperm injection on clinical pregnancy rates

    PubMed Central

    Kaur, Prabhleen; Swarankar, M. L.; Maheshwari, Manju; Acharya, Veena

    2014-01-01

    OBJECTIVE: To evaluate the efficacy of blastocyst transfer in comparison with cleavage stage transfer. STUDY DESIGN: A randomized, prospective study was conducted in Infertility clinic, Department of Obstetrics and Gynecology, Mahatma Gandhi Hospital, Jaipur on 300 patients aged 25-40 years undergoing in-vitro fertilization (IVF)/intra-cytoplasmic sperm injection (ICSI) cycle from May 2010-April 2011. When three or more Grade-I embryos were observed on day 2 of culture, patients were divided randomly into two study groups, cleavage stage transfer and blastocyst transfer group having 150 patients each. Primary outcomes evaluated were, Clinical pregnancy rate and Implantation rate. The results were analyzed using proportions, standard deviation and Chi-square test. RESULTS: Both the groups were similar for age, indication and number of embryos transferred. Clinical pregnancies after blastocyst transfer were significantly higher 66 (44.0%) compared to cleavage stage embryo transfer 44 (29.33%) (P < 0.01). Implantation rate for blastocyst transfer group was also significantly higher (P < 0.001). CONCLUSION: Blastocyst transfer having higher implantation rate and clinical pregnancy rate lead to reduction in multiple pregnancies. PMID:25395745

  15. In vitro DNA binding studies of Aspartame, an artificial sweetener.

    PubMed

    Kashanian, Soheila; Khodaei, Mohammad Mehdi; Kheirdoosh, Fahimeh

    2013-03-01

    A number of small molecules bind directly and selectively to DNA, by inhibiting replication, transcription or topoisomerase activity. In this work the interaction of native calf thymus DNA (CT-DNA) with Aspartame (APM), an artificial sweeteners was studied at physiological pH. DNA binding study of APM is useful to understand APM-DNA interaction mechanism and to provide guidance for the application and design of new and safer artificial sweeteners. The interaction was investigated using spectrophotometric, spectrofluorometric competition experiment and circular dichroism (CD). Hypochromism and red shift are shown in UV absorption band of APM. A strong fluorescence quenching reaction of DNA to APM was observed and the binding constants (Kf) of DNA with APM and corresponding number of binding sites (n) were calculated at different temperatures. Thermodynamic parameters, enthalpy changes (ΔH) and entropy changes (ΔS) were calculated to be +181kJmol(-1) and +681Jmol(-1)K(-1) according to Van't Hoff equation, which indicated that reaction is predominantly entropically driven. Moreover, spectrofluorometric competition experiment and circular dichroism (CD) results are indicative of non-intercalative DNA binding nature of APM. We suggest that APM interacts with calf thymus DNA via groove binding mode with an intrinsic binding constant of 5×10(+4)M(-1). PMID:23375483

  16. In vitro DNA binding studies of Aspartame, an artificial sweetener.

    PubMed

    Kashanian, Soheila; Khodaei, Mohammad Mehdi; Kheirdoosh, Fahimeh

    2013-03-01

    A number of small molecules bind directly and selectively to DNA, by inhibiting replication, transcription or topoisomerase activity. In this work the interaction of native calf thymus DNA (CT-DNA) with Aspartame (APM), an artificial sweeteners was studied at physiological pH. DNA binding study of APM is useful to understand APM-DNA interaction mechanism and to provide guidance for the application and design of new and safer artificial sweeteners. The interaction was investigated using spectrophotometric, spectrofluorometric competition experiment and circular dichroism (CD). Hypochromism and red shift are shown in UV absorption band of APM. A strong fluorescence quenching reaction of DNA to APM was observed and the binding constants (Kf) of DNA with APM and corresponding number of binding sites (n) were calculated at different temperatures. Thermodynamic parameters, enthalpy changes (ΔH) and entropy changes (ΔS) were calculated to be +181kJmol(-1) and +681Jmol(-1)K(-1) according to Van't Hoff equation, which indicated that reaction is predominantly entropically driven. Moreover, spectrofluorometric competition experiment and circular dichroism (CD) results are indicative of non-intercalative DNA binding nature of APM. We suggest that APM interacts with calf thymus DNA via groove binding mode with an intrinsic binding constant of 5×10(+4)M(-1).

  17. Utilization of Dioxygen by Carotenoid Cleavage Oxygenases.

    PubMed

    Sui, Xuewu; Golczak, Marcin; Zhang, Jianye; Kleinberg, Katie A; von Lintig, Johannes; Palczewski, Krzysztof; Kiser, Philip D

    2015-12-18

    Carotenoid cleavage oxygenases (CCOs) are non-heme, Fe(II)-dependent enzymes that participate in biologically important metabolic pathways involving carotenoids and apocarotenoids, including retinoids, stilbenes, and related compounds. CCOs typically catalyze the cleavage of non-aromatic double bonds by dioxygen (O2) to form aldehyde or ketone products. Expressed only in vertebrates, the RPE65 sub-group of CCOs catalyzes a non-canonical reaction consisting of concerted ester cleavage and trans-cis isomerization of all-trans-retinyl esters. It remains unclear whether the former group of CCOs functions as mono- or di-oxygenases. Additionally, a potential role for O2 in catalysis by the RPE65 group of CCOs has not been evaluated to date. Here, we investigated the pattern of oxygen incorporation into apocarotenoid products of Synechocystis apocarotenoid oxygenase. Reactions performed in the presence of (18)O-labeled water and (18)O2 revealed an unambiguous dioxygenase pattern of O2 incorporation into the reaction products. Substitution of Ala for Thr at position 136 of apocarotenoid oxygenase, a site predicted to govern the mono- versus dioxygenase tendency of CCOs, greatly reduced enzymatic activity without altering the dioxygenase labeling pattern. Reevaluation of the oxygen-labeling pattern of the resveratrol-cleaving CCO, NOV2, previously reported to be a monooxygenase, using a purified enzyme sample revealed that it too is a dioxygenase. We also demonstrated that bovine RPE65 is not dependent on O2 for its cleavage/isomerase activity. In conjunction with prior research, the results of this study resolve key issues regarding the utilization of O2 by CCOs and indicate that dioxygenase activity is a feature common among double bond-cleaving CCOs.

  18. KLEAT: CLEAVAGE SITE ANALYSIS OF TRANSCRIPTOMES*

    PubMed Central

    Birol, Inanç; Raymond, Anthony; Chiu, Readman; Nip, Ka Ming; Jackman, Shaun D; Kreitzman, Maayan; Docking, T Roderick; Ennis, Catherine A; Robertson, A Gordon; Karsan, Aly

    2015-01-01

    In eukaryotic cells, alternative cleavage of 3’ untranslated regions (UTRs) can affect transcript stability, transport and translation. For polyadenylated (poly(A)) transcripts, cleavage sites can be characterized with short-read sequencing using specialized library construction methods. However, for large-scale cohort studies as well as for clinical sequencing applications, it is desirable to characterize such events using RNA-seq data, as the latter are already widely applied to identify other relevant information, such as mutations, alternative splicing and chimeric transcripts. Here we describe KLEAT, an analysis tool that uses de novo assembly of RNA-seq data to characterize cleavage sites on 3’ UTRs. We demonstrate the performance of KLEAT on three cell line RNA-seq libraries constructed and sequenced by the ENCODE project, and assembled using Trans-ABySS. Validating the KLEAT predictions with matched ENCODE RNA-seq and RNA-PET libraries, we show that the tool has over 90% positive predictive value when there are at least three RNA-seq reads supporting a poly(A) tail and requiring at least three RNA-PET reads mapping within 100 nucleotides as validation. We also compare the performance of KLEAT with other popular RNA-seq analysis pipelines that reconstruct 3’ UTR ends, and show that it performs favourably, based on an ROC-like curve. PMID:25592595

  19. DNAzyme hybridization, cleavage, degradation, and sensing in undiluted human blood serum.

    PubMed

    Zhou, Wenhu; Chen, Qingyun; Huang, Po-Jung Jimmy; Ding, Jinsong; Liu, Juewen

    2015-04-01

    RNA-cleaving DNAzymes provide a unique platform for developing biosensors. However, a majority of the work has been performed in clean buffer solutions, while the activity of some important DNAzymes in biological sample matrices is still under debate. Two RNA-cleaving DNAzymes (17E and 10-23) are the most widely used. In this work, we carefully studied a few key aspects of the 17E DNAzyme in human blood serum, including hybridization, cleavage activity, and degradation kinetics. Since direct fluorescence monitoring is difficult due to the opacity of serum, denaturing and nondenaturing gel electrophoresis were combined for studying the interaction between serum proteins and DNAzymes. The 17E DNAzyme retains its activity in 90% human blood serum with a cleavage rate of 0.04 min(-1), which is similar to that in the PBS buffer (0.06 min(-1)) with a similar ionic strength. The activity in serum can be accelerated to 0.3 min(-1) with an additional 10 mM Ca(2+). As compared to 17E, the 10-23 DNAzyme produces negligible cleavage in serum. Degradation of both the substrate and the DNAzyme strand is very slow in serum, especially at room temperature. Degradation occurs mainly at the fluorophore label (linked to DNA via an amide bond) instead of the DNA phosphodiester bonds. Serum proteins can bind more tightly to the 17E DNAzyme complex than to the single-stranded substrate or enzyme. The 17E DNAzyme hybridizes extremely fast in serum. With this understanding, the detection of DNA using the 17E DNAzyme is demonstrated in serum.

  20. Mutations altering the cleavage specificity of a homing endonuclease

    PubMed Central

    Seligman, Lenny M.; Chisholm, Karen M.; Chevalier, Brett S.; Chadsey, Meggen S.; Edwards, Samuel T.; Savage, Jeremiah H.; Veillet, Adeline L.

    2002-01-01

    The homing endonuclease I-CreI recognizes and cleaves a particular 22 bp DNA sequence. The crystal structure of I-CreI bound to homing site DNA has previously been determined, leading to a number of predictions about specific protein–DNA contacts. We test these predictions by analyzing a set of endonuclease mutants and a complementary set of homing site mutants. We find evidence that all structurally predicted I-CreI/DNA contacts contribute to DNA recognition and show that these contacts differ greatly in terms of their relative importance. We also describe the isolation of a collection of altered specificity I-CreI derivatives. The in vitro DNA-binding and cleavage properties of two such endonucleases demonstrate that our genetic approach is effective in identifying homing endonucleases that recognize and cleave novel target sequences. PMID:12202772

  1. Study of the DNA Damage Checkpoint using Xenopus Egg Extracts

    PubMed Central

    Patel, Yogin; Gowda, Vrushab; Yan, Shan

    2012-01-01

    On a daily basis, cells are subjected to a variety of endogenous and environmental insults. To combat these insults, cells have evolved DNA damage checkpoint signaling as a surveillance mechanism to sense DNA damage and direct cellular responses to DNA damage. There are several groups of proteins called sensors, transducers and effectors involved in DNA damage checkpoint signaling (Figure 1). In this complex signaling pathway, ATR (ATM and Rad3-related) is one of the major kinases that can respond to DNA damage and replication stress. Activated ATR can phosphorylate its downstream substrates such as Chk1 (Checkpoint kinase 1). Consequently, phosphorylated and activated Chk1 leads to many downstream effects in the DNA damage checkpoint including cell cycle arrest, transcription activation, DNA damage repair, and apoptosis or senescence (Figure 1). When DNA is damaged, failing to activate the DNA damage checkpoint results in unrepaired damage and, subsequently, genomic instability. The study of the DNA damage checkpoint will elucidate how cells maintain genomic integrity and provide a better understanding of how human diseases, such as cancer, develop. Xenopus laevis egg extracts are emerging as a powerful cell-free extract model system in DNA damage checkpoint research. Low-speed extract (LSE) was initially described by the Masui group1. The addition of demembranated sperm chromatin to LSE results in nuclei formation where DNA is replicated in a semiconservative fashion once per cell cycle. The ATR/Chk1-mediated checkpoint signaling pathway is triggered by DNA damage or replication stress 2. Two methods are currently used to induce the DNA damage checkpoint: DNA damaging approaches and DNA damage-mimicking structures 3. DNA damage can be induced by ultraviolet (UV) irradiation, γ-irradiation, methyl methanesulfonate (MMS), mitomycin C (MMC), 4-nitroquinoline-1-oxide (4-NQO), or aphidicolin3, 4. MMS is an alkylating agent that inhibits DNA replication and activates

  2. DNA interaction, SOD, peroxidase and nuclease activity studies of iron complex having ligand with carboxamido nitrogen donors

    NASA Astrophysics Data System (ADS)

    Ghosh, Kaushik; Tyagi, Nidhi; Kumar, Hemant; Rathi, Sweety

    2015-07-01

    Complex (Et3HN)[FeIII(bpb)Cl2], 1 {where H2bpb: N,N‧-(1,2-phenylene)bis(pyridine-2-carboxamide)} was synthesized and characterized by reported procedure (Yang et al., 1991). Complex 1 was found to be effective in superoxide scavenging activity and an IC50 value of 4.1 μM was obtained in xanthine-xanthine oxidase nitro blue tetrazolium assay. Peroxidase-like activity of this complex was determined by the oxidation of 2,2‧-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS). DNA interaction studies of complex 1 showed binding of DNA through external or groove binding. Complex 1 exhibited chemical nuclease activity in the presence of hydrogen peroxide and cleaved supercoiled pBR322 DNA to its linear and nicked circular form at physiological pH. Mechanistic studies indicated possible role of hydroxyl radical (radOH) species in DNA cleavage activity via hydroperoxo intermediate: [FeIIIsbnd OOH-]2+ → [FeIVdbnd O]2+ + radOH.

  3. DNA binding studies of new valine derived chiral complexes of tin(IV) and zirconium(IV)

    NASA Astrophysics Data System (ADS)

    Arjmand, Farukh; Jamsheera, A.

    2011-01-01

    Valine derived chiral complexes of SnCl 4 ( 1) and ZrCl 4 ( 2) were designed as potent antitumor agents. These complexes were characterized by elemental analysis, IR, 1H NMR, 119Sn NMR and ESI mass spectroscopy. In vitro binding studies of complexes 1 and 2 under physiological conditions at room temperature with CT-DNA were carried out employing UV-vis absorption titration, fluorescence studies and viscosity measurements. The extent of binding was quantified by Kb values of complexes 1 and 2 which were found to be 1.97 × 10 4 and 1.17 × 10 3 M -1, respectively, suggesting that complex 1 has significantly greater DNA binding propensity in contrast to the complex 2. The mode of action at the molecular level was ascertained by the interaction of complex 1 with 5'GMP and 5'TMP which revealed that complex 1 binds via electrostatic mode with the oxygen of the negatively charged surface phosphate group of the DNA helix. The supercoiled pBR322 plasmid DNA cleavage activity of complex 1 was ascertained by gel electrophoresis assay.

  4. Drug-DNA Interaction Studies of Acridone-Based Derivatives.

    PubMed

    Thimmaiah, Kuntebomanahalli; Ugarkar, Apoorva G; Martis, Elvis F; Shaikh, Mushtaque S; Coutinho, Evans C; Yergeri, Mayur C

    2015-01-01

    N10-alkylated 2-bromoacridones are a novel series of potent antitumor compounds. DNA binding studies of these compounds were carried out using spectrophotometric titrations, Circular dichroism (CD) measurements using Calf Thymus DNA (CT DNA). The binding constants were identified at a range of K=0.3 to 3.9×10(5) M(-1) and the percentage of hypochromism from the spectral titrations at 28-54%. This study has identified a compound 9 with the good binding affinity of K=0.39768×10(5) M(-1) with CT DNA. Molecular dynamics (MD) simulations have investigated the changes in structural and dynamic features of native DNA on binding to the active compound 9. All the synthesized compounds have increased the uptake of Vinblastine in MDR KBChR-8-5 cells to an extent of 1.25- to1.9-fold than standard modulator Verapamil of similar concentration. These findings allowed us to draw preliminary conclusions about the structural features of 2-bromoacridones and further chemical enhancement will improve the binding affinity of the acridone derivatives to CT-DNA for better drug-DNA interaction. The molecular modeling studies have shown mechanism of action and the binding modes of the acridones to DNA.

  5. Constraint of DNA on Functionalized Graphene Improves Its Biostability and Specificity

    SciTech Connect

    Tang, Zhiwen; Wu, Hong; Cort, John R.; Buchko, Garry W.; Zhang, Youyu; Shao, Yuyan; Aksay, Ilhan A.; Liu, Jun; Lin, Yuehe

    2010-06-01

    The single-stranded DNA constrained on graphene surface is effectively protected from enzymatic cleavage by DNase I. The anisotropy, fluorescence, NMR, and CD studies suggest that the single-stranded DNA is promptly adsorbed onto graphene forming strong molecular interactions. Furthermore, the constraint of DNA probe on graphene improves the specificity of its response to complementary DNA. These findings will promote the further application of graphene in biotechnology and biomedical fields.

  6. Nanolithography of Amyloid Precursor Protein Cleavage with β-Secretase by Atomic Force Microscopy.

    PubMed

    Han, Sung-Woong; Shin, Hoon-Kyu; Adachi, Taiji

    2016-03-01

    Cleavage of the amyloid precursor protein (APP) by secretases is critical in neural cell processes including the pathway for neural cell proliferation and that underlying the pathogenesis of Alzheimer's disease (AD). Understanding the mechanism of APP cleavage and development of a convenient tool for the accurate evaluation of APP cleavage intensity by secretases are very important in the development of new AD therapeutic targets. In this study, we developed a sophisticated technology to evaluate the APP cleavage mechanism at the nano-molecular level by atomic force microscopic (AFM) nanolithography. APP was modified on a glass substrate; nanolithography of APP cleavage by β-secretase-modified AFM probe scanning was achieved. APP cleavage was verified by the AFM imaging and the fluorescent immunostaining. The present method will be very useful in understanding the molecular level of the APP cleavage mechanism by β-secretase in vitro; this method will facilitate inhibitor screening for the therapeutic target of AD. PMID:27280252

  7. DNA-lipid systems. A physical chemistry study.

    PubMed

    Dias, R; Antunes, F; Miguel, M; Lindman, S; Lindman, B

    2002-05-01

    It is well known that the interaction of polyelectrolytes with oppositely charged surfactants leads to an associative phase separation; however, the phase behavior of DNA and oppositely charged surfactants is more strongly associative than observed in other systems. A precipitate is formed with very low amounts of surfactant and DNA. DNA compaction is a general phenomenon in the presence of multivalent ions and positively charged surfaces; because of the high charge density there are strong attractive ion correlation effects. Techniques like phase diagram determinations, fluorescence microscopy, and ellipsometry were used to study these systems. The interaction between DNA and catanionic mixtures (i.e., mixtures of cationic and anionic surfactants) was also investigated. We observed that DNA compacts and adsorbs onto the surface of positively charged vesicles, and that the addition of an anionic surfactant can release DNA back into solution from a compact globular complex between DNA and the cationic surfactant. Finally, DNA interactions with polycations, chitosans with different chain lengths, were studied by fluorescence microscopy, in vivo transfection assays and cryogenic transmission electron microscopy. The general conclusion is that a chitosan effective in promoting compaction is also efficient in transfection.

  8. Synthesis, physicochemical studies, embryos toxicity and DNA interaction of some new Iron(II) Schiff base amino acid complexes

    NASA Astrophysics Data System (ADS)

    Abdel-Rahman, Laila H.; El-Khatib, Rafat M.; Nassr, Lobna A. E.; Abu-Dief, Ahmed M.

    2013-05-01

    New Fe(II) Schiff base amino acid complexes derived from the condensation of o-hydroxynaphthaldehyde with L-alanine, L-phenylalanine, L-aspartic acid, L-histidine and L-arginine were synthesized and characterized by elemental analysis, IR, electronic spectra, and conductance measurements. The stoichiometry and the stability constants of the complexes were determined spectrophotometrically. The investigated Schiff bases exhibited tridentate coordination mode with the general formulae [Fe(HL)2]·nH2O for all amino acids except L-histidine. But in case of L-histidine, the ligand acts as tetradentate ([FeL(H2O)2]·2H2O), where HL = mono anion and L = dianion of the ligand. The structure of the prepared complexes is suggested to be octahedral. The prepared complexes were tested for their toxicity on chick embryos and found to be safe until a concentration of 100 μg/egg with full embryos formation. The interaction between CT-DNA and the investigated complexes were followed by spectrophotometry and viscosity measurements. It was found that, the prepared complexes bind to DNA via classical intercalative mode and showed a different DNA cleavage activity with the sequence: nhi > nari > nali > nasi > nphali. The thermodynamic Profile of the binding of nphali complex and CT-DNA was constructed by analyzing the experimental data of absorption titration and UV melting studies with the McGhee equation, van't Hoff's equation, and the Gibbs-Helmholtz equation.

  9. Study of DNA Morphology in a Small Droplet during Evaporation

    NASA Astrophysics Data System (ADS)

    Fang, Xiaohua; Li, Bingquan; Seo, Young-Soo; Samuilov, Vladimir; Sokolov, Jonathan; Rafailovich, Miriam; Chu, Benjamin

    2002-03-01

    The evaporation kinetics of droplets containing low concentrations of DNA was studied as a function of DNA molecular weight, conformation, and buffer concentration. The contact angle and overall droplet morphology was measured using a KSV contact angle goniometer. The DNA distribution and adsorption kinetics were measured with confocal microscopy. The DNA droplets were deposited on hydrophobic OTS, Au-thiol, PS and PMMA covered silicon surfaces and the solutions were stained with ethidium bromide solution. The addition of the ethidium bromide did not affect the contact angle. The results show that a ring is formed at the air/solid /liquid interface in a manner similar to that reported for a colloidal suspension by Robert D. Deegan et.al. On the other hand, the dynamics seemed to be affected by both the molecular weight and the DNA concentration. The results are explained in terms of the individual chain conformations determined by scanning force microscopy and confocal microscopy.

  10. Saccharomyces cerevisiae-based system for studying clustered DNA damages

    SciTech Connect

    Moscariello, M.M.; Sutherland, B.

    2010-08-01

    DNA-damaging agents can induce clustered lesions or multiply damaged sites (MDSs) on the same or opposing DNA strands. In the latter, attempts to repair MDS can generate closely opposed single-strand break intermediates that may convert non-lethal or mutagenic base damage into double-strand breaks (DSBs). We constructed a diploid S. cerevisiae yeast strain with a chromosomal context targeted by integrative DNA fragments carrying different damages to determine whether closely opposed base damages are converted to DSBs following the outcomes of the homologous recombination repair pathway. As a model of MDS, we studied clustered uracil DNA damages with a known location and a defined distance separating the lesions. The system we describe might well be extended to assessing the repair of MDSs with different compositions, and to most of the complex DNA lesions induced by physical and chemical agents.

  11. Label-free electrochemical nucleic acid biosensing by tandem polymerization and cleavage-mediated cascade target recycling and DNAzyme amplification.

    PubMed

    Liu, Shufeng; Gong, Hongwei; Wang, Yanqun; Wang, Li

    2016-03-15

    Owing to the intrinsic importance of nucleic acid as bio-targets, the achievement of its simple and sensitive detection with high confidence is very essential for biological studies and diagnostic purposes. Herein, a label-free, isothermal, and ultrasensitive electrochemical detection of target DNA was developed by using a tandem polymerization and cleavage-mediated cascade target recycling and DNAzyme releasing amplification strategy. Upon sensing of the nucleic acid analyte for the assembled hairpin-like probe DNA on the electrode, the DNA polymerase guided the target recycling and simultaneously triggered the lambda exonuclease cleavage, accompanied by the cascade recycling of the released new complementary strand and the amplified liberation of the G-rich sequence of the HRP-mimicking DNAzyme. The electrocatalytic reduction of H2O2 by the generated hemin/G-quadruplex DNAzyme was used for the signal readout and further amplification toward target response. Such tandem functional operation by DNA polymerase, lambda exonuclease and DNAzyme endows the developed biosensor with a high sensitivity and also a high confidence. A low detection limit of 5 fM with an excellent selectivity toward target DNA could be achieved. It also exhibits the distinct advantages of simplicity in probe design and biosensor fabrication, and label-free electrochemical detection, thus may offer a promising avenue for the applications in disease diagnosis and clinical biomedicine. PMID:26513289

  12. Label-free electrochemical nucleic acid biosensing by tandem polymerization and cleavage-mediated cascade target recycling and DNAzyme amplification.

    PubMed

    Liu, Shufeng; Gong, Hongwei; Wang, Yanqun; Wang, Li

    2016-03-15

    Owing to the intrinsic importance of nucleic acid as bio-targets, the achievement of its simple and sensitive detection with high confidence is very essential for biological studies and diagnostic purposes. Herein, a label-free, isothermal, and ultrasensitive electrochemical detection of target DNA was developed by using a tandem polymerization and cleavage-mediated cascade target recycling and DNAzyme releasing amplification strategy. Upon sensing of the nucleic acid analyte for the assembled hairpin-like probe DNA on the electrode, the DNA polymerase guided the target recycling and simultaneously triggered the lambda exonuclease cleavage, accompanied by the cascade recycling of the released new complementary strand and the amplified liberation of the G-rich sequence of the HRP-mimicking DNAzyme. The electrocatalytic reduction of H2O2 by the generated hemin/G-quadruplex DNAzyme was used for the signal readout and further amplification toward target response. Such tandem functional operation by DNA polymerase, lambda exonuclease and DNAzyme endows the developed biosensor with a high sensitivity and also a high confidence. A low detection limit of 5 fM with an excellent selectivity toward target DNA could be achieved. It also exhibits the distinct advantages of simplicity in probe design and biosensor fabrication, and label-free electrochemical detection, thus may offer a promising avenue for the applications in disease diagnosis and clinical biomedicine.

  13. Cleavage fracture in high strength low alloy weld metal

    SciTech Connect

    Bose, W.W.; Bowen, P.; Strangwood, M.

    1996-12-31

    The present investigation gives an evaluation of the effect of microstructure on the cleavage fracture process of High Strength Low Alloy (HSLA) multipass weld metals. With additions of alloying elements, such as Ti, Ni, Mo and Cr, the microstructure of C-Mn weld metal changes from the classical composition, i.e., allotriomorphic ferrite with acicular ferrite and Widmanstaetten ferrite, to bainite and low carbon martensite. Although the physical metallurgy of some HSLA weld metals has been studied before, more work is necessary to correlate the effect of the microstructure on the fracture behavior of such weld metals. In this work detailed microstructural analysis was carried out using optical and electron (SEM and TEM) microscopy. Single edge notched (SEN) bend testpieces were used to assess the cleavage fracture stress, {sigma}{sub F}. Inclusions beneath the notch surface were identified as the crack initiators of unstable cleavage fracture. From the size of such inclusions and the value of tensile stress predicted at the initiation site, the effective surface energy for cleavage was calculated using a modified Griffth energy balance for a penny shape crack. The results suggest that even though inclusions initiate cleavage fracture, the local microstructure may play an important role in the fracture process of these weld metals. The implications of these observations for a quantitative theory of the cleavage fracture of ferritic steels is discussed.

  14. Spectroscopic studies on lambda cro protein-DNA interactions.

    PubMed

    Torigoe, C; Kidokoro, S; Takimoto, M; Kyogoku, Y; Wada, A

    1991-06-20

    Spectroscopic (circular dichroism and fluorescence) and thermodynamic studies were conducted on lambda Cro-DNA interactions. Some base substitutions were introduced to the operator and the effects on the conformation of the complex and thermodynamic parameters for dissociation of the complex were examined. It was found that, (1) in the specific binding of Cro with DNA which has a (pseudo) consensus sequence, DNA is overwound, while in non-specific binding it is unchanged, or rather unwound; (2) substitution of central base-pairs or the introduction of a mismatched base-pair at the center of the operator reduces the extent of DNA conformational change on Cro binding and lessens the stability of the Cro-DNA complex, even though there is apparently no direct interaction between Cro and DNA at these positions; (3) stability of the complex increases with the degree of DNA conformational change of the same type during binding; (4) in some cases of specific binding, there are three states in the dissociation of the complex as observed by salt titration: two conformational states for the complex depending on salt concentration and, in non-specific binding, dissociation is a two-state transition; (5) the number of ions involved in interactions between Cro and 17 base-pair DNA is about 7.7 for NaCl titrations; (6) dissociation free energy prediction of the Cro-DNA complex by simple addition of the dissociation free energy change of a single base-pair substitution agrees with our experimental results when DNA overwinding occurs during binding, i.e. in specific binding.

  15. Centralspindlin in Rappaport's cleavage signaling.

    PubMed

    Mishima, Masanori

    2016-05-01

    Cleavage furrow in animal cell cytokinesis is formed by cortical constriction driven by contraction of an actomyosin network activated by Rho GTPase. Although the role of the mitotic apparatus in furrow induction has been well established, there remain discussions about the detailed molecular mechanisms of the cleavage signaling. While experiments in large echinoderm embryos highlighted the role of astral microtubules, data in smaller cells indicate the role of central spindle. Centralspindlin is a constitutive heterotetramer of MKLP1 kinesin and the non-motor CYK4 subunit and plays crucial roles in formation of the central spindle and recruitment of the downstream cytokinesis factors including ECT2, the major activator of Rho during cytokinesis, to the site of division. Recent reports have revealed a role of this centralspindlin-ECT2 pathway in furrow induction both by the central spindle and by the astral microtubules. Here, a unified view of the stimulation of cortical contractility by this pathway is discussed. Cytokinesis, the division of the whole cytoplasm, is an essential process for cell proliferation and embryonic development. In animal cells, cytokinesis is executed using a contractile network of actin filaments driven by a myosin-II motor that constricts the cell cortex (cleavage furrow ingression) into a narrow channel between the two daughter cells, which is resolved by scission (abscission) [1-3]. The anaphase-specific organization of the mitotic apparatus (MA, spindle with chromosomes plus asters) positions the cleavage furrow and plays a major role in spatial coupling between mitosis and cytokinesis [4-6]. The nucleus and chromosomes are dispensable for furrow specification [7-10], although they contribute to persistent furrowing and robust completion in some cell types [11,12]. Likewise, centrosomes are not essential for cytokinesis, but they contribute to the general fidelity of cell division [10,13-15]. Here, classical models of cleavage furrow

  16. DNA.

    ERIC Educational Resources Information Center

    Felsenfeld, Gary

    1985-01-01

    Structural form, bonding scheme, and chromatin structure of and gene-modification experiments with deoxyribonucleic acid (DNA) are described. Indicates that DNA's double helix is variable and also flexible as it interacts with regulatory and other molecules to transfer hereditary messages. (DH)

  17. Single-molecule studies of DNA dynamics and intermolecular forces

    NASA Astrophysics Data System (ADS)

    Robertson, Rae Marie

    DNA molecules were used as a model system to investigate fundamental problems in polymer physics; namely, how molecular length, topology and concentration influence the dynamical properties of polymers. A set of DNA molecules suitable for polymer studies was prepared using molecular biology techniques. Video fluorescence microscopy and single-molecule tracking were used to determine self-diffusion coefficients of DNA molecules. Optical tweezers were used to measure the intermolecular forces confining entangled DNA molecules. Scaling of diffusion with molecular length was in agreement with the Zimm model for dilute solutions of linear and circular DNA, indicating that excluded volume effects are appreciable for both topologies. Scaling of diffusion with concentration was also determined for the four possible topological combinations of linear and circular molecules: linear DNA diffusing in a solution of linear DNA, linear DNA in circular DNA, circular in circular, and circular in linear. For lower concentrations molecular topology had little effect and scaling was in agreement with that of the Rouse model. As concentration was increased topology played a much larger role and scaling crossed over to that of the reptation model, predicted to describe the dynamics of entangled polymers. The notable exception was the strongly hindered diffusion observed for a circular molecule diffusing in an entangled linear solution, suggesting the importance of constraint release. Using a new experimental approach with optical tweezers, a tube-like field confining a single entangled molecule was measured, in accord with the key assumption of the reptation model. A time-dependent harmonic potential opposed displacement transverse to the molecular contour, and the force relaxations following displacement were composed of three distinct modes. A characteristic tube radius of the entangled solution was also determined, close to the classically predicted value. The dependence of the above

  18. Double-stranded cleavage of pBR322 by a diiron complex via a "hydrolytic" mechanism.

    PubMed Central

    Schnaith, L M; Hanson, R S; Que, L

    1994-01-01

    Treatment of plasmid pBR322 with Fe2-(HPTB)(OH)(NO3)4(HPTB = N,N,N',N'-tetrakis(2-benzimidazolylmethyl)-2-hydroxy-1,3-diaminopr opane) and H2O2 or O2 and a reductant (dithiothreitol or ascorbate) results in double-stranded cleavage of the plasmid. The linearization of supercoiled pBR322 by this complex is not inhibited by hydroxyl radical scavengers. On the other hand, the linearized pBR322 is efficiently religated by T4 DNA ligase, and the presence of 3'-OH and 5'-OPO3 ends is corroborated by 3'- and 5'-end-labeling studies. These observations indicate that cleavage results from hydrolysis of the DNA-phosphate backbone, which is proposed to occur by nucleophilic attack of the bound peroxide on the phosphodiester. Double-stranded cleavage by the Fe2(HPTB)(OH)(NO3)4/H2O2 adduct preferentially occurs between bp 3489 and 3485 of pBR322. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8290564

  19. Techniques used to study the DNA polymerase reaction pathway

    PubMed Central

    Joyce, Catherine M.

    2009-01-01

    Summary A minimal reaction pathway for DNA polymerases was established over 20 years ago using chemical quench methods. Since that time there has been considerable interest in noncovalent steps in the reaction pathway, conformational changes involving the polymerase or its DNA substrate that may play a role in substrate specificity. Fluorescence-based assays have been devised in order to study these conformational transitions and the results obtained have added new detail to the reaction pathway. PMID:19665596

  20. Sliding of proteins non-specifically bound to DNA: Brownian dynamics studies with coarse-grained protein and DNA models.

    PubMed

    Ando, Tadashi; Skolnick, Jeffrey

    2014-12-01

    DNA binding proteins efficiently search for their cognitive sites on long genomic DNA by combining 3D diffusion and 1D diffusion (sliding) along the DNA. Recent experimental results and theoretical analyses revealed that the proteins show a rotation-coupled sliding along DNA helical pitch. Here, we performed Brownian dynamics simulations using newly developed coarse-grained protein and DNA models for evaluating how hydrodynamic interactions between the protein and DNA molecules, binding affinity of the protein to DNA, and DNA fluctuations affect the one dimensional diffusion of the protein on the DNA. Our results indicate that intermolecular hydrodynamic interactions reduce 1D diffusivity by 30%. On the other hand, structural fluctuations of DNA give rise to steric collisions between the CG-proteins and DNA, resulting in faster 1D sliding of the protein. Proteins with low binding affinities consistent with experimental estimates of non-specific DNA binding show hopping along the CG-DNA. This hopping significantly increases sliding speed. These simulation studies provide additional insights into the mechanism of how DNA binding proteins find their target sites on the genome.

  1. Ancient DNA studies: new perspectives on old samples

    PubMed Central

    2012-01-01

    In spite of past controversies, the field of ancient DNA is now a reliable research area due to recent methodological improvements. A series of recent large-scale studies have revealed the true potential of ancient DNA samples to study the processes of evolution and to test models and assumptions commonly used to reconstruct patterns of evolution and to analyze population genetics and palaeoecological changes. Recent advances in DNA technologies, such as next-generation sequencing make it possible to recover DNA information from archaeological and paleontological remains allowing us to go back in time and study the genetic relationships between extinct organisms and their contemporary relatives. With the next-generation sequencing methodologies, DNA sequences can be retrieved even from samples (for example human remains) for which the technical pitfalls of classical methodologies required stringent criteria to guaranty the reliability of the results. In this paper, we review the methodologies applied to ancient DNA analysis and the perspectives that next-generation sequencing applications provide in this field. PMID:22697611

  2. Cleavage of rotavirus VP4 in vivo.

    PubMed

    Ludert, J E; Krishnaney, A A; Burns, J W; Vo, P T; Greenberg, H B

    1996-03-01

    The infectivity of rotavirus particles is dependent on proteolytic cleavage of the outer capsid protein, VP4, at a specific site. This cleavage event yields two fragments, identified as VP5* and VP8*. It has been hypothesized that the particle is more stable, but non-infectious, when VP4 is in the uncleaved state. Uncleaved VP4 and the resultant increased stability might be advantageous for the virus to resist environmental degradation until it infects a susceptible host. When VP4 is cleaved in the lumen of the host's gastrointestinal tract, the virus particle would become less stable but more infectious. To test this hypothesis, a series of experiments was undertaken to analyse the cleavage state of VP4 on virus shed by an infected host into the environment. Immunoblots of intestinal wash solutions derived from infant and adult BALB/c mice infected with a virulent cell culture-adapted variant of the EDIM virus (EW) or wild-type murine rotavirus EDIM-Cambridge were analysed. Virtually all of the VP4 in these samples was in the cleaved form. Moreover, cell culture titration of trypsin-treated and untreated intestinal contents from pups infected with EW indicated that excreted virus is fully activated prior to trypsin addition. It was also observed that trypsin-activated virus has no disadvantage in initiating infection in naive animals over virions containing an intact VP4. These studies indicate that VP4 is cleaved upon release from the intestinal cell and that virus shed into the environment does not have an intact VP4.

  3. Studies of DNA supercoiling in vivo and in vitro

    SciTech Connect

    Cook, D.N.

    1990-10-01

    This thesis describes a number of diverse experiments whose common theme is to elaborate some aspect of DNA supercoiling. The torsion elastic constant of DNA is measure as a function of superhelix density using the technique of picosecond Time Resolved Fluorescence Polarization Anisotropy (FPA) of intercalated ethidium bromide. The results agree with theories which predict that the anisotropy decay should vary with the square root of the relative viscosity. This experiment furthermore demonstrates a sensitivity of FPA to a change in torsion elastic constant of less than 10%. A number of covalently closed DNA samples, ranging in superhelix density from = [minus]0.123 to [plus]0.042, are then examined. A novel method for measuring changes in local supercoiling on a large PNA molecule which is sensitive to changes in supercoiling of regions of chromosomal DNA as short as 1 kilobase in length is presented. Study of chromosomal supercoiling regulating anaerobic gene expression in the facultative photosynthetic bacterium, Rhodobacter capsulatus showed that no stable change in chromosomal supercoiling upon a shift from aerobic respiratory growth to anaerobic photosynthetic conditions. Studies to detect transient changes in DNA supercoiling indicate that DNA downstream from heavily transcribed genes for the photosynthetic reaction center are relaxed or perhaps overwound upon the induction of photosynthetic metabolism. These results are interpreted in terms of the twin domain model of transcriptional supercoiling.

  4. Studies of DNA supercoiling in vivo and in vitro

    SciTech Connect

    Cook, D.N.

    1990-10-01

    This thesis describes a number of diverse experiments whose common theme is to elaborate some aspect of DNA supercoiling. The torsion elastic constant of DNA is measure as a function of superhelix density using the technique of picosecond Time Resolved Fluorescence Polarization Anisotropy (FPA) of intercalated ethidium bromide. The results agree with theories which predict that the anisotropy decay should vary with the square root of the relative viscosity. This experiment furthermore demonstrates a sensitivity of FPA to a change in torsion elastic constant of less than 10%. A number of covalently closed DNA samples, ranging in superhelix density from = {minus}0.123 to {plus}0.042, are then examined. A novel method for measuring changes in local supercoiling on a large PNA molecule which is sensitive to changes in supercoiling of regions of chromosomal DNA as short as 1 kilobase in length is presented. Study of chromosomal supercoiling regulating anaerobic gene expression in the facultative photosynthetic bacterium, Rhodobacter capsulatus showed that no stable change in chromosomal supercoiling upon a shift from aerobic respiratory growth to anaerobic photosynthetic conditions. Studies to detect transient changes in DNA supercoiling indicate that DNA downstream from heavily transcribed genes for the photosynthetic reaction center are relaxed or perhaps overwound upon the induction of photosynthetic metabolism. These results are interpreted in terms of the twin domain model of transcriptional supercoiling.

  5. An electrochemical peptide cleavage-based biosensor for matrix metalloproteinase-2 detection with exonuclease III-assisted cycling signal amplification.

    PubMed

    Wang, Ding; Yuan, Yali; Zheng, Yingning; Chai, Yaqin; Yuan, Ruo

    2016-05-01

    In this work, an electrochemical peptide biosensor was developed for matrix metalloproteinase-2 (MMP-2) detection by conversion of a peptide cleavage event into DNA detection with exonuclease III (Exo III)-assisted cycling signal amplification.

  6. Cleavage of an amide bond by a ribozyme

    NASA Technical Reports Server (NTRS)

    Dai, X.; De Mesmaeker, A.; Joyce, G. F.; Miller, S. L. (Principal Investigator)

    1995-01-01

    A variant form of a group I ribozyme, optimized by in vitro evolution for its ability to catalyze magnesium-dependent phosphoester transfer reactions involving DNA substrates, also catalyzes the cleavage of an unactivated alkyl amide when that linkage is presented in the context of an oligodeoxynucleotide analog. Substrates containing an amide bond that joins either two DNA oligos, or a DNA oligo and a short peptide, are cleaved in a magnesium-dependent fashion to generate the expected products. The first-order rate constant, kcat, is 0.1 x 10(-5) min-1 to 1 x 10(-5) min-1 for the DNA-flanked substrates, which corresponds to a rate acceleration of more than 10(3) as compared with the uncatalyzed reaction.

  7. Time of flight Laue fiber diffraction studies of perdeuterated DNA

    SciTech Connect

    Forsyth, V.T.; Whalley, M.A.; Mahendrasingam, A.; Fuller, W.

    1994-12-31

    The diffractometer SXD at the Rutherford Appleton Laboratory ISIS pulsed neutron source has been used to record high resolution time-of-flight Laue fiber diffraction data from DNA. These experiments, which are the first of their kind, were undertaken using fibers of DNA in the A conformation and prepared using deuterated DNA in order to minimis incoherent background scattering. These studies complement previous experiments on instrument D19 at the Institute Laue Langevin using monochromatic neutrons. Sample preparation involved drawing large numbers of these deuterated DNA fibers and mounting them in a parallel array. The strategy of data collection is discussed in terms of camera design, sample environment and data collection. The methods used to correct the recorded time-of-flight data and map it into the final reciprocal space fiber diffraction dataset are also discussed. Difference Fourier maps showing the distribution of water around A-DNA calculated on the basis of these data are compared with results obtained using data recorded from hydrogenated A-DNA on D19. Since the methods used for sample preparation, data collection and data processing are fundamentally different for the monochromatic and Laue techniques, the results of these experiments also afford a valuable opportunity to independently test the data reduction and analysis techniques used in the two methods.

  8. Specificity of hammerhead ribozyme cleavage.

    PubMed Central

    Hertel, K J; Herschlag, D; Uhlenbeck, O C

    1996-01-01

    To be effective in gene inactivation, the hammerhead ribozyme must cleave a complementary RNA target without deleterious effects from cleaving non-target RNAs that contain mismatches and shorter stretches of complementarity. The specificity of hammerhead cleavage was evaluated using HH16, a well-characterized ribozyme designed to cleave a target of 17 residues. Under standard reaction conditions, HH16 is unable to discriminate between its full-length substrate and 3'-truncated substrates, even when six fewer base pairs are formed between HH16 and the substrate. This striking lack of specificity arises because all the substrates bind to the ribozyme with sufficient affinity so that cleavage occurs before their affinity differences are manifested. In contrast, HH16 does exhibit high specificity towards certain 3'-truncated versions of altered substrates that either also contain a single base mismatch or are shortened at the 5' end. In addition, the specificity of HH16 is improved in the presence of p7 nucleocapsid protein from human immunodeficiency virus (HIV)-1, which accelerates the association and dissociation of RNA helices. These results support the view that the hammerhead has an intrinsic ability to discriminate against incorrect bases, but emphasizes that the high specificity is only observed in a certain range of helix lengths. Images PMID:8670879

  9. Single molecule studies of DNA packaging by bacteriophages

    NASA Astrophysics Data System (ADS)

    Fuller, Derek Nathan

    The DNA packaging dynamics of bacteriophages φ29, gamma, and T4 were studied at the single molecule level using a dual trap optical tweezers. Also, a method for producing long DNA molecules by PCR for optical tweezers studies of protein DNA interactions is presented and thoroughly characterized. This DNA preparation technique provided DNA samples for the φ29 and T4 studies. In the studies of φ29, the role of charge was investigated by varying the ionic conditions of the packaging buffer. Ionic conditions in which the DNA charge was highly screened due to divalent and trivalent cations showed the lowest resistance to packaging of the DNA to high density. This confirmed the importance of counterions in shielding the DNA interstrand repulsion when packaged to high density. While the ionic nature of the packaging buffer had a strong effect on packaging velocities, there was no clear trend between the counterion-screened charge of the DNA and the maximum packaging velocity. The packaging studies of lambda and T4 served as systems for comparative studies with φ29. Each system showed similarities to the φ29 system and unique differences. Both the lambda and T4 packaging motors were capable of generating forces in excess of 50 pN and showed remarkably high processivity, similar to φ29. However, dynamic structural transitions were observed with lambda that are not observed with φ29. The packaging of the lambda genome showed capsid expansion at approximately 30 percent of the genome packaged and capsid rupture at 90 percent of the genome packaged in the absence of capsid stabilizing protein gpD. Unique to the T4 packaging motor, packaging dynamics showed a remarkable amount of variability in velocities. This variability was seen both within individual packaging phages and from one phage to the next. This is possibly due to different conformational states of the packaging machinery. Additionally, lambda and T4 had average packaging velocities under minimal load of 600

  10. Rational design and interaction studies of combilexins towards duplex DNA.

    PubMed

    Dileep, K V; Vijeesh, V; Remya, C

    2016-03-01

    DNA, which is the genetic material, plays a predominant role in all living organisms. Alterations in the structure and function of this genetic material correlate with complex diseases such as cancer. A number of anticancer drugs exert their action by binding to DNA. Although DNA binding compounds exert genotoxicity, there is a high demand for novel DNA binding molecules because they can be further developed into anticancer drugs. In the present study, the mode of interaction of two compounds, 2,4-D and tacrine, has been determined to be minor groove binding and intercalation, respectively. Subsequently, from their binding modes, novel combilexin molecules were designed using computational tools and their mode of binding and affinities towards DNA were determined through a series of molecular modeling experiments such as molecular docking, molecular dynamics and binding free energy calculations. The entire study focuses on the potential effects of combilexins compared to intercalators and minor groove binders. The combilexins deduced from the current study may be considered as lead compounds for the development of better anticancer drugs.

  11. Structure of an anti-HIV-1 hammerhead ribozyme complex with a 17-mer DNA substrate analog of HIV-1 gag RNA and a mechanism for the cleavage reaction: 750 MHz NMR and computer experiments

    NASA Technical Reports Server (NTRS)

    Ojha, R. P.; Dhingra, M. M.; Sarma, M. H.; Myer, Y. P.; Setlik, R. F.; Shibata, M.; Kazim, A. L.; Ornstein, R. L.; Rein, R.; Turner, C. J.; Sarma, R. H.

    1997-01-01

    The structure of an anti-HIV-1 ribozyme-DNA abortive substrate complex was investigated by 750 MHz NMR and computer modeling experiments. The ribozyme was a chimeric molecule with 30 residues-18 DNA nucleotides, and 12 RNA residues in the conserved core. The DNA substrate analog had 17 residues. The chimeric ribozyme and the DNA substrate formed a shortened ribozyme-abortive substrate complex of 47 nucleotides with two DNA stems (stems I and III) and a loop consisting of the conserved core residues. Circular dichroism spectra showed that the DNA stems assume A-family conformation at the NMR concentration and a temperature of 15 degrees C, contrary to the conventional wisdom that DNA duplexes in aqueous solution populate entirely in the B-form. It is proposed that the A-family RNA residues at the core expand the A-family initiated at the core into the DNA stems because of the large free energy requirement for the formation of A/B junctions. Assignments of the base H8/H6 protons and H1' of the 47 residues were made by a NOESY walk. In addition to the methyl groups of all T's, the imino resonances of stems I and III and AH2's were assigned from appropriate NOESY walks. The extracted NMR data along with available crystallographic data, were used to derive a structural model of the complex. Stems I and III of the final model displayed a remarkable similarity to the A form of DNA; in stem III, a GC base pair was found to be moving into the floor of the minor groove defined by flanking AT pairs; data suggest the formation of a buckled rhombic structure with the adjacent pair; in addition, the base pair at the interface of stem III and the loop region displayed deformed geometry. The loop with the catalytic core, and the immediate region of the stems displayed conformational multiplicity within the NMR time scale. A catalytic mechanism for ribozyme action based on the derived structure, and consistent with biochemical data in the literature, is proposed. The complex

  12. Structure of an anti-HIV-1 hammerhead ribozyme complex with a 17-mer DNA substrate analog of HIV-1 gag RNA and a mechanism for the cleavage reaction: 750 MHz NMR and computer experiments.

    PubMed

    Ojha, R P; Dhingra, M M; Sarma, M H; Myer, Y P; Setlik, R F; Shibata, M; Kazim, A L; Ornstein, R L; Rein, R; Turner, C J; Sarma, R H

    1997-10-01

    The structure of an anti-HIV-1 ribozyme-DNA abortive substrate complex was investigated by 750 MHz NMR and computer modeling experiments. The ribozyme was a chimeric molecule with 30 residues-18 DNA nucleotides, and 12 RNA residues in the conserved core. The DNA substrate analog had 17 residues. The chimeric ribozyme and the DNA substrate formed a shortened ribozyme-abortive substrate complex of 47 nucleotides with two DNA stems (stems I and III) and a loop consisting of the conserved core residues. Circular dichroism spectra showed that the DNA stems assume A-family conformation at the NMR concentration and a temperature of 15 degrees C, contrary to the conventional wisdom that DNA duplexes in aqueous solution populate entirely in the B-form. It is proposed that the A-family RNA residues at the core expand the A-family initiated at the core into the DNA stems because of the large free energy requirement for the formation of A/B junctions. Assignments of the base H8/H6 protons and H1' of the 47 residues were made by a NOESY walk. In addition to the methyl groups of all T's, the imino resonances of stems I and III and AH2's were assigned from appropriate NOESY walks. The extracted NMR data along with available crystallographic data, were used to derive a structural model of the complex. Stems I and III of the final model displayed a remarkable similarity to the A form of DNA; in stem III, a GC base pair was found to be moving into the floor of the minor groove defined by flanking AT pairs; data suggest the formation of a buckled rhombic structure with the adjacent pair; in addition, the base pair at the interface of stem III and the loop region displayed deformed geometry. The loop with the catalytic core, and the immediate region of the stems displayed conformational multiplicity within the NMR time scale. A catalytic mechanism for ribozyme action based on the derived structure, and consistent with biochemical data in the literature, is proposed. The complex

  13. Activity dependent CAM cleavage and neurotransmission

    PubMed Central

    Conant, Katherine; Allen, Megan; Lim, Seung T.

    2015-01-01

    Spatially localized proteolysis represents an elegant means by which neuronal activity dependent changes in synaptic structure, and thus experience dependent learning and memory, can be achieved. In vitro and in vivo studies suggest that matrix metalloproteinase and adamalysin activity is concentrated at the cell surface, and emerging evidence suggests that increased peri-synaptic expression, release and/or activation of these proteinases occurs with enhanced excitatory neurotransmission. Synaptically expressed cell adhesion molecules (CAMs) could therefore represent important targets for neuronal activity-dependent proteolysis. Several CAM subtypes are expressed at the synapse, and their cleavage can influence the efficacy of synaptic transmission through a variety of non-mutually exclusive mechanisms. In the following review, we discuss mechanisms that regulate neuronal activity-dependent synaptic CAM shedding, including those that may be calcium dependent. We also highlight CAM targets of activity-dependent proteolysis including neuroligin and intercellular adhesion molecule-5 (ICAM-5). We include discussion focused on potential consequences of synaptic CAM shedding, with an emphasis on interactions between soluble CAM cleavage products and specific pre- and post-synaptic receptors. PMID:26321910

  14. Nile blue can photosensitize DNA damage through electron transfer.

    PubMed

    Hirakawa, Kazutaka; Ota, Kazuhiro; Hirayama, Junya; Oikawa, Shinji; Kawanishi, Shosuke

    2014-04-21

    The mechanism of DNA damage photosensitized by Nile blue (NB) was studied using (32)P-5'-end-labeled DNA fragments. NB bound to the DNA strand was possibly intercalated through an electrostatic interaction. Photoirradiated NB caused DNA cleavage at guanine residues when the DNA fragments were treated with piperidine. Consecutive guanines, the underlined G in 5'-GG and 5'-GGG, were selectively damaged through photoinduced electron transfer. The fluorescence lifetime of NB was decreased by guanine-containing DNA sequence, supporting this mechanism. Single guanines were also slightly damaged by photoexcited NB, and DNA photodamage by NB was slightly enhanced in D2O. These results suggest that the singlet oxygen mechanism also partly contributes to DNA photodamage by NB. DNA damage photosensitized by NB via electron transfer may be an important mechanism in medicinal applications of photosensitizers, such as photodynamic therapy in low oxygen. PMID:24576317

  15. Studying Z-DNA and B- to Z-DNA transitions using a cytosine analogue FRET-pair

    PubMed Central

    Dumat, Blaise; Larsen, Anders Foller; Wilhelmsson, L. Marcus

    2016-01-01

    Herein, we report on the use of a tricyclic cytosine FRET pair, incorporated into DNA with different base pair separations, to study Z-DNA and B-Z DNA junctions. With its position inside the DNA structure, the FRET pair responds to a B- to Z-DNA transition with a distinct change in FRET efficiency for each donor/acceptor configuration allowing reliable structural probing. Moreover, we show how fluorescence spectroscopy and our cytosine analogues can be used to determine rate constants for the B- to Z-DNA transition mechanism. The modified cytosines have little influence on the transition and the FRET pair is thus an easily implemented and virtually non-perturbing fluorescence tool to study Z-DNA. This nucleobase analogue FRET pair represents a valuable addition to the limited number of fluorescence methods available to study Z-DNA and we suggest it will facilitate, for example, deciphering the B- to Z-DNA transition mechanism and investigating the interaction of DNA with Z-DNA binding proteins. PMID:26896804

  16. Design, synthesis, physicochemical studies, solvation, and DNA damage of quinoline-appended chalcone derivative: comprehensive spectroscopic approach toward drug discovery.

    PubMed

    Kumar, Himank; Chattopadhyay, Anjan; Prasath, R; Devaraji, Vinod; Joshi, Ritika; Bhavana, P; Saini, Praveen; Ghosh, Sujit Kumar

    2014-07-01

    The present study epitomizes the design, synthesis, photophysics, solvation, and interaction with calf-thymus DNA of a potential antitumor, anticancer quinoline-appended chalcone derivative, (E)-3-(anthracen-10-yl)-1-(6,8-dibromo-2-methylquinolin-3-yl)prop-2-en-1-one (ADMQ) using steady state absorption and fluorescence spectroscopy, molecular modeling, molecular docking, Fourier-transform infrared spectroscopy (FTIR), molecular dynamics (MD) simulation, and gel electrophoresis studies. ADMQ shows an unusual photophysical behavior in a variety of solvents of different polarity. The dual emission has been observed along with the formation of twisted intramolecular charge transfer (TICT) excited state. The radiationless deactivation of the TICT state is found to be promoted strongly by hydrogen bonding. Quantum mechanical (DFT, TDDFT, and ZINDO-CI) calculations show that the ADMQ is sort of molecular rotor which undergoes intramolecular twist followed by a complete charge transfer in the optimized excited state. FTIR studies reveals that ADMQ undergoes important structural change from its native structure to a β-hydroxy keto form in water at physiological pH. The concentration-dependent DNA cleavage has been identified in agarose gel DNA electrophoresis experiment and has been further supported by MD simulation. ADMQ forms hydrogen bond with the deoxyribose sugar attached with the nucleobase adenine DA-17 (chain A) and result in significant structural changes which potentially cleave DNA double helix. The compound does not exhibit any deleterious effect or toxicity to the E. coli strain in cytotoxicity studies. The consolidated spectroscopic research described herein can provide enormous information to open up new avenues for designing and synthesizing chalcone derivatives with low systematic toxicity for medicinal chemistry research. PMID:24962605

  17. Synthesis, characterization, plasmid cleavage and cytotoxicity of cancer cells by a copper(II) complex of anthracenyl-terpyridine.

    PubMed

    Kumar, Amit; Chinta, Jugun Prakash; Ajay, Amrendra Kumar; Bhat, Manoj Kumar; Rao, Chebrolu P

    2011-11-01

    Metallo-organic compounds are interesting to study for their antitumor activity and related applications. This paper deals with the syntheses, characterization, structure determination of a copper complex of anthracenyl terpyridine (1) and its plasmid cleavage and cytotoxicity towards different cancer cell lines. The complex binds CT-DNA through partial intercalation mode. The plasmid cleavage studies carried out using pBR322 and pUC18 resulted in the formation of all the three forms of the plasmid DNA. Plasmid cleavage studies carried out with a non-redoxable Zn(2+) complex (2) supported the role of the redox activity of copper in 1. The complex 1 showed remarkable antiproliferative activity against cancer cell lines, viz., cervical (HeLa, SiHa, CaSki), breast (MCF-7), liver (HepG2) and lung (H1299). A considerable lowering was observed in the IC(50) values of HPV-infected (viz., HeLa, SiHa, CaSki) vs. non-HPV-infected cell lines (MCF-7, HepG2, H1299). Antiproliferative activity of 1 was found to be much higher than the carboplatin when treated with the same cell lines. Incubation of the cells with 1 results in granular structures only with the HPV-infected cells and not with others as studied by phase contrast and fluorescence microscopy. The lower IC(50) value observed in case of 1 with HPV-infected cell lines may be correlated with the involvement of HPV oncoprotein. The role of HPV has been further augmented by transfecting the MCF-7 cells (originally not possessing HPV copy) with e6 oncoprotein cDNA. To our knowledge this is the first copper complex that causes cell death by interacting with HPV oncoprotein followed by exhibition of remarkable antiproliferative activity.

  18. FTIR study of light-dependent activation and DNA repair processes of (6-4) photolyase.

    PubMed

    Zhang, Yu; Iwata, Tatsuya; Yamamoto, Junpei; Hitomi, Kenichi; Iwai, Shigenori; Todo, Takeshi; Getzoff, Elizabeth D; Kandori, Hideki

    2011-05-10

    The UV component of sunlight threatens all life on the earth by damaging DNA. The photolyase (PHR) DNA repair proteins maintain genetic integrity by harnessing blue light to restore intact bases from the major UV-induced photoproducts, cyclobutane pyrimidine dimers (CPD), and (6-4) photoproducts ((6-4) PPs). The (6-4) PHR must catalyze not only covalent bond cleavage between two pyrmidine bases but also hydroxyl or amino group transfer from the 5'- to 3'-pyrimidine base, requiring a more complex mechanism than that postulated for CPD PHR. In this paper, we apply Fourier transform infrared (FTIR) spectroscopy to (6-4) PHR and report difference FTIR spectra that correspond to its photoactivation, substrate binding, and light-dependent DNA repair processes. The presence of DNA carrying a single (6-4) PP uniquely influences vibrations of the protein backbone and a protonated carboxylic acid, whereas photoactivation produces IR spectral changes for the FAD cofactor and the surrounding protein. Difference FTIR spectra for the light-dependent DNA damage repair reaction directly show significant DNA structural changes in the (6-4) lesion and the neighboring phosphate group. Time-dependent illumination of samples with different enzyme:substrate stoichiometries successfully distinguished signals characteristic of structural changes in the protein and the DNA resulting from binding and catalysis. PMID:21462921

  19. DNA banking for epidemiologic studies: a review of current practices.

    PubMed

    Steinberg, Karen; Beck, Jeanne; Nickerson, Deborah; Garcia-Closas, Montserrat; Gallagher, Margaret; Caggana, Michele; Reid, Yvonne; Cosentino, Mark; Ji, Jay; Johnson, Delene; Hayes, Richard B; Earley, Marie; Lorey, Fred; Hannon, Harry; Khoury, Muin J; Sampson, Eric

    2002-05-01

    To study genetic risk factors for common diseases, researchers have begun collecting DNA specimens in large epidemiologic studies and surveys. However, little information is available to guide researchers in selecting the most appropriate specimens. In an effort to gather the best information for the selection of specimens for these studies, we convened a meeting of scientists engaged in DNA banking for large epidemiologic studies. In this discussion, we review the information presented at that meeting in the context of recent published information. Factors to be considered in choosing the appropriate specimens for epidemiologic studies include quality and quantity of DNA, convenience of collection and storage, cost, and ability to accommodate future needs for genotyping. We focus on four types of specimens that are stored in these banks: (1) whole blood preserved as dried blood spots; (2) whole blood from which genomic DNA is isolated, (3) immortalized lymphocytes from whole blood or separated lymphocytes, prepared immediately or subsequent to cryopreservation; and (4) buccal epithelial cells. Each of the specimens discussed is useful for epidemiologic studies according to specific needs, which we enumerate in our conclusions.

  20. Analysis of the eukaryotic topoisomerase II DNA gate: a single-molecule FRET and structural perspective

    PubMed Central

    Collins, Tammy R. L.; Hammes, Gordon G.; Hsieh, Tao-shih

    2009-01-01

    Type II DNA topoisomerases (topos) are essential and ubiquitous enzymes that perform important intracellular roles in chromosome condensation and segregation, and in regulating DNA supercoiling. Eukaryotic topo II, a type II topoisomerase, is a homodimeric enzyme that solves topological entanglement problems by using the energy from ATP hydrolysis to pass one segment of DNA through another by way of a reversible, enzyme-bridged double-stranded break. This DNA break is linked to the protein by a phosphodiester bond between the active site tyrosine of each subunit and backbone phosphate of DNA. The opening and closing of the DNA gate, a critical step for strand passage during the catalytic cycle, is coupled to this enzymatic cleavage/religation of the backbone. This reversible DNA cleavage reaction is the target of a number of anticancer drugs, which can elicit DNA damage by affecting the cleavage/religation equilibrium. Because of its clinical importance, many studies have sought to determine the manner in which topo II interacts with DNA. Here we highlight recent single-molecule fluorescence resonance energy transfer and crystallographic studies that have provided new insight into the dynamics and structure of the topo II DNA gate. PMID:19155278

  1. DNA compaction by the bacteriophage protein Cox studied on the single DNA molecule level using nanofluidic channels.

    PubMed

    Frykholm, Karolin; Berntsson, Ronnie Per-Arne; Claesson, Magnus; de Battice, Laura; Odegrip, Richard; Stenmark, Pål; Westerlund, Fredrik

    2016-09-01

    The Cox protein from bacteriophage P2 forms oligomeric filaments and it has been proposed that DNA can be wound up around these filaments, similar to how histones condense DNA. We here use fluorescence microscopy to study single DNA-Cox complexes in nanofluidic channels and compare how the Cox homologs from phages P2 and WΦ affect DNA. By measuring the extension of nanoconfined DNA in absence and presence of Cox we show that the protein compacts DNA and that the binding is highly cooperative, in agreement with the model of a Cox filament around which DNA is wrapped. Furthermore, comparing microscopy images for the wild-type P2 Cox protein and two mutants allows us to discriminate between compaction due to filament formation and compaction by monomeric Cox. P2 and WΦ Cox have similar effects on the physical properties of DNA and the subtle, but significant, differences in DNA binding are due to differences in binding affinity rather than binding mode. The presented work highlights the use of single DNA molecule studies to confirm structural predictions from X-ray crystallography. It also shows how a small protein by oligomerization can have great impact on the organization of DNA and thereby fulfill multiple regulatory functions.

  2. DNA compaction by the bacteriophage protein Cox studied on the single DNA molecule level using nanofluidic channels.

    PubMed

    Frykholm, Karolin; Berntsson, Ronnie Per-Arne; Claesson, Magnus; de Battice, Laura; Odegrip, Richard; Stenmark, Pål; Westerlund, Fredrik

    2016-09-01

    The Cox protein from bacteriophage P2 forms oligomeric filaments and it has been proposed that DNA can be wound up around these filaments, similar to how histones condense DNA. We here use fluorescence microscopy to study single DNA-Cox complexes in nanofluidic channels and compare how the Cox homologs from phages P2 and WΦ affect DNA. By measuring the extension of nanoconfined DNA in absence and presence of Cox we show that the protein compacts DNA and that the binding is highly cooperative, in agreement with the model of a Cox filament around which DNA is wrapped. Furthermore, comparing microscopy images for the wild-type P2 Cox protein and two mutants allows us to discriminate between compaction due to filament formation and compaction by monomeric Cox. P2 and WΦ Cox have similar effects on the physical properties of DNA and the subtle, but significant, differences in DNA binding are due to differences in binding affinity rather than binding mode. The presented work highlights the use of single DNA molecule studies to confirm structural predictions from X-ray crystallography. It also shows how a small protein by oligomerization can have great impact on the organization of DNA and thereby fulfill multiple regulatory functions. PMID:27131370

  3. A Theoretical and Experimental Study of DNA Self-assembly

    NASA Astrophysics Data System (ADS)

    Chandran, Harish

    The control of matter and phenomena at the nanoscale is fast becoming one of the most important challenges of the 21st century with wide-ranging applications from energy and health care to computing and material science. Conventional top-down approaches to nanotechnology, having served us well for long, are reaching their inherent limitations. Meanwhile, bottom-up methods such as self-assembly are emerging as viable alternatives for nanoscale fabrication and manipulation. A particularly successful bottom up technique is DNA self-assembly where a set of carefully designed DNA strands form a nanoscale object as a consequence of specific, local interactions among the different components, without external direction. The final product of the self-assembly process might be a static nanostructure or a dynamic nanodevice that performs a specific function. Over the past two decades, DNA self-assembly has produced stunning nanoscale objects such as 2D and 3D lattices, polyhedra and addressable arbitrary shaped substrates, and a myriad of nanoscale devices such as molecular tweezers, computational circuits, biosensors and molecular assembly lines. In this dissertation we study multiple problems in the theory, simulations and experiments of DNA self-assembly. We extend the Turing-universal mathematical framework of self-assembly known as the Tile Assembly Model by incorporating randomization during the assembly process. This allows us to reduce the tile complexity of linear assemblies. We develop multiple techniques to build linear assemblies of expected length N using far fewer tile types than previously possible. We abstract the fundamental properties of DNA and develop a biochemical system, which we call meta-DNA, based entirely on strands of DNA as the only component molecule. We further develop various enzyme-free protocols to manipulate meta-DNA systems and provide strand level details along with abstract notations for these mechanisms. We simulate DNA circuits by

  4. Evolution of the R2 Retrotransposon Ribozyme and Its Self-Cleavage Site

    PubMed Central

    Eickbush, Danna G.; Burke, William D.; Eickbush, Thomas H.

    2013-01-01

    R2 is a non-long terminal repeat retrotransposon that inserts site-specifically in the tandem 28S rRNA genes of many animals. Previously, R2 RNA from various species of Drosophila was shown to self-cleave from the 28S rRNA/R2 co-transcript by a hepatitis D virus (HDV)-like ribozyme encoded at its 5' end. RNA cleavage was at the precise 5' junction of the element with the 28S gene. Here we report that RNAs encompassing the 5' ends of R2 elements from throughout its species range fold into HDV-like ribozymes. In vitro assays of RNA self-cleavage conducted in many R2 lineages confirmed activity. For many R2s, RNA self-cleavage was not at the 5' end of the element but at 28S rRNA sequences up to 36 nucleotides upstream of the junction. The location of cleavage correlated well with the types of endogenous R2 5' junctions from different species. R2 5' junctions were uniform for most R2s in which RNA cleavage was upstream in the rRNA sequences. The 28S sequences remaining on the first DNA strand synthesized during retrotransposition are postulated to anneal to the target site and uniformly prime second strand DNA synthesis. In species where RNA cleavage occurred at the R2 5' end, the 5' junctions were variable. This junction variation is postulated to result from the priming of second strand DNA synthesis by chance microhomologies between the target site and the first DNA strand. Finally, features of R2 ribozyme evolution, especially changes in cleavage site and convergence on the same active site sequences, are discussed. PMID:24066021

  5. Alternative cleavage and polyadenylation: the long and short of it

    PubMed Central

    Tian, Bin; Manley, James L.

    2013-01-01

    Cleavage and polyadenylation (C/P) of nascent transcripts is essential for maturation of the 3′ ends of most eukaryotic mRNAs. Over the past three decades, biochemical studies have elucidated the machinery responsible for the seemingly simple C/P reaction. Recent genomic analyses have indicated that most eukaryotic genes have multiple cleavage and polyadenylation sites (pAs), leading to transcript isoforms with different coding potentials and/or variable 3′ untranslated regions (UTRs). As such, alternative cleavage and polyadenylation (APA) is an important layer of gene regulation impacting mRNA metabolism. Here, we review our current understanding of APA and recent progress in this field. PMID:23632313

  6. Model studies of methyl CoM reductase: methane formation via CH3-S bond cleavage of Ni(I) tetraazacyclic complexes having intramolecular methyl sulfide pendants.

    PubMed

    Nishigaki, Jun-ichi; Matsumoto, Tsuyoshi; Tatsumi, Kazuyuki

    2012-05-01

    The Ni(I) tetraazacycles [Ni(dmmtc)](+) and [Ni(mtc)](+), which have methylthioethyl pendants, were synthesized as models of the reduced state of the active site of methyl coenzyme M reductase (MCR), and their structures and redox properties were elucidated (dmmtc, 1,8-dimethyl-4,11-bis{(2-methylthio)ethyl}-1,4,8,11-tetraaza-1,4,8,11-cyclotetradecane; mtc, 1,8-{bis(2-methylthio)ethyl}-1,4,8,11-tetraaza-1,4,8,11-cyclotetradecane). The intramolecular CH(3)-S bond of the thioether pendant of [Ni(I)(dmmtc)](OTf) was cleaved in THF at 75 °C in the presence of the bulky thiol DmpSH, which acts as a proton source, and methane was formed in 31% yield and a Ni(II) thiolate complex was concomitantly obtained (Dmp = 2,6-dimesityphenyl). The CH(3)-S bond cleavage of [Ni(I)(mtc)](+) also proceeded similarly, but under milder conditions probably due to the lower potential of the [Ni(I)(mtc)](+) complex. These results indicate that the robust CH(3)-S bond can be homolytically cleaved by the Ni(I) center when they are properly arranged, which highlights the significance of the F430 Ni environment in the active site of the MCR protein. PMID:22439643

  7. Genotyping of strawberry (Fragaria x ananassa Duch.) cultivars by DNA markers: interlaboratory study.

    PubMed

    Kunihisa, Miyuki; Ueda, Hiroshi; Fukino, Nobuko; Matsumoto, Satoru

    2009-01-01

    Fourteen Japanese laboratories validated the reproducibility of genotyping by 25 cleavage amplified polymorphic sequence (CAPS) markers for discrimination of strawberry (Fragaria x ananassa Duch.) cultivars. Both the sensitivity and specificity rate of 12 markers were 100%, those of another 12 were >95%, and those of 1 were >90%. These results indicate that the method of genotyping by the CAPS markers was highly reproducible and could provide a useful basis for practical identification of strawberry cultivars. This is the first report of the statistical validation of crop genotyping by DNA markers.

  8. Differential Nuclear and Mitochondrial DNA Preservation in Post-Mortem Teeth with Implications for Forensic and Ancient DNA Studies

    PubMed Central

    Higgins, Denice; Rohrlach, Adam B.; Kaidonis, John; Townsend, Grant; Austin, Jeremy J.

    2015-01-01

    Major advances in genetic analysis of skeletal remains have been made over the last decade, primarily due to improvements in post-DNA-extraction techniques. Despite this, a key challenge for DNA analysis of skeletal remains is the limited yield of DNA recovered from these poorly preserved samples. Enhanced DNA recovery by improved sampling and extraction techniques would allow further advancements. However, little is known about the post-mortem kinetics of DNA degradation and whether the rate of degradation varies between nuclear and mitochondrial DNA or across different skeletal tissues. This knowledge, along with information regarding ante-mortem DNA distribution within skeletal elements, would inform sampling protocols facilitating development of improved extraction processes. Here we present a combined genetic and histological examination of DNA content and rates of DNA degradation in the different tooth tissues of 150 human molars over short-medium post-mortem intervals. DNA was extracted from coronal dentine, root dentine, cementum and pulp of 114 teeth via a silica column method and the remaining 36 teeth were examined histologically. Real time quantification assays based on two nuclear DNA fragments (67 bp and 156 bp) and one mitochondrial DNA fragment (77 bp) showed nuclear and mitochondrial DNA degraded exponentially, but at different rates, depending on post-mortem interval and soil temperature. In contrast to previous studies, we identified differential survival of nuclear and mtDNA in different tooth tissues. Futhermore histological examination showed pulp and dentine were rapidly affected by loss of structural integrity, and pulp was completely destroyed in a relatively short time period. Conversely, cementum showed little structural change over the same time period. Finally, we confirm that targeted sampling of cementum from teeth buried for up to 16 months can provide a reliable source of nuclear DNA for STR-based genotyping using standard

  9. DNA

    ERIC Educational Resources Information Center

    Stent, Gunther S.

    1970-01-01

    This history for molecular genetics and its explanation of DNA begins with an analysis of the Golden Jubilee essay papers, 1955. The paper ends stating that the higher nervous system is the one major frontier of biological inquiry which still offers some romance of research. (Author/VW)

  10. Ionic mobility in DNA films studied by dielectric spectroscopy.

    PubMed

    Kahouli, Abdelkader; Valle-Orero, Jessica; Garden, Jean-Luc; Peyrard, Michel

    2014-09-01

    Double-helix DNA molecules can be found under different conformational structures driven by ionic and hydration surroundings. Usually, only the B-form of DNA, which is the only form stable in aqueous solution, can be studied by dielectric measurements. Here, the dielectric responses of DNA molecules in the A- and B-form, oriented co-linearly within fibres assembled in a film have been analyzed. The dielectric dispersion, permittivity and dissipation factor, have been measured as a function of frequency, strength voltage, time, temperature and nature of the counter-ions. Besides a high electrode polarization component, two relaxation peaks have been observed and fitted by two Cole-Cole relaxation terms. In the frequency range that we investigated (0.1 Hz to 5 ·10(6) Hz) the dielectric properties are dominated by the mobility and diffusivity of the counter-ions and their interactions with the DNA molecules, which can therefore be characterized for the A- and B-forms of DNA.

  11. Dinuclear manganese(II) complexes of hexaazamacrocycles bearing N-benzoylated pendant separated by aromatic spacers: Antibacterial, DNA interaction, cytotoxic and molecular docking studies.

    PubMed

    Arthi, P; Shobana, S; Srinivasan, P; Prabhu, D; Arulvasu, C; Kalilur Rahiman, A

    2015-12-01

    Three new homodinuclear manganese(II) complexes of the type [Mn2L(1-3)(ClO4)(H2O)](ClO4)3 (1-3) have been synthesized via cyclocondensation of terephthalaldehyde with three different benzoylated pendants in the presence of manganese(II) perchlorate and characterized by spectroscopic methods. Cyclic voltammetric investigation of complexes (1-3) depict two quasi-reversible one electron reduction processes in the cathodic potential region (E(1)pc=-0.73 to-0.83 V, E(2)pc=-1.31 to -1.40 V) and two quasi-reversible one electron oxidation processes in the anodic potential region (E(1)pa=1.03 to 1.10 V, E(2)pa=1.69 to 1.77 V). Electronic absorption spectra of the complexes suggested tetrahedral geometry around the central metal ion. The observed low magnetic moment values (μeff, 5.60-5.68 B.M.) of the complexes indicate the presence of an antiferromagnetic spin-exchange interaction between two metal centers, which was also supported by the broad EPR signal. All the compounds were tested for antibacterial activity against Gram (-ve) and Gram (+ve) bacterial strains. The binding studies of complexes with CT-DNA suggested minor-groove mode of interaction. Molecular docking studies were carried out in order to find the binding affinity of complexes with DNA and protein EGFR Kinase. The complexes are stabilized by additional electrostatic and van der Waals interaction with the DNA, and support minor groove mode of binding. The cleavage activity of complexes on pBR322 plasmid DNA displays efficient activity through a mechanistic pathway involving hydroxyl radicals. The cytotoxicity of complexes 2 and 3 have been tested against human liver adenocarcinoma (HepG2) cell line. Nuclear-chromatin cleavage has also been observed with propidium iodide (PI) staining and alkaline single-cell gel electrophoresis (comet assay) techniques.

  12. MAGNETIC TWEEZERS FOR THE STUDY OF DNA TRACKING MOTORS

    PubMed Central

    Manosas, Maria; Meglio, Adrien; Spiering, Michelle M.; Ding, Fangyuan; Benkovic, Stephen J.; Barre, François-Xavier; Saleh, Omar A.; Allemand, Jean François; Bensimon, David; Croquette, Vincent

    2011-01-01

    Single-molecule manipulation methods have opened a new vista on the study of molecular motors. Here we describe the use of magnetic traps for the investigation of the mechanism of DNA based motors, in particular helicases and translocases. PMID:20627163

  13. DNA methylation studies using twins: what are they telling us?

    PubMed

    Bell, Jordana T; Spector, Tim D

    2012-01-01

    Recent studies have identified both heritable DNA methylation effects and differential methylation in disease-discordant identical twins. Larger sample sizes, replication, genetic-epigenetic analyses and longitudinal assays are now needed to establish the role of epigenetic variants in disease. PMID:23078798

  14. The cytotoxicity of (-)-lomaiviticin A arises from induction of double-strand breaks in DNA

    NASA Astrophysics Data System (ADS)

    Colis, Laureen C.; Woo, Christina M.; Hegan, Denise C.; Li, Zhenwu; Glazer, Peter M.; Herzon, Seth B.

    2014-06-01

    The metabolite (-)-lomaiviticin A, which contains two diazotetrahydrobenzo[b]fluorene (diazofluorene) functional groups, inhibits the growth of cultured human cancer cells at nanomolar-picomolar concentrations; however, the mechanism responsible for the potent cytotoxicity of this natural product is not known. Here we report that (-)-lomaiviticin A nicks and cleaves plasmid DNA by a pathway that is independent of reactive oxygen species and iron, and that the potent cytotoxicity of (-)-lomaiviticin A arises from the induction of DNA double-strand breaks (dsbs). In a plasmid cleavage assay, the ratio of single-strand breaks (ssbs) to dsbs is 5.3 ± 0.6:1. Labelling studies suggest that this cleavage occurs via a radical pathway. The structurally related isolates (-)-lomaiviticin C and (-)-kinamycin C, which contain one diazofluorene, are demonstrated to be much less effective DNA cleavage agents, thereby providing an explanation for the enhanced cytotoxicity of (-)-lomaiviticin A compared to that of other members of this family.

  15. Accounting for population stratification in DNA methylation studies.

    PubMed

    Barfield, Richard T; Almli, Lynn M; Kilaru, Varun; Smith, Alicia K; Mercer, Kristina B; Duncan, Richard; Klengel, Torsten; Mehta, Divya; Binder, Elisabeth B; Epstein, Michael P; Ressler, Kerry J; Conneely, Karen N

    2014-04-01

    DNA methylation is an important epigenetic mechanism that has been linked to complex diseases and is of great interest to researchers as a potential link between genome, environment, and disease. As the scale of DNA methylation association studies approaches that of genome-wide association studies, issues such as population stratification will need to be addressed. It is well-documented that failure to adjust for population stratification can lead to false positives in genetic association studies, but population stratification is often unaccounted for in DNA methylation studies. Here, we propose several approaches to correct for population stratification using principal components (PCs) from different subsets of genome-wide methylation data. We first illustrate the potential for confounding due to population stratification by demonstrating widespread associations between DNA methylation and race in 388 individuals (365 African American and 23 Caucasian). We subsequently evaluate the performance of our PC-based approaches and other methods in adjusting for confounding due to population stratification. Our simulations show that (1) all of the methods considered are effective at removing inflation due to population stratification, and (2) maximum power can be obtained with single-nucleotide polymorphism (SNP)-based PCs, followed by methylation-based PCs, which outperform both surrogate variable analysis and genomic control. Among our different approaches to computing methylation-based PCs, we find that PCs based on CpG sites chosen for their potential to proxy nearby SNPs can provide a powerful and computationally efficient approach to adjust for population stratification in DNA methylation studies when genome-wide SNP data are unavailable.

  16. Accounting for population stratification in DNA methylation studies.

    PubMed

    Barfield, Richard T; Almli, Lynn M; Kilaru, Varun; Smith, Alicia K; Mercer, Kristina B; Duncan, Richard; Klengel, Torsten; Mehta, Divya; Binder, Elisabeth B; Epstein, Michael P; Ressler, Kerry J; Conneely, Karen N

    2014-04-01

    DNA methylation is an important epigenetic mechanism that has been linked to complex diseases and is of great interest to researchers as a potential link between genome, environment, and disease. As the scale of DNA methylation association studies approaches that of genome-wide association studies, issues such as population stratification will need to be addressed. It is well-documented that failure to adjust for population stratification can lead to false positives in genetic association studies, but population stratification is often unaccounted for in DNA methylation studies. Here, we propose several approaches to correct for population stratification using principal components (PCs) from different subsets of genome-wide methylation data. We first illustrate the potential for confounding due to population stratification by demonstrating widespread associations between DNA methylation and race in 388 individuals (365 African American and 23 Caucasian). We subsequently evaluate the performance of our PC-based approaches and other methods in adjusting for confounding due to population stratification. Our simulations show that (1) all of the methods considered are effective at removing inflation due to population stratification, and (2) maximum power can be obtained with single-nucleotide polymorphism (SNP)-based PCs, followed by methylation-based PCs, which outperform both surrogate variable analysis and genomic control. Among our different approaches to computing methylation-based PCs, we find that PCs based on CpG sites chosen for their potential to proxy nearby SNPs can provide a powerful and computationally efficient approach to adjust for population stratification in DNA methylation studies when genome-wide SNP data are unavailable. PMID:24478250

  17. Do all hemochromatosis patients have the same origin? A pilot study of mitochondrial DNA and Y-DNA

    PubMed Central

    Symonette, Caitlin J; Adams, Paul C

    2011-01-01

    BACKGROUND: Mitochondrial DNA (mtDNA) and Y-DNA analysis have been widely used to predict ancestral origin. Genetic anthropologists predict that human civilizations may have originated in central Africa one to two million years previously. Primary iron overload is not a common diagnosis among indigenous people of northern Africa, but hereditary hemochromatosis is present in approximately one in 200 people in northern Europe. MtDNA analysis has the potential to determine whether contemporary hemochromatosis patients have an ancient ancestral linkage. METHODS: DNA was obtained from buccal smears for mtDNA and Y-DNA analysis. Y-DNA analysis included examination of 20 short tandem repeat markers on the Y chromosome. Analysis of mtDNA involved sequencing of the HVR-1 genetic sequence (nucleotides 16001 to 16520) and was compared with the Cambridge Reference Sequence. MtDNA ancestral haplotypes were predicted from the analysis of the HVR-1 sequence. RESULTS: Twenty-six male C282Y homozygotes were studied. There were 28 polymorphisms present in the HVR-1 sequence of these participants. The most common polymorphism was present at position 16519 in 15 participants and at position 16311 in eight participants. There were 12 different ancestral haplotypes predicted by mtDNA analysis, with the K haplotype being present in five participants. Y-DNA analysis revealed eight different haplotypes, with R1b being found in 11 of the 26 participants. CONCLUSION: Analysis of mtDNA and Y-DNA in 26 hemochromatosis patients suggested that they did not all originate from the same ancestral tribe in Africa. These findings were consistent with the theory that the original hemochromatosis mutation occurred after migration of these ancestral people to central Europe, possibly 4000 years previously. PMID:21766093

  18. DNA compaction by the bacteriophage protein Cox studied on the single DNA molecule level using nanofluidic channels

    PubMed Central

    Frykholm, Karolin; Berntsson, Ronnie Per-Arne; Claesson, Magnus; de Battice, Laura; Odegrip, Richard; Stenmark, Pål; Westerlund, Fredrik

    2016-01-01

    The Cox protein from bacteriophage P2 forms oligomeric filaments and it has been proposed that DNA can be wound up around these filaments, similar to how histones condense DNA. We here use fluorescence microscopy to study single DNA–Cox complexes in nanofluidic channels and compare how the Cox homologs from phages P2 and WΦ affect DNA. By measuring the extension of nanoconfined DNA in absence and presence of Cox we show that the protein compacts DNA and that the binding is highly cooperative, in agreement with the model of a Cox filament around which DNA is wrapped. Furthermore, comparing microscopy images for the wild-type P2 Cox protein and two mutants allows us to discriminate between compaction due to filament formation and compaction by monomeric Cox. P2 and WΦ Cox have similar effects on the physical properties of DNA and the subtle, but significant, differences in DNA binding are due to differences in binding affinity rather than binding mode. The presented work highlights the use of single DNA molecule studies to confirm structural predictions from X-ray crystallography. It also shows how a small protein by oligomerization can have great impact on the organization of DNA and thereby fulfill multiple regulatory functions. PMID:27131370

  19. Understanding the transition states of phosphodiester bond cleavage: insights from heavy atom isotope effects.

    PubMed

    Cassano, Adam G; Anderson, Vernon E; Harris, Michael E

    2004-01-01

    The nucleotides of DNA and RNA are joined by phosphodiester linkages whose synthesis and hydrolysis are catalyzed by numerous essential enzymes. Two prominent mechanisms have been proposed for RNA and protein enzyme catalyzed cleavage of phosphodiester bonds in RNA: (a) intramolecular nucleophilic attack by the 2'-hydroxyl group adjacent to the reactive phosphate; and (b) intermolecular nucleophilic attack by hydroxide, or other oxyanion. The general features of these two mechanisms have been established by physical organic chemical analyses; however, a more detailed understanding of the transition states of these reactions is emerging from recent kinetic isotope effect (KIE) studies. The recent data show interesting differences between the chemical mechanisms and transition state structures of the inter- and intramolecular reactions, as well as provide information on the impact of metal ion, acid, and base catalysis on these mechanisms. Importantly, recent nonenzymatic model studies show that interactions with divalent metal ions, an important feature of many phosphodiesterase active sites, can influence both the mechanism and transition state structure of nonenzymatic phosphodiester cleavage. Such detailed investigations are important because they mimic catalytic strategies employed by both RNA and protein phosphodiesterases, and so set the stage for explorations of enzyme-catalyzed transition states. Application of KIE analyses for this class of enzymes is just beginning, and several important technical challenges remain to be overcome. Nonetheless, such studies hold great promise since they will provide novel insights into the role of metal ions and other active site interactions.

  20. 3C-like protease of rabbit hemorrhagic disease virus: identification of cleavage sites in the ORF1 polyprotein and analysis of cleavage specificity.

    PubMed Central

    Wirblich, C; Sibilia, M; Boniotti, M B; Rossi, C; Thiel, H J; Meyers, G

    1995-01-01

    Rabbit hemorrhagic disease virus, a positive-stranded RNA virus of the family Caliciviridae, encodes a trypsin-like cysteine protease as part of a large polyprotein. Upon expression in Escherichia coli, the protease releases itself from larger precursors by proteolytic cleavages at its N and C termini. Both cleavage sites were determined by N-terminal sequence analysis of the cleavage products. Cleavage at the N terminus of the protease occurred with high efficiency at an EG dipeptide at positions 1108 and 1109. Cleavage at the C terminus of the protease occurred with low efficiency at an ET dipeptide at positions 1251 and 1252. To study the cleavage specificity of the protease, amino acid substitutions were introduced at the P2, P1, and P1' positions at the cleavage site at the N-terminal boundary of the protease. This analysis showed that the amino acid at the P1 position is the most important determinant for substrate recognition. Only glutamic acid, glutamine, and aspartic acid were tolerated at this position. At the P1' position, glycine, serine, and alanine were the preferred substrates of the protease, but a number of amino acids with larger side chains were also tolerated. Substitutions at the P2 position had only little effect on the cleavage efficiency. Cell-free expression of the C-terminal half of the ORF1 polyprotein showed that the protease catalyzes cleavage at the junction of the RNA polymerase and the capsid protein. An EG dipeptide at positions 1767 and 1768 was identified as the putative cleavage site. Our data show that rabbit hemorrhagic disease virus encodes a trypsin-like cysteine protease that is similar to 3C proteases with regard to function and specificity but is more similar to 2A proteases with regard to size. PMID:7474137

  1. Correlation of DNA methylation levels in blood and saliva DNA in young girls of the LEGACY Girls study.

    PubMed

    Wu, Hui-Chen; Wang, Qiao; Chung, Wendy K; Andrulis, Irene L; Daly, Mary B; John, Esther M; Keegan, Theresa H M; Knight, Julia; Bradbury, Angela R; Kappil, Maya A; Gurvich, Irina; Santella, Regina M; Terry, Mary Beth

    2014-07-01

    Many epidemiologic studies of environmental exposures and disease susceptibility measure DNA methylation in white blood cells (WBC). Some studies are also starting to use saliva DNA as it is usually more readily available in large epidemiologic studies. However, little is known about the correlation of methylation between WBC and saliva DNA. We examined DNA methylation in three repetitive elements, Sat2, Alu, and LINE-1, and in four CpG sites, including AHRR (cg23576855, cg05575921), cg05951221 at 2q37.1, and cg11924019 at CYP1A1, in 57 girls aged 6-15 years with blood and saliva collected on the same day. We measured all DNA methylation markers by bisulfite-pyrosequencing, except for Sat2 and Alu, which were measured by the MethyLight assay. Methylation levels measured in saliva DNA were lower than those in WBC DNA, with differences ranging from 2.8% for Alu to 14.1% for cg05575921. Methylation levels for the three repetitive elements measured in saliva DNA were all positively correlated with those in WBC DNA. However, there was a wide range in the Spearman correlations, with the smallest correlation found for Alu (0.24) and the strongest correlation found for LINE-1 (0.73). Spearman correlations for cg05575921, cg05951221, and cg11924019 were 0.33, 0.42, and 0.79, respectively. If these findings are replicated in larger studies, they suggest that, for selected methylation markers (e.g., LINE-1), methylation levels may be highly correlated between blood and saliva, while for others methylation markers, the levels may be more tissue specific. Thus, in studies that differ by DNA source, each interrogated site should be separately examined in order to evaluate the correlation in DNA methylation levels across DNA sources.

  2. Molecular beacons for isothermal fluorescence enhancement by the cleavage of RNase HII from Chlamydia pneumoniae.

    PubMed

    Hou, Jingli; Liu, Xipeng; Wang, Jian; Liu, Jianhua; Duan, Tao

    2007-12-15

    This article describes a new assay for isothermal enhancement of fluorescence intensity. The assay is based on the cleavage of duplexes formed by the chimeric DNA-rN(1)-DNA molecular beacon (cMB) and target DNA with Chlamydia pneumoniae RNase HII (CpRNase HII). The loop sequence of the cMB, which was designed according to the target sequence, contains a single ribonucleotide. The combination of CpRNase HII cleavage and cMB (RHMB) permitted a 90-fold increase in fluorescence intensity change compared with the hybridization reaction in the presence of the same amount of target DNA. These results indicate that the RHMB assay can enhance the fluorescence signal in real-time monitoring of the target DNA.

  3. Perpetuating the homing endonuclease life cycle: identification of mutations that modulate and change I-TevI cleavage preference

    PubMed Central

    Roy, Alexander C.; Wilson, Geoffrey G.; Edgell, David R.

    2016-01-01

    Homing endonucleases are sequence-tolerant DNA endonucleases that act as mobile genetic elements. The ability of homing endonucleases to cleave substrates with multiple nucleotide substitutions suggests a high degree of adaptability in that changing or modulating cleavage preference would require relatively few amino acid substitutions. Here, using directed evolution experiments with the GIY-YIG homing endonuclease I-TevI that targets the thymidylate synthase gene of phage T4, we readily isolated variants that dramatically broadened I-TevI cleavage preference, as well as variants that fine-tuned cleavage preference. By combining substitutions, we observed an ∼10 000-fold improvement in cleavage on some substrates not cleaved by the wild-type enzyme, correlating with a decrease in readout of information content at the cleavage site. Strikingly, we were able to change the cleavage preference of I-TevI to that of the isoschizomer I-BmoI which targets a different cleavage site in the thymidylate synthase gene, recapitulating the evolution of cleavage preference in this family of homing endonucleases. Our results define a strategy to isolate GIY-YIG nuclease domains with distinct cleavage preferences, and provide insight into how homing endonucleases may escape a dead-end life cycle in a population of saturated target sites by promoting transposition to different target sites. PMID:27387281

  4. Improving the prospects of cleavage-based nanopore sequencing engines

    NASA Astrophysics Data System (ADS)

    Brady, Kyle T.; Reiner, Joseph E.

    2015-08-01

    Recently proposed methods for DNA sequencing involve the use of cleavage-based enzymes attached to the opening of a nanopore. The idea is that DNA interacting with either an exonuclease or polymerase protein will lead to a small molecule being cleaved near the mouth of the nanopore, and subsequent entry into the pore will yield information about the DNA sequence. The prospects for this approach seem promising, but it has been shown that diffusion related effects impose a limit on the capture probability of molecules by the pore, which limits the efficacy of the technique. Here, we revisit the problem with the goal of optimizing the capture probability via a step decrease in the nucleotide diffusion coefficient between the pore and bulk solutions. It is shown through random walk simulations and a simplified analytical model that decreasing the molecule's diffusion coefficient in the bulk relative to its value in the pore increases the nucleotide capture probability. Specifically, we show that at sufficiently high applied transmembrane potentials (≥100 mV), increasing the potential by a factor f is equivalent to decreasing the diffusion coefficient ratio Dbulk/Dpore by the same factor f. This suggests a promising route toward implementation of cleavage-based sequencing protocols. We also discuss the feasibility of forming a step function in the diffusion coefficient across the pore-bulk interface.

  5. Improving the prospects of cleavage-based nanopore sequencing engines.

    PubMed

    Brady, Kyle T; Reiner, Joseph E

    2015-08-21

    Recently proposed methods for DNA sequencing involve the use of cleavage-based enzymes attached to the opening of a nanopore. The idea is that DNA interacting with either an exonuclease or polymerase protein will lead to a small molecule being cleaved near the mouth of the nanopore, and subsequent entry into the pore will yield information about the DNA sequence. The prospects for this approach seem promising, but it has been shown that diffusion related effects impose a limit on the capture probability of molecules by the pore, which limits the efficacy of the technique. Here, we revisit the problem with the goal of optimizing the capture probability via a step decrease in the nucleotide diffusion coefficient between the pore and bulk solutions. It is shown through random walk simulations and a simplified analytical model that decreasing the molecule's diffusion coefficient in the bulk relative to its value in the pore increases the nucleotide capture probability. Specifically, we show that at sufficiently high applied transmembrane potentials (≥100 mV), increasing the potential by a factor f is equivalent to decreasing the diffusion coefficient ratio D(bulk)/D(pore) by the same factor f. This suggests a promising route toward implementation of cleavage-based sequencing protocols. We also discuss the feasibility of forming a step function in the diffusion coefficient across the pore-bulk interface. PMID:26298153

  6. An investigation into the role of ATP in the mammalian pre-mRNA 3' cleavage reaction.

    PubMed

    Khleborodova, Asya; Pan, Xiaozhou; Nagre, Nagaraja N; Ryan, Kevin

    2016-06-01

    RNA Polymerase II transcribes beyond what later becomes the 3' end of a mature messenger RNA (mRNA). The formation of most mRNA 3' ends results from pre-mRNA cleavage followed by polyadenylation. In vitro studies have shown that low concentrations of ATP stimulate the 3' cleavage reaction while high concentrations inhibit it, but the origin of these ATP effects is unknown. ATP might enable a cleavage factor kinase or activate a cleavage factor directly. To distinguish between these possibilities, we tested several ATP structural analogs in a pre-mRNA 3' cleavage reaction reconstituted from DEAE-fractionated cleavage factors. We found that adenosine 5'-(β,γ-methylene)triphosphate (AMP-PCP) is an effective in vitro 3' cleavage inhibitor with an IC50 of ∼300 μM, but that most other ATP analogs, including adenosine 5'-(β,γ-imido)triphosphate, which cannot serve as a protein kinase substrate, promoted 3' cleavage but less efficiently than ATP. In combination with previous literature data, our results do not support ATP stimulation of 3' cleavage through cleavage factor phosphorylation in vitro. Instead, the more likely mechanism is that ATP stimulates cleavage factor activity through direct cleavage factor binding. The mammalian 3' cleavage factors known to bind ATP include the cleavage factor II (CF IIm) Clp1 subunit, the CF Im25 subunit and poly(A) polymerase alpha (PAP). The yeast homolog of the CF IIm complex also binds ATP through yClp1. To investigate the mammalian complex, we used a cell-line expressing FLAG-tagged Clp1 to co-immunoprecipitate Pcf11 as a function of ATP concentration. FLAG-Clp1 co-precipitated Pcf11 with or without ATP and the complex was not affected by AMP-PCP. Diadenosine tetraphosphate (Ap4A), an ATP analog that binds the Nudix domain of the CF Im25 subunit with higher affinity than ATP, neither stimulated 3' cleavage in place of ATP nor antagonized ATP-stimulated 3' cleavage. The ATP-binding site of PAP was disrupted by site

  7. Line narrowing spectroscopic studies of DNA-carcinogen adducts and DNA-dye complexes

    SciTech Connect

    Suh, Myungkoo

    1995-12-06

    Laser-induced fluorescence line narrowing and non-line narrowing spectroscopic methods were applied to conformational studies of stable DNA adducts of the 7{beta}, 8{alpha}-dihydoxy-9{alpha}, l0{alpha}-epoxy-7,8,9, 10-tetrahydrobenzo[{alpha}]pyrene (anti-BPDE). Stereochemically distinct (+)-trans-, ({minus})-trans-, (+)-cis- and ({minus})-cis adducts of anti-BPDE bound to exocyclic amino group of the central guanine in an 11-mer oligonucleotide, exist in a mixture of conformations in frozen aqueous buffer matrices. The (+)-trans adduct adopts primarily an external conformation with a smaller fraction ( {approximately} 25 %) exists in a partially base-stacked conformation. Both cis adducts were found to be intercalated with significant {pi}-{pi} stacking interactions between the pyrenyl residues and the bases. Conformations of the trans-adduct of (+)-anti -BPDE in 11-mer oligonucleotides were studied as a function of flanking bases. In single stranded form the adduct at G{sub 2} or G{sub 3} (5 ft-flanking, base guanine) adopts a conformation with strong, interaction with the bases. In contrast, the adduct with a 5ft-flanking, thymine exists in a primarily helixexternal conformation. Similar differences were observed in the double stranded oligonucleotides. The nature of the 3ft-flanking base has little influence on the conformational equilibrium of the (+)-trans-anti BPDE-dG adduct. The formation and repair of BPDE-N{sup 2}-dG in DNA isolated from the skin of mice treated topically with benzo[{alpha}]pyrene (BP) was studied. Low-temperature fluorescence spectroscopy of the intact DNA identified the major adduct as (+)-trans-anti-BPDE-N-dG, and the minor adduct fraction consisted mainly of (+)-cis-anti-BPDE-N{sup 2}-dG.

  8. Mechanism study of goldenseal-associated DNA damage.

    PubMed

    Chen, Si; Wan, Liqing; Couch, Letha; Lin, Haixia; Li, Yan; Dobrovolsky, Vasily N; Mei, Nan; Guo, Lei

    2013-07-31

    Goldenseal has been used for the treatment of a wide variety of ailments including gastrointestinal disturbances, urinary tract disorders, and inflammation. The five major alkaloid constituents in goldenseal are berberine, palmatine, hydrastine, hydrastinine, and canadine. When goldenseal was evaluated by the National Toxicology Program (NTP) in the standard 2-year bioassay, goldenseal induced an increase in liver tumors in rats and mice; however, the mechanism of goldenseal-associated liver carcinogenicity remains unknown. In this study, the toxicity of the five goldenseal alkaloid constituents was characterized, and their toxic potencies were compared. As measured by the Comet assay and the expression of γ-H2A.X, berberine, followed by palmatine, appeared to be the most potent DNA damage inducer in human hepatoma HepG2 cells. Berberine and palmatine suppressed the activities of both topoisomerase (Topo) I and II. In berberine-treated cells, DNA damage was shown to be directly associated with the inhibitory effect of Topo II, but not Topo I by silencing gene of Topo I or Topo II. In addition, DNA damage was also observed when cells were treated with commercially available goldenseal extracts and the extent of DNA damage was positively correlated to the berberine content. Our findings suggest that the Topo II inhibitory effect may contribute to berberine- and goldenseal-induced genotoxicity and tumorigenicity.

  9. Modeling the Study of DNA Damage Responses in Mice

    PubMed Central

    Specks, Julia; Nieto-Soler, Maria; Lopez-Contreras, Andres J; Fernandez-Capetillo, Oscar

    2016-01-01

    Summary Damaged DNA has a profound impact on mammalian health and overall survival. In addition to being the source of mutations that initiate cancer, the accumulation of toxic amounts of DNA damage can cause severe developmental diseases and accelerate ageing. Therefore, understanding how cells respond to DNA damage has become one of the most intense areas of biomedical research in the recent years. However, whereas most mechanistic studies derive from in vitro or in cellulo work, the impact of a given mutation on a living organism is largely unpredictable. For instance, why BRCA1 mutations preferentially lead to breast cancer whereas mutations compromising mismatch repair drive colon cancer is still not understood. In this context, evaluating the specific physiological impact of mutations that compromise genome integrity has become crucial for a better dimensioning of our knowledge. We here describe the various technologies that can be used for modeling mutations in mice, and provide a review of the genes and pathways that have been modeled so far in the context of DNA damage responses. PMID:25636482

  10. [Experimental study on an auditory method for analyzing DNA segments].

    PubMed

    Xiao, Shouzhong; Fang, Xianglin

    2002-01-01

    To explore a new method for analyzing biological molecules that have already been sequenced, an experimental study on an auditory method was carried out. The auditory method for analyzing biological molecules includes audible representation of sequence data. Audible representation of sequence data was implemented by using a multimedia computer. Each mononucleotide in a DNA sequence was matched with a corresponding sound, i.e., a DNA sequence was "dubbed" in a sound sequence. When the sound sequence is played, a special cadence can be heard. In the audible representation experiment, special cadences of different exons can be clearly heard. The results show that audible representation of DNA sequence data can be implemented by using a multimedia technique. After a 5-time auditory training, subjects both in internal testing and external testing can obtain 93%-100% of judgment accuracy rate for the difference between two sound sequences of two different exons, thus providing an experimental basis for the practicability of this method. Auditory method for analyzing DNA segments might be beneficial for the research in comparative genomics and functional genomics. This new technology must be robust and be carefully evaluated and improved in a high-throughput environment before its implementation in an application setting. PMID:11951511

  11. Identification of a domain required for autoproteolytic cleavage of murine coronavirus gene A polyprotein.

    PubMed Central

    Baker, S C; Shieh, C K; Soe, L H; Chang, M F; Vannier, D M; Lai, M M

    1989-01-01

    The 5'-most gene of the murine coronavirus genome, gene A, is presumed to encode viral RNA-dependent RNA polymerase. It has previously been shown that the N-terminal portion of this gene product is cleaved into a protein of 28 kilodaltons (p28). To further understand the mechanism of synthesis of the p28 protein, cDNA clones representing the 5'-most 5.3 kilobases of murine coronavirus mouse hepatitis virus strain JHM were sequenced and subcloned into pT7 vectors from which RNAs were transcribed and translated in vitro. The sequence was found to encode a single long open reading frame continuing from near the 5' terminus of the genome. Although p28 is encoded from the first 1 kilobase at the 5' end of the genome, translation of in vitro-transcribed RNAs indicated that this protein was not detected unless the product of the entire 5.3-kilobase region was synthesized. Translation of RNAs of 3.9 kilobases or smaller yielded proteins which contained the p28 sequence, but p28 was not cleaved. This suggests that the sequence in the region between 3.9 and 5.3 kilobases from the 5' end of the genomic RNA is essential for proteolytic cleavage and contains autoproteolytic activity. The p28 protein could not be cleaved from the smaller primary translation products of gene A, even in the presence of the larger autocleaving protein. Cleavage of the p28 protein was inhibited by addition of the protease inhibitor ZnCl2. This study thus identified a protein domain essential for autoproteolytic cleavage of the gene A polyprotein. Images PMID:2547993

  12. Carbon-nitrogen bond construction and carbon-oxygen double bond cleavage on a molecular titanium oxonitride: a combined experimental and computational study.

    PubMed

    Carbó, Jorge J; García-López, Diego; González-Del Moral, Octavio; Martín, Avelino; Mena, Miguel; Santamaría, Cristina

    2015-10-01

    New carbon-nitrogen bonds were formed on addition of isocyanide and ketone reagents to the oxonitride species [{Ti(η(5)-C5Me5)(μ-O)}3(μ3-N)] (1). Reaction of 1 with XylNC (Xyl = 2,6-Me2C6H3) in a 1:3 molar ratio at room temperature leads to compound [{Ti(η(5)-C5Me5)(μ-O)}3(μ-XylNCCNXyl)(NCNXyl)] (2), after the addition of the nitrido group to one coordinated isocyanide and the carbon-carbon coupling of the other two isocyanide molecules have taken place. Thermolysis of 2 gives [{Ti(η(5)-C5Me5)(μ-O)}3(XylNCNXyl)(CN)] (3) where the heterocumulene [XylNCCNXyl] moiety and the carbodiimido [NCNXyl] fragment in 2 have undergone net transformations. Similarly, tert-butyl isocyanide (tBuNC) reacts with the starting material 1 under mild conditions to give the paramagnetic derivative [{Ti3(η(5)-C5Me5)3(μ-O)3(NCNtBu)}2(μ-CN)2] (4). However, compound 1 provides the oxo ketimide derivatives [{Ti3(η(5)-C5Me5)3(μ-O)4}(NCRPh)] [R = Ph (5), p-Me(C6H4) (6), o-Me(C6H4) (7)] upon reaction with benzophenone, p-methylbenzophenone, and o-methylbenzophenone, respectively. In these reactions, the carbon-oxygen double bond is completely ruptured, leading to the formation of a carbon-nitrogen and two metal-oxygen bonds. The molecular structures of complexes 2-4, 6, and 7 were determined by single-crystal X-ray diffraction analyses. Density functional theory calculations were performed on the incorporation of isocyanides and ketones to the model complex [{Ti(η(5)-C5H5)(μ-O)}3(μ3-N)] (1H). The mechanism involves the coordination of the substrates to one of the titanium metal centers, followed by an isomerization to place those substrates cis with respect to the apical nitrogen of 1H, where carbon-nitrogen bond formation occurs with a low-energy barrier. In the case of aryl isocyanides, the resulting complex incorporates additional isocyanide molecules leading to a carbon-carbon coupling. With ketones, the high oxophilicity of titanium promotes the unusual total cleavage of the

  13. Carbon-nitrogen bond construction and carbon-oxygen double bond cleavage on a molecular titanium oxonitride: a combined experimental and computational study.

    PubMed

    Carbó, Jorge J; García-López, Diego; González-Del Moral, Octavio; Martín, Avelino; Mena, Miguel; Santamaría, Cristina

    2015-10-01

    New carbon-nitrogen bonds were formed on addition of isocyanide and ketone reagents to the oxonitride species [{Ti(η(5)-C5Me5)(μ-O)}3(μ3-N)] (1). Reaction of 1 with XylNC (Xyl = 2,6-Me2C6H3) in a 1:3 molar ratio at room temperature leads to compound [{Ti(η(5)-C5Me5)(μ-O)}3(μ-XylNCCNXyl)(NCNXyl)] (2), after the addition of the nitrido group to one coordinated isocyanide and the carbon-carbon coupling of the other two isocyanide molecules have taken place. Thermolysis of 2 gives [{Ti(η(5)-C5Me5)(μ-O)}3(XylNCNXyl)(CN)] (3) where the heterocumulene [XylNCCNXyl] moiety and the carbodiimido [NCNXyl] fragment in 2 have undergone net transformations. Similarly, tert-butyl isocyanide (tBuNC) reacts with the starting material 1 under mild conditions to give the paramagnetic derivative [{Ti3(η(5)-C5Me5)3(μ-O)3(NCNtBu)}2(μ-CN)2] (4). However, compound 1 provides the oxo ketimide derivatives [{Ti3(η(5)-C5Me5)3(μ-O)4}(NCRPh)] [R = Ph (5), p-Me(C6H4) (6), o-Me(C6H4) (7)] upon reaction with benzophenone, p-methylbenzophenone, and o-methylbenzophenone, respectively. In these reactions, the carbon-oxygen double bond is completely ruptured, leading to the formation of a carbon-nitrogen and two metal-oxygen bonds. The molecular structures of complexes 2-4, 6, and 7 were determined by single-crystal X-ray diffraction analyses. Density functional theory calculations were performed on the incorporation of isocyanides and ketones to the model complex [{Ti(η(5)-C5H5)(μ-O)}3(μ3-N)] (1H). The mechanism involves the coordination of the substrates to one of the titanium metal centers, followed by an isomerization to place those substrates cis with respect to the apical nitrogen of 1H, where carbon-nitrogen bond formation occurs with a low-energy barrier. In the case of aryl isocyanides, the resulting complex incorporates additional isocyanide molecules leading to a carbon-carbon coupling. With ketones, the high oxophilicity of titanium promotes the unusual total cleavage of the

  14. Synthesis, characterization, DNA binding studies, photocleavage, cytotoxicity and docking studies of ruthenium(II) light switch complexes.

    PubMed

    Gabra, Nazar Mohammed; Mustafa, Bakheit; Kumar, Yata Praveen; Devi, C Shobha; Srishailam, A; Reddy, P Venkat; Reddy, Kotha Laxma; Satyanarayana, S

    2014-01-01

    A new ligand 3-(1H-imidazo[4,5-f][1,10]phenanthrolin-2yl)phenylboronic acid and its (IPPBA) three ruthenium(II) complexes [Ru(phen)2(IPPBA)](ClO4)2 (1), [Ru(bpy)2(IPPBA)](ClO4)2 (2) and [Ru(dmb)2(IPPBA)](ClO4)2 (3) have been synthesized and characterized by elemental analysis, UV/VIS, IR, (1)H-NMR,(13)C-NMR and mass spectra. The binding behaviors of the three complexes to calf thymus DNA were investigated by absorption spectra, emission spectroscopy, viscosity measurements, thermal denaturation and photoactivated cleavage. The DNA-binding constants for complexes 1, 2 and 3 have been determined to be 7.9 × 10(5) M(-1), 6.7 × 10(5) M(-1) and 2.9 × 10(5) M(-1). The results suggest that these complexes bound to double-stranded DNA in an intercalation mode. Upon irradiation at 365 nm, three ruthenium complexes were found to promote the cleavage of plasmid pBR322 DNA from super coiled form І to nicked form ІІ. Further in the presence of Co(2+), the emission of DNA-Ru(ΙΙ) complexes can be quenched. And when EDTA was added, the emission was recovered. The experimental results show that all three complexes exhibited the "on-off-on" properties of molecular "light switch". The highest Cytotoxicity potential of the complex1 was observed on the Human alveolar adenocarcinoma (A549) cell line. Good agreement was generally found between the spectroscopic techniques and molecular docked model which provides further evidence of groove binding. PMID:23982735

  15. Chromosome aberrations in decondensed sperm DNA

    SciTech Connect

    Preston, R.J.

    1982-01-01

    Factors that could influence the chromosomal aberration frequency observed at first cleavage following in vivo exposure of germ cells to chemical mutagens are discussed. The techniques of chromosome aberration analysis following sperm DNA condensation by in vitro fertilization or fusion seem to be viable research areas for providing information of human germ cell exposures. However, the potential sensitivity of the assay needs to be better understood, and factors that can influence this sensitivity require a great deal of further study using animal models.

  16. Characterization of helical cleavages in type II collagen generated by matrixins.

    PubMed Central

    Vankemmelbeke, M; Dekeyser, P M; Hollander, A P; Buttle, D J; Demeester, J

    1998-01-01

    Several vertebrate collagenases have been reported to cleave type II collagen, leading to irreversible tissue destruction in osteoarthritis. We have investigated the action of MMP-1 and MMP-13 on type II collagen by use of neoepitope antibodies and N-terminal sequencing. Previous studies have suggested that the initial cleavage of type II collagen by MMP-13 is followed by a second cleavage, three amino acids carboxy-terminal to the primary cleavage site. We show here that this cleavage is also produced by APMA-activated MMP-1 in combination with MMP-3 (i.e. fully activated MMP-1). The use of a selective inhibitor of MMP-3 has shown that it is this enzyme, rather than interstitial collagenase which had been exposed to MMP-3, which makes the second cleavage. In addition we have identified, through N-terminal sequencing, a third cleavage site, three residues carboxy-terminal to the secondary site. Since MMP-2 is thought to be responsible for gelatinolytic action on type II collagen we have investigated the effect of MMP-2 after the initial helical cleavage made by either MMP-1 or MMP-13. A combination of MMPs-1, -2 and -3 results in both the second and third cleavage sites; adding MMP-2 to MMP-13 did not alter the cleavage pattern produced by MMP-13 on its own. We conclude that none of the three cleavage sites will provide information about the specific identity of the collagenolytic enzymes involved in collagen cleavage in situ. Staining of cartilage sections of osteoarthritis patients with the neoepitope antibodies revealed type II collagen degradation starting at or near the articular surface and extending into the mid and deep zones with increasing degeneration of the cartilage. PMID:9480869

  17. Synthesis, characterization, DNA binding, light switch "on and off", docking studies and cytotoxicity, of ruthenium(II) and cobalt(III) polypyridyl complexes.

    PubMed

    Reddy, M Rajender; Reddy, Putta Venkat; Kumar, Yata Praveen; Srishailam, A; Nambigari, Navaneetha; Satyanarayana, S

    2014-05-01

    The novel ligand (dmbip) 2-(4-N, N-dimethylbenzenamine)1H-imidazo[4, 5-f][1, 10]phenanthroline and its complexes [Ru(phen)2dmbip](2+) (1), [Ru(bpy)2dmbip](2+) (2), [Co(phen)2dmbip](3+) (3) and [Co(bpy)2dmbip](3+) (4) [where phen = 1, 10-phenanthroline, bpy = 2, 2'-bipyridine], have been synthesized and characterized by elemental analysis, IR, UV-Vis, (1)H NMR, (13)C NMR and Mass spectra. The DNA binding properties of the complexes were investigated by absorption, emission, quenching studies, light switch "on and off", salt dependent, sensor (cation and anion) studies, viscosity measurements, cyclic voltammetry, molecular modeling and docking studies. The four complexes were screened for Photo cleavage of pBR322 DNA, antimicrobial activity and cytotoxicity. The experimental results indicate that the four complexes can intercalate into DNA base pairs. The DNA-binding affinities of these complexes follow the order [Ru(phen)2dmbip](2+) > [Co(phen)2dmbip](3+) > [Ru(bpy)2dmbip](2+) > [Co(bpy)2dmbip](3+). PMID:24615259

  18. Endoproteolytic cleavage of human thyroperoxidase: role of the propeptide in the protein folding process.

    PubMed

    Le Fourn, Valérie; Ferrand, Mireille; Franc, Jean-Louis

    2005-02-11

    Human thyroperoxidase (hTPO), the key enzyme involved in thyroid hormone synthesis, is synthesized in the form of a 933-amino acid polypeptide that subsequently undergoes posttranslational modifications such as N- and O-glycosylation and heme fixation. In the present study, it was established that the N-terminal part of hTPO is cleaved during the maturation of the enzyme. In the first set of experiments performed in this study, Chines hamster ovary (CHO) cells transfected with hTPO cDNA generated four different species after deglycosylation, namely a 98-kDa species, which corresponds to the full-length deglycosylated hTPO, and two 94-kDa and one 92-kDa species, which were truncated in the N-terminal parts. The three latter forms were detected only at the cell surface. A proprotein convertase inhibitor prevented these cleavages, and experiments using monensin and brefeldin A showed that they occurred in a post-endoplasmic reticulum compartment. Site-directed mutagenesis studies were performed in which Arg65 was identified as one of the cleavage sites. In the second part of the study, hTPO from human thyroid glands was purified using a monoclonal antibody recognizing the folded form of hTPO. Amino acid determination showed that the N-terminal part of this protein begins at Thr109. This cleavage process differs from that observed in CHO cells. The fact that this hTPO was endoglucosaminidase H-sensitive indicated that the cleavage of the propeptide occurs in the endoplasmic reticulum. To analyze the role of the hTPO prosequence, cDNAs with and without prosequence (Cys15-Lys108) were transfected into CHO cells. hTPO propeptide deletion drastically decreased the proportion of the folded hTPO form, and under these conditions the cell surface activity disappeared completely. These results strongly suggest that the prosequence plays a crucial role as an intramolecular chaperone, facilitating the folding of hTPO. PMID:15590661

  19. Ab initio Study of Naptho-Homologated DNA Bases

    SciTech Connect

    Sumpter, Bobby G; Vazquez-Mayagoitia, Alvaro; Huertas, Oscar; Fuentes-Cabrera, Miguel A; Orozco, Modesto; Luque, Javier

    2008-01-01

    Naptho-homologated DNA bases have been recently used to build a new type of size expanded DNA known as yyDNA. We have used theoretical techniques to investigate the structure, tautomeric preferences, base-pairing ability, stacking interactions, and HOMO-LUMO gaps of the naptho-bases. The structure of these bases is found to be similar to that of the benzo-fused predecessors (y-bases) with respect to the planarity of the aromatic rings and amino groups. Tautomeric studies reveal that the canonical-like form of naptho-thymine (yyT) and naptho-adenine (yyA) are the most stable tautomers, leading to hydrogen-bonded dimers with the corresponding natural nucleobases that mimic the Watson-Crick pairing. However, the canonical-like species of naptho-guanine (yyG) and naptho-cytosine (yyC) are not the most stable tautomers, and the most favorable hydrogen-bonded dimers involve wobble-like pairings. The expanded size of the naphto-bases leads to stacking interactions notably larger than those found for the natural bases, and they should presumably play a dominant contribution in modulating the structure of yyDNA duplexes. Finally, the HOMO-LUMO gap of the naptho-bases is smaller than that of their benzo-base counterparts, indicating that size-expansion of DNA bases is an efficient way of reducing their HOMO-LUMO gap. These results are examined in light of the available experimental evidence reported for yyT and yyC.

  20. Mixed-ligand copper(II) phenolate complexes: Synthesis, spectral characterization, phosphate-hydrolysis, antioxidant, DNA interaction and cytotoxic studies

    NASA Astrophysics Data System (ADS)

    Gurumoorthy, Perumal; Mahendiran, Dharmasivam; Prabhu, Durai; Arulvasu, Chinnasamy; Rahiman, Aziz Kalilur

    2015-01-01

    A series of phenol-based mixed-ligand copper(II) complexes of the type [CuL1-4(diimine)] (1-8), where L1-4 = N1,N2-bis(5-substituted-2-hydroxybenzylidene)-1,2-ethylene/phenylenediimine and diimine = 2,2‧-bipyridyl (bpy) or 1,10-phenanthroline (phen), have been isolated and fully characterized by analytical and spectral techniques. Electronic spectra of complexes suggest Cu(II) cation has a d9 electronic configuration, adopting distorted octahedral geometry with axial elongation, due to Jahn-Teller effect. Electrochemical studies of complexes evidenced one-electron irreversible reduction wave in the cathodic region. The observed rate constant (k) values for the hydrolysis of 4-nitrophenylphosphate (4-NPP) are in the range of 0.25-3.82 × 10-2 min-1. The obtained room temperature magnetic moment values (1.79-1.90 BM) lies within the range observed for octahedral copper(II) complexes. Antioxidant studies revealed that these complexes possess considerable radical scavenging potency against DPPH. The binding studies of complexes with calf thymus DNA (CT-DNA) revealed intercalation with minor-groove binding, and the complex 4 exhibits highest binding activity than the other complexes. The cleavage activity on supercoiled pBR322 DNA revealed the involvement of hydroxyl radical and singlet-oxygen as reactive oxygen species, and complexes encourage binding to minor-groove. Further, the cytotoxicity of complex 4 on human hepatocellular liver carcinoma HepG2 cell line implies the cell death through apoptosis.

  1. Functional role of glutamine 28 and arginine 39 in double stranded RNA cleavage by human pancreatic ribonuclease.

    PubMed

    Rehman, Md Tabish; Dey, Punyatirtha; Hassan, Md Imtaiyaz; Ahmad, Faizan; Batra, Janendra K

    2011-03-08

    Human pancreatic ribonuclease (HPR), a member of RNase A superfamily, has a high activity on double stranded (ds) RNA. By virtue of this activity HPR appears to be involved in the host-defense against pathogenic viruses. To delineate the mechanism of dsRNA cleavage by HPR, we have investigated the role of glutamine 28 and arginine 39 of HPR in its activity on dsRNA. A non-basic residue glycine 38, earlier shown to be important for dsRNA cleavage by HPR was also included in the study in the context of glutamine 28 and arginine 39. Nine variants of HPR respectively containing Q28A, Q28L, R39A, G38D, Q28A/R39A, Q28L/R39A, Q28A/G38D, R39A/G38D and Q28A/G38D/R39A mutations were generated and functionally characterized. The far-UV CD-spectral analysis revealed all variants, except R39A, to have structures similar to that of HPR. The catalytic activity of all HPR variants on single stranded RNA substrate was similar to that of HPR, whereas on dsRNA, the catalytic efficiency of all single residue variants, except for the Q28L, was significantly reduced. The dsRNA cleavage activity of R39A/G38D and Q28A/G38D/R39A variants was most drastically reduced to 4% of that of HPR. The variants having reduced dsRNA cleavage activity also had reduction in their dsDNA melting activity and thermal stability. Our results indicate that in HPR both glutamine 28 and arginine 39 are important for the cleavage of dsRNA. Although these residues are not directly involved in catalysis, both arginine 39 and glutamine 28 appear to be facilitating a productive substrate-enzyme interaction during the dsRNA cleavage by HPR.

  2. Intracellular Cre-Mediated Deletion of the Unique Packaging Signal Carried by a Herpes Simplex Virus Type 1 Recombinant and Its Relationship to the Cleavage-Packaging Process

    PubMed Central

    Logvinoff, Carine; Epstein, Alberto L.

    2000-01-01

    To gain further insight on the function of the herpes simplex virus type 1 (HSV-1) packaging signal (a sequence), we constructed a recombinant virus containing a unique a sequence, which was flanked by two loxP sites in parallel orientation. The phenotype of this recombinant, named HSV-1 LaL, was studied in cell lines which either express or do not express Cre recombinase. Although LaL virus multiplication was only slightly reduced in standard cell lines, its growth was strongly inhibited in Cre-expressing cells. In these cells, a sequences were detected mostly in low-molecular-weight DNA circles, indicating that they had been excised from virus DNA by site-specific recombination. Deletion of the a sequences from the viral genome resulted in the accumulation of uncleaved replication intermediates, as observed by pulsed-field gel electrophoresis. B-type capsids also accumulated in these cells, as shown both by electron microscopy and by sucrose gradient sedimentation. Further examination of the status of a sequences in Cre-expressing cells indicated that high-level amplification of this sequence can occur in the absence of the cleavage-packaging process. Moreover, the amplified a signals in small circular DNA molecules remained uncleaved, indicating that these molecules were not able to efficiently interact with the cleavage-packaging machinery. The cleavage-packaging machinery and the structural proteins required to assemble virions were, however, functional in HSV-1 LaL-infected Cre-expressing cells, since this system could be used to package plasmid DNA harboring an origin of virus replication and one normal a signal. This is the first study in which accumulation both of uncleaved replication intermediates and of B capsids has been obtained in the presence of the full set of proteins required to package virus DNA. PMID:10954540

  3. Mathematical modeling of DNA's transcription process for the cancer study

    NASA Astrophysics Data System (ADS)

    Morales-Peñaloza, A.; Meza-López, C. D.; Godina-Nava, J. J.

    2012-10-01

    The cancer is a phenomenon caused by an anomaly in the DNA's transcription process, therefore it is necessary to known how such anomaly is generated in order to implement alternative therapies to combat it. We propose to use mathematical modeling to treat the problem. Is implemented a simulation of the process of transcription and are studied the transport properties in the heterogeneous case using nonlinear dynamics.

  4. Computational Study of Nanoparticle Clustering via DNA Hyperdyzation

    NASA Astrophysics Data System (ADS)

    Ma, Xu; Bowick, Mark J.; Sknepnek, Rastko

    We use molecular dynamics simulation to study the self-assembly of small clusters through DNA hybridization in a binary mixture of spherical nucleic acid gold nanoparticles(SNA-GNPs) system. The resultant structures are self-assembled clusters with a varying number of large SNA-GNPs clusters around the small ones, forming dimers, trimmers, tetramers etc. The outcome structures can be tuned by adjusting external factors including temperature, particle hydrodynamics size ratio. Soft Matter Program, Syracuse University.

  5. Two metal-binding peptides from the insect Orchesella cincta (Collembola) as a result of metallothionein cleavage.

    PubMed

    Hensbergen, P J; Donker, M H; Hunziker, P E; van der Schors, R C; van Straalen, N M

    2001-10-01

    Metallothionein (MT) is an ubiquitous heavy metal-binding protein which has been identified in animals, plants, protists, fungi and bacteria. In insects, primary structures of MTs are known only for Drosophila and the collembolan, Orchesella cincta. The MT cDNA from O. cincta encodes a 77 amino acid protein with 19 cysteines. Isolations of the protein itself have demonstrated the presence of two smaller metal-binding peptides, whose amino acid sequences correspond to parts of the cDNA, and which apparently result from cleavage of the native protein. The present study was undertaken to complete the picture of cleavage sites within the MT protein by applying protein isolation techniques in combination with mass spectrometry and N-terminal sequence analysis. Further, recombinant expression allowed us to study the intrinsic stability of the MT and to perform in vitro cleavage studies. The results show that the MT from O. cincta is specifically cleaved at two sites, both after the amino acid sequence Thr-Gln (TQ). One of these sites is located in the N-terminal region and the other in the linker region between two putative metal-binding clusters. When expressed in Escherichia coli, the recombinant O. cincta MT can be isolated in an uncleaved form; however, this protein can be cleaved in vitro by the proteolytic activity of O. cincta. In combination with other studies, the results suggest that the length of the linker region is important for the stability of MT as a two domain metal-binding protein.

  6. Assessing dissimilarity of genes by comparing their RNAse A mismatch cleavage patterns.

    PubMed

    Rzhetsky, A; Dopazo, J; Snyder, E; Dangler, C A; Ayala, F J

    1996-12-01

    We propose a simple algorithm for estimating the number of nucleotide differences between a pair of RNA or DNA sequences through comparison of their RNAse A mismatch cleavage patterns. In the RNAse A mismatch cleavage technique two or more sample sequences are hybridized to the same RNA probe, the hybrids are partially digested with RNAse A, and the digestion products are compared on an electrophoretic gel. Here we provide an algorithm for converting the numbers of unique and matching electrophoretic bands into an estimate of the number of nucleotide differences between the sequences. Computer simulation indicates that the proposed method yields a robust estimate of the genetic distance despite stochastic errors and occasional violation of certain assumptions. Our study suggests that the method performs best when the distance between the sequences is < 15 differences. When the sequences under analysis are likely to have larger distances, we advise to substitute one long riboprobe with a set of shorter nonoverlapping probes. The new algorithm is applied to infer the proximity of several strains of pseudorabies virus. PMID:8978080

  7. DNA interaction and dual topoisomerase I and II inhibition properties of the anti-tumor drug prodigiosin.

    PubMed

    Montaner, Beatriz; Castillo-Avila, Wilmar; Martinell, Marc; Ollinger, Rupert; Aymami, Joan; Giralt, Ernest; Pérez-Tomás, Ricardo

    2005-06-01

    Prodigiosin is a red pigment produced by Serratia marcescens with apoptotic activity. We examined the mechanism of action of this tripyrrole alkaloid, focusing on its interaction with DNA and its ability to inhibit both topoisomerase I and topoisomerase II. We also evaluated the DNA damage induced in cancer cell lines. Prodigiosin-DNA intercalation was analyzed using a competition dialysis assay with different DNA base sequences. Topoisomerase I and II inhibition was studied in vitro by a cleavage assay, and in cultured cells, by analysis of its ability to form covalent complexes. Furthermore, we analyzed DNA damage by pulse-field gel electrophoresis and by immunocytochemistry. Apoptosis inducing factor (AIF)/phospho-H2AX (p-H2AX) double labeling by confocal microscopy was performed to determine the possible implication of AIF in the prodigiosin-DNA damage. Finally, we studied the ability of this drug to induce copper-mediated DNA damage at different pH by a DNA cleavage assay. Our results demonstrate prodigiosin-DNA interaction in vitro and in cultured cells. It involves prodigiosin-DNA intercalation, with some preference for the alternating base pairs but with no discrimination between AT or CG sequences, dual abolition of topoisomerase I and II activity and, as consequence, DNA cleavage. Prodigiosin-DNA damage is independent of AIF. Furthermore, we found that copper-mediated cleavage activity is associated with pH (occurring at pH 6.8 rather than pH 7.4) and with the Cu(2+) ion concentration. These results indicate DNA a therapeutic target for prodigiosin and could explain the apoptosis mechanism of action induced by this antineoplastic drug.

  8. DNA-Based Nanostructures: Changes of Mechanical Properties of DNA upon Ligand Binding

    NASA Astrophysics Data System (ADS)

    Nechipurenko, Yury; Grokhovsky, Sergey; Gursky, Georgy; Nechipurenko, Dmitry; Polozov, Robert

    The formation of DNA-based nanostructures involves the binding of different kinds of ligands to DNA as well as the interaction of DNA molecules with each other. Complex formation between ligand and DNA can alter physicochemical properties of the DNA molecule. In the present work, the accessibility of DNA-ligand complexes to cleavage by DNase I are considered, and the exact algorithms for analysis of diagrams of DNase I footprinting for ligand-DNA complexes are obtained. Changes of mechanical properties of the DNA upon ligand binding are also demonstrated by the cleavage patterns generated upon ultrasound irradiation of cis-platin-DNA complexes. Propagation of the mechanical perturbations along DNA in the presence of bound ligands is considered in terms of a string model with a heterogeneity corresponding to the position of a bound ligand on DNA. This model can reproduce qualitatively the cleavage patterns obtained upon ultrasound irradiation of cis-platin-DNA complexes.

  9. CASPASE-1 RECOGNIZES EXTENDED CLEAVAGE SITES IN ITS NATURAL SUBSTRATES

    PubMed Central

    Shen, Jerry; Yin, Ying; Mai, Jietang; Xiong, Xinyu; Pansuria, Meghana; Liu, Jingshan; Maley, Erin; Saqib, Najam Us; Wang, Hong; Yang, Xiao-Feng

    2010-01-01

    Objective The preferred amino acids in the proteolytic sites have been considered to be similar between caspase-1 and caspase-9, which do not support their differential functions in inflammatory pyroptosis and apoptosis. We attempted to solve this problem. Methods We analyzed the flanking 20 amino acid residues in the cleavage sites in 34 caspase-1 and 11 capase-9 experimentally identified substrates. Results This study has made the following findings: first, we verified that caspase-1 and caspase-9 shared 100% aspartic acid in the P1 position. However, the structures in the cleavage sites of most caspase-1 substrates are different from that of caspase-9 substrates in the following three aspects, a) the amino acid residues with the statistically high frequencies; b) the hydrophobic amino acid occurrence frequencies; and c) the charged amino acid occurrence frequencies; second, the amino acid pairs P1-P1′ are different; third, our identified cleavage site patterns are useful in the prediction for the 91.4% cleavage sites of 35 new caspase-1 substrates. Conclusion Since most caspase-1 substrates are involved in vascular function, inflammation and atherogenesis, our novel structural patterns for the caspases’ substrates are significant in developing new diagnostics and therapeutics. PMID:20060974

  10. Mitochondria Localize to the Cleavage Furrow in Mammalian Cytokinesis

    PubMed Central

    Lawrence, Elizabeth J.; Mandato, Craig A.

    2013-01-01

    Mitochondria are dynamic organelles with multiple cellular functions, including ATP production, calcium buffering, and lipid biosynthesis. Several studies have shown that mitochondrial positioning is regulated by the cytoskeleton during cell division in several eukaryotic systems. However, the distribution of mitochondria during mammalian cytokinesis and whether the distribution is regulated by the cytoskeleton has not been examined. Using live spinning disk confocal microscopy and quantitative analysis of mitochondrial fluorescence intensity, we demonstrate that mitochondria are recruited to the cleavage furrow during cytokinesis in HeLa cells. After anaphase onset, the mitochondria are recruited towards the site of cleavage furrow formation, where they remain enriched as the furrow ingresses and until cytokinesis completion. Furthermore, we show that recruitment of mitochondria to the furrow occurs in multiple mammalian cells lines as well as in monopolar, bipolar, and multipolar divisions, suggesting that the mechanism of recruitment is conserved and robust. Using inhibitors of cytoskeleton dynamics, we show that the microtubule cytoskeleton, but not actin, is required to transport mitochondria to the cleavage furrow. Thus, mitochondria are specifically recruited to the cleavage furrow in a microtubule-dependent manner during mammalian cytokinesis. Two possible reasons for this could be to localize mitochondrial function to the furrow to facilitate cytokinesis and / or ensure accurate mitochondrial inheritance. PMID:23991162

  11. Stretching and immobilization of DNA for studies of protein-DNA interactions at the single-molecule level

    NASA Astrophysics Data System (ADS)

    Kim, Ji Hoon; Dukkipati, Venkat Ram; Pang, Stella W.; Larson, Ronald G.

    2007-04-01

    Single-molecule studies of the interactions of DNA and proteins are important in a variety of biological or biotechnology processes ranging from the protein’s search for its DNA target site, DNA replication, transcription, or repair, and genome sequencing. A critical requirement for single-molecule studies is the stretching and immobilization of otherwise randomly coiled DNA molecules. Several methods for doing so have been developed over the last two decades, including the use of forces derived from light, magnetic and electric fields, and hydrodynamic flow. Here we review the immobilization and stretching mechanisms for several of these techniques along with examples of single-molecule DNA-protein interaction assays that can be performed with each of them.

  12. Collecting and analyzing DNA evidence from fingernails: a comparative study.

    PubMed

    Hebda, Lisa M; Doran, Ashley E; Foran, David R

    2014-09-01

    Forensic practitioners and crime laboratories regularly collect and analyze fingernail evidence; however, the best techniques for processing such evidence have not been established. In this study, numerous aspects of fingernail evidence processing-collection of exogenous cells, transportation, purification of DNA, and STR analysis-were analyzed using fingernails harboring applied blood or epithelial cells from scratchings. Autosomal STR mixtures resulted when fingernails were soaked or swabbed, while scrapings rarely generated mixtures but exhibited allelic dropout. Y-STRs yielded single source profiles, with scrapings again showing dropout. A silica-based kit extraction recovered significantly more exogenous DNA than did organic extraction, neither of which was affected by nail polish. Swabbing nails in succession resulted in some cross-contamination from exogenous material, while transporting nails together did not, although there was loss of exogenous cells. Optimized nail processing produced complete Y-STR profiles of male volunteers from female fingernails following scratchings. PMID:24666154

  13. Collecting and analyzing DNA evidence from fingernails: a comparative study.

    PubMed

    Hebda, Lisa M; Doran, Ashley E; Foran, David R

    2014-09-01

    Forensic practitioners and crime laboratories regularly collect and analyze fingernail evidence; however, the best techniques for processing such evidence have not been established. In this study, numerous aspects of fingernail evidence processing-collection of exogenous cells, transportation, purification of DNA, and STR analysis-were analyzed using fingernails harboring applied blood or epithelial cells from scratchings. Autosomal STR mixtures resulted when fingernails were soaked or swabbed, while scrapings rarely generated mixtures but exhibited allelic dropout. Y-STRs yielded single source profiles, with scrapings again showing dropout. A silica-based kit extraction recovered significantly more exogenous DNA than did organic extraction, neither of which was affected by nail polish. Swabbing nails in succession resulted in some cross-contamination from exogenous material, while transporting nails together did not, although there was loss of exogenous cells. Optimized nail processing produced complete Y-STR profiles of male volunteers from female fingernails following scratchings.

  14. Photochemical cleavage of leader peptides†‡

    PubMed Central

    Bindman, Noah; Merkx, Remco; Koehler, Robert; Herrman, Nicholas; van der Donk, Wilfred A.

    2011-01-01

    We report a photolabile linker compatible with Fmoc solid phase peptide synthesis and Cu(I)-catalyzed alkyne–azide cycloaddition that allows photochemical cleavage to afford a C-terminal peptide fragment with a native amino terminus. PMID:21046030

  15. Fluorescence Resonance Energy Transfer Studies of DNA Polymerase β

    PubMed Central

    Towle-Weicksel, Jamie B.; Dalal, Shibani; Sohl, Christal D.; Doublié, Sylvie; Anderson, Karen S.; Sweasy, Joann B.

    2014-01-01

    During DNA repair, DNA polymerase β (Pol β) is a highly dynamic enzyme that is able to select the correct nucleotide opposite a templating base from a pool of four different deoxynucleoside triphosphates (dNTPs). To gain insight into nucleotide selection, we use a fluorescence resonance energy transfer (FRET)-based system to monitor movement of the Pol β fingers domain during catalysis in the presence of either correct or incorrect dNTPs. By labeling the fingers domain with ((((2-iodoacetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid (IAEDANS) and the DNA substrate with Dabcyl, we are able to observe rapid fingers closing in the presence of correct dNTPs as the IAEDANS comes into contact with a Dabcyl-labeled, one-base gapped DNA. Our findings show that not only do the fingers close after binding to the correct dNTP, but that there is a second conformational change associated with a non-covalent step not previously reported for Pol β. Further analyses suggest that this conformational change corresponds to the binding of the catalytic metal into the polymerase active site. FRET studies with incorrect dNTP result in no changes in fluorescence, indicating that the fingers do not close in the presence of incorrect dNTP. Together, our results show that nucleotide selection initially occurs in an open fingers conformation and that the catalytic pathways of correct and incorrect dNTPs differ from each other. Overall, this study provides new insight into the mechanism of substrate choice by a polymerase that plays a critical role in maintaining genome stability. PMID:24764311

  16. DNA barcoding in diverse educational settings: five case studies

    PubMed Central

    Imondi, Ralph; James, Karen; Spencer, Diana; Steinke, Dirk

    2016-01-01

    Despite 250 years of modern taxonomy, there remains a large biodiversity knowledge gap. Most species remain unknown to science. DNA barcoding can help address this gap and has been used in a variety of educational contexts to incorporate original research into school curricula and informal education programmes. A growing body of evidence suggests that actively conducting research increases student engagement and retention in science. We describe case studies in five different educational settings in Canada and the USA: a programme for primary and secondary school students (ages 5–18), a year-long professional development programme for secondary school teachers, projects embedding this research into courses in a post-secondary 2-year institution and a degree-granting university, and a citizen science project. We argue that these projects are successful because the scientific content is authentic and compelling, DNA barcoding is conceptually and technically straightforward, the workflow is adaptable to a variety of situations, and online tools exist that allow participants to contribute high-quality data to the international research effort. Evidence of success includes the broad adoption of these programmes and assessment results demonstrating that participants are gaining both knowledge and confidence. There are exciting opportunities for coordination among educational projects in the future. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481792

  17. DNA barcoding in diverse educational settings: five case studies.

    PubMed

    Henter, Heather J; Imondi, Ralph; James, Karen; Spencer, Diana; Steinke, Dirk

    2016-09-01

    Despite 250 years of modern taxonomy, there remains a large biodiversity knowledge gap. Most species remain unknown to science. DNA barcoding can help address this gap and has been used in a variety of educational contexts to incorporate original research into school curricula and informal education programmes. A growing body of evidence suggests that actively conducting research increases student engagement and retention in science. We describe case studies in five different educational settings in Canada and the USA: a programme for primary and secondary school students (ages 5-18), a year-long professional development programme for secondary school teachers, projects embedding this research into courses in a post-secondary 2-year institution and a degree-granting university, and a citizen science project. We argue that these projects are successful because the scientific content is authentic and compelling, DNA barcoding is conceptually and technically straightforward, the workflow is adaptable to a variety of situations, and online tools exist that allow participants to contribute high-quality data to the international research effort. Evidence of success includes the broad adoption of these programmes and assessment results demonstrating that participants are gaining both knowledge and confidence. There are exciting opportunities for coordination among educational projects in the future.This article is part of the themed issue 'From DNA barcodes to biomes'. PMID:27481792

  18. 16S ribosomal DNA amplification for phylogenetic study.

    PubMed

    Weisburg, W G; Barns, S M; Pelletier, D A; Lane, D J

    1991-01-01

    A set of oligonucleotide primers capable of initiating enzymatic amplification (polymerase chain reaction) on a phylogenetically and taxonomically wide range of bacteria is described along with methods for their use and examples. One pair of primers is capable of amplifying nearly full-length 16S ribosomal DNA (rDNA) from many bacterial genera; the additional primers are useful for various exceptional sequences. Methods for purification of amplified material, direct sequencing, cloning, sequencing, and transcription are outlined. An obligate intracellular parasite of bovine erythrocytes, Anaplasma marginale, is used as an example; its 16S rDNA was amplified, cloned, sequenced, and phylogenetically placed. Anaplasmas are related to the genera Rickettsia and Ehrlichia. In addition, 16S rDNAs from several species were readily amplified from material found in lyophilized ampoules from the American Type Culture Collection. By use of this method, the phylogenetic study of extremely fastidious or highly pathogenic bacterial species can be carried out without the need to culture them. In theory, any gene segment for which polymerase chain reaction primer design is possible can be derived from a readily obtainable lyophilized bacterial culture.

  19. DNA barcoding in diverse educational settings: five case studies.

    PubMed

    Henter, Heather J; Imondi, Ralph; James, Karen; Spencer, Diana; Steinke, Dirk

    2016-09-01

    Despite 250 years of modern taxonomy, there remains a large biodiversity knowledge gap. Most species remain unknown to science. DNA barcoding can help address this gap and has been used in a variety of educational contexts to incorporate original research into school curricula and informal education programmes. A growing body of evidence suggests that actively conducting research increases student engagement and retention in science. We describe case studies in five different educational settings in Canada and the USA: a programme for primary and secondary school students (ages 5-18), a year-long professional development programme for secondary school teachers, projects embedding this research into courses in a post-secondary 2-year institution and a degree-granting university, and a citizen science project. We argue that these projects are successful because the scientific content is authentic and compelling, DNA barcoding is conceptually and technically straightforward, the workflow is adaptable to a variety of situations, and online tools exist that allow participants to contribute high-quality data to the international research effort. Evidence of success includes the broad adoption of these programmes and assessment results demonstrating that participants are gaining both knowledge and confidence. There are exciting opportunities for coordination among educational projects in the future.This article is part of the themed issue 'From DNA barcodes to biomes'.

  20. Further studies of infectious DNA extracted from mycobacteriophages.

    PubMed

    Sellers, M I; Tokunaga, T

    1966-02-01

    Results of the previous investigation in which it was found that DNA extracted from D29 mycobacteriophage was infectious for Mycobacterium smegmatis 607, have been extended. DNA extracted from mycobacteriophage D4 and D32 produced plaques when plated on their respective hosts; D28 DNA, extracted in the same manner and tested under similar conditions, failed to show infectivity. Species barriers were not crossed by mycobacteriophage DNA; bacteria resistant to intact phage were not infected with the phage DNA. The efficiency of plating of the DNA is very much lower than that of intact phage; infection of a given host was not accomplished by DNA when titration for plaque formation by the intact phage was less than 10(9) PFU. The base composition of DNA extracted from the four mycobacteriophages and the three propagating hosts was very similar. The bases were paired, adenine with thymine and guanine with cytosine. A relatively higher per cent of guanine-cytosine than of adenine-thymine, was found. The buoyant density of each DNA in CsCl was linearly related to its guanine-cytosine content whereas with the exception of D28 DNA, thermal denaturation temperatures failed to show this relationship. However, the thermal transition profiles were characteristic of double stranded DNA. Additional evidence that D29 DNA forms complexes with basic proteins was obtained. Binding between calf thymus histone and between RNAase and D29 DNA readily occurs with a resultant loss in DNA infectivity. Trypsin and D29 DNA are only weakly reactive.

  1. Intracellular cleavage of osteopontin by caspase-8 modulates hypoxia/reoxygenation cell death through p53.

    PubMed

    Kim, Hyo-Jin; Lee, Ho-June; Jun, Joon-Il; Oh, Yumin; Choi, Seon-Guk; Kim, Hyunjoo; Chung, Chul-Woong; Kim, In-Ki; Park, Il-Sun; Chae, Han-Jung; Kim, Hyung-Ryong; Jung, Yong-Keun

    2009-09-01

    Osteopontin (OPN) is highly expressed in cancer patients and plays important roles in many stages of tumor progression, such as anti-apoptosis, proliferation, and metastasis. From functional screening of human cDNA library, we isolated OPN as a caspase-8 substrate that regulates cell death during hypoxia/reoxygenation (Hyp/RO). In vitro cleavage assays demonstrate that OPN is cleaved at Asp-135 and Asp-157 by caspase-8. Cellular cleavage of OPN is observed in apoptotic cells exposed to Hyp/RO among various apoptotic stimuli and its cleavage is blocked by zVAD or IETD caspase inhibitor. Further, over-expression of OPN, the form with secretion signal, inhibits Hyp/RO-induced cell death. Caspase cleavage-defective OPN mutant (OPN D135A/D157A) is more efficient to suppress Hyp/RO-induced cell death than wild-type OPN. OPN D135A/D157A sustains AKT activity to increase cell viability through inhibition of caspase-9 during Hyp/RO. In addition, OPN is highly induced in some tumor cells during Hyp/RO, such as HeLa and Huh-7 cells, which is associated with their resistance to Hyp/RO by sustaining AKT activity. Notably, OPN C-terminal cleavage fragment produced by caspase-8 is detected in the nucleus. Plasmid-encoded expression of OPN C-terminal cleavage fragment increases p53 protein level and induces apoptosis of wild-type mouse embryonic fibroblast cells, but not p53(-/-) mouse embryonic fibroblast cells. These observations suggest that the protective function of OPN during Hyp/RO is inactivated via the proteolytic cleavage by caspase-8 and its cleavage product subsequently induces cell death via p53, postulating caspase-8 as a negative regulator of tumorigenic activity of OPN.

  2. RNA cleavage products generated by antisense oligonucleotides and siRNAs are processed by the RNA surveillance machinery

    PubMed Central

    Lima, Walt F.; De Hoyos, Cheryl L.; Liang, Xue-hai; Crooke, Stanley T.

    2016-01-01

    DNA-based antisense oligonucleotides (ASOs) elicit cleavage of the targeted RNA by the endoribonuclease RNase H1, whereas siRNAs mediate cleavage through the RNAi pathway. To determine the fates of the cleaved RNA in cells, we lowered the levels of the factors involved in RNA surveillance prior to treating cells with ASOs or siRNA and analyzed cleavage products by RACE. The cytoplasmic 5′ to 3′ exoribonuclease XRN1 was responsible for the degradation of the downstream cleavage products generated by ASOs or siRNA targeting mRNAs. In contrast, downstream cleavage products generated by ASOs targeting nuclear long non-coding RNA Malat 1 and pre-mRNA were degraded by nuclear XRN2. The downstream cleavage products did not appear to be degraded in the 3′ to 5′ direction as the majority of these products contained intact poly(A) tails and were bound by the poly(A) binding protein. The upstream cleavage products of Malat1 were degraded in the 3′ to 5′ direction by the exosome complex containing the nuclear exoribonuclease Dis3. The exosome complex containing Dis3 or cytoplasmic Dis3L1 degraded mRNA upstream cleavage products, which were not bound by the 5′-cap binding complex and, consequently, were susceptible to degradation in the 5′ to 3′ direction by the XRN exoribonucleases. PMID:26843429

  3. Case study: using a nondestructive DNA extraction method to generate mtDNA sequences from historical chimpanzee specimens.

    PubMed

    Mohandesan, Elmira; Prost, Stefan; Hofreiter, Michael

    2012-01-01

    A major challenge for ancient DNA (aDNA) studies using museum specimens is that sampling procedures usually involve at least the partial destruction of each specimen used, such as the removal of skin, pieces of bone, or a tooth. Recently, a nondestructive DNA extraction method was developed for the extraction of amplifiable DNA fragments from museum specimens without appreciable damage to the specimen. Here, we examine the utility of this method by attempting DNA extractions from historic (older than 70 years) chimpanzee specimens. Using this method, we PCR-amplified part of the mitochondrial HVR-I region from 65% (56/86) of the specimens from which we attempted DNA extraction. However, we found a high incidence of multiple sequences in individual samples, suggesting substantial cross-contamination among samples, most likely originating from storage and handling in the museums. Consequently, reproducible sequences could be reconstructed from only 79% (44/56) of the successfully extracted samples, even after multiple extractions and amplifications. This resulted in an overall success rate of just over half (44/86 of samples, or 51% success), from which 39 distinct HVR-I haplotypes were recovered. We found a high incidence of C to T changes, arguing for both low concentrations of and substantial damage to the endogenous DNA. This chapter highlights both the potential and the limitations of nondestructive DNA extraction from museum specimens.

  4. Characterization of inherent curvature in DNA lacking polyadenine runs.

    PubMed

    McNamara, P T; Harrington, R E

    1991-07-01

    Sequence-directed DNA curvature is most commonly associated with AA dinucleotides in the form of polyadenine runs. We demonstrate inherent curvature in DNA which lacks AA/TT dinucleotides using the criteria of polyacrylamide gel mobility and efficiency of DNA cyclization. These studies are based upon two 21-base pair synthetic DNA fragments designed to exhibit fixed curvature according to deflections made to the helical axis by non-AA dinucleotide stacks. Repeats of these sequences display anomalously slow migration in polyacrylamide gels. Moreover, both sequences describe helical conformations that are closed into circles by DNA ligase at much smaller sizes than is typical of nondeformed DNA. Chemical cleavage of these DNA molecules with hydroxyl radical is also consistent with local variation in helical conformation at specific dinucleotide steps. PMID:1648100

  5. Synthesis, characterization and DNA interaction of new copper(II) complexes of Schiff base-aroylhydrazones bearing naphthalene ring.

    PubMed

    Gökçe, Cansu; Gup, Ramazan

    2013-05-01

    Two new copper(II) complexes with the condensation products of methyl 2-naphthyl ketone with 4-hydroxybenzohydrazide, 4-hydroxy-N'-[(1Z)-1-(naphthalen-2-yl)ethylidene]benzohydrazide [HL(1)] and (Z)-ethyl 2-(4-(2-(1-(naphthalen-2-yl)ethylidene)hydrazinecarbonyl)phenoxy)acetate (HL(2)) were synthesized and characterized by elemental analysis, infrared spectra, UV-Vis electronic absorption spectra, magnetic susceptibility measurements, TGA, powder XRD and SEM-EDS. The binding properties of the copper(II) complexes with calf thymus DNA were studied by using the absorption titration method. DNA cleavage activities of the synthesized copper complexes were examined by using agarose gel electrophoresis. The effect of complex concentration on the DNA cleavage reactions in the absence and presence of H2O2 was also investigated. The experimental results suggest that the copper complexes bind significantly to calf thymus DNA by both groove binding and intercalation modes and cleavage effectively pBR322 DNA. The mechanistic studies demonstrate that a hydrogen peroxide-derived species and singlet oxygen ((1)O2) are the active oxidative species for DNA cleavage. PMID:23562627

  6. DNA substrate preparation for atomic force microscopy studies of protein-DNA interactions.

    PubMed

    Buechner, Claudia N; Tessmer, Ingrid

    2013-12-01

    Protein-DNA interactions provide fundamental control mechanisms over biologically essential processes such as DNA replication, transcription, and repair. However, many details of these mechanisms still remain unclear. Atomic force microscopy (AFM) analyses provide unique and important structural and functional information on such protein-DNA interactions at the level of the individual molecules. The high sensitivity of the method with topographical visualization of all sample components also demands for extremely clean and pure materials. Here, we provide an overview of molecular biology-based approaches to produce DNA substrates for AFM imaging as well as other types of experiments, such as optical or magnetic tweezers, that profit from controllable substrate properties in long DNA fragments. We present detailed strategies to produce different types of motifs in DNA that are frequently employed targets of protein interactions. Importantly, the presented preparation techniques imply exact knowledge of the location of the introduced specific target sites within the DNA fragments, allowing for a distinction between specific and non-specific protein-DNA interactions in the AFM images and for separate conformational analyses of the different types of protein-DNA complexes.

  7. Molecular beacons: a novel DNA probe for nucleic acid and protein studies.

    PubMed

    Tan, W; Fang, X; Li, J; Liu, X

    2000-04-01

    A new concept has been introduced for molecular beacon DNA molecules. Molecular beacons are a new class of oligonucleotides that can report the presence of specific nucleic acids in both homogeneous solutions and at the liquid-solid interface. They emit an intense fluorescent signal only when hybridized to their target DNA or RNA molecules. Biotinylated molecular beacons have been designed and used for the development of ultrasensitive DNA sensors and for DNA molecular interaction studies at a solid-liquid interface. Molecular beacons have also been used to study protein-DNA interactions. They have provided a variety of exciting opportunities in DNA/RNA/protein studies.

  8. Coordination behavior of ligand based on NNS and NNO donors with ruthenium(III) complexes and their catalytic and DNA interaction studies

    NASA Astrophysics Data System (ADS)

    Manikandan, R.; Viswnathamurthi, P.

    2012-11-01

    Reactions of 2-acetylpyridine-thiosemicarbazone HL1, 2-acetylpyridine-4-methyl-thiosemicarbazone HL2, 2-acetylpyridine-4-phenyl-thiosemicarbazone HL3 and 2-acetylpyridine-semicarbazone HL4 with ruthenium(III) precursor complexes were studied and the products were characterized by analytical and spectral (FT-IR, electronic, EPR and EI-MS) methods. The ligands coordinated with the ruthenium(III) ion via pyridine nitrogen, azomethine nitrogen and thiolate sulfur/enolate oxygen. An octahedral geometry has been proposed for all the complexes based on the studies. All the complexes are redox active and display an irreversible and quasireversible metal centered redox processes. Further, the catalytic activity of the new complexes has been investigated for the transfer hydrogenation of ketones in the presence of isopropanol/KOH and the Kumada-Corriu coupling of aryl halides with aryl Grignard reagents. The DNA cleavage efficiency of new complexes has also been tested.

  9. Spectroscopic studies on the interaction between Pr(III) complex of an ofloxacin derivative and bovine serum albumin or DNA

    NASA Astrophysics Data System (ADS)

    Xu, Min; Ma, Zhao-Rong; Huang, Liang; Chen, Feng-Juan; Zeng, Zheng-zhi

    2011-01-01

    The binding properties on [PrL 2(NO 3)](NO 3) 2 (L = 9-fluoro-2,3-dihydro-3-methyl-10-(4-methyl-1-piperaziny)-7-oxo-7Hpyrido[1,2,3-de]-1,4-benzoxazine-6-carbaldehyde benzoyl hydrazone) to bovine serum albumin (BSA) have been studied for the first time using fluorescence spectroscopy in combination with UV-Vis absorbance spectroscopy. The results showed that [PrL 2(NO 3)](NO 3) 2 strongly quenched the intrinsic fluorescence of BSA through a static quenching procedure, and non-radiation energy transfer happened within molecules. The number of binding site was about 1, and the efficiency of Förster energy transfer provided a distance of 4.26 nm between tryptophan and [PrL 2(NO 3)](NO 3) 2 binding site. At 288, 298, 310 K, the quenching constants of BSA-[PrL 2(NO 3)](NO 3) 2 system were 5.11 × 10 4, 4.33 × 10 4 and 3.71 × 10 4 l M -1. Δ H, Δ S and Δ G were obtained based on the quenching constants and thermodynamic theory (Δ H < 0, Δ S > 0 and Δ G < 0). These results indicated that hydrophobic and electrostatic interactions are the mainly binding forces in the [PrL 2(NO 3)](NO 3) 2-BSA system. In addition, the CD spectra have proved that BSA secondary structure changed in the presence of [PrL 2(NO 3)](NO 3) 2 in aqueous solution. Moreover, the interaction between [PrL 2(NO 3)](NO 3) 2 and calf thymus DNA (CT DNA) was studied by spectroscopy and viscosity measurements, which showed that the binding mode of the [PrL 2(NO 3)](NO 3) 2 with DNA is intercalation. The DNA cleavage results show that in the absence of any reducing agent, the [PrL 2(NO 3)](NO 3) 2 can cleave plasmid pBR322 DNA and its hydrolytic mechanism was demonstrated with hydroxyl radical scavengers and singlet oxygen quenchers.

  10. Ahaptoglobinaemia in Melanesia: DNA and malarial antibody studies.

    PubMed

    Hill, A V; Whitehouse, D B; Bowden, D K; Hopkinson, D A; Draper, C C; Peto, T E; Clegg, J B; Weatherall, D J

    1987-01-01

    To assess the relative contributions of genetic and acquired factors, particularly malaria, to the high frequencies of ahaptoglobinaemia found in Melanesia we have performed DNA and malarial antibody studies in a population from Vanuatu. No gene deletion or rearrangement was found on gene mapping in any ahaptoglobinaemic individual and the frequencies of the Hp1 and Hp2 alleles in the ahaptoglobinaemic group were similar to controls. However, antibodies to Plasmodium falciparum were significantly elevated in the ahaptoglobinaemics. These data suggest that malaria rather than genetic factors is the major cause of ahaptoglobinaemia in Melanesia. PMID:3328345

  11. Does Cleavage Work at Work? Men, but Not Women, Falsely Believe Cleavage Sells a Weak Product

    ERIC Educational Resources Information Center

    Glick, Peter; Chrislock, Karyna; Petersik, Korinne; Vijay, Madhuri; Turek, Aleksandra

    2008-01-01

    We examined whether men, but not women, would be distracted by a female sales representative's exposed cleavage, leading to greater perceived efficacy for a weak, but not for a strong product. A community sample of 88 men and 97 women viewed a video of a female pharmaceutical sales representative who (a) had exposed cleavage or dressed modestly…

  12. Crystal structure of a DNA catalyst.

    PubMed

    Ponce-Salvatierra, Almudena; Wawrzyniak-Turek, Katarzyna; Steuerwald, Ulrich; Höbartner, Claudia; Pena, Vladimir

    2016-01-14

    Catalysis in biology is restricted to RNA (ribozymes) and protein enzymes, but synthetic biomolecular catalysts can also be made of DNA (deoxyribozymes) or synthetic genetic polymers. In vitro selection from synthetic random DNA libraries identified DNA catalysts for various chemical reactions beyond RNA backbone cleavage. DNA-catalysed reactions include RNA and