Sample records for dna clone library

  1. Physical mapping of complex genomes

    DOEpatents

    Evans, G.A.

    1993-06-15

    A method for the simultaneous identification of overlapping cosmid clones among multiple cosmid clones and the use of the method for mapping complex genomes are provided. A library of cosmid clones that contains the DNA to be mapped is constructed and arranged in a manner such that individual clones can be identified and replicas of the arranged clones prepared. In preferred embodiments, the clones are arranged in a two dimensional matrix. In such embodiments, the cosmid clones in a row are pooled, mixed probes complementary to the ends of the DNA inserts in the pooled clones are synthesized, hybridized to a first replica of the library. Hybridizing clones, which include the pooled row, are identified. A second portion of clones is prepared by pooling cosmid clones that correspond to a column in the matrix. The second pool thereby includes one clone from the first portion pooled clones. This common clone is located on the replica at the intersection of the column and row. Mixed probes complementary to the ends of the DNA inserts in the second pooled portion of clones are prepared and hybridized to a second replica of the library. The hybridization pattern on the first and second replicas of the library are compared and cross-hybridizing clones, other than the clones in the pooled column and row, that hybridize to identical clones in the first and second replicas are identified. These clones necessarily include DNA inserts that overlap with the DNA insert in the common clone located at the intersection of the pooled row and pooled column. The DNA in the entire library may be mapped by pooling the clones in each of the rows and columns of the matrix, preparing mixed end-specific probes and hybridizing the probes from each row or column to a replica of the library. Since all clones in the library are located at the intersection of a column and a row, the overlapping clones for all clones in the library may be identified and a physical map constructed.

  2. Efficient preparation of shuffled DNA libraries through recombination (Gateway) cloning.

    PubMed

    Lehtonen, Soili I; Taskinen, Barbara; Ojala, Elina; Kukkurainen, Sampo; Rahikainen, Rolle; Riihimäki, Tiina A; Laitinen, Olli H; Kulomaa, Markku S; Hytönen, Vesa P

    2015-01-01

    Efficient and robust subcloning is essential for the construction of high-diversity DNA libraries in the field of directed evolution. We have developed a more efficient method for the subcloning of DNA-shuffled libraries by employing recombination cloning (Gateway). The Gateway cloning procedure was performed directly after the gene reassembly reaction, without additional purification and amplification steps, thus simplifying the conventional DNA shuffling protocols. Recombination-based cloning, directly from the heterologous reassembly reaction, conserved the high quality of the library and reduced the time required for the library construction. The described method is generally compatible for the construction of DNA-shuffled gene libraries. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Physical mapping of complex genomes

    DOEpatents

    Evans, Glen A.

    1993-01-01

    Method for simultaneous identification of overlapping cosmid clones among multiple cosmid clones and the use of the method for mapping complex genomes are provided. A library of cosmid clones that contains the DNA to be mapped is constructed and arranged in a manner such that individual clones can be identified and replicas of the arranged clones prepared. In preferred embodiments, the clones are arranged in a two dimensional matrix. In such embodiments, the cosmid clones in a row are pooled, mixed probes complementary to the ends of the DNA inserts int he pooled clones are synthesized, hybridized to a first replica of the library. Hybridizing clones, which include the pooled row, are identified. A second portion of clones is prepared by pooling cosmid clones that correspond to a column in the matrix. The second pool thereby includes one clone from the first portion pooled clones. This common clone is located on the replica at the intersection of the column and row. Mixed probes complementary to the ends of the DNA inserts in the second pooled portion of clones are prepared and hybridized to a second replica of the library. The hybridization pattern on the first and second replicas of the library are compared and cross-hybridizing clones, other than the clones in the pooled column and row, that hybridize to identical clones in the first and second replicas are identified. These clones necessarily include DNA inserts that overlap with the DNA insert int he common clone located at the intersection of the pooled row and pooled column. The DNA in the entire library may be mapped by pooling the clones in each of the rows and columns of the matrix, preparing mixed end-specific probes and hybridizing the probes from each row or column to a replica of the library. Since all clones in the library are located at the intersection of a column and a row, the overlapping clones for all clones in the library may be identified and a physical map constructed. In other preferred embodiments, the cosmid clones are arranged in a three dimensional matrix, pooled and compared in threes according to intersecting planes of the three dimensional matrix. Arrangements corresponding to geometries of higher dimensions may also be prepared and used to simultaneously identify overlapping clones in highly complex libraries with relatively few hybridization reactions.

  4. Bacterial community composition in different sediments from the Eastern Mediterranean Sea: a comparison of four 16S ribosomal DNA clone libraries.

    PubMed

    Polymenakou, Paraskevi N; Bertilsson, Stefan; Tselepides, Anastasios; Stephanou, Euripides G

    2005-10-01

    The regional variability of sediment bacterial community composition and diversity was studied by comparative analysis of four large 16S ribosomal DNA (rDNA) clone libraries from sediments in different regions of the Eastern Mediterranean Sea (Thermaikos Gulf, Cretan Sea, and South lonian Sea). Amplified rDNA restriction analysis of 664 clones from the libraries indicate that the rDNA richness and evenness was high: for example, a near-1:1 relationship among screened clones and number of unique restriction patterns when up to 190 clones were screened for each library. Phylogenetic analysis of 207 bacterial 16S rDNA sequences from the sediment libraries demonstrated that Gamma-, Delta-, and Alphaproteobacteria, Holophaga/Acidobacteria, Planctomycetales, Actinobacteria, Bacteroidetes, and Verrucomicrobia were represented in all four libraries. A few clones also grouped with the Betaproteobacteria, Nitrospirae, Spirochaetales, Chlamydiae, Firmicutes, and candidate division OPl 1. The abundance of sequences affiliated with Gammaproteobacteria was higher in libraries from shallow sediments in the Thermaikos Gulf (30 m) and the Cretan Sea (100 m) compared to the deeper South Ionian station (2790 m). Most sequences in the four sediment libraries clustered with uncultured 16S rDNA phylotypes from marine habitats, and many of the closest matches were clones from hydrocarbon seeps, benzene-mineralizing consortia, sulfate reducers, sulk oxidizers, and ammonia oxidizers. LIBSHUFF statistics of 16S rDNA gene sequences from the four libraries revealed major differences, indicating either a very high richness in the sediment bacterial communities or considerable variability in bacterial community composition among regions, or both.

  5. Construction of BAC Libraries from Flow-Sorted Chromosomes.

    PubMed

    Šafář, Jan; Šimková, Hana; Doležel, Jaroslav

    2016-01-01

    Cloned DNA libraries in bacterial artificial chromosome (BAC) are the most widely used form of large-insert DNA libraries. BAC libraries are typically represented by ordered clones derived from genomic DNA of a particular organism. In the case of large eukaryotic genomes, whole-genome libraries consist of a hundred thousand to a million clones, which make their handling and screening a daunting task. The labor and cost of working with whole-genome libraries can be greatly reduced by constructing a library derived from a smaller part of the genome. Here we describe construction of BAC libraries from mitotic chromosomes purified by flow cytometric sorting. Chromosome-specific BAC libraries facilitate positional gene cloning, physical mapping, and sequencing in complex plant genomes.

  6. 16S rRNA Gene Sequence Analysis of Drinking Water Using RNA and DNA Extracts as Targets for Clone Library Development

    EPA Science Inventory

    The bacterial composition of chlorinated drinking water was analyzed using 16S rRNA gene clone libraries derived from DNA extracts of 12 samples and compared to clone libraries previously generated using RNA extracts from the same samples. Phylogenetic analysis of 761 DNA-based ...

  7. Evaluation of vector-primed cDNA library production from microgram quantities of total RNA.

    PubMed

    Kuo, Jonathan; Inman, Jason; Brownstein, Michael; Usdin, Ted B

    2004-12-15

    cDNA sequences are important for defining the coding region of genes, and full-length cDNA clones have proven to be useful for investigation of the function of gene products. We produced cDNA libraries containing 3.5-5 x 10(5) primary transformants, starting with 5 mug of total RNA prepared from mouse pituitary, adrenal, thymus, and pineal tissue, using a vector-primed cDNA synthesis method. Of approximately 1000 clones sequenced, approximately 20% contained the full open reading frames (ORFs) of known transcripts, based on the presence of the initiating methionine residue codon. The libraries were complex, with 94, 91, 83 and 55% of the clones from the thymus, adrenal, pineal and pituitary libraries, respectively, represented only once. Twenty-five full-length clones, not yet represented in the Mammalian Gene Collection, were identified. Thus, we have produced useful cDNA libraries for the isolation of full-length cDNA clones that are not yet available in the public domain, and demonstrated the utility of a simple method for making high-quality libraries from small amounts of starting material.

  8. Strong spurious transcription likely contributes to DNA insert bias in typical metagenomic clone libraries.

    PubMed

    Lam, Kathy N; Charles, Trevor C

    2015-01-01

    Clone libraries provide researchers with a powerful resource to study nucleic acid from diverse sources. Metagenomic clone libraries in particular have aided in studies of microbial biodiversity and function, and allowed the mining of novel enzymes. Libraries are often constructed by cloning large inserts into cosmid or fosmid vectors. Recently, there have been reports of GC bias in fosmid metagenomic libraries, and it was speculated to be a result of fragmentation and loss of AT-rich sequences during cloning. However, evidence in the literature suggests that transcriptional activity or gene product toxicity may play a role. To explore possible mechanisms responsible for sequence bias in clone libraries, we constructed a cosmid library from a human microbiome sample and sequenced DNA from different steps during library construction: crude extract DNA, size-selected DNA, and cosmid library DNA. We confirmed a GC bias in the final cosmid library, and we provide evidence that the bias is not due to fragmentation and loss of AT-rich sequences but is likely occurring after DNA is introduced into Escherichia coli. To investigate the influence of strong constitutive transcription, we searched the sequence data for promoters and found that rpoD/σ(70) promoter sequences were underrepresented in the cosmid library. Furthermore, when we examined the genomes of taxa that were differentially abundant in the cosmid library relative to the original sample, we found the bias to be more correlated with the number of rpoD/σ(70) consensus sequences in the genome than with simple GC content. The GC bias of metagenomic libraries does not appear to be due to DNA fragmentation. Rather, analysis of promoter sequences provides support for the hypothesis that strong constitutive transcription from sequences recognized as rpoD/σ(70) consensus-like in E. coli may lead to instability, causing loss of the plasmid or loss of the insert DNA that gives rise to the transcription. Despite widespread use of E. coli to propagate foreign DNA in metagenomic libraries, the effects of in vivo transcriptional activity on clone stability are not well understood. Further work is required to tease apart the effects of transcription from those of gene product toxicity.

  9. Combined Use of 16S Ribosomal DNA and 16S rRNA To Study the Bacterial Community of Polychlorinated Biphenyl-Polluted Soil

    PubMed Central

    Nogales, Balbina; Moore, Edward R. B.; Llobet-Brossa, Enrique; Rossello-Mora, Ramon; Amann, Rudolf; Timmis, Kenneth N.

    2001-01-01

    The bacterial diversity assessed from clone libraries prepared from rRNA (two libraries) and ribosomal DNA (rDNA) (one library) from polychlorinated biphenyl (PCB)-polluted soil has been analyzed. A good correspondence of the community composition found in the two types of library was observed. Nearly 29% of the cloned sequences in the rDNA library were identical to sequences in the rRNA libraries. More than 60% of the total cloned sequence types analyzed were grouped in phylogenetic groups (a clone group with sequence similarity higher than 97% [98% for Burkholderia and Pseudomonas-type clones]) represented in both types of libraries. Some of those phylogenetic groups, mostly represented by a single (or pair) of cloned sequence type(s), were observed in only one of the types of library. An important difference between the libraries was the lack of clones representative of the Actinobacteria in the rDNA library. The PCB-polluted soil exhibited a high bacterial diversity which included representatives of two novel lineages. The apparent abundance of bacteria affiliated to the beta-subclass of the Proteobacteria, and to the genus Burkholderia in particular, was confirmed by fluorescence in situ hybridization analysis. The possible influence on apparent diversity of low template concentrations was assessed by dilution of the RNA template prior to amplification by reverse transcription-PCR. Although differences in the composition of the two rRNA libraries obtained from high and low RNA concentrations were observed, the main components of the bacterial community were represented in both libraries, and therefore their detection was not compromised by the lower concentrations of template used in this study. PMID:11282645

  10. [cDNA library construction from panicle meristem of finger millet].

    PubMed

    Radchuk, V; Pirko, Ia V; Isaenkov, S V; Emets, A I; Blium, Ia B

    2014-01-01

    The protocol for production of full-size cDNA using SuperScript Full-Length cDNA Library Construction Kit II (Invitrogen) was tested and high quality cDNA library from meristematic tissue of finger millet panicle (Eleusine coracana (L.) Gaertn) was created. The titer of obtained cDNA library comprised 3.01 x 10(5) CFU/ml in avarage. In average the length of cDNA insertion consisted about 1070 base pairs, the effectivity of cDNA fragment insertions--99.5%. The selective sequencing of cDNA clones from created library was performed. The sequences of cDNA clones were identified with usage of BLAST-search. The results of cDNA library analysis and selective sequencing represents prove good functionality and full length character of inserted cDNA clones. Obtained cDNA library from meristematic tissue of finger millet panicle represents good and valuable source for isolation and identification of key genes regulating metabolism and meristematic development and for mining of new molecular markers to conduct out high quality genetic investigations and molecular breeding as well.

  11. IDENTIFICATION OF ACTIVE BACTERIAL COMMUNITIES IN A MODEL DRINKING WATER BIOFILM SYSTEM USING 16S RRNA-BASED CLONE LIBRARIES

    EPA Science Inventory

    Recent phylogenetic studies have used DNA as the target molecule for the development of environmental 16S rDNA clone libraries. As DNA may persist in the environment, DNA-based libraries cannot be used to identify metabolically active bacteria in water systems. In this study, a...

  12. Rapid and efficient cDNA library screening by self-ligation of inverse PCR products (SLIP).

    PubMed

    Hoskins, Roger A; Stapleton, Mark; George, Reed A; Yu, Charles; Wan, Kenneth H; Carlson, Joseph W; Celniker, Susan E

    2005-12-02

    cDNA cloning is a central technology in molecular biology. cDNA sequences are used to determine mRNA transcript structures, including splice junctions, open reading frames (ORFs) and 5'- and 3'-untranslated regions (UTRs). cDNA clones are valuable reagents for functional studies of genes and proteins. Expressed Sequence Tag (EST) sequencing is the method of choice for recovering cDNAs representing many of the transcripts encoded in a eukaryotic genome. However, EST sequencing samples a cDNA library at random, and it recovers transcripts with low expression levels inefficiently. We describe a PCR-based method for directed screening of plasmid cDNA libraries. We demonstrate its utility in a screen of libraries used in our Drosophila EST projects for 153 transcription factor genes that were not represented by full-length cDNA clones in our Drosophila Gene Collection. We recovered high-quality, full-length cDNAs for 72 genes and variously compromised clones for an additional 32 genes. The method can be used at any scale, from the isolation of cDNA clones for a particular gene of interest, to the improvement of large gene collections in model organisms and the human. Finally, we discuss the relative merits of directed cDNA library screening and RT-PCR approaches.

  13. Construction of a genomic DNA library with a TA vector and its application in cloning of the phytoene synthase gene from the cyanobacterium Spirulina platensis M-135

    NASA Astrophysics Data System (ADS)

    Yoshikazu, Kawata; Shin-Ichi, Yano; Hiroyuki, Kojima

    1998-03-01

    An efficient and simple method for constructing a genomic DNA library using a TA cloning vector is presented. It is based on the sonicative cleavage of genomic DNA and modification of fragment ends with Taq DNA polymerase, followed by ligation using a TA vector. This method was applied for cloning of the phytoene synthase gene crt B from Spirulina platensis. This method is useful when genomic DNA cannot be efficiently digested with restriction enzymes, a problem often encountered during the construction of a genomic DNA library of cyanobacteria.

  14. Large-Scale Concatenation cDNA Sequencing

    PubMed Central

    Yu, Wei; Andersson, Björn; Worley, Kim C.; Muzny, Donna M.; Ding, Yan; Liu, Wen; Ricafrente, Jennifer Y.; Wentland, Meredith A.; Lennon, Greg; Gibbs, Richard A.

    1997-01-01

    A total of 100 kb of DNA derived from 69 individual human brain cDNA clones of 0.7–2.0 kb were sequenced by concatenated cDNA sequencing (CCS), whereby multiple individual DNA fragments are sequenced simultaneously in a single shotgun library. The method yielded accurate sequences and a similar efficiency compared with other shotgun libraries constructed from single DNA fragments (>20 kb). Computer analyses were carried out on 65 cDNA clone sequences and their corresponding end sequences to examine both nucleic acid and amino acid sequence similarities in the databases. Thirty-seven clones revealed no DNA database matches, 12 clones generated exact matches (≥98% identity), and 16 clones generated nonexact matches (57%–97% identity) to either known human or other species genes. Of those 28 matched clones, 8 had corresponding end sequences that failed to identify similarities. In a protein similarity search, 27 clone sequences displayed significant matches, whereas only 20 of the end sequences had matches to known protein sequences. Our data indicate that full-length cDNA insert sequences provide significantly more nucleic acid and protein sequence similarity matches than expressed sequence tags (ESTs) for database searching. [All 65 cDNA clone sequences described in this paper have been submitted to the GenBank data library under accession nos. U79240–U79304.] PMID:9110174

  15. Synthesis and cell-free cloning of DNA libraries using programmable microfluidics

    PubMed Central

    Yehezkel, Tuval Ben; Rival, Arnaud; Raz, Ofir; Cohen, Rafael; Marx, Zipora; Camara, Miguel; Dubern, Jean-Frédéric; Koch, Birgit; Heeb, Stephan; Krasnogor, Natalio; Delattre, Cyril; Shapiro, Ehud

    2016-01-01

    Microfluidics may revolutionize our ability to write synthetic DNA by addressing several fundamental limitations associated with generating novel genetic constructs. Here we report the first de novo synthesis and cell-free cloning of custom DNA libraries in sub-microliter reaction droplets using programmable digital microfluidics. Specifically, we developed Programmable Order Polymerization (POP), Microfluidic Combinatorial Assembly of DNA (M-CAD) and Microfluidic In-vitro Cloning (MIC) and applied them to de novo synthesis, combinatorial assembly and cell-free cloning of genes, respectively. Proof-of-concept for these methods was demonstrated by programming an autonomous microfluidic system to construct and clone libraries of yeast ribosome binding sites and bacterial Azurine, which were then retrieved in individual droplets and validated. The ability to rapidly and robustly generate designer DNA molecules in an autonomous manner should have wide application in biological research and development. PMID:26481354

  16. Genomic clones for human cholinesterase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kott, M.; Venta, P.J.; Larsen, J.

    1987-05-01

    A human genomic library was prepared from peripheral white blood cells from a single donor by inserting an MboI partial digest into BamHI poly-linker sites of EMBL3. This library was screened using an oligolabeled human cholinesterase cDNA probe over 700 bp long. The latter probe was obtained from a human basal ganglia cDNA library. Of approximately 2 million clones screened with high stringency conditions several positive clones were identified; two have been plaque purified. One of these clones has been partially mapped using restriction enzymes known to cut within the coded region of the cDNA for human serum cholinesterase. Hybridizationmore » of the fragments and their sizes are as expected if the genomic clone is cholinesterase. Sequencing of the DNA fragments in M13 is in progress to verify the identify of the clone and the location of introns.« less

  17. High-resolution mapping and sequence analysis of 597 cDNA clones transcribed from the 1 Mb region in human chromosome 4q16.3 containing Huntington disease gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadano, S.; Ishida, Y.; Tomiyasu, H.

    1994-09-01

    To complete a transcription map of the 1 Mb region in human chromosome 4p16.3 containing the Huntington disease (HD) gene, the isolation of cDNA clones are being performed throughout. Our method relies on a direct screening of the cDNA libraries probed with single copy microclones from 3 YAC clones spanning 1 Mbp of the HD gene region. AC-DNAs were isolated by a preparative pulsed-field gel electrophoresis, amplified by both a single unique primer (SUP)-PCR and a linker ligation PCR, and 6 microclone-DNA libraries were generated. Then, 8,640 microclones from these libraries were independently amplified by PCR, and arrayed onto themore » membranes. 800-900 microclones that were not cross-hybridized with total human and yeast genomic DNA, TAC vector DNA, and ribosomal cDNA on a dot hybridization (putatively carrying single copy sequences) were pooled to make 9 probe pools. A total of {approximately}1.8x10{sup 7} plaques from the human brain cDNA libraries was screened with 9 pool-probes, and then 672 positive cDNA clones were obtained. So far, 597 cDNA clones were defined and arrayed onto a map of the 1 Mbp of the HD gene region by hybridization with HD region-specific cosmid contigs and YAC clones. Further characterization including a DNA sequencing and Northern blot analysis is currently underway.« less

  18. [Construction of fetal mesenchymal stem cell cDNA subtractive library].

    PubMed

    Yang, Li; Wang, Dong-Mei; Li, Liang; Bai, Ci-Xian; Cao, Hua; Li, Ting-Yu; Pei, Xue-Tao

    2002-04-01

    To identify differentially expressed genes between fetal mesenchymal stem cell (MSC) and adult MSC, especially specified genes expressed in fetal MSC, a cDNA subtractive library of fetal MSC was constructed using suppression subtractive hybridization (SSH) technique. At first, total RNA was isolated from fetal and adult MSC. Using SMART PCR synthesis method, single-strand and double-strand cDNAs were synthesized. After Rsa I digestion, fetal MSC cDNAs were divided into two groups and ligated to adaptor 1 and adaptor 2 respectively. Results showed that the amplified library contains 890 clones. Analysis of 890 clones with PCR demonstrated that 768 clones were positive. The positive rate is 86.3%. The size of inserted fragments in these positive clones was between 0.2 - 1 kb, with an average of 400 - 600 bp. SSH is a convenient and effective method for screening differentially expressed genes. The constructed cDNA subtractive library of fetal MSC cDNA lays solid foundation for screening and cloning new and specific function related genes of fetal MSC.

  19. Microvariation Artifacts Introduced by PCR and Cloning of Closely Related 16S rRNA Gene Sequences†

    PubMed Central

    Speksnijder, Arjen G. C. L.; Kowalchuk, George A.; De Jong, Sander; Kline, Elizabeth; Stephen, John R.; Laanbroek, Hendrikus J.

    2001-01-01

    A defined template mixture of seven closely related 16S-rDNA clones was used in a PCR-cloning experiment to assess and track sources of artifactual sequence variation in 16S rDNA clone libraries. At least 14% of the recovered clones contained aberrations. Artifact sources were polymerase errors, a mutational hot spot, and cloning of heteroduplexes and chimeras. These data may partially explain the high degree of microheterogeneity typical of sequence clusters detected in environmental clone libraries. PMID:11133483

  20. PrecisePrimer: an easy-to-use web server for designing PCR primers for DNA library cloning and DNA shuffling.

    PubMed

    Pauthenier, Cyrille; Faulon, Jean-Loup

    2014-07-01

    PrecisePrimer is a web-based primer design software made to assist experimentalists in any repetitive primer design task such as preparing, cloning and shuffling DNA libraries. Unlike other popular primer design tools, it is conceived to generate primer libraries with popular PCR polymerase buffers proposed as pre-set options. PrecisePrimer is also meant to design primers in batches, such as for DNA libraries creation of DNA shuffling experiments and to have the simplest interface possible. It integrates the most up-to-date melting temperature algorithms validated with experimental data, and cross validated with other computational tools. We generated a library of primers for the extraction and cloning of 61 genes from yeast DNA genomic extract using default parameters. All primer pairs efficiently amplified their target without any optimization of the PCR conditions. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing.

    PubMed

    Kröber, Magdalena; Bekel, Thomas; Diaz, Naryttza N; Goesmann, Alexander; Jaenicke, Sebastian; Krause, Lutz; Miller, Dimitri; Runte, Kai J; Viehöver, Prisca; Pühler, Alfred; Schlüter, Andreas

    2009-06-01

    The phylogenetic structure of the microbial community residing in a fermentation sample from a production-scale biogas plant fed with maize silage, green rye and liquid manure was analysed by an integrated approach using clone library sequences and metagenome sequence data obtained by 454-pyrosequencing. Sequencing of 109 clones from a bacterial and an archaeal 16S-rDNA amplicon library revealed that the obtained nucleotide sequences are similar but not identical to 16S-rDNA database sequences derived from different anaerobic environments including digestors and bioreactors. Most of the bacterial 16S-rDNA sequences could be assigned to the phylum Firmicutes with the most abundant class Clostridia and to the class Bacteroidetes, whereas most archaeal 16S-rDNA sequences cluster close to the methanogen Methanoculleus bourgensis. Further sequences of the archaeal library most probably represent so far non-characterised species within the genus Methanoculleus. A similar result derived from phylogenetic analysis of mcrA clone sequences. The mcrA gene product encodes the alpha-subunit of methyl-coenzyme-M reductase involved in the final step of methanogenesis. BLASTn analysis applying stringent settings resulted in assignment of 16S-rDNA metagenome sequence reads to 62 16S-rDNA amplicon sequences thus enabling frequency of abundance estimations for 16S-rDNA clone library sequences. Ribosomal Database Project (RDP) Classifier processing of metagenome 16S-rDNA reads revealed abundance of the phyla Firmicutes, Bacteroidetes and Euryarchaeota and the orders Clostridiales, Bacteroidales and Methanomicrobiales. Moreover, a large fraction of 16S-rDNA metagenome reads could not be assigned to lower taxonomic ranks, demonstrating that numerous microorganisms in the analysed fermentation sample of the biogas plant are still unclassified or unknown.

  2. Preparation and screening of an arrayed human genomic library generated with the P1 cloning system.

    PubMed Central

    Shepherd, N S; Pfrogner, B D; Coulby, J N; Ackerman, S L; Vaidyanathan, G; Sauer, R H; Balkenhol, T C; Sternberg, N

    1994-01-01

    We describe here the construction and initial characterization of a 3-fold coverage genomic library of the human haploid genome that was prepared using the bacteriophage P1 cloning system. The cloned DNA inserts were produced by size fractionation of a Sau3AI partial digest of high molecular weight genomic DNA isolated from primary cells of human foreskin fibroblasts. The inserts were cloned into the pAd10sacBII vector and packaged in vitro into P1 phage. These were used to generate recombinant bacterial clones, each of which was picked robotically from an agar plate into a well of a 96-well microtiter dish, grown overnight, and stored at -70 degrees C. The resulting library, designated DMPC-HFF#1 series A, consists of approximately 130,000-140,000 recombinant clones that were stored in 1500 microtiter dishes. To screen the library, clones were combined in a pooling strategy and specific loci were identified by PCR analysis. On average, the library contains two or three different clones for each locus screened. To date we have identified a total of 17 clones containing the hypoxanthine-guanine phosphoribosyltransferase, human serum albumin-human alpha-fetoprotein, p53, cyclooxygenase I, human apurinic endonuclease, beta-polymerase, and DNA ligase I genes. The cloned inserts average 80 kb in size and range from 70 to 95 kb, with one 49-kb insert and one 62-kb insert. Images PMID:8146166

  3. A Polymerase Chain Reaction-Based Method for Isolating Clones from a Complimentary DNA Library in Sheep

    PubMed Central

    Friis, Thor Einar; Stephenson, Sally; Xiao, Yin; Whitehead, Jon

    2014-01-01

    The sheep (Ovis aries) is favored by many musculoskeletal tissue engineering groups as a large animal model because of its docile temperament and ease of husbandry. The size and weight of sheep are comparable to humans, which allows for the use of implants and fixation devices used in human clinical practice. The construction of a complimentary DNA (cDNA) library can capture the expression of genes in both a tissue- and time-specific manner. cDNA libraries have been a consistent source of gene discovery ever since the technology became commonplace more than three decades ago. Here, we describe the construction of a cDNA library using cells derived from sheep bones based on the pBluescript cDNA kit. Thirty clones were picked at random and sequenced. This led to the identification of a novel gene, C12orf29, which our initial experiments indicate is involved in skeletal biology. We also describe a polymerase chain reaction-based cDNA clone isolation method that allows the isolation of genes of interest from a cDNA library pool. The techniques outlined here can be applied in-house by smaller tissue engineering groups to generate tools for biomolecular research for large preclinical animal studies and highlights the power of standard cDNA library protocols to uncover novel genes. PMID:24447069

  4. Efficient and simpler method to construct normalized cDNA libraries with improved representations of full-length cDNAs

    DOEpatents

    Soares, Marcelo Bento; Bonaldo, Maria de Fatima

    1998-01-01

    This invention provides a method to normalize a cDNA library comprising: (a) constructing a directionally cloned library containing cDNA inserts wherein the insert is capable of being amplified by polymerase chain reaction; (b) converting a double-stranded cDNA library into single-stranded DNA circles; (c) generating single-stranded nucleic acid molecules complementary to the single-stranded DNA circles converted in step (b) by polymerase chain reaction with appropriate primers; (d) hybridizing the single-stranded DNA circles converted in step (b) with the complementary single-stranded nucleic acid molecules generated in step (c) to produce partial duplexes to an appropriate Cot; and (e) separating the unhybridized single-stranded DNA circles from the hybridized DNA circles, thereby generating a normalized cDNA library. This invention also provides a method to normalize a cDNA library wherein the generating of single-stranded nucleic acid molecules complementary to the single-stranded DNA circles converted in step (b) is by excising cDNA inserts from the double-stranded cDNA library; purifying the cDNA inserts from cloning vectors; and digesting the cDNA inserts with an exonuclease. This invention further provides a method to construct a subtractive cDNA library following the steps described above. This invention further provides normalized and/or subtractive cDNA libraries generated by the above methods.

  5. Efficient and simpler method to construct normalized cDNA libraries with improved representations of full-length cDNAs

    DOEpatents

    Soares, M.B.; Fatima Bonaldo, M. de

    1998-12-08

    This invention provides a method to normalize a cDNA library comprising: (a) constructing a directionally cloned library containing cDNA inserts wherein the insert is capable of being amplified by polymerase chain reaction; (b) converting a double-stranded cDNA library into single-stranded DNA circles; (c) generating single-stranded nucleic acid molecules complementary to the single-stranded DNA circles converted in step (b) by polymerase chain reaction with appropriate primers; (d) hybridizing the single-stranded DNA circles converted in step (b) with the complementary single-stranded nucleic acid molecules generated in step (c) to produce partial duplexes to an appropriate Cot; and (e) separating the unhybridized single-stranded DNA circles from the hybridized DNA circles, thereby generating a normalized cDNA library. This invention also provides a method to normalize a cDNA library wherein the generating of single-stranded nucleic acid molecules complementary to the single-stranded DNA circles converted in step (b) is by excising cDNA inserts from the double-stranded cDNA library; purifying the cDNA inserts from cloning vectors; and digesting the cDNA inserts with an exonuclease. This invention further provides a method to construct a subtractive cDNA library following the steps described above. This invention further provides normalized and/or subtractive cDNA libraries generated by the above methods. 25 figs.

  6. Systematic cloning of human minisatellites from ordered array charomid libraries.

    PubMed

    Armour, J A; Povey, S; Jeremiah, S; Jeffreys, A J

    1990-11-01

    We present a rapid and efficient method for the isolation of minisatellite loci from human DNA. The method combines cloning a size-selected fraction of human MboI DNA fragments in a charomid vector with hybridization screening of the library in ordered array. Size-selection of large MboI fragments enriches for the longer, more variable minisatellites and reduces the size of the library required. The library was screened with a series of multi-locus probes known to detect a large number of hypervariable loci in human DNA. The gridded library allowed both the rapid processing of positive clones and the comparative evaluation of the different multi-locus probes used, in terms of both the relative success in detecting hypervariable loci and the degree of overlap between the sets of loci detected. We report 23 new human minisatellite loci isolated by this method, which map to 14 autosomes and the sex chromosomes.

  7. The Drosophila gene collection: Identification of putative full-length cDNAs for 70 percent of D. melanogaster genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stapleton, Mark; Liao, Guochun; Brokstein, Peter

    2002-08-12

    Collections of full-length nonredundant cDNA clones are critical reagents for functional genomics. The first step toward these resources is the generation and single-pass sequencing of cDNA libraries that contain a high proportion of full-length clones. The first release of the Drosophila Gene Collection Release 1 (DGCr1) was produced from six libraries representing various tissues, developmental stages, and the cultured S2 cell line. Nearly 80,000 random 5prime expressed sequence tags (EST) from these libraries were collapsed into a nonredundant set of 5849 cDNAs, corresponding to {approx}40 percent of the 13,474 predicted genes in Drosophila. To obtain cDNA clones representing the remainingmore » genes, we have generated an additional 157,835 5prime ESTs from two previously existing and three new libraries. One new library is derived from adult testis, a tissue we previously did not exploit for gene discovery; two new cap-trapped normalized libraries are derived from 0-22hr embryos and adult heads. Taking advantage of the annotated D. melanogaster genome sequence, we clustered the ESTs by aligning them to the genome. Clusters that overlap genes not already represented by cDNA clones in the DGCr1 were analyzed further, and putative full-length clones were selected for inclusion in the new DGC. This second release of the DGC (DGCr2) contains 5061 additional clones, extending the collection to 10,910 cDNAs representing >70 percent of the predicted genes in Drosophila.« less

  8. Use of RecA protein to enrich for homologous genes in a genomic library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taidi-Laskowski, B.; Grumet, F.C.; Tyan, D.

    1988-08-25

    RecA protein-coated probe has been utilized to enrich genomic digests for desired genes in order to facilitate cloning from genomic libraries. Using a previously cloned HLA-B27 gene as the recA-coated enrichment probe, the authors obtained a mean 108x increase in the ratio of specific to nonspecific plaques in lambda libraries screened for B27 variant alleles of estimated 99% homology to the probe. Class I genes of lesser homology were less enriched. Loss of genomic DNA during the enrichment procedure can, however, restrict application of this technique whenever starting genomic DNA is very limited. Nevertheless, the impressive reduction in cloning effortmore » and material makes recA enrichment a useful new tool for cloning homologous genes from genomic DNA.« less

  9. Phenol emulsion-enhanced DNA-driven subtractive cDNA cloning: isolation of low-abundance monkey cortex-specific mRNAs.

    PubMed Central

    Travis, G H; Sutcliffe, J G

    1988-01-01

    To isolate cDNA clones of low-abundance mRNAs expressed in monkey cerebral cortex but absent from cerebellum, we developed an improved subtractive cDNA cloning procedure that requires only modest quantities of mRNA. Plasmid DNA from a monkey cerebellum cDNA library was hybridized in large excess to radiolabeled monkey cortex cDNA in a phenol emulsion-enhanced reaction. The unhybridized cortex cDNA was isolated by chromatography on hydroxyapatite and used to probe colonies from a monkey cortex cDNA library. Of 60,000 colonies screened, 163 clones were isolated and confirmed by colony hybridization or RNA blotting to represent mRNAs, ranging from 0.001% to 0.1% abundance, specific to or highly enriched in cerebral cortex relative to cerebellum. Clones of one medium-abundance mRNA were recovered almost quantitatively. Two of the lower-abundance mRNAs were expressed at levels reduced by a factor of 10 in Alzheimer disease relative to normal human cortex. One of these was identified as the monkey preprosomatostatin I mRNA. Images PMID:2894033

  10. A strategy for rapid production and screening of yeast artificial chromosome libraries.

    PubMed

    Strauss, W M; Jaenisch, E; Jaenisch, R

    1992-01-01

    We describe methods for rapid production and screening of yeast artificial chromosome (YAC) libraries. Utilizing complete restriction digests of mouse genomic DNA for ligations in agarose, a 32,000-clone library was produced and screened in seven weeks. Screening was accomplished by subdividing primary transformation plates into pools of approximately 100 clones which were transferred into a master glycerol stock. These master stocks were used to inoculate liquid cultures to produce culture "pools," and ten pools of 100 clones were then combined to yield superpools of 1,000 clones. Both pool and superpool DNA was screened by polymerase chain reaction (PCR) and positive pools representing 100 clones were then plated on selective medium and screened by in situ hybridization. Screening by the two tiered PCR assay and by in situ hybridization was completed in 4-5 days. Utilizing this methodology we have isolated a 150 kb clone spanning the alpha 1(I) collagen (Col1a1) gene as well as 40 kb clones from the Hox-2 locus. To characterize the representation of the YAC library, the size distribution of genomic Sal I fragments was compared to that of clones picked at random from the library. The results demonstrate significant biasing of the cloned fragment distribution, resulting in a loss of representation for larger fragments.

  11. Isolation and characterization of cDNA clones for carrot extensin and a proline-rich 33-kDa protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, J.; Varner, J.E.

    1985-07-01

    Extensins are hydroxyproline-rich glycoproteins associated with most dicotyledonous plant cell walls. To isolate cDNA clones encoding extensin, the authors started by isolating poly(A) RNA from carrot root tissue, and then translating the RNA in vitro, in the presence of tritiated leucine or proline. A 33-kDa peptide was identified in the translation products as a putative extensin precursor. From a cDNA library constructed with poly(A) RNA from wounded carrots, one cDNA clone (pDC5) was identified that specifically hybridized to poly(A) RNA encoding this 33-kDa peptide. They isolated three cDNA clones (pDC11, pDC12, and pDC16) from another cDNA library using pCD5 asmore » a probe. DNA sequence data, RNA hybridization analysis, and hybrid released in vitro translation indicate that the cDNA clones pDC11 encodes extensin and that cDNA clones pDC12 and pDC16 encode the 33-kDa peptide, which as yet has an unknown identity and function. The assumption that the 33-kDa peptide was an extensin precursor was invalid. RNA hybridization analysis showed that RNA encoded by both clone types is accumulated upon wounding.« less

  12. 16S rRNA Gene Sequence Analysis of Drinking Water Using RNA and DNA Extracts as Targets for Clone Library Development

    EPA Science Inventory

    We examined the bacterial composition of chlorinated drinking water using 16S rRNA gene clone libraries derived from RNA and DNA extracted from twelve water samples collected in three different months (June, August, and September of 2007). Phylogenetic analysis of 1234 and 1117 ...

  13. 16S rRNA Gene Sequence Analysis of Drinking Water Using RNA and DNA Extracts as Targets for Clone Library Development - Poster

    EPA Science Inventory

    We examined the bacterial composition of chlorinated drinking water using 16S rRNA gene clone libraries derived from RNA and DNA extracted from twelve water samples collected in three different months (June, August, and September of 2007). Phylogenetic analysis of 1234 and 1117 ...

  14. Cloning of a Gene Whose Expression is Increased in Scrapie and in Senile Plaques in Human Brain

    NASA Astrophysics Data System (ADS)

    Wietgrefe, S.; Zupancic, M.; Haase, A.; Chesebro, B.; Race, R.; Frey, W.; Rustan, T.; Friedman, R. L.

    1985-12-01

    A complementary DNA library was constructed from messenger RNA's extracted from the brains of mice infected with the scrapie agent. The library was differentially screened with the objectives of finding clones that might be used as markers of infection and finding clones of genes whose increased expression might be correlated with the pathological changes common to scrapie and Alzheimer's disease. A gene was identified whose expression is increased in scrapie. The complementary DNA corresponding to this gene hybridized preferentially and focally to cells in the brains of scrapie-infected animals. The cloned DNA also hybridized to the neuritic plaques found with increased frequency in brains of patients with Alzheimer's disease.

  15. Construction of a general human chromosome jumping library, with application to cystic fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, F.S.; Drumm, M.L.; Cole, J.L.

    1987-02-27

    In many genetic disorders, the responsible gene and its protein product are unknown. The technique known as reverse genetics, in which chromosomal map positions and genetically linked DNA markers are used to identify and clone such genes, is complicated by the fact that the molecular distances from the closest DNA markers to the gene itself are often too large to traverse by standard cloning techniques. To address this situation, a general human chromosome jumping library was constructed that allows the cloning of DNA sequences approximately 100 kilobases away from any starting point in genomic DNA. As an illustration of itsmore » usefulness, this library was searched for a jumping clone, starting at the met oncogene, which is a marker tightly linked to the cystic fibrosis gene that is located on human chromosome 7. Mapping of the new genomic fragment by pulsed field gel electrophoresis confirmed that it resides on chromosome 7 within 240 kilobases downstream of the met gene. The use of chromosome jumping should be applicable to any genetic locus for which a closely linked DNA marker is available.« less

  16. Libraries of Synthetic TALE-Activated Promoters: Methods and Applications.

    PubMed

    Schreiber, T; Tissier, A

    2016-01-01

    The discovery of proteins with programmable DNA-binding specificities triggered a whole array of applications in synthetic biology, including genome editing, regulation of transcription, and epigenetic modifications. Among those, transcription activator-like effectors (TALEs) due to their natural function as transcription regulators, are especially well-suited for the development of orthogonal systems for the control of gene expression. We describe here the construction and testing of libraries of synthetic TALE-activated promoters which are under the control of a single TALE with a given DNA-binding specificity. These libraries consist of a fixed DNA-binding element for the TALE, a TATA box, and variable sequences of 19 bases upstream and 43 bases downstream of the DNA-binding element. These libraries were cloned using a Golden Gate cloning strategy making them usable as standard parts in a modular cloning system. The broad range of promoter activities detected and the versatility of these promoter libraries make them valuable tools for applications in the fine-tuning of expression in metabolic engineering projects or in the design and implementation of regulatory circuits. © 2016 Elsevier Inc. All rights reserved.

  17. Complementary DNA libraries: an overview.

    PubMed

    Ying, Shao-Yao

    2004-07-01

    The generation of complete and full-length cDNA libraries for potential functional assays of specific gene sequences is essential for most molecules in biotechnology and biomedical research. The field of cDNA library generation has changed rapidly in the past 10 yr. This review presents an overview of the method available for the basic information of generating cDNA libraries, including the definition of the cDNA library, different kinds of cDNA libraries, difference between methods for cDNA library generation using conventional approaches and a novel strategy, and the quality of cDNA libraries. It is anticipated that the high-quality cDNA libraries so generated would facilitate studies involving genechips and the microarray, differential display, subtractive hybridization, gene cloning, and peptide library generation.

  18. [Construction of forward and reverse subtracted cDNA libraries between muscle tissue of Meishan and Landrace pigs].

    PubMed

    Xu, De-Quan; Zhang, Yi-Bing; Xiong, Yuan-Zhu; Gui, Jian-Fang; Jiang, Si-Wen; Su, Yu-Hong

    2003-07-01

    Using suppression subtractive hybridization (SSH) technique, forward and reverse subtracted cDNA libraries were constructed between Longissimus muscles from Meishan and Landrace pigs. A housekeeping gene, G3PDH, was used to estimate the efficiency of subtractive cDNA. In two cDNA libraries, G3PDH was subtracted very efficiently at appropriate 2(10) and 2(5) folds, respectively, indicating that some differentially expressed genes were also enriched at the same folds and the two subtractive cDNA libraries were very successful. A total of 709 and 673 positive clones were isolated from forward and reverse subtracted cDNA libraries, respectively. Analysis of PCR showed that most of all plasmids in the clones contained 150-750 bp inserts. The construction of subtractive cDNA libraries between muscle tissue from different pig breeds laid solid foundations for isolating and identifying the genes determining muscle growth and meat quality, which will be important to understand the mechanism of muscle growth, determination of meat quality and practice of molecular breeding.

  19. Construction of a metagenomic DNA library of sponge symbionts and screening of antibacterial metabolites

    NASA Astrophysics Data System (ADS)

    Chen, Juan; Zhu, Tianjiao; Li, Dehai; Cui, Chengbin; Fang, Yuchun; Liu, Hongbing; Liu, Peipei; Gu, Qianqun; Zhu, Weiming

    2006-04-01

    To study the bioactive metabolites produced by sponge-derived uncultured symbionts, a metagenomic DNA library of the symbionts of sponge Gelliodes gracilis was constructed. The average size of DNA inserts in the library was 20 kb. This library was screened for antibiotic activity using paper dise assaying. Two clones displayed the antibacterial activity against Micrococcus tetragenus. The metabolites of these two clones were analyzed through HPLC. The result showed that their metabolites were quite different from those of the host E. coli DH5α and the host containing vector pHZ132. This study may present a new approach to exploring bioactive metabolites of sponge symbionts.

  20. High Bacterial Diversity in Permanently Cold Marine Sediments

    PubMed Central

    Ravenschlag, Katrin; Sahm, Kerstin; Pernthaler, Jakob; Amann, Rudolf

    1999-01-01

    A 16S ribosomal DNA (rDNA) clone library from permanently cold marine sediments was established. Screening 353 clones by dot blot hybridization with group-specific oligonucleotide probes suggested a predominance of sequences related to bacteria of the sulfur cycle (43.4% potential sulfate reducers). Within this fraction, the major cluster (19.0%) was affiliated with Desulfotalea sp. and other closely related psychrophilic sulfate reducers isolated from the same habitat. The cloned sequences showed between 93 and 100% similarity to these bacteria. Two additional groups were frequently encountered: 13% of the clones were related to Desulfuromonas palmitatis, and a second group was affiliated with Myxobacteria spp. and Bdellovibrio spp. Many clones (18.1%) belonged to the γ subclass of the class Proteobacteria and were closest to symbiotic or free-living sulfur oxidizers. Probe target groups were further characterized by amplified rDNA restriction analysis to determine diversity within the groups and within the clone library. Rarefaction analysis suggested that the total diversity assessed by 16S rDNA analysis was very high in these permanently cold sediments and was only partially revealed by screening of 353 clones. PMID:10473405

  1. Horse cDNA clones encoding two MHC class I genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbis, D.P.; Maher, J.K.; Stanek, J.

    1994-12-31

    Two full-length clones encoding MHC class I genes were isolated by screening a horse cDNA library, using a probe encoding in human HLA-A2.2Y allele. The library was made in the pcDNA1 vector (Invitrogen, San Diego, CA), using mRNA from peripheral blood lymphocytes obtained from a Thoroughbred stallion (No. 0834) homozygous for a common horse MHC haplotype (ELA-A2, -B2, -D2; Antczak et al. 1984; Donaldson et al. 1988). The clones were sequenced, using SP6 and T7 universal primers and horse-specific oligonucleotides designed to extend previously determined sequences.

  2. Construction of high-quality Caco-2 three-frame cDNA library and its application to yeast two-hybrid for the human astrovirus protein-protein interaction.

    PubMed

    Zhao, Wei; Li, Xin; Liu, Wen-Hui; Zhao, Jian; Jin, Yi-Ming; Sui, Ting-Ting

    2014-09-01

    Human epithelial colorectal adenocarcinoma (Caco-2) cells are widely used as an in vitro model of the human small intestinal mucosa. Caco-2 cells are host cells of the human astrovirus (HAstV) and other enteroviruses. High quality cDNA libraries are pertinent resources and critical tools for protein-protein interaction research, but are currently unavailable for Caco-2 cells. To construct a three-open reading frame, full length-expression cDNA library from the Caco-2 cell line for application to HAstV protein-protein interaction screening, total RNA was extracted from Caco-2 cells. The switching mechanism at the 5' end of the RNA transcript technique was used for cDNA synthesis. Double-stranded cDNA was digested by Sfi I and ligated to reconstruct a pGADT7-Sfi I three-frame vector. The ligation mixture was transformed into Escherichia coli HST08 premium electro cells by electroporation to construct the primary cDNA library. The library capacity was 1.0×10(6)clones. Gel electrophoresis results indicated that the fragments ranged from 0.5kb to 4.2kb. Randomly picked clones show that the recombination rate was 100%. The three-frame primary cDNA library plasmid mixture (5×10(5)cfu) was also transformed into E. coli HST08 premium electro cells, and all clones were harvested to amplify the cDNA library. To detect the sufficiency of the cDNA library, HAstV capsid protein as bait was screened and tested against the Caco-2 cDNA library by a yeast two-hybrid (Y2H) system. A total of 20 proteins were found to interact with the capsid protein. These results showed that a high-quality three-frame cDNA library from Caco-2 cells was successfully constructed. This library was efficient for the application to the Y2H system, and could be used for future research. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Directional, seamless, and restriction enzyme-free construction of random-primed complementary DNA libraries using phosphorothioate-modified primers.

    PubMed

    Howland, Shanshan W; Poh, Chek-Meng; Rénia, Laurent

    2011-09-01

    Directional cloning of complementary DNA (cDNA) primed by oligo(dT) is commonly achieved by appending a restriction site to the primer, whereas the second strand is synthesized through the combined action of RNase H and Escherichia coli DNA polymerase I (PolI). Although random primers provide more uniform and complete coverage, directional cloning with the same strategy is highly inefficient. We report that phosphorothioate linkages protect the tail sequence appended to random primers from the 5'→3' exonuclease activity of PolI. We present a simple strategy for constructing a random-primed cDNA library using the efficient, size-independent, and seamless In-Fusion cloning method instead of restriction enzymes. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Process of labeling specific chromosomes using recombinant repetitive DNA

    DOEpatents

    Moyzis, R.K.; Meyne, J.

    1988-02-12

    Chromosome preferential nucleotide sequences are first determined from a library of recombinant DNA clones having families of repetitive sequences. Library clones are identified with a low homology with a sequence of repetitive DNA families to which the first clones respectively belong and variant sequences are then identified by selecting clones having a pattern of hybridization with genomic DNA dissimilar to the hybridization pattern shown by the respective families. In another embodiment, variant sequences are selected from a sequence of a known repetitive DNA family. The selected variant sequence is classified as chromosome specific, chromosome preferential, or chromosome nonspecific. Sequences which are classified as chromosome preferential are further sequenced and regions are identified having a low homology with other regions of the chromosome preferential sequence or with known sequences of other family members and consensus sequences of the repetitive DNA families for the chromosome preferential sequences. The selected low homology regions are then hybridized with chromosomes to determine those low homology regions hybridized with a specific chromosome under normal stringency conditions.

  5. Effects of field-grown genetically modified Zoysia grass on bacterial community structure.

    PubMed

    Lee, Yong-Eok; Yang, Sang-Hwan; Bae, Tae-Woong; Kang, Hong-Gyu; Lim, Pyung-Ok; Lee, Hyo-Yeon

    2011-04-01

    Herbicide-tolerant Zoysia grass has been previously developed through Agrobacterium-mediated transformation. We investigated the effects of genetically modified (GM) Zoysia grass and the associated herbicide application on bacterial community structure by using culture-independent approaches. To assess the possible horizontal gene transfer (HGT) of transgenic DNA to soil microorganisms, total soil DNAs were amplified by PCR with two primer sets for the bar and hpt genes, which were introduced into the GM Zoysia grass by a callus-type transformation. The transgenic genes were not detected from the total genomic DNAs extracted from 1.5 g of each rhizosphere soils of GM and non-GM Zoysia grasses. The structures and diversities of the bacterial communities in rhizosphere soils of GM and non-GM Zoysia grasses were investigated by constructing 16S rDNA clone libraries. Classifier, provided in the RDP II, assigned 100 clones in the 16S rRNA gene sequences library into 11 bacterial phyla. The most abundant phyla in both clone libraries were Acidobacteria and Proteobacteria. The bacterial diversity of the GM clone library was lower than that of the non- GM library. The former contained four phyla, whereas the latter had seven phyla. Phylogenetic trees were constructed to confirm these results. Phylogenetic analyses of the two clone libraries revealed considerable difference from each other. The significance of difference between clone libraries was examined with LIBSHUFF statistics. LIBSHUFF analysis revealed that the two clone libraries differed significantly (P〈0.025), suggesting alterations in the composition of the microbial community associated with GM Zoysia grass.

  6. cDNA library construction of two human Demodexspecies.

    PubMed

    Niu, DongLing; Wang, RuiLing; Zhao, YaE; Yang, Rui; Hu, Li; Lei, YuYang; Dan, WeiChao

    2017-06-01

    The research of Demodex, a type of pathogen causing various dermatoses in animals and human beings, is lacking at RNA level. This study aims at extracting RNA and constructing cDNA library for Demodex. First, P. cuniculiand D. farinaewere mixed to establish homogenization method for RNA extraction. Second, D. folliculorumand D. breviswere collected and preserved in Trizol, which were mixed with D. farinaerespectively to extract RNA. Finally, cDNA library was constructed and its quality was assessed. The results indicated that for D. folliculorum& D. farinae, the recombination rate of cDNA library was 90.67% and the library titer was 7.50 × 104 pfu/ml. 17 of the 59 positive clones were predicted to be of D. folliculorum; For D. brevis& D. farinae, the recombination rate was 90.96% and the library titer was 7.85 x104 pfu/ml. 40 of the 59 positive clones were predicted to be of D. brevis. Further detection by specific primers demonstrated that mtDNA cox1, cox3and ATP6 detected from cDNA libraries had 96.52%-99.73% identities with the corresponding sequences in GenBank. In conclusion, the cDNA libraries constructed for Demodexmixed with D. farinaewere successful and could satisfy the requirements for functional genes detection.

  7. Informatic and genomic analysis of melanocyte cDNA libraries as a resource for the study of melanocyte development and function.

    PubMed

    Baxter, Laura L; Hsu, Benjamin J; Umayam, Lowell; Wolfsberg, Tyra G; Larson, Denise M; Frith, Martin C; Kawai, Jun; Hayashizaki, Yoshihide; Carninci, Piero; Pavan, William J

    2007-06-01

    As part of the RIKEN mouse encyclopedia project, two cDNA libraries were prepared from melanocyte-derived cell lines, using techniques of full-length clone selection and subtraction/normalization to enrich for rare transcripts. End sequencing showed that these libraries display over 83% complete coding sequence at the 5' end and 96-97% complete coding sequence at the 3' end. Evaluation of the libraries, derived from B16F10Y tumor cells and melan-c cells, revealed that they contain clones for a majority of the genes previously demonstrated to function in melanocyte biology. Analysis of genomic locations for transcripts revealed that the distribution of melanocyte genes is non-random throughout the genome. Three genomic regions identified that showed significant clustering of melanocyte-expressed genes contain one or more genes previously shown to regulate melanocyte development or function. A catalog of genes expressed in these libraries is presented, providing a valuable resource of cDNA clones and sequence information that can be used for identification of new genes important for melanocyte development, function, and disease.

  8. [Cosmid libraries containing DNA from human chromosome 13].

    PubMed

    Kapanadze, B I; Brodianskiĭ, V M; Baranova, A V; Sevat'ianov, S Iu; Fedorova, N D; Kurskov, M M; Kostina, M A; Mironov, A A; Sineokiĭ, S P; Zakhar'ev, V M; Grafodatskiĭ, A S; Modianov, N N; Iankovskiĭ, N K

    1996-03-01

    We characterized two cosmid libraries constructed from flow-sorted chromosome 13 at the Imperial Cancer Research Fund (ICRF), UK (13,000 clones) and Los Alamos National Laboratory (LANL), USA (17,000 clones). After storage for two years, clones showed high viability (95%) and structural stability. EcoR I and Hind III restriction patterns were studied in more than 500 ICRF and 200 LANL cosmids. The average size of inserts was shown to be 35-37 kb in both the libraries. Most cosmids (83% and 93% of ICRF and LANL libraries, respectively) exceed the lower size limit of DNA fragments that can be packaged and represent a good source for physical mapping of chromosome 13. Total length of inserts is four and five genome equivalents in the ICRF and LANL libraries, respectively. ICRF cosmids showed hybridization to 22 of 24 unique probes tested, which corresponds to a 90% probability of having any DNA fragment represented in the library. More than 1 Mb of chromosome 13 is overlapped by 90 cosmids of 22 groups revealed. A chromosomal region of more than 150 kb, containing the ATP1AL1 gene for alpha-1 peptide of Na+, K(+)-ATPase, is covered by 12 cosmids forming a contig. The results of restriction and hybridization analyses are stored in a CLONE database. These data and all the cosmids described are publicly available.

  9. Constructing and detecting a cDNA library for mites.

    PubMed

    Hu, Li; Zhao, YaE; Cheng, Juan; Yang, YuanJun; Li, Chen; Lu, ZhaoHui

    2015-10-01

    RNA extraction and construction of complementary DNA (cDNA) library for mites have been quite challenging due to difficulties in acquiring tiny living mites and breaking their hard chitin. The present study is to explore a better method to construct cDNA library for mites that will lay the foundation on transcriptome and molecular pathogenesis research. We selected Psoroptes cuniculi as an experimental subject and took the following steps to construct and verify cDNA library. First, we combined liquid nitrogen grinding with TRIzol for total RNA extraction. Then, switching mechanism at 5' end of the RNA transcript (SMART) technique was used to construct full-length cDNA library. To evaluate the quality of cDNA library, the library titer and recombination rate were calculated. The reliability of cDNA library was detected by sequencing and analyzing positive clones and genes amplified by specific primers. The results showed that the RNA concentration was 836 ng/μl and the absorbance ratio at 260/280 nm was 1.82. The library titer was 5.31 × 10(5) plaque-forming unit (PFU)/ml and the recombination rate was 98.21%, indicating that the library was of good quality. In the 33 expressed sequence tags (ESTs) of P. cuniculi, two clones of 1656 and 1658 bp were almost identical with only three variable sites detected, which had an identity of 99.63% with that of Psoroptes ovis, indicating that the cDNA library was reliable. Further detection by specific primers demonstrated that the 553-bp Pso c II gene sequences of P. cuniculi had an identity of 98.56% with those of P. ovis, confirming that the cDNA library was not only reliable but also feasible.

  10. DNA Probe for Lactobacillus delbrueckii

    PubMed Central

    Delley, Michèle; Mollet, Beat; Hottinger, Herbert

    1990-01-01

    From a genomic DNA library of Lactobacillus delbrueckii subsp. bulgaricus, a clone was isolated which complements a leucine auxotrophy of an Escherichia coli strain (GE891). Subsequent analysis of the clone indicated that it could serve as a specific DNA probe. Dot-blot hybridizations with over 40 different Lactobacillus strains showed that this clone specifically recognizes L. delbrueckii subsp. delbrueckii, bulgaricus, and lactis. The sensitivity of the method was tested by using an α-32P-labeled DNA probe. Images PMID:16348233

  11. Generation of a total of 6483 expressed sequence tags from 60 day-old bovine whole fetus and fetal placenta.

    PubMed

    Oishi, M; Gohma, H; Lejukole, H Y; Taniguchi, Y; Yamada, T; Suzuki, K; Shinkai, H; Uenishi, H; Yasue, H; Sasaki, Y

    2004-05-01

    Expressed sequence tags (ESTs) generated based on characterization of clones isolated randomly from cDNA libraries are used to study gene expression profiles in specific tissues and to provide useful information for characterizing tissue physiology. In this study, two directionally cloned cDNA libraries were constructed from 60 day-old bovine whole fetus and fetal placenta. We have characterized 5357 and 1126 clones, and then identified 3464 and 795 unique sequences for the fetus and placenta cDNA libraries: 1851 and 504 showed homology to already identified genes, and 1613 and 291 showed no significant matches to any of the sequences in DNA databases, respectively. Further, we found 94 unique sequences overlapping in both the fetus and the placenta, leading to a catalog of 4165 genes expressed in 60 day-old fetus and placenta. The catalog is used to examine expression profile of genes in 60 day-old bovine fetus and placenta.

  12. Characterization of embryo-specific genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-01-01

    The objective of the proposed research is to characterize the structure and function of a set of genes whose expression is regulated in embryo development, and that is not expressed in mature tissues -- the embryonic genes. In the last two years, using cDNA clones, we have isolated 22 cDNA clones, and characterized the expression pattern of their corresponding RNA. At least 4 cDNA clones detect RNAs of embryonic genes. These cDNA clones detect RNAs expressed in somatic as well as zygotic embryos of carrot. Using the cDNA clones, we screened the genomic library of carrot embryo DNA, and isolatedmore » genomic clones for three genes. The structure and function of two genes DC 8 and DC 59 have been characterized and are reported in this paper.« less

  13. Intracellular screen to identify metagenomic clones that induce or inhibit a quorum-sensing biosensor.

    PubMed

    Williamson, Lynn L; Borlee, Bradley R; Schloss, Patrick D; Guan, Changhui; Allen, Heather K; Handelsman, Jo

    2005-10-01

    The goal of this study was to design and evaluate a rapid screen to identify metagenomic clones that produce biologically active small molecules. We built metagenomic libraries with DNA from soil on the floodplain of the Tanana River in Alaska. We extracted DNA directly from the soil and cloned it into fosmid and bacterial artificial chromosome vectors, constructing eight metagenomic libraries that contain 53,000 clones with inserts ranging from 1 to 190 kb. To identify clones of interest, we designed a high throughput "intracellular" screen, designated METREX, in which metagenomic DNA is in a host cell containing a biosensor for compounds that induce bacterial quorum sensing. If the metagenomic clone produces a quorum-sensing inducer, the cell produces green fluorescent protein (GFP) and can be identified by fluorescence microscopy or captured by fluorescence-activated cell sorting. Our initial screen identified 11 clones that induce and two that inhibit expression of GFP. The intracellular screen detected quorum-sensing inducers among metagenomic clones that a traditional overlay screen would not. One inducing clone carries a LuxI homologue that directs the synthesis of an N-acyl homoserine lactone quorum-sensing signal molecule. The LuxI homologue has 62% amino acid sequence identity to its closest match in GenBank, AmfI from Pseudomonas fluorescens, and is on a 78-kb insert that contains 67 open reading frames. Another inducing clone carries a gene with homology to homocitrate synthase. Our results demonstrate the power of an intracellular screen to identify functionally active clones and biologically active small molecules in metagenomic libraries.

  14. Characterization of Microbial Community Structure in Gulf of Mexico Gas Hydrates: Comparative Analysis of DNA- and RNA-Derived Clone Libraries

    PubMed Central

    Mills, Heath J.; Martinez, Robert J.; Story, Sandra; Sobecky, Patricia A.

    2005-01-01

    The characterization of microbial assemblages within solid gas hydrate, especially those that may be physiologically active under in situ hydrate conditions, is essential to gain a better understanding of the effects and contributions of microbial activities in Gulf of Mexico (GoM) hydrate ecosystems. In this study, the composition of the Bacteria and Archaea communities was determined by 16S rRNA phylogenetic analyses of clone libraries derived from RNA and DNA extracted from sediment-entrained hydrate (SEH) and interior hydrate (IH). The hydrate was recovered from an exposed mound located in the northern GoM continental slope with a hydrate chipper designed for use on the manned-submersible Johnson Sea Link (water depth, 550 m). Previous geochemical analyses indicated that there was increased metabolic activity in the SEH compared to the IH layer (B. N. Orcutt, A. Boetius, S. K. Lugo, I. R. Macdonald, V. A. Samarkin, and S. Joye, Chem. Geol. 205:239-251). Phylogenetic analysis of RNA- and DNA-derived clones indicated that there was greater diversity in the SEH libraries than in the IH libraries. A majority of the clones obtained from the metabolically active fraction of the microbial community were most closely related to putative sulfate-reducing bacteria and anaerobic methane-oxidizing archaea. Several novel bacterial and archaeal phylotypes for which there were no previously identified closely related cultured isolates were detected in the RNA- and DNA-derived clone libraries. This study was the first phylogenetic analysis of the metabolically active fraction of the microbial community extant in the distinct SEH and IH layers of GoM gas hydrate. PMID:15933026

  15. Low-frequency chimeric yeast artificial chromosome libraries from flow-sorted human chromosomes 16 and 21.

    PubMed Central

    McCormick, M K; Campbell, E; Deaven, L; Moyzis, R

    1993-01-01

    Construction of chromosome-specific yeast artificial chromosome (YAC) libraries from sorted chromosomes was undertaken (i) to eliminate drawbacks associated with first-generation total genomic YAC libraries, such as the high frequency of chimeric YACs, and (ii) to provide an alternative method for generating chromosome-specific YAC libraries in addition to isolating such collections from a total genomic library. Chromosome-specific YAC libraries highly enriched for human chromosomes 16 and 21 were constructed. By maximizing the percentage of fragments with two ligatable ends and performing yeast transformations with less than saturating amounts of DNA in the presence of carrier DNA, YAC libraries with a low percentage of chimeric clones were obtained. The smaller number of YAC clones in these chromosome-specific libraries reduces the effort involved in PCR-based screening and allows hybridization methods to be a manageable screening approach. Images PMID:8430075

  16. Characterization of cDNA for human tripeptidyl peptidase II: The N-terminal part of the enzyme is similar to subtilisin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomkinson, B.; Jonsson, A-K

    1991-01-01

    Tripeptidyl peptidase II is a high molecular weight serine exopeptidase, which has been purified from rat liver and human erythrocytes. Four clones, representing 4453 bp, or 90{percent} of the mRNA of the human enzyme, have been isolated from two different cDNA libraries. One clone, designated A2, was obtained after screening a human B-lymphocyte cDNA library with a degenerated oligonucleotide mixture. The B-lymphocyte cDNA library, obtained from human fibroblasts, were rescreened with a 147 bp fragment from the 5{prime} part of the A2 clone, whereby three different overlapping cDNA clones could be isolated. The deduced amino acid sequence, 1196 amino acidmore » residues, corresponding to the longest open rading frame of the assembled nucleotide sequence, was compared to sequences of current databases. This revealed a 56{percent} similarity between the bacterial enzyme subtilisin and the N-terminal part of tripeptidyl peptidase II. The enzyme was found to be represented by two different mRNAs of 4.2 and 5.0 kilobases, respectively, which probably result from the utilziation of two different polyadenylation sites. Futhermore, cDNA corresponding to both the N-terminal and C-terminal part of tripeptidyl peptidase II hybridized with genomic DNA from mouse, horse, calf, and hen, even under fairly high stringency conditions, indicating that tripeptidyl peptidase II is highly conserved.« less

  17. DNA probe for lactobacillus delbrueckii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delley, M.; Mollet, B.; Hottinger, H.

    1990-06-01

    From a genomic DNA library of Lactobacillus delbrueckii subsp. bulgaricus, a clone was isolated which complements a leucine auxotrophy of an Escherichia coli strain (GE891). Subsequent analysis of the clone indicated that it could serve as a specific DNA probe. Dot-blot hybridizations with over 40 different Lactobacillus strains showed that this clone specifically recognized L. delbrueckii subsp. delbrueckii, bulgaricus, and lactis. The sensitivity of the method was tested by using an {alpha}-{sup 32}P-labeled probe.

  18. Cloning and study of the pectate lyase gene of Erwinia carotovora

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bukanov, N.O.; Fonshtein, M.Yu.; Evtushenkov, A.N.

    1986-04-01

    The cloning of the gene of a secretable protein of Erwinia carotovora, pectate lyase, in Escherichia coli was described. Primary cloning was conducted using the phage vector lambda 47.1. In the gene library of E. carotovora obtained, eight phages carrying the gene sought were identified according to the appearance of enzymatic activity of the gene product, pectate lyase, in situ. The BamHI fragment of DNA, common to all these phages, was recloned on the plasmid pUC19. It was shown that the cloned pectate lyase gene is represented on the E. carotovora chromosome in one copy. Methods of production of representativemore » gene libraries on phage vectors from no less than 1 ..mu..g of cloned DNA even for the genomes of eukaryotes have now been developed. Vectors have been created, for example, lambda 47.1, permitting the selection only of hybrid molecules. A number of methods have been developed for the search for a required gene in the library, depending on whether the cloned gene can be expressed or not, and if it can, what properties it will impart to the hybrid clone containing it.« less

  19. Chromosome specific repetitive DNA sequences

    DOEpatents

    Moyzis, Robert K.; Meyne, Julianne

    1991-01-01

    A method is provided for determining specific nucleotide sequences useful in forming a probe which can identify specific chromosomes, preferably through in situ hybridization within the cell itself. In one embodiment, chromosome preferential nucleotide sequences are first determined from a library of recombinant DNA clones having families of repetitive sequences. Library clones are identified with a low homology with a sequence of repetitive DNA families to which the first clones respectively belong and variant sequences are then identified by selecting clones having a pattern of hybridization with genomic DNA dissimilar to the hybridization pattern shown by the respective families. In another embodiment, variant sequences are selected from a sequence of a known repetitive DNA family. The selected variant sequence is classified as chromosome specific, chromosome preferential, or chromosome nonspecific. Sequences which are classified as chromosome preferential are further sequenced and regions are identified having a low homology with other regions of the chromosome preferential sequence or with known sequences of other family me This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  20. Phylogenetic screening of a bacterial, metagenomic library using homing endonuclease restriction and marker insertion

    PubMed Central

    Yung, Pui Yi; Burke, Catherine; Lewis, Matt; Egan, Suhelen; Kjelleberg, Staffan; Thomas, Torsten

    2009-01-01

    Metagenomics provides access to the uncultured majority of the microbial world. The approaches employed in this field have, however, had limited success in linking functional genes to the taxonomic or phylogenetic origin of the organism they belong to. Here we present an efficient strategy to recover environmental DNA fragments that contain phylogenetic marker genes from metagenomic libraries. Our method involves the cleavage of 23S ribsosmal RNA (rRNA) genes within pooled library clones by the homing endonuclease I-CeuI followed by the insertion and selection of an antibiotic resistance cassette. This approach was applied to screen a library of 6500 fosmid clones derived from the microbial community associated with the sponge Cymbastela concentrica. Several fosmid clones were recovered after the screen and detailed phylogenetic and taxonomic assignment based on the rRNA gene showed that they belong to previously unknown organisms. In addition, compositional features of these fosmid clones were used to classify and taxonomically assign a dataset of environmental shotgun sequences. Our approach represents a valuable tool for the analysis of rapidly increasing, environmental DNA sequencing information. PMID:19767618

  1. Activity and bacterial diversity of snow around Russian Antarctic stations.

    PubMed

    Lopatina, Anna; Krylenkov, Vjacheslav; Severinov, Konstantin

    2013-11-01

    The diversity and temporal dynamics of bacterial communities in pristine snow around two Russian Antarctic stations was investigated. Taxonomic analysis of rDNA libraries revealed that snow communities were dominated by bacteria from a small number of operational taxonomic units (OTUs) that underwent dramatic swings in abundance between the 54th (2008-2009) and 55th (2009-2010) Russian Antarctic expeditions. Moreover, analysis of the 55th expedition samples indicated that there was very little, if any, correspondence in abundance of clones belonging to the same OTU present in rDNA and rRNA libraries. The latter result suggests that most rDNA clones originate from bacteria that are not alive and/or active and may have been deposited on the snow surface from the atmosphere. In contrast, clones most abundant in rRNA libraries (mostly belonging to Variovorax, Janthinobacterium, Pseudomonas, and Sphingomonas genera) may be considered as endogenous Antarctic snow inhabitants. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  2. Construction and EST sequencing of full-length, drought stress cDNA libraries for common beans (Phaseolus vulgaris L.)

    PubMed Central

    2011-01-01

    Background Common bean is an important legume crop with only a moderate number of short expressed sequence tags (ESTs) made with traditional methods. The goal of this research was to use full-length cDNA technology to develop ESTs that would overlap with the beginning of open reading frames and therefore be useful for gene annotation of genomic sequences. The library was also constructed to represent genes expressed under drought, low soil phosphorus and high soil aluminum toxicity. We also undertook comparisons of the full-length cDNA library to two previous non-full clone EST sets for common bean. Results Two full-length cDNA libraries were constructed: one for the drought tolerant Mesoamerican genotype BAT477 and the other one for the acid-soil tolerant Andean genotype G19833 which has been selected for genome sequencing. Plants were grown in three soil types using deep rooting cylinders subjected to drought and non-drought stress and tissues were collected from both roots and above ground parts. A total of 20,000 clones were selected robotically, half from each library. Then, nearly 10,000 clones from the G19833 library were sequenced with an average read length of 850 nucleotides. A total of 4,219 unigenes were identified consisting of 2,981 contigs and 1,238 singletons. These were functionally annotated with gene ontology terms and placed into KEGG pathways. Compared to other EST sequencing efforts in common bean, about half of the sequences were novel or represented the 5' ends of known genes. Conclusions The present full-length cDNA libraries add to the technological toolbox available for common bean and our sequencing of these clones substantially increases the number of unique EST sequences available for the common bean genome. All of this should be useful for both functional gene annotation, analysis of splice site variants and intron/exon boundary determination by comparison to soybean genes or with common bean whole-genome sequences. In addition the library has a large number of transcription factors and will be interesting for discovery and validation of drought or abiotic stress related genes in common bean. PMID:22118559

  3. Construction of cDNA expression library of watermelon for isolation of ClWRKY1 transcription factors gene involved in resistance to Fusarium wilt.

    PubMed

    Yang, Bing-Yan; Huo, Xiu-Ai; Li, Peng-Fei; Wang, Cui-Xia; Duan, Hui-Jun

    2014-08-01

    Full-length cDNAs are very important for genome annotation and functional analysis of genes. The number of full-length cDNAs from watermelon remains limited. Here we report first the construction of a full-length enriched cDNA library from Fusarium wilt stressed watermelon (Citrullus lanatus Thunb.) cultivar PI296341 root tissues using the SMART method. The titer of primary cDNA library and amplified library was 2.21 x 10(6) and 2.0 x 10(10) pfu/ml, respectively and the rate of recombinant was above 85%. The size of insert fragment ranged from 0.3 to 2.0 kb. In this study, we first cloned a gene named ClWRKY1, which was 1981 bp long and encoded a protein consisting of 394 amino acids. It contained two characteristic WRKY domains and two zinc finger motifs. Quantitative real-time PCR showed that ClWRKY1 expression levels reached maximum level at 12 h after inoculation with Fusarium oxysporum f. sp. niveum. The full-length cDNA library of watermelon root tissues is not only essential for the cloning of genes which are known, but also an initial key for the screening and cloning of new genes that might be involved in resistance to Fusarium wilt.

  4. An efficient and sensitive method for preparing cDNA libraries from scarce biological samples

    PubMed Central

    Sterling, Catherine H.; Veksler-Lublinsky, Isana; Ambros, Victor

    2015-01-01

    The preparation and high-throughput sequencing of cDNA libraries from samples of small RNA is a powerful tool to quantify known small RNAs (such as microRNAs) and to discover novel RNA species. Interest in identifying the small RNA repertoire present in tissues and in biofluids has grown substantially with the findings that small RNAs can serve as indicators of biological conditions and disease states. Here we describe a novel and straightforward method to clone cDNA libraries from small quantities of input RNA. This method permits the generation of cDNA libraries from sub-picogram quantities of RNA robustly, efficiently and reproducibly. We demonstrate that the method provides a significant improvement in sensitivity compared to previous cloning methods while maintaining reproducible identification of diverse small RNA species. This method should have widespread applications in a variety of contexts, including biomarker discovery from scarce samples of human tissue or body fluids. PMID:25056322

  5. Mining the metagenome of activated biomass of an industrial wastewater treatment plant by a novel method.

    PubMed

    Sharma, Nandita; Tanksale, Himgouri; Kapley, Atya; Purohit, Hemant J

    2012-12-01

    Metagenomic libraries herald the era of magnifying the microbial world, tapping into the vast metabolic potential of uncultivated microbes, and enhancing the rate of discovery of novel genes and pathways. In this paper, we describe a method that facilitates the extraction of metagenomic DNA from activated sludge of an industrial wastewater treatment plant and its use in mining the metagenome via library construction. The efficiency of this method was demonstrated by the large representation of the bacterial genome in the constructed metagenomic libraries and by the functional clones obtained. The BAC library represented 95.6 times the bacterial genome, while, the pUC library represented 41.7 times the bacterial genome. Twelve clones in the BAC library demonstrated lipolytic activity, while four clones demonstrated dioxygenase activity. Four clones in pUC library tested positive for cellulase activity. This method, using FTA cards, not only can be used for library construction, but can also store the metagenome at room temperature.

  6. Construction of a BAC library and mapping BAC clones to the linkage map of Barramundi, Lates calcarifer.

    PubMed

    Wang, Chun Ming; Lo, Loong Chueng; Feng, Felicia; Gong, Ping; Li, Jian; Zhu, Ze Yuan; Lin, Grace; Yue, Gen Hua

    2008-03-25

    Barramundi (Lates calcarifer) is an important farmed marine food fish species. Its first generation linkage map has been applied to map QTL for growth traits. To identify genes located in QTL responsible for specific traits, genomic large insert libraries are of crucial importance. We reported herein a bacterial artificial chromosome (BAC) library and the mapping of BAC clones to the linkage map. This BAC library consisted of 49,152 clones with an average insert size of 98 kb, representing 6.9-fold haploid genome coverage. Screening the library with 24 microsatellites and 15 ESTs/genes demonstrated that the library had good genome coverage. In addition, 62 novel microsatellites each isolated from 62 BAC clones were mapped onto the first generation linkage map. A total of 86 BAC clones were anchored on the linkage map with at least one BAC clone on each linkage group. We have constructed the first BAC library for L. calcarifer and mapped 86 BAC clones to the first generation linkage map. This BAC library and the improved linkage map with 302 DNA markers not only supply an indispensable tool to the integration of physical and linkage maps, the fine mapping of QTL and map based cloning genes located in QTL of commercial importance, but also contribute to comparative genomic studies and eventually whole genome sequencing.

  7. A Mini-Library of Sequenced Human DNA Fragments: Linking Bench Experiments with Informatics

    ERIC Educational Resources Information Center

    Dalgleish, Raymond; Shanks, Morag E.; Monger, Karen; Butler, Nicola J.

    2012-01-01

    We describe the development of a mini-library of human DNA fragments for use in an enquiry-based learning (EBL) undergraduate practical incorporating "wet-lab" and bioinformatics tasks. In spite of the widespread emergence of the polymerase chain reaction (PCR), the cloning and analysis of DNA fragments in "Escherichia coli"…

  8. [Construction of human phage antibody library and screening for human monoclonal antibodies of amylin].

    PubMed

    Gong, Qian; Li, Chang-ying; Chang, Ji-wu; Zhu, Tie-hong

    2012-06-01

    To screen monoclonal antibodies to amylin from a constructed human phage antibody library and identify their antigenic specificity and combining activities. The heavy chain Fd fragment and light chain of human immunoglobulin genes were amplified from peripheral blood lymphocytes of healthy donors using RT-PCR, and then inserted into phagemid pComb3XSS to generate a human phage antibody library. The insertion of light chain or heavy chain Fd genes were identified by PCR after the digestion of Sac I, Xba I, Xho Iand Spe I. One of positive clones was analyzed by DNA sequencing. The specific anti-amylin clones were screened from antibody library against human amylin antigens and then the positive clones were determined by Phage-ELISA analysis. A Fab phage antibody library with 0.8×10(8); members was constructed with the efficacy of about 70%. DNA sequence analysis indicated V(H); gene belonged to V(H);3 gene family and V(λ); gene belonged to the V(λ); gene family. Using human amylin as panning antigen, specific anti-amylin Fab antibodies were enriched by screening the library for three times. Phage-ELISA assay showed the positive clones had very good specificity to amylin antigen. The successful construction of a phage antibody library and the identification of anti-amylin Fab antibodies provide a basis for further study and preparation of human anti-amylin antibodies.

  9. ORF phage display to identify cellular proteins with different functions.

    PubMed

    Li, Wei

    2012-09-01

    Open reading frame (ORF) phage display is a new branch of phage display aimed at improving its efficiency to identify cellular proteins with specific binding or functional activities. Despite the success of phage display with antibody libraries and random peptide libraries, phage display with cDNA libraries of cellular proteins identifies a high percentage of non-ORF clones encoding unnatural short peptides with minimal biological implications. This is mainly because of the uncontrollable reading frames of cellular proteins in conventional cDNA libraries. ORF phage display solves this problem by eliminating non-ORF clones to generate ORF cDNA libraries. Here I summarize the procedures of ORF phage display, discuss the factors influencing its efficiency, present examples of its versatile applications, and highlight evidence of its capability of identifying biologically relevant cellular proteins. ORF phage display coupled with different selection strategies is capable of delineating diverse functions of cellular proteins with unique advantages. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Subtraction of cap-trapped full-length cDNA libraries to select rare transcripts.

    PubMed

    Hirozane-Kishikawa, Tomoko; Shiraki, Toshiyuki; Waki, Kazunori; Nakamura, Mari; Arakawa, Takahiro; Kawai, Jun; Fagiolini, Michela; Hensch, Takao K; Hayashizaki, Yoshihide; Carninci, Piero

    2003-09-01

    The normalization and subtraction of highly expressed cDNAs from relatively large tissues before cloning dramatically enhanced the gene discovery by sequencing for the mouse full-length cDNA encyclopedia, but these methods have not been suitable for limited RNA materials. To normalize and subtract full-length cDNA libraries derived from limited quantities of total RNA, here we report a method to subtract plasmid libraries excised from size-unbiased amplified lambda phage cDNA libraries that avoids heavily biasing steps such as PCR and plasmid library amplification. The proportion of full-length cDNAs and the gene discovery rate are high, and library diversity can be validated by in silico randomization.

  11. [Primary culture of cat intestinal epithelial cell and construction of its cDNA library].

    PubMed

    Ye, L; Gui-Hua, Z; Kun, Y; Hong-Fa, W; Ting, X; Gong-Zhen, L; Wei-Xia, Z; Yong, C

    2017-04-12

    Objective To establish the primary cat intestinal epithelial cells (IECs) culture methods and construct the cDNA library for the following yeast two-hybrid experiment, so as to screen the virulence interaction factors among the final host. Methods The primary cat IECs were cultured by the tissue cultivation and combined digestion with collagenase XI and dispase I separately. Then the cat IECs cultured was identified with the morphological observation and cyto-keratin detection, by using goat anti-cyto-keratin monoclonal antibodies. The mRNA of cat IECs was isolated and used as the template to synthesize the first strand cDNA by SMART™ technology, and then the double-strand cDNAs were acquired by LD-PCR, which were subsequently cloned into the plasmid PGADT7-Rec to construct yeast two-hybrid cDNA library in the yeast strain Y187 by homologous recombination. Matchmaker™ Insert Check PCR was used to detect the size distribution of cDNA fragments after the capacity calculation of the cDNA library. Results The comparison of the two cultivation methods indicated that the combined digestion of collagenase XI and dispase I was more effective than the tissue cultivation. The cat IECs system of continuous culture was established and the cat IECs with high purity were harvested for constructing the yeast two-hybrid cDNA library. The library contained 1.1×10 6 independent clones. The titer was 2.8×10 9 cfu/ml. The size of inserted fragments was among 0.5-2.0 kb. Conclusion The yeast two-hybrid cDNA library of cat IECs meets the requirements of further screen research, and this study lays the foundation of screening the Toxoplasma gondii virulence interaction factors among the cDNA libraries of its final hosts.

  12. Exploitation of rolling circle amplification for the construction of large phage-display antibody libraries.

    PubMed

    Shahsavarian, Melody A; Le Minoux, Damien; Matti, Kalyankumar M; Kaveri, Srini; Lacroix-Desmazes, Sébastien; Boquet, Didier; Friboulet, Alain; Avalle, Bérangère; Padiolleau-Lefèvre, Séverine

    2014-05-01

    Phage display antibody libraries have proven to have a significant role in the discovery of therapeutic antibodies and polypeptides with desired biological and physicochemical properties. Obtaining a large and diverse phage display antibody library, however, is always a challenging task. Various steps of this technique can still undergo optimization in order to obtain an efficient library. In the construction of a single chain fragment variable (scFv) phage display library, the cloning of the scFv fragments into a phagemid vector is of crucial importance. An efficient restriction enzyme digestion of the scFv DNA leads to its proper ligation with the phagemid followed by its successful cloning and expression. Here, we are reporting a different approach to enhance the efficiency of the restriction enzyme digestion step. We have exploited rolling circle amplification (RCA) to produce a long strand of DNA with tandem repeats of scFv sequences, which is found to be highly susceptible to restriction digestion. With this important modification, we are able to construct a large phage display antibody library of naive SJL/J mice. The size of the library is estimated as ~10(8) clones. The number of clones containing a scFv fragment is estimated at 90%. Hence, the present results could considerably aid the utilization of the phage-display technique in order to get an efficiently large antibody library. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Tissue Gene Expression Analysis Using Arrayed Normalized cDNA Libraries

    PubMed Central

    Eickhoff, Holger; Schuchhardt, Johannes; Ivanov, Igor; Meier-Ewert, Sebastian; O'Brien, John; Malik, Arif; Tandon, Neeraj; Wolski, Eryk-Witold; Rohlfs, Elke; Nyarsik, Lajos; Reinhardt, Richard; Nietfeld, Wilfried; Lehrach, Hans

    2000-01-01

    We have used oligonucleotide-fingerprinting data on 60,000 cDNA clones from two different mouse embryonic stages to establish a normalized cDNA clone set. The normalized set of 5,376 clones represents different clusters and therefore, in almost all cases, different genes. The inserts of the cDNA clones were amplified by PCR and spotted on glass slides. The resulting arrays were hybridized with mRNA probes prepared from six different adult mouse tissues. Expression profiles were analyzed by hierarchical clustering techniques. We have chosen radioactive detection because it combines robustness with sensitivity and allows the comparison of multiple normalized experiments. Sensitive detection combined with highly effective clustering algorithms allowed the identification of tissue-specific expression profiles and the detection of genes specifically expressed in the tissues investigated. The obtained results are publicly available (http://www.rzpd.de) and can be used by other researchers as a digital expression reference. [The sequence data described in this paper have been submitted to the EMBL data library under accession nos. AL360374–AL36537.] PMID:10958641

  14. Cloning and characterization of a Candida albicans maltase gene involved in sucrose utilization.

    PubMed Central

    Geber, A; Williamson, P R; Rex, J H; Sweeney, E C; Bennett, J E

    1992-01-01

    In order to isolate the structural gene involved in sucrose utilization, we screened a sucrose-induced Candida albicans cDNA library for clones expressing alpha-glucosidase activity. The C. albicans maltase structural gene (CAMAL2) was isolated. No other clones expressing alpha-glucosidase activity. were detected. A genomic CAMAL2 clone was obtained by screening a size-selected genomic library with the cDNA clone. DNA sequence analysis reveals that CAMAL2 encodes a 570-amino-acid protein which shares 50% identity with the maltase structural gene (MAL62) of Saccharomyces carlsbergensis. The substrate specificity of the recombinant protein purified from Escherichia coli identifies the enzyme as a maltase. Northern (RNA) analysis reveals that transcription of CAMAL2 is induced by maltose and sucrose and repressed by glucose. These results suggest that assimilation of sucrose in C. albicans relies on an inducible maltase enzyme. The family of genes controlling sucrose utilization in C. albicans shares similarities with the MAL gene family of Saccharomyces cerevisiae and provides a model system for studying gene regulation in this pathogenic yeast. Images PMID:1400249

  15. High yield of functional metagenomic library from mangroves constructed in fosmid vector.

    PubMed

    Gonçalves, A C S; dos Santos, A C F; dos Santos, T F; Pessoa, T B A; Dias, J C T; Rezende, R P

    2015-10-02

    In the present study, metagenomic technique and fosmid vectors were used to construct a library of clones for exploring the biotechnological potential of mangrove soils by isolation of functional genes encoding hydrolytic enzymes. The library was built with genomic DNA from the soil samples of mangrove sediments and the functional screening of 1824 clones (~64 Mbp) was performed to detect the hydrolytic activity specific for cellulases, amylases (at acidic, neutral and basic pH), lipases/esterases, proteases, and nitrilases. Significant numbers of clones, positive for the tested enzyme activities were obtained. Our results indicate the importance and biotechnological potential of mangrove soils especially when compared to those obtained using other soil metagenomic libraries.

  16. Molecular cloning of actin genes in Trichomonas vaginalis and phylogeny inferred from actin sequences.

    PubMed

    Bricheux, G; Brugerolle, G

    1997-08-01

    The parasitic protozoan Trichomonas vaginalis is known to contain the ubiquitous and highly conserved protein actin. A genomic library and a cDNA library have been screened to identify and clone the actin gene(s) of T. vaginalis. The nucleotide sequence of one gene and its flanking regions have been determined. The open reading frame encodes a protein of 376 amino acids. The sequence is not interrupted by any introns and the promoter could be represented by a 10 bp motif close to a consensus motif also found upstream of most sequenced T. vaginalis genes. The five different clones isolated from the cDNA library have similar sequences and encode three actin proteins differing only by one or two amino acids. A phylogenetic analysis of 31 actin sequences by distance matrix and parsimony methods, using centractin as outgroup, gives congruent trees with Parabasala branching above Diplomonadida.

  17. Genomics approach to the environmental community of microorganisms

    NASA Astrophysics Data System (ADS)

    Kawarabayasi, Y.; Maruyama, A.

    2004-12-01

    It was indicated by microscopic observation or comparison of 16S rDNA sequence that many extremophiles were surviving in many hydrothermal environments. But it is generally said that over 99% of total microbes are now uncultivable. Thus, we planned to identify uncultivable microbes through direct sequencing of environmental DNA. At first, shotgun plasmid libraries were directly constructed with the DNA molecules prepared from mixed microbes collected from low-temperature hydrothermal water at RM24 in the Southern East Pacific Rise (S-EPR). It was shown that the sequences of some number of clones indicated the similar feature to the intron in eukaryote or tandem repetitive sequence identified in some human familiar diseases. The results indicated that many microorganisms with eukaryotic feature were dominant in low temperature water of S-EPR. Secondly, shotgun plasmid libraries were constructed from the environmental DNA prepared from Beppu hot springs. The ORFs were easily identified all clones determined entire sequence. Thus it can be said that hot springs is good resources for searching novel genes. At last, the mixed microbes isolated from Suiyo seamount were used for construction of shotgun library. The clones in this library contained the ORFs. From some clones in hot spring and Suiyo sample, aminoacyl-tRNA synthatase, which is generally present in all organisms, was isolated by similarity. The phylogenetic analysis of aminoacyl-tRNA synthetase identified indicated that novel and unidentified microorganisms should be present in hot spring or Suiyo seamount. The novel genes identified from Suiyo seamount were also utilized for expression in E. coli. Some gene products were successfully obtained from the E. coli cells as soluble proteins. Some protein indicated the thermostability up to 70_E#8249;C, meaning that the original host cell of this gene should be stable up to the same temperature. Our work indicates that environmental genomics, including the direct cloning, sequencing of environmental DNA and expression of gene identified, is powerful approach to collect novel uncultivable microbes or novel active genes.

  18. Taxonomic and functional assignment of cloned sequences from high Andean forest soil metagenome.

    PubMed

    Montaña, José Salvador; Jiménez, Diego Javier; Hernández, Mónica; Angel, Tatiana; Baena, Sandra

    2012-02-01

    Total metagenomic DNA was isolated from high Andean forest soil and subjected to taxonomical and functional composition analyses by means of clone library generation and sequencing. The obtained yield of 1.7 μg of DNA/g of soil was used to construct a metagenomic library of approximately 20,000 clones (in the plasmid p-Bluescript II SK+) with an average insert size of 4 Kb, covering 80 Mb of the total metagenomic DNA. Metagenomic sequences near the plasmid cloning site were sequenced and them trimmed and assembled, obtaining 299 reads and 31 contigs (0.3 Mb). Taxonomic assignment of total sequences was performed by BLASTX, resulting in 68.8, 44.8 and 24.5% classification into taxonomic groups using the metagenomic RAST server v2.0, WebCARMA v1.0 online system and MetaGenome Analyzer v3.8 software, respectively. Most clone sequences were classified as Bacteria belonging to phlya Actinobacteria, Proteobacteria and Acidobacteria. Among the most represented orders were Actinomycetales (34% average), Rhizobiales, Burkholderiales and Myxococcales and with a greater number of sequences in the genus Mycobacterium (7% average), Frankia, Streptomyces and Bradyrhizobium. The vast majority of sequences were associated with the metabolism of carbohydrates, proteins, lipids and catalytic functions, such as phosphatases, glycosyltransferases, dehydrogenases, methyltransferases, dehydratases and epoxide hydrolases. In this study we compared different methods of taxonomic and functional assignment of metagenomic clone sequences to evaluate microbial diversity in an unexplored soil ecosystem, searching for putative enzymes of biotechnological interest and generating important information for further functional screening of clone libraries.

  19. Sequence verification as quality-control step for production of cDNA microarrays.

    PubMed

    Taylor, E; Cogdell, D; Coombes, K; Hu, L; Ramdas, L; Tabor, A; Hamilton, S; Zhang, W

    2001-07-01

    To generate cDNA arrays in our core laboratory, we amplified about 2300 PCR products from a human, sequence-verified cDNA clone library. As a quality-control step, we sequenced the PCR products immediately before printing. The sequence information was used to search the GenBank database to confirm the identities. Although these clones were previously sequence verified by the company, we found that only 79% of the clones matched the original database after handling. Our experience strongly indicates the necessity to sequence verify the clones at the final stage before printing on microarray slides and to modify the gene list accordingly.

  20. Studies of the effects of Vilon and Epithalon on gene expression in mouse heart using DNA-microarray technology.

    PubMed

    Anisimov, S V; Bokheler, K R; Khavinson, V Kh; Anisimov, V N

    2002-03-01

    Expression of 15,247 clones from a cDNA library in the heart of mice receiving Vilon and Epithalon was studied by DNA-microarray technology. We revealed 300 clones (1.94% of the total count), whose expression changed more than by 2 times. Vilon changed expression of 36 clones, while Epithalon modulated expression of 98 clones. Combined treatment with Vilon and Epithalon changed expression of 144 clones. Vilon alone or in combination with Epithalon activated expression of 157 clones (maximally by 6.13 times) and inhibited expression of 23 clones (maximally by 2.79 times). Epithalon alone or in combination with Vilon activated expression of 194 clones (maximally by 6.61 times) and inhibited expression of 48 clones (maximally by 2.71 times). Our results demonstrate the specific effects of Epithalon and Vilon on gene expression.

  1. Improved serial analysis of V1 ribosomal sequence tags (SARST-V1) provides a rapid, comprehensive, sequence-based characterization of bacterial diversity and community composition.

    PubMed

    Yu, Zhongtang; Yu, Marie; Morrison, Mark

    2006-04-01

    Serial analysis of ribosomal sequence tags (SARST) is a recently developed technology that can generate large 16S rRNA gene (rrs) sequence data sets from microbiomes, but there are numerous enzymatic and purification steps required to construct the ribosomal sequence tag (RST) clone libraries. We report here an improved SARST method, which still targets the V1 hypervariable region of rrs genes, but reduces the number of enzymes, oligonucleotides, reagents, and technical steps needed to produce the RST clone libraries. The new method, hereafter referred to as SARST-V1, was used to examine the eubacterial diversity present in community DNA recovered from the microbiome resident in the ovine rumen. The 190 sequenced clones contained 1055 RSTs and no less than 236 unique phylotypes (based on > or = 95% sequence identity) that were assigned to eight different eubacterial phyla. Rarefaction and monomolecular curve analyses predicted that the complete RST clone library contains 99% of the 353 unique phylotypes predicted to exist in this microbiome. When compared with ribosomal intergenic spacer analysis (RISA) of the same community DNA sample, as well as a compilation of nine previously published conventional rrs clone libraries prepared from the same type of samples, the RST clone library provided a more comprehensive characterization of the eubacterial diversity present in rumen microbiomes. As such, SARST-V1 should be a useful tool applicable to comprehensive examination of diversity and composition in microbiomes and offers an affordable, sequence-based method for diversity analysis.

  2. Library Resources for Bac End Sequencing. Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pieter J. de Jong

    2000-10-01

    Studies directed towards the specific aims outlined for this research award are summarized. The RPCI II Human Bac Library has been expanded by the addition of 6.9-fold genomic coverage. This segment has been generated from a MBOI partial digest of the same anonymous donor DNA used for the rest of the library. A new cloning vector, pTARBAC1, has been constructed and used in the construction of RPCI-II segment 5. This new cloning vector provides a new strategy in identifying targeted genomic regions and will greatly facilitate a large-scale analysis for positional cloning. A new maleCS7BC/6J mouse BAC library has beenmore » constructed. RPCI-23 contain 576 plates (approx 210,000 clones) and represents approximately 11-fold coverage of the mouse genome.« less

  3. Microaspiration of esophageal gland cells and cDNA library construction for identifying parasitism genes of plant-parasitic nematodes.

    PubMed

    Hussey, Richard S; Huang, Guozhong; Allen, Rex

    2011-01-01

    Identifying parasitism genes encoding proteins secreted from a plant-parasitic nematode's esophageal gland cells and injected through its stylet into plant tissue is the key to understanding the molecular basis of nematode parasitism of plants. Parasitism genes have been cloned by directly microaspirating the cytoplasm from the esophageal gland cells of different parasitic stages of cyst or root-knot nematodes to provide mRNA to create a gland cell-specific cDNA library by long-distance reverse-transcriptase polymerase chain reaction. cDNA clones are sequenced and deduced protein sequences with a signal peptide for secretion are identified for high-throughput in situ hybridization to confirm gland-specific expression.

  4. Structure, inheritance, and expression of hybrid poplar (Populus trichocarpa x Populus deltoides) phenylalanine ammonia-lyase genes.

    PubMed Central

    Subramaniam, R; Reinold, S; Molitor, E K; Douglas, C J

    1993-01-01

    A heterologous probe encoding phenylalanine ammonia-lyase (PAL) was used to identify PAL clones in cDNA libraries made with RNA from young leaf tissue of two Populus deltoides x P. trichocarpa F1 hybrid clones. Sequence analysis of a 2.4-kb cDNA confirmed its identity as a full-length PAl clone. The predicted amino acid sequence is conserved in comparison with that of PAL genes from several other plants. Southern blot analysis of popular genomic DNA from parental and hybrid individuals, restriction site polymorphism in PAL cDNA clones, and sequence heterogeneity in the 3' ends of several cDNA clones suggested that PAL is encoded by at least two genes that can be distinguished by HindIII restriction site polymorphisms. Clones containing each type of PAL gene were isolated from a poplar genomic library. Analysis of the segregation of PAL-specific HindIII restriction fragment-length polymorphisms demonstrated the existence of two independently segregating PAL loci, one of which was mapped to a linkage group of the poplar genetic map. Developmentally regulated PAL expression in poplar was analyzed using RNA blots. Highest expression was observed in young stems, apical buds, and young leaves. Expression was lower in older stems and undetectable in mature leaves. Cellular localization of PAL expression by in situ hybridization showed very high levels of expression in subepidermal cells of leaves early during leaf development. In stems and petioles, expression was associated with subepidermal cells and vascular tissues. PMID:8108506

  5. Stable-Isotope Probing of Bacteria Capable of Degrading Salicylate, Naphthalene, or Phenanthrene in a Bioreactor Treating Contaminated Soil

    PubMed Central

    Singleton, David R.; Powell, Sabrina N.; Sangaiah, Ramiah; Gold, Avram; Ball, Louise M.; Aitken, Michael D.

    2005-01-01

    [13C6]salicylate, [U-13C]naphthalene, and [U-13C]phenanthrene were synthesized and separately added to slurry from a bench-scale, aerobic bioreactor used to treat soil contaminated with polycyclic aromatic hydrocarbons. Incubations were performed for either 2 days (salicylate, naphthalene) or 7 days (naphthalene, phenanthrene). Total DNA was extracted from the incubations, the “heavy” and “light” DNA were separated, and the bacterial populations associated with the heavy fractions were examined by denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene clone libraries. Unlabeled DNA from Escherichia coli K-12 was added to each sample as an internal indicator of separation efficiency. While E. coli was not detected in most analyses of heavy DNA, a low number of E. coli sequences was recovered in the clone libraries associated with the heavy DNA fraction of [13C]phenanthrene incubations. The number of E. coli clones recovered proved useful in determining the relative amount of light DNA contamination of the heavy fraction in that sample. Salicylate- and naphthalene-degrading communities displayed similar DGGE profiles and their clone libraries were composed primarily of sequences belonging to the Pseudomonas and Ralstonia genera. In contrast, heavy DNA from the phenanthrene incubations displayed a markedly different DGGE profile and was composed primarily of sequences related to the Acidovorax genus. There was little difference in the DGGE profiles and types of sequences recovered from 2- and 7-day incubations with naphthalene, so secondary utilization of the 13C during the incubation did not appear to be an issue in this experiment. PMID:15746319

  6. Molecular cloning and characterization of ADP-glucose pyrophosphorylase cDNA clones isolated from pea cotyledons.

    PubMed

    Burgess, D; Penton, A; Dunsmuir, P; Dooner, H

    1997-02-01

    Three ADP-glucose pyrophosphorylase (ADPG-PPase) cDNA clones have been isolated and characterized from a pea cotyledon cDNA library. Two of these clones (Psagps1 and Psagps2) encode the small subunit of ADPG-PPase. The deduced amino acid sequences for these two clones are 95% identical. Expression of these two genes differs in that the Psagps2 gene shows comparatively higher expression in seeds relative to its expression in other tissues. Psagps2 expression also peaks midway through seed development at a time in which Psagps1 transcripts are still accumulating. The third cDNA isolated (Psagp11) encodes the large subunit of ADPG-PPase. It shows greater selectivity in expression than either of the small subunit clones. It is highly expressed in sink organs (seed, pod, and seed coat) and undetectable in leaves.

  7. Identifying the bacterial community on the surface of Intralox belting in a meat boning room by culture-dependent and culture-independent 16S rDNA sequence analysis.

    PubMed

    Brightwell, Gale; Boerema, Jackie; Mills, John; Mowat, Eilidh; Pulford, David

    2006-05-25

    We examined the bacterial community present on an Intralox conveyor belt system in an operating lamb boning room by sequencing the 16S ribosomal DNA (rDNA) of bacteria extracted in the presence or absence of cultivation. RFLP patterns for 16S rDNA clone library and cultures were generated using HaeIII and MspI restriction endonucleases. 16S rDNA amplicons produced 8 distinct RFLP pattern groups. RFLP groups I-IV were represented in the clone library and RFLP groups I and V-VIII were represented amongst the cultured isolates. Partial DNA sequences from each RFLP group revealed that all group I, II and VIII representatives were Pseudomonas spp., group III were Sphingomonas spp., group IV clones were most similar to an uncultured alpha proteobacterium, group V was similar to a Serratia spp., group VI with an Alcaligenes spp., and group VII with Microbacterium spp. Sphingomonads were numerically dominant in the culture-independent clone library and along with the group IV alpha proteobacterium were not represented amongst the cultured isolates. Serratia, Alcaligenes and Microbacterium spp. were only represented with cultured isolates. Pseudomonads were detected by both culture-dependent (84% of isolates) and culture-independent (12.5% of clones) methods and their presence at high frequency does pose the risk of product spoilage if transferred onto meat stored under aerobic conditions. The detection of sphingomonads in large numbers by the culture-independent method demands further analysis because sphingomonads may represent a new source of meat spoilage that has not been previously recognised in the meat processing environment. The 16S rDNA collections generated by both methods were important at representing the diversity of the bacterial population associated with an Intralox conveyor belt system.

  8. 3G vector-primer plasmid for constructing full-length-enriched cDNA libraries.

    PubMed

    Zheng, Dong; Zhou, Yanna; Zhang, Zidong; Li, Zaiyu; Liu, Xuedong

    2008-09-01

    We designed a 3G vector-primer plasmid for the generation of full-length-enriched complementary DNA (cDNA) libraries. By employing the terminal transferase activity of reverse transcriptase and the modified strand replacement method, this plasmid (assembled with a polydT end and a deoxyguanosine [dG] end) combines priming full-length cDNA strand synthesis and directional cDNA cloning. As a result, the number of steps involved in cDNA library preparation is decreased while simplifying downstream gene manipulation, sequencing, and subcloning. The 3G vector-primer plasmid method yields fully represented plasmid primed libraries that are equivalent to those made by the SMART (switching mechanism at 5' end of RNA transcript) approach.

  9. Using Partial Genomic Fosmid Libraries for Sequencing CompleteOrganellar Genomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNeal, Joel R.; Leebens-Mack, James H.; Arumuganathan, K.

    2005-08-26

    Organellar genome sequences provide numerous phylogenetic markers and yield insight into organellar function and molecular evolution. These genomes are much smaller in size than their nuclear counterparts; thus, their complete sequencing is much less expensive than total nuclear genome sequencing, making broader phylogenetic sampling feasible. However, for some organisms it is challenging to isolate plastid DNA for sequencing using standard methods. To overcome these difficulties, we constructed partial genomic libraries from total DNA preparations of two heterotrophic and two autotrophic angiosperm species using fosmid vectors. We then used macroarray screening to isolate clones containing large fragments of plastid DNA. Amore » minimum tiling path of clones comprising the entire genome sequence of each plastid was selected, and these clones were shotgun-sequenced and assembled into complete genomes. Although this method worked well for both heterotrophic and autotrophic plants, nuclear genome size had a dramatic effect on the proportion of screened clones containing plastid DNA and, consequently, the overall number of clones that must be screened to ensure full plastid genome coverage. This technique makes it possible to determine complete plastid genome sequences for organisms that defy other available organellar genome sequencing methods, especially those for which limited amounts of tissue are available.« less

  10. Endophytic bacteria in plant tissue culture: differences between easy- and difficult-to-propagate Prunus avium genotypes.

    PubMed

    Quambusch, Mona; Pirttilä, Anna Maria; Tejesvi, Mysore V; Winkelmann, Traud; Bartsch, Melanie

    2014-05-01

    The endophytic bacterial communities of six Prunus avium L. genotypes differing in their growth patterns during in vitro propagation were identified by culture-dependent and culture-independent methods. Five morphologically distinct isolates from tissue culture material were identified by 16S rDNA sequence analysis. To detect and analyze the uncultivable fraction of endophytic bacteria, a clone library was established from the amplified 16S rDNA of total plant extract. Bacterial diversity within the clone libraries was analyzed by amplified ribosomal rDNA restriction analysis and by sequencing a clone for each identified operational taxonomic unit. The most abundant bacterial group was Mycobacterium sp., which was identified in the clone libraries of all analyzed Prunus genotypes. Other dominant bacterial genera identified in the easy-to-propagate genotypes were Rhodopseudomonas sp. and Microbacterium sp. Thus, the community structures in the easy- and difficult-to-propagate cherry genotypes differed significantly. The bacterial genera, which were previously reported to have plant growth-promoting effects, were detected only in genotypes with high propagation success, indicating a possible positive impact of these bacteria on in vitro propagation of P. avium, which was proven in an inoculation experiment. © The Author 2014. Published by Oxford University Press. All rights reserved.

  11. Alignment-Independent Comparisons of Human Gastrointestinal Tract Microbial Communities in a Multidimensional 16S rRNA Gene Evolutionary Space▿

    PubMed Central

    Rudi, Knut; Zimonja, Monika; Kvenshagen, Bente; Rugtveit, Jarle; Midtvedt, Tore; Eggesbø, Merete

    2007-01-01

    We present a novel approach for comparing 16S rRNA gene clone libraries that is independent of both DNA sequence alignment and definition of bacterial phylogroups. These steps are the major bottlenecks in current microbial comparative analyses. We used direct comparisons of taxon density distributions in an absolute evolutionary coordinate space. The coordinate space was generated by using alignment-independent bilinear multivariate modeling. Statistical analyses for clone library comparisons were based on multivariate analysis of variance, partial least-squares regression, and permutations. Clone libraries from both adult and infant gastrointestinal tract microbial communities were used as biological models. We reanalyzed a library consisting of 11,831 clones covering complete colons from three healthy adults in addition to a smaller 390-clone library from infant feces. We show that it is possible to extract detailed information about microbial community structures using our alignment-independent method. Our density distribution analysis is also very efficient with respect to computer operation time, meeting the future requirements of large-scale screenings to understand the diversity and dynamics of microbial communities. PMID:17337554

  12. Partial characterization of normal and Haemophilus influenzae-infected mucosal complementary DNA libraries in chinchilla middle ear mucosa.

    PubMed

    Kerschner, Joseph E; Erdos, Geza; Hu, Fen Ze; Burrows, Amy; Cioffi, Joseph; Khampang, Pawjai; Dahlgren, Margaret; Hayes, Jay; Keefe, Randy; Janto, Benjamin; Post, J Christopher; Ehrlich, Garth D

    2010-04-01

    We sought to construct and partially characterize complementary DNA (cDNA) libraries prepared from the middle ear mucosa (MEM) of chinchillas to better understand pathogenic aspects of infection and inflammation, particularly with respect to leukotriene biogenesis and response. Chinchilla MEM was harvested from controls and after middle ear inoculation with nontypeable Haemophilus influenzae. RNA was extracted to generate cDNA libraries. Randomly selected clones were subjected to sequence analysis to characterize the libraries and to provide DNA sequence for phylogenetic analyses. Reverse transcription-polymerase chain reaction of the RNA pools was used to generate cDNA sequences corresponding to genes associated with leukotriene biosynthesis and metabolism. Sequence analysis of 921 randomly selected clones from the uninfected MEM cDNA library produced approximately 250,000 nucleotides of almost entirely novel sequence data. Searches of the GenBank database with the Basic Local Alignment Search Tool provided for identification of 515 unique genes expressed in the MEM and not previously described in chinchillas. In almost all cases, the chinchilla cDNA sequences displayed much greater homology to human or other primate genes than with rodent species. Genes associated with leukotriene metabolism were present in both normal and infected MEM. Based on both phylogenetic comparisons and gene expression similarities with humans, chinchilla MEM appears to be an excellent model for the study of middle ear inflammation and infection. The higher degree of sequence similarity between chinchillas and humans compared to chinchillas and rodents was unexpected. The cDNA libraries from normal and infected chinchilla MEM will serve as useful molecular tools in the study of otitis media and should yield important information with respect to middle ear pathogenesis.

  13. Partial Characterization of Normal and Haemophilus influenzae–Infected Mucosal Complementary DNA Libraries in Chinchilla Middle Ear Mucosa

    PubMed Central

    Kerschner, Joseph E.; Erdos, Geza; Hu, Fen Ze; Burrows, Amy; Cioffi, Joseph; Khampang, Pawjai; Dahlgren, Margaret; Hayes, Jay; Keefe, Randy; Janto, Benjamin; Post, J. Christopher; Ehrlich, Garth D.

    2010-01-01

    Objectives We sought to construct and partially characterize complementary DNA (cDNA) libraries prepared from the middle ear mucosa (MEM) of chinchillas to better understand pathogenic aspects of infection and inflammation, particularly with respect to leukotriene biogenesis and response. Methods Chinchilla MEM was harvested from controls and after middle ear inoculation with nontypeable Haemophilus influenzae. RNA was extracted to generate cDNA libraries. Randomly selected clones were subjected to sequence analysis to characterize the libraries and to provide DNA sequence for phylogenetic analyses. Reverse transcription–polymerase chain reaction of the RNA pools was used to generate cDNA sequences corresponding to genes associated with leukotriene biosynthesis and metabolism. Results Sequence analysis of 921 randomly selected clones from the uninfected MEM cDNA library produced approximately 250,000 nucleotides of almost entirely novel sequence data. Searches of the GenBank database with the Basic Local Alignment Search Tool provided for identification of 515 unique genes expressed in the MEM and not previously described in chinchillas. In almost all cases, the chinchilla cDNA sequences displayed much greater homology to human or other primate genes than with rodent species. Genes associated with leukotriene metabolism were present in both normal and infected MEM. Conclusions Based on both phylogenetic comparisons and gene expression similarities with humans, chinchilla MEM appears to be an excellent model for the study of middle ear inflammation and infection. The higher degree of sequence similarity between chinchillas and humans compared to chinchillas and rodents was unexpected. The cDNA libraries from normal and infected chinchilla MEM will serve as useful molecular tools in the study of otitis media and should yield important information with respect to middle ear pathogenesis. PMID:20433028

  14. Current and future resources for functional metagenomics.

    PubMed

    Lam, Kathy N; Cheng, Jiujun; Engel, Katja; Neufeld, Josh D; Charles, Trevor C

    2015-01-01

    Functional metagenomics is a powerful experimental approach for studying gene function, starting from the extracted DNA of mixed microbial populations. A functional approach relies on the construction and screening of metagenomic libraries-physical libraries that contain DNA cloned from environmental metagenomes. The information obtained from functional metagenomics can help in future annotations of gene function and serve as a complement to sequence-based metagenomics. In this Perspective, we begin by summarizing the technical challenges of constructing metagenomic libraries and emphasize their value as resources. We then discuss libraries constructed using the popular cloning vector, pCC1FOS, and highlight the strengths and shortcomings of this system, alongside possible strategies to maximize existing pCC1FOS-based libraries by screening in diverse hosts. Finally, we discuss the known bias of libraries constructed from human gut and marine water samples, present results that suggest bias may also occur for soil libraries, and consider factors that bias metagenomic libraries in general. We anticipate that discussion of current resources and limitations will advance tools and technologies for functional metagenomics research.

  15. Microdissection and molecular manipulation of single chromosomes in woody fruit trees with small chromosomes using pomelo (Citrus grandis) as a model. I. Construction of single chromosomal DNA libraries.

    PubMed

    Huang, D; Wu, W; Zhou, Y; Hu, Z; Lu, L

    2004-05-01

    Construction of single chromosomal DNA libraries by means of chromosome microdissection and microcloning will be useful for genomic research, especially for those species that have not been extensively studied genetically. Application of the technology of microdissection and microcloning to woody fruit plants has not been reported hitherto, largely due to the generally small sizes of metaphase chromosomes and the difficulty of chromosome preparation. The present study was performed to establish a method for single chromosome microdissection and microcloning in woody fruit species using pomelo as a model. The standard karyotype of a pomelo cultivar ( Citrus grandis cv. Guanxi) was established based on 20 prometaphase photomicrographs. According to the standard karyotype, chromosome 1 was identified and isolated with fine glass microneedles controlled by a micromanipulator. DNA fragments ranging from 0.3 kb to 2 kb were acquired from the isolated single chromosome 1 via two rounds of PCR mediated by Sau3A linker adaptors and then cloned into T-easy vectors to generate a DNA library of chromosome 1. Approximately 30,000 recombinant clones were obtained. Evaluation based on 108 randomly selected clones showed that the sizes of the cloned inserts varied from 0.5 kb to 1.5 kb with an average of 860 bp. Our research suggests that microdissection and microcloning of single small chromosomes in woody plants is feasible.

  16. Preparation of fosmid libraries and functional metagenomic analysis of microbial community DNA.

    PubMed

    Martínez, Asunción; Osburne, Marcia S

    2013-01-01

    One of the most important challenges in contemporary microbial ecology is to assign a functional role to the large number of novel genes discovered through large-scale sequencing of natural microbial communities that lack similarity to genes of known function. Functional screening of metagenomic libraries, that is, screening environmental DNA clones for the ability to confer an activity of interest to a heterologous bacterial host, is a promising approach for bridging the gap between metagenomic DNA sequencing and functional characterization. Here, we describe methods for isolating environmental DNA and constructing metagenomic fosmid libraries, as well as methods for designing and implementing successful functional screens of such libraries. © 2013 Elsevier Inc. All rights reserved.

  17. Evaluation of microbial community in hydrothermal field by direct DNA sequencing

    NASA Astrophysics Data System (ADS)

    Kawarabayasi, Y.; Maruyama, A.

    2002-12-01

    Many extremophiles have been discovered from terrestrial and marine hydrothermal fields. Some thermophiles can grow beyond 90°C in culture, while direct microscopic analysis occasionally indicates that microbes may survive in much hotter hydrothermal fluids. However, it is very difficult to isolate and cultivate such microbes from the environments, i.e., over 99% of total microbes remains undiscovered. Based on experiences of entire microbial genome analysis (Y.K.) and microbial community analysis (A.M.), we started to find out unique microbes/genes in hydrothermal fields through direct sequencing of environmental DNA fragments. At first, shotgun plasmid libraries were directly constructed with the DNA molecules prepared from mixed microbes collected by an in situ filtration system from low-temperature fluids at RM24 in the Southern East Pacific Rise (S-EPR). A gene amplification (PCR) technique was not used for preventing mutation in the process. The nucleotide sequences of 285 clones indicated that no sequence had identical data in public databases. Among 27 clones determined entire sequences, no ORF was identified on 14 clones like intron in Eukaryote. On four clones, tetra-nucleotide-long multiple tandem repetitive sequences were identified. This type of sequence was identified in some familiar disease in human. The result indicates that living/dead materials with eukaryotic features may exist in this low temperature field. Secondly, shotgun plasmid libraries were constructed from the environmental DNA prepared from Beppu hot springs. In randomly-selected 143 clones used for sequencing, no known sequence was identified. Unlike the clones in S-EPR library, clear ORFs were identified on all nine clones determined the entire sequence. It was found that one clone, H4052, contained the complete Aspartyl-tRNA synthetase. Phylogenetic analysis using amino acid sequences of this gene indicated that this gene was separated from other Euryarchaea before the differentiation of species. Thus, some novel archaeal species are expected to be in this field. The present direct cloning and sequencing technique is now opening a window to the new world in hydrothermal microbial community analysis.

  18. Bacterial diversity in the active stage of a bioremediation system for mineral oil hydrocarbon-contaminated soils.

    PubMed

    Popp, Nicole; Schlömann, Michael; Mau, Margit

    2006-11-01

    Soils contaminated with mineral oil hydrocarbons are often cleaned in off-site bioremediation systems. In order to find out which bacteria are active during the degradation phase in such systems, the diversity of the active microflora in a degrading soil remediation system was investigated by small-subunit (SSU) rRNA analysis. Two sequential RNA extracts from one soil sample were generated by a procedure incorporating bead beating. Both extracts were analysed separately by generating individual SSU rDNA clone libraries from cDNA of the two extracts. The sequencing results showed moderate diversity. The two clone libraries were dominated by Gammaproteobacteria, especially Pseudomonas spp. Alphaproteobacteria and Betaproteobacteria were two other large groups in the clone libraries. Actinobacteria, Firmicutes, Bacteroidetes and Epsilonproteobacteria were detected in lower numbers. The obtained sequences were predominantly related to genera for which cultivated representatives have been described, but were often clustered together in the phylogenetic tree, and the sequences that were most similar were originally obtained from soils and not from pure cultures. Most of the dominant genera in the clone libraries, e.g. Pseudomonas, Acinetobacter, Sphingomonas, Acidovorax and Thiobacillus, had already been detected in (mineral oil hydrocarbon) contaminated environmental samples. The occurrence of the genera Zymomonas and Rhodoferax was novel in mineral oil hydrocarbon-contaminated soil.

  19. Randomly picked cosmid clones overlap the pyrB and oriC gap in the physical map of the E. coli chromosome.

    PubMed Central

    Knott, V; Rees, D J; Cheng, Z; Brownlee, G G

    1988-01-01

    Sets of overlapping cosmid clones generated by random sampling and fingerprinting methods complement data at pyrB (96.5') and oriC (84') in the published physical map of E. coli. A new cloning strategy using sheared DNA, and a low copy, inducible cosmid vector were used in order to reduce bias in libraries, in conjunction with micro-methods for preparing cosmid DNA from a large number of clones. Our results are relevant to the design of the best approach to the physical mapping of large genomes. PMID:2834694

  20. Towards a transcription map spanning a 250 kb area within the DiGeorge syndrome chromosome region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, W.; Emanuel, B.S.; Siegert, J.

    1994-09-01

    DiGeorge syndrome (DGS) and velocardiofacial syndrome (VCFS) are congenital anomalies affecting predominantly the thymus, parathyroid glands, heart and craniofacial development. Detection of 22q11.2 deletions in the majority of DGS and VCFS patients implicate 22q11 haploinsufficiency in the etiology of these disorders. The VCFS/DGS critical region lies within the proximal portion of a commonly deleted 1.2 Mb region in 22q11. A 250 kb cosmid contig covering this critical region and containing D22S74 (N25) has been established. From this contig, eleven cosmids with minimal overlap were biotinylated by nick translation, and hybridized to PCR-amplified cDNAs prepared from different tissues. The use ofmore » cDNAs from a variety of tissues increases the likelihood of identifying low abundance transcripts and tissue-specific expressed sequences. A DGCR-specific cDNA sublibrary consisting of 670 cDNA clones has been constructed. To date, 49 cDNA clones from this sub-library have been identified with single copy probes and cosmids containing putative CpG islands. Based on sequence analysis, 25 of the clones contain regions of homology to several cDNAs which map within the proximal contig. LAN is a novel partial cDNA isolated from a fetal brain library probed with one of the cosmids in the proximal contig. Using LAN as a probe, we have found 19 positive clones in the DGCR-specific cDNA sub-library (4 clones from fetal brain, 14 from adult skeletal muscle and one from fetal liver). Some of the LAN-positive clones extend the partial cDNA in the 5{prime} direction and will be useful in assembling a full length transcript. This resource will be used to develop a complete transcriptional map of the critical region in order to identify candidate gene(s) involved in the etiology of DGS/VCFS and to determine the relationship between the transcriptional and physical maps of 22q11.« less

  1. The development and characterisation of a bacterial artificial chromosome library for Fragaria vesca

    PubMed Central

    Bonet, Julio; Girona, Elena Lopez; Sargent, Daniel J; Muñoz-Torres, Monica C; Monfort, Amparo; Abbott, Albert G; Arús, Pere; Simpson, David W; Davik, Jahn

    2009-01-01

    Background The cultivated strawberry Fragaria ×ananassa is one of the most economically-important soft-fruit species. Few structural genomic resources have been reported for Fragaria and there exists an urgent need for the development of physical mapping resources for the genus. The first stage in the development of a physical map for Fragaria is the construction and characterisation of a high molecular weight bacterial artificial chromosome (BAC) library. Methods A BAC library, consisting of 18,432 clones was constructed from Fragaria vesca f. semperflorens accession 'Ali Baba'. BAC DNA from individual library clones was pooled to create a PCR-based screening assay for the library, whereby individual clones could be identified with just 34 PCR reactions. These pools were used to screen the BAC library and anchor individual clones to the diploid Fragaria reference map (FV×FN). Findings Clones from the BAC library developed contained an average insert size of 85 kb, representing over seven genome equivalents. The pools and superpools developed were used to identify a set of BAC clones containing 70 molecular markers previously mapped to the diploid Fragaria FV×FN reference map. The number of positive colonies identified for each marker suggests the library represents between 4× and 10× coverage of the diploid Fragaria genome, which is in accordance with the estimate of library coverage based on average insert size. Conclusion This BAC library will be used for the construction of a physical map for F. vesca and the superpools will permit physical anchoring of molecular markers using PCR. PMID:19772672

  2. A pair of new BAC and BIBAC vectors that facilitate BAC/BIBAC library construction and intact large genomic DNA insert exchange.

    PubMed

    Shi, Xue; Zeng, Haiyang; Xue, Yadong; Luo, Meizhong

    2011-10-11

    Large-insert BAC and BIBAC libraries are important tools for structural and functional genomics studies of eukaryotic genomes. To facilitate the construction of BAC and BIBAC libraries and the transfer of complete large BAC inserts into BIBAC vectors, which is desired in positional cloning, we developed a pair of new BAC and BIBAC vectors. The new BAC vector pIndigoBAC536-S and the new BIBAC vector BIBAC-S have the following features: 1) both contain two 18-bp non-palindromic I-SceI sites in an inverted orientation at positions that flank an identical DNA fragment containing the lacZ selection marker and the cloning site. Large DNA inserts can be excised from the vectors as single fragments by cutting with I-SceI, allowing the inserts to be easily sized. More importantly, because the two vectors contain different antibiotic resistance genes for transformant selection and produce the same non-complementary 3' protruding ATAA ends by I-SceI that suppress self- and inter-ligations, the exchange of intact large genomic DNA inserts between the BAC and BIBAC vectors is straightforward; 2) both were constructed as high-copy composite vectors. Reliable linearized and dephosphorylated original low-copy pIndigoBAC536-S and BIBAC-S vectors that are ready for library construction can be prepared from the high-copy composite vectors pHZAUBAC1 and pHZAUBIBAC1, respectively, without the need for additional preparation steps or special reagents, thus simplifying the construction of BAC and BIBAC libraries. BIBAC clones constructed with the new BIBAC-S vector are stable in both E. coli and Agrobacterium. The vectors can be accessed through our website http://GResource.hzau.edu.cn. The two new vectors and their respective high-copy composite vectors can largely facilitate the construction and characterization of BAC and BIBAC libraries. The transfer of complete large genomic DNA inserts from one vector to the other is made straightforward.

  3. Construction of a High-Quality Yeast Two-Hybrid Library and Its Application in Identification of Interacting Proteins with Brn1 in Curvularia lunata.

    PubMed

    Gao, Jin-Xin; Jing, Jing; Yu, Chuan-Jin; Chen, Jie

    2015-06-01

    Curvularia lunata is an important maize foliar fungal pathogen that distributes widely in maize growing area in China, and several key pathogenic factors have been isolated. An yeast two-hybrid (Y2H) library is a very useful platform to further unravel novel pathogenic factors in C. lunata. To construct a high-quality full length-expression cDNA library from the C. lunata for application to pathogenesis-related protein-protein interaction screening, total RNA was extracted. The SMART (Switching Mechanism At 5' end of the RNA Transcript) technique was used for cDNA synthesis. Double-stranded cDNA was ligated into the pGADT7-Rec vector with Herring Testes Carrier DNA using homologous recombination method. The ligation mixture was transformed into competent yeast AH109 cells to construct the primary cDNA library. Eventually, a high qualitative library was successfully established according to an evaluation on quality. The transformation efficiency was about 6.39 ×10(5) transformants/3 μg pGADT7-Rec. The titer of the primary cDNA library was 2.5×10(8) cfu/mL. The numbers for the cDNA library was 2.46×10(5). Randomly picked clones show that the recombination rate was 88.24%. Gel electrophoresis results indicated that the fragments ranged from 0.4 kb to 3.0 kb. Melanin synthesis protein Brn1 (1,3,8-hydroxynaphthalene reductase) was used as a "bait" to test the sufficiency of the Y2H library. As a result, a cDNA clone encoding VelB protein that was known to be involved in the regulation of diverse cellular processes, including control of secondary metabolism containing melanin and toxin production in many filamentous fungi was identified. Further study on the exact role of the VelB gene is underway.

  4. Current and future resources for functional metagenomics

    PubMed Central

    Lam, Kathy N.; Cheng, Jiujun; Engel, Katja; Neufeld, Josh D.; Charles, Trevor C.

    2015-01-01

    Functional metagenomics is a powerful experimental approach for studying gene function, starting from the extracted DNA of mixed microbial populations. A functional approach relies on the construction and screening of metagenomic libraries—physical libraries that contain DNA cloned from environmental metagenomes. The information obtained from functional metagenomics can help in future annotations of gene function and serve as a complement to sequence-based metagenomics. In this Perspective, we begin by summarizing the technical challenges of constructing metagenomic libraries and emphasize their value as resources. We then discuss libraries constructed using the popular cloning vector, pCC1FOS, and highlight the strengths and shortcomings of this system, alongside possible strategies to maximize existing pCC1FOS-based libraries by screening in diverse hosts. Finally, we discuss the known bias of libraries constructed from human gut and marine water samples, present results that suggest bias may also occur for soil libraries, and consider factors that bias metagenomic libraries in general. We anticipate that discussion of current resources and limitations will advance tools and technologies for functional metagenomics research. PMID:26579102

  5. Construction and characterization of a bacterial artificial chromosome library for hexaploid wheat line 92R137

    USDA-ARS?s Scientific Manuscript database

    For map-based cloning of genes conferring important traits in the hexaploid wheat line 92R137, a bacterial artificial chromosome (BAC) library, including two sub libraries, was constructed using the genomic DNA of 92R137 digested with restriction enzymes HindIII and BamHI. The BAC library was compos...

  6. Genomic sequencing of Pleistocene cave bears

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noonan, James P.; Hofreiter, Michael; Smith, Doug

    2005-04-01

    Despite the information content of genomic DNA, ancient DNA studies to date have largely been limited to amplification of mitochondrial DNA due to technical hurdles such as contamination and degradation of ancient DNAs. In this study, we describe two metagenomic libraries constructed using unamplified DNA extracted from the bones of two 40,000-year-old extinct cave bears. Analysis of {approx}1 Mb of sequence from each library showed that, despite significant microbial contamination, 5.8 percent and 1.1 percent of clones in the libraries contain cave bear inserts, yielding 26,861 bp of cave bear genome sequence. Alignment of this sequence to the dog genome,more » the closest sequenced genome to cave bear in terms of evolutionary distance, revealed roughly the expected ratio of cave bear exons, repeats and conserved noncoding sequences. Only 0.04 percent of all clones sequenced were derived from contamination with modern human DNA. Comparison of cave bear with orthologous sequences from several modern bear species revealed the evolutionary relationship of these lineages. Using the metagenomic approach described here, we have recovered substantial quantities of mammalian genomic sequence more than twice as old as any previously reported, establishing the feasibility of ancient DNA genomic sequencing programs.« less

  7. The thiostrepton-resistance-encoding gene in Streptomyces laurentii is located within a cluster of ribosomal protein operons.

    PubMed

    Smith, T M; Jiang, Y F; Shipley, P; Floss, H G

    1995-10-16

    A common approach to identify and clone biosynthetic gene from an antibiotic-producing streptomycete is to clone the resistance gene for the antibiotic of interest and then use that gene to clone DNA that is linked to it. As a first step toward cloning the genes responsible for the biosynthesis of thiostrepton (Th) in Streptomyces laurentii (Sl), the Th resistance-encoding gene (tsnR) was cloned as a 1.5-kb BamHI-PvuII fragment in Escherichia coli (Ec), and shown to confer Th resistance when introduced into S. lividans TK24. The tsnR-containing DNA fragment was used as a probe to isolate clones from cosmid libraries of DNA in the Ec cosmid vector SuperCos, and pOJ446 (an Ec/streptomycete) cosmid vector. Sequence and genetic analysis of the DNA flanking the tsnR indicates that the Sl tsnR is not closely linked to biosynthetic genes. Instead it is located within a cluster of ribosomal protein operons.

  8. Genomic resources for gene discovery, functional genome annotation, and evolutionary studies of maize and its close relatives.

    PubMed

    Wang, Chao; Shi, Xue; Liu, Lin; Li, Haiyan; Ammiraju, Jetty S S; Kudrna, David A; Xiong, Wentao; Wang, Hao; Dai, Zhaozhao; Zheng, Yonglian; Lai, Jinsheng; Jin, Weiwei; Messing, Joachim; Bennetzen, Jeffrey L; Wing, Rod A; Luo, Meizhong

    2013-11-01

    Maize is one of the most important food crops and a key model for genetics and developmental biology. A genetically anchored and high-quality draft genome sequence of maize inbred B73 has been obtained to serve as a reference sequence. To facilitate evolutionary studies in maize and its close relatives, much like the Oryza Map Alignment Project (OMAP) (www.OMAP.org) bacterial artificial chromosome (BAC) resource did for the rice community, we constructed BAC libraries for maize inbred lines Zheng58, Chang7-2, and Mo17 and maize wild relatives Zea mays ssp. parviglumis and Tripsacum dactyloides. Furthermore, to extend functional genomic studies to maize and sorghum, we also constructed binary BAC (BIBAC) libraries for the maize inbred B73 and the sorghum landrace Nengsi-1. The BAC/BIBAC vectors facilitate transfer of large intact DNA inserts from BAC clones to the BIBAC vector and functional complementation of large DNA fragments. These seven Zea Map Alignment Project (ZMAP) BAC/BIBAC libraries have average insert sizes ranging from 92 to 148 kb, organellar DNA from 0.17 to 2.3%, empty vector rates between 0.35 and 5.56%, and genome equivalents of 4.7- to 8.4-fold. The usefulness of the Parviglumis and Tripsacum BAC libraries was demonstrated by mapping clones to the reference genome. Novel genes and alleles present in these ZMAP libraries can now be used for functional complementation studies and positional or homology-based cloning of genes for translational genomics.

  9. Characterization of bacterial diversity in pulque, a traditional Mexican alcoholic fermented beverage, as determined by 16S rDNA analysis.

    PubMed

    Escalante, Adelfo; Rodríguez, María Elena; Martínez, Alfredo; López-Munguía, Agustín; Bolívar, Francisco; Gosset, Guillermo

    2004-06-15

    The bacterial diversity in pulque, a traditional Mexican alcoholic fermented beverage, was studied in 16S rDNA clone libraries from three pulque samples. Sequenced clones identified as Lactobacillus acidophilus, Lactobacillus strain ASF360, L. kefir, L. acetotolerans, L. hilgardii, L. plantarum, Leuconostoc pseudomesenteroides, Microbacterium arborescens, Flavobacterium johnsoniae, Acetobacter pomorium, Gluconobacter oxydans, and Hafnia alvei, were detected for the first time in pulque. Identity of 16S rDNA sequenced clones showed that bacterial diversity present among pulque samples is dominated by Lactobacillus species (80.97%). Seventy-eight clones exhibited less than 95% of relatedness to NCBI database sequences, which may indicate the presence of new species in pulque samples.

  10. Problem-Solving Test: Expression Cloning of the Erythropoietin Receptor

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2008-01-01

    Terms to be familiar with before you start to solve the test: cytokines, cytokine receptors, cDNA library, cDNA synthesis, poly(A)[superscript +] RNA, primer, template, reverse transcriptase, restriction endonucleases, cohesive ends, expression vector, promoter, Shine-Dalgarno sequence, poly(A) signal, DNA helicase, DNA ligase, topoisomerases,…

  11. Isolation of a complementary DNA clone for the human complement protein C2 and its use in the identification of a restriction fragment length polymorphism.

    PubMed Central

    Woods, D E; Edge, M D; Colten, H R

    1984-01-01

    Complementary DNA (cDNA) clones corresponding to the major histocompatibility (MHC) class III antigen, complement protein C2, have been isolated from human liver cDNA libraries with the use of a complex mixture of synthetic oligonucleotides (17 mer) that contains 576 different oligonucleotide sequences. The C2 cDNA were used to identify a DNA restriction enzyme fragment length polymorphism that provides a genetic marker within the MHC that was not detectable at the protein level. An extensive search for genomic polymorphisms using a cDNA clone for another MHC class III gene, factor B, failed to reveal any DNA variants. The genomic variants detected with the C2 cDNA probe provide an additional genetic marker for analysis of MHC-linked diseases. Images PMID:6086718

  12. Molecular cloning and characterization of Hymenolepis diminuta alpha-tubulin gene.

    PubMed

    Mohajer-Maghari, Behrokh; Amini-Bavil-Olyaee, Samad; Webb, Rodney A; Coe, Imogen R

    2007-02-01

    To isolate a full-length alpha-tubulin cDNA from an eucestode, Hymenolepis diminuta, a lambda phage cDNA library was constructed. The alpha-tubulin gene was cloned, sequenced and characterized. The H. diminuta alpha-tubulin consisted of 450 amino acids. This protein contained putative sites for all posttranslational modifications as detyrosination/tyrosination at the carboxyl-terminal of protien, phosphorylation at residues R79 and K336, glycylation/glutamylation at residue G445 and acetylation at residue K40. Comparisons of H. diminuta alpha-tubulin with all full-length alpha-tubulin proteins revealed that H. diminuta alpha-tubulin possesses 10 distinctive residues, which are not found in any other alpha-tubulins. Phylogenetic analysis showed that H. diminuta alpha-tubulin has grouped in a separated branch adjacent eucestode and trematodes branch with 92% bootstrap value (1000 replicates). In conclusion, this is the first report of H. diminuta cDNA library construction, cloning and characterization of H. diminuta alpha-tubulin gene.

  13. Using DNA-Stable Isotope Probing to Identify MTBE- and TBA-Degrading Microorganisms in Contaminated Groundwater.

    PubMed

    Key, Katherine C; Sublette, Kerry L; Duncan, Kathleen; Mackay, Douglas M; Scow, Kate M; Ogles, Dora

    2013-01-01

    Although the anaerobic biodegradation of methyl tert -butyl ether (MTBE) and tert -butyl alcohol (TBA) has been documented in the laboratory and the field, knowledge of the microorganisms and mechanisms involved is still lacking. In this study, DNA-stable isotope probing (SIP) was used to identify microorganisms involved in anaerobic fuel oxygenate biodegradation in a sulfate-reducing MTBE and TBA plume. Microorganisms were collected in the field using Bio-Sep® beads amended with 13 C 5 -MTBE, 13 C 1 -MTBE (only methoxy carbon labeled), or 13 C 4 -TBA. 13 C-DNA and 12 C-DNA extracted from the Bio-Sep beads were cloned and 16S rRNA gene sequences were used to identify the indigenous microorganisms involved in degrading the methoxy group of MTBE and the tert -butyl group of MTBE and TBA. Results indicated that microorganisms were actively degrading 13 C-labeled MTBE and TBA in situ and the 13 C was incorporated into their DNA. Several sequences related to known MTBE- and TBA-degraders in the Burkholderiales and the Sphingomonadales orders were detected in all three 13 C clone libraries and were likely to be primary degraders at the site. Sequences related to sulfate-reducing bacteria and iron-reducers, such as Geobacter and Geothrix , were only detected in the clone libraries where MTBE and TBA were fully labeled with 13 C, suggesting that they were involved in processing carbon from the tert -butyl group. Sequences similar to the Pseudomonas genus predominated in the clone library where only the methoxy carbon of MTBE was labeled with 13 C. It is likely that members of this genus were secondary degraders cross-feeding on 13 C-labeled metabolites such as acetate.

  14. Using DNA-Stable Isotope Probing to Identify MTBE- and TBA-Degrading Microorganisms in Contaminated Groundwater

    PubMed Central

    Key, Katherine C.; Sublette, Kerry L.; Duncan, Kathleen; Mackay, Douglas M.; Scow, Kate M.; Ogles, Dora

    2014-01-01

    Although the anaerobic biodegradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) has been documented in the laboratory and the field, knowledge of the microorganisms and mechanisms involved is still lacking. In this study, DNA-stable isotope probing (SIP) was used to identify microorganisms involved in anaerobic fuel oxygenate biodegradation in a sulfate-reducing MTBE and TBA plume. Microorganisms were collected in the field using Bio-Sep® beads amended with 13C5-MTBE, 13C1-MTBE (only methoxy carbon labeled), or13C4-TBA. 13C-DNA and 12C-DNA extracted from the Bio-Sep beads were cloned and 16S rRNA gene sequences were used to identify the indigenous microorganisms involved in degrading the methoxy group of MTBE and the tert-butyl group of MTBE and TBA. Results indicated that microorganisms were actively degrading 13C-labeled MTBE and TBA in situ and the 13C was incorporated into their DNA. Several sequences related to known MTBE- and TBA-degraders in the Burkholderiales and the Sphingomonadales orders were detected in all three13C clone libraries and were likely to be primary degraders at the site. Sequences related to sulfate-reducing bacteria and iron-reducers, such as Geobacter and Geothrix, were only detected in the clone libraries where MTBE and TBA were fully labeled with 13C, suggesting that they were involved in processing carbon from the tert-butyl group. Sequences similar to the Pseudomonas genus predominated in the clone library where only the methoxy carbon of MTBE was labeled with 13C. It is likely that members of this genus were secondary degraders cross-feeding on 13C-labeled metabolites such as acetate. PMID:25525320

  15. Host-associated bacterial taxa from Chlorobi, Chloroflexi, GN02, Synergistetes, SR1, TM7, and WPS-2 Phyla/candidate divisions

    PubMed Central

    Camanocha, Anuj; Dewhirst, Floyd E.

    2014-01-01

    Background and objective In addition to the well-known phyla Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, Spirochaetes, Fusobacteria, Tenericutes, and Chylamydiae, the oral microbiomes of mammals contain species from the lesser-known phyla or candidate divisions, including Synergistetes, TM7, Chlorobi, Chloroflexi, GN02, SR1, and WPS-2. The objectives of this study were to create phyla-selective 16S rDNA PCR primer pairs, create selective 16S rDNA clone libraries, identify novel oral taxa, and update canine and human oral microbiome databases. Design 16S rRNA gene sequences for members of the lesser-known phyla were downloaded from GenBank and Greengenes databases and aligned with sequences in our RNA databases. Primers with potential phylum level selectivity were designed heuristically with the goal of producing nearly full-length 16S rDNA amplicons. The specificity of primer pairs was examined by making clone libraries from PCR amplicons and determining phyla identity by BLASTN analysis. Results Phylum-selective primer pairs were identified that allowed construction of clone libraries with 96–100% specificity for each of the lesser-known phyla. From these clone libraries, seven human and two canine novel oral taxa were identified and added to their respective taxonomic databases. For each phylum, genome sequences closest to human oral taxa were identified and added to the Human Oral Microbiome Database to facilitate metagenomic, transcriptomic, and proteomic studies that involve tiling sequences to the most closely related taxon. While examining ribosomal operons in lesser-known phyla from single-cell genomes and metagenomes, we identified a novel rRNA operon order (23S-5S-16S) in three SR1 genomes and the splitting of the 23S rRNA gene by an I-CeuI-like homing endonuclease in a WPS-2 genome. Conclusions This study developed useful primer pairs for making phylum-selective 16S rRNA clone libraries. Phylum-specific libraries were shown to be useful for identifying previously unrecognized taxa in lesser-known phyla and would be useful for future environmental and host-associated studies. PMID:25317252

  16. Preferential cleavage sites for Sau3A restriction endonuclease in human ribosomal DNA.

    PubMed

    Kupriyanova, N S; Kirilenko, P M; Netchvolodov, K K; Ryskov, A P

    2000-07-21

    Previous studies of cloned ribosomal DNA (rDNA) variants isolated from the cosmid library of human chromosome 13 have revealed some disproportion in representativity of different rDNA regions (N. S. Kupriyanova, K. K. Netchvolodov, P. M. Kirilenko, B. I. Kapanadze, N. K. Yankovsky, and A. P. Ryskov, Mol. Biol. 30, 51-60, 1996). Here we show nonrandom cleavage of human rDNA with Sau3A or its isoshizomer MboI under mild hydrolysis conditions. The hypersensitive cleavage sites were found to be located in the ribosomal intergenic spacer (rIGS), especially in the regions of about 5-5.5 and 11 kb upstream of the rRNA transcription start point. This finding is based on sequencing mapping of the rDNA insert ends in randomly selected cosmid clones of human chromosome 13 and on the data of digestion kinetics of cloned and noncloned human genomic rDNA with Sau3A and MboI. The results show that a methylation status and superhelicity state of the rIGS have no effect on cleavage site sensitivity. It is interesting that all primary cleavage sites are adjacent to or entering into Alu or Psi cdc 27 retroposons of the rIGS suggesting a possible role of neighboring sequences in nuclease accessibility. The results explain nonequal representation of rDNA sequences in the human genomic DNA library used for this study. Copyright 2000 Academic Press.

  17. Cloning of Sucrose:Sucrose 1-Fructosyltransferase from Onion and Synthesis of Structurally Defined Fructan Molecules from Sucrose1

    PubMed Central

    Vijn, Irma; van Dijken, Anja; Lüscher, Marcel; Bos, Antoine; Smeets, Edward; Weisbeek, Peter; Wiemken, Andres; Smeekens, Sjef

    1998-01-01

    Sucrose (Suc):Suc 1-fructosyltransferase (1-SST) is the key enzyme in plant fructan biosynthesis, since it catalyzes de novo fructan synthesis from Suc. We have cloned 1-SST from onion (Allium cepa) by screening a cDNA library using acid invertase from tulip (Tulipa gesneriana) as a probe. Expression assays in tobacco (Nicotiana plumbaginifolia) protoplasts showed the formation of 1-kestose from Suc. In addition, an onion acid invertase clone was isolated from the same cDNA library. Protein extracts of tobacco protoplasts transformed with this clone showed extensive Suc-hydrolyzing activity. Conditions that induced fructan accumulation in onion leaves also induced 1-SST mRNA accumulation, whereas the acid invertase mRNA level decreased. Structurally different fructan molecules could be produced from Suc by a combined incubation of protein extract of protoplasts transformed with 1-SST and protein extract of protoplasts transformed with either the onion fructan:fructan 6G-fructosyltransferase or the barley Suc:fructan 6-fructosyltransferase. PMID:9701606

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caberoy, Nora B.; Zhou, Yixiong; Alvarado, Gabriela

    To efficiently elucidate the biological roles of phosphatidylserine (PS), we developed open-reading-frame (ORF) phage display to identify PS-binding proteins. The procedure of phage panning was optimized with a phage clone expressing MFG-E8, a well-known PS-binding protein. Three rounds of phage panning with ORF phage display cDNA library resulted in {approx}300-fold enrichment in PS-binding activity. A total of 17 PS-binding phage clones were identified. Unlike phage display with conventional cDNA libraries, all 17 PS-binding clones were ORFs encoding 13 real proteins. Sequence analysis revealed that all identified PS-specific phage clones had dimeric basic amino acid residues. GST fusion proteins were expressedmore » for 3 PS-binding proteins and verified for their binding activity to PS liposomes, but not phosphatidylcholine liposomes. These results elucidated previously unknown PS-binding proteins and demonstrated that ORF phage display is a versatile technology capable of efficiently identifying binding proteins for non-protein molecules like PS.« less

  19. Construction, Characterization, and Preliminary BAC-End Sequence Analysis of a Bacterial Artificial Chromosome Library of the Tea Plant (Camellia sinensis)

    PubMed Central

    Lin, Jinke; Kudrna, Dave; Wing, Rod A.

    2011-01-01

    We describe the construction and characterization of a publicly available BAC library for the tea plant, Camellia sinensis. Using modified methods, the library was constructed with the aim of developing public molecular resources to advance tea plant genomics research. The library consists of a total of 401,280 clones with an average insert size of 135 kb, providing an approximate coverage of 13.5 haploid genome equivalents. No empty vector clones were observed in a random sampling of 576 BAC clones. Further analysis of 182 BAC-end sequences from randomly selected clones revealed a GC content of 40.35% and low chloroplast and mitochondrial contamination. Repetitive sequence analyses indicated that LTR retrotransposons were the most predominant sequence class (86.93%–87.24%), followed by DNA retrotransposons (11.16%–11.69%). Additionally, we found 25 simple sequence repeats (SSRs) that could potentially be used as genetic markers. PMID:21234344

  20. Open resource metagenomics: a model for sharing metagenomic libraries.

    PubMed

    Neufeld, J D; Engel, K; Cheng, J; Moreno-Hagelsieb, G; Rose, D R; Charles, T C

    2011-11-30

    Both sequence-based and activity-based exploitation of environmental DNA have provided unprecedented access to the genomic content of cultivated and uncultivated microorganisms. Although researchers deposit microbial strains in culture collections and DNA sequences in databases, activity-based metagenomic studies typically only publish sequences from the hits retrieved from specific screens. Physical metagenomic libraries, conceptually similar to entire sequence datasets, are usually not straightforward to obtain by interested parties subsequent to publication. In order to facilitate unrestricted distribution of metagenomic libraries, we propose the adoption of open resource metagenomics, in line with the trend towards open access publishing, and similar to culture- and mutant-strain collections that have been the backbone of traditional microbiology and microbial genetics. The concept of open resource metagenomics includes preparation of physical DNA libraries, preferably in versatile vectors that facilitate screening in a diversity of host organisms, and pooling of clones so that single aliquots containing complete libraries can be easily distributed upon request. Database deposition of associated metadata and sequence data for each library provides researchers with information to select the most appropriate libraries for further research projects. As a starting point, we have established the Canadian MetaMicroBiome Library (CM(2)BL [1]). The CM(2)BL is a publicly accessible collection of cosmid libraries containing environmental DNA from soils collected from across Canada, spanning multiple biomes. The libraries were constructed such that the cloned DNA can be easily transferred to Gateway® compliant vectors, facilitating functional screening in virtually any surrogate microbial host for which there are available plasmid vectors. The libraries, which we are placing in the public domain, will be distributed upon request without restriction to members of both the academic research community and industry. This article invites the scientific community to adopt this philosophy of open resource metagenomics to extend the utility of functional metagenomics beyond initial publication, circumventing the need to start from scratch with each new research project.

  1. Open resource metagenomics: a model for sharing metagenomic libraries

    PubMed Central

    Neufeld, J.D.; Engel, K.; Cheng, J.; Moreno-Hagelsieb, G.; Rose, D.R.; Charles, T.C.

    2011-01-01

    Both sequence-based and activity-based exploitation of environmental DNA have provided unprecedented access to the genomic content of cultivated and uncultivated microorganisms. Although researchers deposit microbial strains in culture collections and DNA sequences in databases, activity-based metagenomic studies typically only publish sequences from the hits retrieved from specific screens. Physical metagenomic libraries, conceptually similar to entire sequence datasets, are usually not straightforward to obtain by interested parties subsequent to publication. In order to facilitate unrestricted distribution of metagenomic libraries, we propose the adoption of open resource metagenomics, in line with the trend towards open access publishing, and similar to culture- and mutant-strain collections that have been the backbone of traditional microbiology and microbial genetics. The concept of open resource metagenomics includes preparation of physical DNA libraries, preferably in versatile vectors that facilitate screening in a diversity of host organisms, and pooling of clones so that single aliquots containing complete libraries can be easily distributed upon request. Database deposition of associated metadata and sequence data for each library provides researchers with information to select the most appropriate libraries for further research projects. As a starting point, we have established the Canadian MetaMicroBiome Library (CM2BL [1]). The CM2BL is a publicly accessible collection of cosmid libraries containing environmental DNA from soils collected from across Canada, spanning multiple biomes. The libraries were constructed such that the cloned DNA can be easily transferred to Gateway® compliant vectors, facilitating functional screening in virtually any surrogate microbial host for which there are available plasmid vectors. The libraries, which we are placing in the public domain, will be distributed upon request without restriction to members of both the academic research community and industry. This article invites the scientific community to adopt this philosophy of open resource metagenomics to extend the utility of functional metagenomics beyond initial publication, circumventing the need to start from scratch with each new research project. PMID:22180823

  2. Cost-effective sequencing of full-length cDNA clones powered by a de novo-reference hybrid assembly.

    PubMed

    Kuroshu, Reginaldo M; Watanabe, Junichi; Sugano, Sumio; Morishita, Shinichi; Suzuki, Yutaka; Kasahara, Masahiro

    2010-05-07

    Sequencing full-length cDNA clones is important to determine gene structures including alternative splice forms, and provides valuable resources for experimental analyses to reveal the biological functions of coded proteins. However, previous approaches for sequencing cDNA clones were expensive or time-consuming, and therefore, a fast and efficient sequencing approach was demanded. We developed a program, MuSICA 2, that assembles millions of short (36-nucleotide) reads collected from a single flow cell lane of Illumina Genome Analyzer to shotgun-sequence approximately 800 human full-length cDNA clones. MuSICA 2 performs a hybrid assembly in which an external de novo assembler is run first and the result is then improved by reference alignment of shotgun reads. We compared the MuSICA 2 assembly with 200 pooled full-length cDNA clones finished independently by the conventional primer-walking using Sanger sequencers. The exon-intron structure of the coding sequence was correct for more than 95% of the clones with coding sequence annotation when we excluded cDNA clones insufficiently represented in the shotgun library due to PCR failure (42 out of 200 clones excluded), and the nucleotide-level accuracy of coding sequences of those correct clones was over 99.99%. We also applied MuSICA 2 to full-length cDNA clones from Toxoplasma gondii, to confirm that its ability was competent even for non-human species. The entire sequencing and shotgun assembly takes less than 1 week and the consumables cost only approximately US$3 per clone, demonstrating a significant advantage over previous approaches.

  3. cDNA cloning and analysis of betaine aldehyde dehydrogenase, a salt inducible enzyme in sugar beet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCue, K.F.; Hanson, A.D.

    1990-05-01

    Betaine accumulates and serves as a compatible osmolyte in some plants subjected to drought or salinity stress. The last enzyme in the betaine biosynthetic pathway is betaine aldehyde dehydrogenase (BADH). The activity of BADH increases in response to increasing salinity levels. This increase in activity corresponds to an increase in protein detectable by immunoblotting, and to an increase in the translatable BADH mRNA. BADH was cloned from a cDNA library constructed in {lambda}gt10 using poly(A){sup +} RNA from sugar beets salinized to 500 mM NaCl. cDNAs were size selected (>1kb) before ligation into the vector, and the library was screenedmore » with a spinach BADH cDNA probe. Three nearly full length clones obtained were confirmed as BADH by their nucleotide and deduced amino acid homology to spinach BADH. Clones averaged 1.8 kb and contained open reading frames of 500 amino acids at 80% identity with spinach BADH. RNA gel blot analysis of poly(A){sup +} RNA indicated that salinization to 500 mM NaCl resulted in a 5-fold increase of BADH mRNA level.« less

  4. Construction of high quality Gateway™ entry libraries and their application to yeast two-hybrid for the monocot model plant Brachypodium distachyon.

    PubMed

    Cao, Shuanghe; Siriwardana, Chamindika L; Kumimoto, Roderick W; Holt, Ben F

    2011-05-19

    Monocots, especially the temperate grasses, represent some of the most agriculturally important crops for both current food needs and future biofuel development. Because most of the agriculturally important grass species are difficult to study (e.g., they often have large, repetitive genomes and can be difficult to grow in laboratory settings), developing genetically tractable model systems is essential. Brachypodium distachyon (hereafter Brachypodium) is an emerging model system for the temperate grasses. To fully realize the potential of this model system, publicly accessible discovery tools are essential. High quality cDNA libraries that can be readily adapted for multiple downstream purposes are a needed resource. Additionally, yeast two-hybrid (Y2H) libraries are an important discovery tool for protein-protein interactions and are not currently available for Brachypodium. We describe the creation of two high quality, publicly available Gateway™ cDNA entry libraries and their derived Y2H libraries for Brachypodium. The first entry library represents cloned cDNA populations from both short day (SD, 8/16-h light/dark) and long day (LD, 20/4-h light/dark) grown plants, while the second library was generated from hormone treated tissues. Both libraries have extensive genome coverage (~5 × 107 primary clones each) and average clone lengths of ~1.5 Kb. These entry libraries were then used to create two recombination-derived Y2H libraries. Initial proof-of-concept screens demonstrated that a protein with known interaction partners could readily re-isolate those partners, as well as novel interactors. Accessible community resources are a hallmark of successful biological model systems. Brachypodium has the potential to be a broadly useful model system for the grasses, but still requires many of these resources. The Gateway™ compatible entry libraries created here will facilitate studies for multiple user-defined purposes and the derived Y2H libraries can be immediately applied to large scale screening and discovery of novel protein-protein interactions. All libraries are freely available for distribution to the research community.

  5. Toward a Molecular Cytogenetic Map for Cultivated Sunflower (Helianthus annuus L.) by Landed BAC/BIBAC Clones

    PubMed Central

    Feng, Jiuhuan; Liu, Zhao; Cai, Xiwen; Jan, Chao-Chien

    2013-01-01

    Conventional karyotypes and various genetic linkage maps have been established in sunflower (Helianthus annuus L., 2n = 34). However, the relationship between linkage groups and individual chromosomes of sunflower remains unknown and has considerable relevance for the sunflower research community. Recently, a set of linkage group-specific bacterial /binary bacterial artificial chromosome (BAC/BIBAC) clones was identified from two complementary BAC and BIBAC libraries constructed for cultivated sunflower cv. HA89. In the present study, we used these linkage group-specific clones (∼100 kb in size) as probes to in situ hybridize to HA89 mitotic chromosomes at metaphase using the BAC- fluorescence in situ hybridization (FISH) technique. Because a characteristic of the sunflower genome is the abundance of repetitive DNA sequences, a high ratio of blocking DNA to probe DNA was applied to hybridization reactions to minimize the background noise. As a result, all sunflower chromosomes were anchored by one or two BAC/BIBAC clones with specific FISH signals. FISH analysis based on tandem repetitive sequences, such as rRNA genes, has been previously reported; however, the BAC-FISH technique developed here using restriction fragment length polymorphism (RFLP)−derived BAC/BIBAC clones as probes to apply genome-wide analysis is new for sunflower. As chromosome-specific cytogenetic markers, the selected BAC/BIBAC clones that encompass the 17 linkage groups provide a valuable tool for identifying sunflower cytogenetic stocks (such as trisomics) and tracking alien chromosomes in interspecific crosses. This work also demonstrates the potential of using a large-insert DNA library for the development of molecular cytogenetic resources. PMID:23316437

  6. Molecular cloning and expression of Corynebacterium glutamicum genes for amino acid synthesis in Escherichia coli cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beskrovnaya, O.Yu.; Fonshtein, M.Yu.; Kolibaba, L.G.

    1989-01-01

    Molecular cloning of Corynebacterium glutamicum genes for threonine and lysine synthesis has been done in Escherichia coli cells. The clonal library of EcoRI fragments of chromosomal DNA of C. glutamicum was constructed on the plasmid vector /lambda/pSL5. The genes for threonine and lysine synthesis were identified by complementation of E. coli mutations in thrB and lysA genes, respectively. Recombinant plasmids, isolated from independent ThrB/sup +/ clone have a common 4.1-kb long EcoRI DNA fragment. Hybrid plasmids isolated from LysA/sup +/ transductants of E. coli have common 2.2 and 3.3 kb long EcoRI fragments of C. glutamicum DNA. The hybrid plasmidsmore » consistently transduced the markers thrB/sup +/ and lysA/sup +/. The Southern hybridization analysis showed that the cloned DNA fragments hybridized with the fragments of identical length in C. glutamicum chromosomes.« less

  7. Isolation and characterization of a cDNA clone specific for avian vitellogenin II.

    PubMed Central

    Protter, A A; Wang, S Y; Shelness, G S; Ostapchuk, P; Williams, D L

    1982-01-01

    A clone for vitellogenin, a major avian, estrogen responsive egg yolk protein, was isolated from the cDNA library of estrogen-induced rooster liver. Two forms of plasma vitellogenin, vitellogenin I (VTG I) and vitellogenin II (VTG II), distinguishable on the basis of their unique partial proteolysis maps, have been characterized and their corresponding hepatic precursor forms identified. We have used this criterion to specifically characterize which vitellogenin protein had been cloned. Partial proteolysis maps of BTG I and VTG II standards, synthesized in vivo, were compared to maps of protein synthesized in vitro using RNA hybrid-selected by the vitellogenin plasmid. Eight major digest fragments were found common to the in vitro synthesized vitellogenin and the VTG II standard while no fragments were observed to correspond to the VTG I map. A restriction map of the VTG II cDNA clone permits comparison to previously described cDNA and genomic vitellogenin clones. Images PMID:6182527

  8. cDNA cloning of rat and human medium chain acyl-CoA dehydrogenase (MCAD)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsubara, Y.; Kraus, J.P.; Rosenberg, L.E.

    MCAD is one of three mitochondrial flavoenzymes which catalyze the first step in the ..beta..-oxidation of straight chain fatty acids. It is a tetramer with a subunit Mr of 45 kDa. MCAD is synthesized in the cytosol as a 49 kDa precursor polypeptide (pMCAD), imported into mitochondria, and cleaved to the mature form. Genetic deficiency of MCAD causes recurrent episodes of hypoglycemic coma accompanied by medium chain dicarboxylic aciduria. Employing a novel approach, the authors now report isolation of partial rat and human cDNA clones encoding pMCAD. mRNA encoding pMCAD was purified to near homogeneity by polysome immunoadsorption using polyclonalmore » monospecific antibody. Single-stranded (/sup 32/P)labeled cDNA probe was synthesized using the enriched mRNA as template, and was used to screen directly 16,000 colonies from a total rat liver cDNA library constructed in pBR322. One clone (600 bp) was detected by in situ hybridization. Hybrid-selected translation with this cDNA yielded a 49 kDa polypeptide indistinguishable in size from rat pMCAD and immunoprecipitable with anti-MCAD antibody. Using the rat cDNA as probe, 43,000 colonies from a human liver cDNA library were screened. Four identical positive clones (400 bp) were isolated and positively identified by hybrid-selected translation and immunoprecipitation. The sizes of rat and human mRNAs encoding pMCAD were 2.2 kb and 2.4 kb, respectively, as determined by Northern blotting.« less

  9. A phage display vector optimized for the generation of human antibody combinatorial libraries and the molecular cloning of monoclonal antibody fragments.

    PubMed

    Solforosi, Laura; Mancini, Nicasio; Canducci, Filippo; Clementi, Nicola; Sautto, Giuseppe Andrea; Diotti, Roberta Antonia; Clementi, Massimo; Burioni, Roberto

    2012-07-01

    A novel phagemid vector, named pCM, was optimized for the cloning and display of antibody fragment (Fab) libraries on the surface of filamentous phage. This vector contains two long DNA "stuffer" fragments for easier differentiation of the correctly cut forms of the vector. Moreover, in pCM the fragment at the heavy-chain cloning site contains an acid phosphatase-encoding gene allowing an easy distinction of the Escherichia coli cells containing the unmodified form of the phagemid versus the heavy-chain fragment coding cDNA. In pCM transcription of heavy-chain Fd/gene III and light chain is driven by a single lacZ promoter. The light chain is directed to the periplasm by the ompA signal peptide, whereas the heavy-chain Fd/coat protein III is trafficked by the pelB signal peptide. The phagemid pCM was used to generate a human combinatorial phage display antibody library that allowed the selection of a monoclonal Fab fragment antibody directed against the nucleoprotein (NP) of Influenza A virus.

  10. DNA Cloning of Plasmodium falciparum Circumsporozoite Gene: Amino Acid Sequence of Repetitive Epitope

    NASA Astrophysics Data System (ADS)

    Enea, Vincenzo; Ellis, Joan; Zavala, Fidel; Arnot, David E.; Asavanich, Achara; Masuda, Aoi; Quakyi, Isabella; Nussenzweig, Ruth S.

    1984-08-01

    A clone of complementary DNA encoding the circumsporozoite (CS) protein of the human malaria parasite Plasmodium falciparum has been isolated by screening an Escherichia coli complementary DNA library with a monoclonal antibody to the CS protein. The DNA sequence of the complementary DNA insert encodes a four-amino acid sequence: proline-asparagine-alanine-asparagine, tandemly repeated 23 times. The CS β -lactamase fusion protein specifically binds monoclonal antibodies to the CS protein and inhibits the binding of these antibodies to native Plasmodium falciparum CS protein. These findings provide a basis for the development of a vaccine against Plasmodium falciparum malaria.

  11. Cloning and Expression of cDNA for Rat Heme Oxygenase

    NASA Astrophysics Data System (ADS)

    Shibahara, Shigeki; Muller, Rita; Taguchi, Hayao; Yoshida, Tadashi

    1985-12-01

    Two cDNA clones for rat heme oxygenase have been isolated from a rat spleen cDNA library in λ gt11 by immunological screening using a specific polyclonal antibody. One of these clones has an insert of 1530 nucleotides that contains the entire protein-coding region. To confirm that the isolated cDNA encodes heme oxygenase, we transfected monkey kidney cells (COS-7) with the cDNA carried in a simian virus 40 vector. The heme oxygenase was highly expressed in endoplasmic reticulum of transfected cells. The nucleotide sequence of the cloned cDNA was determined and the primary structure of heme oxygenase was deduced. Heme oxygenase is composed of 289 amino acids and has one hydrophobic segment at its carboxyl terminus, which is probably important for the insertion of heme oxygenase into endoplasmic reticulum. The cloned cDNA was used to analyze the induction of heme oxygenase in rat liver by treatment with CoCl2 or with hemin. RNA blot analysis showed that both CoCl2 and hemin increased the amount of hybridizable mRNA, suggesting that these substances may act at the transcriptional level to increase the amount of heme oxygenase.

  12. Developing a Bacteroides System for Function-Based Screening of DNA from the Human Gut Microbiome.

    PubMed

    Lam, Kathy N; Martens, Eric C; Charles, Trevor C

    2018-01-01

    Functional metagenomics is a powerful method that allows the isolation of genes whose role may not have been predicted from DNA sequence. In this approach, first, environmental DNA is cloned to generate metagenomic libraries that are maintained in Escherichia coli, and second, the cloned DNA is screened for activities of interest. Typically, functional screens are carried out using E. coli as a surrogate host, although there likely exist barriers to gene expression, such as lack of recognition of native promoters. Here, we describe efforts to develop Bacteroides thetaiotaomicron as a surrogate host for screening metagenomic DNA from the human gut. We construct a B. thetaiotaomicron-compatible fosmid cloning vector, generate a fosmid clone library using DNA from the human gut, and show successful functional complementation of a B. thetaiotaomicron glycan utilization mutant. Though we were unable to retrieve the physical fosmid after complementation, we used genome sequencing to identify the complementing genes derived from the human gut microbiome. Our results demonstrate that the use of B. thetaiotaomicron to express metagenomic DNA is promising, but they also exemplify the challenges that can be encountered in the development of new surrogate hosts for functional screening. IMPORTANCE Human gut microbiome research has been supported by advances in DNA sequencing that make it possible to obtain gigabases of sequence data from metagenomes but is limited by a lack of knowledge of gene function that leads to incomplete annotation of these data sets. There is a need for the development of methods that can provide experimental data regarding microbial gene function. Functional metagenomics is one such method, but functional screens are often carried out using hosts that may not be able to express the bulk of the environmental DNA being screened. We expand the range of current screening hosts and demonstrate that human gut-derived metagenomic libraries can be introduced into the gut microbe Bacteroides thetaiotaomicron to identify genes based on activity screening. Our results support the continuing development of genetically tractable systems to obtain information about gene function.

  13. Human retinoblastoma susceptibility gene: genomic organization and analysis of heterozygous intragenic deletion mutants.

    PubMed Central

    Bookstein, R; Lee, E Y; To, H; Young, L J; Sery, T W; Hayes, R C; Friedmann, T; Lee, W H

    1988-01-01

    A gene in chromosome region 13q14 has been identified as the human retinoblastoma susceptibility (RB) gene on the basis of altered gene expression found in virtually all retinoblastomas. In order to further characterize the RB gene and its structural alterations, we examined genomic clones of the RB gene isolated from both a normal human genomic library and a library made from DNA of the retinoblastoma cell line Y79. First, a restriction and exon map of the RB gene was constructed by aligning overlapping genomic clones, yielding three contiguous regions ("contigs") of 150 kilobases total length separated by two gaps. At least 20 exons were identified in genomic clones, and these were provisionally numbered. Second, two overlapping genomic clones that demonstrated a DNA deletion of exons 2 through 6 from one RB allele were isolated from the Y79 library. To confirm and extend this result, a unique sequence probe from intron 1 was used to detect similar and possibly identical heterozygous deletions in genomic DNA from three retinoblastoma cell lines, thereby explaining the origins of their shortened RB mRNA transcripts. The same probe detected genomic rearrangements in fibroblasts from two hereditary retinoblastoma patients, indicating that intron 1 includes a frequent site for mutations conferring predisposition to retinoblastoma. Third, this probe also detected a polymorphic site for BamHI with allele frequencies near 0.5/0.5. Identification of commonly mutated regions will contribute significantly to genetic diagnosis in retinoblastoma patients and families. Images PMID:2895471

  14. Direct cloning from enrichment cultures, a reliable strategy for isolation of complete operons and genes from microbial consortia.

    PubMed

    Entcheva, P; Liebl, W; Johann, A; Hartsch, T; Streit, W R

    2001-01-01

    Enrichment cultures of microbial consortia enable the diverse metabolic and catabolic activities of these populations to be studied on a molecular level and to be explored as potential sources for biotechnology processes. We have used a combined approach of enrichment culture and direct cloning to construct cosmid libraries with large (>30-kb) inserts from microbial consortia. Enrichment cultures were inoculated with samples from five environments, and high amounts of avidin were added to the cultures to favor growth of biotin-producing microbes. DNA was extracted from three of these enrichment cultures and used to construct cosmid libraries; each library consisted of between 6,000 and 35,000 clones, with an average insert size of 30 to 40 kb. The inserts contained a diverse population of genomic DNA fragments isolated from the consortia organisms. These three libraries were used to complement the Escherichia coli biotin auxotrophic strain ATCC 33767 Delta(bio-uvrB). Initial screens resulted in the isolation of seven different complementing cosmid clones, carrying biotin biosynthesis operons. Biotin biosynthesis capabilities and growth under defined conditions of four of these clones were studied. Biotin measured in the different culture supernatants ranged from 42 to 3,800 pg/ml/optical density unit. Sequencing the identified biotin synthesis genes revealed high similarities to bio operons from gram-negative bacteria. In addition, random sequencing identified other interesting open reading frames, as well as two operons, the histidine utilization operon (hut), and the cluster of genes involved in biosynthesis of molybdopterin cofactors in bacteria (moaABCDE).

  15. Assessment of Equine Fecal Contamination: The Search for Alternative Bacterial Source-tracking Targets

    EPA Science Inventory

    16S rDNA clone libraries were evaluated for detection of fecal source-identifying bacteria from a collapsed equine manure pile. Libraries were constructed using universal eubacterial primers and Bacteroides-Prevotella group-specific primers. Eubacterial sequences indicat...

  16. Identification, sequencing and expression of an integral membrane protein of the trans-Golgi network (TGN38).

    PubMed Central

    Luzio, J P; Brake, B; Banting, G; Howell, K E; Braghetta, P; Stanley, K K

    1990-01-01

    Organelle-specific integral membrane proteins were identified by a novel strategy which gives rise to monospecific antibodies to these proteins as well as to the cDNA clones encoding them. A cDNA expression library was screened with a polyclonal antiserum raised against Triton X-114-extracted organelle proteins and clones were then grouped using antibodies affinity-purified on individual fusion proteins. The identification, molecular cloning and sequencing are described of a type 1 membrane protein (TGN38) which is located specifically in the trans-Golgi network. Images Fig. 1. Fig. 3. PMID:2204342

  17. [Construction of large fragment metagenome library of natural mangrove soil].

    PubMed

    Jiang, Yun-Xia; Zheng, Tian-Ling

    2007-11-01

    Applying our optimized direct extraction method, the percentage of large fragment DNA in the total extracted mangrove soil DNA was significant increased. The large fragment metagenome library derived from natural mangrove soil over four seasons was successfully constructed by the optimized DNA extraction and electro elution purification method. All of the clones had recombinant Cosmids and each differed in their fragment profiles when Cosmid DNA was extracted from 12 randomly picked colonies and digested with BamHI. The average insert size for this library was larger than 35 kbp. This culturing-independent library at least encompassed 335 Mbp valuable genetic information of mangrove soil microbes. It allowed mining of valuable intertidal microbial resource to become a reality. It is a recommended method for those researchers who have still not circumvented the large insert environmental libraries or for those beginning research in this field, so as to avoid them attempting repetitive, fussy work.

  18. Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs.

    PubMed

    Orphan, V J; Taylor, L T; Hafenbradl, D; Delong, E F

    2000-02-01

    Recent investigations of oil reservoirs in a variety of locales have indicated that these habitats may harbor active thermophilic prokaryotic assemblages. In this study, we used both molecular and culture-based methods to characterize prokaryotic consortia associated with high-temperature, sulfur-rich oil reservoirs in California. Enrichment cultures designed for anaerobic thermophiles, both autotrophic and heterotrophic, were successful at temperatures ranging from 60 to 90 degrees C. Heterotrophic enrichments from all sites yielded sheathed rods (Thermotogales), pleomorphic rods resembling Thermoanaerobacter, and Thermococcus-like isolates. The predominant autotrophic microorganisms recovered from inorganic enrichments using H(2), acetate, and CO(2) as energy and carbon sources were methanogens, including isolates closely related to Methanobacterium, Methanococcus, and Methanoculleus species. Two 16S rRNA gene (rDNA) libraries were generated from total community DNA collected from production wellheads, using either archaeal or universal oligonucleotide primer sets. Sequence analysis of the universal library indicated that a large percentage of clones were highly similar to known bacterial and archaeal isolates recovered from similar habitats. Represented genera in rDNA clone libraries included Thermoanaerobacter, Thermococcus, Desulfothiovibrio, Aminobacterium, Acidaminococcus, Pseudomonas, Halomonas, Acinetobacter, Sphingomonas, Methylobacterium, and Desulfomicrobium. The archaeal library was dominated by methanogen-like rDNAs, with a lower percentage of clones belonging to the Thermococcales. Our results strongly support the hypothesis that sulfur-utilizing and methane-producing thermophilic microorganisms have a widespread distribution in oil reservoirs and the potential to actively participate in the biogeochemical transformation of carbon, hydrogen, and sulfur in situ.

  19. Construction and Analysis of Siberian Tiger Bacterial Artificial Chromosome Library with Approximately 6.5-Fold Genome Equivalent Coverage

    PubMed Central

    Liu, Changqing; Bai, Chunyu; Guo, Yu; Liu, Dan; Lu, Taofeng; Li, Xiangchen; Ma, Jianzhang; Ma, Yuehui; Guan, Weijun

    2014-01-01

    Bacterial artificial chromosome (BAC) libraries are extremely valuable for the genome-wide genetic dissection of complex organisms. The Siberian tiger, one of the most well-known wild primitive carnivores in China, is an endangered animal. In order to promote research on its genome, a high-redundancy BAC library of the Siberian tiger was constructed and characterized. The library is divided into two sub-libraries prepared from blood cells and two sub-libraries prepared from fibroblasts. This BAC library contains 153,600 individually archived clones; for PCR-based screening of the library, BACs were placed into 40 superpools of 10 × 384-deep well microplates. The average insert size of BAC clones was estimated to be 116.5 kb, representing approximately 6.46 genome equivalents of the haploid genome and affording a 98.86% statistical probability of obtaining at least one clone containing a unique DNA sequence. Screening the library with 19 microsatellite markers and a SRY sequence revealed that each of these markers were present in the library; the average number of positive clones per marker was 6.74 (range 2 to 12), consistent with 6.46 coverage of the tiger genome. Additionally, we identified 72 microsatellite markers that could potentially be used as genetic markers. This BAC library will serve as a valuable resource for physical mapping, comparative genomic study and large-scale genome sequencing in the tiger. PMID:24608928

  20. Mammalian cDNA Library from the NIH Mammalian Gene Collection (MGC) | Office of Cancer Genomics

    Cancer.gov

    The MGC provides the research community full-length clones for most of the defined (as of 2006) human and mouse genes, along with selected clones of cow and rat genes. Clones were designed to allow easy transfer of the ORF sequences into nearly any type of expression vector. MGC provides protein ‘expression-ready’ clones for each of the included human genes. MGC is part of the ORFeome Collaboration (OC).

  1. Cost-Effective Sequencing of Full-Length cDNA Clones Powered by a De Novo-Reference Hybrid Assembly

    PubMed Central

    Sugano, Sumio; Morishita, Shinichi; Suzuki, Yutaka

    2010-01-01

    Background Sequencing full-length cDNA clones is important to determine gene structures including alternative splice forms, and provides valuable resources for experimental analyses to reveal the biological functions of coded proteins. However, previous approaches for sequencing cDNA clones were expensive or time-consuming, and therefore, a fast and efficient sequencing approach was demanded. Methodology We developed a program, MuSICA 2, that assembles millions of short (36-nucleotide) reads collected from a single flow cell lane of Illumina Genome Analyzer to shotgun-sequence ∼800 human full-length cDNA clones. MuSICA 2 performs a hybrid assembly in which an external de novo assembler is run first and the result is then improved by reference alignment of shotgun reads. We compared the MuSICA 2 assembly with 200 pooled full-length cDNA clones finished independently by the conventional primer-walking using Sanger sequencers. The exon-intron structure of the coding sequence was correct for more than 95% of the clones with coding sequence annotation when we excluded cDNA clones insufficiently represented in the shotgun library due to PCR failure (42 out of 200 clones excluded), and the nucleotide-level accuracy of coding sequences of those correct clones was over 99.99%. We also applied MuSICA 2 to full-length cDNA clones from Toxoplasma gondii, to confirm that its ability was competent even for non-human species. Conclusions The entire sequencing and shotgun assembly takes less than 1 week and the consumables cost only ∼US$3 per clone, demonstrating a significant advantage over previous approaches. PMID:20479877

  2. Gene expression in the pulp of ripening bananas. Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of in vitro translation products and cDNA cloning of 25 different ripening-related mRNAs.

    PubMed Central

    Medina-Suárez, R; Manning, K; Fletcher, J; Aked, J; Bird, C R; Seymour, G B

    1997-01-01

    mRNA was extracted from the pulp and peel of preclimacteric (d 0) bananas (Musa AAA group, cv Grand Nain) and those exposed to ethylene gas for 24 h and stored in air alone for a further 1 (d 2) and 4 d (d 5). Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of in vitro translation products from the pulp and peel of these fruits revealed significant up-regulation of numerous transcripts during ripening. The majority of the changes were initiated by d 2, with the level of these messages increasing during the remainder of the ripening period. Pulp tissue from d 2 was used for the construction of a cDNA library. This library was differentially screened for ripening-related clones using cDNA from d-0 and d-2 pulp by a novel microtiter plate method. In the primary screen 250 up- and down-regulated clones were isolated. Of these, 59 differentially expressed clones were obtained from the secondary screen. All of these cDNAs were partially sequenced and grouped into families after database searches. Twenty-five nonredundant groups of pulp clones were identified. These encoded enzymes were involved in ethylene biosynthesis, respiration, starch metabolism, cell wall degradation, and several other key metabolic events. We describe the analysis of these clones and their possible involvement in ripening. PMID:9342865

  3. Characterization of infectious Murray Valley encephalitis virus derived from a stably cloned genome-length cDNA.

    PubMed

    Hurrelbrink, R J; Nestorowicz, A; McMinn, P C

    1999-12-01

    An infectious cDNA clone of Murray Valley encephalitis virus prototype strain 1-51 (MVE-1-51) was constructed by stably inserting genome-length cDNA into the low-copy-number plasmid vector pMC18. Designated pMVE-1-51, the clone consisted of genome-length cDNA of MVE-1-51 under the control of a T7 RNA polymerase promoter. The clone was constructed by using existing components of a cDNA library, in addition to cDNA of the 3' terminus derived by RT-PCR of poly(A)-tailed viral RNA. Upon comparison with other flavivirus sequences, the previously undetermined sequence of the 3' UTR was found to contain elements conserved throughout the genus FLAVIVIRUS: RNA transcribed from pMVE-1-51 and subsequently transfected into BHK-21 cells generated infectious virus. The plaque morphology, replication kinetics and antigenic profile of clone-derived virus (CDV-1-51) was similar to the parental virus in vitro. Furthermore, the virulence properties of CDV-1-51 and MVE-1-51 (LD(50) values and mortality profiles) were found to be identical in vivo in the mouse model. Through site-directed mutagenesis, the infectious clone should serve as a valuable tool for investigating the molecular determinants of virulence in MVE virus.

  4. Characterization of Three Maize Bacterial Artificial Chromosome Libraries toward Anchoring of the Physical Map to the Genetic Map Using High-Density Bacterial Artificial Chromosome Filter Hybridization1

    PubMed Central

    Yim, Young-Sun; Davis, Georgia L.; Duru, Ngozi A.; Musket, Theresa A.; Linton, Eric W.; Messing, Joachim W.; McMullen, Michael D.; Soderlund, Carol A.; Polacco, Mary L.; Gardiner, Jack M.; Coe, Edward H.

    2002-01-01

    Three maize (Zea mays) bacterial artificial chromosome (BAC) libraries were constructed from inbred line B73. High-density filter sets from all three libraries, made using different restriction enzymes (HindIII, EcoRI, and MboI, respectively), were evaluated with a set of complex probes including the185-bp knob repeat, ribosomal DNA, two telomere-associated repeat sequences, four centromere repeats, the mitochondrial genome, a multifragment chloroplast DNA probe, and bacteriophage λ. The results indicate that the libraries are of high quality with low contamination by organellar and λ-sequences. The use of libraries from multiple enzymes increased the chance of recovering each region of the genome. Ninety maize restriction fragment-length polymorphism core markers were hybridized to filters of the HindIII library, representing 6× coverage of the genome, to initiate development of a framework for anchoring BAC contigs to the intermated B73 × Mo17 genetic map and to mark the bin boundaries on the physical map. All of the clones used as hybridization probes detected at least three BACs. Twenty-two single-copy number core markers identified an average of 7.4 ± 3.3 positive clones, consistent with the expectation of six clones. This information is integrated into fingerprinting data generated by the Arizona Genomics Institute to assemble the BAC contigs using fingerprint contig and contributed to the process of physical map construction. PMID:12481051

  5. A new set of ESTs and cDNA clones from full-length and normalized libraries for gene discovery and functional characterization in citrus

    PubMed Central

    Marques, M Carmen; Alonso-Cantabrana, Hugo; Forment, Javier; Arribas, Raquel; Alamar, Santiago; Conejero, Vicente; Perez-Amador, Miguel A

    2009-01-01

    Background Interpretation of ever-increasing raw sequence information generated by modern genome sequencing technologies faces multiple challenges, such as gene function analysis and genome annotation. Indeed, nearly 40% of genes in plants encode proteins of unknown function. Functional characterization of these genes is one of the main challenges in modern biology. In this regard, the availability of full-length cDNA clones may fill in the gap created between sequence information and biological knowledge. Full-length cDNA clones facilitate functional analysis of the corresponding genes enabling manipulation of their expression in heterologous systems and the generation of a variety of tagged versions of the native protein. In addition, the development of full-length cDNA sequences has the power to improve the quality of genome annotation. Results We developed an integrated method to generate a new normalized EST collection enriched in full-length and rare transcripts of different citrus species from multiple tissues and developmental stages. We constructed a total of 15 cDNA libraries, from which we isolated 10,898 high-quality ESTs representing 6142 different genes. Percentages of redundancy and proportion of full-length clones range from 8 to 33, and 67 to 85, respectively, indicating good efficiency of the approach employed. The new EST collection adds 2113 new citrus ESTs, representing 1831 unigenes, to the collection of citrus genes available in the public databases. To facilitate functional analysis, cDNAs were introduced in a Gateway-based cloning vector for high-throughput functional analysis of genes in planta. Herein, we describe the technical methods used in the library construction, sequence analysis of clones and the overexpression of CitrSEP, a citrus homolog to the Arabidopsis SEP3 gene, in Arabidopsis as an example of a practical application of the engineered Gateway vector for functional analysis. Conclusion The new EST collection denotes an important step towards the identification of all genes in the citrus genome. Furthermore, public availability of the cDNA clones generated in this study, and not only their sequence, enables testing of the biological function of the genes represented in the collection. Expression of the citrus SEP3 homologue, CitrSEP, in Arabidopsis results in early flowering, along with other phenotypes resembling the over-expression of the Arabidopsis SEPALLATA genes. Our findings suggest that the members of the SEP gene family play similar roles in these quite distant plant species. PMID:19747386

  6. cDNA encoding a polypeptide including a hevein sequence

    DOEpatents

    Raikhel, N.V.; Broekaert, W.F.; Namhai Chua; Kush, A.

    1993-02-16

    A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1,018 nucleotides long and includes an open reading frame of 204 amino acids.

  7. Differential cDNA cloning by enzymatic degrading subtraction (EDS).

    PubMed Central

    Zeng, J; Gorski, R A; Hamer, D

    1994-01-01

    We describe a new method, called enzymatic degrading subtraction (EDS), for the construction of subtractive libraries from PCR amplified cDNA. The novel features of this method are that i) the tester DNA is blocked by thionucleotide incorporation; ii) the rate of hybridization is accelerated by phenol-emulsion reassociation; and iii) the driver cDNA and hybrid molecules are enzymatically removed by digestion with exonucleases III and VII rather than by physical partitioning. We demonstrate the utility of EDS by constructing a subtractive library enriched for cDNAs expressed in adult but not in embryonic rat brains. Images PMID:7971268

  8. Shuffle Optimizer: A Program to Optimize DNA Shuffling for Protein Engineering.

    PubMed

    Milligan, John N; Garry, Daniel J

    2017-01-01

    DNA shuffling is a powerful tool to develop libraries of variants for protein engineering. Here, we present a protocol to use our freely available and easy-to-use computer program, Shuffle Optimizer. Shuffle Optimizer is written in the Python computer language and increases the nucleotide homology between two pieces of DNA desired to be shuffled together without changing the amino acid sequence. In addition we also include sections on optimal primer design for DNA shuffling and library construction, a small-volume ultrasonicator method to create sheared DNA, and finally a method to reassemble the sheared fragments and recover and clone the library. The Shuffle Optimizer program and these protocols will be useful to anyone desiring to perform any of the nucleotide homology-dependent shuffling methods.

  9. A genome-wide BAC-end sequence survey provides first insights into sweetpotato (Ipomoea batatas (L.) Lam.) genome composition.

    PubMed

    Si, Zengzhi; Du, Bing; Huo, Jinxi; He, Shaozhen; Liu, Qingchang; Zhai, Hong

    2016-11-21

    Sweetpotato, Ipomoea batatas (L.) Lam., is an important food crop widely grown in the world. However, little is known about the genome of this species because it is a highly heterozygous hexaploid. Gaining a more in-depth knowledge of sweetpotato genome is therefore necessary and imperative. In this study, the first bacterial artificial chromosome (BAC) library of sweetpotato was constructed. Clones from the BAC library were end-sequenced and analyzed to provide genome-wide information about this species. The BAC library contained 240,384 clones with an average insert size of 101 kb and had a 7.93-10.82 × coverage of the genome, and the probability of isolating any single-copy DNA sequence from the library was more than 99%. Both ends of 8310 BAC clones randomly selected from the library were sequenced to generate 11,542 high-quality BAC-end sequences (BESs), with an accumulative length of 7,595,261 bp and an average length of 658 bp. Analysis of the BESs revealed that 12.17% of the sweetpotato genome were known repetitive DNA, including 7.37% long terminal repeat (LTR) retrotransposons, 1.15% Non-LTR retrotransposons and 1.42% Class II DNA transposons etc., 18.31% of the genome were identified as sweetpotato-unique repetitive DNA and 10.00% of the genome were predicted to be coding regions. In total, 3,846 simple sequences repeats (SSRs) were identified, with a density of one SSR per 1.93 kb, from which 288 SSRs primers were designed and tested for length polymorphism using 20 sweetpotato accessions, 173 (60.07%) of them produced polymorphic bands. Sweetpotato BESs had significant hits to the genome sequences of I. trifida and more matches to the whole-genome sequences of Solanum lycopersicum than those of Vitis vinifera, Theobroma cacao and Arabidopsis thaliana. The first BAC library for sweetpotato has been successfully constructed. The high quality BESs provide first insights into sweetpotato genome composition, and have significant hits to the genome sequences of I. trifida and more matches to the whole-genome sequences of Solanum lycopersicum. These resources as a robust platform will be used in high-resolution mapping, gene cloning, assembly of genome sequences, comparative genomics and evolution for sweetpotato.

  10. Identification of eukaryotic open reading frames in metagenomic cDNA libraries made from environmental samples.

    PubMed

    Grant, Susan; Grant, William D; Cowan, Don A; Jones, Brian E; Ma, Yanhe; Ventosa, Antonio; Heaphy, Shaun

    2006-01-01

    Here we describe the application of metagenomic technologies to construct cDNA libraries from RNA isolated from environmental samples. RNAlater (Ambion) was shown to stabilize RNA in environmental samples for periods of at least 3 months at -20 degrees C. Protocols for library construction were established on total RNA extracted from Acanthamoeba polyphaga trophozoites. The methodology was then used on algal mats from geothermal hot springs in Tengchong county, Yunnan Province, People's Republic of China, and activated sludge from a sewage treatment plant in Leicestershire, United Kingdom. The Tenchong libraries were dominated by RNA from prokaryotes, reflecting the mainly prokaryote microbial composition. The majority of these clones resulted from rRNA; only a few appeared to be derived from mRNA. In contrast, many clones from the activated sludge library had significant similarity to eukaryote mRNA-encoded protein sequences. A library was also made using polyadenylated RNA isolated from total RNA from activated sludge; many more clones in this library were related to eukaryotic mRNA sequences and proteins. Open reading frames (ORFs) up to 378 amino acids in size could be identified. Some resembled known proteins over their full length, e.g., 36% match to cystatin, 49% match to ribosomal protein L32, 63% match to ribosomal protein S16, 70% to CPC2 protein. The methodology described here permits the polyadenylated transcriptome to be isolated from environmental samples with no knowledge of the identity of the microorganisms in the sample or the necessity to culture them. It has many uses, including the identification of novel eukaryotic ORFs encoding proteins and enzymes.

  11. A method for high-throughput production of sequence-verified DNA libraries and strain collections.

    PubMed

    Smith, Justin D; Schlecht, Ulrich; Xu, Weihong; Suresh, Sundari; Horecka, Joe; Proctor, Michael J; Aiyar, Raeka S; Bennett, Richard A O; Chu, Angela; Li, Yong Fuga; Roy, Kevin; Davis, Ronald W; Steinmetz, Lars M; Hyman, Richard W; Levy, Sasha F; St Onge, Robert P

    2017-02-13

    The low costs of array-synthesized oligonucleotide libraries are empowering rapid advances in quantitative and synthetic biology. However, high synthesis error rates, uneven representation, and lack of access to individual oligonucleotides limit the true potential of these libraries. We have developed a cost-effective method called Recombinase Directed Indexing (REDI), which involves integration of a complex library into yeast, site-specific recombination to index library DNA, and next-generation sequencing to identify desired clones. We used REDI to generate a library of ~3,300 DNA probes that exhibited > 96% purity and remarkable uniformity (> 95% of probes within twofold of the median abundance). Additionally, we created a collection of ~9,000 individually accessible CRISPR interference yeast strains for > 99% of genes required for either fermentative or respiratory growth, demonstrating the utility of REDI for rapid and cost-effective creation of strain collections from oligonucleotide pools. Our approach is adaptable to any complex DNA library, and fundamentally changes how these libraries can be parsed, maintained, propagated, and characterized. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  12. Archaeal Diversity in Waters from Deep South African Gold Mines

    PubMed Central

    Takai, Ken; Moser, Duane P.; DeFlaun, Mary; Onstott, Tullis C.; Fredrickson, James K.

    2001-01-01

    A culture-independent molecular analysis of archaeal communities in waters collected from deep South African gold mines was performed by performing a PCR-mediated terminal restriction fragment length polymorphism (T-RFLP) analysis of rRNA genes (rDNA) in conjunction with a sequencing analysis of archaeal rDNA clone libraries. The water samples used represented various environments, including deep fissure water, mine service water, and water from an overlying dolomite aquifer. T-RFLP analysis revealed that the ribotype distribution of archaea varied with the source of water. The archaeal communities in the deep gold mine environments exhibited great phylogenetic diversity; the majority of the members were most closely related to uncultivated species. Some archaeal rDNA clones obtained from mine service water and dolomite aquifer water samples were most closely related to environmental rDNA clones from surface soil (soil clones) and marine environments (marine group I [MGI]). Other clones exhibited intermediate phylogenetic affiliation between soil clones and MGI in the Crenarchaeota. Fissure water samples, derived from active or dormant geothermal environments, yielded archaeal sequences that exhibited novel phylogeny, including a novel lineage of Euryarchaeota. These results suggest that deep South African gold mines harbor novel archaeal communities distinct from those observed in other environments. Based on the phylogenetic analysis of archaeal strains and rDNA clones, including the newly discovered archaeal rDNA clones, the evolutionary relationship and the phylogenetic organization of the domain Archaea are reevaluated. PMID:11722932

  13. [Archaeal community structure and diversity in Urumqi No. 10 cold sulfur spring analyzed by culture-independent approach].

    PubMed

    Li, Ping; Zeng, Jun; Zulipiya, Yunus; Gao, Xiaoqi; Dong, Xiuhuang; Xue, Juan; Lou, Kai

    2013-03-04

    We explored the composition and diversity of archaea in a cold sulfur spring water in Xinjiang earthquake fault zone. Environmental total DNA was extracted directly with enzymatic lysis method from a cold sulfur spring water. We constructed clone library of 16S rRNA gene amplified with archaeal-specific primers. A total of 115 positive clones were selected randomly from the library and identified by restriction length polymorphism (RFLP) with enzyme Alu I and Afa I. The unique RFLP patterns corresponded clones were selected for sequencing, BLAS alignment and constructing 16S rRNA gene phylogenetic tree. In total, 44 operational taxonomic units (OTUs) were determined from the library. BLAST and phylogenetic analysis indicated that these OTUs were affiliated with Euryarchaeota (94.78%) and Thaumarchaeota (4.35%). Only one Thaumarchaeotal clone was detected and most related to the genus Nitrosopumilus with 93% similarity. Euryarchaeotal clones were abundant and diverse. Of them, 42.61% of clones belonged to RC-V cluster; 13.91% of clones, 20.87% of clones were classified into LDS cluster and Methanomicrobiales respectively; 4.35% of clones had high similarity with ANME-1a-FW, which were involved in Anaerobic oxidation of methane (AOM). In addition, we also detected some (13.05%) unknown Euryarchaotal clones. Euryarchaeota in the environment were diverse, and possibly with a large fraction of potential novel species.

  14. The GA5 locus of Arabidopsis thaliana encodes a multifunctional gibberellin 20-oxidase: molecular cloning and functional expression.

    PubMed

    Xu, Y L; Li, L; Wu, K; Peeters, A J; Gage, D A; Zeevaart, J A

    1995-07-03

    The biosynthesis of gibberellins (GAs) after GA12-aldehyde involves a series of oxidative steps that lead to the formation of bioactive GAs. Previously, a cDNA clone encoding a GA 20-oxidase [gibberellin, 2-oxoglutarate:oxygen oxidoreductase (20-hydroxylating, oxidizing), EC 1.14.11.-] was isolated by immunoscreening a cDNA library from liquid endosperm of pumpkin (Cucurbita maxima L.) with antibodies against partially purified GA 20-oxidase. Here, we report isolation of a genomic clone for GA 20-oxidase from a genomic library of the long-day species Arabidopsis thaliana Heynh., strain Columbia, by using the pumpkin cDNA clone as a heterologous probe. This genomic clone contains a GA 20-oxidase gene that consists of three exons and two introns. The three exons are 1131-bp long and encode 377 amino acid residues. A cDNA clone corresponding to the putative GA 20-oxidase genomic sequence was constructed with the reverse transcription-PCR method, and the identity of the cDNA clone was confirmed by analyzing the capability of the fusion protein expressed in Escherichia coli to convert GA53 to GA44 and GA19 to GA20. The Arabidopsis GA 20-oxidase shares 55% identity and > 80% similarity with the pumpkin GA 20-oxidase at the derived amino acid level. Both GA 20-oxidases share high homology with other 2-oxoglutarate-dependent dioxygenases (2-ODDs), but the highest homology was found between the two GA 20-oxidases. Mapping results indicated tight linkage between the cloned GA 20-oxidase and the GA5 locus of Arabidopsis. The ga5 semidwarf mutant contains a G-->A point mutation that inserts a translational stop codon in the protein-coding sequence, thus confirming that the GA5 locus encodes GA 20-oxidase. Expression of the GA5 gene in Ara-bidopsis leaves was enhanced after plants were transferred from short to long days; it was reduced by GA4 treatment, suggesting end-product repression in the GA biosynthetic pathway.

  15. The GA5 locus of Arabidopsis thaliana encodes a multifunctional gibberellin 20-oxidase: Molecular cloning and functional expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yun-Ling; Li, Li; Wu, Keqiang

    1995-07-03

    The biosynthesis of gibberellins (GAs) after GA{sub 12}-aldehyde involves a series of oxidative steps that lead to the formation of bioactive GAs. Previously, a cDNA clone encoding a GA 20-oxidase [gibberellin, 2-oxoglutarate:oxygen oxidoreductase (20-hydroxylating, oxidizing), EC 1.14.11-] was isolated by immunoscreening a cDNA library from liquid endosperm of pumpkin (Cucurbita maxima L.) with antibodies against partially purified GA 20-oxidase. Here, we report isolation of a genomic clone for GA 20-oxidase from a genomic library of the long-day species Arabidopsis thaliana Heynh., strain Columbia, by using the pumpkin cDNA clone as a heterologous probe. This genomic clone contains a GA 20-oxidasemore » gene that consists of three exons and two introns. The three exons are 1131-bp long and encode 377 amino acid residues. A cDNA clone corresponding to the putative GA 20-oxidase genomic sequence was constructed with the reverse transcription-PCR method, and the identity of the cDNA clone was confirmed by analyzing the capability of the fusion protein expressed in Escherichia coli to convert GA{sub 53} to GA{sub 44} and GA{sub 19} to GA{sub 20}. The Arabidopsis GA 20-oxidase shares 55% identity and >80% similarity with the pumpkin GA 20-oxidase at the derived amino acid level. Both GA 20-oxidases share high homology with other 2-oxoglutarate-dependent dioxygenases (2-ODDs), but the highest homology was found between the two GA 20-oxidases. Mapping results indicated tight linkage between the cloned GA 20-oxidase and the GA locus of Arabidopsis. The ga5 semidwarf mutant contains a G {yields} A point mutation that inserts a translational stop codon in the protein-coding sequence, thus confirming that the GA5 locus encodes GA 20-oxidase. Expression of the GA5 gene in Arabidopsis leaves was enhanced after plants were transferred from short to long days; it was reduced by GA{sub 4} treatment, suggesting end-product repression in the GA biosynthetic pathway. 28 refs., 6 figs.« less

  16. Comparative analysis of bacteria associated with different mosses by 16S rRNA and 16S rDNA sequencing.

    PubMed

    Tian, Yang; Li, Yan Hong

    2017-01-01

    To understand the differences of the bacteria associated with different mosses, a phylogenetic study of bacterial communities in three mosses was carried out based on 16S rDNA and 16S rRNA sequencing. The mosses used were Hygroamblystegium noterophilum, Entodon compressus and Grimmia montana, representing hygrophyte, shady plant and xerophyte, respectively. In total, the operational taxonomic units (OTUs), richness and diversity were different regardless of the moss species and the library level. All the examined 1183 clones were assigned to 248 OTUs, 56 genera were assigned in rDNA libraries and 23 genera were determined at the rRNA level. Proteobacteria and Bacteroidetes were considered as the most dominant phyla in all the libraries, whereas abundant Actinobacteria and Acidobacteria were detected in the rDNA library of Entodon compressus and approximately 24.7% clones were assigned to Candidate division TM7 in Grimmia montana at rRNA level. The heatmap showed the bacterial profiles derived from rRNA and rDNA were partly overlapping. However, the principle component analysis of all the profiles derived from rDNA showed sharper differences between the different mosses than that of rRNA-based profiles. This suggests that the metabolically active bacterial compositions in different mosses were more phylogenetically similar and the differences of the bacteria associated with different mosses were mainly detected at the rDNA level. Obtained results clearly demonstrate that combination of 16S rDNA and 16S rRNA sequencing is preferred approach to have a good understanding on the constitution of the microbial communities in mosses. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Genomic resources for songbird research and their use in characterizing gene expression during brain development

    PubMed Central

    Li, XiaoChing; Wang, Xiu-Jie; Tannenhauser, Jonathan; Podell, Sheila; Mukherjee, Piali; Hertel, Moritz; Biane, Jeremy; Masuda, Shoko; Nottebohm, Fernando; Gaasterland, Terry

    2007-01-01

    Vocal learning and neuronal replacement have been studied extensively in songbirds, but until recently, few molecular and genomic tools for songbird research existed. Here we describe new molecular/genomic resources developed in our laboratory. We made cDNA libraries from zebra finch (Taeniopygia guttata) brains at different developmental stages. A total of 11,000 cDNA clones from these libraries, representing 5,866 unique gene transcripts, were randomly picked and sequenced from the 3′ ends. A web-based database was established for clone tracking, sequence analysis, and functional annotations. Our cDNA libraries were not normalized. Sequencing ESTs without normalization produced many developmental stage-specific sequences, yielding insights into patterns of gene expression at different stages of brain development. In particular, the cDNA library made from brains at posthatching day 30–50, corresponding to the period of rapid song system development and song learning, has the most diverse and richest set of genes expressed. We also identified five microRNAs whose sequences are highly conserved between zebra finch and other species. We printed cDNA microarrays and profiled gene expression in the high vocal center of both adult male zebra finches and canaries (Serinus canaria). Genes differentially expressed in the high vocal center were identified from the microarray hybridization results. Selected genes were validated by in situ hybridization. Networks among the regulated genes were also identified. These resources provide songbird biologists with tools for genome annotation, comparative genomics, and microarray gene expression analysis. PMID:17426146

  18. Design and construction of a first-generation high-throughput integrated robotic molecular biology platform for bioenergy applications.

    PubMed

    Hughes, Stephen R; Butt, Tauseef R; Bartolett, Scott; Riedmuller, Steven B; Farrelly, Philip

    2011-08-01

    The molecular biological techniques for plasmid-based assembly and cloning of gene open reading frames are essential for elucidating the function of the proteins encoded by the genes. High-throughput integrated robotic molecular biology platforms that have the capacity to rapidly clone and express heterologous gene open reading frames in bacteria and yeast and to screen large numbers of expressed proteins for optimized function are an important technology for improving microbial strains for biofuel production. The process involves the production of full-length complementary DNA libraries as a source of plasmid-based clones to express the desired proteins in active form for determination of their functions. Proteins that were identified by high-throughput screening as having desired characteristics are overexpressed in microbes to enable them to perform functions that will allow more cost-effective and sustainable production of biofuels. Because the plasmid libraries are composed of several thousand unique genes, automation of the process is essential. This review describes the design and implementation of an automated integrated programmable robotic workcell capable of producing complementary DNA libraries, colony picking, isolating plasmid DNA, transforming yeast and bacteria, expressing protein, and performing appropriate functional assays. These operations will allow tailoring microbial strains to use renewable feedstocks for production of biofuels, bioderived chemicals, fertilizers, and other coproducts for profitable and sustainable biorefineries. Published by Elsevier Inc.

  19. Microbial dynamics in upflow anaerobic sludge blanket (UASB) bioreactor granules in response to short-term changes in substrate feed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovacik, William P.; Scholten, Johannes C.; Culley, David E.

    2010-08-01

    The complexity and diversity of the microbial communities in biogranules from an upflow anaerobic sludge blanket (UASB) bioreactor were determined in response to short-term changes in substrate feeds. The reactor was fed simulated brewery wastewater (SBWW) (70% ethanol, 15% acetate, 15% propionate) for 1.5 months (phase 1), acetate / sulfate for 2 months (phase 2), acetate-alone for 3 months (phase 3), and then a return to SBWW for 2 months (phase 4). Performance of the reactor remained relatively stable throughout the experiment as shown by COD removal and gas production. 16S rDNA, methanogen-associated mcrA and sulfate reducer-associated dsrAB genes weremore » PCR amplified, then cloned and sequenced. Sequence analysis of 16S clone libraries showed a relatively simple community composed mainly of the methanogenic Archaea (Methanobacterium and Methanosaeta), members of the Green Non-Sulfur (Chloroflexi) group of Bacteria, followed by fewer numbers of Syntrophobacter, Spirochaeta, Acidobacteria and Cytophaga-related Bacterial sequences. Methanogen-related mcrA clone libraries were dominated throughout by Methanobacter and Methanospirillum related sequences. Although not numerous enough to be detected in our 16S rDNA libraries, sulfate reducers were detected in dsrAB clone libraries, with sequences related to Desulfovibrio and Desulfomonile. Community diversity levels (Shannon-Weiner index) generally decreased for all libraries in response to a change from SBWW to acetate-alone feed. But there was a large transitory increase noted in 16S diversity at the two-month sampling on acetate-alone, entirely related to an increase in Bacterial diversity. Upon return to SBWW conditions in phase 4, all diversity measures returned to near phase 1 levels.« less

  20. Paratrechina longicornis ants in a tropical dry forest harbor specific Actinobacteria diversity.

    PubMed

    Reyes, Ruth D Hernández; Cafaro, Matías J

    2015-01-01

    The diversity of Actinobacteria associated with Paratrechina longicornis, an ant species that prefers a high protein diet, in a subtropical dry forest (Guánica, Puerto Rico) was determined by culture methods and by 16S rDNA clone libraries. The results of both methodologies were integrated to obtain a broader view of the diversity. Streptomyces, Actinomadura, Nocardia, Ornithinimicrobium, Tsukamurella, Brevibacterium, Saccharopolyspora, Nocardioides, Microbacterium, Leifsonia, Pseudonocardia, Corynebacterium, Geodermatophilus, Amycolatopsis, and Nonomuraea were found associated with the ants. The genera Streptomyces and Actinomadura were the most abundant. Also, the diversity of Actinobacteria associated with the soil surrounding the nest was determined using 16S rDNA clone libraries. In total, 27 genera of Actinobacteria were associated with the nest soils. A dominant genus was not observed in any of the soil samples. We compared statistically the Actinobacteria communities among P. longicornis nests and each nest with its surrounding soil using the clone libraries data. We established that the communities associated with the ants were consistent and significantly different from those found in the soil in which the ants live. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Peripheral infrastructure vectors and an extended set of plant parts for the Modular Cloning system

    PubMed Central

    Kretschmer, Carola; Gruetzner, Ramona; Löfke, Christian; Dagdas, Yasin; Bürstenbinder, Katharina; Marillonnet, Sylvestre

    2018-01-01

    Standardized DNA assembly strategies facilitate the generation of multigene constructs from collections of building blocks in plant synthetic biology. A common syntax for hierarchical DNA assembly following the Golden Gate principle employing Type IIs restriction endonucleases was recently developed, and underlies the Modular Cloning and GoldenBraid systems. In these systems, transcriptional units and/or multigene constructs are assembled from libraries of standardized building blocks, also referred to as phytobricks, in several hierarchical levels and by iterative Golden Gate reactions. Here, a toolkit containing further modules for the novel DNA assembly standards was developed. Intended for use with Modular Cloning, most modules are also compatible with GoldenBraid. Firstly, a collection of approximately 80 additional phytobricks is provided, comprising e.g. modules for inducible expression systems, promoters or epitope tags. Furthermore, DNA modules were developed for connecting Modular Cloning and Gateway cloning, either for toggling between systems or for standardized Gateway destination vector assembly. Finally, first instances of a “peripheral infrastructure” around Modular Cloning are presented: While available toolkits are designed for the assembly of plant transformation constructs, vectors were created to also use coding sequence-containing phytobricks directly in yeast two hybrid interaction or bacterial infection assays. The presented material will further enhance versatility of hierarchical DNA assembly strategies. PMID:29847550

  2. Diversity of Metabolically Active Bacteria in Water-Flooded High-Temperature Heavy Oil Reservoir

    PubMed Central

    Nazina, Tamara N.; Shestakova, Natalya M.; Semenova, Ekaterina M.; Korshunova, Alena V.; Kostrukova, Nadezda K.; Tourova, Tatiana P.; Min, Liu; Feng, Qingxian; Poltaraus, Andrey B.

    2017-01-01

    The goal of this work was to study the overall genomic diversity of microorganisms of the Dagang high-temperature oilfield (PRC) and to characterize the metabolically active fraction of these populations. At this water-flooded oilfield, the microbial community of formation water from the near-bottom zone of an injection well where the most active microbial processes of oil degradation occur was investigated using molecular, cultural, radiotracer, and physicochemical techniques. The samples of microbial DNA and RNA from back-flushed water were used to obtain the clone libraries for the 16S rRNA gene and cDNA of 16S rRNA, respectively. The DNA-derived clone libraries were found to contain bacterial and archaeal 16S rRNA genes and the alkB genes encoding alkane monooxygenases similar to those encoded by alkB-geo1 and alkB-geo6 of geobacilli. The 16S rRNA genes of methanogens (Methanomethylovorans, Methanoculleus, Methanolinea, Methanothrix, and Methanocalculus) were predominant in the DNA-derived library of Archaea cloned sequences; among the bacterial sequences, the 16S rRNA genes of members of the genus Geobacillus were the most numerous. The RNA-derived library contained only bacterial cDNA of the 16S rRNA sequences belonging to metabolically active aerobic organotrophic bacteria (Tepidimonas, Pseudomonas, Acinetobacter), as well as of denitrifying (Azoarcus, Tepidiphilus, Calditerrivibrio), fermenting (Bellilinea), iron-reducing (Geobacter), and sulfate- and sulfur-reducing bacteria (Desulfomicrobium, Desulfuromonas). The presence of the microorganisms of the main functional groups revealed by molecular techniques was confirmed by the results of cultural, radioisotope, and geochemical research. Functioning of the mesophilic and thermophilic branches was shown for the microbial food chain of the near-bottom zone of the injection well, which included the microorganisms of the carbon, sulfur, iron, and nitrogen cycles. PMID:28487680

  3. Upregulated Genes In Sporadic, Idiopathic Pulmonary Arterial Hypertension

    PubMed Central

    Edgar, Alasdair J; Chacón, Matilde R; Bishop, Anne E; Yacoub, Magdi H; Polak, Julia M

    2006-01-01

    Background To elucidate further the pathogenesis of sporadic, idiopathic pulmonary arterial hypertension (IPAH) and identify potential therapeutic avenues, differential gene expression in IPAH was examined by suppression subtractive hybridisation (SSH). Methods Peripheral lung samples were obtained immediately after removal from patients undergoing lung transplant for IPAH without familial disease, and control tissues consisted of similarly sampled pieces of donor lungs not utilised during transplantation. Pools of lung mRNA from IPAH cases containing plexiform lesions and normal donor lungs were used to generate the tester and driver cDNA libraries, respectively. A subtracted IPAH cDNA library was made by SSH. Clones isolated from this subtracted library were examined for up regulated expression in IPAH using dot blot arrays of positive colony PCR products using both pooled cDNA libraries as probes. Clones verified as being upregulated were sequenced. For two genes the increase in expression was verified by northern blotting and data analysed using Student's unpaired two-tailed t-test. Results We present preliminary findings concerning candidate genes upregulated in IPAH. Twenty-seven upregulated genes were identified out of 192 clones examined. Upregulation in individual cases of IPAH was shown by northern blot for tissue inhibitor of metalloproteinase-3 and decorin (P < 0.01) compared with the housekeeping gene glyceraldehydes-3-phosphate dehydrogenase. Conclusion Four of the up regulated genes, magic roundabout, hevin, thrombomodulin and sucrose non-fermenting protein-related kinase-1 are expressed specifically by endothelial cells and one, muscleblind-1, by muscle cells, suggesting that they may be associated with plexiform lesions and hypertrophic arterial wall remodelling, respectively. PMID:16390543

  4. Sequencing analysis of 20,000 full-length cDNA clones from cassava reveals lineage specific expansions in gene families related to stress response

    PubMed Central

    Sakurai, Tetsuya; Plata, Germán; Rodríguez-Zapata, Fausto; Seki, Motoaki; Salcedo, Andrés; Toyoda, Atsushi; Ishiwata, Atsushi; Tohme, Joe; Sakaki, Yoshiyuki; Shinozaki, Kazuo; Ishitani, Manabu

    2007-01-01

    Background Cassava, an allotetraploid known for its remarkable tolerance to abiotic stresses is an important source of energy for humans and animals and a raw material for many industrial processes. A full-length cDNA library of cassava plants under normal, heat, drought, aluminum and post harvest physiological deterioration conditions was built; 19968 clones were sequence-characterized using expressed sequence tags (ESTs). Results The ESTs were assembled into 6355 contigs and 9026 singletons that were further grouped into 10577 scaffolds; we found 4621 new cassava sequences and 1521 sequences with no significant similarity to plant protein databases. Transcripts of 7796 distinct genes were captured and we were able to assign a functional classification to 78% of them while finding more than half of the enzymes annotated in metabolic pathways in Arabidopsis. The annotation of sequences that were not paired to transcripts of other species included many stress-related functional categories showing that our library is enriched with stress-induced genes. Finally, we detected 230 putative gene duplications that include key enzymes in reactive oxygen species signaling pathways and could play a role in cassava stress response features. Conclusion The cassava full-length cDNA library here presented contains transcripts of genes involved in stress response as well as genes important for different areas of cassava research. This library will be an important resource for gene discovery, characterization and cloning; in the near future it will aid the annotation of the cassava genome. PMID:18096061

  5. High-Throughput Cloning and Expression Library Creation for Functional Proteomics

    PubMed Central

    Festa, Fernanda; Steel, Jason; Bian, Xiaofang; Labaer, Joshua

    2013-01-01

    The study of protein function usually requires the use of a cloned version of the gene for protein expression and functional assays. This strategy is particular important when the information available regarding function is limited. The functional characterization of the thousands of newly identified proteins revealed by genomics requires faster methods than traditional single gene experiments, creating the need for fast, flexible and reliable cloning systems. These collections of open reading frame (ORF) clones can be coupled with high-throughput proteomics platforms, such as protein microarrays and cell-based assays, to answer biological questions. In this tutorial we provide the background for DNA cloning, discuss the major high-throughput cloning systems (Gateway® Technology, Flexi® Vector Systems, and Creator™ DNA Cloning System) and compare them side-by-side. We also report an example of high-throughput cloning study and its application in functional proteomics. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP12). Details can be found at http://www.proteomicstutorials.org. PMID:23457047

  6. High-throughput cloning and expression library creation for functional proteomics.

    PubMed

    Festa, Fernanda; Steel, Jason; Bian, Xiaofang; Labaer, Joshua

    2013-05-01

    The study of protein function usually requires the use of a cloned version of the gene for protein expression and functional assays. This strategy is particularly important when the information available regarding function is limited. The functional characterization of the thousands of newly identified proteins revealed by genomics requires faster methods than traditional single-gene experiments, creating the need for fast, flexible, and reliable cloning systems. These collections of ORF clones can be coupled with high-throughput proteomics platforms, such as protein microarrays and cell-based assays, to answer biological questions. In this tutorial, we provide the background for DNA cloning, discuss the major high-throughput cloning systems (Gateway® Technology, Flexi® Vector Systems, and Creator(TM) DNA Cloning System) and compare them side-by-side. We also report an example of high-throughput cloning study and its application in functional proteomics. This tutorial is part of the International Proteomics Tutorial Programme (IPTP12). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Debating Whether Dinosaurs Should Be "Cloned" from Ancient DNA To Promote Cooperative Learning in an Introductory Evolution Course.

    ERIC Educational Resources Information Center

    Soja, Constance M.; Huerta, Deborah

    2001-01-01

    Describes an interactive internet exercise that enables students to engage in cooperative library and web research on a controversial topic in science, specifically the cloning of extinct lifeforms. Creates a dynamic learning environment in a large introductory geology course and demonstrates the importance of scientific literacy. (Author/SAH)

  8. Design and construction of a first-generation high-throughput integrated robotic molecular biology platform for bioenergy applications

    USDA-ARS?s Scientific Manuscript database

    The molecular biological techniques for plasmid-based assembly and cloning of gene open reading frames are essential for elucidating the function of the proteins encoded by the genes. These techniques involve the production of full-length cDNA libraries as a source of plasmid-based clones to expres...

  9. The Status, Quality, and Expansion of the NIH Full-Length cDNA Project: The Mammalian Gene Collection (MGC)

    PubMed Central

    2004-01-01

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5′-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline. PMID:15489334

  10. Characterization of embryo-specific genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sung, Z.R.

    1988-01-01

    The objective of the proposed research is to characterize the structure and function of a set of genes whose expression is regulated in embryo development, and that are not expressed in mature tissues -- the embryogenic genes. In order to isolate these genes, we immunized a rabbit with total extracts of somatic embryos of carrot, and enriched the anti-embryo antiserum for antibodies reacting with extracts of carrot somatic embryos. Using this enriched antiserum, we screened a lambda gt11 cDNA library constructed from embryo poly A{sup +} RNA, and isolated 10 cDNA clones that detect embryogenic mRNAs. Monospecific antibodies have beenmore » purified for proteins corresponding to each cDNA sequence. Four cDNA clones were further characterized in terms of the expression of their corresponding mRNA and protein in somatic embryos of carrot. In some cases, comparable gene sequences or products have been detected in somatic and zygotic embryos of other plant species. The characteristics of these 4 cDNA clones -- clone Nos. 8, 59, and 66 -- are described in this report. 3 figs.« less

  11. Bioproduction and characterization of extracellular melanin-like pigment from industrially polluted metagenomic library equipped Escherichia coli.

    PubMed

    Amin, Shivani; Rastogi, Rajesh P; Sonani, Ravi R; Ray, Arabinda; Sharma, Rakesh; Madamwar, Datta

    2018-04-15

    To explore the potential genes from the industrially polluted Amlakhadi canal, located in Ankleshwar, Gujarat, India, its community genome was extracted and cloned into E. coli EPI300™-T1 R using a fosmid vector (pCC2 FOS™) generating a library of 3,92,000 clones with average size of 40kb of DNA-insert. From this library, the clone DM1 producing brown colored melanin-like pigment was isolated and characterized. For over expression of the pigment, further sub-cloning of the clone DM1 was done. Sub-clone containing 10kb of the insert was sequenced for gene identification. The amino acids sequence of a protein 4-Hydroxyphenylpyruvate dioxygenase (HPPD), which is know to be involved in melanin biosynthesis was obtained from the gene sequence. The sequence-homology based 3D structure model of HPPD was constructed and analyzed. The physico-chemical nature of pigment was further analysed using 1 H and 13 C NMR, LC-MS, FTIR and UV-visible spectroscopy. The pigment was readily soluble in DMSO with an absorption maximum around 290nm. Based on the genetic and chemical characterization, the compound was confirmed as melanin-like pigment. The present results indicate that the metagenomic library from industrially polluted environment generated a microbial tool for the production of melanin-like pigment. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. EXPRESSION OF THE SPERMATOGENIC CELL-SPECIFIC GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE (GAPDS) IN RAT TESTIS

    EPA Science Inventory

    The spermatogenic cell-specific variant of glyceraldehyde 3-phosphate dehydrogenase (GAPDS) has been cloned from a rat testis cDNA library and its pattern of expression determined. A 1417 nucleotide cDNA has been found to encode an enzyme with substantial homology to mouse GAPDS...

  13. Expressed sequence tag analysis of adult human lens for the NEIBank Project: over 2000 non-redundant transcripts, novel genes and splice variants.

    PubMed

    Wistow, Graeme; Bernstein, Steven L; Wyatt, M Keith; Behal, Amita; Touchman, Jeffrey W; Bouffard, Gerald; Smith, Don; Peterson, Katherine

    2002-06-15

    To explore the expression profile of the human lens and to provide a resource for microarray studies, expressed sequence tag (EST) analysis has been performed on cDNA libraries from adult lenses. A cDNA library was constructed from two adult (40 year old) human lenses. Over two thousand clones were sequenced from the unamplified, un-normalized library. The library was then normalized and a further 2200 sequences were obtained. All the data were analyzed using GRIST (GRouping and Identification of Sequence Tags), a procedure for gene identification and clustering. The lens library (by) contains a low percentage of non-mRNA contaminants and a high fraction (over 75%) of apparently full length cDNA clones. Approximately 2000 reads from the unamplified library yields 810 clusters, potentially representing individual genes expressed in the lens. After normalization, the content of crystallins and other abundant cDNAs is markedly reduced and a similar number of reads from this library (fs) yields 1455 unique groups of which only two thirds correspond to named genes in GenBank. Among the most abundant cDNAs is one for a novel gene related to glutamine synthetase, which was designated "lengsin" (LGS). Analyses of ESTs also reveal examples of alternative transcripts, including a major alternative splice form for the lens specific membrane protein MP19. Variant forms for other transcripts, including those encoding the apoptosis inhibitor Livin and the armadillo repeat protein ARVCF, are also described. The lens cDNA libraries are a resource for gene discovery, full length cDNAs for functional studies and microarrays. The discovery of an abundant, novel transcript, lengsin, and a major novel splice form of MP19 reflect the utility of unamplified libraries constructed from dissected tissue. Many novel transcripts and splice forms are represented, some of which may be candidates for genetic diseases.

  14. Anchoring a Defined Sequence to the 55' Ends of mRNAs : The Bolt to Clone Rare Full Length mRNAs and Generate cDNA Libraries porn a Few Cells.

    PubMed

    Baptiste, J; Milne Edwards, D; Delort, J; Mallet, J

    1993-01-01

    Among numerous applications, the polymerase chain reaction (PCR) (1,2) provides a convenient means to clone 5' ends of rare mRNAs and to generate cDNA libraries from tissue available in amounts too low to be processed by conventional methods. Basically, the amplification of cDNAs by the PCR requires the availability of the sequences of two stretches of the molecule to be amplified. A sequence can easily be imposed at the 5' end of the first-strand cDNAs (corresponding to the 3' end of the mRNAs) by priming the reverse transcription with a specific primer (for cloning the 5' end of rare messenger) or with an oligonucleotide tailored with a poly (dT) stretch (for cDNA library construction), taking advantage of the poly (A) sequence that is located at the 3' end of mRNAs. Several strategies have been devised to tag the 3' end of the ss-cDNAs (corresponding to the 55' end of the mRNAs). We (3) and others have described strategies based on the addition of a homopolymeric dG (4,5) or dA (6,7) tail using terminal deoxyribonucleotide transferase (TdT) ("anchor-PCR" [4]). However, this strategy has important limitations. The TdT reaction is difficult to control and has a low efficiency (unpublished observations). But most importantly, the return primers containing a homopolymeric (dC or dT) tail generate nonspecific amplifications, a phenomenon that prevents the isolation of low abundance mRNA species and/or interferes with the relative abundance of primary clones in the library. To circumvent these drawbacks, we have used two approaches. First, we devised a strategy based on a cRNA enrichment procedure, which has been useful to eliminate nonspecific-PCR products and to allow detection and cloning of cDNAs of low abundance (3). More recently, to avoid the nonspecific amplification resulting from the annealing of the homopolymeric tail oligonucleotide, we have developed a novel anchoring strategy that is based on the ligation of an oligonucleotide to the 35' end of ss-cDNAs. This strategy is referred to as SLIC for single-strand ligation to ss-cDNA (8).

  15. Sequence of Spider Aciniform and Piriform Silks

    DTIC Science & Technology

    2001-09-19

    7/98nd subtan-6/01 4. TITLE AND SUBTITLE Sequence of Spider Aciniform and Piriform Silks 5. FUNDING NUMBERS DAAD19-01-1-0569 6...aciniform glands from Argiope trifasciata were used to construct a cDNA library. The library was probed with various DNA probes based on known spider silk ...sequence in a number of other spider silks . The 5’end of the clone still appears to be repetitive sequence and thus it is unlikely to be a full-length

  16. DNA Damage and Oxidative Stress in Dyskeratosis Congenita: Analysis of Pathways and Therapeutic Stategies Using CPISPR and iPSC Model Systems

    DTIC Science & Technology

    2017-06-01

    Milestone Achieved: HRPO/ACURO Approval 6 Finished Major Task 2 CRISPR knockout/RNAseq Viral infection/prep 3-6 CRISPR KO virus library prep...finished; RNA-Seq: ~75% Cell manipulation 3-6 CRISPR KO virus infection: 50%; Single cDNA infections: finished Bioinformatics 1 CRISPR KO library...characterization 1-3 Finished Update: production of iPSC clones harboring DC mutations generated by CRISPR : Design 1 Finished Update: production of

  17. Identification of Eukaryotic Open Reading Frames in Metagenomic cDNA Libraries Made from Environmental Samples†

    PubMed Central

    Grant, Susan; Grant, William D.; Cowan, Don A.; Jones, Brian E.; Ma, Yanhe; Ventosa, Antonio; Heaphy, Shaun

    2006-01-01

    Here we describe the application of metagenomic technologies to construct cDNA libraries from RNA isolated from environmental samples. RNAlater (Ambion) was shown to stabilize RNA in environmental samples for periods of at least 3 months at −20°C. Protocols for library construction were established on total RNA extracted from Acanthamoeba polyphaga trophozoites. The methodology was then used on algal mats from geothermal hot springs in Tengchong county, Yunnan Province, People's Republic of China, and activated sludge from a sewage treatment plant in Leicestershire, United Kingdom. The Tenchong libraries were dominated by RNA from prokaryotes, reflecting the mainly prokaryote microbial composition. The majority of these clones resulted from rRNA; only a few appeared to be derived from mRNA. In contrast, many clones from the activated sludge library had significant similarity to eukaryote mRNA-encoded protein sequences. A library was also made using polyadenylated RNA isolated from total RNA from activated sludge; many more clones in this library were related to eukaryotic mRNA sequences and proteins. Open reading frames (ORFs) up to 378 amino acids in size could be identified. Some resembled known proteins over their full length, e.g., 36% match to cystatin, 49% match to ribosomal protein L32, 63% match to ribosomal protein S16, 70% to CPC2 protein. The methodology described here permits the polyadenylated transcriptome to be isolated from environmental samples with no knowledge of the identity of the microorganisms in the sample or the necessity to culture them. It has many uses, including the identification of novel eukaryotic ORFs encoding proteins and enzymes. PMID:16391035

  18. Molecular diversity of bacterial communities from subseafloor rock samples in a deep-water production basin in Brazil.

    PubMed

    von der Weid, Irene; Korenblum, Elisa; Jurelevicius, Diogo; Rosado, Alexandre Soares; Dino, Rodolfo; Sebastian, Gina Vasquez; Seldin, Lucy

    2008-01-01

    The deep subseafloor rock in oil reservoirs represents a unique environment in which a high oilcontamination and very low biomass can be observed. Sampling this environment has been a challenge owing to the techniques used for drilling and coring. In this study, the facilities developed by the Brazilian oil company PETROBRAS for accessing deep subsurface oil reservoirs were used to obtain rock samples at 2,822-2,828 m below the ocean floor surface from a virgin field located in the Atlantic Ocean, Rio de Janeiro. To address the bacterial diversity of these rock samples, PCR amplicons were obtained using the DNA from four core sections and universal primers for 16S rRNA and for APS reductase (aps) genes. Clone libraries were generated from these PCR fragments and 87 clones were sequenced. The phylogenetic analyses of the 16S rDNA clone libraries showed a wide distribution of types in the domain bacteria in the four core samples, and the majority of the clones were identified as belonging to Betaproteobacteria. The sulfate-reducing bacteria community could only be amplified by PCR in one sample, and all clones were identified as belonging to Gammaproteobacteria. For the first time, the bacterial community was assessed in such deep subsurface environment.

  19. An integrated PCR colony hybridization approach to screen cDNA libraries for full-length coding sequences.

    PubMed

    Pollier, Jacob; González-Guzmán, Miguel; Ardiles-Diaz, Wilson; Geelen, Danny; Goossens, Alain

    2011-01-01

    cDNA-Amplified Fragment Length Polymorphism (cDNA-AFLP) is a commonly used technique for genome-wide expression analysis that does not require prior sequence knowledge. Typically, quantitative expression data and sequence information are obtained for a large number of differentially expressed gene tags. However, most of the gene tags do not correspond to full-length (FL) coding sequences, which is a prerequisite for subsequent functional analysis. A medium-throughput screening strategy, based on integration of polymerase chain reaction (PCR) and colony hybridization, was developed that allows in parallel screening of a cDNA library for FL clones corresponding to incomplete cDNAs. The method was applied to screen for the FL open reading frames of a selection of 163 cDNA-AFLP tags from three different medicinal plants, leading to the identification of 109 (67%) FL clones. Furthermore, the protocol allows for the use of multiple probes in a single hybridization event, thus significantly increasing the throughput when screening for rare transcripts. The presented strategy offers an efficient method for the conversion of incomplete expressed sequence tags (ESTs), such as cDNA-AFLP tags, to FL-coding sequences.

  20. Isolation and characterization of a cDNA clone for the complete protein coding region of the delta subunit of the mouse acetylcholine receptor.

    PubMed Central

    LaPolla, R J; Mayne, K M; Davidson, N

    1984-01-01

    A mouse cDNA clone has been isolated that contains the complete coding region of a protein highly homologous to the delta subunit of the Torpedo acetylcholine receptor (AcChoR). The cDNA library was constructed in the vector lambda 10 from membrane-associated poly(A)+ RNA from BC3H-1 mouse cells. Surprisingly, the delta clone was selected by hybridization with cDNA encoding the gamma subunit of the Torpedo AcChoR. The nucleotide sequence of the mouse cDNA clone contains an open reading frame of 520 amino acids. This amino acid sequence exhibits 59% and 50% sequence homology to the Torpedo AcChoR delta and gamma subunits, respectively. However, the mouse nucleotide sequence has several stretches of high homology with the Torpedo gamma subunit cDNA, but not with delta. The mouse protein has the same general structural features as do the Torpedo subunits. It is encoded by a 3.3-kilobase mRNA. There is probably only one, but at most two, chromosomal genes coding for this or closely related sequences. Images PMID:6096870

  1. Identification of immune protective genes of Eimeria maxima through cDNA expression library screening.

    PubMed

    Yang, XinChao; Li, MengHui; Liu, JianHua; Ji, YiHong; Li, XiangRui; Xu, LiXin; Yan, RuoFeng; Song, XiaoKai

    2017-02-16

    Eimeria maxima is one of the most prevalent Eimeria species causing avian coccidiosis, and results in huge economic loss to the global poultry industry. Current control strategies, such as anti-coccidial medication and live vaccines have been limited because of their drawbacks. The third generation anticoccidial vaccines including the recombinant vaccines as well as DNA vaccines have been suggested as a promising alternative strategy. To date, only a few protective antigens of E. maxima have been reported. Hence, there is an urgent need to identify novel protective antigens of E. maxima for the development of neotype anticoccidial vaccines. With the aim of identifying novel protective genes of E. maxima, a cDNA expression library of E. maxima sporozoites was constructed using Gateway technology. Subsequently, the cDNA expression library was divided into 15 sub-libraries for cDNA expression library immunization (cDELI) using parasite challenged model in chickens. Protective sub-libraries were selected for the next round of screening until individual protective clones were obtained, which were further sequenced and analyzed. Adopting the Gateway technology, a high-quality entry library was constructed, containing 9.2 × 10 6 clones with an average inserted fragments length of 1.63 kb. The expression library capacity was 2.32 × 10 7 colony-forming units (cfu) with an average inserted fragments length of 1.64 Kb. The expression library was screened using parasite challenged model in chickens. The screening yielded 6 immune protective genes including four novel protective genes of EmJS-1, EmRP, EmHP-1 and EmHP-2, and two known protective genes of EmSAG and EmCKRS. EmJS-1 is the selR domain-containing protein of E. maxima whose function is unknown. EmHP-1 and EmHP-2 are the hypothetical proteins of E. maxima. EmRP and EmSAG are rhomboid-like protein and surface antigen glycoproteins of E. maxima respectively, and involved in invasion of the parasite. Our results provide a cDNA expression library for further screening of T cell stimulating or inhibiting antigens of E. maxima. Moreover, our results provide six candidate protective antigens for developing new vaccines against E. maxima.

  2. Construction of a small Mus musculus repetitive DNA library: identification of a new satellite sequence in Mus musculus.

    PubMed Central

    Pietras, D F; Bennett, K L; Siracusa, L D; Woodworth-Gutai, M; Chapman, V M; Gross, K W; Kane-Haas, C; Hastie, N D

    1983-01-01

    We report the construction of a small library of recombinant plasmids containing Mus musculus repetitive DNA inserts. The repetitive cloned fraction was derived from denatured genomic DNA by reassociation to a Cot value at which repetitive, but not unique, sequences have reannealed followed by exhaustive S1 nuclease treatment to degrade single stranded DNA. Initial characterizations of this library by colony filter hybridizations have led to the identification of a previously undetected M. musculus minor satellite as well as to clones containing M. musculus major satellite sequences. This new satellite is repeated 10-20 times less than the major satellite in the M. musculus genome. It has a repeat length of 130 nucleotides compared with the M. musculus major satellite with a repeat length of 234 nucleotides. Sequence analysis of the minor satellite has shown that it has a 29 base pair region with extensive homology to one of the major satellite repeating subunits. We also show by in situ hybridization that this minor satellite sequence is located at the centromeres and possibly the arms of at least half the M musculus chromosomes. Sequences related to the minor satellite have been found in the DNA of a related Mus species, Mus spretus, and may represent the major satellite of that species. Images PMID:6314268

  3. Isolation and characterization of full-length cDNA clones coding for cholinesterase from fetal human tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prody, C.A.; Zevin-Sonkin, D.; Gnatt, A.

    1987-06-01

    To study the primary structure and regulation of human cholinesterases, oligodeoxynucleotide probes were prepared according to a consensus peptide sequence present in the active site of both human serum pseudocholinesterase and Torpedo electric organ true acetylcholinesterase. Using these probes, the authors isolated several cDNA clones from lambdagt10 libraries of fetal brain and liver origins. These include 2.4-kilobase cDNA clones that code for a polypeptide containing a putative signal peptide and the N-terminal, active site, and C-terminal peptides of human BtChoEase, suggesting that they code either for BtChoEase itself or for a very similar but distinct fetal form of cholinesterase. Inmore » RNA blots of poly(A)/sup +/ RNA from the cholinesterase-producing fetal brain and liver, these cDNAs hybridized with a single 2.5-kilobase band. Blot hybridization to human genomic DNA revealed that these fetal BtChoEase cDNA clones hybridize with DNA fragments of the total length of 17.5 kilobases, and signal intensities indicated that these sequences are not present in many copies. Both the cDNA-encoded protein and its nucleotide sequence display striking homology to parallel sequences published for Torpedo AcChoEase. These finding demonstrate extensive homologies between the fetal BtChoEase encoded by these clones and other cholinesterases of various forms and species.« less

  4. Map-based cloning of a gene controlling Omega-3 fatty acid desaturation in Arabidopsis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arondel, V.; Lemieux, B.; Hwang, I.

    1992-11-20

    A gene from the flowering plant Arabidopsis thaliana that encodes an omega-3 desaturase was cloned on the basis of the genetic map position of a mutation affecting membrane and storage lipid fatty acid composition. Yeast artificial chromosomes covering the genetic locus were identified and used to probe a seed complementary DNA library. A complementary DNA clone for the desaturase was identified and introduced into roots of both wild-type and mutant plants by Ti plasmid-mediated transformation. Transgenic tissues of both mutant and wild-type plants had significantly increased amounts of the fatty acid produced by this desaturase. 24 refs., 2 figs., 1more » tabs.« less

  5. Pathogen-regulated genes in wheat isogenic lines differing in resistance to brown rust Puccinia triticina.

    PubMed

    Dmochowska-Boguta, Marta; Alaba, Sylwia; Yanushevska, Yuliya; Piechota, Urszula; Lasota, Elzbieta; Nadolska-Orczyk, Anna; Karlowski, Wojciech M; Orczyk, Waclaw

    2015-10-05

    Inoculation of wheat plants with Puccinia triticina (Pt) spores activates a wide range of host responses. Compatible Pt interaction with susceptible Thatcher plants supports all stages of the pathogen life cycle. Incompatible interaction with TcLr9 activates defense responses including oxidative burst and micronecrotic reactions associated with the pathogen's infection structures and leads to complete termination of pathogen development. These two contrasting host-pathogen interactions were a foundation for transcriptome analysis of incompatible wheat-Pt interaction. A suppression subtractive hybridization (SSH) library was constructed using cDNA from pathogen-inoculated susceptible Thatcher and resistant TcLr9 isogenic lines. cDNA represented steps of wheat-brown rust interactions: spore germination, haustorium mother cell (HMC) formation and micronecrotic reactions. All ESTs were clustered and validated by similarity search to wheat genome using BLASTn and sim4db tools. qRT-PCR was used to determine transcript levels of selected ESTs after inoculation in both lines. Out of 793 isolated cDNA clones, 183 were classified into 152 contigs. 89 cDNA clones and encoded proteins were functionally annotated and assigned to 5 Gene Ontology categories: catalytic activity 48 clones (54 %), binding 32 clones (36 %), transporter activity 6 clones (7 %), structural molecule activity 2 clones (2 %) and molecular transducer activity 1 clone (1 %). Detailed expression profiles of 8 selected clones were analyzed using the same plant-pathogen system. The strongest induction after pathogen infection and the biggest differences between resistant and susceptible interactions were detected for clones encoding wall-associated kinase (GenBank accession number JG969003), receptor with leucine-rich repeat domain (JG968955), putative serine/threonine protein kinase (JG968944), calcium-mediated signaling protein (JG968925) and 14-3-3 protein (JG968969). The SSH library represents transcripts regulated by pathogen infection during compatible and incompatible interactions of wheat with P. triticina. Annotation of selected clones confirms their putative roles in successive steps of plant-pathogen interactions. The transcripts can be categorized as defense-related due to their involvement in either basal defense or resistance through an R-gene mediated reaction. The possible involvement of selected clones in pathogen recognition and pathogen-induced signaling as well as resistance mechanisms such as cell wall enforcement, oxidative burst and micronecrotic reactions is discussed.

  6. Cloning and characterization of a novel oocyte-specific gene encoding an F-Box protein in rainbow trout (Oncorhynchus mykiss)

    USDA-ARS?s Scientific Manuscript database

    Oocyte-specific genes play critical roles in oogenesis, folliculogenesis and early embryonic development. Through analysis of expressed sequence tags (ESTs) from a rainbow trout oocyte cDNA library, we identified a novel transcript which is represented by ESTs only from the oocyte library. The novel...

  7. YAC cloning Mus musculus telomeric DNA: physical, genetic, in situ and STS markers for the distal telomere of chromosome 10.

    PubMed

    Kipling, D; Wilson, H E; Thomson, E J; Cooke, H J

    1995-06-01

    Three Mus musculus DBA/2 YAC libraries were constructed using a half-YAC telomere cloning vector. This functional complementation approach yields libraries which include terminal restriction fragments of the mouse genome. Screening all three libraries led to the isolation of 32 independent clones which carry linear YACs containing the mouse terminal repeat sequence, (TTAGGG)n. These YACs provide a resource to isolate regions of the mouse genome close to chromosome termini and excluded from existing conventional YAC libraries. To demonstrate their utility, a hybridization probe was isolated from Mtel-1, the first (TTAGGG)n-containing YAC isolated. This probe detects a approximately 70 kb Kpnl fragment in the mouse genome which is sensitive to pretreatment with BAL31 exonuclease. A PCR-based genetic marker generated from the sequence of this probe maps 4.4 cM from the most distal anchor locus on chromosome 10 in the EUCIB interspecific backcross. STS primers for this locus, D10Hgu1, were used to isolate YAC 110F4 from a commercially available mouse YAC library. Fluorescence in situ hybridization demonstrates that YAC 110F4 hybridizes to the distal telomere of chromosome 10. Clones in this collection of telomere YACs therefore partially overlap clones in conventional YAC libraries, and thus the previously unavailable terminal regions of the mouse genome can now be linked with the developing mouse STS YAC contig. Genetic markers such as D10Hgu1 allow the ends of the mouse genetic map to be defined, thus closing the map.

  8. Bacterial taxa abundance pattern in an industrial wastewater treatment system determined by the full rRNA cycle approach.

    PubMed

    Figuerola, Eva L M; Erijman, Leonardo

    2007-07-01

    The description of the diversity and structure of microbial communities through quantification of the constituent populations is one of the major objectives in environmental microbiology. The implications of models for community assembly are practical as well as theoretical, because the extent of biodiversity is thought to influence the function of ecosystems. Current attempts to predict species diversity in different environments derive the numbers of individuals for each operational taxonomic unit (OTU) from the frequency of clones in 16S rDNA gene libraries, which are subjected to a number of inherent biases and artefacts. We show that diversity of the bacterial community present in a complex microbial ensemble can be estimated by fitting the data of the full-cycle rRNA approach to a model of species abundance distribution. Sequences from a 16S rDNA gene library from activated sludge were reliably assigned to OTUs at a genetic distance of 0.04. A group of 17 newly designed rRNA-targeted oligonucleotide probes were used to quantify by fluorescence in situ hybridization, OTUs represented with more than three clones in the 16S rDNA clone library. Cell abundance distribution was best described by a geometric series, after the goodness of fit was evaluated by the Kolmogorov-Smirnov test. Although a complete mechanistic understanding of all the ecological processes involved is still not feasible, describing the distribution pattern of a complex bacterial assemblage model can shed light on the way bacterial communities operate.

  9. [Diversity of uncultured actinomycetes in saline-alkali soil from Jiuquan area of Hexi Corridor].

    PubMed

    Li, Hai-yun; Niu, Shi-quan; Kong, Wei-bao; Yan, Wei-ru; Geng, Hui; Han, Cai-hong; Da, Wen-yan; Zhang, Ai-mei; Zhu, Xue-tai

    2015-09-01

    In order to more accurately understand community structure and diversity of actinomycetes in saline-alkali soil from Jiuquan area of Hexi Corridor, the community structure and diversity from three kinds of soil samples (primary, secondary saline alkali soil and farmland soil) were analyzed using uncultured methods. The results showed that the 16S rDNA clone library of actinomycetales from the primary saline-alkali soil belonged to 19 OTUs, Micrococcineae, Propionibacterineae, Corynebacterineae, Frankineae, Pseudonocardineae and unknown groups of Actinomycetales; the 16S r DNA clone library of actinomycetales from the secondary saline-alkali soil belonged to 14 OTUs, Micrococcineae, Propionibacterineae, Corynebacterineae, Frankineae, Pseudonocardineae and unknown groups of Actinomycetales; the 16S rDNA clone library of farmland soil belonged to 7 OTUs, Micrococcineae, Propionibacterineae, Corynebacterineae, Frankineae, Pseudonocardineae and unknown groups of Actinomycetales; Micrococcineae was the common population in the three soils, and also was the dominant population in primary saline alkali soil and farmland soil. The diversity index and rarefaction curves analysis showed that actinomycetes species richness was in order of primary saline-alkali soil > secondary saline-alkali soil > farmland soil. The dilution curves of primary saline-alkali soil and secondary saline-alkali soil were not leveled off, which indicated the actinomycetes diversity in saline-alkali soil was more enriched than the actual. The rich and diverse actinomycetes resources in saline-alkali soil from Jiuquan area of Hexi Corridor provide important data on the actinomycetes ecology distribution research, exploitation and utilization in saline-alkali soil.

  10. Molecular cloning and physical mapping of the genome of fish lymphocystis disease virus.

    PubMed

    Darai, G; Delius, H; Clarke, J; Apfel, H; Schnitzler, P; Flügel, R M

    1985-10-30

    A defined and complete gene library of the fish lymphocystis disease virus (FLDV) genome was established. FLDV DNA was cleaved with EcoRI, BamHI, EcoRI/BamHI and EcoRI/HindIII and the resulting fragments were inserted into the corresponding sites of the pACYC184 or pAT153 plasmid vectors using T4 DNA ligase. Since FLDV DNA is highly methylated at CpG sequences (Darai et al., 1983; Wagner et al., 1985), an Escherichia coli GC-3 strain was required to amplify the recombinant plasmids harboring the FLDV DNA fragments. Bacterial colonies harboring recombinant plasmids were selected. All cloned fragments were individually identified by digestion of the recombinant plasmid DNA with different restriction enzymes and screened by hybridization of recombinant plasmid DNA to viral DNA. This analysis revealed that sequences representing 100% of the viral genome were cloned. Using these recombinant plasmids, the physical maps of the genome were constructed for BamHI, EcoRI, BestEII, and PstI restriction endonucleases. Although the FLDV genome is linear, due to circular permutation the restriction maps are circular.

  11. Molecular Cloning and Sequencing of Channel Catfish, Ictalurus punctatus, Cathepsin H and L cDNA

    USDA-ARS?s Scientific Manuscript database

    Cathepsin H and L, a lysosomal cysteine endopeptidase of the papain family, are ubiquitously expressed and involve in antigen processing. In this communication, the channel catfish cathepsin H and L transcripts were sequenced and analyzed. Total RNA from tissues was extracted and cDNA libraries we...

  12. Human scFv antibody fragments specific for hepatocellular carcinoma selected from a phage display library.

    PubMed

    Yu, Bing; Ni, Ming; Li, Wen-Han; Lei, Ping; Xing, Wei; Xiao, Dai-Wen; Huang, Yu; Tang, Zhen-Jie; Zhu, Hui-Fen; Shen, Guan-Xin

    2005-07-14

    To identify the scFv antibody fragments specific for hepatocellular carcinoma by biopanning from a large human naive scFv phage display library. A large human naive scFv phage library was used to search for the specific targets by biopanning with the hepatocellular carcinoma cell line HepG2 for the positive-selecting and the normal liver cell line L02 for the counter-selecting. After three rounds of biopanning, individual scFv phages binding selectively to HepG2 cells were picked out. PCR was carried out for identification of the clones containing scFv gene sequence. The specific scFv phages were selected by ELISA and flow cytometry. DNA sequences of positive clones were analyzed by using Applied Biosystem Automated DNA sequencers 3 730. The expression proteins of the specific scFv antibody fragments in E.coli HB2151 were purified by the affinity chromatography and detected by SDS-PAGE, Western blot and ELISA. The biological effect of the soluble antibody fragments on the HepG2 cells was investigated by observing the cell proliferation. Two different positive clones were obtained and the functional variable sequences were identified. Their DNA sequences of the scFv antibody fragments were submitted to GenBank (accession nos: AY686498 and AY686499). The soluble scFv antibody fragments were successfully expressed in E.coli HB2151. The relative molecular mass of the expression products was about 36 ku, according to its predicted M(r) value. The two soluble scFv antibody fragments also had specific binding activity and obvious growth inhibition properties to HepG2 cells. The phage library biopanning permits identification of specific antibody fragments for hepatocellular carcinoma and affords experiment evidence for its immunotherapy study.

  13. Diversity of nifH gene pools in the rhizosphere of two cultivars of sorghum (Sorghum bicolor) treated with contrasting levels of nitrogen fertilizer.

    PubMed

    Coelho, Marcia Reed Rodrigues; de Vos, Marjon; Carneiro, Newton Portilho; Marriel, Ivanildo Evódio; Paiva, Edilson; Seldin, Lucy

    2008-02-01

    The diversity of nitrogen-fixing bacteria was assessed in the rhizospheres of two cultivars of sorghum (IS 5322-C and IPA 1011) sown in Cerrado soil amended with two levels of nitrogen fertilizer (12 and 120 kg ha(-1)). The nifH gene was amplified directly from DNA extracted from the rhizospheres, and the PCR products cloned and sequenced. Four clone libraries were generated from the nifH fragments and 245 sequences were obtained. Most of the clones (57%) were closely related to nifH genes of uncultured bacteria. NifH clones affiliated with Azohydromonas spp., Ideonella sp., Rhizobium etli and Bradyrhizobium sp. were found in all libraries. Sequences affiliated with Delftia tsuruhatensis were found in the rhizosphere of both cultivars sown with high levels of nitrogen, while clones affiliated with Methylocystis sp. were detected only in plants sown under low levels of nitrogen. Moreover, clones affiliated with Paenibacillus durus could be found in libraries from the cultivar IS 5322-C sown either in high or low amounts of fertilizer. This study showed that the amount of nitrogen used for fertilization is the overriding determinative factor that influenced the nitrogen-fixing community structures in sorghum rhizospheres cultivated in Cerrado soil.

  14. Clone and genomic repositories at the American Type Culture Collection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maglott, D.R.; Nierman, W.C.

    1990-01-01

    The American Type Culture Collection (ATCC) has a long history of characterizing, preserving, and distributing biological resource materials for the scientific community. Starting in 1925 as a repository for standard bacterial and fungal strains, its collections have diversified with technologic advances and in response to the requirements of its users. To serve the needs of the human genetics community, the National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), established an international Repository of Human DNA Probes and Libraries at the ATCC in 1985. This repository expanded the existing collections of recombinant clones and librariesmore » at the ATCC, with the specific purposes of (1) obtaining, amplifying, and distribution probes detecting restriction fragment length polymorphisms (RFLPs); (2) obtaining, amplifying, and distributing genomic and cDNA clones from known genes independent of RFLP detection; (3) distributing the chromosome-specific libraries generated by the National Laboratory Gene Library Project at the Lawrence Livermore and Los Alamos National Laboratories and (4) maintaining a public, online database describing the repository materials. Because it was recognized that animal models and comparative mapping can be crucial to genomic characterization, the scope of the repository was broadened in February 1989 to include probes from the mouse genome.« less

  15. DNA modification and functional delivery into human cells using Escherichia coli DH10B

    PubMed Central

    Narayanan, Kumaran; Warburton, Peter E.

    2003-01-01

    The availability of almost the complete human genome as cloned BAC libraries represents a valuable resource for functional genomic analysis, which, however, has been somewhat limited by the ability to modify and transfer this DNA into mammalian cells intact. Here we report a novel comprehensive Escherichia coli-based vector system for the modification, propagation and delivery of large human genomic BAC clones into mammalian cells. The GET recombination inducible homologous recombination system was used in the BAC host strain E.coli DH10B to precisely insert an EGFPneo cassette into the vector portion of a ∼200 kb human BAC clone, providing a relatively simple method to directly convert available BAC clones into suitable vectors for mammalian cells. GET recombination was also used for the targeted deletion of the asd gene from the E.coli chromosome, resulting in defective cell wall synthesis and diaminopimelic acid auxotrophy. Transfer of the Yersinia pseudotuberculosis invasin gene into E.coli DH10B asd– rendered it competent to invade HeLa cells and deliver DNA, as judged by transient expression of green fluorescent protein and stable neomycin-resistant colonies. The efficiency of DNA transfer and survival of HeLa cells has been optimized for incubation time and multiplicity of infection of invasive E.coli with HeLa cells. This combination of E.coli-based homologous recombination and invasion technologies using BAC host strain E.coli DH10B will greatly improve the utility of the available BAC libraries from the human and other genomes for gene expression and functional genomic studies. PMID:12711696

  16. Molecular cloning, sequence analysis and phylogeny of first caudata g-type lysozyme in axolotl (Ambystoma mexicanum).

    PubMed

    Yu, Haining; Gao, Jiuxiang; Lu, Yiling; Guang, Huijuan; Cai, Shasha; Zhang, Songyan; Wang, Yipeng

    2013-11-01

    Lysozymes are key proteins that play important roles in innate immune defense in many animal phyla by breaking down the bacterial cell-walls. In this study, we report the molecular cloning, sequence analysis and phylogeny of the first caudate amphibian g-lysozyme: a full-length spleen cDNA library from axolotl (Ambystoma mexicanum). A goose-type (g-lysozyme) EST was identified and the full-length cDNA was obtained using RACE-PCR. The axolotl g-lysozyme sequence represents an open reading frame for a putative signal peptide and the mature protein composed of 184 amino acids. The calculated molecular mass and the theoretical isoelectric point (pl) of this mature protein are 21523.0 Da and 4.37, respectively. Expression of g-lysozyme mRNA is predominantly found in skin, with lower levels in spleen, liver, muscle, and lung. Phylogenetic analysis revealed that caudate amphibian g-lysozyme had distinct evolution pattern for being juxtaposed with not only anura amphibian, but also with the fish, bird and mammal. Although the first complete cDNA sequence for caudate amphibian g-lysozyme is reported in the present study, clones encoding axolotl's other functional immune molecules in the full-length cDNA library will have to be further sequenced to gain insight into the fundamental aspects of antibacterial mechanisms in caudate.

  17. Cloning and heterologous expression of blasticidin S biosynthetic genes from Streptomyces griseochromogenes.

    PubMed

    Cone, M C; Petrich, A K; Gould, S J; Zabriskie, T M

    1998-06-01

    Two small chromosomal DNA fragments (2.6 and 4.8 kb) from the blasticidin S producer Streptomyces griseochromogenes were cloned in the high copy number vector pIJ702 and shown to confer increased resistance to blasticidin S upon S. lividans TK24. These fragments were used to screen a library of S. griseochromogenes DNA prepared in the cosmid shuttle vector pOJ446. Cosmids containing DNA inserts of at least 23 kb were identified which hybridized to one or the other resistance fragment, but not to both. Transformation of S. lividans TK24 with several cosmids hybridizing with the 4.8 kb resistance fragment resulted in clones that produced cytosylglucuronic acid, the first intermediate of the blasticidin S biosynthetic pathway, and other blasticidin-related metabolites. A strain of S. lividans TK24 harboring both the 4.8 kb-hybridizing cosmid and the 2.6 kb resistance fragment cloned in pIJ702 produced 12.5 times as much demethylblasticidin S as the transformant harboring the cosmid alone.

  18. Purification, characterization and molecular cloning of chymotrypsin inhibitor peptides from the venom of Burmese Daboia russelii siamensis.

    PubMed

    Guo, Chun-Teng; McClean, Stephen; Shaw, Chris; Rao, Ping-Fan; Ye, Ming-Yu; Bjourson, Anthony J

    2013-05-01

    One novel Kunitz BPTI-like peptide designated as BBPTI-1, with chymotrypsin inhibitory activity was identified from the venom of Burmese Daboia russelii siamensis. It was purified by three steps of chromatography including gel filtration, cation exchange and reversed phase. A partial N-terminal sequence of BBPTI-1, HDRPKFCYLPADPGECLAHMRSF was obtained by automated Edman degradation and a Ki value of 4.77nM determined. Cloning of BBPTI-1 including the open reading frame and 3' untranslated region was achieved from cDNA libraries derived from lyophilized venom using a 3' RACE strategy. In addition a cDNA sequence, designated as BBPTI-5, was also obtained. Alignment of cDNA sequences showed that BBPTI-5 exhibited an identical sequence to BBPTI-1 cDNA except for an eight nucleotide deletion in the open reading frame. Gene variations that represented deletions in the BBPTI-5 cDNA resulted in a novel protease inhibitor analog. Amino acid sequence alignment revealed that deduced peptides derived from cloning of their respective precursor cDNAs from libraries showed high similarity and homology with other Kunitz BPTI proteinase inhibitors. BBPTI-1 and BBPTI-5 consist of 60 and 66 amino acid residues respectively, including six conserved cysteine residues. As these peptides have been reported to have influence on the processes of coagulation, fibrinolysis and inflammation, their potential application in biomedical contexts warrants further investigation. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Isolation and characterization of 21 novel expressed DNA sequences from the distal region of human chromosome 4p

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishida, Yoshikazu; Hadano, Shinji; Nagayama, Tomiko

    1994-07-15

    The authors have established an approach to the isolation of expressed DNA sequences from a defined region of the human chromosome. The method relies on the direct screening of cDNA libraries using pooled single-copy microclones generated by a laser chromosome microdissection in conjunction with a single unique primer polymerase chain reaction (SUP-PCR) procedure. They applied this method to the distal region of human chromosome 4p (4p15-4pter), which contains the Huntington disease (HD) and the Wolf-Hirschhorn syndrome (WHS) loci. Twenty-one nonoverlapping and region-specific cDNA clones encoding novel genes were isolated in this manner. Ten of 21 clones were subregionally assigned tomore » 4p16.1-4pter, and the remainder mapped to the region proximal to 4p16.1. Northern blot and reverse transcription followed by the PCR (RT-PCR) analysis revealed that 16 of these 21 clones detected transcripts in total RNA from human tissues. The method is applicable to other chromosomal regions and is a powerful approach to the isolation of region-specific cDNA clones. 44 refs., 3 figs., 3 tabs.« less

  20. cDNA cloning of Brassica napus malonyl-CoA:ACP transacylase (MCAT) (fab D) and complementation of an E. coli MCAT mutant.

    PubMed

    Simon, J W; Slabas, A R

    1998-09-18

    The GenBank database was searched using the E. coli malonyl CoA:ACP transacylase (MCAT) sequence, for plant protein/cDNA sequences corresponding to MCAT, a component of plant fatty acid synthetase (FAS), for which the plant cDNA has not been isolated. A 272-bp Zea mays EST sequence (GenBank accession number: AA030706) was identified which has strong homology to the E. coli MCAT. A PCR derived cDNA probe from Zea mays was used to screen a Brassica napus (rape) cDNA library. This resulted in the isolation of a 1200-bp cDNA clone which encodes an open reading frame corresponding to a protein of 351 amino acids. The protein shows 47% homology to the E. coli MCAT amino acid sequence in the coding region for the mature protein. Expression of a plasmid (pMCATrap2) containing the plant cDNA sequence in Fab D89, an E. coli mutant, in MCAT activity restores growth demonstrating functional complementation and direct function of the cloned cDNA. This is the first functional evidence supporting the identification of a plant cDNA for MCAT.

  1. Cloning of precursors for two MIH/VIH-related peptides in the prawn, Macrobrachium rosenbergii.

    PubMed

    Yang, W J; Rao, K R

    2001-11-30

    Two cDNA clones (634 and 1366 bp) encoding MIH/VIH (molt-inhibiting hormone/vitellogenesis-inhibiting hormone)-related peptides were isolated and sequenced from a Macrobrachium rosenbergii eyestalk ganglia cDNA library. The clones contain a 360 and 339 bp open-reading frame, and their conceptually translated peptides consist of a 41 and 34 amino acid signal peptide, respectively, and a 78 amino acid residue mature peptide hormone. The amino acid sequences of the peptides exhibit higher identities with other known MIHs and VIH (44-69%) than with CHHs (28-33%). This is the first report describing the cloning and sequencing of two MIH/VIH-related peptides in a single crustacean species. Transcription of these mRNAs was detected in the eyestalk ganglia, but not in the thoracic ganglia, hepatopancreas, gut, gill, heart, or muscle.

  2. Cloning and sequence analysis of the human brain beta-adrenergic receptor. Evolutionary relationship to rodent and avian beta-receptors and porcine muscarinic receptors.

    PubMed

    Chung, F Z; Lentes, K U; Gocayne, J; Fitzgerald, M; Robinson, D; Kerlavage, A R; Fraser, C M; Venter, J C

    1987-01-26

    Two cDNA clones, lambda-CLFV-108 and lambda-CLFV-119, encoding for the beta-adrenergic receptor, have been isolated from a human brain stem cDNA library. One human genomic clone, LCV-517 (20 kb), was characterized by restriction mapping and partial sequencing. The human brain beta-receptor consists of 413 amino acids with a calculated Mr of 46480. The gene contains three potential glucocorticoid receptor-binding sites. The beta-receptor expressed in human brain was homology with rodent (88%) and avian (52%) beta-receptors and with porcine muscarinic cholinergic receptors (31%), supporting our proposal [(1984) Proc. Natl. Acad. Sci. USA 81, 272 276] that adrenergic and muscarinic cholinergic receptors are structurally related. This represents the first cloning of a neurotransmitter receptor gene from human brain.

  3. Identification of human antibody fragment clones specific for tetanus toxoid in a bacteriophage. lambda. immunoexpression library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullinax, R.L.; Gross, E.A.; Amberg, J.R.

    1990-10-01

    The authors have applied a molecular biology approach to the identification of human monoclonal antibodies. Human peripheral blood lymphocyte mRNA was converted to cDNA and a select subset was amplified by the polymerase chain reaction. These products, containing coding sequences for numerous immunoglobulin heavy- and {kappa} light-chain variable and constant region domains, were inserted into modified bacteriophase {lambda} expression vectors and introduced into Escherichia coli by infection to yield a combinatorial immunoexpression library. Clones with binding activity to tetanus toxoid were identified by filter hybridization with radiolabeled antigen and appeared at a frequency of 0.2{percent} in the library. These humanmore » antigen binding fragments, consisting of a heavy-chain fragment covalently linked to a light chain, displayed high affinity of binding to tetanus toxoid with equilibrium constants in the nanomolar range but did not cross-react with other proteins tested. They estimate that this human immunoexpression library contains 20,000 clones with high affinity and specificity to our chosen antigen.« less

  4. [Construction and characterization of a cDNA library from human liver tissue of cirrhosis].

    PubMed

    Chen, Xiao-hong; Chen, Zhi; Chen, Feng; Zhu, Hai-hong; Zhou, Hong-juan; Yao, Hang-ping

    2005-03-01

    To construct a cDNA library from human liver tissue of cirrhosis. The total RNA from human liver tissue of cirrhosis was extracted using Trizol method, and the mRNA was purified using mRNA purification kit. SMART technique and CDSIII/3' primer were used for first-strand cDNA synthesis. Long distance PCR was then used to synthesize the double-strand cDNA that was then digested by proteinase K and Sfi I, and was fractionated by CHOMA SPIN-400 column. The cDNA fragments longer than 0.4 kb were collected and ligated to lambdaTripl Ex2 vector. Then lambda-phage packaging reaction and library amplification were performed. The qualities of both unamplified and amplified cDNA libraries was strictly checked by conventional titer determination. Eleven plaques were randomly picked and tested using PCR with universal primers derived from the sequence flanking the vector. The titers of unamplifed and amplified libraries were 1.03 x 10(6) pfu/ml and 1.36 x 10(9) pfu/ml respectively. The percentages of recombinants from both libraries were 97.24 % in unamplified library and 99.02 % in amplified library. The lengths of the inserts were 1.02 kb in average (36.36 % 1 approximately equals 2 kb and 63.64 % 0.5 approximately equals 1.0 kb). A high quality cDNA library from human liver tissue of cirrhosis was constructed successfully, which can be used for screening and cloning new special genes associated with the occurrence of cirrhosis.

  5. Human Hrs, a tyrosine kinase substrate in growth factor-stimulated cells: cDNA cloning and mapping of the gene to chromosome 17.

    PubMed

    Lu, L; Komada, M; Kitamura, N

    1998-06-15

    Hrs is a 115kDa zinc finger protein which is rapidly tyrosine phosphorylated in cells stimulated with various growth factors. We previously purified the protein from a mouse cell line and cloned its cDNA. In the present study, we cloned a human Hrs cDNA from a human placenta cDNA library by cross-hybridization, using the mouse cDNA as a probe, and determined its nucleotide sequence. The human Hrs cDNA encoded a 777-amino-acid protein whose sequence was 93% identical to that of mouse Hrs. Northern blot analysis showed that the Hrs mRNA was about 3.0kb long and was expressed in all the human adult and fetal tissues tested. In addition, we showed by genomic Southern blot analysis that the human Hrs gene was a single-copy gene with a size of about 20kb. Furthermore, the human Hrs gene was mapped to chromosome 17 by Southern blotting of genomic DNAs from human/rodent somatic cell hybrids. Copyright 1998 Elsevier Science B.V. All rights reserved.

  6. [Analysis of Microbial Community in the Membrane Bio-Reactor (MBR) Rural Sewage Treatment System].

    PubMed

    Kong, Xiao; Cui, Bing-jian; Jin, De-cai; Wu, Shang-hua; Yang, Bo; Deng, Ye; Zhuang, Guo-qiang; Zhuang, Xu-liang

    2015-09-01

    Uncontrolled release and arbitrary irrigation reuse of rural wastewater may lead to water pollution, and the microbial pathogens could threaten the safety of freshwater resources and public health. To understand the microbial community structure of rural wastewater and provide the theory for microbial risk assessment of wastewater irrigation, microbial community diversities in the Membrane Bio-Reactor (MBR) process for rural wastewater treatment was studied by terminal restriction fragment length polymorphism (T-RFLP) and 16S rDNA gene clone library. Meanwhile, changes of Arcobacter spp. and total bacteria before and after treatment were detected through real-time quantitative PCR. The clone library results showed that there were 73 positive clones included Proteobacteria (91. 80%), Firmicutes (2. 70%), Bacteroidetes (1. 40%), and uncultured bacteria (4. 10%) in the untreated wastewater. The typical pathogenic genus Arcobacter belonging to e-Proteobacteria was the dominant component of the library, accounting for 68. 5% of all clones. The main groups and their abundance in different treatments were significantly distinct. The highest values of species abundance (S), Shannon-Wiener (H) and Evenness (E) were observed in the adjusting tank, which were 43. 0, 3. 56 and 0. 95, respectively. The real-time quantitative PCR results showed that the copy number of Arcobacter spp. was (1. 09 ± 0. 064 0) x 10(11) copies.L-1 in the untreated sewage, which was consistent with the result of 16S rDNA gene clone library. Compared to untreated wastewater, bacterial copy number in the treated effluent decreased 100 to 1 000 times, respectively, suggesting that MBR treatment system could remove the microbial quantity in such scale. In the recycled water, the physicochemical parameters and indicator bacteria met the water quality standard of farmland irrigation. However, further research is needed to estimate the potential health risks caused by residual pathogenic microorganisms in future.

  7. ILG1 : a new integrase-like gene that is a marker of bacterial contamination by the laboratory Escherichia coli strain TOP10F'.

    PubMed Central

    Tian, Wenzhi; Chua, Kevin; Strober, Warren; Chu, Charles C.

    2002-01-01

    BACKGROUND: Identification of differentially expressed genes between normal and diseased states is an area of intense current medical research that can lead to the discovery of new therapeutic targets. However, isolation of differentially expressed genes by subtraction often suffers from unreported contamination of the resulting subtraction library with clones containing DNA sequences not from the original RNA samples. MATERIALS AND METHODS: Subtraction using cDNA representational difference analysis (RDA) was performed on human B cells from normal or common variable immunodeficiency patients. The material remaining after the subtraction was cloned and individual clones were sequenced. The sequence of one clone with similarity to integrases (ILG1, integrase-like gene-1) was used to obtain the full length cDNA sequence and as a probe for the presence of this sequence in RNA or genomic DNA samples. RESULTS: After five rounds of cDNA RDA, 23.3% of the clones from the resulting subtraction library contained Escherichia coli DNA. In addition, three clones contained the sequence of a new integrase, ILG1. The full length cDNA sequence of ILG1 exhibits prokaryotic, but not eukaryotic, features. At the DNA level, ILG1 is not similar to any known gene. At the protein level, ILG1 has 58% similarity to integrases from the cryptic P4 bacteriophage family (S clade). The catalytic domain of ILG1 contains the conserved features found in site-specific recombinases. The critical residues that form the catalytic active site pocket are conserved, including the highly conserved R-H-R-Y hallmark of these recombinases. Interestingly, ILG1 was not present in the original B cell populations. By probing genomic DNA, ILG1 could only be detected in the E. coli TOP10F' strain used in our laboratory for molecular cloning, but not in any of its precursor strains, including TOP10. Furthermore, bacteria cultured from the mouth of the laboratory worker who performed cDNA RDA were also positive for ILG1. CONCLUSIONS: In the course of our studies using cDNA RDA, we have isolated and identified ILG1, a likely active site-specific recombinase and new member of the bacteriophage P4 family of integrases. This family of integrases is implicated in the horizontal DNA transfer of pathogenic genes between bacterial species, such as those found in pathogenic strains of E. coli, Shigella, Yersinia, and Vibrio cholera. Using ILG1 as a marker of our laboratory E. coli strain TOP10F', our evidence suggests that contaminating bacterial DNA in our subtraction experiment is due to this laboratory bacterial strain, which colonized exposed surfaces of the laboratory worker. Thus, identification of differentially expressed genes between normal and diseased states could be dramatically improved by using extra precaution to prevent bacterial contamination of samples. PMID:12393938

  8. Isolation and characterization of full-length cDNA clones coding for cholinesterase from fetal human tissues.

    PubMed Central

    Prody, C A; Zevin-Sonkin, D; Gnatt, A; Goldberg, O; Soreq, H

    1987-01-01

    To study the primary structure and regulation of human cholinesterases, oligodeoxynucleotide probes were prepared according to a consensus peptide sequence present in the active site of both human serum pseudocholinesterase (BtChoEase; EC 3.1.1.8) and Torpedo electric organ "true" acetylcholinesterase (AcChoEase; EC 3.1.1.7). Using these probes, we isolated several cDNA clones from lambda gt10 libraries of fetal brain and liver origins. These include 2.4-kilobase cDNA clones that code for a polypeptide containing a putative signal peptide and the N-terminal, active site, and C-terminal peptides of human BtChoEase, suggesting that they code either for BtChoEase itself or for a very similar but distinct fetal form of cholinesterase. In RNA blots of poly(A)+ RNA from the cholinesterase-producing fetal brain and liver, these cDNAs hybridized with a single 2.5-kilobase band. Blot hybridization to human genomic DNA revealed that these fetal BtChoEase cDNA clones hybridize with DNA fragments of the total length of 17.5 kilobases, and signal intensities indicated that these sequences are not present in many copies. Both the cDNA-encoded protein and its nucleotide sequence display striking homology to parallel sequences published for Torpedo AcChoEase. These findings demonstrate extensive homologies between the fetal BtChoEase encoded by these clones and other cholinesterases of various forms and species. Images PMID:3035536

  9. Construction and characterization of two BAC libraries representing a deep-coverage of the genome of chicory (Cichorium intybus L., Asteraceae)

    PubMed Central

    2010-01-01

    Background The Asteraceae represents an important plant family with respect to the numbers of species present in the wild and used by man. Nonetheless, genomic resources for Asteraceae species are relatively underdeveloped, hampering within species genetic studies as well as comparative genomics studies at the family level. So far, six BAC libraries have been described for the main crops of the family, i.e. lettuce and sunflower. Here we present the characterization of BAC libraries of chicory (Cichorium intybus L.) constructed from two genotypes differing in traits related to sexual and vegetative reproduction. Resolving the molecular mechanisms underlying traits controlling the reproductive system of chicory is a key determinant for hybrid development, and more generally will provide new insights into these traits, which are poorly investigated so far at the molecular level in Asteraceae. Findings Two bacterial artificial chromosome (BAC) libraries, CinS2S2 and CinS1S4, were constructed from HindIII-digested high molecular weight DNA of the contrasting genotypes C15 and C30.01, respectively. C15 was hermaphrodite, non-embryogenic, and S2S2 for the S-locus implicated in self-incompatibility, whereas C30.01 was male sterile, embryogenic, and S1S4. The CinS2S2 and CinS1S4 libraries contain 89,088 and 81,408 clones. Mean insert sizes of the CinS2S2 and CinS1S4 clones are 90 and 120 kb, respectively, and provide together a coverage of 12.3 haploid genome equivalents. Contamination with mitochondrial and chloroplast DNA sequences was evaluated with four mitochondrial and four chloroplast specific probes, and was estimated to be 0.024% and 1.00% for the CinS2S2 library, and 0.028% and 2.35% for the CinS1S4 library. Using two single copy genes putatively implicated in somatic embryogenesis, screening of both libraries resulted in detection of 12 and 13 positive clones for each gene, in accordance with expected numbers. Conclusions This indicated that both BAC libraries are valuable tools for molecular studies in chicory, one goal being the positional cloning of the S-locus in this Asteraceae species. PMID:20701751

  10. Construction and characterization of two BAC libraries representing a deep-coverage of the genome of chicory (Cichorium intybus L., Asteraceae).

    PubMed

    Gonthier, Lucy; Bellec, Arnaud; Blassiau, Christelle; Prat, Elisa; Helmstetter, Nicolas; Rambaud, Caroline; Huss, Brigitte; Hendriks, Theo; Bergès, Hélène; Quillet, Marie-Christine

    2010-08-11

    The Asteraceae represents an important plant family with respect to the numbers of species present in the wild and used by man. Nonetheless, genomic resources for Asteraceae species are relatively underdeveloped, hampering within species genetic studies as well as comparative genomics studies at the family level. So far, six BAC libraries have been described for the main crops of the family, i.e. lettuce and sunflower. Here we present the characterization of BAC libraries of chicory (Cichorium intybus L.) constructed from two genotypes differing in traits related to sexual and vegetative reproduction. Resolving the molecular mechanisms underlying traits controlling the reproductive system of chicory is a key determinant for hybrid development, and more generally will provide new insights into these traits, which are poorly investigated so far at the molecular level in Asteraceae. Two bacterial artificial chromosome (BAC) libraries, CinS2S2 and CinS1S4, were constructed from HindIII-digested high molecular weight DNA of the contrasting genotypes C15 and C30.01, respectively. C15 was hermaphrodite, non-embryogenic, and S2S2 for the S-locus implicated in self-incompatibility, whereas C30.01 was male sterile, embryogenic, and S1S4. The CinS2S2 and CinS1S4 libraries contain 89,088 and 81,408 clones. Mean insert sizes of the CinS2S2 and CinS1S4 clones are 90 and 120 kb, respectively, and provide together a coverage of 12.3 haploid genome equivalents. Contamination with mitochondrial and chloroplast DNA sequences was evaluated with four mitochondrial and four chloroplast specific probes, and was estimated to be 0.024% and 1.00% for the CinS2S2 library, and 0.028% and 2.35% for the CinS1S4 library. Using two single copy genes putatively implicated in somatic embryogenesis, screening of both libraries resulted in detection of 12 and 13 positive clones for each gene, in accordance with expected numbers. This indicated that both BAC libraries are valuable tools for molecular studies in chicory, one goal being the positional cloning of the S-locus in this Asteraceae species.

  11. Improvements to the Kunkel mutagenesis protocol for constructing primary and secondary phage-display libraries.

    PubMed

    Huang, Renhua; Fang, Pete; Kay, Brian K

    2012-09-01

    Site-directed mutagenesis is routinely performed in protein engineering experiments. One method, termed Kunkel mutagenesis, is frequently used for constructing libraries of peptide or protein variants in M13 bacteriophage, followed by affinity selection of phage particles. To make this method more efficient, the following two modifications were introduced: culture was incubated at 25°C for phage replication, which yielded two- to sevenfold more single-stranded DNA template compared to growth at 37°C, and restriction endonuclease recognition sites were used to remove non-recombinants. With both of the improvements, we could construct primary libraries of high complexity and that were 99-100% recombinant. Finally, with a third modification to the standard protocol of Kunkel mutagenesis, two secondary (mutagenic) libraries of a fibronectin type III (FN3) monobody were constructed with DNA segments that were amplified by error-prone and asymmetric PCR. Two advantages of this modification are that it bypasses the lengthy steps of restriction enzyme digestion and ligation, and that the pool of phage clones, recovered after affinity selection, can be used directly to generate a secondary library. Screening one of the two mutagenic libraries yielded variants that bound two- to fourfold tighter to human Pak1 kinase than the starting clone. The protocols described in this study should accelerate the discovery of phage-displayed recombinant affinity reagents. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Massive dominance of Epsilonproteobacteria in formation waters from a Canadian oil sands reservoir containing severely biodegraded oil

    PubMed Central

    Hubert, Casey R J; Oldenburg, Thomas B P; Fustic, Milovan; Gray, Neil D; Larter, Stephen R; Penn, Kevin; Rowan, Arlene K; Seshadri, Rekha; Sherry, Angela; Swainsbury, Richard; Voordouw, Gerrit; Voordouw, Johanna K; Head, Ian M

    2012-01-01

    Summary The subsurface microbiology of an Athabasca oil sands reservoir in western Canada containing severely biodegraded oil was investigated by combining 16S rRNA gene- and polar lipid-based analyses of reservoir formation water with geochemical analyses of the crude oil and formation water. Biomass was filtered from formation water, DNA was extracted using two different methods, and 16S rRNA gene fragments were amplified with several different primer pairs prior to cloning and sequencing or community fingerprinting by denaturing gradient gel electrophoresis (DGGE). Similar results were obtained irrespective of the DNA extraction method or primers used. Archaeal libraries were dominated by Methanomicrobiales (410 of 414 total sequences formed a dominant phylotype affiliated with a Methanoregula sp.), consistent with the proposed dominant role of CO2-reducing methanogens in crude oil biodegradation. In two bacterial 16S rRNA clone libraries generated with different primer pairs, > 99% and 100% of the sequences were affiliated with Epsilonproteobacteria (n = 382 and 72 total clones respectively). This massive dominance of Epsilonproteobacteria sequences was again obtained in a third library (99% of sequences; n = 96 clones) using a third universal bacterial primer pair (inosine-341f and 1492r). Sequencing of bands from DGGE profiles and intact polar lipid analyses were in accordance with the bacterial clone library results. Epsilonproteobacterial OTUs were affiliated with Sulfuricurvum, Arcobacter and Sulfurospirillum spp. detected in other oil field habitats. The dominant organism revealed by the bacterial libraries (87% of all sequences) is a close relative of Sulfuricurvum kujiense – an organism capable of oxidizing reduced sulfur compounds in crude oil. Geochemical analysis of organic extracts from bitumen at different reservoir depths down to the oil water transition zone of these oil sands indicated active biodegradation of dibenzothiophenes, and stable sulfur isotope ratios for elemental sulfur and sulfate in formation waters were indicative of anaerobic oxidation of sulfur compounds. Microbial desulfurization of crude oil may be an important metabolism for Epsilonproteobacteria indigenous to oil reservoirs with elevated sulfur content and may explain their prevalence in formation waters from highly biodegraded petroleum systems. PMID:21824242

  13. Feasibility of physical map construction from fingerprinted bacterial artificial chromosome libraries of polyploid plant species

    PubMed Central

    2010-01-01

    Background The presence of closely related genomes in polyploid species makes the assembly of total genomic sequence from shotgun sequence reads produced by the current sequencing platforms exceedingly difficult, if not impossible. Genomes of polyploid species could be sequenced following the ordered-clone sequencing approach employing contigs of bacterial artificial chromosome (BAC) clones and BAC-based physical maps. Although BAC contigs can currently be constructed for virtually any diploid organism with the SNaPshot high-information-content-fingerprinting (HICF) technology, it is currently unknown if this is also true for polyploid species. It is possible that BAC clones from orthologous regions of homoeologous chromosomes would share numerous restriction fragments and be therefore included into common contigs. Because of this and other concerns, physical mapping utilizing the SNaPshot HICF of BAC libraries of polyploid species has not been pursued and the possibility of doing so has not been assessed. The sole exception has been in common wheat, an allohexaploid in which it is possible to construct single-chromosome or single-chromosome-arm BAC libraries from DNA of flow-sorted chromosomes and bypass the obstacles created by polyploidy. Results The potential of the SNaPshot HICF technology for physical mapping of polyploid plants utilizing global BAC libraries was evaluated by assembling contigs of fingerprinted clones in an in silico merged BAC library composed of single-chromosome libraries of two wheat homoeologous chromosome arms, 3AS and 3DS, and complete chromosome 3B. Because the chromosome arm origin of each clone was known, it was possible to estimate the fidelity of contig assembly. On average 97.78% or more clones, depending on the library, were from a single chromosome arm. A large portion of the remaining clones was shown to be library contamination from other chromosomes, a feature that is unavoidable during the construction of single-chromosome BAC libraries. Conclusions The negligibly low level of incorporation of clones from homoeologous chromosome arms into a contig during contig assembly suggested that it is feasible to construct contigs and physical maps using global BAC libraries of wheat and almost certainly also of other plant polyploid species with genome sizes comparable to that of wheat. Because of the high purity of the resulting assembled contigs, they can be directly used for genome sequencing. It is currently unknown but possible that equally good BAC contigs can be also constructed for polyploid species containing smaller, more gene-rich genomes. PMID:20170511

  14. Paramyosin from the parasitic mite Sarcoptes scabiei: cDNA cloning and heterologous expression.

    PubMed

    Mattsson, J G; Ljunggren, E L; Bergström, K

    2001-05-01

    The burrowing mite Sarcoptes scabiei is the causative agent of the highly contagious disease sarcoptic mange or scabies. So far, there is no in vitro propagation system for S. scabiei available, and mites used for various purposes must be isolated from infected hosts. Lack of parasite-derived material has limited the possibilities to study several aspects of scabies, including pathogenesis and immunity. It has also hampered the development of high performance serological assays. We have now constructed an S. scabiei cDNA expression library with mRNA purified from mites isolated from red foxes. Immunoscreening of the library enabled us to clone a full-length cDNA coding for a 102.5 kDa protein. Sequence similarity searches identified the protein as a paramyosin. Recombinant S. scabiei paramyosin expressed in Escherichia coli was recognized by sera from dogs and swine infected with S. scabiei. We also designed a small paramyosin construct of about 17 kDa that included the N-terminal part, an evolutionary variable part of the helical core, and the C-terminal part of the molecule. The miniaturized protein was efficiently expressed in E. coli and was recognized by sera from immunized rabbits. These data demonstrate that the cDNA library can assist in the isolation of important S. scabiei antigens and that recombinant proteins can be useful for the study of scabies.

  15. Undermethylated DNA as a source of microsatellites from a conifer genome.

    PubMed

    Zhou, Y; Bui, T; Auckland, L D; Williams, C G

    2002-02-01

    Developing microsatellites from the large, highly duplicated conifer genome requires special tools. To improve the efficiency of developing Pinus taeda L. microsatellites, undermethylated (UM) DNA fragments were used to construct a microsatellite-enriched copy library. A methylation-sensitive restriction enzyme, McrBC, was used to enrich for UM DNA before library construction. Digested DNA fragments larger than 9 kb were then excised and digested with RsaI and used to construct nine dinucleotide and trinucleotide libraries. A total of 1016 microsatellite-positive clones were detected among 11 904 clones and 620 of these were unique. Of 245 primer sets that produced a PCR product, 113 could be developed as UM microsatellite markers and 70 were polymorphic. Inheritance and marker informativeness were tested for a random sample of 36 polymorphic markers using a three-generation outbred pedigree. Thirty-one microsatellites (86%) had single-locus inheritance despite the highly duplicated nature of the P. taeda genome. Nineteen UM microsatellites had highly informative intercross mating type configurations. Allele number and frequency were estimated for eleven UM microsatellites using a population survey. Allele numbers for these UM microsatellites ranged from 3 to 12 with an average of 5.7 alleles/locus. Frequencies for the 63 alleles were mostly in the low-common range; only 14 of the 63 were in the rare allele (q < 0.05) class. Enriching for UM DNA was an efficient method for developing polymorphic microsatellites from a large plant genome.

  16. Isolation and characterization of a cDNA encoding a lipid transfer protein expressed in 'Valencia' orange during abscission.

    PubMed

    Wu, Zhencai; Burns, Jacqueline K

    2003-04-01

    The genetics and expression of a lipid transfer protein (LTP) gene was examined during abscission of mature fruit of 'Valencia' orange. A cDNA encoding an LTP, CsLTP, was isolated from a cDNA subtraction library constructed from mature fruit abscission zones 48 h after application of a mature fruit-specific abscission agent, 5-chloro-3-methyl-4-nitro-pyrazole (CMN-pyrazole). A full-length cDNA clone of 652 nucleotides was isolated using 5' and 3' RACE followed by cDNA library screening and PCR amplification. The cDNA clone encoded a protein of 155 amino acid residues with a molecular mass and isoelectric point of 9.18 kDa and 9.12, respectively. A partial genomic clone of 505 nucleotides containing one intron of 101 base pairs was amplified from leaf genomic DNA. Southern blot hybridization demonstrated that at least two closely related CsLTP genes are present in 'Valencia' orange. Temporal expression patterns in mature fruit abscission zones were examined by northern hybridization. Increased expression of CsLTP mRNA was detected in RNA of mature fruit abscission zones 6, 24, 48, and 72 h after application of a non-specific abscission agent, ethephon. Low expression of CsLTP transcripts was observed after treatment of CMN-pyrazole until 24 h after application. After this time, expression markedly increased. The results suggest that CsLTP has a role in the abscission process, possibly by assisting transport of cutin monomers to the fracture plane of the abscission zone or through its anti-microbial activity by reducing the potential of microbial attack.

  17. Molecular cloning and expression of the gene encoding the kinetoplast-associated type II DNA topoisomerase of Crithidia fasciculata.

    PubMed

    Pasion, S G; Hines, J C; Aebersold, R; Ray, D S

    1992-01-01

    A type II DNA topoisomerase, topoIImt, was shown previously to be associated with the kinetoplast DNA of the trypanosomatid Crithidia fasciculata. The gene encoding this kinetoplast-associated topoisomerase has been cloned by immunological screening of a Crithidia genomic expression library with monoclonal antibodies raised against the purified enzyme. The gene CfaTOP2 is a single copy gene and is expressed as a 4.8-kb polyadenylated transcript. The nucleotide sequence of CfaTOP2 has been determined and encodes a predicted polypeptide of 1239 amino acids with a molecular mass of 138,445. The identification of the cloned gene is supported by immunoblot analysis of the beta-galactosidase-CfaTOP2 fusion protein expressed in Escherichia coli and by analysis of tryptic peptide sequences derived from purified topoIImt. CfaTOP2 shares significant homology with nuclear type II DNA topoisomerases of other eukaryotes suggesting that in Crithidia both nuclear and mitochondrial forms of topoisomerase II are encoded by the same gene.

  18. Bacteria of an anaerobic 1,2-dichloropropane-dechlorinating mixed culture are phylogenetically related to those of other anaerobic dechlorinating consortia.

    PubMed

    Schlötelburg, C; von Wintzingerode, F; Hauck, R; Hegemann, W; Göbel, U B

    2000-07-01

    A 16S-rDNA-based molecular study was performed to determine the bacterial diversity of an anaerobic, 1,2-dichloropropane-dechlorinating bioreactor consortium derived from sediment of the River Saale, Germany. Total community DNA was extracted and bacterial 16S rRNA genes were subsequently amplified using conserved primers. A clone library was constructed and analysed by sequencing the 16S rDNA inserts of randomly chosen clones followed by dot blot hybridization with labelled polynucleotide probes. The phylogenetic analysis revealed significant sequence similarities of several as yet uncultured bacterial species in the bioreactor to those found in other reductively dechlorinating freshwater consortia. In contrast, no close relationship was obtained with as yet uncultured bacteria found in reductively dechlorinating consortia derived from marine habitats. One rDNA clone showed >97% sequence similarity to Dehalobacter species, known for reductive dechlorination of tri- and tetrachloroethene. These results suggest that reductive dechlorination in microbial freshwater habitats depends upon a specific bacterial community structure.

  19. Chicken microsatellite markers isolated from libraries enriched for simple tandem repeats.

    PubMed

    Gibbs, M; Dawson, D A; McCamley, C; Wardle, A F; Armour, J A; Burke, T

    1997-12-01

    The total number of microsatellite loci is considered to be at least 10-fold lower in avian species than in mammalian species. Therefore, efficient large-scale cloning of chicken microsatellites, as required for the construction of a high-resolution linkage map, is facilitated by the construction of libraries using an enrichment strategy. In this study, a plasmid library enriched for tandem repeats was constructed from chicken genomic DNA by hybridization selection. Using this technique the proportion of recombinant clones that cross-hybridized to probes containing simple tandem repeats was raised to 16%, compared with < 0.1% in a non-enriched library. Primers were designed from 121 different sequences. Polymerase chain reaction (PCR) analysis of two chicken reference pedigrees enabled 72 loci to be localized within the collaborative chicken genetic map, and at least 30 of the remaining loci have been shown to be informative in these or other crosses.

  20. An Engineered Virus Library as a Resource for the Spectrum-wide Exploration of Virus and Vector Diversity.

    PubMed

    Zhang, Wenli; Fu, Jun; Liu, Jing; Wang, Hailong; Schiwon, Maren; Janz, Sebastian; Schaffarczyk, Lukas; von der Goltz, Lukas; Ehrke-Schulz, Eric; Dörner, Johannes; Solanki, Manish; Boehme, Philip; Bergmann, Thorsten; Lieber, Andre; Lauber, Chris; Dahl, Andreas; Petzold, Andreas; Zhang, Youming; Stewart, A Francis; Ehrhardt, Anja

    2017-05-23

    Adenoviruses (Ads) are large human-pathogenic double-stranded DNA (dsDNA) viruses presenting an enormous natural diversity associated with a broad variety of diseases. However, only a small fraction of adenoviruses has been explored in basic virology and biomedical research, highlighting the need to develop robust and adaptable methodologies and resources. We developed a method for high-throughput direct cloning and engineering of adenoviral genomes from different sources utilizing advanced linear-linear homologous recombination (LLHR) and linear-circular homologous recombination (LCHR). We describe 34 cloned adenoviral genomes originating from clinical samples, which were characterized by next-generation sequencing (NGS). We anticipate that this recombineering strategy and the engineered adenovirus library will provide an approach to study basic and clinical virology. High-throughput screening (HTS) of the reporter-tagged Ad library in a panel of cell lines including osteosarcoma disease-specific cell lines revealed alternative virus types with enhanced transduction and oncolysis efficiencies. This highlights the usefulness of this resource. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Generation of thermostable Moloney murine leukemia virus reverse transcriptase variants using site saturation mutagenesis library and cell-free protein expression system.

    PubMed

    Katano, Yuta; Li, Tongyang; Baba, Misato; Nakamura, Miyo; Ito, Masaaki; Kojima, Kenji; Takita, Teisuke; Yasukawa, Kiyoshi

    2017-12-01

    We attempted to increase the thermostability of Moloney murine leukemia virus (MMLV) reverse transcriptase (RT). The eight-site saturation mutagenesis libraries corresponding to Ala70-Arg469 in the whole MMLV RT (Thr24-Leu671), in each of which 1 out of 50 amino acid residues was replaced with other amino acid residue, were constructed. Seven-hundred and sixty eight MMLV RT clones were expressed using a cell-free protein expression system, and their thermostabilities were assessed by the temperature of thermal treatment at which they retained cDNA synthesis activity. One clone D200C was selected as the most thermostable variant. The highest temperature of thermal treatment at which D200C exhibited cDNA synthesis activity was 57ºC, which was higher than for WT (53ºC). Our results suggest that a combination of site saturation mutagenesis library and cell-free protein expression system might be useful for generation of thermostable MMLV RT in a short period of time for expression and selection.

  2. Direct Cloning of Yeast Genes from an Ordered Set of Lambda Clones in Saccharomyces Cerevisiae by Recombination in Vivo

    PubMed Central

    Erickson, J. R.; Johnston, M.

    1993-01-01

    We describe a technique that facilitates the isolation of yeast genes that are difficult to clone. This technique utilizes a plasmid vector that rescues lambda clones as yeast centromere plasmids. The source of these lambda clones is a set of clones whose location in the yeast genome has been determined by L. Riles et al. in 1993. The Esherichia coli-yeast shuttle plasmid carries URA3, ARS4 and CEN6, and contains DNA fragments from the lambda vector that flank the cloned yeast insert. When yeast is cotransformed with linearized plasmid and lambda clone DNA, Ura(+) transformants are obtained by a recombination event between the lambda clone and the plasmid vector that generates an autonomously replicating plasmid containing the cloned yeast DNA sequences. Genes whose genetic map positions are known can easily be identified and recovered in this plasmid by testing only those lambda clones that map to the relevant region of the yeast genome for their ability to complement the mutant phenotype. This technique facilitates the isolation of yeast genes that resist cloning either because (1) they are underrepresented in yeast genomic libraries amplified in E. coli, (2) they provide phenotypes that are too marginal to allow selection of the gene by genetic complementation or (3) they provide phenotypes that are laborious to score. We demonstrate the utility of this technique by isolating three genes, GAL83, SSN2 and MAK7, each of which presents one of these problems for cloning. PMID:8514124

  3. Comparison of the canine and human acid {beta}-galactosidase gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahern-Rindell, A.J.; Kretz, K.A.; O`Brien, J.S.

    Several canine cDNA libraries were screened with human {beta}-galactosidase cDNA as probe. Seven positive clones were isolated and sequenced yielding a partial (2060 bp) canine {beta}-galactosidase cDNA with 86% identity to the human {beta}-galactosidase cDNA. Preliminary analysis of a canine genomic library indicated conservation of exon number and size. Analysis by Northern blotting disclosed a single mRNA of 2.4 kb in fibroblasts and liver from normal dogs and dogs affected with GM1 gangliosidosis. Although incomplete, these results indicate canine GM1 gangliosidosis is a suitable animal model of the human disease and should further efforts to devise a gene therapy strategymore » for its treatment. 20 refs., 2 figs., 1 tab.« less

  4. Cloning and sequence determination of the gene coding for the pyruvate phosphate dikinase of Entamoeba histolytica.

    PubMed

    Saavedra-Lira, E; Pérez-Montfort, R

    1994-05-16

    We isolated three overlapping clones from a DNA genomic library of Entamoeba histolytica strain HM1:IMSS, whose translated nucleotide (nt) sequence shows similarities of 51, 48 and 47% with the amino acid (aa) sequences reported for the pyruvate phosphate dikinases from Bacteroides symbiosus, maize and Flaveria trinervia, respectively. The reading frame determined codes for a protein of 886 aa.

  5. Prokaryotic diversity, composition structure, and phylogenetic analysis of microbial communities in leachate sediment ecosystems.

    PubMed

    Liu, Jingjing; Wu, Weixiang; Chen, Chongjun; Sun, Faqian; Chen, Yingxu

    2011-09-01

    In order to obtain insight into the prokaryotic diversity and community in leachate sediment, a culture-independent DNA-based molecular phylogenetic approach was performed with archaeal and bacterial 16S rRNA gene clone libraries derived from leachate sediment of an aged landfill. A total of 59 archaeal and 283 bacterial rDNA phylotypes were identified in 425 archaeal and 375 bacterial analyzed clones. All archaeal clones distributed within two archaeal phyla of the Euryarchaeota and Crenarchaeota, and well-defined methanogen lineages, especially Methanosaeta spp., are the most numerically dominant species of the archaeal community. Phylogenetic analysis of the bacterial library revealed a variety of pollutant-degrading and biotransforming microorganisms, including 18 distinct phyla. A substantial fraction of bacterial clones showed low levels of similarity with any previously documented sequences and thus might be taxonomically new. Chemical characteristics and phylogenetic inferences indicated that (1) ammonium-utilizing bacteria might form consortia to alleviate or avoid the negative influence of high ammonium concentration on other microorganisms, and (2) members of the Crenarchaeota found in the sediment might be involved in ammonium oxidation. This study is the first to report the composition of the microbial assemblages and phylogenetic characteristics of prokaryotic populations extant in leachate sediment. Additional work on microbial activity and contaminant biodegradation remains to be explored.

  6. Isolation of human hexosaminidase. cap alpha. cDNA and expression of. cap alpha. chains in E. coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiktorowicz, J.E.; Whitman, J.M.

    1986-05-01

    Pooled antisera against homogeneous, glutaraldehyde cross-linked hexosaminidase (hex) A was adsorbed with E. coli lysate insolubilized on Sepharose 4B. Aliquots of a human liver lambdagtll cDNA library (50,000-100,000 pfu) were plated on E. coli Y1090. Expression of cloned cDNA, after sufficient plaque growth at 42/sup 0/, was accomplished by induction with isopropylthiogalactoside soaked nitrocellulose filters. Identification of hex cDNA clones was performed by incubation of the filters with purified antisera. Protein A labelled with I-125 was used to develop the reactive plaques. Positive plaques, identified by autoradiography, were picked, replated at a lower density, and rescreened. This was repeated severalmore » more times until all plaques yielded positive signals. Identification of the clones as containing ..cap alpha.. or ..beta.. cDNA was accomplished by replating the purified phage and rescreening the plaques with anti-hex B antiserum preadsorbed with E. coli lysate. According to this protocol several hex ..cap alpha.. clones have been identified. While these clones generate ..beta..-galactosidase: hex ..cap alpha.. fusion proteins, these findings suggest that in the future it may be possible to obtain large quantities of unmodified hex ..cap alpha.. and ..beta.. polypeptides from E. coli for the study of the structural and enzymatic properties of these polypeptides and for diagnostic purposes in the GM2 gangliosidoses.« less

  7. Molecular cloning of cDNAs for the nerve-cell specific phosphoprotein, synapsin I.

    PubMed Central

    Kilimann, M W; DeGennaro, L J

    1985-01-01

    To provide access to synapsin I-specific DNA sequences, we have constructed cDNA clones complementary to synapsin I mRNA isolated from rat brain. Synapsin I mRNA was specifically enriched by immunoadsorption of polysomes prepared from the brains of 10-14 day old rats. Employing this enriched mRNA, a cDNA library was constructed in pBR322 and screened by differential colony hybridization with single-stranded cDNA probes made from synapsin I mRNA and total polysomal poly(A)+ RNA. This screening procedure proved to be highly selective. Five independent recombinant plasmids which exhibited distinctly stronger hybridization with the synapsin I probe were characterized further by restriction mapping. All of the cDNA inserts gave restriction enzyme digestion patterns which could be aligned. In addition, some of the cDNA inserts were shown to contain poly(dA) sequences. Final identification of synapsin I cDNA clones relied on the ability of the cDNA inserts to hybridize specifically to synapsin I mRNA. Several plasmids were tested by positive hybridization selection. They specifically selected synapsin I mRNA which was identified by in vitro translation and immunoprecipitation of the translation products. The established cDNA clones were used for a blot-hybridization analysis of synapsin I mRNA. A fragment (1600 bases) from the longest cDNA clone hybridized with two discrete RNA species 5800 and 4500 bases long, in polyadenylated RNA from rat brain and PC12 cells. No hybridization was detected to RNA from rat liver, skeletal muscle or cardiac muscle. Images Fig. 1. Fig. 2. Fig. 4. Fig. 5. PMID:3933975

  8. Intravenous infusion of phage-displayed antibody library in human cancer patients: enrichment and cancer-specificity of tumor-homing phage-antibodies.

    PubMed

    Shukla, Girja S; Krag, David N; Peletskaya, Elena N; Pero, Stephanie C; Sun, Yu-Jing; Carman, Chelsea L; McCahill, Laurence E; Roland, Thomas A

    2013-08-01

    Phage display is a powerful method for target discovery and selection of ligands for cancer treatment and diagnosis. Our goal was to select tumor-binding antibodies in cancer patients. Eligibility criteria included absence of preexisting anti-phage-antibodies and a Stage IV cancer status. All patients were intravenously administered 1 × 10(11) TUs/kg of an scFv library 1 to 4 h before surgical resection of their tumors. No significant adverse events related to the phage library infusion were observed. Phage were successfully recovered from all tumors. Individual clones from each patient were assessed for binding to the tumor from which clones were recovered. Multiple tumor-binding phage-antibodies were identified. Soluble scFv antibodies were produced from the phage clones showing higher tumor binding. The tumor-homing phage-antibodies and derived soluble scFvs were found to bind varying numbers (0-5) of 8 tested normal human tissues (breast, cervix, colon, kidney, liver, spleen, skin, and uterus). The clones that showed high tumor-specificity were found to bind corresponding tumors from other patients also. Clone enrichment was observed based on tumor binding and DNA sequence data. Clone sequences of multiple variable regions showed significant matches to certain cancer-related antibodies. One of the clones (07-2,355) that was found to share a 12-amino-acid-long motif with a reported IL-17A antibody was further studied for competitive binding for possible antigen target identification. We conclude that these outcomes support the safety and utility of phage display library panning in cancer patients for ligand selection and target discovery for cancer treatment and diagnosis.

  9. Brain cDNA clone for human cholinesterase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McTiernan, C.; Adkins, S.; Chatonnet, A.

    1987-10-01

    A cDNA library from human basal ganglia was screened with oligonucleotide probes corresponding to portions of the amino acid sequence of human serum cholinesterase. Five overlapping clones, representing 2.4 kilobases, were isolated. The sequenced cDNA contained 207 base pairs of coding sequence 5' to the amino terminus of the mature protein in which there were four ATG translation start sites in the same reading frame as the protein. Only the ATG coding for Met-(-28) lay within a favorable consensus sequence for functional initiators. There were 1722 base pairs of coding sequence corresponding to the protein found circulating in human serum.more » The amino acid sequence deduced from the cDNA exactly matched the 574 amino acid sequence of human serum cholinesterase, as previously determined by Edman degradation. Therefore, our clones represented cholinesterase rather than acetylcholinesterase. It was concluded that the amino acid sequences of cholinesterase from two different tissues, human brain and human serum, were identical. Hybridization of genomic DNA blots suggested that a single gene, or very few genes coded for cholinesterase.« less

  10. Construction of an 800-kb contig in the near-centromeric region of the rice blast resistance gene Pi-ta2 using a highly representative rice BAC library.

    PubMed

    Nakamura, S; Asakawa, S; Ohmido, N; Fukui, K; Shimizu, N; Kawasaki, S

    1997-05-01

    We constructed a rice Bacterial Artificial Chromosome (BAC) library from green leaf protoplasts of the cultivar Shimokita harboring the rice blast resistance gene Pi-ta. The average insert size of 155 kb and the library size of seven genome equivalents make it one of the most comprehensive BAC libraries available, and larger than many plant YAC libraries. The library clones were plated on seven high density membranes of microplate size, enabling efficient colony identification in colony hybridization experiments. Seven percent of clones carried chloroplast DNA. By probing with markers close to the blast resistance genes Pi-ta2(closely linked to Pi-ta) and Pi-b, respectively located in the centromeric region of chromosome 12 and near the telomeric end of chromosome 2, on average 2.2 +/- 1.3 and 8.0 +/- 2.6 BAC clones/marker were isolated. Differences in chromosomal structures may contribute to this wide variation in yield. A contig of about 800 kb, consisting of 19 clones, was constructed in the Pi-ta2 region. This region had a high frequency of repetitive sequences. To circumvent this difficulty, we devised a "two-step walking" method. The contig spanned a 300 kb region between markers located at 0 cM and 0.3 cM from Pi-ta. The ratio of physical to genetic distances (> 1,000 kb/cM) was more than three times larger than the average of rice (300 kb/cM). The low recombination rate and high frequency of repetitive sequences may also be related to the near centromeric character of this region. Fluorescent in situ hybridization (FISH) with a BAC clone from the Pi-b region yielded very clear signals on the long arm of chromosome 2, while a clone from the Pi-ta2 region showed various cross-hybridizing signals near the centromeric regions of all chromosomes.

  11. Cloning and expression analysis of a gene that shows developmental regulation upon tuberization in potato.

    PubMed

    Jackson, S; Gascón, J; Carrera, E; Monte, E; Prat, S

    1997-01-01

    Differential screening of a potato leaf cDNA library with cDNA probes made from tuberizing and non-tuberizing Solanum demissum plants led to the identification of a clone that is upregulated in leaves and other tissues upon tuberization. This clone was also shown to have a high level of expression in green tomato fruit, its expression falling off as the fruit turns red. No sucrose or hormonal regulation of the expression of this clone was observed and it did not respond to wounding or heat stress. Clone 32B is 532 bp long and contains an open reading frame encoding a small protein of 98 amino acids. The deduced protein sequence has a putative signal peptide for ER transport and a 10 amino acid domain in the C-terminal region of the protein, both of which are also found in the cotton LEA5, Arabidopsis Di21 and the mungbean Arg2 proteins.

  12. cDNA isolated from a human T-cell library encodes a member of the protein-tyrosine-phosphatase family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cool, D.E.; Tonks, N.K.; Charbonneau, H.

    1989-07-01

    A human peripheral T-cell cDNA library was screened with two labeled synthetic oligonucleotides encoding regions of a human placenta protein-tyrosine-phosphatase. One positive clone was isolated and the nucleotide sequence was determined. It contained 1,305 base pairs of open reading frame followed by a TAA stop codon and 978 base pairs of 3{prime} untranslated end, although a poly(A){sup +} tail was not found. An initiator methionine residue was predicted at position 61, which would result in a protein of 415 amino acid residues. This was supported by the synthesis of a M{sub r} 48,000 protein in an in vitro reticulocyte lysatemore » translation system using RNA transcribed from the cloned cDNA and T7 RNA polymerase. The deduced amino acid sequence was compared to other known proteins revealing 65% identity to the low M{sub r} PTPase 1B isolated from placenta. In view of the high degree of similarity, the T-cell cDNA likely encodes a newly discovered protein-tyrosine-phosphatase, thus expanding this family of genes.« less

  13. Using genome-wide CRISPR library screening with library resistant DCK to find new sources of Ara-C drug resistance in AML.

    PubMed

    Kurata, Morito; Rathe, Susan K; Bailey, Natashay J; Aumann, Natalie K; Jones, Justine M; Veldhuijzen, G Willemijn; Moriarity, Branden S; Largaespada, David A

    2016-11-03

    Acute myeloid leukemia (AML) can display de novo or acquired resistance to cytosine arabinoside (Ara-C), a primary component of induction chemotherapy. To identify genes capable of independently imposing Ara-C resistance, we applied a genome-wide CRISPR library to human U937 cells and exposed to them to Ara-C. Interestingly, all drug resistant clones contained guide RNAs for DCK. To avoid DCK gene modification, gRNA resistant DCK cDNA was created by the introduction of silent mutations. The CRISPR screening was repeated using the gRNA resistant DCK, and loss of SLC29A was identified as also being capable of conveying Ara-C drug resistance. To determine if loss of Dck results in increased sensitivity to other drugs, we conducted a screen of 446 FDA approved drugs using two Dck-defective BXH-2 derived murine AML cell lines and their Ara-C sensitive parental lines. Both cell lines showed an increase in sensitivity to prednisolone. Guide RNA resistant cDNA rescue was a legitimate strategy and multiple DCK or SLC29A deficient human cell clones were established with one clone becoming prednisolone sensitive. Dck-defective leukemic cells may become prednisolone sensitive indicating prednisolone may be an effective adjuvant therapy in some cases of DCK-negative AML.

  14. cDNA Cloning, expression and characterization of an allergenic 60s ribosomal protein of almond (prunus dulcis).

    PubMed

    Abolhassani, Mohsen; Roux, Kenneth H

    2009-06-01

    Tree nuts, including almond (prunus dulcis) are a source of food allergens often associated with life-threatening allergic reactions in susceptible individuals. Although the proteins in almonds have been biochemically characterized, relatively little has been reported regarding the identity of the allergens involved in almond sensitivity. The present study was undertaken to identify the allergens of the almond by cDNA library approach. cDNA library of almond seeds was constructed in Uni-Zap XR lamda vector and expressed in E. coli XL-1 blue. Plaques were immunoscreened with pooled sera of allergic patients. The cDNA clone reacting significantly with specific IgE antibodies was selected and subcloned and subsequently expressed in E. coli. The amino acids deducted from PCR product of clone showed homology to 60s acidic ribosomal protein of almond. The expressed protein was 11,450 Dalton without leader sequence. Immunoreactivity of the recombinant 60s ribosomal protein (r60sRP) was evaluated with dot blot analysis using pooled and individual sera of allergic patients. The data showed that r60sRP and almond extract (as positive control) possess the ability to bind the IgE antibodies. The results showed that expressed protein is an almond allergen.Whether this r60sRP represents a major allergen of almond needs to be further studied which requires a large number of sera from the almond atopic patients and also need to determine the IgE-reactive frequencies of each individual allergen.

  15. Molecular cloning of a small prostate protein, known as beta-microsemenoprotein, PSP94 or beta-inhibin, and demonstration of transcripts in non-genital tissues.

    PubMed

    Ulvsbäck, M; Lindström, C; Weiber, H; Abrahamsson, P A; Lilja, H; Lundwall, A

    1989-11-15

    In order to study the gene expression of the seminal plasma protein beta-microseminoprotein, also known as PSP94 and beta-inhibin, clones encoding this protein were isolated from a cDNA library constructed in lambda gt11. Nucleotide sequencing confirmed the structure of a previously cloned cDNA. By northern blot analysis identical sized transcripts were demonstrated in the prostate, the respiratory (tracheal, bronchial and lung) tissues and the antrum part of the gastric mucosa. Thus, the protein is not primarily associated with male reproductive function. Although probably of no physiological significance, a slight structural similarity to the ovarian inhibin beta-chains was identified in the C-terminal half of the molecule.

  16. Molecular cloning of a novel receptor tyrosine kinase, tif, highly expressed in human ovary and testis.

    PubMed

    Dai, W; Pan, H; Hassanain, H; Gupta, S L; Murphy, M J

    1994-03-01

    Using a combination of polymerase chain reaction and conventional cDNA library screening approaches, we have cloned and characterized a putative receptor tyrosine kinase termed tif. The extracellular domain of tif has an immunoglobulin-like loop and a fibronectin type III structure. The intracellular domain contains a tyrosine kinase domain. Compared with ryk, a ubiquitously expressed receptor tyrosine kinase, tif expression is tissue-specific with human ovary and testis containing the highest amount of tif mRNA. Many other tested human tissues such as heart, liver, pancreas and thymus do not contain detectable levels of tif mRNA. The molecular cloning and characterization of tif cDNA will facilitate the identification of a potential ligand(s) for the putative receptor and the study of its biological role.

  17. Microsatellite DNA capture from enriched libraries.

    PubMed

    Gonzalez, Elena G; Zardoya, Rafael

    2013-01-01

    Microsatellites are DNA sequences of tandem repeats of one to six nucleotides, which are highly polymorphic, and thus the molecular markers of choice in many kinship, population genetic, and conservation studies. There have been significant technical improvements since the early methods for microsatellite isolation were developed, and today the most common procedures take advantage of the hybrid capture methods of enriched-targeted microsatellite DNA. Furthermore, recent advents in sequencing technologies (i.e., next-generation sequencing, NGS) have fostered the mining of microsatellite markers in non-model organisms, affording a cost-effective way of obtaining a large amount of sequence data potentially useful for loci characterization. The rapid improvements of NGS platforms together with the increase in available microsatellite information open new avenues to the understanding of the evolutionary forces that shape genetic structuring in wild populations. Here, we provide detailed methodological procedures for microsatellite isolation based on the screening of GT microsatellite-enriched libraries, either by cloning and Sanger sequencing of positive clones or by direct NGS. Guides for designing new species-specific primers and basic genotyping are also given.

  18. Isolation of Nicotiana plumbaginifolia cDNAs encoding isoforms of serine acetyltransferase and O-acetylserine (thiol) lyase in a yeast two-hybrid system with Escherichia coli cysE and cysK genes as baits.

    PubMed

    Liszewska, Frantz; Gaganidze, Dali; Sirko, Agnieszka

    2005-01-01

    We applied the yeast two-hybrid system for screening of a cDNA library of Nicotiana plumbaginifolia for clones encoding plant proteins interacting with two proteins of Escherichia coli: serine acetyltransferase (SAT, the product of cysE gene) and O-acetylserine (thiol)lyase A, also termed cysteine synthase (OASTL-A, the product of cysK gene). Two plant cDNA clones were identified when using the cysE gene as a bait. These clones encode a probable cytosolic isoform of OASTL and an organellar isoform of SAT, respectively, as indicated by evolutionary trees. The second clone, encoding SAT, was identified independently also as a "prey" when using cysK as a bait. Our results reveal the possibility of applying the two-hybrid system for cloning of plant cDNAs encoding enzymes of the cysteine synthase complex in the two-hybrid system. Additionally, using genome walking sequences located upstream of the sat1 cDNA were identified. Subsequently, in silico analyses were performed aiming towards identification of the potential signal peptide and possible location of the deduced mature protein encoded by sat1.

  19. Culture-dependent and culture-independent diversity of Actinobacteria associated with the marine sponge Hymeniacidon perleve from the South China Sea.

    PubMed

    Sun, Wei; Dai, Shikun; Jiang, Shumei; Wang, Guanghua; Liu, Guohui; Wu, Houbo; Li, Xiang

    2010-06-01

    In this report, the diversity of Actinobacteria associated with the marine sponge Hymeniacidon perleve collected from a remote island of the South China Sea was investigated employing classical cultivation and characterization, 16S rDNA library construction, 16S rDNA-restriction fragment length polymorphism (rDNA-RFLP) and phylogenetic analysis. A total of 184 strains were isolated using seven different media and 24 isolates were selected according to their morphological characteristics for phylogenetic analysis on the basis of their 16S rRNA gene sequences. Results showed that the 24 isolates were assigned to six genera including Salinispora, Gordonia, Mycobacterium, Nocardia, Rhodococcus and Streptomyces. This is the first report that Salinispora is present in a marine sponge from the South China Sea. Subsequently, 26 rDNA clones were selected from 191 clones in an Actinobacteria-specific 16S rDNA library of the H. perleve sample, using the RFLP technique for sequencing and phylogenetic analysis. In total, 26 phylotypes were clustered in eight known genera of Actinobacteria including Mycobacterium, Amycolatopsis, Arthrobacter, Brevibacterium, Microlunatus, Nocardioides, Pseudonocardia and Streptomyces. This study contributes to our understanding of actinobacterial diversity in the marine sponge H. perleve from the South China Sea.

  20. Molecular Survey of Concrete Sewer Biofilm Microbial Communities

    EPA Science Inventory

    Although bacteria are implicated in deteriorating concrete structures, there is very little information on the composition of concrete microbial communities. To this end, we studied different concrete biofilms by performing sequence analysis of 16S rDNA concrete clone libraries. ...

  1. Microsatellites for Lindera species

    Treesearch

    Craig S. Echt; D. Deemer; T.L. Kubisiak; C.D. Nelson

    2006-01-01

    Microsatellite markers were developed for conservation genetic studies of Lindera melissifolia (pondberry), a federally endangered shrub of southern bottomland ecosystems. Microsatellite sequences were obtained from DNA libraries that were enriched for the (AC)n simple sequence repeat motif. From 35 clone sequences, 20 primer...

  2. Characterization of Thermostable Cellulases Produced by Bacillus and Geobacillus Strains

    USDA-ARS?s Scientific Manuscript database

    Bacterial community composition of thermophilic (60 deg C) mixed cellulose-enrichment cultures was examined by constructing a 16S rDNA clone library which demonstrated major lineages affiliated to Actinobacteria, Bacteroidetes, Chloroflexi, Deinococcus-Thermus, Firmicutes, and Proteobacteria. A tot...

  3. Cloning and expression of Bartonella henselae sucB gene encoding an immunogenic dihydrolipoamide succinyltransferase homologous protein.

    PubMed

    Kabeya, Hidenori; Maruyama, Soichi; Hirano, Kouji; Mikami, Takeshi

    2003-01-01

    Immunoscreening of a ZAP genomic library of Bartonella henselae strain Houston-1 expressed in Escherichia coli resulted in the isolation of a clone containing 3.5 kb BamHI genomic DNA fragment. This 3.5 kb DNA fragment was found to contain a sequence of a gene encoding a protein with significant homology to the dihydrolipoamide succinyltransferase of Brucella melitensis (sucB). Subsequent cloning and DNA sequence analysis revealed that the deduced amino acid sequence from the cloned gene showed 66.5% identity to SucB protein of B. melitensis, and 43.4 and 47.2% identities to those of Coxiella burnetii and E. coli, respectively. The gene was expressed as a His-Nus A-tagged fusion protein. The recombinant SucB protein (rSucB) was shown to be an immunoreactive protein of about 115 kDa by Western blot analysis with sera from B. henselae-immunized mice. Therefore the rSucB may be a candidate antigen for a specific serological diagnosis of B. henselae infection.

  4. Identification of gene fragments related to nitrogen deficiency in Eichhornia crassipes (Pontederiaceae).

    PubMed

    Fu, Minghui; Jiang, Lihua; Li, Yuanmei; Yan, Guohua; Zheng, Lijun; Jinping, Peng

    2014-12-01

    Eichhornia crassipes is an aquatic plant native to the Amazon River Basin. It has become a serious weed in freshwater habitats in rivers, lakes and reservoirs both in tropical and warm temperate areas worldwide. Some research has stated that it can be used for water phytoremediation, due to its strong assimilation of nitrogen and phosphorus, and the accumulation of heavy metals, and its growth and spread may play an important role in environmental ecology. In order to explore the molecular mechanism of E. crassipes to responses to nitrogen deficiency, we constructed forward and reversed subtracted cDNA libraries for E. crassipes roots under nitrogen deficient condition using a suppressive subtractive hybridization (SSH) method. The forward subtraction included 2,100 clones, and the reversed included 2,650 clones. One thousand clones were randomly selected from each library for sequencing. About 737 (527 unigenes) clones from the forward library and 757 (483 unigenes) clones from the reversed library were informative. Sequence BlastX analysis showed that there were more transporters and adenosylhomocysteinase-like proteins in E. crassipes cultured in nitrogen deficient medium; while, those cultured in nitrogen replete medium had more proteins such as UBR4-like e3 ubiquitin-protein ligase and fasciclin-like arabinogalactan protein 8-like, as well as more cytoskeletal proteins, including actin and tubulin. Cluster of Orthologous Group (COG) analysis also demonstrated that in the forward library, the most ESTs were involved in coenzyme transportation and metabolism. In the reversed library, cytoskeletal ESTs were the most abundant. Gene Ontology (GO) analysis categories demonstrated that unigenes involved in binding, cellular process and electron carrier were the most differentially expressed unigenes between the forward and reversed libraries. All these results suggest that E. crassipes can respond to different nitrogen status by efficiently regulating and controlling some transporter gene expressions, certain metabolism processes, specific signal transduction pathways and cytoskeletal construction.

  5. Identification of causative pathogens in mouse eyes with bacterial keratitis by sequence analysis of 16S rDNA libraries

    PubMed Central

    Song, Hong-Yan; Qiu, Bao-Feng; Liu, Chun; Zhu, Shun-Xing; Wang, Sheng-Cun; Miao, Jin; Jing, Jing; Shao, Yi-Xiang

    2014-01-01

    The clone library method using PCR amplification of the 16S ribosomal RNA (rRNA) gene was used to identify pathogens from corneal scrapings of C57BL/6-corneal opacity (B6-Co) mice with bacterial keratitis. All 10 samples from the eyes with bacterial keratitis showed positive PCR results. All 10 samples from the normal cornea showed negative PCR results. In all 10 PCR-positive samples, the predominant and second most predominant species accounted for 20.9 to 40.6% and 14.7 to 26.1%, respectively, of each clone library. The predominant species were Staphylococcus lentus, Pseudomonas aeruginosa, and Staphylococcus epidermidis. The microbiota analysis detected a diverse group of microbiota in the eyes of B6-Co mice with bacterial keratitis and showed that the causative pathogens could be determined based on percentages of bacterial species in the clone libraries. The bacterial species detected in this study were mostly in accordance with results of studies on clinical bacterial keratitis in human eyes. Based on the results of our previous studies and this study, the B6-Co mouse should be considered a favorable model for studying bacterial keratitis. PMID:25312507

  6. Primary structure of prostaglandin G/H synthase from sheep vesicular gland determined from the complementary DNA sequence.

    PubMed Central

    DeWitt, D L; Smith, W L

    1988-01-01

    Prostaglandin G/H synthase (8,11,14-icosatrienoate, hydrogen-donor:oxygen oxidoreductase, EC 1.14.99.1) catalyzes the first step in the formation of prostaglandins and thromboxanes, the conversion of arachidonic acid to prostaglandin endoperoxides G and H. This enzyme is the site of action of nonsteroidal anti-inflammatory drugs. We have isolated a 2.7-kilobase complementary DNA (cDNA) encompassing the entire coding region of prostaglandin G/H synthase from sheep vesicular glands. This cDNA, cloned from a lambda gt 10 library prepared from poly(A)+ RNA of vesicular glands, hybridizes with a single 2.75-kilobase mRNA species. The cDNA clone was selected using oligonucleotide probes modeled from amino acid sequences of tryptic peptides prepared from the purified enzyme. The full-length cDNA encodes a protein of 600 amino acids, including a signal sequence of 24 amino acids. Identification of the cDNA as coding for prostaglandin G/H synthase is based on comparison of amino acid sequences of seven peptides comprising 103 amino acids with the amino acid sequence deduced from the nucleotide sequence of the cDNA. The molecular weight of the unglycosylated enzyme lacking the signal peptide is 65,621. The synthase is a glycoprotein, and there are three potential sites for N-glycosylation, two of them in the amino-terminal half of the molecule. The serine reported to be acetylated by aspirin is at position 530, near the carboxyl terminus. There is no significant similarity between the sequence of the synthase and that of any other protein in amino acid or nucleotide sequence libraries, and a heme binding site(s) is not apparent from the amino acid sequence. The availability of a full-length cDNA clone coding for prostaglandin G/H synthase should facilitate studies of the regulation of expression of this enzyme and the structural features important for catalysis and for interaction with anti-inflammatory drugs. Images PMID:3125548

  7. Molecular cloning and expression in Saccharomyces cerevisiae and Neurospora crassa of the invertase gene from Neurospora crassa.

    PubMed

    Carú, M; Cifuentes, V; Pincheira, G; Jiménez, A

    1989-10-01

    A plasmid (named pCN2) carrying a 7.6 kb BamHI DNA insert was isolated from a Neurospora crassa genomic library raised in the yeast vector YRp7. Saccharomyces cerevisiae suco and N. crassa inv strains transformed with pNC2 were able to grow on sucrose-based media and expressed invertase activity. Saccharomyces cerevisiae suco (pNC2) expressed a product which immunoreacted with antibody raised against purified invertase from wild type N. crassa, although S. cerevisiae suc+ did not. The cloned DNA hybridized with a 7.6 kb DNA fragment from BamHI-restricted wild type N. crassa DNA. Plasmid pNC2 transformed N. crassa Inv- to Inv+ by integration either near to the endogenous inv locus (40% events) or at other genomic sites (60% events). It appears therefore that the cloned DNA piece encodes the N. crassa invertase enzyme. A 3.8 kb XhoI DNA fragment, derived from pNC2, inserted in YRp7, in both orientation, was able to express invertase activity in yeast, suggesting that it contains an intact invertase gene which is not expressed from a vector promoter.

  8. Functional Screening of Antibiotic Resistance Genes from a Representative Metagenomic Library of Food Fermenting Microbiota

    PubMed Central

    Devirgiliis, Chiara; Barile, Simona; Perozzi, Giuditta

    2014-01-01

    Lactic acid bacteria (LAB) represent the predominant microbiota in fermented foods. Foodborne LAB have received increasing attention as potential reservoir of antibiotic resistance (AR) determinants, which may be horizontally transferred to opportunistic pathogens. We have previously reported isolation of AR LAB from the raw ingredients of a fermented cheese, while AR genes could be detected in the final, marketed product only by PCR amplification, thus pointing at the need for more sensitive microbial isolation techniques. We turned therefore to construction of a metagenomic library containing microbial DNA extracted directly from the food matrix. To maximize yield and purity and to ensure that genomic complexity of the library was representative of the original bacterial population, we defined a suitable protocol for total DNA extraction from cheese which can also be applied to other lipid-rich foods. Functional library screening on different antibiotics allowed recovery of ampicillin and kanamycin resistant clones originating from Streptococcus salivarius subsp. thermophilus and Lactobacillus helveticus genomes. We report molecular characterization of the cloned inserts, which were fully sequenced and shown to confer AR phenotype to recipient bacteria. We also show that metagenomics can be applied to food microbiota to identify underrepresented species carrying specific genes of interest. PMID:25243126

  9. Highly abundant and stage-specific mRNAs in the obligate pathogen Bremia lactucae.

    PubMed

    Judelson, H S; Michelmore, R W

    1990-01-01

    Germinating spores of the obligate pathogen Bremia lactucae (lettuce downy mildew) contain several unusually abundant species of mRNA. Thirty-nine cDNA clones corresponding to prevalent transcripts were isolated from a library synthesized using poly(A)+ RNA from germinating spores; these clones represented only five distinct classes. Each corresponding mRNA accounted for from 0.4 to 9 percent by mass of poly(A)+ RNA from germinating spores and together represented greater than 20 percent of the mRNA. The expression of the corresponding genes, and a gene encoding Hsp70, was analyzed in spores during germination and during growth in planta. The Hsp70 mRNA and mRNA from one abundant cDNA clone (ham34) were expressed constitutively. Two clones (ham9 and ham12) hybridized only to mRNA from spores and germinating spores. Two clones (ham37 and ham27) showed hybridization specific to germinating spores. Quantification of the number of genes homologous to each cDNA clone indicated that four clones corresponded to one or two copies per haploid genome, and one hybridized to an approximately 11-member family of genes. A sequence of the gene corresponding to ham34 was obtained to investigate its function and to identify sequences conferring high levels of gene expression for use in constructing vectors for the transformation of B. lactucae.

  10. Display of a maize cDNA library on baculovirus infected insect cells.

    PubMed

    Meller Harel, Helene Y; Fontaine, Veronique; Chen, Hongying; Jones, Ian M; Millner, Paul A

    2008-08-12

    Maize is a good model system for cereal crop genetics and development because of its rich genetic heritage and well-characterized morphology. The sequencing of its genome is well advanced, and new technologies for efficient proteomic analysis are needed. Baculovirus expression systems have been used for the last twenty years to express in insect cells a wide variety of eukaryotic proteins that require complex folding or extensive posttranslational modification. More recently, baculovirus display technologies based on the expression of foreign sequences on the surface of Autographa californica (AcMNPV) have been developed. We investigated the potential of a display methodology for a cDNA library of maize young seedlings. We constructed a full-length cDNA library of young maize etiolated seedlings in the transfer vector pAcTMVSVG. The library contained a total of 2.5 x 10(5) independent clones. Expression of two known maize proteins, calreticulin and auxin binding protein (ABP1), was shown by western blot analysis of protein extracts from insect cells infected with the cDNA library. Display of the two proteins in infected insect cells was shown by selective biopanning using magnetic cell sorting and demonstrated proof of concept that the baculovirus maize cDNA display library could be used to identify and isolate proteins. The maize cDNA library constructed in this study relies on the novel technology of baculovirus display and is unique in currently published cDNA libraries. Produced to demonstrate proof of principle, it opens the way for the development of a eukaryotic in vivo display tool which would be ideally suited for rapid screening of the maize proteome for binding partners, such as proteins involved in hormone regulation or defence.

  11. Molecular analysis of two cDNA clones encoding acidic class I chitinase in maize.

    PubMed Central

    Wu, S; Kriz, A L; Widholm, J M

    1994-01-01

    The cloning and analysis of two different cDNA clones encoding putative maize (Zea mays L.) chitinases obtained by polymerase chain reaction (PCR) and cDNA library screening is described. The cDNA library was made from poly(A)+ RNA from leaves challenged with mercuric chloride for 2 d. The two clones, pCh2 and pCh11, appear to encode class I chitinase isoforms with cysteine-rich domains (not found in pCh11 due to the incomplete sequence) and proline-/glycine-rich or proline-rich hinge domains, respectively. The pCh11 clone resembles a previously reported maize seed chitinase; however, the deduced proteins were found to have acidic isoelectric points. Analysis of all monocot chitinase sequences available to date shows that not all class I chitinases possess the basic isoelectric points usually found in dicotyledonous plants and that monocot class II chitinases do not necessarily exhibit acidic isoelectric points. Based on sequence analysis, the pCh2 protein is apparently synthesized as a precursor polypeptide with a signal peptide. Although these two clones belong to class I chitinases, they share only about 70% amino acid homology in the catalytic domain region. Southern blot analysis showed that pCh2 may be encoded by a small gene family, whereas pCh11 was single copy. Northern blot analysis demonstrated that these genes are differentially regulated by mercuric chloride treatment. Mercuric chloride treatment caused rapid induction of pCh2 from 6 to 48 h, whereas pCh11 responded only slightly to the same treatment. During seed germination, embryos constitutively expressed both chitinase genes and the phytohormone abscisic acid had no effect on the expression. The fungus Aspergillus flavus was able to induce both genes to comparable levels in aleurone layers and embryos but not in endosperm tissue. Maize callus growth on the same plate with A. flavus for 1 week showed induction of the transcripts corresponding to pCh2 but not to pCh11. These studies indicate that the different chitinase isoforms in maize might have different functions in the plant, since they show differential expression patterns under different conditions. PMID:7972490

  12. Biodiversity hot spot on a hot spot: novel extremophile diversity in Hawaiian fumaroles.

    PubMed

    Wall, Kate; Cornell, Jennifer; Bizzoco, Richard W; Kelley, Scott T

    2015-01-06

    Fumaroles (steam vents) are the most common, yet least understood, microbial habitat in terrestrial geothermal settings. Long believed too extreme for life, recent advances in sample collection and DNA extraction methods have found that fumarole deposits and subsurface waters harbor a considerable diversity of viable microbes. In this study, we applied culture-independent molecular methods to explore fumarole deposit microbial assemblages in 15 different fumaroles in four geographic locations on the Big Island of Hawai'i. Just over half of the vents yielded sufficient high-quality DNA for the construction of 16S ribosomal RNA gene sequence clone libraries. The bacterial clone libraries contained sequences belonging to 11 recognized bacterial divisions and seven other division-level phylogenetic groups. Archaeal sequences were less numerous, but similarly diverse. The taxonomic composition among fumarole deposits was highly heterogeneous. Phylogenetic analysis found cloned fumarole sequences were related to microbes identified from a broad array of globally distributed ecotypes, including hot springs, terrestrial soils, and industrial waste sites. Our results suggest that fumarole deposits function as an "extremophile collector" and may be a hot spot of novel extremophile biodiversity. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  13. Biodiversity hot spot on a hot spot: novel extremophile diversity in Hawaiian fumaroles

    PubMed Central

    Wall, Kate; Cornell, Jennifer; Bizzoco, Richard W; Kelley, Scott T

    2015-01-01

    Fumaroles (steam vents) are the most common, yet least understood, microbial habitat in terrestrial geothermal settings. Long believed too extreme for life, recent advances in sample collection and DNA extraction methods have found that fumarole deposits and subsurface waters harbor a considerable diversity of viable microbes. In this study, we applied culture-independent molecular methods to explore fumarole deposit microbial assemblages in 15 different fumaroles in four geographic locations on the Big Island of Hawai'i. Just over half of the vents yielded sufficient high-quality DNA for the construction of 16S ribosomal RNA gene sequence clone libraries. The bacterial clone libraries contained sequences belonging to 11 recognized bacterial divisions and seven other division-level phylogenetic groups. Archaeal sequences were less numerous, but similarly diverse. The taxonomic composition among fumarole deposits was highly heterogeneous. Phylogenetic analysis found cloned fumarole sequences were related to microbes identified from a broad array of globally distributed ecotypes, including hot springs, terrestrial soils, and industrial waste sites. Our results suggest that fumarole deposits function as an “extremophile collector” and may be a hot spot of novel extremophile biodiversity. PMID:25565172

  14. Molecular cloning and functional characterization of borneol dehydrogenase from the glandular trichomes of Lavandula x intermedia.

    PubMed

    Sarker, Lukman S; Galata, Mariana; Demissie, Zerihun A; Mahmoud, Soheil S

    2012-12-15

    Several varieties of Lavandula x intermedia (lavandins) are cultivated for their essential oils (EOs) for use in cosmetic, hygiene and personal care products. These EOs are mainly constituted of monoterpenes including camphor, which contributes an off odor reducing the olfactory appeal of the oil. We have recently constructed a cDNA library from the glandular trichomes (the sites of EO synthesis) of L. x intermedia plants. Here, we describe the cloning of a borneol dehydrogenase cDNA (LiBDH) from this library. The 780 bp open reading frame of the cDNA encoded a 259 amino acid short chain alcohol dehydrogenase with a predicted molecular mass of ca. 27.5 kDa. The recombinant LiBDH was expressed in Escherichia coli, purified by Ni-NTA agarose affinity chromatography, and functionally characterized in vitro. The bacterially produced enzyme specifically converted borneol to camphor as the only product with K(m) and k(cat) values of 53 μM and 4.0 × 10(-4) s(-1), respectively. The LiBDH transcripts were specifically expressed in glandular trichomes of mature flowers indicating that like other Lavandula monoterpene synthases the expression of this gene is regulated in a tissue-specific manner. The cloning of LiBDH has far reaching implications in improving the quality of Lavandula EOs through metabolic engineering. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Biodiversity and molecular ecology of Russula and Lactarius in Alaska based on soil and sporocarp DNA sequences

    Treesearch

    Geml J.; D.L. Taylor

    2013-01-01

    Although critical for the functioning of ecosystems, fungi are poorly known in highlatitude regions. This paper summarizes the results of the first genetic diversity assessments of Russula and Lactarius, two of the most diverse and abundant fungal genera in Alaska. SU rDNA sequences from both curated sporocarp collections and soil PCR clone libraries sampled in...

  16. “Direct cloning in Lactobacillus plantarum: Electroporation with non-methylated plasmid DNA enhances transformation efficiency and makes shuttle vectors obsolete”

    PubMed Central

    2012-01-01

    Background Lactic acid bacteria (LAB) play an important role in agricultural as well as industrial biotechnology. Development of improved LAB strains using e.g. library approaches is often limited by low transformation efficiencies wherefore one reason could be differences in the DNA methylation patterns between the Escherichia coli intermediate host for plasmid amplification and the final LAB host. In the present study, we examined the influence of DNA methylation on transformation efficiency in LAB and developed a direct cloning approach for Lactobacillus plantarum CD033. Therefore, we propagated plasmid pCD256 in E. coli strains with different dam/dcm-methylation properties. The obtained plasmid DNA was purified and transformed into three different L. plantarum strains and a selection of other LAB species. Results Best transformation efficiencies were obtained using the strain L. plantarum CD033 and non-methylated plasmid DNA. Thereby we achieved transformation efficiencies of ~ 109 colony forming units/μg DNA in L. plantarum CD033 which is in the range of transformation efficiencies reached with E. coli. Based on these results, we directly transformed recombinant expression vectors received from PCR/ligation reactions into L. plantarum CD033, omitting plasmid amplification in E. coli. Also this approach was successful and yielded a sufficient number of recombinant clones. Conclusions Transformation efficiency of L. plantarum CD033 was drastically increased when non-methylated plasmid DNA was used, providing the possibility to generate expression libraries in this organism. A direct cloning approach, whereby ligated PCR-products where successfully transformed directly into L. plantarum CD033, obviates the construction of shuttle vectors containing E. coli-specific sequences, as e.g. a ColEI origin of replication, and makes amplification of these vectors in E. coli obsolete. Thus, plasmid constructs become much smaller and occasional structural instability or mutagenesis during E. coli propagation is excluded. The results of our study provide new genetic tools for L. plantarum which will allow fast, forward and systems based genetic engineering of this species. PMID:23098256

  17. In silico Analysis of 2085 Clones from a Normalized Rat Vestibular Periphery 3′ cDNA Library

    PubMed Central

    Roche, Joseph P.; Cioffi, Joseph A.; Kwitek, Anne E.; Erbe, Christy B.; Popper, Paul

    2005-01-01

    The inserts from 2400 cDNA clones isolated from a normalized Rattus norvegicus vestibular periphery cDNA library were sequenced and characterized. The Wackym-Soares vestibular 3′ cDNA library was constructed from the saccular and utricular maculae, the ampullae of all three semicircular canals and Scarpa's ganglia containing the somata of the primary afferent neurons, microdissected from 104 male and female rats. The inserts from 2400 randomly selected clones were sequenced from the 5′ end. Each sequence was analyzed using the BLAST algorithm compared to the Genbank nonredundant, rat genome, mouse genome and human genome databases to search for high homology alignments. Of the initial 2400 clones, 315 (13%) were found to be of poor quality and did not yield useful information, and therefore were eliminated from the analysis. Of the remaining 2085 sequences, 918 (44%) were found to represent 758 unique genes having useful annotations that were identified in databases within the public domain or in the published literature; these sequences were designated as known characterized sequences. 1141 sequences (55%) aligned with 1011 unique sequences had no useful annotations and were designated as known but uncharacterized sequences. Of the remaining 26 sequences (1%), 24 aligned with rat genomic sequences, but none matched previously described rat expressed sequence tags or mRNAs. No significant alignment to the rat or human genomic sequences could be found for the remaining 2 sequences. Of the 2085 sequences analyzed, 86% were singletons. The known, characterized sequences were analyzed with the FatiGO online data-mining tool (http://fatigo.bioinfo.cnio.es/) to identify level 5 biological process gene ontology (GO) terms for each alignment and to group alignments with similar or identical GO terms. Numerous genes were identified that have not been previously shown to be expressed in the vestibular system. Further characterization of the novel cDNA sequences may lead to the identification of genes with vestibular-specific functions. Continued analysis of the rat vestibular periphery transcriptome should provide new insights into vestibular function and generate new hypotheses. Physiological studies are necessary to further elucidate the roles of the identified genes and novel sequences in vestibular function. PMID:16103642

  18. Molecular cloning and characterization of a new basic peroxidase cDNA from soybean hypocotyls infected with Phytophthora sojae f.sp. glycines.

    PubMed

    Yi, S Y; Hwang, B K

    1998-10-31

    Differential display techniques were used to isolate cDNA clones corresponding to genes which were expressed in soybean hypocotyls by Phytophthora sojae f.sp. glycines infection. With a partial cDNA clone C20CI4 from the differential display PCR as a probe, a new basic peroxidase cDNA clone, designated GMIPER1, was isolated from a cDNA library of soybean hypocotyls infected with P. sojae f.sp. glycines. Sequence analysis revealed that the peroxidase clone encodes a mature protein of 35,813 Da with a putative signal peptide of 27 amino acids in its N-terminus. The amino acid sequence of the soybean peroxidase GMIPER1 is between 54-75% identical to other plant peroxidases including a soybean seed coat peroxidase. Southern blot analysis indicated that multiple copies of sequences related to GMIPER1 exist in the soybean genome. The mRNAs corresponding to the GMIPER1 cDNA accumulated predominantly in the soybean hypocotyls infected with the incompatible race of P. sojae f.sp. glycines, but were expressed at low levels in the compatible interaction. Soybean GMIPER1 mRNAs were not expressed in hypocotyls, leaves, stems, and roots of soybean seedlings. However, treatments with ethephon, salicylic acid or methyl jasmonate induced the accumulation of the GMIPER1 mRNAs in the different organs of soybean. These results suggest that the GMIPER1 gene encoding a putative pathogen-induced peroxidase may play an important role in induced resistance of soybean to P. sojae f.sp. glycines and in response to various external stresses.

  19. Gene discovery in Eimeria tenella by immunoscreening cDNA expression libraries of sporozoites and schizonts with chicken intestinal antibodies.

    PubMed

    Réfega, Susana; Girard-Misguich, Fabienne; Bourdieu, Christiane; Péry, Pierre; Labbé, Marie

    2003-04-02

    Specific antibodies were produced ex vivo from intestinal culture of Eimeria tenella infected chickens. The specificity of these intestinal antibodies was tested against different parasite stages. These antibodies were used to immunoscreen first generation schizont and sporozoite cDNA libraries permitting the identification of new E. tenella antigens. We obtained a total of 119 cDNA clones which were subjected to sequence analysis. The sequences coding for the proteins inducing local immune responses were compared with nucleotide or protein databases and with expressed sequence tags (ESTs) databases. We identified new Eimeria genes coding for heat shock proteins, a ribosomal protein, a pyruvate kinase and a pyridoxine kinase. Specific features of other sequences are discussed.

  20. Immunochemical Proof that a Novel Rearranging Gene Encodes the T Cell Receptor δ Subunit

    NASA Astrophysics Data System (ADS)

    Band, Hamid; Hochstenbach, Frans; McLean, Joanne; Hata, Shingo; Krangel, Michael S.; Brenner, Michael B.

    1987-10-01

    The T cell receptor (TCR) δ protein is expressed as part of a heterodimer with TCR γ , in association with the CD3 polypeptides on a subset of functional peripheral blood T lymphocytes, thymocytes, and certain leukemic T cell lines. A monoclonal antibody directed against TCR δ was produced that binds specifically to the surface of several TCR γ δ cell lines and immunoprecipitates the TCR γ δ as a heterodimer from Triton X-100 detergent lysates and also immunoprecipitates the TCR δ subunit alone after chain separation. A candidate human TCR δ complementary DNA clone (IDP2 O-240/38), reported in a companion paper, was isolated by the subtractive library approach from a TCR γ δ cell line. This complementary DNA clone was used to direct the synthesis of a polypeptide that is specifically recognized by the monoclonal antibody to TCR δ . This complementary DNA clone thus corresponds to the gene that encodes the TCR δ subunit.

  1. Rapid in silico cloning of genes using expressed sequence tags (ESTs).

    PubMed

    Gill, R W; Sanseau, P

    2000-01-01

    Expressed sequence tags (ESTs) are short single-pass DNA sequences obtained from either end of cDNA clones. These ESTs are derived from a vast number of cDNA libraries obtained from different species. Human ESTs are the bulk of the data and have been widely used to identify new members of gene families, as markers on the human chromosomes, to discover polymorphism sites and to compare expression patterns in different tissues or pathologies states. Information strategies have been devised to query EST databases. Since most of the analysis is performed with a computer, the term "in silico" strategy has been coined. In this chapter we will review the current status of EST databases, the pros and cons of EST-type data and describe possible strategies to retrieve meaningful information.

  2. PHYLOGENETIC DIVERSITY IN DRINKING WATER BACTERIA IN A DISTRIBUTION SYSTEM SIMULATOR

    EPA Science Inventory

    This work was carried out to characterize the composition of microbial populations in a distribution system simulator (DSS) by direct sequence analysis of 16S rDNA clone libraries. Bacterial populations were examined in chlorinated distribution water and chloraminated DSS feed an...

  3. Molecular Analysis of Endolithic Microbial Communities in Volcanic Glasses

    NASA Astrophysics Data System (ADS)

    di Meo, C. A.; Giovannoni, S.; Fisk, M.

    2002-12-01

    Terrestrial and marine volcanic glasses become mineralogically and chemically altered, and in many cases this alteration has been attributed to microbial activity. We have used molecular techniques to study the resident microbial communities from three different volcanic environments that may be responsible for this crustal alteration. Total microbial DNA was extracted from rhyolite glass of the 7 million year old Rattlesnake Tuff in eastern Oregon. The DNA was amplified using the polymerase chain reaction (PCR) with bacterial primers targeting the 16S rRNA gene. This 16S rDNA was cloned and screened with restriction fragment length polymorphism (RFLP). Out of 89 total clones screened, 46 belonged to 13 different clone families containing two or more members, while 43 clones were unique. Sequences of eight clones representing the most dominant clone families in the library were 92 to 97% similar to soil bacterial species. In a separate study, young pillow basalts (<20 yrs old) from six different sites along the ridge axis at 9°N, East Pacific Rise were examined for microbial life. Total DNA was extracted from the basalt glass and screened for the presence of both bacteria and archaea using the PCR. Repeated attempts with different primer sets yielded no bacterial genes, whereas archaeal genes were quite abundant. A genetic fingerprinting technique, terminal restriction fragment length polymorphism (T-RFLP), was used to compare the archaeal community compositions among the six different basalts. Filtered deep-sea water samples (~15 L) were examined in parallel to identify any overlap between rock- and seawater-associated archaea. The six rock community profiles were quite similar to each other, and the background water communities were also similar, respectively. Both the rock and water communities shared the same dominant peak. To identify the T-RFLP peaks corresponding to the individual members of the rock and seawater communities, clone libraries of the archaeal 16S rDNA for one basalt sample (Dive 3718) and its corresponding background water sample were constructed. The most abundant archaeal genes were closely related to uncultured Group I marine Crenarchaeota that have been previously identified from similar deep-sea habitats. These archaeal genes collectively correspond to the dominant T-RFLP peak present in both the rock and water samples. In a third study, we investigated the microbial community residing in a Hawaiian Scientific Drilling Program core collected near Hilo, Hawaii. Total microbial DNA was extracted from a depth of 1351 m in the drill core (ambient temperature in the drill hole ~16°C), where petrographic evidence suggested the presence of microbial alteration. Archaeal 16S rRNA genes were amplified, cloned, and twelve clones representing the most abundant groups were sequenced. Eleven out of the twelve clones were 97 to 99% similar to Group I marine Crenarchaeota, while the remaining clone was 95% similar to Euryarchaeota, based on BLAST searches of the GenBank database. Our community-level approach to studying microbes living in volcanic glasses has provided a greater understanding of the microbial communities that potentially alter these materials.

  4. Determining the specific microbial populations and their spatial distribution within the stromatolite ecosystem of Shark Bay.

    PubMed

    Goh, Falicia; Allen, Michelle A; Leuko, Stefan; Kawaguchi, Tomohiro; Decho, Alan W; Burns, Brendan P; Neilan, Brett A

    2009-04-01

    The stromatolites at Shark Bay, Western Australia, are analogues of some of the oldest evidence of life on Earth. The aim of this study was to identify and spatially characterize the specific microbial communities associated with Shark Bay intertidal columnar stromatolites. Conventional culturing methods and construction of 16S rDNA clone libraries from community genomic DNA with both universal and specific PCR primers were employed. The estimated coverage, richness and diversity of stromatolite microbial populations were compared with earlier studies on these ecosystems. The estimated coverage for all clone libraries indicated that population coverage was comprehensive. Phylogenetic analyses of stromatolite and surrounding seawater sequences were performed in ARB with the Greengenes database of full-length non-chimaeric 16S rRNA genes. The communities identified exhibited extensive diversity. The most abundant sequences from the stromatolites were alpha- and gamma-proteobacteria (58%), whereas the cyanobacterial community was characterized by sequences related to the genera Euhalothece, Gloeocapsa, Gloeothece, Chroococcidiopsis, Dermocarpella, Acaryochloris, Geitlerinema and Schizothrix. All clones from the archaeal-specific clone libraries were related to the halophilic archaea; however, no archaeal sequence was identified from the surrounding seawater. Fluorescence in situ hybridization also revealed stromatolite surfaces to be dominated by unicellular cyanobacteria, in contrast to the sub-surface archaea and sulphate-reducing bacteria. This study is the first to compare the microbial composition of morphologically similar stromatolites over time and examine the spatial distribution of specific microorganismic groups in these intertidal structures and the surrounding seawater at Shark Bay. The results provide a platform for identifying the key microbial physiology groups and their potential roles in modern stromatolite morphogenesis and ecology.

  5. Rapid Amplification of Plasmid and Phage DNA Using Phi29 DNA Polymerase and Multiply-Primed Rolling Circle Amplification

    PubMed Central

    Dean, Frank B.; Nelson, John R.; Giesler, Theresa L.; Lasken, Roger S.

    2001-01-01

    We describe a simple method of using rolling circle amplification to amplify vector DNA such as M13 or plasmid DNA from single colonies or plaques. Using random primers and φ29 DNA polymerase, circular DNA templates can be amplified 10,000-fold in a few hours. This procedure removes the need for lengthy growth periods and traditional DNA isolation methods. Reaction products can be used directly for DNA sequencing after phosphatase treatment to inactivate unincorporated nucleotides. Amplified products can also be used for in vitro cloning, library construction, and other molecular biology applications. PMID:11381035

  6. Purification, cDNA cloning, and regulation of lysophospholipase from rat liver.

    PubMed

    Sugimoto, H; Hayashi, H; Yamashita, S

    1996-03-29

    A lysophospholipase was purified 506-fold from rat liver supernatant. The preparation gave a single 24-kDa protein band on SDS-polyacrylamide gel electrophoresis. The enzyme hydrolyzed lysophosphatidylcholine, lysophosphatidylethanolamine, lysophosphatidylinositol, lysophosphatidylserine, and 1-oleoyl-2-acetyl-sn-glycero-3-phosphocholine at pH 6-8. The purified enzyme was used for the preparation of antibody and peptide sequencing. A cDNA clone was isolated by screening a rat liver lambda gt11 cDNA library with the antibody, followed by the selection of further extended clones from a lambda gt10 library. The isolated cDNA was 2,362 base pairs in length and contained an open reading frame encoding 230 amino acids with a Mr of 24,708. The peptide sequences determined were found in the reading frame. When the cDNA was expressed in Escherichia coli cells as the beta-galactosidase fusion, lysophosphatidylcholine-hydrolyzing activity was markedly increased. The deduced amino acid sequence showed significant similarity to Pseudomonas fluorescence esterase A and Spirulina platensis esterase. The three sequences contained the GXSXG consensus at similar positions. The transcript was found in various tissues with the following order of abundance: spleen, heart, kidney, brain, lung, stomach, and testis = liver. In contrast, the enzyme protein was abundant in the following order: testis, liver, kidney, heart, stomach, lung, brain, and spleen. Thus the mRNA abundance disagreed with the level of the enzyme protein in liver, testis, and spleen. When HL-60 cells were induced to differentiate into granulocytes with dimethyl sulfoxide, the 24-kDa lysophospholipase protein increased significantly, but the mRNA abundance remained essentially unchanged. Thus a posttranscriptional control mechanism is present for the regulation of 24-kDa lysophospholipase.

  7. A novel helper phage enabling construction of genome-scale ORF-enriched phage display libraries.

    PubMed

    Gupta, Amita; Shrivastava, Nimisha; Grover, Payal; Singh, Ajay; Mathur, Kapil; Verma, Vaishali; Kaur, Charanpreet; Chaudhary, Vijay K

    2013-01-01

    Phagemid-based expression of cloned genes fused to the gIIIP coding sequence and rescue using helper phages, such as VCSM13, has been used extensively for constructing large antibody phage display libraries. However, for randomly primed cDNA and gene fragment libraries, this system encounters reading frame problems wherein only one of 18 phages display the translated foreign peptide/protein fused to phagemid-encoded gIIIP. The elimination of phages carrying out-of-frame inserts is vital in order to improve the quality of phage display libraries. In this study, we designed a novel helper phage, AGM13, which carries trypsin-sensitive sites within the linker regions of gIIIP. This renders the phage highly sensitive to trypsin digestion, which abolishes its infectivity. For open reading frame (ORF) selection, the phagemid-borne phages are rescued using AGM13, so that clones with in-frame inserts express fusion proteins with phagemid-encoded trypsin-resistant gIIIP, which becomes incorporated into the phages along with a few copies of AGM13-encoded trypsin-sensitive gIIIP. In contrast, clones with out-of-frame inserts produce phages carrying only AGM13-encoded trypsin-sensitive gIIIP. Trypsin treatment of the phage population renders the phages with out-of-frame inserts non-infectious, whereas phages carrying in-frame inserts remain fully infectious and can hence be enriched by infection. This strategy was applied efficiently at a genome scale to generate an ORF-enriched whole genome fragment library from Mycobacterium tuberculosis, in which nearly 100% of the clones carried in-frame inserts after selection. The ORF-enriched libraries were successfully used for identification of linear and conformational epitopes for monoclonal antibodies specific to mycobacterial proteins.

  8. Cloning and expression of UDP-glucose: flavonoid 7-O-glucosyltransferase from hairy root cultures of Scutellaria baicalensis.

    PubMed

    Hirotani, M; Kuroda, R; Suzuki, H; Yoshikawa, T

    2000-05-01

    A cDNA encoding UDP-glucose: baicalein 7-O-glucosyltransferase (UBGT) was isolated from a cDNA library from hairy root cultures of Scutellaria baicalensis Georgi probed with a partial-length cDNA clone of a UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT) from grape (Vitis vinifera L.). The heterologous probe contained a glucosyltransferase consensus amino acid sequence which was also present in the Scutellaria cDNA clones. The complete nucleotide sequence of the 1688-bp cDNA insert was determined and the deduced amino acid sequences are presented. The nucleotide sequence analysis of UBGT revealed an open reading frame encoding a polypeptide of 476 amino acids with a calculated molecular mass of 53,094 Da. The reaction product for baicalein and UDP-glucose catalyzed by recombinant UBGT in Escherichia coli was identified as authentic baicalein 7-O-glucoside using high-performance liquid chromatography and proton nuclear magnetic resonance spectroscopy. The enzyme activities of recombinant UBGT expressed in E. coli were also detected towards flavonoids such as baicalein, wogonin, apigenin, scutellarein, 7,4'-dihydroxyflavone and kaempferol, and phenolic compounds. The accumulation of UBGT mRNA in hairy roots was in response to wounding or salicylic acid treatments.

  9. HUNT: launch of a full-length cDNA database from the Helix Research Institute.

    PubMed

    Yudate, H T; Suwa, M; Irie, R; Matsui, H; Nishikawa, T; Nakamura, Y; Yamaguchi, D; Peng, Z Z; Yamamoto, T; Nagai, K; Hayashi, K; Otsuki, T; Sugiyama, T; Ota, T; Suzuki, Y; Sugano, S; Isogai, T; Masuho, Y

    2001-01-01

    The Helix Research Institute (HRI) in Japan is releasing 4356 HUman Novel Transcripts and related information in the newly established HUNT database. The institute is a joint research project principally funded by the Japanese Ministry of International Trade and Industry, and the clones were sequenced in the governmental New Energy and Industrial Technology Development Organization (NEDO) Human cDNA Sequencing Project. The HUNT database contains an extensive amount of annotation from advanced analysis and represents an essential bioinformatics contribution towards understanding of the gene function. The HRI human cDNA clones were obtained from full-length enriched cDNA libraries constructed with the oligo-capping method and have resulted in novel full-length cDNA sequences. A large fraction has little similarity to any proteins of known function and to obtain clues about possible function we have developed original analysis procedures. Any putative function deduced here can be validated or refuted by complementary analysis results. The user can also extract information from specific categories like PROSITE patterns, PFAM domains, PSORT localization, transmembrane helices and clones with GENIUS structure assignments. The HUNT database can be accessed at http://www.hri.co.jp/HUNT.

  10. Gene Expression Differences in Infected and Noninfected Middle Ear Complementary DNA Libraries

    PubMed Central

    Kerschner, Joseph E.; Horsey, Edward; Ahmed, Azad; Erbe, Christy; Khampang, Pawjai; Cioffi, Joseph; Hu, Fen Ze; Post, James Christopher; Ehrlich, Garth D.

    2010-01-01

    Objectives To investigate genetic differences in middle ear mucosa (MEM) with nontypeable Haemophilus influenzae (NTHi) infection. Genetic upregulation and downregulation occurs in MEM during otitis media (OM) pathogenesis. A comprehensive assessment of these genetic differences using the techniques of complementary DNA (cDNA) library creation has not been performed. Design The cDNA libraries were constructed from NTHi-infected and noninfected chinchilla MEM. Random clones were picked, sequenced bidirectionally, and submitted to the National Center for Biotechnology Information (NCBI) Expressed Sequence Tags database, where they were assigned accession numbers. These numbers were used with the basic local alignment search tool (BLAST) to align clones against the nonredundant nucleotide database at NCBI. Results Analysis with the Web-based statistical program FatiGO identified several biological processes with significant differences in numbers of represented genes. Processes involved in immune, stress, and wound responses were more prevalent in the NTHi-infected library. S100 calcium-binding protein A9 (S100A9); secretory leukoprotease inhibitor (SLPI); β2-microglobulin (B2M); ferritin, heavy-chain polypeptide 1 (FTH1); and S100 calcium-binding protein A8 (S100A8) were expressed at significantly higher levels in the NTHi-infected library. Calcium-binding proteins S100A9 and S100A8 serve as markers for inflammation and have antibacterial effects. Secretory leukoprotease inhibitor is an antibacterial protein that inhibits stimuli-induced MUC1, MUC2, and MUC5AC production. Conclusions A number of genes demonstrate changes during the pathogenesis of OM, including SLPI, which has an impact on mucin gene expression; this expression is known to be an important regulator in OM. The techniques described herein provide a framework for future investigations to more thoroughly understand molecular changes in the middle ear, which will likely be important in developing new therapeutic and intervention strategies. PMID:19153305

  11. An open reading frame in intron seven of the sea urchin DNA-methyltransferase gene codes for a functional AP1 endonuclease.

    PubMed

    Cioffi, Anna Valentina; Ferrara, Diana; Cubellis, Maria Vittoria; Aniello, Francesco; Corrado, Marcella; Liguori, Francesca; Amoroso, Alessandro; Fucci, Laura; Branno, Margherita

    2002-08-01

    Analysis of the genome structure of the Paracentrotus lividus (sea urchin) DNA methyltransferase (DNA MTase) gene showed the presence of an open reading frame, named METEX, in intron 7 of the gene. METEX expression is developmentally regulated, showing no correlation with DNA MTase expression. In fact, DNA MTase transcripts are present at high concentrations in the early developmental stages, while METEX is expressed at late stages of development. Two METEX cDNA clones (Met1 and Met2) that are different in the 3' end have been isolated in a cDNA library screening. The putative translated protein from Met2 cDNA clone showed similarity with Escherichia coli endonuclease III on the basis of sequence and predictive three-dimensional structure. The protein, overexpressed in E. coli and purified, had functional properties similar to the endonuclease specific for apurinic/apyrimidinic (AP) sites on the basis of the lyase activity. Therefore the open reading frame, present in intron 7 of the P. lividus DNA MTase gene, codes for a functional AP endonuclease designated SuAP1.

  12. Molecular cloning of Kazal-type proteinase inhibitor of the shrimp Fenneropenaeus chinensis.

    PubMed

    Kong, Hee Jeong; Cho, Hyun Kook; Park, Eun-Mi; Hong, Gyeong-Eun; Kim, Young-Ok; Nam, Bo-Hye; Kim, Woo-Jin; Lee, Sang-Jun; Han, Hyon Sob; Jang, In-Kwon; Lee, Chang Hoon; Cheong, Jaehun; Choi, Tae-Jin

    2009-01-01

    Proteinase inhibitors play important roles in host defence systems involving blood coagulation and pathogen digestion. We isolated and characterized a cDNA clone for a Kazal-type proteinase inhibitor (KPI) from a hemocyte cDNA library of the oriental white shrimp Fenneropenaeus chinensis. The KPI gene consists of three exons and two introns. KPI cDNA contains an open reading frame of 396 bp, a polyadenylation signal sequence AATAAA, and a poly (A) tail. KPI cDNA encodes a polypeptide of 131 amino acids with a putative signal peptide of 21 amino acids. The deduced amino acid sequence of KPI contains two homologous Kazal domains, each with six conserved cysteine residues. The mRNA of KPI is expressed in the hemocytes of healthy shrimp, and the higher expression of KPI transcript is observed in shrimp infected with the white spot syndrome virus (WSSV), suggesting a potential role for KPI in host defence mechanisms.

  13. Isolation of a complementary DNA clone for thyroid microsomal antigen. Homology with the gene for thyroid peroxidase.

    PubMed Central

    Seto, P; Hirayu, H; Magnusson, R P; Gestautas, J; Portmann, L; DeGroot, L J; Rapoport, B

    1987-01-01

    The thyroid microsomal antigen (MSA) in autoimmune thyroid disease is a protein of approximately 107 kD. We screened a human thyroid cDNA library constructed in the expression vector lambda gt11 with anti-107-kD monoclonal antibodies. Of five clones obtained, the recombinant beta-galactosidase fusion protein from one clone (PM-5) was confirmed to react with the monoclonal antiserum. The complementary DNA (cDNA) insert from PM-5 (0.8 kb) was used as a probe on Northern blot analysis to estimate the size of the mRNA coding for the MSA. The 2.9-kb messenger RNA (mRNA) species observed was the same size as that coding for human thyroid peroxidase (TPO). The probe did not bind to human liver mRNA, indicating the thyroid-specific nature of the PM-5-related mRNA. The nucleotide sequence of PM-5 (842 bp) was determined and consisted of a single open reading frame. Comparison of the nucleotide sequence of PM-5 with that presently available for pig TPO indicates 84% homology. In conclusion, a cDNA clone representing part of the microsomal antigen has been isolated. Sequence homology with porcine TPO, as well as identity in the size of the mRNA species for both the microsomal antigen and TPO, indicate that the microsomal antigen is, at least in part, TPO. Images PMID:3654979

  14. Assignment of the human caltractin gene (CALT) to Xq28 by fluorescence in situ hybridization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Tanaka; Okui, Keiko; Nakamura, Yusuke

    1994-12-01

    The centrosome is the major microtubule-organizing center of interphase eukaryotic cells, an its duplication is essential to eukaryotic cell division. Caltractin, a structural component of centrosomes, is highly homologous in amino acid sequence to the product of the CDC31 gene of Saccharomyces cerevisiae. In S. cerevisiae, an important role for CDC31 in duplication of the spindle pole body (SPB), a kind of microtubule-organizing center, has been demonstrated by an experiment in which mutant CDC31 prevented SPB duplication and led to formation of a monopolar spindle. In view of the localization of human caltractin in centrosomes and the sequence homology itmore » bears to yeast CDC31, it is reasonable to assume that caltractin functions in humans as CDC31 does in yeast. As a part of the Human Genome Project, we have been determining nucleotide sequences of DNA clones randomly selected from a directionally cloned cDNA library constructed from fetal brain mRNA obtained from Clontech (La Jolla, CA). By comparing 5{prime} partial DNA sequences of these cDNA clones with known DNA sequences in the database, we found one clone that was highly homologous to the caltractin gene of Chlamydomonas, which turned out to be the same as a human gene identified recently. 4 refs., 1 fig.« less

  15. Molecular cloning and expression of rat brain endopeptidase 3.4.24.16.

    PubMed

    Dauch, P; Vincent, J P; Checler, F

    1995-11-10

    We have isolated by immunological screening of a lambda ZAPII cDNA library constructed from rat brain mRNAs a cDNA clone encoding endopeptidase 3.4.24.16. The longest open reading frame encodes a 704-amino acid protein with a theoretical molecular mass of 80,202 daltons and bears the consensus sequence of the zinc metalloprotease family. The sequence exhibits a 60.2% homology with those of another zinc metallopeptidase, endopeptidase 3.4.24.15. Northern blot analysis reveals two mRNA species of about 3 and 5 kilobases in rat brain, ileum, kidney, and testis. We have transiently transfected COS-7 cells with pcDNA3 containing the cloned cDNA and established the overexpression of a 70-75-kDa immunoreactive protein. This protein hydrolyzes QFS, a quenched fluorimetric substrate of endopeptidase 3.4.24.16, and cleaves neurotensin at a single peptide bond, leading to the formation of neurotensin (1-10) and neurotensin (11-13). QFS and neurotensin hydrolysis are potently inhibited by the selective endopeptidase 3.4.24.16 dipeptide blocker Pro-Ile and by dithiothreitol, while the enzymatic activity remains unaffected by phosphoramidon and captopril, the specific inhibitors of endopeptidase 3.4.24.11 and angiotensin-converting enzyme, respectively. Altogether, these physicochemical, biochemical, and immunological properties unambiguously identify endopeptidase 3.4.24.16 as the protein encoded by the isolated cDNA clone.

  16. Identification of antigens by monoclonal antibody PD4 and its expression in Escherichia coli

    PubMed Central

    Ning, Jin-Ying; Sun, Guo-Xun; Huang, Su; Ma, Hong; An, Ping; Meng, Lin; Song, Shu-Mei; Wu, Jian; Shou, Cheng-Chao

    2003-01-01

    AIM: To clone and express the antigen of monoclonal antibody (MAb) PD4 for further investigation of its function. METHODS: MGC803 cDNA expression library was constructed and screened with PD4 as probes to clone the antigen. After failed in the library screening, immunoprecipitation and SDS-polyacrylamide gel electrophoresis were applied to purify the antigen for sequence analysis. The antigen coming from Mycoplasma hyorhinis (M. hyorhinis) was further confirmed with Western blot analysis by infecting M. hyorhinis -free HeLa cells and eliminating the M. hyorhinis from MGC803 cells. The full p37 gene was cloned by PCR and expressed successfully in Escherichia coli after site-directed mutations. Immunofluorescence assay was used to demonstrate if p37 protein could directly bind to gastric tumor cell AGS. RESULTS: The cDNA library constructed with MGC803 cells was screened by MAb PD4 as probes. Unfortunately, the positive clones identified with MAb PD4 were also reacted with unrelated antibodies. Then, immunoprecipitation was performed and the purified antigen was identified to be a membrane protein of Mycoplasma hyorhinis (M. hyorhinis) by sequencing of N-terminal amino acid residues. The membrane protein was intensively verified with Western blot by eliminating M. hyorhinis from MGC803 cells and by infecting M. hyorhinis-free HeLa cells. The full p37 gene was cloned and expressed successfully in Escherichia coli after site-directed mutations. Immunofluorescence demonstrated that p37 protein could directly bind to gastric tumor cell AGS. CONCLUSION: The antigen recognized by MAb PD4 is from M. hyorhinis, which suggests the actions involved in MAb PD4 is possibly mediated by p37 protein or M. hyorhinis. As p37 protein can bind directly to tumor cells, the pathogenic role of p37 involved in tumorigenesis justifies further investigation. PMID:14562370

  17. Isolation and characterization of novel lipases/esterases from a bovine rumen metagenome.

    PubMed

    Privé, Florence; Newbold, C Jamie; Kaderbhai, Naheed N; Girdwood, Susan G; Golyshina, Olga V; Golyshin, Peter N; Scollan, Nigel D; Huws, Sharon A

    2015-07-01

    Improving the health beneficial fatty acid content of meat and milk is a major challenge requiring an increased understanding of rumen lipid metabolism. In this study, we isolated and characterized rumen bacterial lipases/esterases using functional metagenomics. Metagenomic libraries were constructed from DNA extracted from strained rumen fluid (SRF), solid-attached bacteria (SAB) and liquid-associated rumen bacteria (LAB), ligated into a fosmid vector and subsequently transformed into an Escherichia coli host. Fosmid libraries consisted of 7,744; 8,448; and 7,680 clones with an average insert size of 30 to 35 kbp for SRF, SAB and LAB, respectively. Transformants were screened on spirit blue agar plates containing tributyrin for lipase/esterase activity. Five SAB and four LAB clones exhibited lipolytic activity, and no positive clones were found in the SRF library. Fosmids from positive clones were pyrosequenced and twelve putative lipase/esterase genes and two phospholipase genes retrieved. Although the derived proteins clustered into diverse esterase and lipase families, a degree of novelty was seen, with homology ranging from 40 to 78% following BlastP searches. Isolated lipases/esterases exhibited activity against mostly short- to medium-chain substrates across a range of temperatures and pH. The function of these novel enzymes recovered in ruminal metabolism needs further investigation, alongside their potential industrial uses.

  18. Clonality of bacterial consortia in root canals and subjacent gingival crevices.

    PubMed

    Parahitiyawa, Nipuna B; Chu, Frederick C S; Leung, Wai K; Yam, Wing C; Jin, Li Jian; Samaranayake, Lakshman P

    2015-02-01

    No oral niche can be considered to be segregated from the subjacent milieu because of the complex community behavior and nature of the oral biofilms. The aim of this study was to address the paucity of information on how these species are clonally related to the subjacent gingival crevice bacteria. We utilized a metagenomic approach of amplifying 16S rDNA from genomic DNA, cloning, sequencing and analysis using LIBSHUFF software to assess the genetic homogeneity of the bacterial species from two infected root canals and subjacent gingival crevices. The four niches studied yielded 186 clones representing 54 phylotypes. Clone library comparisons using LIBSHUFF software indicated that each niche was inhabited by a unique flora. Further, 42% of the clones were of hitherto unknown phylotypes indicating the extent of bacterial diversity, especially in infected root canals and subjacent gingival crevices. We believe data generated through this novel analytical tool shed new light on understanding oral microbial ecosystems. © 2014 Wiley Publishing Asia Pty Ltd.

  19. Cloning and expression of 130-kd mosquito-larvicidal delta-endotoxin gene of Bacillus thuringiensis var. Israelensis in Escherichia coli.

    PubMed

    Angsuthanasombat, C; Chungjatupornchai, W; Kertbundit, S; Luxananil, P; Settasatian, C; Wilairat, P; Panyim, S

    1987-07-01

    Five recombinant E. coli clones exhibiting toxicity to Aedes aegypti larvae were obtained from a library of 800 clones containing XbaI DNA fragments of 110 kb plasmid from B. thuringiensis var. israelensis. All the five clones (pMU 14/258/303/388/679) had the same 3.8-kb insert and encoded a major protein of 130 kDa which was highly toxic to A. aegypti larvae. Three clones (pMU 258/303/388) transcribed the 130 kD a gene in the same direction as that of lac Z promoter of pUC12 vector whereas the transcription of the other two (pMU 14/679) was in the opposite direction. A 1.9-kb fragment of the 3.8 kb insert coded for a protein of 65 kDa. Partial DNA sequence of the 3.8 kb insert, corresponding to the 5'-terminal of the 130 kDa gene, revealed a continuous reading frame, a Shine-Dalgarno sequence and a tentative 5'-regulatory region. These results demonstrated that the 3.8 kb insert is a minimal DNA fragment containing a regulatory region plus the coding sequence of the 130 kDa protein that is highly toxic to mosquito larvae.

  20. Cloning and purification of alpha-neurotoxins from king cobra (Ophiophagus hannah).

    PubMed

    He, Ying-Ying; Lee, Wei-Hui; Zhang, Yun

    2004-09-01

    Thirteen complete and three partial cDNA sequences were cloned from the constructed king cobra (Ophiophagus hannah) venom gland cDNA library. Phylogenetic analysis of nucleotide sequences of king cobra with those from other snake venoms revealed that obtained cDNAs are highly homologous to snake venom alpha-neurotoxins. Alignment of deduced mature peptide sequences of the obtained clones with those of other reported alpha-neurotoxins from the king cobra venom indicates that our obtained 16 clones belong to long-chain neurotoxins (seven), short-chain neurotoxins (seven), weak toxin (one) and variant (one), respectively. Up to now, two out of 16 newly cloned king cobra alpha-neurotoxins have identical amino acid sequences with CM-11 and Oh-6A/6B, which have been characterized from the same venom. Furthermore, five long-chain alpha-neurotoxins and two short-chain alpha-neurotoxins were purified from crude venom and their N-terminal amino acid sequences were determined. The cDNAs encoding the putative precursors of the purified native peptide were also determined based on the N-terminal amino acid sequencing. The purified alpha-neurotoxins showed different lethal activities on mice.

  1. The ura5 gene of the ascomycete Sordaria macrospora: molecular cloning, characterization and expression in Escherichia coli.

    PubMed

    Le Chevanton, L; Leblon, G

    1989-04-15

    We cloned the ura5 gene coding for the orotate phosphoribosyl transferase from the ascomycete Sordaria macrospora by heterologous probing of a Sordaria genomic DNA library with the corresponding Podospora anserina sequence. The Sordaria gene was expressed in an Escherichia coli pyrE mutant strain defective for the same enzyme, and expression was shown to be promoted by plasmid sequences. The nucleotide sequence of the 1246-bp DNA fragment encompassing the region of homology with the Podospora gene has been determined. This sequence contains an open reading frame of 699 nucleotides. The deduced amino acid sequence shows 72% similarity with the corresponding Podospora protein.

  2. Ultraviolet light-resistant primary transfectants of xeroderma pigmentosum cells are also DNA repair-proficient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stark, M.; Naiman, T.; Canaani, D.

    1989-08-15

    In a previous work, an immortal xeroderma pigmentosum cell line belonging to complementation group C was complemented to a UV-resistant phenotype by transfection with a human cDNA clone library. We now report that the primary transformants selected for UV-resistance also acquired normal levels of DNA repair. This was assessed both by measurement of UV-induced ({sup 3}H)thymidine incorporation and by equilibrium sedimentation analysis of repair-DNA synthesis. Therefore, the transduced DNA element which confers normal UV-resistance also corrects the excision repair defect of the xeroderma pigmentosum group C cell line.

  3. [Study of alpha-satellite DNA in cosmid libraries, specific for chromosomes 13, 21, and 22, using fluorescence in situ hybridization].

    PubMed

    Solov'ev, I V; Iurov, Iu B; Vorsanova, S G; Marcais, B; Rogaev, E I; Kapanadze, B I; Brodianskiĭ, V M; Iankovskiĭ, N K; Roizes, G

    1998-11-01

    Fluorescent in situ hybridization (FISH) was employed in mapping the alpha-satellite DNA that was revealed in the cosmid libraries specific for human chromosomes 13, 21, and 22. In total, 131 clones were revealed. They contained various elements of centromeric alphoid DNA sequences of acrocentric chromosomes, including those located close to SINEs, LINEs, and classical satellite sequences. The heterochromatin of acrocentric chromosomes was shown to contain two different groups of alphoid sequences: (1) those immediately adjacent to the centromeric regions (alpha 13-1, alpha 21-1, and alpha 22-1 loci) and (2) those located in the short arm of acrocentric chromosomes (alpha 13-2, alpha 21-2, and alpha 22-2 loci). Alphoid DNA sequences from the alpha 13-2, alpha 21-2, and alpha 22-2 loci are apparently not involved in the formation of centromeres and are absent from mitotically stable marker chromosomes with a deleted short arm. Robertsonian translocations t(13q; 21q) and t(14q; 22q), and chromosome 21p-. The heterochromatic regions of chromosomes 13, 21, and 22 were also shown to contain relatively chromosome-specific repetitive sequences of various alphoid DNA families, whose numerous copies occur in other chromosomes. Pools of centromeric alphoid cosmids can be of use in further studies of the structural and functional properties of heterochromatic DNA and the identification of centromeric sequences. Moreover, these clones can be employed in high-resolution mapping and in sequencing the heterochromatic regions of the human genome. The detailed FISH analysis of numerous alphoid cosmid clones allowed the identification of several new, highly specific DNA probes of molecular cytogenetic studies--in particular, the interphase and metaphase analyses of chromosomes 2, 9, 11, 14, 15, 16, 18, 20, 21-13, 22-14, and X.

  4. Endolithic diversity of microorganisms on sandstone and implications for biogenic weathering

    NASA Astrophysics Data System (ADS)

    Hallmann, C.; Friedenberger, H.; Hoppert, M.

    2012-04-01

    Molecular methods allow a comprehensive view on uncultured microbial communities in dimension stone. In the presented study, we focus on depth profiles of microbial colonization in sandstones with different porosity and overall durability. All sandstones were taken from quarries where they were exposed to the environment for several years. Approximately 0.1 g of material from the stone surface, from 5 mm and from 30 mm depths was taken under sterile conditions and subjected to analysis of microbial DNA and culturing experiments. In particular, DNA was extracted from the material, the phylogenetic marker gene of eukaryotic organisms (18S rDNA) was amplified and used for generation of clone libraries, which were then analysed by sequencing. "Roter Wesersandstein" was just colonized at the material surface, predominantly with algal and fungal microorganisms. No environmental DNA could be isolated from depth profiles. From "Nebraer Sandstein" with high pore size (shown by thin sections), environmental DNA from depths down to 3 cm could be retrieved. Though the uppermost layer is dominated by microalgae (as concluded from the retrieved clones), the percentage of algal clones from 5 mm and 30 mm depths drop to 10 % of all clones. There, apart from filamentous fungi, moss clones clearly dominate the microbial community. At a depth of 30 mm, 70-80 % of the retrieved clones match to various mosses (Bryophyta). Though mosses do not form layers on the stone surfaces, moss rhizoids or protonemata must be abundant as endoliths inside the stone material. It is reasonable to assume that the rhizoids may contribute to an increase in pore size by active penetration of the clastic material, even though colonization of the surface by mosses is not obvious. This feature may imply stronger impact of stone decay induced by endolithic growth of bryophytes than hitherto observed.

  5. Homopolymer tail-mediated ligation PCR: a streamlined and highly efficient method for DNA cloning and library construction.

    PubMed

    Lazinski, David W; Camilli, Andrew

    2013-01-01

    The amplification of DNA fragments, cloned between user-defined 5' and 3' end sequences, is a prerequisite step in the use of many current applications including massively parallel sequencing (MPS). Here we describe an improved method, called homopolymer tail-mediated ligation PCR (HTML-PCR), that requires very little starting template, minimal hands-on effort, is cost-effective, and is suited for use in high-throughput and robotic methodologies. HTML-PCR starts with the addition of homopolymer tails of controlled lengths to the 3' termini of a double-stranded genomic template. The homopolymer tails enable the annealing-assisted ligation of a hybrid oligonucleotide to the template's recessed 5' ends. The hybrid oligonucleotide has a user-defined sequence at its 5' end. This primer, together with a second primer composed of a longer region complementary to the homopolymer tail and fused to a second 5' user-defined sequence, are used in a PCR reaction to generate the final product. The user-defined sequences can be varied to enable compatibility with a wide variety of downstream applications. We demonstrate our new method by constructing MPS libraries starting from nanogram and sub-nanogram quantities of Vibrio cholerae and Streptococcus pneumoniae genomic DNA.

  6. Phylum- and Class-Specific PCR Primers for General Microbial Community Analysis

    PubMed Central

    Blackwood, Christopher B.; Oaks, Adam; Buyer, Jeffrey S.

    2005-01-01

    Amplification of a particular DNA fragment from a mixture of organisms by PCR is a common first step in methods of examining microbial community structure. The use of group-specific primers in community DNA profiling applications can provide enhanced sensitivity and phylogenetic detail compared to domain-specific primers. Other uses for group-specific primers include quantitative PCR and library screening. The purpose of the present study was to develop several primer sets targeting commonly occurring and important groups. Primers specific for the 16S ribosomal sequences of Alphaproteobacteria, Betaproteobacteria, Bacilli, Actinobacteria, and Planctomycetes and for parts of both the 18S ribosomal sequence and the internal transcribed spacer region of Basidiomycota were examined. Primers were tested by comparison to sequences in the ARB 2003 database, and chosen primers were further tested by cloning and sequencing from soil community DNA. Eighty-five to 100% of the sequences obtained from clone libraries were found to be placed with the groups intended as targets, demonstrating the specificity of the primers under field conditions. It will be important to reevaluate primers over time because of the continual growth of sequence databases and revision of microbial taxonomy. PMID:16204538

  7. Sensitive and substrate-specific detection of metabolically active microorganisms in natural microbial consortia using community isotope arrays.

    PubMed

    Tourlousse, Dieter M; Kurisu, Futoshi; Tobino, Tomohiro; Furumai, Hiroaki

    2013-05-01

    The goal of this study was to develop and validate a novel fosmid-clone-based metagenome isotope array approach - termed the community isotope array (CIArray) - for sensitive detection and identification of microorganisms assimilating a radiolabeled substrate within complex microbial communities. More specifically, a sample-specific CIArray was used to identify anoxic phenol-degrading microorganisms in activated sludge treating synthetic coke-oven wastewater in a single-sludge predenitrification-nitrification process. Hybridization of the CIArray with DNA from the (14) C-phenol-amended sample indicated that bacteria assimilating (14) C-atoms, presumably directly from phenol, under nitrate-reducing conditions were abundant in the reactor, and taxonomic assignment of the fosmid clone end sequences suggested that they belonged to the Gammaproteobacteria. The specificity of the CIArray was validated by quantification of fosmid-clone-specific DNA in density-resolved DNA fractions from samples incubated with (13) C-phenol, which verified that all CIArray-positive probes stemmed from microorganisms that assimilated isotopically labeled carbon. This also demonstrated that the CIArray was more sensitive than DNA-SIP, as the former enabled positive detection at a phenol concentration that failed to yield a 'heavy' DNA fraction. Finally, two operational taxonomic units distantly related to marine Gammaproteobacteria were identified to account for more than half of 16S rRNA gene clones in the 'heavy' DNA library, corroborating the CIArray-based identification. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  8. A function-based screen for seeking RubisCO active clones from metagenomes: novel enzymes influencing RubisCO activity.

    PubMed

    Böhnke, Stefanie; Perner, Mirjam

    2015-03-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) is a key enzyme of the Calvin cycle, which is responsible for most of Earth's primary production. Although research on RubisCO genes and enzymes in plants, cyanobacteria and bacteria has been ongoing for years, still little is understood about its regulation and activation in bacteria. Even more so, hardly any information exists about the function of metagenomic RubisCOs and the role of the enzymes encoded on the flanking DNA owing to the lack of available function-based screens for seeking active RubisCOs from the environment. Here we present the first solely activity-based approach for identifying RubisCO active fosmid clones from a metagenomic library. We constructed a metagenomic library from hydrothermal vent fluids and screened 1056 fosmid clones. Twelve clones exhibited RubisCO activity and the metagenomic fragments resembled genes from Thiomicrospira crunogena. One of these clones was further analyzed. It contained a 35.2 kb metagenomic insert carrying the RubisCO gene cluster and flanking DNA regions. Knockouts of twelve genes and two intergenic regions on this metagenomic fragment demonstrated that the RubisCO activity was significantly impaired and was attributed to deletions in genes encoding putative transcriptional regulators and those believed to be vital for RubisCO activation. Our new technique revealed a novel link between a poorly characterized gene and RubisCO activity. This screen opens the door to directly investigating RubisCO genes and respective enzymes from environmental samples.

  9. An 'instant gene bank' method for gene cloning by mutant complementation.

    PubMed

    Gems, D; Aleksenko, A; Belenky, L; Robertson, S; Ramsden, M; Vinetski, Y; Clutterbuck, A J

    1994-02-01

    We describe a new method of gene cloning by complementation of mutant alleles which obviates the need for construction of a gene library in a plasmid vector in vitro and its amplification in Escherichia coli. The method involves simultaneous transformation of mutant strains of the fungus Aspergillus nidulans with (i) fragmented chromosomal DNA from a donor species and (ii) DNA of a plasmid without a selectable marker gene, but with a fungal origin of DNA replication ('helper plasmid'). Transformant colonies appear as the result of the joining of chromosomal DNA fragments carrying the wild-type copies of the mutant allele with the helper plasmid. Joining may occur either by ligation (if the helper plasmid is in linear form) or recombination (if it is cccDNA). This event occurs with high efficiency in vivo, and generates an autonomously replicating plasmid cointegrate. Transformants containing Penicillium chrysogenum genomic DNA complementing A. nidulans niaD, nirA and argB mutations have been obtained. While some of these cointegrates were evidently rearranged or consisted only of unaltered replicating plasmid, in other cases plasmids could be recovered into E. coli and were subsequently shown to contain the selected gene. The utility of this "instant gene bank" technique is demonstrated here by the molecular cloning of the P. canescens trpC gene.

  10. Summer Workshop in Metagenomics: One Week Plus Eight Students Equals Gigabases of Cloned DNA †

    PubMed Central

    Rios-Velazquez, Carlos; Williamson, Lynn L.; Cloud-Hansen, Karen A.; Allen, Heather K.; McMahon, Mathew D.; Sabree, Zakee L.; Donato, Justin J.; Handelsman, Jo

    2011-01-01

    We designed a week-long laboratory workshop in metagenomics for a cohort of undergraduate student researchers. During this course, students learned and utilized molecular biology and microbiology techniques to construct a metagenomic library from Puerto Rican soil. Pre-and postworkshop assessments indicated student learning gains in technical knowledge, skills, and confidence in a research environment. Postworkshop construction of additional libraries demonstrated retention of research techniques by the students. PMID:23653755

  11. High efficiency family shuffling based on multi-step PCR and in vivo DNA recombination in yeast: statistical and functional analysis of a combinatorial library between human cytochrome P450 1A1 and 1A2.

    PubMed

    Abécassis, V; Pompon, D; Truan, G

    2000-10-15

    The design of a family shuffling strategy (CLERY: Combinatorial Libraries Enhanced by Recombination in Yeast) associating PCR-based and in vivo recombination and expression in yeast is described. This strategy was tested using human cytochrome P450 CYP1A1 and CYP1A2 as templates, which share 74% nucleotide sequence identity. Construction of highly shuffled libraries of mosaic structures and reduction of parental gene contamination were two major goals. Library characterization involved multiprobe hybridization on DNA macro-arrays. The statistical analysis of randomly selected clones revealed a high proportion of chimeric genes (86%) and a homogeneous representation of the parental contribution among the sequences (55.8 +/- 2.5% for parental sequence 1A2). A microtiter plate screening system was designed to achieve colorimetric detection of polycyclic hydrocarbon hydroxylation by transformed yeast cells. Full sequences of five randomly picked and five functionally selected clones were analyzed. Results confirmed the shuffling efficiency and allowed calculation of the average length of sequence exchange and mutation rates. The efficient and statistically representative generation of mosaic structures by this type of family shuffling in a yeast expression system constitutes a novel and promising tool for structure-function studies and tuning enzymatic activities of multicomponent eucaryote complexes involving non-soluble enzymes.

  12. Cloning and characterization of the gene encoding the endopolygalacturonase-inhibiting protein (PGIP) of Phaseolus vulgaris L.

    PubMed

    Toubart, P; Desiderio, A; Salvi, G; Cervone, F; Daroda, L; De Lorenzo, G

    1992-05-01

    Polygalacturonase-inhibiting protein (PGIP) is a cell wall protein purified from hypocotyls of true bean (Phaseolus vulgaris L.). PGIP inhibits fungal endopolygalacturonases and is considered to be an important factor for plant resistance to phytopathogenic fungi (Albersheim and Anderson, 1971; Cervone et al., 1987). The amino acid sequences of the N-terminus and one internal tryptic peptide of the PGIP purified from P. vulgaris cv. Pinto were used to design redundant oligonucleotides that were successfully utilized as primers in a polymerase chain reaction (PCR) with total DNA of P. vulgaris as a template. A DNA band of 758 bp (a specific PCR amplification product of part of the gene coding for PGIP) was isolated and cloned. By using the 758-bp DNA as a hybridization probe, a lambda clone containing the PGIP gene was isolated from a genomic library of P. vulgaris cv. Saxa. The coding and immediate flanking regions of the PGIP gene, contained on a subcloned 3.3 kb SalI-SalI DNA fragment, were sequenced. A single, continuous ORF of 1026 nt (342 amino acids) was present in the genomic clone. The nucleotide and deduced amino acid sequences of the PGIP gene showed no significant similarity with any known databank sequence. Northern blotting analysis of poly(A)+ RNAs, isolated from various tissues of bean seedlings or from suspension-cultured bean cells, were also performed using the cloned PCR-generated DNA as a probe. A 1.2 kb transcript was detected in suspension-cultured cells and, to a lesser extent, in leaves, hypocotyls, and flowers.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Isolation of human simple repeat loci by hybridization selection.

    PubMed

    Armour, J A; Neumann, R; Gobert, S; Jeffreys, A J

    1994-04-01

    We have isolated short tandem repeat arrays from the human genome, using a rapid method involving filter hybridization to enrich for tri- or tetranucleotide tandem repeats. About 30% of clones from the enriched library cross-hybridize with probes containing trimeric or tetrameric tandem arrays, facilitating the rapid isolation of large numbers of clones. In an initial analysis of 54 clones, 46 different tandem arrays were identified. Analysis of these tandem repeat loci by PCR showed that 24 were polymorphic in length; substantially higher levels of polymorphism were displayed by the tetrameric repeat loci isolated than by the trimeric repeats. Primary mapping of these loci by linkage analysis showed that they derive from 17 chromosomes, including the X chromosome. We anticipate the use of this strategy for the efficient isolation of tandem repeats from other sources of genomic DNA, including DNA from flow-sorted chromosomes, and from other species.

  14. Characterization of the translation products of the major mRNA species from rabbit lactating mammary glands and construction of bacterial recombinants containing casein and alpha-lactalbumin complementary DNA.

    PubMed Central

    Suard, Y M; Tosi, M; Kraehenbuhl, J P

    1982-01-01

    Total cytoplasmic polyadenylated RNA from lactating rabbit mammary glands was analysed on methylmercury hydroxide-agarose gels. The size of the most abundant mRNA species ranged between 0.5 and 5.0 kb (kilobases), with major bands at 0.55, 0.84, 0.92, 1.18 and 2.4 kb and discrete minor bands of 1.5, 1.7, 3.0 and 3.9 kb. Translation in vitro of total mRNA with [3H]leucine or [35S]methionine as precursor yielded four major bands with apparent Mr values of 16 000, 25 000, 26 000 and 29 000. The four protein bands were identified by immunoprecipitation by using specific antisera as alpha-lactalbumin and x-, kappa- and alpha-caseins, respectively. Labelling with (35S]cysteine followed by immunoprecipitation with anti-transferrin or anti-alpha-lactalbumin sera allowed the identification of two whey proteins. Translated transferrin was resolved as an 80 000-dalton band and alpha-lactalbumin appeared as a 16 000-dalton protein. A library of recombinant plasmids containing cDNA (complementary DNA) sequences representing cytoplasmic polyadenylated RNA was used to isolate clones for the major rabbit caseins and alpha-lactalbumin. A preliminary characterization of these cDNA clones was achieved by colony hybridization with enriched RNA fractions as probes. Positive clones were identified by use of hybrid-promoted translation in vitro and immunoprecipitation of the translation products. The corresponding mRNA species were further identified by hybridizing RNA blots with radioactively labelled cDNA clones. We present the restriction map of alpha-casein and kappa-casein cDNA clones. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:6123313

  15. AXM mutagenesis: an efficient means for the production of libraries for directed evolution of proteins.

    PubMed

    Holland, Erika G; Buhr, Diane L; Acca, Felicity E; Alderman, Dawn; Bovat, Kristin; Busygina, Valeria; Kay, Brian K; Weiner, Michael P; Kiss, Margaret M

    2013-08-30

    Affinity maturation is an important part of the recombinant antibody development process. There are several well-established approaches for generating libraries of mutated antibody genes for affinity maturation, but these approaches are generally too laborious or expensive to allow high-throughput, parallel processing of multiple antibodies. Here, we describe a scalable approach that enables the generation of libraries with greater than 10(8) clones from a single Escherichia coli transformation. In our method, a mutated DNA fragment is produced using PCR conditions that promote nucleotide misincorporation into newly synthesized DNA. In the PCR reaction, one of the primers contains at least three phosphorothioate linkages at its 5' end, and treatment of the PCR product with a 5' to 3' exonuclease is used to preferentially remove the strand synthesized with the non-modified primer, resulting in a single-stranded DNA fragment. This fragment then serves as a megaprimer to prime DNA synthesis on a uracilated, circular, single-stranded template in a Kunkel-like mutagenesis reaction that biases nucleotide base-changes between the megaprimer and uracilated DNA sequence in favor of the in vitro synthesized megaprimer. This method eliminates the inefficient subcloning steps that are normally required for the construction of affinity maturation libraries from randomly mutagenized antibody genes. Copyright © 2013. Published by Elsevier B.V.

  16. Expression cloning of a gibberellin 20-oxidase, a multifunctional enzyme involved in gibberellin biosynthesis.

    PubMed Central

    Lange, T; Hedden, P; Graebe, J E

    1994-01-01

    In the biosynthetic pathway to the gibberellins (GAs), carbon-20 is removed by oxidation to give the C19-GAs, which include the biologically active plant hormones. We report the isolation of a cDNA clone encoding a GA 20-oxidase [gibberellin, 2-oxoglutarate:oxygen oxidoreductase (20-hydroxylating, oxidizing) EC 1.14.11.-] by screening a cDNA library from developing cotyledons of pumpkin (Cucurbita maxima L.) for expression of this enzyme. When mRNA from either the cotyledons or the endosperm was translated in vitro using rabbit reticulocyte lysates, the products contained GA12 20-oxidase activity. A polyclonal antiserum was raised against the amino acid sequence of a peptide released by tryptic digestion of purified GA 20-oxidase from the endosperm. A cDNA expression library in lambda gt11 was prepared from cotyledon mRNA and screened with the antiserum. The identity of positive clones was confirmed by the demonstration of GA12 20-oxidase activity in single bacteriophage plaques. Recombinant protein from a selected clone catalyzed the three-step conversions of GA12 to GA25 and of GA53 to GA17, as well as the formation of the C19-GAs, GA1, GA9, and GA20, from their respective aldehyde precursors, GA23, GA24, and GA19. The nucleotide sequence of the cDNA insert contains an open reading frame of 1158 nt encoding a protein of 386 amino acid residues. The predicted M(r) (43,321) and pI (5.3) are similar to those determined experimentally for the native GA 20-oxidase. Furthermore, the derived amino acid sequence includes sequences obtained from the N terminus and two tryptic peptides from the native enzyme. It also contains regions that are highly conserved in a group of non-heme Fe-containing dioxygenases. Images PMID:8078921

  17. Cloning and sequence analysis of a cDNA encoding the alpha-subunit of mouse beta-N-acetylhexosaminidase and comparison with the human enzyme.

    PubMed Central

    Beccari, T; Hoade, J; Orlacchio, A; Stirling, J L

    1992-01-01

    cDNAs encoding the mouse beta-N-acetylhexosaminidase alpha-subunit were isolated from a mouse testis library. The longest of these (1.7 kb) was sequenced and showed 83% similarity with the human alpha-subunit cDNA sequence. The 5' end of the coding sequence was obtained from a genomic DNA clone. Alignment of the human and mouse sequences showed that all three putative N-glycosylation sites are conserved, but that the mouse alpha-subunit has an additional site towards the C-terminus. All eight cysteines in the human sequence are conserved in the mouse. There are an additional two cysteines in the mouse alpha-subunit signal peptide. All amino acids affected in Tay-Sachs-disease mutations are conserved in the mouse. Images Fig. 1. PMID:1379046

  18. Intervening sequences in a plant gene-comparison of the partial sequence of cDNA and genomic DNA of French bean phaseolin

    NASA Astrophysics Data System (ADS)

    Sun, S. M.; Slightom, J. L.; Hall, T. C.

    1981-01-01

    A plant gene coding for the major storage protein (phaseolin, G1-globulin) of the French bean was isolated from a genomic library constructed in the phage vector Charon 24A. Comparison of the nucleotide sequence of part of the gene with that of the cloned messenger RNA (cDNA) revealed the presence of three intervening sequences, all beginning with GTand ending with AG. The 5' and 3' boundaries of intervening sequences TVS-A (88 base pairs) and IVS-B (124 base pairs) are similar to those described for animal and viral genes, but the 3' boundary of IVS-C (129 base pairs) shows some differences. A sequence of 185 amino acids deduced from the cloned DMAs represents about 40% of a phaseolin polypeptide.

  19. FragIdent--automatic identification and characterisation of cDNA-fragments.

    PubMed

    Seelow, Dominik; Goehler, Heike; Hoffmann, Katrin

    2009-03-02

    Many genetic studies and functional assays are based on cDNA fragments. After the generation of cDNA fragments from an mRNA sample, their content is at first unknown and must be assigned by sequencing reactions or hybridisation experiments. Even in characterised libraries, a considerable number of clones are wrongly annotated. Furthermore, mix-ups can happen in the laboratory. It is therefore essential to the relevance of experimental results to confirm or determine the identity of the employed cDNA fragments. However, the manual approach for the characterisation of these fragments using BLAST web interfaces is not suited for larger number of sequences and so far, no user-friendly software is publicly available. Here we present the development of FragIdent, an application for the automatic identification of open reading frames (ORFs) within cDNA-fragments. The software performs BLAST analyses to identify the genes represented by the sequences and suggests primers to complete the sequencing of the whole insert. Gene-specific information as well as the protein domains encoded by the cDNA fragment are retrieved from Internet-based databases and included in the output. The application features an intuitive graphical interface and is designed for researchers without any bioinformatics skills. It is suited for projects comprising up to several hundred different clones. We used FragIdent to identify 84 cDNA clones from a yeast two-hybrid experiment. Furthermore, we identified 131 protein domains within our analysed clones. The source code is freely available from our homepage at http://compbio.charite.de/genetik/FragIdent/.

  20. [Community structure and phylogenetic analysis of cyanobacteria in cryoconite from surface of the Glacier No. 1 in the Tianshan Mountains].

    PubMed

    Ni, Xuejiao; Qi, Xing'e; Gu, Yanling; Zheng, Xiaoji; Dong, Juan; Ni, Yongqing; Cheng, Guodong

    2014-11-04

    The purpose of this study is to characterize the community composition and phylogenetic analysis of cyanobacteria from supraglacial cryoconite of the Glacier No. 1 in the Tianshan Mountains, China. We amplified 16S rRNA genes from the extracted cryoconite DNA by PCR with 2 pairs of cyanobacteria-specific primers. Amplificon was used to construct 16S rRNA genes clone library. The estimation of species richness, diversity indices, and rarefaction curve of the 16S rRNA genes library were determined based on representative phylotypes (OTUs). Analysis of 16S rRNA gene sequences allowed grouping of 101 clones into 12 phylotypes (OTUs) using a cut-off of 97% identity. The phylogenetic analysis revealed that most of sequences affiliated to the order Oscillatoriales and Chroococcales except that three were unclassified. The clone library was dominated by representatives of the order Oscillatoriales (81% of the total clones), and the most abundant organisms within this order were in the genus Phormidium (68 clones) including clones grouping into four phylotypes. The only clone of Chroococcales was closely related to the genus Chamaesiphon with 97% similarity. In addition, comparison of soil chemical properties between different habitats indicated that supraglacial cryoconite supported significantly higher the content of available phosphorus and potassium, nitrate nitrogen and organic matter compared with the forefield of the Glacier No. 1. The diversity index of cyanobacteria were relatively high in supraglacial cryoconite of the Glacier No. 1 in the Tianshan Mountains. The community structure was dominated by members of the genus Phormidium. This study may enrich our knowledge on biogeochemical processes and ecological distribution of cyanobacterial populations in glacial ecosystem.

  1. Cloning and characterization of transferrin cDNA and rapid detection of transferrin gene polymorphism in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Tange, N; Jong-Young, L; Mikawa, N; Hirono, I; Aoki, T

    1997-12-01

    A cDNA clone of rainbow trout (Oncorhynchus mykiss) transferrin was obtained from a liver cDNA library. The 2537-bp cDNA sequence contained an open reading frame encoding 691 amino acids and the 5' and 3' noncoding regions. The amino acid sequences at the iron-binding sites and the two N-linked glycosylation sites, and the cysteine residues were consistent with known, conserved vertebrate transferrin cDNA sequences. Single N-linked glycosylation sites existed on the N- and C-lobe. The deduced amino acid sequence of the rainbow trout transferrin cDNA had 92.9% identities with transferrin of coho salmon (Oncorhynchus kisutch); 85%, Atlantic salmon (Salmo salar); 67.3%, medaka (Oryzias latipes); 61.3% Atlantic cod (Gadus morhua); and 59.7%, Japanese flounder (Paralichthys olivaceus). The long and accurate polymerase chain reaction (LA-PCR) was used to amplify approximately 6.5 kb of the transferrin gene from rainbow trout genomic DNA. Restriction fragment length polymorphisms (RFLPs) of the LA-PCR products revealed three digestion patterns in 22 samples.

  2. Analysis of Differentially Expressed Genes Associated with Coronatine-Induced Laticifer Differentiation in the Rubber Tree by Subtractive Hybridization Suppression

    PubMed Central

    Zhang, Shi-Xin; Wu, Shao-Hua; Chen, Yue-Yi; Tian, Wei-Min

    2015-01-01

    The secondary laticifer in the secondary phloem is differentiated from the vascular cambia of the rubber tree (Hevea brasiliensis Muell. Arg.). The number of secondary laticifers is closely related to the rubber yield potential of Hevea. Pharmacological data show that jasmonic acid and its precursor linolenic acid are effective in inducing secondary laticifer differentiation in epicormic shoots of the rubber tree. In the present study, an experimental system of coronatine-induced laticifer differentiation was developed to perform SSH identification of genes with differential expression. A total of 528 positive clones were obtained by blue-white screening, of which 248 clones came from the forward SSH library while 280 clones came from the reverse SSH library. Approximately 215 of the 248 clones and 171 of the 280 clones contained cDNA inserts by colony PCR screening. A total of 286 of the 386 ESTs were detected to be differentially expressed by reverse northern blot and sequenced. Approximately 147 unigenes with an average length of 497 bp from the forward and 109 unigenes with an average length of 514 bp from the reverse SSH libraries were assembled and annotated. The unigenes were associated with the stress/defense response, plant hormone signal transduction and structure development. It is suggested that Ca2+ signal transduction and redox seem to be involved in differentiation, while PGA and EIF are associated with the division of cambium initials for COR-induced secondary laticifer differentiation in the rubber tree. PMID:26147807

  3. Genotype Specification Language.

    PubMed

    Wilson, Erin H; Sagawa, Shiori; Weis, James W; Schubert, Max G; Bissell, Michael; Hawthorne, Brian; Reeves, Christopher D; Dean, Jed; Platt, Darren

    2016-06-17

    We describe here the Genotype Specification Language (GSL), a language that facilitates the rapid design of large and complex DNA constructs used to engineer genomes. The GSL compiler implements a high-level language based on traditional genetic notation, as well as a set of low-level DNA manipulation primitives. The language allows facile incorporation of parts from a library of cloned DNA constructs and from the "natural" library of parts in fully sequenced and annotated genomes. GSL was designed to engage genetic engineers in their native language while providing a framework for higher level abstract tooling. To this end we define four language levels, Level 0 (literal DNA sequence) through Level 3, with increasing abstraction of part selection and construction paths. GSL targets an intermediate language based on DNA slices that translates efficiently into a wide range of final output formats, such as FASTA and GenBank, and includes formats that specify instructions and materials such as oligonucleotide primers to allow the physical construction of the GSL designs by individual strain engineers or an automated DNA assembly core facility.

  4. Application of rDNA-PCR amplification and DGGE fingerprinting for detection of microbial diversity in a Malaysian crude oil.

    PubMed

    Liew, Pauline Woanying; Jong, Bor Chyan

    2008-05-01

    Two culture-independent methods, namely ribosomal DNA libraries and denaturing gradient gel electrophoresis (DGGE), were adopted to examine the microbial community of a Malaysian light crude oil. In this study, both 16S and 18S rDNAs were PCR-amplified from bulk DNA of crude oil samples, cloned, and sequenced. Analyses of restriction fragment length polymorphism (RFLP) and phylogenetics clustered the 16S and 18S rDNA sequences into seven and six groups, respectively. The ribosomal DNA sequences obtained showed sequence similarity between 90 to 100% to those available in the GenBank database. The closest relatives documented for the 16S rDNAs include member species of Thermoincola and Rhodopseudomonas, whereas the closest fungal relatives include Acremonium, Ceriporiopsis, Xeromyces, Lecythophora, and Candida. Others were affiliated to uncultured bacteria and uncultured ascomycete. The 16S rDNA library demonstrated predomination by a single uncultured bacterial type by >80% relative abundance. The predomination was confirmed by DGGE analysis.

  5. Methanotroph Diversity in Landfill Soil: Isolation of Novel Type I and Type II Methanotrophs Whose Presence Was Suggested by Culture-Independent 16S Ribosomal DNA Analysis

    PubMed Central

    Wise, Mark G.; McArthur, J Vaun; Shimkets, Lawrence J.

    1999-01-01

    The diversity of the methanotrophic community in mildly acidic landfill cover soil was assessed by three methods: two culture-independent molecular approaches and a traditional culture-based approach. For the first of the molecular studies, two primer pairs specific for the 16S rRNA gene of validly published type I (including the former type X) and type II methanotrophs were identified and tested. These primers were used to amplify directly extracted soil DNA, and the products were used to construct type I and type II clone libraries. The second molecular approach, based on denaturing gradient gel electrophoresis (DGGE), provided profiles of the methanotrophic community members as distinguished by sequence differences in variable region 3 of the 16S ribosomal DNA. For the culturing studies, an extinction-dilution technique was employed to isolate slow-growing but numerically dominant strains. The key variables of the series of enrichment conditions were initial pH (4.8 versus 6.8), air/CH4/CO2 headspace ratio (50:45:5 versus 90:9:1), and concentration of the medium (1× nitrate minimal salts [NMS] versus 0.2× NMS). Screening of the isolates showed that the nutrient-rich 1× NMS selected for type I methanotrophs, while the nutrient-poor 0.2× NMS tended to enrich for type II methanotrophs. Partial sequencing of the 16S rRNA gene from selected clones and isolates revealed some of the same novel sequence types. Phylogenetic analysis of the type I clone library suggested the presence of a new phylotype related to the Methylobacter-Methylomicrobium group, and this was confirmed by isolating two members of this cluster. The type II clone library also suggested the existence of a novel group of related species distinct from the validly published Methylosinus and Methylocystis genera, and two members of this cluster were also successfully cultured. Partial sequencing of the pmoA gene, which codes for the 27-kDa polypeptide of the particulate methane monooxygenase, reaffirmed the phylogenetic placement of the four isolates. Finally, not all of the bands separated by DGGE could be accounted for by the clones and isolates. This polyphasic assessment of community structure demonstrates that much diversity among the obligate methane oxidizers has yet to be formally described. PMID:10543800

  6. Rapid construction of a Bacterial Artificial Chromosomal (BAC) expression vector using designer DNA fragments.

    PubMed

    Chen, Chao; Zhao, Xinqing; Jin, Yingyu; Zhao, Zongbao Kent; Suh, Joo-Won

    2014-11-01

    Bacterial artificial chromosomal (BAC) vectors are increasingly being used in cloning large DNA fragments containing complex biosynthetic pathways to facilitate heterologous production of microbial metabolites for drug development. To express inserted genes using Streptomyces species as the production hosts, an integration expression cassette is required to be inserted into the BAC vector, which includes genetic elements encoding a phage-specific attachment site, an integrase, an origin of transfer, a selection marker and a promoter. Due to the large sizes of DNA inserted into the BAC vectors, it is normally inefficient and time-consuming to assemble these fragments by routine PCR amplifications and restriction-ligations. Here we present a rapid method to insert fragments to construct BAC-based expression vectors. A DNA fragment of about 130 bp was designed, which contains upstream and downstream homologous sequences of both BAC vector and pIB139 plasmid carrying the whole integration expression cassette. In-Fusion cloning was performed using the designer DNA fragment to modify pIB139, followed by λ-RED-mediated recombination to obtain the BAC-based expression vector. We demonstrated the effectiveness of this method by rapid construction of a BAC-based expression vector with an insert of about 120 kb that contains the entire gene cluster for biosynthesis of immunosuppressant FK506. The empty BAC-based expression vector constructed in this study can be conveniently used for construction of BAC libraries using either microbial pure culture or environmental DNA, and the selected BAC clones can be directly used for heterologous expression. Alternatively, if a BAC library has already been constructed using a commercial BAC vector, the selected BAC vectors can be manipulated using the method described here to get the BAC-based expression vectors with desired gene clusters for heterologous expression. The rapid construction of a BAC-based expression vector facilitates heterologous expression of large gene clusters for drug discovery. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. SSHscreen and SSHdb, generic software for microarray based gene discovery: application to the stress response in cowpea

    PubMed Central

    2010-01-01

    Background Suppression subtractive hybridization is a popular technique for gene discovery from non-model organisms without an annotated genome sequence, such as cowpea (Vigna unguiculata (L.) Walp). We aimed to use this method to enrich for genes expressed during drought stress in a drought tolerant cowpea line. However, current methods were inefficient in screening libraries and management of the sequence data, and thus there was a need to develop software tools to facilitate the process. Results Forward and reverse cDNA libraries enriched for cowpea drought response genes were screened on microarrays, and the R software package SSHscreen 2.0.1 was developed (i) to normalize the data effectively using spike-in control spot normalization, and (ii) to select clones for sequencing based on the calculation of enrichment ratios with associated statistics. Enrichment ratio 3 values for each clone showed that 62% of the forward library and 34% of the reverse library clones were significantly differentially expressed by drought stress (adjusted p value < 0.05). Enrichment ratio 2 calculations showed that > 88% of the clones in both libraries were derived from rare transcripts in the original tester samples, thus supporting the notion that suppression subtractive hybridization enriches for rare transcripts. A set of 118 clones were chosen for sequencing, and drought-induced cowpea genes were identified, the most interesting encoding a late embryogenesis abundant Lea5 protein, a glutathione S-transferase, a thaumatin, a universal stress protein, and a wound induced protein. A lipid transfer protein and several components of photosynthesis were down-regulated by the drought stress. Reverse transcriptase quantitative PCR confirmed the enrichment ratio values for the selected cowpea genes. SSHdb, a web-accessible database, was developed to manage the clone sequences and combine the SSHscreen data with sequence annotations derived from BLAST and Blast2GO. The self-BLAST function within SSHdb grouped redundant clones together and illustrated that the SSHscreen plots are a useful tool for choosing anonymous clones for sequencing, since redundant clones cluster together on the enrichment ratio plots. Conclusions We developed the SSHscreen-SSHdb software pipeline, which greatly facilitates gene discovery using suppression subtractive hybridization by improving the selection of clones for sequencing after screening the library on a small number of microarrays. Annotation of the sequence information and collaboration was further enhanced through a web-based SSHdb database, and we illustrated this through identification of drought responsive genes from cowpea, which can now be investigated in gene function studies. SSH is a popular and powerful gene discovery tool, and therefore this pipeline will have application for gene discovery in any biological system, particularly non-model organisms. SSHscreen 2.0.1 and a link to SSHdb are available from http://microarray.up.ac.za/SSHscreen. PMID:20359330

  8. Construction of Rabbit Immune Antibody Libraries.

    PubMed

    Nguyen, Thi Thu Ha; Lee, Jong Seo; Shim, Hyunbo

    2018-01-01

    Rabbits have distinct advantages over mice as a source of target-specific antibodies. They produce higher affinity antibodies than mice, and may elicit strong immune response against antigens or epitopes that are poorly immunogenic or tolerated in mice. However, a great majority of currently available monoclonal antibodies are of murine origin because of the wider availability of murine fusion partner cell lines and well-established tools and protocols for fusion and cloning of mouse hybridoma. Phage-display selection of antibody libraries is an alternative method to hybridoma technology for the generation of target-specific monoclonal antibodies. High-affinity monoclonal antibodies from nonmurine species can readily be obtained by constructing immune antibody libraries from B cells of the immunized animal and screening the library by phage display. In this article, we describe the construction of a rabbit immune Fab library for the facile isolation of rabbit monoclonal antibodies. After immunization, B-cell cDNA is obtained from the spleen of the animal, from which antibody variable domain repertoires are amplified and assembled into a Fab repertoire by PCR. The Fab genes are then cloned into a phagemid vector and transformed to E. coli, from which a phage-displayed immune Fab library is rescued. Such a library can be biopanned against the immunization antigen for rapid identification of high-affinity, target-specific rabbit monoclonal antibodies.

  9. Molecular cloning of a catalase cDNA from Nicotiana glutinosa L. and its repression by tobacco mosaic virus infection.

    PubMed

    Yi, S Y; Yu, S H; Choi, D

    1999-06-30

    Recent reports revealed that catalase has a role in the plant defense mechanism against a broad range of pathogens through being inhibited by salicylic acid (SA). During an effort to clone disease resistance-responsive genes, a cDNA encoding catalase (Ngcat1; Nicotiana glutinosa cat1) was isolated from a tobacco cDNA library. In N. glutinosa, catalase is encoded by a small gene family. The deduced amino acid sequence of the Ngcat1 cDNA has 98% homology with the cat1 gene of N. plumbaginifolia. The Ngcat1 expression is controlled by the circadian clock, and its mRNA level is the most abundant in leaves. Both the expression of Ngcat1 mRNA and its enzyme activity in the tobacco plant undergoing a hypersensitive response (HR) to TMV infection were repressed. The repression of the mRNA level was also observed following treatment with SA. These results imply that SA may act as an inhibitor of catalase transcription during the HR of tobacco. Cloning and expression of the Ngcat1 in tobacco following pathogen infection and SA treatment are presented.

  10. Sequence evaluation of four specific cDNA libraries for developmental genomics of sunflower.

    PubMed

    Tamborindeguy, C; Ben, C; Liboz, T; Gentzbittel, L

    2004-04-01

    Four different cDNA libraries were constructed from sunflower protoplasts growing under embryogenic and non-embryogenic conditions: one standard library from each condition and two subtractive libraries in opposite sense. A total of 22,876 cDNA clones were obtained and 4800 ESTs were sequenced, giving rise to 2479 high quality ESTs representing an unigene set of 1502 sequences. This set was compared with ESTs represented in public databases using the programs BLASTN and BLASTX, and its members were classified according to putative function using the catalog in the Kyoto Encyclopedia of Genes and Genomes (KEGG). Some 33% of sequences failed to align with existing plant ESTs and therefore represent putative novel genes. The libraries show a low level of redundancy and, on average, 50% of the present ESTs have not been previously reported for sunflower. Several potentially interesting genes were identified, based on their homology with genes involved in animal zygotic division or plant embryogenesis. We also identified two ESTs that show significantly different levels of expression under embryogenic and non-embryogenic conditions. The libraries described here represent an original and valuable resource for the discovery of yet unknown genes putatively involved in dicot embryogenesis and improving our knowledge of the mechanisms involved in polarity acquisition by plant embryos.

  11. Molecular analysis of the biological bleaching of kraft pulps by Trametes versicolor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumonceaux, T.J.; Archibald, F.S.

    1996-10-01

    Biological bleaching of kraft pulps by the fungus Trametes versicolor, based on the biodegradation of the recalcitrant polymer, lignin, could replace chlorine-based bleaching in Canadian pulp and paper mills. Enzymes that may be involved in lignin degradation include manganese peroxidase (MnP), laccase, and cellobiose-quinone oxidoreductase (CBQase). All three of these enzymatic activities are thought to interact extensively in cyclic oxidation/reduction reactions which ultimately bring about the degradation of lignin. We have constructed a cDNA library from T versicolor with the aim of isolating clones encoding factors that are relevant to biobleaching. We first determined the optimum growth conditions for expressionmore » of bleaching-related mRNA. A clear induction of bleaching ability was observed when the fungus was preincubated with 0.25% acid-washed pulp; the augmentation of bleaching was not explained by differences in MnP or laccase levels, suggesting that the expression of either CBQase or unidentified biobleaching factors was responsible for the increased pulp brightness. mRNA isolated from induced cultures was used to construct a cDNA library in a XZAP vector. This library has been probed with a degenerate oligonucleotide probe based upon a peptide sequence derived from purified CBQase, resulting in the identification of several hybridizing cDNA molecules. The CBQase clone will be used to examine in further detail the potential role of this enzyme in pulp biobleaching and lignin degradation.« less

  12. Functional genomics to discover antibiotic resistance genes: The paradigm of resistance to colistin mediated by ethanolamine phosphotransferase in Shewanella algae MARS 14.

    PubMed

    Telke, Amar A; Rolain, Jean-Marc

    2015-12-01

    Shewanella algae MARS 14 is a colistin-resistant clinical isolate retrieved from bronchoalveolar lavage of a hospitalised patient. A functional genomics strategy was employed to discover the molecular support for colistin resistance in S. algae MARS 14. A pZE21 MCS-1 plasmid-based genomic expression library was constructed in Escherichia coli TOP10. The estimated library size was 1.30×10(8) bp. Functional screening of colistin-resistant clones was carried out on Luria-Bertani agar containing 8 mg/L colistin. Five colistin-resistant clones were obtained after complete screening of the genomic expression library. Analysis of DNA sequencing results found a unique gene in all selected clones. Amino acid sequence analysis of this unique gene using the Integrated Microbial Genomes (IMG) and KEGG databases revealed that this gene encodes ethanolamine phosphotransferase (EptA, or so-called PmrC). Reverse transcription PCR analysis indicated that resistance to colistin in S. algae MARS 14 was associated with overexpression of EptA (27-fold increase), which plays a crucial role in the arrangement of outer membrane lipopolysaccharide. Copyright © 2015 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  13. cDNA encoding a polypeptide including a hevein sequence

    DOEpatents

    Raikhel, Natasha V.; Broekaert, Willem F.; Chua, Nam-Hai; Kush, Anil

    1993-02-16

    A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a pu GOVERNMENT RIGHTS This application was funded under Department of Energy Contract DE-AC02-76ER01338. The U.S. Government has certain rights under this application and any patent issuing thereon.

  14. Identification and characterization of novel and potent transcription promoters of Francisella tularensis.

    PubMed

    Zaide, Galia; Grosfeld, Haim; Ehrlich, Sharon; Zvi, Anat; Cohen, Ofer; Shafferman, Avigdor

    2011-03-01

    Two alternative promoter trap libraries, based on the green fluorescence protein (gfp) reporter and on the chloramphenicol acetyltransferase (cat) cassette, were constructed for isolation of potent Francisella tularensis promoters. Of the 26,000 F. tularensis strain LVS gfp library clones, only 3 exhibited visible fluorescence following UV illumination and all appeared to carry the bacterioferritin promoter (Pbfr). Out of a total of 2,000 chloramphenicol-resistant LVS clones isolated from the cat promoter library, we arbitrarily selected 40 for further analysis. Over 80% of these clones carry unique F. tularensis DNA sequences which appear to drive a wide range of protein expression, as determined by specific chloramphenicol acetyltransferase (CAT) Western dot blot and enzymatic assays. The DNA sequence information for the 33 unique and novel F. tularensis promoters reported here, along with the results of in silico and primer extension analyses, suggest that F. tularensis possesses classical Escherichia coli σ(70)-related promoter motifs. These motifs include the -10 (TATAAT) and -35 [TTGA(C/T)A] domains and an AT-rich region upstream from -35, reminiscent of but distinct from the E. coli upstream region that is termed the UP element. The most efficient promoter identified (Pbfr) appears to be about 10 times more potent than the F. tularensis groEL promoter and is probably among the strongest promoters in F. tularensis. The battery of promoters identified in this work will be useful, among other things, for genetic manipulation in the background of F. tularensis intended to gain better understanding of the mechanisms involved in pathogenesis and virulence, as well as for vaccine development studies.

  15. Mobius Assembly: A versatile Golden-Gate framework towards universal DNA assembly.

    PubMed

    Andreou, Andreas I; Nakayama, Naomi

    2018-01-01

    Synthetic biology builds upon the foundation of engineering principles, prompting innovation and improvement in biotechnology via a design-build-test-learn cycle. A community-wide standard in DNA assembly would enable bio-molecular engineering at the levels of predictivity and universality in design and construction that are comparable to other engineering fields. Golden Gate Assembly technology, with its robust capability to unidirectionally assemble numerous DNA fragments in a one-tube reaction, has the potential to deliver a universal standard framework for DNA assembly. While current Golden Gate Assembly frameworks (e.g. MoClo and Golden Braid) render either high cloning capacity or vector toolkit simplicity, the technology can be made more versatile-simple, streamlined, and cost/labor-efficient, without compromising capacity. Here we report the development of a new Golden Gate Assembly framework named Mobius Assembly, which combines vector toolkit simplicity with high cloning capacity. It is based on a two-level, hierarchical approach and utilizes a low-frequency cutter to reduce domestication requirements. Mobius Assembly embraces the standard overhang designs designated by MoClo, Golden Braid, and Phytobricks and is largely compatible with already available Golden Gate part libraries. In addition, dropout cassettes encoding chromogenic proteins were implemented for cost-free visible cloning screening that color-code different cloning levels. As proofs of concept, we have successfully assembled up to 16 transcriptional units of various pigmentation genes in both operon and multigene arrangements. Taken together, Mobius Assembly delivers enhanced versatility and efficiency in DNA assembly, facilitating improved standardization and automation.

  16. Characterization of the molecular defect in a feline model for type II GM2-gangliosidosis (Sandhoff disease).

    PubMed Central

    Muldoon, L. L.; Neuwelt, E. A.; Pagel, M. A.; Weiss, D. L.

    1994-01-01

    The Korat cat provides an animal model for type II GM2-gangliosidosis (Sandhoff disease) that may be suitable for tests of gene replacement therapy with the HEXB gene encoding the beta subunit of the beta-hexosaminidases. In the present report, we examined the brain and liver pathology of a typical Sandhoff-affected cat. We characterized the feline HEXB complementary DNA (cDNA) and determined the molecular defect in this feline model. cDNA libraries were produced from one normal and one affected animal, and cDNA clones homologous to human HEXB were sequenced. In the affected cDNA clone, the deletion of a cytosine residue at position +39 of the putative coding region results in a frame shift and a stop codon at base +191. This disease-related deletion was consistently detected by sequencing of cloned polymerase chain reaction amplified reverse transcribed messenger RNA from one more normal Korat and two additional affected animals. The defect was further demonstrated using single-strand conformational polymorphism analysis of the polymerase chain reaction products. In addition, alternative splicing of both normal and affected messenger RNAs was demonstrated. These results should facilitate the use of this animal model to assess gene therapy. Images Figure 1 Figure 3 Figure 4 Figure 5 PMID:8178934

  17. Characterization of the molecular defect in a feline model for type II GM2-gangliosidosis (Sandhoff disease).

    PubMed

    Muldoon, L L; Neuwelt, E A; Pagel, M A; Weiss, D L

    1994-05-01

    The Korat cat provides an animal model for type II GM2-gangliosidosis (Sandhoff disease) that may be suitable for tests of gene replacement therapy with the HEXB gene encoding the beta subunit of the beta-hexosaminidases. In the present report, we examined the brain and liver pathology of a typical Sandhoff-affected cat. We characterized the feline HEXB complementary DNA (cDNA) and determined the molecular defect in this feline model. cDNA libraries were produced from one normal and one affected animal, and cDNA clones homologous to human HEXB were sequenced. In the affected cDNA clone, the deletion of a cytosine residue at position +39 of the putative coding region results in a frame shift and a stop codon at base +191. This disease-related deletion was consistently detected by sequencing of cloned polymerase chain reaction amplified reverse transcribed messenger RNA from one more normal Korat and two additional affected animals. The defect was further demonstrated using single-strand conformational polymorphism analysis of the polymerase chain reaction products. In addition, alternative splicing of both normal and affected messenger RNAs was demonstrated. These results should facilitate the use of this animal model to assess gene therapy.

  18. Molecular cloning of two human liver 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase isoenzymes that are identical with chlordecone reductase and bile-acid binder.

    PubMed Central

    Deyashiki, Y; Ogasawara, A; Nakayama, T; Nakanishi, M; Miyabe, Y; Sato, K; Hara, A

    1994-01-01

    Human liver contains two dihydrodiol dehydrogenases, DD2 and DD4, associated with 3 alpha-hydroxysteroid dehydrogenase activity. We have raised polyclonal antibodies that cross-reacted with the two enzymes and isolated two 1.2 kb cDNA clones (C9 and C11) for the two enzymes from a human liver cDNA library using the antibodies. The clones of C9 and C11 contained coding sequences corresponding to 306 and 321 amino acid residues respectively, but lacked 5'-coding regions around the initiation codon. Sequence analyses of several peptides obtained by enzymic and chemical cleavages of the two purified enzymes verified that the C9 and C11 clones encoded DD2 and DD4 respectively, and further indicated that the sequence of DD2 had at least additional 16 residues upward from the N-terminal sequence deduced from the cDNA. There was 82% amino acid sequence identity between the two enzymes, indicating that the enzymes are genetic isoenzymes. A computer-based comparison of the cDNAs of the isoenzymes with the DNA sequence database revealed that the nucleotide and amino acid sequences of DD2 and DD4 are virtually identical with those of human bile-acid binder and human chlordecone reductase cDNAs respectively. Images Figure 1 PMID:8172617

  19. Analyses of chicken immunoglobulin light chain cDNA clones indicate a few germline V lambda genes and allotypes of the C lambda locus.

    PubMed

    Parvari, R; Ziv, E; Lentner, F; Tel-Or, S; Burstein, Y; Schechter, I

    1987-01-01

    cDNA libraries of chicken spleen and Harder gland (a gland enriched with immunocytes) constructed in pBR322 were screened by differential hybridization and by mRNA hybrid-selected translation. Eleven L-chain cDNA clones were identified from which VL probes were prepared and each was annealed with kidney DNA restriction digests. All VL probes revealed the same set of bands, corresponding to about 15 germline VL genes of one subgroup. The nucleotide sequences of six VL clones showed greater than or equal to 85% homology, and the predicted amino acid sequences were identical or nearly identical to the major N-terminal sequence of L-chains in chicken serum. These findings, and the fact that the VL clones were randomly selected from normal lymphoid tissues, strongly indicate that the bulk of chicken L-chains is encoded by a few germline VL genes, probably much less than 15 since many of the VL genes are known to be pseudogenes. Therefore, it is likely that somatic mechanisms operating prior to specific triggering by antigen play a major role in the generation of antibody diversity in chicken. Analysis of the constant region locus (sequencing of CL gene and cDNAs) demonstrate a single CL isotype and suggest the presence of CL allotypes.

  20. Construction of cDNA library from intestine, mesentery and coelomocyte of Apostichopus japonicus Selenka infected with Vibrio sp. and a preliminary analysis of immunity-related genes

    NASA Astrophysics Data System (ADS)

    Liu, Hongzhan; Zheng, Fengrong; Sun, Xiuqin; Cai, Yimei

    2012-06-01

    The aquaculture of sea cucumber Apostichopus japonicus (Echinodermata, Holothuroidea) has grown rapidly during recent years and has become an important sector of the marine industry in Northern China. However, with the rapid growth of the industry and the use of non-standard culture techniques, epidemic diseases of A. japonicus now pose increasing problems to the industry. To screen the genes with stress response to bacterial infection in sea cucumber at a genome wide level, we constructed a cDNA library from A. japonicus Selenka (Aspidochirotida: Stichopodidae) after infecting them with Vibrio sp. for 48 h. Total RNA was extracted from the intestine, mesentery and coelomocyte of infected sea cucumber using Trizol and mRNA was isolated by Oligotex mRNA Kits. The ligated cDNAs were transformed into DH5α, and a library of 3.24×105 clones (3.24×105 cfu mL-1) was obtained with the sizes of inserted fragments ranging from 0.8 to 2.5 kb. Sequencing the cDNA clones resulted in a total of 1106 ESTs that passed the quality control. BlastX and BlastN searches have identified 168 (31.5%) ESTs sharing significant homology with known sequences in NCBI protein or nucleotide databases. Among a panel of 25 putative immunity-related genes, serum lectin isoform, complement component 3, complement component 3-like genes were further studied by real-time PCR and they all increased more than 5 fold in response to Vibrio sp. challenge. Our library provides a valuable molecular tool for future study of invertebrate immunity against bacterial infection and our gene expression data indicates the importance of the immune system in the evolution and development of sea cucumber.

  1. Evaluation of the metabolic fate of munitions material (TNT & RDX) in plant systems. Initial assessment of plant DNA mutation spectra as a biomarker

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leung, F.; Cataldo, D.A.; Fellows, R.J.

    1995-09-01

    Munitions material can enter the environment as a result of manufacturing activities and field usage. Predictor methodologies, or biomarkers would enhance evaluation of environmental impacts. The goal of this exploratory study deoxyribonucleic acid (DNA) mutation frequency as a biomarker for munitions exposure. The approach e resolution of an effective repetitive sequence probe for the identification of characteristic mutations, and (2) the development of a testing media [a clonal cell line of carrot (Daucus carota) spension cells]. Commercially available probes demonstrated marginal resolution therefore a low-C{sub o}t library was then constructed. Three colonies from the low-C{sub o}t DNA library were screenedmore » and the DNA isolates sequenced. A suspension culture of carrot (Daucus carota) was developed. A mutation spectra experiment was initiated at a 10-mg TNT/L exposure concentration with the attempt to clone over 1500 single TNT-exposed cells. Over the following six months greater than 98% of the initially isolated cells were unable to survive and produce micro calluses. The remaining calli were too few to be statistically significant and the experiment was terminated. The biomarker concept itself remains to be disproved, but the need for large numbers of uniform clones to differentiate true mutations suggest that more direct techniques using whole tissues need to be developed.« less

  2. Assessing genetic structure and diversity of airborne bacterial communities by DNA fingerprinting and 16S rDNA clone library

    NASA Astrophysics Data System (ADS)

    Maron, Pierre-Alain; Lejon, David P. H.; Carvalho, Esmeralda; Bizet, Karine; Lemanceau, Philippe; Ranjard, Lionel; Mougel, Christophe

    The density, genetic structure and diversity of airborne bacterial communities were assessed in the outdoor atmosphere. Two air samples were collected on the same location (north of France) at two dates (March 2003 (sample1) and May 2003 (sample 2)). Molecular culture -independent methods were used to characterise airborne bacterial communities regardless of the cell culturability. The automated-ribosomal intergenic spacer analysis (A-RISA) was performed to characterise the community structure in each sample. For both sampling dates, complex A-RISA patterns were observed suggesting a highly diverse community structure, comparable to those found in soil, water or sediment environments. Furthermore, differences in the genetic structure of airborne bacterial communities were observed between samples 1 and 2 suggesting an important variability in time. A clone library of 16S rDNA directly amplified from air DNA of sample 1 was constructed and sequenced to analyse the community composition and diversity. The Proteobacteria group had the greatest representation (60%), with bacteria belonging to the different subdivisions α- (19%), β-(21%), γ-(12%) and δ-(8%). Firmicute and Actinobacteria were also well represented with 14% and 12%, respectively. Most of the identified bacteria are known to be commonly associated with soil or plant environments suggesting that the atmosphere is mainly colonised transiently by microorganisms from local sources, depending on air fluxes.

  3. A novel protein involved in heart development in Ambystoma mexicanum is localized in endoplasmic reticulum.

    PubMed

    Jia, P; Zhang, C; Huang, X P; Poda, M; Akbas, F; Lemanski, S L; Erginel-Unaltuna, N; Lemanski, L F

    2008-11-01

    The discovery of the naturally occurring cardiac non-function (c) animal strain in Ambystoma mexicanum (axolotl) provides a valuable animal model to study cardiomyocyte differentiation. In homozygous mutant animals (c/c), rhythmic contractions of the embryonic heart are absent due to a lack of organized myofibrils. We have previously cloned a partial sequence of a peptide cDNA (N1) from an anterior-endoderm-conditioned-medium RNA library that had been shown to be able to rescue the mutant phenotype. In the current studies we have fully cloned the N1 full length cDNA sequence from the library. N1 protein has been detected in both adult heart and skeletal muscle but not in any other adult tissues. GFP-tagged expression of the N1 protein has revealed localization of the N1 protein in the endoplasmic reticulum (ER). Results from in situ hybridization experiments have confirmed the dramatic decrease of expression of N1 mRNA in mutant (c/c) embryos indicating that the N1 gene is involved in heart development.

  4. Phylogenetic and physiological diversity of microorganisms isolated from a deep greenland glacier ice core

    NASA Technical Reports Server (NTRS)

    Miteva, V. I.; Sheridan, P. P.; Brenchley, J. E.

    2004-01-01

    We studied a sample from the GISP 2 (Greenland Ice Sheet Project) ice core to determine the diversity and survival of microorganisms trapped in the ice at least 120,000 years ago. Previously, we examined the phylogenetic relationships among 16S ribosomal DNA (rDNA) sequences in a clone library obtained by PCR amplification from genomic DNA extracted from anaerobic enrichments. Here we report the isolation of nearly 800 aerobic organisms that were grouped by morphology and amplified rDNA restriction analysis patterns to select isolates for further study. The phylogenetic analyses of 56 representative rDNA sequences showed that the isolates belonged to four major phylogenetic groups: the high-G+C gram-positives, low-G+C gram-positives, Proteobacteria, and the Cytophaga-Flavobacterium-Bacteroides group. The most abundant and diverse isolates were within the high-G+C gram-positive cluster that had not been represented in the clone library. The Jukes-Cantor evolutionary distance matrix results suggested that at least 7 isolates represent new species within characterized genera and that 49 are different strains of known species. The isolates were further categorized based on the isolation conditions, temperature range for growth, enzyme activity, antibiotic resistance, presence of plasmids, and strain-specific genomic variations. A significant observation with implications for the development of novel and more effective cultivation methods was that preliminary incubation in anaerobic and aerobic liquid prior to plating on agar media greatly increased the recovery of CFU from the ice core sample.

  5. [Microbial community in the Anammox process of thermal denitration tail liquid].

    PubMed

    Li, Jin; Yu, Deshuang; Zhao, Dan; Wang, Xiaochen

    2014-12-01

    An anaerobic sequencing batch reactor (ASBR) was used to treat thermal denitration tail liquid and microbial community was studied. Activated sludge was taken from the reactor for scanning electron microscope analysis. The images showed that the dominant cells in the flora were oval cocci. Its diameter was about 0.7 μm. Through a series of molecular biology methods such as extracting total DNA from the sludge, PCR amplification, positive clone authentication and sequencing, we obtained the 16S rDNA sequences of the flora. Phylogenetic tree and clone library were established. The universal bacteria primers of 27F-1492R PCR amplification system obtained 85 clones and could be divided into 21 OTUS. The proportions were as follows: Proteobacteria 61.18%; Acidobacteria 17.65%; Chlorobi 8.24%; Chlorofexi 5.88%; Gemmatimonadetes 3.53%; Nitrospirae 2.35% and Planctomycetes 1.18%. The specific anammox bacterial primers of pla46rc-630r and AMX368-AMX820 PCR amplification system obtained 45 clones. They were divided into 3 OTUS. Candidatus brocadia sp. occupied 95.6% and unknown strains occupied 4.4%.

  6. Construction of a YAC contig and STS map spanning 2.5 Mbp in Xq25, the critical region for the X-linked lymphoproliferative (XLP) gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lanyi, A.; Li, B.F.; Li, S.

    1994-09-01

    X-linked lymphoproliferative disease (XLP) is characterized by a marked vulnerability in Epstein-Barr virus (EBV) infection. Infection of XLP patients with EBV invariably results in fatal mononucleosis, agammaglobulinemia or B-cell lymphoma. The XLP gene lies within a 10 cM region in Xq25 between DXS42 and DXS10. Initial chromosome studies revealed an interstitial, cytogenetically visible deletion in Xq25 in one XLP family (43-004). We estimated the size of the Xq25 deletion by dual laser flow karyotyping to involve 2% of the X chromosome, or approximately 3 Mbp of DNA sequences. To further delineate the deletion we performed a series of pulsed fieldmore » gel electrophoresis (PFGE) analyses which showed that DXS6 and DXS100, two Xq25-specific markers, are missing from 45-004 DNA. Five yeast artificial chromosomes (YACs) from a chromosome X specific YAC library containing sequences deleted in patient`s 43-004 DNA were isolated. These five YACs did not overlap, and their end fragments were used to screen the CEPH MegaYAC library. Seven YACs were isolated from the CEPH MegaYAC library. They could be arranged into a contig which spans between DXS6 and DXS100. The contig contains a minimum of 2.5 Mbp of human DNA. A total of 12 YAC end clone, lambda subclones and STS probes have been used to order clones within the contig. These reagents were also used in Southern blot and patients showed interstitial deletions in Xq25. The size of these deletions range between 0.5 and 2.5 Mbp. The shortest deletion probably represents the critical region for the XLP gene.« less

  7. Cloning and expression analysis of Zmglp1, a new germin-like protein gene in maize.

    PubMed

    Fan, Zhanmin; Gu, Hongya; Chen, Xiaowei; Song, Hui; Wang, Qian; Liu, Meihua; Qu, Li-Jia; Chen, Zhangliang

    2005-06-17

    The cDNA and genomic DNA of a green tissue-specific gene were cloned from maize (Zea mays L.) using cDNA-amplified fragment length polymorphism (cDNA-AFLP) and library screening. The deduced protein was highly similar to Hordeum vulgare germin-like protein 1 (HvGLP1), and the maize gene was therefore designated Zmglp1. Northern blot specifically detected the mRNA of Zmglp1 in young whorl leaves at the early-whorl stage. However, at the late-whorl, tassel, and silk stages, Zmglp1 transcripts were highly abundant in young whorl leaves; less abundant in mature leaves, young tassels, and cobs; and not detectable in roots, immature kernels, and stalks. RNA in situ hybridization revealed that Zmglp1 expressed only in mesophyllous, phloem, and guard cells in the young whorl leaves. Deletion analysis of the promoter in transgenic Arabidopsis resulted in the identification of several regions containing important regulatory cis-elements controlling the expression levels and circadian rhythm-oscillated patterns of Zmglp1.

  8. Homopolymer tail-mediated ligation PCR: a streamlined and highly efficient method for DNA cloning and library construction

    PubMed Central

    Lazinski, David W.; Camilli, Andrew

    2013-01-01

    The amplification of DNA fragments, cloned between user-defined 5′ and 3′ end sequences, is a prerequisite step in the use of many current applications including massively parallel sequencing (MPS). Here we describe an improved method, called homopolymer tail-mediated ligation PCR (HTML-PCR), that requires very little starting template, minimal hands-on effort, is cost-effective, and is suited for use in high-throughput and robotic methodologies. HTML-PCR starts with the addition of homopolymer tails of controlled lengths to the 3′ termini of a double-stranded genomic template. The homopolymer tails enable the annealing-assisted ligation of a hybrid oligonucleotide to the template's recessed 5′ ends. The hybrid oligonucleotide has a user-defined sequence at its 5′ end. This primer, together with a second primer composed of a longer region complementary to the homopolymer tail and fused to a second 5′ user-defined sequence, are used in a PCR reaction to generate the final product. The user-defined sequences can be varied to enable compatibility with a wide variety of downstream applications. We demonstrate our new method by constructing MPS libraries starting from nanogram and sub-nanogram quantities of Vibrio cholerae and Streptococcus pneumoniae genomic DNA. PMID:23311318

  9. Assessing the impact of fungicide enostroburin application on bacterial community in wheat phyllosphere.

    PubMed

    Gu, Likun; Bai, Zhihui; Jin, Bo; Hu, Qing; Wang, Huili; Zhuang, Guoqiang; Zhang, Hongxun

    2010-01-01

    Fungicides have been used extensively for controlling fungal pathogens of plants. However, little is known regarding the effects that fungicides upon the indigenous bacterial communities within the plant phyllosphere. The aims of this study were to assess the impact of fungicide enostroburin upon bacterial communities in wheat phyllosphere. Culture-independent methodologies of 16S rDNA clone library and 16S rDNA directed polymerase chain reaction with denaturing gradient gel electrophoresis (PCR-DGGE) were used for monitoring the change of bacterial community. The 16S rDNA clone library and PCR-DGGE analysis both confirmed the microbial community of wheat plant phyllosphere were predominantly of the gamma-Proteobacteria phyla. Results from PCR-DGGE analysis indicated a significant change in bacterial community structure within the phyllosphere following fungicide enostroburin application. Bands sequenced within control cultures were predominantly of Pseudomonas genus, but those bands sequenced in the treated samples were predominantly strains of Pantoea genus and Pseudomonas genus. Of interest was the appearance of two DGGE bands following fungicide treatment, one of which had sequence similarities (98%) to Pantoea sp. which might be a competitor of plant pathogens. This study revealed the wheat phyllosphere bacterial community composition and a shift in the bacterial community following fungicide enostroburin application.

  10. Chapter 7. Cloning and analysis of natural product pathways.

    PubMed

    Gust, Bertolt

    2009-01-01

    The identification of gene clusters of natural products has lead to an enormous wealth of information about their biosynthesis and its regulation, and about self-resistance mechanisms. Well-established routine techniques are now available for the cloning and sequencing of gene clusters. The subsequent functional analysis of the complex biosynthetic machinery requires efficient genetic tools for manipulation. Until recently, techniques for the introduction of defined changes into Streptomyces chromosomes were very time-consuming. In particular, manipulation of large DNA fragments has been challenging due to the absence of suitable restriction sites for restriction- and ligation-based techniques. The homologous recombination approach called recombineering (referred to as Red/ET-mediated recombination in this chapter) has greatly facilitated targeted genetic modifications of complex biosynthetic pathways from actinomycetes by eliminating many of the time-consuming and labor-intensive steps. This chapter describes techniques for the cloning and identification of biosynthetic gene clusters, for the generation of gene replacements within such clusters, for the construction of integrative library clones and their expression in heterologous hosts, and for the assembly of entire biosynthetic gene clusters from the inserts of individual library clones. A systematic approach toward insertional mutation of a complete Streptomyces genome is shown by the use of an in vitro transposon mutagenesis procedure.

  11. Toward functional genomics in bacteria: Analysis of gene expression in Escherichia coli from a bacterial artificial chromosome library of Bacillus cereus

    PubMed Central

    Rondon, Michelle R.; Raffel, Sandra J.; Goodman, Robert M.; Handelsman, Jo

    1999-01-01

    As the study of microbes moves into the era of functional genomics, there is an increasing need for molecular tools for analysis of a wide diversity of microorganisms. Currently, biological study of many prokaryotes of agricultural, medical, and fundamental scientific interest is limited by the lack of adequate genetic tools. We report the application of the bacterial artificial chromosome (BAC) vector to prokaryotic biology as a powerful approach to address this need. We constructed a BAC library in Escherichia coli from genomic DNA of the Gram-positive bacterium Bacillus cereus. This library provides 5.75-fold coverage of the B. cereus genome, with an average insert size of 98 kb. To determine the extent of heterologous expression of B. cereus genes in the library, we screened it for expression of several B. cereus activities in the E. coli host. Clones expressing 6 of 10 activities tested were identified in the library, namely, ampicillin resistance, zwittermicin A resistance, esculin hydrolysis, hemolysis, orange pigment production, and lecithinase activity. We analyzed selected BAC clones genetically to identify rapidly specific B. cereus loci. These results suggest that BAC libraries will provide a powerful approach for studying gene expression from diverse prokaryotes. PMID:10339608

  12. Cloning and expression of a Ca(2+)-inhibitable adenylyl cyclase from NCB-20 cells.

    PubMed Central

    Yoshimura, M; Cooper, D M

    1992-01-01

    A cDNA that encodes an adenylyl cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] has been cloned from NCB-20 cells, in which adenylyl cyclase activity is inhibited by Ca2+ at physiological concentrations. The cDNA clone (5.8 kilobases) was isolated by polymerase chain reaction (PCR) using degenerate primers designed by comparison of three adenylyl cyclase sequences (types I, II, and III) and subsequent library screening. Northern analysis revealed expression of mRNA (6.1 kilobases) corresponding to this cDNA in cardiac tissue, which is a prominent source of Ca(2+)-inhibitable adenylyl cyclase. The clone encodes a protein of 1165 amino acids, whose hydrophilicity profile was very similar to those of other mammalian adenylyl cyclases that have recently been cloned. A noticeable difference between this protein and other adenylyl cyclases was a lengthy aminoterminal region before the first transmembrane span. Transient expression of this cDNA in the human embryonic kidney cell line 293 revealed a 3-fold increase in cAMP production in response to forskolin compared with control transfected cells. In purified plasma membranes from transfected cells, increased adenylyl cyclase activity was also detected, which was susceptible to inhibition by submicromolar Ca2+. Thus, this adenylyl cyclase seems to represent the Ca(2+)-inhibitable form that is encountered in NCB-20 cells, cardiac tissue, and elsewhere. Its identification should permit a determination of the structural features that determine the mode of regulation of adenylyl cyclase by Ca2+. Images PMID:1379717

  13. Construction of a complementary DNA library for Parelaphostrongylus tenuis and identification of a potentially sero-diagnostic recombinant antigen.

    PubMed

    Ogunremi, Oladele; Benjamin, Jane; MacDonald, Lily; Schimpf, Robert

    2008-12-01

    Newly developed serological tests for diagnosing parelaphostrongylosis in cervids, using the excretory-secretory products (ES) of the infective larvae of Parelaphostrongylus tenuis in enzyme-linked immunosorbent assays (ELISAs), have demonstrable superiority over the traditional method of larval recovery and microscopic identification. To generate a source of ELISA antigen by genetic engineering, we created a complementary DNA (cDNA) expression library by the reverse transcription of mRNA of P. tenuis adult worms, and ligation with the vector lambda-ZAP II. The library was screened using antisera produced in mice by immunization with a somatic antigen preparation of adult worms. Seventeen clones were isolated, sequenced, and checked for similarity to other DNA sequences in GenBank. A previously identified parasite gene encoding an aspartyl protease inhibitor (API) was isolated from the cDNA library, subcloned and expressed using the pET expression vector to produce a glutathione S transferase (GST)-His-S.Tag-P. tenuis API fusion protein (molecular weight = 63 kDa). An enzyme-linked immunosorbent assay utilizing the API fusion protein as the coating antigen was used to serologically diagnose all white-tailed deer (WTD, 10 out of 10) that had been inoculated with 6 - 150 L3 P. tenuis, indicating that the antigen may be a useful serodiagnostic antigen for P. tenuis infection in this cervid species.

  14. Physical Mapping in a Triplicated Genome: Mapping the Downy Mildew Resistance Locus Pp523 in Brassica oleracea L.

    PubMed Central

    Carlier, Jorge D.; Alabaça, Claudia S.; Sousa, Nelson H.; Coelho, Paula S.; Monteiro, António A.; Paterson, Andrew H.; Leitão, José M.

    2011-01-01

    We describe the construction of a BAC contig and identification of a minimal tiling path that encompass the dominant and monogenically inherited downy mildew resistance locus Pp523 of Brassica oleracea L. The selection of BAC clones for construction of the physical map was carried out by screening gridded BAC libraries with DNA overgo probes derived from both genetically mapped DNA markers flanking the locus of interest and BAC-end sequences that align to Arabidopsis thaliana sequences within the previously identified syntenic region. The selected BAC clones consistently mapped to three different genomic regions of B. oleracea. Although 83 BAC clones were accurately mapped within a ∼4.6 cM region surrounding the downy mildew resistance locus Pp523, a subset of 33 BAC clones mapped to another region on chromosome C8 that was ∼60 cM away from the resistance gene, and a subset of 63 BAC clones mapped to chromosome C5. These results reflect the triplication of the Brassica genomes since their divergence from a common ancestor shared with A. thaliana, and they are consonant with recent analyses of the C genome of Brassica napus. The assembly of a minimal tiling path constituted by 13 (BoT01) BAC clones that span the Pp523 locus sets the stage for map-based cloning of this resistance gene. PMID:22384370

  15. Construction and Evaluation of Normalized cDNA Libraries Enriched with Full-Length Sequences for Rapid Discovery of New Genes from Sisal (Agave sisalana Perr.) Different Developmental Stages

    PubMed Central

    Zhou, Wen-Zhao; Zhang, Yan-Mei; Lu, Jun-Ying; Li, Jun-Feng

    2012-01-01

    To provide a resource of sisal-specific expressed sequence data and facilitate this powerful approach in new gene research, the preparation of normalized cDNA libraries enriched with full-length sequences is necessary. Four libraries were produced with RNA pooled from Agave sisalana multiple tissues to increase efficiency of normalization and maximize the number of independent genes by SMART™ method and the duplex-specific nuclease (DSN). This procedure kept the proportion of full-length cDNAs in the subtracted/normalized libraries and dramatically enhanced the discovery of new genes. Sequencing of 3875 cDNA clones of libraries revealed 3320 unigenes with an average insert length about 1.2 kb, indicating that the non-redundancy of libraries was about 85.7%. These unigene functions were predicted by comparing their sequences to functional domain databases and extensively annotated with Gene Ontology (GO) terms. Comparative analysis of sisal unigenes and other plant genomes revealed that four putative MADS-box genes and knotted-like homeobox (knox) gene were obtained from a total of 1162 full-length transcripts. Furthermore, real-time PCR showed that the characteristics of their transcripts mainly depended on the tight expression regulation of a number of genes during the leaf and flower development. Analysis of individual library sequence data indicated that the pooled-tissue approach was highly effective in discovering new genes and preparing libraries for efficient deep sequencing. PMID:23202944

  16. WebPrInSeS: automated full-length clone sequence identification and verification using high-throughput sequencing data.

    PubMed

    Massouras, Andreas; Decouttere, Frederik; Hens, Korneel; Deplancke, Bart

    2010-07-01

    High-throughput sequencing (HTS) is revolutionizing our ability to obtain cheap, fast and reliable sequence information. Many experimental approaches are expected to benefit from the incorporation of such sequencing features in their pipeline. Consequently, software tools that facilitate such an incorporation should be of great interest. In this context, we developed WebPrInSeS, a web server tool allowing automated full-length clone sequence identification and verification using HTS data. WebPrInSeS encompasses two separate software applications. The first is WebPrInSeS-C which performs automated sequence verification of user-defined open-reading frame (ORF) clone libraries. The second is WebPrInSeS-E, which identifies positive hits in cDNA or ORF-based library screening experiments such as yeast one- or two-hybrid assays. Both tools perform de novo assembly using HTS data from any of the three major sequencing platforms. Thus, WebPrInSeS provides a highly integrated, cost-effective and efficient way to sequence-verify or identify clones of interest. WebPrInSeS is available at http://webprinses.epfl.ch/ and is open to all users.

  17. WebPrInSeS: automated full-length clone sequence identification and verification using high-throughput sequencing data

    PubMed Central

    Massouras, Andreas; Decouttere, Frederik; Hens, Korneel; Deplancke, Bart

    2010-01-01

    High-throughput sequencing (HTS) is revolutionizing our ability to obtain cheap, fast and reliable sequence information. Many experimental approaches are expected to benefit from the incorporation of such sequencing features in their pipeline. Consequently, software tools that facilitate such an incorporation should be of great interest. In this context, we developed WebPrInSeS, a web server tool allowing automated full-length clone sequence identification and verification using HTS data. WebPrInSeS encompasses two separate software applications. The first is WebPrInSeS-C which performs automated sequence verification of user-defined open-reading frame (ORF) clone libraries. The second is WebPrInSeS-E, which identifies positive hits in cDNA or ORF-based library screening experiments such as yeast one- or two-hybrid assays. Both tools perform de novo assembly using HTS data from any of the three major sequencing platforms. Thus, WebPrInSeS provides a highly integrated, cost-effective and efficient way to sequence-verify or identify clones of interest. WebPrInSeS is available at http://webprinses.epfl.ch/ and is open to all users. PMID:20501601

  18. [Screening and identification of anoikis-resistant gene UBCH7 in esophageal cancer cells].

    PubMed

    Yang, Yang; Wang, Bo-Shi; Wang, Xiao-Min; Zhang, Yu; Wang, Ming-Rong; Jia, Xue-Mei

    2012-02-01

    Anoikis is a kind of programmed cell death induced by loss of extracellular matrix (ECM) adhesion, which is one of key factors for homestasis. Resistance to anoikis is required for tumor cell metastasis. We have previously shown several anoikis-resistance genes in esophageal squamous cell carcinoma (ESCC). In order to find novel anoikis-resistant genes in ESCC, we constructed retroviral cDNA library using total RNA from ESCC cell lines. NIH 3T3 cells, which are sensitive to anoikis, were infected with the library constructed. The cells were cultured in soft agar, and the clones which can survive in detached states were selected. The cDNAs inserted into the anoikis-resistant NIH3T3 clones were amplified using retroviral specific primers. Sequencing analysis showed that a cDNA fragment inserted into the anoikis-resistant clone contains full coding sequence (ORF) of human UBCH7/UBE2L3 gene. By infection with retrovirus encoding UBCH7 ORF (pMSCV-UBCH7), forced expression of UBCH7 increased the anoikis-resistance of NIH3T3 cells. More importantly, knockdown of UBCH7 expression by siRNA transfection reduced the anoikis-resistant ability of esophageal cancer MLuC1 cells. The data suggest that UBCH7/UBE2L3 gene would be involved in anoikis-resistance in ESCC.

  19. Candidate gene database and transcript map for peach, a model species for fruit trees.

    PubMed

    Horn, Renate; Lecouls, Anne-Claire; Callahan, Ann; Dandekar, Abhaya; Garay, Lilibeth; McCord, Per; Howad, Werner; Chan, Helen; Verde, Ignazio; Main, Doreen; Jung, Sook; Georgi, Laura; Forrest, Sam; Mook, Jennifer; Zhebentyayeva, Tatyana; Yu, Yeisoo; Kim, Hye Ran; Jesudurai, Christopher; Sosinski, Bryon; Arús, Pere; Baird, Vance; Parfitt, Dan; Reighard, Gregory; Scorza, Ralph; Tomkins, Jeffrey; Wing, Rod; Abbott, Albert Glenn

    2005-05-01

    Peach (Prunus persica) is a model species for the Rosaceae, which includes a number of economically important fruit tree species. To develop an extensive Prunus expressed sequence tag (EST) database for identifying and cloning the genes important to fruit and tree development, we generated 9,984 high-quality ESTs from a peach cDNA library of developing fruit mesocarp. After assembly and annotation, a putative peach unigene set consisting of 3,842 ESTs was defined. Gene ontology (GO) classification was assigned based on the annotation of the single "best hit" match against the Swiss-Prot database. No significant homology could be found in the GenBank nr databases for 24.3% of the sequences. Using core markers from the general Prunus genetic map, we anchored bacterial artificial chromosome (BAC) clones on the genetic map, thereby providing a framework for the construction of a physical and transcript map. A transcript map was developed by hybridizing 1,236 ESTs from the putative peach unigene set and an additional 68 peach cDNA clones against the peach BAC library. Hybridizing ESTs to genetically anchored BACs immediately localized 11.2% of the ESTs on the genetic map. ESTs showed a clustering of expressed genes in defined regions of the linkage groups. [The data were built into a regularly updated Genome Database for Rosaceae (GDR), available at (http://www.genome.clemson.edu/gdr/).].

  20. The construction of an EST database for Bombyx mori and its application

    PubMed Central

    Mita, Kazuei; Morimyo, Mitsuoki; Okano, Kazuhiro; Koike, Yoshiko; Nohata, Junko; Kawasaki, Hideki; Kadono-Okuda, Keiko; Yamamoto, Kimiko; Suzuki, Masataka G.; Shimada, Toru; Goldsmith, Marian R.; Maeda, Susumu

    2003-01-01

    To build a foundation for the complete genome analysis of Bombyx mori, we have constructed an EST database. Because gene expression patterns deeply depend on tissues as well as developmental stages, we analyzed many cDNA libraries prepared from various tissues and different developmental stages to cover the entire set of Bombyx genes. So far, the Bombyx EST database contains 35,000 ESTs from 36 cDNA libraries, which are grouped into ≈11,000 nonredundant ESTs with the average length of 1.25 kb. The comparison with FlyBase suggests that the present EST database, SilkBase, covers >55% of all genes of Bombyx. The fraction of library-specific ESTs in each cDNA library indicates that we have not yet reached saturation, showing the validity of our strategy for constructing an EST database to cover all genes. To tackle the coming saturation problem, we have checked two methods, subtraction and normalization, to increase coverage and decrease the number of housekeeping genes, resulting in a 5–11% increase of library-specific ESTs. The identification of a number of genes and comprehensive cloning of gene families have already emerged from the SilkBase search. Direct links of SilkBase with FlyBase and WormBase provide ready identification of candidate Lepidoptera-specific genes. PMID:14614147

  1. Cloning of a heavy-metal-binding protein derived from activated-sludge microorganisms.

    PubMed

    Sano, Daisuke; Myojo, Ken; Omura, Tatsuo

    2006-09-01

    A gene of the heavy-metal-binding protein (HMBP) was newly isolated from a genetic DNA library of activated-sludge microorganisms. HMBP was produced by transformed Escherichia coli, and the copper-binding ability of HMBP was confirmed. HMBP derived from activated sludge could be available as heavy metal adsorbents in water and wastewater treatments.

  2. Utilization of a tobacco rattle virus vector to clone an Nicotiana benthamiana cDNA library for VIGS

    USDA-ARS?s Scientific Manuscript database

    Virus-induced gene silencing (VIGS) is an efficient and rapid method to identify plant gene functions. One of the most widely used VIGS vectors is Tobacco rattle virus (TRV) which has been used successfully for RNA interference (RNAi) in N. benthamiana and tomato. We previously modified a TRV VIGS v...

  3. A framework linkage map of perennial ryegrass based on SSR markers

    Treesearch

    G.P. Gill; P.L. Wilcox; D.J. Whittaker; R.A. Winz; P. Bickerstaff; Craig E. Echt; J. Kent; M.O. Humphreys; K.M. Elborough; R.C. Gardner

    2006-01-01

    A moderate-density linkage map for Lolium perenne L. has been constructed based on 376 simple sequence repeat (SSR) markers. Approximately one third ( 124) of the SSR markers were developed from GeneThresher libraries that preferentially select genomic DNA clones from the gene-rich unmethylated portion of the genome. The remaining SSR marker loci...

  4. Cloning and characterization of a novel oocyte-specific gene encoding an F-Box protein in rainbow trout (Oncorhynchus mykiss)

    USDA-ARS?s Scientific Manuscript database

    Oocyte-specific genes play critical roles in oogenesis, folliculogenesis and early embryonic development. Through analysis of expressed sequence tags (ESTs) from a rainbow trout oocyte cDNA library, we identified a novel transcript which is represented by multiple ESTs derived only from the oocyte c...

  5. Normalization of environmental metagenomic DNA enhances the discovery of under-represented microbial community members.

    PubMed

    Ramond, J-B; Makhalanyane, T P; Tuffin, M I; Cowan, D A

    2015-04-01

    Normalization is a procedure classically employed to detect rare sequences in cellular expression profiles (i.e. cDNA libraries). Here, we present a normalization protocol involving the direct treatment of extracted environmental metagenomic DNA with S1 nuclease, referred to as normalization of metagenomic DNA: NmDNA. We demonstrate that NmDNA, prior to post hoc PCR-based experiments (16S rRNA gene T-RFLP fingerprinting and clone library), increased the diversity of sequences retrieved from environmental microbial communities by detection of rarer sequences. This approach could be used to enhance the resolution of detection of ecologically relevant rare members in environmental microbial assemblages and therefore is promising in enabling a better understanding of ecosystem functioning. This study is the first testing 'normalization' on environmental metagenomic DNA (mDNA). The aim of this procedure was to improve the identification of rare phylotypes in environmental communities. Using hypoliths as model systems, we present evidence that this post-mDNA extraction molecular procedure substantially enhances the detection of less common phylotypes and could even lead to the discovery of novel microbial genotypes within a given environment. © 2014 The Society for Applied Microbiology.

  6. Cloning, sequencing and expression in MEL cells of a cDNA encoding the mouse ribosomal protein S5.

    PubMed

    Vanegas, N; Castañeda, V; Santamaría, D; Hernández, P; Schvartzman, J B; Krimer, D B

    1997-06-05

    We describe the isolation and characterization of a cDNA encoding the mouse S5 ribosomal protein. It was isolated from a MEL (murine erythroleukemia) cell cDNA library by differential hybridization as a down regulated sequence during HMBA-induced differentiation. Northern series analysis showed that S5 mRNA expression is reduced 5-fold throughout the differentiation process. The mouse S5 mRNA is 760 bp long and encodes for a 204 amino acid protein with 94% homology with the human and rat S5.

  7. Mobius Assembly: A versatile Golden-Gate framework towards universal DNA assembly

    PubMed Central

    Andreou, Andreas I.

    2018-01-01

    Synthetic biology builds upon the foundation of engineering principles, prompting innovation and improvement in biotechnology via a design-build-test-learn cycle. A community-wide standard in DNA assembly would enable bio-molecular engineering at the levels of predictivity and universality in design and construction that are comparable to other engineering fields. Golden Gate Assembly technology, with its robust capability to unidirectionally assemble numerous DNA fragments in a one-tube reaction, has the potential to deliver a universal standard framework for DNA assembly. While current Golden Gate Assembly frameworks (e.g. MoClo and Golden Braid) render either high cloning capacity or vector toolkit simplicity, the technology can be made more versatile—simple, streamlined, and cost/labor-efficient, without compromising capacity. Here we report the development of a new Golden Gate Assembly framework named Mobius Assembly, which combines vector toolkit simplicity with high cloning capacity. It is based on a two-level, hierarchical approach and utilizes a low-frequency cutter to reduce domestication requirements. Mobius Assembly embraces the standard overhang designs designated by MoClo, Golden Braid, and Phytobricks and is largely compatible with already available Golden Gate part libraries. In addition, dropout cassettes encoding chromogenic proteins were implemented for cost-free visible cloning screening that color-code different cloning levels. As proofs of concept, we have successfully assembled up to 16 transcriptional units of various pigmentation genes in both operon and multigene arrangements. Taken together, Mobius Assembly delivers enhanced versatility and efficiency in DNA assembly, facilitating improved standardization and automation. PMID:29293531

  8. Metagenomes of complex microbial consortia derived from different soils as sources for novel genes conferring formation of carbonyls from short-chain polyols on Escherichia coli.

    PubMed

    Knietsch, Anja; Waschkowitz, Tanja; Bowien, Susanne; Henne, Anke; Daniel, Rolf

    2003-01-01

    Metagenomic DNA libraries from three different soil samples (meadow, sugar beet field, cropland) were constructed. The three unamplified libraries comprised approximately 1267000 independent clones and harbored approximately 4.05 Gbp of environmental DNA. Approximately 300000 recombinant Escherichia coli strains of each library per test substrate were screened for the production of carbonyls from short-chain (C2 to C4) polyols such as 1,2-ethanediol, 2,3-butanediol, and a mixture of glycerol and 1,2-propanediol on indicator agar. Twenty-four positive E. COLI clones were obtained during the initial screen. Fifteen of them contained recombinant plasmids, designated pAK201-215, which conferred a stable carbonyl-forming phenotype on E. coli Sequencing revealed that the inserts of pAK201-215 encoded 26 complete and 14 incomplete predicted protein-encoding genes. Most of these genes were similar to genes with unknown functions from other microorganisms or unrelated to any other known gene. The further analysis was focused on the 7 plasmids (pAK204, pAK206, pAK208, and pAK210-213) recovered from the positive clones, which exhibited an NAD(H)-dependent alcohol oxidoreductase activity with polyols or the correlating carbonyls as substrates in crude extracts. Three genes (ORF6, ORF24, and ORF25) conferring this activity were identified during subcloning of the inserts of pAK204, pAK211, and pAK212. The sequences of the three deduced gene products revealed no significant similarities to known alcohol oxidoreductases, but contained putative glycine-rich regions, which are characteristic for binding of nicotinamide cofactors. Copyright 2003 S. Karger AG, Basel

  9. Molecular Cloning and Ethylene Induction of mRNA Encoding a Phytoalexin Elicitor-Releasing Factor, beta-1,3-Endoglucanase, in Soybean.

    PubMed

    Takeuchi, Y; Yoshikawa, M; Takeba, G; Tanaka, K; Shibata, D; Horino, O

    1990-06-01

    Soybean (Glycine max) beta-1,3-endoglucanase (EC 3.2. 1.39) is involved in one of the earliest plant-pathogen interactions that may lead to active disease resistance by releasing elicitor-active carbohydrates from the cell walls of fungal pathogens. Ethylene induced beta-1,3-endoglucanase activity to 2- to 3-fold higher levels in cotyledons of soybean seedlings. A specific polyclonal antiserum raised against purified soybean beta-1,3-endoglucanase was used to immunoprecipitate in vitro translation products, demonstrating that ethylene induction increased translatable beta-1,3-endoglucanase mRNA. Several cDNA clones for the endoglucanase gene were obtained by antibody screening of a lambda-gt11 expression library prepared from soybean cotyledons. Hybrid-select translation experiments indicated that the cloned cDNA encoded a 36-kilodalton precursor protein product that was specifically immunoprecipitated with beta-1,3-endoglucanase antiserum. Escherichia coli cells expressing the cloned cDNA also synthesized an immunologically positive protein. Nucleotide sequence of three independent clones revealed a single uninterrupted open reading frame of 1041 nucleotides, corresponding to a polypeptide of 347 residue long. The primary amino acid sequence of beta-1,3-endoglucanase as deduced from the nucleotide sequence was confirmed by direct amino acid sequencing of trypsin digests of the glucanase. The soybean beta-1,3-endoglucanase exhibited 53% amino acid homology to a beta-1,3-glucanase cloned from cultured tobacco cells and 48% homology to a beta-(1,3-1,4)-glucanase from barley. Utilizing the largest cloned cDNA (pEG488) as a hybridization probe, it was found that the increase in translatable beta-1,3-endoglucanase mRNA seen upon ethylene treatment of soybean seedlings was due to 50- to 100-fold increase in steady state mRNA levels, indicating that ethylene regulates gene expression of this enzyme important in disease resistance at the level of gene transcription.

  10. Active bacterial community structure along vertical redox gradients in Baltic Sea sediment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jansson, Janet; Edlund, Anna; Hardeman, Fredrik

    Community structures of active bacterial populations were investigated along a vertical redox profile in coastal Baltic Sea sediments by terminal-restriction fragment length polymorphism (T-RFLP) and clone library analysis. According to correspondence analysis of T-RFLP results and sequencing of cloned 16S rRNA genes, the microbial community structures at three redox depths (179 mV, -64 mV and -337 mV) differed significantly. The bacterial communities in the community DNA differed from those in bromodeoxyuridine (BrdU)-labeled DNA, indicating that the growing members of the community that incorporated BrdU were not necessarily the most dominant members. The structures of the actively growing bacterial communities weremore » most strongly correlated to organic carbon followed by total nitrogen and redox potentials. Bacterial identification by sequencing of 16S rRNA genes from clones of BrdU-labeled DNA and DNA from reverse transcription PCR (rt-PCR) showed that bacterial taxa involved in nitrogen and sulfur cycling were metabolically active along the redox profiles. Several sequences had low similarities to previously detected sequences indicating that novel lineages of bacteria are present in Baltic Sea sediments. Also, a high number of different 16S rRNA gene sequences representing different phyla were detected at all sampling depths.« less

  11. Cloning of a coconut endosperm cDNA encoding a 1-acyl-sn-glycerol-3-phosphate acyltransferase that accepts medium-chain-length substrates.

    PubMed Central

    Knutzon, D S; Lardizabal, K D; Nelsen, J S; Bleibaum, J L; Davies, H M; Metz, J G

    1995-01-01

    Immature coconut (Cocos nucifera) endosperm contains a 1-acyl-sn-glycerol-3-phosphate acyltransferase (LPAAT) activity that shows a preference for medium-chain-length fatty acyl-coenzyme A substrates (H.M. Davies, D.J. Hawkins, J.S. Nelsen [1995] Phytochemistry 39:989-996). Beginning with solubilized membrane preparations, we have used chromatographic separations to identify a polypeptide with an apparent molecular mass of 29 kD, whose presence in various column fractions correlates with the acyltransferase activity detected in those same fractions. Amino acid sequence data obtained from several peptides generated from this protein were used to isolate a full-length clone from a coconut endosperm cDNA library. Clone pCGN5503 contains a 1325-bp cDNA insert with an open reading frame encoding a 308-amino acid protein with a calculated molecular mass of 34.8 kD. Comparison of the deduced amino acid sequence of pCGN5503 to sequences in the data banks revealed significant homology to other putative LPAAT sequences. Expression of the coconut cDNA in Escherichia coli conferred upon those cells a novel LPAAT activity whose substrate activity profile matched that of the coconut enzyme. PMID:8552723

  12. Cloning and expression of cDNA for a human low-K sub m , rolipram-sensitive cyclic AMP phosphodiesterase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livi, G.P.; McHale, M.J.; Sathe, G.M.

    1990-06-01

    The authors have isolated cDNA clones representing cyclic AMP (cAMP)-specific phosphodiesterases (PDEases) from a human monocyte cDNA library. One cDNA clone (hPDE-1) defines a large open reading frame of ca. 2.1 kilobases, predicting a 686-amino-acid, ca. 77-kilodalton protein which contains significant homology to both rat brain and {ital Drosophila} cAMP PDEases, especially within an internal conserved domain of ca. 270 residues. Amino acid sequence divergence exists at the NH{sub 2} terminus and also within a 40- to 100-residue domain near the COOH-terminal end. hPDE-1 hybridizes to a major 4.8-kilobase mRNA transcript from both human monocytes and placenta. The coding regionmore » of hPDE-1 was engineered for expression in COS-1 cells, resulting in the overproduction of cAMP PDEase activity. The hPDE-1 recombinant gene product was identified as a low-{ital K{sub m}} cAMP phosphodiesterase on the basis of several biochemical properties including selective inhibition by the antidepressant drug rolipram. Known inhibitors of other PDEases (cGMP-specific PDEase, cGMP-inhibited PDEase) had little or no effect on the hPDE-1 recombinant gene product.« less

  13. Pydna: a simulation and documentation tool for DNA assembly strategies using python.

    PubMed

    Pereira, Filipa; Azevedo, Flávio; Carvalho, Ângela; Ribeiro, Gabriela F; Budde, Mark W; Johansson, Björn

    2015-05-02

    Recent advances in synthetic biology have provided tools to efficiently construct complex DNA molecules which are an important part of many molecular biology and biotechnology projects. The planning of such constructs has traditionally been done manually using a DNA sequence editor which becomes error-prone as scale and complexity of the construction increase. A human-readable formal description of cloning and assembly strategies, which also allows for automatic computer simulation and verification, would therefore be a valuable tool. We have developed pydna, an extensible, free and open source Python library for simulating basic molecular biology DNA unit operations such as restriction digestion, ligation, PCR, primer design, Gibson assembly and homologous recombination. A cloning strategy expressed as a pydna script provides a description that is complete, unambiguous and stable. Execution of the script automatically yields the sequence of the final molecule(s) and that of any intermediate constructs. Pydna has been designed to be understandable for biologists with limited programming skills by providing interfaces that are semantically similar to the description of molecular biology unit operations found in literature. Pydna simplifies both the planning and sharing of cloning strategies and is especially useful for complex or combinatorial DNA molecule construction. An important difference compared to existing tools with similar goals is the use of Python instead of a specifically constructed language, providing a simulation environment that is more flexible and extensible by the user.

  14. Screening a wide host-range, waste-water metagenomic library in tryptophan auxotrophs of Rhizobium leguminosarum and of Escherichia coli reveals different classes of cloned trp genes.

    PubMed

    Li, Youguo; Wexler, Margaret; Richardson, David J; Bond, Philip L; Johnston, Andrew W B

    2005-12-01

    A metagenomic cosmid library was constructed, in which the insert DNA was derived from bacteria in a waste-water treatment plant and the vector was the wide host-range cosmid pLAFR3. The library was screened for clones that could correct defined tryptophan auxotrophs of the alpha-proteobacterium Rhizobium leguminosarum and of Escherichia coli. A total of 26 different cosmids that corrected at least one trp mutant in one or both of these species were obtained. Several cosmids corrected the auxotrophy of one or more R. leguminosarum trp mutants, but not the corresponding mutants in E. coli. Conversely, one cosmid corrected trpA, B, C, D and E mutants of E. coli but none of the trp mutants of R. leguminosarum. Two of the Trp+ cosmids were examined in more detail. One contained a trp operon that resembled that of the pathogen Chlamydophila caviae, containing the unusual kynU gene, which specifies kynureninase. The other, whose trp genes functioned in R. leguminosarum but not in E. coli, contained trpDCFBA in an operon that is likely co-transcribed with five other genes, most of which had no known link with tryptophan synthesis. The sequences of these TRP proteins, and the products of nine other genes encoded by this cosmid, failed to affiliate them with any known bacterial lineage. For one metagenomic cosmid, lac reporter fusions confirmed that its cloned trp genes were transcribed in R. leguminosarum, but not in E. coli. Thus, rhizobia, with their many sigma-factors, may be well-suited hosts for metagenomic libraries, cloned in wide host-range vectors.

  15. Genes encoding Xenopus laevis Ig L chains: Implications for the evolution of [kappa] and [lambda] chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zezza, D.J.; Stewart, S.E.; Steiner, L.A.

    1992-12-15

    Xenopus laevis Ig contain two distinct types of L chains, designated [rho] or L1 and [sigma] or L2. The authors have analyzed Xenopus genomic DNA by Southern blotting with cDNA probes specific for L1 V and C regions. Many fragments hybridized to the V probe, but only one or two fragments hybridized to the C probe. Corresponding C, J, and V gene segments were identified on clones isolated from a genomic library prepared from the same DNA. One clone contains a C gene segment separated from a J gene segment by an intron of 3.4 kb. The J and Cmore » gene segments are nearly identical in sequence to cDNA clones analyzed previously. The C segment is somewhat more similar and the J segment considerably more similar in sequence to the corresponding segments of mammalian [kappa] chains than to those of mammalian [lambda] chains. Upstream of the J segment is a typical recombination signal sequence with a spacer of 23 bp, as in J[kappa]. A second clone from the library contains four V gene segments, separated by 2.1 to 3.6 kb. Two of these, V1 and V3, have the expected structural and regulatory features of V genes, and are very similar in sequence to each other and to mammalian V[kappa]. A third gene segment, V2, resembles V1 and V3 in its coding region and nearby 5[prime]-flanking region, but diverges in sequence 5[prime] to position [minus]95 with loss of the octamer promoter element. The fourth V-like segment is similar to the others at the 3[prime]-end, but upstream of codon 64 bears no resemblance in sequence to any Ig V region. All four V segments have typical recombination signal sequences with 12-bp spacers at their 3[prime]-ends, as in V[kappa]. Taken together, the data suggest that Xenopus L1 L chain genes are members of the [kappa] gene family. 80 refs., 9 figs.« less

  16. Functional analysis of environmental DNA-derived type II polyketide synthases reveals structurally diverse secondary metabolites.

    PubMed

    Feng, Zhiyang; Kallifidas, Dimitris; Brady, Sean F

    2011-08-02

    A single gram of soil is predicted to contain thousands of unique bacterial species. The majority of these species remain recalcitrant to standard culture methods, prohibiting their use as sources of unique bioactive small molecules. The cloning and analysis of DNA extracted directly from environmental samples (environmental DNA, eDNA) provides a means of exploring the biosynthetic capacity of natural bacterial populations. Environmental DNA libraries contain large reservoirs of bacterial genetic diversity from which new secondary metabolite gene clusters can be systematically recovered and studied. The identification and heterologous expression of type II polyketide synthase-containing eDNA clones is reported here. Functional analysis of three soil DNA-derived polyketide synthase systems in Streptomyces albus revealed diverse metabolites belonging to well-known, rare, and previously uncharacterized structural families. The first of these systems is predicted to encode the production of the known antibiotic landomycin E. The second was found to encode the production of a metabolite with a previously uncharacterized pentacyclic ring system. The third was found to encode the production of unique KB-3346-5 derivatives, which show activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecalis. These results, together with those of other small-molecule-directed metagenomic studies, suggest that culture-independent approaches are capable of accessing biosynthetic diversity that has not yet been extensively explored using culture-based methods. The large-scale functional screening of eDNA clones should be a productive strategy for generating structurally previously uncharacterized chemical entities for use in future drug development efforts.

  17. Assignment of the human PAX4 gene to chromosome band 7q32 by fluorescence in situ hybridization.

    PubMed

    Tamura, T; Izumikawa, Y; Kishino, T; Soejima, H; Jinno, Y; Niikawa, N

    1994-01-01

    Of the nine known members of a human paired box-containing gene family (Pax), only PAX4 has not been precisely localized. We screened a cosmid library of human genomic DNA using polymerase chain reaction products for PAX4 as a probe and isolated three positive cosmid clones. Sequence analysis revealed that at least two of them had exon-like sequences and showed extensive homology to Pax-4 in the mouse. These two cosmid clones were mapped to human chromosome band 7q32 by fluorescence in situ hybridization.

  18. BASIC: A Simple and Accurate Modular DNA Assembly Method.

    PubMed

    Storch, Marko; Casini, Arturo; Mackrow, Ben; Ellis, Tom; Baldwin, Geoff S

    2017-01-01

    Biopart Assembly Standard for Idempotent Cloning (BASIC) is a simple, accurate, and robust DNA assembly method. The method is based on linker-mediated DNA assembly and provides highly accurate DNA assembly with 99 % correct assemblies for four parts and 90 % correct assemblies for seven parts [1]. The BASIC standard defines a single entry vector for all parts flanked by the same prefix and suffix sequences and its idempotent nature means that the assembled construct is returned in the same format. Once a part has been adapted into the BASIC format it can be placed at any position within a BASIC assembly without the need for reformatting. This allows laboratories to grow comprehensive and universal part libraries and to share them efficiently. The modularity within the BASIC framework is further extended by the possibility of encoding ribosomal binding sites (RBS) and peptide linker sequences directly on the linkers used for assembly. This makes BASIC a highly versatile library construction method for combinatorial part assembly including the construction of promoter, RBS, gene variant, and protein-tag libraries. In comparison with other DNA assembly standards and methods, BASIC offers a simple robust protocol; it relies on a single entry vector, provides for easy hierarchical assembly, and is highly accurate for up to seven parts per assembly round [2].

  19. Identification of triclosan-degrading bacteria using stable isotope probing, fluorescence in situ hybridization and microautoradiography.

    PubMed

    Lolas, Ihab Bishara; Chen, Xijuan; Bester, Kai; Nielsen, Jeppe Lund

    2012-11-01

    Triclosan is considered a ubiquitous pollutant and can be detected in a wide range of environmental samples. Triclosan removal by wastewater treatment plants has been largely attributed to biodegradation processes; however, very little is known about the micro-organisms involved. In this study, DNA-based stable isotope probing (DNA-SIP) combined with microautoradiography-fluorescence in situ hybridization (MAR-FISH) was applied to identify active triclosan degraders in an enrichment culture inoculated with activated sludge. Clone library sequences of 16S rRNA genes derived from the heavy DNA fractions of enrichment culture incubated with (13)C-labelled triclosan showed a predominant enrichment of a single bacterial clade most closely related to the betaproteobacterial genus Methylobacillus. To verify that members of the genus Methylobacillus were actively utilizing triclosan, a specific probe targeting the Methylobacillus group was designed and applied to the enrichment culture incubated with (14)C-labelled triclosan for MAR-FISH. The MAR-FISH results confirmed a positive uptake of carbon from (14)C-labelled triclosan by the Methylobacillus. The high representation of Methylobacillus in the (13)C-labelled DNA clone library and its observed utilization of (14)C-labelled triclosan by MAR-FISH reveal that these micro-organisms are the primary consumers of triclosan in the enrichment culture. The results from this study show that the combination of SIP and MAR-FISH can shed light on the networks of uncultured micro-organisms involved in degradation of organic micro-pollutants.

  20. Isolation and characterisation of a pod dehiscence zone-specific polygalacturonase from Brassica napus.

    PubMed

    Petersen, M; Sander, L; Child, R; van Onckelen, H; Ulvskov, P; Borkhardt, B

    1996-06-01

    Seven distinct partial cDNAs, similar in sequence to previously described polygalacturonases (PGs), were amplified from cDNA derived from rape pod wall, dehiscence zone and leaves by the polymerase chain reaction. Northern analysis showed that one clone, PG35-8, was expressed at low levels in the dehiscence zone during the first five weeks after anthesis but was very abundantly expressed at week 6. In contrast, no PG35-8-related RNA was detected in the pod wall. Our data suggest that there are temporal and spatial correlations between the breakdown of the middle lamella, of the dehiscence zone cells and the pattern of synthesis of PG35-8 transcripts which may indicate a role for this particular PG in rape pod dehiscence. PG35-8 was used to isolate five cDNA clones from a rape dehiscence zone cDNA library. Restriction enzyme analysis and partial sequencing revealed that they were derived from four highly homologous transcripts which are probably allelic forms of a single gene. One full-length clone, RDPG1, was completely sequenced. The predicted protein of RDPG1 showed its highest identity with PG from apple fruit with an identity of 52%.

  1. Informatic selection of a neural crest-melanocyte cDNA set for microarray analysis

    PubMed Central

    Loftus, S. K.; Chen, Y.; Gooden, G.; Ryan, J. F.; Birznieks, G.; Hilliard, M.; Baxevanis, A. D.; Bittner, M.; Meltzer, P.; Trent, J.; Pavan, W.

    1999-01-01

    With cDNA microarrays, it is now possible to compare the expression of many genes simultaneously. To maximize the likelihood of finding genes whose expression is altered under the experimental conditions, it would be advantageous to be able to select clones for tissue-appropriate cDNA sets. We have taken advantage of the extensive sequence information in the dbEST expressed sequence tag (EST) database to identify a neural crest-derived melanocyte cDNA set for microarray analysis. Analysis of characterized genes with dbEST identified one library that contained ESTs representing 21 neural crest-expressed genes (library 198). The distribution of the ESTs corresponding to these genes was biased toward being derived from library 198. This is in contrast to the EST distribution profile for a set of control genes, characterized to be more ubiquitously expressed in multiple tissues (P < 1 × 10−9). From library 198, a subset of 852 clustered ESTs were selected that have a library distribution profile similar to that of the 21 neural crest-expressed genes. Microarray analysis demonstrated the majority of the neural crest-selected 852 ESTs (Mel1 array) were differentially expressed in melanoma cell lines compared with a non-neural crest kidney epithelial cell line (P < 1 × 10−8). This was not observed with an array of 1,238 ESTs that was selected without library origin bias (P = 0.204). This study presents an approach for selecting tissue-appropriate cDNAs that can be used to examine the expression profiles of developmental processes and diseases. PMID:10430933

  2. Cloning and characterization of a cDNA encoding topoisomerase II in pea and analysis of its expression in relation to cell proliferation.

    PubMed

    Reddy, M K; Nair, S; Tewari, K K; Mudgil, Y; Yadav, B S; Sopory, S K

    1999-09-01

    We have isolated and sequenced four overlapping cDNA clones to identify the full-length cDNA for topoisomerase II (PsTopII) from pea. Using degenerate primers, based on the conserved amino acid sequences of other eukaryotic type II topoisomerases, a 680 bp fragment was PCR-amplified with pea cDNA as template. This fragment was used as a probe to screen an oligo-dT-primed pea cDNA library. A partial cDNA clone was isolated that was truncated at the 3' end. RACE-PCR was employed to isolate the remaining portion of the gene. The total size of PsTopII is 4639 bp with an open reading frame of 4392 bp. The deduced amino acid sequence shows a strong homology to other eukaryotic topoisomerase II (topo II) at the N-terminus end. The topo II transcript was abundant in proliferative tissues. We also show that the level of topo II transcripts could be stimulated by exogenous application of growth factors that induced proliferation in vitro cultures. Light irradiation to etiolated tissue strongly stimulated the expression of topo II. These results suggest that topo II gene expression is up-regulated in response to light and hormones and correlates with cell proliferation. Besides, we have also isolated and analysed the 5'-flanking region of the pea TopII gene. This is first report on the isolation of a putative promoter for topoisomerase II from plants.

  3. [Identification of proteins interacting with the circadian clock protein PER1 in tumors using bacterial two-hybrid system technique].

    PubMed

    Zhang, Yu; Yao, Youlin; Jiang, Siyuan; Lu, Yilu; Liu, Yunqiang; Tao, Dachang; Zhang, Sizhong; Ma, Yongxin

    2015-04-01

    To identify protein-protein interaction partners of PER1 (period circadian protein homolog 1), key component of the molecular oscillation system of the circadian rhythm in tumors using bacterial two-hybrid system technique. Human cervical carcinoma cell Hela library was adopted. Recombinant bait plasmid pBT-PER1 and pTRG cDNA plasmid library were cotransformed into the two-hybrid system reporter strain cultured in a special selective medium. Target clones were screened. After isolating the positive clones, the target clones were sequenced and analyzed. Fourteen protein coding genes were identified, 4 of which were found to contain whole coding regions of genes, which included optic atrophy 3 protein (OPA3) associated with mitochondrial dynamics and homo sapiens cutA divalent cation tolerance homolog of E. coli (CUTA) associated with copper metabolism. There were also cellular events related proteins and proteins which are involved in biochemical reaction and signal transduction-related proteins. Identification of potential interacting proteins with PER1 in tumors may provide us new insights into the functions of the circadian clock protein PER1 during tumorigenesis.

  4. Characterization of a microdissection library from human chromosome region 3p14

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardenheuer, W.; Szymanski, S.; Lux, A.

    1994-01-15

    Structural alterations in human chromosome region 3p14-p23 resulting in the inactivation of one or more tumor suppressor genes are thought to play a pathogenic role in small cell lung cancer, renal cell carcinoma, and other human neoplasms. To identify putative tumor suppressor genes, 428 recombinant clones from a microdissection library specific for human chromosome region 3p14 were isolated and characterized. Ninety-six of these (22.5%) were human single-copy DNA sequences, 57 of which were unique sequence clones. Forty-four of these were mapped to the microdissected region using a cell hybrid mapping panel. Within this mapping panel, four probes detected two newmore » chromosome breakpoints that were previously indistinguishable from the translocation breakpoint t(3;8) in 3p14.2 in hereditary renal cell carcinoma. One probe maps to the homozygously deleted region of the small cell lung cancer cell line U2020. In addition, microdissection clones have been shown to be suitable for isolation of yeast artificial chromosomes. 52 refs., 3 figs., 2 tabs.« less

  5. Molecular and conventional analyses of microbial diversity in mesophilic and thermophilic upflow anaerobic sludge blanket granular sludges.

    PubMed

    Sekiguchi, Y; Kamagata, Y; Ohashi, A; Harada, H

    2002-01-01

    The microbial community structure of mesophilic (35 degrees C) and thermophilic (55 degrees C) methanogenic granular sludges was surveyed by using both cultivation-independent molecular approach and conventional cultivation technique in order to address the fundamental questions on the microbial populations, i.e. who are present, where they are located, and what they are doing there. To elucidate the microbial constituents within both sludges, we first constructed 16S ribosomal DNA clone libraries, and partial sequencing of the clones was conducted for phylogenetic analysis. In this experiment, we found a number of unidentifiable clones within the domain Bacteria as well as clones that were closely related with 16S rDNAs of cultured microbes. The unidentifiable clones accounted for approximately 60-70% of the total clones in both mesophilic and thermophilic libraries. 16S rRNA-targeted in situ hybridization combined with confocal laser scanning microscopy was subsequently employed to examine where the uncultured populations were located within sludge granules. Spatial organization of uncultured microbes was visualized in thin-sections of both types of granules using fluorescent oligonucleotide probes, which were designed based on the clone sequences of certain novel clusters. This resulted in the detection of two types of uncultured cells in specific locations inside the granules. Finally, the goal-directed conventional cultivation technique was employed to recover such uncultured anaerobes and uncover their physiology and functions. In this approach, a total of five new species of thermophilic microorganisms were isolated, including several types of syntrophs and a novel sugar-fermenting bacterium. In the previous molecular approaches, all of these isolates were suggested to be significant populations within thermophilic granular sludge, hence obtaining these isolates in pure culture decreased the fraction of unknown clones in the previous thermophilic clone library from 70% to 40%. In conclusion, these approaches successfully revealed biodiversity and spatial organization of microbes of interest in sludge granules, and enlarged the fundamental knowledge of microbial constituents functioning as significant populations in the UASB processes.

  6. Searching for microbial protein over-expression in a complex matrix using automated high throughput MS-based proteomics tools.

    PubMed

    Akeroyd, Michiel; Olsthoorn, Maurien; Gerritsma, Jort; Gutker-Vermaas, Diana; Ekkelkamp, Laurens; van Rij, Tjeerd; Klaassen, Paul; Plugge, Wim; Smit, Ed; Strupat, Kerstin; Wenzel, Thibaut; van Tilborg, Marcel; van der Hoeven, Rob

    2013-03-10

    In the discovery of new enzymes genomic and cDNA expression libraries containing thousands of differential clones are generated to obtain biodiversity. These libraries need to be screened for the activity of interest. Removing so-called empty and redundant clones significantly reduces the size of these expression libraries and therefore speeds up new enzyme discovery. Here, we present a sensitive, generic workflow for high throughput screening of successful microbial protein over-expression in microtiter plates containing a complex matrix based on mass spectrometry techniques. MALDI-LTQ-Orbitrap screening followed by principal component analysis and peptide mass fingerprinting was developed to obtain a throughput of ∼12,000 samples per week. Alternatively, a UHPLC-MS(2) approach including MS(2) protein identification was developed for microorganisms with a complex protein secretome with a throughput of ∼2000 samples per week. TCA-induced protein precipitation enhanced by addition of bovine serum albumin is used for protein purification prior to MS detection. We show that this generic workflow can effectively reduce large expression libraries from fungi and bacteria to their minimal size by detection of successful protein over-expression using MS. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Cloning and expression of delta-1-pyrroline-5-carboxylate dehydrogenase in Escherichia coli DH5α improves phosphate solubilization.

    PubMed

    Gong, Mingbo; Tang, Chaoxi; Zhu, Changxiong

    2014-11-01

    A primary cDNA library of Penicillium oxalicum I1 was constructed using the switching mechanism at the 5' end of the RNA transcript (SMART) technique. A total of 106 clones showed halos in tricalcium phosphate (TCP) medium, and clone I-40 showed clear halos. The full-length cDNA of clone I-40 was 1355 bp with a complete open reading frame (ORF) of 1032 bp, encoding a protein of 343 amino acids. Multiple alignment analysis revealed a high degree of homology between the ORF of clone I-40 and delta-1-pyrroline-5-carboxylate dehydrogenase (P5CDH) of other fungi. The ORF expression vector was constructed and transformed into Escherichia coli DH5α. The transformant (ORF-1) with the P5CDH gene secreted organic acid in medium with TCP as the sole source of phosphate. Acetic acid and α-ketoglutarate were secreted in 4 and 24 h, respectively. ORF-1 decreased the pH of the medium from 6.62 to 3.45 and released soluble phosphate at 0.172 mg·mL(-1) in 28 h. Expression of the P. oxalicum I1 p5cdh gene in E. coli could enhance organic acid secretion and phosphate-solubilizing ability.

  8. [Cloning of cDNA for RNA polymerase subunit from the fission yeast Schizosaccharomyces pombe by heterospecific complementation in Saccharomyces cerevisiae].

    PubMed

    Shpakovskiĭ, G V; Lebedenko, E N; Thuriaux, P

    1997-02-01

    The rpb10 cDNA of the fission yeast Schizosaccharomyces pombe, encoding one of the five small subunits common to all three nuclear DNA-dependent RNA polymerases, was isolated from an expression cDNA library by two independent approaches: PCR-based screening and direct suppression by means of heterospecific complementation of a temperature-sensitive mutant defective in the corresponding gene of Saccharomyces cerevisiae. The cloned Sz. pombe cDNA encodes a protein Rpb10 of 71 amino acids with an M of 8,275 Da, sharing 51 amino acids (71% identity) with the subunit ABC10 beta of RNA polymerases I-III from S. cerevisiae. All eukaryotic members of this protein family have the same general organization featuring two highly conserved motifs (RCFT/SCGK and RYCCRRM) around an atypical zinc finger and an additional invariant HVDLIEK motif toward the C-terminal end. The last motif is only characteristics for homologs from eukaryotes. In keeping with this remarkable structural conservation, the Sz. pombe cDNA also fully complemented a S. cerevisiae deletion mutant lacking subunit ABC10 beta (null allele rpb10-delta 1::HIS3).

  9. Development of genomic resources for the narrow-leafed lupin (Lupinus angustifolius): construction of a bacterial artificial chromosome (BAC) library and BAC-end sequencing

    PubMed Central

    2011-01-01

    Background Lupinus angustifolius L, also known as narrow-leafed lupin (NLL), is becoming an important grain legume crop that is valuable for sustainable farming and is becoming recognised as a potential human health food. Recent interest is being directed at NLL to improve grain production, disease and pest management and health benefits of the grain. However, studies have been hindered by a lack of extensive genomic resources for the species. Results A NLL BAC library was constructed consisting of 111,360 clones with an average insert size of 99.7 Kbp from cv Tanjil. The library has approximately 12 × genome coverage. Both ends of 9600 randomly selected BAC clones were sequenced to generate 13985 BAC end-sequences (BESs), covering approximately 1% of the NLL genome. These BESs permitted a preliminary characterisation of the NLL genome such as organisation and composition, with the BESs having approximately 39% G:C content, 16.6% repetitive DNA and 5.4% putative gene-encoding regions. From the BESs 9966 simple sequence repeat (SSR) motifs were identified and some of these are shown to be potential markers. Conclusions The NLL BAC library and BAC-end sequences are powerful resources for genetic and genomic research on lupin. These resources will provide a robust platform for future high-resolution mapping, map-based cloning, comparative genomics and assembly of whole-genome sequencing data for the species. PMID:22014081

  10. Molecular cloning of toxins expressed by the venom gland of Lasiodora sp.

    PubMed

    Vieira, A L G; Moura, M B; Babá, E H; Chávez-Olórtegui, C; Kalapothakis, E; Castro, I M

    2004-12-15

    The present work describes the identification of toxins expressed by the venom gland of the spider Lasiodora sp. The toxins LTx1, LTx2 and LTx3 were identified by the screening of a cDNA library. These toxins showed significant similarity at the amino acid level with spider toxins from Lasiodora parahybana, Eurypelma californicum, Brachypelma smithii, Selenocosmia huwena.

  11. Design and construction of a first-generation high-throughput integrated molecular biology platform for production of optimized synthetic genes and improved industrial strains

    USDA-ARS?s Scientific Manuscript database

    The molecular biological techniques for plasmid-based assembly and cloning of synthetic assembled gene open reading frames are essential for elucidating the function of the proteins encoded by the genes. These techniques involve the production of full-length cDNA libraries as a source of plasmid-bas...

  12. Sequencing and analysis of 10,967 full-length cDNA clones from Xenopus laevis and Xenopus tropicalis reveals post-tetraploidization transcriptome remodeling

    PubMed Central

    Morin, Ryan D.; Chang, Elbert; Petrescu, Anca; Liao, Nancy; Griffith, Malachi; Kirkpatrick, Robert; Butterfield, Yaron S.; Young, Alice C.; Stott, Jeffrey; Barber, Sarah; Babakaiff, Ryan; Dickson, Mark C.; Matsuo, Corey; Wong, David; Yang, George S.; Smailus, Duane E.; Wetherby, Keith D.; Kwong, Peggy N.; Grimwood, Jane; Brinkley, Charles P.; Brown-John, Mabel; Reddix-Dugue, Natalie D.; Mayo, Michael; Schmutz, Jeremy; Beland, Jaclyn; Park, Morgan; Gibson, Susan; Olson, Teika; Bouffard, Gerard G.; Tsai, Miranda; Featherstone, Ruth; Chand, Steve; Siddiqui, Asim S.; Jang, Wonhee; Lee, Ed; Klein, Steven L.; Blakesley, Robert W.; Zeeberg, Barry R.; Narasimhan, Sudarshan; Weinstein, John N.; Pennacchio, Christa Prange; Myers, Richard M.; Green, Eric D.; Wagner, Lukas; Gerhard, Daniela S.; Marra, Marco A.; Jones, Steven J.M.; Holt, Robert A.

    2006-01-01

    Sequencing of full-insert clones from full-length cDNA libraries from both Xenopus laevis and Xenopus tropicalis has been ongoing as part of the Xenopus Gene Collection Initiative. Here we present 10,967 full ORF verified cDNA clones (8049 from X. laevis and 2918 from X. tropicalis) as a community resource. Because the genome of X. laevis, but not X. tropicalis, has undergone allotetraploidization, comparison of coding sequences from these two clawed (pipid) frogs provides a unique angle for exploring the molecular evolution of duplicate genes. Within our clone set, we have identified 445 gene trios, each comprised of an allotetraploidization-derived X. laevis gene pair and their shared X. tropicalis ortholog. Pairwise dN/dS, comparisons within trios show strong evidence for purifying selection acting on all three members. However, dN/dS ratios between X. laevis gene pairs are elevated relative to their X. tropicalis ortholog. This difference is highly significant and indicates an overall relaxation of selective pressures on duplicated gene pairs. We have found that the paralogs that have been lost since the tetraploidization event are enriched for several molecular functions, but have found no such enrichment in the extant paralogs. Approximately 14% of the paralogous pairs analyzed here also show differential expression indicative of subfunctionalization. PMID:16672307

  13. RICD: a rice indica cDNA database resource for rice functional genomics.

    PubMed

    Lu, Tingting; Huang, Xuehui; Zhu, Chuanrang; Huang, Tao; Zhao, Qiang; Xie, Kabing; Xiong, Lizhong; Zhang, Qifa; Han, Bin

    2008-11-26

    The Oryza sativa L. indica subspecies is the most widely cultivated rice. During the last few years, we have collected over 20,000 putative full-length cDNAs and over 40,000 ESTs isolated from various cDNA libraries of two indica varieties Guangluai 4 and Minghui 63. A database of the rice indica cDNAs was therefore built to provide a comprehensive web data source for searching and retrieving the indica cDNA clones. Rice Indica cDNA Database (RICD) is an online MySQL-PHP driven database with a user-friendly web interface. It allows investigators to query the cDNA clones by keyword, genome position, nucleotide or protein sequence, and putative function. It also provides a series of information, including sequences, protein domain annotations, similarity search results, SNPs and InDels information, and hyperlinks to gene annotation in both The Rice Annotation Project Database (RAP-DB) and The TIGR Rice Genome Annotation Resource, expression atlas in RiceGE and variation report in Gramene of each cDNA. The online rice indica cDNA database provides cDNA resource with comprehensive information to researchers for functional analysis of indica subspecies and for comparative genomics. The RICD database is available through our website http://www.ncgr.ac.cn/ricd.

  14. An oleate 12-hydroxylase from Ricinus communis L. is a fatty acyl desaturase homolog

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van De Loo, F.J.; Broun, P.; Turner, S.

    1995-07-18

    Recent spectroscopic evidence implicating a binuclear iron site at the reaction center of fatty acyl desaturases suggested to us that certain fatty acyl hydroxylases may share significant amino acid sequence similarity with desaturases. To test this theory, we prepared a cDNA library from developing endosperm of the castor-oil plant (Ricinus communis L.) and obtained partial nucleotide sequences for 468 anonymous clones that were not expressed at high levels in leaves, a tissue deficient in 12-hydroxyoleic acid. This resulted in the identification of several cDNA clones encoding a polypeptide of 387 amino acids with a predicted molecular weight of 44,407 andmore » with {approx}67% sequence homology to microsomal oleate desaturase from Arabidopsis. Expression of a full-length clone under control of the cauliflower mosaic virus 35S promoter in transgenic tobacco resulted in the accumulation of low levels of 12-hydroxyoleic acid in seeds, indicating that the clone encodes the castor oleate hydroxylase. These results suggest that fatty acyl desaturases and hydroxylases share similar reaction mechanisms and provide an example of enzyme evolution. 26 refs., 6 figs., 1 tab.« less

  15. BAC Libraries from Wheat Chromosome 7D – Efficient Tool for Positional Cloning of Aphid Resistance Genes

    USDA-ARS?s Scientific Manuscript database

    Positional cloning in bread wheat is a tedious task due to its huge genome size (~17 Gbp) and polyploid character. BAC libraries represent an essential tool for positional cloning. However, wheat BAC libraries comprise more than million clones, which make their screening very laborious. Here we pres...

  16. A Microbial Community in Sediments Beneath the Western Antarctic Ice Sheet, Ice Stream C (Kamb)

    NASA Astrophysics Data System (ADS)

    Skidmore, M.; Han, S.; Foo, W.; Bui, D.; Lanoil, B.

    2004-12-01

    In 2000, an ice-drilling project focusing on the "sticky spot" of Ice Stream C recovered cores of sub-glacial sediments from beneath the Western Antarctic Ice Sheet. We have characterized several chemical and microbiological parameters of the sole intact sediment core. Pore waters extracted from these sediments were brackish and some were supersaturated with respect to calcite. Ion chromatography demonstrated the presence of several organic acids at low, but detectable, levels in the pore water. DAPI direct cell counts were approximately 107 cells g-1. Aerobic viable plate counts were much lower than direct cell counts; however, they were two orders of magnitude higher on plates incubated at low temperature (4 ° C; 3.63 x 105 CFU ml-1) than at higher temperatures (ca. 22° C; 1.5 x 103 CFU ml-1); no colonies were detected on plates incubated anaerobically at either temperature. 16S rDNA clone library analysis indicates extremely limited bacterial diversity in these samples: six phylogenetic clades were detected. The three dominant bacterial phylogenetic clades in the clone libraries (252 clones total) were most closely related to Thiobacillus thioparus (180 clones), Polaromonas vacuolata (34 clones), and Gallionella ferruginea (35 clones) and their relatives; one clone each represented the other three phylogenetic clades (most closely related to Ralstonia pickettii, Lysobacter antibioticus, and Xylella fastidiosa, respectively). These sequences match closely with sequences previously obtained from other subglacial environments in Alaska, Ellesmere Island, Canada and New Zealand. Implications of this microbial community to subglacial chemistry and microbial biogeography will be discussed.

  17. Hybrid sequencing approach applied to human fecal metagenomic clone libraries revealed clones with potential biotechnological applications.

    PubMed

    Džunková, Mária; D'Auria, Giuseppe; Pérez-Villarroya, David; Moya, Andrés

    2012-01-01

    Natural environments represent an incredible source of microbial genetic diversity. Discovery of novel biomolecules involves biotechnological methods that often require the design and implementation of biochemical assays to screen clone libraries. However, when an assay is applied to thousands of clones, one may eventually end up with very few positive clones which, in most of the cases, have to be "domesticated" for downstream characterization and application, and this makes screening both laborious and expensive. The negative clones, which are not considered by the selected assay, may also have biotechnological potential; however, unfortunately they would remain unexplored. Knowledge of the clone sequences provides important clues about potential biotechnological application of the clones in the library; however, the sequencing of clones one-by-one would be very time-consuming and expensive. In this study, we characterized the first metagenomic clone library from the feces of a healthy human volunteer, using a method based on 454 pyrosequencing coupled with a clone-by-clone Sanger end-sequencing. Instead of whole individual clone sequencing, we sequenced 358 clones in a pool. The medium-large insert (7-15 kb) cloning strategy allowed us to assemble these clones correctly, and to assign the clone ends to maintain the link between the position of a living clone in the library and the annotated contig from the 454 assembly. Finally, we found several open reading frames (ORFs) with previously described potential medical application. The proposed approach allows planning ad-hoc biochemical assays for the clones of interest, and the appropriate sub-cloning strategy for gene expression in suitable vectors/hosts.

  18. Complex structure of knob DNA on maize chromosome 9. Retrotransposon invasion into heterochromatin.

    PubMed Central

    Ananiev, E V; Phillips, R L; Rines, H W

    1998-01-01

    The recovery of maize (Zea mays L.) chromosome addition lines of oat (Avena sativa L.) from oat x maize crosses enables us to analyze the structure and composition of specific regions, such as knobs, of individual maize chromosomes. A DNA hybridization blot panel of eight individual maize chromosome addition lines revealed that 180-bp repeats found in knobs are present in each of these maize chromosomes, but the copy number varies from approximately 100 to 25, 000. Cosmid clones with knob DNA segments were isolated from a genomic library of an oat-maize chromosome 9 addition line with the help of the 180-bp knob-associated repeated DNA sequence used as a probe. Cloned knob DNA segments revealed a complex organization in which blocks of tandemly arranged 180-bp repeating units are interrupted by insertions of other repeated DNA sequences, mostly represented by individual full size copies of retrotransposable elements. There is an obvious preference for the integration of retrotransposable elements into certain sites (hot spots) of the 180-bp repeat. Sequence microheterogeneity including point mutations and duplications was found in copies of 180-bp repeats. The 180-bp repeats within an array all had the same polarity. Restriction maps constructed for 23 cloned knob DNA fragments revealed the positions of polymorphic sites and sites of integration of insertion elements. Discovery of the interspersion of retrotransposable elements among blocks of tandem repeats in maize and some other organisms suggests that this pattern may be basic to heterochromatin organization for eukaryotes. PMID:9691055

  19. Complementary DNA sequences encoding the multimammate rat MHC class II DQ alpha and beta chains and cross-species sequence comparison in rodents.

    PubMed

    de Bellocq, J Goüy; Leirs, H

    2009-09-01

    Sequences of the complete open reading frame (ORF) for rodents major histocompatibility complex (MHC) class II genes are rare. Multimammate rat (Mastomys natalensis) complementary DNA (cDNA) encoding the alpha and beta chains of MHC class II DQ gene was cloned from a rapid amplifications of cDNA Emds (RACE) cDNA library. The ORFs consist of 801 and 771 bp encoding 266 and 256 amino acid residues for DQB and DQA, respectively. The genomic structure of Mana-DQ genes is globally analogous to that described for other rodents except for the insertion of a serine residue in the signal peptide of Mana-DQB, which is unique among known rodents.

  20. A cDNA from a mouse pancreatic beta cell encoding a putative transcription factor of the insulin gene.

    PubMed Central

    Walker, M D; Park, C W; Rosen, A; Aronheim, A

    1990-01-01

    Cell specific expression of the insulin gene is achieved through transcriptional mechanisms operating on multiple DNA sequence elements located in the 5' flanking region of the gene. Of particular importance in the rat insulin I gene are two closely similar 9 bp sequences (IEB1 and IEB2): mutation of either of these leads to 5-10 fold reduction in transcriptional activity. We have screened an expression cDNA library derived from mouse pancreatic endocrine beta cells with a radioactive DNA probe containing multiple copies of the IEB1 sequence. A cDNA clone (A1) isolated by this procedure encodes a protein which shows efficient binding to the IEB1 probe, but much weaker binding to either an unrelated DNA probe or to a probe bearing a single base pair insertion within the recognition sequence. DNA sequence analysis indicates a protein belonging to the helix-loop-helix family of DNA-binding proteins. The ability of the protein encoded by clone A1 to recognize a number of wild type and mutant DNA sequences correlates closely with the ability of each sequence element to support transcription in vivo in the context of the insulin 5' flanking DNA. We conclude that the isolated cDNA may encode a transcription factor that participates in control of insulin gene expression. Images PMID:2181401

  1. A 2.5-Mb contig constructed from Angus, Longhorn and horned Hereford DNA spanning the polled interval on bovine chromosome 1.

    PubMed

    Wunderlich, K R; Abbey, C A; Clayton, D R; Song, Y; Schein, J E; Georges, M; Coppieters, W; Adelson, D L; Taylor, J F; Davis, S L; Gill, C A

    2006-12-01

    The polled locus has been mapped by genetic linkage analysis to the proximal region of bovine chromosome 1. As an intermediate step in our efforts to identify the polled locus and the underlying causative mutation for the polled phenotype, we have constructed a BAC-based physical map of the interval containing the polled locus. Clones containing genes and markers in the critical interval were isolated from the TAMBT (constructed from Angus and Longhorn genomic DNA) and CHORI-240 (constructed from horned Hereford genomic DNA) BAC libraries and ordered based on fingerprinting and the presence or absence of 80 STS markers. A single contig spanning 2.5 Mb was assembled. Comparison of the physical order of STSs to the corresponding region of human chromosome 21 revealed the same order of genes within the polled critical interval. This contig of overlapping BAC clones from horned and polled breeds is a useful resource for SNP discovery and characterization of positional candidate genes.

  2. A cDNA clone highly expressed in ripe banana fruit shows homology to pectate lyases.

    PubMed

    Dominguez-Puigjaner, E; LLop, I; Vendrell, M; Prat, S

    1997-07-01

    A cDNA clone (Ban17), encoding a protein homologous to pectate lyase, has been isolated from a cDNA library from climacteric banana fruit by means of differential screening. Northern analysis showed that Ban17 mRNA is first detected in early climacteric fruit, reaches a steady-state maximum at the climacteric peak, and declines thereafter in overripe fruit. Accumulation of the Ban17 transcript can be induced in green banana fruit by exogenous application of ethylene. The demonstrates that expression of this gene is under hormonal control, its induction being regulated by the rapid increase in ethylene production at the onset of ripening. The deduced amino acid sequence derived from the Ban17 cDNA shares significant identity with pectate lyases from pollen and plant pathogenic bacteria of the genus Erwinia. Similarity to bacterial pectate lyases that were proven to break down the pectic substances of the plant cell wall suggest that Ban17 might play a role in the loss of mesocarp firmness during fruit ripening.

  3. Combinatorial peptide libraries and biometric score matrices permit the quantitative analysis of specific and degenerate interactions between clonotypic TCR and MHC peptide ligands.

    PubMed

    Zhao, Y; Gran, B; Pinilla, C; Markovic-Plese, S; Hemmer, B; Tzou, A; Whitney, L W; Biddison, W E; Martin, R; Simon, R

    2001-08-15

    The interaction of TCRs with MHC peptide ligands can be highly flexible, so that many different peptides are recognized by the same TCR in the context of a single restriction element. We provide a quantitative description of such interactions, which allows the identification of T cell epitopes and molecular mimics. The response of T cell clones to positional scanning synthetic combinatorial libraries is analyzed with a mathematical approach that is based on a model of independent contribution of individual amino acids to peptide Ag recognition. This biometric analysis compares the information derived from these libraries composed of trillions of decapeptides with all the millions of decapeptides contained in a protein database to rank and predict the most stimulatory peptides for a given T cell clone. We demonstrate the predictive power of the novel strategy and show that, together with gene expression profiling by cDNA microarrays, it leads to the identification of novel candidate autoantigens in the inflammatory autoimmune disease, multiple sclerosis.

  4. Molecular Mechanisms of Cytopathogenicity of Primate Lymphotropic Retroviruses: Relevance to Treatment and Vaccine for AIDS

    DTIC Science & Technology

    1989-03-10

    fragment of the HIV-1 genome was isolated from XBH10 and inserted into an M13 phage vector. Mutations were introduced by use of 25-mer oligonucleotides which... M13 by Eco RI and religated into the corresponding position of pHXB2gpt. The mutant AS was prepared directly from pHXB2gpt by digestion with Nde I and...detect immunocomplexes. Molecular Cloning and Sequencing of Proviral DNA A X phage library was constructed from the genomic DNA isolated from Hut78 cells

  5. Analysis of differentially expressed genes in two immunologically distinct strains of Eimeria maxima using suppression subtractive hybridization and dot-blot hybridization

    PubMed Central

    2014-01-01

    Background It is well known that different Eimeria maxima strains exhibit significant antigenic variation. However, the genetic basis of these phenotypes remains unclear. Methods Total RNA and mRNA were isolated from unsporulated oocysts of E. maxima strains SH and NT, which were found to have significant differences in immunogenicity in our previous research. Two subtractive cDNA libraries were constructed using suppression subtractive hybridization (SSH) and specific genes were further analyzed by dot-blot hybridization and qRT-PCR analysis. Results A total of 561 clones were selected from both cDNA libraries and the length of the inserted fragments was 0.25–1.0 kb. Dot-blot hybridization revealed a total of 86 differentially expressed clones (63 from strain SH and 23 from strain NT). Nucleotide sequencing analysis of these clones revealed ten specific contigs (six from strain SH and four from strain NT). Further analysis found that six contigs from strain SH and three from strain NT shared significant identities with previously reported proteins, and one contig was presumed to be novel. The specific differentially expressed genes were finally verified by RT-PCR and qRT-PCR analyses. Conclusions The data presented here suggest that specific genes identified between the two strains may be important molecules in the immunogenicity of E. maxima that may present potential new drug targets or vaccine candidates for coccidiosis. PMID:24894832

  6. BIGEL analysis of gene expression in HL60 cells exposed to X rays or 60 Hz magnetic fields

    NASA Technical Reports Server (NTRS)

    Balcer-Kubiczek, E. K.; Zhang, X. F.; Han, L. H.; Harrison, G. H.; Davis, C. C.; Zhou, X. J.; Ioffe, V.; McCready, W. A.; Abraham, J. M.; Meltzer, S. J.

    1998-01-01

    We screened a panel of 1,920 randomly selected cDNAs to discover genes that are differentially expressed in HL60 cells exposed to 60 Hz magnetic fields (2 mT) or X rays (5 Gy) compared to unexposed cells. Identification of these clones was accomplished using our two-gel cDNA library screening method (BIGEL). Eighteen cDNAs differentially expressed in X-irradiated compared to control HL60 cells were recovered from a panel of 1,920 clones. Differential expression in experimental compared to control cells was confirmed independently by Northern blotting of paired total RNA samples hybridized to each of the 18 clone-specific cDNA probes. DNA sequencing revealed that 15 of the 18 cDNA clones produced matches with the database for genes related to cell growth, protein synthesis, energy metabolism, oxidative stress or apoptosis (including MYC, neuroleukin, copper zinc-dependent superoxide dismutase, TC4 RAS-like protein, peptide elongation factor 1alpha, BNIP3, GATA3, NF45, cytochrome c oxidase II and triosephosphate isomerase mRNAs). In contrast, BIGEL analysis of the same 1,920 cDNAs revealed no differences greater than 1.5-fold in expression levels in magnetic-field compared to sham-exposed cells. Magnetic-field-exposed and control samples were analyzed further for the presence of mRNA encoding X-ray-responsive genes by hybridization of the 18 specific cDNA probes to RNA from exposed and control HL60 cells. Our results suggest that differential gene expression is induced in approximately 1% of a random pool of cDNAs by ionizing radiation but not by 60 Hz magnetic fields under the present experimental conditions.

  7. Cloning of a newly identified heart-specific troponin I isoform, which lacks the troponin T binding portion, using the yeast hybrid system.

    PubMed

    Suzuki, Hideaki; Arakawa, Yasuhiro; Ito, Masaki; Yamada, Hisashi; Horiguchi-Yamada, Junko

    2006-01-01

    To elucidate the molecular pathogenesis behind increased levels of laminin in cardiac muscle cells in cardiomyopathy by using a yeast hybrid screen. The present study reports the cloning of a newly identified heart-specific troponin I isoform, which is putatively linked to laminin. Future studies will explore the functional significance of this connection. Yeast two-hybrid screen analysis was performed using MLF1-interacting protein (amino acids 1 to 318) as bait. The human heart complementary DNA library was screened by using the yeast-mating method for overnight culture. Two final positive clones from the heart library were isolated. These two clones encoded the same protein, a short isoform of human cardiac troponin I (TnI) that lacked TnI exons 5 and 6. The TnI isoform has a heart-specific expression pattern and it shares several sequence features with human cardiac TnI; however, it lacks the troponin T binding portion. The heart-specific segment of the human cardiac TnI isoform shares several sequence features with human cardiac TnI, but it lacks the troponin T binding portion. These results suggest that the heart-specific TnI isoform may be involved in cardiac development and disease.

  8. Cloning of a newly identified heart-specific troponin I isoform, which lacks the troponin T binding portion, using the yeast hybrid system

    PubMed Central

    Suzuki, Hideaki; Arakawa, Yasuhiro; Ito, Masaki; Yamada, Hisashi; Horiguchi-Yamada, Junko

    2006-01-01

    OBJECTIVE To elucidate the molecular pathogenesis behind increased levels of laminin in cardiac muscle cells in cardiomyopathy by using a yeast hybrid screen. The present study reports the cloning of a newly identified heart-specific troponin I isoform, which is putatively linked to laminin. Future studies will explore the functional significance of this connection. METHODS Yeast two-hybrid screen analysis was performed using MLF1-interacting protein (amino acids 1 to 318) as bait. The human heart complementary DNA library was screened by using the yeast-mating method for overnight culture. RESULTS Two final positive clones from the heart library were isolated. These two clones encoded the same protein, a short isoform of human cardiac troponin I (TnI) that lacked TnI exons 5 and 6. The TnI isoform has a heart-specific expression pattern and it shares several sequence features with human cardiac TnI; however, it lacks the troponin T binding portion. CONCLUSION The heart-specific segment of the human cardiac TnI isoform shares several sequence features with human cardiac TnI, but it lacks the troponin T binding portion. These results suggest that the heart-specific TnI isoform may be involved in cardiac development and disease. PMID:18651010

  9. A high-throughput immobilized bead screen for stable proteins and multi-protein complexes

    PubMed Central

    Lockard, Meghan A.; Listwan, Pawel; Pedelacq, Jean-Denis; Cabantous, Stéphanie; Nguyen, Hau B.; Terwilliger, Thomas C.; Waldo, Geoffrey S.

    2011-01-01

    We describe an in vitro colony screen to identify Escherichia coli expressing soluble proteins and stable, assembled multiprotein complexes. Proteins with an N-terminal 6His tag and C-terminal green fluorescent protein (GFP) S11 tag are fluorescently labeled in cells by complementation with a coexpressed GFP 1–10 fragment. After partial colony lysis, the fluorescent soluble proteins or complexes diffuse through a supporting filtration membrane and are captured on Talon® resin metal affinity beads immobilized in agarose. Images of the fluorescent colonies convey total expression and the level of fluorescence bound to the beads indicates how much protein is soluble. Both pieces of information can be used together when selecting clones. After the assay, colonies can be picked and propagated, eliminating the need to make replica plates. We used the method to screen a DNA fragment library of the human protein p85 and preferentially obtained clones expressing the full-length ‘breakpoint cluster region-homology' and NSH2 domains. The assay also distinguished clones expressing stable multi-protein complexes from those that are unstable due to missing subunits. Clones expressing stable, intact heterotrimeric E.coli YheNML complexes were readily identified in libraries dominated by complexes of YheML missing the N subunit. PMID:21642284

  10. Fab MAbs specific to HA of influenza virus with H5N1 neutralizing activity selected from immunized chicken phage library.

    PubMed

    Pitaksajjakul, Pannamthip; Lekcharoensuk, Porntippa; Upragarin, Narin; Barbas, Carlos F; Ibrahim, Madiha Salah; Ikuta, Kazuyoshi; Ramasoota, Pongrama

    2010-05-14

    Hemagglutinin protein (HA) was considered to be the primary target for monoclonal antibody production. This protein not only plays an important role in viral infections, but can also be used to differentiate H5N1 virus from other influenza A viruses. Hence, for diagnostic and therapeutic applications, it is important to develop anti-HA monoclonal antibody (MAb) with high sensitivity, specificity, stability, and productivity. Nine unique Fab MAbs were generated from chimeric chicken/human Fab phage display library constructed from cDNA derived from chickens immunized with recombinant hemagglutinin protein constructed from H5N1 avian influenza virus (A/Vietnam/1203/04). The obtained Fab MAbs showed several characteristics for further optimization and development-three clones were highly specific to only H5N1 virus. This finding can be applied to the development of H5N1 diagnostic testing. Another clone showed neutralization activity that inhibited H5N1 influenza virus infection in Madin-Darby canine kidney (MDCK) cells. In addition, one clone showed strong reactivity with several of the influenza A virus subtypes tested. The conversion of this clone to whole IgG is a promising study for a cross-neutralization activity test. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  11. Metatranscriptomics of Soil Eukaryotic Communities.

    PubMed

    Yadav, Rajiv K; Bragalini, Claudia; Fraissinet-Tachet, Laurence; Marmeisse, Roland; Luis, Patricia

    2016-01-01

    Functions expressed by eukaryotic organisms in soil can be specifically studied by analyzing the pool of eukaryotic-specific polyadenylated mRNA directly extracted from environmental samples. In this chapter, we describe two alternative protocols for the extraction of high-quality RNA from soil samples. Total soil RNA or mRNA can be converted to cDNA for direct high-throughput sequencing. Polyadenylated mRNA-derived full-length cDNAs can also be cloned in expression plasmid vectors to constitute soil cDNA libraries, which can be subsequently screened for functional gene categories. Alternatively, the diversity of specific gene families can also be explored following cDNA sequence capture using exploratory oligonucleotide probes.

  12. Changes in the Composition of Drinking Water Bacterial Clone Libraries Introduced by Using Two Different 16S rRna Gene PCR Primers

    EPA Science Inventory

    Sequence analysis of 16S rRNA gene clone libraries is a popular tool used to describe the composition of natural microbial communities. Commonly, clone libraries are developed by direct cloning of 16S rRNA gene PCR products. Different primers are often employed in the initial amp...

  13. Changes in the Composition of Drinking Water Bacterial Clone Libraries Introduced by Using Two Different 16S rRNA Gene PCR Primers

    EPA Science Inventory

    Sequence analysis of 16S rRNA gene clone libraries is a popular tool used to describe the composition of natural microbial communities. Commonly, clone libraries are developed by direct cloning of 16S rRNA gene PCR products. Different primers are often employed in the initial amp...

  14. Isolation and sequence analysis of the wheat B genome subtelomeric DNA.

    PubMed

    Salina, Elena A; Sergeeva, Ekaterina M; Adonina, Irina G; Shcherban, Andrey B; Afonnikov, Dmitry A; Belcram, Harry; Huneau, Cecile; Chalhoub, Boulos

    2009-09-05

    Telomeric and subtelomeric regions are essential for genome stability and regular chromosome replication. In this work, we have characterized the wheat BAC (bacterial artificial chromosome) clones containing Spelt1 and Spelt52 sequences, which belong to the subtelomeric repeats of the B/G genomes of wheats and Aegilops species from the section Sitopsis. The BAC library from Triticum aestivum cv. Renan was screened using Spelt1 and Spelt52 as probes. Nine positive clones were isolated; of them, clone 2050O8 was localized mainly to the distal parts of wheat chromosomes by in situ hybridization. The distribution of the other clones indicated the presence of different types of repetitive sequences in BACs. Use of different approaches allowed us to prove that seven of the nine isolated clones belonged to the subtelomeric chromosomal regions. Clone 2050O8 was sequenced and its sequence of 119,737 bp was annotated. It is composed of 33% transposable elements (TEs), 8.2% Spelt52 (namely, the subfamily Spelt52.2) and five non-TE-related genes. DNA transposons are predominant, making up 24.6% of the entire BAC clone, whereas retroelements account for 8.4% of the clone length. The full-length CACTA transposon Caspar covers 11,666 bp, encoding a transposase and CTG-2 proteins, and this transposon accounts for 40% of the DNA transposons. The in situ hybridization data for 2050O8 derived subclones in combination with the BLAST search against wheat mapped ESTs (expressed sequence tags) suggest that clone 2050O8 is located in the terminal bin 4BL-10 (0.95-1.0). Additionally, four of the predicted 2050O8 genes showed significant homology to four putative orthologous rice genes in the distal part of rice chromosome 3S and confirm the synteny to wheat 4BL. Satellite DNA sequences from the subtelomeric regions of diploid wheat progenitor can be used for selecting the BAC clones from the corresponding regions of hexaploid wheat chromosomes. It has been demonstrated for the first time that Spelt52 sequences were involved in the evolution of terminal regions of common wheat chromosomes. Our research provides new insights into the microcollinearity in the terminal regions of wheat chromosomes 4BL and rice chromosome 3S.

  15. Chromosomal localization of actin genes in the malaria mosquito Anopheles darlingi

    PubMed Central

    BRIDI, L. C.; SHARAKHOVA, M. V.; SHARAKHOV, I. V.; CORDEIRO, J.; AZEVEDO, G. M.; TADEI, W. P.; RAFAEL, M. S.

    2012-01-01

    Physical and genetic maps have been used for chromosomal localization of genes in vectors of infectious diseases. The availability of polytene chromosomes in malaria mosquitoes provides a unique opportunity to precisely map genes of interest. We report physical mapping of two actin genes on polytene chromosomes of the major malaria vector in Amazon Anopheles darlingi. The clones with the actin genes sequences were obtained from a cDNA library constructed from RNA isolated from adult females and males of An. darlingi. Each of the two clones was mapped to a unique site on the chromosomal arm 2L in subdivisions 21A (clone pl05-A04) and 23B (clone pl17-G06). The obtained results together with previous mapping data provide a suitable basis for comparative genomics and for establishing chromosomal homologies among major malaria vectors. PMID:22804344

  16. Identification of differentially-expressed genes potentially implicated in drought response in pitaya (Hylocereus undatus) by suppression subtractive hybridization and cDNA microarray analysis.

    PubMed

    Fan, Qing-Jie; Yan, Feng-Xia; Qiao, Guang; Zhang, Bing-Xue; Wen, Xiao-Peng

    2014-01-01

    Drought is one of the most severe threats to the growth, development and yield of plant. In order to unravel the molecular basis underlying the high tolerance of pitaya (Hylocereus undatus) to drought stress, suppression subtractive hybridization (SSH) and cDNA microarray approaches were firstly combined to identify the potential important or novel genes involved in the plant responses to drought stress. The forward (drought over drought-free) and reverse (drought-free over drought) suppression subtractive cDNA libraries were constructed using in vitro shoots of cultivar 'Zihonglong' exposed to drought stress and drought-free (control). A total of 2112 clones, among which half were from either forward or reverse SSH library, were randomly picked up to construct a pitaya cDNA microarray. Microarray analysis was carried out to verify the expression fluctuations of this set of clones upon drought treatment compared with the controls. A total of 309 expressed sequence tags (ESTs), 153 from forward library and 156 from reverse library, were obtained, and 138 unique ESTs were identified after sequencing by clustering and blast analyses, which included genes that had been previously reported as responsive to water stress as well as some functionally unknown genes. Thirty six genes were mapped to 47 KEGG pathways, including carbohydrate metabolism, lipid metabolism, energy metabolism, nucleotide metabolism, and amino acid metabolism of pitaya. Expression analysis of the selected ESTs by reverse transcriptase polymerase chain reaction (RT-PCR) corroborated the results of differential screening. Moreover, time-course expression patterns of these selected ESTs further confirmed that they were closely responsive to drought treatment. Among the differentially expressed genes (DEGs), many are related to stress tolerances including drought tolerance. Thereby, the mechanism of drought tolerance of this pitaya genotype is a very complex physiological and biochemical process, in which multiple metabolism pathways and many genes were implicated. The data gained herein provide an insight into the mechanism underlying the drought stress tolerance of pitaya, as well as may facilitate the screening of candidate genes for drought tolerance. © 2013 Elsevier B.V. All rights reserved.

  17. Small gene family encoding an eggshell (chorion) protein of the human parasite Schistosoma mansoni

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobek, L.A.; Rekosh, D.M.; Lo Verde, P.T.

    1988-08-01

    The authors isolated six independent genomic clones encoding schistosome chorion or eggshell proteins from a Schistosoma mansoni genomic library. A linkage map of five of the clones spanning 35 kilobase pairs (kbp) of the S. mansoni genome was constructed. The region contained two eggshell protein genes closely linked, separated by 7.5 kbp of intergenic DNA. The two genes of the cluster were arranged in the same orientation, that is, they were transcribed from the same strand. The sixth clone probably represents a third copy of the eggshell gene that is not contained within the 35-kbp region. The 5- end ofmore » the mRNA transcribed from these genes was defined by primer extension directly off the RNA. The ATCAT cap site sequence was homologous to a silkmoth chorion PuTCATT cap site sequence, where Pu indicates any purine. DNA sequence analysis showed that there were no introns in these genes. The DNA sequences of the three genes were very homologous to each other and to a cDNA clone, pSMf61-46, differing only in three or four nucleotices. A multiple TATA box was located at positions -23 to -31, and a CAAAT sequence was located at -52 upstream of the eggshell transcription unit. Comparison of sequences in regions further upstream with silkmoth and Drosophila sequences revealed very short elements that were shared. One such element, TCACGT, recently shown to be an essential cis-regulatory element for silkmoth chorion gene promoter function, was found at a similar position in all three organisms.« less

  18. Combinatorial Pooling Enables Selective Sequencing of the Barley Gene Space

    PubMed Central

    Lonardi, Stefano; Duma, Denisa; Alpert, Matthew; Cordero, Francesca; Beccuti, Marco; Bhat, Prasanna R.; Wu, Yonghui; Ciardo, Gianfranco; Alsaihati, Burair; Ma, Yaqin; Wanamaker, Steve; Resnik, Josh; Bozdag, Serdar; Luo, Ming-Cheng; Close, Timothy J.

    2013-01-01

    For the vast majority of species – including many economically or ecologically important organisms, progress in biological research is hampered due to the lack of a reference genome sequence. Despite recent advances in sequencing technologies, several factors still limit the availability of such a critical resource. At the same time, many research groups and international consortia have already produced BAC libraries and physical maps and now are in a position to proceed with the development of whole-genome sequences organized around a physical map anchored to a genetic map. We propose a BAC-by-BAC sequencing protocol that combines combinatorial pooling design and second-generation sequencing technology to efficiently approach denovo selective genome sequencing. We show that combinatorial pooling is a cost-effective and practical alternative to exhaustive DNA barcoding when preparing sequencing libraries for hundreds or thousands of DNA samples, such as in this case gene-bearing minimum-tiling-path BAC clones. The novelty of the protocol hinges on the computational ability to efficiently compare hundred millions of short reads and assign them to the correct BAC clones (deconvolution) so that the assembly can be carried out clone-by-clone. Experimental results on simulated data for the rice genome show that the deconvolution is very accurate, and the resulting BAC assemblies have high quality. Results on real data for a gene-rich subset of the barley genome confirm that the deconvolution is accurate and the BAC assemblies have good quality. While our method cannot provide the level of completeness that one would achieve with a comprehensive whole-genome sequencing project, we show that it is quite successful in reconstructing the gene sequences within BACs. In the case of plants such as barley, this level of sequence knowledge is sufficient to support critical end-point objectives such as map-based cloning and marker-assisted breeding. PMID:23592960

  19. Combinatorial pooling enables selective sequencing of the barley gene space.

    PubMed

    Lonardi, Stefano; Duma, Denisa; Alpert, Matthew; Cordero, Francesca; Beccuti, Marco; Bhat, Prasanna R; Wu, Yonghui; Ciardo, Gianfranco; Alsaihati, Burair; Ma, Yaqin; Wanamaker, Steve; Resnik, Josh; Bozdag, Serdar; Luo, Ming-Cheng; Close, Timothy J

    2013-04-01

    For the vast majority of species - including many economically or ecologically important organisms, progress in biological research is hampered due to the lack of a reference genome sequence. Despite recent advances in sequencing technologies, several factors still limit the availability of such a critical resource. At the same time, many research groups and international consortia have already produced BAC libraries and physical maps and now are in a position to proceed with the development of whole-genome sequences organized around a physical map anchored to a genetic map. We propose a BAC-by-BAC sequencing protocol that combines combinatorial pooling design and second-generation sequencing technology to efficiently approach denovo selective genome sequencing. We show that combinatorial pooling is a cost-effective and practical alternative to exhaustive DNA barcoding when preparing sequencing libraries for hundreds or thousands of DNA samples, such as in this case gene-bearing minimum-tiling-path BAC clones. The novelty of the protocol hinges on the computational ability to efficiently compare hundred millions of short reads and assign them to the correct BAC clones (deconvolution) so that the assembly can be carried out clone-by-clone. Experimental results on simulated data for the rice genome show that the deconvolution is very accurate, and the resulting BAC assemblies have high quality. Results on real data for a gene-rich subset of the barley genome confirm that the deconvolution is accurate and the BAC assemblies have good quality. While our method cannot provide the level of completeness that one would achieve with a comprehensive whole-genome sequencing project, we show that it is quite successful in reconstructing the gene sequences within BACs. In the case of plants such as barley, this level of sequence knowledge is sufficient to support critical end-point objectives such as map-based cloning and marker-assisted breeding.

  20. Cloning and expression of the rat homologue of the Huntington disease gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitt, I.; Epplen, J.T.; Riess, O.

    1994-09-01

    Huntington`s disease (HD) is an autosomal dominant neurodegenerative disorder which is manifested usually in adult life. The age of onset is variable and leads to progressive symptoms including involuntary choreatic movements and various cognitive and psychiatric disturbances. Recently, a gene (IT15) was cloned containing a (CAG){sub n} repeat which is elongated and unstable in HD patients. IT15 is widely expressed in human tissues but unrelated to any known deduced protein sequence. To further investigate the HD gene, 15 rat cDNA libraries were screened. 24 clones have been identified covering the Huntingtin gene. Comparison of the Huntingtin gene between human andmore » rat revealed homologies between 80% and 87% at the DNA level and about 90% at the protein level. These analyses will help to define biologically important sequence regions, e.g., via evolutionary conservation. One clone contains the (CAG){sub n} repeat which consists of eight triplets compared to seven triplets in the mouse and a median of 17 in human. As in humans there are two transcripts arising from differential 3{prime}-polyadenylation. In the 3{prime}UTR a stretch of about 280 bp is exchanged for a 250 bp fragment with no homology in rodents and man. The cDNA clones are currently used to study Huntingtin gene expression during development in rodent tissues. RNA in situ hybridization of embryonic sections shows predominant signals in all neuronal tissues. In contrast to previously published data Huntingtin mRNA expression in testis is increased in spermatocytes vs. spermatogonia.« less

  1. Identification of Members of the Metabolically Active Microbial Populations Associated with Beggiatoa Species Mat Communities from Gulf of Mexico Cold-Seep Sediments

    PubMed Central

    Mills, Heath J.; Martinez, Robert J.; Story, Sandra; Sobecky, Patricia A.

    2004-01-01

    In this study, the composition of the metabolically active fraction of the microbial community occurring in Gulf of Mexico marine sediments (water depth, 550 to 575 m) with overlying filamentous bacterial mats was determined. The mats were mainly composed of either orange- or white-pigmented Beggiatoa spp. Complementary 16S ribosomal DNA (crDNA) was obtained from rRNA extracted from three different sediment depths (0 to 2, 6 to 8, and 10 to 12 cm) that had been subjected to reverse transcription-PCR amplification. Domain-specific 16S PCR primers were used to construct 12 different 16S crDNA libraries containing 333 Archaea and 329 Bacteria clones. Analysis of the Archaea clones indicated that all sediment depths associated with overlying orange- and white-pigmented microbial mats were almost exclusively dominated by ANME-2 (95% of total Archaea clones), a lineage related to the methanogenic order Methanosarcinales. In contrast, bacterial diversity was considerably higher, with the dominant phylotype varying by sediment depth. An equivalent number of clones detected at 0 to 2 cm, representing a total of 93%, were related to the γ and δ classes of Proteobacteria, whereas clones related to δ-Proteobacteria dominated the metabolically active fraction of the bacterial community occurring at 6 to 8 cm (79%) and 10 to 12 cm (85%). This is the first phylogenetics-based evaluation of the presumptive metabolically active fraction of the Bacteria and Archaea community structure investigated along a sediment depth profile in the northern Gulf of Mexico, a hydrocarbon-rich cold-seep region. PMID:15345432

  2. Differences in the methanogen population exist in sika deer (Cervus nippon) fed different diets in China.

    PubMed

    Li, Zhi Peng; Liu, Han Lu; Jin, Chun Ai; Cui, Xue Zhe; Jing, Yi; Yang, Fu He; Li, Guang Yu; Wright, André-Denis G

    2013-11-01

    Understanding the methanogen structure from sika deer (Cervus nippon) in China may be beneficial to methane mitigation. In the present preliminary study, we investigated the methanogen community in the rumen of domesticated sika deer fed either tannin-rich plants (oak leaf, OL group) or corn stalk (CS group) using 16S rRNA gene clone libraries. Overall, we obtained 197 clone sequences, revealing 146 unique phylotypes, which were assigned to 36 operational taxonomic units at the species level (98 % identity). Methanogens related to the genus Methanobrevibacter were the predominant phylotypes representing 83.9 % (OL library) and 85.9 % (CS library) of the clones. Methanobrevibacter millerae was the most abundant species in both libraries, but the proportion of M. millerae-related clones in the CS library was higher than in the OL library (69.5 and 51.4 %, respectively). Moreover, Methanobrevibacter wolinii-related clones (32.5 %) were predominant in the OL library. Methanobrevibacter smithii-related clones and Methanobrevibacter ruminantium-related clones accounted for 6.5 and 6.6 % in the CS library, respectively. However, these clones were absent from the OL library. The concentrations of butyrate and total short-chain fatty acids (SCFAs) were significantly higher in the OL group, but the concentrations of acetate, propionate, and valerate and the acetate to propionate ratio in the OL group were not significantly different between the two groups. Tannin-rich plants may have affected the distribution of genus Methanobrevibacter phylotypes at the species level and the concentration and composition of SCFAs.

  3. Cloning and sequence analysis of a cDNA clone coding for the mouse GM2 activator protein.

    PubMed Central

    Bellachioma, G; Stirling, J L; Orlacchio, A; Beccari, T

    1993-01-01

    A cDNA (1.1 kb) containing the complete coding sequence for the mouse GM2 activator protein was isolated from a mouse macrophage library using a cDNA for the human protein as a probe. There was a single ATG located 12 bp from the 5' end of the cDNA clone followed by an open reading frame of 579 bp. Northern blot analysis of mouse macrophage RNA showed that there was a single band with a mobility corresponding to a size of 2.3 kb. We deduce from this that the mouse mRNA, in common with the mRNA for the human GM2 activator protein, has a long 3' untranslated sequence of approx. 1.7 kb. Alignment of the mouse and human deduced amino acid sequences showed 68% identity overall and 75% identity for the sequence on the C-terminal side of the first 31 residues, which in the human GM2 activator protein contains the signal peptide. Hydropathicity plots showed great similarity between the mouse and human sequences even in regions of low sequence similarity. There is a single N-glycosylation site in the mouse GM2 activator protein sequence (Asn151-Phe-Thr) which differs in its location from the single site reported in the human GM2 activator protein sequence (Asn63-Val-Thr). Images Figure 1 PMID:7689829

  4. Molecular cloning and characterization of a tomato cDNA encoding a systemically wound-inducible bZIP DNA-binding protein

    NASA Technical Reports Server (NTRS)

    Stankovic, B.; Vian, A.; Henry-Vian, C.; Davies, E.

    2000-01-01

    Localized wounding of one leaf in intact tomato (Lycopersicon esculentum Mill.) plants triggers rapid systemic transcriptional responses that might be involved in defense. To better understand the mechanism(s) of intercellular signal transmission in wounded tomatoes, and to identify the array of genes systemically up-regulated by wounding, a subtractive cDNA library for wounded tomato leaves was constructed. A novel cDNA clone (designated LebZIP1) encoding a DNA-binding protein was isolated and identified. This clone appears to be encoded by a single gene, and belongs to the family of basic leucine zipper domain (bZIP) transcription factors shown to be up-regulated by cold and dark treatments. Analysis of the mRNA levels suggests that the transcript for LebZIP1 is both organ-specific and up-regulated by wounding. In wounded wild-type tomatoes, the LebZIP1 mRNA levels in distant tissue were maximally up-regulated within only 5 min following localized wounding. Exogenous abscisic acid (ABA) prevented the rapid wound-induced increase in LebZIP1 mRNA levels, while the basal levels of LebZIP1 transcripts were higher in the ABA mutants notabilis (not), sitiens (sit), and flacca (flc), and wound-induced increases were greater in the ABA-deficient mutants. Together, these results suggest that ABA acts to curtail the wound-induced synthesis of LebZIP1 mRNA.

  5. Phage Display Breast Carcinoma cDNA Libraries: Isolation of Clones Which Specifically Bind to Membrane Glycoproteins, Mucins, and Endothelial Cell Surface

    DTIC Science & Technology

    1999-07-01

    nutrients and waste and UV 2237 fibrosarcoma sublines (17). Expression of elimination, cell surfaces are also important for the galectin-1, another member of...10B capsid protein. Therefore, this GAG CGG AAA ATG GCA GAC AAT TTT TCG CTC CAT ... vector was chosen to assess the feasibility of phage met Ala Asp

  6. The Chromosome Microdissection and Microcloning Technique.

    PubMed

    Zhang, Ying-Xin; Deng, Chuan-Liang; Hu, Zan-Min

    2016-01-01

    Chromosome microdissection followed by microcloning is an efficient tool combining cytogenetics and molecular genetics that can be used for the construction of the high density molecular marker linkage map and fine physical map, the generation of probes for chromosome painting, and the localization and cloning of important genes. Here, we describe a modified technique to microdissect a single chromosome, paint individual chromosomes, and construct single-chromosome DNA libraries.

  7. Screening and identification of RhD antigen mimic epitopes from a phage display random peptide library for the serodiagnosis of haemolytic disease of the foetus and newborn.

    PubMed

    Wang, Jiao; Song, Jingjing; Zhou, Shuimei; Fu, Yourong; Bailey, Jeffrey A; Shen, Changxin

    2018-01-16

    Identification of RhD antigen epitopes is a key component in understanding the pathogenesis of haemolytic disease of the foetus and newborn. Research has indicated that phage display libraries are useful tools for identifying novel mimic epitopes (mimotopes) which may help to determine antigen specificity. We selected the mimotopes of blood group RhD antigen by affinity panning a phage display library using monoclonal anti-D. After three rounds of biopanning, positive phage clones were identified by enzyme-linked immunosorbent assay (ELISA) and then sent for sequencing and peptides synthesis. Next, competitive ELISA and erythrocyte haemagglutination inhibition tests were carried out to confirm the inhibitory activity of the synthetic peptide. To evaluate the diagnostic performance of the synthetic peptide, a diagnostic ELISA was examined. Fourteen of 35 phage clones that were chosen randomly from the titering plate were considered to be positive. Following DNA sequencing and translation, 11 phage clones were found to represent the same peptide - RMKMLMMLMRRK (P4) - whereas each of the other three clones represented a unique peptide. Through the competitive ELISA and erythrocyte haemagglutination inhibition tests, the peptide (P4) was verified to have the ability to mimic the RhD antigen. The diagnostic ELISA for P4 proved to be sensitive (82.61%) and specific (88.57%). This study reveals that the P4 peptide can mimic RhD antigen and paves the way for the development of promising targeted diagnostic and therapeutic platforms for haemolytic disease of the foetus and newborn.

  8. Nucleotide exchange and excision technology DNA shuffling and directed evolution.

    PubMed

    Speck, Janina; Stebel, Sabine C; Arndt, Katja M; Müller, Kristian M

    2011-01-01

    Remarkable success in optimizing complex properties within DNA and proteins has been achieved by directed evolution. In contrast to various random mutagenesis methods and high-throughput selection methods, the number of available DNA shuffling procedures is limited, and protocols are often difficult to adjust. The strength of the nucleotide exchange and excision technology (NExT) DNA shuffling described here is the robust, efficient, and easily controllable DNA fragmentation step based on random incorporation of the so-called 'exchange nucleotides' by PCR. The exchange nucleotides are removed enzymatically, followed by chemical cleavage of the DNA backbone. The oligonucleotide pool is reassembled into full-length genes by internal primer extension, and the recombined gene library is amplified by standard PCR. The technique has been demonstrated by shuffling a defined gene library of chloramphenicol acetyltransferase variants using uridine as fragmentation defining exchange nucleotide. Substituting 33% of the dTTP with dUTP in the incorporation PCR resulted in shuffled clones with an average parental fragment size of 86 bases and revealed a mutation rate of only 0.1%. Additionally, a computer program (NExTProg) has been developed that predicts the fragment size distribution depending on the relative amount of the exchange nucleotide.

  9. Pseudomonas diversity in crude-oil-contaminated intertidal sand samples obtained after the Prestige oil spill.

    PubMed

    Mulet, Magdalena; David, Zoyla; Nogales, Balbina; Bosch, Rafael; Lalucat, Jorge; García-Valdés, Elena

    2011-02-01

    The Galicia seashore, in northwestern Spain, was one of the shorelines affected by the Prestige oil spill in November 2002. The diversity of autochthonous Pseudomonas populations present at two beaches (Carnota municipality) was analyzed using culture-independent and culture-dependent methods. The first analysis involved the screening of an rpoD gene library. The second involved the isolation of 94 Pseudomonas strains that were able to grow on selective media by direct plating or after serial enrichments on several carbon sources: biphenyl, gentisate, hexadecane, methylnaphthalene, naphthalene, phenanthrene, salicylate, xylene, and succinate. Eight denitrifying Pseudomonas strains were also isolated by their ability to grow anaerobically with nitrate. The calculated coverage index for Pseudomonas species was 89% when clones and isolates were considered together, and there were 29 phylospecies detected. The most abundant were members of the species P. stutzeri, P. putida, P. anguilliseptica, and P. oleovorans. Thirty-one isolates could not be identified at the species level and were considered representatives of 16 putative novel Pseudomonas species. One isolate was considered representative of a novel P. stutzeri genomovar. Concordant results were obtained when the diversities of the cloned DNA library and the cultured strains were compared. The clone library obtained by the rpoD PCR method was a useful tool for evaluating Pseudomonas communities and also for microdiversity studies of Pseudomonas populations.

  10. Identification and sequencing of members of a drought-induced multigene family in Atriplex canescens (salt bush)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing Chen; Cairney, J.; Newton, R.J.

    1991-05-01

    Atriplex canescens (Pursh.) Nutt. is known to have a high degree of morphological and physiological drought-tolerance, which appears to be related to molecular responses. A cDNA library, constructed from drought-induced messenger RNA, was differentially screened with radioactively labelled cDNA probes synthesized from mRNA extracted from stressed and non-stressed Atriplex. Two clones named 19-3 and 27-3, whose expression is induced by drought-stress, have been characterized. Sequence analysis shows that they are more than 96% homologous. Each clone has an open reading frame which specifies a protein of 95 amino acids (12.77 kDa and 12.74 kDa respectively.) In vitro transcription and translationmore » of each clone results in a single protein of apparent molecular weight 8.6 kDa. The disparity in size may be due to secondary structure, dictated, at least in part, by a highly charged carboxy terminus which may be important for the function of these proteins in drought tolerance.« less

  11. Cloning of a human hepatocyte growth factor/scatter factor transcription variant from a gastric cancer cell line HSC-39.

    PubMed

    Yokozaki, H; Tahara, H; Oue, N; Tahara, E

    2000-01-01

    A new transcription variant of hepatocyte growth factor/scatter factor (HGF/SF) was cloned from human gastric cancer cell line HSC-39. Northern blot analysis of eight human gastric cancer cell lines (TMK-1, MKN-1, MKN-7, MKN-28, MKN-45, MKN-74, KATO-III and HSC-39) demonstrated that HSC-39 cells expressed a 1.3 kb abnormal HGF/SF transcript. Screening of 1 x 10(6) colonies of cDNA library from HSC-39 constructed in pAP3neo mammalian expression vector selected four positive clones containing HGF/SF transcript. Among them, two contained a 1.3 kbp insert detecting the identical transcript to that obtained with HGF/SF probe by Northern blotting. Deoxynucleotide sequencing of the 1.3 kbp insert revealed that it was composed of a part of HGF/SF cDNA from exon 14 to exon 18, corresponding to the whole sequence of HGF/SF light chain, with 5' 75 nucleotides unrelated to any sequence involved in HGF/SF.

  12. Method for high-volume sequencing of nucleic acids: random and directed priming with libraries of oligonucleotides

    DOEpatents

    Studier, F. William

    1995-04-18

    Random and directed priming methods for determining nucleotide sequences by enzymatic sequencing techniques, using libraries of primers of lengths 8, 9 or 10 bases, are disclosed. These methods permit direct sequencing of nucleic acids as large as 45,000 base pairs or larger without the necessity for subcloning. Individual primers are used repeatedly to prime sequence reactions in many different nucleic acid molecules. Libraries containing as few as 10,000 octamers, 14,200 nonamers, or 44,000 decamers would have the capacity to determine the sequence of almost any cosmid DNA. Random priming with a fixed set of primers from a smaller library can also be used to initiate the sequencing of individual nucleic acid molecules, with the sequence being completed by directed priming with primers from the library. In contrast to random cloning techniques, a combined random and directed priming strategy is far more efficient.

  13. Method for high-volume sequencing of nucleic acids: random and directed priming with libraries of oligonucleotides

    DOEpatents

    Studier, F.W.

    1995-04-18

    Random and directed priming methods for determining nucleotide sequences by enzymatic sequencing techniques, using libraries of primers of lengths 8, 9 or 10 bases, are disclosed. These methods permit direct sequencing of nucleic acids as large as 45,000 base pairs or larger without the necessity for subcloning. Individual primers are used repeatedly to prime sequence reactions in many different nucleic acid molecules. Libraries containing as few as 10,000 octamers, 14,200 nonamers, or 44,000 decamers would have the capacity to determine the sequence of almost any cosmid DNA. Random priming with a fixed set of primers from a smaller library can also be used to initiate the sequencing of individual nucleic acid molecules, with the sequence being completed by directed priming with primers from the library. In contrast to random cloning techniques, a combined random and directed priming strategy is far more efficient. 2 figs.

  14. Cloning of a cDNA encoding bovine mitochondrial NADP(+)-specific isocitrate dehydrogenase and structural comparison with its isoenzymes from different species.

    PubMed Central

    Huh, T L; Ryu, J H; Huh, J W; Sung, H C; Oh, I U; Song, B J; Veech, R L

    1993-01-01

    Mitochondrial NADP(+)-specific isocitrate dehydrogenase (IDP) was co-purified with the pyruvate dehydrogenase complex from bovine kidney mitochondria. The determination of its N-terminal 16-amino-acid sequence revealed that it is highly similar to the IDP from yeast. A cDNA clone (1.8 kb long) encoding this protein was isolated from a bovine kidney lambda gt11 cDNA library using a synthetic oligodeoxynucleotide. The deduced protein sequence of this cDNA clone rendered a precursor protein of 452 amino-acid residues (50,830 Da) and a mature protein of 413 amino-acid residues (46,519 Da). It is 100% identical to the internal tryptic peptide sequences of the autologous form from pig heart and 62% similar to that from yeast. However, it shares little similarity with the mitochondrial NAD(+)-specific isoenzyme from yeast. Structural analyses of the deduced proteins of IDP isoenzymes from different species indicated that similarity exists in certain regions, which may represent the common domains for the active sites or coenzyme-binding sites. In Northern-blot analysis, one species of mRNA (about 2.2 kb for both bovine and human) was hybridized with a 32P-labelled cDNA probe. Southern-blot analysis of genomic DNAs verified simple patterns of hybridization with this cDNA. These results strongly indicate that the mitochondrial IDP may be derived from a single gene family which does not appear to be closely related to that of the NAD(+)-specific isoenzyme. Images Figure 1 Figure 3 Figure 4 Figure 5 PMID:8318002

  15. Identification of the allergen Psi c 2 from the basidiomycete Psilocybe cubensis as a fungal cyclophilin.

    PubMed

    Horner, W E; Reese, G; Lehrer, S B

    1995-01-01

    Basidiospores are a prevalent and frequent cause of respiratory allergies, yet their allergens remain poorly defined; thus, we have attempted a molecular characterization of representative basidiomycete allergens. A Psilocybe cubensis mycelial cDNA library was immunoscreened with patient serum. A clone was isolated that expressed a 23-kD recombinant allergen as a fusion protein and inhibited a 16-kD band (Psi c 2) in immunoprints of P. cubenis extract, indicating antigenic identity. Sequence (cDNA) analysis of the clone indicates homology with cyclophilin and the deduced amino acid sequence of Psi c 2 showed 78% identity and 4% similarity with the amino acid sequence of Schizosaccharomyces pombe cyclophilin. This recombinant allergen is a useful model for epitope analysis of basidiospore allergens and fungal allergen cross-reactivity, and may provide an improved reagent for basidiospore allergy diagnosis and treatment.

  16. Nucleotide sequence of a complementary DNA encoding pea cytosolic copper/zinc superoxide dismutase. [Pisum sativum L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, D.A.; Zilinskas, B.A.

    1991-08-01

    The authors now report the nucleotide sequence of the cytosolic Cu/Zn SOD cloned from a {lambda}gt11 cDNA library constructed from mRNA extracted from leaves of 7- to 10-d pea seedlings (Pisum sativum L.). The clone was isolated using a 22-base synthetic oligonucleotide complementary to the amino acid sequence CGIIGLQG. This sequence, found at the protein's carboxy terminus, is highly conserved among plant cytosolic Cu/Zn SODs but not chloroplastic Cu/Zn SODs. The 738-base pair sequence contains an open reading frame specifying 152 codons and a predicted M{sub r} of 18,024 D. The deduced amino acid sequence is highly homologous (79-82% identity)more » with the sequences of other known plant cytosolic Cu/Zn SODs but less highly conserved (63-65%) when compared with several chloroplastic Cu/Zn SODs including pea (10).« less

  17. Appendix. Cloning and sequence of the gene encoding enzyme E-1 from the methionine salvage pathway of Klebsiella oxytoca.

    PubMed

    Balakrishnan, R; Frohlich, M; Rahaim, P T; Backman, K; Yocum, R R

    1993-11-25

    The methionine salvage pathway converts the methylthioribose moiety of 5'-(methylthio)-adenosine to methionine via a series of biochemical steps. One enzyme active in this pathway, a bifunctional enolase-phosphatase called E-1 that promotes oxidative cleavage of the synthetic substrate 2,3-diketo-1-phosphohexane to 2-keto-pentanoate, has been purified from Klebsiella pneumoniae and is characterized in the preceding paper (Myers, R., Wray, J., Fish, S., and Abeles, R. H. (1993) J. Biol. Chem. 268, 24785-24791). We synthesized degenerate oligonucleotides corresponding to portions of the amino terminus of E-1. These oligonucleotides were used as polymerase chain reaction primers on whole genomic DNA from Klebsiella oxytoca. This resulted in an 82-base pair DNA fragment that was used as a hybridization probe to obtain a clone of the E-1 gene from a K. oxytoca gene library. The DNA sequence of the E-1 coding region was determined, and the amino acid sequence of E-1 was deduced. E-1 appears to represent a novel class of enzymes since no homology to known enzymes was found. Cloning the gene from K. oxytoca on a multicopy plasmid leads to overproduction of E-1 enzyme that has properties indistinguishable from those of the enzyme from K. pneumoniae.

  18. Human somatostatin I: sequence of the cDNA.

    PubMed Central

    Shen, L P; Pictet, R L; Rutter, W J

    1982-01-01

    RNA has been isolated from a human pancreatic somatostatinoma and used to prepare a cDNA library. After prescreening, clones containing somatostatin I sequences were identified by hybridization with an anglerfish somatostatin I-cloned cDNA probe. From the nucleotide sequence of two of these clones, we have deduced an essentially full-length mRNA sequence, including the preprosomatostatin coding region, 105 nucleotides from the 5' untranslated region and the complete 150-nucleotide 3' untranslated region. The coding region predicts a 116-amino acid precursor protein (Mr, 12.727) that contains somatostatin-14 and -28 at its COOH terminus. The predicted amino acid sequence of human somatostatin-28 is identical to that of somatostatin-28 isolated from the porcine and ovine species. A comparison of the amino acid sequences of human and anglerfish preprosomatostatin I indicated that the COOH-terminal region encoding somatostatin-14 and the adjacent 6 amino acids are highly conserved, whereas the remainder of the molecule, including the signal peptide region, is more divergent. However, many of the amino acid differences found in the pro region of the human and anglerfish proteins are conservative changes. This suggests that the propeptides have a similar secondary structure, which in turn may imply a biological function for this region of the molecule. Images PMID:6126875

  19. Complete complementary DNA-derived amino acid sequence of canine cardiac phospholamban.

    PubMed Central

    Fujii, J; Ueno, A; Kitano, K; Tanaka, S; Kadoma, M; Tada, M

    1987-01-01

    Complementary DNA (cDNA) clones specific for phospholamban of sarcoplasmic reticulum membranes have been isolated from a canine cardiac cDNA library. The amino acid sequence deduced from the cDNA sequence indicates that phospholamban consists of 52 amino acid residues and lacks an amino-terminal signal sequence. The protein has an inferred mol wt 6,080 that is in agreement with its apparent monomeric mol wt 6,000, estimated previously by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Phospholamban contains two distinct domains, a hydrophilic region at the amino terminus (domain I) and a hydrophobic region at the carboxy terminus (domain II). We propose that domain I is localized at the cytoplasmic surface and offers phosphorylatable sites whereas domain II is anchored into the sarcoplasmic reticulum membrane. PMID:3793929

  20. Molecular cloning and characterization of RGA1 encoding a G protein alpha subunit from rice (Oryza sativa L. IR-36).

    PubMed

    Seo, H S; Kim, H Y; Jeong, J Y; Lee, S Y; Cho, M J; Bahk, J D

    1995-03-01

    A cDNA clone, RGA1, was isolated by using a GPA1 cDNA clone of Arabidopsis thaliana G protein alpha subunit as a probe from a rice (Oryza sativa L. IR-36) seedling cDNA library from roots and leaves. Sequence analysis of genomic clone reveals that the RGA1 gene has 14 exons and 13 introns, and encodes a polypeptide of 380 amino acid residues with a calculated molecular weight of 44.5 kDa. The encoded protein exhibits a considerable degree of amino acid sequence similarity to all the other known G protein alpha subunits. A putative TATA sequence (ATATGA), a potential CAAT box sequence (AGCAATAC), and a cis-acting element, CCACGTGG (ABRE), known to be involved in ABA induction are found in the promoter region. The RGA1 protein contains all the consensus regions of G protein alpha subunits except the cysteine residue near the C-terminus for ADP-ribosylation by pertussis toxin. The RGA1 polypeptide expressed in Escherichia coli was, however, ADP-ribosylated by 10 microM [adenylate-32P] NAD and activated cholera toxin. Southern analysis indicates that there are no other genes similar to the RGA1 gene in the rice genome. Northern analysis reveals that the RGA1 mRNA is 1.85 kb long and expressed in vegetative tissues, including leaves and roots, and that its expression is regulated by light.

  1. A highly functional synthetic phage display library containing over 40 billion human antibody clones.

    PubMed

    Weber, Marcel; Bujak, Emil; Putelli, Alessia; Villa, Alessandra; Matasci, Mattia; Gualandi, Laura; Hemmerle, Teresa; Wulhfard, Sarah; Neri, Dario

    2014-01-01

    Several synthetic antibody phage display libraries have been created and used for the isolation of human monoclonal antibodies. The performance of antibody libraries, which is usually measured in terms of their ability to yield high-affinity binding specificities against target proteins of interest, depends both on technical aspects (such as library size and quality of cloning) and on design features (which influence the percentage of functional clones in the library and their ability to be used for practical applications). Here, we describe the design, construction and characterization of a combinatorial phage display library, comprising over 40 billion human antibody clones in single-chain fragment variable (scFv) format. The library was designed with the aim to obtain highly stable antibody clones, which can be affinity-purified on protein A supports, even when used in scFv format. The library was found to be highly functional, as >90% of randomly selected clones expressed the corresponding antibody. When selected against more than 15 antigens from various sources, the library always yielded specific and potent binders, at a higher frequency compared to previous antibody libraries. To demonstrate library performance in practical biomedical research projects, we isolated the human antibody G5, which reacts both against human and murine forms of the alternatively spliced BCD segment of tenascin-C, an extracellular matrix component frequently over-expressed in cancer and in chronic inflammation. The new library represents a useful source of binding specificities, both for academic research and for the development of antibody-based therapeutics.

  2. A Highly Functional Synthetic Phage Display Library Containing over 40 Billion Human Antibody Clones

    PubMed Central

    Weber, Marcel; Bujak, Emil; Putelli, Alessia; Villa, Alessandra; Matasci, Mattia; Gualandi, Laura; Hemmerle, Teresa; Wulhfard, Sarah; Neri, Dario

    2014-01-01

    Several synthetic antibody phage display libraries have been created and used for the isolation of human monoclonal antibodies. The performance of antibody libraries, which is usually measured in terms of their ability to yield high-affinity binding specificities against target proteins of interest, depends both on technical aspects (such as library size and quality of cloning) and on design features (which influence the percentage of functional clones in the library and their ability to be used for practical applications). Here, we describe the design, construction and characterization of a combinatorial phage display library, comprising over 40 billion human antibody clones in single-chain fragment variable (scFv) format. The library was designed with the aim to obtain highly stable antibody clones, which can be affinity-purified on protein A supports, even when used in scFv format. The library was found to be highly functional, as >90% of randomly selected clones expressed the corresponding antibody. When selected against more than 15 antigens from various sources, the library always yielded specific and potent binders, at a higher frequency compared to previous antibody libraries. To demonstrate library performance in practical biomedical research projects, we isolated the human antibody G5, which reacts both against human and murine forms of the alternatively spliced BCD segment of tenascin-C, an extracellular matrix component frequently over-expressed in cancer and in chronic inflammation. The new library represents a useful source of binding specificities, both for academic research and for the development of antibody-based therapeutics. PMID:24950200

  3. Sequencing of the large dsDNA genome of Oryctes rhinoceros nudivirus using multiple displacement amplification of nanogram amounts of virus DNA.

    PubMed

    Wang, Yongjie; Kleespies, Regina G; Ramle, Moslim B; Jehle, Johannes A

    2008-09-01

    The genomic sequence analysis of many large dsDNA viruses is hampered by the lack of enough sample materials. Here, we report a whole genome amplification of the Oryctes rhinoceros nudivirus (OrNV) isolate Ma07 starting from as few as about 10 ng of purified viral DNA by application of phi29 DNA polymerase- and exonuclease-resistant random hexamer-based multiple displacement amplification (MDA) method. About 60 microg of high molecular weight DNA with fragment sizes of up to 25 kbp was amplified. A genomic DNA clone library was generated using the product DNA. After 8-fold sequencing coverage, the 127,615 bp of OrNV whole genome was sequenced successfully. The results demonstrate that the MDA-based whole genome amplification enables rapid access to genomic information from exiguous virus samples.

  4. DNA stable-isotope probing (DNA-SIP).

    PubMed

    Dunford, Eric A; Neufeld, Josh D

    2010-08-02

    DNA stable-isotope probing (DNA-SIP) is a powerful technique for identifying active microorganisms that assimilate particular carbon substrates and nutrients into cellular biomass. As such, this cultivation-independent technique has been an important methodology for assigning metabolic function to the diverse communities inhabiting a wide range of terrestrial and aquatic environments. Following the incubation of an environmental sample with stable-isotope labelled compounds, extracted nucleic acid is subjected to density gradient ultracentrifugation and subsequent gradient fractionation to separate nucleic acids of differing densities. Purification of DNA from cesium chloride retrieves labelled and unlabelled DNA for subsequent molecular characterization (e.g. fingerprinting, microarrays, clone libraries, metagenomics). This JoVE video protocol provides visual step-by-step explanations of the protocol for density gradient ultracentrifugation, gradient fractionation and recovery of labelled DNA. The protocol also includes sample SIP data and highlights important tips and cautions that must be considered to ensure a successful DNA-SIP analysis.

  5. Phylogenetic analysis of TCE-dechlorinating consortia enriched on a variety of electron donors.

    PubMed

    Freeborn, Ryan A; West, Kimberlee A; Bhupathiraju, Vishvesh K; Chauhan, Sadhana; Rahm, Brian G; Richardson, Ruth E; Alvarez-Cohen, Lisa

    2005-11-01

    Two rapidly fermented electron donors, lactate and methanol, and two slowly fermented electron donors, propionate and butyrate, were selected for enrichment studies to evaluate the characteristics of anaerobic microbial consortia that reductively dechlorinate TCE to ethene. Each electron donor enrichment subculture demonstrated the ability to dechlorinate TCE to ethene through several serial transfers. Microbial community analyses based upon 16S rDNA, including terminal restriction fragment length polymorphism (T-RFLP) and clone library/sequencing, were performed to assess major changes in microbial community structure associated with electron donors capable of stimulating reductive dechlorination. Results demonstrated that five phylogenic subgroups or genera of bacteria were present in all consortia, including Dehalococcoides sp., low G+C Gram-positives (mostly Clostridium and Eubacterium sp.), Bacteroides sp., Citrobacter sp., and delta Proteobacteria (mostly Desulfovibrio sp.). Phylogenetic association indicates that only minor shifts in the microbial community structure occurred between the four alternate electron donor enrichments and the parent consortium. Inconsistent detection of Dehalococcoides spp. in clone libraries and T-RFLP of enrichment subcultures was resolved using quantitative polymerase chain reaction (Q-PCR). Q-PCR with primers specific to Dehalococcoides 16S rDNA resulted in positive detection of this species in all enrichments. Our results suggest that TCE-dechlorinating consortia can be stably maintained on a variety of electron donors and that quantities of Dehalococcoides cells detected with Dehalococcoides specific 16S rDNA primer/probe sets do not necessarily correlate well with solvent degradation rates.

  6. Assignment of chromosomal locus and evidence for alternatively spliced mRNAs of a human sperm membrane protein (hSMP-1).

    PubMed

    Wang, H; Miao, S; Chen, D; Wang, L; Koide, S S

    1999-10-06

    The gene (HSD-1) coding a human sperm membrane protein (hSMP-1) was isolated from a human testis cDNA expression library using antibodies found in the serum of an infertile woman. HSD-1 was localized to a single locus on chromosome 9 and assigned to band 9p12-p13 by fluorescent in situ hybridization (FISH) mapping and DAPI (4,6-diamidino-2-phenylindole) banding, using rat/human somatic cell hybrids and metaphase chromosomes of human lymphocytes. In rescreening a testis lambdagt10 cDNA expression library, the full-length cDNA (HSD-1) and several truncated cDNAs with heterologous regions were isolated from positive clones. The heterology consisted of deletion, insertion and alteration of the 5'-end. These heterologous truncated fragments may be produced by alternative splicing of mRNAs. Two recombinant prokaryotic expression vectors were constructed with one of the heterologous fragment (clone #26) with and without the alternative 5'-end. Escherichia coli transfected with the construct containing the alternative 5'-end failed to produce the recombinant product, whereas those transfected with the vector lacking the 5'-end produced hSMP-1. DNASIS analysis of the structure of #26 mRNA suggests that the 5'-end has a stable secondary configuration that may maintain the mRNA in an inactivated state, whereby hindering its translation and preventing the expression of the gene.

  7. Identification of tumor-restricted antigens NY-BR-1, SCP-1, and a new cancer/testis-like antigen NW-BR-3 by serological screening of a testicular library with breast cancer serum.

    PubMed

    Jäger, Dirk; Unkelbach, Marc; Frei, Claudia; Bert, Florian; Scanlan, Matthew J; Jäger, Elke; Old, Lloyd J; Chen, Yao-Tseng; Knuth, Alexander

    2002-06-28

    Serological analysis of recombinant cDNA expression libraries (SEREX) has led to the identification of several categories of new tumor antigens. We analyzed a testicular cDNA expression library with serum obtained from a breast cancer patient and isolated 13 genes designated NW-BR-1 through NW-BR-13. Of these, 3 showed tumor-restricted expression (NW-BR-1, -2 and -3), the others being expressed ubiquitously. NW-BR-3, representing 9 of 24 primary clones, showed tissue-restricted mRNA expression, being expressed in normal testis but not in 15 other normal tissues tested by Northern blotting. RT-PCR analysis showed strong NW-BR-3 expression in normal testis, weak expression in brain, kidney, trachea, uterus and normal prostate, and was negative in liver, heart, lung, colon, small intestine, bone marrow, breast, thymus, muscle, spleen, and stomach. NW-BR-3 mRNA expression was found in different tumor tissues and tumor cell lines by RT-PCR, thus showing a 'cancer/testis' (CT)-like mRNA expression pattern. NW-BR-3 shares 71% nucleotide and amino acid homology to a mouse gene cloned from mouse testicular tissue. Based on the mRNA expression pattern, NW-BR-3 represents a new candidate target gene for cancer immunotherapy. NW-BR-1 and NW-BR-2 also showed tumor-restricted mRNA expression. NW-BR-1 is a partial clone of the breast differentiation antigen NY-BR-1 previously identified by SEREX. NY-BR-1 is expressed in normal breast, testis and 80% of breast cancers. NW-BR-2 is identical to the CT antigen SCP-1, initially isolated by SEREX analysis of renal cancer. This study provides further evidence that SEREX is a powerful tool to identify new tumor antigens potentially relevant for immunotherapy approaches.

  8. Targeting a Complex Transcriptome: The Construction of the Mouse Full-Length cDNA Encyclopedia

    PubMed Central

    Carninci, Piero; Waki, Kazunori; Shiraki, Toshiyuki; Konno, Hideaki; Shibata, Kazuhiro; Itoh, Masayoshi; Aizawa, Katsunori; Arakawa, Takahiro; Ishii, Yoshiyuki; Sasaki, Daisuke; Bono, Hidemasa; Kondo, Shinji; Sugahara, Yuichi; Saito, Rintaro; Osato, Naoki; Fukuda, Shiro; Sato, Kenjiro; Watahiki, Akira; Hirozane-Kishikawa, Tomoko; Nakamura, Mari; Shibata, Yuko; Yasunishi, Ayako; Kikuchi, Noriko; Yoshiki, Atsushi; Kusakabe, Moriaki; Gustincich, Stefano; Beisel, Kirk; Pavan, William; Aidinis, Vassilis; Nakagawara, Akira; Held, William A.; Iwata, Hiroo; Kono, Tomohiro; Nakauchi, Hiromitsu; Lyons, Paul; Wells, Christine; Hume, David A.; Fagiolini, Michela; Hensch, Takao K.; Brinkmeier, Michelle; Camper, Sally; Hirota, Junji; Mombaerts, Peter; Muramatsu, Masami; Okazaki, Yasushi; Kawai, Jun; Hayashizaki, Yoshihide

    2003-01-01

    We report the construction of the mouse full-length cDNA encyclopedia,the most extensive view of a complex transcriptome,on the basis of preparing and sequencing 246 libraries. Before cloning,cDNAs were enriched in full-length by Cap-Trapper,and in most cases,aggressively subtracted/normalized. We have produced 1,442,236 successful 3′-end sequences clustered into 171,144 groups, from which 60,770 clones were fully sequenced cDNAs annotated in the FANTOM-2 annotation. We have also produced 547,149 5′ end reads,which clustered into 124,258 groups. Altogether, these cDNAs were further grouped in 70,000 transcriptional units (TU),which represent the best coverage of a transcriptome so far. By monitoring the extent of normalization/subtraction, we define the tentative equivalent coverage (TEC),which was estimated to be equivalent to >12,000,000 ESTs derived from standard libraries. High coverage explains discrepancies between the very large numbers of clusters (and TUs) of this project,which also include non-protein-coding RNAs,and the lower gene number estimation of genome annotations. Altogether,5′-end clusters identify regions that are potential promoters for 8637 known genes and 5′-end clusters suggest the presence of almost 63,000 transcriptional starting points. An estimate of the frequency of polyadenylation signals suggests that at least half of the singletons in the EST set represent real mRNAs. Clones accounting for about half of the predicted TUs await further sequencing. The continued high-discovery rate suggests that the task of transcriptome discovery is not yet complete. PMID:12819125

  9. Limnonectins: a new class of antimicrobial peptides from the skin secretion of the Fujian large-headed frog (Limnonectes fujianensis).

    PubMed

    Wu, Youjia; Wang, Lei; Zhou, Mei; Ma, Chengbang; Chen, Xiaole; Bai, Bing; Chen, Tianbao; Shaw, Chris

    2011-06-01

    Amphibian skin secretions are rich sources of biologically-active peptides with antimicrobial peptides predominating in many species. Several studies involving molecular cloning of biosynthetic precursor-encoding cDNAs from skin or skin secretions have revealed that these exhibit highly-conserved domain architectures with an unusually high degree of conserved nucleotide and resultant amino acid sequences within the signal peptides. This high degree of nucleotide sequence conservation has permitted the design of primers complementary to such sites facilitating "shotgun" cloning of skin or skin secretion-derived cDNA libraries from hitherto unstudied species. Here we have used such an approach using a skin secretion-derived cDNA library from an unstudied species of Chinese frog - the Fujian large-headed frog, Limnonectes fujianensis - and have discovered two 16-mer peptides of novel primary structures, named limnonectin-1Fa (SFPFFPPGICKRLKRC) and limnonectin-1Fb (SFHVFPPWMCKSLKKC), that represent the prototypes of a new class of amphibian skin antimicrobial peptide. Unusually these limnonectins display activity only against a Gram-negative bacterium (MICs of 35 and 70 μM) and are devoid of haemolytic activity at concentrations up to 160 μM. Thus the "shotgun" cloning approach described can exploit the unusually high degree of nucleotide conservation in signal peptide-encoding domains of amphibian defensive skin secretion peptide precursor-encoding cDNAs to rapidly expedite the discovery of novel and functional defensive peptides in a manner that circumvents specimen sacrifice without compromising robustness of data. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  10. Creating libraries for commercial yeast strains through miniaturization of cloning and transformations using the BioRAPTR FRD Microfluidic workstation

    USDA-ARS?s Scientific Manuscript database

    The ability to miniaturize molecular reactions can lead to significant cost savings when creating libraries of thousands of clones. For this application Beckman Coulter partnered with the USDA to provide a low-volume automated solution for library cloning for use in the development of yeast strains...

  11. Characterization of X-OCRL, a Xenopus laevis homologue of OCRL-1, the Lowe oculocerebrorenal syndrome candidate gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reilly, D.S.; Nussbaum, R.L.

    1994-09-01

    The Lowe oculocerebrorenal syndrome (OCRL) is an X-linked disease characterized by congenital cataract, mental retardation, and renal tubular dysfunction. A candidate cDNA, OCRL-1, was identified by positional cloning and mutations in OCRL-1 have been detected in patients with Lowe syndrome. The OCRL-1 nucleotide sequence encodes a predicted protein of 968 amino acids and shares 51% amino acid identity with a human inositol polyphosphate-5-phosphatase. This suggests that the underlying defect in OCRL may be due to a defect in inositol phosphate metabolism. The isolation of OCRL-1 provides the opportunity to investigate its function through the use of animal model systems. Wemore » have isolated a partial cDNA clone encoding an OCRL-1 homologue, X-OCRL, from the South African clawed frog, Xenopus laevis. We used a portion of the human cDNA to screen a Xenopus laevis embryo cDNA library and isolated four positive clones. One clone, 42-5A, is a 650 bp insert with over 75% amino acid identity to the corresponding region of the human OCRL-1 sequence. 42-5A detects messenger RNA in adult Xenopus brain, stomach, small intestine, skin, muscle, lung, blood, and oviduct. X-OCRL messenger RNA is first detected during late gastrula and continues to be expressed throughout Xenopus development. In situ hybridization studies are underway to identify the cellular localization of X-OCRL expression in Xenopus embryos and adult tissues. We are especially interested in characterizing X-OCRL expression during formation of the amphibian lens since congenital cataracts are a constant feature of the human disease.« less

  12. Identification of novel and known oocyte-specific genes using complementary DNA subtraction and microarray analysis in three different species.

    PubMed

    Vallée, Maud; Gravel, Catherine; Palin, Marie-France; Reghenas, Hélène; Stothard, Paul; Wishart, David S; Sirard, Marc-André

    2005-07-01

    The main objective of the present study was to identify novel oocyte-specific genes in three different species: bovine, mouse, and Xenopus laevis. To achieve this goal, two powerful technologies were combined: a polymerase chain reaction (PCR)-based cDNA subtraction, and cDNA microarrays. Three subtractive libraries consisting of 3456 clones were established and enriched for oocyte-specific transcripts. Sequencing analysis of the positive insert-containing clones resulted in the following classification: 53% of the clones corresponded to known cDNAs, 26% were classified as uncharacterized cDNAs, and a final 9% were classified as novel sequences. All these clones were used for cDNA microarray preparation. Results from these microarray analyses revealed that in addition to already known oocyte-specific genes, such as GDF9, BMP15, and ZP, known genes with unknown function in the oocyte were identified, such as a MLF1-interacting protein (MLF1IP), B-cell translocation gene 4 (BTG4), and phosphotyrosine-binding protein (xPTB). Furthermore, 15 novel oocyte-specific genes were validated by reverse transcription-PCR to confirm their preferential expression in the oocyte compared to somatic tissues. The results obtained in the present study confirmed that microarray analysis is a robust technique to identify true positives from the suppressive subtractive hybridization experiment. Furthermore, obtaining oocyte-specific genes from three species simultaneously allowed us to look at important genes that are conserved across species. Further characterization of these novel oocyte-specific genes will lead to a better understanding of the molecular mechanisms related to the unique functions found in the oocyte.

  13. Seasonal variation in detection of bacterial DNA in arthritic stifle joints of dogs with cranial cruciate ligament rupture using PCR amplification of the 16S rRNA gene.

    PubMed

    Muir, Peter; Fox, Robin; Wu, Qiang; Baker, Theresa A; Zitzer, Nina C; Hudson, Alan P; Manley, Paul A; Schaefer, Susan L; Hao, Zhengling

    2010-02-24

    An underappreciated cause and effect relationship between environmental bacteria and arthritis may exist. Previously, we found that stifle arthritis in dogs was associated with the presence of environmental bacteria within synovium. Cranial cruciate ligament rupture (CCLR) is often associated with stifle arthritis in dogs. We now wished to determine whether seasonal variation in detection of bacterial material may exist in affected dogs, and to also conduct analyses of both synovium and synovial fluid. We also wished to analyze a larger clone library of the 16S rRNA gene to further understanding of the microbial population in the canine stifle. Synovial biopsies were obtained from 117 affected dogs from January to December 2006. Using PCR, synovium and synovial fluid were tested for Borrelia burgdorferi and Stenotrophomonas maltophilia DNA. Broad-ranging 16S rRNA primers were also used and PCR products were cloned and sequenced for bacterial identification. Overall, 41% of arthritic canine stifle joints contained bacterial DNA. Detection of bacterial DNA in synovial fluid samples was increased, when compared with synovium (p<0.01). Detection rates were highest in the winter and spring and lowest in the summer period, suggesting environmental factors influence the risk of translocation to the stifle. Organisms detected were predominately Gram's negative Proteobacteria, particularly the orders Rhizobiales (32.8% of clones) and Burkholderiales (20.0% of clones), usually as part of a polymicrobial population. PCR-positivity was inversely correlated with severity of arthritis assessed radiographically and with dog age. Bacterial translocation to the canine stifle may be associated with changes to the indoor environment. Copyright 2009 Elsevier B.V. All rights reserved.

  14. Phylogenetic diversity, host-specificity and community profiling of sponge-associated bacteria in the northern Gulf of Mexico.

    PubMed

    Erwin, Patrick M; Olson, Julie B; Thacker, Robert W

    2011-01-01

    Marine sponges can associate with abundant and diverse consortia of microbial symbionts. However, associated bacteria remain unexamined for the majority of host sponges and few studies use phylogenetic metrics to quantify symbiont community diversity. DNA fingerprinting techniques, such as terminal restriction fragment length polymorphisms (T-RFLP), might provide rapid profiling of these communities, but have not been explicitly compared to traditional methods. We investigated the bacterial communities associated with the marine sponges Hymeniacidon heliophila and Haliclona tubifera, a sympatric tunicate, Didemnum sp., and ambient seawater from the northern Gulf of Mexico by combining replicated clone libraries with T-RFLP analyses of 16S rRNA gene sequences. Clone libraries revealed that bacterial communities associated with the two sponges exhibited lower species richness and lower species diversity than seawater and tunicate assemblages, with differences in species composition among all four source groups. T-RFLP profiles clustered microbial communities by source; individual T-RFs were matched to the majority (80.6%) of clone library sequences, indicating that T-RFLP analysis can be used to rapidly profile these communities. Phylogenetic metrics of community diversity indicated that the two sponge-associated bacterial communities include dominant and host-specific bacterial lineages that are distinct from bacteria recovered from seawater, tunicates, and unrelated sponge hosts. In addition, a large proportion of the symbionts associated with H. heliophila were shared with distant, conspecific host populations in the southwestern Atlantic (Brazil). The low diversity and species-specific nature of bacterial communities associated with H. heliophila and H. tubifera represent a distinctly different pattern from other, reportedly universal, sponge-associated bacterial communities. Our replicated sampling strategy, which included samples that reflect the ambient environment, allowed us to differentiate resident symbionts from potentially transient or prey bacteria. Pairing replicated clone library construction with rapid community profiling via T-RFLP analyses will greatly facilitate future studies of sponge-microbe symbioses.

  15. Highly parallel single-molecule amplification approach based on agarose droplet polymerase chain reaction for efficient and cost-effective aptamer selection.

    PubMed

    Zhang, Wei Yun; Zhang, Wenhua; Liu, Zhiyuan; Li, Cong; Zhu, Zhi; Yang, Chaoyong James

    2012-01-03

    We have developed a novel method for efficiently screening affinity ligands (aptamers) from a complex single-stranded DNA (ssDNA) library by employing single-molecule emulsion polymerase chain reaction (PCR) based on the agarose droplet microfluidic technology. In a typical systematic evolution of ligands by exponential enrichment (SELEX) process, the enriched library is sequenced first, and tens to hundreds of aptamer candidates are analyzed via a bioinformatic approach. Possible candidates are then chemically synthesized, and their binding affinities are measured individually. Such a process is time-consuming, labor-intensive, inefficient, and expensive. To address these problems, we have developed a highly efficient single-molecule approach for aptamer screening using our agarose droplet microfluidic technology. Statistically diluted ssDNA of the pre-enriched library evolved through conventional SELEX against cancer biomarker Shp2 protein was encapsulated into individual uniform agarose droplets for droplet PCR to generate clonal agarose beads. The binding capacity of amplified ssDNA from each clonal bead was then screened via high-throughput fluorescence cytometry. DNA clones with high binding capacity and low K(d) were chosen as the aptamer and can be directly used for downstream biomedical applications. We have identified an ssDNA aptamer that selectively recognizes Shp2 with a K(d) of 24.9 nM. Compared to a conventional sequencing-chemical synthesis-screening work flow, our approach avoids large-scale DNA sequencing and expensive, time-consuming DNA synthesis of large populations of DNA candidates. The agarose droplet microfluidic approach is thus highly efficient and cost-effective for molecular evolution approaches and will find wide application in molecular evolution technologies, including mRNA display, phage display, and so on. © 2011 American Chemical Society

  16. Recombination walking: genetic selection of clones from pooled libraries of yeast artificial chromosomes by homologous recombination.

    PubMed Central

    Miller, A M; Savinelli, E A; Couture, S M; Hannigan, G M; Han, Z; Selden, R F; Treco, D A

    1993-01-01

    Recombination walking is based on the genetic selection of specific human clones from a yeast artificial chromosome (YAC) library by homologous recombination. The desired clone is selected from a pooled (unordered) YAC library, eliminating labor-intensive steps typically used in organizing and maintaining ordered YAC libraries. Recombination walking represents an efficient approach to library screening and is well suited for chromosome-walking approaches to the isolation of genes associated with common diseases. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8367472

  17. Construction of random sheared fosmid library from Chinese cabbage and its use for Brassica rapa genome sequencing project.

    PubMed

    Park, Tae-Ho; Park, Beom-Seok; Kim, Jin-A; Hong, Joon Ki; Jin, Mina; Seol, Young-Joo; Mun, Jeong-Hwan

    2011-01-01

    As a part of the Multinational Genome Sequencing Project of Brassica rapa, linkage group R9 and R3 were sequenced using a bacterial artificial chromosome (BAC) by BAC strategy. The current physical contigs are expected to cover approximately 90% euchromatins of both chromosomes. As the project progresses, BAC selection for sequence extension becomes more limited because BAC libraries are restriction enzyme-specific. To support the project, a random sheared fosmid library was constructed. The library consists of 97536 clones with average insert size of approximately 40 kb corresponding to seven genome equivalents, assuming a Chinese cabbage genome size of 550 Mb. The library was screened with primers designed at the end of sequences of nine points of scaffold gaps where BAC clones cannot be selected to extend the physical contigs. The selected positive clones were end-sequenced to check the overlap between the fosmid clones and the adjacent BAC clones. Nine fosmid clones were selected and fully sequenced. The sequences revealed two completed gap filling and seven sequence extensions, which can be used for further selection of BAC clones confirming that the fosmid library will facilitate the sequence completion of B. rapa. Copyright © 2011. Published by Elsevier Ltd.

  18. Novel method for high-throughput colony PCR screening in nanoliter-reactors

    PubMed Central

    Walser, Marcel; Pellaux, Rene; Meyer, Andreas; Bechtold, Matthias; Vanderschuren, Herve; Reinhardt, Richard; Magyar, Joseph; Panke, Sven; Held, Martin

    2009-01-01

    We introduce a technology for the rapid identification and sequencing of conserved DNA elements employing a novel suspension array based on nanoliter (nl)-reactors made from alginate. The reactors have a volume of 35 nl and serve as reaction compartments during monoseptic growth of microbial library clones, colony lysis, thermocycling and screening for sequence motifs via semi-quantitative fluorescence analyses. nl-Reactors were kept in suspension during all high-throughput steps which allowed performing the protocol in a highly space-effective fashion and at negligible expenses of consumables and reagents. As a first application, 11 high-quality microsatellites for polymorphism studies in cassava were isolated and sequenced out of a library of 20 000 clones in 2 days. The technology is widely scalable and we envision that throughputs for nl-reactor based screenings can be increased up to 100 000 and more samples per day thereby efficiently complementing protocols based on established deep-sequencing technologies. PMID:19282448

  19. Analysis of autoimmune bone marrow by antibody-phage display: somatic mutations and third complementarity-determining region arginines in anti-DNA gamma and kappa V genes.

    PubMed

    Seal, S N; Hoet, R M; Raats, J M; Radic, M Z

    2000-09-01

    To examine anti-double-stranded DNA (anti-dsDNA) IgG autoantibodies from the bone marrow of individuals with systemic lupus erythematosus (SLE). A library of single-chain variable fragments (scFv) was constructed from SLE bone marrow complementary DNA of gamma, kappa, and lambda isotype by cloning into the pHENIX phagemid vector. The library was screened with dsDNA in solution, and 2 anti-DNA phage, DNA1 and DNA4, were isolated and their Ig V genes sequenced. Soluble scFv corresponding to DNA1 and DNA4, and their heavy (H)- and light (L)-chain recombinants, were prepared, purified, and analyzed for binding to DNA by enzyme-linked immunosorbent assay. DNA1 and DNA4 used different Ig H-chain (3-30 and 5-51, respectively) and L-chain (DPK15 and DPK22, respectively) V genes. The ratios of replacement mutations to silent mutations in DNA1 and DNA4 suggest that their V genes were selected for improved antigen binding in vivo. The recombinant between DNA4VH and DNA1VL showed the highest relative affinity for both single-stranded DNA and dsDNA. These 2 Ig subunits contained third complementarity-determining region arginines and had acquired the majority of replacement mutations. Anti-dsDNA IgG autoantibodies from the bone marrow of SLE patients exploit diverse V genes and cationic V-D-J and V-J junctions for DNA binding, and accumulate replacement mutations that enhance binding.

  20. Structure and characterization of a cDNA clone for phenylalanine ammonia-lyase from cut-injured roots of sweet potato

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Yoshiyuki; Matsuoka, Makoto; Yamanoto, Naoki

    A cDNA clone for phenylalanine ammonia-lyase (PAL) induced in wounded sweet potato (Ipomoea batatas Lam.) root was obtained by immunoscreening a cDNA library. The protein produced in Escherichia coli cells containing the plasmid pPAL02 was indistinguishable from sweet potato PAL as judged by Ouchterlony double diffusion assays. The M{sub r} of its subunit was 77,000. The cells converted ({sup 14}C)-L-phenylalanine into ({sup 14}C)-t-cinnamic acid and PAL activity was detected in the homogenate of the cells. The activity was dependent on the presence of the pPAL02 plasmid DNA. The nucleotide sequence of the cDNA contained a 2,121-base pair (bp) open-reading framemore » capable of coding for a polypeptide with 707 amino acids (M{sub r} 77,137), a 22-bp 5{prime}-noncoding region and a 207-bp 3{prime}-noncoding region. The results suggest that the insert DNA fully encoded the amino acid sequence for sweet potato PAL that is induced by wounding. Comparison of the deduced amino acid sequence with that of a PAL cDNA fragment from Phaseolus vulgaris revealed 78.9% homology. The sequence from amino acid residues 258 to 494 was highly conserved, showing 90.7% homology.« less

  1. Cloning and expression of the cDNA encoding human fumarylacetoacetate hydrolase, the enzyme deficient in hereditary tyrosinemia: assignment of the gene to chromosome 15.

    PubMed Central

    Phaneuf, D; Labelle, Y; Bérubé, D; Arden, K; Cavenee, W; Gagné, R; Tanguay, R M

    1991-01-01

    Type 1 hereditary tyrosinemia (HT) is an autosomal recessive disease characterized by a deficiency of the enzyme fumarylacetoacetate hydrolase (FAH; E.C.3.7.1.2). We have isolated human FAH cDNA clones by screening a liver cDNA expression library using specific antibodies and plaque hybridization with a rat FAH cDNA probe. A 1,477-bp cDNA was sequenced and shown to code for FAH by an in vitro transcription-translation assay and sequence homology with tryptic fragments of purified FAH. Transient expression of this FAH cDNA in transfected CV-1 mammalian cells resulted in the synthesis of an immunoreactive protein comigrating with purified human liver FAH on SDS-PAGE and having enzymatic activity as shown by the hydrolysis of the natural substrate fumarylacetoacetate. This indicates that the single polypeptide chain encoded by the FAH gene contains all the genetic information required for functional activity, suggesting that the dimer found in vivo is a homodimer. The human FAH cDNA was used as a probe to determine the gene's chromosomal localization using somatic cell hybrids and in situ hybridization. The human FAH gene maps to the long arm of chromosome 15 in the region q23-q25. Images Figure 1 Figure 3 Figure 4 Figure 6 Figure 8 PMID:1998338

  2. Species richness in soil bacterial communities: a proposed approach to overcome sample size bias.

    PubMed

    Youssef, Noha H; Elshahed, Mostafa S

    2008-09-01

    Estimates of species richness based on 16S rRNA gene clone libraries are increasingly utilized to gauge the level of bacterial diversity within various ecosystems. However, previous studies have indicated that regardless of the utilized approach, species richness estimates obtained are dependent on the size of the analyzed clone libraries. We here propose an approach to overcome sample size bias in species richness estimates in complex microbial communities. Parametric (Maximum likelihood-based and rarefaction curve-based) and non-parametric approaches were used to estimate species richness in a library of 13,001 near full-length 16S rRNA clones derived from soil, as well as in multiple subsets of the original library. Species richness estimates obtained increased with the increase in library size. To obtain a sample size-unbiased estimate of species richness, we calculated the theoretical clone library sizes required to encounter the estimated species richness at various clone library sizes, used curve fitting to determine the theoretical clone library size required to encounter the "true" species richness, and subsequently determined the corresponding sample size-unbiased species richness value. Using this approach, sample size-unbiased estimates of 17,230, 15,571, and 33,912 were obtained for the ML-based, rarefaction curve-based, and ACE-1 estimators, respectively, compared to bias-uncorrected values of 15,009, 11,913, and 20,909.

  3. Cloning of the cDNA for a human homologue of the Drosophila white gene and mapping to chromosome 21q22.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haiming Chen; Lalioti, M.D.; Perrin, G.

    1996-07-01

    In an effort to contribute to the transcript map of human chromosome 21 and the understanding of the pathophysiology of trisomy 21, we have used exon trapping to identify fragments of chromosome 21 genes. Two trapped exons, from pools of chromosome 21-specific cosmids, showed homology to the Drosophila white (w) gene. We subsequently cloned the corresponding cDNA for a human homologue of the Drosophila w gene (hW) from human retina and fetal brain cDNA libraries. The gene belongs to the ATP-binding cassette transporter gene family and is homologous to Drosophila w (and to 2 genes from other species) and tomore » a lesser extent to Drosophila brown (bw) and scarlet (st) genes that are all involved in the transport of eye pigment precursor molecules. A DNA polymorphism with 62% heterozygosity due to variation of a poly (T) region in the 3{prime} UTR of the hW has been identified and used for the incorporation of this gene to the genetic map of chromosome 21. The hW is located at 21q22.3 between DNA markers D21S212 and D21S49 in a P1 clone that also contains marker BCEI. The gene is expressed at various levels in many human tissues. The contributions of this gene to the Down syndrome phenotypes, to human eye color, and to the resulting phenotypes of null or missense mutations are presently unknown. 56 refs., 8 figs., 1 tab.« less

  4. An innovative strategy to clone positive modifier genes of defects caused by mtDNA mutations: MRPS18C as suppressor gene of m.3946G>A mutation in MT-ND1 gene.

    PubMed

    Rodríguez-García, María Elena; Cotrina-Vinagre, Francisco Javier; Carnicero-Rodríguez, Patricia; Martínez-Azorín, Francisco

    2017-07-01

    We have developed a new functional complementation approach to clone modifier genes which overexpression is able to suppress the biochemical defects caused by mtDNA mutations (suppressor genes). This strategy consists in transferring human genes into respiratory chain-deficient fibroblasts, followed by a metabolic selection in a highly selective medium. We used a normalized expression cDNA library in an episomal vector (pREP4) to transfect the fibroblasts, and a medium with glutamine and devoid of any carbohydrate source to select metabolically. Growing the patient's fibroblasts in this selective medium, the deficient cells rapidly disappear unless they are rescued by the cDNA of a suppressor gene. The use of an episomal vector allows us to carry out several rounds of transfection/selection (cyclical phenotypic rescue) to enrich the rescue with true clones of suppressor genes. Using fibroblasts from a patient with epileptic encephalopathy with the m.3946G>A (p.E214K) mutation in the MT-ND1 gene, several candidate genes were identified and one of them was characterized functionally. Thus, overexpression of MRPS18C gene (that encode for bS18m protein) suppressed the molecular defects produced by this mtDNA mutation, recovering the complex I activity and reducing the ROS produced by this complex to normal levels. We suggest that modulation of bS18m expression may be an effective therapeutic strategy for the patients with this mutation.

  5. Fungal diversity in major oil-shale mines in China.

    PubMed

    Jiang, Shaoyan; Wang, Wenxing; Xue, Xiangxin; Cao, Chengyou; Zhang, Ying

    2016-03-01

    As an insufficiently utilized energy resource, oil shale is conducive to the formation of characteristic microbial communities due to its special geological origins. However, little is known about fungal diversity in oil shale. Polymerase chain reaction cloning was used to construct the fungal ribosomal deoxyribonucleic acid internal transcribed spacer (rDNA ITS) clone libraries of Huadian Mine in Jilin Province, Maoming Mine in Guangdong Province, and Fushun Mine in Liaoning Province. Pure culture and molecular identification were applied for the isolation of cultivable fungi in fresh oil shale of each mine. Results of clone libraries indicated that each mine had over 50% Ascomycota (58.4%-98.9%) and 1.1%-13.5% unidentified fungi. Fushun Mine and Huadian Mine had 5.9% and 28.1% Basidiomycota, respectively. Huadian Mine showed the highest fungal diversity, followed by Fushun Mine and Maoming Mine. Jaccard indexes showed that the similarities between any two of three fungal communities at the genus level were very low, indicating that fungi in each mine developed independently during the long geological adaptation and formed a community composition fitting the environment. In the fresh oil-shale samples of the three mines, cultivable fungal phyla were consistent with the results of clone libraries. Fifteen genera and several unidentified fungi were identified as Ascomycota and Basidiomycota using pure culture. Penicillium was the only genus found in all three mines. These findings contributed to gaining a clear understanding of current fungal resources in major oil-shale mines in China and provided useful information for relevant studies on isolation of indigenous fungi carrying functional genes from oil shale. Copyright © 2015. Published by Elsevier B.V.

  6. Targeting vector construction through recombineering.

    PubMed

    Malureanu, Liviu A

    2011-01-01

    Gene targeting in mouse embryonic stem cells is an essential, yet still very expensive and highly time-consuming, tool and method to study gene function at the organismal level or to create mouse models of human diseases. Conventional cloning-based methods have been largely used for generating targeting vectors, but are hampered by a number of limiting factors, including the variety and location of restriction enzymes in the gene locus of interest, the specific PCR amplification of repetitive DNA sequences, and cloning of large DNA fragments. Recombineering is a technique that exploits the highly efficient homologous recombination function encoded by λ phage in Escherichia coli. Bacteriophage-based recombination can recombine homologous sequences as short as 30-50 bases, allowing manipulations such as insertion, deletion, or mutation of virtually any genomic region. The large availability of mouse genomic bacterial artificial chromosome (BAC) libraries covering most of the genome facilitates the retrieval of genomic DNA sequences from the bacterial chromosomes through recombineering. This chapter describes a successfully applied protocol and aims to be a detailed guide through the steps of generation of targeting vectors through recombineering.

  7. A novel lignin degradation bacterial consortium for efficient pulping.

    PubMed

    Wang, Yanxia; Liu, Quan; Yan, Lei; Gao, Yamei; Wang, Yanjie; Wang, Weidong

    2013-07-01

    A lignin degradation bacterial consortium named LDC was screened from the sludge of a reeds pond by a restricted subculture. It could break down 60.9% lignin in reeds at 30°C under conditions of static culture within 15 days. In order to analyze the diversity of LDC, plate isolation, 16S rDNA clone library and ARDRA (Amplified Ribosomal DNA Restriction Analysis) were performed. Six bacterial strains were isolated from LDC and eighteen DNA phylotypes were identified from 230 bacterial analyzed clones. They were classified into Clostridiales(9.1%), Geovibrio thiophilus (5.1%), Desulfomicrobium (10.9%), Pseudomonas sp. (25.2%), Azoarcus sp. (5.1%), Thauera (5.1%), Paenibacillus sp. (5.1%), Cohnella sp. (2.2%), Acinetobacter sp. (3.1%), Microbacterium (7.8%), and uncultured bacterium (21.3%). In addition, physical characteristics of paper hand-sheets between biological pretreatment and chemical pretreatment were compared. The results showed that LDC had the capability of lignin degradation and was efficient for pulping, which would provide a new choice for biopulping. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Evaluation of the Helicobacteraceae in the oral cavity of dogs.

    PubMed

    Craven, Melanie; Recordati, Camilla; Gualdi, Valentina; Pengo, Graziano; Luini, Mario; Scanziani, Eugenio; Simpson, Kenneth W

    2011-11-01

    To determine the Helicobacter spp present in the oral cavity of dogs and the relationship of those organisms with gastric Helicobacter spp to better define the potential for dog-human and dog-dog transmission. Saliva and dental plaque from 28 dogs and gastric biopsy specimens from a subset of 8 dogs. PCR-based screening for Helicobacter spp was conducted on samples obtained from the oral cavity of 28 dogs. Comparative analysis was conducted on Helicobacteraceae 16S rDNA clone libraries from the oral cavity and stomach of a subset of 8 dogs (5 vomiting and 3 healthy) that had positive PCR results for Helicobacter spp. Helicobacteraceae DNA was identified in the oral cavity of 24 of 28 dogs. Analysis of cloned 16S rDNA amplicons from 8 dogs revealed that Wolinella spp was the most common (8/8 dogs) and abundant (52/57 [91%] clones) member of the Helicobacteraceae family in the oral cavity. Only 2 of 8 dogs harbored Helicobacter spp in the oral cavity, and 1 of those was coinfected with Helicobacter heilmannii and Helicobacter felis in samples obtained from the stomach and saliva. Evaluation of oral cavity DNA with Wolinella-specific PCR primers yielded positive results for 16 of 20 other dogs (24/28 samples were positive for Wolinella spp). Wolinella spp rather than Helicobacter spp were the predominant Helicobacteraceae in the oral cavity of dogs. The oral cavity of dogs was apparently not a zoonotically important reservoir of Helicobacter spp that were non-Helicobacter pylori organisms.

  9. Cloning of a promoter-like soybean DNA sequence responding to IAA induction in Escherichia coli K12.

    PubMed

    Kline, E L; Chiang, S J; Lattora, D; Chaung, W

    1992-02-01

    We have constructed a soybean genomic DNA library in Escherichia coli K12 strain KC13 using plasmid pPV33, which consists of a promoter-less tetracycline resistance (Tcr) gene. A recombinant clone, KC13(pAU-SB1)+, was obtained by selecting for resistance to tetracycline in the presence of indole-3-acetic acid (IAA). Restriction enzyme cleavage and Southern hybridization analysis revealed that the pAU-SB1 plasmid has a 250 bp soybean DNA insert fused with the Tcr gene. In the presence of a selected group of auxins, induction of the Tcr phenotype and mRNA synthesis of the Tcr gene are observed only in KC13(pAU-SB1)+ cultures. On the other hand, induction of the Tcr phenotype and mRNA synthesis of the Tcr gene are absent in cells harboring the cloning vector pPV33 or a recombinant plasmid containing the 250 bp insert in the reverse orientation, pAU-SB1ro. This demonstrated a need for the insertion of the 250 bp soybean DNA and the specificity of its orientation in response to IAA induction. The start point of mRNA transcription in response to IAA, IBA, IPA, 2,4,5-T, and a-NAP is at base pair -96 or -95 upstream of the translational start site of the Tcr gene and base pair -98 with 2,4-D.

  10. Identification of genes differentially expressed during adventitious shoot induction in Pinus pinea cotyledons by subtractive hybridization and quantitative PCR.

    PubMed

    Alonso, Pablo; Cortizo, Millán; Cantón, Francisco R; Fernández, Belén; Rodríguez, Ana; Centeno, Maria L; Cánovas, Francisco M; Ordás, Ricardo J

    2007-12-01

    As part of a study aimed at understanding the physiological and molecular mechanisms involved in adventitious shoot bud formation in pine cotyledons, we conducted a transcriptome analysis to identify early-induced genes during the first phases of adventitious caulogenesis in Pinus pinea L. cotyledons cultured in the presence of benzyladenine. A subtractive cDNA library with more than 700 clones was constructed. Of these clones, 393 were sequenced, analyzed and grouped according to their putative function. Quantitative real-time PCR analysis was performed to confirm the differential expression of 30 candidate genes. Results are contrasted with available data for other species.

  11. Cloning, annotation and expression analysis of mycoparasitism-related genes in Trichoderma harzianum 88.

    PubMed

    Yao, Lin; Yang, Qian; Song, Jinzhu; Tan, Chong; Guo, Changhong; Wang, Li; Qu, Lianhai; Wang, Yun

    2013-04-01

    Trichoderma harzianum 88, a filamentous soil fungus, is an effective biocontrol agent against several plant pathogens. High-throughput sequencing was used here to study the mycoparasitism mechanisms of T. harzianum 88. Plate confrontation tests of T. harzianum 88 against plant pathogens were conducted, and a cDNA library was constructed from T. harzianum 88 mycelia in the presence of plant pathogen cell walls. Randomly selected transcripts from the cDNA library were compared with eukaryotic plant and fungal genomes. Of the 1,386 transcripts sequenced, the most abundant Gene Ontology (GO) classification group was "physiological process". Differential expression of 19 genes was confirmed by real-time RT-PCR at different mycoparasitism stages against plant pathogens. Gene expression analysis revealed the transcription of various genes involved in mycoparasitism of T. harzianum 88. Our study provides helpful insights into the mechanisms of T. harzianum 88-plant pathogen interactions.

  12. Cloning and expression of a cDNA coding for a human monocyte-derived plasminogen activator inhibitor.

    PubMed

    Antalis, T M; Clark, M A; Barnes, T; Lehrbach, P R; Devine, P L; Schevzov, G; Goss, N H; Stephens, R W; Tolstoshev, P

    1988-02-01

    Human monocyte-derived plasminogen activator inhibitor (mPAI-2) was purified to homogeneity from the U937 cell line and partially sequenced. Oligonucleotide probes derived from this sequence were used to screen a cDNA library prepared from U937 cells. One positive clone was sequenced and contained most of the coding sequence as well as a long incomplete 3' untranslated region (1112 base pairs). This cDNA sequence was shown to encode mPAI-2 by hybrid-select translation. A cDNA clone encoding the remainder of the mPAI-2 mRNA was obtained by primer extension of U937 poly(A)+ RNA using a probe complementary to the mPAI-2 coding region. The coding sequence for mPAI-2 was placed under the control of the lambda PL promoter, and the protein expressed in Escherichia coli formed a complex with urokinase that could be detected immunologically. By nucleotide sequence analysis, mPAI-2 cDNA encodes a protein containing 415 amino acids with a predicted unglycosylated Mr of 46,543. The predicted amino acid sequence of mPAI-2 is very similar to placental PAI-2 (3 amino acid differences) and shows extensive homology with members of the serine protease inhibitor (serpin) superfamily. mPAI-2 was found to be more homologous to ovalbumin (37%) than the endothelial plasminogen activator inhibitor, PAI-1 (26%). Like ovalbumin, mPAI-2 appears to have no typical amino-terminal signal sequence. The 3' untranslated region of the mPAI-2 cDNA contains a putative regulatory sequence that has been associated with the inflammatory mediators.

  13. Cloning and expression of a cDNA coding for a human monocyte-derived plasminogen activator inhibitor.

    PubMed Central

    Antalis, T M; Clark, M A; Barnes, T; Lehrbach, P R; Devine, P L; Schevzov, G; Goss, N H; Stephens, R W; Tolstoshev, P

    1988-01-01

    Human monocyte-derived plasminogen activator inhibitor (mPAI-2) was purified to homogeneity from the U937 cell line and partially sequenced. Oligonucleotide probes derived from this sequence were used to screen a cDNA library prepared from U937 cells. One positive clone was sequenced and contained most of the coding sequence as well as a long incomplete 3' untranslated region (1112 base pairs). This cDNA sequence was shown to encode mPAI-2 by hybrid-select translation. A cDNA clone encoding the remainder of the mPAI-2 mRNA was obtained by primer extension of U937 poly(A)+ RNA using a probe complementary to the mPAI-2 coding region. The coding sequence for mPAI-2 was placed under the control of the lambda PL promoter, and the protein expressed in Escherichia coli formed a complex with urokinase that could be detected immunologically. By nucleotide sequence analysis, mPAI-2 cDNA encodes a protein containing 415 amino acids with a predicted unglycosylated Mr of 46,543. The predicted amino acid sequence of mPAI-2 is very similar to placental PAI-2 (3 amino acid differences) and shows extensive homology with members of the serine protease inhibitor (serpin) superfamily. mPAI-2 was found to be more homologous to ovalbumin (37%) than the endothelial plasminogen activator inhibitor, PAI-1 (26%). Like ovalbumin, mPAI-2 appears to have no typical amino-terminal signal sequence. The 3' untranslated region of the mPAI-2 cDNA contains a putative regulatory sequence that has been associated with the inflammatory mediators. Images PMID:3257578

  14. Molecular analysis of microbial diversity in corrosion samples from energy transmission towers.

    PubMed

    Oliveira, Valéria M; Lopes-Oliveira, Patrícia F; Passarini, Michel R Z; Menezes, Claudia B A; Oliveira, Walter R C; Rocha, Adriano J; Sette, Lara D

    2011-04-01

    Microbial diversity in corrosion samples from energy transmission towers was investigated using molecular methods. Ribosomal DNA fragments were used to assemble gene libraries. Sequence analysis indicated 10 bacterial genera within the phyla Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. In the two libraries generated from corroded screw-derived samples, the genus Acinetobacter was the most abundant. Acinetobacter and Clostridium spp. dominated, with similar percentages, in the libraries derived from corrosion scrapings. Fungal clones were affiliated with 14 genera belonging to the phyla Ascomycota and Basidiomycota; of these, Capnobotryella and Fellomyces were the most abundant fungi observed. Several of the microorganisms had not previously been associated with biofilms and corrosion, reinforcing the need to use molecular techniques to achieve a more comprehensive assessment of microbial diversity in environmental samples.

  15. [Cloning and characterization of genes differentially expressed in human dental pulp cells and gingival fibroblasts].

    PubMed

    Wang, Zhong-dong; Wu, Ji-nan; Zhou, Lin; Ling, Jun-qi; Guo, Xi-min; Xiao, Ming-zhen; Zhu, Feng; Pu, Qin; Chai, Yu-bo; Zhao, Zhong-liang

    2007-02-01

    To study the biological properties of human dental pulp cells (HDPC) by cloning and analysis of genes differentially expressed in HDPC in comparison with human gingival fibroblasts (HGF). HDPC and HGF were cultured and identified by immunocytochemistry. HPDC and HGF subtractive cDNA library was established by PCR-based modified subtractive hybridization, genes differentially expressed by HPDC were cloned, sequenced and compared to find homogeneous sequence in GenBank by BLAST. Cloning and sequencing analysis indicate 12 genes differentially expressed were obtained, in which two were unknown genes. Among the 10 known genes, 4 were related to signal transduction, 2 were related to trans-membrane transportation (both cell membrane and nuclear membrane), and 2 were related to RNA splicing mechanisms. The biological properties of HPDC are determined by the differential expression of some genes and the growth and differentiation of HPDC are associated to the dynamic protein synthesis and secretion activities of the cell.

  16. Harvesting of novel polyhydroxyalkanaote (PHA) synthase encoding genes from a soil metagenome library using phenotypic screening.

    PubMed

    Schallmey, Marcus; Ly, Anh; Wang, Chunxia; Meglei, Gabriela; Voget, Sonja; Streit, Wolfgang R; Driscoll, Brian T; Charles, Trevor C

    2011-08-01

    We previously reported the construction of metagenomic libraries in the IncP cosmid vector pRK7813, enabling heterologous expression of these broad-host-range libraries in multiple bacterial hosts. Expressing these libraries in Sinorhizobium meliloti, we have successfully complemented associated phenotypes of polyhydroxyalkanoate synthesis mutants. DNA sequence analysis of three clones indicates that the complementing genes are homologous to, but substantially different from, known polyhydroxyalkanaote synthase-encoding genes. Thus we have demonstrated the ability to isolate diverse genes for polyhydroxyalkanaote synthesis by functional complementation of defined mutants. Such genes might be of use in the engineering of more efficient systems for the industrial production of bioplastics. The use of functional complementation will also provide a vehicle to probe the genetics of polyhydroxyalkanaote metabolism and its relation to carbon availability in complex microbial assemblages. 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  17. Protein and Antibody Engineering by Phage Display

    PubMed Central

    Frei, J.C.; Lai, J.R.

    2017-01-01

    Phage display is an in vitro selection technique that allows for the rapid isolation of proteins with desired properties including increased affinity, specificity, stability, and new enzymatic activity. The power of phage display relies on the phenotype-to-genotype linkage of the protein of interest displayed on the phage surface with the encoding DNA packaged within the phage particle, which allows for selective enrichment of library pools and high-throughput screening of resulting clones. As an in vitro method, the conditions of the binding selection can be tightly controlled. Due to the high-throughput nature, rapidity, and ease of use, phage display is an excellent technological platform for engineering antibody or proteins with enhanced properties. Here, we describe methods for synthesis, selection, and screening of phage libraries with particular emphasis on designing humanizing antibody libraries and combinatorial scanning mutagenesis libraries. We conclude with a brief section on troubleshooting for all stages of the phage display process. PMID:27586328

  18. Comparison of methanogen diversity of yak (Bos grunniens) and cattle (Bos taurus) from the Qinghai-Tibetan plateau, China.

    PubMed

    Huang, Xiao Dan; Tan, Hui Yin; Long, Ruijun; Liang, Juan Boo; Wright, André-Denis G

    2012-10-19

    Methane emissions by methanogen from livestock ruminants have significantly contributed to the agricultural greenhouse gas effect. It is worthwhile to compare methanogen from "energy-saving" animal (yak) and normal animal (cattle) in order to investigate the link between methanogen structure and low methane production. Diversity of methanogens from the yak and cattle rumen was investigated by analysis of 16S rRNA gene sequences from rumen digesta samples from four yaks (209 clones) and four cattle (205 clones) from the Qinghai-Tibetan Plateau area (QTP). Overall, a total of 414 clones (i.e. sequences) were examined and assigned to 95 operational taxonomic units (OTUs) using MOTHUR, based upon a 98% species-level identity criterion. Forty-six OTUs were unique to the yak clone library and 34 OTUs were unique to the cattle clone library, while 15 OTUs were found in both libraries. Of the 95 OTUs, 93 putative new species were identified. Sequences belonging to the Thermoplasmatales-affiliated Linage C (TALC) were found to dominate in both libraries, accounting for 80.9% and 62.9% of the sequences from the yak and cattle clone libraries, respectively. Sequences belonging to the Methanobacteriales represented the second largest clade in both libraries. However, Methanobrevibacter wolinii (QTPC 110) was only found in the cattle library. The number of clones from the order Methanomicrobiales was greater in cattle than in the yak clone library. Although the Shannon index value indicated similar diversity between the two libraries, the Libshuff analysis indicated that the methanogen community structure of the yak was significantly different than those from cattle. This study revealed for the first time the molecular diversity of methanogen community in yaks and cattle in Qinghai-Tibetan Plateau area in China. From the analysis, we conclude that yaks have a unique rumen microbial ecosystem that is significantly different from that of cattle, this may also help to explain why yak produce less methane than cattle.

  19. Comparison of methanogen diversity of yak (Bos grunniens) and cattle (Bos taurus) from the Qinghai-Tibetan plateau, China

    PubMed Central

    2012-01-01

    Background Methane emissions by methanogen from livestock ruminants have significantly contributed to the agricultural greenhouse gas effect. It is worthwhile to compare methanogen from “energy-saving” animal (yak) and normal animal (cattle) in order to investigate the link between methanogen structure and low methane production. Results Diversity of methanogens from the yak and cattle rumen was investigated by analysis of 16S rRNA gene sequences from rumen digesta samples from four yaks (209 clones) and four cattle (205 clones) from the Qinghai-Tibetan Plateau area (QTP). Overall, a total of 414 clones (i.e. sequences) were examined and assigned to 95 operational taxonomic units (OTUs) using MOTHUR, based upon a 98% species-level identity criterion. Forty-six OTUs were unique to the yak clone library and 34 OTUs were unique to the cattle clone library, while 15 OTUs were found in both libraries. Of the 95 OTUs, 93 putative new species were identified. Sequences belonging to the Thermoplasmatales-affiliated Linage C (TALC) were found to dominate in both libraries, accounting for 80.9% and 62.9% of the sequences from the yak and cattle clone libraries, respectively. Sequences belonging to the Methanobacteriales represented the second largest clade in both libraries. However, Methanobrevibacter wolinii (QTPC 110) was only found in the cattle library. The number of clones from the order Methanomicrobiales was greater in cattle than in the yak clone library. Although the Shannon index value indicated similar diversity between the two libraries, the Libshuff analysis indicated that the methanogen community structure of the yak was significantly different than those from cattle. Conclusion This study revealed for the first time the molecular diversity of methanogen community in yaks and cattle in Qinghai-Tibetan Plateau area in China. From the analysis, we conclude that yaks have a unique rumen microbial ecosystem that is significantly different from that of cattle, this may also help to explain why yak produce less methane than cattle. PMID:23078429

  20. Cloning and sequencing of a gene encoding a 21-kilodalton outer membrane protein from Bordetella avium and expression of the gene in Salmonella typhimurium.

    PubMed Central

    Gentry-Weeks, C R; Hultsch, A L; Kelly, S M; Keith, J M; Curtiss, R

    1992-01-01

    Three gene libraries of Bordetella avium 197 DNA were prepared in Escherichia coli LE392 by using the cosmid vectors pCP13 and pYA2329, a derivative of pCP13 specifying spectinomycin resistance. The cosmid libraries were screened with convalescent-phase anti-B. avium turkey sera and polyclonal rabbit antisera against B. avium 197 outer membrane proteins. One E. coli recombinant clone produced a 56-kDa protein which reacted with convalescent-phase serum from a turkey infected with B. avium 197. In addition, five E. coli recombinant clones were identified which produced B. avium outer membrane proteins with molecular masses of 21, 38, 40, 43, and 48 kDa. At least one of these E. coli clones, which encoded the 21-kDa protein, reacted with both convalescent-phase turkey sera and antibody against B. avium 197 outer membrane proteins. The gene for the 21-kDa outer membrane protein was localized by Tn5seq1 mutagenesis, and the nucleotide sequence was determined by dideoxy sequencing. DNA sequence analysis of the 21-kDa protein revealed an open reading frame of 582 bases that resulted in a predicted protein of 194 amino acids. Comparison of the predicted amino acid sequence of the gene encoding the 21-kDa outer membrane protein with protein sequences in the National Biomedical Research Foundation protein sequence data base indicated significant homology to the OmpA proteins of Shigella dysenteriae, Enterobacter aerogenes, E. coli, and Salmonella typhimurium and to Neisseria gonorrhoeae outer membrane protein III, Haemophilus influenzae protein P6, and Pseudomonas aeruginosa porin protein F. The gene (ompA) encoding the B. avium 21-kDa protein hybridized with 4.1-kb DNA fragments from EcoRI-digested, chromosomal DNA of Bordetella pertussis and Bordetella bronchiseptica and with 6.0- and 3.2-kb DNA fragments from EcoRI-digested, chromosomal DNA of B. avium and B. avium-like DNA, respectively. A 6.75-kb DNA fragment encoding the B. avium 21-kDa protein was subcloned into the Asd+ vector pYA292, and the construct was introduced into the avirulent delta cya delta crp delta asd S. typhimurium chi 3987 for oral immunization of birds. The gene encoding the 21-kDa protein was expressed equivalently in B. avium 197, delta asd E. coli chi 6097, and S. typhimurium chi 3987 and was localized primarily in the cytoplasmic membrane and outer membrane. In preliminary studies on oral inoculation of turkey poults with S. typhimurium chi 3987 expressing the gene encoding the B. avium 21-kDa protein, it was determined that a single dose of the recombinant Salmonella vaccine failed to elicit serum antibodies against the 21-kDa protein and challenge with wild-type B. avium 197 resulted in colonization of the trachea and thymus with B. avium 197. Images PMID:1447140

  1. Fast conversion of scFv to Fab antibodies using type IIs restriction enzymes.

    PubMed

    Sanmark, Hanna; Huovinen, Tuomas; Matikka, Tero; Pettersson, Tiina; Lahti, Maria; Lamminmäki, Urpo

    2015-11-01

    Single chain variable fragment (scFv) antibody libraries are widely used for developing novel bioaffinity reagents, although Fab or IgG molecules are the preferred antibody formats in many final applications. Therefore, rapid conversion methods for combining multiple DNA fragments are needed to attach constant domains to the scFv derived variable domains. In this study we describe a fast and easy cloning method for the conversion of single framework scFv fragments to Fab fragments using type IIS restriction enzymes. All cloning steps excluding plating of the Fab transformants can be done in 96 well plates and the procedure can be completed in one working day. The concept was tested by converting 69 scFv clones into Fab format on 96 well plates, which resulted in 93% success rate. The method is particularly useful as a high-throughput tool for the conversion of the chosen scFv clones into Fab molecules in order to analyze them as early as possible, as the conversion can significantly affect the binding properties of the chosen clones. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Polymorphic human (CTAT)n microsatellite provides a conserved linkage marker for mouse mutants causing cleft palate, vestibular defects, obesity and ataxia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffith, A.J.; Burgess, D.L.; Kohrman, D.

    1994-09-01

    The Twirler mutation (Tw) causing cleft palate {plus_minus} cleft lip, vestibular defects and obesity is located within 0.5 cM of an ataxia locus (ax) on mouse chromosome 18. We identified a transgene-induced insertional mutation with vestibular and craniofacial defects that appears to be a new allele of Twirler. Mouse DNA flanking the transgene insertion site was isolated from a cosmid library. An evolutionarily conserved, zoo blot positive cosmid subclone was used to probe a human {lambda} genomic library. From the sequence of a highly homologous human {lambda} clone, we designed STS primers and screened a human P1 library. DNA frommore » two positive P1 clones was hybridized with simple sequence probes, and a (CTAT){sub 12} repeat was detected. Analysis of 62 CEPH parents with primers flanking the repeat identified six alleles containing 9 to 14 copies of the repeat, at frequencies of 0.17, 0.17, 0.17, 0.27, 0.15 and 0.07, respectively. The observed heterozygosity was 49/62 with a calculated PIC value of 0.76. This polymorphic microsatellite marker, designated Umi3, was mapped to the predicted conserved human linkage group by analysis of somatic cell hybrid panels. The anticipated short distance between Umi3 and the disease genes will facilitate detection of linkage in small families. We would like to type appropriate human pedigrees with Umi3 in order to identify patients with inherited disorders homologous to the mouse mutations Twirler and ataxia.« less

  3. Construction of a cDNA library for sea cucumber Acaudina leucoprocta and differential expression of ferritin peptide

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Hou, Fujing; Li, Ye; Su, Xiurong; Li, Taiwu; Jin, Chunhua

    2016-07-01

    Acaudina leucoprocta is an edible sea cucumber of economic interest that is widely distributed in China. Little information is available concerning the molecular genetics of this species although such knowledge would contribute to a better understanding of the optimal conditions for its aquaculture and its mechanisms of defense against disease. Therefore, we constructed a cDNA library and, based on bioinformatics analysis of the sequences, the functions of 75% of the cDNAs were identified, including those involved in cell structure, energy metabolism, mitochondrial function, and signal transduction pathways. Approximately 25% of genes in the library were unmatched. The gene for A. leucoprocta ferritin was also cloned. The predicted amino-acid sequence of ferritin displayed significant homology with other sea-cucumber counterparts but indicated that it was a new member of the ferritin family. Semiquantitative real-time RT-PCR indicated the highest levels of ferritin mRNA expression in the intestine. A polyclonal antibody of ferritin was also produced. These data provide a set of molecular tools essential for further studies of the functions of ferritin protein in A. leucoprocta.

  4. Identification and functional analysis of a new glyphosate resistance gene from a fungus cDNA library.

    PubMed

    Tao, Bo; Shao, Bai-Hui; Qiao, Yu-Xin; Wang, Xiao-Qin; Chang, Shu-Jun; Qiu, Li-Juan

    2017-08-01

    Glyphosate is a widely used broad spectrum herbicide; however, this limits its use once crops are planted. If glyphosate-resistant crops are grown, glyphosate can be used for weed control in crops. While several glyphosate resistance genes are used in commercial glyphosate tolerant crops, there is interest in identifying additional genes for glyphosate tolerance. This research constructed a high-quality cDNA library form the glyphosate-resistant fungus Aspergillus oryzae RIB40 to identify genes that may confer resistance to glyphosate. Using a medium containing glyphosate (120mM), we screened several clones from the library. Based on a nucleotide sequence analysis, we identified a gene of unknown function (GenBank accession number: XM_001826835.2) that encoded a hypothetical 344-amino acid protein. The gene was named MFS40. Its ORF was amplified to construct an expression vector, pGEX-4T-1-MFS40, to express the protein in Escherichia coli BL21. The gene conferred glyphosate tolerance to E. coli ER2799 cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Analysis of expressed sequence tags from the four main developmental stages of Trypanosoma congolense

    PubMed Central

    Helm, Jared R.; Hertz-Fowler, Christiane; Aslett, Martin; Berriman, Matthew; Sanders, Mandy; Quail, Michael A.; Soares, Marcelo B.; Bonaldo, Maria F.; Sakurai, Tatsuya; Inoue, Noboru; Donelson, John E.

    2009-01-01

    Trypanosoma congolense is one of the most economically important pathogens of livestock in Africa. Culture-derived parasites of each of the three main insect stages of the T. congolense life cycle, i.e., the procyclic, epimastigote and metacyclic stages, and bloodstream stage parasites isolated from infected mice, were used to construct stage-specific cDNA libraries and expressed sequence tags (ESTs or cDNA clones) in each library were sequenced. Thirteen EST clusters encoding different variant surface glycoproteins (VSGs) were detected in the metacyclic library and twenty-six VSG EST clusters were found in the bloodstream library, six of which are shared by the metacyclic library. Rare VSG ESTs are present in the epimastigote library, and none were detected in the procyclic library. ESTs encoding enzymes that catalyze oxidative phosphorylation and amino acid metabolism are about twice as abundant in the procyclic and epimastigote stages as in the metacyclic and bloodstream stages. In contrast, ESTs encoding enzymes involved in glycolysis, the citric acid cycle and nucleotide metabolism are about the same in all four developmental stages. Cysteine proteases, kinases and phosphatases are the most abundant enzyme groups represented by the ESTs. All four libraries contain T. congolense-specific expressed sequences not present in the T. brucei and T. cruzi genomes. Normalized cDNA libraries were constructed from the metacyclic and bloodstream stages, and found to be further enriched for T. congolense-specific ESTs. Given that cultured T. congolense offers an experimental advantage over other African trypanosome species, these ESTs provide a basis for further investigation of the molecular properties of these four developmental stages, especially the epimastigote and metacyclic stages for which it is difficult to obtain large quantities of organisms. The T. congolense EST databases are available at: http://www.sanger.ac.uk/Projects/T_congolense/EST_index.shtml. PMID:19559733

  6. Molecular genetics of X-linked retinitis pigmentosa: Progress towards cloning the RP3 gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujita, R.; Yan, D.; McHenry, C.

    1994-09-01

    Our goal is to identify the X-linked retinitis pigmentosa (XLRP) gene RP3. The location of RP3 is genetically delimited to a region of 1 Mb, distal to DXS140, CYBB and tctex-1-like gene and proximal to the gene OTC. It is currently thought that RP3 is within 40 kb of the proximal deletion breakpoint of a patient BB. However, a more proximal location of the gene, closer to OTC, is not ruled out. We initiated the isolation of the genomic region between DXS140 to OTC in YACs. One of the clones from DXS140 region (55B) is 460 kb and spans aboutmore » 200 kb at each side of BB patient`s proximal breakpoint. It contains CYBB, tctex-1-like genes and two additional CpG islands. The 55B clone has been covered by cosmid and phage subclones. Another YAC clone from the OTC region (OTCC) spans about 1 Mb and contains at least 5 CpG islands. In situ hybridization performed with OTCC showed its location in Xp21; however, several derivative cosmids map to chromosome 7, indicating that it is a chimeric YAC. No overlap is evident between 55B and OTCC. We have isolated the YAC end-sequences and isolation of clones to close the gap is in progress. Cosmids are being used for screening eye tissue cDNA libraries, mainly from retina. Screening is done by hybridization to replica filters or by cDNA enrichment methods. Several cDNA clones have been isolated and are being characterized. Exon-amplification is also being used with the cosmids and phages. Genetic analysis is being performed to determine RP3 patients from clinically indistinguishable RP2, located in Xp11.23-p11.4, and to reduce the genetic distance of current flanking markers. For this we are analyzing a number of XLRP families with established markers in the region and with new microsatellites.« less

  7. Trichothecene 3-O-acetyltransferase protects both the producing organism and transformed yeast from related mycotoxins. Cloning and characterization of Tri101.

    PubMed

    Kimura, M; Kaneko, I; Komiyama, M; Takatsuki, A; Koshino, H; Yoneyama, K; Yamaguchi, I

    1998-01-16

    Trichothecene mycotoxins such as deoxynivalenol, 4,15-diacetoxyscirpenol, and T-2 toxin, are potent protein synthesis inhibitors for eukaryotic organisms. The 3-O-acetyl derivatives of these toxins were shown to reduce their in vitro activity significantly as assessed by assays using a rabbit reticulocyte translation system. The results suggested that the introduction of an O-acetyl group at the C-3 position in the biosynthetic pathway works as a resistance mechanism for Fusarium species that produce t-type trichothecenes (trichothecenes synthesized via the precursor trichotriol). A gene responsible for the 3-O-acetylation reaction, Tri101, has been successfully cloned from a Fusarium graminearum cDNA library that was designed to be expressed in Schizosaccharomyces pombe. Fission yeast transformants were selected for their ability to grow in the presence of T-2 toxin, and this strategy allowed isolation of 25 resistant clones, all of which contained a cDNA for Tri101. This is the first drug-inactivating O-acetyltransferase gene derived from antibiotic-producing organisms. The open reading frame of Tri101 codes for a polypeptide of 451 amino acid residues, which shows no similarity to any other proteins reported so far. TRI101 from recombinant Escherichia coli catalyzes O-acetylation of the trichothecene ring specifically at the C-3 position in an acetyl-CoA-dependent manner. By using the Tri101 cDNA as a probe, two least overlapping cosmid clones that cover a region of 70 kilobase pairs have been isolated from the genome of F. graminearum. Other trichothecene biosynthetic genes, Tri4, Tri5, and Tri6, were not clustered in the region covered by these cosmid clones. These new cosmid clones are considered to be located in other parts of the large biosynthetic gene cluster and might be useful for the study of trichothecene biosynthesis.

  8. Quantifying and resolving multiple vector transformants in S. cerevisiae plasmid libraries.

    PubMed

    Scanlon, Thomas C; Gray, Elizabeth C; Griswold, Karl E

    2009-11-20

    In addition to providing the molecular machinery for transcription and translation, recombinant microbial expression hosts maintain the critical genotype-phenotype link that is essential for high throughput screening and recovery of proteins encoded by plasmid libraries. It is known that Escherichia coli cells can be simultaneously transformed with multiple unique plasmids and thusly complicate recombinant library screening experiments. As a result of their potential to yield misleading results, bacterial multiple vector transformants have been thoroughly characterized in previous model studies. In contrast to bacterial systems, there is little quantitative information available regarding multiple vector transformants in yeast. Saccharomyces cerevisiae is the most widely used eukaryotic platform for cell surface display, combinatorial protein engineering, and other recombinant library screens. In order to characterize the extent and nature of multiple vector transformants in this important host, plasmid-born gene libraries constructed by yeast homologous recombination were analyzed by DNA sequencing. It was found that up to 90% of clones in yeast homologous recombination libraries may be multiple vector transformants, that on average these clones bear four or more unique mutant genes, and that these multiple vector cells persist as a significant proportion of library populations for greater than 24 hours during liquid outgrowth. Both vector concentration and vector to insert ratio influenced the library proportion of multiple vector transformants, but their population frequency was independent of transformation efficiency. Interestingly, the average number of plasmids born by multiple vector transformants did not vary with their library population proportion. These results highlight the potential for multiple vector transformants to dominate yeast libraries constructed by homologous recombination. The previously unrecognized prevalence and persistence of multiply transformed yeast cells have important implications for yeast library screens. The quantitative information described herein should increase awareness of this issue, and the rapid sequencing approach developed for these studies should be widely useful for identifying multiple vector transformants and avoiding complications associated with cells that have acquired more than one unique plasmid.

  9. VpWRKY3, a biotic and abiotic stress-related transcription factor from the Chinese wild Vitis pseudoreticulata.

    PubMed

    Zhu, Ziguo; Shi, Jiangli; Cao, Jiangling; He, Mingyang; Wang, Yuejin

    2012-11-01

    Chinese wild grapevine Vitis pseudoreticulata accession 'Baihe-35-1' is identified as the precious resource with multiple resistances to pathogens. A directional cDNA library was constructed from the young leaves inoculated with Erysiphe necator. A total of 3,500 clones were sequenced, yielding 1,727 unigenes. Among them, 762 unigenes were annotated and classified into three classes, respectively, using Gene Ontology, including 22 ESTs related to transcription regulator activity. A novel WRKY transcription factor was isolated from the library, and designated as VpWRKY3 (GenBank Accession No. JF500755). The full-length cDNA is 1,280 bp, encoding a WRKY protein of 320 amino acids. VpWRKY3 is localized to nucleus and functions as a transcriptional activator. QRT-PCR analysis showed that the VpWRKY3 specifically accumulated in response to pathogen, salicylic acid, ethylene and drought stress. Overexpression of VpWRKY3 in tobacco increased the resistance to Ralstonia solanacearum, indicating that VpWRKY3 participates in defense response. Furthermore, VpWRKY3 is also involved in abscisic acid signal pathway and salt stress. This experiment provided an important basis for understanding the defense mechanisms mediated by WRKY genes in China wild grapevine. Generation of the EST collection from the cDNA library provided valuable information for the grapevine breeding. Key message We constructed a cDNA library from Chinese wild grapevine leaves inoculated with powdery mildew. VpWRKY3 was isolated and demonstrated that it was involved in biotic and abiotic stress responses.

  10. Comprehensive Census of Bacteria in Clean Rooms by Using DNA Microarray and Cloning Methods▿ †

    PubMed Central

    La Duc, Myron T.; Osman, Shariff; Vaishampayan, Parag; Piceno, Yvette; Andersen, Gary; Spry, J. A.; Venkateswaran, Kasthuri

    2009-01-01

    A census of clean room surface-associated bacterial populations was derived from the results of both the cloning and sequencing of 16S rRNA genes and DNA microarray (PhyloChip) analyses. Samples from the Lockheed Martin Aeronautics Multiple Testing Facility (LMA-MTF), the Kennedy Space Center Payload Hazard and Servicing Facility (KSC-PHSF), and the Jet Propulsion Laboratory Spacecraft Assembly Facility (JPL-SAF) clean rooms were collected during the various assembly phases of the Phoenix and Mars Science Laboratory (MSL) spacecraft. Clone library-derived analyses detected a larger bacterial diversity prior to the arrival of spacecraft hardware in these clean room facilities. PhyloChip results were in agreement with this trend but also unveiled the presence of anywhere from 9- to 70-fold more bacterial taxa than cloning approaches. Among the facilities sampled, the JPL-SAF (MSL mission) housed a significantly less diverse bacterial population than either the LMA-MTF or KSC-PHSF (Phoenix mission). Bacterial taxa known to thrive in arid conditions were frequently detected in MSL-associated JPL-SAF samples, whereas proteobacterial lineages dominated Phoenix-associated KSC-PHSF samples. Comprehensive bacterial censuses, such as that reported here, will help space-faring nations preemptively identify contaminant biomatter that may compromise extraterrestrial life detection experiments. The robust nature and high sensitivity of DNA microarray technologies should prove beneficial to a wide range of scientific, electronic, homeland security, medical, and pharmaceutical applications and to any other ventures with a vested interest in monitoring and controlling contamination in exceptionally clean environments. PMID:19700540

  11. Comprehensive census of bacteria in clean rooms by using DNA microarray and cloning methods.

    PubMed

    La Duc, Myron T; Osman, Shariff; Vaishampayan, Parag; Piceno, Yvette; Andersen, Gary; Spry, J A; Venkateswaran, Kasthuri

    2009-10-01

    A census of clean room surface-associated bacterial populations was derived from the results of both the cloning and sequencing of 16S rRNA genes and DNA microarray (PhyloChip) analyses. Samples from the Lockheed Martin Aeronautics Multiple Testing Facility (LMA-MTF), the Kennedy Space Center Payload Hazard and Servicing Facility (KSC-PHSF), and the Jet Propulsion Laboratory Spacecraft Assembly Facility (JPL-SAF) clean rooms were collected during the various assembly phases of the Phoenix and Mars Science Laboratory (MSL) spacecraft. Clone library-derived analyses detected a larger bacterial diversity prior to the arrival of spacecraft hardware in these clean room facilities. PhyloChip results were in agreement with this trend but also unveiled the presence of anywhere from 9- to 70-fold more bacterial taxa than cloning approaches. Among the facilities sampled, the JPL-SAF (MSL mission) housed a significantly less diverse bacterial population than either the LMA-MTF or KSC-PHSF (Phoenix mission). Bacterial taxa known to thrive in arid conditions were frequently detected in MSL-associated JPL-SAF samples, whereas proteobacterial lineages dominated Phoenix-associated KSC-PHSF samples. Comprehensive bacterial censuses, such as that reported here, will help space-faring nations preemptively identify contaminant biomatter that may compromise extraterrestrial life detection experiments. The robust nature and high sensitivity of DNA microarray technologies should prove beneficial to a wide range of scientific, electronic, homeland security, medical, and pharmaceutical applications and to any other ventures with a vested interest in monitoring and controlling contamination in exceptionally clean environments.

  12. Analysis of Facultative Lithotroph Distribution and Diversity on Volcanic Deposits by Use of the Large Subunit of Ribulose 1,5-Bisphosphate Carboxylase/Oxygenase†

    PubMed Central

    Nanba, K.; King, G. M.; Dunfield, K.

    2004-01-01

    A 492- to 495-bp fragment of the gene coding for the large subunit of the form I ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) (rbcL) was amplified by PCR from facultatively lithotrophic aerobic CO-oxidizing bacteria, colorless and purple sulfide-oxidizing microbial mats, and genomic DNA extracts from tephra and ash deposits from Kilauea volcano, for which atmospheric CO and hydrogen have been previously documented as important substrates. PCR products from the mats and volcanic sites were used to construct rbcL clone libraries. Phylogenetic analyses showed that the rbcL sequences from all isolates clustered with form IC rbcL sequences derived from facultative lithotrophs. In contrast, the microbial mat clone sequences clustered with sequences from obligate lithotrophs representative of form IA rbcL. Clone sequences from volcanic sites fell within the form IC clade, suggesting that these sites were dominated by facultative lithotrophs, an observation consistent with biogeochemical patterns at the sites. Based on phylogenetic and statistical analyses, clone libraries differed significantly among volcanic sites, indicating that they support distinct lithotrophic assemblages. Although some of the clone sequences were similar to known rbcL sequences, most were novel. Based on nucleotide diversity and average pairwise difference, a forested site and an 1894 lava flow were found to support the most diverse and least diverse lithotrophic populations, respectively. These indices of diversity were not correlated with rates of atmospheric CO and hydrogen uptake but were correlated with estimates of respiration and microbial biomass. PMID:15066819

  13. Analysis of facultative lithotroph distribution and diversity on volcanic deposits by use of the large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase.

    PubMed

    Nanba, K; King, G M; Dunfield, K

    2004-04-01

    A 492- to 495-bp fragment of the gene coding for the large subunit of the form I ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) (rbcL) was amplified by PCR from facultatively lithotrophic aerobic CO-oxidizing bacteria, colorless and purple sulfide-oxidizing microbial mats, and genomic DNA extracts from tephra and ash deposits from Kilauea volcano, for which atmospheric CO and hydrogen have been previously documented as important substrates. PCR products from the mats and volcanic sites were used to construct rbcL clone libraries. Phylogenetic analyses showed that the rbcL sequences from all isolates clustered with form IC rbcL sequences derived from facultative lithotrophs. In contrast, the microbial mat clone sequences clustered with sequences from obligate lithotrophs representative of form IA rbcL. Clone sequences from volcanic sites fell within the form IC clade, suggesting that these sites were dominated by facultative lithotrophs, an observation consistent with biogeochemical patterns at the sites. Based on phylogenetic and statistical analyses, clone libraries differed significantly among volcanic sites, indicating that they support distinct lithotrophic assemblages. Although some of the clone sequences were similar to known rbcL sequences, most were novel. Based on nucleotide diversity and average pairwise difference, a forested site and an 1894 lava flow were found to support the most diverse and least diverse lithotrophic populations, respectively. These indices of diversity were not correlated with rates of atmospheric CO and hydrogen uptake but were correlated with estimates of respiration and microbial biomass.

  14. Microbial community and treatment ability investigation in AOAO process for the optoelectronic wastewater treatment using PCR-DGGE biotechnology.

    PubMed

    Chen, Hsi-Jien; Lin, Yi-Zi; Fanjiang, Jen-Mao; Fan, Chihhao

    2013-04-01

    This study aimed to explore the microbial community variation and treatment ability of a full-scale anoxic-aerobic-anoxic-aerobic (AOAO) process used for optoelectronic wastewater treatment. The sludge samples in the biological treatment units were collected and subsequently subjected to polymerase chain reaction (PCR) amplification and denaturing gradient gel electrophoresis identification and the wastewater components such as BOD5 and NH3-N were evaluated during the processes. The group specific primers selected were targeting at the kingdom Bacteria, the Acidobacterium, the α-proteobacteria, the β-proteobacteria ammonia oxidizers, Actinobacteria and methyllotrophs, and the 16S rDNA clone libraries were established. Ten different clones were obtained using the Bacteria primers and eight different clones were obtained using the β-proteobacteria ammonia oxidizer primers. Over 95 % of BOD5 and 90 % of NH3-N were removed from the system. The microbial community analysis showed that the Janthinobacterium sp. An8 and Nitrosospira sp. were the dominant species throughout the AOAO process. Across the whole clone library, six clones showed closely related to Janthinobacterium sp. and these species seemed to be the dominant species with more than 50 % occupancy of the total population. Nitrosospira sp. was the predominant species within the β-proteobacteria and occupied more than 30 % of the total population in the system. These two strains were the novel species specific to the AOAO process for optoelectronic treatment, and they were found strongly related to the system capability of removing aquatic contaminants by inspecting the wastewater concentration variation across the system.

  15. Dominant genetics using a yeast genomic library under the control of a strong inducible promoter.

    PubMed

    Ramer, S W; Elledge, S J; Davis, R W

    1992-12-01

    In Saccharomyces cerevisiae, numerous genes have been identified by selection from high-copy-number libraries based on "multicopy suppression" or other phenotypic consequences of overexpression. Although fruitful, this approach suffers from two major drawbacks. First, high copy number alone may not permit high-level expression of tightly regulated genes. Conversely, other genes expressed in proportion to dosage cannot be identified if their products are toxic at elevated levels. This work reports construction of a genomic DNA expression library for S. cerevisiae that circumvents both limitations by fusing randomly sheared genomic DNA to the strong, inducible yeast GAL1 promoter, which can be regulated by carbon source. The library obtained contains 5 x 10(7) independent recombinants, representing a breakpoint at every base in the yeast genome. This library was used to examine aberrant gene expression in S. cerevisiae. A screen for dominant activators of yeast mating response identified eight genes that activate the pathway in the absence of exogenous mating pheromone, including one previously unidentified gene. One activator was a truncated STE11 gene lacking approximately 1000 base pairs of amino-terminal coding sequence. In two different clones, the same GAL1 promoter-proximal ATG is in-frame with the coding sequence of STE11, suggesting that internal initiation of translation there results in production of a biologically active, truncated STE11 protein. Thus this library allows isolation based on dominant phenotypes of genes that might have been difficult or impossible to isolate from high-copy-number libraries.

  16. Twenty-seven nonoverlapping zinc finger cDNAs from human T cells map to nine different chromosomes with apparent clustering.

    PubMed Central

    Huebner, K; Druck, T; Croce, C M; Thiesen, H J

    1991-01-01

    cDNA clones encoding zinc finger structures were isolated by screening Molt4 and Jurkat cDNA libraries with zinc finger consensus sequences. Candidate clones were partially sequenced to verify the presence of zinc finger-encoding regions; nonoverlapping cDNA clones were chosen on the basis of sequences and genomic hybridization pattern. Zinc finger structure-encoding clones, which were designated by the term "Kox" and a number from 1 to 32 and which were apparently unique (i.e., distinct from each other and distinct from those isolated by other laboratories), were chosen for mapping in the human genome. DNAs from rodent-human somatic cell hybrids retaining defined complements of human chromosomes were analyzed for the presence of each of the Kox genes. Correlation between the presence of specific human chromosome regions and specific Kox genes established the chromosomal locations. Multiple Kox loci were mapped to 7q (Kox 18 and 25 and a locus detected by both Kox 8 cDNA and Kox 27 cDNA), 8q24 5' to the myc locus (Kox 9 and 32), 10cen----q24 (Kox 2, 15, 19, 21, 30, and 31), 12q13-qter (Kox 1 and 20), 17p13 (Kox 11 and 26), and 19q (Kox 5, 6, 10, 22, 24, and 28). Single Kox loci were mapped to 7p22 (Kox 3), 18q12 (Kox 17), 19p (Kox 13), 22q11 between IG lambda and BCR-1 (locus detected by both Kox 8 cDNA and Kox 27 cDNA), and Xp (Kox 14). Several of the Kox loci map to regions in which other zinc finger structure-encoding loci have already been localized, indicating possible zinc finger gene clusters. In addition, Kox genes at 8q24, 17p13, and 22q11--and perhaps other Kox genes--are located near recurrent chromosomal translocation breakpoints. Others, such as those on 7p and 7q, may be near regions specifically active in T cells. Images Figure 4 Figure 5 Figure 2 Figure 3 PMID:2014798

  17. Dipeptidyl peptidase III is a zinc metallo-exopeptidase. Molecular cloning and expression.

    PubMed Central

    Fukasawa, K; Fukasawa, K M; Kanai, M; Fujii, S; Hirose, J; Harada, M

    1998-01-01

    We have purified dipeptidyl peptidase III (EC 3.4.14.4) from human placenta. It had a pH optimum of 8.8 and readily hydrolysed Arg-Arg-beta-naphthylamide. Monoamino acid-, Gly-Phe-, Gly-Pro- and Bz-Arg-beta-naphthylamides were not hydrolysed at all. The enzyme was inhibited by p-chloromercuriphenylsulphonic acid, metal chelators and 3,4-dichloroisocoumarin and contained 1 mol of zinc per mol of enzyme. The zinc dissociation constant was 250 fM at pH 7. 4 as determined by the zinc binding study. We isolated, by immunological screening of a Uni-ZAP XR cDNA library constructed from rat liver mRNA species, a cDNA clone with 2633 bp encoding the rat enzyme. The longest open reading frame encodes a 827-residue protein with a theoretical molecular mass of 92790 Da. Escherichia coli SOLR cells were infected with the pBluescript phagemid containing the cloned cDNA and established the overexpression of a protein that hydrolysed Arg-Arg-beta-naphthylamide. The recombinant protein was purified and the amino acid sequence of the protein was confirmed. We presumed that the putative zinc-binding domain involved in catalysis was present in the recombinant enzyme. It was a novel zinc-binding motif in that one amino acid residue was inserted into the conserved HEXXH motif characteristic of the metalloproteinases. PMID:9425109

  18. Molecular cloning of a gene encoding translation initiation factor (TIF) from Candida albicans.

    PubMed

    Mirbod, F; Nakashima, S; Kitajima, Y; Ghannoum, M A; Cannon, R D; Nozawa, Y

    1996-01-01

    The differential display technique was applied to compare mRNAs from two clinical isolates of Candida albicans with different virulence; high (potent strain, 16240) and low (weak strain, 18084) extracellular phospholipase activities. Complementary DNA fragments corresponding to several apparently differentially expressed mRNAs were recovered and sequenced. A complementary DNA fragment seen distinctly in the potent phospholipase producing strain was highly homologous to the yeast translation initiation factor (TIF). The selected DNA fragment was then used as a probe to isolate its corresponding complementary DNA clone from a library of C. albicans genomic DNA. The sequence of isolated gene revealed an open reading frame of 1194 nucleotides with the potential to encode a protein of 397 amino acids with a predicted molecular weight of 43 kDa. Over its entire length, the amino acid sequence showed strong homology (78-89%) to Saccharomyces cerevisiae TIF and (63-80%) to mouse eIF-4A proteins. Therefore, our C. albicans gene was identified to be TIF (Ca TIF). Northern blot analysis in the two strains of C. albicans revealed that Ca TIF expression is 1.5-fold higher in the potent phospholipase producing strain. The restriction endonuclease digestion of genomic DNA from this potent strain revealed at least two hybridized bands in Southern blot analysis, suggesting two or more closely related sequences in the C. albicans genome.

  19. Primary structure of rat cardiac beta-adrenergic and muscarinic cholinergic receptors obtained by automated DNA sequence analysis: further evidence for a multigene family.

    PubMed

    Gocayne, J; Robinson, D A; FitzGerald, M G; Chung, F Z; Kerlavage, A R; Lentes, K U; Lai, J; Wang, C D; Fraser, C M; Venter, J C

    1987-12-01

    Two cDNA clones, lambda RHM-MF and lambda RHB-DAR, encoding the muscarinic cholinergic receptor and the beta-adrenergic receptor, respectively, have been isolated from a rat heart cDNA library. The cDNA clones were characterized by restriction mapping and automated DNA sequence analysis utilizing fluorescent dye primers. The rat heart muscarinic receptor consists of 466 amino acids and has a calculated molecular weight of 51,543. The rat heart beta-adrenergic receptor consists of 418 amino acids and has a calculated molecular weight of 46,890. The two cardiac receptors have substantial amino acid homology (27.2% identity, 50.6% with favored substitutions). The rat cardiac beta receptor has 88.0% homology (92.5% with favored substitutions) with the human brain beta receptor and the rat cardiac muscarinic receptor has 94.6% homology (97.6% with favored substitutions) with the porcine cardiac muscarinic receptor. The muscarinic cholinergic and beta-adrenergic receptors appear to be as conserved as hemoglobin and cytochrome c but less conserved than histones and are clearly members of a multigene family. These data support our hypothesis, based upon biochemical and immunological evidence, that suggests considerable structural homology and evolutionary conservation between adrenergic and muscarinic cholinergic receptors. To our knowledge, this is the first report utilizing automated DNA sequence analysis to determine the structure of a gene.

  20. Targeted isolation, sequence assembly and characterization of two white spruce (Picea glauca) BAC clones for terpenoid synthase and cytochrome P450 genes involved in conifer defence reveal insights into a conifer genome

    PubMed Central

    2009-01-01

    Background Conifers are a large group of gymnosperm trees which are separated from the angiosperms by more than 300 million years of independent evolution. Conifer genomes are extremely large and contain considerable amounts of repetitive DNA. Currently, conifer sequence resources exist predominantly as expressed sequence tags (ESTs) and full-length (FL)cDNAs. There is no genome sequence available for a conifer or any other gymnosperm. Conifer defence-related genes often group into large families with closely related members. The goals of this study are to assess the feasibility of targeted isolation and sequence assembly of conifer BAC clones containing specific genes from two large gene families, and to characterize large segments of genomic DNA sequence for the first time from a conifer. Results We used a PCR-based approach to identify BAC clones for two target genes, a terpene synthase (3-carene synthase; 3CAR) and a cytochrome P450 (CYP720B4) from a non-arrayed genomic BAC library of white spruce (Picea glauca). Shotgun genomic fragments isolated from the BAC clones were sequenced to a depth of 15.6- and 16.0-fold coverage, respectively. Assembly and manual curation yielded sequence scaffolds of 172 kbp (3CAR) and 94 kbp (CYP720B4) long. Inspection of the genomic sequences revealed the intron-exon structures, the putative promoter regions and putative cis-regulatory elements of these genes. Sequences related to transposable elements (TEs), high complexity repeats and simple repeats were prevalent and comprised approximately 40% of the sequenced genomic DNA. An in silico simulation of the effect of sequencing depth on the quality of the sequence assembly provides direction for future efforts of conifer genome sequencing. Conclusion We report the first targeted cloning, sequencing, assembly, and annotation of large segments of genomic DNA from a conifer. We demonstrate that genomic BAC clones for individual members of multi-member gene families can be isolated in a gene-specific fashion. The results of the present work provide important new information about the structure and content of conifer genomic DNA that will guide future efforts to sequence and assemble conifer genomes. PMID:19656416

  1. Targeted isolation, sequence assembly and characterization of two white spruce (Picea glauca) BAC clones for terpenoid synthase and cytochrome P450 genes involved in conifer defence reveal insights into a conifer genome.

    PubMed

    Hamberger, Björn; Hall, Dawn; Yuen, Mack; Oddy, Claire; Hamberger, Britta; Keeling, Christopher I; Ritland, Carol; Ritland, Kermit; Bohlmann, Jörg

    2009-08-06

    Conifers are a large group of gymnosperm trees which are separated from the angiosperms by more than 300 million years of independent evolution. Conifer genomes are extremely large and contain considerable amounts of repetitive DNA. Currently, conifer sequence resources exist predominantly as expressed sequence tags (ESTs) and full-length (FL)cDNAs. There is no genome sequence available for a conifer or any other gymnosperm. Conifer defence-related genes often group into large families with closely related members. The goals of this study are to assess the feasibility of targeted isolation and sequence assembly of conifer BAC clones containing specific genes from two large gene families, and to characterize large segments of genomic DNA sequence for the first time from a conifer. We used a PCR-based approach to identify BAC clones for two target genes, a terpene synthase (3-carene synthase; 3CAR) and a cytochrome P450 (CYP720B4) from a non-arrayed genomic BAC library of white spruce (Picea glauca). Shotgun genomic fragments isolated from the BAC clones were sequenced to a depth of 15.6- and 16.0-fold coverage, respectively. Assembly and manual curation yielded sequence scaffolds of 172 kbp (3CAR) and 94 kbp (CYP720B4) long. Inspection of the genomic sequences revealed the intron-exon structures, the putative promoter regions and putative cis-regulatory elements of these genes. Sequences related to transposable elements (TEs), high complexity repeats and simple repeats were prevalent and comprised approximately 40% of the sequenced genomic DNA. An in silico simulation of the effect of sequencing depth on the quality of the sequence assembly provides direction for future efforts of conifer genome sequencing. We report the first targeted cloning, sequencing, assembly, and annotation of large segments of genomic DNA from a conifer. We demonstrate that genomic BAC clones for individual members of multi-member gene families can be isolated in a gene-specific fashion. The results of the present work provide important new information about the structure and content of conifer genomic DNA that will guide future efforts to sequence and assemble conifer genomes.

  2. Properties of promoters cloned randomly from the Saccharomyces cerevisiae genome.

    PubMed Central

    Santangelo, G M; Tornow, J; McLaughlin, C S; Moldave, K

    1988-01-01

    Promoters were isolated at random from the genome of Saccharomyces cerevisiae by using a plasmid that contains a divergently arrayed pair of promoterless reporter genes. A comprehensive library was constructed by inserting random (DNase I-generated) fragments into the intergenic region upstream from the reporter genes. Simple in vivo assays for either reporter gene product (alcohol dehydrogenase or beta-galactosidase) allowed the rapid identification of promoters from among these random fragments. Poly(dA-dT) homopolymer tracts were present in three of five randomly cloned promoters. With two exceptions, each RNA start site detected was 40 to 100 base pairs downstream from a TATA element. All of the randomly cloned promoters were capable of activating reporter gene transcription bidirectionally. Interestingly, one of the promoter fragments originated in a region of the S. cerevisiae rDNA spacer; regulated divergent transcription (presumably by RNA polymerase II) initiated in the same region. Images PMID:2847031

  3. Cloning and heterologous expression of genes from the kinamycin biosynthetic pathway of Streptomyces murayamaensis.

    PubMed

    Gould, S J; Hong, S T; Carney, J R

    1998-01-01

    The genes for most of the biosynthesis of the kinamycin antibiotics have been cloned and heterologously expressed. Genomic DNA of Streptomyces murayamaensis was partially digested with MboI and a library of approximately 40 kb fragments in E. coli XL1-BlueMR was prepared using the cosmid vector pOJ446. Hybridization with the actI probe from the actinorhodin polyketide synthase genes identified two clusters of polyketide genes. After transferal of these clusters to S. lividans ZX7, expression of one cluster was established by HPLC with photodiode array detection. Peaks were identified from the kin cluster for dehydrorabelomycin, kinobscurinone, and stealthin C, which are known intermediates in kinamycin biosynthesis. Two shunt metabolites, kinafluorenone and seongomycin were also identified. The structure of the latter was determined from a quantity obtained from large-scale fermentation of one of the clones.

  4. Detection of Cystic Fibrosis Serological Biomarkers Using a T7 Phage Display Library.

    PubMed

    Talwar, Harvinder; Hanoudi, Samer Najeeb; Geamanu, Andreea; Kissner, Dana; Draghici, Sorin; Samavati, Lobelia

    2017-12-18

    Cystic fibrosis (CF) is an autosomal recessive disorder affecting the cystic fibrosis transmembrane conductance regulator (CFTR). CF is characterized by repeated lung infections leading to respiratory failure. Using a high-throughput method, we developed a T7 phage display cDNA library derived from mRNA isolated from bronchoalveolar lavage (BAL) cells and leukocytes of sarcoidosis patients. This library was biopanned to obtain 1070 potential antigens. A microarray platform was constructed and immunoscreened with sera from healthy (n = 49), lung cancer (LC) (n = 31) and CF (n = 31) subjects. We built 1,000 naïve Bayes models on the training sets. We selected the top 20 frequently significant clones ranked with student t-test discriminating CF antigens from healthy controls and LC at a False Discovery Rate (FDR) < 0.01. The performances of the models were validated on an independent validation set. The mean of the area under the receiver operating characteristic (ROC) curve for the classifiers was 0.973 with a sensitivity of 0.999 and specificity of 0.959. Finally, we identified CF specific clones that correlate highly with sweat chloride test, BMI, and FEV1% predicted values. For the first time, we show that CF specific serological biomarkers can be identified through immunocreenings of a T7 phage display library with high accuracy, which may have utility in development of molecular therapy.

  5. Isolation and characterization of a cDNA encoding a membrane bound acyl-CoA binding protein from Agave americana L. epidermis.

    PubMed

    Guerrero, Consuelo; Martín-Rufián, M; Reina, José J; Heredia, Antonio

    2006-01-01

    A cDNA encoding an acyl-CoA binding protein (ACBP) homologue has been cloned from a cDNA library made from mRNA isolated from epidermis of young leaves of Agave americana L. The derived amino acid sequence reveals a protein corresponding to the membrane-associated form of ACBPs only previously described in Arabidopsis and rice. Northern blot analysis showed that the A. americana ACBP gene is mainly expressed in the epidermis of mature zone of the leaves. The epidermis of A. americana leaves have a well developed cuticle with the highest amounts of the cuticular components waxes, cutin and cutan suggesting a potential role of the protein in cuticle formation.

  6. Isolation of epidermal cells and cDNA cloning of TNF decoy receptor 3 of conger eel, Conger myriaster.

    PubMed

    Tsutsui, Shigeyuki; Yoshino, Yuko; Matsui, Saho; Nakamura, Osamu; Muramoto, Koji; Watanabe, Tasuku

    2008-03-01

    By using EDTA and a trypsin solution, we established a method for isolating the epidermal cells of the conger eel, Conger myriaster. We then identified TNF decoy receptor (DcR) cDNA in the species from a suppression subtractive hybridization library prepared from the epidermal cells stimulated with LPS. The full-length cDNA of conger TNF DcR (conDcR) consisted of 1479 base pairs, and the protein comprised 286 amino acid residues. Phylogenetic analysis indicated that conDcR was clustered into a DcR3 branch. ConDcR is likely to act as an important immune-regulating factor in inhibiting the apoptosis-inducing effect of TNF in the skin of conger eel.

  7. Rapid and efficient method to extract metagenomic DNA from estuarine sediments.

    PubMed

    Shamim, Kashif; Sharma, Jaya; Dubey, Santosh Kumar

    2017-07-01

    Metagenomic DNA from sediments of selective estuaries of Goa, India was extracted using a simple, fast, efficient and environment friendly method. The recovery of pure metagenomic DNA from our method was significantly high as compared to other well-known methods since the concentration of recovered metagenomic DNA ranged from 1185.1 to 4579.7 µg/g of sediment. The purity of metagenomic DNA was also considerably high as the ratio of absorbance at 260 and 280 nm ranged from 1.88 to 1.94. Therefore, the recovered metagenomic DNA was directly used to perform various molecular biology experiments viz. restriction digestion, PCR amplification, cloning and metagenomic library construction. This clearly proved that our protocol for metagenomic DNA extraction using silica gel efficiently removed the contaminants and prevented shearing of the metagenomic DNA. Thus, this modified method can be used to recover pure metagenomic DNA from various estuarine sediments in a rapid, efficient and eco-friendly manner.

  8. Construction of C35 gene bait recombinants and T47D cell cDNA library.

    PubMed

    Yin, Kun; Xu, Chao; Zhao, Gui-Hua; Liu, Ye; Xiao, Ting; Zhu, Song; Yan, Ge

    2017-11-20

    C35 is a novel tumor biomarker associated with metastasis progression. To investigate the interaction factors of C35 in its high expressed breast cancer cell lines, we constructed bait recombinant plasmids of C35 gene and T47D cell cDNA library for yeast two-hybrid screening. Full length C35 sequences were subcloned using RT-PCR from cDNA template extracted from T47D cells. Based on functional domain analysis, the full-length C35 1-348bp was also truncated into two fragments C351-153bp and C35154-348bp to avoid auto-activation. The three kinds of C35 genes were successfully amplified and inserted into pGBKT7 to construct bait recombinant plasmids pGBKT7-C351-348bp, pGBKT7-C351-153bp and pGBKT7-C35154-348bp, then transformed into Y187 yeast cells by the lithium acetate method. Auto-activation and toxicity of C35 baits were detected using nutritional deficient medium and X-α-Gal assays. The T47D cell ds cDNA was generated by SMART TM technology and the library was constructed using in vivo recombination-mediated cloning in the AH109 yeast strain using a pGADT7-Rec plasmid. The transformed Y187/pGBKT7-C351-348bp line was intensively inhibited while the truncated Y187/pGBKT7-C35 lines had no auto-activation and toxicity in yeast cells. The titer of established cDNA library was 2 × 10 7 pfu/mL with high transformation efficiency of 1.4 × 10 6 , and the insert size of ds cDNA was distributed homogeneously between 0.5-2.0 kb. Our research generated a T47D cell cDNA library with high titer, and the constructed two C35 "baits" contained a respective functional immunoreceptor tyrosine based activation motif (ITAM) and the conserved last four amino acids Cys-Ile-Leu-Val (CILV) motif, and therefore laid a foundation for screening the C35 interaction factors in a BC cell line.

  9. Generation of a mouse scFv library specific for porcine aminopeptidase N using the T7 phage display system.

    PubMed

    Sun, Dongbo; Shi, Hongyan; Chen, Jianfei; Shi, Da; Zhu, Qinghe; Zhang, Hong; Liu, Shengwang; Wang, Yunfeng; Qiu, Huaji; Feng, Li

    2012-06-01

    Porcine aminopeptidase N (pAPN) is a common cellular receptor for swine transmissible gastroenteritis virus (TGEV) and porcine epidemic diarrhea virus (PEDV). To investigate single-chain fragment variable (scFv) repertoire against pAPN, the genes encoding the immunoglobulin light chain variable region (VL) and heavy chain variable region (VH) were amplified by reverse transcript polymerase chain reaction (RT-PCR) using a series of degenerate primers from the spleen of BABL/c mice immunized with native pAPN. The VL and VH amplicons were combined randomly by a 12 amino acid flexible linker by splicing by overlap extension PCR (SOE-PCR), which produced the scFv gene repertoire. After ligation of the scFv gene repertoire into the T7Select10-3b vector, a mouse scFv phage library specific for pAPN was produced through in vitro packaging. The primary scFv library against pAPN contained 2.0×10(7) recombinant phage clones, and the titer of the amplified library was 3.6×10(9)pfu/mL. BstNI restriction analysis and DNA sequencing revealed that 28 phage clones from the primary pAPN scFv library showed excellent diversity. The effectiveness of the scFv library against pAPN was verified further by phage ELISA using the recombinant protein of the pAPN C subunit as coating antigen. The construction and evaluation of a murine scFv library against the common receptor pAPN of porcine coronaviruses TGEV and PEDV using the T7 phage display system are described. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Clone DB: an integrated NCBI resource for clone-associated data

    PubMed Central

    Schneider, Valerie A.; Chen, Hsiu-Chuan; Clausen, Cliff; Meric, Peter A.; Zhou, Zhigang; Bouk, Nathan; Husain, Nora; Maglott, Donna R.; Church, Deanna M.

    2013-01-01

    The National Center for Biotechnology Information (NCBI) Clone DB (http://www.ncbi.nlm.nih.gov/clone/) is an integrated resource providing information about and facilitating access to clones, which serve as valuable research reagents in many fields, including genome sequencing and variation analysis. Clone DB represents an expansion and replacement of the former NCBI Clone Registry and has records for genomic and cell-based libraries and clones representing more than 100 different eukaryotic taxa. Records provide details of library construction, associated sequences, map positions and information about resource distribution. Clone DB is indexed in the NCBI Entrez system and can be queried by fields that include organism, clone name, gene name and sequence identifier. Whenever possible, genomic clones are mapped to reference assemblies and their map positions provided in clone records. Clones mapping to specific genomic regions can also be searched for using the NCBI Clone Finder tool, which accepts queries based on sequence coordinates or features such as gene or transcript names. Clone DB makes reports of library, clone and placement data on its FTP site available for download. With Clone DB, users now have available to them a centralized resource that provides them with the tools they will need to make use of these important research reagents. PMID:23193260

  11. Diagnostic value of protein chips constructed by lung-cancer-associated markers selected by the T7 phage display library.

    PubMed

    Li, Hong-Mei; Guo, Kang; Yu, Zhuang; Feng, Rui; Xu, Ping

    2015-07-01

    Traditional diagnostic technology with tumor biomarkers is inefficient, expensive and requires a large number of serum samples. The purpose of this study was to construct human lung cancer protein chips with new lung cancer biomarkers screened by the T7-phage display library, and improve the early diagnosis rate of lung cancer. A T7-phage cDNA display library was constructed of fresh samples from 30 lung cancer patients. With biopanning and high-throughput screening, we gained the immunogenic phage clones from the cDNA library. The insert of selected phage was blasted at GeneBank for alignment to find the exact or the most similar known genes. Protein chips were then constructed and used to assay their expression level in lung cancer serum from 217 cases of lung cancer groups:80 cases of benign lung disease and 220 healthy controls. After four rounds of Biopanning and two rounds of enzyme-linked immunosorbent assay, 12 phage monoclonal samples were selected from 2880 phage monoclonal samples. After blasting at GeneBank, six similar genes were used to construct diagnostic protein chips. The protein chips were then used to assay expression level in lung cancer serum. The expression level of six genes in lung cancer groups was significantly higher than those in the other two groups (P < 0.05). In this study, we successfully constructed diagnostic protein chips with biomarkers selected from the lung cancer T7-phage cDNA library, which can be used for the early screening of lung cancer patients.

  12. Expressed sequence tag analysis of guinea pig (Cavia porcellus) eye tissues for NEIBank

    PubMed Central

    Simpanya, Mukoma F.; Wistow, Graeme; Gao, James; David, Larry L.; Giblin, Frank J.

    2008-01-01

    Purpose To characterize gene expression patterns in guinea pig ocular tissues and identify orthologs of human genes from NEIBank expressed sequence tags. Methods RNA was extracted from dissected eye tissues of 2.5-month-old guinea pigs to make three unamplified and unnormalized cDNA libraries in the pCMVSport-6 vector for the lens, retina, and eye minus lens and retina. Over 4,000 clones were sequenced from each library and were analyzed using GRIST for clustering and gene identification. Lens crystallin EST data were validated using two-dimensional electrophoresis (2-DE), matrix assisted laser desorption (MALDI), and electrospray ionization mass spectrometry (ESIMS). Results Combined data from the three libraries generated a total of 6,694 distinctive gene clusters, with each library having between 1,000 and 3,000 clusters. Approximately 60% of the total gene clusters were novel cDNA sequences and had significant homologies to other mammalian sequences in GenBank. Complete cDNA sequences were obtained for many guinea pig lens proteins, including αA/αAinsert-, γN-, and γS-crystallins, lengsin and GRIFIN. The ratio of αA- to αB-crystallin on 2-DE gels was 8: 1 in the lens nucleus and 6.5: 1 in the cortex. Analysis of ESTs, genome sequence, and proteins (by MALDI), did not reveal any evidence for the presence of γD-, γE-, and γF-crystallin in the guinea pig. Predicted masses of many guinea pig lens crystallins were confirmed by ESIMS analysis. For the retina, orthologs of human phototransduction genes were found, such as Rhodopsin, S-antigen (Sag, Arrestin), and Transducin. The guinea-pig ortholog of NRL, a key rod photoreceptor-specific transcription factor, was also represented in EST data. In the ‘rest-of-eye’ library, the most abundant transcripts included decorin and keratin 12, representative of the cornea. Conclusions Genomic analysis of guinea pig eye tissues provides sequence-verified clones for future studies. Guinea pig orthologs of many human eye specific genes were identified. Guinea pig gene structures were similar to their human and rodent gene counterparts. Surprisingly, no orthologs of γD-, γE-, and γF-crystallin were found in EST, proteomic, or the current guinea pig genome data. PMID:19104676

  13. [Cloning and characterization of a novel rat gene RSD-7 differentially expressed in testis].

    PubMed

    Zhang, Xiao-dong; Gou, Da-wei; Miao, Shi-ying; Zhang, Jian-chao; Zong, Shu-dong; Wang, Lin-fang

    2003-06-01

    To isolate and identify the differentially expressed genes in spermatogenesis for the understanding molecular mechanism of spermatogenesis. Screening of the cDNA library, Northern blot, expression and purification in E. coli with GST expression system, immunocytochemical staining of testis sections were used. (1) A cDNA fragment designated as RSD-7 was isolated from rat testis cDNA library. It was 1,238 bp in length, coding a protein of 232 amino acids with the GenBank accession number AF315467. The encoding protein of RSD-7 cDNA had a Ubiquitin-like domain. (2) Northern blot indicated that RSD-7 was uniquely expressed in rat testis, and in the testis RSD-7 emerged on the 30th postnatal day and expressed until 120th postnatal day. (3) Expression and purification of RSD-7 protein in E. coli with GST expression system and were used to obtain anti-RSD-7 antibody. (4) Immunolocalization of RSD-7 in rat testis revealed that it is expressed only in Sertoli cells. Transcription pattern of RSD-7 and localization of RSD-7 protein in testis have been made, which established the base for the functional study of RSD-7.

  14. Molecular analysis of microbial community in a groundwater sample polluted by landfill leachate and seawater*

    PubMed Central

    Tian, Yang-jie; Yang, Hong; Wu, Xiu-juan; Li, Dao-tang

    2005-01-01

    Seashore landfill aquifers are environments of special physicochemical conditions (high organic load and high salinity), and microbes in leachate-polluted aquifers play a significant role for intrinsic bioremediation. In order to characterize microbial diversity and look for clues on the relationship between microbial community structure and hydrochemistry, a culture-independent examination of a typical groundwater sample obtained from a seashore landfill was conducted by sequence analysis of 16S rDNA clone library. Two sets of universal 16S rDNA primers were used to amplify DNA extracted from the groundwater so that problems arising from primer efficiency and specificity could be reduced. Of 74 clones randomly selected from the libraries, 30 contained unique sequences whose analysis showed that the majority of them belonged to bacteria (95.9%), with Proteobacteria (63.5%) being the dominant division. One archaeal sequence and one eukaryotic sequence were found as well. Bacterial sequences belonging to the following phylogenic groups were identified: Bacteroidetes (20.3%), β, γ, δ and ε-subdivisions of Proteobacteria (47.3%, 9.5%, 5.4% and 1.3%, respectively), Firmicutes (1.4%), Actinobacteria (2.7%), Cyanobacteria (2.7%). The percentages of Proteobacteria and Bacteroides in seawater were greater than those in the groundwater from a non-seashore landfill, indicating a possible influence of seawater. Quite a few sequences had close relatives in marine or hypersaline environments. Many sequences showed affiliations with microbes involved in anaerobic fermentation. The remarkable abundance of sequences related to (per)chlorate-reducing bacteria (ClRB) in the groundwater was significant and worthy of further study. PMID:15682499

  15. Temporal and Spatial Expression of a Polygalacturonase during Leaf and Flower Abscission in Oilseed Rape and Arabidopsis1

    PubMed Central

    González-Carranza, Zinnia Haydé; Whitelaw, Catherine Ann; Swarup, Ranjan; Roberts, Jeremy Alan

    2002-01-01

    During leaf abscission in oilseed rape (Brassica napus), cell wall degradation is brought about by the action of several hydrolytic enzymes. One of these is thought to be polygalacturonase (PG). Degenerate primers were used to isolate a PG cDNA fragment by reverse transcriptase-polymerase chain reaction from RNA extracted from ethylene-promoted leaf abscission zones (AZs), and in turn a full-length clone (CAW471) from an oilseed rape AZ cDNA library. The highest homology of this cDNA (82%) was to an Arabidopsis sequence that was predicted to encode a PG protein. Analysis of expression revealed that CAW471 mRNA accumulated in the AZ of leaves and reached a peak 24 h after ethylene treatment. Ethylene-promoted leaf abscission in oilseed rape was not apparent until 42 h after exposure to the gas, reaching 50% at 48 h and 100% by 56 h. In floral organ abscission, expression of CAW471 correlated with cell separation. Genomic libraries from oilseed rape and Arabidopsis were screened with CAW471 and the respective genomic clones PGAZBRAN and PGAZAT isolated. Characterization of these PG genes revealed that they had substantial homology within both the coding regions and in the 5′-upstream sequences. Fusion of a 1,476-bp 5′-upstream sequence of PGAZAT to β-glucuronidase or green fluorescent protein and transformation of Arabidopsis revealed that this fragment was sufficient to drive expression of these reporter genes in the AZs at the base of the anther filaments, petals, and sepals. PMID:11842157

  16. An Aspergillus oryzae acetyl xylan esterase: molecular cloning and characteristics of recombinant enzyme expressed in Pichia pastoris.

    PubMed

    Koseki, Takuya; Miwa, Yozo; Akao, Takeshi; Akita, Osamu; Hashizume, Katsumi

    2006-02-10

    We screened 20,000 clones of an expressed sequence tag (EST) library from Aspergillus oryzae (http://www.nrib.go.jp/ken/EST/db/index.html) and obtained one cDNA clone encoding a protein with similarity to fungal acetyl xylan esterase. We also cloned the corresponding gene, designated as Aoaxe, from the genomic DNA. The deduced amino acid sequence consisted of a putative signal peptide of 31-amino acids and a mature protein of 276-amino acids. We engineered Aoaxe for heterologous expression in P. pastoris. Recombinant AoAXE (rAoAXE) was secreted by the aid of fused alpha-factor secretion signal peptide and accumulated as an active enzyme in the culture medium to a final level of 190 mg/l after 5 days. Purified rAoAXEA before and after treatment with endoglycosidase H migrated by SDS-PAGE with a molecular mass of 31 and 30 kDa, respectively. Purified rAoAXE displayed the greatest hydrolytic activity toward alpha-naphthylacetate (C2), lower activity toward alpha-naphthylpropionate (C3) and no detectable activity toward acyl-chain substrates containing four or more carbon atoms. The recombinant enzyme catalyzed the release of acetic acid from birchwood xylan. No activity was detectable using methyl esters of ferulic, caffeic or sinapic acids. rAoAXE was thermolabile in comparison to other AXEs from Aspergillus.

  17. Sequencing and analysis of 10967 full-length cDNA clones from Xenopus laevis and Xenopus tropicalis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morin, R D; Chang, E; Petrescu, A

    2005-10-31

    Sequencing of full-insert clones from full-length cDNA libraries from both Xenopus laevis and Xenopus tropicalis has been ongoing as part of the Xenopus Gene Collection initiative. Here we present an analysis of 10967 clones (8049 from X. laevis and 2918 from X. tropicalis). The clone set contains 2013 orthologs between X. laevis and X. tropicalis as well as 1795 paralog pairs within X. laevis. 1199 are in-paralogs, believed to have resulted from an allotetraploidization event approximately 30 million years ago, and the remaining 546 are likely out-paralogs that have resulted from more ancient gene duplications, prior to the divergence betweenmore » the two species. We do not detect any evidence for positive selection by the Yang and Nielsen maximum likelihood method of approximating d{sub N}/d{sub S}. However, d{sub N}/d{sub S} for X. laevis in-paralogs is elevated relative to X. tropicalis orthologs. This difference is highly significant, and indicates an overall relaxation of selective pressures on duplicated gene pairs. Within both groups of paralogs, we found evidence of subfunctionalization, manifested as differential expression of paralogous genes among tissues, as measured by EST information from public resources. We have observed, as expected, a higher instance of subfunctionalization in out-paralogs relative to in-paralogs.« less

  18. Exploring the loblolly pine (Pinus taeda L.) genome by BAC sequencing and Cot analysis.

    PubMed

    Perera, Dinum; Magbanua, Zenaida V; Thummasuwan, Supaphan; Mukherjee, Dipaloke; Arick, Mark; Chouvarine, Philippe; Nairn, Campbell J; Schmutz, Jeremy; Grimwood, Jane; Dean, Jeffrey F D; Peterson, Daniel G

    2018-07-15

    Loblolly pine (LP; Pinus taeda L.) is an economically and ecologically important tree in the southeastern U.S. To advance understanding of the loblolly pine (LP; Pinus taeda L.) genome, we sequenced and analyzed 100 BAC clones and performed a Cot analysis. The Cot analysis indicates that the genome is composed of 57, 24, and 10% highly-repetitive, moderately-repetitive, and single/low-copy sequences, respectively (the remaining 9% of the genome is a combination of fold back and damaged DNA). Although single/low-copy DNA only accounts for 10% of the LP genome, the amount of single/low-copy DNA in LP is still 14 times the size of the Arabidopsis genome. Since gene numbers in LP are similar to those in Arabidopsis, much of the single/low-copy DNA of LP would appear to be composed of DNA that is both gene- and repeat-poor. Macroarrays prepared from a LP bacterial artificial chromosome (BAC) library were hybridized with probes designed from cell wall synthesis/wood development cDNAs, and 50 of the "targeted" clones were selected for further analysis. An additional 25 clones were selected because they contained few repeats, while 25 more clones were selected at random. The 100 BAC clones were Sanger sequenced and assembled. Of the targeted BACs, 80% contained all or part of the cDNA used to target them. One targeted BAC was found to contain fungal DNA and was eliminated from further analysis. Combinations of similarity-based and ab initio gene prediction approaches were utilized to identify and characterize potential coding regions in the 99 BACs containing LP DNA. From this analysis, we identified 154 gene models (GMs) representing both putative protein-coding genes and likely pseudogenes. Ten of the GMs (all of which were specifically targeted) had enough support to be classified as intact genes. Interestingly, the 154 GMs had statistically indistinguishable (α = 0.05) distributions in the targeted and random BAC clones (15.18 and 12.61 GM/Mb, respectively), whereas the low-repeat BACs contained significantly fewer GMs (7.08 GM/Mb). However, when GM length was considered, the targeted BACs had a significantly greater percentage of their length in GMs (3.26%) when compared to random (1.63%) and low-repeat (0.62%) BACs. The results of our study provide insight into LP evolution and inform ongoing efforts to produce a reference genome sequence for LP, while characterization of genes involved in cell wall production highlights carbon metabolism pathways that can be leveraged for increasing wood production. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  19. A comprehensive list of cloned human DNA sequences

    PubMed Central

    Schmidtke, Jörg; Cooper, David N.

    1987-01-01

    A list of DNA sequences cloned from the human genome is presented. Intended as a guide to clone availability, this list includes published reports of cDNA, genomic and synthetic clones comprising gene and pseudogene sequences, uncharacterised DNA segments and repetitive DNA elements. PMID:3575113

  20. A comprehensive list of cloned human DNA sequences

    PubMed Central

    Schmidtke, Jörg; Cooper, David N.

    1990-01-01

    A list of DNA sequences cloned from the human genome is presented. Intended as a guide to clone availability, this list includes published reports of cDNA, genomic and synthetic clones comprising gene and pseudogene sequences, uncharacterised DNA segments and repetitive DNA elements. PMID:2333227

Top