Science.gov

Sample records for dna complexes probed

  1. Whole chromosomal DNA probes for rapid identification of Mycobacterium tuberculosis and Mycobacterium avium complex.

    PubMed Central

    Roberts, M C; McMillan, C; Coyle, M B

    1987-01-01

    Whole chromosomal DNA probes were used to identify clinical isolates of Mycobacterium tuberculosis, Mycobacterium avium complex, and Mycobacterium gordonae. The probe for M. tuberculosis was prepared from Mycobacterium bovis BCG, which has been shown to be closely related to M. tuberculosis. A probe for the M. avium complex was prepared from three strains representing each of the three DNA homology groups in the M. avium complex. The probes were used in dot blot assays to identify clinical isolates of mycobacteria. The dot blot test correctly identified 57 of the 61 (93%) cultures grown on solid media, and 100% of antibiotic-treated broth-grown cells were correctly identified. Identification by dot blot required a maximum of 48 h. When the probes were tested against 63 positive BACTEC (Johnston Laboratories, Inc., Towson, Md.) cultures of clinical specimens, 59% were correctly identified. However, of the 14 BACTEC cultures that had been treated with antibiotics before being lysed, 13 (93%) were correctly identified. PMID:3112180

  2. Repeat sequences from complex ds DNA viruses can be used as minisatellite probes for DNA fingerprinting.

    PubMed

    Crawford, A M; Buchanan, F C; Fraser, K M; Robinson, A J; Hill, D F

    1991-01-01

    In a search for new fingerprinting probes for use with sheep, repeat sequences derived from five poxviruses, an iridovirus and a baculovirus were screened against DNA from sheep pedigrees. Probes constructed from portions of the parapox viruses, orf virus and papular stomatitis virus and the baculovirus from the alfalfa looper, Autographa californica, nuclear polyhedrosis virus all gave fingerprint patterns. Probes from three other poxviruses and an iridovirus did not give useful banding patterns.

  3. Determination for Enterobacter cloacae based on a europium ternary complex labeled DNA probe

    NASA Astrophysics Data System (ADS)

    He, Hui; Niu, Cheng-Gang; Zeng, Guang-Ming; Ruan, Min; Qin, Pin-Zhu; Liu, Jing

    2011-11-01

    The fast detection and accurate diagnosis of the prevalent pathogenic bacteria is very important for the treatment of disease. Nowadays, fluorescence techniques are important tools for diagnosis. A two-probe tandem DNA hybridization assay was designed for the detection of Enterobacter cloacae based on time-resolved fluorescence. In this work, the authors synthesized a novel europium ternary complex Eu(TTA) 3(5-NH 2-phen) with intense luminescence, high fluorescence quantum yield and long lifetime before. We developed a method based on this europium complex for the specific detection of original extracted DNA from E. cloacae. In the hybridization assay format, the reporter probe was labeled with Eu(TTA) 3(5-NH 2-phen) on the 5'-terminus, and the capture probe capture probe was covalent immobilized on the surface of the glutaraldehyde treated glass slides. The original extracted DNA of samples was directly used without any DNA purification and amplification. The detection was conducted by monitoring the fluorescence intensity from the glass surface after DNA hybridization. The detection limit of the DNA was 5 × 10 -10 mol L -1. The results of the present work proved that this new approach was easy to operate with high sensitivity and specificity. It could be conducted as a powerful tool for the detection of pathogen microorganisms in the environment.

  4. A review of scanning probe microscopy investigations of liposome-DNA complexes.

    PubMed

    Mozafari, M R; Reed, C J; Rostron, C; Hasirci, V

    2005-01-01

    Liposome-DNA complexes are one of the most promising systems for the protection and delivery of nucleic acids to combat neoplastic, viral, and genetic diseases. In addition, they are being used as models in the elucidation of many biological phenomena such as viral infection and transduction. In order to understand these phenomena and to realize the mechanism of nucleic acid transfer by liposome-DNA complexes, studies at the molecular level are required. To this end, scanning probe microscopy (SPM) is increasingly being used in the characterization of lipid layers, lipid aggregates, liposomes, and their complexes with nucleic acid molecules. The most attractive attributes of SPM are the potential to image samples with subnanometer spatial resolution under physiological conditions and provide information on their physical and mechanical properties. This review describes the application of scanning tunneling microscopy and atomic force microscopy, the two most commonly applied SPM techniques, in the characterisation of liposome-DNA complexes.

  5. Cloning and Characterization of a Complex DNA Fingerprinting Probe for Candida parapsilosis

    PubMed Central

    Enger, Lee; Joly, Sophie; Pujol, Claude; Simonson, Patricia; Pfaller, Michael; Soll, David R.

    2001-01-01

    Candida parapsilosis accounts for a significant number of nosocomial fungemias, but in fact, no effective and verified genetic fingerprinting method has emerged for assessing the relatedness of independent isolates for epidemiological studies. A complex 15-kb DNA fingerprinting probe, Cp3-13, was therefore isolated from a library of C. parapsilosis genomic DNA fragments. The efficacy of Cp3-13 for DNA fingerprinting was verified by a comparison of its clustering capacity with those of randomly amplified polymorphic DNA analysis and internally transcribed spacer region sequencing, by testing species specificity, and by assessing its capacity to identify microevolutionary changes both in vitro and in vivo. Southern blot hybridization of EcoRI/SalI-digested DNA with Cp3-13 provides a fingerprinting system that (i) identifies the same strain in independent isolates, (ii) discriminates between unrelated isolates, (iii) separates independent isolates into valid groups in a dendrogram, (iv) identifies microevolution in infecting populations, and (v) is amenable to automatic computer-assisted DNA fingerprint analysis. This probe is now available for epidemiological studies. PMID:11158125

  6. The interaction of taurine-salicylaldehyde Schiff base copper(II) complex with DNA and the determination of DNA using the complex as a fluorescence probe

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyan; Wang, Yong; Zhang, Qianru; Yang, Zhousheng

    2010-09-01

    The interaction of taurine-salicylaldehyde Schiff base copper(II) (Cu(TSSB) 22+) complex with DNA was explored by using UV-vis, fluorescence spectrophotometry, and voltammetry. In pH 7.4 Tris-HCl buffer solution, the binding constant of the Cu(TSSB) 22+ complex interaction with DNA was 3.49 × 10 4 L mol -1. Moreover, due to the fluorescence enhancing of Cu(TSSB) 22+ complex in the presence of DNA, a method for determination of DNA with Cu(TSSB) 22+ complex as a fluorescence probe was developed. The fluorescence spectra indicated that the maximum excitation and emission wavelength were 389 nm and 512 nm, respectively. Under optimal conditions, the calibration graphs are linear over the range of 0.03-9.03 μg mL -1 for calf thymus DNA (CT-DNA), 0.10-36 μg mL -1 for yeast DNA and 0.01-10.01 μg mL -1 for salmon DNA (SM-DNA), respectively. The corresponding detection limits are 7 ng mL -1 for CT-DNA, 3 ng mL -1 for yeast DNA and 3 ng mL -1 for SM-DNA. Using this method, DNA in synthetic samples was determined with satisfactory results.

  7. Serum Albumin Binding Inhibits Nuclear Uptake of Luminescent Metal-Complex-Based DNA Imaging Probes.

    PubMed

    Wragg, Ashley; Gill, Martin R; McKenzie, Luke; Glover, Caroline; Mowll, Rachel; Weinstein, Julia A; Su, Xiaodi; Smythe, Carl; Thomas, Jim A

    2015-08-10

    The DNA binding and cellular localization properties of a new luminescent heterobimetallic Ir(III) Ru(II) tetrapyridophenazine complex are reported. Surprisingly, in standard cell media, in which its tetracationic, isostructural Ru(II) Ru(II) analogue is localized in the nucleus, the new tricationic complex is poorly taken up by live cells and demonstrates no nuclear staining. Consequent cell-free studies reveal that the Ir(III) Ru(II) complex binds bovine serum albumin, BSA, in Sudlow's Site I with a similar increase in emission and binding affinity to that observed with DNA. Contrastingly, in serum-free conditions the complex is rapidly internalized by live cells, where it localizes in cell nuclei and functions as a DNA imaging agent. The absence of serum proteins also greatly alters the cytotoxicity of the complex, where high levels of oncosis/necrosis are observed due to this enhanced uptake. This suggests that simply increasing the lipophilicity of a DNA imaging probe to enhance cellular uptake can be counterproductive as, due to increased binding to serum albumin protein, this strategy can actually disrupt nuclear targeting. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. DNA binding studies of hematoxylin-Dy(ш) complex by spectrometry using acridine orange as a probe.

    PubMed

    Xiong, Xiaoli; Huang, Jianhang; Wang, Xingming

    2014-01-01

    The interaction of a hematoxylin(HE)-Dy(Ш) complex with herring sperm DNA(hsDNA) was studied using acridine orange(AO) as a probe by UV-vis absorption, circular dichroism(CD), fluorescence spectroscopy and viscosity measurements. From the results of the probe experiment, we found that the HE-Dy(Ш) complex could compete with AO for intercalating into hsDNA. The binding constants of the HE-Dy(Ш) complex to hsDNA was obtained by the double reciprocal method and indicated that the affinity between hsDNA and the complex is weaker than that between hsDNA and classical intercalators. The thermodynamic parameters(ΔH°, ΔG°, ΔS°) were calculated from the UV-vis absorption data measured at two different temperatures. Further experimental results suggested that there exist groove binding and partial intercalation binding between hsDNA and HE-Dy(Ш) complex.

  9. Dinuclear Ruthenium(II) Complexes as Two-Photon, Time-Resolved Emission Microscopy Probes for Cellular DNA**

    PubMed Central

    Baggaley, Elizabeth; Gill, Martin R; Green, Nicola H; Turton, David; Sazanovich, Igor V; Botchway, Stanley W; Smythe, Carl; Haycock, John W; Weinstein, Julia A; Thomas, Jim A

    2014-01-01

    The first transition-metal complex-based two-photon absorbing luminescence lifetime probes for cellular DNA are presented. This allows cell imaging of DNA free from endogenous fluorophores and potentially facilitates deep tissue imaging. In this initial study, ruthenium(II) luminophores are used as phosphorescent lifetime imaging microscopy (PLIM) probes for nuclear DNA in both live and fixed cells. The DNA-bound probes display characteristic emission lifetimes of more than 160 ns, while shorter-lived cytoplasmic emission is also observed. These timescales are orders of magnitude longer than conventional FLIM, leading to previously unattainable levels of sensitivity, and autofluorescence-free imaging. PMID:24458590

  10. Development and Characterization of Complex DNA Fingerprinting Probes for the Infectious Yeast Candida dubliniensis

    PubMed Central

    Joly, Sophie; Pujol, Claude; Rysz, Michal; Vargas, Kaaren; Soll, David R.

    1999-01-01

    Using a strategy to clone large genomic sequences containing repetitive elements from the infectious yeast Candida dubliniensis, the three unrelated sequences Cd1, Cd24, and Cd25, with respective molecular sizes of 15,500, 10,000, and 16,000 bp, were cloned and analyzed for their efficacy as DNA fingerprinting probes. Each generated a complex Southern blot hybridization pattern with endonuclease-digested genomic DNA. Cd1 generated an extremely variable pattern that contained all of the bands of the pattern generated by the repeat element RPS of Candida albicans. We demonstrated that Cd1 does not contain RPS but does contain a repeat element associated with RPS throughout the C. dubliniensis genome. The Cd1 pattern was the least stable over time both in vitro and in vivo and for that reason proved most effective in assessing microevolution. Cd24, which did not exhibit microevolution in vitro, was highly variable in vivo, suggesting in vivo-dependent microevolution. Cd25 was deemed the best probe for broad epidemiological studies, since it was the most stable over time, was the only truly C. dubliniensis-specific probe of the three, generated the most complex pattern, was distributed throughout all C. dubliniensis chromosomes, and separated a worldwide collection of 57 C. dubliniensis isolates into two distinct groups. The presence of a species-specific repetitive element in Cd25 adds weight to the already substantial evidence that C. dubliniensis represents a bona fide species. PMID:10074523

  11. The Anopheles punctulatus complex: DNA probes for identifying the Australian species using isotopic, chromogenic, and chemiluminescence detection systems

    SciTech Connect

    Cooper, L.; Cooper, R.D.; Burkot, T.R. )

    1991-07-01

    Isotopic and enzyme-labeled species-specific DNA probes were made for the three known members of the Anopheles punctulatus complex of mosquitoes in Australia (Anopheles farauti Nos. 1, 2, and 3). Species-specific probes were selected by screening total genomic libraries made from the DNA of individual species with 32P-labeled DNA of homologous and heterologous mosquito species. The 32P-labeled probes for A. farauti Nos. 1 and 2 can detect less than 0.2 ng of DNA while the 32P-labeled probe for A. farauti No. 3 has a sensitivity of 1.25 ng of DNA. Probes were then enzyme labeled for chromogenic and chemiluminescence detection and compared to isotopic detection using 32P-labeled probes. Sequences of the probe repeat regions are presented. Species identifications can be made from dot blots or squashes of freshly killed mosquitoes or mosquitoes stored frozen, dried, and held at room temperature or fixed in isopropanol or ethanol with isotopic, chromogenic, or chemiluminescence detection systems. The use of nonisotopic detection systems will enable laboratories with minimal facilities to identify important regional vectors.

  12. Probing heterobivalent binding to the endocytic AP-2 adaptor complex by DNA-based spatial screening.

    PubMed

    Diezmann, F; von Kleist, L; Haucke, V; Seitz, O

    2015-08-07

    The double helical DNA scaffold offers a unique set of properties, which are particularly useful for studies of multivalency in biomolecular interactions: (i) multivalent ligand displays can be formed upon nucleic acid hybridization in a self-assembly process, which facilitates spatial screening (ii) valency and spatial arrangement of the ligand display can be precisely controlled and (iii) the flexibility of the ligand display can be adjusted by integrating nick sites and unpaired template regions. Herein we describe the use of DNA-based spatial screening for the characterization of the adaptor complex 2 (AP-2), a central interaction hub within the endocytic protein network in clathrin-mediated endocytosis. AP-2 is comprised of a core domain and two, so-called appendage domains, the α- and the β2-ear, which associate with cytoplasmatic proteins required for the formation or maturation of clathrin/AP-2 coated pits. Each appendage domain has two binding grooves which recognize distinct peptide motives with micromolar affinity. This provides opportunities for enhanced interactions with protein molecules that contain two (or more) different peptide motives. To determine whether a particular, spatial arrangement of binding motifs is required for high affinity binding we probed the distance-affinity relationships by means of DNA-programmed spatial screening with self-assembled peptide-DNA complexes. By using trimolecular and tetramolecular assemblies two different peptides were positioned in 2-22 nucleotide distance. The binding data obtained with both recombinant protein in well-defined buffer systems and native AP-2 in brain extract suggests that the two binding sites of the AP-2 α-appendage can cooperate to provide up to 40-fold enhancement of affinity compared to the monovalent interaction. The distance between the two recognized peptide motives was less important provided that the DNA duplex segments were connected by flexible, single strand segments. By

  13. Ligand-incorporation site in 5-methylcytosine-detection probe modulating the site of osmium complexation with the target DNA.

    PubMed

    Sugizaki, Kaori; Nakamura, Akiko; Yanagisawa, Hiroyuki; Okamoto, Akimitsu

    2012-09-01

    ICON Probes, short DNA strands containing an adenine linked to a bipyridine ligand, formed an interstrand cross-link with 5-methylcytosine located opposite the modified adenine in the presence of an osmium oxidant. The location of a bipyridine-tethered adenine in the probes varied the selectivity of the reactive base. An ICON probe where the modified adenine was located at the probe center showed a 5-methylcytosine-selective osmium complexation, whereas an ICON probe with the modified adenine at the strand end exhibited high reactivity towards thymine as well as 5-methylcytosine. The modulation of reactive bases by the incorporation of a bipyridine-tethered adenine site made facilitates design of ICON probes for the fluorometric detection of 5-methylcytosine.

  14. Focus: DNA probes

    SciTech Connect

    Not Available

    1986-11-01

    Progress in the development of DNA probes for the identification and quantitation of specific genetic sequences in biological samples is reviewed. Current research efforts in the development of DNA probes for the diagnosis of a wide variety of bacterial, viral, and other infectious diseases, such as herpes simplex and cytomegalovirus, and inherited genetic diseases such as cystic fibrosis and sickle cell anemia are discussed. Progress in development of DNA probe assays for cancer diagnosis, detection of Salmonella food poisoning, tissue typing (detection of histocompatibility antigens), mutagen screening, and animal diseases, among other applications is included.

  15. Methods of staining target chromosomal DNA employing high complexity nucleic acid probes

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel; Kallioniemi, Ol'li-Pekka; Kallioniemi, Anne; Sakamoto, Masaru

    2006-10-03

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML), retinoblastoma, ovarian and uterine cancers, and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.

  16. Interaction between tryptophan-Sm(III) complex and DNA with the use of a acridine orange dye fluorophor probe.

    PubMed

    Xiong, Xiao Li; Zhao, Na; Wang, Xing Ming

    2016-02-01

    The interaction of the Trp-Sm(III) complex with herring sperm DNA (hs-DNA) was investigated with the use of acridine orange (AO) dye as a spectral probe for UV-vis spectrophotometry and fluorescence spectroscopy. The results showed that the both the Trp-Sm(III) complex and the AO molecule could intercalate into the double helix of the DNA. The Sm(III)-(Trp)3 complex was stabilized by intercalation into the DNA with binding constants: K(Ө)25°C  = 7.14 × 10(5)  L·mol(-1) and K(Ө) 37°C  = 5.28 × 10(4)  L·mol(-1), and it could displace the AO dye from the AO-DNA complex in a competitive reaction. Computation of the thermodynamic functions demonstrates that Δr Hm (Ө) is the primary driving power of the interaction between the Sm(III)(Trp)3 complex and the DNA. The results from Scatchard and viscometry methods suggested that the interaction mode between the Sm(III)(Trp)3 complex and the hs-DNA is groove binding and weak intercalation binding. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Probing physical properties of a DNA-protein complex using nanofluidic channels.

    PubMed

    Frykholm, Karolin; Alizadehheidari, Mohammadreza; Fritzsche, Joachim; Wigenius, Jens; Modesti, Mauro; Persson, Fredrik; Westerlund, Fredrik

    2014-03-12

    A method to investigate physical properties of a DNA-protein complex in solution is demonstrated. By using tapered nanochannels and lipid passivation the persistence length of a RecA filament formed on double-stranded DNA is determined to 1.15 μm, in agreement with the literature, without attaching protein or DNA to any handles or surfaces. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The ODN probes conjugating the Cu(II) complex enhance the luminol chemiluminescence by assembling on the DNA template.

    PubMed

    Taniguchi, Yosuke; Nitta, Akiko; Park, Sun Min; Kohara, Akiko; Uzu, Takahiro; Sasaki, Shigeki

    2010-12-15

    Potent peroxidase-like activity of the β-ketoenamine (1)-dicopper (II) complex (2) for the chemiluminescence (CL) of luminol either in the presence or absence of H(2)O(2) has been previously demonstrated by our group. In this study, the β-ketoenamine (1) as the ligand unit for copper(II) was incorporated into the oligonucleotide (ODN) probes. It has been shown that the catalytic activity of the ODN probes conjugating the ligand-Cu(II) complex is activated by hybridization with the target DNA with the complementary sequence. Thus, this study has successfully demonstrated the basic concept for the sensitive detection of nucleic acids by CL based on the template-inductive activation of the catalytic unit for CL.

  19. Application of steered molecular dynamics (SMD) to study DNA drug complexes and probing helical propensity of amino acids

    NASA Astrophysics Data System (ADS)

    Orzechowski, Marek; Cieplak, Piotr

    2005-05-01

    We present the preliminary results of two computer experiments involving the application of an external force to molecular systems. In the first experiment we simulated the process of pulling out a simple intercalator, the 9-aminoacridine molecule, from its complex with a short DNA oligonucleotide in aqueous solution. Removing a drug from the DNA is assumed to be an opposite process to the complex formation. The force and energy profiles suggest that formation of the DNA-9-aminoacridine complex is preferred when the acridine approaches the DNA from the minor groove rather than the major groove side. For a given mode of pulling the intercalation process is also shown to be nucleotide sequence dependent. In another computer experiment we performed a series of molecular dynamics simulations for stretching short, containing 15 amino acids, helical polypeptides in aqueous solution using an external force. The purpose of these simulations is to check whether this type of approach is sensitive enough to probe the sequence dependent helical propensity of short polypeptides.

  20. DAPI: a DNA-specific fluorescent probe.

    PubMed

    Kapuscinski, J

    1995-09-01

    DAPI (4',6-diamidino-2-phenylindole) is a DNA-specific probe which forms a fluorescent complex by attaching in the minor grove of A-T rich sequences of DNA. It also forms nonfluorescent intercalative complexes with double-stranded nucleic acids. The physicochemical properties of the dye and its complexes with nucleic acids and history of the development of this dye as a biological stain are described. The application of DAPI as a DNA-specific probe for flow cytometry, chromosome staining, DNA visualization and quantitation in histochemistry and biochemistry is reviewed. The mechanisms of DAPI-nucleic acid complex formation including minor groove binding, intercalation and condensation are discussed.

  1. Solution Structures of 2 : 1 And 1 : 1 DNA Polymerase - DNA Complexes Probed By Ultracentrifugation And Small-Angle X-Ray Scattering

    SciTech Connect

    Tang, K.H.; Niebuhr, M.; Aulabaugh, A.; Tsai, M.D.; /Ohio State U. /SLAC, SSRL

    2009-04-30

    We report small-angle X-ray scattering (SAXS) and sedimentation velocity (SV) studies on the enzyme-DNA complexes of rat DNA polymerase {beta} (Pol {beta}) and African swine fever virus DNA polymerase X (ASFV Pol X) with one-nucleotide gapped DNA. The results indicated formation of a 2 : 1 Pol {beta}-DNA complex, whereas only 1 : 1 Pol X-DNA complex was observed. Three-dimensional structural models for the 2 : 1 Pol {beta}-DNA and 1 : 1 Pol X-DNA complexes were generated from the SAXS experimental data to correlate with the functions of the DNA polymerases. The former indicates interactions of the 8 kDa 5{prime}-dRP lyase domain of the second Pol {beta} molecule with the active site of the 1 : 1 Pol {beta}-DNA complex, while the latter demonstrates how ASFV Pol X binds DNA in the absence of DNA-binding motif(s). As ASFV Pol X has no 5{prime}-dRP lyase domain, it is reasonable not to form a 2 : 1 complex. Based on the enhanced activities of the 2 : 1 complex and the observation that the 8 kDa domain is not in an optimal configuration for the 5{prime}-dRP lyase reaction in the crystal structures of the closed ternary enzyme-DNA-dNTP complexes, we propose that the asymmetric 2 : 1 Pol {beta}-DNA complex enhances the function of Pol {beta}.

  2. Solution structures of 2 : 1 and 1 : 1 DNA polymerase-DNA complexes probed by ultracentrifugation and small-angle X-ray scattering

    SciTech Connect

    Tang, Kuo-Hsiang; Niebuhr, Marc; Aulabaugh, Ann; Tsai, Ming-Daw

    2008-03-25

    We report small-angle X-ray scattering (SAXS) and sedimentation velocity (SV) studies on the enzyme-DNA complexes of rat DNA polymerase β (Pol β) and African swine fever virus DNA polymerase X (ASFV Pol X) with one-nucleotide gapped DNA. The results indicated formation of a 2 : 1 Pol β-DNA complex, whereas only 1 : 1 Pol X-DNA complex was observed. Three-dimensional structural models for the 2 : 1 Pol β-DNA and 1 : 1 Pol X-DNA complexes were generated from the SAXS experimental data to correlate with the functions of the DNA polymerases. The former indicates interactions of the 8 kDa 5'-dRP lyase domain of the second Pol β molecule with the active site of the 1 : 1 Pol β-DNA complex, while the latter demonstrates how ASFV Pol X binds DNA in the absence of DNA-binding motif(s). As ASFV Pol X has no 5'-dRP lyase domain, it is reasonable not to form a 2 : 1 complex. Based on the enhanced activities of the 2 : 1 complex and the observation that the 8 kDa domain is not in an optimal configuration for the 5'-dRP lyase reaction in the crystal structures of the closed ternary enzyme-DNA-dNTP complexes, we propose that the asymmetric 2 : 1 Pol β-DNA complex enhances the function of Pol β.

  3. DNA probe for lactobacillus delbrueckii

    SciTech Connect

    Delley, M.; Mollet, B.; Hottinger, H. )

    1990-06-01

    From a genomic DNA library of Lactobacillus delbrueckii subsp. bulgaricus, a clone was isolated which complements a leucine auxotrophy of an Escherichia coli strain (GE891). Subsequent analysis of the clone indicated that it could serve as a specific DNA probe. Dot-blot hybridizations with over 40 different Lactobacillus strains showed that this clone specifically recognized L. delbrueckii subsp. delbrueckii, bulgaricus, and lactis. The sensitivity of the method was tested by using an {alpha}-{sup 32}P-labeled probe.

  4. Using AFM to probe the complexation of DNA with anionic lipids mediated by Ca(2+): the role of surface pressure.

    PubMed

    Luque-Caballero, Germán; Martín-Molina, Alberto; Sánchez-Treviño, Alda Yadira; Rodríguez-Valverde, Miguel A; Cabrerizo-Vílchez, Miguel A; Maldonado-Valderrama, Julia

    2014-04-28

    Complexation of DNA with lipids is currently being developed as an alternative to classical vectors based on viruses. Most of the research to date focuses on cationic lipids owing to their spontaneous complexation with DNA. Nonetheless, recent investigations have revealed that cationic lipids induce a large number of adverse effects on DNA delivery. Precisely, the lower cytotoxicity of anionic lipids accounts for their use as a promising alternative. However, the complexation of DNA with anionic lipids (mediated by cations) is still in early stages and is not yet well understood. In order to explore the molecular mechanisms underlying the complexation of anionic lipids and DNA we proposed a combined methodology based on the surface pressure-area isotherms, Gibbs elasticity and Atomic Force Microscopy (AFM). These techniques allow elucidation of the role of the surface pressure in the complexation and visualization of the interfacial aggregates for the first time. We demonstrate that the DNA complexes with negatively charged model monolayers (DPPC/DPPS 4 : 1) only in the presence of Ca(2+), but is expelled at very high surface pressures. Also, according to the Gibbs elasticity plot, the complexation of lipids and DNA implies a whole fluidisation of the monolayer and a completely different phase transition map in the presence of DNA and Ca(2+). AFM imaging allows identification for the first time of specific morphologies associated with different packing densities. At low surface coverage, a branched net like structure is observed whereas at high surface pressure fibers formed of interfacial aggregates appear. In summary, Ca(2+) mediates the interaction between DNA and negatively charged lipids and also the conformation of the ternary system depends on the surface pressure. Such observations are important new generic features of the interaction between DNA and anionic lipids.

  5. Electrochemiluminescence Biosensor Based on 3-D DNA Nanomachine Signal Probe Powered by Protein-Aptamer Binding Complex for Ultrasensitive Mucin 1 Detection.

    PubMed

    Jiang, Xinya; Wang, Haijun; Wang, Huijun; Zhuo, Ying; Yuan, Ruo; Chai, Yaqin

    2017-04-04

    Herein, we fabricated a novel electrochemiluminescence (ECL) biosensor for ultrasensitive detection of mucin 1 (MUC1) based on a three-dimensional (3-D) DNA nanomachine signal probe powered by protein-aptamer binding complex. The assembly of 3-D DNA nanomachine signal probe achieved the cyclic reuse of target protein based on the protein-aptamer binding complex induced catalyzed hairpin assembly (CHA), which overcame the shortcoming of protein conversion with enzyme cleavage or polymerization in the traditional examination of protein. In addition, CoFe2O4, a mimic peroxidase, was used as the nanocarrier of the 3-D DNA nanomachine signal probe to catalyze the decomposition of coreactant H2O2 to generate numerous reactive hydroxyl radical OH(•) as the efficient accelerator of N-(aminobutyl)-N-(ethylisoluminol) (ABEI) ECL reaction to amplify the luminescence signal. Simultaneously, the assembly of 3-D DNA nanomachine signal probe was executed in solution, which led to abundant luminophore ABEI be immobilized around the CoFe2O4 surface with amplified ECL signal output since the CHA reaction was occurred unencumberedly in all directions under homogeneous environment. The prepared ECL biosensor showed a favorable linear response for MUC1 detection with a relatively low detection limit of 0.62 fg mL(-1). With excellent sensitivity, the strategy may provide an efficient method for clinical application, especially in trace protein determination.

  6. Diagnostic applications of DNA probes.

    PubMed

    Pfaller, M A

    1991-02-01

    This review has described several of the most common molecular biologic techniques that are, or will be, employed in the diagnostic laboratory. The potential advantages of these DNA probe assays in the diagnosis of infectious diseases include: rapid detection and identification of infectious agents; the ability to screen selected specimens using batteries of probes; and the detection of nonviable or difficult-to-culture organisms. The potential disadvantages of DNA probe assays include: the use of isotopic detection methods for optimum sensitivity; limited diagnostic sensitivity of current assays; slow turna-round time for some assay formats; expense of current reagents; limited availability of many probes; lack of technical expertise in most diagnostic laboratories; and the requirement for antimicrobial susceptibility testing (requires culture). Given the above advantages and disadvantages, there are several key issues that must be considered before adopting DNA probe technology in the diagnostic laboratory; the cost of performing routine culture and identification versus the cost of screening with probes--both the number and type of specimens and the time savings that may be realized by eliminating routine cultures; the prevalence of the infectious agent--even the best DNA probe assay may not be useful or practical in a low-prevalence situation; the need for additional equipment and space; and the interpretation of false-positive and false-negative results--additional research is needed in this area. However, laboratories must consider these issues when using a test other than the current gold standard (i.e., culture). DNA probe technology is with us and expanding rapidly. The intelligent application of this new technology will require communication between laboratorians and clinicians and careful consideration of the many advantages and disadvantages discussed above.

  7. DNA interstrand cross-links of an antitumor trinuclear platinum(II) complex: thermodynamic analysis and chemical probing.

    PubMed

    Malina, Jaroslav; Farrell, Nicholas P; Brabec, Viktor

    2011-06-06

    The trinuclear platinum compound [{trans-PtCl(NH(3))(2)}(2)(μ-trans-Pt(NH(3))(2){NH(2)(CH(2))(6)NH(2)}(2))](4+) (BBR3464) belongs to the polynuclear class of platinum-based anticancer agents. These agents form in DNA long-range (Pt,Pt) interstrand cross-links, whose role in the antitumor effects of BBR3464 predominates. Our results show for the first time that the interstrand cross-links formed by BBR3464 between two guanine bases in opposite strands separated by two base pairs (1,4-interstrand cross-links) exist as two distinct conformers, which are not interconvertible, not only if these cross-links are formed in the 5'-5', but also in the less-usual 3'-3' direction. Analysis of the conformers by differential scanning calorimetry, chemical probes of DNA conformation, and minor groove binder Hoechst 33258 demonstrate that each of the four conformers affects DNA in a distinctly different way and adopts a different conformation. The results also support the thesis that the molecule of antitumor BBR3464 when forming DNA interstrand cross-links may adopt different global structures, including different configurations of the linker chain of BBR3464 in the minor groove of DNA. Our findings suggest that the multiple DNA interstrand cross-links available to BBR3464 may all contribute substantially to its cytotoxicity.

  8. Thermodynamic and structural study of phenanthroline derivative ruthenium complex/DNA interactions: probing partial intercalation and binding properties.

    PubMed

    Grueso, E; López-Pérez, G; Castellano, M; Prado-Gotor, R

    2012-01-01

    The binding of [Ru(PDTA-H(2))(phen)]Cl (PDTA = propylene-1,2-diaminetetra-acetic acid; phen = 1,10 phenanthroline) with ctDNA (=calf thymus DNA) has been investigated through intrinsic and induced circular dichroism, UV-visible absorption and fluorescence spectroscopies, steady-state fluorescence, thermal denaturation technique, viscosity and electrochemical measurements. The latter indicate that the cathodic and anodic peak potentials of the ruthenium complex shift to more positive values on increasing the DNA concentration, this behavior being a direct consequence of the interaction of both the reduced and oxidized form with DNA binding. From spectrophotometric titration experiments, the equilibrium binding constant and the number of monomer units of the polymer involved in the binding of one ruthenium molecule (site size) have been quantified. The intrinsic circular dichroism (CD) spectra show an unwinding and a conformational change of the DNA helix upon interaction of the ruthenium complex. Quenching process, thermal denaturation experiments and induced circular dichroism (ICD) are consistent with a partial intercalative binding mode. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Quenching of the electrochemiluminescence of RU-complex tagged shared-stem hairpin probes by graphene oxide and its application to quantitative turn-on detection of DNA.

    PubMed

    Huang, Xiang; Huang, Xiaopeng; Zhang, An; Zhuo, Bangrong; Lu, Fushen; Chen, Yaowen; Gao, Wenhua

    2015-08-15

    Efficient and stable quenching of electrochemiluminescence (ECL) of tris(2,2'-bipyridine)-ruthenium(II) (Ru(bpy)3(2+))/tri-n-propylamine (TPrA) system by graphene oxide (GO) at the glassy carbon electrode (GCE) was reported. For figuring out the possible reasons of the quenching mechanism, the electrochemical and ECL performance of GO, different reduction degree of reduced graphene oxide (RGOs) and polymer wrapped GO modified GCEs were systematacially investigated. The results demonstrated that the oxygen-containing groups and poor electrical conductivity of GO, along with the distance between GO and Ru(bpy)3(2+) was suggested as the reasons for quenching ECL. On the basis of this essential quenching mechanism, a novel "signal on" ECL DNA biosensor for ultrasensitive detection of specific DNA sequence was constructed by self-assembling the ECL probe of thiolated shared-stem hairpin DNA (SH-DNA) tagged with Ru complex (Ru(bpy)3(2+) derivatives) on the surface of GO/gold nanoparticles (AuNPs) modified GCE. The ECL probe sequences have their ECL signal efficiently quenched when they are self-assembled on the surface of GO unless they hybridizes with their target DNA (t-DNA) sequence. The designed ECL biosensor exhibited excellent stability and reproducibility, outstanding selectivity, and an extremely sensitive response to t-DNA in a wide linear range of 100 aM-10 pM with a low detection limit of 65 aM. Our findings and the design of biosensing switch would open a new avenue in the application of GO based ECL quenching strategy for ultrasensitive bioassays.

  10. Immobilization of DNA for scanning probe microscopy.

    PubMed Central

    Allison, D P; Bottomley, L A; Thundat, T; Brown, G M; Woychik, R P; Schrick, J J; Jacobson, K B; Warmack, R J

    1992-01-01

    Reproducible scanning tunneling microscope and atomic force microscope images of entire molecules of uncoated plasmid DNA chemically bound to surfaces are presented. The chemically mediated immobilization of DNA to surfaces and subsequent scanning tunneling microscope imaging of DNA molecules demonstrate that the problem of molecular instability to forces exerted by the probe tip, inherent with scanning probe microscopes, can be prevented. Images PMID:1438201

  11. The use of fluorescein for labeling genomic probes in the checkerboard DNA-DNA hybridization method.

    PubMed

    do Nascimento, Cássio; Santos Barbosa, Rodrigo Edson; Mardegan Issa, João Paulo; Watanabe, Evandro; Yoko Ito, Izabel; Monesi, Nadia; Albuquerque Junior, Rubens Ferreira de

    2008-01-01

    Molecular methods that permit the simultaneous detection and quantification of a large number of microbial species are currently employed in the evaluation of complex ecosystems. The checkerboard DNA-DNA hybridization technique enables the simultaneous identification of distinct bacterial species in a large number of dental samples. The original technique employed digoxigenin-labeled whole genomic DNA probes which were detected by chemiluminescence. In this study, we present an alternative protocol for labeling and detecting whole genomic DNA probes in the Checkerboard DNA-DNA hybridization method. Whole genomic DNA was extracted from five bacterial species and labeled with fluorescein. The fluorescein labeled whole genomic DNA probes were hybridized against whole genomic DNA or subgingival plaque samples in a checkerboard hybridization format, followed by chemiluminescent detection. Our results reveal that fluorescein is a viable and adequate alternative labeling reagent to be employed in the checkerboard DNA-DNA hybridization technique.

  12. Fluorescence studies with DNA probes: dynamic aspects of DNA structure and DNA-protein interactions

    NASA Astrophysics Data System (ADS)

    Millar, David P.; Carver, Theodore E.

    1994-08-01

    Time-resolved fluorescence measurements of optical probes incorporated at specific sites in DNA provides a new approach to studies of DNA structure and DNA:protein interactions. This approach can be used to study complex multi-state behavior, such as the folding of DNA into alternative higher order structures or the transfer of DNA between multiple binding sites on a protein. In this study, fluorescence anisotropy decay of an internal dansyl probe attached to 17/27-mer oligonucleotides was used to monitor the distribution of DNA 3' termini bound at either the polymerase of 3' to 5' exonuclease sites of the Klenow fragment of DNA polymerase I. Partitioning of the primer terminus between the two active sites of the enzyme resulted in a heterogeneous probe environment, reflected in the associative behavior of the fluorescence anisotropy decay. Analysis of the anisotropy decay with a two state model of solvent-exposed and protein-associated dansyl probes was used to determine the fraction of DNA bound at each site. We examined complexes of Klenow fragment with DNAs containing various base mismatches. Single mismatches at the primer terminus caused a 3-fold increase in the equilibrium partitioning of DNA into the exonuclease site, while two or more consecutive G:G mismatches caused the DNA to bind exclusively at the exonuclease site, with a partitioning constant at least 250- fold greater than that of the corresponding matched DNA sequence. Internal single mismatches located up to four bases from the primer terminus produced larger effects than the same mismatch at the primer terminus. These results provide insight into the recognition mechanisms that enable DNA polymerases to proofread misincorporated bases during DNA replication.

  13. DNA complexes: Durable binders

    NASA Astrophysics Data System (ADS)

    Urbach, Adam R.

    2011-11-01

    A tetra-intercalator compound that threads through a DNA double-helix to form a remarkably stable complex exhibits an unusual combination of sequence specificity and rapid association yet slow dissociation.

  14. Probe and method for DNA detection

    DOEpatents

    Yeh, Hsin-Chih; Werner, James Henry; Sharma, Jaswinder Kumar; Martinez, Jennifer Suzanne

    2013-07-02

    A hybridization probe containing two linear strands of DNA lights up upon hybridization to a target DNA using silver nanoclusters that have been templated onto one of the DNA strands. Hybridization induces proximity between the nanoclusters on one strand and an overhang on the other strand, which results in enhanced fluorescence emission from the nanoclusters.

  15. DNA probe specific for Legionella pneumophila.

    PubMed Central

    Grimont, P A; Grimont, F; Desplaces, N; Tchen, P

    1985-01-01

    A procedure for preparing a DNA probe to be used in the specific detection of Legionella pneumophila by dot or colony hybridization has been devised. When total DNA from L. pneumophila was used as a radioactive probe, cross-hybridization occurred with DNA from many other species belonging to various families (including Legionellaceae, Enterobacteriaceae, Pseudomonadaceae, and Vibrionaceae). Cross-hybridizing restriction fragments in L. pneumophila ATCC 33152 DNA were identified on Southern blots. When unlabeled DNA from strain ATCC 33152 was cleaved by endonuclease BamHI, the DNA fragments cross-hybridizing with the labeled DNA from all of the other species and genera tested (or with Escherichia coli 16 + 23 S RNA) had a size of 21.4 and 16.2 kilobase pairs (major bands) and 28.0, 12.8, and 10.1 kilobase pairs (minor bands). BamHI restriction fragments of L. pneumophila DNA deprived of the cross-hybridizing fragments were pooled and used as a probe for the detection of L. pneumophila. This probe proved to be specific for L. pneumophila in colony and dot hybridization. It can potentially be used for the detection of L. pneumophila in clinical and water samples. The procedure described can be readily applied to the preparation of probes specific for phylogenetically isolated bacterial species other than L. pneumophila. Images PMID:3980693

  16. Development of DNA probes for Candida albicans

    SciTech Connect

    Cheung, L.L.; Hudson, J.B.

    1988-07-01

    An attempt was made to produce DNA probes that could be used as a rapid and efficient means of detecting candidiasis (invasive Candida infection) in immunocompromised patients. Whole DNA from Candida albicans was digested with restriction endonuclease, and the resulting fragments were randomly cloned into a plasmid vector. Several recombinant plasmids were evaluated for cross-hybridization to various other Candida species, other fungal DNAs, and to nonfungal DNAs. Cross reactions were observed between the probes and different yeasts, but none with unrelated DNAs. Some recombinants were genus-specific, and two of these were applied to the analysis of C. albicans growth curves. It became evident that, although both /sup 32/P- and biotin-labelled probes could be made quite sensitive, a possible limitation in their diagnostic potential was the poor liberation of Candida DNA from cells. Thus, better methods of treatment of clinical specimens will be required before such probes will be useful in routine diagnosis.

  17. Use of restriction fragment length polymorphisms resolved by pulsed-field gel electrophoresis for subspecies identification of mycobacteria in the Mycobacterium avium complex and for isolation of DNA probes.

    PubMed Central

    Coffin, J W; Condon, C; Compston, C A; Potter, K N; Lamontagne, L R; Shafiq, J; Kunimoto, D Y

    1992-01-01

    Mycobacterial strains from the Mycobacterium avium complex were compared with each other and with Mycobacterium phlei isolates by restriction endonuclease digestion of chromosomal DNA with SspI and analysis by pulsed-field gel electrophoresis. Characteristic profiles were observed for known typed strains, and five groups were identified. Primary bovine isolates identified as Mycobacterium paratuberculosis by classical methods were shown to fall into both the M. paratuberculosis- and M. avium-like groups. M. paratuberculosis 18 was in the latter category. Two Mycobacterium intracellulare strains of different Schaefer serotypes had different digestion profiles. In addition, this system was exploited for the preparation of DNA probes by the isolation, digestion, and subcloning of DNA fragments separated by pulsed-field gel electrophoresis. Probe JC12 hybridized only to M. avium complex strains, but not to M. phlei, showing characteristic hybridization profiles for each of the groups previously identified by pulsed-field gel electrophoresis. The approach taken in the study lends itself to the comparative analysis of members of the M. avium complex and to the isolation and characterization of DNA probes with specificity for these mycobacteria. Images PMID:1352787

  18. Probing DNA binding, DNA opening, and assembly of a downstream clamp/jaw in Escherichia coli RNA polymerase-lambdaP(R) promoter complexes using salt and the physiological anion glutamate.

    PubMed

    Kontur, Wayne S; Capp, Michael W; Gries, Theodore J; Saecker, Ruth M; Record, M Thomas

    2010-05-25

    Transcription by all RNA polymerases (RNAPs) requires a series of large-scale conformational changes to form the transcriptionally competent open complex RP(o). At the lambdaP(R) promoter, Escherichia coli sigma(70) RNAP first forms a wrapped, closed 100 bp complex I(1). The subsequent step opens the entire DNA bubble, creating the relatively unstable (open) complex I(2). Additional conformational changes convert I(2) to the stable RP(o). Here we probe these events by dissecting the effects of Na(+) salts of Glu(-), F(-), and Cl(-) on each step in this critical process. Rapid mixing and nitrocellulose filter binding reveal that the binding constant for I(1) at 25 degrees C is approximately 30-fold larger in Glu(-) than in Cl(-) at the same Na(+) concentration, with the same log-log salt concentration dependence for both anions. In contrast, both the rate constant and equilibrium constant for DNA opening (I(1) to I(2)) are only weakly dependent on salt concentration, and the opening rate constant is insensitive to replacement of Cl(-) with Glu(-). These very small effects of salt concentration on a process (DNA opening) that is strongly dependent on salt concentration in solution may indicate that the backbones of both DNA strands interact with polymerase throughout the process and/or that compensation is present between ion uptake and release. Replacement of Cl(-) with Glu(-) or F(-) at 25 degrees C greatly increases the lifetime of RP(o) and greatly reduces its salt concentration dependence. By analogy to Hofmeister salt effects on protein folding, we propose that the excluded anions Glu(-) and F(-) drive the folding and assembly of the RNAP clamp/jaw domains in the conversion of I(2) to RP(o), while Cl(-) does not. Because the Hofmeister effect of Glu(-) or F(-) largely compensates for the destabilizing Coulombic effect of any salt on the binding of this assembly to downstream promoter DNA, RP(o) remains long-lived even at 0.5 M Na(+) in Glu(-) or F(-) salts. The

  19. DNA Binding Hydroxyl Radical Probes.

    PubMed

    Tang, Vicky J; Konigsfeld, Katie M; Aguilera, Joe A; Milligan, Jamie R

    2012-01-01

    The hydroxyl radical is the primary mediator of DNA damage by the indirect effect of ionizing radiation. It is a powerful oxidizing agent produced by the radiolysis of water and is responsible for a significant fraction of the DNA damage associated with ionizing radiation. There is therefore an interest in the development of sensitive assays for its detection. The hydroxylation of aromatic groups to produce fluorescent products has been used for this purpose. We have examined four different chromophores which produce fluorescent products when hydroxylated. Of these, the coumarin system suffers from the fewest disadvantages. We have therefore examined its behavior when linked to a cationic peptide ligand designed to bind strongly to DNA.

  20. SERS gene probe for DNA diagnostics

    NASA Astrophysics Data System (ADS)

    Stokes, David L.; Allain, Leonardo R.; Isola, Narayana R.; Vo-Dinh, Tuan

    2003-07-01

    We describe the development of a surface-enhanced Raman scattering gene (SERGen) probe technology for rapid screening for diseases and pathogens through DNA hybridization assays. The technology combines the use of gene probes labeled with SERS-active markers, and nanostructured metallic platforms for inducing the SERS effect. As a result, SERGen-based methods can offer the spectral selectivity and sensitivity of SERS as well as the molecular specificity of DNA sequence hybridization. Furthermore, these new probe s preclude the use of radioactive labels. As illustrated herein, SERGen probes have been used as primers in polymerase chain reaction (PCR) amplifications of specific DNA sequences, hence further boosting the sensitivity of the technology. We also describe several approaches to developing SERS-active DNA assay platforms, addressing the challenges of making the SERGen technology accessible and practical for clinical settings. The usefulness of the SERGen approach has been demonstrated in the detection of HIV, BRCA1 breast cancer, and BAX genes. There is great potential for the use of numerous SERGen probes for multiplexed detection of multiple biological targets.

  1. Chromosome-specific DNA Repeat Probes

    SciTech Connect

    Baumgartner, Adolf; Weier, Jingly Fung; Weier, Heinz-Ulrich G.

    2006-03-16

    In research as well as in clinical applications, fluorescence in situ hybridization (FISH) has gained increasing popularity as a highly sensitive technique to study cytogenetic changes. Today, hundreds of commercially available DNA probes serve the basic needs of the biomedical research community. Widespread applications, however, are often limited by the lack of appropriately labeled, specific nucleic acid probes. We describe two approaches for an expeditious preparation of chromosome-specific DNAs and the subsequent probe labeling with reporter molecules of choice. The described techniques allow the preparation of highly specific DNA repeat probes suitable for enumeration of chromosomes in interphase cell nuclei or tissue sections. In addition, there is no need for chromosome enrichment by flow cytometry and sorting or molecular cloning. Our PCR-based method uses either bacterial artificial chromosomes or human genomic DNA as templates with {alpha}-satellite-specific primers. Here we demonstrate the production of fluorochrome-labeled DNA repeat probes specific for human chromosomes 17 and 18 in just a few days without the need for highly specialized equipment and without the limitation to only a few fluorochrome labels.

  2. Structure-based design of platinum(II) complexes as c-myc oncogene down-regulators and luminescent probes for G-quadruplex DNA.

    PubMed

    Wang, Ping; Leung, Chung-Hang; Ma, Dik-Lung; Yan, Siu-Cheong; Che, Chi-Ming

    2010-06-18

    A series of platinum(II) complexes with tridentate ligands was synthesized and their interactions with G-quadruplex DNA within the c-myc gene promoter were evaluated. Complex 1, which has a flat planar 2,6-bis(benzimidazol-2-yl)pyridine (bzimpy) scaffold, was found to stabilize the c-myc G-quadruplex structure in a cell-free system. An in silico G-quadruplex DNA model has been constructed for structure-based virtual screening to develop new Pt(II)-based complexes with superior inhibitory activities. By using complex 1 as the initial structure for hit-to-lead optimization, bzimpy and related 2,6-bis(pyrazol-3-yl)pyridine (dPzPy) scaffolds containing amine side-chains emerge as the top candidates. Six of the top-scoring complexes were synthesized and their interactions with c-myc G-quadruplex DNA have been investigated. The results revealed that all of the complexes have the ability to stabilize the c-myc G-quadruplex. Complex 3 a ([Pt(II)L2R](+); L2=2,6-bis[1-(3-piperidinepropyl)-1H-enzo[d]imidazol-2-yl]pyridine, R=Cl) displayed the strongest inhibition in a cell-free system (IC(50)=2.2 microM) and was 3.3-fold more potent than that of 1. Complexes 3 a and 4 a ([Pt(II)L3R](+); L3=2,6-bis[1-(3-morpholinopropyl)-1H-pyrazol-3-yl]pyridine, R=Cl) were found to effectively inhibit c-myc gene expression in human hepatocarcinoma cells with IC(50) values of approximately 17 microM, whereas initial hit 1 displayed no significant effect on gene expression at concentrations up to 50 microM. Complexes 3 a and 4 a have a strong preference for G-quadruplex DNA over duplex DNA, as revealed by competition dialysis experiments and absorption titration; 3 a and 4 a bind G-quadruplex DNA with binding constants (K) of approximately 10(6)-10(7) dm(3) mol(-1), which are at least an order of magnitude higher than the K values for duplex DNA. NMR spectroscopic titration experiments and molecular modeling showed that 4 a binds c-myc G-quadruplex DNA through an external end-stacking mode at

  3. Universal microbial diagnostics using random DNA probes

    PubMed Central

    Aghazadeh, Amirali; Lin, Adam Y.; Sheikh, Mona A.; Chen, Allen L.; Atkins, Lisa M.; Johnson, Coreen L.; Petrosino, Joseph F.; Drezek, Rebekah A.; Baraniuk, Richard G.

    2016-01-01

    Early identification of pathogens is essential for limiting development of therapy-resistant pathogens and mitigating infectious disease outbreaks. Most bacterial detection schemes use target-specific probes to differentiate pathogen species, creating time and cost inefficiencies in identifying newly discovered organisms. We present a novel universal microbial diagnostics (UMD) platform to screen for microbial organisms in an infectious sample, using a small number of random DNA probes that are agnostic to the target DNA sequences. Our platform leverages the theory of sparse signal recovery (compressive sensing) to identify the composition of a microbial sample that potentially contains novel or mutant species. We validated the UMD platform in vitro using five random probes to recover 11 pathogenic bacteria. We further demonstrated in silico that UMD can be generalized to screen for common human pathogens in different taxonomy levels. UMD’s unorthodox sensing approach opens the door to more efficient and universal molecular diagnostics. PMID:27704040

  4. Probe DNA-Cisplatin Interaction with Solid-State Nanopores

    NASA Astrophysics Data System (ADS)

    Zhou, Zhi; Hu, Ying; Li, Wei; Xu, Zhi; Wang, Pengye; Bai, Xuedong; Shan, Xinyan; Lu, Xinghua; Nanopore Collaboration

    2014-03-01

    Understanding the mechanism of DNA-cisplatin interaction is essential for clinical application and novel drug design. As an emerging single-molecule technology, solid-state nanopore has been employed in biomolecule detection and probing DNA-molecule interactions. Herein, we reported a real-time monitoring of DNA-cisplatin interaction by employing solid-state SiN nanopores. The DNA-cisplatin interacting process is clearly classified into three stages by measuring the capture rate of DNA-cisplatin adducts. In the first stage, the negative charged DNA molecules were partially discharged due to the bonding of positive charged cisplatin and forming of mono-adducts. In the second stage, forming of DNA-cisplatin di-adducts with the adjacent bases results in DNA bending and softening. The capture rate increases since the softened bi-adducts experience a lower barrier to thread into the nanopores. In the third stage, complex structures, such as micro-loop, are formed and the DNA-cisplatin adducts are aggregated. The capture rate decreases to zero as the aggregated adduct grows to the size of the pore. The characteristic time of this stage was found to be linear with the diameter of the nanopore and this dynamic process can be described with a second-order reaction model. We are grateful to Laboratory of Microfabrication, Dr. Y. Yao, and Prof. R.C. Yu (Institute of Physics, Chinese Academy of Sciences) for technical assistance.

  5. Complexities of bloom dynamics in the toxic dinoflagellate Alexandrium fundyense revealed through DNA measurements by imaging flow cytometry coupled with species-specific rRNA probes

    PubMed Central

    Brosnahan, Michael L.; Farzan, Shahla; Keafer, Bruce A.; Sosik, Heidi M.; Olson, Robert J.; Anderson, Donald M.

    2013-01-01

    Measurements of the DNA content of different protist populations can shed light on a variety of processes, including cell division, sex, prey ingestion, and parasite invasion. Here, we modified an Imaging FlowCytobot (IFCB), a custom-built flow cytometer that records images of microplankton, to measure the DNA content of large dinoflagellates and other high-DNA content species. The IFCB was also configured to measure fluorescence from Cy3-labeled rRNA probes, aiding the identification of Alexandrium fundyense (syn. A. tamarense Group I), a photosynthetic dinoflagellate that causes paralytic shellfish poisoning (PSP). The modified IFCB was used to analyze samples from the development, peak and termination phases of an inshore A. fundyense bloom (Salt Pond, Eastham, MA USA), and from a rare A. fundyense ‘red tide’ that occurred in the western Gulf of Maine, offshore of Portsmouth, NH (USA). Diploid or G2 phase (‘2C’) A. fundyense cells were frequently enriched at the near-surface, suggesting an important role for aggregation at the air-sea interface during sexual events. Also, our analysis showed that large proportions of A. fundyense cells in both the Salt Pond and red tide blooms were planozygotes during bloom decline, highlighting the importance of sexual fusion to bloom termination. At Salt Pond, bloom decline also coincided with a dramatic rise in infections by the parasite genus Amoebophrya. The samples that were most heavily infected contained many large cells with higher DNA-associated fluorescence than 2C vegetative cells, but these cells’ nuclei were also frequently consumed by Amoebophrya trophonts. Neither large cell size nor increased DNA-associated fluorescence could be replicated by infecting an A. fundyense culture of vegetative cells. Therefore we attribute these characteristics of the large Salt Pond cells to planozygote maturation rather than Amoebophrya infection, though an interaction between infection and planozygote maturation may

  6. Complexities of bloom dynamics in the toxic dinoflagellate Alexandrium fundyense revealed through DNA measurements by imaging flow cytometry coupled with species-specific rRNA probes

    NASA Astrophysics Data System (ADS)

    Brosnahan, Michael L.; Farzan, Shahla; Keafer, Bruce A.; Sosik, Heidi M.; Olson, Robert J.; Anderson, Donald M.

    2014-05-01

    Measurements of the DNA content of different protist populations can shed light on a variety of processes, including cell division, sex, prey ingestion, and parasite invasion. Here, we modified an Imaging FlowCytobot (IFCB), a custom-built flow cytometer that records images of microplankton, to measure the DNA content of large dinoflagellates and other high-DNA content species. The IFCB was also configured to measure fluorescence from Cy3-labeled rRNA probes, aiding the identification of Alexandrium fundyense (syn. A. tamarense Group I), a photosynthetic dinoflagellate that causes paralytic shellfish poisoning (PSP). The modified IFCB was used to analyze samples from the development, peak and termination phases of an inshore A. fundyense bloom (Salt Pond, Eastham, MA, USA), and from a rare A. fundyense ‘red tide’ that occurred in the western Gulf of Maine, offshore of Portsmouth, NH (USA). Diploid or G2 phase (‘2C’) A. fundyense cells were frequently enriched at the near-surface, suggesting an important role for aggregation at the air-sea interface during sexual events. Also, our analysis showed that large proportions of A. fundyense cells in both the Salt Pond and red tide blooms were planozygotes during bloom decline, highlighting the importance of sexual fusion to bloom termination. At Salt Pond, bloom decline also coincided with a dramatic rise in infections by the parasite genus Amoebophrya. The samples that were most heavily infected contained many large cells with higher DNA-associated fluorescence than 2C vegetative cells, but these cells' nuclei were also frequently consumed by Amoebophrya trophonts. Neither large cell size nor increased DNA-associated fluorescence could be replicated by infecting an A. fundyense culture of vegetative cells. Therefore, we attribute these characteristics of the large Salt Pond cells to planozygote maturation rather than Amoebophrya infection, though an interaction between infection and planozygote maturation may

  7. DNA probes and PCR for diagnosis of parasitic infections.

    PubMed Central

    Weiss, J B

    1995-01-01

    DNA probe and PCR-based assays to identify and detect parasites are technically complex; however, they have high sensitivity, directly detect parasites independent of the immunocompetence or previous clinical history of the patient, and can distinguish between organisms that are morphologically similar. Diagnosis of parasites is often based on direct detection by microscopy, which is insensitive and laborious and can lack specificity. Most PCR-based assays were more sensitive than DNA probe assays. The development of PCR-based diagnostic assays requires multiple steps following the initial selection of oligonucleotide primers and reporter probe. Generally, the ability to detect the DNA of one parasite was attained by PCR; however, advances in the preparation of samples for PCR (extraction of DNA while removing PCR inhibitors) will be required to achieve that sensitivity with human specimens. Preliminary PCR systems have been developed for many different parasites, yet few have been evaluated with a large number of clinical specimens and/or under field conditions. Those evaluations are essential for determination of clinical and field utility and performance and of the most appropriate application of the assay. Several situations in which PCR-based diagnosis will result in epidemiologic, medical, or public health advances have been identified. PMID:7704890

  8. Development of a diagnostic test for Johne's disease using a DNA hybridization probe.

    PubMed Central

    Hurley, S S; Splitter, G A; Welch, R A

    1989-01-01

    A DNA probe, M13 mpHAW71, that detects Mycobacterium paratuberculosis in the fecal material of infected animals was developed for use in the diagnosis of Johne's disease. The probe detected as few as 10(5) M. paratuberculosis when hybridized under stringent conditions to total genomic DNA purified from bovine fecal material. When the probe was used diagnostically, it did not differentiate members of the Mycobacterium avium-M. intracellulare-M. paratuberculosis complex. Compared with culturing, the DNA probe identified 34.4% more mycobacterium-containing fecal samples, and testing took only 72 h to complete. Images PMID:2768445

  9. Probing the DNA Structural Requirements for Facilitated Diffusion

    PubMed Central

    2015-01-01

    DNA glycosylases perform a genome-wide search to locate damaged nucleotides among a great excess of undamaged nucleotides. Many glycosylases are capable of facilitated diffusion, whereby multiple sites along the DNA are sampled during a single binding encounter. Electrostatic interactions between positively charged amino acids and the negatively charged phosphate backbone are crucial for facilitated diffusion, but the extent to which diffusing proteins rely on the double-helical structure DNA is not known. Kinetic assays were used to probe the DNA searching mechanism of human alkyladenine DNA glycosylase (AAG) and to test the extent to which diffusion requires B-form duplex DNA. Although AAG excises εA lesions from single-stranded DNA, it is not processive on single-stranded DNA because dissociation is faster than N-glycosidic bond cleavage. However, the AAG complex with single-stranded DNA is sufficiently stable to allow for DNA annealing when a complementary strand is added. This observation provides evidence of nonspecific association of AAG with single-stranded DNA. Single-strand gaps, bubbles, and bent structures do not impede the search by AAG. Instead, these flexible or bent structures lead to the capture of a nearby site of damage that is more efficient than that of a continuous B-form duplex. The ability of AAG to negotiate these helix discontinuities is inconsistent with a sliding mode of diffusion but can be readily explained by a hopping mode that involves microscopic dissociation and reassociation. These experiments provide evidence of relatively long-range hops that allow a searching protein to navigate around DNA binding proteins that would serve as obstacles to a sliding protein. PMID:25495964

  10. Probing the DNA structural requirements for facilitated diffusion.

    PubMed

    Hedglin, Mark; Zhang, Yaru; O'Brien, Patrick J

    2015-01-20

    DNA glycosylases perform a genome-wide search to locate damaged nucleotides among a great excess of undamaged nucleotides. Many glycosylases are capable of facilitated diffusion, whereby multiple sites along the DNA are sampled during a single binding encounter. Electrostatic interactions between positively charged amino acids and the negatively charged phosphate backbone are crucial for facilitated diffusion, but the extent to which diffusing proteins rely on the double-helical structure DNA is not known. Kinetic assays were used to probe the DNA searching mechanism of human alkyladenine DNA glycosylase (AAG) and to test the extent to which diffusion requires B-form duplex DNA. Although AAG excises εA lesions from single-stranded DNA, it is not processive on single-stranded DNA because dissociation is faster than N-glycosidic bond cleavage. However, the AAG complex with single-stranded DNA is sufficiently stable to allow for DNA annealing when a complementary strand is added. This observation provides evidence of nonspecific association of AAG with single-stranded DNA. Single-strand gaps, bubbles, and bent structures do not impede the search by AAG. Instead, these flexible or bent structures lead to the capture of a nearby site of damage that is more efficient than that of a continuous B-form duplex. The ability of AAG to negotiate these helix discontinuities is inconsistent with a sliding mode of diffusion but can be readily explained by a hopping mode that involves microscopic dissociation and reassociation. These experiments provide evidence of relatively long-range hops that allow a searching protein to navigate around DNA binding proteins that would serve as obstacles to a sliding protein.

  11. Scanning probe and nanopore DNA sequencing: core techniques and possibilities.

    PubMed

    Lund, John; Parviz, Babak A

    2009-01-01

    We provide an overview of the current state of research towards DNA sequencing using nanopore and scanning probe techniques. Additionally, we provide methods for the creation of two key experimental platforms for studies relating to nanopore and scanning probe DNA studies: a synthetic nanopore apparatus and an atomically flat conductive substrate with stretched DNA molecules.

  12. Supramolecular Complexes of DNA

    NASA Astrophysics Data System (ADS)

    Zuber, G.; Scherman, D.

    Deoxyribose nucleic acid or DNA is a linear polymer in the form of a double strand, synthesised by sequential polymerisation of a large number of units chosen from among the nucleic bases called purines (adenosine A and guanosine G) and pyrimidines (cytosine C and thymidine T). DNA contains all the genetic information required for life. It exists in the form of a limited number (a few dozen) of very big molecules, called chromosomes. This genetic information is first of all transcribed. In this process, a restricted fragment of the DNA called a gene is copied in the form of ribonucleic acid, or RNA. This RNA is itself a polymer, but with a single strand in which the sequence of nucleic acids is schematically analogous to the sequence on one of the two strands of the transcribed DNA. Finally, this RNA is translated into a protein, yet another linear polymer. The proteins make up the main part of the active constituents ensuring the survival of the cell. Any loss of information, either by mutation or by deletion of the DNA, will cause an imbalance in the cell's metabolism that may in turn lead to incurable pathologies. Several strategies have been developed to reduce the consequences of such genetic deficiencies or, more generally, to act, by amplifying or suppressing them, on the mechanisms leading from the reading of the genetic information to the production of proteins: Strategies aiming to introduce synthetic DNA or RNA, which selectively block the expression of certain genes, are now being studied by an increasing number of research scientists and pharmacologists. They use antisense oligodeoxyribonucleotides or interfering oligoribonucleotides and they already have clinical applications. This kind of therapy is often called gene pharmacology. Other, more ambitious strategies aim to repair in situ mutated or incomplete DNA within the chromosomes themselves, by introducing short sequences of DNA or RNA which recognise and take the place of mutations. This is the

  13. Fluoroquinolone-Gyrase-DNA Complexes

    PubMed Central

    Mustaev, Arkady; Malik, Muhammad; Zhao, Xilin; Kurepina, Natalia; Luan, Gan; Oppegard, Lisa M.; Hiasa, Hiroshi; Marks, Kevin R.; Kerns, Robert J.; Berger, James M.; Drlica, Karl

    2014-01-01

    DNA gyrase and topoisomerase IV control bacterial DNA topology by breaking DNA, passing duplex DNA through the break, and then resealing the break. This process is subject to reversible corruption by fluoroquinolones, antibacterials that form drug-enzyme-DNA complexes in which the DNA is broken. The complexes, called cleaved complexes because of the presence of DNA breaks, have been crystallized and found to have the fluoroquinolone C-7 ring system facing the GyrB/ParE subunits. As expected from x-ray crystallography, a thiol-reactive, C-7-modified chloroacetyl derivative of ciprofloxacin (Cip-AcCl) formed cross-linked cleaved complexes with mutant GyrB-Cys466 gyrase as evidenced by resistance to reversal by both EDTA and thermal treatments. Surprisingly, cross-linking was also readily seen with complexes formed by mutant GyrA-G81C gyrase, thereby revealing a novel drug-gyrase interaction not observed in crystal structures. The cross-link between fluoroquinolone and GyrA-G81C gyrase correlated with exceptional bacteriostatic activity for Cip-AcCl with a quinolone-resistant GyrA-G81C variant of Escherichia coli and its Mycobacterium smegmatis equivalent (GyrA-G89C). Cip-AcCl-mediated, irreversible inhibition of DNA replication provided further evidence for a GyrA-drug cross-link. Collectively these data establish the existence of interactions between the fluoroquinolone C-7 ring and both GyrA and GyrB. Because the GyrA-Gly81 and GyrB-Glu466 residues are far apart (17 Å) in the crystal structure of cleaved complexes, two modes of quinolone binding must exist. The presence of two binding modes raises the possibility that multiple quinolone-enzyme-DNA complexes can form, a discovery that opens new avenues for exploring and exploiting relationships between drug structure and activity with type II DNA topoisomerases. PMID:24497635

  14. Probing Mercury(II)-DNA Interactions by Nanopore Stochastic Sensing

    PubMed Central

    Wang, Guihua; Zhao, Qitao; Kang, Xiaofeng; Guan, Xiyun

    2013-01-01

    In this work, DNA-Hg(II) interactions were investigated by monitoring the translocation of DNA hairpins in a protein ion channel in the absence and presence of metal ions. Our experiments demonstrate that target-specific hairpin structures could be stabilized much more significantly by mercuric ions than by the stem length and the loop size of the hairpin due to the formation of Thymine-Hg(II)-Thymine complexes. In addition, the designed DNA probe allows the development of a highly sensitive nanopore sensor for Hg2+ with a detection limit of 25 nM. Further, the sensor is specific, and other tested metal ions including Pb2+, Cu2+, Cd2+, etc. with concentrations of up to two orders of magnitude greater than that of Hg2+ would not interfere with the mercury detection. PMID:23565989

  15. Monoclonals and DNA probes in diagnostic and preventative medicine

    SciTech Connect

    Gallo, R.C.; Della Povta, G.; Albertini, A.

    1987-01-01

    This book contains 24 selections. Some of the titles are: Use of DNA Probes for Prenatal and Carrier Diagnosis of Hemophilia and Fragile X Mental Retardation; The Application of DNA Probes to Diagnosis and Research of Duchenne Muscular Dystrophy: Clinical Trial, New Probes and Deletion Mapping; Molecular Genetics of the Human Collagens; Molecular Genetics of Human Steroid 21-Hydroxylase Genes; Detection of Hepatitis B Virus DNA and Hepatitis Delta Virus RNA: Implications in Diagnosis and Pathogenesis; and DNA Probes to Evaluate the Possible Association of Papovaviruses with Human Tumors.

  16. DNA/chitosan electrostatic complex.

    PubMed

    Bravo-Anaya, Lourdes Mónica; Soltero, J F Armando; Rinaudo, Marguerite

    2016-07-01

    Up to now, chitosan and DNA have been investigated for gene delivery due to chitosan advantages. It is recognized that chitosan is a biocompatible and biodegradable non-viral vector that does not produce immunological reactions, contrary to viral vectors. Chitosan has also been used and studied for its ability to protect DNA against nuclease degradation and to transfect DNA into several kinds of cells. In this work, high molecular weight DNA is compacted with chitosan. DNA-chitosan complex stoichiometry, net charge, dimensions, conformation and thermal stability are determined and discussed. The influence of external salt and chitosan molecular weight on the stoichiometry is also discussed. The isoelectric point of the complexes was found to be directly related to the protonation degree of chitosan. It is clearly demonstrated that the net charge of DNA-chitosan complex can be expressed in terms of the ratio [NH3(+)]/[P(-)], showing that the electrostatic interactions between DNA and chitosan are the main phenomena taking place in the solution. Compaction of DNA long chain complexed with low molar mass chitosan gives nanoparticles with an average radius around 150nm. Stable nanoparticles are obtained for a partial neutralization of phosphate ionic sites (i.e.: [NH3(+)]/[P(-)] fraction between 0.35 and 0.80).

  17. Electroactive crown ester-Cu(2+) complex with in-situ modification at molecular beacon probe serving as a facile electrochemical DNA biosensor for the detection of CaMV 35s.

    PubMed

    Zhan, Fengping; Liao, Xiaolei; Gao, Feng; Qiu, Weiwei; Wang, Qingxiang

    2017-06-15

    A novel electrochemical DNA biosensor has been facilely constructed by in-situ assembly of electroactive 4'-aminobenzo-18-crown-6-copper(II) complex (AbC-Cu(2+)) on the free terminal of the hairpin-structured molecule beacon. The 3'-SH modified molecule beacon probe was first immobilized on the gold electrode (AuE) surface through self-assembly chemistry of Au-S bond. Then the crow ester of AbC was covalently coupled with 5'-COOH on the molecule beacon, and served as a platform to attach the Cu(2+) by coordination with ether bond (-O-) of the crown cycle. Thus, an electroactive molecule beacon-based biosensing interface was constructed. In comparison with conventional methods for preparation of electroactive molecule beacon, the approach presented in this work is much simpler, reagent- and labor-saving. Selectivity study shows that the in-situ fabricated electroactive molecule beacon remains excellent recognition ability of pristine molecule beacon probe to well differentiate various DNA fragments. The target DNA can be quantatively determined over the range from 0.10pM to 0.50nM. The detection limit of 0.060pM was estimated based on signal-to-noise ratio of 3. When the biosensor was applied for the detection cauliflower mosaic virus 35s (CaMV 35s) in soybean extraction samples, satisfactory results are achieved. This work opens a new strategy for facilely fabricating electrochemical sensing interface, which also shows great potential in aptasensor and immurosensor fabrication. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Complex DNA structures and structures of DNA complexes

    SciTech Connect

    Chazin, W.J.; Carlstroem, G.; Shiow-Meei Chen; Miick, S.; Gomez-Paloma, L.; Smith, J.; Rydzewski, J.

    1994-12-01

    Complex DNA structures (for example, triplexes, quadruplexes, junctions) and DNA-ligand complexes are more difficult to study by NMR than standard DNA duplexes are because they have high molecular weights, show nonstandard or distorted local conformations, and exhibit large resonance linewidths and severe {sup 1}H spectral overlap. These systems also tend to have limited solubility and may require specialized solution conditions to maintain favorable spectral characteristics, which adds to the spectroscopic difficulties. Furthermore, with more atoms in the system, both assignment and structure calculation become more challenging. In this article, we focus on demonstrating the current status of NMR studies of such systems and the limitations to further progress; we also indicate in what ways isotopic enrichment can be useful.

  19. DNA probe for the identification of Histoplasma capsulatum.

    PubMed Central

    Keath, E J; Spitzer, E D; Painter, A A; Travis, S J; Kobayashi, G S; Medoff, G

    1989-01-01

    A 1.85-kilobase HindIII nuclear DNA probe from Histoplasma capsulatum G217B detected polymorphic restriction fragments within whole-cell DNA from different clinical isolates of H. capsulatum, consistent with the previous system of classification. The probe failed to hybridize to DNA from Blastomyces dermatitidis, Candida spp., Saccharomyces cerevisiae, Sepedonium chrysospermum, and Chrysosporium keratinophilum under low-stringency conditions and therefore may have value as a diagnostic reagent to identify H. capsulatum. Images PMID:2573616

  20. Two-color spectroscopy of UV excited ssDNA complex with a single-wall nanotube (SWNT) probe: Fast nucleobase autoionization mechanism

    NASA Astrophysics Data System (ADS)

    Rotkin, Slava V.; Ignatova, Tetyana; Balaeff, Alexander; Zheng, Ming; Blades, Michael; Stoeckl, Peter

    DNA autoionization is a fundamental process wherein UV-photoexcited nucleobases dissipate energy to the environment without undergoing chemical damage. SWNT is shown to serve as a photoluminescent reporter for studying the mechanism and rates of DNA autoionization. Two-color photoluminescence (PL) spectroscopy revealed a strong SWNT PL quenching when the UV pump is resonant with the DNA absorption [Nano Research, 2015]. Semiempirical calculations of the DNA-SWNT electronic structure, combined with a Green's function theory for charge transfer, show a 20 fs autoionization rate, dominated by the hole transfer. Rate-equation analysis of the spectroscopy data confirms that the quenching rate is limited by the thermalization of the free charge carriers transferred to the nanotube reservoir. The developed approach has a great potential for monitoring DNA excitation, autoionization, and chemical damage both in vivo and in vitro. NSF ECCS-1509786 (S.V.R.,T.I.) and PHY-1359195 (P.S.), NIST and UCF facilities.

  1. Empirical evaluation of oligonucleotide probe selection for DNA microarrays.

    PubMed

    Mulle, Jennifer G; Patel, Viren C; Warren, Stephen T; Hegde, Madhuri R; Cutler, David J; Zwick, Michael E

    2010-03-29

    DNA-based microarrays are increasingly central to biomedical research. Selecting oligonucleotide sequences that will behave consistently across experiments is essential to the design, production and performance of DNA microarrays. Here our aim was to improve on probe design parameters by empirically and systematically evaluating probe performance in a multivariate context. We used experimental data from 19 array CGH hybridizations to assess the probe performance of 385,474 probes tiled in the Duchenne muscular dystrophy (DMD) region of the X chromosome. Our results demonstrate that probe melting temperature, single nucleotide polymorphisms (SNPs), and homocytosine motifs all have a strong effect on probe behavior. These findings, when incorporated into future microarray probe selection algorithms, may improve microarray performance for a wide variety of applications.

  2. Platinum(II) complexes as spectroscopic probes for biomolecules

    SciTech Connect

    Ratilla, E.

    1990-09-21

    The use of platinum(II) complexes as tags and probes for biomolecules is indeed advantageous for their reactivities can be selective for certain purposes through an interplay of mild reaction conditions and of the ligands bound to the platinum. The use of {sup 195}Pt NMR as a method of detecting platinum and its interactions with biomolecules was carried out with the simplest model of platinum(II) tagging to proteins. Variable-temperature {sup 195}Pt NMR spectroscopy proved useful in studying the stereodynamics of complex thioethers like methionine. The complex, Pt(trpy)Cl{sup +}, with its chromophore has a greater potential for probing proteins. It is a noninvasive and selective tag for histidine and cysteine residues on the surface of cytochrome c at pH 5. The protein derivatives obtained are separable, and the tags are easily quantitated and differentiated through the metal-to-ligand charge transfer bands which are sensitive to the environment of the tag. Increasing the pH to 7.0 led to the modification by Pt(trpy)Cl{sup +}of Arg 91 in cytochrome c. Further studies with guanidine-containing ligands as models for arginine modification by Pt(trpy)Cl{sup +} showed that guanidine can act as a terminal ligand and as a bridging ligand. Owing to the potential utility of Pt(trpy)L{sup n+} as electron dense probes of nucleic acid structure, interactions of this bis-Pt(trpy){sup 2+} complex with nucleic acids was evaluated. Indeed, the complex interacts non-covalently with nucleic acids. Its interactions with DNA are not exactly the same as those of its precedents. Most striking is its ability to form highly immobile bands of DNA upon gel electrophoresis. 232 refs.

  3. Non-Covalent Fluorescent Labeling of Hairpin DNA Probe Coupled with Hybridization Chain Reaction for Sensitive DNA Detection.

    PubMed

    Song, Luna; Zhang, Yonghua; Li, Junling; Gao, Qiang; Qi, Honglan; Zhang, Chengxiao

    2016-04-01

    An enzyme-free signal amplification-based assay for DNA detection was developed using fluorescent hairpin DNA probes coupled with hybridization chain reaction (HCR). The hairpin DNAs were designed to contain abasic sites in the stem moiety. Non-covalent labeling of the hairpin DNAs was achieved when a fluorescent ligand was bound to the abasic sites through hydrogen bonding with the orphan cytosine present on the complementary strand, accompanied by quench of ligand fluorescence. As a result, the resultant probes, the complex formed between the hairpin DNA and ligand, showed almost no fluorescence. Upon hybridization with target DNA, the probe underwent a dehybridization of the stem moiety containing an abasic site. The release of ligand from the abasic site to the solution resulted in an effective fluorescent enhancement, which can be used as a signal. Compared with a sensing system without HCR, a 20-fold increase in the sensitivity was achieved using the sensing system with HCR. The fluorescent intensity of the sensing system increased with the increase in target DNA concentration from 0.5 nM to 100 nM. A single mismatched target ss-DNA could be effectively discriminated from complementary target DNA. Genotyping of a G/C single-nucleotide polymorphism of polymerase chain reaction (PCR) products was successfully demonstrated with the sensing system. Therefore, integrating HCR strategy with non-covalent labeling of fluorescent hairpin DNA probes provides a sensitive and cost-effective DNA assay.

  4. Advanced Molecular Probes for Sequence-Specific DNA Recognition

    NASA Astrophysics Data System (ADS)

    Bertucci, Alessandro; Manicardi, Alex; Corradini, Roberto

    DNA detection can be achieved using the Watson-Crick base pairing with oligonucleotides or oligonucleotide analogs, followed by generation of a physical or chemical signal coupled with a transducer device. The nature of the probe is an essential feature which determines the performances of the sensing device. Many synthetic processes are presently available for "molecular engineering" of DNA probes, enabling label-free and PCR-free detection to be performed. Furthermore, many DNA analogs with improved performances are available and are under development; locked nucleic acids (LNA), peptide nucleic acids (PNA) and their analogs, morpholino oligonucleotides (MO) and other modified probes have shown improved properties of affinity and selectivity in target recognition compared to those of simple DNA probes. The performances of these probes in sensing devices, and the requirements for detection of unamplified DNA will be discussed in this chapter. Chemistry and architectures for conjugation of probes to reporter units, surfaces and nanostructures will also be discussed. Examples of probes used in ultrasensitive detection of unamplified DNA are listed.

  5. Eddy Current Flexible Probes for Complex Geometries

    NASA Astrophysics Data System (ADS)

    Gilles-Pascaud, C.; Decitre, J. M.; Vacher, F.; Fermon, C.; Pannetier, M.; Cattiaux, G.

    2006-03-01

    The inspection of materials used in aerospace, nuclear or transport industry is a critical issue for the safety of components exposed to stress or/and corrosion. The industry claims for faster, more sensitive, and more flexible techniques. Technologies based on Eddy Current (EC) flexible array probe and magnetic sensor with high sensitivity such as giant magneto-resistance (GMR) could be a good solution to detect surface-breaking flaws in complex shaped surfaces. The CEA has recently developed, with support from the French Institute for Radiological Protection and Nuclear Safety (IRSN), a flexible array probe based on micro-coils etched on Kapton. The probe's performances have been assessed for the inspection of reactor residual heat removal pipes, and for aeronautical applications within the framework of the European project VERDICT. The experimental results confirm the very good detection of narrow cracks on plane and curve shaped surfaces. This paper also describes the recent progresses concerning the application of GMR sensors to EC testing, and the results obtained for the detection of small surface breaking flaws.

  6. Complex reconfiguration of DNA nanostructures.

    PubMed

    Wei, Bryan; Ong, Luvena L; Chen, Jeffrey; Jaffe, Alexander S; Yin, Peng

    2014-07-14

    Nucleic acids have been used to create diverse synthetic structural and dynamic systems. Toehold-mediated strand displacement has enabled the construction of sophisticated circuits, motors, and molecular computers. Yet it remains challenging to demonstrate complex structural reconfiguration in which a structure changes from a starting shape to another arbitrarily prescribed shape. To address this challenge, we have developed a general structural-reconfiguration method that utilizes the modularly interconnected architecture of single-stranded DNA tile and brick structures. The removal of one component strand reveals a newly exposed toehold on a neighboring strand, thus enabling us to remove regions of connected component strands without the need to modify the strands with predesigned external toeholds. By using this method, we reconfigured a two-dimensional rectangular DNA canvas into diverse prescribed shapes. We also used this method to reconfigure a three-dimensional DNA cuboid. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Combined in vitro transcription and reverse transcription to amplify and label complex synthetic oligonucleotide probe libraries.

    PubMed

    Murgha, Yusuf; Beliveau, Brian; Semrau, Kassandra; Schwartz, Donald; Wu, Chao-Ting; Gulari, Erdogan; Rouillard, Jean-Marie

    2015-06-01

    Oligonucleotide microarrays allow the production of complex custom oligonucleotide libraries for nucleic acid detection-based applications such as fluorescence in situ hybridization (FISH). We have developed a PCR-free method to make single-stranded DNA (ssDNA) fluorescent probes through an intermediate RNA library. A double-stranded oligonucleotide library is amplified by transcription to create an RNA library. Next, dye- or hapten-conjugate primers are used to reverse transcribe the RNA to produce a dye-labeled cDNA library. Finally the RNA is hydrolyzed under alkaline conditions to obtain the single-stranded fluorescent probes library. Starting from unique oligonucleotide library constructs, we present two methods to produce single-stranded probe libraries. The two methods differ in the type of reverse transcription (RT) primer, the incorporation of fluorescent dye, and the purification of fluorescent probes. The first method employs dye-labeled reverse transcription primers to produce multiple differentially single-labeled probe subsets from one microarray library. The fluorescent probes are purified from excess primers by oligonucleotide-bead capture. The second method uses an RNA:DNA chimeric primer and amino-modified nucleotides to produce amino-allyl probes. The excess primers and RNA are hydrolyzed under alkaline conditions, followed by probe purification and labeling with amino-reactive dyes. The fluorescent probes created by the combination of transcription and reverse transcription can be used for FISH and to detect any RNA and DNA targets via hybridization.

  8. Sensitive and specific DNA probe for detection of Plasmodium falciparum.

    PubMed Central

    Enea, V

    1986-01-01

    The isolation and some characteristics of a very sensitive DNA probe for the detection of Plasmodium falciparum are described. The probe is species specific and represents a large, albeit variable, fraction of the genome in all the strains tested. In addition to its immediate practical uses for the detection and quantitation of parasites, the probe defines an interesting family of repeated sequences. Images PMID:3023833

  9. Commercial DNA Probes for Mycobacteria Incorrectly Identify a Number of Less Frequently Encountered Species▿ †

    PubMed Central

    Tortoli, Enrico; Pecorari, Monica; Fabio, Giuliana; Messinò, Massimino; Fabio, Anna

    2010-01-01

    Although commercially available DNA probes for identification of mycobacteria have been investigated with large numbers of strains, nothing is known about the ability of these probes to identify less frequently encountered species. We analyzed, with INNO LiPA MYCOBACTERIA (Innogenetics) and with GenoType Mycobacterium (Hein), 317 strains, belonging to 136 species, 61 of which had never been assayed before. INNO LiPA misidentified 20 taxa, the majority of which cross-reacted with the probes specific for Mycobacterium fortuitum and the Mycobacterium avium-Mycobacterium intracellulare-Mycobacterium scrofulaceum group. GenoType misidentified 28 taxa, most of which cross-reacted with M. intracellulare and M. fortuitum probes; furthermore, eight species were not recognized as members of the genus Mycobacterium. Among 54 strains investigated with AccuProbe (Gen-Probe), cross-reactions were detected for nine species, with the probes aiming at the M. avium complex being most involved in cross-reactions. PMID:19906898

  10. Evaluation of reformulated chemiluminescent DNA probe (AccuProbe) for culture identification of Mycobacterium kansasii.

    PubMed Central

    Tortoli, E; Simonetti, M T; Lavinia, F

    1996-01-01

    A panel of 104 isolates belonging to the species Mycobacterium kansasii and 78 mycobacterial isolates belonging to other species was tested in parallel with the present commercially available DNA probe (AccuProbe; Gen-Probe) and with a new probe just developed by the same manufacturer. While the old version of the probe confirmed the previously reported low sensitivity (only 59% of the M. kansasii isolates reacted), the new one was 100% sensitive. Only two non-M. kansasii strains, both M. gastri isolates, gave false-positive hybridization results. PMID:8897195

  11. Structural Complexity of DNA Sequence

    PubMed Central

    Liou, Cheng-Yuan; Cheng, Wei-Chen; Tsai, Huai-Ying

    2013-01-01

    In modern bioinformatics, finding an efficient way to allocate sequence fragments with biological functions is an important issue. This paper presents a structural approach based on context-free grammars extracted from original DNA or protein sequences. This approach is radically different from all those statistical methods. Furthermore, this approach is compared with a topological entropy-based method for consistency and difference of the complexity results. PMID:23662161

  12. "DNA traffic lights": concept of wavelength-shifting DNA probes and application in an aptasensor.

    PubMed

    Holzhauser, Carolin; Wagenknecht, Hans-Achim

    2012-05-29

    Add it and see it: The concept of "DNA traffic lights" for wavelength-shifting DNA probes has a great potential in the application of biosensors, for example, in DNA aptamers. A visual color change in the DNA aptasensor fluorescence from green to red occurs after specific target binding. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Molecular probe for identification of Trichomonas vaginalis DNA.

    PubMed Central

    Rubino, S; Muresu, R; Rappelli, P; Fiori, P L; Rizzu, P; Erre, G; Cappuccinelli, P

    1991-01-01

    Trichomoniasis is one of the most widespread sexually transmitted diseases in the world. Diagnosis can be achieved by several methods, such as direct microscopic observation of vaginal discharge, cell culture, and immunological techniques. A 2.3-kb Trichomonas vaginalis DNA fragment present in strains from diverse geographic areas was cloned and used as a probe to detect T. vaginalis DNA in vaginal discharge by a dot blot hybridization technique. This probe was specific for T. vaginalis DNA. It recognized strains from two regions in Italy (Sardinia, Piemonte) and from Mozambique (Africa). In addition, our probe did not cross-react with bacterial (Escherichia coli, Enterococcus spp., group B streptococci, Gardnerella vaginalis, Neisseria gonorrhoeae, Chlamydia trachomatis, and Lactobacillus spp.), viral (herpes simplex virus type 2), fungal (Candida albicans), protozoan (Entamoeba histolytica, Giardia lamblia, Plasmodium falciparum, Leishmania major, and Leishmania infantum), or human nucleic acids. The probe reacted with Pentatrichomonas hominis and Trichomonas foetus. The limit signal recognized by our probe corresponded to the DNA of 200 T. vaginalis isolates. The 2.3-kb probe was used in a clinical analysis of 98 samples. Of these, 20 samples were found to be positive both with the probe and by cell culture, and only 14 of these were positive by a standard wet mount method. Images PMID:1890171

  14. Detection of toxoplasma gondii with a DNA molecular beacon probe

    NASA Astrophysics Data System (ADS)

    Xu, Shichao; Yao, Cuicui; Wei, Shuoming; Zhang, Jimei; Sun, Bo; Zheng, Guo; Han, Qing; Hu, Fei; Zhou, Hongming

    2008-12-01

    Toxoplasma gondii is a microscopic parasite that may infect humans, so there is an increasing concern on the early detection of latent Toxoplasma gondii infection in recent years. We currently report a rapid and sensitive method for Toxoplasma gondii based on molecular beacon (MB) probe. The probe based on fluorescence resonance energy transfer (FRET) with a stem-loop DNA oligonucleotide was labeled with CdTe/ZnS quantum dots (energy donor) at 5' end and BHQ-2 (energy acceptor) at 3' end, respectively. The probe was synthesized in PBS buffer at pH 8.2, room temperature for 24 h. Then target DNA was injected under the condition of 37°C, hybridization for 2 h, in Tris-HCl buffer. The data from fluorescence spectrum (FS) showed that ca 65% of emitted fluorescence was quenched, and about 50% recovery of fluorescence intensity was observed after adding target DNA, which indicated that the target DNA was successfully detected by MB probe. The detecting limitation was determined as ca 5 nM. Moreover, specificity of the probe was investigated by adding target DNA with one-base-pair mismatch, the low fluorescence recovery indicated the high specificity. The results showed that the current sensing probe will be a useful and convenient tool in Toxoplasma gondii early detection.

  15. Direct electronic probing of biological complexes formation

    NASA Astrophysics Data System (ADS)

    Macchia, Eleonora; Magliulo, Maria; Manoli, Kyriaki; Giordano, Francesco; Palazzo, Gerardo; Torsi, Luisa

    2014-10-01

    Functional bio-interlayer organic field - effect transistors (FBI-OFET), embedding streptavidin, avidin and neutravidin as bio-recognition element, have been studied to probe the electronic properties of protein complexes. The threshold voltage control has been achieved modifying the SiO2 gate diaelectric surface by means of the deposition of an interlayer of bio-recognition elements. A threshold voltage shift with respect to the unmodified dielectric surface toward more negative potential values has been found for the three different proteins, in agreement with their isoelectric points. The relative responses in terms of source - drain current, mobility and threshold voltage upon exposure to biotin of the FBI-OFET devices have been compared for the three bio-recognition elements.

  16. Fluorescent cyanine probe for DNA detection and cellular imaging

    NASA Astrophysics Data System (ADS)

    Zheng, Yong-Chao; Zheng, Mei-Ling; Zhao, Zhen-Sheng; Duan, Xuan-Ming

    2014-03-01

    In our study, two carbazole-based cyanines, 3,6-bis[2-(1-methylpyridinium)vinyl]-9-methyl carbazole diiodide (A) and 6,6'-bis[2-(1-methylpyridinium)vinyl]-bis(9-methyl-carbazol-3yl)methane diiodide (B) were synthesized and employed as light-up probes for DNA and cell imaging. Both of the cyanine probes possess a symmetric structure and bis-cationic center. The obvious induced circular dichroism signals in circular dichroism spectra reveal that the molecules can specifically interact with DNA. Strong fluorescence enhancement is observed when these two cyanines are bound to DNA. These cyanine probes show high binding affinity to oligonucleotides but different binding preferences to various secondary structures. Confocal microscopy images of fixed cell stained by the probes exhibit strong brightness and high contrast in nucleus with a very low cytoplasmic background.

  17. Platinated DNA oligonucleotides: new probes forming ultrastable conjugates with graphene oxide

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Liu, Juewen

    2014-05-01

    Metal containing polymers have expanded the property of polymers by involving covalently associated metal complexes. DNA is a special block copolymer. While metal ions are known to influence DNA, little is explored on its polymer property when strong metal complexes are associated. In this work, we study cisplatin modified DNA as a new polymer and probe. Out of the complexes formed between cisplatin-A15, HAuCl4-A15, Hg2+-T15 and Ag+-C15, only the cisplatin adduct is stable under the denaturing gel electrophoresis condition. Each Pt-nucleobase bond gives a positive charge and thus makes DNA a zwitterionic polymer. This allows ultrafast adsorption of DNA by graphene oxide (GO) and the adsorbed complex is highly stable. Non-specific DNA, protein, surfactants and thiolated compounds cannot displace platinated DNA from GO, while non-modified DNA is easily displaced in most cases. The stable GO/DNA conjugate is further tested for surface hybridization. This is the first demonstration of using metallated DNA as a polymeric material for interfacing with nanoscale materials.Metal containing polymers have expanded the property of polymers by involving covalently associated metal complexes. DNA is a special block copolymer. While metal ions are known to influence DNA, little is explored on its polymer property when strong metal complexes are associated. In this work, we study cisplatin modified DNA as a new polymer and probe. Out of the complexes formed between cisplatin-A15, HAuCl4-A15, Hg2+-T15 and Ag+-C15, only the cisplatin adduct is stable under the denaturing gel electrophoresis condition. Each Pt-nucleobase bond gives a positive charge and thus makes DNA a zwitterionic polymer. This allows ultrafast adsorption of DNA by graphene oxide (GO) and the adsorbed complex is highly stable. Non-specific DNA, protein, surfactants and thiolated compounds cannot displace platinated DNA from GO, while non-modified DNA is easily displaced in most cases. The stable GO/DNA conjugate

  18. Combining ligation reaction and capillary gel electrophoresis to obtain reliable long DNA probes.

    PubMed

    García-Cañas, Virginia; Mondello, Monica; Cifuentes, Alejandro

    2011-05-01

    New DNA amplification methods are continuously developed for sensitive detection and quantification of specific DNA target sequences for, e.g. clinical, environmental or food applications. These new applications often require the use of long DNA oligonucleotides as probes for target sequences hybridization. Depending on the molecular technique, the length of DNA probes ranges from 40 to 450 nucleotides, solid-phase chemical synthesis being the strategy generally used for their production. However, the fidelity of chemical synthesis of DNA decreases for larger DNA probes. Defects in the oligonucleotide sequence result in the loss of hybridization efficiency, affecting the sensitivity and selectivity of the amplification method. In this work, an enzymatic procedure has been developed as an alternative to solid-phase chemical synthesis for the production of long oligonucleotides. The enzymatic procedure for probe production was based on ligation of short DNA sequences. Long DNA probes were obtained from smaller oligonucleotides together with a short sequence that acts as bridge stabilizing the molecular complex for DNA ligation. The ligation reactions were monitored by capillary gel electrophoresis with laser-induced fluorescence detection (CGE-LIF) using a bare fused-silica capillary. The capillary gel electrophoresis-LIF method demonstrated to be very useful and informative for the characterization of the ligation reaction, providing important information about the nature of some impurities, as well as for the fine optimization of the ligation conditions (i.e. ligation cycles, oligonucleotide and enzyme concentration). As a result, the yield and quality of the ligation product were highly improved. The in-lab prepared DNA probes were used in a novel multiplex ligation-dependent genome amplification (MLGA) method for the detection of genetically modified maize in samples. The great possibilities of the whole approach were demonstrated by the specific and sensitive

  19. Superior structure stability and selectivity of hairpin nucleic acid probes with an l-DNA stem

    PubMed Central

    Kim, Youngmi; Yang, Chaoyong James; Tan, Weihong

    2007-01-01

    Hairpin nucleic acid probes have been highly useful in many areas, especially for intracellular and in vitro nucleic acid detection. The success of these probes can be attributed to the ease with which their conformational change upon target binding can be coupled to a variety of signal transduction mechanisms. However, false-positive signals arise from the opening of the hairpin due mainly to thermal fluctuations and stem invasions. Stem invasions occur when the stem interacts with its complementary sequence and are especially problematic in complex biological samples. To address the problem of stem invasions in hairpin probes, we have created a modified molecular beacon that incorporates unnatural enantiomeric l-DNA in the stem and natural d-DNA or 2′-O-Me-modified RNA in the loop. l-DNA has the same physical characteristics as d-DNA except that l-DNA cannot form stable duplexes with d-DNA. Here we show that incorporating l-DNA into the stem region of a molecular beacon reduces intra- and intermolecular stem invasions, increases the melting temperature, improves selectivity to its target, and leads to enhanced bio-stability. Our results suggest that l-DNA is useful for designing functional nucleic acid probes especially for biological applications. PMID:17959649

  20. [Cu(phen)2](2+) acts as electrochemical indicator and anchor to immobilize probe DNA in electrochemical DNA biosensor.

    PubMed

    Yang, Linlin; Li, Xiaoyu; Li, Xi; Yan, Songling; Ren, Yinna; Wang, Mengmeng; Liu, Peng; Dong, Yulin; Zhang, Chaocan

    2016-01-01

    We demonstrate a novel protocol for sensitive in situ label-free electrochemical detection of DNA hybridization based on copper complex ([Cu(phen)2](2+), where phen = 1,10-phenanthroline) and graphene (GR) modified glassy carbon electrode. Here, [Cu(phen)2](2+) acted advantageously as both the electrochemical indicator and the anchor for probe DNA immobilization via intercalative interactions between the partial double helix structure of probe DNA and the vertical aromatic groups of phen. GR provided large density of docking site for probe DNA immobilization and increased the electrical conductivity ability of the electrode. The modification procedure was monitored by electrochemical impedance spectroscopy (EIS). Square-wave voltammetry (SWV) was used to explore the hybridization events. Under the optimal conditions, the designed electrochemical DNA biosensor could effectively distinguish different mismatch degrees of complementary DNA from one-base mismatch to noncomplementary, indicating that the biosensor had high selectivity. It also exhibited a reasonable linear relationship. The oxidation peak currents of [Cu(phen)2](2+) were linear with the logarithm of the concentrations of complementary target DNA ranging from 1 × 10(-12) to 1 × 10(-6) M with a detection limit of 1.99 × 10(-13) M (signal/noise = 3). Moreover, the stability of the electrochemical DNA biosensor was also studied.

  1. Probing the elastic limit of DNA bending.

    PubMed

    Le, Tung T; Kim, Harold D

    2014-01-01

    Sharp bending of double-stranded DNA (dsDNA) plays an essential role in genome structure and function. However, the elastic limit of dsDNA bending remains controversial. Here, we measured the opening rates of small dsDNA loops with contour lengths ranging between 40 and 200 bp using single-molecule Fluorescence Resonance Energy Transfer. The relationship of loop lifetime to loop size revealed a critical transition in bending stress. Above the critical loop size, the loop lifetime changed with loop size in a manner consistent with elastic bending stress, but below it, became less sensitive to loop size, indicative of softened dsDNA. The critical loop size increased from ∼ 60 bp to ∼ 100 bp with the addition of 5 mM magnesium. We show that our result is in quantitative agreement with the kinkable worm-like chain model, and furthermore, can reproduce previously reported looping probabilities of dsDNA over the range between 50 and 200 bp. Our findings shed new light on the energetics of sharply bent dsDNA.

  2. Utilizing Gold Nanoparticle Probes to Visually Detect DNA Methylation

    NASA Astrophysics Data System (ADS)

    Chen, Kui; Zhang, Mingyi; Chang, Ya-Nan; Xia, Lin; Gu, Weihong; Qin, Yanxia; Li, Juan; Cui, Suxia; Xing, Gengmei

    2016-06-01

    The surface plasmon resonance (SPR) effect endows gold nanoparticles (GNPs) with the ability to visualize biomolecules. In the present study, we designed and constructed a GNP probe to allow the semi-quantitative analysis of methylated tumor suppressor genes in cultured cells. To construct the probe, the GNP surfaces were coated with single-stranded DNA (ssDNA) by forming Au-S bonds. The ssDNA contains a thiolated 5'-end, a regulatory domain of 12 adenine nucleotides, and a functional domain with absolute pairing with methylated p16 sequence (Met- p16). The probe, paired with Met- p16, clearly changed the color of aggregating GNPs probe in 5 mol/L NaCl solution. Utilizing the probe, p16 gene methylation in HCT116 cells was semi-quantified. Further, the methylation of E-cadherin, p15, and p16 gene in Caco2, HepG2, and HCT116 cell lines were detected by the corresponding probes, constructed with three domains. This simple and cost-effective method was useful for the diagnosis of DNA methylation-related diseases.

  3. Reporter molecules as probes of DNA conformation: structure of a crystalline complex containing 2-methyl-4-nitro-aniline ethylene dimethylammonium hydrobromide - 5-iodocytidylyl(3'-5')guanosine

    SciTech Connect

    Vyas, N.K.; Nyas, M.N.; Jain, S.C.; Sobell, H.M.

    1984-05-31

    2-Methyl-4-nitroaniline ethylene dimethylammonium hydrobromide forms a crystalline complex with the self-complementary dinucleoside monophosphate, 5-iodocytidylyl(3'-5')guanosine. The crystals are tetragonal, with a = b = 32.192 A and c = 23.964 A, space group P4/sub 3/2/sub 1/2. The structure has been solved to atomic resolution by Patterson and Fourier methods, and refined by full matrix least squares. 5-Iodocytidylyl(3'-5')guanosine molecules are held together in pairs through Watson-Crick base-pairing, forming an antiparallel duplex structure. Nitroaniline molecules stack above and below guanine-cytosine pairs in this duplex structure. In addition, a third nitroaniline molecule stacks on one of the other two nitroaniline molecules. The asymmetric unit contains two 5-iodocytidylyl(3'-5')guanosine molecules, three nitroaniline molecules, one bromide ion and thirty-one water molecules, at total of 160 atoms. Details of the structure are described. 15 references, 4 figures, 2 tables.

  4. Probing the mechanical unzipping of DNA

    NASA Astrophysics Data System (ADS)

    Voulgarakis, Nikos K.; Bishop, Alan R.; Rasmussen, Kim O.

    2006-03-01

    Recent advances in single-molecule force spectroscopy have made a systematic study of local melting in DNA possible. This provide new insight into important biological processes as replication and transcription. In this work, we present an extensive study of the micromechanical unzipping of DNA in the framework of the Peyrard-Bishop-Dauxois (PBD) model. The force required to separate the doubled strand is derived through analysis of the force-extension curve, while an estimation of the nucleation bubble size of the unzipping process is obtained by the distribution of the rapture force. Our findings are in very good agreement with existing experimental results; for example the force-temperature phase diagram obtained by the PBD model agrees excellently with recent constant-force experimental measurements of the lambda-phage DNA. Fundamental differences between the in vivo and vitro DNA unzipping, as predicted by the PBD model, are also discussed.

  5. DNA clustering and genome complexity.

    PubMed

    Dios, Francisco; Barturen, Guillermo; Lebrón, Ricardo; Rueda, Antonio; Hackenberg, Michael; Oliver, José L

    2014-12-01

    Early global measures of genome complexity (power spectra, the analysis of fluctuations in DNA walks or compositional segmentation) uncovered a high degree of complexity in eukaryotic genome sequences. The main evolutionary mechanisms leading to increases in genome complexity (i.e. gene duplication and transposon proliferation) can all potentially produce increases in DNA clustering. To quantify such clustering and provide a genome-wide description of the formed clusters, we developed GenomeCluster, an algorithm able to detect clusters of whatever genome element identified by chromosome coordinates. We obtained a detailed description of clusters for ten categories of human genome elements, including functional (genes, exons, introns), regulatory (CpG islands, TFBSs, enhancers), variant (SNPs) and repeat (Alus, LINE1) elements, as well as DNase hypersensitivity sites. For each category, we located their clusters in the human genome, then quantifying cluster length and composition, and estimated the clustering level as the proportion of clustered genome elements. In average, we found a 27% of elements in clusters, although a considerable variation occurs among different categories. Genes form the lowest number of clusters, but these are the longest ones, both in bp and the average number of components, while the shortest clusters are formed by SNPs. Functional and regulatory elements (genes, CpG islands, TFBSs, enhancers) show the highest clustering level, as compared to DNase sites, repeats (Alus, LINE1) or SNPs. Many of the genome elements we analyzed are known to be composed of clusters of low-level entities. In addition, we found here that the clusters generated by GenomeCluster can be in turn clustered into high-level super-clusters. The observation of 'clusters-within-clusters' parallels the 'domains within domains' phenomenon previously detected through global statistical methods in eukaryotic sequences, and reveals a complex human genome landscape dominated

  6. Mechanisms of small molecule–DNA interactions probed by single-molecule force spectroscopy

    PubMed Central

    Almaqwashi, Ali A.; Paramanathan, Thayaparan; Rouzina, Ioulia; Williams, Mark C.

    2016-01-01

    There is a wide range of applications for non-covalent DNA binding ligands, and optimization of such interactions requires detailed understanding of the binding mechanisms. One important class of these ligands is that of intercalators, which bind DNA by inserting aromatic moieties between adjacent DNA base pairs. Characterizing the dynamic and equilibrium aspects of DNA-intercalator complex assembly may allow optimization of DNA binding for specific functions. Single-molecule force spectroscopy studies have recently revealed new details about the molecular mechanisms governing DNA intercalation. These studies can provide the binding kinetics and affinity as well as determining the magnitude of the double helix structural deformations during the dynamic assembly of DNA–ligand complexes. These results may in turn guide the rational design of intercalators synthesized for DNA-targeted drugs, optical probes, or integrated biological self-assembly processes. Herein, we survey the progress in experimental methods as well as the corresponding analysis framework for understanding single molecule DNA binding mechanisms. We discuss briefly minor and major groove binding ligands, and then focus on intercalators, which have been probed extensively with these methods. Conventional mono-intercalators and bis-intercalators are discussed, followed by unconventional DNA intercalation. We then consider the prospects for using these methods in optimizing conventional and unconventional DNA-intercalating small molecules. PMID:27085806

  7. DNA hybridization probe for clinical diagnosis of Entamoeba histolytica.

    PubMed Central

    Samuelson, J; Acuna-Soto, R; Reed, S; Biagi, F; Wirth, D

    1989-01-01

    As an alternative to microscopic identification of Entamoeba histolytica parasites isolated from stool, a sensitive and species-specific DNA hybridization probe was made for rapid diagnosis of E. histolytica parasites in clinical samples directly applied to nylon membranes. The DNA hybridization probe was made by screening a genomic library of a virulent HM-1:IMSS strain of E. histolytica to detect recombinant plasmids containing highly repeated parasite DNA sequences. Four plasmid clones that reacted across Entamoeba species coded for highly repeated rRNA genes of E. histolytica. Four other plasmid clones were E. histolytica specific in that they bound to four axenized and nine xenic strains of E. histolytica but did not recognize closely related E. histolytica-like Laredo, Entamoeba moshkovskii, or Entamoeba invadens parasites. The diagnostic clones detected as few as eight cultured amoebae and did not distinguish between pathogenic and nonpathogenic zymodemes of E. histolytica. The diagnostic clones were sequenced and contained 145-base-pair sequences which appear to be tandemly repeated in the genome. No stable transcript which is homologous to the diagnostic DNA was detected. In a study of stool samples from Mexico City shown by microscopy to contain E. histolytica, Entamoeba coli, Giardia lamblia, Endolimax nana, Trichuris trichiuria, and Chilomastix mesnili parasites, the DNA hybridization probe demonstrated a sensitivity of 1.0 and a specificity of 0.93. We conclude that the DNA hybridization probe can be used for rapid and accurate diagnosis of E. histolytica parasites. Images PMID:2542361

  8. Colorimetric DNA detection of transgenic plants using gold nanoparticles functionalized with L-shaped DNA probes

    NASA Astrophysics Data System (ADS)

    Nourisaeid, Elham; Mousavi, Amir; Arpanaei, Ayyoob

    2016-01-01

    In this study, a DNA colorimetric detection system based on gold nanoparticles functionalized with L-shaped DNA probes was prepared and evaluated. We investigated the hybridization efficiency of the L-shaped probes and studied the effect of nanoparticle size and the L-shaped DNA probe length on the performance of the as-prepared system. Probes were attached to the surface of gold nanoparticles using an adenine sequence. An optimal sequence of 35S rRNA gene promoter from the cauliflower mosaic virus, which is frequently used in the development of transgenic plants, and the two complementary ends of this gene were employed as model target strands and probe molecules, respectively. The spectrophotometric properties of the as-prepared systems indicated that the large NPs show better changes in the absorption spectrum and consequently present a better performance. The results of this study revealed that the probe/Au-NPs prepared using a vertical spacer containing 5 thymine oligonucleotides exhibited a stronger spectrophotometric response in comparison to that of larger probes. These results in general indicate the suitable performance of the L-shaped DNA probe-functionalized Au-NPs, and in particular emphasize the important role of the gold nanoparticle size and length of the DNA probes in enhancing the performance of such a system.

  9. Probing the microscopic flexibility of DNA from melting temperatures

    NASA Astrophysics Data System (ADS)

    Weber, Gerald; Essex, Jonathan W.; Neylon, Cameron

    2009-10-01

    The microscopic flexibility of DNA is a key ingredient for understanding its interaction with proteins and drugs but is still poorly understood and technically challenging to measure. Several experimental methods probe very long DNA samples, but these miss local flexibility details. Others mechanically disturb or modify short molecules and therefore do not obtain flexibility properties of unperturbed and pristine DNA. Here, we show that it is possible to extract very detailed flexibility information about unmodified DNA from melting temperatures with statistical physics models. We were able to retrieve, from published melting temperatures, several established flexibility properties such as the presence of highly flexible TATA regions of genomic DNA and support recent findings that DNA is very flexible at short length scales. New information about the nanoscale Na+ concentration dependence of DNA flexibility was determined and we show the key role of ApT and TpA steps when it comes to ion-dependent flexibility and melting temperatures.

  10. DNA fingerprints of farm animals generated by microsatellite and minisatellite DNA probes.

    PubMed

    Haberfeld, A; Cahaner, A; Yoffe, O; Plotsky, Y; Hillel, J

    1991-01-01

    A multi-locus DNA probe, R18.1, derived from a bovine genomic library, detected DNA fingerprints of highly polymorphic loci in hybridization to genomic DNA from poultry and sheep, and of moderate polymorphic loci in cattle and human DNA. The average numbers of detected bands in chickens and sheep were 27.8 and 21.4, and the average band sharing levels were 0.25 and 0.33, respectively. In hybridization to cattle and human DNA, the results were less polymorphic; nevertheless, individual identification is feasible using probe R18.1. The results obtained by R18.1 were compared to results obtained by Jeffreys minisatellite probe 33.6 and two microsatellite oligonucleotides, (GT)12 and (GTG)5. The total number of detected loci using probes R18.1 and 33.6 were estimated in chickens through family analysis of broilers and the maximal number of detectable loci was calculated.

  11. DNA-Templated Aptamer Probe for Identification of Target Proteins.

    PubMed

    Bi, Wenjing; Bai, Xue; Gao, Fan; Lu, Congcong; Wang, Ye; Zhai, Guijin; Tian, Shanshan; Fan, Enguo; Zhang, Yukui; Zhang, Kai

    2017-04-04

    Using aptamers as molecular probes for biomarker discovery has attracted a great deal of attention in recent years. However, it is still a big challenge to accurately identify those protein markers that are targeted by aptamers under physiological conditions due to weak and noncovalent aptamer-protein interactions. Herein, we developed an aptamer based dual-probe using DNA-templated chemistry and photo-cross-linking technique for the identification of target proteins that are recognized by aptamers. In this system, the aptamer was modified by a single strand DNA as binding probe (BP), and another complementary DNA with a photoactive group and reporter group was modified as capture probe (CP). BP was first added to recruit the binding protein via aptamer recognition, and subsequently CP was added to let the cross-linker close to the target via DNA self-assembly, and then a covalent bond between CP and its binding protein was achieved via photo-cross-linking reaction. The captured protein can be detected or affinity enrichment using the tag, finally identified by MS. By use of lysozyme as a model substrate, we demonstrated that this multiple functionalized probe can be utilized for a successful labeling and enrichment of target protein even under a complicated and real environment. Thus, a novel method to precisely identify the aptamer-targeted proteins has been developed and it has a potential application for discovery of aptamer-based biomarkers.

  12. Array-based electrical detection of DNA with nanoparticle probes.

    PubMed

    Park, So-Jung; Taton, T Andrew; Mirkin, Chad A

    2002-02-22

    A DNA array detection method is reported in which the binding of oligonucleotides functionalized with gold nanoparticles leads to conductivity changes associated with target-probe binding events. The binding events localize gold nanoparticles in an electrode gap; silver deposition facilitated by these nanoparticles bridges the gap and leads to readily measurable conductivity changes. An unusual salt concentration-dependent hybridization behavior associated with these nanoparticle probes was exploited to achieve selectivity without a thermal-stringency wash. Using this method, we have detected target DNA at concentrations as low as 500 femtomolar with a point mutation selectivity factor of approximately 100,000:1.

  13. Evolving DNA motifs to predict GeneChip probe performance

    PubMed Central

    Langdon, WB; Harrison, AP

    2009-01-01

    Background Affymetrix High Density Oligonuclotide Arrays (HDONA) simultaneously measure expression of thousands of genes using millions of probes. We use correlations between measurements for the same gene across 6685 human tissue samples from NCBI's GEO database to indicated the quality of individual HG-U133A probes. Low correlation indicates a poor probe. Results Regular expressions can be automatically created from a Backus-Naur form (BNF) context-free grammar using strongly typed genetic programming. Conclusion The automatically produced motif is better at predicting poor DNA sequences than an existing human generated RE, suggesting runs of Cytosine and Guanine and mixtures should all be avoided. PMID:19298675

  14. Mixed DNA/Oligo(ethylene glycol) Functionalized Gold Surface Improve DNA Hybridization in Complex Media

    SciTech Connect

    Lee,C.; Gamble, L.; Grainger, D.; Castner, D.

    2006-01-01

    Reliable, direct 'sample-to-answer' capture of nucleic acid targets from complex media would greatly improve existing capabilities of DNA microarrays and biosensors. This goal has proven elusive for many current nucleic acid detection technologies attempting to produce assay results directly from complex real-world samples, including food, tissue, and environmental materials. In this study, we have investigated mixed self-assembled thiolated single-strand DNA (ssDNA) monolayers containing a short thiolated oligo(ethylene glycol) (OEG) surface diluent on gold surfaces to improve the specific capture of DNA targets from complex media. Both surface composition and orientation of these mixed DNA monolayers were characterized with x-ray photoelectron spectroscopy (XPS) and near-edge x-ray absorption fine structure (NEXAFS). XPS results from sequentially adsorbed ssDNA/OEG monolayers on gold indicate that thiolated OEG diluent molecules first incorporate into the thiolated ssDNA monolayer and, upon longer OEG exposures, competitively displace adsorbed ssDNA molecules from the gold surface. NEXAFS polarization dependence results (followed by monitoring the N 1s{yields}{pi}* transition) indicate that adsorbed thiolated ssDNA nucleotide base-ring structures in the mixed ssDNA monolayers are oriented more parallel to the gold surface compared to DNA bases in pure ssDNA monolayers. This supports ssDNA oligomer reorientation towards a more upright position upon OEG mixed adlayer incorporation. DNA target hybridization on mixed ssDNA probe/OEG monolayers was monitored by surface plasmon resonance (SPR). Improvements in specific target capture for these ssDNA probe surfaces due to incorporation of the OEG diluent were demonstrated using two model biosensing assays, DNA target capture from complete bovine serum and from salmon genomic DNA mixtures. SPR results demonstrate that OEG incorporation into the ssDNA adlayer improves surface resistance to both nonspecific DNA and protein

  15. Isolation and characterization of DNA probes for human chromosome 21.

    PubMed

    Watkins, P C

    1990-01-01

    A coordinated effort to map and sequence the human genome has recently become a national priority. Chromosome 21, the smallest human chromosome accounting for less than 2% of the human genome, is an attractive model system for developing and evaluating genome mapping technology. Several strategies are currently being explored including the development of chromosome 21 libraries from somatic cell hybrids as reported here, the cloning of chromosome 21 in yeast artificial chromosomes (McCormick et al., 1989b), and the construction of chromosome 21 libraries using chromosome flow-sorting techniques (Fuscoe et al., 1989). This report describes the approaches used to identify DNA probes that are useful for mapping chromosome 21. Probes were successfully isolated from both phage and cosmid libraries made from two somatic cell hybrids that contain human chromosome 21 as the only human chromosome. The 15 cosmid clones from the WA17 library, reduced to cloned DNA sequences of an average size of 3 kb, total 525 kb of DNA which is approximately 1% of chromosome 21. From these clones, a set of polymorphic DNA markers that span the length of the long arm of chromosome 21 has been generated. All of the probes thus far analyzed from the WA17 libraries have been mapped to chromosome 21 both by physical and genetic mapping methods. It is therefore likely that the WA17 hybrid cell line contains human chromosome 21 as the only human component, in agreement with cytogenetic observation. The 153E7b cosmid libraries will provide an alternative source of cloned chromosome 21 DNA. Library screening techniques can be employed to obtain cloned DNA sequences from the same genetic loci of the two different chromosome 21s. Comparative analysis will allow direct estimation of DNA sequence variation for different regions of chromosome 21. Mapped DNA probes make possible the molecular analysis of chromosome 21 at a level of resolution not achievable by classical cytogenetic techniques (Graw et al

  16. DNA nanostructure-based imaging probes and drug carriers.

    PubMed

    Zhan, Pengfei; Jiang, Qiao; Wang, Zhen-Gang; Li, Na; Yu, Haiyin; Ding, Baoquan

    2014-09-01

    Self-assembled DNA nanostructures are well-defined nanoscale shapes, with uniform sizes, precise spatial addressability, and excellent biocompatibility. With these features, DNA nanostructures show great potential for biomedical applications; various DNA-based biomedical imaging probes or payload delivery carriers have been developed. In this review, we summarize the recent developments of DNA-based nanostructures as tools for diagnosis and cancer therapy. The biological effects that are brought about by DNA nanostructures are highlighted by in vitro and in vivo imaging, antitumor drug delivery, and immunostimulatory therapy. The challenges and perspectives of DNA nanostructures in the field of nanomedicine are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Rapid identification of veterinary-relevant Mycobacterium tuberculosis complex species using 16S rDNA, IS6110 and Regions of Difference-targeted dual-labelled hydrolysis probes.

    PubMed

    Costa, Pedro; Amaro, Ana; Ferreira, Ana S; Machado, Diana; Albuquerque, Teresa; Couto, Isabel; Botelho, Ana; Viveiros, Miguel; Inácio, João

    2014-12-01

    Members of the Mycobacterium tuberculosis complex (MTC) are causative agents of tuberculosis (TB) in both humans and animals. MTC species are genetically very similar but may differ in their epidemiology, namely geographic distribution and host preferences, virulence traits and antimicrobial susceptibility patterns. However, the conventional laboratory diagnosis does not routinely differentiate between the species of the MTC. In this work we describe a rapid and robust two-step five-target probe-based real-time PCR identification algorithm, based on genomic deletion analysis, to identify the MTC species most commonly associated with TB in livestock and other animals. The first step allows the confirmation of the cultures as MTC members, by targeting their IS6110 element, or as a mycobacterial species, if only a 16S rDNA product is detected in the duplex amplification reaction. If a MTC member is identified, the second amplification step allows the assessment of the presence or absence of the RD1, RD4 and RD9 genomic regions. The correspondent pattern allows us to infer the species of the isolate as M. tuberculosis (if all RDs are present), Mycobacterium caprae (if only RD1 and RD4 are present) and Mycobacterium bovis (if only RD1 is present). The identification algorithm developed presented an almost perfect agreement with the results of the routine bacteriological analysis, with a kappa coefficient of 0.970 (CI(P95%) 0.929-1.000). The assay is able to be adaptable to automation and implementation in the routine diagnostic framework of veterinary diagnostic laboratories, with a particular focus for reference laboratories. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Probing Minor Groove Hydrogen Bonding Interactions between RB69 DNA Polymerase and DNA

    SciTech Connect

    Xia, Shuangluo; Christian, Thomas D.; Wang, Jimin; Konigsberg, William H.

    2012-09-17

    Minor groove hydrogen bonding (HB) interactions between DNA polymerases (pols) and N3 of purines or O2 of pyrimidines have been proposed to be essential for DNA synthesis from results obtained using various nucleoside analogues lacking the N3 or O2 contacts that interfered with primer extension. Because there has been no direct structural evidence to support this proposal, we decided to evaluate the contribution of minor groove HB interactions with family B pols. We have used RB69 DNA pol and 3-deaza-2'-deoxyadenosine (3DA), an analogue of 2-deoxyadenosine, which has the same HB pattern opposite T but with N3 replaced with a carbon atom. We then determined pre-steady-state kinetic parameters for the insertion of dAMP opposite dT using primer/templates (P/T)-containing 3DA. We also determined three structures of ternary complexes with 3DA at various positions in the duplex DNA substrate. We found that the incorporation efficiency of dAMP opposite dT decreased 10{sup 2}-10{sup 3}-fold even when only one minor groove HB interaction was missing. Our structures show that the HB pattern and base pair geometry of 3DA/dT is exactly the same as those of dA/dT, which makes 3DA an optimal analogue for probing minor groove HB interactions between a DNA polymerase and a nucleobase. In addition, our structures provide a rationale for the observed 10{sup 2}-10{sup 3}-fold decrease in the rate of nucleotide incorporation. The minor groove HB interactions between position n-2 of the primer strand and RB69pol fix the rotomer conformations of the K706 and D621 side chains, as well as the position of metal ion A and its coordinating ligands, so that they are in the optinal orientation for DNA synthesis.

  19. Sub-diffusion and trapped dynamics of neutral and charged probes in DNA-protein coacervates

    NASA Astrophysics Data System (ADS)

    Arfin, Najmul; Yadav, Avinash Chand; Bohidar, H. B.

    2013-11-01

    The physical mechanism leading to the formation of large intermolecular DNA-protein complexes has been studied. Our study aims to explain the occurrence of fast coacervation dynamics at the charge neutralization point, followed by the appearance of smaller complexes and slower coacervation dynamics as the complex experiences overcharging. Furthermore, the electrostatic potential and probe mobility was investigated to mimic the transport of DNA / DNA-protein complex in a DNA-protein complex coacervate medium [N. Arfin and H. B. Bohidar, J. Phys. Chem. B 116, 13192 (2012)] by assigning neutral, negative, or positive charge to the probe particle. The mobility of the neutral probe was maximal at low matrix concentrations and showed random walk behavior, while its mobility ceased at the jamming concentration of c = 0.6, showing sub-diffusion and trapped dynamics. The positively charged probe showed sub-diffusive random walk followed by trapped dynamics, while the negatively charged probe showed trapping with occasional hopping dynamics at much lower concentrations. Sub-diffusion of the probe was observed in all cases under consideration, where the electrostatic interaction was used exclusively as the dominant force involved in the dynamics. For neutral and positive probes, the mean square displacement ⟨R2⟩ exhibits a scaling with time as ⟨R2⟩ ˜ tα, distinguishing random walk and trapped dynamics at α = 0.64 ± 0.04 at c = 0.12 and c = 0.6, respectively. In addition, the same scaling factors with the exponent β = 0.64 ± 0.04 can be used to distinguish random walk and trapped dynamics for the neutral and positive probes using the relation between the number of distinct sites visited by the probe, S(t), which follows the scaling, S(t) ˜ tβ/ln (t). Our results established the occurrence of a hierarchy of diffusion dynamics experienced by a probe in a dense medium that is either charged or neutral.

  20. Sub-diffusion and trapped dynamics of neutral and charged probes in DNA-protein coacervates

    SciTech Connect

    Arfin, Najmul; Yadav, Avinash Chand; Bohidar, H. B.

    2013-11-15

    The physical mechanism leading to the formation of large intermolecular DNA-protein complexes has been studied. Our study aims to explain the occurrence of fast coacervation dynamics at the charge neutralization point, followed by the appearance of smaller complexes and slower coacervation dynamics as the complex experiences overcharging. Furthermore, the electrostatic potential and probe mobility was investigated to mimic the transport of DNA / DNA-protein complex in a DNA-protein complex coacervate medium [N. Arfin and H. B. Bohidar, J. Phys. Chem. B 116, 13192 (2012)] by assigning neutral, negative, or positive charge to the probe particle. The mobility of the neutral probe was maximal at low matrix concentrations and showed random walk behavior, while its mobility ceased at the jamming concentration of c = 0.6, showing sub-diffusion and trapped dynamics. The positively charged probe showed sub-diffusive random walk followed by trapped dynamics, while the negatively charged probe showed trapping with occasional hopping dynamics at much lower concentrations. Sub-diffusion of the probe was observed in all cases under consideration, where the electrostatic interaction was used exclusively as the dominant force involved in the dynamics. For neutral and positive probes, the mean square displacement 〈R{sup 2}〉 exhibits a scaling with time as 〈R{sup 2}〉 ∼ t{sup α}, distinguishing random walk and trapped dynamics at α = 0.64 ± 0.04 at c = 0.12 and c = 0.6, respectively. In addition, the same scaling factors with the exponent β = 0.64 ± 0.04 can be used to distinguish random walk and trapped dynamics for the neutral and positive probes using the relation between the number of distinct sites visited by the probe, S(t), which follows the scaling, S(t) ∼ t{sup β}/ln (t). Our results established the occurrence of a hierarchy of diffusion dynamics experienced by a probe in a dense medium that is either charged or neutral.

  1. Synthesis of a new Ni-phenanthroline complex and its application as an electrochemical probe for detection of nucleic acid.

    PubMed

    Qiu, Bin; Guo, Longhua; Guo, Chunhua; Guo, Zhiyong; Lin, Zhenyu; Chen, Guonan

    2011-01-15

    A new DNA sensor using a nickel(II) phenanthroline complex ([Ni(phen)(2)PHPIP]·2ClO(4)) as the electrochemical probe was developed. The sensor is very sensitive and selective for calf thymus DNA (ctDNA) detection in aqueous medium. The Ni-phenanthroline probe was synthesized by a two-step preparation using p-hydroxy-phenylimidazo-1,10-phenanthroline (PHPIP) as the ligand and characterized with IR, UV and MS. Some interesting electrochemical properties of the Ni-complex and the interactions of the complex with ctDNA were reported. The calculated dynamics parameters of the electrode process indicate that there are obvious interactions between the probe and the ctDNA in aqueous solution. Under constant potential conditions, the redox current peak of the probe (Ni-complex) decreases obviously as the probe interacts/binds with ctDNAs. This unexpected electrochemical behavior may suggest that a new adduct through the binding of Ni-phenanthroline complex with ctDNA is formed electrochemically. By estimation, the binding ratio of the probe and ctDNA was found to be 1:1 with a binding constant β=4.29×10(5) mol L(-1) in aqueous solution at room temperature.

  2. Probe Microscopic Studies of DNA Molecules on Carbon Nanotubes

    PubMed Central

    Umemura, Kazuo; Izumi, Katsuki; Oura, Shusuke

    2016-01-01

    Hybrids of DNA and carbon nanotubes (CNTs) are promising nanobioconjugates for nanobiosensors, carriers for drug delivery, and other biological applications. In this review, nanoscopic characterization of DNA-CNT hybrids, in particular, characterization by scanning probe microscopy (SPM), is summarized. In many studies, topographical imaging by atomic force microscopy has been performed. However, some researchers have demonstrated advanced SPM operations in order to maximize its unique and valuable functions. Such sophisticated approaches are attractive and will have a significant impact on future studies of DNA-CNT hybrids. PMID:28335308

  3. DNA/DNA in situ hybridization with enzyme linked probes

    SciTech Connect

    Grillo, S.; Mosher, M.; Charles, P.; Henry, S.; Taub, F.

    1987-05-01

    A non-radioactive in situ nucleic acid hybridization method which requires no antibodies, haptens, avidin or biotin intermediateries is presented. Horseradish peroxidase (HRP) labeled nucleic acid probes are hybridized in situ for 2 hours or less, followed by brief washing of hybridized cells and the direct detection of in situ hybrids with diaminobenzidine (DAB). Application of this method to the detection of Human Papilloma Virus (HPV) in human cells is shown.

  4. Probing Nucleosome Stability with a DNA Origami Nanocaliper.

    PubMed

    Le, Jenny V; Luo, Yi; Darcy, Michael A; Lucas, Christopher R; Goodwin, Michelle F; Poirier, Michael G; Castro, Carlos E

    2016-07-26

    The organization of eukaryotic DNA into nucleosomes and chromatin undergoes dynamic structural changes to regulate genome processing, including transcription and DNA repair. Critical chromatin rearrangements occur over a wide range of distances, including the mesoscopic length scale of tens of nanometers. However, there is a lack of methodologies that probe changes over this mesoscopic length scale within chromatin. We have designed, constructed, and implemented a DNA-based nanocaliper that probes this mesoscopic length scale. We developed an approach of integrating nucleosomes into our nanocaliper at two attachment points with over 50% efficiency. Here, we focused on attaching the two DNA ends of the nucleosome to the ends of the two nanocaliper arms, so the hinge angle is a readout of the nucleosome end-to-end distance. We demonstrate that nucleosomes integrated with 6, 26, and 51 bp linker DNA are partially unwrapped by the nanocaliper by an amount consistent with previously observed structural transitions. In contrast, the nucleosomes integrated with the longer 75 bp linker DNA remain fully wrapped. We found that the nanocaliper angle is a sensitive measure of nucleosome disassembly and can read out transcription factor (TF) binding to its target site within the nucleosome. Interestingly, the nanocaliper not only detects TF binding but also significantly increases the probability of TF occupancy at its site by partially unwrapping the nucleosome. These studies demonstrate the feasibility of using DNA nanotechnology to both detect and manipulate nucleosome structure, which provides a foundation of future mesoscale studies of nucleosome and chromatin structural dynamics.

  5. Identification and epidemiological typing of Naegleria fowleri with DNA probes.

    PubMed Central

    Kilvington, S; Beeching, J

    1995-01-01

    Naegleria fowleri is a small free-living amoeboflagellate found in warm water habitats worldwide. The organism is pathogenic to humans, causing fatal primary amoebic meningoencephalitis. When monitoring the environment for the presence of N. fowleri, it is important to reliably differentiate the organism from other closely related but nonpathogenic species. To this end, we have developed species-specific DNA probes for use in the rapid identification of N. fowleri from the environment. Samples were taken from the thermal springs in Bath, England, and cultured for amoebae. Of 84 isolates of thermophilic Naegleria spp., 10 were identified as N. fowleri by probe hybridization. The identity of these isolates was subsequently confirmed by their specific whole-cell DNA restriction fragment length polymorphisms (RFLPs). One DNA clone was found to contain a repeated element that detected chromosomal RFLPs that were not directly visible on agarose gels. This enabled the further differentiation of strains within geographically defined whole-cell DNA RFLP groups. N. fowleri DNA probes represent a specific and potentially rapid method for the identification of the organism soon after primary isolation from the environment. PMID:7793928

  6. Probe mapping to facilitate transposon-based DNA sequencing

    SciTech Connect

    Strausbaugh, L.D.; Bourke, M.T.; Sommer, M.T.; Coon, M.E.; Berg, C.M. )

    1990-08-01

    A promising strategy for DNA sequencing exploits transposons to provide mobile sites for the binding of sequencing primers. For such a strategy to be maximally efficient, the location and orientation of the transposon must be readily determined and the insertion sites should be randomly distributed. The authors demonstrate an efficient probe-based method for the localization and orientation of transposon-borne primer sites, which is adaptable to large-scale sequencing strategies. This approach requires no prior restriction enzyme mapping or knowledge of the cloned sequence and eliminates the inefficiency inherent in totally random sequencing methods. To test the efficiency of probe mapping, 49 insertions of the transposon {gamma}{delta} (Tn1000) in a cloned fragment of Drosophila melanogaster DNA were mapped and oriented. In addition, oligonucleotide primers specific for unique subterminal {gamma}{delta} segments were used to prime dideoxynucleotide double-stranded sequencing. These data provided an opportunity to rigorously examine {gamma}{delta} insertion sites. The insertions were quire randomly distributed, even though the target DNA fragment had both A+T-rich and G+C-rich regions; in G+C-rich DNA, the insertions were found in A+T-rich valleys. These data demonstrate that {gamma}{delta} is an excellent choice for supplying mobile primer binding sites to cloned DNA and that transposon-based probe mapping permits the sequences of large cloned segments to be determined without any subcloning.

  7. DNA probe and PCR-specific reaction for Lactobacillus plantarum.

    PubMed

    Quere, F; Deschamps, A; Urdaci, M C

    1997-06-01

    A 300 bp DNA fragment of Lactobacillus plantarum isolated by randomly amplified polymorphic DNA (RAPD) analysis was cloned and sequenced. This fragment was tested using a dot-blot DNA hybridization to technique for its ability to identify Lact. plantarum strains. This probe hybridized with all Lact. plantarum strains tested and with some strains of Lact. pentosus, albeit more weakly. Two internal primers of this probe were selected (LbP11 and LbP12) and polymerase chain reaction (PCR) was carried out. All Lact. plantarum strains tested amplified a 250 bp fragment contrary to the other LAB species tested. This specific PCR for Lact. plantarum was also performed from colonies grown on MRS medium with similar results. These methods enabled the rapid and specific detection and identification of Lact. plantarum.

  8. Scanning Probe Microscopy of DNA with a Quartz Tuning Fork

    NASA Astrophysics Data System (ADS)

    King, G. M.; Nunes, G., Jr.

    2001-03-01

    Quartz tuning-forks have recently been put to use as highly sensitive force detectors in atomic force microscopy (AFM).(F.J.Giessibl et al.), Science 289, 422 (2000). In this study we have applied a home-built, tuning-fork based AFM to the investigation of single and double stranded DNA (ssDNA and dsDNA). We operate the microscope in the non-contact mode (typical tip amplitude ~1 nm) with a variety of tips (e.g. Si, Si_3N_4, W). Here we report on recent results showing that the apparent height of plasmid dsDNA on mica substrates depends on both the tip material and imaging frequency shift. This talk will also review our efforts to probe ssDNA with a chemically functionalized tip. Current and future prospects for this dynamic-mode, chemically-sensitive force microscopy technique will be discussed.

  9. A simple and rapid method for the preparation of homologous DNA oligonucleotide hybridization probes from heterologous gene sequences and probes.

    PubMed

    Maxwell, E S; Sarge, K D

    1988-11-30

    We describe a simple and rapid method for the preparation of homologous DNA oligonucleotide probes for hybridization analysis and/or cDNA/genomic library screening. With this method, a synthetic DNA oligonucleotide derived from a known heterologous DNA/RNA/protein sequence is annealed to an RNA preparation containing the gene transcript of interest. Any unpaired 3'-terminal oligonucleotides of the heterologous DNA primer are then removed using the 3' exonuclease activity of the DNA Polymerase I Klenow fragment before primer extension/dideoxynucleotide sequencing of the annealed RNA species with AMV reverse transcriptase. From the determined RNA sequence, a completely homologous DNA oligonucleotide probe is then prepared. This approach has been used to prepare a homologous DNA oligonucleotide probe for the successful library screening of the yeast hybRNA gene starting with a heterologous mouse hybRNA DNA oligonucleotide probe.

  10. Luminescence sensitization of Tb(3+)-DNA complexes by Ag().

    PubMed

    Xu, Lijun; Zhou, Lu; Chen, Xing; Shen, Xiaoqiang; Wang, Jine; Zhang, Jianye; Pei, Renjun

    2017-03-03

    Terbium ions (Tb(3+)) with unique photophysical properties have been utilized to develop biosensors with low background and high sensitivity. In this study, the Ag(+)-sensitized luminescence of Tb(3+)-DNA complexes was uncovered. The luminescence of Tb(3+)-DNA complexes could be enhanced by more than 30 times in the presence of Ag(+), when Tb(3+) was bound with poly(G) and poly(T) whereas not with other homopolymers. This research confirmed that the sensitization resulted from the interaction of Ag(+) with certain bases involved in DNA, not just with the reported certain G-quadruplex sequence. The coordination of Ag(+) to guanine and thymine bases was expected to increase their rigidities, form Tb(3+)-DNA-Ag(+) ternary structures, and thus enhance energy transfer from guanine and thymine to Tb(3+). These findings benefit the development of sensitive luminescence probes for various nucleic acids-related targets.

  11. Luminescence sensitization of Tb3 +-DNA complexes by Ag+

    NASA Astrophysics Data System (ADS)

    Xu, Lijun; Zhou, Lu; Chen, Xing; Shen, Xiaoqiang; Wang, Jine; Zhang, Jianye; Pei, Renjun

    2017-06-01

    Terbium ions (Tb3 +) with unique photophysical properties have been utilized to develop biosensors with low background and high sensitivity. In this study, the Ag+-sensitized luminescence of Tb3 +-DNA complexes was uncovered. The luminescence of Tb3 +-DNA complexes could be enhanced by more than 30 times in the presence of Ag+, when Tb3 + was bound with poly(G) and poly(T) whereas not with other homopolymers. This research confirmed that the sensitization resulted from the interaction of Ag+ with certain bases involved in DNA, not just with the reported certain G-quadruplex sequence. The coordination of Ag+ to guanine and thymine bases was expected to increase their rigidities, form Tb3 +-DNA-Ag+ ternary structures, and thus enhance energy transfer from guanine and thymine to Tb3 +. These findings benefit the development of sensitive luminescence probes for various nucleic acids-related targets.

  12. Multipyrene Tandem Probes for Point Mutations Detection in DNA

    PubMed Central

    Kholodar, Svetlana A.; Novopashina, Darya S.; Meschaninova, Mariya I.; Venyaminova, Alya G.

    2013-01-01

    Here we report design, synthesis and characterization of highly sensitive, specific and stable in biological systems fluorescent probes for point mutation detection in DNA. The tandems of 3′- and 5′-mono- and bis-pyrene conjugated oligo(2′-O-methylribonucleotides), protected by 3′-“inverted” thymidine, were constructed and their potential as new instruments for genetic diagnostics was studied. Novel probes have been shown to exhibit an ability to form stable duplexes with DNA target due to the stabilizing effect of multiple pyrene units at the junction. The relationship between fluorescent properties of developed probes, the number of pyrene residues at the tandem junction, and the location of point mutation has been studied. On the basis of the data obtained, we have chosen the probes possessing the highest fluorescence intensity along with the best mismatch discrimination and deletion and insertion detection ability. Application of developed probes for detection of polymorphism C677T in MTHFR gene has been demonstrated on model systems. PMID:24455205

  13. DNA Probe Pooling for Rapid Delineation of Chromosomal Breakpoints

    SciTech Connect

    Lu, Chun-Mei; Kwan, Johnson; Baumgartner, Adolf; Weier, Jingly F.; Wang, Mei; Escudero, Tomas; Munne', Santiago; Zitzelsberger, Horst F.; Weier, Heinz-Ulrich

    2009-01-30

    Structural chromosome aberrations are hallmarks of many human genetic diseases. The precise mapping of translocation breakpoints in tumors is important for identification of genes with altered levels of expression, prediction of tumor progression, therapy response, or length of disease-free survival as well as the preparation of probes for detection of tumor cells in peripheral blood. Similarly, in vitro fertilization (IVF) and preimplantation genetic diagnosis (PGD) for carriers of balanced, reciprocal translocations benefit from accurate breakpoint maps in the preparation of patient-specific DNA probes followed by a selection of normal or balanced oocytes or embryos. We expedited the process of breakpoint mapping and preparation of case-specific probes by utilizing physically mapped bacterial artificial chromosome (BAC) clones. Historically, breakpoint mapping is based on the definition of the smallest interval between proximal and distal probes. Thus, many of the DNA probes prepared for multi-clone and multi-color mapping experiments do not generate additional information. Our pooling protocol described here with examples from thyroid cancer research and PGD accelerates the delineation of translocation breakpoints without sacrificing resolution. The turnaround time from clone selection to mapping results using tumor or IVF patient samples can be as short as three to four days.

  14. DNA Probe Pooling for Rapid Delineation of Chromosomal Breakpoints

    PubMed Central

    Lu, Chun-Mei; Kwan, Johnson; Baumgartner, Adolf; Weier, Jingly F.; Wang, Mei; Escudero, Tomas; Munné, Santiago; Zitzelsberger, Horst F.; Weier, Heinz-Ulrich G.

    2009-01-01

    Structural chromosome aberrations are hallmarks of many human genetic diseases. The precise mapping of translocation breakpoints in tumors is important for identification of genes with altered levels of expression, prediction of tumor progression, therapy response, or length of disease-free survival, as well as the preparation of probes for detection of tumor cells in peripheral blood. Similarly, in vitro fertilization (IVF) and preimplantation genetic diagnosis (PGD) for carriers of balanced, reciprocal translocations benefit from accurate breakpoint maps in the preparation of patient-specific DNA probes followed by a selection of normal or balanced oocytes or embryos. We expedited the process of breakpoint mapping and preparation of case-specific probes by utilizing physically mapped bacterial artificial chromosome clones. Historically, breakpoint mapping is based on the definition of the smallest interval between proximal and distal probes. Thus, many of the DNA probes prepared for multiclone and multicolor mapping experiments do not generate additional information. Our pooling protocol, described here with examples from thyroid cancer research and PGD, accelerates the delineation of translocation breakpoints without sacrificing resolution. The turnaround time from clone selection to mapping results using tumor or IVF patient samples can be as short as 3 to 4 days. (J Histochem Cytochem 57:587–597, 2009) PMID:19223294

  15. Selectivity of Enzymatic Conversion of Oligonucleotide Probes during Nucleotide Polymorphism Analysis of DNA

    PubMed Central

    Vinogradova, O.A.

    2010-01-01

    The analysis of DNA nucleotide polymorphisms is one of the main goals of DNA diagnostics. DNA–dependent enzymes (DNA polymerases and DNA ligases) are widely used to enhance the sensitivity and reliability of systems intended for the detection of point mutations in genetic material. In this article, we have summarized the data on the selectiveness of DNA–dependent enzymes and on the structural factors in enzymes and DNA which influence the effectiveness of mismatch discrimination during enzymatic conversion of oligonucleotide probes on a DNA template. The data presented characterize the sensitivity of a series of DNA–dependent enzymes that are widely used in the detection of noncomplementary base pairs in nucleic acid substrate complexes. We have analyzed the spatial properties of the enzyme–substrate complexes. These properties are vital for the enzymatic reaction and the recognition of perfect DNA–substrates. We also discuss relevant approaches to increasing the selectivity of enzyme–dependent reactions. These approaches involve the use of modified oligonucleotide probes which “disturb” the native structure of the DNA–substrate complexes. PMID:22649627

  16. DNA binding studies of a solvatochromic fluorescence probe 3-methoxybenzanthrone

    NASA Astrophysics Data System (ADS)

    Yang, Xin; Liu, Wan-Hui; Jin, Wei-Jun; Shen, Guo-Li; Yu, Ru-Qin

    1999-11-01

    A fluorescence probe of 3-methoxybenzanthrone (MBA) exhibits significant solvatochromic characteristics correlated with the polarity of solvents. The interaction of the solvatochromic fluorescence probe with calf thymus DNA (ct-DNA) has been investigated. In the presence of ct-DNA the fluorescence of MBA is strongly quenched with a blue-shift of emission peak and a hypochromism in absorption spectra. The absorption spectra, fluorescence quenching and fluorescence polarization experiments show that the MBA molecule as an intercalator is inserted into the base-stacking domain of the ct-DNA double helix, and the interaction of the nucleobases with the MBA molecule causes quenching of fluorescence and hypochromism in the absorption spectra. The intrinsic binding constant and the binding site number were determined to be 1.70×10 5 mol l -1 in base pairs and six, respectively. The I0/ I versus [ct-DNA] plot shows linear relationship in the range covering 4.3×10 -7-1.02×10 -4 mol l -1 in base pairs which can be used for ct-DNA determination. The limit of detection was found to be 4.3×10 -7 mol l -1 in base pairs (0.5 μg ml -1).

  17. Validation of DNA probes for molecular cytogenetics by mapping onto immobilized circular DNA

    PubMed Central

    Greulich-Bode, Karin M; Wang, Mei; Rhein, Andreas P; Weier, Jingly F; Weier, Heinz-Ulli G

    2008-01-01

    Background Fluorescence in situ hybridization (FISH) is a sensitive and rapid procedure to detect gene rearrangements in tumor cells using non-isotopically labeled DNA probes. Large insert recombinant DNA clones such as bacterial artificial chromosome (BAC) or P1/PAC clones have established themselves in recent years as preferred starting material for probe preparations due to their low rates of chimerism and ease of use. However, when developing probes for the quantitative analysis of rearrangements involving genomic intervals of less than 100 kb, careful probe selection and characterization are of paramount importance. Results We describe a sensitive approach to quality control probe clones suspected of carrying deletions or for measuring clone overlap with near kilobase resolution. The method takes advantage of the fact that P1/PAC/BAC's can be isolated as circular DNA molecules, stretched out on glass slides and fine-mapped by multicolor hybridization with smaller probe molecules. Two examples demonstrate the application of this technique: mapping of a gene-specific ~6 kb plasmid onto an unusually small, ~55 kb circular P1 molecule and the determination of the extent of overlap between P1 molecules homologous to the human NF-κB2 locus. Conclusion The relatively simple method presented here does not require specialized equipment and may thus find widespread applications in DNA probe preparation and characterization, the assembly of physical maps for model organisms or in studies on gene rearrangements. PMID:19108707

  18. Validation of DNA probes for molecular cytogenetics by mapping onto immobilized circular DNA

    SciTech Connect

    Greulich-Bode, Karin; Wang, Mei; Rhein, Andreas; Weier, Jingly; Weier, Heinz-Ulli

    2008-12-16

    Fluorescence in situ hybridization (FISH) is a sensitive and rapid procedure to detect gene rearrangements in tumor cells using non-isotopically labeled DNA probes. Large insert recombinant DNA clones such as bacterial artificial chromosome (BAC) or P1/PAC clones have established themselves in recent years as preferred starting material for probe preparations due to their low rates of chimerism and ease of use. However, when developing probes for the quantitative analysis of rearrangements involving genomic intervals of less than 100kb, careful probe selection and characterization are of paramount importance. We describe a sensitive approach to quality control probe clones suspected of carrying deletions or for measuring clone overlap with near kilobase resolution. The method takes advantage of the fact that P1/PAC/BAC's can be isolated as circular DNA molecules, stretched out on glass slides and fine-mapped by multicolor hybridization with smaller probe molecules. Two examples demonstrate the application of this technique: mapping of a gene-specific {approx}6kb plasmid onto an unusually small, {approx}55kb circular P1 molecule and the determination of the extent of overlap between P1 molecules homologous to the human NF-?B2 locus. The relatively simple method presented here does not require specialized equipment and may thus find widespread applications in DNA probe preparation and characterization, the assembly of physical maps for model organisms or in studies on gene rearrangements.

  19. Validation of DNA probes for molecular cytogenetics by mapping onto immobilized circular DNA

    SciTech Connect

    Greulich-Bode, Karin M.; Wang, Mei; Rhein, Andreas P.; Weier, Jingly F.; Weier, Heinz-Ulli G.

    2008-12-04

    Fluorescence in situ hybridization (FISH) is a sensitive and rapid procedure to detect gene rearrangements in tumor cells using non-isotopically labeled DNA probes. Large insert recombinant DNA clones such as bacterial artificial chromosome (BAC) or P1/PAC clones have established themselves in recent years as preferred starting material for probe preparations due to their low rates of chimerism and ease of use. However, when developing probes for the quantitative analysis of rearrangements involving genomic intervals of less than 100kb, careful probe selection and characterization are of paramount importance. We describe a sensitive approach to quality control probe clones suspected of carrying deletions or for measuring clone overlap with near kilobase resolution. The method takes advantage of the fact that P1/PAC/BAC's can be isolated as circular DNA molecules, stretched out on glass slides and fine-mapped by multicolor hybridization with smaller probe molecules. Two examples demonstrate the application of this technique: mapping of a gene-specific {approx}6kb plasmid onto an unusually small, {approx}55kb circular P1 molecule and the determination of the extent of overlap between P1 molecules homologous to the human NF-{kappa}B2 locus. The relatively simple method presented here does not require specialized equipment and may thus find widespread applications in DNA probe preparation and characterization, the assembly of physical maps for model organisms or in studies on gene rearrangements.

  20. Photonic Crystal Biosensor with In-Situ Synthesized DNA Probes for Enhanced Sensitivity

    SciTech Connect

    Hu, Shuren; Zhao, Y.; Retterer, Scott T; Kravchenko, Ivan I; Weiss, Sharon

    2013-01-01

    We report on a nearly 8-fold increase in multi-hole defect photonic crystal biosensor response by incorporating in-situ synthesis of DNA probes, as compared to the conventional functionalization method employing pre-synthesized DNA probe immobilization.

  1. Probing the structure of nucleic acids with Ni(II) complexes

    SciTech Connect

    Chen, Xiaoying.

    1992-01-01

    The structure of nucleic acids determines their biological function. Interest in the development of novel probes from structures of nucleic acid has led to the discovery of conformation-specific oxidation of guanine sites in DNA and RNA using Ni(II) complexes. The reaction is highly dependent upon the nature of Ni(II) complexes with the most important feature of a strong in-plane ligand field. The unique properties of Ni(II) complexes combining redox and coordination features provide sensitive probes for nucleic acid conformation. One of these nickel complexes, NiCR, has been shown to selectively promote cleavage of DNA at guanine sites held accessible through the formation of unusual secondary structures such as ends, mismatches, bulges and loops. An unique mechanism for the base and conformation-specific oxidation of DNA promoted by Ni(II) complexes is proposed, involving direct ligation of nickel to N-7 of guanine delivering a non-diffusible oxidizing species. NiCR has been proved to be a sensitive and predictable probe for the tertiary structure of RNAs. The specific sites of oxidation of tRNS[sup phe] promoted by NiCR correspond to the most accessible guanine residues determined by theoretic calculations. NiCR has also been successfully applied to probe the tertiary structure of self-splicing Tetrahymena pre-rRNA intron, and has provided important information about the folding of this intron, especially in the region of the catalytic core.

  2. Interaction of DNA and DNA-anti-DNA complexes to fibronectin

    SciTech Connect

    Gupta, R.C.; Simpson, W.A.; Raghow, R.; Hasty, K.

    1986-03-01

    Fibronectin (Fn) is a large multidomain glycoprotein found in the basement membrane, on cell surface and in plasma. The interactions of Fn with DNA may be significant in glomerular deposition of DNA-anti-DNA complexes in patients with systemic lupus erythematosus (SLE). The authors examined the binding of DNA and DNA-anti-DNA complexes to Fn by a solid phase assay in which Fn was coated to microtiter plates and reacted with (/sup 3/H)DNA or DNA complexes with a monoclonal anti-DNA antibody. The optimal interaction of DNA with Fn occurs at <0.1M NaCl suggesting that the binding is charge dependent; the specificity of this binding was shown by competitive inhibition and locking experiments using anti-Fn. The binding was maximum at pH 6.5 and in the absence of Ca/sup 2 +/. The addition of Clq enhanced the binding of DNA and DNA-anti-DNA complexes to Fn, whereas heparan sulfate inhibited such binding. The monomeric or aggregated IgC did not bind Fn but aggregated IgG bound to Fn in the presence of Clq. Furthermore, DNA-anti-DNA complexes in sera from active SLE patients bound Fn which was enhanced in the presence of Clq; DNase abolished this binding indicating that the interaction of these complexes was mediated by DNA. These observations may partially explain the molecular mechanism(s) of the deposition of DNA-anti-DNA complexes in basement membrane.

  3. Complex quantum networks as structured environments: engineering and probing

    NASA Astrophysics Data System (ADS)

    Nokkala, Johannes; Galve, Fernando; Zambrini, Roberta; Maniscalco, Sabrina; Piilo, Jyrki

    2016-05-01

    We consider structured environments modeled by bosonic quantum networks and investigate the probing of their spectral density, structure, and topology. We demonstrate how to engineer a desired spectral density by changing the network structure. Our results show that the spectral density can be very accurately detected via a locally immersed quantum probe for virtually any network configuration. Moreover, we show how the entire network structure can be reconstructed by using a single quantum probe. We illustrate our findings presenting examples of spectral densities and topology probing for networks of genuine complexity.

  4. Complex quantum networks as structured environments: engineering and probing

    PubMed Central

    Nokkala, Johannes; Galve, Fernando; Zambrini, Roberta; Maniscalco, Sabrina; Piilo, Jyrki

    2016-01-01

    We consider structured environments modeled by bosonic quantum networks and investigate the probing of their spectral density, structure, and topology. We demonstrate how to engineer a desired spectral density by changing the network structure. Our results show that the spectral density can be very accurately detected via a locally immersed quantum probe for virtually any network configuration. Moreover, we show how the entire network structure can be reconstructed by using a single quantum probe. We illustrate our findings presenting examples of spectral densities and topology probing for networks of genuine complexity. PMID:27230125

  5. DNA detection using water-soluble conjugated polymers and peptide nucleic acid probes

    PubMed Central

    Gaylord, Brent S.; Heeger, Alan J.; Bazan, Guillermo C.

    2002-01-01

    The light-harvesting properties of cationic conjugated polymers are used to sensitize the emission of a dye on a specific peptide nucleic acid (PNA) sequence for the purpose of homogeneous, “real-time” DNA detection. Signal transduction is controlled by hybridization of the neutral PNA probe and the negative DNA target. Electrostatic interactions bring the hybrid complex and cationic polymer within distances required for Förster energy transfer. Conjugated polymer excitation provides fluorescein emission >25 times higher than that obtained by exciting the dye, allowing detection of target DNA at concentrations of 10 pM with a standard fluorometer. A simple and highly sensitive assay with optical amplification that uses the improved hybridization behavior of PNA/DNA complexes is thus demonstrated. PMID:12167673

  6. Ultrafast transient absorption studies of ruthenium and rhenium dipyridophenazine complexes bound to DNA and polynucleotides

    NASA Astrophysics Data System (ADS)

    Creely, Caitriona M.; Kelly, John M.; Feeney, M. M.; Hudson, S.; Penedo, J. C.; Blau, Werner J.; Elias, B.; Kirsch-De Mesmaeker, Andree; Matousek, P.; Towrie, M.; Parker, A. W.; Dyer, J. S.; George, Mikhael W.; Coates, C. G.; McGarvey, John J.

    2003-03-01

    We report on ultrafast pump and probe studies of biological systems, in the form of polynucleotide and calf thymus DNA complexes. Molecules for study are bound to the polynucleotides and probed in the visible region to observe changes in the absorption over time. Various dipyridophenazine metal complexes are studied alone and complexed with DNA or synthetic polynucleotides to investigate changes occurring in their excited states upon interacting with nucleobases. Transient absorption measurements are performed pumping at 400nm and probing from 450-700nm with pulse duration of 400fs.

  7. DNA Probes As Potential Tools for the Detection of Marteilia refringens.

    PubMed

    Le Roux F; Audemard; Barnaud; Berthe

    1999-11-01

    Since its first description, the paramyxean parasite Marteilia refringens has been recognized as a significant pathogen of bivalve mollusks. The existence of a complex life cycle was postulated by many authors. Here we report the development of DNA-based detection assays as powerful tools to elucidate the Marteilia refringens life cycle. After alignment of the Marteilia refringens ribosomal DNA small subunit sequence with those of various eukaryotic organisms, polymerase chain reaction primers were designed. Specific primers were used to amplify DNA extracted from purified Marteilia refringens and infected hosts. The specificity of amplified fragments was confirmed by Southern blotting with an oligoprobe. For in situ hybridization, four probes were tested for specific detection of 18S rRNA isolated from Marteilia refringens and other eukaryotic cells by Northern blotting. The most specific probe, Smart 2, was successfully used to detect Marteilia refringens by in situ hybridization in infected oysters and mussels.

  8. Probing the mechanics of the complete DNA transcription cycle in real-time using optical tweezers.

    PubMed

    Baumann, Christoph G; Cross, Stephen J

    2011-01-01

    RNA polymerase (RNAP) is a DNA-dependent motor protein that links ribonucleotide polymerization to force generation and DNA translocation through its active site, i.e., mechanical work. Single-molecule studies using optical tweezers have allowed researchers to probe the load-dependent ribonucleotide incorporation rate and processivity of both single-subunit viral and multisubunit prokaryotic and eukaryotic RNAPs engaged in transcription elongation. A single-molecule method is described here, which allows the complete transcription cycle (i.e., promoter binding, initiation, elongation and termination) to be followed in real-time using dual-trap optical tweezers and a unique "three-bead" geometry. This single-molecule transcription assay can be used to probe the mechanics of both stationary and moving RNAP-DNA complexes engaged in different stages of transcription.

  9. [Diagnosed tuberculosis using specific DNA probe hybridization methods].

    PubMed

    Furuta, Itaru; Yamazumi, Toshiaki

    2002-11-01

    In Japan, reported cases of tuberculosis had declined nearly every year until 1995. However, in 1997 newly recorded cases began increasing for the first time in more than 38 years. Recent studies using DNA fingerprinting show that person- to person transmission may account for as many as one-third of new cases of tuberculosis in citizen populations. Nucleic acid hybridization methods using specific DNA probes can specifically identify M. tuberculosis and other mycobacterial species. Rapid nucleic acid amplification techniques such as polymerase chain reaction methods allow direct identification of M. tuberculosis in clinical specimens. Is 6110 has been exploited extensively as a clonal marker in molecular epidemiology studies of tuberculosis. The emergence of resistance to antituberculosis drugs is a relevant matter worldwide. A recent genotypic method allows earlier detection of RFP-resistant and INH-resistant stains using probes for mutation in rpoB and in katG.

  10. Using triplex-forming oligonucleotide probes for the reagentless, electrochemical detection of double-stranded DNA.

    PubMed

    Patterson, Adriana; Caprio, Felice; Vallée-Bélisle, Alexis; Moscone, Danila; Plaxco, Kevin W; Palleschi, Giuseppe; Ricci, Francesco

    2010-11-01

    We report a reagentless, electrochemical sensor for the detection of double-stranded DNA targets that employs triplex-forming oligonucleotides (TFOs) as its recognition element. These sensors are based on redox-tagged TFO probes strongly chemisorbed onto an interrogating gold electrode. Upon the addition of the relevant double-stranded DNA target, the probe forms a rigid triplex structure via reverse Hoogsteen base pairing in the major groove. The formation of the triplex impedes contact between the probe's redox moiety and the interrogating electrode, thus signaling the presence of the target. We first demonstrated the proof of principle of this approach by using a well-characterized 22-base polypurine TFO sequence that readily detects a synthetic, double-stranded DNA target. We then confirmed the generalizability of our platform with a second probe, a 19-base polypyrimidine TFO sequence that targets a polypurine tract (PPT) sequence conserved in all HIV-1 strains. Both sensors rapidly and specifically detect their double-stranded DNA targets at concentrations as low as ~10 nM and are selective enough to be employed directly in complex sample matrices such as blood serum. Moreover, to demonstrate real-world applicability of this new sensor platform, we have successfully detected unpurified, double-stranded PCR amplicons containing the relevant conserved HIV-1 sequence.

  11. Toxoplasma gondii DNA detection with a magnetic molecular beacon probe

    NASA Astrophysics Data System (ADS)

    Xu, Shichao; Yao, Cuicui; Wei, Shuoming; Zhang, Jimei; Dai, Zhao; Zheng, Guo; Sun, Bo; Han, Qing; Hu, Fei; Zhou, Hongming

    2008-12-01

    Toxoplasma Gondii infection is widespread in humans worldwide and reported infection rates range from 3%-70%, depending on the populations or geographic areas, and it has been recognized as a potential food safety hazard in our daily life. A magnetic molecular beacon probe (mMBP), based on theory of fluorescence resonance energy transfer (FRET), was currently reported to detect Toxoplasma Gondii DNA. Nano-sized Fe3O4 were primarily prepared by coprecipitation method in aqueous phase with NaOH as precipitator, and was used as magnetic core. The qualified coreshell magnetic quantum dots (mQDs), i.e. CdTe(symbol)Fe3O4, were then achieved by layer-by-layer method when mol ratio of Fe3O4/CdTe is 1/3, pH at 6.0, 30 °C, and reactant solution was refluxed for 30 min, the size of mQDs were determined to be 12-15 nm via transmission electron microscopy (TEM). Over 70% overlap between emission spectrum of mQDs and absorbance spectrum of BHQ-2 was observed, this result suggests the synthesized mQDs and BHQ-2 can be utilized as energy donor and energy acceptor, respectively. The sensing probe was fabricated and a stem-loop Toxoplasma Gondii DNA oligonucleotide was labeled with mQDs at the 5' end and BHQ-2 at 3' end, respectively. Target Toxoplasma gondii DNA was detected under conditions of 37 °C, hybridization for 2h, at pH8.0 in Tris-HCl buffer. About 30% recovery of fluorescence intensity was observed via fluorescence spectrum (FS) after the Toxoplasma gondii DNA was added, which suggested that the Toxoplasma Gondii DNA was successfully detected. Specificity investigation of the mMBP indicated that relative low recovery of fluorescence intensity was obtained when the target DNA with one-base pair mismatch was added, this result indicated the high specificity of the sensing probe. Our research simultaneously indicated that mMBP can be conveniently separated from the unhybridized stem-loop DNA and target DNA, which will be meaningful in DNA sensing and purification process.

  12. Label-Free Potentiometry for Detecting DNA Hybridization Using Peptide Nucleic Acid and DNA Probes

    PubMed Central

    Goda, Tatsuro; Singi, Ankit Balram; Maeda, Yasuhiro; Matsumoto, Akira; Torimura, Masaki; Aoki, Hiroshi; Miyahara, Yuji

    2013-01-01

    Peptide nucleic acid (PNA) has outstanding affinity over DNA for complementary nucleic acid sequences by forming a PNA-DNA heterodimer upon hybridization via Watson-Crick base-pairing. To verify whether PNA probes on an electrode surface enhance sensitivity for potentiometric DNA detection or not, we conducted a comparative study on the hybridization of PNA and DNA probes on the surface of a 10-channel gold electrodes microarray. Changes in the charge density as a result of hybridization at the solution/electrode interface on the self-assembled monolayer (SAM)-formed microelectrodes were directly transformed into potentiometric signals using a high input impedance electrometer. The charge readout allows label-free, reagent-less, and multi-parallel detection of target oligonucleotides without any optical assistance. The differences in the probe lengths between 15- to 22-mer dramatically influenced on the sensitivity of the PNA and DNA sensors. Molecular type of the capturing probe did not affect the degree of potential shift. Theoretical model for charged rod-like duplex using the Gouy-Chapman equation indicates the dominant effect of electrostatic attractive forces between anionic DNA and underlying electrode at the electrolyte/electrode interface in the potentiometry. PMID:23435052

  13. Label-free potentiometry for detecting DNA hybridization using peptide nucleic acid and DNA probes.

    PubMed

    Goda, Tatsuro; Singi, Ankit Balram; Maeda, Yasuhiro; Matsumoto, Akira; Torimura, Masaki; Aoki, Hiroshi; Miyahara, Yuji

    2013-02-07

    Peptide nucleic acid (PNA) has outstanding affinity over DNA for complementary nucleic acid sequences by forming a PNA-DNA heterodimer upon hybridization via Watson-Crick base-pairing. To verify whether PNA probes on an electrode surface enhance sensitivity for potentiometric DNA detection or not, we conducted a comparative study on the hybridization of PNA and DNA probes on the surface of a 10-channel gold electrodes microarray. Changes in the charge density as a result of hybridization at the solution/electrode interface on the self-assembled monolayer (SAM)-formed microelectrodes were directly transformed into potentiometric signals using a high input impedance electrometer. The charge readout allows label-free, reagent-less, and multi-parallel detection of target oligonucleotides without any optical assistance. The differences in the probe lengths between 15- to 22-mer dramatically influenced on the sensitivity of the PNA and DNA sensors. Molecular type of the capturing probe did not affect the degree of potential shift. Theoretical model for charged rod-like duplex using the Gouy-Chapman equation indicates the dominant effect of electrostatic attractive forces between anionic DNA and underlying electrode at the electrolyte/electrode interface in the potentiometry.

  14. Sensitive determination of DNA based on the interaction between prulifloxacin-terbium(III) complex and DNA.

    PubMed

    Wu, Ting; Fang, Biyun; Chang, Lin; Liu, Min; Chen, Fang

    2013-01-01

    A simple spectrofluorimetric method is described for the determination of DNA, based on its enhancement of the fluorescence intensity of prulifloxacin (PUFX)-Tb(3+). The luminescence intensity of the PUFX-Tb(3+) complex increased up to 10-fold after adding DNA. The excitation and emission wavelengths were 345 and 545 nm, respectively. Under optimum conditions, variations in the fluorescence intensity showed a good linear relationship with the concentration of hsDNA in the range of 3.0 × 10(-9) to 1.0 × 10(-6) g/mL, with a correlation coefficient (R) of 0.997, and the detection limit was 2.1 × 10(-9) g/mL. The method was successfully applied to the determination of DNA in synthetic samples, and recoveries were in the range 97.3-102.0%. The mechanism of fluorescence enhancement of the PUFX-Tb(3+) complex by DNA is also discussed. The mechanism may involve formation of a ternary complex mainly by intercalation binding together with weak electrostatic interaction, which will increase the energy transition from ligand to Tb(3+), increasing the rigidity of the complex, and decreasing the radiationless energy loss through O-H vibration of the H2O molecule in the PUFX-Tb(3+) complex. Compared with the previous DNA probes, the proposed method is not only more robust and friendly to the environment, but also of relatively higher sensitivity.

  15. Detection of Toxoplasma gondii with a DNA molecular beacon probe

    NASA Astrophysics Data System (ADS)

    Zhou, Cun; Xu, Shichao; Yang, Juan; Zhang, Jimei; Dai, Zhao; Zheng, Guo; Sun, Bo; Sun, Shuqing; Feng, Teilin; Zi, Yan; Liang, Chu; Luo, Hao

    2009-07-01

    Toxoplasma gondii is a kind of microscopic parasite that may infect humans, and there are increasing concerns on the early detection of latent Toxoplasma gondii infection in recent years. This research highlights a new type of molecular beacon (MB) fluorescent probe for Toxoplasma DNA testing. We combined high-efficiency fluorescent inorganic core-shell quantum dots-CdTe/ZnS (as fluorescent energy donor) and BHQ-2 (energy acceptor) to the single-strand DNA of Toxoplasma gondii, and a molecular beacon sensing system based on fluorescence resonance energy transfer (FRET) was achieved. Core-shell quantum dots CdTe/ZnS was firstly prepared in aqueous solution, and the influencing factor of its fluorescent properties, including CdTe/Na2S/Zn(CH3COO)2 (v/v), dependence of reaction time, temperature, and pH, is investigated systematically. The synthesized quantum dots and molecular beacon were characterized by transmission electron microscopy (TEM), ultraviolet-visible spectrophotometer (UV-vis), fluorescent spectrophotometer (FS), respectively. The TEM results showed that CdTe/ZnS core-shell quantum dots is ~11nm in size, and the quantum dots is water-soluble well. The sensing ability of target DNA of assembled MB was investigated, and results showed that the target Toxoplasma gonddi DNA can be successfully detected by measuring the change of fluorescence intensity. The results showed that the current sensing probe will be a useful and convenient tool in Toxoplasma gondii early detection.

  16. Epidemiological typing of Moraxella catarrhalis by using DNA probes.

    PubMed Central

    Beaulieu, D; Scriver, S; Bergeron, M G; Low, D E; Parr, T R; Patterson, J E; Matlow, A; Roy, P H

    1993-01-01

    Small-fragment restriction enzyme analysis and DNA-DNA hybridization were used to compare 60 strains of Moraxella catarrhalis isolated from various geographic locations. Restriction enzyme analysis with HaeIII resulted in 46 different patterns, 7 of which were shared by more than one isolate. Hybridizations with two DNA probes resulted in 18 different patterns, 11 of which were shared by more than one isolate. Strains with the same restriction enzyme pattern always had the same hybridization pattern. However, of the 50 strains that shared the 11 hybridization patterns, 39 could be further differentiated by restriction enzyme analysis. We found that hybridization is a method that is specific for the epidemiological typing of M. catarrhalis, but because of limited sensitivity, combination with small-fragment restriction enzyme analysis may be necessary to better determine the relatedness of strains. Images PMID:8096219

  17. Probing Nucleosome Remodeling by Unzipping Single DNA Molecules

    NASA Astrophysics Data System (ADS)

    Wang, Michelle

    2006-03-01

    At the core of eukaryotic chromatin is the nucleosome, which consists of 147 bp of DNA wrapped 1.65 turns around an octamer of histone proteins. Even this lowest level of genomic compaction presents a strong barrier to DNA-binding cellular factors that are required for essential processes such as transcription, DNA replication, recombination and repair. Chromatin remodeling enzymes use the energy of ATP hydrolysis to regulate accessibility of the genetic code by altering chromatin structure. While remodeling enzymes have been the subject of extensive research in recent years, their precise mechanism remains unclear. In order to probe the structure of individual nucleosomes and their remodeling, we assembled a histone octamer onto a DNA segment containing a strong nucleosome positioning sequence. As the DNA double helix was unzipped through the nucleosome using a feedback-enhanced optical trap, the presence of the nucleosome was detected as a series of dramatic increases in the tension in the DNA, followed by sudden tension reductions. Analysis of the unzipping force throughout the disruption accurately revealed the spatial location and fine structure of the nucleosome to near base pair precision. Using this approach, we investigate how remodeling enzymes may alter the location and structure of a nucleosome.

  18. Electrostatics of DNA complexes with cationic lipids

    NASA Astrophysics Data System (ADS)

    Cherstvy, Andrey

    2007-03-01

    We present the exact solutions of the linear Poisson-Boltzmann theory for several problems relevant to electrostatics of DNA complexes with cationic lipids. We calculate the electrostatic potential and energy for lamellar and inverted hexagonal phases, concentrating on the effects of water-membrane dielectric boundaries. Our results for the complex energy agree qualitatively well with the known numerical solutions of the nonlinear Poisson-Boltzmann equation. Using the solution for the lamellar phase, we calculate its compressibility modulus and compare our findings with experimental data available suggesting a new scaling dependence on DNA-DNA separations in the complex. Also, we treat analytically charge-charge electrostatic interactions across, along, and in between two low-dielectric membranes. We obtain an estimate for the strength of electrostatic interactions of 1D DNA smectic layers across a lipid membrane. We discuss also some aspects of 2D DNA condensation and DNA-DNA attraction in DNA-lipid lamellar phase in the presence of di- and tri-valent cations and analyze the equilibrium intermolecular separations using the recently developed theory of electrostatic interactions of DNA helical charge motifs.

  19. Probing the binding mode of psoralen to calf thymus DNA.

    PubMed

    Zhou, Xiaoyue; Zhang, Guowen; Wang, Langhong

    2014-06-01

    The binding properties between psoralen (PSO) and calf thymus DNA (ctDNA) were predicted by molecular docking, and then determined with the use of UV-vis absorption, fluorescence, circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopy, coupled with DNA melting and viscosity measurements. The data matrix obtained from UV-vis spectra was resolved by multivariate curve resolution-alternating least squares (MCR-ALS) approach. The pure spectra and the equilibrium concentration profiles for PSO, ctDNA and PSO-ctDNA complex extracted from the highly overlapping composite response were obtained simultaneously to evaluate the PSO-ctDNA interaction. The intercalation mode of PSO binding to ctDNA was supported by the results from the melting studies, viscosity measurements, iodide quenching and fluorescence polarization experiments, competitive binding investigations and CD analysis. The molecular docking prediction showed that the specific binding most likely occurred between PSO and adenine bases of ctDNA. FT-IR spectra studies further confirmed that PSO preferentially bound to adenine bases, and this binding decreased right-handed helicity of ctDNA and enhanced the degree of base stacking with the preservation of native B-conformation. The calculated thermodynamic parameters indicated that hydrogen bonds and van der Waals forces played a major role in the binding process.

  20. Homo- and Heterobimetallic Ruthenium(II) and Osmium(II) Complexes Based on a Pyrene-Biimidazolate Spacer as Efficient DNA-Binding Probes in the Near-Infrared Domain.

    PubMed

    Mardanya, Sourav; Karmakar, Srikanta; Mondal, Debiprasad; Baitalik, Sujoy

    2016-04-04

    We report in this work a new family of homo- and heterobimetallic complexes of the type [(bpy)2M(Py-Biimz)M'(II)(bpy)2](2+) (M = M' = Ru(II) or Os(II); M = Ru(II) and M' = Os(II)) derived from a pyrenyl-biimidazole-based bridge, 2-imidazolylpyreno[4,5-d]imidazole (Py-BiimzH2). The homobimetallic Ru(II) and Os(II) complexes were found to crystallize in monoclinic form with space group P21/n. All the complexes exhibit strong absorptions throughout the entire UV-vis region and also exhibit luminescence at room temperature. For osmium-containing complexes (2 and 3) both the absorption and emission band stretched up to the NIR region and thus afford more biofriendly conditions for probable applications in infrared imaging and phototherapeutic studies. Detailed luminescence studies indicate that the emission originates from the respective (3)MLCT excited state mainly centered in the [M(bpy)2](2+) moiety of the complexes and is only slightly affected by the pyrene moiety. The bimetallic complexes show two successive one-electron reversible metal-centered oxidations in the positive potential window and several reduction processes in the negative potential window. An efficient intramolecular electronic energy transfer is found to occur from the Ru center to the Os-based component in the heterometallic dyad. The binding studies of the complexes with DNA were thoroughly studied through different spectroscopic techniques such as UV-vis absorption, steady-state and time-resolved emission, circular dichroism, and relative DNA binding study using ethidium bromide. The intercalative mode of binding was suggested to be operative in all cases. Finally, computational studies employing DFT and TD-DFT were also carried out to interpret the experimentally observed absorption and emission bands of the complexes.

  1. Multivalent Lipid--DNA Complexes: Distinct DNA Compaction Regimes

    NASA Astrophysics Data System (ADS)

    Evans, Heather M.; Ahmad, A.; Ewert, K.; Safinya, C. R.

    2004-03-01

    Cationic liposomes (CL), while intrinsically advantageous in comparison to viruses, still have limited success for gene therapy and require more study. CL spontaneously self-assemble with DNA via counterion release, forming small particles approximately 200nm in diameter. X-ray diffraction reveals CL-DNA structures that are typically a multilamellar organization of lipids with DNA intercalated between the layers. We explore the structural properties of CL-DNA complexes formed with new multivalent lipids (Ewert et al, J. Med. Chem. 2002; 45:5023) that range from 2+ to 16+. Contrary to a simple prediction for the DNA interaxial spacing d_DNA based on a geometrical space-filling model, these lipids show dramatic DNA compaction, down to d_DNA ˜ 25 ÅVariations in the membrane charge density, σ _M, lead to distinct spacing regimes. We propose that this DNA condensation is controlled by a unique locking mechanism between the DNA double helix and the large, multivalent lipid head groups. Funded by NSF DMR-0203755 and NIH GM-59288.

  2. Large branched self-assembled DNA complexes

    NASA Astrophysics Data System (ADS)

    Tosch, Paul; Wälti, Christoph; Middelberg, Anton P. J.; Davies, A. Giles

    2007-04-01

    Many biological molecules have been demonstrated to self-assemble into complex structures and networks by using their very efficient and selective molecular recognition processes. The use of biological molecules as scaffolds for the construction of functional devices by self-assembling nanoscale complexes onto the scaffolds has recently attracted significant attention and many different applications in this field have emerged. In particular DNA, owing to its inherent sophisticated self-organization and molecular recognition properties, has served widely as a scaffold for various nanotechnological self-assembly applications, with metallic and semiconducting nanoparticles, proteins, macromolecular complexes, inter alia, being assembled onto designed DNA scaffolds. Such scaffolds may typically contain multiple branch-points and comprise a number of DNA molecules selfassembled into the desired configuration. Previously, several studies have used synthetic methods to produce the constituent DNA of the scaffolds, but this typically constrains the size of the complexes. For applications that require larger self-assembling DNA complexes, several tens of nanometers or more, other techniques need to be employed. In this article, we discuss a generic technique to generate large branched DNA macromolecular complexes.

  3. Isolation of human minisatellite loci detected by synthetic tandem repeat probes: direct comparison with cloned DNA fingerprinting probes.

    PubMed

    Armour, J A; Vergnaud, G; Crosier, M; Jeffreys, A J

    1992-08-01

    As a direct comparison with cloned 'DNA fingerprinting' probes, we present the results of screening an ordered array Charomid library for hypervariable human loci using synthetic tandem repeat (STR) probes. By recording the coordinates of positive hybridization signals, the subset of clones within the library detected by each STR probe can be defined, and directly compared with the set of clones detected by naturally occurring (cloned) DNA fingerprinting probes. The STR probes vary in the efficiency of detection of polymorphic minisatellite loci; among the more efficient probes, there is a strong overlap with the sets of clones detected by the DNA fingerprinting probes. Four new polymorphic loci were detected by one or more of the STR probes but not by any of the naturally occurring repeats. Sequence comparisons with the probe(s) used to detect the locus suggest that a relatively poor match, for example 10 out of 14 bases in a limited region of each repeat, is sufficient for the positive detection of tandem repeats in a clone in this type of library screening by hybridization. These results not only provide a detailed evaluation of the usefulness of STR probes in the isolation of highly variable loci, but also suggest strategies for the use of these multi-locus probes in screening libraries for clones from hypervariable loci.

  4. Luminescent Iridium(III) Complex Labeled DNA for Graphene Oxide-Based Biosensors.

    PubMed

    Zhao, Qingcheng; Zhou, Yuyang; Li, Yingying; Gu, Wei; Zhang, Qi; Liu, Jian

    2016-02-02

    There has been growing interest in utilizing highly photostable iridium(III) complexes as new luminescent probes for biotechnology and life science. Herein, iridium(III) complex with carboxyl group was synthesized and activated with N-hydroxysuccinimide, followed by tagging to the amino terminate of single-stranded DNA (ssDNA). The Ir-ssDNA probe was further combined with graphene oxide (GO) nanosheets to develop a GO-based biosensor for target ssDNA detection. The quenching efficiency of GO, and the photostability of iridium(III) complex and GO-Ir-ssDNA biosensor, were also investigated. On the basis of the high luminescence quenching efficiency of GO toward iridium(III) complex, the GO-Ir-ssDNA biosensor exhibited minimal background signals, while strong emission was observed when Ir-ssDNA desorbed from GO nanosheets and formed a double helix with the specific target, leading to a high signal-to-background ratio. Moreover, it was found that luminescent intensities of iridium(III) complex and GO-Ir-ssDNA biosensor were around 15 and 3 times higher than those of the traditional carboxyl fluorescein (FAM) dye and the GO-FAM-ssDNA biosensor after UV irradiation, respectively. Our study suggested the sensitive and selective Ir-ssDNA probe was suitable for the development of highly photostable GO-based detection platforms, showing promise for application beyond the OLED (organic light emitting diode) area.

  5. Using surface-enhanced Raman spectroscopy to probe for genetic markers on single-stranded DNA

    NASA Astrophysics Data System (ADS)

    Moody, Benjamin; Leotaud, John; McCarty, Gregory S.

    2010-03-01

    Methods capable of quickly and inexpensively collecting genetic information are of increasing importance. We report a method of using surface-enhanced Raman spectroscopy to probe single-stranded DNA for genetic markers. This unique approach is used to analyze unmodified genes of moderate length for genetic markers by hybridizing native test oligonucleotides into a surface-enhanced Raman complex, vastly increasing detection sensitivity as compared to traditional Raman spectroscopy. The Raman complex is formed by sandwiching the test DNA between 40-nm gold nanoparticles and a photolithographically defined gold surface. With this design, we are able to collect characteristic Raman spectra about the test DNA and to detect genetic markers such as single-nucleotide polymorphisms (SNPs) and polymorphic regions. Results show that strands containing one of three different types of polymorphism can be differentiated using statistically significant trends regarding Raman intensity.

  6. Simulation-guided DNA probe design for consistently ultraspecific hybridization

    NASA Astrophysics Data System (ADS)

    Wang, Juexiao Sherry; Zhang, David Yu

    2015-07-01

    Hybridization of complementary sequences is one of the central tenets of nucleic acid chemistry; however, the unintended binding of closely related sequences limits the accuracy of hybridization-based approaches to analysing nucleic acids. Thermodynamics-guided probe design and empirical optimization of the reaction conditions have been used to enable the discrimination of single-nucleotide variants, but typically these approaches provide only an approximately 25-fold difference in binding affinity. Here we show that simulations of the binding kinetics are both necessary and sufficient to design nucleic acid probe systems with consistently high specificity as they enable the discovery of an optimal combination of thermodynamic parameters. Simulation-guided probe systems designed against 44 sequences of different target single-nucleotide variants showed between a 200- and 3,000-fold (median 890) higher binding affinity than their corresponding wild-type sequences. As a demonstration of the usefulness of this simulation-guided design approach, we developed probes that, in combination with PCR amplification, detect low concentrations of variant alleles (1%) in human genomic DNA.

  7. Simulation-Guided DNA Probe Design for Consistently Ultraspecific Hybridization

    PubMed Central

    Wang, J. Sherry; Zhang, David Yu

    2015-01-01

    Hybridization of complementary sequences is one of the central tenets of nucleic acid chemistry; however, the unintended binding of closely related sequences limits the accuracy of hybridization-based approaches for analyzing nucleic acids. Thermodynamics-guided probe design and empirical optimization of reaction conditions have been used to enable discrimination of single nucleotide variants, but typically these approaches provide only an approximate 25-fold difference in binding affinity. Here we show that simulations of the binding kinetics are both necessary and sufficient to design nucleic acid probe systems with consistently high specificity as they enable the discovery of an optimal combination of thermodynamic parameters. Simulation-guided probe systems designed against 44 different target single nucleotide variants sequences showed between 200- and 3000-fold (median 890) higher binding affinity than their corresponding wildtype sequences. As a demonstration of the usefulness of this simulation-guided design approach we developed probes which, in combination with PCR amplification, we use to detect low concentrations of variant alleles (1%) in human genomic DNA. PMID:26100802

  8. Simulation-guided DNA probe design for consistently ultraspecific hybridization.

    PubMed

    Wang, Juexiao Sherry; Zhang, David Yu

    2015-07-01

    Hybridization of complementary sequences is one of the central tenets of nucleic acid chemistry; however, the unintended binding of closely related sequences limits the accuracy of hybridization-based approaches to analysing nucleic acids. Thermodynamics-guided probe design and empirical optimization of the reaction conditions have been used to enable the discrimination of single-nucleotide variants, but typically these approaches provide only an approximately 25-fold difference in binding affinity. Here we show that simulations of the binding kinetics are both necessary and sufficient to design nucleic acid probe systems with consistently high specificity as they enable the discovery of an optimal combination of thermodynamic parameters. Simulation-guided probe systems designed against 44 sequences of different target single-nucleotide variants showed between a 200- and 3,000-fold (median 890) higher binding affinity than their corresponding wild-type sequences. As a demonstration of the usefulness of this simulation-guided design approach, we developed probes that, in combination with PCR amplification, detect low concentrations of variant alleles (1%) in human genomic DNA.

  9. Using Triplex-Forming Oligonucleotide Probes for the Reagentless, Electrochemical Detection of Double-Stranded DNA

    PubMed Central

    Patterson, Adriana; Caprio, Felice; Vallée-Bélisle, Alexis; Moscone, Danila; Plaxco, Kevin W.; Palleschi, Giuseppe; Ricci, Francesco

    2011-01-01

    We report a reagentless, electrochemical sensor for the detection of double-stranded DNA targets that employs triplex-forming oligonucleotides (TFOs) as its recognition element. These sensors are based on redox-tagged TFO probes strongly chemisorbed onto an interrogating gold electrode. Upon the addition of the relevant double-stranded DNA target, the probe forms a rigid triplex structure via reverse Hoogsteen base pairing in the major groove. The formation of the triplex impedes contact between the probe’s redox moiety and the interrogating electrode, thus signaling the presence of the target. We first demonstrated the proof of principle of this approach by using a well-characterized 22-base polypurine TFO sequence that readily detects a synthetic, double-stranded DNA target. We then confirmed the generalizability of our platform with a second probe, a 19-base polypyrimidine TFO sequence that targets a polypurine tract (PPT) sequence conserved in all HIV-1 strains. Both sensors rapidly and specifically detect their double-stranded DNA targets at concentrations as low as ~10 nM and are selective enough to be employed directly in complex sample matrices such as blood serum. Moreover, to demonstrate real-world applicability of this new sensor platform, we have successfully detected unpurified, double-stranded PCR amplicons containing the relevant conserved HIV-1 sequence. PMID:20936782

  10. C2'-pyrene-functionalized triazole-linked DNA: universal DNA/RNA hybridization probes.

    PubMed

    Sau, Sujay P; Hrdlicka, Patrick J

    2012-01-06

    Development of universal hybridization probes, that is, oligonucleotides displaying identical affinity toward matched and mismatched DNA/RNA targets, has been a longstanding goal due to potential applications as degenerate PCR primers and microarray probes. The classic approach toward this end has been the use of "universal bases" that either are based on hydrogen-bonding purine derivatives or aromatic base analogues without hydrogen-bonding capabilities. However, development of probes that result in truly universal hybridization without compromising duplex thermostability has proven challenging. Here we have used the "click reaction" to synthesize four C2'-pyrene-functionalized triazole-linked 2'-deoxyuridine phosphoramidites. We demonstrate that oligodeoxyribonucleotides modified with the corresponding monomers display (a) minimally decreased thermal affinity toward DNA/RNA complements relative to reference strands, (b) highly robust universal hybridization characteristics (average differences in thermal denaturation temperatures of matched vs mismatched duplexes involving monomer W are <1.7 °C), and (c) exceptional affinity toward DNA targets containing abasic sites opposite of the modification site (ΔT(m) up to +25 °C). The latter observation, along with results from absorption and fluorescence spectroscopy, suggests that the pyrene moiety is intercalating into the duplex whereby the opposing nucleotide is pushed into an extrahelical position. These properties render C2'-pyrene-functionalized triazole-linked DNA as promising universal hybridization probes for applications in nucleic acid chemistry and biotechnology.

  11. Structure of DNA-liposome complexes

    SciTech Connect

    Lasic, D.D.; Strey, H.; Podgornik, R.; Stuart, M.C.A.; Frederik, P.M.

    1997-01-29

    Despite numerous studies and commericially available liposome kits, however, the structure of DNA-cationic liposome complexes is still not yet well understood. We have investigated the structure of these complexes using high-resolution cryo electron microscopy (EM) and small angle X-ray scattering (SAXS). 14 refs., 3 figs.

  12. Modulating molecular level space proximity: a simple and efficient strategy to design structured DNA probes.

    PubMed

    Zheng, Jing; Li, Jishan; Gao, Xiaoxia; Jin, Jianyu; Wang, Kemin; Tan, Weihong; Yang, Ronghua

    2010-05-01

    To construct efficient oligonucleotide probes, specific nucleic acid is designed as a conformationally constrained form based on the formation of a Watson-Crick-based duplex. However, instability of Watson-Crick hydrogen bonds in a complex biological environment usually leads to high background signal from the probe itself and false positive signal caused by nonspecific binding. To solve this problem, we propose a way to restrict the labeled-dyes in a hydrophobic cavity of cyclodextrin. This bounding, which acts like extra base pairs to form the Watson-Crick duplex, achieves variation of level of space proximity of the two labels and thus the degree of conformational constraint. To demonstrate the feasibility of the design, a stem-containing oligonucleotide probe (P1) for DNA hybridization assay and a stemless one (P2) for protein detection were examined as models. Both oligonucleotides were doubly labeled with pyrene at the 5'- and 3'- ends, respectively. It is the cyclodextrin/pyrene inclusion interaction that allows modulating the degree of conformational constraints of P1 and P2 and thus their background signals and selectivity. Under the optimal conditions, the ratio of signal-to-background of P1/gamma-CD induced by 1.0 equiv target DNA is near 174, which is 4-fold higher than that in the absence of gamma-CD. In addition, the usage of gamma-CD shifts the melting temperature of P1 from 57 to 68 degrees C, which is reasonable for improving target-binding selectivity. This approach is simple in design, avoiding any variation of the stem's length and sequences. Furthermore, the strategy is generalizable which is suited for not only the stem-containing probe but also the linear probe with comparable sensitivity and selectivity to conventional structured DNA probes.

  13. DNA Interactions with Ruthenium(ll) Polypyridine Complexes Containing Asymmetric Ligands

    PubMed Central

    Chao, Hui

    2005-01-01

    In an attempt to probe nucleic acid structures, numerous Ru(II) complexes with different ligands have been synthesized and investigated. In this contribution we focus on the DNA-binding properties of ruthenium(II) complexes containing asymmetric ligands that have attracted little attention in the past decades. The influences of the shape and size of the ligand on the binding modes, affinity, enantioselectivities and photocleavage of the complexes to DNA are described. PMID:18365086

  14. Cleavage enhancement of specific chemical bonds in DNA-Cisplatin complexes induced by X-rays

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; Yao, Xiaobin; Luo, Xinglan; Fu, Xianzhi

    2014-04-01

    The chemical bond transformation of cisplatin-DNA complexes can be probed efficiently by XPS which provides a concomitant X-ray irradiation source as well. The presence to Pt could considerably increase formation of the SE induced by X-ray and that the further interaction of these LEE with DNA leads to the enhancement of bond cleavages.

  15. Antitumor effects of a tetradentate amido-carboxylate ligands and corresponding square-planar palladium(II) complexes toward some cancer cells. Crystal structure, DFT modeling and ligand to DNA probe docking simulation.

    PubMed

    Matović, Zoran D; Mrkalić, Emina; Bogdanović, Gordana; Kojić, Vesna; Meetsma, Auke; Jelić, Ratomir

    2013-04-01

    Novel square-planar palladium(II) complexes with O-N-N-O-type ligands H4mda (H4mda=malamido-N,N'-diacetic acid) and H4obp (H4obp=oxamido-N,N'-di-3-propionic acid) were prepared and characterized. The ligands coordinate to the palladium(II) ion via two pairs of deprotonated ligating atoms with square chelation. A four coordinate, square-planar geometry was verified crystallographicaly for the K2[Pd(mda)]·H2O complex. The binary and ternary systems of Pd(II) ion with H4mda or H4obp (L) as primary ligands and guanosine (A) as secondary ligand were studied in aqueous solutions in 0.1 M NaCl ionic medium at 25 °C by potentiometric titrations. In addition, calculations based on density functional methods (DFT) were carried out. A natural bonding orbital analysis indicated that the Pd-N bonds are three-centric in nature and mainly governed by charge transfer via a strong delocalization of the oxygen lone pair with "p" character into the bonding Pd-N orbital. Mononuclear palladium(II) complexes together with amido acid N,O-containing ligands were tested against several tumor cells and reveal significant antitumor activity and lower resistance of tumor cells in vitro than cisplatin. In this paper, interactions of palladium complexes with DNA are discussed in order to provide guidance and determine structure and antitumor activity relationships for continuing studies of these systems. Docking simulation on DNA dodecamer or 29-mer (Lippard solved crystal structures), suggests several favorable interactions with the hydrogen pocket/binding site for the incoming ligands. These results support amidoacids/Pd complexes as novel antitumor drugs and suggest that their potent cell life inhibition may contribute to its anti-cancer efficacy.

  16. Probing DNA hybridization efficiency and single base mismatch by X-ray photoelectron spectroscopy.

    PubMed

    Liu, Zheng-Chun; Zhang, Xin; He, Nong-Yue; Lu, Zu-Hong; Chen, Zhen-Cheng

    2009-07-01

    We demonstrated the use of X-ray photoelectron spectroscopy (XPS) to study DNA hybridization. Target DNA labeled with hexachloro-fluorescein (HEX) was hybridized to DNA arrays with four different probes. Each probe dot of the hybridized arrays was detected with XPS. The XPS Cl2p peak areas were found to decrease with an increase in mismatched bases in DNA probes. The Cl2p core-level peak area ratio of a probe perfectly matched to one, two and three base-mismatched probes accorded well with the results of conventional fluorescent imaging, which shows that XPS is a potential tool for analyzing DNA arrays. The DNA arrays' hybridization efficiency was assessed by the molar ratio of chlorine to phosphorus in a DNA strand, which was determined from the relevant XPS Cl2p and P2p core-level peak areas after hybridization. This could provide a new method to detect DNA hybridization efficiency.

  17. A novel magneto-DNA duplex probe for bacterial DNA detection based on exonuclease III-aided cycling amplification.

    PubMed

    Zeng, Yan; Wan, Yi; Zhang, Dun; Qi, Peng

    2015-01-01

    A novel magneto-DNA duplex probe for bacterial DNA detection based on exonuclease III (Exo-III) aided cycling amplification has been developed. This magneto-DNA duplex probe contains a partly hybrid fluorophore-modified capture probe and a fluorophore-modified signal probe with magnetic microparticle as carrier. In the presence of a perfectly matched target bacterial DNA, blunt 3'-terminus of the capture probe is formed, activating the Exo-III aided cycling amplification. Thus, Exo-III catalyzes the stepwise removal of mononucleotides from this terminus, releasing both fluorophore-modified signal probe, fluorescent dyes of the capture probe and target DNA. The released target DNA then starts a new cycle, while released fluorescent fragments are recovered with magnetic separation for fluorescence signal collection. This system exhibited sensitive detection of bacterial DNA, with a detection limit of 14 pM because of the unique cleavage function of Exo-III, high fluorescence intensity, and separating function of magneto-DNA duplex probes. Besides this sensitivity, this strategy exhibited excellent selectivity with mismatched bacterial DNA targets and other bacterial species targets and good applicability in real seawater samples, hence, this strategy could be potentially used for qualitative and quantitative analysis of bacteria.

  18. DNA hybridization activity of single-stranded DNA-conjugated gold nanoparticles used as probes for DNA detection

    NASA Astrophysics Data System (ADS)

    Kira, Atsushi; Matsuo, Kosuke; Nakajima, Shin-ichiro

    2016-02-01

    Colloidal nanoparticles (NPs) have potential applications in bio-sensing technologies as labels or signal enhancers. In order to meet demands for a development of biomolecular assays by a quantitative understanding of single-molecule, it is necessary to regulate accuracy of the NPs probes modified with biomolecules to optimize the characteristics of NPs. However, to our knowledge, there is little information about the structural effect of conjugated biomolecules to the NPs. In this study, we investigated the contribution of a density of single-stranded DNA (ssDNA) conjugating gold NP to hybridization activity. Hybridization activity decreased in accordance with increases in the density of attached ssDNAs, likely due to electrostatic repulsion generated by negatively charged phosphate groups in the ssDNA backbone. These results highlight the importance of controlling the density of ssDNAs attached to the surface of NPs used as DNA detection probes.

  19. Method of preparing and applying single stranded DNA probes to double stranded target DNAs in situ

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel

    1991-01-01

    A method is provided for producing single stranded non-self-complementary nucleic acid probes, and for treating target DNA for use therewith. Probe is constructed by treating DNA with a restriction enzyme and an exonuclease to form template/primers for a DNA polymerase. The digested strand is resynthesized in the presence of labeled nucleoside triphosphate precursor. Labeled single stranded fragments are separated from the resynthesized fragments to form the probe. Target DNA is treated with the same restriction enzyme used to construct the probe, and is treated with an exonuclease before application of the probe. The method significantly increases the efficiency and specificity of hybridization mixtures by increasing effective probe concentration by eliminating self-hybridization between both probe and target DNAs, and by reducing the amount of target DNA available for mismatched hybridizations.

  20. Method of preparing and applying single stranded DNA probes to double stranded target DNAs in situ

    DOEpatents

    Gray, J.W.; Pinkel, D.

    1991-07-02

    A method is provided for producing single stranded non-self-complementary nucleic acid probes, and for treating target DNA for use therewith. The probe is constructed by treating DNA with a restriction enzyme and an exonuclease to form template/primers for a DNA polymerase. The digested strand is resynthesized in the presence of labeled nucleoside triphosphate precursor. Labeled single stranded fragments are separated from the resynthesized fragments to form the probe. Target DNA is treated with the same restriction enzyme used to construct the probe, and is treated with an exonuclease before application of the probe. The method significantly increases the efficiency and specificity of hybridization mixtures by increasing effective probe concentration by eliminating self-hybridization between both probe and target DNAs, and by reducing the amount of target DNA available for mismatched hybridizations. No Drawings

  1. [Principle and application of DNA-based stable isotope probing---a review].

    PubMed

    Jia, Zhongjun

    2011-12-01

    Microbial communities are the engines that drive the global biogeochemical cycle of carbon and nitrogen essential for life on Earth. However, microorganisms have evolved as a result of complex interactions with other organisms and environments. Deciphering the metabolism of microorganisms at the community level in nature will be crucial for a better understanding of the mechanisms that lead to the enormous divergence of microbial ecophysiology. Due to the immense number of uncultivated microbial species and the complexity of microbial communities, delineating community metabolism proves a virtually insurmountable hurdle. By tracing the heavy isotope flow of key elements such as carbon and nitrogen, DNA-based stable isotope probing (DNA-SIP) can provide unequivocal evidence for substrate assimilation by microorganisms in complex environments. The essential prerequisite for a successful DNA-SIP is the identification, with confidence, of isotopically enriched 13C-DNA, of which the amount is generally too low to allow the direct measurement of 13C atom percent of nucleic acid. The methodological considerations for obtaining unambiguous DNA highly enriched in heavy isotope are presented with emphasis on next-generation sequencing technology and metagenomics.

  2. Transcription initiation complex structures elucidate DNA opening.

    PubMed

    Plaschka, C; Hantsche, M; Dienemann, C; Burzinski, C; Plitzko, J; Cramer, P

    2016-05-19

    Transcription of eukaryotic protein-coding genes begins with assembly of the RNA polymerase (Pol) II initiation complex and promoter DNA opening. Here we report cryo-electron microscopy (cryo-EM) structures of yeast initiation complexes containing closed and open DNA at resolutions of 8.8 Å and 3.6 Å, respectively. DNA is positioned and retained over the Pol II cleft by a network of interactions between the TATA-box-binding protein TBP and transcription factors TFIIA, TFIIB, TFIIE, and TFIIF. DNA opening occurs around the tip of the Pol II clamp and the TFIIE 'extended winged helix' domain, and can occur in the absence of TFIIH. Loading of the DNA template strand into the active centre may be facilitated by movements of obstructing protein elements triggered by allosteric binding of the TFIIE 'E-ribbon' domain. The results suggest a unified model for transcription initiation with a key event, the trapping of open promoter DNA by extended protein-protein and protein-DNA contacts.

  3. Creating complex molecular topologies by configuring DNA four-way junctions

    NASA Astrophysics Data System (ADS)

    Liu, Di; Chen, Gang; Akhter, Usman; Cronin, Timothy M.; Weizmann, Yossi

    2016-10-01

    The realization of complex topologies at the molecular level represents a grand challenge in chemistry. This necessitates the manipulation of molecular interactions with high precision. Here we show that single-stranded DNA (ssDNA) knots and links can be created by utilizing the inherent topological properties that pertain to the DNA four-way junction, at which the two helical strands form a node and can be configured conveniently and connected for complex topological construction. Using this strategy, we produced series of ssDNA topoisomers with the same sequences. By finely designing the curvature and torsion, double-stranded DNA knots were accessed by hybridizing and ligating the complementary strands with the knotted ssDNA templates. Furthermore, we demonstrate the use of a constructed ssDNA knot both to probe the topological conversion catalysed by DNA topoisomerase and to study the DNA replication under topological constraint.

  4. Structural polymorphism of DNA-dendrimer complexes

    NASA Astrophysics Data System (ADS)

    Evans, Heather M.; Ahmad, A.; Ewert, K.; Pfohl, T.; Martin-Herranz, A.; Bruinsma, R. F.; Safinya, C. R.

    2003-08-01

    DNA condensation in vivo relies on electrostatic complexation with small cations or large histones. We report a synchrotron x-ray study of the phase behavior of DNA complexed with synthetic cationic dendrimers of intermediate size and charge. We encounter unexpected structural transitions between columnar mesophases with in-plane square and hexagonal symmetries, as well as liquidlike disorder. The isoelectric point is a locus of structural instability. A simple model is proposed based on competing long-range electrostatic interactions and short-range entropic adhesion by counterion release.

  5. DNA Probes Using Fluorescence Resonance Energy Transfer (FRET): Designs and Applications

    PubMed Central

    Didenko, Vladimir V.

    2007-01-01

    Fluorescence resonance energy transfer (FRET) is widely used in biomedical research as a reporter method. Oligonucleotides with a DNA backbone and one or several chromophore tags have found multiple applications as FRET probes. They are especially advantageous for the real-time monitoring of biochemical reactions and in vivo studies. This paper reviews the design and applications of various DNA-based probes that use FRET. The approaches used in the design of new DNA FRET probes are discussed. PMID:11730017

  6. Resonance light scattering method for the determination of DNA with cationic methacrylate based polymer nanoparticle probes.

    PubMed

    Zou, Qi-Chao; Zhang, Jin-Zhi; Chai, Shi-Gan

    2011-11-01

    Narrowly distributed cationic poly (methyl methacrylate-co-diacetone acrylamide) (P(MMA-DAAM)) nanoparticles were successfully prepared by microemulsion polymerization. Photon correlation spectrometer (PCS) measurement and transmission electron microscope (TEM) observation revealed that z-average particle size of P(MMA-DAAM) is ∼27.5 nm. It was found that these cationic nanoparticles interact with DNA through electrostatic interaction to form P(MMA-DAAM)-DNA complex, which significantly enhances the resonance light scattering (RLS) signal. Therefore, a novel method using this polymer nanoparticle as a new probe for the detection of DNA by RLS technique is developed in this paper. The results showed this method is very convenient, sensitive, and reproducible.

  7. Human DNA polymerase α in binary complex with a DNA:DNA template-primer.

    PubMed

    Coloma, Javier; Johnson, Robert E; Prakash, Louise; Prakash, Satya; Aggarwal, Aneel K

    2016-04-01

    The Polα/primase complex assembles the short RNA-DNA fragments for priming of lagging and leading strand DNA replication in eukaryotes. As such, the Polα polymerase subunit encounters two types of substrates during primer synthesis: an RNA:DNA helix and a DNA:DNA helix. The engagement of the polymerase subunit with the DNA:DNA helix has been suggested as the of basis for primer termination in eukaryotes. However, there is no structural information on how the Polα polymerase subunit actually engages with a DNA:DNA helix during primer synthesis. We present here the first crystal structure of human Polα polymerase subunit in complex with a DNA:DNA helix. Unexpectedly, we find that portion of the DNA:DNA helix in contact with the polymerase is not in a B-form but in a hybrid A-B form. Almost all of the contacts observed previously with an RNA primer are preserved with a DNA primer--with the same set of polymerase residues tracking the sugar-phosphate backbone of the DNA or RNA primer. Thus, rather than loss of specific contacts, the free energy cost of distorting DNA from B- to hybrid A-B form may augur the termination of primer synthesis in eukaryotes.

  8. Intercalation processes of copper complexes in DNA.

    PubMed

    Galindo-Murillo, Rodrigo; García-Ramos, Juan Carlos; Ruiz-Azuara, Lena; Cheatham, Thomas E; Cortés-Guzmán, Fernando

    2015-06-23

    The family of anticancer complexes that include the transition metal copper known as Casiopeínas® shows promising results. Two of these complexes are currently in clinical trials. The interaction of these compounds with DNA has been observed experimentally and several hypotheses regarding the mechanism of action have been developed, and these include the generation of reactive oxygen species, phosphate hydrolysis and/or base-pair intercalation. To advance in the understanding on how these ligands interact with DNA, we present a molecular dynamics study of 21 Casiopeínas with a DNA dodecamer using 10 μs of simulation time for each compound. All the complexes were manually inserted into the minor groove as the starting point of the simulations. The binding energy of each complex and the observed representative type of interaction between the ligand and the DNA is reported. With this extended sampling time, we found that four of the compounds spontaneously flipped open a base pair and moved inside the resulting cavity and four compounds formed stacking interactions with the terminal base pairs. The complexes that formed the intercalation pocket led to more stable interactions.

  9. Intercalation processes of copper complexes in DNA

    PubMed Central

    Galindo-Murillo, Rodrigo; García-Ramos, Juan Carlos; Ruiz-Azuara, Lena; Cheatham, Thomas E.; Cortés-Guzmán, Fernando

    2015-01-01

    The family of anticancer complexes that include the transition metal copper known as Casiopeínas® shows promising results. Two of these complexes are currently in clinical trials. The interaction of these compounds with DNA has been observed experimentally and several hypotheses regarding the mechanism of action have been developed, and these include the generation of reactive oxygen species, phosphate hydrolysis and/or base-pair intercalation. To advance in the understanding on how these ligands interact with DNA, we present a molecular dynamics study of 21 Casiopeínas with a DNA dodecamer using 10 μs of simulation time for each compound. All the complexes were manually inserted into the minor groove as the starting point of the simulations. The binding energy of each complex and the observed representative type of interaction between the ligand and the DNA is reported. With this extended sampling time, we found that four of the compounds spontaneously flipped open a base pair and moved inside the resulting cavity and four compounds formed stacking interactions with the terminal base pairs. The complexes that formed the intercalation pocket led to more stable interactions. PMID:25958394

  10. Design space for complex DNA structures.

    PubMed

    Wei, Bryan; Dai, Mingjie; Myhrvold, Cameron; Ke, Yonggang; Jungmann, Ralf; Yin, Peng

    2013-12-04

    Nucleic acids have emerged as effective materials for assembling complex nanoscale structures. To tailor the structures to function optimally for particular applications, a broad structural design space is desired. Despite the many discrete and extended structures demonstrated in the past few decades, the design space remains to be fully explored. In particular, the complex finite-sized structures produced to date have been typically based on a small number of structural motifs. Here, we perform a comprehensive study of the design space for complex DNA structures, using more than 30 distinct motifs derived from single-stranded tiles. These motifs self-assemble to form structures with diverse strand weaving patterns and specific geometric properties, such as curvature and twist. We performed a systematic study to control and characterize the curvature of the structures, and constructed a flat structure with a corrugated strand pattern. The work here reveals the broadness of the design space for complex DNA nanostructures.

  11. DNA probes for papillomavirus strains readied for cervical cancer screening

    SciTech Connect

    Merz, B.

    1988-11-18

    New Papillomavirus tests are ready to come to the aid of the standard Papanicolauo test in screening for cervical cancer. The new tests, which detect the strains of human papillomavirus (HPV) most commonly associated with human cervical cancer, are designed to be used as an adjunct to rather than as a replacement for the Papanicolaou smears. Their developers say that they can be used to indicated a risk of developing cancer in women whose Papanicolaou smears indicate mild cervical dysplasia, and, eventually, to detect papillomavirus infection in normal Papanicolaou smears. The rationale for HPV testing is derived from a growing body of evidence that HPV is a major factor in the etiology of cervical cancer. Three HPV tests were described recently in Chicago at the Third International Conference on Human Papillomavirus and Squamous Cervical Cancer. Each relies on DNA probes to detect the presence of papillomavirus in cervical cells and/or to distinguish the strain of papillomavirus present.

  12. Photoresponsive Supramolecular Complexes as Efficient DNA Regulator

    PubMed Central

    Cheng, Hong-Bo; Zhang, Ying-Ming; Xu, Chao; Liu, Yu

    2014-01-01

    Two supramolecular complexes of trans-1⊂CB[8] and trans-2⊂CB[8] were successfully achieved by the controlled selective complexation process of cucurbit[8]uril (CB[8]) with hetero-guest pair containing azobenzene and bispyridinium moieties in aqueous solution, exhibiting the reversibly light-driven movements of CB[8] upon the photocontrollable isomerization of azophenyl axle components. Significantly, the obtained bistable supramolecular complexes and their corresponding [2]pseudorotaxanes could act as a promising concentrator and cleavage agent to regulate the binding behaviors with DNA molecules. PMID:24572680

  13. Islands of Complex DNA Are Widespread in Drosophila Centric Heterochromatin

    PubMed Central

    Le, M. H.; Duricka, D.; Karpen, G. H.

    1995-01-01

    Heterochromatin is a ubiquitous yet poorly understood component of multicellular eukaryotic genomes. Major gaps exist in our knowledge of the nature and overall organization of DNA sequences present in heterochromatin. We have investigated the molecular structure of the 1 Mb of centric heterochromatin in the Drosophila minichromosome Dp1187. A genetic screen of irradiated minichromosomes yielded rearranged derivatives of Dp1187 whose structures were determined by pulsed-field Southern analysis and PCR. Three Dp1187 deletion derivatives and an inversion had one breakpoint in the euchromatin and one in the heterochromatin, providing direct molecular access to previously inaccessible parts of the heterochromatin. End-probed pulsed-field restriction mapping revealed the presence of at least three ``islands'' of complex DNA, Tahiti, Moorea, and Bora Bora, constituting approximately one half of the Dp1187 heterochromatin. Pulsed-field Southern analysis demonstrated that Drosophila heterochromatin in general is composed of alternating blocks of complex DNA and simple satellite DNA. Cloning and sequencing of a small part of one island, Tahiti, demonstrated the presence of a retroposon. The implications of these findings to heterochromatin structure and function are discussed. PMID:8536977

  14. Probing the microenvironments in the grooves of Z-DNA using dan-modified oligonucleotides.

    PubMed

    Kimura, Takumi; Kawai, Kiyohiko; Majima, Tetsuro

    2006-04-14

    The environment-sensitive fluorophore dan (6-dimethylamino-2-acyl-naphthalene)- modified dC or dG bases were introduced into the Z-DNA forming sequence. It was demonstrated that both grooves of Z-DNA are more hydrated than those of B-DNA. Dan will be useful for probing the microenvironments in the grooves among the DNA polymorphs.

  15. Method and apparatus for synthesis of arrays of DNA probes

    DOEpatents

    Cerrina, Francesco; Sussman, Michael R.; Blattner, Frederick R.; Singh-Gasson, Sangeet; Green, Roland

    2002-04-23

    The synthesis of arrays of DNA probes sequences, polypeptides, and the like is carried out using a patterning process on an active surface of a substrate. An image is projected onto the active surface of the substrate utilizing an image former that includes a light source that provides light to a micromirror device comprising an array of electronically addressable micromirrors, each of which can be selectively tilted between one of at least two positions. Projection optics receives the light reflected from the micromirrors along an optical axis and precisely images the micromirrors onto the active surface of the substrate, which may be used to activate the surface of the substrate. The first level of bases may then be applied to the substrate, followed by development steps, and subsequent exposure of the substrate utilizing a different pattern of micromirrors, with further repeats until the elements of a two dimensional array on the substrate surface have an appropriate base bound thereto. The micromirror array can be controlled in conjunction with a DNA synthesizer supplying appropriate reagents to a flow cell containing the active substrate to control the sequencing of images presented by the micromirror array in coordination of the reagents provided to the substrate.

  16. Generalized Random Matrix Theory:. a Mathematical Probe for Complexity

    NASA Astrophysics Data System (ADS)

    Shukla, Pragya

    2012-07-01

    The ubiquitous presence of complexity in nature makes it necessary to seek new mathematical tools which can probe physical systems beyond linear or perturbative approximations. The random matrix theory is one such tool in which the statistical behavior of a system is modeled by an ensemble of its replicas. This paper is an attempt to review the basic aspects of the theory in a simplified language, aimed at students from diverse areas of physics.

  17. Geant4-DNA simulations using complex DNA geometries generated by the DnaFabric tool

    NASA Astrophysics Data System (ADS)

    Meylan, S.; Vimont, U.; Incerti, S.; Clairand, I.; Villagrasa, C.

    2016-07-01

    Several DNA representations are used to study radio-induced complex DNA damages depending on the approach and the required level of granularity. Among all approaches, the mechanistic one requires the most resolved DNA models that can go down to atomistic DNA descriptions. The complexity of such DNA models make them hard to modify and adapt in order to take into account different biological conditions. The DnaFabric project was started to provide a tool to generate, visualise and modify such complex DNA models. In the current version of DnaFabric, the models can be exported to the Geant4 code to be used as targets in the Monte Carlo simulation. In this work, the project was used to generate two DNA fibre models corresponding to two DNA compaction levels representing the hetero and the euchromatin. The fibres were imported in a Geant4 application where computations were performed to estimate the influence of the DNA compaction on the amount of calculated DNA damage. The relative difference of the DNA damage computed in the two fibres for the same number of projectiles was found to be constant and equal to 1.3 for the considered primary particles (protons from 300 keV to 50 MeV). However, if only the tracks hitting the DNA target are taken into account, then the relative difference is more important for low energies and decreases to reach zero around 10 MeV. The computations were performed with models that contain up to 18,000 DNA nucleotide pairs. Nevertheless, DnaFabric will be extended to manipulate multi-scale models that go from the molecular to the cellular levels.

  18. Surface-Enhanced Raman Scattering Based Nonfluorescent Probe for Multiplex DNA Detection

    PubMed Central

    Sun, Lan; Yu, Chenxu; Irudayaraj, Joseph

    2008-01-01

    To provide rapid and accurate detection of DNA markers in a straightforward, inexpensive and multiplex format, an alternative surface enhanced Raman scattering (SERS) based probe was designed and fabricated to covalently attach both DNA probing sequence and non-fluorescent Raman tags to the surface of gold nanoparticles (DNA-AuP-RTag). The intensity of Raman signal of the probes could be controlled through the surface coverage of the non-fluorescent Raman tags (RTags). Detection sensitivity of these probes could be optimized by fine-tuning the amount of DNA molecules and RTags on the probes. Long-term stability of the DNA-AuP-RTag probes was found to be good (over 3 months). Excellent multiplexing capability of the DNA-AuP-RTag scheme was demonstrated by simultaneous identification of up to eight probes in a mixture. Detection of hybridization of single-stranded DNA (ssDNA) to its complementary targets was successfully accomplished with a long-term goal to use non-fluorescent RTags in a Raman-based DNA microarray platform. PMID:17465531

  19. Probing the Dynamic Interaction between Damaged DNA and a Cellular Responsive Protein Using a Piezoelectric Mass Biosensor.

    PubMed

    Jin, Yulong; Xie, Yunfeng; Wu, Kui; Huang, Yanyan; Wang, Fuyi; Zhao, Rui

    2017-03-15

    The binding events between damaged DNA and recognition biomolecules are of great interest for understanding the activity of DNA-damaging drugs and the related DNA repair networks. Herein, a simple and sensitive sensor system was tailored for real-time probing of the dynamic molecular recognition between cisplatin-damaged-DNA (cisPt-DNA) and a cellular responsive protein, high-mobility-group box 1 (HMGB1). By integration of flow injection analysis (FIA) with quartz crystal microbalance (QCM), the interaction time-course of cisPt-DNA and HMGB1 domain A (HMGB1a) was investigated. The highly specific sensing interface was carefully designed and fabricated using cisPt-DNA as recognition element. A hybrid self-assembled monolayer consisting of cysteamine and mercaptohexanol was introduced to resist nonspecific adsorption. The calculated kinetic parameters (kass and kdiss) and the dissociation constant (KD) demonstrated the rapid recognition and tight binding of HMGB1a toward cisPt-DNA. Molecular docking was employed to simulate the complex formed by cisPt-DNA and HMGB1a. The tight binding of such a DNA-damage responsive complex is appealing for the downstream molecular recognition event related to the resistance to DNA repair. This continuous-flow QCM biosensor is an ideal tool for studying specific interactions between drug-damaged-DNAs and their recognition proteins in a physiological-relevant environment, and will provide a potential sensor platform for rapid screening and evaluating metal anticancer drugs.

  20. Mitochondrial respiratory complex I probed by delayed luminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Baran, Irina; Ionescu, Diana; Privitera, Simona; Scordino, Agata; Mocanu, Maria Magdalena; Musumeci, Francesco; Grasso, Rosaria; Gulino, Marisa; Iftime, Adrian; Tofolean, Ioana Teodora; Garaiman, Alexandru; Goicea, Alexandru; Irimia, Ruxandra; Dimancea, Alexandru; Ganea, Constanta

    2013-12-01

    The role of mitochondrial complex I in ultraweak photon-induced delayed photon emission [delayed luminescence (DL)] of human leukemia Jurkat T cells was probed by using complex I targeting agents like rotenone, menadione, and quercetin. Rotenone, a complex I-specific inhibitor, dose-dependently increased the mitochondrial level of reduced nicotinamide adenine dinucleotide (NADH), decreased clonogenic survival, and induced apoptosis. A strong correlation was found between the mitochondrial levels of NADH and oxidized flavin mononucleotide (FMNox) in rotenone-, menadione- and quercetin-treated cells. Rotenone enhanced DL dose-dependently, whereas quercetin and menadione inhibited DL as well as NADH or FMNox. Collectively, the data suggest that DL of Jurkat cells originates mainly from mitochondrial complex I, which functions predominantly as a dimer and less frequently as a tetramer. In individual monomers, both pairs of pyridine nucleotide (NADH/reduced nicotinamide adenine dinucleotide phosphate) sites and flavin (FMN-a/FMN-b) sites appear to bind cooperatively their specific ligands. Enhancement of delayed red-light emission by rotenone suggests that the mean time for one-electron reduction of ubiquinone or FMN-a by the terminal Fe/S center (N2) is 20 or 284 μs, respectively. All these findings suggest that DL spectroscopy could be used as a reliable, sensitive, and robust technique to probe electron flow within complex I in situ.

  1. DNA based computing for understanding complex shapes.

    PubMed

    Ullah, A M M Sharif; D'Addona, Doriana; Arai, Nobuyuki

    2014-03-01

    This study deals with a computing method called DNA based computing (DBC) that takes inspiration from the Central Dogma of Molecular Biology. The proposed DBC uses a set of user-defined rules to create a DNA-like sequence from a given piece of problem-relevant information (e.g., image data) in a dry-media (i.e., in an ordinary computer). It then uses another set of user-defined rules to create an mRNA-like sequence from the DNA. Finally, it uses the genetic code to translate the mRNA (or directly the DNA) to a protein-like sequence (a sequence of amino acids). The informational characteristics of the protein (entropy, absence, presence, abundance of some selected amino acids, and relationships among their likelihoods) can be used to solve problems (e.g., to understand complex shapes from their image data). Two case studies ((1) fractal geometry generated shape of a fern-leaf and (2) machining experiment generated shape of the worn-zones of a cutting tool) are presented elucidating the shape understanding ability of the proposed DBC in the presence of a great deal of variability in the image data of the respective shapes. The implication of the proposed DBC from the context of Internet-aided manufacturing system is also described. Further study can be carried out in solving other complex computational problems by using the proposed DBC and its derivatives. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Effect of a Dual Charge on the DNA-Conjugated Redox Probe on DNA Sensing by Short Hairpin Beacons Tethered to Gold Electrodes.

    PubMed

    Kékedy-Nagy, László; Shipovskov, Stepan; Ferapontova, Elena E

    2016-08-16

    Charges of redox species can critically affect both the interfacial state of DNA and electrochemistry of DNA-conjugated redox labels and, as a result, the electroanalytical performance of those systems. Here, we show that the kinetics of electron transfer (ET) between the gold electrode and methylene blue (MB) label conjugated to a double-stranded (ds) DNA tethered to gold strongly depend on the charge of the MB molecule, and that affects the performance of genosensors exploiting MB-labeled hairpin DNA beacons. Positively charged MB binds to dsDNA via electrostatic and intercalative/groove binding, and this binding allows the DNA-mediated electrochemistry of MB intercalated into the duplex and, as a result, a complex mode of the electrochemical signal change upon hairpin hybridization to the target DNA, dominated by the "on-off" signal change mode at nanomolar levels of the analyzed DNA. When MB bears an additional carboxylic group, the negative charge provided by this group prevents intimate interactions between MB and DNA, and then the ET in duplexes is limited by the diffusion of the MB-conjugated dsDNA (the phenomenon first shown in Farjami , E. ; Clima , L. ; Gothelf , K. ; Ferapontova , E. E. Anal. Chem. 2011 , 83 , 1594 ) providing the robust "off-on" nanomolar DNA sensing. Those results can be extended to other intercalating redox probes and are of strategic importance for design and development of electrochemical hybridization sensors exploiting DNA nanoswitchable architectures.

  3. Dynamics of DNA/intercalator complexes

    NASA Astrophysics Data System (ADS)

    Schurr, J. M.; Wu, Pengguang; Fujimoto, Bryant S.

    1990-05-01

    Complexes of linear and supercoiled DNAs with different intercalating dyes are studied by time-resolved fluorescence polarization anisotropy using intercalated ethidium as the probe. Existing theory is generalized to take account of excitation transfer between intercalated ethidiums, and Forster theory is shown to be valid in this context. The effects of intercalated ethidium, 9-aminoacridine, and proflavine on the torsional rigidity of linear and supercoiled DNAs are studied up to rather high binding ratios. Evidence is presented that metastable secondary structure persists in dye-relaxed supercoiled DNAs, which contradicts the standard model of supercoiled DNAs.

  4. Kinetics of Oligonucleotide Hybridization to DNA Probe Arrays on High-Capacity Porous Silica Substrates

    PubMed Central

    Glazer, Marc I.; Fidanza, Jacqueline A.; McGall, Glenn H.; Trulson, Mark O.; Forman, Jonathan E.; Frank, Curtis W.

    2007-01-01

    We have investigated the kinetics of DNA hybridization to oligonucleotide arrays on high-capacity porous silica films that were deposited by two techniques. Films created by spin coating pure colloidal silica suspensions onto a substrate had pores of ∼23 nm, relatively low porosity (35%), and a surface area of 17 times flat glass (for a 0.3-μm film). In the second method, latex particles were codeposited with the silica by spin coating and then pyrolyzed, which resulted in larger pores (36 nm), higher porosity (65%), and higher surface area (26 times flat glass for a 0.3-μm film). As a result of these favorable properties, the templated silica hybridized more quickly and reached a higher adsorbed target density (11 vs. 8 times flat glass at 22°C) than the pure silica. Adsorption of DNA onto the high-capacity films is controlled by traditional adsorption and desorption coefficients, as well as by morphology factors and transient binding interactions between the target and the probes. To describe these effects, we have developed a model based on the analogy to diffusion of a reactant in a porous catalyst. Adsorption values (ka, kd, and K) measured on planar arrays for the same probe/target system provide the parameters for the model and also provide an internally consistent comparison for the stability of the transient complexes. The interpretation of the model takes into account factors not previously considered for hybridization in three-dimensional films, including the potential effects of heterogeneous probe populations, partial probe/target complexes during diffusion, and non-1:1 binding structures. The transient complexes are much less stable than full duplexes (binding constants for full duplexes higher by three orders of magnitude or more), which may be a result of the unique probe density and distribution that is characteristic of the photolithographically patterned arrays. The behavior at 22°C is described well by the predictive equations for

  5. A DNA minor groove electronegative potential genome map based on photo-chemical probing.

    PubMed

    Lindemose, Søren; Nielsen, Peter Eigil; Hansen, Morten; Møllegaard, Niels Erik

    2011-08-01

    The double-stranded DNA of the genome contains both sequence information directly relating to the protein and RNA coding as well as functional and structural information relating to protein recognition. Only recently is the importance of DNA shape in this recognition process being fully appreciated, and it also appears that minor groove electronegative potential may contribute significantly in guiding proteins to their cognate binding sites in the genome. Based on the photo-chemical probing results, we have derived an algorithm that predicts the minor groove electronegative potential in a DNA helix of any given sequence. We have validated this model on a series of protein-DNA binding sites known to involve minor groove electrostatic recognition as well as on stable nucleosome core complexes. The algorithm allows for the first time a full minor groove electrostatic description at the nucleotide resolution of any genome, and it is illustrated how such detailed studies of this sequence dependent, inherent property of the DNA may reflect on genome organization, gene expression and chromosomal condensation.

  6. DNA-based stable isotope probing enables the identification of active bacterial endophytes in potatoes.

    PubMed

    Rasche, Frank; Lueders, Tillmann; Schloter, Michael; Schaefer, Sabine; Buegger, Franz; Gattinger, Andreas; Hood-Nowotny, Rebecca C; Sessitsch, Angela

    2009-03-01

    A (13)CO2 (99 atom-%, 350 ppm) incubation experiment was performed to identify active bacterial endophytes in two cultivars of Solanum tuberosum, cultivars Desirée and Merkur. We showed that after the assimilation and photosynthetic transformation of (13)CO2 into (13)C-labeled metabolites by the plant, the most directly active, cultivar specific heterotrophic endophytic bacteria that consume these labeled metabolite scan be identified by DNA stable isotope probing (DNA-SIP).Density-resolved DNA fractions obtained from SIP were subjected to 16S rRNA gene-based community analysis using terminal restriction fragment length polymorphism analysis and sequencing of generated gene libraries.Community profiling revealed community compositions that were dominated by plant chloroplast and mitochondrial 16S rRNA genes for the 'light' fractions of (13)CO2-incubated potato cultivars and of potato cultivars not incubated with (13)CO2. In the 'heavy' fractions of the (13)CO2-incubated endophyte DNA, a bacterial 492-bp terminal restriction fragment became abundant, which could be clearly identified as Acinetobacter and Acidovorax spp. in cultivars Merkur and Desirée,respectively, indicating cultivar-dependent distinctions in (13)C-label flow. These two species represent two common potato endophytes with known plant-beneficial activities.The approach demonstrated the successful detection of active bacterial endophytes in potato. DNA-SIP therefore offers new opportunities for exploring the complex nature of plant-microbe interactions and plant-dependent microbial metabolisms within the endosphere.

  7. Local rheological probes for complex fluids: application to Laponite suspensions.

    PubMed

    Wilhelm, C; Elias, F; Browaeys, J; Ponton, A; Bacri, J-C

    2002-08-01

    We present an experimental method allowing a direct measurement of the local rheological behavior of complex fluids. A magnetic probe is inserted into the bulk of the fluid and submitted to a controlled magnetic force or torque, which induces a mechanical perturbation of the fluid. The geometry of the perturbation can be varied using two kinds of probes: a magnetic bead submitted to a homogeneous magnetic force in one direction, and a magnetic needle that can turn inside the material under the effect of an applied magnetic torque. Two complex viscoelastic fluids are investigated. First, a surfactant solution, which has a linear mechanical behavior in the range of the applied stresses, is used to test and validate the experimental methodology. We then use the local probes to investigate a Laponite colloidal suspension, which exhibits nonlinear behavior such as thixotropy, shear thinning, and aging. In this latter fluid, we find an exponential growth of the rheological relaxation time versus the system age, a power-law dependence of the fluid viscosity on the applied stress, and a dynamical yield stress which saturates with the fluid aging time.

  8. Probing evolutionary patterns in neotropical birds through DNA barcodes.

    PubMed

    Kerr, Kevin C R; Lijtmaer, Darío A; Barreira, Ana S; Hebert, Paul D N; Tubaro, Pablo L

    2009-01-01

    The Neotropical avifauna is more diverse than that of any other biogeographic region, but our understanding of patterns of regional divergence is limited. Critical examination of this issue is currently constrained by the limited genetic information available. This study begins to address this gap by assembling a library of mitochondrial COI sequences, or DNA barcodes, for Argentinian birds and comparing their patterns of genetic diversity to those of North American birds. Five hundred Argentinian species were examined, making this the first major examination of DNA barcodes for South American birds. Our results indicate that most southern Neotropical bird species show deep sequence divergence from their nearest-neighbour, corroborating that the high diversity of this fauna is not based on an elevated incidence of young species radiations. Although species ages appear similar in temperate North and South American avifaunas, patterns of regional divergence are more complex in the Neotropics, suggesting that the high diversity of the Neotropical avifauna has been fueled by greater opportunities for regional divergence. Deep genetic splits were observed in at least 21 species, though distribution patterns of these lineages were variable. The lack of shared polymorphisms in species, even in species with less than 0.5M years of reproductive isolation, further suggests that selective sweeps could regularly excise ancestral mitochondrial polymorphisms. These findings confirm the efficacy of species delimitation in birds via DNA barcodes, even when tested on a global scale. Further, they demonstrate how large libraries of a standardized gene region provide insight into evolutionary processes.

  9. Surface-enhanced Raman scattering based nonfluorescent probe for multiplex DNA detection.

    PubMed

    Sun, Lan; Yu, Chenxu; Irudayaraj, Joseph

    2007-06-01

    To provide rapid and accurate detection of DNA markers in a straightforward, inexpensive, and multiplex format, an alternative surface-enhanced Raman scattering based probe was designed and fabricated to covalently attach both DNA probing sequence and nonfluorescent Raman tags to the surface of gold nanoparticles (DNA-AuP-RTag). The intensity of Raman signal of the probes could be controlled through the surface coverage of the nonfluorescent Raman tags (RTags). Detection sensitivity of these probes could be optimized by fine-tuning the amount of DNA molecules and RTags on the probes. Long-term stability of the DNA-AuP-RTag probes was found to be good (over 3 months). Excellent multiplexing capability of the DNA-AuP-RTag scheme was demonstrated by simultaneous identification of up to eight probes in a mixture. Detection of hybridization of single-stranded DNA to its complementary targets was successfully accomplished with a long-term goal to use nonfluorescent RTags in a Raman-based DNA microarray platform.

  10. Detection of foodborne pathogens using DNA probes and a dipstick format.

    PubMed

    Groody, E P

    1996-12-01

    The detection of foodborne microorganisms has traditionally been done using microbiologically based methods. Such "gold standard" methods are generally reliable but have the disadvantages of being labor intensive, subjective, and time consuming. Over the last several years, the development of DNA probe-based methods has simplified the methods used to detect organisms such as Salmonella, Listeria, and E. coli by targeting the unique DNA or RNA sequences of these organisms using DNA probes and nonradioactive detection.

  11. Thermally forced transitions of DNA-CTMA complex microstructure

    NASA Astrophysics Data System (ADS)

    Nizioł, Jacek; Ekiert, Robert; Śniechowski, Maciej; Słomiany, Magdalena; Marzec, Mateusz M.

    2016-06-01

    DNA complexed with amphiphilic cationic surfactants is a new class of optical material. In this work DNA and its complex with cetyltrimetyl ammonium chloride were thermally annealed. X-ray diffractometry revealed irreversible changes of DNA-CTMA microstructure. The new microstucture that appeared in result of the first heating course was stable, despite the further thermal annealing. Agarose gel electrophoresis indicated fundamental differences between thermally treated native DNA and DNA-CTMA complex.

  12. The orientation of DNA in an archaeal transcription initiation complex.

    PubMed

    Bartlett, M S; Thomm, M; Geiduschek, E P

    2000-09-01

    RNA polymerase from the hyperthermophile archaeon Pyrococcus furiosus (Pfu) forms specific and transcriptionally active complexes with its conjugate transcription factors TBP (the archaeal TATA binding protein homolog) and TFB (the archaeal homolog of eukaryotic RNA polymerase II and III transcription factors TFIIB and Brf) at the Pfu glutamate dehydrogenase promoter. A photochemical crosslinking method was used to map the vicinity of the catalytic subunits of Pfu RNA polymerase to DNA locations distributed along the polymerase-promoter interface. The largest component of this archaeal polymerase is split into two subunits, A' and A", whose relatively sharp boundary of DNA crosslinking (probed on the transcribed strand) is centered five to six base pairs downstream of the transcriptional start site. A strong argument based on this information, on the well-defined homology between the core bacterial, archaeal and eukaryotic RNA polymerase subunits, and on the recently determined structure of a bacterial RNA polymerase specifies the directionality of DNA in the archaeal transcription complex and its trajectory downstream of the transcriptional start site.

  13. Identification of enterotoxigenic Escherichia coli with synthetic alkaline phosphatase-conjugated oligonucleotide DNA probes.

    PubMed Central

    Seriwatana, J; Echeverria, P; Taylor, D N; Sakuldaipeara, T; Changchawalit, S; Chivoratanond, O

    1987-01-01

    Alkaline phosphatase-conjugated (AP) 26-base oligonucleotide DNA probes were compared with the same probes labeled with gamma-32P for the identification of heat-labile (LT) and heat-stable (ST) enterotoxigenic Escherichia coli (ETEC). The AP oligonucleotide probes were as sensitive as the radiolabeled (RL) probes in detecting LT and STA-2 target cell DNA, but the AP ST probe, which differed from STA-1 by two bases, was less sensitive than the RL probe in detecting STA-1 DNA (6.25 versus 0.78 ng). Of 94 ETEC that were identified with the RL probe, the AP probes detected 93% (28 of 30) of ST, 73% (25 of 34) of LT, and 67% (20 of 30) of LTST ETEC. When colony lysates of these ETEC were examined, the AP probes identified all 94 ETEC. In examinations of stool blots, the RL and AP probes were shown to have sensitivities of 71 and 59%, specificities of 91 and 86%, positive predictive values of 87 and 73%, and negative predictive values of 86 and 74%, respectively. AP oligonucleotide probes to detect ETEC were less sensitive in detecting ETEC by colony or stool blot hybridization than the RL probes but could be used by laboratories without access to radioisotopes to examine colony lysates. Images PMID:3305559

  14. Value of a DNA probe assay (Gen-Probe) compared with that of culture for diagnosis of gonococcal infection.

    PubMed

    Vlaspolder, F; Mutsaers, J A; Blog, F; Notowicz, A

    1993-01-01

    The Gen-Probe PACE 2 system for Neisseria gonorrhoeae (GP), which uses a chemiluminescently labeled DNA probe, was compared with conventional culture as the method of reference. A total of 1,750 specimens were collected from 496 females and 623 males visiting the outpatient clinic of the Sexually Transmitted Diseases Department of the Westeinde Hospital, The Hague, The Netherlands, during the year 1991. The prevalences of gonorrhea culture-positive men and women were 14.9 and 7.7%, respectively. The overall positive rate was 8.7%. Sensitivity, specificity, and positive and negative predictive values of GP were 97.1, 99.1, 90.6, and 99.8%, respectively. A total of 12 of 13 patients with positive GP results and negative cultures may have had a gonococcal infection, a conclusion based on clinical symptoms, positive methylene blue smears, and high relative light unit ratios. The DNA probe test can be useful as a suitable screening and diagnostic test for gonorrheal infection in men and women. An advantage of using this DNA probe technique is that simultaneous testing for Chlamydia trachomatis of the same specimen is possible. We also examined whether (all) rRNA had disappeared after adequate treatment for gonococcal and/or chlamydial infection in 30 patients. None of those positive patients showed a positive result in the DNA probe assay after treatment.

  15. A comparative hybridization analysis of yeast DNA with Paramecium parafusin- and different phosphoglucomutase-specific probes.

    PubMed

    Wyroba, E; Satir, B H

    2000-01-01

    Molecular probes designed for the parafusin (PFUS), the Paramecium exocytic-sensitive phosphoglycoprotein, gave distinct hybridization patterns in Saccharomyces cerevisiae genomic DNA when compared with different phosphoglucomutase specific probes. These include two probes identical to segments of yeast phosphoglucomutase (PGM) genes 1 and 2. Neither of the PGM probes revealed the 7.4 and 5.9 kb fragments in Bgl II-cut yeast DNA digest detected with the 1.6 kb cloned PFUS cDNA and oligonucleotide constructed to the PFUS region (insertion 3--I-3) not found in other species. PCR amplification with PFUS-specific primers generated yeast DNA-species of the predicted molecular size which hybridized to the I-3 probe. A search of the yeast genome database produced an unassigned nucleotide sequence that showed 55% identity to parafusin gene and 37% identity to PGM2 (the major isoform of yeast phosphoglucomutase) within the amplified region.

  16. DNA-probe-target interaction based detection of Brucella melitensis by using surface plasmon resonance.

    PubMed

    Sikarwar, Bhavna; Singh, Virendra V; Sharma, Pushpendra K; Kumar, Ashu; Thavaselvam, Duraipandian; Boopathi, Mannan; Singh, Beer; Jaiswal, Yogesh K

    2017-01-15

    Surface plasmon resonance (SPR) immunosensor using 4-mercaptobenzoic acid (4-MBA) modified gold (4-MBA/Au) SPR chip was developed first time for the detection of Brucella melitensis (B. melitensis) based on the screening of its complementary DNA target by using two different newly designed DNA probes of IS711 gene. Herein, interaction between DNA probes and target molecule are also investigated and result revealed that the interaction is spontaneous. The kinetics and thermodynamic results derived from the experimental data showed that the interaction between complementary DNA targets and probe 1 is more effective than that of probe 2. Equilibrium dissociation constant (KD) and maximum binding capacity of analyte (Bmax) values for the interaction of complementary DNA target with the immobilized DNA probes were calculated by using kinetic evaluation software, and found to be 15.3 pM (KD) and 81.02m° (Bmax) with probe 1 and 54.9pM and 55.29m° (Bmax), respectively. Moreover, real serum samples analysis were also carried out using immobilized probe 1 and probe 2 with SPR which showed the applicability of this methodology and provides an alternative way for the detection of B. melitensis in less than 10min. This remarkable sensing response of present methodology offer a real time and label free detection of biological warfare agent and provide an opportunity to make miniaturized sensor, indicating considerable promise for diverse environmental, bio-defence, clinical diagnostics, food safety, water and security applications.

  17. Uropathogenic Escherichia coli virulence genes: invaluable approaches for designing DNA microarray probes.

    PubMed

    Jahandeh, Nadia; Ranjbar, Reza; Behzadi, Payam; Behzadi, Elham

    2015-01-01

    The pathotypes of uropathogenic Escherichia coli (UPEC) cause different types of urinary tract infections (UTIs). The presence of a wide range of virulence genes in UPEC enables us to design appropriate DNA microarray probes. These probes, which are used in DNA microarray technology, provide us with an accurate and rapid diagnosis and definitive treatment in association with UTIs caused by UPEC pathotypes. The main goal of this article is to introduce the UPEC virulence genes as invaluable approaches for designing DNA microarray probes. Main search engines such as Google Scholar and databases like NCBI were searched to find and study several original pieces of literature, review articles, and DNA gene sequences. In parallel with in silico studies, the experiences of the authors were helpful for selecting appropriate sources and writing this review article. There is a significant variety of virulence genes among UPEC strains. The DNA sequences of virulence genes are fabulous patterns for designing microarray probes. The location of virulence genes and their sequence lengths influence the quality of probes. The use of selected virulence genes for designing microarray probes gives us a wide range of choices from which the best probe candidates can be chosen. DNA microarray technology provides us with an accurate, rapid, cost-effective, sensitive, and specific molecular diagnostic method which is facilitated by designing microarray probes. Via these tools, we are able to have an accurate diagnosis and a definitive treatment regarding UTIs caused by UPEC pathotypes.

  18. Radiation damage to DNA-protein complexes

    NASA Astrophysics Data System (ADS)

    Spotheim-Maurizot, M.; Davídková, M.

    2011-01-01

    We review here the advances in understanding the effects of ionizing radiations on DNA, proteins and their complexes, resulting from the collaboration of the authors' teams. It concerns the preponderant indirect effect of low LET ionizing radiations, thus the attack of the macromolecules in aqueous solution by the most aggressive product of water radiolysis, the hydroxyl radical. A model of simulation of the reaction of these radicals with the macromolecules (called RADACK) was developed and was used for calculating the probabilities of damage of each constituent of DNA or proteins (nucleotide or amino-acid). The calculations allowed to draw conclusions from electrophoresis, mutagenesis, spectroscopic (fluorescence, circular dichroïsm) and mass spectrometry experiments. Thus we have shown that the extent and location of the lesions are strongly dependent on the 3D structure of the macromolecules, which in turns is modulated by their sequence and by the binding of some ligands. Molecular dynamics simulation completed our studies in showing the consequences of each lesion on the stability and structure of the proteins and their complexes with DNA.

  19. A universal biosensor for multiplex DNA detection based on hairpin probe assisted cascade signal amplification.

    PubMed

    Liu, Jie; Chen, Lingbo; Lie, Puchang; Dun, Boying; Zeng, Lingwen

    2013-06-07

    A hairpin DNA probe mediated cascade signal amplification method was developed for visual and rapid DNA analysis with a detection limit of 100 aM. The implementation of tag/anti-tag DNA and gold nanoparticle reporters permits a universal platform for multiplex genotyping without instrumentation.

  20. Effect of probe characteristics on the subtractive hybridization efficiency of human genomic DNA

    PubMed Central

    2010-01-01

    Background The detection sensitivity of low abundance pathogenic species by polymerase chain reaction (PCR) can be significantly enhanced by removing host nucleic acids. This selective removal can be performed using a magnetic bead-based solid phase with covalently immobilized capture probes. One of the requirements to attain efficient host background nucleic acids subtraction is the capture probe characteristics. Findings In this study we investigate how various capture probe characteristics influence the subtraction efficiency. While the primary focus of this report is the impact of probe length, we also studied the impact of probe conformation as well as the amount of capture probe attached to the solid phase. The probes were immobilized on magnetic microbeads functionalized with a phosphorous dendrimer. The subtraction efficiency was assessed by quantitative real time PCR using a single-step capture protocol and genomic DNA as target. Our results indicate that short probes (100 to 200 bp) exhibit the best subtraction efficiency. Additionally, higher subtraction efficiencies with these probes were obtained as the amount of probe immobilized on the solid phase decreased. Under optimal probes condition, our protocol showed a 90 - 95% subtraction efficiency of human genomic DNA. Conclusions The characteristics of the capture probe are important for the design of efficient solid phases. The length, conformation and abundance of the probes determine the capture efficiency of the solid phase. PMID:20406484

  1. Evaluation of a prototype DNA probe test for the noncultural diagnosis of gonorrhea.

    PubMed Central

    Granato, P A; Franz, M R

    1989-01-01

    A prototype, nonisotopic, chemiluminescent DNA probe test called the Gen-Probe PACE (Probe Assay-Chemiluminescence Enhanced) system for Neisseria gonorrhoeae (Gen-Probe, San Diego, Calif.) was compared with conventional Martin-Lewis culture medium in JEMBEC plates for the laboratory diagnosis of gonorrhea. This 2-h noncultural assay is based upon the use of an acridinium ester-labeled DNA probe. The rRNA-directed DNA probe hybridizes with the target rRNA, and the hybridized probe is separated from the unhybridized probe through the use of magnetic microparticles. The esterified acridinium is hydrolyzed from the hybridized probe by the addition of an alkaline hydrogen peroxide solution, resulting in the production of visible light which is measured in a luminometer. The amount of light generated is directly proportional to the amount of gonococcal target rRNA present in the sample. A total of 407 clinical specimens (203 urethral and 204 endocervical) were collected from high-risk walk-in patients attending a sexually transmitted disease clinic. Separate patient specimens were collected for culture on Martin-Lewis medium in JEMBEC plates and for DNA probe assay. Statistical analysis of the overall comparative results showed that the DNA probe assay had a sensitivity, specificity, and positive and negative predictive values of 93, 99, 97, and 99%, respectively, in a patient population with a gonococcal disease prevalence of 21%. The results of this comparative study showed that the prototype chemiluminescent DNA probe assay is a rapid and reliable noncultural alternative for the laboratory diagnosis of gonorrhea. PMID:2498388

  2. Detecting the effects of toxic agents on spermatogenesis using DNA probes

    SciTech Connect

    Hecht, N.B.

    1987-10-01

    Advances in the molecular biology of spermatogenesis suggest that DNA probes can be used to monitor the effects of toxic agents in male germ cells of mammals. Molecular hybridization analyses with DNA probes can provide a reproducible methodology capable of detecting changes ranging from massive deletions to single base pair substitutions in the genome of exposed individuals. A constantly increasing number of DNA probes that can be used to detect such alterations in human sperm DNA exist for both ubiquitously expressed proteins and for genes solely expressed in the testis. In this chapter, the currently available testicular stage-specific and/or cell type-specific DNA probes and the techniques by which they can be utilized in reproductive toxicology studies are discussed. The advantages, limitations, and future technological advances of this novel biological marker system for the human male reproductive system are also considered.

  3. Probing Evolutionary Patterns in Neotropical Birds through DNA Barcodes

    PubMed Central

    Kerr, Kevin C. R.; Lijtmaer, Darío A.; Barreira, Ana S.; Hebert, Paul D. N.; Tubaro, Pablo L.

    2009-01-01

    Background The Neotropical avifauna is more diverse than that of any other biogeographic region, but our understanding of patterns of regional divergence is limited. Critical examination of this issue is currently constrained by the limited genetic information available. This study begins to address this gap by assembling a library of mitochondrial COI sequences, or DNA barcodes, for Argentinian birds and comparing their patterns of genetic diversity to those of North American birds. Methodology and Principal Findings Five hundred Argentinian species were examined, making this the first major examination of DNA barcodes for South American birds. Our results indicate that most southern Neotropical bird species show deep sequence divergence from their nearest-neighbour, corroborating that the high diversity of this fauna is not based on an elevated incidence of young species radiations. Although species ages appear similar in temperate North and South American avifaunas, patterns of regional divergence are more complex in the Neotropics, suggesting that the high diversity of the Neotropical avifauna has been fueled by greater opportunities for regional divergence. Deep genetic splits were observed in at least 21 species, though distribution patterns of these lineages were variable. The lack of shared polymorphisms in species, even in species with less than 0.5M years of reproductive isolation, further suggests that selective sweeps could regularly excise ancestral mitochondrial polymorphisms. Conclusions These findings confirm the efficacy of species delimitation in birds via DNA barcodes, even when tested on a global scale. Further, they demonstrate how large libraries of a standardized gene region provide insight into evolutionary processes. PMID:19194495

  4. Nanoscale structure of protamine/DNA complexes for gene delivery

    NASA Astrophysics Data System (ADS)

    Motta, Simona; Brocca, Paola; Del Favero, Elena; Rondelli, Valeria; Cantù, Laura; Amici, Augusto; Pozzi, Daniela; Caracciolo, Giulio

    2013-02-01

    Understanding the internal packing of gene carriers is a key-factor to realize both gene protection during transport and de-complexation at the delivery site. Here, we investigate the structure of complexes formed by DNA fragments and protamine, applied in gene delivery. We found that complexes are charge- and size-tunable aggregates, depending on the protamine/DNA ratio, hundred nanometers in size. Their compactness and fractal structure depend on the length of the DNA fragments. Accordingly, on the local scale, the sites of protamine/DNA complexation assume different morphologies, seemingly displaying clumping ability for the DNA network only for shorter DNA fragments.

  5. Probing DNA helicase kinetics with temperature-controlled magnetic tweezers.

    PubMed

    Gollnick, Benjamin; Carrasco, Carolina; Zuttion, Francesca; Gilhooly, Neville S; Dillingham, Mark S; Moreno-Herrero, Fernando

    2015-03-18

    Motor protein functions like adenosine triphosphate (ATP) hydrolysis or translocation along molecular substrates take place at nanometric scales and consequently depend on the amount of available thermal energy. The associated rates can hence be investigated by actively varying the temperature conditions. In this article, a thermally controlled magnetic tweezers (MT) system for single-molecule experiments at up to 40 °C is presented. Its compact thermostat module yields a precision of 0.1 °C and can in principle be tailored to any other surface-coupled microscopy technique, such as tethered particle motion (TPM), nanopore-based sensing of biomolecules, or super-resolution fluorescence imaging. The instrument is used to examine the temperature dependence of translocation along double-stranded (ds)DNA by individual copies of the protein complex AddAB, a helicase-nuclease motor involved in dsDNA break repair. Despite moderately lower mean velocities measured at sub-saturating ATP concentrations, almost identical estimates of the enzymatic reaction barrier (around 21-24 k(B)T) are obtained by comparing results from MT and stopped-flow bulk assays. Single-molecule rates approach ensemble values at optimized chemical energy conditions near the motor, which can withstand opposing loads of up to 14 piconewtons (pN). Having proven its reliability, the temperature-controlled MT described herein will eventually represent a routinely applied method within the toolbox for nano-biotechnology.

  6. Probing DNA Helicase Kinetics with Temperature‐Controlled Magnetic Tweezers

    PubMed Central

    Gollnick, Benjamin; Carrasco, Carolina; Zuttion, Francesca; Gilhooly, Neville S.; Dillingham, Mark S.

    2014-01-01

    Motor protein functions like adenosine triphosphate (ATP) hydrolysis or translocation along molecular substrates take place at nanometric scales and consequently depend on the amount of available thermal energy. The associated rates can hence be investigated by actively varying the temperature conditions. In this article, a thermally controlled magnetic tweezers (MT) system for single‐molecule experiments at up to 40 °C is presented. Its compact thermostat module yields a precision of 0.1 °C and can in principle be tailored to any other surface‐coupled microscopy technique, such as tethered particle motion (TPM), nanopore‐based sensing of biomolecules, or super‐resolution fluorescence imaging. The instrument is used to examine the temperature dependence of translocation along double‐stranded (ds)DNA by individual copies of the protein complex AddAB, a helicase‐nuclease motor involved in dsDNA break repair. Despite moderately lower mean velocities measured at sub‐saturating ATP concentrations, almost identical estimates of the enzymatic reaction barrier (around 21–24 k B T) are obtained by comparing results from MT and stopped‐flow bulk assays. Single‐molecule rates approach ensemble values at optimized chemical energy conditions near the motor, which can withstand opposing loads of up to 14 piconewtons (pN). Having proven its reliability, the temperature‐controlled MT described herein will eventually represent a routinely applied method within the toolbox for nano‐biotechnology. PMID:25400244

  7. Fluorescent silver nanocluster DNA probes for multiplexed detection using microfluidic capillary electrophoresis.

    PubMed

    Del Bonis-O'Donnell, Jackson Travis; Fygenson, Deborah K; Pennathur, Sumita

    2015-03-07

    DNA-stabilized fluorescent silver nanoclusters (AgNC DNA) are a new class of fluorophore that are formed by sequence specific interactions between silver and single-stranded DNA. By incorporating both target-binding and fluorescent-reporting sequences into a single synthetic DNA oligomer, AgNC DNA probes eliminate the need to conjugate dye or quencher molecules. In this study, we modify a AgNC DNA probe to demonstrate single-color multiplexed detection of DNA targets. We show that appending different lengths of poly-dT to the probe sequences tunes the electrophoretic mobility of AgNC DNA probes without affecting their fluorescence spectra. We use this to introduce a set of AgNC DNA probes selective for Hepatitis A, B and C target sequences that can be processed together in a simple, single-step protocol and distinguished with a resolution of 3.47 and signal to noise ratio of 17.23 in under 10 seconds by microfluidic capillary electrophoresis.

  8. Luminescent chiral lanthanide(III) complexes as potential molecular probes

    PubMed Central

    Muller, Gilles

    2009-01-01

    This perspective gives an introduction into the design of luminescent lanthanide(III)-containing complexes possessing chiral properties and used to probe biological materials. The first part briefly describes general principles, focusing on the optical aspect (i.e. lanthanide luminescence, sensitization processes) of the most emissive trivalent lanthanide ions, europium and terbium, incorporated into molecular luminescent edifices. This is followed by a short discussion on the importance of chirality in the biological and pharmaceutical fields. The second part is devoted to the assessment of the chiroptical spectroscopic tools available (typically circular dichroism and circularly polarized luminescence) and the strategies used to introduce a chiral feature into luminescent lanthanide(III) complexes (chiral structure resulting from a chiral arrangement of the ligand molecules surrounding the luminescent center or presence of chiral centers in the ligand molecules). Finally, the last part illustrates these fundamental principles with recent selected examples of such chiral luminescent lanthanide-based compounds used as potential probes of biomolecular substrates. PMID:19885510

  9. A Microfluidic Microbeads Fluorescence Assay with Quantum Dots-Bead-DNA Probe.

    PubMed

    Ankireddy, S R; Kim, Jongsung

    2016-03-01

    A microfluidic bead-based nucleic acid sensor for the detection of tumor causing N-Ras genes using quantum dots has been developed. Presently, quantum dots-bead-DNA probe based hybridization detection methods are often called as 'bead based assays' and their success is substantially influenced by the dispensing and manipulation capability of the microfluidic technology. This study reports the detection of N-Ras cancer gene by fluorescence quenching of quantum dots immobilized on the surface of polystyrene beads. A microfluidic chip was constructed in which the quantum dots-bead-DNA probes were packed in the channel. The target DNA flowed across the beads and hybridized with immobilized probe sequences. The target DNA can be detected by the fluorescence quenching of the quantum dots due to their transfer of emission energy to intercalation dye after DNA hybridization. The mutated gene also induces fluorescence quenching but with less degree than the perfectly complementary target DNA.

  10. HBx-DNA probe preparation and its application in study of hepatocarcinogenesis

    PubMed Central

    Gao, Feng-Guang; Sun, Wen-Sheng; Cao, Ying-Lin; Zhang, Li-Ning; Song, Jing; Li, Hua-Fen; Yan, Shi-Kun

    1998-01-01

    AIM: To study the role of HBV especially HBx Open Reading Frame (ORF) in the development of hepatocellular carcinoma (HCC). METHODS: HBV 3.2 kb fragment was retrieved by digesting recombinant plasmid pBR322-2HBV with EcoR I, and HBx 0.59 kb fragments by digesting HBV-DNA with BamH I and Bgl II. These fragments were labelled with digoxigenin to get HBV-DNA and HBx-DNA probes. HBV-DNA was detected in HCC by dot blot and Southern blot hybridization with HBV-DNA probe, so the positive specimens in which HBV-DNA were integrated were selected. HBx-DNA was subsequently detected in the selected specimens with HBx-DNA probe. RESULTS: HBV-DNA was detected in 75% HCC, among which integrated type, integrated + free type covered 63.6% and 36.4%. There was no free type. HBx-DNA was detected in 90.5% specimens of integrated type. CONCLUSION: Hepatocarcinogenesis was highly related to HBV-DNA integration, and HBV-DNA mainly integrated into chromosome with incomplete virus DNA fragments among which HBx fragment was the predominant one. PMID:11819309

  11. [Liberation of DNA from particles of CD phage of DNA-protein complex: Properties of DNA in the complex and the effect of formaldehyde on the complex structure].

    PubMed

    Dobrov, E N; Ogareva, N A; Manykin, A A; Tikhonenko, T I

    1976-01-01

    Properties of DNA in a complex with protein, which was liberated after destruction of CD phage by heat treatment in solutions with low ionic strength, were studied. DNA in the complex did not differ from free DNA under the same conditions as shown by spectra of circular dichroism and by the type of melting during the thermic denaturation. As demonstrated by viscosimetry and gradient centrifugation in cesium sulfate, 1.5% formaldehyde inhibited the dissociation of the complex studied in a medium containing 0.15 M NaCl. In the medium with 1.5% of HCHO T degrees ml of DNA in the complex was distinctly higher than T degrees ml of free DNA under the same conditions. Electron microscopy showed that the complex studied comprised DNA ;molecules, associated with protein membrane in one or several internal sites.

  12. Analysis of DNA-protein complexes induced by chemical carcinogens

    SciTech Connect

    Costa, M. )

    1990-11-01

    DNA-protein complexes induced in intact cells by chromate have been isolated and compared with those formed by other agents such as cis-platinum. Actin has been identified as one of the major proteins that is complexed to the DNA by chromate based upon a number of criteria including, a molecular weight and isoelectric point identical to actin, positive reaction with actin polyclonal antibody, and proteolytic mapping. Chromate and cis-platinum both complex proteins of very similar molecular weight and isoelectric points and these complexes can be disrupted by exposure to chelating or reducing agents. These results suggest that the metal itself is participating in rather than catalyzing the formation of a DNA-protein complex. An antiserum which was raised to chromate-induced DNA-protein complexes reacted primarily with a 97,000 protein that could not be detected by silver staining. Western blots and slot blots were utilized to detect p97 DNA-protein complexes formed by cis-platinum, UV, formaldehyde, and chromate. Other work in this area, involving studying whether DNA-protein complexes are formed in actively transcribed DNA compared with genetically inactive DNA, is discussed. Methods to detect DNA-protein complexes, the stability and repair of these lesions, and characterization of DNA-protein complexes are reviewed. Nuclear matrix proteins have been identified as a major substrate for the formation of DNA-protein complexes and these findings are also reviewed.

  13. Invader probes: Harnessing the energy of intercalation to facilitate recognition of chromosomal DNA for diagnostic applications†

    PubMed Central

    Guenther, Dale C.; Anderson, Grace H.; Karmakar, Saswata; Anderson, Brooke A.; Didion, Bradley A.; Guo, Wei; Verstegen, John P.; Hrdlicka, Patrick J.

    2015-01-01

    Development of probes capable of recognizing specific regions of chromosomal DNA has been a long-standing goal for chemical biologists. Current strategies such as PNA, triplex-forming oligonucleotides, and polyamides are subject to target choice limitations and/or necessitate non-physiological conditions, leaving a need for alternative approaches. Toward this end, we have recently introduced double-stranded oligonucleotide probes that are energetically activated for DNA recognition through modification with +1 interstrand zippers of intercalator-functionalized nucleotide monomers. Here, probes with different chemistries and architectures – varying in the position, number, and distance between the intercalator zippers – are studied with respect to hybridization energetics and DNA-targeting properties. Experiments with model DNA targets demonstrate that optimized probes enable efficient (C50 < 1 μM), fast (t50 < 3h), kinetically stable (> 24h), and single nucleotide specific recognition of DNA targets at physiologically relevant ionic strengths. Optimized probes were used in non-denaturing fluorescence in situ hybridization experiments for detection of gender-specific mixed-sequence chromosomal DNA target regions. These probes present themselves as a promising strategy for recognition of chromosomal DNA, which will enable development of new tools for applications in molecular biology, genomic engineering and nanotechnology. PMID:26240741

  14. Invader probes: Harnessing the energy of intercalation to facilitate recognition of chromosomal DNA for diagnostic applications.

    PubMed

    Guenther, Dale C; Anderson, Grace H; Karmakar, Saswata; Anderson, Brooke A; Didion, Bradley A; Guo, Wei; Verstegen, John P; Hrdlicka, Patrick J

    2015-08-01

    Development of probes capable of recognizing specific regions of chromosomal DNA has been a long-standing goal for chemical biologists. Current strategies such as PNA, triplex-forming oligonucleotides, and polyamides are subject to target choice limitations and/or necessitate non-physiological conditions, leaving a need for alternative approaches. Toward this end, we have recently introduced double-stranded oligonucleotide probes that are energetically activated for DNA recognition through modification with +1 interstrand zippers of intercalator-functionalized nucleotide monomers. Here, probes with different chemistries and architectures - varying in the position, number, and distance between the intercalator zippers - are studied with respect to hybridization energetics and DNA-targeting properties. Experiments with model DNA targets demonstrate that optimized probes enable efficient (C50 < 1 μM), fast (t50 < 3h), kinetically stable (> 24h), and single nucleotide specific recognition of DNA targets at physiologically relevant ionic strengths. Optimized probes were used in non-denaturing fluorescence in situ hybridization experiments for detection of gender-specific mixed-sequence chromosomal DNA target regions. These probes present themselves as a promising strategy for recognition of chromosomal DNA, which will enable development of new tools for applications in molecular biology, genomic engineering and nanotechnology.

  15. Probing Minor Groove Hydrogen-bonding Interactions Between RB69 DNA Polymerase and DNA†

    PubMed Central

    Xia, Shuangluo; Christian, Thomas D.; Wang, Jimin; Konigsberg, William H.

    2012-01-01

    Minor groove hydrogen bonding (HB) interactions between DNA polymerases and N3 of purines or O2 of pyrimidines have been proposed to be essential for DNA synthesis from results obtained using various nucleoside analogues lacking the N3 or O2 contacts that interfered with primer-extension. Since there has been no direct structural evidence to support this proposal, we decided to evaluate the contribution of minor groove HB interactions with family B pols. We have used RB69 DNA pol and 3-deaza-2’-deoxyadenosine (3DA), an analog of 2-deoxyadenosine, which has the same HB pattern opposite T but with N3 replaced with a carbon atom. We then determined pre-steady state kinetic parameters for the insertion of dAMP opposite dT using primer/template (P/T) containing 3DA. We also determined three structures of ternary complexes with 3DA at various positions in the duplex DNA substrate. We found that the incorporation efficiency of dAMP opposite dT decreased 102–103 fold even when only one minor groove HB interaction was missing. Our structures show that the HB pattern and base-pair geometry of 3DA/dT is exactly the same as dA/dT, which makes 3DA an optimal analogue for probing minor groove HB interactions between a DNA polymerase and a nucleobase. In addition, our structures provide a rationale for the observed 102–103 fold decrease in nucleotide incorporation. The minor groove HB interactions between the n-2 position of the primer strand and RB69pol fixes the rotomer conformations of the K706 and D621 side chains, as well as the position of metal ion A and its coordinating ligands so that they are in the optinal orientation for DNA synthesis PMID:22571765

  16. Effect of salts, solvents and buffer on miRNA detection using DNA silver nanocluster (DNA/AgNCs) probes

    NASA Astrophysics Data System (ADS)

    Shah, Pratik; Cho, Seok Keun; Waaben Thulstrup, Peter; Bhang, Yong-Joo; Ahn, Jong Cheol; Choi, Suk Won; Rørvig-Lund, Andreas; Yang, Seong Wook

    2014-01-01

    MicroRNAs (miRNAs) are small regulatory RNAs (size ˜21 nt to ˜25 nt) which regulate a variety of important cellular events in plants, animals and single cell eukaryotes. Especially because of their use in diagnostics of human diseases, efforts have been directed towards the invention of a rapid, simple and sequence selective detection method for miRNAs. Recently, we reported an innovative method for the determination of miRNA levels using the red fluorescent properties of DNA/silver nanoclusters (DNA/AgNCs). Our method is based on monitoring the emission drop of a DNA/AgNCs probe in the presence of its specific target miRNA. Accordingly, the accuracy and efficiency of the method relies on the sensitivity of hybridization between the probe and target. To gain specific and robust hybridization between probe and target, we investigated a range of diverse salts, organic solvents, and buffer to optimize target sensing conditions. Under the newly adjusted conditions, the target sensitivity and the formation of emissive DNA/AgNCs probes were significantly improved. Also, fortification of the Tris-acetate buffer with inorganic salts or organic solvents improved the sensitivity of the DNA/AgNC probes. On the basis of these optimizations, the versatility of the DNA/AgNCs-based miRNA detection method can be expanded.

  17. DNA probes for identification of enteroinvasive Escherichia coli.

    PubMed Central

    Gomes, T A; Toledo, M R; Trabulsi, L R; Wood, P K; Morris, J G

    1987-01-01

    Eighty-one Escherichia coli strains belonging to all known invasive O serogroups were tested with two distinct invasiveness probes (pMR17 and pSF55). All 54 Sereny test-positive strains and 5 strains that lost Sereny positivity during storage hybridized with both probes. Probe-positive strains carried a 120- to 140-megadalton plasmid, did not produce lysine decarboxylase, and, with the exception of certain serotypes, were nonmotile. Motile strains of serotype O144:H25 were for the first time characterized as invasive by hybridization with the probes. PMID:3312292

  18. Spectroscopic quantification of 5-hydroxymethylcytosine in genomic DNA using boric acid-functionalized nano-microsphere fluorescent probes.

    PubMed

    Chen, Hua-Yan; Wei, Jing-Ru; Pan, Jiong-Xiu; Zhang, Wei; Dang, Fu-Quan; Zhang, Zhi-Qi; Zhang, Jing

    2017-05-15

    5-hydroxymethylcytosine (5hmC) is the sixth base of DNA. It is involved in active DNA demethylation and can be a marker of diseases such as cancer. In this study, we developed a simple and sensitive 2-(4-boronophenyl)quinoline-4-carboxylic acid modified poly (glycidyl methacrylate (PBAQA-PGMA) fluorescent probe to detect the 5hmC content of genomic DNA based on T4 β-glucosyltransferase-catalyzed glucosylation of 5hmC. The fluorescence-enhanced intensity recorded from the DNA sample was proportional to its 5-hydroxymethylcytosine content and could be quantified by fluorescence spectrophotometry. The developed probe showed good detection sensitivity and selectivity and a good linear relationship between the fluorescence intensity and the concentration of 5 hmC within a 0-100nM range. Compared with other fluorescence detection methods, this method not only could determine trace amounts of 5 hmC from genomic DNA but also could eliminate the interference of fluorescent dyes and the need for purification. It also could avoid multiple labeling. Because the PBAQA-PGMA probe could enrich the content of glycosyl-5-hydroxymethyl-2-deoxycytidine from a complex ground substance, it will broaden the linear detection range and improve sensitivity. The limit of detection was calculated to be 0.167nM after enrichment. Furthermore, the method was successfully used to detect 5-hydroxymethylcytosine from mouse tissues. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Study on the SPR responses of various DNA probe concentrations by parallel scan spectral SPR imaging

    NASA Astrophysics Data System (ADS)

    Ma, Suihua; Liu, Le; Lu, Weiping; Zhang, Yaou; He, Yonghong; Guo, Jihua

    2008-12-01

    SPR sensors have become a high sensitive and label free method for characterizing and quantifying chemical and biochemical interactions. However, the relations between the SPR refractive index response and the property (such as concentrations) of biochemical probes are still lacking. In this paper, an experimental study on the SPR responses of varies concentrations of Legionella pneumophila mip DNA probes is presented. We developed a novel two-dimensional SPR sensing technique-parallel scan spectral SPR imaging-to detect an array of mip gene probes. This technique offers quantitative refractive index information with a high sensing throughput. By detecting mip DNA probes with different concentrations, we obtained the relations between the SPR refractive index response and the concentrations of mip DNA probes. These results are valuable for design and developing SPR based mip gene biochips.

  20. Conditionally fluorescent molecular probes for detecting single base changes in double-stranded DNA

    NASA Astrophysics Data System (ADS)

    Chen, Sherry Xi; Zhang, David Yu; Seelig, Georg

    2013-09-01

    Small variations in nucleic acid sequences can have far-reaching phenotypic consequences. Reliably distinguishing closely related sequences is therefore important for research and clinical applications. Here, we demonstrate that conditionally fluorescent DNA probes are capable of distinguishing variations of a single base in a stretch of target DNA. These probes use a novel programmable mechanism in which each single nucleotide polymorphism generates two thermodynamically destabilizing mismatch bubbles rather than the single mismatch formed during typical hybridization-based assays. Up to a 12,000-fold excess of a target that contains a single nucleotide polymorphism is required to generate the same fluorescence as one equivalent of the intended target, and detection works reliably over a wide range of conditions. Using these probes we detected point mutations in a 198 base-pair subsequence of the Escherichia coli rpoB gene. That our probes are constructed from multiple oligonucleotides circumvents synthesis limitations and enables long continuous DNA sequences to be probed.

  1. Conditionally fluorescent molecular probes for detecting single base changes in double-stranded DNA.

    PubMed

    Chen, Sherry Xi; Zhang, David Yu; Seelig, Georg

    2013-09-01

    Small variations in nucleic acid sequences can have far-reaching phenotypic consequences. Reliably distinguishing closely related sequences is therefore important for research and clinical applications. Here, we demonstrate that conditionally fluorescent DNA probes are capable of distinguishing variations of a single base in a stretch of target DNA. These probes use a novel programmable mechanism in which each single nucleotide polymorphism generates two thermodynamically destabilizing mismatch bubbles rather than the single mismatch formed during typical hybridization-based assays. Up to a 12,000-fold excess of a target that contains a single nucleotide polymorphism is required to generate the same fluorescence as one equivalent of the intended target, and detection works reliably over a wide range of conditions. Using these probes we detected point mutations in a 198 base-pair subsequence of the Escherichia coli rpoB gene. That our probes are constructed from multiple oligonucleotides circumvents synthesis limitations and enables long continuous DNA sequences to be probed.

  2. Energy-transfer-based wavelength-shifting DNA probes with "clickable" cyanine dyes.

    PubMed

    Holzhauser, Carolin; Rubner, Moritz M; Wagenknecht, Hans-Achim

    2013-05-01

    The insertion of cyanine dye azides as energy donor dyes via postsynthetic "click"-type cycloaddition chemistry with e.g. a new thiazole orange azide combined with thiazole red yields dual emitting DNA probes with good fluorescence readout properties.

  3. Immobilization-free electrochemical DNA detection with anthraquinone-labeled pyrrolidinyl peptide nucleic acid probe.

    PubMed

    Kongpeth, Jutatip; Jampasa, Sakda; Chaumpluk, Piyasak; Chailapakul, Orawon; Vilaivan, Tirayut

    2016-01-01

    Electrochemical detection provides a simple, rapid, sensitive and inexpensive method for DNA detection. In traditional electrochemical DNA biosensors, the probe is immobilized onto the electrode. Hybridization with the DNA target causes a change in electrochemical signal, either from the intrinsic signal of the probe/target or through a label or a redox indicator. The major drawback of this approach is the requirement for probe immobilization in a controlled fashion. In this research, we take the advantage of different electrostatic properties between PNA and DNA to develop an immobilization-free approach for highly sequence-specific electrochemical DNA sensing on a screen-printed carbon electrode (SPCE) using a square-wave voltammetric (SWV) technique. Anthraquinone-labeled pyrrolidinyl peptide nucleic acid (AQ-PNA) was employed as a probe together with an SPCE that was modified with a positively-charged polymer (poly quaternized-(dimethylamino-ethyl)methacrylate, PQDMAEMA). The electrostatic attraction between the negatively-charged PNA-DNA duplex and the positively-charged modified SPCE attributes to the higher signal of PNA-DNA duplex than that of the electrostatically neutral PNA probe, resulting in a signal change. The calibration curve of this proposed method exhibited a linear range between 0.35 and 50 nM of DNA target with a limit of detection of 0.13 nM (3SD(blank)/Slope). The sub-nanomolar detection limit together with a small sample volume required (20 μL) allowed detection of <10 fmol (<1 ng) of DNA. With the high specificity of the pyrrolidinyl PNA probe used, excellent discrimination between complementary and various single-mismatched DNA targets was obtained. An application of this new platform for a sensitive and specific detection of isothermally-amplified shrimp's white spot syndrome virus (WSSV) DNA was successfully demonstrated. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. A stable double-stranded DNA-ethidium homodimer complex: Application to picogram fluorescence detection of DNA in agarose gels

    SciTech Connect

    Glazer, A.N.; Mathies, R.A. Lawrence Berkeley Laboratory, CA ); Peck, K. )

    1990-05-01

    The complex between double-stranded DNA and ethidium homodimer (5,5{prime}-diazadecamethylene)bis(3,8-diamino-6-phenylphenanthridinium) cation, formed at a ratio of 1 homodimer per 4 or 5 base pairs, is stable in agarose gels under the usual conditions for electrophoresis. This unusual stability allows formation of the complex before electrophoresis and then separation and detection in the absence of background stain. Competition experiments between the performed DNA-ethidium homodimer complex and a 50-fold molar excess of unlabeled DNA show that approximately one-third of the dye is retained within the original complex independent of the duration of the competition. However, dye-extraction experiments show that these are not covalent complexes. After electrophoretic separation, detection of bands containing 25 pg of DNA was readily achieved in 1-mm thick agarose gels with laser excitation at 488 nm and a scanning confocal fluorescence imaging system. The band intensity was linear with the amount of DNA applied from 0.2 to 1.0 ng per lane and with the number of kilobase pairs (kbp) per band within a lane. Analysis of an aliquot of a polymerase-chain-reaction mixture permitted ready detection of 80 pg of a 1.6-kbp amplified fragment. The use of the ethidium homodimer complex together with laser excitation for DNA detection on gels is at least two orders of magnitude more sensitive than conventional fluorescence-based procedures. The homodimer-DNA complex exemplifies a class of fluorescent probes where the intercalation of dye chromophores in DNA forms a stable, highly fluorescent ensemble.

  5. A stable double-stranded DNA-ethidium homodimer complex: application to picogram fluorescence detection of DNA in agarose gels.

    PubMed Central

    Glazer, A N; Peck, K; Mathies, R A

    1990-01-01

    The complex between double-stranded DNA and ethidium homodimer (5,5'-diazadecamethylene)bis(3,8-diamino-6-phenylphenanthridini um) cation, formed at a ratio of 1 homodimer per 4 or 5 base pairs, is stable in agarose gels under the usual conditions for electrophoresis. This unusual stability allows formation of the complex before electrophoresis and then separation and detection in the absence of background stain. Competition experiments between the preformed DNA-ethidium homodimer complex and a 50-fold molar excess of unlabeled DNA show that approximately one-third of the dye is retained within the original complex independent of the duration of the competition. However, dye-extraction experiments show that these are not covalent complexes. After electrophoretic separation, detection of bands containing 25 pg of DNA was readily achieved in 1-mm thick agarose gels with laser excitation at 488 nm and a scanning confocal fluorescence imaging system. The band intensity was linear with the amount of DNA applied from 0.2 to 1.0 ng per lane and with the number of kilobase pairs (kbp) per band within a lane. Analysis of an aliquot of a polymerase-chain-reaction mixture permitted ready detection of 80 pg of a 1.6-kbp amplified fragment. The use of the ethidium homodimer complex together with laser excitation for DNA detection on gels is at least two orders of magnitude more sensitive than conventional fluorescence-based procedures. The homodimer-DNA complex exemplifies a class of fluorescent probes where the intercalation of dye chromophores in DNA forms a stable, highly fluorescent ensemble. Images PMID:2339125

  6. Computer programs used to aid in the selection of DNA hybridization probes.

    PubMed Central

    Raupach, R E

    1984-01-01

    This paper describes a package of three programs which used together aid in selecting the best possible sequence to be used as a DNA hybridization probe. This system searches an amino acid sequence for four adjacent amino acids with the fewest possible corresponding mRNA sequences, calculates their probability of occurrence, and locates the positions of wobbles and mismatches between the DNA hybridization probe and the possible mRNA sequences. PMID:6546442

  7. Imaging of DNA and Protein-DNA Complexes with Atomic Force Microscopy.

    PubMed

    Lyubchenko, Yuri L; Shlyakhtenko, Luda S

    2016-01-01

    This article reviews atomic force microscopy (AFM) studies of DNA structure and dynamics and protein-DNA complexes, including recent advances in the visualization of protein-DNA complexes with the use of cutting-edge, high-speed AFM. Special emphasis is given to direct nanoscale visualization of dynamics of protein-DNA complexes. In the area of DNA structure and dynamics, structural studies of local non-B conformations of DNA and the interplay of local and global DNA conformations are reviewed. The application of time-lapse AFM nanoscale imaging of DNA dynamics is illustrated by studies of Holliday junction branch migration. Structure and dynamics of protein-DNA interactions include problems related to site-specific DNA recombination, DNA replication, and DNA mismatch repair. Studies involving the structure and dynamics of chromatin are also described.

  8. Imaging of DNA and Protein–DNA Complexes with Atomic Force Microscopy

    PubMed Central

    Lyubchenko, Yuri L.; Shlyakhtenko, Luda S.

    2016-01-01

    This article reviews atomic force microscopy (AFM) studies of DNA structure and dynamics and protein–DNA complexes, including recent advances in the visualization of protein–DNA complexes with the use of cutting-edge, high-speed AFM. Special emphasis is given to direct nanoscale visualization of dynamics of protein–DNA complexes. In the area of DNA structure and dynamics, structural studies of local non-B conformations of DNA and the interplay of local and global DNA conformations are reviewed. The application of time-lapse AFM nanoscale imaging of DNA dynamics is illustrated by studies of Holliday junction branch migration. Structure and dynamics of protein–DNA interactions include problems related to site-specific DNA recombination, DNA replication, and DNA mismatch repair. Studies involving the structure and dynamics of chromatin are also described. PMID:27278886

  9. Neutral red as a specific light-up fluorescent probe for i-motif DNA.

    PubMed

    Xu, Lijun; Wang, Jine; Sun, Na; Liu, Min; Cao, Yi; Wang, Zhili; Pei, Renjun

    2016-12-06

    We report a specific light-up fluorescent probe for i-motif DNA for the first time. Compared with the previously reported probes, neutral red could selectively interact with an i-motif and show a significant increase in its fluorescence. This feature makes it advantageous for designing label-free fluorescent sensing systems.

  10. Employing double-stranded DNA probes on colloidal substrates for competitive hybridization events

    NASA Astrophysics Data System (ADS)

    Baker, Bryan Alexander

    DNA has found application beyond its biological function in the cell in a variety of materials assembly systems as well as nucleic acid-based detection devices. In the current research, double-stranded DNA probes are applied in both a colloidal particle assembly and fluorescent assay approach utilizing competitive hybridization interactions. The responsiveness of the double-stranded probes (dsProbes) was tuned by sequence design and tested against a variety of nucleic acid targets. Chapter 1 provides a review of the particle substrate used in the current research, colloidal particles, as well as examines previous applications of DNA in assembly and nucleic acid detection formats. Chapter 2 discusses the formation of fluorescent satellites, or similarly termed fluorescent micelles, via DNA hybridization. The effects of DNA duplex sequence, temperature at which assembly occurs, and oligonucleotide density are variables considered with preferential assembly observed for low oligonucleotide density particles. Chapter 3 demonstrates the controlled disassembly of these satellite structures via competitive hybridization with a soluble target strand. Chapter 4 examines DNA duplexes as fluorescent dsProbes and characterizes the kinetics of competitive hybridization between immobilized dsProbes and solution targets of interest. The sequence-based affinities of dsProbes as well as location of an embedded target sequence are both variables explored in this study. Based on the sequence design of the dsProbes, a range of kinetics responses are observed. Chapter 5 also examines the kinetics of competitive hybridization with dsProbes but with a focus on the specificity of competitive target by including mismatches within a short 15 base competitive target. Chapter 6 examines the effects of dsProbe orientation relative to the particle surface as well as substrate particle size. The kinetics of displacement of DNA targets with those of RNA targets of analogous sequence are also

  11. A reagentless DNA-based electrochemical silver(I) sensor for real time detection of Ag(I) - the effect of probe sequence and orientation on sensor response.

    PubMed

    Wu, Yao; Lai, Rebecca Y

    2016-06-01

    Ag(I) is known to interact with cytosine (C) via the formation C-Ag(I)-C complexes. The authors have utilized this concept to design six electrochemical Ag(I) sensors using C-rich DNA probes. Alternating current voltammetry and cyclic voltammetry were used to analyze the sensors. The results show that the dual-probe sensors that require the use of both 5'- and 3'-thiolated DNA probes are not suitable for this application, the differences in probe orientation impedes formation of C-Ag(I)-C complexes. Sensors fabricated with DNA probes containing both thymine (T) and C, independent of the location of the alkanethiol linker, do not response to Ag(I) either; T-T mismatches destabilize the duplex even in the presence of Ag(I). However, sensors fabricated with DNA probes containing both adenine (A) and C are ideal for this application, owing to the formation of C-Ag(I)-C complexes, as well as other lesser known interactions between A and Ag(I). Both sensors are sensitive, specific and selective enough to be used in 50% human saliva. They can also be used to detect silver sulfadiazine, a commonly prescribed antimicrobial drug. With further optimization, this sensing strategy may offer a promising approach for detection of Ag(I) in environmental and clinical samples.

  12. Polyamide fluorescent probes for visualization of repeated DNA sequences in living cells.

    PubMed

    Nozeret, Karine; Loll, François; Escudé, Christophe; Boutorine, Alexandre S

    2015-03-02

    DNA imaging in living cells usually requires transgenic approaches that modify the genome. Synthetic pyrrole-imidazole polyamides that bind specifically to the minor groove of double-stranded DNA (dsDNA) represent an attractive approach for in-cell imaging that does not necessitate changes to the genome. Nine hairpin polyamides that target mouse major satellite DNA were synthesized. Their interactions with synthetic target dsDNA fragments were studied by thermal denaturation, gel-shift electrophoresis, circular dichroism, and fluorescence spectroscopy. The polyamides had different affinities for the target DNA, and fluorescent labeling of the polyamides affected their affinity for their targets. We validated the specificity of the probes in fixed cells and provide evidence that two of the probes detect target sequences in mouse living cell lines. This study demonstrates for the first time that synthetic compounds can be used for the visualization of the nuclear substructures formed by repeated DNA sequences in living cells.

  13. Probing Human Telomeric DNA and RNA Topology and Ligand Binding in a Cellular Model by Using Responsive Fluorescent Nucleoside Probes.

    PubMed

    Manna, Sudeshna; Panse, Cornelia H; Sontakke, Vyankat A; Sangamesh, Sarangamath; Srivatsan, Seergazhi G

    2017-08-17

    The development of biophysical systems that enable an understanding of the structure and ligand-binding properties of G-quadruplex (GQ)-forming nucleic acid sequences in cells or models that mimic the cellular environment would be highly beneficial in advancing GQ-directed therapeutic strategies. Herein, the establishment of a biophysical platform to investigate the structure and recognition properties of human telomeric (H-Telo) DNA and RNA repeats in a cell-like confined environment by using conformation-sensitive fluorescent nucleoside probes and a widely used cellular model, bis(2-ethylhexyl) sodium sulfosuccinate reverse micelles (RMs), is described. The 2'-deoxy and ribonucleoside probes, composed of a 5-benzofuran uracil base analogue, faithfully report the aqueous micellar core through changes in their fluorescence properties. The nucleoside probes incorporated into different loops of H-Telo DNA and RNA oligonucleotide repeats are minimally perturbing and photophysically signal the formation of respective GQ structures in both aqueous buffer and RMs. Furthermore, these sensors enable a direct comparison of the binding affinity of a ligand to H-Telo DNA and RNA GQ structures in the bulk and confined environment of RMs. These results demonstrate that this combination of a GQ nucleoside probe and easy-to-handle RMs could provide new opportunities to study and devise screening-compatible assays in a cell-like environment to discover GQ binders of clinical potential. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Direct measurement of interaction forces between a platinum dichloride complex and DNA molecules.

    PubMed

    Muramatsu, Hiroshi; Shimada, Shogo; Okada, Tomoko

    2017-06-29

    The interaction forces between a platinum dichloride complex and DNA molecules have been studied using atomic force microscopy (AFM). The platinum dichloride complex, di-dimethylsulfoxide-dichloroplatinum (II) (Pt(DMSO)2Cl2), was immobilized on an AFM probe by coordinating the platinum to two amino groups to form a complex similar to Pt(en)Cl2, which is structurally similar to cisplatin. The retraction forces were measured between the platinum complex and DNA molecules immobilized on mica plates using force curve measurements. The histogram of the retraction force for λ-DNA showed several peaks; the unit retraction force was estimated to be 130 pN for a pulling rate of 60 nm/s. The retraction forces were also measured separately for four single-base DNA oligomers (adenine, guanine, thymine, and cytosine). Retraction forces were frequently observed in the force curves for the DNA oligomers of guanine and adenine. For the guanine DNA oligomer, the most frequent retraction force was slightly lower than but very similar to the retraction force for λ-DNA. A higher retraction force was obtained for the adenine DNA oligomer than for the guanine oligomer. This result is consistent with a higher retraction activation energy of adenine with the Pt complex being than that of guanine because the kinetic rate constant for retraction correlates to exp(FΔx - ΔE) where ΔE is an activation energy, F is an applied force, and Δx is a displacement of distance.

  15. 16S rRNA gene probe quantitates residual host cell DNA in pharmaceutical-grade plasmid DNA.

    PubMed

    Wang, Kai-Yu; Guo, Ying-Jun; Sun, Shu-Han; Shi, Ke; Zhang, Shu; Wang, Kai-Hui; Yi-Zhang; Chen, Zu-Huan

    2006-03-24

    The development and widespread use of DNA-based vaccination against infectious pathogens have been a great triumph of medical science. Quality control of DNA vaccines as biopharmaceutical productions is a problem to solve. Residual genomic DNA of engineering bacteria has been identified as a potential risk factor, so whose level must be controlled under the regulatory standards. We report a dot-blot hybridization method to detect residual host cell DNA in purified DNA vaccines. The assay utilizes PCR amplified and digoxigenin-labeled Escherichia coli 16S rRNA gene as probe. The sensitivity of the dot-blot hybridization assay with E. coli 16S rRNA gene probe was evaluated in comparison with single copy UidR gene probe. The optimized dot-blot hybridization assay had both low background and a suitable sensitivity, detecting 10 pg of residual E. coli DNA. The method is suitable in the routine use of measuring the levels of residual E. coli DNA in the pharmaceutical-grade DNA vaccine.

  16. Magnetic microparticle-based multiplexed DNA detection with biobarcoded quantum dot probes.

    PubMed

    Xiang, Dong-shan; Zeng, Guo-ping; He, Zhi-ke

    2011-07-15

    We have developed a new analytical method to detect multiple DNA simultaneously based on the biobarcoded CdSe/ZnS quantum dot (QD) and magnetic microparticle (MMP). It was demonstrated by using oligonucleotide sequences of 64 bases associated with human papillomavirus 16 and 18 L1 genes (HPV-16 and HPV-18) as model systems. This analytical system involves three types of probes, a MMP probe and two streptavidin-modified QD probes. The MMPs are functionalized with HPV-16 and HPV-18 captures DNA to form MMP probes. The QDs are conjugated with HPV-16 or HPV-18 probe DNA along with FAM- or Rox-labeled random DNA to form HPV-16 and HPV-18 QD probes, respectively. A one-step hybridization reaction was performed by mixing the MMP probes, HPV-16 and HPV-18 target DNA (T-16 and T-18), HPV-16 and HPV-18 QD probes. Afterwards, the hybrid-conjugated microparticles were separated by a magnet and heated to remove the MMPs. Finally, the detections of T-16 and T-18 were done by measuring fluorescence signals of FAM and Rox, respectively. Under the optimum conditions, the fluorescence intensity exhibited a good linear dependence on target DNA concentration in the range from 8 × 10⁻¹¹ to 8 × 10⁻⁹ M. The detection limit of T-16 is up to 7 × 10⁻¹¹ M (3σ), and that of T-18 is 6 × 10⁻¹¹ M. Compared with other biobarcode assay methods, the proposed method that QDs were used as the solid support has some advantages including shorter preparation time of QD probes, faster binding kinetics and shorter analytical time. Besides, it is simple and accurate.

  17. Release of DNA binary complexes from the ternary complexes by carboxymethyl poly(L-histidine).

    PubMed

    Asayama, Shoichiro; Sudo, Miyuki; Kawakami, Hiroyoshi

    2009-01-01

    The DNA ternary complexes with carboxymethyl poly(L-histidine) (CM-PLH) and poly(ethylenimine) (PEI) have released the DNA binary complexes with PEI by the protonation of CM-PLH at endosomal/lysosomal pH. The dissociation of the CM-PLH from the CM-PLH/PEI/DNA ternary complexes is proved by the fluorescence resonance energy transfer (FRET) analysis between the CM-PLH and PEI. The resulting PEI/DNA binary complexes easily released DNA, as compared with the CM-PLH/PEI/DNA ternary complexes, which was examined by competitive exchange with dextran sulfate. The release of the DNA binary complexes from the ternary complexes is promising mechanism for higher transfection activity by the CM-PLH/PEI/DNA ternary complexes.

  18. A fluorescent aptasensor using double-stranded DNA/graphene oxide as the indicator probe.

    PubMed

    Xing, Xiao-Jing; Xiao, Wan-Lu; Liu, Xue-Guo; Zhou, Ying; Pang, Dai-Wen; Tang, Hong-Wu

    2016-04-15

    We developed a fluorescent aptasensor based on the making use of double-stranded DNA (dsDNA)/graphene oxide (GO) as the signal probe and the activities of exonuclease I (Exo I). This method takes advantage of the stronger affinity of the aptamer to its target rather than to its complementary sequence (competitor), and the different interaction intensity of dsDNA, mononucleotides with GO. Specifically, in the absence of target, the competitor hybridizes with the aptamer, preventing the digestion of the competitor by Exo I, and thus the formed dsDNA is adsorbed on GO surface, allowing fluorescence quenching. When the target is introduced, the aptamer preferentially binds with its target. Thereby, the corresponding nuclease reaction takes place, and slight fluorescence change is obtained after the introduction of GO due to the weak affinity of the generated mononucleotides to GO. Adenosine (AD) was chosen as a model system and tested in detail. Under the optimized conditions, smaller dissociation constant (Kd, 311.0 µM) and lower detection limit (LOD, 3.1 µM) were obtained in contrast with traditional dye-labeled aptamer/GO based platform (Kd=688.8 µM, LOD=21.2 µM). Satisfying results were still obtained in the evaluation of the specificity and the detection of AD in human serum, making it a promising tool for the diagnosis of AD-relevant diseases. Moreover, we demonstrated the effect of the competitor on the LOD, and the results reveal that the sensitivity could be enhanced by using the rational competitor. The present design not only constructs a label-free aptamer based platform but also extends the application of dsDNA/GO complex in biochemical and biomedical studies.

  19. Streching of (DNA/functional molecules) complex between electrodes towards DNA molecular wire

    NASA Astrophysics Data System (ADS)

    Kobayashi, Norihisa; Nishizawa, Makoto; Inoue, Shintarou; Nakamura, Kazuki

    2009-08-01

    DNA/functional molecules such as (Ru(bpy)32+ complex, conducting polymer etc.) complex was prepared to study molecular structure and I-V characteristics towards DNA molecular wire. For example, Ru(bpy)32+ was associated with duplex of DNA by not only electrostatic interaction but also intercalation in the aqueous solution. Singlemolecular structure of DNA/Ru(bpy)32+ complex was analyzed with AFM. We found a network structure of DNA/Ru(bpy)32+ complex on the mica substrate, which is similar to native DNA. The height of DNA/Ru(bpy)32+ complex on the mica substrate was ranging from 0.8 to 1.6 nm, which was higher than the naked DNA (0.5-1.0 nm). This indicates that single-molecular DNA/Ru(bpy)32+ complex also connects to each other to form network structure on a mica substrate. In order to stretch DNA complex between electrodes, we employed high frequency and high electric field stretching method proposed by Washizu et al. We stretched and immobilized DNA single molecules between a pair of electrodes and its structures were analyzed with AFM technique. The I-V characteristics of DNA single molecules between electrodes were improved by the association of functional molecules with DNA. The molecular structure and I-V characteristics of DNA complex were discussed.

  20. Conformation of DNA in chromatin protein-DNA complexes studied by infrared spectroscopy.

    PubMed Central

    Liquier, J; Gadenne, M C; Taillandier, E; Defer, N; Favatier, F; Kruh, J

    1979-01-01

    The following observations concerning the DNA secondary structures in various nucleohistone complexes were made by infrared spectroscopy: 1/ in chromatin, chromatin extracted by 0.6 M NaCl, nucleosomes, and histone-DNA reconstituted complexes, the DNA remains in a B type conformation at low relative hygrometry; 2/ in chromatin extracted by tRNA and in non histone protein-DNA reconstituted complexes, the DNA can adopt an A type conformation. Infrared linear dichroism data show that in NHP-DNA complexes the low relative hygrometry conformation of DNA may be modified and that the infrared parameter -1090 is close to that measured for RNA's or DNA-RNA hybrids. It is concluded that the histones block the DNA in a B form and that some of the NHP could be involved in the control of the secondary structure of DNA in chromatin. Images PMID:450704

  1. Probing the role of water in the tryptophan repressor-operator complex.

    PubMed Central

    Brown, M. P.; Grillo, A. O.; Boyer, M.; Royer, C. A.

    1999-01-01

    The Escherichia coli tryptophan repressor protein (TR) represses the transcription of several genes in response to the concentration of tryptophan in the environment. In the co-crystal structure of TR bound to a DNA fragment containing its target very few direct contacts between TR and the DNA were observed. In contrast, a number of solvent mediated contacts were apparent. NMR solution structures, however, did not resolve any solvent mediated bonds at the complex interface. To probe for the role of water in TR operator recognition, the effect of osmolytes on the interactions between TR and a target oligonucleotide bearing the operator site was examined. In the absence of specific solvent mediated hydrogen bonding interactions between the protein and the DNA, increasing osmolyte concentration is expected to strongly stabilize the TR operator interaction due to the large amount of macromolecular surface area buried upon complexation. The results of our studies indicate that xylose did not alter the binding affinity significantly, while glycerol and PEG had a small stabilizing effect. A study of binding as a function of betaine concentration revealed that this osmolyte at low concentration results in a stabilization of the 1:1 TR/operator complex, but at higher concentrations leads to a switching between binding modes to favor tandem binding. Analysis of the effects of betaine on the 1:1 complex suggest that this osmolyte has about 78% of the expected effect. If one accepts the analysis in terms of the number of water molecules excluded upon complexation, these results suggest that about 75 water molecules remain at the interface of the 1:1 dimer/DNA complex. This value is consistent with the number of water molecules found at the interface in the crystallographically determined structure and supports the notion that interfacial waters play an important thermodynamic role in the specific complexation of one TR dimer with its target DNA. However, the complexity of the

  2. MHF complex senses branched DNA via binding a pair of crossover DNA duplexes

    PubMed Central

    Zhao, Qi; Saro, Dorina; Sachpatzidis, Aristidis; Singh, Thiyam Ramsing; Schlingman, Daniel; Zheng, Xiao-Feng; Mack, Andrew; Tsai, Miaw-Sheue; Mochrie, Simon; Regan, Lynne; Meetei, Amom Ruhikanta; Sung, Patrick; Xiong, Yong

    2014-01-01

    The conserved MHF1-MHF2 (MHF) complex functions in the activation of the Fanconi anemia (FA) pathway of DNA damage response, in regulating homologous recombination, and in DNA replication fork maintenance. MHF facilitates the processing of multiple types of branched DNAs by the FA DNA translocase FANCM. Here we report the crystal structure of a human MHF-DNA complex that reveals the DNA binding mode of MHF. The structure suggests an MHF preference for branched DNA over double stranded DNA through engaging two duplex arms, which is supported by single molecule studies. Biochemical analyses verify that MHF preferentially engage DNA forks or various four-way junctions independent of the junction-site structure. Genetic experiments provide evidence that the observed DNA-binding interface of MHF is important for cellular resistance to DNA damage. These results provide insights into how the MHF complex recognizes branched DNA and stimulates FANCM activity at such a structure to promote genome maintenance. PMID:24390579

  3. Ultrasensitive flow injection chemiluminescence detection of DNA hybridization using signal DNA probe modified with Au and CuS nanoparticles.

    PubMed

    Zhang, Shusheng; Zhong, Hua; Ding, Caifeng

    2008-10-01

    A novel and sensitive flow injection chemiluminescence assay for sequence-specific DNA detection based on signal amplification with nanoparticles (NPs) is reported in the present work. The "sandwich-type" DNA biosensor was fabricated with the thiol-functionalized capture DNA first immobilized on an Au electrode and hybridized with one end of target DNA, the other end of which was recognized with a signal DNA probe labeled with CuS NPs and Au NPs on the 3'- and 5'-terminus, respectively. The hybridization events were monitored by the CL intensity of luminol-H2O2-Cu(2+) after the cupric ions were dissolved from the hybrids. We demonstrated that the incorporation of Au NPs in this sensor design significantly enhanced the sensitivity and the selectivity because a single Au NP can be loaded with hundreds of signal DNA probe strands, which were modified with CuS NPs. The ratios of Au NPs, signal DNA probes, and CuS NPs modified on the gold electrode were approximately 1/101/103. A preconcentration process of cupric ions performed by anodic stripping voltammetry technology further increased the sensor performance. As a result of these two combined effects, this DNA sensor could detect as low as femtomolar target DNA and exhibited excellent selectivity against two-base mismatched DNA. Under the optimum conditions, the CL intensity was increased with the increase of the concentration of target DNA in the range of 2.0 x 10(-14)-2.0 x 10(-12) M. A detection limit of 4.8 x 10(-15) M target DNA was achieved.

  4. Directly incorporating fluorochromes into DNA probes by PCR increases the efficience of fluorescence in situ hybridization

    SciTech Connect

    Dittmer, Joy

    1996-05-01

    The object of this study was to produce a directly labeled whole chromosome probe in a Degenerative Oligonucleotide Primed-Polymerase Chain Reaction (DOP-PCR) that will identify chromosome breaks, deletions, inversions and translocations caused by radiation damage. In this study we amplified flow sorted chromosome 19 using DOP-PCR. The product was then subjected to a secondary DOP PCR amplification, After the secondary amplification the DOP-PCR product was directly labeled in a tertiary PCR reaction with rhodamine conjugated with dUTP (FluoroRed) to produce a DNA fluorescent probe. The probe was then hybridized to human metaphase lymphocytes on slides, washed and counterstained with 4{prime},6-diamino-2-phenylindole (DAPI). The signal of the FluoroRed probe was then compared to a signal of a probe labeled with biotin and stained with avidin fluorescein isothio cynate (FITC) and anti-avidin FITC. The results show that the probe labeled with FluoroRed gave signals as bright as the probe with biotin labeling. The FluoroRed probe had less noise than the biotin labeled probe. Therefore, a directly labeled probe has been successfully produced in a DOP-PCR reaction. In future a probe labeled with FluoroRed will be produced instead of a probe labeled with biotin to increase efficiency.

  5. Immunodetection of human topoisomerase I-DNA covalent complexes.

    PubMed

    Patel, Anand G; Flatten, Karen S; Peterson, Kevin L; Beito, Thomas G; Schneider, Paula A; Perkins, Angela L; Harki, Daniel A; Kaufmann, Scott H

    2016-04-07

    A number of established and investigational anticancer drugs slow the religation step of DNA topoisomerase I (topo I). These agents induce cytotoxicity by stabilizing topo I-DNA covalent complexes, which in turn interact with advancing replication forks or transcription complexes to generate lethal lesions. Despite the importance of topo I-DNA covalent complexes, it has been difficult to detect these lesions within intact cells and tumors. Here, we report development of a monoclonal antibody that specifically recognizes covalent topo I-DNA complexes, but not free topo I or DNA, by immunoblotting, immunofluorescence or flow cytometry. Utilizing this antibody, we demonstrate readily detectable topo I-DNA covalent complexes after treatment with camptothecins, indenoisoquinolines and cisplatin but not nucleoside analogues. Topotecan-induced topo I-DNA complexes peak at 15-30 min after drug addition and then decrease, whereas indotecan-induced complexes persist for at least 4 h. Interestingly, simultaneous staining for covalent topo I-DNA complexes, phospho-H2AX and Rad51 suggests that topotecan-induced DNA double-strand breaks occur at sites distinct from stabilized topo I-DNA covalent complexes. These studies not only provide new insight into the action of topo I-directed agents, but also illustrate a strategy that can be applied to study additional topoisomerases and their inhibitors in vitro and in vivo. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Immunodetection of human topoisomerase I-DNA covalent complexes

    PubMed Central

    Patel, Anand G.; Flatten, Karen S.; Peterson, Kevin L.; Beito, Thomas G.; Schneider, Paula A.; Perkins, Angela L.; Harki, Daniel A.; Kaufmann, Scott H.

    2016-01-01

    A number of established and investigational anticancer drugs slow the religation step of DNA topoisomerase I (topo I). These agents induce cytotoxicity by stabilizing topo I-DNA covalent complexes, which in turn interact with advancing replication forks or transcription complexes to generate lethal lesions. Despite the importance of topo I-DNA covalent complexes, it has been difficult to detect these lesions within intact cells and tumors. Here, we report development of a monoclonal antibody that specifically recognizes covalent topo I-DNA complexes, but not free topo I or DNA, by immunoblotting, immunofluorescence or flow cytometry. Utilizing this antibody, we demonstrate readily detectable topo I-DNA covalent complexes after treatment with camptothecins, indenoisoquinolines and cisplatin but not nucleoside analogues. Topotecan-induced topo I-DNA complexes peak at 15–30 min after drug addition and then decrease, whereas indotecan-induced complexes persist for at least 4 h. Interestingly, simultaneous staining for covalent topo I-DNA complexes, phospho-H2AX and Rad51 suggests that topotecan-induced DNA double-strand breaks occur at sites distinct from stabilized topo I-DNA covalent complexes. These studies not only provide new insight into the action of topo I-directed agents, but also illustrate a strategy that can be applied to study additional topoisomerases and their inhibitors in vitro and in vivo. PMID:26917015

  7. Fluorescence determination of DNA with 1-pyrenebutyric acid nanoparticles coated with β-cyclodextrin as a fluorescence probe

    NASA Astrophysics Data System (ADS)

    Wang, Lun; Bian, Guirong; Wang, Leyu; Dong, Ling; Chen, Hongqi; Xia, Tingting

    2005-04-01

    A novel ultrasonication method has been successfully developed for the preparation of 1-pyrenebutyric acid (PBAC)/β-cyclodextrin(β-CD) complex nanoparticles. The as-prepared nanoparticles are characterized by transmission electron microscopy (TEM), fluorescence excitation and emission spectroscopy. Complex nanoparticles prepared with ultrasonication are smaller and better dispersed than single PBAC nanoparticles. At pH 3.0, the relative fluorescence intensity of complex nanoparticles of PBAC/β-CD can be quenched by the concentration of DNA. Based on this, a novel fluorimetric method has been developed for rapid determination of DNA. In comparison with single organic fluorophores, these nanoparticle probes are better water-solubility, more stable and do not suffer from blinking. Under optimum conditions, the calibration graphs are linear over the range 0.2-15 μg mL -1 for calf thymus DNA (ct-DNA) and 0.3-12 μg mL -1 for fish sperm DNA (fs-DNA). The corresponding detection limit is 0.01 μg mL -1 for ct-DNA and 0.02 μg mL -1 for fs-DNA. The relative standard deviation of seven replicate measurements is 1.2% for 2.0 μg mL -1 ct-DNA and 1.4% for 2.0 μg mL -1 fs-DNA, respectively. The method is simple and sensitive. The recovery and relative standard deviation are very satisfactory. A mechanism proposed to explain the process also has been studied.

  8. Construction of specific DNA probe for the detection of Salmonella in food.

    PubMed

    Pilantanapak, A; Jayanetra, P; Panbangred, W; Klungthong, C; Bangtrakulnonth, A

    1997-03-01

    The Salmonella specific DNA fragment from genomic DNA of S. typhimurium ATCC 23566 was cloned in E. coli and successfully used as a digoxigenin labeled probe for detecting the presence of Salmonella serotypes in both artificially contaminated food and natural contaminated food samples.

  9. Ribosomal DNA spacer probes for yeast identification: studies in the genus Metschnikowia.

    PubMed

    Henriques, M; Sá-Nogueira, I; Giménez-Jurado, G; van Uden, N

    1991-02-01

    To test whether DNA probes derived from ribosomal DNA spacer sequences are suitable for rapid and species-specific yeast identification, a pilot study was undertaken. A 7.7 kb entire ribosomal DNA unit of the type strain of Metschnikowia reukaufii was isolated, cloned and mapped. A 0.65 kb BamHI-HpaI fragment containing non-transcribed spacer sequences was amplified and selected for testing as a 32P hybridization probe with total DNA from the type strains of M. reukaufii, M. pulcherrima, M. lunata, M. bicuspidata, M. australis, M. zobellii, M. krissii, five other strains identified as M. reukaufii and strains of Schizosaccharomyces pombe, Hansenula canadensis, Saccharomyces cerevisiae and Yarrowia lipolytica. The probe hybridized exclusively with DNA from the type strain and four other strains of M. reukaufii. DNA from one strain labelled M. reukaufii did not hybridize with the probe. Subsequent % G + C comparison and DNA-DNA reassociation with the type strain revealed that the non-hybridizing strain does not belong to the species M. reukaufii.

  10. Rapid detection of Streptococcus pyogenes in pediatric patient specimens by DNA probe.

    PubMed Central

    Steed, L L; Korgenski, E K; Daly, J A

    1993-01-01

    A chemiluminescent DNA probe test (Group A Streptococcus Direct Test; Gen-Probe, Inc., San Diego, Calif.) for rapid, direct detection of cRNA of Streptococcus pyogenes in throat swabs was compared with conventional culture and identification techniques. Throat swabs from 277 patients suspected of having streptococcal pharyngitis were examined. By DNA probe alone, 10 specimens were positive, 51 were positive by both assays, and 8 were positive by culture alone. Thus, DNA probe sensitivity, specificity, and positive and negative predictive values were 86, 95, 84, and 96%, respectively. Including an indeterminate category, sensitivity, specificity, and positive and negative predictive values were 89, 96, 86, and 97%, respectively. After discrepancy testing, these values for the raw data improved to 90, 98, 93, and 97%, respectively. None of the 24 specimens that grew non-S. pyogenes beta-hemolytic streptococci in culture were positive by the DNA probe. Because mucoid S. pyogenes strains are more virulent than nonmucoid strains, 24 isolates were retrospectively tested with the DNA probe to ensure that both types would be detected equally well. Isolates were examined in pure cultures as well as mixed with representative normal oral flora. There was no statistical difference in detection of any of the four groups. Group A Streptococcus Direct Test is a rapid, sensitive, and specific test for S. pyogenes. PMID:8263185

  11. Hairpin DNA probe based surface plasmon resonance biosensor used for the activity assay of E. coli DNA ligase.

    PubMed

    Luan, Qingfen; Xue, Ying; Yao, Xin; Lu, Wu

    2010-02-01

    Using hairpin DNA probe self-structure change during DNA ligation process, a sensitive, label-free and simple method of E. coli DNA ligase assay via a home-built high-resolution surface plasmon resonance (SPR) instrument was developed. The DNA ligation process was monitored in real-time and the effects of single-base mutation on the DNA ligation process were investigated. Then an assay of E. coli DNA ligase was completed with a lower detection limit (0.6 nM), wider concentration range and better reproducibility. Moreover, the influence of Quinacrine on the activity of E. coli DNA ligase was also studied, which demonstrated that our method was useful for drug screening.

  12. Generation of digoxigenin-incorporated probes to enhance DNA detection sensitivity.

    PubMed

    Lai, Tsung-Po; Wright, Woodring E; Shay, Jerry W

    2016-01-01

    Telomere length in humans has been correlated with cancer and age-related diseases. The standard method to measure telomere length relies on Southern blot analysis with radioactively or non-radioactively labeled probes containing several telomeric DNA repeats. However, this approach requires relatively large amounts of genomic DNA, making it difficult to measure telomere length when a limited amount of sample is available. Here, we describe a non-radioactive labeling method that uses 3' fill-in combined with lambda exonuclease digestion to incorporate one or more digoxigenin (DIG) molecules into bridged nucleic acid (BNA)-containing oligonucleotides (ONTs). Using our method, we were able to generate probes to detect both C- and G-rich telomeric DNA strands. Compared with commercially available DIG-labeled telomere probes, probes generated using this new approach significantly enhance the sensitivity of telomere length measurements.

  13. Hydrolytic cleavage of DNA by quercetin manganese(II) complexes.

    PubMed

    Jun, Tan; Bochu, Wang; Liancai, Zhu

    2007-04-01

    Quercetin manganese(II) complexes were investigated focusing on its DNA hydrolytic activity. The complexes successfully promote the cleavage of plasmid DNA, producing single and double DNA strand breaks. The amount of conversion of supercoiled form (SC) of plasmid DNA to the nicked circular form (NC) depends on the concentration of the complex as well as the duration of incubation of the complexes with DNA. The maximum rate of conversion of the supercoiled form to the nicked circular form at pH 7.2 in the presence of 100 microM of the complexes is found to be 1.32 x 10(-4) s(-1). The hydrolytic cleavage of DNA by the complexes was supported by the evidence from free radical quenching, thiobarbituric acid-reactive substances (TBARS) assay and T4 ligase ligation.

  14. Data Mining Empowers the Generation of a Novel Class of Chromosome-specific DNA Probes

    SciTech Connect

    Zeng, Hui; Weier, Heinz-Ulrich G.; Kwan, Johnson; Wang, Mei; O'Brien, Benjamin

    2011-03-08

    Probes that allow accurate delineation of chromosome-specific DNA sequences in interphase or metaphase cell nuclei have become important clinical tools that deliver life-saving information about the gender or chromosomal make-up of a product of conception or the probability of an embryo to implant, as well as the definition of tumor-specific genetic signatures. Often such highly specific DNA probes are proprietary in nature and have been the result of extensive probe selection and optimization procedures. We describe a novel approach that eliminates costly and time consuming probe selection and testing by applying data mining and common bioinformatics tools. Similar to a rational drug design process in which drug-protein interactions are modeled in the computer, the rational probe design described here uses a set of criteria and publicly available bioinformatics software to select the desired probe molecules from libraries comprised of hundreds of thousands of probe molecules. Examples describe the selection of DNA probes for the human X and Y chromosomes, both with unprecedented performance, but in a similar fashion, this approach can be applied to other chromosomes or species.

  15. Preparation and chromatographic use of 5'-fluorescent-labelled DNA probes.

    PubMed

    Tous, G; Fausnaugh, J; Vieira, P; Stein, S

    1988-07-01

    A convenient procedure for synthesizing and purifying fluorescently-labelled short DNA probes is reported. DNA probes were chemically synthesized on an automated instrument using the "Aminolink" reagent in the final cycle to attach a primary amino group at the 5'-terminus in the final step. The synthetic oligonucleotides were purified by polyacrylamide urea gel electrophoresis, followed by reversed-phase high-performance liquid chromatography (HPLC). The oligomers were then allowed to react with a fluorescent compound, and the products were separated by HPLC with consecutive detection by UV absorption and fluorescence. Gel permeation chromatography demonstrated that the fluorescent probes were able to form stable hybrids with complementary oligodeoxynucleotides. Furthermore, essentially 100% of the purified fluorescent probe was capable of hybridizing to its complementary strand. Special precautions in handling the fluorescent probes, such as stability, were investigated.

  16. A DNA probe based on phosphorescent resonance energy transfer for detection of transgenic 35S promoter DNA.

    PubMed

    Lv, Jinzhi; Miao, Yanming; Yang, Jiajia; Qin, Jin; Li, Dongxia; Yan, Guiqin

    2017-05-15

    A QDs-DNA nano-probe was made by combining Mn-doped ZnS room-temperature phosphorescence (RTP) quantum dots (QDs) and DNA. Then an RTP sensor for quantitative detection of genetically-modified mark sequence cauliflower mosaic virus 35S promoter (Ca MV 35S) DNA was built on basis of phosphorescent resonance energy transfer (PRET). The underlying principles were that a QDs-DNA water-soluble nano-probe was built by connecting single-strand DNA to the surfaces of QDs via a ligand exchange method. This probe had good RTP performance and could well identify Ca MV 35S. Thereby, the simple, rapid and efficient detection of genetically-modified organisms was realized. With the increase of target DNA sequence, the phosphorescent intensity of QDs was gradually reduced due to the energy transfer between QDs and the organic quencher BHQ2. This sensor had a detection limit of 4.03nM and a detection range of 12-300nM. Moreover, this sensor had high selectivity. This sensor could effectively detect the target DNA compared with mismatched and random sequences. Thus, this method is very promising for biological analysis.

  17. A novel fluorescent probe: europium complex hybridized T7 phage.

    PubMed

    Liu, Chin-Mei; Jin, Qiaoling; Sutton, April; Chen, Liaohai

    2005-01-01

    We report on the creation of a novel fluorescent probe of europium-complex hybridized T7 phage. It was made by filling a ligand-displayed T7 ghost phage with a fluorescent europium complex particle. The structure of the hybridized phage, which contains a fluorescent inorganic core surrounded by a ligand-displayed capsid shell, was confirmed by electron microscope, energy-dispersive X-ray analysis (EDX), bioassays, and fluorescence spectrometer. More importantly, as a benefit of the phage display technology, the hybridized phage has the capability to integrate an affinity reagent against virtually any target molecules. The approach provides an original method to fluorescently "tag" a bioligand and/or to "biofunctionalize" a fluorophore particle. By using other types of materials such as radioactive or magnetic particles to fill the ghost phage, we envision that the hybridized phages represent a new class of fluorescent, magnetic, or radioprobes for imaging and bioassays and could be used both in vitro and in vivo.

  18. Probing the complex ionic structure of warm dense carbon

    NASA Astrophysics Data System (ADS)

    Kraus, Dominik

    2014-10-01

    The carbon phase diagram at extreme pressure conditions has received broad interest for modeling planetary interiors and high energy density laboratory experiments. Numerous theoretical models and simulations have recently been performed but critical experimental data at the phase boundaries and of the microscopic physical properties remain very scarce. In this work, we present novel experimental observations of the complex ion structure in warm dense carbon at pressures from 20 to 220 GPa and temperatures of several thousand Kelvins. Our experiments employ powerful x-ray sources at kilo-joule class laser facilities and at the Linac Coherent Light Source to perform spectrally and angularly resolved x-ray scattering from shock-compressed graphite samples; the absolute static ion structure factor is directly measured by resolving the ratio of elastically and inelastically scattered radiation. Using different types of graphite and varying drive laser intensity, we were able to probe conditions below and above the melting line, resolving the shock-induced graphite-to-diamond and graphite-to-liquid transitions on nanosecond time scale. Our results confirm a complex ionic structure predicted by QMD simulations and demonstrate the importance of chemical bonds at extreme conditions similar to those found in the interiors of giant planets. The evidence presented here thus provides a firmer ground for modeling the evolution and current structure of carbon-bearing icy giants like Neptune, Uranus, and a number of extra-solar planets.

  19. DNA interaction studies of a novel Cu(II) complex as an intercalator containing curcumin and bathophenanthroline ligands.

    PubMed

    Shahabadi, Nahid; Falsafi, Monireh; Moghadam, Neda Hosseinpour

    2013-05-05

    A new copper(II) complex; [Cu(Cur)(DIP)](+2) in which Cur=curcumin and DIP=4,7-diphenyl-1,10-phenanthroline, was synthesized and characterized using different physico-chemical methods. Binding interaction of this complex with calf thymus (CT-DNA) has been investigated by emission, absorption, circular dichroism, viscosity, and differential pulse voltammetry and fluorescence techniques. The complex displays significant binding properties to the CT-DNA. In fluorimeteric studies, the binding mode of the complex with CT-DNA was investigated using methylene blue as a fluorescence probe. Fluorescence of methylene blue-DNA solution increased in the presence of increasing amounts of the complex. It was found that the complex is able to displace the methylene blue completely. This indicate intercalation of the complex between base pairs of DNA. The cleavage of plasmid DNA by the complex was also studied. We found that the copper(II) complex can cleave puC18 DNA. Furthermore, mentioned complex induces detectable changes in the CD spectrum of CT-DNA, a decrease in absorption spectrum, and an increase in its viscosity. All of the experimental results showed that the Cu(II) complex bound to DNA by an intercalative mode of binding. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Gold nanorods as multifunctional probes in a liquid crystalline DNA matrix.

    PubMed

    Olesiak-Banska, Joanna; Gordel, Marta; Matczyszyn, Katarzyna; Shynkar, Vasyl; Zyss, Joseph; Samoc, Marek

    2013-11-21

    We show how a single gold nanorod can serve as a multifunctional probe in an organized DNA matrix. Polarization analysis of two-photon luminescence excited with a femtosecond laser enables imaging of the orientation of a single nanorod, which reports the orientation of DNA strands. Carefully controlled photoinduced heating by the same laser is able to degrade the DNA matrix in a highly localized volume.

  1. ESR study of the direct radiolysis of DNA, DNA-histones and DNA-intercalators complexes

    NASA Astrophysics Data System (ADS)

    Faucitano, A.; Buttafava, A.; Martinotti, F.; Pedraly-Noy, G.

    The nature of the radicals contributing to the room temperature spectrum of irradiated "dry" DNA, with special reference to the central structure, is discussed, and the thesis of their ionic origin tested by irradiation experiments with intercalators. The mechanism of spin transfer protein→DNA has been investigated through a comparative ESR study on the DNA-histones complex, the structureless random molecular mixture of the DNA-histones and the neat components. The yield of spin transfer is enhanced in the random mixture, presumably because of the greater efficiency of molecular contacts. Evidence of the scavenging of electrons by the thymine and cytosine bases, as a key mechanism for the spin transfer, has been obtained.

  2. Probing DNA by 2-OG-dependent dioxygenase

    PubMed Central

    Tsai, Chi-Lin; Tainer, John A.

    2014-01-01

    TET-mediated 5-methyl cytosine (5mC) oxidation acts in epigenetic regulation, stem cell development, and cancer. Hu et al. now determine the crystal structure of the TET2 catalytic domain bound to DNA, shedding light on 5mC-DNA substrate recognition and the catalytic mechanism of 5mC oxidation. PMID:24360270

  3. Proceedings of "Optical Probes of Dynamics in Complex Environments"

    SciTech Connect

    Sension, R; Tokmakoff, A

    2008-04-01

    This document contains the proceedings from the symposium on Optical Probes of Dynamics in Complex Environments, which organized as part of the 235th National Meeting of the American Chemical Society in New Orleans, LA from April 6 to 10, 2008. The study of molecular dynamics in chemical reaction and biological processes using time ƒresolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE Office of Science because of their role in the development of alternative energy sources, the understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation of reactive intermediates in radiation chemistry. In addition, time resolved spectroscopy is central to all of DOEs grand challenges for fundamental energy science. This symposium brought together leaders in the field of ultrafast spectroscopy, including experimentalists, theoretical chemists, and simulators, to discuss the most recent scientific and technological advances. DOE support for this conference was used to help young US and international scientists travel to the meeting. The latest technology in ultrafast infrared, optical, and xray spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.

  4. A new system for the amplification of biological signals: RecA and complimentary single strand DNA probes on a leaky surface acoustic wave biosensor.

    PubMed

    Zhang, Liqun; Wang, Yunxia; Chen, Ming; Luo, Yang; Deng, Kun; Chen, Dong; Fu, Weiling

    2014-10-15

    This research describes a new amplification signals system of the leaky surface acoustic wave (LSAW) bis-peptide nucleic acid (bis-PNA) biosensor for the simple, sensitive and rapid detection of the target double-stranded DNA (dsDNA). The system consists of a RecA protein-coated complementary single-stranded DNA (cssDNA) probe complex that amplifies the biological signal to improve the sensitivity of the biosensor. The bis-PNA probe for detecting HPV was first immobilized on a gold surface membrane of the detection channel. After the probe was completely hybridized with the corresponding target DNA, different concentrations of the "RecA protein-complementary single strand DNA probe" were added to react with the bis-PNA/dsDNA complex. The phase shift of the LSAW biosensors, which was measured and found to be most significant when the RecA protein was 45 μg/mL and the ATPγS was 2.5 mmol/L. Compared with other concentrations (P<0.01) of RecA and ATPγS, the value of the phase shift was (11.74 ± 1.03) degrees and the ratio of the phase shift and hybridization time clearly outperformed that of the other concentrations. Compared to the direct hybridization of the bis-PNA probe and the target DNA sequence, the sensitivity was effectively improved and the detection time was significantly shortened. PNA binding adjacent to the area of the target sequence homologous to the probe significantly increased the yield of the hybridization reaction between the PNA/dsDNA complex and the RecA protein-coated cssDNA probe. In this condition, the phase shift was significantly obvious and the detection time was significantly shortened. In conclusion, the combination of the RecA protein-coated cssDNA probe and the LSAW bis-PNA biosensor provides sensitivity and simple and rapid detection of clinical trace pathogenic microorganisms.

  5. Comprehensive characterization, annotation and innovative use of Infinium DNA methylation BeadChip probes

    PubMed Central

    Zhou, Wanding; Laird, Peter W.

    2017-01-01

    Abstract Illumina Infinium DNA Methylation BeadChips represent the most widely used genome-scale DNA methylation assays. Existing strategies for masking Infinium probes overlapping repeats or single nucleotide polymorphisms (SNPs) are based largely on ad hoc assumptions and subjective criteria. In addition, the recently introduced MethylationEPIC (EPIC) array expands on the utility of this platform, but has not yet been well characterized. We present in this paper an extensive characterization of probes on the EPIC and HM450 microarrays, including mappability to the latest genome build, genomic copy number of the 3΄ nested subsequence and influence of polymorphisms including a previously unrecognized color channel switch for Type I probes. We show empirical evidence for exclusion criteria for underperforming probes, providing a sounder basis than current ad hoc criteria for exclusion. In addition, we describe novel probe uses, exemplified by the addition of a total of 1052 SNP probes to the existing 59 explicit SNP probes on the EPIC array and the use of these probes to predict ethnicity. Finally, we present an innovative out-of-band color channel application for the dual use of 62 371 probes as internal bisulfite conversion controls. PMID:27924034

  6. Generic technique to generate large branched DNA complexes.

    PubMed

    Tosch, Paul; Wälti, Christoph; Middelberg, Anton P J; Davies, A Giles

    2006-03-01

    The inherent self-recognition properties of DNA have led to its use as a scaffold for various nanotechnology self-assembly applications, with macromolecular complexes, metallic and semiconducting nanoparticles, proteins, inter alia, being assembled onto a designed DNA scaffold. Such structures may typically comprise a number of DNA molecules organized into macromolecules. Many studies have used synthetic methods to produce the constituent DNA molecules, but this typically constrains the molecules to be no longer than around 100 base pairs (30 nm). However, applications that require larger self-assembling DNA complexes, several tens of nanometers or more, need to be generated by other techniques. Here, we present a generic technique to generate large linear, branched, and/or circular DNA macromolecular complexes. The effectiveness of this technique is demonstrated here by the use of Lambda Bacteriophage DNA as a template to generate single- and double-branched DNA structures approximately 120 nm in size.

  7. Antifungal activity of DNA-lipid complexes and DNA-lipid films against Candida species.

    PubMed

    Inoue, Y; Fukushima, T; Hayakawa, T; Ogura, R; Kaminishi, H; Miyazaki, K; Okahata, Y

    2006-01-01

    In this study amphiphilic lipids, DNA-lipid complexes, and DNA-lipid films were prepared, and their antifungal activity against Candida species was examined. The amphiphilic lipids were synthesized from a reaction of glycine or L-alanine with n-alkyl alcohol in the presence of p-toluene sulfonic acid. DNA-lipid complexes, which were prepared by the simple mixing of DNA and amphiphilic lipids, were insoluble in water. Self-standing, water-insoluble DNA-lipid films were prepared by casting the DNA-lipid complexes from a chloroform/ethanol solution. The antifungal activities of the lipids and DNA-lipid complexes against the Candida species were evaluated by minimum inhibitory concentrations (MICs); those of DNA-lipid films were evaluated by the disk diffusion method. The seven kinds of lipids, DNA-lipid complexes, and DNA-lipid films showed antifungal activity, and no differences were seen in the antifungal activities between glycine and L-alanine derivatives. The lipids, DNA-lipid complexes, and DNA-lipid films, which have shorter alkyl chain length in lipids, showed antifungal activity against all Candida species. However, the effect of antifungal activity against Candida species decreased with increased alkyl chain length in lipids. In this study, it was found that lipids, DNA-lipid complexes, and films with a decyl or dodecyl group exhibit more favorable antifungal activity. (c) 2005 Wiley Periodicals, Inc

  8. Detection of infectious laryngotracheitis virus infected cells with cloned DNA probes.

    PubMed Central

    Nagy, E

    1992-01-01

    A genomic library of infectious laryngotracheitis virus (ILTV) DNA BamH1 fragments was prepared and two cloned fragments were evaluated for their potential as probes for the detection of ILTV infected cells. The virus was purified by a modified sucrose density gradient procedure for the isolation of pure ILTV DNA. A genomic library was constructed using BamH1-digested ILTV DNA and pGEM7 as a vector. A 1.1 kb cloned BamH1 fragment of ILTV DNA was tested in a slot or dot blot assay for the detection of ILTV infected cells. The limit of detection for this probe was at least 0.12 ng of pure ILTV DNA. The probe was able to identify both chicken embryo liver (CELi) cells and choriallantoic membranes infected with ILTV. Chicken embryo liver cells infected with several field isolates and a vaccine strain of ILTV were positive by dot blot analysis using this probe. Some qualitative differences in the degree of hybridization to cells infected by different ILTV isolates were observed. Uninfected cells and cells infected with fowlpox virus, turkey herpesvirus, Marek's disease virus or Newcastle disease virus were negative by the same assay. Compared with the 1.1 kb fragment, a larger 6 kb cloned BamH1 fragment of ILTV DNA showed a stronger hybridization signal to DNA from ILTV infected cells. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. PMID:1316798

  9. Macrocyclic Metal Complex-DNA Conjugates for Electrochemical Sensing of Single Nucleobase Changes in DNA.

    PubMed

    Duprey, Jean-Louis H A; Carr-Smith, James; Horswell, Sarah L; Kowalski, Jarosław; Tucker, James H R

    2016-01-27

    The direct incorporation of macrocyclic cyclidene complexes into DNA via automated synthesis results in a new family of metal-functionalized DNA derivatives that readily demonstrate their utility through the ability of one redox-active copper(II)-containing strand to distinguish electrochemically between all four canonical DNA nucleobases at a single site within a target sequence of DNA.

  10. Estimation of Bacterial Cell Numbers in Humic Acid-Rich Salt Marsh Sediments with Probes Directed to 16S Ribosomal DNA

    PubMed Central

    Edgcomb, Virginia P.; McDonald, John H.; Devereux, Richard; Smith, David W.

    1999-01-01

    The feasibility of using probes directed towards ribosomal DNAs (rDNAs) as a quantitative approach to estimating cell numbers was examined and applied to study the structure of a bacterial community in humic acid-rich salt marsh sediments. Hybridizations were performed with membrane-bound nucleic acids by using seven group-specific DNA oligonucleotide probes complementary to 16S rRNA coding regions. These included a general eubacterial probe and probes encompassing most members of the gram-negative, mesophilic sulfate-reducing bacteria (SRB). DNA was extracted from sediment samples, and contaminating materials were removed by a series of steps. Efficiency of DNA extraction was 48% based on the recovery of tritiated plasmid DNA added to samples prior to extraction. Reproducibility of the extraction procedure was demonstrated by hybridizations to replicate samples. Numbers of target cells in samples were estimated by comparing the amount of hybridization to extracted DNA obtained with each probe to that obtained with a standard curve of genomic DNA for reference strains included on the same membrane. In June, numbers of SRB detected with an SRB-specific probe ranged from 6.0 × 107 to 2.5 × 109 (average, 1.1 × 109 ± 5.2 × 108) cells g of sediment−1. In September, numbers of SRB detected ranged from 5.4 × 108 to 7.3 × 109 (average, 2.5 × 109 ± 1.5 × 109) cells g of sediment−1. The capability of using rDNA probes to estimate cell numbers by hybridization to DNA extracted from complex matrices permits initiation of detailed studies on community composition and changes in communities based on cell numbers in formerly intractable environments. PMID:10103245

  11. Complex DNA nanostructures from oligonucleotide ensembles.

    PubMed

    Mathur, Divita; Henderson, Eric R

    2013-04-19

    The first synthetic DNA nanostructures were created by self-assembly of a small number of oligonucleotides. Introduction of the DNA origami method provided a new paradigm for designing and creating two- and three-dimensional DNA nanostructures by folding a large single-stranded DNA and 'stapling' it together with a library of oligonucleotides. Despite its power and wide-ranging implementation, the DNA origami technique suffers from some limitations. Foremost among these is the limited number of useful single-stranded scaffolds of biological origin. This report describes a new approach to creating large DNA nanostructures exclusively from synthetic oligonucleotides. The essence of this approach is to replace the single-stranded scaffold in DNA origami with a library of oligonucleotides termed "scaples" (scaffold staples). Scaples eliminate the need for scaffolds of biological origin and create new opportunities for producing larger and more diverse DNA nanostructures as well as simultaneous assembly of distinct structures in a "single-pot" reaction.

  12. Label-free DNA hybridization detection by various spectroscopy methods using triphenylmethane dyes as a probe

    NASA Astrophysics Data System (ADS)

    Tu, Jiaojiao; Cai, Changqun; Ma, Ying; Luo, Lin; Weng, Chao; Chen, Xiaoming

    2012-12-01

    A new assay is developed for direct detection of DNA hybridization using triphenylmethane dye as a probe. It is based on various spectroscopic methods including resonance light scattering (RLS), circular dichroism (CD), ultraviolet spectra and fluorescence spectra, as well as atomic force microscopy (AFM), six triphenylmethane dyes interact with double strand DNA (dsDNA) and single strand DNA (ssDNA) were investigated, respectively. The interaction results in amplified resonance light scattering signals and enables the detection of hybridization without the need for labeling DNA. Mechanism investigations have shown that groove binding occurs between dsDNA and these triphenylmethane dyes, which depends on G-C sequences of dsDNA and the molecular volumes of triphenylmethane dyes. Our present approaches display the advantages of simple and fast, accurate and reliable, and the artificial samples were determined with satisfactory results.

  13. Label-free DNA hybridization detection by various spectroscopy methods using triphenylmethane dyes as a probe.

    PubMed

    Tu, Jiaojiao; Cai, Changqun; Ma, Ying; Luo, Lin; Weng, Chao; Chen, Xiaoming

    2012-12-01

    A new assay is developed for direct detection of DNA hybridization using triphenylmethane dye as a probe. It is based on various spectroscopic methods including resonance light scattering (RLS), circular dichroism (CD), ultraviolet spectra and fluorescence spectra, as well as atomic force microscopy (AFM), six triphenylmethane dyes interact with double strand DNA (dsDNA) and single strand DNA (ssDNA) were investigated, respectively. The interaction results in amplified resonance light scattering signals and enables the detection of hybridization without the need for labeling DNA. Mechanism investigations have shown that groove binding occurs between dsDNA and these triphenylmethane dyes, which depends on G-C sequences of dsDNA and the molecular volumes of triphenylmethane dyes. Our present approaches display the advantages of simple and fast, accurate and reliable, and the artificial samples were determined with satisfactory results. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Self-quenching DNA probes based on aggregation of fluorescent dyes

    NASA Astrophysics Data System (ADS)

    Schafer, Gabriela; Muller, Matthias; Hafner, Bernhard; Habl, Gregor; Nolte, Oliver; Marme, Nicole; Knemeyer, Jens-Peter

    2005-04-01

    Here we present a novel class of self-quenching, double-labeled DNA probes based on the formation of non fluorescent H-type dye dimers. We therefore investigated the aggregation behavior of the red-absorbing oxazine derivative MR121 and found a dimerization constant of about 3000 M-1. This dye was successfully used to develop hairpin-structured as well as linear self-quenching DNA probes that report the presence of the target DNA by an increase of the fluorescence intensity by a factor of 3 to 12. Generally fluorescence quenching of the hairpin-structure probes is more efficient compared to the linear probes, whereas the kinetic of the fluorescence increase is significantly slower. The new probes were used for the identification of different mycobacteria and their antibiotic resistant species. As a test system a probe for the identification of a DNA sequence specific for the Mycobacterium xenopi was synthesized differing from the sequence of the Mycobacterium fortuitum by 6 nucleotides. Furthermore we developed a method for the discrimination between the sequences of the wild type and an antibiotic resistant species of Mycobacterium tuberculosis. Both sequences differ by just 2 nucleotides and were detected specifically by the use of competing olignonucleotides.

  15. New hairpin-structured DNA probes: alternatives to classical molecular beacons

    NASA Astrophysics Data System (ADS)

    Friedrich, Achim; Habl, Gregor; Sauer, Markus; Wolfrum, Jürgen; Hoheisel, Jörg; Marmé, Nicole; Knemeyer, Jens-Peter

    2007-02-01

    In this article we report on two different classes of self-quenching hairpin-structured DNA probes that can be used as alternatives to Molecular Beacons. Compared to other hairpin-structured DNA probes, the so-called smart probes are labeled with only one extrinsic dye. The fluorescence of this dye is efficiently quenched by intrinsic guanine bases via a photo-induced electron transfer reaction in the closed hairpin. After hybridization to a target DNA, the distance between dye and the guanines is enlarged and the fluorescence is restored. The working mechanism of the second class of hairpin DNA probes is similar, but the probe oligonucleotide is labeled at both ends with an identical chromophore and thus the fluorescence of the closed hairpin is reduced due to formation of non-fluorescent dye dimers. Both types of probes are appropriate for the identification of single nucleotide polymorphisms and in combination with confocal single-molecule spectroscopy sensitivities in the picomolar range can be achieved.

  16. Selectivity of Hybridization Controlled by the Density of Solid Phase Synthesized DNA Probes on Glass Substrates

    NASA Astrophysics Data System (ADS)

    Song, Fayi; Krull, Ulrich J.

    Optical biochip design based on varying the density of immobilized single-stranded DNA (ssDNA) oligonucleotide probes was examined. A method of immobilization was developed to yield various densities of probe molecules using photochemical activation of surfaces and in situ solid phase synthesis for DNA immobilization. High surface density of ssDNA probe (up to 1 × 1013 probes/cm2) was obtained using the immobilization method. The densities and extent of hybridization of nucleic acids were determined using confocal fluorescence microscopy. Selective hybridization of targets associated with spinal muscular atrophy containing single nucleotide polymorphisms (SNP), and their thermal denaturation profiles were investigated to examine the sensitivity and selectivity for SNP detection. The detection limit was less than 16 pM at room temperature. Single base mismatch discrimination was demonstrated based on control of melt temperature by selection of probe density, and temperature differences of 12-15°C could be achieved for SNP determination. Importantly, the results demonstrate that poor control of probe density can result in significant variability of selectivity, as seen by melt temperature shifts of up to 5°C in the density range that was investigated.

  17. Isolation by genomic subtraction of DNA probes specific for Erwinia carotovora subsp. atroseptica.

    PubMed Central

    Darrasse, A; Kotoujansky, A; Bertheau, Y

    1994-01-01

    Erwinia carotovora subsp. atroseptica is a pathogen of potatoes in Europe because of its ability to induce blackleg symptoms early in the growing season. However, E. carotovora subsp. carotovora is not able to produce such severe symptoms under the same conditions. On the basis of the technique described by Straus and Ausubel (Proc. Natl. Acad. Sci. USA 87:1889-1893, 1990), we isolated DNA sequences of E. carotovora subsp. atroseptica 86.20 that were absent from the genomic DNA of E. carotovora subsp. carotovora CH26. Six DNA fragments ranging from ca. 180 to 400 bp were isolated, cloned, and sequenced. Each fragment was further hybridized with 130 microorganisms including 87 E. carotovora strains. One probe was specific for typical E. carotovora subsp. atroseptica strains, two probes hybridized with all E. carotovora subsp. atroseptica strains and with a few E. carotovora subsp. carotovora strains, and two probes recognized only a subset of E. carotovora subsp. atroseptica strains. The last probe was absent from the genomic DNA of E. carotovora subsp. carotovora CH26 but was present in the genomes of many strains, including those of other species and genera. This probe is homologous to the putP gene of Escherichia coli, which encodes a proline carrier. Further use of the probes is discussed. Images PMID:8117082

  18. Use of DNA Probes for Diagnosis of Infectious Diseases.

    DTIC Science & Technology

    1987-01-01

    cloned D sequences and mre recently clinical and enviromental sales. The fundamental ongets behind nuc -leic acid inr** m~licatigos. Nucleic acid probe...Professor of Pldical icrobiology and Virology In the School of Public Health and is Director of the Naval Biosciences Laboratory. The research reported here was supported by the Office of Naval Research. - ~-w~ -

  19. Directly labeled DNA probes using fluorescent nucleotides with different length linkers.

    PubMed Central

    Zhu, Z; Chao, J; Yu, H; Waggoner, A S

    1994-01-01

    Directly labeled fluorescent DNA probes have been made by nick translation and PCR using dUTP attached to the fluorescent label, Cy3, with different length linkers. With preparation of probes by PCR we find that linker length affects the efficiency of incorporation of Cy3-dUTP, the yield of labeled probe, and the signal intensity of labeled probes hybridized to chromosome target sequences. For nick translation and PCR, both the level of incorporation and the hybridization fluorescence signal increased in parallel when the length of the linker arm is increased. Under optimal conditions, PCR yielded more densely labeled probes, however, the yield of PCR labeled probe decreased with greater linear density of labeling. By using a Cy3-modified dUTP with the longest linker under optimal conditions it was possible to label up to 28% of the possible substitution sites on the target DNA with reasonable yield by PCR and 18% by nick translation. A mechanism involving steric interactions between the polymerase, cyanine-labeled sites on template and extending chains and the modified dUTP substrate is proposed to explain the inverse correlation between the labeling efficiency and the yield of DNA probe synthesis by PCR. Images PMID:8078779

  20. Time-resolved probes based on guanine/thymine-rich DNA-sensitized luminescence of terbium(III).

    PubMed

    Zhang, Min; Le, Huynh-Nhu; Jiang, Xiao-Qin; Yin, Bin-Cheng; Ye, Bang-Ce

    2013-12-03

    In this study, we have developed a novel strategy to highly sensitize the luminescence of terbium(III) (Tb(3+)) using a designed guanine/thymine-rich DNA (5'-[G3T]5-3') as an antenna ligand, in which [G3T]5 improved the luminescence of Tb(3+) by 3 orders of magnitude due to energy transfer from nucleic acids to Tb(3+) (i.e., antenna effect). Furthermore, label-free probes for the luminescent detection of biothiols, Ag(+), and sequence-specific DNA in an inexpensive, simple, and mix-and-read format are presented based on the [G3T]5-sensitized luminescence of Tb(3+) (GTSLT). The long luminescence lifetime of the probes readily enables time-resolved luminescence (TRL) experiments. Hg(2+) can efficiently quench the luminescence of Tb(3+) sensitized by [G3T]5 (Tb(3+)/[G3T]5); however, biothiols are readily applicable to selectively grab Hg(2+) for restoration of the luminescence of Tb(3+)/[G3T]5 initially quenched by Hg(2+), which can be used for "turn on" detection of biothiols. With the use of cytosine (C)-rich oligonucleotide c[G3T]5 complementary to [G3T]5, the formed [G3T]5/c[G3T]5 duplex cannot sensitize the luminescence of Tb(3+). However, in the presence of Ag(+), Ag(+) can combine the C base of c[G3T]5 to form C-Ag(+)-C complexes, leading to the split of the [G3T]5/c[G3T]5 duplex and then release of [G3T]5. The released [G3T]5 acts as an antenna ligand for sensitizing the luminescence of Tb(3+). Therefore, the Tb(3+)/[G3T]5/c[G3T]5 probe can be applied to detect Ag(+) in a "turn on" format. Moreover, recognition of target DNA via hybridization to a molecular beacon (MB)-like probe (MB-[G3T]5) can unfold the MB-[G3T]5 to release the [G3T]5 for sensitizing the luminescence of Tb(3+), producing a detectable signal directly proportional to the amount of target DNA of interest. This allows the development of a fascinating label-free MB probe for DNA sensing based on the luminescence of Tb(3+). Results and methods reported here suggest that a guanine/thymine-rich DNA

  1. Aptamer-based electrochemical sensors with aptamer-complementary DNA oligonucleotides as probe.

    PubMed

    Lu, Ying; Li, Xianchan; Zhang, Limin; Yu, Ping; Su, Lei; Mao, Lanqun

    2008-03-15

    This study describes a facile and general strategy for the development of aptamer-based electrochemical sensors with a high specificity toward the targets and a ready regeneration feature. Very different from the existing strategies for the development of electrochemical aptasensors with the aptamers as the probes, the strategy proposed here is essentially based on the utilization of the aptamer-complementary DNA (cDNA) oligonucleotides as the probes for electrochemical sensing. In this context, the sequences at both ends of the cDNA are tailor-made to be complementary and both the redox moiety (i.e., ferrocene in this study) and thiol group are labeled onto the cDNA. The labeled cDNA are hybridized with their respective aptamers (i.e., ATP- and thrombin-binding aptamers in this study) to form double-stranded DNA (ds-DNA) and the electrochemical aptasensors are prepared by self-assembling the labeled ds-DNA onto Au electrodes. Upon target binding, the aptamers confined onto electrode surface dissociate from their respective cDNA oligonucleotides into the solution and the single-stranded cDNA could thus tend to form a hairpin structure through the hybridization of the complementary sequences at both its ends. Such a conformational change of the cDNA resulting from the target binding-induced dissociation of the aptamers essentially leads to the change in the voltammetric signal of the redox moiety labeled onto the cDNA and thus constitutes the mechanism for the electrochemical aptasensors for specific target sensing. The aptasensors demonstrated here with the cDNA as the probe are readily regenerated and show good responses toward the targets. This study may offer a new and relatively general approach to electrochemical aptasensors with good analytical properties and potential applications.

  2. A method for recovering strand-specific probes from nick-translated DNA fragments.

    PubMed

    Dutton, F L; Chovnick, A

    1984-07-01

    A method of preparing strand-specific probes for DNA X DNA or DNA X RNA hybridizations is described. Double-stranded DNA fragments are first isolated from any recombinant DNA clone containing the desired sequence, and then labeled in vitro by nick-translation (T. Maniatis, A. Jeffrey, and D. G. Kleid (1975) Proc. Natl. Acad. Sci. USA 72, 1184-1188; P. W. J. Rigby, M. Dieckmann, C. Rhodes, and P. Berg (1977) J. Mol. Biol. 113, 237-251). Sequences homologous to the desired strand are captured by annealing the denatured nick-translate to viral strands of an appropriate M13 clone, and recovered by elution of the resulting hybrids from a column of agarose A50M (Bio-Rad). By this method, separate probes with specificity to either strand, as well as the double-stranded probe, may conveniently be prepared from a single nick-translation reaction. Probes may be obtained which are homologous either to the full length of the cloned region or to selected portions thereof by selecting appropriate M13 clones for annealing. The probe is recovered as a population of fragments several hundred bases or less in length, which have been found ideal for saturating liquid hybridizations, and should be similarly well suited for in situ hybridizations to cytological preparations.

  3. Electron microscopy visualization of DNA-protein complexes formed by Ku and DNA ligase IV.

    PubMed

    Grob, Patricia; Zhang, Teri T; Hannah, Ryan; Yang, Hui; Hefferin, Melissa L; Tomkinson, Alan E; Nogales, Eva

    2012-01-02

    The repair of DNA double-stranded breaks (DSBs) is essential for cell viability and genome stability. Aberrant repair of DSBs has been linked with cancer predisposition and aging. During the repair of DSBs by non-homologous end joining (NHEJ), DNA ends are brought together, processed and then joined. In eukaryotes, this repair pathway is initiated by the binding of the ring-shaped Ku heterodimer and completed by DNA ligase IV. The DNA ligase IV complex, DNA ligase IV/XRRC4 in humans and Dnl4/Lif1 in yeast, is recruited to DNA ends in vitro and in vivo by an interaction with Ku and, in yeast, Dnl4/Lif1 stabilizes the binding of yKu to in vivo DSBs. Here we have analyzed the interactions of these functionally conserved eukaryotic NHEJ factors with DNA by electron microscopy. As expected, the ring-shaped Ku complex bound stably and specifically to DNA ends at physiological salt concentrations. At a ratio of 1 Ku molecule per DNA end, the majority of DNA ends were occupied by a single Ku complex with no significant formation of linear DNA multimers or circular loops. Both Dnl4/Lif1 and DNA ligase IV/XRCC4 formed complexes with Ku-bound DNA ends, resulting in intra- and intermolecular DNA end bridging, even with non-ligatable DNA ends. Together, these studies, which provide the first visualization of the conserved complex formed by Ku and DNA ligase IV at juxtaposed DNA ends by electron microscopy, suggest that the DNA ligase IV complex mediates end-bridging by engaging two Ku-bound DNA ends.

  4. Hydrolytic cleavage of DNA by quercetin zinc(II) complex.

    PubMed

    Jun, Tan; Bochu, Wang; Liancai, Zhu

    2007-03-01

    Quercetin zinc(II) complex was investigated focusing on its hydrolytic activity toward DNA. The complex successfully promotes the cleavage of plasmid DNA, producing single and double DNA strand breaks. The amount of conversion of supercoiled form (SC) of plasmid to the nicked circular form (NC) depends on the concentration of the complex as well as the duration of incubation of the complex with DNA. The rate of conversion of SC to NC is 1.68x10(-4) s(-1) at pH 7.2 in the presence of 100 microM of the complex. The hydrolytic cleavage of DNA by the complex is supported by the evidence from free radical quenching, thiobarbituric acid-reactive substances (TBARS) assay, and T4 ligase ligation.

  5. Electrochemical DNA biosensor for detection of porcine oligonucleotides using ruthenium(II) complex as intercalator label redox

    NASA Astrophysics Data System (ADS)

    Halid, Nurul Izni Abdullah; Hasbullah, Siti Aishah; Ahmad, Haslina; Heng, Lee Yook; Karim, Nurul Huda Abd; Harun, Siti Norain

    2014-09-01

    A DNA biosensor detection of oligonucleotides via the interactions of porcine DNA with redox active complex based on the electrochemical transduction is described. A ruthenium(II) complex, [Ru(bpy)2(PIP)]2+, (bpy = 2,2'bipyridine, PIP = 2-phenylimidazo[4,5-f[[1,10-phenanthroline]) as DNA label has been synthesized and characterized by 1H NMR and mass spectra. The study was carried out by covalent bonding immobilization of porcine aminated DNA probes sequences on screen printed electrode (SPE) modified with succinimide-acrylic microspheres and [Ru(bpy)2(PIP)]2+ was used as electrochemical redox intercalator label to detect DNA hybridization event. Electrochemical detection was performed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) over the potential range where the ruthenium (II) complex was active. The results indicate that the interaction of [Ru(bpy)2(PIP)]2+ with hybridization complementary DNA has higher response compared to single-stranded and mismatch complementary DNA.

  6. Probing the Conformational Distributions of Sub-Persistence Length DNA

    SciTech Connect

    Mastroianni, Alexander; Sivak, David; Geissler, Phillip; Alivisatos, Paul

    2009-06-08

    We have measured the bending elasticity of short double-stranded DNA (dsDNA) chains through small-angle X-ray scattering from solutions of dsDNA-linked dimers of gold nanoparticles. This method, which does not require exertion of external forces or binding to a substrate, reports on the equilibrium distribution of bending fluctuations, not just an average value (as in ensemble FRET) or an extreme value (as in cyclization), and in principle provides a more robust data set for assessing the suitability of theoretical models. Our experimental results for dsDNA comprising 42-94 basepairs (bp) are consistent with a simple worm-like chain model of dsDNA elasticity, whose behavior we have determined from Monte Carlo simulations that explicitly represent nanoparticles and their alkane tethers. A persistence length of 50 nm (150 bp) gave a favorable comparison, consistent with the results of single-molecule force-extension experiments on much longer dsDNA chains, but in contrast to recent suggestions of enhanced flexibility at these length scales.

  7. Effect of different concentration of HPV DNA probe immobilization for cervical cancer detection based IDE biosensor

    NASA Astrophysics Data System (ADS)

    Roshila, M. L.; Hashim, U.; Azizah, N.; Nadzirah, Sh.; Arshad, M. K. Md; Ruslinda, A. R.; Gopinath, Subash C. B.

    2017-03-01

    This paper principally delineates to the detection process of Human Papillomavirus (HPV) DNA test. HPV is an extremely common virus infection that infected to human by the progressions cell in the cervix cell. The types of HPV that give a most exceedingly awful infected with cervical cancer is 16 and 18 other than 31 and 45. The HPV DNA probe is immobilized with a different concentration to stabilize the sensitivity. A technique of rapid and sensitive for the HPV identification was proposed by coordinating basic DNA extraction with a quality of DNA. The extraction of the quality of DNA will make a proficiency of the discovery procedure. It will rely on the sequence of the capture probes and the way to support their attached. The fabrication, surface modification, immobilization and hybridization procedures are described by current-voltage (I-V) estimation by utilizing KEITHLEY 6487. This procedure will play out a decent affectability and selectivity of HPV discovery.

  8. Comet-FISH with rDNA probes for the analysis of mutagen-induced DNA damage in plant cells.

    PubMed

    Kwasniewska, Jolanta; Grabowska, Marta; Kwasniewski, Miroslaw; Kolano, Bozena

    2012-06-01

    We used comet-fluorescence in situ hybridization (FISH) in the model plant species Crepis capillaris following exposure of seedlings to maleic hydrazide (MH). FISH with 5S and 25S rDNA probes was applied to comets obtained under alkaline conditions to establish whether these DNA regions were preferentially involved in comet tail formation. MH treatment induced significant fragmentation of nuclear DNA and of rDNA loci. A 24-h post-treatment recovery period allowed a partial reversibility of MH-induced damage on nuclear and rDNA regions. Analyses of FISH signals demonstrated that rDNA sequences were always involved in tail formation and that 5S rDNA was more frequently present in the tail than 25S rDNA, regardless of treatment. The involvement of 25S rDNA in nucleolus formation and differences in chromatin structure between the two loci may explain the different susceptibility of the 25S and 5S rDNA regions to migrate into the tail. This work is the first report on the application of FISH to comet preparations from plants to analyze the distribution and repair of DNA damage within specific genomic regions after mutagenic treatment. Moreover, our work suggests that comet-FISH in plants may be a useful tool for environmental monitoring assessment. Copyright © 2012 Wiley Periodicals, Inc.

  9. Disruption of a Topoisomerase-DNA Cleavage Complex by a DNA Helicase

    NASA Astrophysics Data System (ADS)

    Howard, Michael T.; Neece, Sue H.; Matson, Steven W.; Kreuzer, Kenneth N.

    1994-12-01

    The type II DNA topoisomerases are targets for a variety of chemotherapeutic agents, including the antibacterial quinolones and several families of antitumor drugs. These agents stabilize an enzyme-DNA cleavage complex that consists of the topoisomerase covalently linked to the 5' phosphates of a double-stranded DNA break. Although the drug-stabilized cleavage complex is readily reversible, it can result in cell death by a mechanism that remains uncertain. Here we demonstrate that the action of a DNA helicase can convert the cleavage complex into a nonreversible DNA break by displacing DNA strands from the complex. Formation of a nonreversible DNA break, induced by a DNA helicase, could explain the cytotoxicity of these topoisomerase poisons.

  10. Effect of structure on sensing performance of a target induced signaling probe shifting DNA-based (TISPS-DNA) sensor.

    PubMed

    Yu, Xiang; Yu, Zhigang; Li, Fengqin; Xu, Yanmei; He, Xunjun; Xu, Lan; Shi, Wenbing; Zhang, Guiling; Yan, Hong

    2017-05-15

    A type of "signal on" displacement-based sensors named target induced signaling probe shifting DNA-based (TISPS-DNA) sensor were developed for a designated DNA detection. The signaling mechanism of the signaling probe (SP) shifting different from the classical conformation/flexibility change mode endows the sensor with high sensitivity. Through using thiolated or no thiolated capturing probe (CP), two 3-probe sensing structures, sensor-1 and sensor-2, were designed and constructed. The systematical comparing research results show that both sensors exhibit some similarities or big differences in sensing performance. On the one hand, the similarity in structures determines the similarity in some aspects of signaling mechanism, background signal, signal changing form, anti-fouling ability and versatility; on the other hand, the slight difference in structures also results in two opposite hybridization modes of gradual increasing resistance and gradual decreasing resistance which can affect the hybridization efficiency between the assistant probe (AP) and the SP, further producing some big differences in sensing performance, for example, apparently different signal enhancement (SE) change, point mutation discrimination ability and response speed. Under the optimized fabrication and detection conditions, both sensors feature high sensitivity for target DNAs with the detection limits of ∼10 fM for sensor-1 and ∼7 fM for sensor-2, respectively. Among many acquired sensing virtues, the sensor-1 shows a peculiar specificity adjustability which is also a highlight in this work. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Spectroscopic and molecular modeling studies of caffeine complexes with DNA intercalators.

    PubMed Central

    Larsen, R W; Jasuja, R; Hetzler, R K; Muraoka, P T; Andrada, V G; Jameson, D M

    1996-01-01

    Recent studies have demonstrated that caffeine can act as an antimutagen and inhibit the cytoxic and/or cytostatic effects of some DNA intercalating agents. It has been suggested that this inhibitory effect may be due to complexation of the DNA intercalator with caffeine. In this study we employ optical absorption, fluorescence, and molecular modeling techniques to probe specific interactions between caffeine and various DNA intercalators. Optical absorption and steady-state fluorescence data demonstrate complexation between caffeine and the planar DNA intercalator acridine orange. The association constant of this complex is determined to be 258.4 +/- 5.1 M-1. In contrast, solutions containing caffeine and the nonplanar DNA intercalator ethidium bromide show optical shifts and steady-state fluorescence spectra indicative of a weaker complex with an association constant of 84.5 +/- 3.5 M-1. Time-resolved fluorescence data indicate that complex formation between caffeine and acridine orange or ethidium bromide results in singlet-state lifetime increases consistent with the observed increase in the steady-state fluorescence yield. In addition, dynamic polarization data indicate that these complexes form with a 1:1 stoichiometry. Molecular modeling studies are also included to examine structural factors that may influence complexation. PMID:8770220

  12. Structure of Escherichia coli AlkA in Complex with Undamaged DNA

    DOE PAGES

    Bowman, Brian R.; Lee, Seongmin; Wang, Shuyu; ...

    2010-11-22

    Because DNA damage is so rare, DNA glycosylases interact for the most part with undamaged DNA. Whereas the structural basis for recognition of DNA lesions by glycosylases has been studied extensively, less is known about the nature of the interaction between these proteins and undamaged DNA. Here we report the crystal structures of the DNA glycosylase AlkA in complex with undamaged DNA. The structures revealed a recognition mode in which the DNA is nearly straight, with no amino acid side chains inserted into the duplex, and the target base pair is fully intrahelical. A comparison of the present structures withmore » that of AlkA recognizing an extrahelical lesion revealed conformational changes in both the DNA and protein as the glycosylase transitions from the interrogation of undamaged DNA to catalysis of nucleobase excision. Modeling studies with the cytotoxic lesion 3-methyladenine and accompanying biochemical experiments suggested that AlkA actively interrogates the minor groove of the DNA while probing for the presence of lesions.« less

  13. Structure of Escherichia coli AlkA in Complex with Undamaged DNA

    SciTech Connect

    Bowman, Brian R.; Lee, Seongmin; Wang, Shuyu; Verdine, Gregory L

    2010-11-22

    Because DNA damage is so rare, DNA glycosylases interact for the most part with undamaged DNA. Whereas the structural basis for recognition of DNA lesions by glycosylases has been studied extensively, less is known about the nature of the interaction between these proteins and undamaged DNA. Here we report the crystal structures of the DNA glycosylase AlkA in complex with undamaged DNA. The structures revealed a recognition mode in which the DNA is nearly straight, with no amino acid side chains inserted into the duplex, and the target base pair is fully intrahelical. A comparison of the present structures with that of AlkA recognizing an extrahelical lesion revealed conformational changes in both the DNA and protein as the glycosylase transitions from the interrogation of undamaged DNA to catalysis of nucleobase excision. Modeling studies with the cytotoxic lesion 3-methyladenine and accompanying biochemical experiments suggested that AlkA actively interrogates the minor groove of the DNA while probing for the presence of lesions.

  14. Structure of Escherichia coli AlkA in Complex with Undamaged DNA*

    PubMed Central

    Bowman, Brian R.; Lee, Seongmin; Wang, Shuyu; Verdine, Gregory L.

    2010-01-01

    Because DNA damage is so rare, DNA glycosylases interact for the most part with undamaged DNA. Whereas the structural basis for recognition of DNA lesions by glycosylases has been studied extensively, less is known about the nature of the interaction between these proteins and undamaged DNA. Here we report the crystal structures of the DNA glycosylase AlkA in complex with undamaged DNA. The structures revealed a recognition mode in which the DNA is nearly straight, with no amino acid side chains inserted into the duplex, and the target base pair is fully intrahelical. A comparison of the present structures with that of AlkA recognizing an extrahelical lesion revealed conformational changes in both the DNA and protein as the glycosylase transitions from the interrogation of undamaged DNA to catalysis of nucleobase excision. Modeling studies with the cytotoxic lesion 3-methyladenine and accompanying biochemical experiments suggested that AlkA actively interrogates the minor groove of the DNA while probing for the presence of lesions. PMID:20843803

  15. DNA photo-oxidative damage hazard in transfection complexes.

    PubMed

    Rudiuk, Sergii; Franceschi-Messant, Sophie; Chouini-Lalanne, Nadia; Perez, Emile; Rico-Lattes, Isabelle

    2011-01-01

    Complexes of DNA with various cationic vectors have been largely used for nonviral transfection, and yet the photochemical stability of DNA in such complexes has never been considered. We studied, for the first time, the influence of DNA complexation by a cationic lipid and polymers on the amount of damage induced by benzophenone photosensitization. The localization of benzophenone inside the hydrophobic domains formed by a cationic lipid, DOTAP (N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride), and close to DNA, locally increases the photoinduced cleavage by the reactive oxygen species generated. The same effect was found in the case of DNA complexation with an amphiphilic polymer (polynorbornenemethyleneammonium chloride). However, a decrease in DNA damage was observed in the case of complexation with a hydrophilic polymer (polyethylenimine). The DNA protection in this case was because of the absence of benzophenone hydrophobic incorporation into the complex, and to DNA compaction which decreased the probability of radical attack. These results underline the importance of the chemical structure of the nonviral transfection vector in limiting the risks of photo-oxidative damage of the complexed DNA. © 2010 The Authors. Photochemistry and Photobiology © 2010 The American Society of Photobiology.

  16. Immobilization of human papillomavirus DNA probe for surface plasmon resonance imaging

    NASA Astrophysics Data System (ADS)

    Chong, Xinyuan; Ji, Yanhong; Ma, Suihua; Liu, Le; Liu, Zhiyi; Li, Yao; He, Yonghong; Guo, Jihua

    2009-08-01

    Human papillomavirus (HPV) is a kind of double-stranded DNA virus whose subspecies have diversity. Near 40 kinds of subspecies can invade reproductive organ and cause some high risk disease, such as cervical carcinoma. In order to detect the type of the subspecies of the HPV DNA, we used the parallel scan spectral surface plasmon resonance (SPR) imaging technique, which is a novel type of two- dimensional bio-sensing method based on surface plasmon resonance and is proposed in our previous work, to study the immobilization of the HPV DNA probes on the gold film. In the experiment, four kinds of the subspecies of the HPV DNA (HPV16, HPV18, HPV31, HPV58) probes are fixed on one gold film, and incubate in the constant temperature condition to get a HPV DNA probe microarray. We use the parallel scan spectral SPR imaging system to detect the reflective indices of the HPV DNA subspecies probes. The benefits of this new approach are high sensitive, label-free, strong specificity and high through-put.

  17. Multicolor chromosome banding (MCB) with YAC/BAC-based probes and region-specific microdissection DNA libraries

    SciTech Connect

    Liehr, T.; Weise, A.; Heller, A.; Starke, H.; Mrasek, K.; Kuechler, A.; Weier, H.-U.G.; Claussen, U.

    2003-06-23

    Multicolor chromosome banding (MCB) allows the delineation of chromosomal regions with a resolution of a few mega base pairs, i.e., slightly below the size of most visible chromosome bands. Based on the hybridization of over lapping region-specific probe libraries, chromosomal subregions are hybridized with probes that fluoresce in distinct wave length intervals, so they can be assigned predefined pseudo-colors during the digital imaging and visualization process. The present study demonstrates how MCB patterns can be produced by region-specific micro dissection derived (mcd) libraries as well as collections of yeast or bacterial artificial chromosomes (YACs and BACs, respectively). We compared the efficiency of an mcd library based approach with the hybridization of collections of locus-specific probes (LSP) for fluorescent banding of three rather differently sized human chromosomes, i.e., chromosomes 2, 13, and 22. The LSP sets were comprised of 107 probes specific for chromosome 2, 82 probes for chromosome 13, and 31 probes for chromosome 22. The results demonstrated a more homogeneous coverage of chromosomes and thus, more desirable banding patterns using the microdissection library-based MCB. This may be related to the observation that chromosomes are difficult to cover completely with YAC and/or BAC clones as single-color fluorescence in situ hybridization (FISH) experiments showed. Mcd libraries, on the other hand, provide high complexity probes that work well as region specific paints, but do not readily allow positioning of break points on genetic or physical maps as required for the positional cloning of genes. Thus, combinations of mcd libraries and locus-specific large insert DNA probes appear to be the most efficient tools for high-resolution cytogenetic analyses.

  18. Studies on the Interaction Mechanism of 1,10-Phenanthroline Cobalt(II) Complex with DNA and Preparation of Electrochemical DNA Biosensor

    PubMed Central

    Niu, Shuyan; Li, Feng; Zhang, Shusheng; Wang, Long; Li, Xuemei; Wang, Shiying

    2006-01-01

    Fluorescence spectroscopy and ultraviolet (UV) spectroscopy techniques coupled with cyclic voltammetry (CV) were used to study the interaction between salmon sperm DNA and 1,10-Phenanthroline cobalt(II) complex, [Co(phen)2(Cl)(H2O)]Cl·H2O, where phen = 1,10-phenanthroline. The interaction between [Co(phen)2(Cl)(H2O)]+ and double-strand DNA (dsDNA) was identified to be intercalative mode. An electrochemical DNA biosensor was developed by covalent immobilization of probe single-strand DNA (ssDNA) related to human immunodeficiency virus (HIV) on the activated glassy carbon electrode (GCE). With [Co(phen)2(Cl)(H2O)]+ being the novel electrochemical hybridization indicator, the selectivity of ssDNA-modified electrode was investigated and selective detection of complementary ssDNA was achieved using differential pulse voltammetry (DPV).

  19. Real-time observation of DNA repair: 2-aminopurine as a molecular probe

    NASA Astrophysics Data System (ADS)

    Krishnan, Rajagopal; Butcher, Christina E.; Oh, Dennis H.

    2008-02-01

    Triplex forming oligos (TFOs) that target psoralen photoadducts to specific DNA sequences have generated interest as a potential agent in gene therapy. TFOs also offer an opportunity to study the mechanism of DNA repair in detail. In an effort to understand the mechanism of DNA repair at a specific DNA sequence in real-time, we have designed a plasmid containing a psoralen reaction site adjacent to a TFO binding site corresponding to a sequence within the human interstitial collagenase gene. Two 2-aminopurine residues incorporated into the purine-rich strand of the TFO binding site and located within six nucleotides of the psoralen reaction site serve as molecular probes for excision repair events involving the psoralen photoadducts on that DNA strand. In duplex DNA, the 2-aminopurine fluorescence is quenched. However, upon thermal or formamide-induced denaturation of duplex DNA to single stranded DNA, the 2-aminopurine fluorescence increases by eight fold. These results suggest that monitoring 2-aminopurine fluorescence from plasmids damaged by psoralen TFOs may be a method for measuring excision of single-stranded damaged DNA from the plasmid in cells. A fluorescence-based molecular probe to the plasmid may significantly simplify the real-time observation of DNA repair in both populations of cells as well as single cells.

  20. AuNP-CTG based probing system targeting CAG repeat DNA and RNA sequences.

    PubMed

    Le, Binh Huy; Joo, Han Na; Hwang, Do Won; Kim, Kyu Wan; Seo, Young Jun

    2017-08-15

    We have developed a AuNP-CTG based probing system that is applicable to the detection of many units of CAG repeat sequences which was synthesized by a rolling circle amplification (RCA) system with changes in fluorescence. We also demonstrate that our AuNP-CTG based probing system could transfect without using transfection reagent and detect target CAG repeat sequences in HeLa cells with dramatic changes in fluorescence. This AuNP-CTG based probing system could also be used, in conjunction with the CAG repeat RCA system, to detect target DNA. This system was so sensitive to the target DNA that it could detect even picomolar amounts with amplification of the fluorescence signal. Furthermore, we have used our gold-based CAG probing system for the detection of RNA CAG repeat sequences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Two-photon AgNP/DNA-TP dye nanosensing conjugate for biothiol probing in live cells.

    PubMed

    Liu, Mingli; Tang, Qiao; Deng, Ting; Yan, Huijuan; Li, Jishan; Li, Yinhui; Yang, Ronghua

    2014-12-07

    A novel silver nanoparticle (AgNP)/DNA-two-photon dye (TP dye) conjugate was fabricated as a two-photon nanoprobe for biothiol imaging in live cells. DNA-templated silver nanoparticles are efficient quenchers and also provide a biocompatible nanoplatform for facile delivery of DNA into living cells. In the presence of biothiols (Cys, Hcy, or GSH), the strong interaction between the thiol group and silver results in the release of TP dye-labeled single-stranded DNA (ssDNA) from the AgNP surface and the subsequent fluorescence emission of the TP dye, thus enabling biothiols to be assayed. Our results reveal that the AgNP/DNA-TP dye nanosensing conjugate not only is a robust, sensitive, and selective sensor for quantitative detection of biothiols in the complex biological environment but also can be efficiently delivered into live cells and act as a "signal-on" sensor for specific, high-contrast imaging of target biomolecules. Our design provides a methodology for the development of future DNA-templated silver nanoparticle-based two-photon fluorescent probes for use in vitro or in vivo as biomolecular sensors for live-cell imaging.

  2. Identification of Streptococcus pneumoniae with a DNA probe.

    PubMed Central

    Denys, G A; Carey, R B

    1992-01-01

    The Accuprobe Streptococcus pneumoniae Culture Identification Test (Gen-Probe, Inc.) was evaluated with 172 isolates of S. pneumoniae and 204 nonpneumococcal isolates. The sensitivity and specificity of the Accuprobe test were 100%. Optimum results were obtained when four or more discrete colonies were selected for testing. The Accuprobe test was determined to be an accurate and rapid method for identification of S. pneumoniae. PMID:1400974

  3. Cyanine dye dUTP analogs for enzymatic labeling of DNA probes.

    PubMed Central

    Yu, H; Chao, J; Patek, D; Mujumdar, R; Mujumdar, S; Waggoner, A S

    1994-01-01

    Fluorescence in situ hybridization (FISH) has become and indispensable tool in a variety of areas of research and clinical diagnostics. Many applications demand an approach for simultaneous detection of multiple target sequences that is rapid and simple, yet sensitive. In this work, we describe the synthesis of two new cyanine dye-labeled dUTP analogs, Cy3-dUTP and Cy5-dUTP. They are efficient substrates for DNA polymerases and can be incorporated into DNA probes by standard nick translation, random priming and polymerase chain reactions. Optimal labeling conditions have been identified which yield probes with 20-40 dyes per kilobase. The directly labeled DNA probes obtained with these analogs offer a simple approach for multicolor multisequence analysis that requires no secondary detection reagents and steps. Images PMID:8065939

  4. Controlling microarray DNA hybridization efficiency by probe-surface distance and external surface electrostatics

    NASA Astrophysics Data System (ADS)

    Qamhieh, K.; Pettitt, B. Montgomery

    2015-03-01

    DNA microarrays are analytical devices designed to determine the composition of multicomponent solutions of nucleic acids, DNA or RNA. These devices are promising technology for diverse applications, including sensing, diagnostics, and drug/gene delivery. Here, we modify a hybridization adsorption isotherm to study the effects of probe-surface distance and the external electrostatic fields, on the oligonucleotide hybridization in microarray and how these effects are varies depending on surface probe density and target concentration. This study helps in our understanding on-surface hybridization mechanisms, and from it we can observe a significant effect of the probe-surface distance, and the external electrostatic fields, on the hybridization yield. In addition we present a simple new criteria to control the oligonucleotide hybridization efficiency by providing a chart illustrating the effects of all factors on the DNA-hybridization efficiency.

  5. Synthetic exfoliative toxin A and B DNA probes for detection of toxigenic Staphylococcus aureus strains.

    PubMed Central

    Rifai, S; Barbancon, V; Prevost, G; Piemont, Y

    1989-01-01

    Two methods for the detection of exfoliative toxin (ET) from Staphylococcus aureus were compared: (i) a phenotypic assay, electrosyneresis, and (ii) a genotypic assay, staphylococcal DNA hybridization with oligodeoxynucleotide probes. The probes were chosen from the previously determined sequences of serotype A and B of ET, one probe for serotype A and another for serotype B. Strains exhibiting ET production in electrosyneresis always possessed the ET gene(s). Conversely, some strains not exhibiting ET production in electrosyneresis harbored the ET gene(s). The latter strains produced levels of ET. ET-negative phage group 2 strains of S. aureus as well as tested coagulase-negative staphylococci did not possess the ET gene(s). The sensitivity of the DNA hybridization technique was 10(6) bacteria or 100 ng of genomic DNA. Images PMID:2715322

  6. Coaxial atomic force microscope probes for dielectrophoresis of DNA under different buffer conditions

    NASA Astrophysics Data System (ADS)

    Tao, Yinglei; Kumar Wickramasinghe, H.

    2017-02-01

    We demonstrate a coaxial AFM nanoprobe device for dielectrophoretic (DEP) trapping of DNA molecules in Tris-EDTA (TE) and phosphate-buffered saline (PBS) buffers. The DEP properties of 20 nm polystyrene beads were studied with coaxial probes in media with different conductivities. Due to the special geometry of our DEP probe device, sufficiently high electric fields were generated at the probe end to focus DNA molecules with positive DEP. DEP trapping for both polystyrene beads and DNA molecules was quantitatively analyzed over the frequency range from 100 kHz to 50 MHz and compared with the Clausius-Mossotti theory. Finally, we discussed the negative effect of medium salinity during DEP trapping.

  7. Cyclometalated iridium(III) polypyridine dibenzocyclooctyne complexes as the first phosphorescent bioorthogonal probes.

    PubMed

    Lo, Kenneth Kam-Wing; Chan, Bruce Ting-Ngok; Liu, Hua-Wei; Zhang, Kenneth Yin; Li, Steve Po-Yam; Tang, Tommy Siu-Ming

    2013-05-14

    We report the synthesis, photophysical behavior, and biological properties of new cyclometalated iridium(iii) polypyridine complexes appended with a dibenzocyclooctyne (DIBO) moiety; these complexes have been utilized as the first phosphorescent bioorthogonal probes for azide-modified biomolecules.

  8. Single-mismatch position-sensitive detection of DNA based on a bifunctional ruthenium complex.

    PubMed

    García, T; Revenga-Parra, M; Abruña, H D; Pariente, F; Lorenzo, E

    2008-01-01

    A ruthenium complex, pentaamine ruthenium [3-(2-phenanthren-9-yl-vinyl)-pyridine] (which we refer to as RuL in the text) generated in situ has been used as a sensitive and selective electrochemical indicator in DNA sensing. The complex incorporates dual functionalities with the Ru center providing a redox probe and the ligand (L) providing a fluorescent tag. The presence of the aromatic groups in the ligand endows the complex with an intercalative character and makes it capable of binding to double-stranded DNA (dsDNA) more efficiently than to single-stranded DNA (ssDNA). Combining spectroscopic and electrochemical techniques, we have elucidated the nature of the interactions. From these data we conclude that the binding mode is fundamentally intercalative. The ligand-based fluorescence allows characterization of the complex formation as well as for melting experiments to be carried out. The metal-based redox center is employed as an electrochemical indicator to detect the hybridization event in a DNA biosensor. The biosensor has been developed by immobilization of a thiolated capture probe sequence from Helicobacter pylori onto gold electrodes. With the use of this approach, complementary target sequences of Helicobacter can be quantified over the range of 106 to 708 pmol with a detection limit of 92+/-0.4 pmol and a linear correlation coefficient of 0.995. In addition, this approach allows the detection, without the need for a hybridization suppressor in solution, such as formamide, of not only a single mismatch but also its position in a specific sequence of H. pylori, due to the selective interaction of this bifunctional ruthenium complex with dsDNA.

  9. Probing DNA with micro- and nanocapillaries and optical tweezers

    NASA Astrophysics Data System (ADS)

    Steinbock, L. J.; Otto, O.; Skarstam, D. R.; Jahn, S.; Chimerel, C.; Gornall, J. L.; Keyser, U. F.

    2010-11-01

    We combine for the first time optical tweezer experiments with the resistive pulse technique based on capillaries. Quartz glass capillaries are pulled into a conical shape with tip diameters as small as 27 nm. Here, we discuss the translocation of λ-phage DNA which is driven by an electrophoretic force through the nanocapillary. The resulting change in ionic current indicates the folding state of single λ-phage DNA molecules. Our flow cell design allows for the straightforward incorporation of optical tweezers. We show that a DNA molecule attached to an optically trapped colloid is pulled into a capillary by electrophoretic forces. The detected electrophoretic force is in good agreement with measurements in solid-state nanopores.

  10. Probing the linearity and nonlinearity in DNA sequences

    NASA Astrophysics Data System (ADS)

    Tsonis, Anastasios A.; Heller, Fred L.; Tsonis, Panagiotis A.

    2002-09-01

    In this paper, we apply the principles of information theory that relate to the definition of nonlinear predictability, which is a measure that describes both the linear and nonlinear components of a system. By comparing this measure to a measure of linear predictability, one can assess whether a given system has a strong linear or a strong nonlinear component. This provides insights as to whether the system should be modeled by a nonlinear or a linear model. We apply these ideas to DNA sequences. Our results, which extend previous results on this issue indicate that all DNA sequences (coding and noncoding) exhibit strong nonlinear structure. At the same time the results provide insights to understand DNA structure and possible clues about evolutionary mechanisms.

  11. Electrochemical DNA probe for Hg(2+) detection based on a triple-helix DNA and Multistage Signal Amplification Strategy.

    PubMed

    Wang, Huan; Zhang, Yihe; Ma, Hongmin; Ren, Xiang; Wang, Yaoguang; Zhang, Yong; Wei, Qin

    2016-12-15

    In this work, an ultrasensitive electrochemical sensor was developed for detection of Hg(2+). Gold nanoparticles decorated bovine serum albumin reduction of graphene oxide (AuNP-BSA-rGO) were used as subsurface material for the immobilization of triple-helix DNA. The triple-helix DNA containing a thiol labelled single-stranded DNA (sDNA) and a thymine-rich DNA (T-rich DNA), which could be unwinded in the present of Hg(2+) to form more stable thymine-Hg(2+)-thymine (T-Hg(2+)-T) complex. T-Hg(2+)-T complex was then removed and the sDNA was left on the electrode. At this time, gold nanoparticle carrying thiol labelled cytosine-rich complementary DNA (cDNA-AuNP) could bind with the free sDNA. Meanwhile, the other free cDNA on AuNP could bind with each other in the present of Ag(+) to form the stable cytosine-Ag(+)-cytosine (C-Ag(+)-C) complex and circle amplification. Plenty of C-Ag(+)-C could form silver nanoclusters by electrochemical reduction and the striping signal of Ag could be measured for purpose of the final electrochemical detection of Hg(2+). This sensor could detect Hg(2+) over a wide concentration range from 0.1 to 130nM with a detection limit of 0.03nM.

  12. A new strategy for site-specific alkylation of DNA using oligonucleotides containing an abasic site and alkylating probes.

    PubMed

    Sato, Norihiro; Tsuji, Genichiro; Sasaki, Yoshihiro; Usami, Akira; Moki, Takuma; Onizuka, Kazumitsu; Yamada, Ken; Nagatsugi, Fumi

    2015-10-14

    Selective chemical reactions with DNA, such as its labelling, are very useful in many applications. In this paper, we discuss a new strategy for the selective alkylation of DNA using an oligonucleotide containing an abasic site and alkylating probes. We designed three probes consisting of 2-AVP as a reactive moiety and three kinds of binding moiety with high affinity to duplex DNA. Among these probes, Hoechst-AVP probe exhibited high selectivity and efficient reactivity to thymine bases at the site opposite an abasic site in DNA. Our method is potentially useful for inducing site-directed reactions aimed at inhibiting polymerase reactions.

  13. Force-extension relation of DNA-histone complexes

    NASA Astrophysics Data System (ADS)

    Levine, A. J.; Henle, Mark L.; Chou, Tom

    2007-03-01

    In eukaryotic cells, DNA is packaged inside the nucleus in the form of chromatin, a structure whose basic repeat unit, known as the nucleosome, consists of DNA wrapped around a cylindrical complex of histone proteins. In order for the cell to function properly, these nucleosome complexes must be stable at equilibrium. At the same time, the cell must be able to gain access to the genomic information contained within the DNA, which it can achieve by exerting forces on the nucleosomes that cause the DNA to unwrap from the histones. Single molecule mechanical manipulation techniques, in which DNA/histone complexes are disrupted by an external force, can provide information not only about the equilibrium structure of these complexes, but also about the forces and displacements required to access the DNA in the nucleosome. In this talk, we derive the force-extension relation for these complexes. We allow for the DNA to unwrap from the histones in both a continuous and discontinuous fashion; that is, we allow the histones to ``pop'' off of the DNA, releasing a large amount of DNA in the process. We also include the conformational fluctuations of the unwrapped portions of the DNA.

  14. Metal Complexes for DNA-Mediated Charge Transport

    PubMed Central

    Barton, Jacqueline K.; Olmon, Eric D.; Sontz, Pamela A.

    2010-01-01

    In all organisms, oxidation threatens the integrity of the genome. DNA-mediated charge transport (CT) may play an important role in the generation and repair of this oxidative damage. In studies involving long-range CT from intercalating Ru and Rh complexes to 5′-GG-3′ sites, we have examined the efficiency of CT as a function of distance, temperature, and the electronic coupling of metal oxidants bound to the base stack. Most striking is the shallow distance dependence and the sensitivity of DNA CT to how the metal complexes are stacked in the helix. Experiments with cyclopropylamine-modified bases have revealed that charge occupation occurs at all sites along the bridge. Using Ir complexes, we have seen that the process of DNA-mediated reduction is very similar to that of DNA-mediated oxidation. Studies involving metalloproteins have, furthermore, shown that their redox activity is DNA-dependent and can be DNA-mediated. Long range DNA-mediated CT can facilitate the oxidation of DNA-bound base excision repair proteins to initiate a redox-active search for DNA lesions. DNA CT can also activate the transcription factor SoxR, triggering a cellular response to oxidative stress. Indeed, these studies show that within the cell, redox-active proteins may utilize the same chemistry as that of synthetic metal complexes in vitro, and these proteins may harness DNA-mediated CT to reduce damage to the genome and regulate cellular processes. PMID:21643528

  15. DNA-DNA kissing complexes as a new tool for the assembly of DNA nanostructures.

    PubMed

    Barth, Anna; Kobbe, Daniela; Focke, Manfred

    2016-02-29

    Kissing-loop annealing of nucleic acids occurs in nature in several viruses and in prokaryotic replication, among other circumstances. Nucleobases of two nucleic acid strands (loops) interact with each other, although the two strands cannot wrap around each other completely because of the adjacent double-stranded regions (stems). In this study, we exploited DNA kissing-loop interaction for nanotechnological application. We functionalized the vertices of DNA tetrahedrons with DNA stem-loop sequences. The complementary loop sequence design allowed the hybridization of different tetrahedrons via kissing-loop interaction, which might be further exploited for nanotechnology applications like cargo transport and logical elements. Importantly, we were able to manipulate the stability of those kissing-loop complexes based on the choice and concentration of cations, the temperature and the number of complementary loops per tetrahedron either at the same or at different vertices. Moreover, variations in loop sequences allowed the characterization of necessary sequences within the loop as well as additional stability control of the kissing complexes. Therefore, the properties of the presented nanostructures make them an important tool for DNA nanotechnology. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Hydrodynamic properties of DNA and DNA-lipid complex in an elongational flow field.

    PubMed

    Sasaki, Naoki; Ashitaka, Hidetomo; Ohtomo, Kenji; Fukui, Akimasa

    2007-03-10

    The aim of this study was to determine the difference between hydrodynamic properties of DNA-cetyltrimethylammonium (CTA) complex and those of DNA, which may be related to the difference in fibre-forming ability of DNA-CTA from that of DNA. Responses of DNA and DNA-CTA complex to an elongational flow field were investigated. In both solution systems, results suggesting a coil-stretch transition were obtained. From a critical strain rate value, the radius of gyration of DNA-CTA molecules in ethanol-glycerol solution was revealed to be 0.3-0.5 times of that of DNA in aqueous NaCl solution. Shear viscosity of DNA-CTA solution was much smaller than that of DNA solution, also suggesting a smaller size of DNA-CTA in ethanol-glycerol solution than that of DNA in aqueous NaCl solution. The plateau birefringence value of the DNA-CTA system, a parameter that indicates the local molecular conformation and the molecular arrangement, was only about 1/10 of that of the DNA system. There is an empirically determined molecular model of DNA-CTA complex in which a DNA molecule is sheathed by a cylindrical crust made of CTA chains. This structure reduces the DNA molecular density in a pure elongational flow field region but cannot explain the observed reduction of birefringence intensity. The small plateau birefringence value of DNA-CTA compared with that of DNA was attributed to the reduced molecular polarizability by the particular conformation of DNA molecules and CTA chains in the DNA-CTA system such as that expected by the conformational models.

  17. Microarray long oligo probe designing for Escherichia coli: an in-silico DNA marker extraction.

    PubMed

    Behzadi, Payam; Najafi, Ali; Behzadi, Elham; Ranjbar, Reza

    2016-01-01

    Urinary tract infections are predominant diseases which may be caused by different pathogenic microorganisms, particularly Escherichia coli (E.coli). DNA microarray technology is an accurate, rapid, sensitive, and specific diagnostic tool which may lead to definite diagnosis and treatment of several infectious diseases. DNA microarray is a multi-process method in which probe designing plays an important. Therefore, the authors of the present study have tried to design a range of effective and proper long oligo microarray probes for detection and identification of different strains of pathogenic E.coli and in particular, uropathogenic E.coli (UPEC). E.coli O26 H11 11368 uid41021 was selected as the standard strain for probe designing. This strain encompasses the largest nucleotide sequence and the most number of genes among other pathogenic strains of E.coli. For performing this in silico survey, NCBI database, GReview Server, PanSeq Server, Oligoanalyzer tool, and AlleleID 7.7 were used to design accurate, appropriate, effective, and flexible long oligo microarray probes. Moreover, the genome of E.coli and its closely related microorganisms were compared. In this study, 15 long oligo microarray probes were designed for detecting and identifying different strains of E.coli such as UPEC. These probes possessed the best physico-chemical characteristics. The functional and structural properties of the designed probes were recognized by practical tools and softwares. The use of reliable advanced technologies and methodologies for probe designing guarentees the high quality of microarray probes and makes DNA microarray technology more flexible and an effective diagnostic technique.

  18. Clinical application of novel sample processing technology for the identification of salmonellae by using DNA probes.

    PubMed

    Scholl, D R; Kaufmann, C; Jollick, J D; York, C K; Goodrum, G R; Charache, P

    1990-02-01

    Two hundred and fifty clinical fecal specimens collected over a 7-month period were analyzed for the presence of salmonellae by a rapid DNA hybridization procedure. Hybridizations were performed by using a novel specimen processing protocol called wicking and a previously unreported 1,600-base-pair probe cloned from Salmonella enteritidis DNA. The probe was shown to be reactive with all 70 Salmonella serotypes tested and not reactive with 101 stock strains of other enteric bacteria. Southern analysis of 30 Salmonella isolates representing 22 serotypes suggested that the probe sequence was highly conserved, appearing as a 1,600-base-pair band in a BglII digest of isolate DNA in 29 of 30 isolates and as a 2,300-base-pair fragment in 1 of the isolates. The probe correctly identified all salmonellae (nine isolates) among 47 H2S-producing colonies tested from among 250 clinical specimens cultured on xylose-lysine-desoxycholate medium. Salmonellae grown on xylose-lysine-desoxycholate medium gave consistently higher hybridization values than did those grown on either MacConkey or Hektoen enteric agar. In addition, of eight gram-negative broth enrichments in which salmonellae were identified by conventional means, seven were probe positive. The use of this nucleic acid probe and hybridization technique provides a simple and rapid identification of Salmonella species.

  19. Development of a specific biotinylated DNA probe for the detection of Renibacterium salmoninarum.

    PubMed Central

    Hariharan, H; Qian, B; Despres, B; Kibenge, F S; Heaney, S B; Rainnie, D J

    1995-01-01

    A specific DNA probe for the identification of Renibacterium salmoninarum, the causative agent of bacterial kidney disease (BKD), was developed from one of 3 clones pRS47, pRS49, and pRS26 of 5.1 kb, 5.3 kb, and 11.3 kb, respectively. The biotinylated pRS47/BamHI insert probe was tested on 3 dilutions of DNA extracted from 3 strains of R. salmoninarum and from 1 strain each of Arthrobacter protophormiae, Aeromonas salmonicida, Corynebacterium aquaticum, Carnobacterium piscicola, Listonella anguillarum, Micrococcus luteus, Pseudomonas fluorescens, Vibrio ordalii, and Yersinia ruckeri. In a dot blot assay, this probe hybridized only with the DNA from the R. salmoninarum strains. When used on kidney samples from fish challenged with R. salmoninarum, the dot blot hybridization assay with the probe was found to be as sensitive as culture. In a fluorescent antibody test, samples that were negative in culture and dot blot hybridization showed no more than one fluorescing cell in 50 microscopic fields examined. This DNA probe, therefore, has the potential for use in the diagnosis of BKD of fish. Images Fig. 2. Fig. 3. PMID:8548693

  20. Ultrafast fluorescence dynamics of Sybr Green I/DNA complexes

    NASA Astrophysics Data System (ADS)

    Trantakis, Ioannis A.; Fakis, Mihalis; Tragoulias, Sotirios S.; Christopoulos, Theodore K.; Persephonis, Peter; Giannetas, Vassilis; Ioannou, Penelope

    2010-01-01

    The ultrafast dynamics of the DNA fluorescent dye Sybr Green I (SG) has been studied in buffer, single-stranded (ssDNA), double-stranded (dsDNA) and triple-stranded DNA (tsDNA). The fluorescence quantum yield of SG increases dramatically when bound to DNA (including tsDNA). The fluorescence dynamics of the free SG has shown two decay components with ˜0.15-0.4 ps and ˜1.3-2.1 ps time constants, depending on the fluorescence wavelength. Upon binding to DNA, the dynamics becomes slower exhibiting four decay components. This is mainly due to the restriction of the internal motions of the dye caused by the relatively rigid environment of the dye complexed with DNA.

  1. Evolution of a complex minisatellite DNA sequence.

    PubMed

    Barros, Paula; Blanco, Miguel G; Boán, Francisco; Gómez-Márquez, Jaime

    2008-11-01

    Minisatellites are tandem repeats of short DNA units widely distributed in genomes. However, the information on their dynamics in a phylogenetic context is very limited. Here we have studied the organization of the MsH43 locus in several species of primates and from these data we have reconstructed the evolutionary history of this complex minisatellite. Overall, with the exception of gibbon, MsH43 has an organization that is asymmetric, since the distribution of repeats is distinct between the 5' and 3' halves, and heterogeneous since there are many different repeats, some of them characteristic of each species. Inspection of the MsH43 arrays showed the existence of many duplications and deletions, suggesting the implication of slippage processes in the generation of polymorphism. Concerning the evolutionary history of this minisatellite, we propose that the birth of MsH43 may be situated before the divergence of Old World Monkeys since we found the existence of some MsH43 repeat motifs in prosimians and New World Monkeys. The analysis of MsH43 in apes revealed the existence of an evolutionary breakpoint in the pathway that originated African great apes and humans. Remarkably, human MsH43 is more homologous to orang-utan than to the corresponding sequence in gorilla and chimpanzee. This finding does not comply with the evolutionary paradigm that continuous alterations occur during the course of genome evolution. To adjust our results to the standard phylogeny of primates, we propose the existence of a wandering allele that was maintained almost unaltered during the period that extends between orang-utan and humans.

  2. Structure, stability, and thermodynamics of lamellar DNA-lipid complexes.

    PubMed Central

    Harries, D; May, S; Gelbart, W M; Ben-Shaul, A

    1998-01-01

    We develop a statistical thermodynamic model for the phase evolution of DNA-cationic lipid complexes in aqueous solution, as a function of the ratios of charged to neutral lipid and charged lipid to DNA. The complexes consist of parallel strands of DNA intercalated in the water layers of lamellar stacks of mixed lipid bilayers, as determined by recent synchrotron x-ray measurements. Elastic deformations of the DNA and the lipid bilayers are neglected, but DNA-induced spatial inhomogeneities in the bilayer charge densities are included. The relevant nonlinear Poisson-Boltzmann equation is solved numerically, including self-consistent treatment of the boundary conditions at the polarized membrane surfaces. For a wide range of lipid compositions, the phase evolution is characterized by three regions of lipid to DNA charge ratio, rho: 1) for low rho, the complexes coexist with excess DNA, and the DNA-DNA spacing in the complex, d, is constant; 2) for intermediate rho, including the isoelectric point rho = 1, all of the lipid and DNA in solution is incorporated into the complex, whose inter-DNA distance d increases linearly with rho; and 3) for high rho, the complexes coexist with excess liposomes (whose lipid composition is different from that in the complex), and their spacing d is nearly, but not completely, independent of rho. These results can be understood in terms of a simple charging model that reflects the competition between counterion entropy and inter-DNA (rho < 1) and interbilayer (rho > 1) repulsions. Finally, our approach and conclusions are compared with theoretical work by others, and with relevant experiments. PMID:9649376

  3. Using Amino-Labeled Nucleotide Probes for Simultaneous Single Molecule RNA-DNA FISH

    PubMed Central

    Wu, Jun; Shao, Fangwei; Zhang, Li-Feng

    2014-01-01

    Using amino-labeled oligonucleotide probes, we established a simple, robust and low-noise method for simultaneous detection of RNA and DNA by fluorescence in situ hybridization, a highly useful tool to study the large pool of long non-coding RNAs being identified in the current research. With probes either chemically or biologically synthesized, we demonstrate that the method can be applied to study a wide range of RNA and DNA targets at the single-cell and single-molecule level in cellular contexts. PMID:25226542

  4. Use of DNA probes in the study of silage colonization by Lactobacillus and Pediococcus strains.

    PubMed

    Cocconcelli, P S; Triban, E; Basso, M; Bottazzi, V

    1991-10-01

    A technique to monitor lactic acid bacteria inoculants in silage, based on specific DNA probes, was developed and used to evaluate the colonization properties of two strains of Lactobacillus plantarum and one strain of Pediococcus pentosaceus which were used as maize silage inoculants in farm conditions. The results indicated that these three strains were able to dominate the natural microflora of the silage, representing more than the 95% of the bacterial biomass of the maize silage. These studies indicate that the colony hybridization with specific DNA probes may be an effective method for monitoring bacteria and evaluating the colonization properties of inoculants in maize silage.

  5. The effects of multiple probes on the hybridization of target DNA on surfaces.

    PubMed

    Welling, Ryan C; Knotts, Thomas A

    2015-01-07

    DNA microarrays have disruptive potential in many fields including genetics and medicine, but the technology has yet to find widespread clinical use due to poor reliability. Microarrays work on the principle of hybridization and can only be as dependable as this process is reliable. As such, a significant amount of theoretical research has been done to understand hybridization on surfaces on the molecular level. Previous simulations of a target strand with a single, surface-tethered probe molecule have yielded valuable insights, but such is an ideal system and little is known about the effects of multiple probes-a situation that more closely approximates the real system. This work uses molecular simulation to determine the specific differences in duplex stability between one, three, six, and nine tethered probes on a surface. The results show that it is more difficult for a single target to hybridize to a probe as the number of probes on the surface increases due to crowding effects; however, once hybridized, the duplex is more stable than when fewer probes are present. The data also indicate that hybridization of a target to a probe on the face of a group of probes is more stable than hybridization to probes at the edge or center locations. Taken as a whole, the results offer new insights into the cause of the poor reproducibility exhibited by microarrays.

  6. Origin and molecular organization of supernumerary chromosomes of Prochilodus lineatus (characiformes, prochilodontidae) obtained by DNA probes.

    PubMed

    Voltolin, Tatiana Aparecida; Laudicina, Alejandro; Senhorini, José Augusto; Bortolozzi, Jehud; Oliveira, Cláudio; Foresti, Fausto; Porto-Foresti, Fábio

    2010-12-01

    In Prochilodus lineatus B-chromosomes are visualized as reduced size extra elements identified as microchromosomes and are variable in morphology and number. We describe the specific total probe (B-chromosome probe) in P. lineatus obtained by chromosome microdissection and a whole genomic probe (genomic probe) from an individual without B-chromosome. The specific B-chromosome was scraped and processed to obtain DNA with amplification by DOP-PCR, and so did the genomic probe DNA. Fluorescence in situ hybridization using the B-chromosome probe labeled with dUTP-Tetramethyl-rhodamine and the genomic probe labeled with digoxigenin-FITC permitted to establish that in this species supernumerary chromosomes with varying number and morphology had different structure of chromatin when compared to that of the regular chromosomes or A complement, since only these extra elements were labeled in the metaphases. The present findings suggest that modifications in the chromatin structure of B-chromosomes to differentiate them from the A chromosomes could occur along their dispersion in the individuals of the population.

  7. Optimization of DNA delivery by three classes of hybrid nanoparticle/DNA complexes

    PubMed Central

    2010-01-01

    Plasmid DNA encoding a luciferase reporter gene was complexed with each of six different hybrid nanoparticles (NPs) synthesized from mixtures of poly (D, L-lactide-co-glycolide acid) (PLGA 50:50) and the cationic lipids DOTAP (1, 2-Dioleoyl-3-Trimethyammonium-Propane) or DC-Chol {3β-[N-(N', N'-Dimethylaminoethane)-carbamyl] Cholesterol}. Particles were 100-400 nm in diameter and the resulting complexes had DNA adsorbed on the surface (out), encapsulated (in), or DNA adsorbed and encapsulated (both). A luciferase reporter assay was used to quantify DNA expression in 293 cells for the uptake of six different NP/DNA complexes. Optimal DNA delivery occurred for 105 cells over a range of 500 ng - 10 μg of NPs containing 20-30 μg DNA per 1 mg of NPs. Uptake of DNA from NP/DNA complexes was found to be 500-600 times as efficient as unbound DNA. Regression analysis was performed and lines were drawn for DNA uptake over a four week interval. NP/DNA complexes with adsorbed NPs (out) showed a large initial uptake followed by a steep slope of DNA decline and large angle of declination; lines from uptake of adsorbed and encapsulated NPs (both) also exhibited a large initial uptake but was followed by a gradual slope of DNA decline and small angle of declination, indicating longer times of luciferase expression in 293 cells. NPs with encapsulated DNA only (in), gave an intermediate activity. The latter two effects were best seen with DOTAP-NPs while the former was best seen with DC-Chol-NPs. These results provide optimal conditions for using different hybrid NP/DNA complexes in vitro and in the future, will be tested in vivo. PMID:20181278

  8. Study of concentration of HPV DNA probe immobilization for cervical cancer detection based IDE biosensor

    NASA Astrophysics Data System (ADS)

    Roshila, M. L.; Hashim, U.; Azizah, N.

    2016-07-01

    This paper mainly illustrates regarding the detection process of Human Papillomavirus (HPV) DNA probe. HPV is the most common virus that infected to human by a sexually transmitted virus. The most common high-risk HPV are 16 and 18. Interdigitated electrode (IDE) device used as based of Titanium Dioxide (TiO2) acts as inorganic surface, where by using APTES as a linker between inorganic surface and organic surface. A strategy of rapid and sensitive for the HPV detection was proposed by integrating simple DNA extraction with a gene of DNA. The extraction of the gene of DNA will make an efficiency of the detection process. It will depend on the sequence of the capture probes and the way to support their attached. The fabrication, surface modification, immobilization and hybridization processes are characterized by current voltage (I-V) measurement by using KEITHLEY 6487. This strategy will perform a good sensitivity of HPV detection.

  9. DNA-Directed Assembly of Nanogold Dimers: A Unique Dynamic Light Scattering Sensing Probe for Transcription Factor Detection

    NASA Astrophysics Data System (ADS)

    Seow, Nianjia; Tan, Yen Nee; Yung, Lin-Yue Lanry; Su, Xiaodi

    2015-12-01

    We have developed a unique DNA-assembled gold nanoparticles (AuNPs) dimer for dynamic light scattering (DLS) sensing of transcription factors, exemplified by estrogen receptor (ER) that binds specifically to a double-stranded (ds) DNA sequence containing estrogen response element (ERE). Here, ERE sequence is incorporated into the DNA linkers to bridge the AuNPs dimer for ER binding. Coupled with DLS, this AuNP dimer-based DLS detection system gave distinct readout of a single ‘complex peak’ in the presence of the target molecule (i.e., ER). This unique signature marked the first time that such nanostructures can be used to study transcription factor-DNA interactions, which DLS alone cannot do. This was also unlike previously reported AuNP-DLS assays that gave random and broad distribution of particles size upon target binding. In addition, the ERE-containing AuNP dimers could also suppress the light-scattering signal from the unbound proteins and other interfering factors (e.g., buffer background), and has potential for sensitive detection of target proteins in complex biological samples such as cell lysates. In short, the as-developed AuNP dimer probe coupled with DLS is a simple (mix and test), rapid (readout in ~5 min) and sensitive (low nM levels of ER) platform to detect sequence-specific protein-DNA binding event.

  10. DNA-Directed Assembly of Nanogold Dimers: A Unique Dynamic Light Scattering Sensing Probe for Transcription Factor Detection

    PubMed Central

    Seow, Nianjia; Tan, Yen Nee; Yung, Lin-Yue Lanry; Su, Xiaodi

    2015-01-01

    We have developed a unique DNA-assembled gold nanoparticles (AuNPs) dimer for dynamic light scattering (DLS) sensing of transcription factors, exemplified by estrogen receptor (ER) that binds specifically to a double-stranded (ds) DNA sequence containing estrogen response element (ERE). Here, ERE sequence is incorporated into the DNA linkers to bridge the AuNPs dimer for ER binding. Coupled with DLS, this AuNP dimer-based DLS detection system gave distinct readout of a single ‘complex peak’ in the presence of the target molecule (i.e., ER). This unique signature marked the first time that such nanostructures can be used to study transcription factor-DNA interactions, which DLS alone cannot do. This was also unlike previously reported AuNP-DLS assays that gave random and broad distribution of particles size upon target binding. In addition, the ERE-containing AuNP dimers could also suppress the light-scattering signal from the unbound proteins and other interfering factors (e.g., buffer background), and has potential for sensitive detection of target proteins in complex biological samples such as cell lysates. In short, the as-developed AuNP dimer probe coupled with DLS is a simple (mix and test), rapid (readout in ~5 min) and sensitive (low nM levels of ER) platform to detect sequence-specific protein-DNA binding event. PMID:26678946

  11. ISWI chromatin remodeling complexes in the DNA damage response.

    PubMed

    Aydin, Özge Z; Vermeulen, Wim; Lans, Hannes

    2014-01-01

    Regulation of chromatin structure is an essential component of the DNA damage response (DDR), which effectively preserves the integrity of DNA by a network of multiple DNA repair and associated signaling pathways. Within the DDR, chromatin is modified and remodeled to facilitate efficient DNA access, to control the activity of repair proteins and to mediate signaling. The mammalian ISWI family has recently emerged as one of the major ATP-dependent chromatin remodeling complex families that function in the DDR, as it is implicated in at least 3 major DNA repair pathways: homologous recombination, non-homologous end-joining and nucleotide excision repair. In this review, we discuss the various manners through which different ISWI complexes regulate DNA repair and how they are targeted to chromatin containing damaged DNA.

  12. New naphthalimide modified polyethylenimine nanoparticles as fluorescent probe for DNA detection

    NASA Astrophysics Data System (ADS)

    Liang, Shucai; Yu, Hui; Xiang, Jin; Yang, Wang; Chen, Xiaohui; Liu, Yanbin; Gao, Chen; Yan, Guoping

    2012-11-01

    A new naphthalimide modified polyethylenimine (PEI) nanoparticles (called NPEI-NPs) was synthesized and applied as fluorescent probe for rapid, selective and sensitive fluorometric detection of trace DNA. The synthesis involved the covalent modification of PEI with 4-butylamino-N-carboxymethyl-1,8-naphthalimide(BACMN) for getting amphiphilic polymer. Then the amphiphilic polymer was self-assembled in water to give the NPEI-NPs. NPEI-NPs was soluble in water and emitted fluorescence at 545 nm with exciting at 460 nm. The fluorescence spectra resulting from the interaction between NPEI-NPs and DNA indicated that the fluorescence of NPEI-NPs increased in the present of DNA. Therefore, a fluorescence enhancement method was developed for the determination of trace fish sperm DNA (fsDNA) and calf thymus DNA (ctDNA). Under the optimal conditions, the calibration curves were linear over the concentration ranges of 0.05-2.8 μg/mL for fsDNA and 0.08-3.0 μg/mL for ctDNA. The detection limits for fsDNA and ctDNA were 1.6 and 2.0 ng/mL, respectively. The proposed method has been employed to quantify DNA in synthetic samples with the satisfactory results.

  13. Cryo-EM Imaging of DNA-PK DNA Damage Repair Complexes

    SciTech Connect

    Phoebe L. Stewart

    2005-06-27

    Exposure to low levels of ionizing radiation causes DNA double-strand breaks (DSBs) that must be repaired for cell survival. Higher eukaryotes respond to DSBs by arresting the cell cycle, presumably to repair the DNA lesions before cell division. In mammalian cells, the nonhomologous end-joining DSB repair pathway is mediated by the 470 kDa DNA-dependent protein kinase catalytic subunit (DNA-PKcs) together with the DNA-binding factors Ku70 and Ku80. Mouse knock-out models of these three proteins are all exquisitely sensitive to low doses of ionizing radiation. In the presence of DNA ends, Ku binds to the DNA and then recruits DNA-PKcs. After formation of the complex, the kinase activity associated with DNA-PKcs becomes activated. This kinase activity has been shown to be essential for repairing DNA DSBs in vivo since expression of a kinase-dead form of DNA-PKcs in a mammalian cell line that lacks DNA-PKcs fails to complement the radiosensitive phenotype. The immense size of DNA-PKcs suggests that it may also serve as a docking site for other DNA repair proteins. Since the assembly of the DNA-PK complex onto DNA is a prerequisite for DSB repair, it is critical to obtain structural information on the complex. Cryo-electron microscopy (cryo-EM) and single particle reconstruction methods provide a powerful way to image large macromolecular assemblies at near atomic (10-15 ?) resolution. We have already used cryo-EM methods to examine the structure of the isolated DNA-PKcs protein. This structure reveals numerous cavities throughout the protein that may allow passage of single or double-stranded DNA. Pseudo two-fold symmetry was found for the monomeric protein, suggesting that DNA-PKcs may interact with two DNA ends or two Ku heterodimers simultaneously. Here we propose to study the structure of the cross-linked DNA-PKcs/Ku/DNA complex. Difference imaging with our published DNA-PKcs structure will enable us to elucidate the architecture of the complex. A second

  14. Probing the Electrostatic Shielding of DNA with Capillary Electrophoresis

    PubMed Central

    Stellwagen, Earle; Stellwagen, Nancy C.

    2003-01-01

    The free solution mobility of a 20-bp double-stranded DNA oligomer has been measured in diethylmalonate (DM) and Tris-acetate buffers, with and without added NaCl or TrisCl. DM buffers have the advantage that the buffering ion is anionic, so the cation composition in the solution can be varied at will. The results indicate that the free solution mobility of DNA decreases linearly with the logarithm of ionic strength when the ionic strength is increased by increasing the buffer concentration. The mobility also decreases linearly with the logarithm of ionic strength when NaCl is added to NaDM buffer or TrisCl is added to TrisDM buffer. Nonlinear effects are observed if the counterion in the added salt differs from the counterion in the buffer. The dependence of the mobility on ionic strength cannot be predicted using the Henry, Debye-Hückel-Onsager, or Pitts equations for electrophoresis. However, the mobilities observed in all buffer and buffer/salt solutions can be predicted within ∼20% by the Manning equation for electrophoresis, using no adjustable parameters. The results suggest that the electrostatic shielding of DNA is determined not only by the relative concentrations of the various ions in the solution, but also by their equivalent conductivities. PMID:12609887

  15. DNA-Dye-Conjugates: Conformations and Spectra of Fluorescence Probes

    PubMed Central

    Beierlein, Frank R.; Paradas Palomo, Miguel; Sharapa, Dmitry I.; Zozulia, Oleksii; Mokhir, Andriy; Clark, Timothy

    2016-01-01

    Extensive molecular-dynamics (MD) simulations have been used to investigate DNA-dye and DNA-photosensitizer conjugates, which act as reactants in templated reactions leading to the generation of fluorescent products in the presence of specific desoxyribonucleic acid sequences (targets). Such reactions are potentially suitable for detecting target nucleic acids in live cells by fluorescence microscopy or flow cytometry. The simulations show how the attached dyes/photosensitizers influence DNA structure and reveal the relative orientations of the chromophores with respect to each other. Our results will help to optimize the reactants for the templated reactions, especially length and structure of the spacers used to link reporter dyes or photosensitizers to the oligonucleotides responsible for target recognition. Furthermore, we demonstrate that the structural ensembles obtained from the simulations can be used to calculate steady-state UV-vis absorption and emission spectra. We also show how important quantities describing the quenching of the reporter dye via fluorescence resonance energy transfer (FRET) can be calculated from the simulation data, and we compare these for different relative chromophore geometries. PMID:27467071

  16. Systematical investigation of binding interaction between novel ruthenium(II) arene complex with curcumin analogs and ctDNA.

    PubMed

    Huang, Shan; Liang, Yu; Huang, Chusheng; Su, Wei; Lei, Xiaolin; Liu, Yi; Xiao, Qi

    2016-11-01

    In this study, the interaction between a novel ruthenium(II) arene complex with curcumin analogs and calf thymus DNA (ctDNA) was investigated systematically by viscosity measurement, the DNA melting approach, multispectroscopic techniques and electrochemical methods. The absorption spectra of the ctDNA-drug complex showed a slight red shift and a weak hypochromic effect. The relative viscosity and melting temperature of ctDNA increased on addition of the drug. The evidence obtained from fluorescence competitive experiments indicated that the binding mode of the drug with ctDNA was intercalative. Using acridine orange (AO) as a fluorescence probe, the drug statically quenched the fluorescence of the ctDNA-AO complex, and hydrogen bonding and van der Waals interactions played vital roles in the binding interaction between the drug and ctDNA. The influences of ionic strength, chemical denaturants and pH on the binding interaction were also investigated. Circular dichroism and Fourier transform infrared spectra suggested that this drug might bond with the G-C base pairs of ctDNA and the right-handed B-form helicity of ctDNA remained after drug binding. The intercalative binding between the drug and ctDNA was further investigated using electrochemical techniques. All these results suggested that the biological activity of ctDNA was affected by ruthenium(II) arene complex with curcumin analogs. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Fluorescent Single-Stranded DNA Binding Protein as a Probe for Sensitive, Real-Time Assays of Helicase Activity

    PubMed Central

    Dillingham, Mark S.; Tibbles, Katherine L.; Hunter, Jackie L.; Bell, Jason C.; Kowalczykowski, Stephen C.; Webb, Martin R.

    2008-01-01

    The formation and maintenance of single-stranded DNA (ssDNA) are essential parts of many processes involving DNA. For example, strand separation of double-stranded DNA (dsDNA) is catalyzed by helicases, and this exposure of the bases on the DNA allows further processing, such as replication, recombination, or repair. Assays of helicase activity and probes for their mechanism are essential for understanding related biological processes. Here we describe the development and use of a fluorescent probe to measure ssDNA formation specifically and in real time, with high sensitivity and time resolution. The reagentless biosensor is based on the ssDNA binding protein (SSB) from Escherichia coli, labeled at a specific site with a coumarin fluorophore. Its use in the study of DNA manipulations involving ssDNA intermediates is demonstrated in assays for DNA unwinding, catalyzed by DNA helicases. PMID:18599625

  18. Quantitative, Fluorogenic Probe PCR Assay for Detection of Human Herpesvirus 8 DNA in Clinical Specimens

    PubMed Central

    Stamey, Felicia R.; Patel, Mitesh M.; Holloway, Brian P.; Pellett, Philip E.

    2001-01-01

    A quantitative, fluorescence-based PCR assay (TaqMan-based system) was developed for detection of human herpesvirus 8 (HHV-8) DNA in clinical specimens. Primers and probes chosen from each of five 10-kb segments from the unique region of the HHV-8 genome were evaluated for sensitivity with dilution series of DNA extracted from a cell line (BCBL-1) that harbors HHV-8 DNA. Although several of the primer-probe sets performed similarly with BCBL-1 DNA that had been diluted in water, their performance differed when target DNA was diluted in a constant background of uninfected cell DNA, an environment more relevant to their intended use. The two best primer-probe combinations were specific for HHV-8 relative to the other known human herpesviruses and herpesvirus saimiri, a closely related gammaherpesvirus of nonhuman primates. PCRs included an enzymatic digestion step to eliminate PCR carryover and an exogenous internal positive control that enabled discrimination of false-negative from true-negative reactions. The new assays were compared to conventional PCR assays for clinical specimens (saliva, rectal brushings, rectal swab specimens, peripheral blood lymphocytes, semen, and urine) from human immunodeficiency virus-positive patients with or without Kaposi's sarcoma. In all instances, the new assays agreed with each other and with the conventional PCR system. In addition, the quantitative results obtained with the new assays were in good agreement both for duplicate reactions in the same assay and between assays. PMID:11574569

  19. Quantitative, fluorogenic probe PCR assay for detection of human herpesvirus 8 DNA in clinical specimens.

    PubMed

    Stamey, F R; Patel, M M; Holloway, B P; Pellett, P E

    2001-10-01

    A quantitative, fluorescence-based PCR assay (TaqMan-based system) was developed for detection of human herpesvirus 8 (HHV-8) DNA in clinical specimens. Primers and probes chosen from each of five 10-kb segments from the unique region of the HHV-8 genome were evaluated for sensitivity with dilution series of DNA extracted from a cell line (BCBL-1) that harbors HHV-8 DNA. Although several of the primer-probe sets performed similarly with BCBL-1 DNA that had been diluted in water, their performance differed when target DNA was diluted in a constant background of uninfected cell DNA, an environment more relevant to their intended use. The two best primer-probe combinations were specific for HHV-8 relative to the other known human herpesviruses and herpesvirus saimiri, a closely related gammaherpesvirus of nonhuman primates. PCRs included an enzymatic digestion step to eliminate PCR carryover and an exogenous internal positive control that enabled discrimination of false-negative from true-negative reactions. The new assays were compared to conventional PCR assays for clinical specimens (saliva, rectal brushings, rectal swab specimens, peripheral blood lymphocytes, semen, and urine) from human immunodeficiency virus-positive patients with or without Kaposi's sarcoma. In all instances, the new assays agreed with each other and with the conventional PCR system. In addition, the quantitative results obtained with the new assays were in good agreement both for duplicate reactions in the same assay and between assays.

  20. Experimental Probe-induced Complex RF Plasma Phenomena

    NASA Astrophysics Data System (ADS)

    Harris, Brandon Joseph

    Plasma has long been studied in its own right as a state of matter, but the addition of particles large compared to its basic constituents yields a host of complicated behavior that was not predicted theoretically. Levitated micrometer-sized particles in the sheath of a RF plasma have previously been shown to form basic symmetry structure, but in this study, formerly undiscovered vertical oscillations, horizontal circular cavities, and waves in chains (longitudinal and transverse) were produced. Though a cylindrical vertical powered probe is used here to arrange and drive the particles in the laboratory, perturbations also exist in plasma formations in space that contain macroparticles. Probe theory is well established as a method to extract plasma parameters, but here the interaction of the probe affects particles directly through the probe's electric field when nearby, and indirectly affects the particles by changing the local plasma conditions when far away. These effects are first examined independently, and then merged with a mid-range exploration by observing the particle structure formations and their motion. Since the probe extends into the non-uniform plasma sheath, the ubiquitous bulk plasma calculations are not valid, though they can be used as a starting point to facilitate understanding of the plasma and explain its interactions with dust and the probe.

  1. Effects of DNA probe and target flexibility on the performance of a "signal-on" electrochemical DNA sensor.

    PubMed

    Wu, Yao; Lai, Rebecca Y

    2014-09-02

    We report the effect of the length and identity of a nontarget binding spacer in both the probe and target sequences on the overall performance of a folding-based electrochemical DNA sensor. Six near-identical DNA probes were used in this study; the main differences between these probes are the length (6, 10, or 14 bases) and identity (thymine (T) or adenine (A)) of the spacer connecting the two target binding domains. Despite the differences, the signaling mechanism of these sensors remains essentially the same. The methylene blue (MB)-modified probe assumes a linear unstructured conformation in the absence of the target; upon hybridization to the target, the probe adopts a "close" conformation, resulting in an increase in the MB current. Among the six sensors, the T14 and A14 sensors showed the largest signal increase upon target hybridization, highlighting the significance of probe flexibility on sensor performance. In addition to the target without a midsequence spacer, 12 other targets, each with a different oligo-T or oligo-A spacer, were used to elucidate the effect of target flexibility on the sensors' signaling capacity. For all six sensors, hybridization to targets with a 2- or 3-base spacer resulted in the largest signal increase. Higher signal enhancement was also observed with targets with an oligo-A spacer. For this sensor design, addition of a long nontarget binding spacer to the probe sequence is advantageous, as it provides flexibility for optimal target capture. The length of the spacer in the target sequence, however, should be adequately long to enable efficient hybridization yet does not introduce undesirable electrostatic and crowding effects.

  2. Detecting variants with Metabolic Design, a new software tool to design probes for explorative functional DNA microarray development

    PubMed Central

    2010-01-01

    Background Microorganisms display vast diversity, and each one has its own set of genes, cell components and metabolic reactions. To assess their huge unexploited metabolic potential in different ecosystems, we need high throughput tools, such as functional microarrays, that allow the simultaneous analysis of thousands of genes. However, most classical functional microarrays use specific probes that monitor only known sequences, and so fail to cover the full microbial gene diversity present in complex environments. We have thus developed an algorithm, implemented in the user-friendly program Metabolic Design, to design efficient explorative probes. Results First we have validated our approach by studying eight enzymes involved in the degradation of polycyclic aromatic hydrocarbons from the model strain Sphingomonas paucimobilis sp. EPA505 using a designed microarray of 8,048 probes. As expected, microarray assays identified the targeted set of genes induced during biodegradation kinetics experiments with various pollutants. We have then confirmed the identity of these new genes by sequencing, and corroborated the quantitative discrimination of our microarray by quantitative real-time PCR. Finally, we have assessed metabolic capacities of microbial communities in soil contaminated with aromatic hydrocarbons. Results show that our probe design (sensitivity and explorative quality) can be used to study a complex environment efficiently. Conclusions We successfully use our microarray to detect gene expression encoding enzymes involved in polycyclic aromatic hydrocarbon degradation for the model strain. In addition, DNA microarray experiments performed on soil polluted by organic pollutants without prior sequence assumptions demonstrate high specificity and sensitivity for gene detection. Metabolic Design is thus a powerful, efficient tool that can be used to design explorative probes and monitor metabolic pathways in complex environments, and it may also be used to

  3. Molecular cloning of verrucosidin-producing Penicillium polonicum genes by differential screening to obtain a DNA probe.

    PubMed

    Aranda, E; Rodríguez, M; Benito, M J; Asensio, M A; Córdoba, J J

    2002-06-05

    A differential molecular screening procedure was developed to obtain DNA clones enriched for verrucosidin-related genes that could be used as DNA probes to detect verrucosidin-producing Penicillium polonicum. Permissive and nonpermissive conditions for verrucosidin production were selected to obtain differentiated poly (A)+ RNA for the cloning strategy. P. polonicum yielded the highest amount of verrucosidin when cultured in malt extract broth at 25 degrees C without shaking. These conditions were selected as verrucosidin permissive conditions. When shaking was applied to the verrucosidin permissive conditions, verrucosidin was not detected. Approximately 5000 transformants were obtained for the library of DNA fragments from verrucosidin-producing P. polonicum and hybridized with cDNA probes obtained from poly (A)+ RNA of permissive and nonpermissive conditions. A total of 120 clones hybridized only with the permissive cDNA probes. From these, eight representative DNA inserts selected on the basis of size and labelled with fluorescein-dUTP were assayed as DNA probes in the second differential screening by Northern hybridization. Probe SVr1 gave a strong hybridization signal selectively with poly (A)+ RNAs from high verrucosidin production. When this probe was assayed by dot blot hybridization with DNA of different moulds species, hybridization was detected only with DNA from the verrucosidin-producing strain. The strategy used in this work has proved to be useful to detect unknown genes related to mycotoxins. In addition, the DNA probe obtained should be considered for the detection of verrucosidin-producing moulds.

  4. Efficient in situ detection of mRNAs using the Chlorella virus DNA ligase for padlock probe ligation.

    PubMed

    Schneider, Nils; Meier, Matthias

    2017-02-01

    Padlock probes are single-stranded DNA molecules that are circularized upon hybridization to their target sequence by a DNA ligase. In the following, the circulated padlock probes are amplified and detected with fluorescently labeled probes complementary to the amplification product. The hallmark of padlock probe assays is a high detection specificity gained by the ligation reaction. Concomitantly, the ligation reaction is the largest drawback for a quantitative in situ detection of mRNAs due to the low affinities of common DNA or RNA ligases to RNA-DNA duplex strands. Therefore, current protocols require that mRNAs be reverse transcribed to DNA before detection with padlock probes. Recently, it was found that the DNA ligase from Paramecium bursaria Chlorella virus 1 (PBCV-1) is able to efficiently ligate RNA-splinted DNA. Hence, we designed a padlock probe assay for direct in situ detection of mRNAs using the PBCV-1 DNA ligase. Experimental single-cell data were used to optimize and characterize the efficiency of mRNA detection with padlock probes. Our results demonstrate that the PBCV-1 DNA ligase overcomes the efficiency limitation of current protocols for direct in situ mRNA detection, making the PBCV-1 DNA ligase an attractive tool to simplify in situ ligation sequencing applications. © 2017 Schneider and Meier; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  5. General method for cloning amplified DNA by differential screening with genomic probes.

    PubMed Central

    Brison, O; Ardeshir, F; Stark, G R

    1982-01-01

    Mutant Syrian hamster cell lines resistant to N-(phosphonacetyl)-L-aspartate, a potent and specific inhibitor of aspartate transcarbamylase, have amplified the gene coding for the multifunctional protein (CAD) that includes this activity. The average amount of DNA amplified is approximately 500 kilobases per gene copy, about 20 times the length of the CAD gene itself. A differential screening method which uses genomic DNAs as probes was developed to isolate recombinant phage containing fragments of amplified DNA. One probe was prepared by reassociating fragments of total genomic DNA from 165-28, a mutant cell line with 190 times the wild-type complement of CAD genes, until all of the sequences repeated about 200 times were annealed and then isolating the double-stranded DNA with hydroxyapatite.This DNA was highly enriched in sequences from the entire amplified region, whereas the same sequences were very rare in DNA prepared similarly from wild-type cells. After both DNAs were labeled by nick translation, highly repeated sequences were removed by hybridization to immobilized total genomic DNA from wild-type cells. A library of cloned DNA fragments from mutant 165-28 was screened with both probes, and nine independent fragments containing about 165 kilobases of amplified DNA, including the CAD gene, have been isolated so far. These cloned DNAs can be used to study the structure of the amplified region, to evaluate the nature of the amplification event, and to investigate gene expression from the amplified DNA. For example, one amplified fragment included a gene coding for a 3.8-kilobase, cytoplasmic, polyadenylated RNA which was overproduced greatly in cells resistant to N-(phosphonacetyl)-L-aspartate. The method for cloning amplified DNA is general and can be used to evaluate the possible involvement of gene amplification in phenomena such as drug resistance, transformation, or differentiation. DNA fragments corresponding to any region amplified about 10-fold or

  6. Bioorthogonal Labeling of 5-Hydroxymethylcytosine in Genomic DNA and Diazirine-Based DNA Photo-Cross-Linking Probes

    PubMed Central

    SONG, CHUN-XIAO; HE, CHUAN

    2013-01-01

    CONSPECTUS DNA is not merely a combination of four genetic codes, namely A, T, C, and G. It also contains minor modifications that play crucial roles throughout biology. For example, the fifth DNA base, 5-methylcytosine (5-mC), which accounts for ~1% of all the nucleotides in mammalian genomic DNA, is a vital epigenetic mark. It impacts a broad range of biological functions, from development to cancer. Recently, an oxidized form of 5-methylcytosine, 5-hydroxymethylcytosine (5-hmC), was found to constitute the sixth base in the mammalian genome; it was believed to be another crucial epigenetic mark. Unfortunately, further study of this newly discovered DNA base modification has been hampered by inadequate detection and sequencing methods, because current techniques fail to differentiate 5-hmC from 5-mC. The immediate challenge, therefore, is to develop robust methods for ascertaining the positions of 5-hmC within the mammalian genome. In this Account, we describe our development of the first bioorthogonal, selective labeling of 5-hmC to specifically address this challenge. We utilize β-glucosyltransferase (βGT) to transfer an azide-modified glucose onto 5-hmC in genomic DNA. The azide moiety enables further bioorthogonal click chemistry to install a biotin group, which allows for detection, affinity enrichment, and, most importantly, deep sequencing of the 5-hmC-containing DNA. With this highly effective and selective method, we revealed the first genome-wide distribution of 5-hmC in the mouse genome and began to shed further light on the biology of 5-hmC. The strategy lays the foundation for developing high-throughput, single-base-resolution sequencing methods for 5-hmC in mammalian genomes in the future. DNA and RNA are not static inside cells. They interact with protein and other DNA and RNA in fundamental biological processes such as replication, transcription, translation, and DNA and RNA modification and repair. The ability to investigate these interactions

  7. Threading of Binuclear Ruthenium Complex Through DNA Bases

    NASA Astrophysics Data System (ADS)

    Paramanathan, Thayaparan; Westerlund, Fredrik; McCauley, Micah; Lincoln, Per; Rouzina, Ioulia; Williams, Mark

    2009-03-01

    Due to steric constraints the dumb-bell shaped binuclear ruthenium complex can only intercalate DNA by threading, which requires local melting of the DNA to occur. By mechanically manipulating a single DNA molecule held with optical tweezers, we lower the barrier to threading compared to bulk experiments. Stretching single DNA molecules with different drug concentrations and holding a constant force allows the binding to reach equilibrium. We can obtain the equilibrium fractional ligand binding and length of DNA at saturation. Fitting these results yields quantitative measurements of the binding thermodynamics and kinetics. In addition, we obtain the minimum binding site size, which may be determined by either electrostatic repulsion or steric constraints.

  8. The effects of multiple probes on the hybridization of target DNA on surfaces

    NASA Astrophysics Data System (ADS)

    Welling, Ryan C.; Knotts, Thomas A.

    2015-01-01

    DNA microarrays have disruptive potential in many fields including genetics and medicine, but the technology has yet to find widespread clinical use due to poor reliability. Microarrays work on the principle of hybridization and can only be as dependable as this process is reliable. As such, a significant amount of theoretical research has been done to understand hybridization on surfaces on the molecular level. Previous simulations of a target strand with a single, surface-tethered probe molecule have yielded valuable insights, but such is an ideal system and little is known about the effects of multiple probes—a situation that more closely approximates the real system. This work uses molecular simulation to determine the specific differences in duplex stability between one, three, six, and nine tethered probes on a surface. The results show that it is more difficult for a single target to hybridize to a probe as the number of probes on the surface increases due to crowding effects; however, once hybridized, the duplex is more stable than when fewer probes are present. The data also indicate that hybridization of a target to a probe on the face of a group of probes is more stable than hybridization to probes at the edge or center locations. Taken as a whole, the results offer new insights into the cause of the poor reproducibility exhibited by microarrays.

  9. DNA complexes with Ni nanoparticles: structural and functional properties

    NASA Astrophysics Data System (ADS)

    Tatarinova, Olga N.; Smirnov, Igor P.; Safenkova, Irina V.; Varizhuk, Anna M.; Pozmogova, Galina E.

    2012-10-01

    Supramolecular complexes of biopolymers based on magnetic nanoparticles play an important role in creation of biosensors, implementation of theragnostic and gene therapeutic methods and biosafety evaluation. We investigated the impact of DNA interactions with nanoparticles of nickel (nNi) on the integrity and functionality of DNA. Data obtained by mass spectrometry, electrophoresis, TEM and AFM microscopy techniques, bacterial transformation, and real-time PCR provide evidence that ssDNA and plasmid DNA (pDNA) efficiently form complexes with nNi. AFM data suggest that the complexes are necklace-type structures, in which nanoparticles are randomly distributed along the DNA chains, rather than highly entangled clot-type structures. After desorption, observed DNA characteristics in bioanalytical and biological systems remain unchanged. Only supercoiled pDNA was nicked, but remained, as well as a plasmid-nNi complex, active in expression vector assays. These results are very important for creation of new methods of DNA immobilization and controlled manipulation.

  10. Quantum interference in DNA bases probed by graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Jeong, Heejeong; Seul Kim, Han; Lee, Sung-Hoon; Lee, Dongho; Hoon Kim, Yong; Huh, Nam

    2013-07-01

    Based on first-principles nonequilibrium Green's function calculations, we demonstrate quantum interference (QI) effects on the tunneling conductance of deoxyribonucleic acid bases placed between zigzag graphene nanoribbon electrodes. With the analogy of QI in hydrocarbon ring structures, we hypothesize that QI can be well preserved in the π-π coupling between the carbon-based electrode and a single DNA base. We demonstrate indications of QI, such as destructively interfered anti-resonance or Fano-resonance, that affect the variation of tunneling conductance depending on the orientation of a base. We find that guanine, with a 10-fold higher transverse conductance, can be singled out from the other bases.

  11. Biological consequences of formation and repair of complex DNA damage.

    PubMed

    Magnander, Karin; Elmroth, Kecke

    2012-12-31

    Endogenous processes or genotoxic agents can induce many types of single DNA damage (single-strand breaks, oxidized bases and abasic sites). In addition, ionizing radiation induces complex lesions such as double-strand breaks and clustered damage. To preserve the genomic stability and prevent carcinogenesis, distinct repair pathways have evolved. Despite this, complex DNA damage can cause severe problems and is believed to contribute to the biological consequences observed in cells exposed to genotoxic stress. In this review, the current knowledge of formation and repair of complex DNA damage is summarized and the risks and biological consequences associated with their repair are discussed. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Fluoroquinolone-gyrase-DNA complexes: two modes of drug binding.

    PubMed

    Mustaev, Arkady; Malik, Muhammad; Zhao, Xilin; Kurepina, Natalia; Luan, Gan; Oppegard, Lisa M; Hiasa, Hiroshi; Marks, Kevin R; Kerns, Robert J; Berger, James M; Drlica, Karl

    2014-05-02

    DNA gyrase and topoisomerase IV control bacterial DNA topology by breaking DNA, passing duplex DNA through the break, and then resealing the break. This process is subject to reversible corruption by fluoroquinolones, antibacterials that form drug-enzyme-DNA complexes in which the DNA is broken. The complexes, called cleaved complexes because of the presence of DNA breaks, have been crystallized and found to have the fluoroquinolone C-7 ring system facing the GyrB/ParE subunits. As expected from x-ray crystallography, a thiol-reactive, C-7-modified chloroacetyl derivative of ciprofloxacin (Cip-AcCl) formed cross-linked cleaved complexes with mutant GyrB-Cys(466) gyrase as evidenced by resistance to reversal by both EDTA and thermal treatments. Surprisingly, cross-linking was also readily seen with complexes formed by mutant GyrA-G81C gyrase, thereby revealing a novel drug-gyrase interaction not observed in crystal structures. The cross-link between fluoroquinolone and GyrA-G81C gyrase correlated with exceptional bacteriostatic activity for Cip-AcCl with a quinolone-resistant GyrA-G81C variant of Escherichia coli and its Mycobacterium smegmatis equivalent (GyrA-G89C). Cip-AcCl-mediated, irreversible inhibition of DNA replication provided further evidence for a GyrA-drug cross-link. Collectively these data establish the existence of interactions between the fluoroquinolone C-7 ring and both GyrA and GyrB. Because the GyrA-Gly(81) and GyrB-Glu(466) residues are far apart (17 Å) in the crystal structure of cleaved complexes, two modes of quinolone binding must exist. The presence of two binding modes raises the possibility that multiple quinolone-enzyme-DNA complexes can form, a discovery that opens new avenues for exploring and exploiting relationships between drug structure and activity with type II DNA topoisomerases.

  13. Fast, Background-Free DNA-PAINT Imaging Using FRET-Based Probes.

    PubMed

    Auer, Alexander; Strauss, Maximilian T; Schlichthaerle, Thomas; Jungmann, Ralf

    2017-10-11

    DNA point accumulation in nanoscale topography (DNA-PAINT) enables super-resolution microscopy by harnessing the predictable, transient hybridization between short dye-labeled "imager" and complementary target-bound "docking" strands. DNA-PAINT microscopy allows sub-5 nm spatial resolution, spectrally unlimited multiplexing, and quantitative image analysis. However, these abilities come at the cost of nonfluorogenic imager strands, also emitting fluorescence when not bound to their docking strands. This has thus far prevented rapid image acquisition with DNA-PAINT, as the blinking rate of probes is limited by an upper-bound of imager strand concentrations, which in turn is dictated by the necessity to facilitate the detection of single-molecule binding events over the background of unbound, freely diffusing probes. To overcome this limitation and enable fast, background-free DNA-PAINT microscopy, we here introduce FRET-based imaging probes, alleviating the concentration-limit of imager strands and speeding up image acquisition by several orders of magnitude. We assay two approaches for FRET-based DNA-PAINT (or FRET-PAINT) using either fixed or transient acceptor dyes in combination with transiently binding donor-labeled DNA strands and achieve high-quality super-resolution imaging on DNA origami structures in a few tens of seconds. Finally, we also demonstrate the applicability of FRET-PAINT in a cellular environment by performing super-resolution imaging of microtubules in under 30 s. FRET-PAINT combines the advantages of conventional DNA-PAINT with fast image acquisition times, facilitating the potential study of dynamic processes.

  14. Use of DNA probes to study tetracycline resistance determinants in gram-negative bacteria from swine

    SciTech Connect

    Lee, C.Y.

    1989-01-01

    Specific {sup 32}P-labeled DNA probes were prepared and used to evaluate the distribution of tetracycline resistance determinants carried by gram-negative enteric bacteria isolated from pigs in 3 swine herds with different histories of antibiotic exposure. Plasmid DNA, ranging in size from 2.1 to 186 Kb, was observed in over 84% of 114 isolates studied. Two of 78 tetracycline resistant strains did not harbor plasmids. The DNA probes were isolated from plasmids pSL18, pRT29/Tn10, pBR322 and pSL106, respectively, and they represented class A, B, C and D tetracycline resistance determinants. Hybridization conditions using 0.5X SSPE at 65{degrees}C minimize cross-hybridization between the different class of tetracycline resistance genes. Cross-hybridization between class A and class C determinants could be distinguished by simultaneous comparison of the intensity of their hybridization signals. Plasmids from over 44% of the tetracycline resistant isolates did not hybridize to DNA probes for the determinants tested. Class B determinant occurred more frequently than class A or C. None of the isolates hybridized with the class D probe.

  15. Local probe investigation of emergent phenomena in complex oxide heterointerfaces

    NASA Astrophysics Data System (ADS)

    Huang, Mengchen

    Complex oxide heterointerfaces exhibit rich physics as well as many veiled puzzles. LaAlO3/SrTiO3 (LAO/STO) is one of the prototype of such heterointerfaces. In 2004, Ohtomo and Hwang first reported a conducing interface emerged between perovskite oxide insulators LaAlO3 and SrTiO3. Following this seminal discovery, many emergent phenomena like metal-insulator transition, piezoresponse, superconductivity, magnetism, strong spin-orbit coupling and coexistence of superconductivity and magnetism were reported in the fascinating LAO/STO system. However, the origin of the conducting interface is still the subject of intense debate, and the physics behind these emergent phenomena remains a wild space to be explored. My Ph.D. study focused on the emergent phenomena in LAO/STO by using "local probes" -- nanostructures created by conductive atomic force microscope (c-AFM) lithography and the AFM itself. I used piezoresponse force microscope (PFM) to study the electromechanical response in LAO/STO and developed a high-resolution, non-destructive PFM imaging technique to visualize nanostructures at LAO/STO interface. The results indicate that the PFM signal is related to a carrier density mediated interfacial lattice distortion, and surface adsorbates can affect the PFM signal via coupling to the electrons at the interface. I integrated graphene on LAO/STO, created field-effect devices in graphene/LAO/STO and collaborated with Dr. Giriraj Jnawali to investigate the transport properties. The high quality single layer graphene on LAO/STO exhibited the half-integer quantum Hall effect and room temperature weak antilocalization behavior. I performed transport measurements in (110)-oriented LAO/STO to investigate anisotropic quasi one-dimensional superconductivity in nanowires. Based on the results I proposed a plausible explanation related to the Lifshitz transition and anisotropic band structures of nanowires in (110)-oriented LAO/STO. Co-worked with Dr. Keith Brown, I studied

  16. Scanning probe microscopy investigation of complex-oxide heterostructures

    NASA Astrophysics Data System (ADS)

    Bi, Feng

    Advances in the growth of precisely tailored complex-oxide heterostructures have led to new emergent behavior and associated discoveries. One of the most successful examples consists of an ultrathin layer of LaAlO 3 (LAO) deposited on TiO2-terminated SrTiO3 (STO), where a high mobility quasi-two dimensional electron liquid (2DEL) is formed at the interface. Such 2DEL demonstrates a variety of novel properties, including field tunable metal-insulator transition, superconductivity, strong spin-orbit coupling, magnetic and ferroelectric like behavior. Particularly, for 3-unit-cell (3 u.c.) LAO/STO heterostructures, it was demonstrated that a conductive atomic force microscope (c-AFM) tip can be used to "write" or "erase" nanoscale conducting channels at the interface, making LAO/STO a highly flexible platform to fabricate novel nanoelectronics. This thesis is focused on scanning probe microscopy studies of LAO/STO properties. We investigate the mechanism of c-AFM lithography over 3 u.c. LAO/STO in controlled ambient conditions by using a vacuum AFM, and find that the water molecules dissociated on the LAO surface play a critical role during the c-AFM lithography process. We also perform electro-mechanical response measurements over top-gated LAO/STO devices. Simultaneous piezoresponse force microscopy (PFM) and capacitance measurements reveal a correlation between LAO lattice distortion and interfacial carrier density, which suggests that PFM could not only serve as a powerful tool to map the carrier density at the interface but also provide insight into previously reported frequency dependence of capacitance enhancement of top-gated LAO/STO structures. To study magnetism at the LAO/STO interface, magnetic force microscopy (MFM) and magnetoelectric force microscopy (MeFM) are carried out to search for magnetic signatures that depend on the carrier density at the interface. Results demonstrate an electronicallycontrolled ferromagnetic phase on top-gated LAO

  17. Combination probes with intercalating anchors and proximal fluorophores for DNA and RNA detection

    PubMed Central

    Qiu, Jieqiong; Wilson, Adam; El-Sagheer, Afaf H.; Brown, Tom

    2016-01-01

    A new class of modified oligonucleotides (combination probes) has been designed and synthesised for use in genetic analysis and RNA detection. Their chemical structure combines an intercalating anchor with a reporter fluorophore on the same thymine nucleobase. The intercalator (thiazole orange or benzothiazole orange) provides an anchor, which upon hybridisation of the probe to its target becomes fluorescent and simultaneously stabilizes the duplex. The anchor is able to communicate via FRET to a proximal reporter dye (e.g. ROX, HEX, ATTO647N, FAM) whose fluorescence signal can be monitored on a range of analytical devices. Direct excitation of the reporter dye provides an alternative signalling mechanism. In both signalling modes, fluorescence in the unhybridised probe is switched off by collisional quenching between adjacent intercalator and reporter dyes. Single nucleotide polymorphisms in DNA and RNA targets are identified by differences in the duplex melting temperature, and the use of short hybridization probes, made possible by the stabilisation provided by the intercalator, enhances mismatch discrimination. Unlike other fluorogenic probe systems, placing the fluorophore and quencher on the same nucleobase facilitates the design of short probes containing multiple modifications. The ability to detect both DNA and RNA sequences suggests applications in cellular imaging and diagnostics. PMID:27369379

  18. DNA-Based MRI Probes for Specific Detection of Chronic Exposure to Amphetamine in Living Brains

    PubMed Central

    Liu, Christina H.; Ren, Jia Q.; Yang, Jinsheng; Liu, Charng-ming; Mandeville, Joseph B.; Rosen, Bruce R.; Bhide, Pradeep G.; Yanagawa, Yuchio; Liu, Philip K.

    2009-01-01

    We designed phosphorothioate-modified DNA probes linked to superparamagnetic iron oxide nanoparticles (SPION) for in vivo magnetic resonance imaging (MRI) of fosB and ΔfosB mRNA after amphetamine (AMPH) exposure in mice. Specificity of both the fosB and ΔfosB probes was verified by in vitro reverse transcriptase-PCR amplification to a single fragment of total cDNA obtained from acutely AMPH-exposed mouse brains. We confirmed time-dependent uptake and retention profiles of both probes in neurons of GAD67-green fluorescent protein knock-in mice. MRI signal of SPION-labeled fosB probe delivered via intracerebroventricular route was elevated in both acutely and chronically AMPH-exposed mice; the signal was suppressed by dopaminergic receptor antagonist pretreatment. SPION-labeled ΔfosB probe signal elevation occurred only in chronically AMPH-exposed mice. The in vivo target specificity of these probes permits reliable MRI visualization of AMPH-induced differential elevations of fosB and ΔfosB mRNA in living brains. PMID:19710318

  19. DNA-based digital tension probes reveal integrin forces during early cell adhesion

    PubMed Central

    Zhang, Yun; Ge, Chenghao; Zhu, Cheng; Salaita, Khalid

    2014-01-01

    Mechanical stimuli profoundly alter cell fate, yet the mechanisms underlying mechanotransduction remain obscure due to a lack of methods for molecular force imaging. Here, to address this need, we develop a new class of molecular tension probes that function as a switch to generate a 20–30-fold increase in fluorescence upon experiencing a threshold piconewton force. The probes employ immobilized DNA-hairpins with tunable force response thresholds, ligands, and fluorescence reporters. Quantitative imaging reveals that integrin tension is highly dynamic and increases with an increasing integrin density during adhesion formation. Mixtures of fluorophore-encoded probes show integrin mechanical preference for cyclized-RGD over linear-RGD peptides. Multiplexed probes with variable guanine-cytosine content within their hairpins reveal integrin preference for the more stable probes at the leading tip of growing adhesions near the cell edge. DNA-based tension probes are among the most sensitive optical force reporters to date, overcoming the force and spatial-resolution limitations of traction force microscopy. PMID:25342432

  20. DNA-based digital tension probes reveal integrin forces during early cell adhesion

    NASA Astrophysics Data System (ADS)

    Zhang, Yun; Ge, Chenghao; Zhu, Cheng; Salaita, Khalid

    2014-10-01

    Mechanical stimuli profoundly alter cell fate, yet the mechanisms underlying mechanotransduction remain obscure because of a lack of methods for molecular force imaging. Here to address this need, we develop a new class of molecular tension probes that function as a switch to generate a 20- to 30-fold increase in fluorescence upon experiencing a threshold piconewton force. The probes employ immobilized DNA hairpins with tunable force response thresholds, ligands and fluorescence reporters. Quantitative imaging reveals that integrin tension is highly dynamic and increases with an increasing integrin density during adhesion formation. Mixtures of fluorophore-encoded probes show integrin mechanical preference for cyclized RGD over linear RGD peptides. Multiplexed probes with variable guanine-cytosine content within their hairpins reveal integrin preference for the more stable probes at the leading tip of growing adhesions near the cell edge. DNA-based tension probes are among the most sensitive optical force reporters to date, overcoming the force and spatial resolution limitations of traction force microscopy.

  1. Combination probes with intercalating anchors and proximal fluorophores for DNA and RNA detection.

    PubMed

    Qiu, Jieqiong; Wilson, Adam; El-Sagheer, Afaf H; Brown, Tom

    2016-09-30

    A new class of modified oligonucleotides (combination probes) has been designed and synthesised for use in genetic analysis and RNA detection. Their chemical structure combines an intercalating anchor with a reporter fluorophore on the same thymine nucleobase. The intercalator (thiazole orange or benzothiazole orange) provides an anchor, which upon hybridisation of the probe to its target becomes fluorescent and simultaneously stabilizes the duplex. The anchor is able to communicate via FRET to a proximal reporter dye (e.g. ROX, HEX, ATTO647N, FAM) whose fluorescence signal can be monitored on a range of analytical devices. Direct excitation of the reporter dye provides an alternative signalling mechanism. In both signalling modes, fluorescence in the unhybridised probe is switched off by collisional quenching between adjacent intercalator and reporter dyes. Single nucleotide polymorphisms in DNA and RNA targets are identified by differences in the duplex melting temperature, and the use of short hybridization probes, made possible by the stabilisation provided by the intercalator, enhances mismatch discrimination. Unlike other fluorogenic probe systems, placing the fluorophore and quencher on the same nucleobase facilitates the design of short probes containing multiple modifications. The ability to detect both DNA and RNA sequences suggests applications in cellular imaging and diagnostics. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Direct Observation of Translocation in Individual DNA Polymerase Complexes*

    PubMed Central

    Dahl, Joseph M.; Mai, Ai H.; Cherf, Gerald M.; Jetha, Nahid N.; Garalde, Daniel R.; Marziali, Andre; Akeson, Mark; Wang, Hongyun; Lieberman, Kate R.

    2012-01-01

    Complexes of phi29 DNA polymerase and DNA fluctuate on the millisecond time scale between two ionic current amplitude states when captured atop the α-hemolysin nanopore in an applied field. The lower amplitude state is stabilized by complementary dNTP and thus corresponds to complexes in the post-translocation state. We have demonstrated that in the upper amplitude state, the DNA is displaced by a distance of one nucleotide from the post-translocation state. We propose that the upper amplitude state corresponds to complexes in the pre-translocation state. Force exerted on the template strand biases the complexes toward the pre-translocation state. Based on the results of voltage and dNTP titrations, we concluded through mathematical modeling that complementary dNTP binds only to the post-translocation state, and we estimated the binding affinity. The equilibrium between the two states is influenced by active site-proximal DNA sequences. Consistent with the assignment of the upper amplitude state as the pre-translocation state, a DNA substrate that favors the pre-translocation state in complexes on the nanopore is a superior substrate in bulk phase for pyrophosphorolysis. There is also a correlation between DNA sequences that bias complexes toward the pre-translocation state and the rate of exonucleolysis in bulk phase, suggesting that during DNA synthesis the pathway for transfer of the primer strand from the polymerase to exonuclease active site initiates in the pre-translocation state. PMID:22378784

  3. Development of a biotinylated DNA probe for detection of infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Deering, R.E.; Arakawa, C.K.; Oshima, K.H.; O'Hara, P.J.; Landolt, M.L.; Winton, J.R.

    1991-01-01

    A nonrad~oact~ve DNA probe assay was developed to detect and ~dent~fy infect~ous hernatopoiet~c necrosls virus (IHNV) uslng a dot blot format The probe a synthet~c DNA oligonucleot~de labeled enzymatlcally w~th biotln hybnd~zed spec~f~cally w~th nucleocaps~d mRNA extracted from Infected cells early In the vlrus repl~cation cycle A rap~d guan~dln~um th~ocyanate based RNA extraction method uslng RNAzol B and rn~crocentrifuge tubes eff~c~ently pioduced h~gh qual~ty RNA from 3 commonly used f~sh cell llnes, CHSE-214, CHH-1, and EPC The probe reacted with 6 d~verse ~solates of IHNV, but d~d not react \

  4. DNA probes for monitoring dynamic and transient molecular encounters on live cell membranes

    NASA Astrophysics Data System (ADS)

    You, Mingxu; Lyu, Yifan; Han, Da; Qiu, Liping; Liu, Qiaoling; Chen, Tao; Sam Wu, Cuichen; Peng, Lu; Zhang, Liqin; Bao, Gang; Tan, Weihong

    2017-05-01

    Cells interact with the extracellular environment through molecules expressed on the membrane. Disruption of these membrane-bound interactions (or encounters) can result in disease progression. Advances in super-resolution microscopy have allowed membrane encounters to be examined, however, these methods cannot image entire membranes and cannot provide information on the dynamic interactions between membrane-bound molecules. Here, we show a novel DNA probe that can transduce transient membrane encounter events into readable cumulative fluorescence signals. The probe, which translocates from one anchor site to another, mimicking motor proteins, is realized through a toehold-mediated DNA strand displacement reaction. Using this probe, we successfully monitored rapid encounter events of membrane lipid domains using flow cytometry and fluorescence microscopy. Our results show a preference for encounters within the same lipid domains.

  5. Mapped DNA probes from Ioblolly pine can be used for restriction fragment length polymorphism mapping in other conifers

    Treesearch

    M.R. Ahuja; M.E. Devey; A.T. Groover; K.D. Jermstad; D.B Neale

    1994-01-01

    A high-density genetic map based on restriction fragment length polymorphisms (RFLPs) is being constructed for loblolly pine (Pinus taeda L.). Consequently, a large number of DNA probes from loblolly pine are potentially available for use in other species. We have used some of these DNA probes to detect RFLPs in 12 conifers and an angiosperm....

  6. Bulged Invader probes: activated duplexes for mixed-sequence dsDNA recognition with improved thermodynamic and kinetic profiles.

    PubMed

    Guenther, Dale C; Karmakar, Saswata; Hrdlicka, Patrick J

    2015-10-18

    Double-stranded oligonucleotides with +1 interstrand zipper arrangements of intercalator-functionalized nucleotides are energetically activated for recognition of mixed-sequence double-stranded DNA. Incorporation of nonyl (C9) bulges at specific positions of these probes, results in more highly affine (>5-fold), faster (>4-fold) and more persistent dsDNA recognition relative to conventional Invader probes.

  7. Cyanines as new fluorescent probes for DNA detection and two-photon excited bioimaging.

    PubMed

    Feng, Xin Jiang; Wu, Po Lam; Bolze, Frédéric; Leung, Heidi W C; Li, King Fai; Mak, Nai Ki; Kwong, Daniel W J; Nicoud, Jean-François; Cheah, Kok Wai; Wong, Man Shing

    2010-05-21

    A series of cyanine fluorophores based on fused aromatics as an electron donor for DNA sensing and two-photon bioimaging were synthesized, among which the carbazole-based biscyanine exhibits high sensitivity and efficiency as a fluorescent light-up probe for dsDNA, which shows selective binding toward the AT-rich regions. The synergetic effect of the bischromophoric skeleton gives a several-fold enhancement in a two-photon absorption cross-section as well as a 25- to 100-fold enhancement in two-photon excited fluorescence upon dsDNA binding.

  8. Target-assembled ExciProbes: application to DNA detection at the level of PCR product and plasmid DNA.

    PubMed

    Walsh, Lindsey; Gbaj, Abdul; Savage, Hannah E; Bacigalupo, M Candelaria Rogert; Bichenkova, Elena V; Douglas, Kenneth T

    2007-12-01

    Recently, we introduced a novel exciplex-based approach for detection of nucleic acids using a model DNA-mounted exciplex system, consisting of two 8-mer ExciProbes hybridized to a complementary 16-mer DNA target. We now show, for the first time, that this approach can be used to detect DNA at the level of PCR product and plasmid, when the target sequence (5'-GCCAAACACAGAATCG-3') was embedded in long DNA molecules (PCR products and approximately 3 Kbp plasmid). A remarkably stringent demand is made of the solvent conditions for this exciplex emission to occur, viz., emission is optimal for DNA at 80% trifluoroethanol, even in the plasmid situations, raising the question of the molecular structural basis of this system. We show that a perfectly matched plasmid target can be differentiated from target containing single nucleotide substitutions; hence, ExciProbes could be applied to SNP analysis. The effect of counter cations (Na(+), K(+), and Mg(2+)) and PCR additives on exciplex emission has been also examined.

  9. DNA probe attachment on plastic surfaces and microfluidic hybridization array channel devices with sample oscillation.

    PubMed

    Liu, Yingjie; Rauch, Cory B

    2003-06-01

    DNA probe immobilization on plastic surfaces and device assembly are both critical to the fabrication of microfluidic hybridization array channel (MHAC) devices. Three oligonucleotide (oligo) probe immobilization procedures were investigated for attaching oligo probes on four different types of plastic surfaces (polystyrene, polycarbonate, poly(methylmethacrylate), and polypropylene). These procedures are the Surmodics procedure, the cetyltrimethylammonium bromide (CTAB) procedure, and the Reacti-Bind procedure. To determine the optimal plastic substrate and attachment chemistry for array fabrication, we investigated plastic hydrophobicity, intrinsic fluorescence, and oligo attachment efficiency. The Reacti-Bind procedure is least effective for attaching oligo probes in the microarray format. The CTAB procedure performs well enough to use in array fabrication, and the concentration of CTAB has a significant effect on oligo immobilization efficiency. We also found that use of amine-modified oligo probes resulted in better immobilization efficiency than use of unmodified oligos with the CTAB procedure. The oligo probe immobilization on plastic surfaces by the Surmodics procedure is the most effective with regard to probe spot quality and hybridization sensitivity. A DNA hybridization assay on such a device results in a limit of detection of 12pM. Utilizing a CO(2) IR laser machining and adhesive layer approach, we have developed an improved procedure for realizing a DNA microarray inside a microfluidic channel. This device fabrication procedure allows for more feasible spot placement in the channel and reduced sample adsorption by adhesive tapes used in the fabrication procedure. We also demonstrated improved hybridization kinetics and increased detection sensitivity in MHAC devices by implementing sample oscillation inside the channel. A limit of detection of 5pM has been achieved in MHAC devices with sample oscillation.

  10. DNase-activatable fluorescence probes visualizing the degradation of exogenous DNA in living cells

    NASA Astrophysics Data System (ADS)

    Gong, Ping; Shi, Bihua; Zhang, Pengfei; Hu, Dehong; Zheng, Mingbin; Zheng, Cuifang; Gao, Duyang; Cai, Lintao

    2012-03-01

    This work presents a method to visualize the degradation of exogenous DNA in living cells using a novel type of activatable fluorescence imaging probe. Deoxyribonuclease (DNase)-activatable fluorescence probes (DFProbes) are composed of double strands deoxyribonucleic acid (dsDNA) which is labeled with fluorophore (ROX or Cy3) and quencher on the end of one of its strands, and stained with SYBR Green I. In the absence of DNase, DFProbes produce the green fluorescence signal of SYBR Green I. In the presence of DNase, SYBR Green I is removed from the DFProbes and the labeled fluorophore is separated from the quencher owing to the degradation of DFProbes by DNase, resulting in the decrease of the green fluorescence signal and the occurrence of a red fluorescence signal due to fluorescence resonance energy transfer (FRET). DNase in biological samples was detected using DFProbes and the fluorescence imaging in living cells was performed using DFprobe-modified Au nanoparticles. The results show that DFProbes have good responses to DNase, and can clearly visualize the degradation of exogenous DNA in cells in real time. The well-designed probes might be useful in tracing the dynamic changes of exogenous DNA and nanocarriers in vitro and in vivo.This work presents a method to visualize the degradation of exogenous DNA in living cells using a novel type of activatable fluorescence imaging probe. Deoxyribonuclease (DNase)-activatable fluorescence probes (DFProbes) are composed of double strands deoxyribonucleic acid (dsDNA) which is labeled with fluorophore (ROX or Cy3) and quencher on the end of one of its strands, and stained with SYBR Green I. In the absence of DNase, DFProbes produce the green fluorescence signal of SYBR Green I. In the presence of DNase, SYBR Green I is removed from the DFProbes and the labeled fluorophore is separated from the quencher owing to the degradation of DFProbes by DNase, resulting in the decrease of the green fluorescence signal and the

  11. A universal design for a DNA probe providing ratiometric fluorescence detection by generation of silver nanoclusters

    NASA Astrophysics Data System (ADS)

    Del Bonis-O'Donnell, Jackson Travis; Vong, Daniel; Pennathur, Sumita; Fygenson, Deborah Kuchnir

    2016-07-01

    DNA-stabilized silver nanoclusters (AgNCs), the fluorescence emission of which can rival that of typical organic fluorophores, have made possible a new class of label-free molecular beacons for the detection of single-stranded DNA. Like fluorophore-quencher molecular beacons (FQ-MBs) AgNC-based molecular beacons (AgNC-MBs) are based on a single-stranded DNA that undergoes a conformational change upon binding a target sequence. The new conformation exposes a stretch of single-stranded DNA capable of hosting a fluorescent AgNC upon reduction in the presence of Ag+ ions. The utility of AgNC-MBs has been limited, however, because changing the target binding sequence unpredictably alters cluster fluorescence. Here we show that the original AgNC-MB design depends on bases in the target-binding (loop) domain to stabilize its AgNC. We then rationally alter the design to overcome this limitation. By separating and lengthening the AgNC-stabilizing domain, we create an AgNC-hairpin probe with consistent performance for arbitrary target sequence. This new design supports ratiometric fluorescence measurements of DNA target concentration, thereby providing a more sensitive, responsive and stable signal compared to turn-on AgNC probes. Using the new design, we demonstrate AgNC-MBs with nanomolar sensitivity and singe-nucleotide specificity, expanding the breadth of applicability of these cost-effective probes for biomolecular detection.DNA-stabilized silver nanoclusters (AgNCs), the fluorescence emission of which can rival that of typical organic fluorophores, have made possible a new class of label-free molecular beacons for the detection of single-stranded DNA. Like fluorophore-quencher molecular beacons (FQ-MBs) AgNC-based molecular beacons (AgNC-MBs) are based on a single-stranded DNA that undergoes a conformational change upon binding a target sequence. The new conformation exposes a stretch of single-stranded DNA capable of hosting a fluorescent AgNC upon reduction in the

  12. Structural analysis of DNA complexation with cationic lipids

    PubMed Central

    Marty, Regis; N'soukpoé-Kossi, Christophe N.; Charbonneau, David; Weinert, Carl Maximilian; Kreplak, Laurent; Tajmir-Riahi, Heidar-Ali

    2009-01-01

    Complexes of cationic liposomes with DNA are promising tools to deliver genetic information into cells for gene therapy and vaccines. Electrostatic interaction is thought to be the major force in lipid–DNA interaction, while lipid-base binding and the stability of cationic lipid–DNA complexes have been the subject of more debate in recent years. The aim of this study was to examine the complexation of calf-thymus DNA with cholesterol (Chol), 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), dioctadecyldimethylammoniumbromide (DDAB) and dioleoylphosphatidylethanolamine (DOPE), at physiological condition, using constant DNA concentration and various lipid contents. Fourier transform infrared (FTIR), UV-visible, circular dichroism spectroscopic methods and atomic force microscopy were used to analyse lipid-binding site, the binding constant and the effects of lipid interaction on DNA stability and conformation. Structural analysis showed a strong lipid–DNA interaction via major and minor grooves and the backbone phosphate group with overall binding constants of KChol = 1.4 (±0.5) × 104 M−1, KDDAB = 2.4 (±0.80) × 104 M−1, KDOTAP = 3.1 (±0.90) × 104 M−1 and KDOPE = 1.45 (± 0.60) × 104 M−1. The order of stability of lipid–DNA complexation is DOTAP>DDAB>DOPE>Chol. Hydrophobic interactions between lipid aliphatic tails and DNA were observed. Chol and DOPE induced a partial B to A-DNA conformational transition, while a partial B to C-DNA alteration occurred for DDAB and DOTAP at high lipid concentrations. DNA aggregation was observed at high lipid content. PMID:19103664

  13. Tetrahedral DNA probe coupling with hybridization chain reaction for competitive thrombin aptasensor.

    PubMed

    Chen, Ying-Xu; Huang, Ke-Jing; He, Liu-Liu; Wang, Yi-Han

    2017-09-15

    A novel competitive aptasensor for thrombin detection is developed by using a tetrahedral DNA (T-DNA) probe and hybridization chain reaction (HCR) signal amplification. Sulfur and nitrogen co-doped reduced graphene oxide (SN-rGO) is firstly prepared by a simple reflux method and used for supporting substrate of biosensor. Then, T-DNA probe is modified on the electrode by Au-S bond and a competition is happened between target thrombin and the complementary DNA (cDNA) of aptamer. The aptamer binding to thrombin forms an aptamer-target conjugate and make the cDNA remained, and subsequently hybridizes with the vertical domain of T-DNA. Finally, the cDNAs trigger HCR, which results in a great current response by the catalysis of horseradish peroxidase to the hydrogen peroxide + hydroquinone system. For thrombin detection, the proposed biosensor shows a wide linearity range of 10(-13)-10(-8)M and a low detection limit of 11.6fM (S/N = 3), which is hopeful to apply in biotechnology and clinical diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Probing Y-shaped DNA structure with time-resolved FRET

    NASA Astrophysics Data System (ADS)

    Chatterjee, Subhasish; Lee, Jong Bum; Valappil, Nikesh V.; Luo, Dan; Menon, Vinod M.

    2012-02-01

    Self-assembly based on nucleic acid systems has become highly attractive for bottom-up fabrication of programmable matter due to the highly selective molecular recognition property of biomolecules. In this context, Y-shaped DNA (Y-DNA) provides an effective building block for forming unique self-assembled large-scale architectures. The dimension and growth of the nano- and microstructures depend significantly on the configurational stability of Y-DNA as a building block. Here we present structural studies of Y-DNA systems using a time-resolved FRET (Förster resonance energy transfer) technique. A fluorophore (Alexa 488) and an acceptor (DABCYL) were placed at two different ends of Y-DNA, and the lifetime of the fluorophore was measured to probe the relative distance between the donor and acceptor. Our results confirmed different distances between the arms of the Y-DNA and highlighted the overall structural integrity of the Y-DNA system as a leading building block for molecular self-assembly. Temperature dependent lifetime measurements indicated configurational changes in the overall Y-DNA nanoarchitecture above 40 °C.Self-assembly based on nucleic acid systems has become highly attractive for bottom-up fabrication of programmable matter due to the highly selective molecular recognition property of biomolecules. In this context, Y-shaped DNA (Y-DNA) provides an effective building block for forming unique self-assembled large-scale architectures. The dimension and growth of the nano- and microstructures depend significantly on the configurational stability of Y-DNA as a building block. Here we present structural studies of Y-DNA systems using a time-resolved FRET (Förster resonance energy transfer) technique. A fluorophore (Alexa 488) and an acceptor (DABCYL) were placed at two different ends of Y-DNA, and the lifetime of the fluorophore was measured to probe the relative distance between the donor and acceptor. Our results confirmed different distances between

  15. A universal design for a DNA probe providing ratiometric fluorescence detection by generation of silver nanoclusters.

    PubMed

    Del Bonis-O'Donnell, Jackson Travis; Vong, Daniel; Pennathur, Sumita; Fygenson, Deborah Kuchnir

    2016-08-14

    DNA-stabilized silver nanoclusters (AgNCs), the fluorescence emission of which can rival that of typical organic fluorophores, have made possible a new class of label-free molecular beacons for the detection of single-stranded DNA. Like fluorophore-quencher molecular beacons (FQ-MBs) AgNC-based molecular beacons (AgNC-MBs) are based on a single-stranded DNA that undergoes a conformational change upon binding a target sequence. The new conformation exposes a stretch of single-stranded DNA capable of hosting a fluorescent AgNC upon reduction in the presence of Ag(+) ions. The utility of AgNC-MBs has been limited, however, because changing the target binding sequence unpredictably alters cluster fluorescence. Here we show that the original AgNC-MB design depends on bases in the target-binding (loop) domain to stabilize its AgNC. We then rationally alter the design to overcome this limitation. By separating and lengthening the AgNC-stabilizing domain, we create an AgNC-hairpin probe with consistent performance for arbitrary target sequence. This new design supports ratiometric fluorescence measurements of DNA target concentration, thereby providing a more sensitive, responsive and stable signal compared to turn-on AgNC probes. Using the new design, we demonstrate AgNC-MBs with nanomolar sensitivity and singe-nucleotide specificity, expanding the breadth of applicability of these cost-effective probes for biomolecular detection.

  16. Electrochemical impedance probing of DNA hybridisation on oligonucleotide-functionalised polypyrrole.

    PubMed

    Tlili, Chaker; Korri-Youssoufi, Hafsa; Ponsonnet, Laurence; Martelet, Claude; Jaffrezic-Renault, Nicole J

    2005-11-15

    We report a new approach for detecting DNA hybridisation using non faradaic electrochemical impedance spectroscopy. The technique was applied to a system of DNA probes bearing amine groups that are immobilized by covalent grafting on a supporting polypyrrole matrix functionalised with activated ester groups. The kinetics of the attachment of the ss-DNA probe was monitored using the temporal evolution of the open circuit potential (OCP). This measurement allows the determination of the time necessary for the chemical reaction of ss-DNA probe into the polypyrrole backbone. The hybridisation reactions with the DNA complementary target and non complementary target were investigated by non faradaic electrochemical impedance spectroscopy. Results show a significant modification in the Nyquist plot upon addition of the complementary target whereas, in presence of the non complementary target, the Nyquist plot is not modified. The spectra, in the form of Nyquist plot, were analysed with the Randles circuit. The transfer charge resistance R(2) shows a linear variation versus the complementary target concentration. Sensitivity and detection limit (0.2nM) were determined and detection limit was lower of one order of magnitude than that obtained with the same system and measuring variation of the oxidation current at constant potential.

  17. A specific DNA probe for detecting Mycoplasma hyopneumoniae in experimentally infected piglets.

    PubMed

    Abiven, P; Blanchard, B; Saillard, C; Kobisch, M; Bove, J M

    1992-10-01

    Mycoplasma hyopneumoniae is the primary agent of swine enzootic pneumonia. Because of fastidious growth requirements and its serological cross-reactions with other porcine mycoplasmas, we developed a specific DNA probe for its detection. A partial genomic library of M. hyopneumoniae was constructed in plasmid pBR 322 using Hind III chromosomal fragments. The recombinant plasmids were screened by differential hybridization with M. flocculare and M. hyorhinis genomic DNA probes. One non-hybridizing recombinant plasmid was selected and its 1.65 kbp insert (designated I141) tested for specificity against genomic DNA from numerous mycoplasmas, other bacteria species and DNA from lung tissue of specific pathogen free (SPF) piglets. The 32P labelled I141 could detect specifically down to 400 pg of M. hyopneumoniae genomic DNA. To test the suitability of the I141 probe for the laboratory diagnosis of M. hyopneumoniae infections, we used clinical tracheobronchial specimens from piglets which were experimentally infected with M. hyopneumoniae. The results with hybridization on each specimen were compared to findings with an immunofluorescence test. Of the clinical specimen tested, there was agreement in the two tests of 63%.

  18. Derivation of DNA probes for enumeration of a specific strain of Lactobacillus acidophilus in piglet digestive tract samples.

    PubMed Central

    Rodtong, S; Dobbinson, S; Thode-Andersen, S; McConnell, M A; Tannock, G W

    1993-01-01

    Four DNA probes were derived that hybridized specifically to DNA from Lactobacillus acidophilus O. The probes were constructed by randomly cloning lactobacillus DNA in plasmid vector pBR322. Two of the probes (pSR1 and pSR2) were composed of vector and plasmid DNA inserts (3.6 and 1.6 kb, respectively); the others (pSR3 and pSR4) were composed of vector and chromosomally derived inserts (6.9 and 1.4 kb, respectively). The probes were used to enumerate, by colony hybridization, strain O in digestive tract samples collected from piglets inoculated 24 hours previously with a culture of the strain. The probes did not hybridize to DNA from lactobacilli inhabiting the digestive tract of uninoculated piglets. Strain O made up about 10% of the total lactobacillus population of the pars esophagea and about 20% of the population in other digestive tract samples. Images PMID:8285690

  19. Molecular detection of bacterial pathogens using microparticle enhanced double-stranded DNA probes.

    PubMed

    Riahi, Reza; Mach, Kathleen E; Mohan, Ruchika; Liao, Joseph C; Wong, Pak Kin

    2011-08-15

    Rapid, specific, and sensitive detection of bacterial pathogens is essential toward clinical management of infectious diseases. Traditional approaches for pathogen detection, however, often require time-intensive bacterial culture and amplification procedures. Herein, a microparticle enhanced double-stranded DNA probe is demonstrated for rapid species-specific detection of bacterial 16S rRNA. In this molecular assay, the binding of the target sequence to the fluorophore conjugated probe thermodynamically displaces the quencher probe and allows the fluorophore to fluoresce. By incorporation of streptavidin-coated microparticles to localize the biotinylated probes, the sensitivity of the assay can be improved by 3 orders of magnitude. The limit of detection of the assay is as few as eight bacteria without target amplification and is highly specific against other common pathogens. Its applicability toward clinical diagnostics is demonstrated by directly identifying bacterial pathogens in urine samples from patients with urinary tract infections.

  20. The RuvAB branch migration complex can displace topoisomerase IV.quinolone.DNA ternary complexes.

    PubMed

    Shea, Molly E; Hiasa, Hiroshi

    2003-11-28

    Quinolone antimicrobial drugs target both DNA gyrase and topoisomerase IV (Topo IV) and convert these essential enzymes into cellular poisons. Topoisomerase poisoning results in the inhibition of DNA replication and the generation of double-strand breaks. Double-strand breaks are repaired by homologous recombination. Here, we have investigated the interaction between the RuvAB branch migration complex and the Topo IV.quinolone.DNA ternary complex. A strand-displacement assay is employed to assess the helicase activity of the RuvAB complex in vitro. RuvAB-catalyzed strand displacement requires both RuvA and RuvB proteins, and it is stimulated by a 3'-non-hybridized tail. Interestingly, Topo IV.quinolone.DNA ternary complexes do not inhibit the translocation of the RuvAB complex. In fact, Topo IV.quinolone.DNA ternary complexes are reversed and displaced from the DNA upon their collisions with the RuvAB complex. These results suggest that the RuvAB branch migration complex can actively remove quinolone-induced covalent topoisomerase.DNA complexes from DNA and complete the homologous recombination process in vivo.

  1. Molecular dynamics simulations of DNA-polycation complexes

    NASA Astrophysics Data System (ADS)

    Ziebarth, Jesse; Wang, Yongmei

    2008-03-01

    A necessary step in the preparation of DNA for use in gene therapy is the packaging of DNA with a vector that can condense DNA and provide protection from degrading enzymes. Because of the immunoresponses caused by viral vectors, there has been interest in developing synthetic gene therapy vectors, with polycations emerging as promising candidates. Molecular dynamics simulations of the DNA duplex CGCGAATTCGCG in the presence of 20 monomer long sequences of the polycations, poly-L-lysine (PLL) and polyethyleneimine (PEI), with explicit counterions and TIP3P water, are performed to provide insight into the structure and formation of DNA polyplexes. After an initial separation of approximately 50 å, the DNA and polycation come together and form a stable complex within 10 ns. The DNA does not undergo any major structural changes upon complexation and remains in the B-form. In the formed complex, the charged amine groups of the polycation mainly interact with DNA phosphate groups, and rarely occupy electronegative sites in either the major or minor grooves. Differences between complexation with PEI and PLL will be discussed.

  2. Segrosome Complex Formation during DNA Trafficking in Bacterial Cell Division.

    PubMed

    Oliva, María A

    2016-01-01

    Bacterial extrachromosomal DNAs often contribute to virulence in pathogenic organisms or facilitate adaptation to particular environments. The transmission of genetic information from one generation to the next requires sufficient partitioning of DNA molecules to ensure that at least one copy reaches each side of the division plane and is inherited by the daughter cells. Segregation of the bacterial chromosome occurs during or after replication and probably involves a strategy in which several protein complexes participate to modify the folding pattern and distribution first of the origin domain and then of the rest of the chromosome. Low-copy number plasmids rely on specialized partitioning systems, which in some cases use a mechanism that show striking similarity to eukaryotic DNA segregation. Overall, there have been multiple systems implicated in the dynamic transport of DNA cargo to a new cellular position during the cell cycle but most seem to share a common initial DNA partitioning step, involving the formation of a nucleoprotein complex called the segrosome. The particular features and complex topologies of individual segrosomes depend on both the nature of the DNA binding protein involved and on the recognized centromeric DNA sequence, both of which vary across systems. The combination of in vivo and in vitro approaches, with structural biology has significantly furthered our understanding of the mechanisms underlying DNA trafficking in bacteria. Here, I discuss recent advances and the molecular details of the DNA segregation machinery, focusing on the formation of the segrosome complex.

  3. Complexation Between Cationic Diblock Copolymers and Plasmid DNA

    NASA Astrophysics Data System (ADS)

    Jung, Seyoung; Reineke, Theresa; Lodge, Timothy

    Deoxyribonucleic acids (DNA), as polyanions, can spontaneously bind with polycations to form polyelectrolyte complexes. When the polycation is a diblock copolymer with one cationic block and one uncharged hydrophilic block, the polyelectrolyte complexes formed with plasmid DNA (pDNA) are often colloidally stable, and show great promise in the field of polymeric gene therapy. While the resulting properties (size, stability, and toxicity to biological systems) of the complexes have been studied for numerous cationic diblocks, the fundamentals of the pDNA-diblock binding process have not been extensively investigated. Herein, we report how the cationic block content of a diblock influences the pDNA-diblock interactions. pDNA with 7164 base pairs and poly(2-deoxy-2-methacrylamido glucopyranose)-block-poly(N-(2-aminoethyl) methacrylamide) (PMAG-b-PAEMA) are used as the model pDNA and cationic diblock, respectively. To vary the cationic block content, two PMAG-b-PAEMA copolymers with similar PMAG block lengths but distinct PAEMA block lengths and a PAEMA homopolymer are utilized. We show that the enthalpy change from pDNA-diblock interactions is dependent on the cationic diblock composition, and is closely associated with both the binding strength and the pDNA tertiary structure.

  4. Using Metal Complex Reduced States to Monitor the Oxidation of DNA

    PubMed Central

    Olmon, Eric D.; Hill, Michael G.; Barton, Jacqueline K.

    2011-01-01

    Metallointercalating photooxidants interact intimately with the base stack of double-stranded DNA and exhibit rich photophysical and electrochemical properties, making them ideal probes for the study of DNA-mediated charge transport (CT). The complexes [Rh(phi)2(bpy′)]3+ (phi = 9,10-phenanthrenequinone diimine; bpy′ = 4-methyl-4′-(butyric acid)-2,2′-bipyridine), [Ir(ppy)2(dppz′)]+ (ppy = 2-phenylpyridine; dppz′ = 6-(dipyrido[3,2-a:2′,3′-c]phenazin-11-yl)hex-5-ynoic acid), and [Re(CO)3(dppz)(py′)]+ (dppz = dipyrido[2,3-a:2′,3′-c]phenazine; py′ = 3-(pyridin-4-yl)-propanoic acid) were each covalently tethered to DNA in order to compare their photooxidation efficiencies. Biochemical studies show that upon irradiation, the three complexes oxidize guanine by long-range DNA-mediated CT with the efficiency: Rh > Re > Ir. Comparison of spectra obtained by spectroelectrochemistry after bulk reduction of the free metal complexes with those obtained by transient absorption (TA) spectroscopy of the conjugates suggests that the reduced metal states form following excitation of the conjugates at 355 nm. Electrochemical experiments and kinetic analysis of the TA decays indicate that the thermodynamic driving force for CT, variations in the efficiency of back electron transfer, and coupling to DNA are the primary factors responsible for the trend observed in the guanine oxidation yield of the three complexes. PMID:22043853

  5. Polyamide platinum anticancer complexes designed to target specific DNA sequences.

    PubMed

    Jaramillo, David; Wheate, Nial J; Ralph, Stephen F; Howard, Warren A; Tor, Yitzhak; Aldrich-Wright, Janice R

    2006-07-24

    Two new platinum complexes, trans-chlorodiammine[N-(2-aminoethyl)-4-[4-(N-methylimidazole-2-carboxamido)-N-methylpyrrole-2-carboxamido]-N-methylpyrrole-2-carboxamide]platinum(II) chloride (DJ1953-2) and trans-chlorodiammine[N-(6-aminohexyl)-4-[4-(N-methylimidazole-2-carboxamido)-N-methylpyrrole-2-carboxamido]-N-methylpyrrole-2-carboxamide]platinum(II) chloride (DJ1953-6) have been synthesized as proof-of-concept molecules in the design of agents that can specifically target genes in DNA. Coordinate covalent binding to DNA was demonstrated with electrospray ionization mass spectrometry. Using circular dichroism, these complexes were found to show greater DNA binding affinity to the target sequence: d(CATTGTCAGAC)(2), than toward either d(GTCTGTCAATG)(2,) which contains different flanking sequences, or d(CATTGAGAGAC)(2), which contains a double base pair mismatch sequence. DJ1953-2 unwinds the DNA helix by around 13 degrees , but neither metal complex significantly affects the DNA melting temperature. Unlike simple DNA minor groove binders, DJ1953-2 is able to inhibit, in vitro, RNA synthesis. The cytotoxicity of both metal complexes in the L1210 murine leukaemia cell line was also determined, with DJ1953-6 (34 microM) more active than DJ1953-2 (>50 microM). These results demonstrate the potential of polyamide platinum complexes and provide the structural basis for designer agents that are able to recognize biologically relevant sequences and prevent DNA transcription and replication.

  6. A reliable method for detecting complexed DNA in vitro.

    PubMed

    Holladay, C; Keeney, M; Newland, B; Mathew, A; Wang, W; Pandit, A

    2010-12-01

    Quantification of eluted nucleic acids is a critical parameter in characterizing biomaterial based gene-delivery systems. The most commonly used method is to assay samples with an intercalating fluorescent dye such as PicoGreen®. However, this technique was developed for unbound DNA and the current trend in gene delivery is to condense DNA with transfection reagents, which interfere with intercalation. Here, for the first time, the DNA was permanently labeled with the fluorescent dye Cy5 prior to complexation, an alternative technique hypothesized to allow quantification of both bound and unbound DNA. A comparison of the two methods was performed by quantifying the elution of six different varieties of DNA complexes from a model biomaterial (collagen) scaffold. After seven days of elution, the PicoGreen® assay only allowed detection of three types of complexes (those formed using Lipofectin™ and two synthesised copolymers). However, the Cy5 fluorescent labeling technique enabled detection of all six varieties including those formed via common transfection agents poly(ethylene imine), poly-L-lysine and SuperFect™. This allowed reliable quantification of the elution of all these complexes from the collagen scaffold. Thus, while intercalating dyes may be effective and reliable for detecting double-stranded, unbound DNA, the technique described in this work allowed reliable quantification of DNA independent of complexation state.

  7. Demand for DNA probe testing in three genetic centres in Britain (August 1986 to July 1987).

    PubMed Central

    Rona, R J; Swan, A V; Beech, R; Prentice, L; Reynolds, A; Wilson, O; Mole, G; Vadera, P

    1989-01-01

    We report a preliminary analysis of the data collected during the first year of the evaluation of clinical genetics in the context of DNA probes in three genetic centres, to show the pattern of the demand for genetic services in the three centres and the services used in meeting that demand. The analysis includes information on 10,185 persons from 2852 families. The results are presented according to mode of inheritance and according to the most common disorders for which DNA probes have been used in the three centres. The results indicate that the use of DNA probes is now a major element of activity in genetic departments, and that as long as indirect DNA probe testing is the predominant manner of using recombinant technology, the clinical input will be an important element of the costs, probably more so than that of the DNA laboratories, as a large number of family members needs to be tested. In most cases centres have concentrated activity on DNA testing for common and severe genetic disorders. However, there are disorders, such as familial hypercholesterolaemia, which have not been part of the established pattern of services. Conversely, a relatively high number of families have been studied for some disorders of very low incidence. This suggests that the number of DNA laboratories should be limited. The precise arrangements will need to be established. With such services the distribution of DNA testing facilities for different disorders can be controlled to limit duplication. The model followed in Scotland based on collaboration between centres is worth considering. We have detected very large differences in take up rate of services within and between regions. Although many factors may contribute to these differences, ease of access and lay and professional awareness are probably the most important. This is supported by the fact that more patients from the same or neighbouring DHAs attend the genetic centre than from those further away. We also concluded that

  8. Design and evaluation of Bacteroides DNA probes for the specific detection of human fecal pollution

    SciTech Connect

    Kreader, C.A.

    1995-04-01

    Because Bacteroides spp. are obligate anaerobes that dominate the human fecal flora, and because some species may live only in the human intestine, these bacteria might be useful to distinguish human from nonhuman sources of fecal pollution. To test this hypothesis, PCR primers specific for 16S rRNA gene sequences of Bacteroides distasonis, B. thetaiotaomicron, and B. vulgatus were designed. Hybridization with species-specific internal probes was used to detect the intended PCR products. Extracts from 66 known Bacteroides strains, representing 10 related species, were used to confirm the specificity of these PCR-hybridization assays. To test for specificity in feces, procedures were developed to prepare DNA of sufficient purity for PCR. Extracts of feces from 9 humans and 70 nonhumans (cats, dogs, cattle, hogs, horses, sheep, goats, and chickens) were each analyzed with and without an internal positive control to verify that PCR amplification was not inhibited by substances in the extract. In addition, serial dilutions from each extract that tested positive were assayed to estimate the relative abundance of target Bacteroides spp. in the sample. Depending on the primer-probe set used, either 78 or 67% of the human fecal extracts tested had high levels of target DNA. On the other hand, only 7 to 11% of the nonhuman extracts tested had similarly high levels of target DNA. An additional 12 to 20% of the nonhuman extracts had levels of target DNA that were 100- to 1,000-fold lower than those found in humans. Although the B. vulgatus probes detected high levels of their target DNA in most of the house pets, similarly high levels of target DNA were found only in a few individuals from other groups of nonhumans. Therefore, the results indicate that these probes can distinguish human from non human feces in many cases. 50 refs., 5 figs., 2 tabs.

  9. Differential diagnosis of Taenia saginata and Taenia solium infections: from DNA probes to polymerase chain reaction.

    PubMed

    González, Luis Miguel; Montero, Estrella; Sciutto, Edda; Harrison, Leslie J S; Parkhouse, R Michael E; Garate, Teresa

    2002-04-01

    The objective of this work was the rapid and easy differential diagnosis of Taenia saginata and T. solium. First, a T. saginata size-selected genomic deoxyribonucleic acid (gDNA) library was constructed in the vector lambda gt10 using the 2-4 kb fraction from the parasite DNA digested with EcoR1, under 'star' conditions. After differential screening of the library and hybridization analysis with DNA from T. saginata, T. solium, T. taeniaeformis, T. crassiceps, and Echinococcus granulosus (bovine, porcine, and human), 2 recombinant phages were selected. They were designated HDP1 and HDP2. HDP1 reacted specifically with T. saginata DNA, and HDP2 recognized DNA from both T. saginata and T. solium. The 2 DNA probes were then sequenced and further characterized. HDP1 was a repetitive sequence with a 53 bp monomeric unit repeated 24 times in direct tandem along the 1272 bp fragment, while the 3954 bp HDP2 was not a repetitive sequence. Using the sequencing data, oligonucleotides were designed and used in a polymerase chain reaction (PCR). The 2 selected oligonucleotides from probe HDP1 (PTs4F1 and PTs4R1) specifically amplified gDNA from T. saginata, but not T. solium or other related cestodes, with a sensitivity of < 10 pg of T. saginata gDNA, about the quantity of DNA in one taeniid egg. The 3 oligonucleotides selected from the HDP2 sequence (PTs7S35F1, PTs7S35F2, and PTs7S35R1) allowed the differential amplification of gDNA from T. saginata, T. solium and E. granulosus in a multiplex PCR, again with a sensitivity of < 10 pg. These diagnostic tools have immediate application in the differential diagnosis of T. solium and T. saginata in humans and in the diagnosis of dubious cysts in the slaughterhouse. We also hope to apply them to epidemiological surveys of, for example, soil and water in endemic areas.

  10. Probing the kinetic landscape of Hox transcription factor-DNA binding in live cells by massively parallel Fluorescence Correlation Spectroscopy.

    PubMed

    Papadopoulos, Dimitrios K; Krmpot, Aleksandar J; Nikolić, Stanko N; Krautz, Robert; Terenius, Lars; Tomancak, Pavel; Rigler, Rudolf; Gehring, Walter J; Vukojević, Vladana

    2015-11-01

    Hox genes encode transcription factors that control the formation of body structures, segment-specifically along the anterior-posterior axis of metazoans. Hox transcription factors bind nuclear DNA pervasively and regulate a plethora of target genes, deploying various molecular mechanisms that depend on the developmental and cellular context. To analyze quantitatively the dynamics of their DNA-binding behavior we have used confocal laser scanning microscopy (CLSM), single-point fluorescence correlation spectroscopy (FCS), fluorescence cross-correlation spectroscopy (FCCS) and bimolecular fluorescence complementation (BiFC). We show that the Hox transcription factor Sex combs reduced (Scr) forms dimers that strongly associate with its specific fork head binding site (fkh250) in live salivary gland cell nuclei. In contrast, dimers of a constitutively inactive, phospho-mimicking variant of Scr show weak, non-specific DNA-binding. Our studies reveal that nuclear dynamics of Scr is complex, exhibiting a changing landscape of interactions that is difficult to characterize by probing one point at a time. Therefore, we also provide mechanistic evidence using massively parallel FCS (mpFCS). We found that Scr dimers are predominantly formed on the DNA and are equally abundant at the chromosomes and an introduced multimeric fkh250 binding-site, indicating different mobilities, presumably reflecting transient binding with different affinities on the DNA. Our proof-of-principle results emphasize the advantages of mpFCS for quantitative characterization of fast dynamic processes in live cells.

  11. A chromatin remodelling complex involved in transcription and DNA processing.

    PubMed

    Shen, X; Mizuguchi, G; Hamiche, A; Wu, C

    2000-08-03

    The packaging of the eukaryotic genome in chromatin presents barriers that restrict the access of enzymes that process DNA. To overcome these barriers, cells possess a number of multi-protein, ATP-dependent chromatin remodelling complexes, each containing an ATPase subunit from the SNF2/SWI2 superfamily. Chromatin remodelling complexes function by increasing nucleosome mobility and are clearly implicated in transcription. Here we have analysed SNF2/SWI2- and ISWI-related proteins to identify remodelling complexes that potentially assist other DNA transactions. We purified a complex from Saccharomyces cerevisiae that contains the Ino80 ATPase. The INO80 complex contains about 12 polypeptides including two proteins related to the bacterial RuvB DNA helicase, which catalyses branch migration of Holliday junctions. The purified complex remodels chromatin, facilitates transcription in vitro and displays 3' to 5' DNA helicase activity. Mutants of ino80 show hypersensitivity to agents that cause DNA damage, in addition to defects in transcription. These results indicate that chromatin remodelling driven by the Ino80 ATPase may be connected to transcription as well as DNA damage repair.

  12. T-antigen-DNA polymerase alpha complex implicated in simian virus 40 DNA replication.

    PubMed Central

    Smale, S T; Tjian, R

    1986-01-01

    We have combined in vitro DNA replication reactions and immunological techniques to analyze biochemical interactions between simian virus (SV40) large T antigen and components of the cellular replication apparatus. First, in vitro SV40 DNA replication was characterized with specific origin mutants. Next, monoclonal antibodies were used to demonstrate that a specific domain of T antigen formed a complex with cellular DNA polymerase alpha. Several antibodies were identified that coprecipitated T antigen and DNA polymerase alpha, while others were found to selectively prevent this interaction and concomitantly inhibit DNA replication. DNA polymerase alpha also bound efficiently to a T-antigen affinity column, confirming the immunoprecipitation results and providing a useful method for purification of the complete protein complex. Taken together, these results suggest that the T-antigen-polymerase association may be a key step in the initiation of SV40 DNA replication. Images PMID:3025630

  13. Mechanism of replication machinery assembly as revealed by the DNA ligase-PCNA-DNA complex architecture.

    PubMed

    Mayanagi, Kouta; Kiyonari, Shinichi; Saito, Mihoko; Shirai, Tsuyoshi; Ishino, Yoshizumi; Morikawa, Kosuke

    2009-03-24

    The 3D structure of the ternary complex, consisting of DNA ligase, the proliferating cell nuclear antigen (PCNA) clamp, and DNA, was investigated by single-particle analysis. This report presents the structural view, where the crescent-shaped DNA ligase with 3 distinct domains surrounds the central DNA duplex, encircled by the closed PCNA ring, thus forming a double-layer structure with dual contacts between the 2 proteins. The relative orientations of the DNA ligase domains, which remarkably differ from those of the known crystal structures, suggest that a large domain rearrangement occurs upon ternary complex formation. A second contact was found between the PCNA ring and the middle adenylation domain of the DNA ligase. Notably, the map revealed a substantial DNA tilt from the PCNA ring axis. This structure allows us to propose a switching mechanism for the replication factors operating on the PCNA ring.

  14. Solution structure of the luzopeptin-DNA complex

    SciTech Connect

    Zhang, Xiaolu; Patel, D.J. )

    1991-04-23

    The luzopeptin-d(C-A-T-G) complex (1 drug/duplex) has been generated in aqueous solution and its structure characterized by a combined application of two-dimensional NMR experiments and molecular dynamics calculations. Once equivalent of luzopeptin binds to the self-complementary tetranucleotide duplex with the 2-fold symmetry of the antitumor agent and the DNA oligomer retained on complex formation. The authors have assigned the exchangeable and nonexchangeable proton resonances of luzopeptin and the d(C-A-T-G) duplex in the complex and identified the intermolecular proton-proton NOEs that define the alignment of the antitumor agent at its binding site in duplex DNA. The analysis was greatly aided by a large number of intermolecular NOEs involving exchangeable protons on both the luzopeptin and the DNA in the complex. The formation of cis peptide bonds for luzopeptin in the complex results in an increased separation of the long sides of the rectangular cyclic depsipeptide backbone and reorients in the glycine amide proton so that it can form an intermolecular hydrogen bond with the 2-carbonyl of T3 in the complex. This observation explains, in part, the requirement for Watson-Crick A{center dot}T pairs to be sandwiched between the quinolines at the bisintercalation site in the luzopeptin-DNA complex. The NMR studies on the luzopeptin-d(C-A-T-G) complex unequivocally establish that antitumor agents can undergo conformational transitions on complex formation with DNA, and it is the conformation of the drug in the complex that should serve as the starting point for drug design studies. The above structural details on the solution structure of the luzopeptin-DNA complex also explain the sequence selectivity of luzopeptin for bisintercalation at d(C-A){center dot}d(T-G) steps in the d(C-A-T-G) duplex in solution.

  15. Computational and analytical modeling of cationic lipid-DNA complexes.

    PubMed

    Farago, Oded; Grønbech-Jensen, Niels

    2007-05-01

    We present a theoretical study of the physical properties of cationic lipid-DNA (CL-DNA) complexes--a promising synthetically based nonviral carrier of DNA for gene therapy. The study is based on a coarse-grained molecular model, which is used in Monte Carlo simulations of mesoscopically large systems over timescales long enough to address experimental reality. In the present work, we focus on the statistical-mechanical behavior of lamellar complexes, which in Monte Carlo simulations self-assemble spontaneously from a disordered random initial state. We measure the DNA-interaxial spacing, d(DNA), and the local cationic area charge density, sigma(M), for a wide range of values of the parameter (c) representing the fraction of cationic lipids. For weakly charged complexes (low values of (c)), we find that d(DNA) has a linear dependence on (c)(-1), which is in excellent agreement with x-ray diffraction experimental data. We also observe, in qualitative agreement with previous Poisson-Boltzmann calculations of the system, large fluctuations in the local area charge density with a pronounced minimum of sigma(M) halfway between adjacent DNA molecules. For highly-charged complexes (large (c)), we find moderate charge density fluctuations and observe deviations from linear dependence of d(DNA) on (c)(-1). This last result, together with other findings such as the decrease in the effective stretching modulus of the complex and the increased rate at which pores are formed in the complex membranes, are indicative of the gradual loss of mechanical stability of the complex, which occurs when (c) becomes large. We suggest that this may be the origin of the recently observed enhanced transfection efficiency of lamellar CL-DNA complexes at high charge densities, because the completion of the transfection process requires the disassembly of the complex and the release of the DNA into the cytoplasm. Some of the structural properties of the system are also predicted by a continuum

  16. Thiophene antibacterials that allosterically stabilize DNA-cleavage complexes with DNA gyrase.

    PubMed

    Chan, Pan F; Germe, Thomas; Bax, Benjamin D; Huang, Jianzhong; Thalji, Reema K; Bacqué, Eric; Checchia, Anna; Chen, Dongzhao; Cui, Haifeng; Ding, Xiao; Ingraham, Karen; McCloskey, Lynn; Raha, Kaushik; Srikannathasan, Velupillai; Maxwell, Anthony; Stavenger, Robert A

    2017-05-30

    A paucity of novel acting antibacterials is in development to treat the rising threat of antimicrobial resistance, particularly in Gram-negative hospital pathogens, which has led to renewed efforts in antibiotic drug discovery. Fluoroquinolones are broad-spectrum antibacterials that target DNA gyrase by stabilizing DNA-cleavage complexes, but their clinical utility has been compromised by resistance. We have identified a class of antibacterial thiophenes that target DNA gyrase with a unique mechanism of action and have activity against a range of bacterial pathogens, including strains resistant to fluoroquinolones. Although fluoroquinolones stabilize double-stranded DNA breaks, the antibacterial thiophenes stabilize gyrase-mediated DNA-cleavage complexes in either one DNA strand or both DNA strands. X-ray crystallography of DNA gyrase-DNA complexes shows the compounds binding to a protein pocket between the winged helix domain and topoisomerase-primase domain, remote from the DNA. Mutations of conserved residues around this pocket affect activity of the thiophene inhibitors, consistent with allosteric inhibition of DNA gyrase. This druggable pocket provides potentially complementary opportunities for targeting bacterial topoisomerases for antibiotic development.

  17. Thiophene antibacterials that allosterically stabilize DNA-cleavage complexes with DNA gyrase

    PubMed Central

    Chan, Pan F.; Germe, Thomas; Bax, Benjamin D.; Huang, Jianzhong; Thalji, Reema K.; Bacqué, Eric; Checchia, Anna; Chen, Dongzhao; Cui, Haifeng; Ding, Xiao; Ingraham, Karen; McCloskey, Lynn; Raha, Kaushik; Srikannathasan, Velupillai; Maxwell, Anthony; Stavenger, Robert A.

    2017-01-01

    A paucity of novel acting antibacterials is in development to treat the rising threat of antimicrobial resistance, particularly in Gram-negative hospital pathogens, which has led to renewed efforts in antibiotic drug discovery. Fluoroquinolones are broad-spectrum antibacterials that target DNA gyrase by stabilizing DNA-cleavage complexes, but their clinical utility has been compromised by resistance. We have identified a class of antibacterial thiophenes that target DNA gyrase with a unique mechanism of action and have activity against a range of bacterial pathogens, including strains resistant to fluoroquinolones. Although fluoroquinolones stabilize double-stranded DNA breaks, the antibacterial thiophenes stabilize gyrase-mediated DNA-cleavage complexes in either one DNA strand or both DNA strands. X-ray crystallography of DNA gyrase–DNA complexes shows the compounds binding to a protein pocket between the winged helix domain and topoisomerase-primase domain, remote from the DNA. Mutations of conserved residues around this pocket affect activity of the thiophene inhibitors, consistent with allosteric inhibition of DNA gyrase. This druggable pocket provides potentially complementary opportunities for targeting bacterial topoisomerases for antibiotic development. PMID:28507124

  18. Real-time electrochemical detection of pathogen DNA using electrostatic interaction of a redox probe.

    PubMed

    Ahmed, Minhaz Uddin; Nahar, Sharifun; Safavieh, Mohammadali; Zourob, Mohammed

    2013-02-21

    Electrostatic redox probes interaction has been widely rendered for DNA quantification. We have established a proof-of-principle by using the ruthenium hexaamine molecule [Ru(NH(3))(6)](3+). We have applied this method for real-time electrochemical monitoring of a loop mediated isothermal amplification (LAMP) amplicon of target genes of Escherichia coli and Staphylococcus aureus by square wave voltammetry (SWV). Ruthenium hexaamine interaction with free DNAs in solution without being immobilized onto the biochip surface enabled us to discard the time-consuming overnight probe immobilization step in DNA quantification. We have measured the changes in the cathodic current signals using screen printed low-cost biochips both in the presence and the absence of LAMP amplicons of target DNAs in the solution-phase. By using this novel probe, we successfully carried out the real-time isothermal amplification and detection in less than 30 min for S. aureus and E. coli with a sensitivity up to 30 copies μL(-1) and 20 copies μL(-1), respectively. The cathode peak height of the current was related to the extent of amplicon formation and the amount of introduced template genomic DNA. Importantly, since laborious probe immobilization is not necessary at all, and both the in vitro amplification and real-time monitoring are performed in a single polypropylene tube using a single biochip, this novel approach could avoid all potential cross-contamination in the whole procedure.

  19. Quercetin-Iron Complex: Synthesis, Characterization, Antioxidant, DNA Binding, DNA Cleavage, and Antibacterial Activity Studies.

    PubMed

    Raza, Aun; Xu, Xiuquan; Xia, Li; Xia, Changkun; Tang, Jian; Ouyang, Zhen

    2016-11-01

    Quercetin-iron (II) complex was synthesized and characterized by elemental analysis, ultraviolet-visible spectrophotometry, fourier transform infrared spectroscopy, mass spectrometry, proton nuclear magnetic resonance spectroscopy, thermogravimetry and differential scanning calorimetry, scanning electron micrography and molar conductivity. The low molar conductivity value investigates the non-electrolyte nature of the complex. The elemental analysis and other physical and spectroscopic methods reveal the 1:2 stoichiometric ratio (metal:ligand) of the complex. Antioxidant study of the quercetin and its metal complex against 2, 2-di-phenyl-1-picryl hydrazyl radical showed that the complex has much more radical scavenging activity than free quercetin. The interaction of quercetin-iron (II) complex with DNA was determined using ultraviolet visible spectra, fluorescence spectra and agarose gel electrophoresis. The results showed that quercetin-iron (II) complex can intercalate moderately with DNA, quench a strong intercalator ethidium bromide and compete for the intercalative binding sites. The complex showed significant cleavage of pBR 322 DNA from supercoiled form to nicked circular form and these cleavage effects were dose-dependent. Moreover, the mechanism of DNA cleavage indicated that it was an oxidative cleavage pathway. These results revealed the potential nuclease activity of complex to cleave DNA. In addition, antibacterial activity of complex on E.coli and S. aureus was also investigated. The results showed that complex has higher antibacterial activity than ligand.

  20. Novel DNA staining method and processing technique for the quantification of undamaged double-stranded DNA in epidermal tissue sections by PicoGreen probe staining and microspectrophotometry.

    PubMed

    Gagna, Claude E; Kuo, Hon-Reen; Chan, Norman J; Mitacek, Eugene J; Spivak, Alla; Pasquariello, Tiffany D; Balgobin, Chandrika; Mukhi, Ruhayna; Lambert, W Clark

    2007-10-01

    Histotechnological processing of DNA can cause damage to and loss of DNA and can change its structure. DNA probes have severe tissue-staining limitations. New DNA probes and improved histotechnology are needed to enhance the characterization of fixed tissue-bound DNA. Our team developed a novel DNA staining technique and histotechnological processing procedure that improves tissue-bound DNA retention and the qualification and quantification of intact double-stranded (ds)-B-DNA. We used the ultrasensitive PicoGreen ds-DNA probe for the histochemical characterization of ds-DNA. Fifteen fixatives were examined to determine which were best for preventing DNA denaturation and retaining original DNA content and structures. Our use of a microwave-vacuum oven reduced heating temperatures, shortened heating and processing times, and enhanced fixation. We achieved better qualitative and quantitative results by using superior tissue-acquisition techniques (e.g., reduced prefixation times) and improved histotechnology. We also compared our novel approach with archival tissues, delayed fixation, less sophisticated and conventional histological processing techniques, and by experimenting with preservation of tissue-bound ds-Z-DNA. Results demonstrate that our histotechnological procedure and nucleic acid staining method significantly improve the retention of intact, undamaged ds-DNA which, in turn, allows the investigator to more precisely quantify the content and structures of unaltered and undamaged tissue-bound ds-B-DNA.

  1. Synthesis, Characterization and Fluorescence Properties of Zn(II) and Cu(II) Complexes: DNA Binding Study of Zn(II) Complex.

    PubMed

    Lavaee, Parirokh; Eshtiagh-Hosseini, Hossein; Housaindokht, Mohammad Reza; Mague, Joel T; Esmaeili, Abbas Ali; Abnous, Khalil

    2016-01-01

    Zinc(II) and copper(II) complexes containing Schiff base, 2- methoxy-6((E)-(phenylimino) methyl) phenol ligand (HL) were synthesized and characterized by elemental analysis, IR, NMR, and single crystal X-ray diffraction technique. The fluorescence properties and quantum yield of zinc complex were studied. Our data showed that Zn complex could bind to DNA grooves with Kb = 10(4) M(-1). Moreover, Zn complex could successfully be used in staining of DNA following agarose gel electrophoresis. MTT assay showed that Zn complex was not cytotoxic in MCF-7 cell line. Here, we introduce a newly synthesized fluorescence probe that can be used for single and double stranded DNA detection in both solution and agarose gels.

  2. Probing the nature of hydrogen bonds in DNA base pairs.

    PubMed

    Mo, Yirong

    2006-07-01

    Energy decomposition analyses based on the block-localized wave-function (BLW-ED) method are conducted to explore the nature of the hydrogen bonds in DNA base pairs in terms of deformation, Heitler-London, polarization, electron-transfer and dispersion-energy terms, where the Heitler-London energy term is composed of electrostatic and Pauli-exchange interactions. A modest electron-transfer effect is found in the Watson-Crick adenine-thymine (AT), guanine-cytosine (GC) and Hoogsteen adenine-thymine (H-AT) pairs, confirming the weak covalence in the hydrogen bonds. The electrostatic attraction and polarization effects account for most of the binding energies, particularly in the GC pair. Both theoretical and experimental data show that the GC pair has a binding energy (-25.4 kcal mol(-1) at the MP2/6-31G** level) twice that of the AT (-12.4 kcal mol(-1)) and H-AT (-12.8 kcal mol(-1)) pairs, compared with three conventional N-H...O(N) hydrogen bonds in the GC pair and two in the AT or H-AT pair. Although the remarkably strong binding between the guanine and cytosine bases benefits from the opposite orientations of the dipole moments in these two bases assisted by the pi-electron delocalization from the amine groups to the carbonyl groups, model calculations demonstrate that pi-resonance has very limited influence on the covalence of the hydrogen bonds. Thus, the often adopted terminology "resonance-assisted hydrogen bonding (RHAB)" may be replaced with "resonance-assisted binding" which highlights the electrostatic rather than electron-transfer nature of the enhanced stabilization, as hydrogen bonds are usually regarded as weak covalent bonds.

  3. Formaldehyde-mediated DNA-protein crosslinking: a probe for in vivo chromatin structures

    SciTech Connect

    Solomon, M.J.; Varshavsky, A.

    1985-10-01

    Formaldehyde (HCHO) produces DNA-protein crosslinks both in vitro and in vivo. Simian virus 40 (SV40) chromosomes that have been fixed by prolonged incubation with HCHO either in vitro or in vivo (within SV40-infected cells) can be converted to nearly protein-free DNA by limit-digestion with Pronase in the presence of NaDodSO/sub 4/. The remaining Pronase-resistant DNA-peptide adducts retard the DNA upon gel electrophoresis, allowing resolution of free and crosslink-containing DNA. Though efficiently crosslinking histones to DNA within nucleosomes both in vitro and in vivo, HCHO does not crosslink either purified lac repressor to lac operator-containing DNA or an (A + T)-DNA-binding protein (..cap alpha..-protein) to its cognate DNA in vitro. Furthermore, a protein that does not bind to DNA, such as serum albumin, is not crosslinked to DNA by HCHO even at extremely high protein concentrations. These properties of HCHO as a DNA-protein crosslinker are used to probe the distribution of nucleosomes in vivo. It is shown that there are no HCHO-crosslinkable DNA-protein contacts in a subset of SV40 chromosomes in vivo within a 325-base-pair stretch that spans the exposed (nuclease-hypersensitive) region of the SV40 chromosomes. This replication origin-proximal region has been found previously to lack nucleosomes in a subset of isolated SV40 chromosomes. Other applications of the HCHO technique are discussed, including the possibility of obtaining base-resolution in vivo nucleosome footprints.

  4. Iridium Complexes as a Roadblock for DNA Polymerase during Amplification.

    PubMed

    Chandra, Falguni; Kumar, Prashant; Tripathi, Suman Kumar; Patra, Srikanta; Koner, Apurba L

    2016-07-05

    Iridium-based metal complexes containing polypyridyl-pyrazine ligands show properties of DNA intercalation. They serve as roadblocks to DNA polymerase activity, thereby inhibiting the polymerization process. Upon the addition of increasing concentrations of these iridium complexes, a rapid polymerase chain reaction (PCR)-based assay reveals the selective inhibition of the DNA polymerization process. This label-free approach to study the inhibition of fundamental cellular processes via physical roadblock can offer an alternative route toward cancer therapy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. DNA tile based self-assembly: building complex nanoarchitectures.

    PubMed

    Lin, Chenxiang; Liu, Yan; Rinker, Sherri; Yan, Hao

    2006-08-11

    DNA tile based self-assembly provides an attractive route to create nanoarchitectures of programmable patterns. It also offers excellent scaffolds for directed self-assembly of nanometer-scale materials, ranging from nanoparticles to proteins, with potential applications in constructing nanoelectronic/nanophotonic devices and protein/ligand nanoarrays. This Review first summarizes the currently available DNA tile toolboxes and further emphasizes recent developments toward self-assembling DNA nanostructures with increasing complexity. Exciting progress using DNA tiles for directed self-assembly of other nanometer scale components is also discussed.

  6. [Fluorescence in situ hybridization with DNA probes derived from individual chromosomes and chromosome regions].

    PubMed

    Bogomolov, A G; Karamysheva, T V; Rubtsov, N B

    2014-01-01

    A significant part of the eukaryotic genomes consists of repetitive DNA, which can form large clusters or distributed along euchromatic chromosome regions. Repeats located in chromosomal regions make a problem in analysis and identification of the chromosomal material with fluorescence in situ hybridization (FISH). In most cases, the identification of chromosome regions using FISH requires detection of the signal produced with unique sequences. The feasibility, advantages and disadvantages of traditional methods of suppression of repetitive DNA hybridization, methods of repeats-free probe construction and methods of chromosome-specific DNA sequences visualization using image processing of multicolor FISH results are considered in the paper. The efficiency of different techniques for DNA probe generation, different FISH protocols, and image processing of obtained microscopic images depends on the genomic size and structure of analyzing species. This problem was discussed and different approaches were considered for the analysis of the species with very large genome, rare species and species which specimens are too small in size to obtain the amount of genomic and Cot-1 DNA required for suppression of repetitive DNA hybridization.

  7. Spin-labeled psoralen probes for the study of DNA dynamics

    SciTech Connect

    Spielmann, H.P.; Chi, D.Y.; Hunt, N.G.

    1995-11-14

    Six nitroxide spin-labeled psoralen derivatives have been synthesized and evaluated as probes for structural and dynamic studies. Sequence specific photoaddition of these derivatives to DNA oligonucleotides resulted in site-specifically cross-linked and spin-labeled oligomers. Comparison of the general line shape features of the observed electron paramagnetic resonance (EPR) spectra of several duplexes ranging in size from 8 to 46 base pairs with simulated EPR spectra indicate that the nitroxide spin-labeled probe reports the global tumbling motion of the oligomers. While there is no apparent large amplitude motion of the psoralen other than the overall tumbling of DNA on the time scales investigated, there are no indications of bending and other residual motions. The (A)BC excinuclease DNA repair system detects structural or dynamic features of the DNA that distinguish between damaged and undamaged DNA and are independent of the intrinsic structure of the lesion. NMR studies have shown that psoralen-cross-linked DNA has altered backbone dynamics and conformational populations in the immediate vicinity of the adduct. We suggested that the signal for recognition of a lesion to be repaired is in the sugar-phosphate backbone and not in the damaged base(s). 71 refs., 11 figs., 1 tab.

  8. Single and multiple molecular beacon probes for DNA hybridization studies on a silica glass surface

    NASA Astrophysics Data System (ADS)

    Fang, Xiaohong; Liu, Xiaojing; Tan, Weihong

    1999-05-01

    Surface immobilizable molecular beacons have been developed for DNA hybridization studies on a silica glass plate. Molecular beacons are a new class of oligonucleotide probes that have a loop-and-stem structure with a fluorophore and a quencher attached to the two ends of the stem. They only emit intense fluorescence when hybridize to their target molecules. This provides an excellent selectivity for the detection of DNA molecules. We have designed biotinylated molecular beacons which can be immobilized onto a solid surface. The molecular beacon is synthesized using DABCYL as the quencher and an optical stable dye, tetramethylrhodamine, as the fluorophore. Mass spectrometry is used to confirm the synthesized molecular beacon. The molecular beacons have been immobilized onto a silica surface through biotin-avidin binding. The surface immobilized molecular beacons have been used for the detection of target DNA with subnanomolar analytical sensitivity. have also immobilized two different molecular beacons on a silica surface in spatially resolved microscopic regions. The hybridization study of these two different molecular beacon probes has shown excellent selectivity for their target sequences. The newly designed molecular beacons are intended for DNA molecular interaction studies at an interface and for the development of ultrasensitive DNA sensors for a variety of applications including disease diagnosis, disease mechanism studies, new drug development, and in the investigation of molecular interactions between DNA molecules and other interesting biomolecules.

  9. Fluorogenic boronate-based probe-lactulose complex for full-aqueous analysis of peroxynitrite.

    PubMed

    Li, Kai-Bin; Dong, Lei; Zhang, Siqi; Shi, Wei; Jia, Wen-Ping; Han, De-Man

    2017-04-01

    A selective fluorogenic boronate-based probe-lactulose complex was evaluated for the rapid analysis of peroxynitrite (ONOO(-)) based on a reaction-based indicator displacement assay (RIA). The probe was synthesised by a simple nucleophilic substitution reaction between a boronic acid moiety and a well known laser dye, DCM. Fluorescence analyses showed that the probe had an off-on response to lactulose, forming a fluorogenic probe-lactulose complex. The subsequent addition of ONOO(-) selectively quenched the fluorescence of the complex over other Reactive Oxygen/ Nitrogen Species (ROS/RNS) tested. The complex can be applied for the rapid determination of ONOO(-) in full aqueous solution with good linear range, and has also proven suitable for monitoring ONOO(-) in living cells and real water samples.

  10. Highly selective and sensitive DNA assay based on electrocatalytic oxidation of ferrocene bearing zinc(II)-cyclen complexes with diethylamine.

    PubMed

    Shiddiky, Muhammad J A; Torriero, Angel A J; Zeng, Zhanghua; Spiccia, Leone; Bond, Alan M

    2010-07-28

    A highly selective and sensitive electrochemical biosensor has been developed that detects DNA hybridization by employing the electrocatalytic activity of ferrocene (Fc) bearing cyclen complexes (cyclen = 1,4,7,10-tetraazacyclododecane, Fc[Zn(cyclen)H(2)O](2)(ClO(4))(4) (R1), Fc(cyclen)(2) (R2), Fc[Zn(cyclen)H(2)O](ClO(4))(2) (R3), and Fc(cyclen) (R4)). A sandwich-type approach, which involves hybridization of a target probe hybridized with the preimmobilized thiolated capture probe attached to a gold electrode, is employed to fabricate a DNA duplex layer. Electrochemical signals are generated by voltammetric interrogation of a Fc bearing Zn-cyclen complexes that selectively and quantitatively binds to the duplex layers through strong chelation between the cyclen complexes and particular nucleobases within the DNA sequence. Chelate formation between R1 or R3 and thymine bases leads to the perturbation of base-pair (A-T) stacking in the duplex structure, which greatly diminishes the yield of DNA-mediated charge transport and displays a marked selectivity to the presence of the target DNA sequence. Coupling the redox chemistry of the surface-bound Fc bearing Zn-cyclen complex and dimethylamine provides an electrocatalytic pathway that increases sensitivity of the assay and allows the 100 fM target DNA sequence to be detected. Excellent selectivity against even single-base sequence mismatches is achieved, and the DNA sensor is stable and reusable.

  11. Diversity and Complexity in DNA Recognition by Transcription Factors**

    PubMed Central

    Badis, Gwenael; Berger, Michael F.; Philippakis, Anthony A.; Talukder, Shaheynoor; Gehrke, Andrew R.; Jaeger, Savina A.; Chan, Esther T.; Metzler, Genita; Vedenko, Anastasia; Chen, Xiaoyu; Kuznetsov, Hanna; Wang, Chi-Fong; Coburn, David; Newburger, Daniel E.; Morris, Quaid; Hughes, Timothy R.; Bulyk, Martha L.

    2010-01-01

    Sequence preferences of DNA-binding proteins are a primary mechanism by which cells interpret the genome. Despite these proteins’ central importance in physiology, development, and evolution, comprehensive DNA-binding specificities have been determined experimentally for few proteins. Here, we used microarrays containing all 10-base-pair sequences to examine the binding specificities of 104 distinct mouse DNA-binding proteins representing 22 structural classes. Our results reveal a complex landscape of binding, with virtually every protein analyzed possessing unique preferences. Roughly half of the proteins each recognized multiple distinctly different sequence motifs, challenging our molecular understanding of how proteins interact with their DNA binding sites. This complexity in DNA recognition may be important in gene regulation and in evolution of transcriptional regulatory networks. PMID:19443739

  12. Specific DNA recognition by the Antp homeodomain: MD simulations of specific and nonspecific complexes.

    PubMed

    Gutmanas, Aleksandras; Billeter, Martin

    2004-12-01

    Four molecular dynamics simulation trajectories of complexes between the wild-type or a mutant Antennapedia homeodomain and 2 DNA sequences were generated in order to probe the mechanisms governing the specificity of DNA recognition. The starting point was published affinity measurements showing that a single protein mutation combined with a replacement of 2 base pairs yields a new high-affinity complex, whereas the other combinations, with changes on only 1 macromolecule, exhibited lower affinity. The simulations of the 4 complexes yielded fluctuating networks of interaction. On average, these networks differ significantly, explaining the switch of affinity caused by the alterations in the macromolecules. The network of mostly hydrogen-bonding interactions involving several water molecules, which was suggested both by X-ray and NMR structures of the wild-type homeodomain and its DNA operator sequence, could be reproduced in the trajectory. More interestingly, the high-affinity complex with alterations in both the protein and the DNA yielded again a dynamic but very tight network of intermolecular interactions, however, attributing a significantly stronger role to direct hydrophobic interactions at the expense of water bridges. The other 2 homeodomain-DNA complexes, with only 1 molecule altered, show on average over the trajectories a clearly reduced number of protein-DNA interactions. The observations from these simulations suggest specific experiments and thus close the circle formed by biochemical, structural, and computational studies. The shift from a water-dominated to a more "dry" interface may prove important in the design of proteins binding DNA in a specific manner.

  13. Probing DNA-DNA Interactions with a Combination of Quadruple-Trap Optical Tweezers and Microfluidics.

    PubMed

    Brouwer, Ineke; King, Graeme A; Heller, Iddo; Biebricher, Andreas S; Peterman, Erwin J G; Wuite, Gijs J L

    2017-01-01

    DNA metabolism and DNA compaction in vivo involve frequent interactions of remote DNA segments, mediated by proteins. In order to gain insight into such interactions, quadruple-trap optical tweezers have been developed. This technique provides an unprecedented degree of control through the ability to independently manipulate two DNA molecules in three dimensions. In this way, discrete regions of different DNA molecules can be brought into contact with one another, with a well-defined spatial configuration. At the same time, the tension and extension of the DNA molecules can be monitored. Furthermore, combining quadruple-trap optical tweezers with microfluidics makes fast buffer exchange possible, which is important for in situ generation of the dual DNA-protein constructs needed for these kinds of experiments. In this way, processes such as protein-mediated inter-DNA bridging can be studied with unprecedented control. This chapter provides a step-by-step description of how to perform a dual DNA manipulation experiment using combined quadruple-trap optical tweezers and microfluidics.

  14. Mapped DNA probes from loblolly pine can be used for restriction fragment length polymorphism mapping in other conifers.

    PubMed

    Ahuja, M R; Devey, M E; Groover, A T; Jermstad, K D; Neale, D B

    1994-06-01

    A high-density genetic map based on restriction fragment length polymorphisms (RFLPs) is being constructed for loblolly pine (Pinus taeda L.). Consequently, a large number of DNA probes from loblolly pine are potentially available for use in other species. We have used some of these DNA probes to detect RFLPs in 12 conifers and an angiosperm. Thirty complementary DNA and two genomic DNA probes from loblolly pine were hybridized to Southern blots containing DNA from five species of Pinus (P. elliottii, P. lambertiana, P. radiata, P. sylvestris, and P. taeda), one species from each of four other genera of Pinaceae (Abies concolor, Larix laricina, Picea abies, and Pseudotsuga menziesii), one species from each of three other families of Coniferales [Sequoia sempervirens (Taxodiaceae), Torreya californica (Taxaceae) and Calocedrus decurrens (Cupressaceae)], and to one angiosperm species (Populus nigra). Results showed that mapped DNA probes from lobolly pine will cross-hybridize to genomic DNA of other species of Pinus and some other genera of the Pinaceae. Only a small proportion of the probes hybridized to genomic DNA from three other families of the Coniferales and the one angiosperm examined. This study demonstrates that mapped DNA probes from loblolly pine can be used to construct RFLP maps for related species, thus enabling the opportunity for comparative genome mapping in conifers.

  15. DNA probe culture confirmation assay for identification of thermophilic Campylobacter species.

    PubMed Central

    Tenover, F C; Carlson, L; Barbagallo, S; Nachamkin, I

    1990-01-01

    We studied the ability of a new DNA probe-based assay system to correctly identify isolates of the thermophilic campylobacters Campylobacter jejuni, C. coli, and C. laridis grown in vitro. We examined 424 organisms, including 214 Campylobacter isolates and 210 other aerobic and anaerobic isolates. The probe assay, which uses a new homogeneous system in which all reactions take place within a single tube, demonstrated 100% accuracy, producing neither false-positive nor false-negative results. The assay does not, however, distinguish among C. jejuni, C. coli, and C. laridis. PMID:2380357

  16. Novel molecular beacon DNA probes for protein-nucleic acid interaction studies

    NASA Astrophysics Data System (ADS)

    Li, Jianwei J.; Perlette, John; Fang, Xiaohong; Kelley, Shannon; Tan, Weihong

    2000-03-01

    We report a novel approach to study protein-nucleic acid interactions by using molecular beacons (MBs). Molecular beacons are hairpin-shaped DNA oligonucleotide probes labeled with a fluorophore and a quencher, and can report the presence of target DNA/RNA sequences. MBs can also report the existence of single-stranded DNA binding proteins (SSB) through non-sequence specific binding. The interaction between SSB and MB has resulted in significant fluorescence restoration of the MB. The fluorescence enhancement brought by SSB and by complementary DNA is very comparable. The molar ratio of the binding between SSB and the molecular beacon is 1:1 with a binding constant of 2 X 107 M-1. Using the MB-SSB binding, we are able to determine SSB at 2 X 10-10 M with a conventional spectrometer. We have also applied MB DNA probes for the analysis of an enzyme lactic dehydrogenase (LDH), and for the investigation of its binding properties with ssDNA. The biding process between MB and different isoenzymes of LDH has been studied. We also show that there are significant differences in MB binding affinity to different proteins, which will enable selective binding studies of a variety of proteins. This new approach is potentially useful for protein-DNA/RNA interaction studies that require high sensitivity, speed and convenience. The results also open the possibility of using easily obtainable, custom designed, modified DNA molecules for studies of drug interactions and targeting. Our results demonstrate that MB can be effectively used for sensitive protein quantitation and for efficient protein-DNA interaction studies. MB has the signal transduction mechanism built within the molecule, and can thus be used for quick protein assay development and for real-time measurements.

  17. Nanopore-based DNA-probe sequence-evolution method unveiling characteristics of protein-DNA binding phenomena in a nanoscale confined space.

    PubMed

    Liu, Nannan; Yang, Zekun; Lou, Xiaoding; Wei, Benmei; Zhang, Juntao; Gao, Pengcheng; Hou, Ruizuo; Xia, Fan

    2015-04-07

    Almost all of the important functions of DNA are realized by proteins which interact with specific DNA, which actually happens in a limited space. However, most of the studies about the protein-DNA binding are in an unconfined space. Here, we propose a new method, nanopore-based DNA-probe sequence-evolution (NDPSE), which includes up to 6 different DNA-probe systems successively designed in a nanoscale confined space which unveil the more realistic characteristics of protein-DNA binding phenomena. There are several features; for example, first, the edge-hindrance and core-hindrance contribute differently for the binding events, and second, there is an equilibrium between protein-DNA binding and DNA-DNA hybridization.

  18. Assembly of Slx4 signaling complexes behind DNA replication forks.

    PubMed

    Balint, Attila; Kim, TaeHyung; Gallo, David; Cussiol, Jose Renato; Bastos de Oliveira, Francisco M; Yimit, Askar; Ou, Jiongwen; Nakato, Ryuichiro; Gurevich, Alexey; Shirahige, Katsuhiko; Smolka, Marcus B; Zhang, Zhaolei; Brown, Grant W

    2015-08-13

    Obstructions to replication fork progression, referred to collectively as DNA replication stress, challenge genome stability. In Saccharomyces cerevisiae, cells lacking RTT107 or SLX4 show genome instability and sensitivity to DNA replication stress and are defective in the completion of DNA replication during recovery from replication stress. We demonstrate that Slx4 is recruited to chromatin behind stressed replication forks, in a region that is spatially distinct from that occupied by the replication machinery. Slx4 complex formation is nucleated by Mec1 phosphorylation of histone H2A, which is recognized by the constitutive Slx4 binding partner Rtt107. Slx4 is essential for recruiting the Mec1 activator Dpb11 behind stressed replication forks, and Slx4 complexes are important for full activity of Mec1. We propose that Slx4 complexes promote robust checkpoint signaling by Mec1 by stably recruiting Dpb11 within a discrete domain behind the replication fork, during DNA replication stress.

  19. Assembly of Slx4 signaling complexes behind DNA replication forks

    PubMed Central

    Balint, Attila; Kim, TaeHyung; Gallo, David; Cussiol, Jose Renato; Bastos de Oliveira, Francisco M; Yimit, Askar; Ou, Jiongwen; Nakato, Ryuichiro; Gurevich, Alexey; Shirahige, Katsuhiko; Smolka, Marcus B; Zhang, Zhaolei; Brown, Grant W

    2015-01-01

    Obstructions to replication fork progression, referred to collectively as DNA replication stress, challenge genome stability. In Saccharomyces cerevisiae, cells lacking RTT107 or SLX4 show genome instability and sensitivity to DNA replication stress and are defective in the completion of DNA replication during recovery from replication stress. We demonstrate that Slx4 is recruited to chromatin behind stressed replication forks, in a region that is spatially distinct from that occupied by the replication machinery. Slx4 complex formation is nucleated by Mec1 phosphorylation of histone H2A, which is recognized by the constitutive Slx4 binding partner Rtt107. Slx4 is essential for recruiting the Mec1 activator Dpb11 behind stressed replication forks, and Slx4 complexes are important for full activity of Mec1. We propose that Slx4 complexes promote robust checkpoint signaling by Mec1 by stably recruiting Dpb11 within a discrete domain behind the replication fork, during DNA replication stress. PMID:26113155

  20. Using Atomic Force Microscopy to Characterize the Conformational Properties of Proteins and Protein-DNA Complexes That Carry Out DNA Repair.

    PubMed

    LeBlanc, Sharonda; Wilkins, Hunter; Li, Zimeng; Kaur, Parminder; Wang, Hong; Erie, Dorothy A

    2017-01-01

    Atomic force microscopy (AFM) is a scanning probe technique that allows visualization of single biomolecules and complexes deposited on a surface with nanometer resolution. AFM is a powerful tool for characterizing protein-protein and protein-DNA interactions. It can be used to capture snapshots of protein-DNA solution dynamics, which in turn, enables the characterization of the conformational properties of transient protein-protein and protein-DNA interactions. With AFM, it is possible to determine the stoichiometries and binding affinities of protein-protein and protein-DNA associations, the specificity of proteins binding to specific sites on DNA, and the conformations of the complexes. We describe methods to prepare and deposit samples, including surface treatments for optimal depositions, and how to quantitatively analyze images. We also discuss a new electrostatic force imaging technique called DREEM, which allows the visualization of the path of DNA within proteins in protein-DNA complexes. Collectively, these methods facilitate the development of comprehensive models of DNA repair and provide a broader understanding of all protein-protein and protein-nucleic acid interactions. The structural details gleaned from analysis of AFM images coupled with biochemistry provide vital information toward establishing the structure-function relationships that govern DNA repair processes. © 2017 Elsevier Inc. All rights reserved.

  1. Statistical mechanics of topologically constrained DNA and nucleoprotein complexes

    NASA Astrophysics Data System (ADS)

    Giovan, Stefan Michael

    A complex connection exists between the 3 dimensional topological state of DNA in living organisms and biological processes including gene expression, DNA replication, recombination and repair. A significant limitation in developing a detailed, quantitative understanding of this connection is due to a lack of rigorous methods to calculate statistical mechanical properties of DNA molecules with complex topologies, including supercoiling, looping and knotting. This dissertation's main focus is on developing such methods and applying them to realistic DNA and nucleoprotein models. In chapter 2, a method is presented to calculate free energies and J factors of protein mediated DNA loops by normal mode analysis (NMA). This method is similar to calculations performed previously but with several significant advances. We apply the method to the specific case of DNA looping mediated by Cre recombinase protein. J factors calculated by our method are compared to experimental measurements to extract geometric and elastic properties of the Cre-DNA synaptic complex. In particular, the results suggest the existence of a synaptic complex that is more flexible than previously expected and may be explained by a stable intermediate in the reaction pathway that deviates significantly from the planar crystal structure. Calculating free energies of DNA looping is difficult in general, especially when considering intermediate length scales such as plasmid sized DNA which may readily adopt multiple topological states. In chapter 3, a novel method is presented to obtain free energies of semiflexible biopolymers with fixed topologies and arbitrary ratios of contour length L to persistence length P. High accuracy is demonstrated by calculating free energies of specific DNA knots with L/P = 20 and L/P = 40, corresponding to DNA lengths of 3000 and 6000 base pairs, respectively. We then apply the method to study the free-energy landscape for a model of a synaptic nucleoprotein complex

  2. DNA binding, DNA cleavage, and cytotoxicity studies of two new copper (II) complexes.

    PubMed

    Kashanian, Soheila; Khodaei, Mohammad Mehdi; Roshanfekr, Hamideh; Shahabadi, Nahid; Rezvani, Alireza; Mansouri, Ghobad

    2011-05-01

    The DNA binding behavior of [Cu(phen)(phen-dione)Cl]Cl (1) and [Cu(bpy)(phen-dione)Cl]Cl (2) was studied with a series of techniques including UV-vis absorption, circular dichroism spectroscopy, and viscometric methods. Cytotoxicity effect and DNA unwinding properties were also investigated. The results indicate that the Cu(II) complexes interact with calf-thymus DNA by both partially intercalative and hydrogen binding. These findings have been further substantiated by the determination of intrinsic binding constants spectrophotometrically, 12.5 × 10(5) and 5 × 10(5) for 1 and 2, respectively. Our findings suggest that the type of ligands and structure of complexes have marked effect on the binding affinity of complexes involving CT-DNA. Circular dichroism results show that complex 1 causes considerable increase in base stacking of DNA, whereas 2 decreases the base stacking, which is related to more extended aromatic area of 1,10-phenanthroline in 1 rather than bipyridine in 2. Slow decrease in DNA viscosity indicates partially intercalative binding in addition to hydrogen binding on the surface of DNA. The second binding mode was also confirmed by additional tests: interaction in denaturation condition and acidic pH. Also, these new complexes induced cleavage in pUC18 plasmid DNA as indicated in gel electrophoresis and showed excellent antitumor activity against K562 (human chronic myeloid leukemia) cells.

  3. Anionic solid lipid nanoparticles supported on protamine/DNA complexes

    NASA Astrophysics Data System (ADS)

    Ye, Jiesheng; Wang, Aihua; Liu, Chunxi; Chen, Zhijin; Zhang, Na

    2008-07-01

    The objective of this study was to design novel anionic ternary nanoparticles for gene delivery. These ternary nanoparticles were equipped with protamine/DNA binary complexes (150-200 nm) as the support, and the anionic formation was achieved by absorption of anionic solid lipid nanoparticles (<=20 nm) onto the surface of the binary complexes. The small solid lipid nanoparticles (SLNs) were prepared by a modified film dispersion-ultrasonication method, and adsorption of the anionic SLNs onto the binary complexes was typically carried out in water via electrostatic interaction. The formulated ternary nanoparticles were found to be relatively uniform in size (257.7 ± 10.6 nm) with a 'bumpy' surface, and the surface charge inversion from 19.28 ± 1.14 mV to -17.16 ± 1.92 mV could be considered as evidence of the formation of the ternary nanoparticles. The fluorescence intensity measurements from three batches of the ternary nanoparticles gave a mean adsorption efficiency of 96.75 ± 1.13%. Circular dichroism spectra analysis showed that the protamine/DNA complexes had been coated by small SLNs, and that the anionic ternary nanoparticles formed did not disturb the construction of the binary complexes. SYBR Green I analysis suggested that the ternary nanoparticles could protect the DNA from nuclease degradation, and cell viability assay results showed that they exhibit lower cytotoxicity to A549 cells compared with the binary complexes and lipofectamine. The transfection efficiency of the ternary nanoparticles was better than that of naked DNA and the binary complexes, and almost equal to that of lipofectamine/DNA complexes, as revealed by inversion fluorescence microscope observation. These results indicated that the anionic ternary nanoparticles could facilitate gene transfer in cultured cells, and might alleviate the drawbacks of the conventional cationic vector/DNA complexes for gene delivery in vivo.

  4. Probing quantum coherence in a biological system by means of DNA amplification.

    PubMed

    Bieberich, E

    2000-07-01

    tunneling as the result of overlapping orbitals along the axis of the primer/template duplex. This effect was unique to the fractal primer due to the number of binding states that remained almost constant, irrespective of the size of shifting. It is suggested that fractal structures found in proteins or other macromolecules may facilitate a short-lived quantum coherent superposition of binding states. This may stabilize molecular complexes for rapid sorting of correct-from-false binding, e.g. during folding or association of macromolecules. The experimental model described in this paper provides a low-cost tool for simulating and probing quantum coherence in a biological system.

  5. Electrochemical spectroscopic investigations on the interaction of an ytterbium complex with DNA and their analytical applications such as biosensor.

    PubMed

    Ilkhani, Hoda; Ganjali, Mohamad Reza; Arvand, Majid; Hejazi, Mohammad Saeid; Azimi, Fateme; Norouzi, Parviz

    2011-12-01

    Metal ion-DNA interactions are important in nature, often changing the genetic material's structure and function. A new Yb complex of YbCl(3) (tris(8-hydroxyquinoline-5-sulfonic acid) ytterbium) was synthesized and utilized as an electrochemical indicator for the detection of DNA oligonucleotide based on its interaction with Yb(QS)(3). Cyclic voltammetry (CV) and fluorescence spectroscopy were used to investigate the interaction of Yb(QS)(3) with ds-DNA. It was revealed that Yb(QS)(3) presented an excellent electrochemical activity on glassy carbon electrode (GCE) and could intercalate into the double helix of double-stranded DNA (ds-DNA). The binding mechanism of interaction was elucidated on glassy carbon electrode dipped in DNA solution and DNA modified carbon paste electrode by using differential pulse voltammetry and cyclic voltammetry. The binding ratio between this complex and ds-DNA was calculated to be 1:1. The extent of hybridization was evaluated on the basis of the difference between signals of Yb(QS)(3) with probe DNA before and after hybridization with complementary DNA. With this approach, this DNA could be quantified over the range from 1 × 10(-8) to 1.1 × 10(-7)M. The interaction mode between Yb(QS)(3) and DNA was found to be mainly intercalative interaction. These results were confirmed with fluorescence experiments.

  6. Comparative analysis of Y chromosome structure in Bos taurus and B. indicus by FISH using region-specific, microdissected, and locus-specific DNA probes.

    PubMed

    Goldammer, T; Brunner, R M; Schwerin, M

    1997-01-01

    Results of fluorescence in situ hybridization (FISH) of Bos taurus and B. indicus Y chromosomes using the bovine locus-specific Y probes BC1.2 and lambda ES6.0 and region-specific probes of B. indicus and B. taurus Y chromosomes, which were generated by microdissection and DOP-PCR, indicate that the Y chromosomes of B. indicus (BIN Y) and B. taurus (BTA Y) differ by a pericentric inversion. Parts of the short and long arms of the Y chromosome in B. taurus and the distal half of the Y chromosome in B. indicus were microdissected, amplified by DOP-PCR, biotinylated, and rehybridized in situ to the corresponding metaphase chromosomes to test the chromosome fragment specificity of the DNA probes. The region-specific painting probes were used for hybridization to metaphase chromosomes of the other species. The DNA painting probes BTA Yp12 and BTA Yq12.1-ter derived from BTA Y hybridized to the distal and proximal halves of BIN Y, respectively. Complex hybridization signals on BTA Yq12.1-->qter were generated with the DNA probe BIN Yqcen-centr (centromere-central) after FISH. The results demonstrate that BTA Yp is homologous to the distal half of BIN Y and that BTA Yq corresponds to the proximal part of BIN Yq. Hybridization of the Y chromosome-specific DNA probes lambda ES6.0 to BTA Yp12-->p11 and near to the telomere of BIN Y and BC1.2 to BTA Yq12-->q13 and to the telomere of BIN Y indicate an opposite orientation of the homologous chromosome fragments BTA Yp and of the distal half of BIN Yq.

  7. Enzyme-Free Detection of Mutations in Cancer DNA Using Synthetic Oligonucleotide Probes and Fluorescence Microscopy.

    PubMed

    Miotke, Laura; Maity, Arindam; Ji, Hanlee; Brewer, Jonathan; Astakhova, Kira

    2015-01-01

    Rapid reliable diagnostics of DNA mutations are highly desirable in research and clinical assays. Current development in this field goes simultaneously in two directions: 1) high-throughput methods, and 2) portable assays. Non-enzymatic approaches are attractive for both types of methods since they would allow rapid and relatively inexpensive detection of nucleic acids. Modern fluorescence microscopy is having a huge impact on detection of biomolecules at previously unachievable resolution. However, no straightforward methods to detect DNA in a non-enzymatic way using fluorescence microscopy and nucleic acid analogues have been proposed so far. Here we report a novel enzyme-free approach to efficiently detect cancer mutations. This assay includes gene-specific target enrichment followed by annealing to oligonucleotides containing locked nucleic acids (LNAs) and finally, detection by fluorescence microscopy. The LNA containing probes display high binding affinity and specificity to DNA containing mutations, which allows for the detection of mutation abundance with an intercalating EvaGreen dye. We used a second probe, which increases the overall number of base pairs in order to produce a higher fluorescence signal by incorporating more dye molecules. Indeed we show here that using EvaGreen dye and LNA probes, genomic DNA containing BRAF V600E mutation could be detected by fluorescence microscopy at low femtomolar concentrations. Notably, this was at least 1000-fold above the potential detection limit. Overall, the novel assay we describe could become a new approach to rapid, reliable and enzyme-free diagnostics of cancer or other associated DNA targets. Importantly, stoichiometry of wild type and mutant targets is conserved in our assay, which allows for an accurate estimation of mutant abundance when the detection limit requirement is met. Using fluorescence microscopy, this approach presents the opportunity to detect DNA at single-molecule resolution and directly

  8. Respiratory chain complex I deficiency caused by mitochondrial DNA mutations

    PubMed Central

    Swalwell, Helen; Kirby, Denise M; Blakely, Emma L; Mitchell, Anna; Salemi, Renato; Sugiana, Canny; Compton, Alison G; Tucker, Elena J; Ke, Bi-Xia; Lamont, Phillipa J; Turnbull, Douglass M; McFarland, Robert; Taylor, Robert W; Thorburn, David R

    2011-01-01

    Defects of the mitochondrial respiratory chain are associated with a diverse spectrum of clinical phenotypes, and may be caused by mutations in either the nuclear or the mitochondrial genome (mitochondrial DNA (mtDNA)). Isolated complex I deficiency is the most common enzyme defect in mitochondrial disorders, particularly in children in whom family history is often consistent with sporadic or autosomal recessive inheritance, implicating a nuclear genetic cause. In contrast, although a number of recurrent, pathogenic mtDNA mutations have been described, historically, these have been perceived as rare causes of paediatric complex I deficiency. We reviewed the clinical and genetic findings in a large cohort of 109 paediatric patients with isolated complex I deficiency from 101 families. Pathogenic mtDNA mutations were found in 29 of 101 probands (29%), 21 in MTND subunit genes and 8 in mtDNA tRNA genes. Nuclear gene defects were inferred in 38 of 101 (38%) probands based on cell hybrid studies, mtDNA sequencing or mutation analysis (nuclear gene mutations were identified in 22 probands). Leigh or Leigh-like disease was the most common clinical presentation in both mtDNA and nuclear genetic defects. The median age at onset was higher in mtDNA patients (12 months) than in patients with a nuclear gene defect (3 months). However, considerable overlap existed, with onset varying from 0 to >60 months in both groups. Our findings confirm that pathogenic mtDNA mutations are a significant cause of complex I deficiency in children. In the absence of parental consanguinity, we recommend whole mitochondrial genome sequencing as a key approach to elucidate the underlying molecular genetic abnormality. PMID:21364701

  9. Investigation of paternity establishing without the putative father using hypervariable DNA probes.

    PubMed

    Yokoi, T; Odaira, T; Nata, M; Sagisaka, K

    1990-09-01

    Seven kinds of DNA probes which recognize hypervariable loci were applied for paternity test. The putative father was decreased and unavailable for the test. The two legitimate children and their mother (the deceased's wife) and the four illegitimate children and their mother (the deceased's kept mistress) were available for analysis. Paternity index of four illegitimate child was investigated. Allelic frequencies and their confidence intervals among unrelated Japanese individuals were previously reported from our laboratory, and co-dominant segregation of the polymorphism was confirmed in family studies. Cumulative paternity indices of four illegitimate children from 16 kinds of standard blood group markers were 165, 42, 0.09, and 36, respectively. On the other hand, cumulative paternity indices from 7 kinds of DNA probes are 2,363, 4,685, 57,678, and 54,994, respectively, which are 14, 113, 640, 864, and 1,509 times higher than that from standard blood group markers. The DNA analyses gave nearly conclusive evidence that the putative father was the biological father of the children. Especially, the paternity relation of the third illegitimate child could not be established without the DNA analyses. Accordingly, DNA polymorphism is considered to be informative enough for paternity test.

  10. Recognition of DNA abasic site nanocavity by fluorophore-switched probe: Suitable for all sequence environments

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Hu, Yuehua; Wu, Tao; Zhang, Lihua; Liu, Hua; Zhou, Xiaoshun; Shao, Yong

    2016-01-01

    Removal of a damaged base in DNA produces an abasic site (AP site) nanocavity. If left un-repaired in vivo by the specific enzyme, this nanocavity will result in nucleotide mutation in the following DNA replication. Therefore, selective recognition of AP site nanocavity by small molecules is important for identification of such DNA damage and development of genetic drugs. In this work, we investigate the fluorescence behavior of isoquinoline alkaloids including palmatine (PAL), berberine (BER), epiberberine (EPI), jatrorrhizine (JAT), coptisine (COP), coralyne (COR), worenine (WOR), berberrubine (BEU), sanguinarine (SAN), chelerythrine (CHE), and nitidine (NIT) upon binding with the AP nanocavity. PAL is screened out as the most efficient fluorophore-switched probe to recognize the AP nanocavity over the fully matched DNA. Its fluorescence enhancement occurs for all of the AP nanocavity sequence environments, which has not been achieved by the previously used probes. The bridged π conjugation effect should partially contribute to the AP nanocavity-specific fluorescence, as opposed to the solvent effect. Due to the strong binding with the AP nanocavity, PAL will find wide applications in the DNA damage recognition and sensor development.

  11. The detection of HBV DNA with gold-coated iron oxide nanoparticle gene probes

    NASA Astrophysics Data System (ADS)

    Xi, Dong; Luo, XiaoPing; Lu, QiangHua; Yao, KaiLun; Liu, ZuLi; Ning, Qin

    2008-03-01

    Gold-coated iron oxide nanoparticle Hepatitis B virus (HBV) DNA probes were prepared, and their application for HBV DNA measurement was studied. Gold-coated iron oxide nanoparticles were prepared by the citrate reduction of tetra-chloroauric acid in the presence of iron oxide nanoparticles which were added as seeds. With a fluorescence-based method, the maximal surface coverage of hexaethiol 30-mer oligonucleotides and the maximal percentage of hybridization strands on gold-coated iron oxide nanoparticles were (120 ± 8) oligonucleotides per nanoparticle, and (14 ± 2%), respectively, which were comparable with those of (132 ± 10) and (22 ± 3%) in Au nanoparticle groups. Large network aggregates were formed when gold-coated iron oxide nanoparticle HBV DNA gene probe was applied to detect HBV DNA molecules as evidenced by transmission electron microscopy and the high specificity was verified by blot hybridization. Our results further suggested that detecting DNA with iron oxide nanoparticles and magnetic separator was feasible and might be an alternative effective method.

  12. High temperature stabilization of DNA in complexes with cationic lipids.

    PubMed Central

    Tarahovsky, Yury S; Rakhmanova, Vera A; Epand, Richard M; MacDonald, Robert C

    2002-01-01

    The influence on the melting of calf thymus and plasmid DNA of cationic lipids of the type used in gene therapy was studied by ultraviolet spectrophotometry and differential scanning calorimetry. It was found that various membrane-forming cationic lipids are able to protect calf thymus DNA against denaturation at 100 degrees C. After interaction with cationic lipids, the differential scanning calorimetry melting profile of both calf thymus and plasmid DNA revealed two major components, one corresponding to a thermolabile complex with transition temperature, T(m(labile)), close to that of free DNA and a second corresponding to a thermostable complex with a transition temperature, T(m(stable)), at 105 to 115 degrees C. The parameter T(m(stable)) did not depend on the charge ratio, R(+/-). Instead, the amount of thermostable DNA and the enthalpy ratio Delta H((stable))/Delta H((labile)) depended upon R(+/-) and conditions of complex formation. In the case of O-ethyldioleoylphosphatidylcholine, the cationic lipid that was the main subject of the investigation, the maximal stabilization of DNA exceeded 90% between R(+/-) = 1.5 and 3.0. Several other lipids gave at least 75% protection in the range R(+/-) = 1.5 to 2.0. Centrifugal separation of the thermostable and thermolabile fractions revealed that almost all the transfection activity was present at the thermostable fraction. Electron microscopy of the thermostable complex demonstrated the presence of multilamellar membranes with a periodicity 6.0 to 6.5 nm. This periodic multilamellar structure was retained at temperatures as high as 130 degrees C. It is concluded that constraint of the DNA molecules between oppositely charged membrane surfaces in the multilamellar complex is responsible for DNA stabilization. PMID:11751314

  13. Synthesis of RNA probes by the direct in vitro transcription of PCR-generated DNA templates.

    PubMed

    Urrutia, R; McNiven, M A; Kachar, B

    1993-05-01

    We describe a novel method for the generation of RNA probes based on the direct in vitro transcription of DNA templates amplified by polymerase chain reaction (PCR) using primers with sequence hybrids between the target gene and those of the T7 and T3 RNA polymerases promoters. This method circumvents the need for cloning and allows rapid generation of strand-specific RNA molecules that can be used for the identification of genes in hybridization experiments. We have successfully applied this method to the identification of DNA sequences by Southern blot analysis and library screening.

  14. Conformational flexibility facilitates self-assembly of complex DNA nanostructures.

    PubMed

    Zhang, Chuan; Su, Min; He, Yu; Zhao, Xin; Fang, Ping-an; Ribbe, Alexander E; Jiang, Wen; Mao, Chengde

    2008-08-05

    Molecular self-assembly is a promising approach to the preparation of nanostructures. DNA, in particular, shows great potential to be a superb molecular system. Synthetic DNA molecules have been programmed to assemble into a wide range of nanostructures. It is generally believed that rigidities of DNA nanomotifs (tiles) are essential for programmable self-assembly of well defined nanostructures. Recently, we have shown that adequate conformational flexibility could be exploited for assembling 3D objects, including tetrahedra, dodecahedra, and buckyballs, out of DNA three-point star motifs. In the current study, we have integrated tensegrity principle into this concept to assemble well defined, complex nanostructures in both 2D and 3D. A symmetric five-point-star motif (tile) has been designed to assemble into icosahedra or large nanocages depending on the concentration and flexibility of the DNA tiles. In both cases, the DNA tiles exhibit significant flexibilities and undergo substantial conformational changes, either symmetrically bending out of the plane or asymmetrically bending in the plane. In contrast to the complicated natures of the assembled structures, the approach presented here is simple and only requires three different component DNA strands. These results demonstrate that conformational flexibility could be explored to generate complex DNA nanostructures. The basic concept might be further extended to other biomacromolecular systems, such as RNA and proteins.

  15. Cooperative dynamics of a DNA polymerase replicating complex.

    PubMed

    Moors, Samuel L C; Herdewijn, Piet; Robben, Johan; Ceulemans, Arnout

    2013-12-01

    Engineered DNA polymerases continue to be the workhorses of many applications in biotechnology, medicine and nanotechnology. However, the dynamic interplay between the enzyme and the DNA remains unclear. In this study, we performed an extensive replica exchange with flexible tempering (REFT) molecular dynamics simulation of the ternary replicating complex of the archaeal family B DNA polymerase from the thermophile Thermococcus gorgonarius, right before the chemical step. The convoluted dynamics of the enzyme are reducible to rigid-body motions of six subdomains. Upon binding to the enzyme, the DNA double helix conformation changes from a twisted state to a partially untwisted state. The twisted state displays strong bending motion, whereby the DNA oscillates between a straight and a bent conformation. The dynamics of double-stranded DNA are strongly correlated with rotations of the thumb toward the palm, which suggests an assisting role of the enzyme during DNA translocation. In the complex, the primer-template duplex displays increased preference for the B-DNA conformation at the n-2 and n-3 dinucleotide steps. Interactions at the primer 3' end indicate that Thr541 and Asp540 are the acceptors of the first proton transfer in the chemical step, whereas in the translocation step both residues hold the primer 3' terminus in the vicinity of the priming site, which is crucial for high processivity.

  16. Probe classification of on-off type DNA microarray images with a nonlinear matching measure

    NASA Astrophysics Data System (ADS)

    Ryu, Munho; Kim, Jong Dae; Min, Byoung Goo; Kim, Jongwon; Kim, Y. Y.

    2006-01-01

    We propose a nonlinear matching measure, called counting measure, as a signal detection measure that is defined as the number of on pixels in the spot area. It is applied to classify probes for an on-off type DNA microarray, where each probe spot is classified as hybridized or not. The counting measure also incorporates the maximum response search method, where the expected signal is obtained by taking the maximum among the measured responses of the various positions and sizes of the spot template. The counting measure was compared to existing signal detection measures such as the normalized covariance and the median for 2390 patient samples tested on the human papillomavirus (HPV) DNA chip. The counting measure performed the best regardless of whether or not the maximum response search method was used. The experimental results showed that the counting measure combined with the positional search was the most preferable.

  17. Molecular hybridization with DNA-probes as a laboratory diagnostic test for influenza viruses.

    PubMed

    Pljusnin, A Z; Rozhkova, S A; Nolandt, O V; Bryantseva, E A; Kuznetsov, O K; Noskov, F S

    1987-01-01

    The possibilities of using DNA-copies of different influenza A virus genes cloned with recombinant bacterial plasmids for the detection of virus-specific RNA by molecular dot-hybridization were analyzed. High specificity of RNA identification has been demonstrated and it has been shown expedient to use DNA-probes with high-conservative virus genes (polymerase, nucleoprotein, or matrix) for the detection of influenza A virus subtypes (H1N1, H2N2, H3N2) and probes with corresponding hemagglutinin genes for the differentiation of the subtypes H3N2 and H1N1. The results of nasopharyngeal specimens testing proved the effectiveness of molecular dot-hybridization in epidemiological studies of influenza outbreaks, especially of mixed etiology.

  18. Effect of DNA-CTMA complex on optical properties of LDS 821 dye

    NASA Astrophysics Data System (ADS)

    Udayan, Sony; Ramachandran, Vijesh Kavumoottil; Sebastian, Mathew; Chandran, Pradeep; Nampoori, Vadakkedath Parameswaran Narayanan; Thomas, Sheenu

    2017-07-01

    We have investigated the fluorescence behavior of LDS 821 dye (Styryl 9 M) with deoxyribonucleic acid attached with cetyltrimethyl-ammonium (DNA-CTMA). Optical absorption studies confirm the intercalation of the dye molecules with DNA-CTMA. Fluorescence studies show an enhancement of fluorescence intensity of dye with DNA-CTMA, which suggest the reduction of TICT states of the dye molecule. The FWHM of the fluorescence spectrum increases from 95 nm to 161 nm indicating the formation of new energy levels when DNA-CTMA forms a complex with LDS 821 dye. Fluorescence lifetime measurements shows that lifetime of LDS 821 varies from 507ps to 953 ps with the addition of DNA-CTMA, which also confirms the deactivation of TICT states of dye molecule. Results show that the incorporation of DNA-CTMA with LDS 821 dye improves the optical characteristics of LDS 821 dye and therefore, can be used as a good fluorescence probe for DNA visualization as well as in lasing applications.

  19. Detection of bovine trichomoniasis with a specific DNA probe and PCR amplification system.

    PubMed

    Ho, M S; Conrad, P A; Conrad, P J; LeFebvre, R B; Perez, E; BonDurant, R H

    1994-01-01

    Trichomoniasis is a widespread, economically important venereal disease of cattle which causes infertility and abortion. Effective control of trichomoniasis has been impeded by the insensitivity of traditional diagnostic procedures, which require the isolation and cultivation of the parasite, Tritrichomonas foetus, from infected cattle. We developed a 0.85-kb T. foetus DNA probe by identifying conserved sequences in DNAs from T. foetus that were isolated from cattle in California, Idaho, Nevada, and Costa Rica. The probe hybridized specifically to DNAs of T. foetus isolates from different geographic areas but not to DNA preparations of Trichomonas vaginalis, bovine cells, or a variety of bacteria from cattle. The probe detected DNA from a minimum of 10(5) T. foetus organisms. To improve sensitivity, a partial sequence of the probe was used to identify oligonucleotide primers (TF1 and TF2) which could be used to amplify a 162-bp product from T. foetus DNAs by PCR. A chemiluminescent internal T. foetus sequence probe was hybridized to Southern blots of the amplification product. This system detected as few as one T. foetus organism in culture media or 10 parasites in samples containing bovine preputial smegma. Analysis of 52 clinical samples showed that 47 (90.4%) of the 52 samples were correctly identified, with no false-positive reactions. In comparison, the traditional cultivation method detected 44 (84.6%) of the 52 samples from T. foetus-infected and uninfected bulls. These results indicate that the PCR-based amplification system could be a useful alternative method for the diagnosis of bovine trichomoniasis.

  20. Structure of a complex between E. coli DNA topoisomerase I and single-stranded DNA.

    PubMed

    Perry, Kay; Mondragón, Alfonso

    2003-11-01

    In order to gain insights into the mechaism of ssDNA binding and recognition by Escherichia coli DNA topoisomerase I, the structure of the 67 kDa N-terminal fragment of topoisomerase I was solved in complex with ssDNA. The structure reveals a new conformational stage in the multistep catalytic cycle of type IA topoisomerases. In the structure, the ssDNA binding groove leading to the active site is occupied, but the active site is not fully formed. Large conformational changes are not seen; instead, a single helix parallel to the ssDNA binding groove shifts to clamp the ssDNA. The structure helps clarify the temporal sequence of conformational events, starting from an initial empty enzyme and proceeding to a ssDNA-occupied and catalytically competent active site.

  1. Theoretical and Instrumental Studies of the Competitive Interaction Between Aromatic α-Aminobisphosphonates with DNA Using Binding Probes.

    PubMed

    Gholivand, M B; Peyman, H; Gholivand, Kh; Roshanfekr, H; Taherpour, A A; Yaghobi, R

    2017-07-01

    Fluorescence spectroscopy, UV-visible absorption spectroscopy, circular dichroism (CD) spectroscopy, viscometry, cyclic voltammetry (CV), and differential pulse voltammetry (DPV) were applied to investigate the competitive interaction of DNA with two aromatic α-aminobisphosphonates and neutral red dye (NR, intercalator) and Hoechst (Ho, groove binder) as spectroscopic probes, in a Tris-hydrogen chloride buffer solution (pH 7.4). The principal component analysis (PCA) was applied to determine the number of chemical components presented in complexation equilibrium of DNA with the aromatic α-aminobisphosphonates (B1 and B2). The spectroscopic and voltammetric studies showed that the groove binding mode of interaction is predominant in the solution containing DNA and α-aminobisphosphonates. Furthermore, the results indicated that α-aminobisphosphonate with the lengthy N-alkyl chains had a stronger interaction. The PCA and theoretical quantum mechanical and molecular mechanic methods were also utilized to determine the structure of DNA with the two α-aminobisphosphonates (B1 and B2).

  2. A lifetime-sensitive fluorescence anisotropy probe for DNA-based bioassays: The case of SYBR Green.

    PubMed

    Chovelon, Benoit; Fiore, Emmanuelle; Faure, Patrice; Peyrin, Eric; Ravelet, Corinne

    2017-04-15

    In standard steady-state fluorescence anisotropy (FA) DNA-based assays, the ligand binding to a given receptor is typically signalled by the rotational correlation time changes of the tracer. Herein, we report a radically different strategy that relies on the peculiar excited state lifetime features of the SYBR Green (SG) dye. This DNA-binding probe exhibits a drastically short lifetime in solution, leading to a high FA signal. Its complexation to oligonucleotides determines a singular and very large depolarization depending on the concerted effects of extreme lifetime enhancement and resonance energy homotransfer. On the basis of ligand-induced changes in the molar fractions of bound and free forms of SG, the approach provides an unprecedented means for the FA monitoring of the ligand binding to short DNA molecules, allowing the elaboration of a variety of intercalator displacement assays and label-free biosensors that involve diverse DNA structures (duplex, hairpin, G-quadruplex and single-stranded), ligand types (ion, small organic molecule and protein) and binding modes (intercalation, minor groove, allosteric switch). These findings open up promising avenues in the design of a new generation of FA assays.

  3. A probe-based mapping strategy for DNA sequencing with mobile primers

    SciTech Connect

    Strausbaugh, L.D.; Berg, C.M.

    1991-01-01

    Research on DNA sequencing continued. The specific areas of research targeted for the period of this Progress Report included three general phases: (1) optimization of probe-mapping by both the development of new transposons and the design of stream-lined methods for mapping; (2) application of transposon-based methods to larger plasmids and cosmids; and (3) initiation of PCR-based applications of transposons.

  4. A probe-based mapping strategy for DNA sequencing with mobile primers. Progress report

    SciTech Connect

    Strausbaugh, L.D.; Berg, C.M.

    1991-12-31

    Research on DNA sequencing continued. The specific areas of research targeted for the period of this Progress Report included three general phases: (1) optimization of probe-mapping by both the development of new transposons and the design of stream-lined methods for mapping; (2) application of transposon-based methods to larger plasmids and cosmids; and (3) initiation of PCR-based applications of transposons.

  5. DNA quantification via ICP-MS using lanthanide-labeled probes and ligation-mediated amplification.

    PubMed

    Brückner, Kathrin; Schwarz, Kathleen; Beck, Sebastian; Linscheid, Michael W

    2014-01-07

    The combination of lanthanide-tagged oligonucleotide probes with inductively coupled plasma mass spectrometry (ICP-MS) as the detection technique is a novel labeling and analysis strategy for heterogeneous nucleic acid quantification assays. We describe a hybridization assay based on biotin-streptavidin affinity using lanthanide-labeled reporter probes and biotinylated capture probes. For the basic sandwich type assay, performed in streptavidin-coated microtitration wells, the limit of detection (LOD) was 7.2 fmol of DNA target, corresponding to a final concentration of 6 pM terbium-labeled probes detectable by ICP-MS after elution from the solid support. To improve the sensitivity and sequence specificity of the approach, it was combined with established molecular biological techniques, i.e., elution with a restriction endonuclease and signal and target amplification by the ligase detection reaction (LDR) and ligase chain reaction (LCR), respectively. Initial experiments showed that the enzymes facilitated the discrimination of single-base mismatches within the recognition or ligation site. Furthermore, LCR as a target amplification step resulted in a 6000-fold increase of sensitivity, and finally an LOD of 2.6 amol was achieved with an artificial double-stranded DNA target.

  6. Rutin-Nickel Complex: Synthesis, Characterization, Antioxidant, DNA Binding, and DNA Cleavage Activities.

    PubMed

    Raza, Aun; Bano, Shumaila; Xu, Xiuquan; Zhang, Rong Xian; Khalid, Haider; Iqbal, Furqan Muhammad; Xia, Changkun; Tang, Jian; Ouyang, Zhen

    2016-12-17

    The rutin-nickel (II) complex (RN) was synthesized and characterized by elemental analysis, UV-visible spectroscopy, IR, mass spectrometry, (1)H NMR, TG-DSC, SEM, and molar conductivity. The low molar conductivity value investigates the non-electrolyte nature of the complex. The elemental analysis and other physical and spectroscopic methods reveal the 1:2 stoichiometric ratio (metal/ligand) of the complex. An antioxidant study of rutin and its metal complex against DPPH radical showed that the complex has more radical scavenging activity than free rutin. The interaction of complex RN with DNA was determined using fluorescence spectra and agarose gel electrophoresis. The results showed that RN can intercalate moderately with DNA, quench a strong intercalator ethidium bromide (EB), and compete for the intercalative binding sites. The complex showed significant cleavage of pBR 322 DNA from supercoiled form (SC) to nicked circular form (NC), and these cleavage effects were dose-dependent. Moreover, the mechanism of DNA cleavage indicated that it was a hydrolytic cleavage pathway. These results revealed the potential nuclease activity of the complex to cleave DNA.

  7. Visualization of recombinant DNA and protein complexes using atomic force microscopy.

    PubMed

    Murphy, Patrick J M; Shannon, Morgan; Goertz, John

    2011-07-18

    Atomic force microscopy (AFM) allows for the visualizing of individual proteins, DNA molecules, protein-protein complexes, and DNA-protein complexes. On the end of the microscope's cantilever is a nano-scale probe, which traverses image areas ranging from nanometers to micrometers, measuring the elevation of macromolecules resting on the substrate surface at any given point. Electrostatic forces cause proteins, lipids, and nucleic acids to loosely attach to the substrate in random orientations and permit imaging. The generated data resemble a topographical map, where the macromolecules resolve as three-dimensional particles of discrete sizes (Figure 1). Tapping mode AFM involves the repeated oscillation of the cantilever, which permits imaging of relatively soft biomaterials such as DNA and proteins. One of the notable benefits of AFM over other nanoscale microscopy techniques is its relative adaptability to visualize individual proteins and macromolecular complexes in aqueous buffers, including near-physiologic buffered conditions, in real-time, and without staining or coating the sample to be imaged. The method presented here describes the imaging of DNA and an immunoadsorbed transcription factor (i.e. the glucocorticoid receptor, GR) in buffered solution (Figure 2). Immunoadsorbed proteins and protein complexes can be separated from the immunoadsorbing antibody-bead pellet by competition with the antibody epitope and then imaged (Figure 2A). This allows for biochemical manipulation of the biomolecules of interest prior to imaging. Once purified, DNA and proteins can be mixed and the resultant interacting complex can be imaged as well. Binding of DNA to mica requires a divalent cation, such as Ni(2+) or Mg(2+), which can be added to sample buffers yet maintain protein activity. Using a similar approach, AFM has been utilized to visualize individual enzymes, including RNA polymerase and a repair enzyme, bound to individual DNA strands. These experiments provide

  8. Characterization of an In Vivo Z-DNA Detection Probe Based on a Cell Nucleus Accumulating Intrabody.

    PubMed

    Gulis, Galina; Silva, Izabel Cristina Rodrigues; Sousa, Herdson Renney; Sousa, Isabel Garcia; Bezerra, Maryani Andressa Gomes; Quilici, Luana Salgado; Maranhao, Andrea Queiroz; Brigido, Marcelo Macedo

    2016-09-01

    Left-handed Z-DNA is a physiologically unstable DNA conformation, and its existence in vivo can be attributed to localized torsional distress. Despite evidence for the existence of Z-DNA in vivo, its precise role in the control of gene expression is not fully understood. Here, an in vivo probe based on an anti-Z-DNA intrabody is proposed for native Z-DNA detection. The probe was used for chromatin immunoprecipitation of potential Z-DNA-forming sequences in the human genome. One of the isolated putative Z-DNA-forming sequences was cloned upstream of a reporter gene expression cassette under control of the CMV promoter. The reporter gene encoded an antibody fragment fused to GFP. Transient co-transfection of this vector along with the Z-probe coding vector improved reporter gene expression. This improvement was demonstrated by measuring reporter gene mRNA and protein levels and the amount of fluorescence in co-transfected CHO-K1 cells. These results suggest that the presence of the anti-Z-DNA intrabody can interfere with a Z-DNA-containing reporter gene expression. Therefore, this in vivo probe for the detection of Z-DNA could be used for global correlation of Z-DNA-forming sequences and gene expression regulation.

  9. Regulation of DNA Metabolism by DNA-Binding Proteins Probed by Single Molecule Spectroscopy

    DTIC Science & Technology

    2006-12-05

    denaturation The Watson - Crick double- helix is the thermodynamically stable configuration of a DNA molecule under physiological conditions (normal salt and...room/body temperature). This stability is effected (a) by Watson - Crick H-bonding, that is essential for the specificity of base pairing, i.e., for...guarantees the high level of fidelity during replication and transcription. (b) The second contribution to DNA helix stability comes from base-stacking

  10. An AFLP-based procedure for the efficient mapping of mutations and DNA probes in barley.

    PubMed Central

    Castiglioni, P; Pozzi, C; Heun, M; Terzi, V; Müller, K J; Rohde, W; Salamini, F

    1998-01-01

    A strategy based upon AFLP markers for high-efficiency mapping of morphological mutations and DNA probes to linkage groups in barley is presented. First, 511 AFLP markers were placed on the linkage map derived from the cross Proctor x Nudinka. Second, loci controlling phenotypic traits were assigned to linkage groups by AFLP analysis, using F2 populations consisting of 30-50 mutant plants derived from crosses of the type "mutant x Proctor" and "mutant x Nudinka." To map DNA probes, 67 different wild-type barley lines were selected to generate F2 populations by crossing with Proctor and Nudinka. F2 plants that were polymorphic for a given RFLP fragment were classified into genotypic classes. Linkage of the RFLP polymorphism to 1 of the 511 AFLP loci was indicated by cosegregation. The use of the strategy is exemplified by the mapping of the mutation branched-5 to chromosome 2 and of the DNA probes Bkn2 and BM-7 to chromosomes 5 and 1, respectively. Map expansion and marker order in map regions with dense clustering of markers represented a particular problem. A discussion considering the effect of noncanonical recombinant products on these two parameters is provided. PMID:9691056

  11. Electrochemical DNA hybridization sensors applied to real and complex biological samples.

    PubMed

    Tosar, J P; Brañas, G; Laíz, J

    2010-12-15

    DNA hybridization biosensors, also known as genosensors, are analytical devices for the detection of specific DNA "target" sequences in solution, upon hybridization of the targets with complementary "probes" immobilized on a solid substrate. Electrochemical genosensors hold great promise to serve as devices suitable for point-of-care diagnostics and multiplexed platforms for fast, simple and inexpensive nucleic acids analysis. Although a lot of progress has been made in the past few years, the performance of genosensors in complex biological samples has been assayed in only a small fraction of published research articles. This review covers such a group of reports, from the year 2000 onwards. Special attention is played in the nature and complexity of the samples and in the way matrix effects were treated and specificity controls were performed.

  12. Lanthanide complexes as luminogenic probes to measure sulfide levels in industrial samples.

    PubMed

    Thorson, Megan K; Ung, Phuc; Leaver, Franklin M; Corbin, Teresa S; Tuck, Kellie L; Graham, Bim; Barrios, Amy M

    2015-10-08

    A series of lanthanide-based, azide-appended complexes were investigated as hydrogen sulfide-sensitive probes. Europium complex 1 and Tb complex 3 both displayed a sulfide-dependent increase in luminescence, while Tb complex 2 displayed a decrease in luminescence upon exposure to NaHS. The utility of the complexes for monitoring sulfide levels in industrial oil and water samples was investigated. Complex 3 provided a sensitive measure of sulfide levels in petrochemical water samples (detection limit ∼ 250 nM), while complex 1 was capable of monitoring μM levels of sulfide in partially refined crude oil.

  13. Optimization of hydrogen bonds for combined DNA/collagen complex.

    PubMed

    Pidaparti, Ramana M; Svintradze, David V; Shan, Yingfeng; Yokota, Hiroki

    2009-01-21

    Many natural and biological systems including collagen and DNA polymers are formed by a process of molecular self-assembly. In this paper, we developed two novel structural models and built heterogeneous DNA/collagen complexes through a preferable arrangement of multiple hydrogen bonds (H-bonds) between DNA and collagen molecules. The simulation results based on three sets of criteria indicate that one of the models with five collagen molecules, which are positioned around each strand of DNA molecules emerged to form a suitable polymer complex with the maximum number of H-bonds. Our predictions quantitatively validated and agreed with the molecular structure reported by Mrevlishvili and Svintradze [2005. Int. J. Biol. Macromol. 36, 324-326].

  14. A reliable method for detecting complexed DNA in vitro

    NASA Astrophysics Data System (ADS)

    Holladay, C.; Keeney, M.; Newland, B.; Mathew, A.; Wang, W.; Pandit, A.

    2010-12-01

    Quantification of eluted nucleic acids is a critical parameter in characterizing biomaterial based gene-delivery systems. The most commonly used method is to assay samples with an intercalating fluorescent dye such as PicoGreen®. However, this technique was developed for unbound DNA and the current trend in gene delivery is to condense DNA with transfection reagents, which interfere with intercalation. Here, for the first time, the DNA was permanently labeled with the fluorescent dye Cy5 prior to complexation, an alternative technique hypothesized to allow quantification of both bound and unbound DNA. A comparison of the two methods was performed by quantifying the elution of six different varieties of DNA complexes from a model biomaterial (collagen) scaffold. After seven days of elution, the PicoGreen® assay only allowed detection of three types of complexes (those formed using Lipofectin™ and two synthesised copolymers). However, the Cy5 fluorescent labeling technique enabled detection of all six varieties including those formed via common transfection agents poly(ethylene imine), poly-l-lysine and SuperFect™. This allowed reliable quantification of the elution of all these complexes from the collagen scaffold. Thus, while intercalating dyes may be effective and reliable for detecting double-stranded, unbound DNA, the technique described in this work allowed reliable quantification of DNA independent of complexation state.Quantification of eluted nucleic acids is a critical parameter in characterizing biomaterial based gene-delivery systems. The most commonly used method is to assay samples with an intercalating fluorescent dye such as PicoGreen®. However, this technique was developed for unbound DNA and the current trend in gene delivery is to condense DNA with transfection reagents, which interfere with intercalation. Here, for the first time, the DNA was permanently labeled with the fluorescent dye Cy5 prior to complexation, an alternative technique

  15. Brain-specific expression of MAP2 detected using a cloned cDNA probe

    PubMed Central

    1986-01-01

    We describe the isolation of a set of overlapping cDNAs encoding mouse microtubule associated protein 2 (MAP2), using an anti-MAP antiserum to screen a mouse brain cDNA expression library cloned in bacteriophage lambda gt11. The authenticity of these clones was established by the following criteria: (a) three non-identical clones each expressing a MAP2 immunoreactive fusion protein were independently isolated from the expression library; each of these clones cross-hybridized at the nucleic acid level; (b) anti-MAP antiserum was affinity purified using nitrocellulose-bound fusion protein; these antibodies detected only MAP2 in an immunoblot experiment of whole brain microtubule protein; (c) a series of cDNA "walking" experiments was done so as to obtain a non-overlapping cloned fragment corresponding to a different part of the same mRNA molecule. Upon subcloning this non-overlapping fragment into plasmid expression vectors, a fusion protein was synthesized that was immunoreactive with an anti-MAP2 specific antiserum. Thus, a single contiguous cloned mRNA molecule encodes at least two MAP2-specific epitopes; (d) the cloned cDNA probes detect an mRNA species in mouse brain that is of a size (approximately 9 kb) consistent with the coding capacity required by a 250,000-D protein. The MAP2-specific cloned cDNA probes were used in RNA blot transfer experiments to assay for the presence of MAP2 mRNA in a variety of mouse tissues. Though brain contained abundant quantities of MAP2 mRNA, no corresponding sequences were detectable in RNA prepared from liver, kidney, spleen, stomach, or thymus. We conclude that the expression of MAP2 is brain-specific. Use of the MAP2 specific cDNA probes in genomic Southern blot transfer experiments showed the presence of a single gene encoding MAP2 in mouse. The microheterogeneity of MAP2 is therefore ascribable either to alternative splicing within a single gene, or to posttranslational modification(s), or both. Under conditions of low

  16. BaitFisher: A Software Package for Multispecies Target DNA Enrichment Probe Design.

    PubMed

    Mayer, Christoph; Sann, Manuela; Donath, Alexander; Meixner, Martin; Podsiadlowski, Lars; Peters, Ralph S; Petersen, Malte; Meusemann, Karen; Liere, Karsten; Wägele, Johann-Wolfgang; Misof, Bernhard; Bleidorn, Christoph; Ohl, Michael; Niehuis, Oliver

    2016-07-01

    Target DNA enrichment combined with high-throughput sequencing technologies is a powerful approach to probing a large number of loci in genomes of interest. However, software algorithms that explicitly consider nucleotide sequence information of target loci in multiple reference species for optimizing design of target enrichment baits to be applicable across a wide range of species have not been developed. Here we present an algorithm that infers target DNA enrichment baits from multiple nucleotide sequence alignments. By applying clustering methods and the combinatorial 1-center sequence optimization to bait design, we are able to minimize the total number of baits required to efficiently probe target loci in multiple species. Consequently, more loci can be probed across species with a given number of baits. Using transcript sequences of 24 apoid wasps (Hymenoptera: Crabronidae, Sphecidae) from the 1KITE project and the gene models of Nasonia vitripennis, we inferred 57,650, 120-bp-long baits for capturing 378 coding sequence sections of 282 genes in apoid wasps. Illumina reduced-representation library sequencing confirmed successful enrichment of the target DNA when applying these baits to DNA of various apoid wasps. The designed baits furthermore enriched a major fraction of the target DNA in distantly related Hymenoptera, such as Formicidae and Chalcidoidea, highlighting the baits' broad taxonomic applicability. The availability of baits with broad taxonomic applicability is of major interest in numerous disciplines, ranging from phylogenetics to biodiversity monitoring. We implemented our new approach in a software package, called BaitFisher, which is open source and freely available at https://github.com/cmayer/BaitFisher-package.git. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Accuracy of the Clinical Diagnosis of Vaginitis Compared to a DNA Probe Laboratory Standard

    PubMed Central

    Lowe, Nancy K.; Neal, Jeremy L.; Ryan-Wenger, Nancy A.

    2009-01-01

    Objective To estimate the accuracy of the clinical diagnosis of the three most common causes of acute vulvovaginal symptoms (bacterial vaginosis, candidiasis vaginitis, and trichomoniasis vaginalis) using a traditional, standardized clinical diagnostic protocol compared to a DNA probe laboratory standard. Methods This prospective clinical comparative study had a sample of 535 active duty United States military women presenting with vulovaginal symptoms. Clinical diagnoses were made by research staff using a standardized protocol of history, physical examination including pelvic examination, determination of vaginal pH, vaginal fluid amines test, and wet-prep microscopy. Vaginal fluid samples were obtained for DNA analysis. The research clinicians were blinded to the DNA results. Results The participants described a presenting symptom of abnormal discharge (50%), itching/irritation (33%), malodor (10%), burning (4%), or others such as vulvar pain and vaginal discomfort. According to laboratory standard, there were 225 cases (42%) of bacterial vaginosis 76 cases (14%) of candidiasis vaginitis, 8 cases (1.5%) of trichomoniasis vaginalis, 87 cases of mixed infections (16%), and 139 negative cases (26%). For each single infection, the clinical diagnosis had a sensitivity and specificity of 80.8% and 70.0% for bacterial vaginosis; 83.8% and 84.8% for candidiasis vaginitis; and 84.6% and 99.6% for trichomoniasis vaginalis when compared to the DNA probe standard. Conclusion Compared to a DNA probe standard, clinical diagnosis is 81-85% sensitive and 70- 99% specific for bacterial vaginosis, candida vaginitis, and trichomoniasis. Even under research conditions that provided clinicians with sufficient time and materials to conduct a thorough and standardized clinical evaluation, the diagnosis and therefore, subsequent treatment of these common vaginal problems remains difficult. PMID:19104364

  18. DNA-Cationic Lipid Complexes: Lamellar and Inverted Hexagonal Phases

    NASA Astrophysics Data System (ADS)

    Koltover, I.; Salditt, T.; Raedler, J.; Safinya, C.

    1998-03-01

    Cationic lipid-DNA (CL-DNA) complexes can be efficient non-viral vectors for gene therapy. However, it is not known why transfection rates vary widely for complexes with different lipid compositions. We have discovered a transition between two distinct liquid crystalline (LC) structures of the complex by varying the lipid composition: a lamellar structure ( J. Raedler, I. Koltover, T. Salditt, C. Safinya, Science 275, 810 (1997)) and a novel LC phase with DNA double-strands surrounded by lipid monolayers arranged on a regular hexagonal lattice. The CL-DNA complexes with the two structures interact differently with giant negatively charged liposomes, which represent the simplest model of cellular membranes. We demonstrate the generality of the lamellar-hexagonal transformation by observing it in complexes of cationic lipid with two other negatively charged biopolymers - polyglutamic acid (PGA), a model polypeptide and poly-thymine (polyT), a model single-stranded oligo-nucleotide. We identify the interactions leading to the transformations between the two complex phases for the three different polyelectrolytes. Supported by NSF DMR-9624091 and a Los Alamos CULAR grant No.STB/UC:95-146.

  19. Calculation of complex DNA damage induced by ions

    NASA Astrophysics Data System (ADS)

    Surdutovich, Eugene; Gallagher, David C.; Solov'yov, Andrey V.

    2011-11-01

    This paper is devoted to the analysis of the complex damage of DNA irradiated by ions. The assessment of complex damage is important because cells in which it occurs are less likely to survive because the DNA repair mechanisms may not be sufficiently effective. We study the flux of secondary electrons through the surface of nucleosomes and calculate the radial dose and the distribution of clustered damage around the ion's path. The calculated radial dose distribution is compared to simulations. The radial distribution of the complex damage is found to be different from that of the dose. A comparison with experiments may solve the question of what is more lethal for the cell, damage complexity or absorbed energy. We suggest a way to calculate the probability of cell death based on the complexity of the damage. This work is done within the framework of the phenomenon-based multiscale approach to radiation damage by ions.

  20. An osmium-DNA interstrand complex: application to facile DNA methylation analysis.

    PubMed

    Tanaka, Kazuo; Tainaka, Kazuki; Umemoto, Tadashi; Nomura, Akiko; Okamoto, Akimitsu

    2007-11-21

    Nucleic acids often acquire new functions by forming a variety of complexes with metal ions. Osmium, in an oxidized state, also reacts with C5-methylated pyrimidines. However, control of the sequence specificity of osmium complexation with DNA is still immature, and the value of the resulting complexes is unknown. We have designed a bipyridine-attached adenine derivative for sequence-specific osmium complexation. Sequence-specific osmium complexation was achieved by hybridization of a short DNA molecule containing this functional nucleotide to a target DNA sequence and resulted in the formation of a cross-linked structure. The interstrand cross-link clearly distinguished methylated cytosines from unmethylated cytosines and was used to quantify the degree of methylation at a specific cytosine in the genome.

  1. Unusual DNA binding modes for metal anticancer complexes

    PubMed Central

    Pizarro, Ana M.; Sadler, Peter J.

    2010-01-01

    DNA is believed to be the primary target for many metal-based drugs. For example, platinum-based anticancer drugs can form specific lesions on DNA that induce apoptosis. New platinum drugs can be designed that have novel modes of interaction with DNA, such as the trinuclear platinum complex BBR3464. Also it is possible to design inert platinum(IV) pro-drugs which are non-toxic in the dark, but lethal when irradiated with certain wavelengths of light. This gives rise to novel DNA lesions which are not as readily repaired as those induced by cisplatin, and provides the basis for a new type of photoactivated chemotherapy. Finally, newly emerging ruthenium(II) organometallic complexes not only bind to DNA coordinatively, but also by H-bonding and hydrophibic interactions triggered by the introduction of extended arene rings into their versatile structures. Intriguingly osmium (the heavier congener of ruthenium) reacts differently with DNA but can also give rise to highly cytotoxic organometallic complexes. PMID:19344743

  2. LL37-DNA complexes and auto-immune diseases

    NASA Astrophysics Data System (ADS)

    Jin, Fan; Sanders, Lori K.; Xian, Wujing; Gilliet, Michel; Wong, Gerard C. L.; Department of Immunology, University of Texas, Houston Collaboration

    2011-03-01

    LL37 is an alpha-helical host defense peptide in humans. Recent work has shown that Toll-like receptor-9 (TLR9), an intracellular receptor in plasmacytoid dendritic cells (pDCs) of the immune system that normally responds to pathogen nucleic acids, can be pathologically triggered by self DNA in the form of DNA-LL37 complexes. Synchrotron small-angle x-ray scattering (SAXS) measurements reveal an unanticipated form of self-assembly between DNA and this positively charged macroion. We examine the generality of this with other macroions, and propose a new geometric criterion for immune cell activation.

  3. DNA interactions of new antitumor aminophosphine platinum(II) complexes.

    PubMed

    Neplechová, K; Kaspárková, J; Vrána, O; Nováková, O; Habtemariam, A; Watchman, B; Sadler, P J; Brabec, V

    1999-07-01

    Mechanistic studies are presented of a novel class of aminophosphine platinum(II) complexes as potential anticancer agents. These new agents, which have demonstrated activity against murine and human tumor cells including those resistant to cisplatin are cis-[PtCl2(Me2N(CH2)3PPh2-P)2] (Com1) and cis-[PtCl(C6H11NH(CH2)2PPh2-N,P)(C6H11NH(CH2) 2PPh2-P)] (Com2). We studied modifications of natural and synthetic DNAs in cell-free media by Com1 and Com2 by various biomedical and biophysical methods and compared the results with those obtained when DNA was modified by cisplatin. The results indicated that Com1 and Com2 coordinated to DNA faster than cisplatin. Bifunctional Com1 formed DNA adducts coordinating to single adenine or guanine residues or by forming cross-links between these residues. In comparison with cisplatin, Com1 formed the adducts more frequently at adenine residues and also formed fewer bidentate lesions. The monofunctional Com2 only formed DNA monodentate adducts at guanine residues. In addition, Com1 terminated DNA synthesis in vitro more efficiently than cisplatin whereas Com2 blocked DNA synthesis only slightly. DNA unwinding studies, measurements of circular dichroism spectra, immunochemical analysis, and studies of the B-Z transition in DNA revealed conformational alterations induced by the adducts of Com1, which were distinctly different from those induced by cisplatin. Com2 had little influence on DNA conformation. It is suggested that the activity profile of aminophosphine platinum(II) complexes, which is different from that of cisplatin and related analogs, might be associated with the specific DNA binding properties of this new class of platinum(II) compounds.

  4. Chromosomal DNA probes for the identification of asaccharolytic anaerobic pigmented bacterial rods from the oral cavity of cats.

    PubMed

    Love, D N; Bailey, G D; Bastin, D

    1992-06-01

    A dot-blot hybridisation assay using isolated high molecular weight DNA as whole chromosomal probes of the cat pigmented asaccharolytic Bacteroides/Porphyromonas species was used against both purified high molecular weight DNA and DNA released on membranes from whole cells for the identification of B. salivosus and for its differentiation from the other anaerobic species isolated from normal and diseased mouths of cats and horses. 32P-labelled probes were compared with digoxigenin (DIG)-labelled probes (Boehringer-Mannheim). The whole chromosomal probes were specific--differentiating B. salivosus from a variety of species (including members of the genera Bacteroides, Fusobacterium, Eubacterium, and Prevotella) found in normal and abnormal mouths of cats and horses. Likewise, asaccharolytic black pigmented Group 2 strains were distinguishable from all strains tested. However, cat strains of P. gingivalis which show 68-76% DNA-DNA homology with human strain P. gingivalis ATCC 33277T, were not distinguishable from each other using either 32P-labelled or DIG-labelled probes. The minimum amount of pure Bacteroides DNA which could be detected by the 32P-labelled probe was 100-300 pg, while the amount of pure DNA detected by the DIG system was 1-3 mg after room temperature colour development for 1 h and 100-300 pg after 6 h colour development.

  5. [Identification of chromosomal aberration in esophageal cancer cells by mixed BAC DNA probes of chromosome arms and regions].