Sample records for dna damage contributes

  1. DNA Damage and Repair in Human Cancer: Molecular Mechanisms and Contribution to Therapy-Related Leukemias

    PubMed Central

    Casorelli, Ida; Bossa, Cecilia; Bignami, Margherita

    2012-01-01

    Most antitumour therapies damage tumour cell DNA either directly or indirectly. Without repair, damage can result in genetic instability and eventually cancer. The strong association between the lack of DNA damage repair, mutations and cancer is dramatically demonstrated by a number of cancer-prone human syndromes, such as xeroderma pigmentosum, ataxia-telangiectasia and Fanconi anemia. Notably, DNA damage responses, and particularly DNA repair, influence the outcome of therapy. Because DNA repair normally excises lethal DNA lesions, it is intuitive that efficient repair will contribute to intrinsic drug resistance. Unexpectedly, a paradoxical relationship between DNA mismatch repair and drug sensitivity has been revealed by model studies in cell lines. This suggests that connections between DNA repair mechanism efficiency and tumour therapy might be more complex. Here, we review the evidence for the contribution of carcinogenic properties of several drugs as well as of alterations in specific mechanisms involved in drug-induced DNA damage response and repair in the pathogenesis of therapy-related cancers. PMID:23066388

  2. Both Complexity and Location of DNA Damage Contribute to Cellular Senescence Induced by Ionizing Radiation

    PubMed Central

    Zhang, Xurui; Ye, Caiyong; Sun, Fang; Wei, Wenjun; Hu, Burong; Wang, Jufang

    2016-01-01

    Persistent DNA damage is considered as a main cause of cellular senescence induced by ionizing radiation. However, the molecular bases of the DNA damage and their contribution to cellular senescence are not completely clear. In this study, we found that both heavy ions and X-rays induced senescence in human uveal melanoma 92–1 cells. By measuring senescence associated-β-galactosidase and cell proliferation, we identified that heavy ions were more effective at inducing senescence than X-rays. We observed less efficient repair when DNA damage was induced by heavy ions compared with X-rays and most of the irreparable damage was complex of single strand breaks and double strand breaks, while DNA damage induced by X-rays was mostly repaired in 24 hours and the remained damage was preferentially associated with telomeric DNA. Our results suggest that DNA damage induced by heavy ion is often complex and difficult to repair, thus presents as persistent DNA damage and pushes the cell into senescence. In contrast, persistent DNA damage induced by X-rays is preferentially associated with telomeric DNA and the telomere-favored persistent DNA damage contributes to X-rays induced cellular senescence. These findings provide new insight into the understanding of high relative biological effectiveness of heavy ions relevant to cancer therapy and space radiation research. PMID:27187621

  3. DNA Damage, DNA Repair, Aging, and Neurodegeneration

    PubMed Central

    Maynard, Scott; Fang, Evandro Fei; Scheibye-Knudsen, Morten; Croteau, Deborah L.; Bohr, Vilhelm A.

    2015-01-01

    Aging in mammals is accompanied by a progressive atrophy of tissues and organs, and stochastic damage accumulation to the macromolecules DNA, RNA, proteins, and lipids. The sequence of the human genome represents our genetic blueprint, and accumulating evidence suggests that loss of genomic maintenance may causally contribute to aging. Distinct evidence for a role of imperfect DNA repair in aging is that several premature aging syndromes have underlying genetic DNA repair defects. Accumulation of DNA damage may be particularly prevalent in the central nervous system owing to the low DNA repair capacity in postmitotic brain tissue. It is generally believed that the cumulative effects of the deleterious changes that occur in aging, mostly after the reproductive phase, contribute to species-specific rates of aging. In addition to nuclear DNA damage contributions to aging, there is also abundant evidence for a causative link between mitochondrial DNA damage and the major phenotypes associated with aging. Understanding the mechanistic basis for the association of DNA damage and DNA repair with aging and age-related diseases, such as neurodegeneration, would give insight into contravening age-related diseases and promoting a healthy life span. PMID:26385091

  4. Calculation on spectrum of direct DNA damage induced by low-energy electrons including dissociative electron attachment.

    PubMed

    Liu, Wei; Tan, Zhenyu; Zhang, Liming; Champion, Christophe

    2017-03-01

    In this work, direct DNA damage induced by low-energy electrons (sub-keV) is simulated using a Monte Carlo method. The characteristics of the present simulation are to consider the new mechanism of DNA damage due to dissociative electron attachment (DEA) and to allow determining damage to specific bases (i.e., adenine, thymine, guanine, or cytosine). The electron track structure in liquid water is generated, based on the dielectric response model for describing electron inelastic scattering and on a free-parameter theoretical model and the NIST database for calculating electron elastic scattering. Ionization cross sections of DNA bases are used to generate base radicals, and available DEA cross sections of DNA components are applied for determining DNA-strand breaks and base damage induced by sub-ionization electrons. The electron elastic scattering from DNA components is simulated using cross sections from different theoretical calculations. The resulting yields of various strand breaks and base damage in cellular environment are given. Especially, the contributions of sub-ionization electrons to various strand breaks and base damage are quantitatively presented, and the correlation between complex clustered DNA damage and the corresponding damaged bases is explored. This work shows that the contribution of sub-ionization electrons to strand breaks is substantial, up to about 40-70%, and this contribution is mainly focused on single-strand break. In addition, the base damage induced by sub-ionization electrons contributes to about 20-40% of the total base damage, and there is an evident correlation between single-strand break and damaged base pair A-T.

  5. Investigation on the correlation between energy deposition and clustered DNA damage induced by low-energy electrons.

    PubMed

    Liu, Wei; Tan, Zhenyu; Zhang, Liming; Champion, Christophe

    2018-05-01

    This study presents the correlation between energy deposition and clustered DNA damage, based on a Monte Carlo simulation of the spectrum of direct DNA damage induced by low-energy electrons including the dissociative electron attachment. Clustered DNA damage is classified as simple and complex in terms of the combination of single-strand breaks (SSBs) or double-strand breaks (DSBs) and adjacent base damage (BD). The results show that the energy depositions associated with about 90% of total clustered DNA damage are below 150 eV. The simple clustered DNA damage, which is constituted of the combination of SSBs and adjacent BD, is dominant, accounting for 90% of all clustered DNA damage, and the spectra of the energy depositions correlating with them are similar for different primary energies. One type of simple clustered DNA damage is the combination of a SSB and 1-5 BD, which is denoted as SSB + BD. The average contribution of SSB + BD to total simple clustered DNA damage reaches up to about 84% for the considered primary energies. In all forms of SSB + BD, the SSB + BD including only one base damage is dominant (above 80%). In addition, for the considered primary energies, there is no obvious difference between the average energy depositions for a fixed complexity of SSB + BD determined by the number of base damage, but average energy depositions increase with the complexity of SSB + BD. In the complex clustered DNA damage constituted by the combination of DSBs and BD around them, a relatively simple type is a DSB combining adjacent BD, marked as DSB + BD, and it is of substantial contribution (on average up to about 82%). The spectrum of DSB + BD is given mainly by the DSB in combination with different numbers of base damage, from 1 to 5. For the considered primary energies, the DSB combined with only one base damage contributes about 83% of total DSB + BD, and the average energy deposition is about 106 eV. However, the energy deposition increases with the complexity of clustered DNA damage, and therefore, the clustered DNA damage with high complexity still needs to be considered in the study of radiation biological effects, in spite of their small contributions to all clustered DNA damage.

  6. The contribution of co-transcriptional RNA:DNA hybrid structures to DNA damage and genome instability

    PubMed Central

    Hamperl, Stephan; Cimprich, Karlene A.

    2014-01-01

    Accurate DNA replication and DNA repair are crucial for the maintenance of genome stability, and it is generally accepted that failure of these processes is a major source of DNA damage in cells. Intriguingly, recent evidence suggests that DNA damage is more likely to occur at genomic loci with high transcriptional activity. Furthermore, loss of certain RNA processing factors in eukaryotic cells is associated with increased formation of co-transcriptional RNA:DNA hybrid structures known as R-loops, resulting in double-strand breaks (DSBs) and DNA damage. However, the molecular mechanisms by which R-loop structures ultimately lead to DNA breaks and genome instability is not well understood. In this review, we summarize the current knowledge about the formation, recognition and processing of RNA:DNA hybrids, and discuss possible mechanisms by which these structures contribute to DNA damage and genome instability in the cell. PMID:24746923

  7. DNA damage preceding dopamine neuron degeneration in A53T human α-synuclein transgenic mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Degui; Yu, Tianyu; Liu, Yongqiang

    Defective DNA repair has been linked with age-associated neurodegenerative disorders. Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by genetic and environmental factors. Whether damages to nuclear DNA contribute to neurodegeneration of PD still remain obscure. in this study we aim to explore whether nuclear DNA damage induce dopamine neuron degeneration in A53T human α-Synuclein over expressed mouse model. We investigated the effects of X-ray irradiation on A53T-α-Syn MEFs and A53T-α-Syn transgene mice. Our results indicate that A53T-α-Syn MEFs show a prolonged DNA damage repair process and senescense phenotype. DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenicmore » mice and decrease the number of nigrostriatal dopaminergic neurons. Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages. - Highlights: • This study explore contribution of DNA damage to neurodegeneration in Parkinson's disease mice. • A53T-α-Syn MEF cells show a prolonged DNA damage repair process and senescense phenotype. • DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenic mice. • DNA damage decrease the number of nigrostriatal dopaminergic neurons. • Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages.« less

  8. Low-dose environmental radiation, DNA damage, and cancer: the possible contribution of psychological factors.

    PubMed

    Cwikel, Julie G; Gidron, Yori; Quastel, Michael

    2010-01-01

    Radiation causes DNA damage, increases risk of cancer, and is associated with psychological stress responses. This article proposes an evidence-based integrative model in which psychological factors could interact with radiation by either augmenting or moderating the adverse effects of radiation on DNA integrity and eventual tumorigenesis. Based on a review of the literature, we demonstrate the following: (1) the effects of low-dose radiation exposures on DNA integrity and on tumorigenesis; (2) the effects of low-dose radiation exposure on psychological distress; (3) the relationship between psychological factors and DNA damage; and (4) the possibility that psychological stress augments and that psychological resource variables moderate radiation-induced DNA damage and risk of cancer. The additional contribution of psychological processes to radiation-DNA damage-cancer relationships needs further study, and if verified, has clinical implications.

  9. Cumulative mtDNA damage and mutations contribute to the progressive loss of RGCs in a rat model of glaucoma

    PubMed Central

    Nickerson, John M.; Gao, Feng-juan; Sun, Zhongmou; Chen, Xin-ya; Zhang, Shu-jie; Gao, Feng; Chen, Jun-yi; Luo, Yi; Wang, Yan; Sun, Xing-huai

    2015-01-01

    Glaucoma is a chronic neurodegenerative disease characterized by the progressive loss of retinal ganglion cells (RGCs). Mitochondrial DNA (mtDNA) alterations have been documented as a key component of many neurodegenerative disorders. However, whether mtDNA alterations contribute to the progressive loss of RGCs and the mechanism whereby this phenomenon could occur are poorly understood. We investigated mtDNA alterations in RGCs using a rat model of chronic intraocular hypertension and explored the mechanisms underlying progressive RGC loss. We demonstrate that the mtDNA damage and mutations triggered by intraocular pressure (IOP) elevation are initiating, crucial events in a cascade leading to progressive RGC loss. Damage to and mutation of mtDNA, mitochondrial dysfunction, reduced levels of mtDNA repair/replication enzymes, and elevated reactive oxygen species form a positive feedback loop that produces irreversible mtDNA damage and mutation and contributes to progressive RGC loss, which occurs even after a return to normal IOP. Furthermore, we demonstrate that mtDNA damage and mutations increase the vulnerability of RGCs to elevated IOP and glutamate levels, which are among the most common glaucoma insults. This study suggests that therapeutic approaches that target mtDNA maintenance and repair and that promote energy production may prevent the progressive death of RGCs. PMID:25478814

  10. DNA Replication Arrest and DNA Damage Responses Induced by Alkylating Minor Groove Binders

    DTIC Science & Technology

    2001-05-01

    We are interested in the molecular mechanisms involved in DNA replication arrest by the S phase DNA damage checkpoints. Using in vitro simian virus...40 DNA replication assays, we have found three factors that directly contribute to DNA damage-induced DNA replication arrest: Replication Protein A...trans-acting inhibitors. RPA is the major eukaryotic single-stranded DNA binding protein required for DNA replication , repair and recombination. Upon DNA

  11. Two familial ALS proteins function in prevention/repair of transcription-associated DNA damage.

    PubMed

    Hill, Sarah J; Mordes, Daniel A; Cameron, Lisa A; Neuberg, Donna S; Landini, Serena; Eggan, Kevin; Livingston, David M

    2016-11-29

    Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron dysfunction disease that leads to paralysis and death. There is currently no established molecular pathogenesis pathway. Multiple proteins involved in RNA processing are linked to ALS, including FUS and TDP43, and we propose a disease mechanism in which loss of function of at least one of these proteins leads to an accumulation of transcription-associated DNA damage contributing to motor neuron cell death and progressive neurological symptoms. In support of this hypothesis, we find that FUS or TDP43 depletion leads to increased sensitivity to a transcription-arresting agent due to increased DNA damage. Thus, these proteins normally contribute to the prevention or repair of transcription-associated DNA damage. In addition, both FUS and TDP43 colocalize with active RNA polymerase II at sites of DNA damage along with the DNA damage repair protein, BRCA1, and FUS and TDP43 participate in the prevention or repair of R loop-associated DNA damage, a manifestation of aberrant transcription and/or RNA processing. Gaining a better understanding of the role(s) that FUS and TDP43 play in transcription-associated DNA damage could shed light on the mechanisms underlying ALS pathogenesis.

  12. Two familial ALS proteins function in prevention/repair of transcription-associated DNA damage

    PubMed Central

    Hill, Sarah J.; Mordes, Daniel A.; Cameron, Lisa A.; Neuberg, Donna S.; Landini, Serena; Eggan, Kevin; Livingston, David M.

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron dysfunction disease that leads to paralysis and death. There is currently no established molecular pathogenesis pathway. Multiple proteins involved in RNA processing are linked to ALS, including FUS and TDP43, and we propose a disease mechanism in which loss of function of at least one of these proteins leads to an accumulation of transcription-associated DNA damage contributing to motor neuron cell death and progressive neurological symptoms. In support of this hypothesis, we find that FUS or TDP43 depletion leads to increased sensitivity to a transcription-arresting agent due to increased DNA damage. Thus, these proteins normally contribute to the prevention or repair of transcription-associated DNA damage. In addition, both FUS and TDP43 colocalize with active RNA polymerase II at sites of DNA damage along with the DNA damage repair protein, BRCA1, and FUS and TDP43 participate in the prevention or repair of R loop-associated DNA damage, a manifestation of aberrant transcription and/or RNA processing. Gaining a better understanding of the role(s) that FUS and TDP43 play in transcription-associated DNA damage could shed light on the mechanisms underlying ALS pathogenesis. PMID:27849576

  13. Curcumin-Mediated HDAC Inhibition Suppresses the DNA Damage Response and Contributes to Increased DNA Damage Sensitivity

    PubMed Central

    Wang, Shu-Huei; Lin, Pei-Ya; Chiu, Ya-Chen; Huang, Ju-Sui; Kuo, Yi-Tsen; Wu, Jen-Chine; Chen, Chin-Chuan

    2015-01-01

    Chemo- and radiotherapy cause multiple forms of DNA damage and lead to the death of cancer cells. Inhibitors of the DNA damage response are candidate drugs for use in combination therapies to increase the efficacy of such treatments. In this study, we show that curcumin, a plant polyphenol, sensitizes budding yeast to DNA damage by counteracting the DNA damage response. Following DNA damage, the Mec1-dependent DNA damage checkpoint is inactivated and Rad52 recombinase is degraded by curcumin, which results in deficiencies in double-stand break repair. Additive effects on damage-induced apoptosis and the inhibition of damage-induced autophagy by curcumin were observed. Moreover, rpd3 mutants were found to mimic the curcumin-induced suppression of the DNA damage response. In contrast, hat1 mutants were resistant to DNA damage, and Rad52 degradation was impaired following curcumin treatment. These results indicate that the histone deacetylase inhibitor activity of curcumin is critical to DSB repair and DNA damage sensitivity. PMID:26218133

  14. Cumulative mtDNA damage and mutations contribute to the progressive loss of RGCs in a rat model of glaucoma.

    PubMed

    Wu, Ji-Hong; Zhang, Sheng-Hai; Nickerson, John M; Gao, Feng-Juan; Sun, Zhongmou; Chen, Xin-Ya; Zhang, Shu-Jie; Gao, Feng; Chen, Jun-Yi; Luo, Yi; Wang, Yan; Sun, Xing-Huai

    2015-02-01

    Glaucoma is a chronic neurodegenerative disease characterized by the progressive loss of retinal ganglion cells (RGCs). Mitochondrial DNA (mtDNA) alterations have been documented as a key component of many neurodegenerative disorders. However, whether mtDNA alterations contribute to the progressive loss of RGCs and the mechanism whereby this phenomenon could occur are poorly understood. We investigated mtDNA alterations in RGCs using a rat model of chronic intraocular hypertension and explored the mechanisms underlying progressive RGC loss. We demonstrate that the mtDNA damage and mutations triggered by intraocular pressure (IOP) elevation are initiating, crucial events in a cascade leading to progressive RGC loss. Damage to and mutation of mtDNA, mitochondrial dysfunction, reduced levels of mtDNA repair/replication enzymes, and elevated reactive oxygen species form a positive feedback loop that produces irreversible mtDNA damage and mutation and contributes to progressive RGC loss, which occurs even after a return to normal IOP. Furthermore, we demonstrate that mtDNA damage and mutations increase the vulnerability of RGCs to elevated IOP and glutamate levels, which are among the most common glaucoma insults. This study suggests that therapeutic approaches that target mtDNA maintenance and repair and that promote energy production may prevent the progressive death of RGCs. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Aging of hematopoietic stem cells: DNA damage and mutations?

    PubMed

    Moehrle, Bettina M; Geiger, Hartmut

    2016-10-01

    Aging in the hematopoietic system and the stem cell niche contributes to aging-associated phenotypes of hematopoietic stem cells (HSCs), including leukemia and aging-associated immune remodeling. Among others, the DNA damage theory of aging of HSCs is well established, based on the detection of a significantly larger amount of γH2AX foci and a higher tail moment in the comet assay, both initially thought to be associated with DNA damage in aged HSCs compared with young cells, and bone marrow failure in animals devoid of DNA repair factors. Novel data on the increase in and nature of DNA mutations in the hematopoietic system with age, the quality of the DNA damage response in aged HSCs, and the nature of γH2AX foci question a direct link between DNA damage and the DNA damage response and aging of HSCs, and rather favor changes in epigenetics, splicing-factors or three-dimensional architecture of the cell as major cell intrinsic factors of HSCs aging. Aging of HSCs is also driven by a strong contribution of aging of the niche. This review discusses the DNA damage theory of HSC aging in the light of these novel mechanisms of aging of HSCs. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  16. Omics Approaches for Identifying Physiological Adaptations to Genome Instability in Aging.

    PubMed

    Edifizi, Diletta; Schumacher, Björn

    2017-11-04

    DNA damage causally contributes to aging and age-related diseases. The declining functioning of tissues and organs during aging can lead to the increased risk of succumbing to aging-associated diseases. Congenital syndromes that are caused by heritable mutations in DNA repair pathways lead to cancer susceptibility and accelerated aging, thus underlining the importance of genome maintenance for withstanding aging. High-throughput mass-spectrometry-based approaches have recently contributed to identifying signalling response networks and gaining a more comprehensive understanding of the physiological adaptations occurring upon unrepaired DNA damage. The insulin-like signalling pathway has been implicated in a DNA damage response (DDR) network that includes epidermal growth factor (EGF)-, AMP-activated protein kinases (AMPK)- and the target of rapamycin (TOR)-like signalling pathways, which are known regulators of growth, metabolism, and stress responses. The same pathways, together with the autophagy-mediated proteostatic response and the decline in energy metabolism have also been found to be similarly regulated during natural aging, suggesting striking parallels in the physiological adaptation upon persistent DNA damage due to DNA repair defects and long-term low-level DNA damage accumulation occurring during natural aging. These insights will be an important starting point to study the interplay between signalling networks involved in progeroid syndromes that are caused by DNA repair deficiencies and to gain new understanding of the consequences of DNA damage in the aging process.

  17. Omics Approaches for Identifying Physiological Adaptations to Genome Instability in Aging

    PubMed Central

    Edifizi, Diletta; Schumacher, Björn

    2017-01-01

    DNA damage causally contributes to aging and age-related diseases. The declining functioning of tissues and organs during aging can lead to the increased risk of succumbing to aging-associated diseases. Congenital syndromes that are caused by heritable mutations in DNA repair pathways lead to cancer susceptibility and accelerated aging, thus underlining the importance of genome maintenance for withstanding aging. High-throughput mass-spectrometry-based approaches have recently contributed to identifying signalling response networks and gaining a more comprehensive understanding of the physiological adaptations occurring upon unrepaired DNA damage. The insulin-like signalling pathway has been implicated in a DNA damage response (DDR) network that includes epidermal growth factor (EGF)-, AMP-activated protein kinases (AMPK)- and the target of rapamycin (TOR)-like signalling pathways, which are known regulators of growth, metabolism, and stress responses. The same pathways, together with the autophagy-mediated proteostatic response and the decline in energy metabolism have also been found to be similarly regulated during natural aging, suggesting striking parallels in the physiological adaptation upon persistent DNA damage due to DNA repair defects and long-term low-level DNA damage accumulation occurring during natural aging. These insights will be an important starting point to study the interplay between signalling networks involved in progeroid syndromes that are caused by DNA repair deficiencies and to gain new understanding of the consequences of DNA damage in the aging process. PMID:29113067

  18. DNA damage response in monozygotic twins discordant for smoking habits.

    PubMed

    Marcon, Francesca; Carotti, Daniela; Andreoli, Cristina; Siniscalchi, Ester; Leopardi, Paola; Caiola, Stefania; Biffoni, Mauro; Zijno, Andrea; Medda, Emanuela; Nisticò, Lorenza; Rossi, Sabrina; Crebelli, Riccardo

    2013-03-01

    Previous studies in twins indicate that non-shared environment, beyond genetic factors, contributes substantially to individual variation in mutagen sensitivity; however, the role of specific causative factors (e.g. tobacco smoke, diet) was not elucidated. In this investigation, a population of 22 couples of monozygotic twins with discordant smoking habits was selected with the aim of evaluating the influence of tobacco smoke on individual response to DNA damage. The study design virtually eliminated the contribution of genetic heterogeneity to the intra-pair variation in DNA damage response, and thus any difference in the end-points investigated could directly be attributed to the non-shared environment experienced by co-twins, which included as main factor cigarette smoke exposure. Peripheral lymphocytes of study subjects were challenged ex vivo with γ-rays, and the induction, processing, fixation of DNA damage evaluated through multiple approaches. Folate status of study subjects was considered significant covariate since it is affected by smoking habits and can influence radiosensitivity. Similar responses were elicited by γ-rays in co-twins for all the end-points analysed, despite their discordant smoking habits. Folate status did not modify DNA damage response, even though a combined effect of smoking habits, low-plasma folic acid level, and ionising radiation was observed on apoptosis. A possible modulation of DNA damage response by duration and intensity of tobacco smoke exposure was suggested by Comet assay and micronucleus data, but the effect was quantitatively limited. Overall, the results obtained indicate that differences in smoking habits do not contribute to a large extent to inter-individual variability in the response to radiation-induced DNA damage observed in healthy human populations.

  19. Mitochondrial DNA Damage and its Consequences for Mitochondrial Gene Expression

    PubMed Central

    Cline, Susan D.

    2012-01-01

    How mitochondria process DNA damage and whether a change in the steady-state level of mitochondrial DNA damage (mtDNA) contributes to mitochondrial dysfunction are questions that fuel burgeoning areas of research into aging and disease pathogenesis. Over the past decade, researchers have identified and measured various forms of endogenous and environmental mtDNA damage and have elucidated mtDNA repair pathways. Interestingly, mitochondria do not appear to contain the full range of DNA repair mechanisms that operate in the nucleus, although mtDNA contains types of damage that are targets of each nuclear DNA repair pathway. The reduced repair capacity may, in part, explain the high mutation frequency of the mitochondrial chromosome. Since mtDNA replication is dependent on transcription, mtDNA damage may alter mitochondrial gene expression at three levels: by causing DNA polymerase γ nucleotide incorporation errors leading to mutations, by interfering with the priming of mtDNA replication by the mitochondrial RNA polymerase, or by inducing transcriptional mutagenesis or premature transcript termination. This review summarizes our current knowledge of mtDNA damage, its repair, and its effects on mtDNA integrity and gene expression. PMID:22728831

  20. Mediator of DNA damage checkpoint 1 (MDC1) contributes to high NaCl-induced activation of the osmoprotective transcription factor TonEBP/OREBP.

    PubMed

    Kunin, Margarita; Dmitrieva, Natalia I; Gallazzini, Morgan; Shen, Rong-Fong; Wang, Guanghui; Burg, Maurice B; Ferraris, Joan D

    2010-08-11

    Hypertonicity, such as induced by high NaCl, increases the activity of the transcription factor TonEBP/OREBP whose target genes increase osmoprotective organic osmolytes and heat shock proteins. We used mass spectrometry to analyze proteins that coimmunoprecipitate with TonEBP/OREBP in order to identify ones that might contribute to its high NaCl-induced activation. We identified 20 unique peptides from Mediator of DNA Damage Checkpoint 1 (MDC1) with high probability. The identification was confirmed by Western analysis. We used small interfering RNA knockdown of MDC1 to characterize its osmotic function. Knocking down MDC1 reduces high NaCl-induced increases in TonEBP/OREBP transcriptional and transactivating activity, but has no significant effect on its nuclear localization. We confirm six previously known phosphorylation sites in MDC1, but do not find evidence that high NaCl increases phosphorylation of MDC1. It is suggestive that MDC1 acts as a DNA damage response protein since hypertonicity reversibly increases DNA breaks, and other DNA damage response proteins, like ATM, also associate with TonEBP/OREBP and contribute to its activation by hypertonicity. MDC1 associates with TonEBP/OREBP and contributes to high NaCl-induced increase of that factor's transcriptional activity.

  1. Impact of genomic damage and ageing on stem cell function

    PubMed Central

    Behrens, Axel; van Deursen, Jan M.; Rudolph, K. Lenhard; Schumacher, Björn

    2014-01-01

    Impairment of stem cell function contributes to the progressive deterioration of tissue maintenance and repair with ageing. Evidence is mounting that age-dependent accumulation of DNA damage in both stem cells and cells that comprise the stem cell microenvironment are partly responsible for stem cell dysfunction with ageing. Here, we review the impact of the various types of DNA damage that accumulate with ageing on stem cell functionality, as well as the development of cancer. We discuss DNA-damage-induced cell intrinsic and extrinsic alterations that influence these processes, and review recent advances in understanding systemic adjustments to DNA damage and how they affect stem cells. PMID:24576896

  2. Expression Profile of DNA Damage Signaling Genes in Proton Exposed Mouse Brain

    NASA Astrophysics Data System (ADS)

    Ramesh, Govindarajan; Wu, Honglu

    Exposure of living systems to radiation results in a wide assortment of lesions, the most signif-icant of is damage to genomic DNA which induce several cellular functions such as cell cycle arrest, repair, apoptosis etc. The radiation induced DNA damage investigation is one of the im-portant area in biology, but still the information available regarding the effects of proton is very limited. In this report, we investigated the differential gene expression pattern of DNA damage signaling genes particularly, damaged DNA binding, repair, cell cycle arrest, checkpoints and apoptosis using quantitative real-time RT-PCR array in proton exposed mouse brain tissues. The expression profiles showed significant changes in DNA damage related genes in 2Gy proton exposed mouse brain tissues as compared with control brain tissues. Furthermore, we also show that significantly increased levels of apoptotic related genes, caspase-3 and 8 activities in these cells, suggesting that in addition to differential expression of DNA damage genes, the alteration of apoptosis related genes may also contribute to the radiation induced DNA damage followed by programmed cell death. In summary, our findings suggest that proton exposed brain tissue undergo severe DNA damage which in turn destabilize the chromatin stability.

  3. DNA damage and polyploidization.

    PubMed

    Chow, Jeremy; Poon, Randy Y C

    2010-01-01

    A growing body of evidence indicates that polyploidization triggers chromosomal instability and contributes to tumorigenesis. DNA damage is increasingly being recognized for its roles in promoting polyploidization. Although elegant mechanisms known as the DNA damage checkpoints are responsible for halting the cell cycle after DNA damage, agents that uncouple the checkpoints can induce unscheduled entry into mitosis. Likewise, defects of the checkpoints in several disorders permit mitotic entry even in the presence of DNA damage. Forcing cells with damaged DNA into mitosis causes severe chromosome segregation defects, including lagging chromosomes, chromosomal fragments and chromosomal bridges. The presence of these lesions in the cleavage plane is believed to abort cytokinesis. It is postulated that if cytokinesis failure is coupled with defects of the p53-dependent postmitotic checkpoint pathway, cells can enter S phase and become polyploids. Progress in the past several years has unraveled some of the underlying principles of these pathways and underscored the important role of DNA damage in polyploidization. Furthermore, polyploidization per se may also be an important determinant of sensitivity to DNA damage, thereby may offer an opportunity for novel therapies.

  4. The role of DNA repair pathways in cisplatin resistant lung cancer.

    PubMed

    O'Grady, Shane; Finn, Stephen P; Cuffe, Sinead; Richard, Derek J; O'Byrne, Kenneth J; Barr, Martin P

    2014-12-01

    Platinum chemotherapeutic agents such as cisplatin are currently used in the treatment of various malignancies such as lung cancer. However, their efficacy is significantly hindered by the development of resistance during treatment. While a number of factors have been reported that contribute to the onset of this resistance phenotype, alterations in the DNA repair capacity of damaged cells is now recognised as an important factor in mediating this phenomenon. The mode of action of cisplatin has been linked to its ability to crosslink purine bases on the DNA, thereby interfering with DNA repair mechanisms and inducing DNA damage. Following DNA damage, cells respond by activating a DNA-damage response that either leads to repair of the lesion by the cell thereby promoting resistance to the drug, or cell death via activation of the apoptotic response. Therefore, DNA repair is a vital target to improving cancer therapy and reduce the resistance of tumour cells to DNA damaging agents currently used in the treatment of cancer patients. To date, despite the numerous findings that differential expression of components of the various DNA repair pathways correlate with response to cisplatin, translation of such findings in the clinical setting are still warranted. The identification of alterations in specific proteins and pathways that contribute to these unique DNA repair pathways in cisplatin resistant cancer cells may potentially lead to a renewed interest in the development of rational novel therapies for cisplatin resistant cancers, in particular, lung cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. DNA-Damage Response RNA-Binding Proteins (DDRBPs): Perspectives from a New Class of Proteins and Their RNA Targets.

    PubMed

    Dutertre, Martin; Vagner, Stéphan

    2017-10-27

    Upon DNA damage, cells trigger an early DNA-damage response (DDR) involving DNA repair and cell cycle checkpoints, and late responses involving gene expression regulation that determine cell fate. Screens for genes involved in the DDR have found many RNA-binding proteins (RBPs), while screens for novel RBPs have identified DDR proteins. An increasing number of RBPs are involved in early and/or late DDR. We propose to call this new class of actors of the DDR, which contain an RNA-binding activity, DNA-damage response RNA-binding proteins (DDRBPs). We then discuss how DDRBPs contribute not only to gene expression regulation in the late DDR but also to early DDR signaling, DNA repair, and chromatin modifications at DNA-damage sites through interactions with both long and short noncoding RNAs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. DNA damage preceding dopamine neuron degeneration in A53T human α-synuclein transgenic mice.

    PubMed

    Wang, Degui; Yu, Tianyu; Liu, Yongqiang; Yan, Jun; Guo, Yingli; Jing, Yuhong; Yang, Xuguang; Song, Yanfeng; Tian, Yingxia

    2016-12-02

    Defective DNA repair has been linked with age-associated neurodegenerative disorders. Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by genetic and environmental factors. Whether damages to nuclear DNA contribute to neurodegeneration of PD still remain obscure. in this study we aim to explore whether nuclear DNA damage induce dopamine neuron degeneration in A53T human α-Synuclein over expressed mouse model. We investigated the effects of X-ray irradiation on A53T-α-Syn MEFs and A53T-α-Syn transgene mice. Our results indicate that A53T-α-Syn MEFs show a prolonged DNA damage repair process and senescense phenotype. DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenic mice and decrease the number of nigrostriatal dopaminergic neurons. Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. The impact of sperm DNA damage in assisted conception and beyond: recent advances in diagnosis and treatment.

    PubMed

    Lewis, Sheena E M; John Aitken, R; Conner, Sarah J; Iuliis, Geoffry De; Evenson, Donald P; Henkel, Ralph; Giwercman, Aleksander; Gharagozloo, Parviz

    2013-10-01

    Sperm DNA damage is a useful biomarker for male infertility diagnosis and prediction of assisted reproduction outcomes. It is associated with reduced fertilization rates, embryo quality and pregnancy rates, and higher rates of spontaneous miscarriage and childhood diseases. This review provides a synopsis of the most recent studies from each of the authors, all of whom have major track records in the field of sperm DNA damage in the clinical setting. It explores current laboratory tests and the accumulating body of knowledge concerning the relationship between sperm DNA damage and clinical outcomes. The paper proceeds to discuss the strengths, weaknesses and clinical applicability of current sperm DNA tests. Next, the biological significance of DNA damage in the male germ line is considered. Finally, as sperm DNA damage is often the result of oxidative stress in the male reproductive tract, the potential contribution of antioxidant therapy in the clinical management of this condition is discussed. DNA damage in human spermatozoa is an important attribute of semen quality. It should be part of the clinical work up and properly controlled trials addressing the effectiveness of antioxidant therapy should be undertaken as a matter of urgency. Sperm DNA damage is a useful biomarker for male infertility diagnosis and prediction of assisted reproduction outcomes. It is associated with reduced fertilization rates, embryo quality and pregnancy rates, and higher rates of spontaneous miscarriage and childhood diseases. With all of these fertility check points, it shows more promise than conventional semen parameters from a diagnostic perspective. Despite this, few infertility clinics use it routinely. This review provides a synopsis of the most recent studies from each of the authors, all of whom have major track records in the field of sperm DNA damage in the clinical setting. It explores current laboratory tests and the accumulating body of knowledge concerning the relationship between sperm DNA damage and clinical outcomes. The paper proceeds to discuss the strengths and weaknesses and clinical applicability of current sperm DNA fragmentation tests. Next, the biological significance of DNA damage in the male germ line is considered. Finally, as sperm DNA damage is often the result of increased oxidative stress in the male reproductive tract, the potential contribution of antioxidant therapy in the clinical management of this condition is discussed. As those working in this field of clinical research, we conclude that DNA damage in human spermatozoa is an important attribute of semen quality which should be carefully assessed in the clinical work up of infertile couples and that properly controlled trials addressing the effectiveness of antioxidant therapy should be undertaken as a matter of urgency. Copyright © 2013 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  8. Lifestyle impacts on the aging associated expression of biomarkers of DNA damage and telomere dysfunction in human blood

    PubMed Central

    Song, Zhangfa; von Figura, Guido; Liu, Yan; Kraus, Johann M.; Torrice, Chad; Dillon, Patric; Rudolph-Watabe, Masami; Ju, Zhenyu; Kestler, Hans A.; Sanoff, Hanna; Rudolph, K. Lenhard

    2010-01-01

    Summary Cellular aging is characterised by telomere shortening, which can lead to uncapping of chromosome ends (telomere dysfunction) and that activation of DNA damage responses. There is some evidence the DNA damage accumulates during human aging and that lifestyle factors contribute to the accumulation of DNA damage. Recent studies have identified a set of serum markers that are induced by telomere dysfunction and DNA damage and these markers showed an increased expression in blood during human aging. Here, we investigated the influence of lifestyle factors (such as exercise, smoking, body mass) on the aging associated expression of serum markers of DNA damage (CRAMP, EF-1α, Stathmin, n-acetyl-glucosaminidase, and chitinase) in comparison to other described markers of cellular aging (p16INK4a upregulation and telomere shortening) in human peripheral blood. The study shows that lifestyle factors have an age-independent impact on the expression level of biomarkers of DNA damage. Smoking and increased body mass indices were associated with elevated levels of biomarkers of DNA damage independent of the age of the individuals. In contrast, exercise was associated with an age-independent reduction in the expression of biomarkers of DNA damage in human blood. The expression of biomarkers of DNA damage correlated positively with p16INK4a expression and negatively with telomere length in peripheral blood T-lymphocytes. Together, these data provide experimental evidence that both aging and lifestyle impact on the accumulation of DNA damage during human aging. PMID:20560902

  9. Chloroethylating nitrosoureas in cancer therapy: DNA damage, repair and cell death signaling.

    PubMed

    Nikolova, Teodora; Roos, Wynand P; Krämer, Oliver H; Strik, Herwig M; Kaina, Bernd

    2017-08-01

    Chloroethylating nitrosoureas (CNU), such as lomustine, nimustine, semustine, carmustine and fotemustine are used for the treatment of malignant gliomas, brain metastases of different origin, melanomas and Hodgkin disease. They alkylate the DNA bases and give rise to the formation of monoadducts and subsequently interstrand crosslinks (ICL). ICL are critical cytotoxic DNA lesions that link the DNA strands covalently and block DNA replication and transcription. As a result, S phase progression is inhibited and cells are triggered to undergo apoptosis and necrosis, which both contribute to the effectiveness of CNU-based cancer therapy. However, tumor cells resist chemotherapy through the repair of CNU-induced DNA damage. The suicide enzyme O 6 -methylguanine-DNA methyltransferase (MGMT) removes the precursor DNA lesion O 6 -chloroethylguanine prior to its conversion into ICL. In cells lacking MGMT, the formed ICL evoke complex enzymatic networks to accomplish their removal. Here we discuss the mechanism of ICL repair as a survival strategy of healthy and cancer cells and DNA damage signaling as a mechanism contributing to CNU-induced cell death. We also discuss therapeutic implications and strategies based on sequential and simultaneous treatment with CNU and the methylating drug temozolomide. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Oxidative DNA damage background estimated by a system model of base excision repair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokhansanj, B A; Wilson, III, D M

    Human DNA can be damaged by natural metabolism through free radical production. It has been suggested that the equilibrium between innate damage and cellular DNA repair results in an oxidative DNA damage background that potentially contributes to disease and aging. Efforts to quantitatively characterize the human oxidative DNA damage background level based on measuring 8-oxoguanine lesions as a biomarker have led to estimates varying over 3-4 orders of magnitude, depending on the method of measurement. We applied a previously developed and validated quantitative pathway model of human DNA base excision repair, integrating experimentally determined endogenous damage rates and model parametersmore » from multiple sources. Our estimates of at most 100 8-oxoguanine lesions per cell are consistent with the low end of data from biochemical and cell biology experiments, a result robust to model limitations and parameter variation. Our results show the power of quantitative system modeling to interpret composite experimental data and make biologically and physiologically relevant predictions for complex human DNA repair pathway mechanisms and capacity.« less

  11. Application of the CometChip platform to assess DNA damage in field-collected blood samples from turtles.

    PubMed

    Sykora, Peter; Chiari, Ylenia; Heaton, Andrew; Moreno, Nickolas; Glaberman, Scott; Sobol, Robert W

    2018-05-01

    DNA damage has been linked to genomic instability and the progressive breakdown of cellular and organismal homeostasis, leading to the onset of disease and reduced longevity. Insults to DNA from endogenous sources include base deamination, base hydrolysis, base alkylation, and metabolism-induced oxidative damage that can lead to single-strand and double-strand DNA breaks. Alternatively, exposure to environmental pollutants, radiation or ultra-violet light, can also contribute to exogenously derived DNA damage. We previously validated a novel, high through-put approach to measure levels of DNA damage in cultured mammalian cells. This new CometChip Platform builds on the classical single cell gel electrophoresis or comet methodology used extensively in environmental toxicology and molecular biology. We asked whether the CometChip Platform could be used to measure DNA damage in samples derived from environmental field studies. To this end, we determined that nucleated erythrocytes from multiple species of turtle could be successfully evaluated in the CometChip Platform to quantify levels of DNA damage. In total, we compared levels of DNA damage in 40 animals from two species: the box turtle (Terrapene carolina) and the red-eared slider (Trachemys scripta elegans). Endogenous levels of DNA damage were identical between the two species, yet we did discover some sex-linked differences and changes in DNA damage accumulation. Based on these results, we confirm that the CometChip Platform allows for the measurement of DNA damage in a large number of samples quickly and accurately, and is particularly adaptable to environmental studies using field-collected samples. Environ. Mol. Mutagen. 59:322-333, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  12. Mitochondrial Dysfunction in Retinal Diseases

    PubMed Central

    Barot, Megha; Gokulgandhi, Mitan R.; Mitra, Ashim K.

    2015-01-01

    The mitochondrion is a vital intracellular organelle for retinal cell function and survival. There is growing confirmation to support an association between mitochondrial dysfunction and a number of retinal degenerations. Investigations have also unveiled mitochondrial genomic instability as one of the contributing factors for age-related retinal pathophysiology. This review highlights the role of mitochondrial dysfunction originating from oxidative stress in the etiology of retinal diseases including diabetic retinopathy, glaucoma and age-related macular degeneration (AMD). Moreover, mitochondrial DNA (mtDNA) damage associated with AMD due to susceptibility of mtDNA to oxidative damage and failure of mtDNA repair pathways is also highlighted in this review. The susceptibility of neural retina and retinal pigment epithelium (RPE) mitochondria to oxidative damage with ageing appears to be a major factor in retinal degeneration. It thus appears that the mitochondrion is a weak link in the antioxidant defenses of retinal cells. In addition, failure of mtDNA repair pathways can also specifically contribute towards pathogenesis of AMD. This review will further summarize the prospective role of mitochondria targeting therapeutic agents for the treatment of retinal disease. Mitochondria based drug targeting to diminish oxidative stress or promote repair of mtDNA damage may offer potential alternatives for the treatment of various retinal degenerative diseases. PMID:21978133

  13. Mitochondrial dysfunction in retinal diseases.

    PubMed

    Barot, Megha; Gokulgandhi, Mitan R; Mitra, Ashim K

    2011-12-01

    The mitochondrion is a vital intracellular organelle for retinal cell function and survival. There is growing confirmation to support an association between mitochondrial dysfunction and a number of retinal degenerations. Investigations have also unveiled mitochondrial genomic instability as one of the contributing factors for age-related retinal pathophysiology. This review highlights the role of mitochondrial dysfunction originating from oxidative stress in the etiology of retinal diseases including diabetic retinopathy, glaucoma and age-related macular degeneration (AMD). Moreover, mitochondrial DNA (mtDNA) damage associated with AMD due to susceptibility of mtDNA to oxidative damage and failure of mtDNA repair pathways is also highlighted in this review. The susceptibility of neural retina and retinal pigment epithelium (RPE) mitochondria to oxidative damage with ageing appears to be a major factor in retinal degeneration. It thus appears that the mitochondrion is a weak link in the antioxidant defenses of retinal cells. In addition, failure of mtDNA repair pathways can also specifically contribute towards pathogenesis of AMD. This review will further summarize the prospective role of mitochondria targeting therapeutic agents for the treatment of retinal disease. Mitochondria based drug targeting to diminish oxidative stress or promote repair of mtDNA damage may offer potential alternatives for the treatment of various retinal degenerative diseases.

  14. A Green's Function Approach to Simulate DNA Damage by the Indirect Effect

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cicinotta, Francis A.

    2013-01-01

    The DNA damage is of fundamental importance in the understanding of the effects of ionizing radiation. DNA is damaged by the direct effect of radiation (e.g. direct ionization) and by indirect effect (e.g. damage by.OH radicals created by the radiolysis of water). Despite years of research, many questions on the DNA damage by ionizing radiation remains. In the recent years, the Green's functions of the diffusion equation (GFDE) have been used extensively in biochemistry [1], notably to simulate biochemical networks in time and space [2]. In our future work on DNA damage, we wish to use an approach based on the GFDE to refine existing models on the indirect effect of ionizing radiation on DNA. To do so, we will use the code RITRACKS [3] developed at the NASA Johnson Space Center to simulate the radiation track structure and calculate the position of radiolytic species after irradiation. We have also recently developed an efficient Monte-Carlo sampling algorithm for the GFDE of reversible reactions with an intermediate state [4], which can be modified and adapted to simulate DNA damage by free radicals. To do so, we will use the known reaction rate constants between radicals (OH, eaq, H,...) and the DNA bases, sugars and phosphates and use the sampling algorithms to simulate the diffusion of free radicals and chemical reactions with DNA. These techniques should help the understanding of the contribution of the indirect effect in the formation of DNA damage and double-strand breaks.

  15. Depletion of ribosomal protein L37 occurs in response to DNA damage and activates p53 through the L11/MDM2 pathway.

    PubMed

    Llanos, Susana; Serrano, Manuel

    2010-10-01

    Perturbation of ribosomal biogenesis has recently emerged as a relevant p53-activating pathway. This pathway can be initiated by depletion of certain ribosomal proteins, which is followed by the binding and inhibition of MDM2 by a different subset of ribosomal proteins that includes L11. Here, we report that depletion of L37 leads to cell cycle arrest in a L11- and p53-dependent manner. DNA damage can initiate ribosomal stress, although little is known about the mechanisms involved. We have found that some genotoxic insults, namely, UV light and cisplatin, lead to proteasomal degradation of L37 in the nucleoplasm and to the ensuing L11-dependent stabilization of p53. Moreover, ectopic L37 overexpression can attenuate the DNA damage response mediated by p53. These results support the concept that DNA damage-induced proteasomal degradation of L37 constitutes a mechanistic link between DNA damage and the ribosomal stress pathway, and is a relevant contributing signaling pathway for the activation of p53 in response to DNA damage.

  16. Intracellular iron overload leading to DNA damage of lymphocytes and immune dysfunction in thalassemia major patients.

    PubMed

    Shaw, Jyoti; Chakraborty, Ayan; Nag, Arijit; Chattopadyay, Arnab; Dasgupta, Anjan K; Bhattacharyya, Maitreyee

    2017-11-01

    To investigate the cause and effects of intracellular iron overload in lymphocytes of thalassemia major patients. Sixty-six thalassemia major patients having iron overload and 10 age-matched controls were chosen for the study. Blood sample was collected, and serum ferritin, oxidative stress; lymphocyte DNA damage were examined, and infective episodes were also counted. Case-control analysis revealed significant oxidative stress, iron overload, DNA damage, and rate of infections in thalassemia cases as compared to controls. For cases, oxidative stress (ROS) and iron overload (serum ferritin) showed good correlation with R 2  = 0.934 and correlation between DNA damage and ROS gave R 2  = 0.961. We also demonstrated that intracellular iron overload in thalassemia caused oxidative damage of lymphocyte DNA as exhibited by DNA damage assay. The inference is further confirmed by partial inhibition of such damage by chelation of iron and the concurrent lowering of the ROS level in the presence of chelator deferasirox. Therefore, intracellular iron overload caused DNA fragmentation, which may ultimately hamper lymphocyte function, and this may contribute to immune dysfunction and increased susceptibility to infections in thalassemia patients as indicated by the good correlation (R 2  = 0.91) between lymphocyte DNA damage and rate of infection found in this study. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Determinants of spontaneous mutation in the bacterium Escherichia coli as revealed by whole-genome sequencing

    PubMed Central

    Foster, Patricia L.; Lee, Heewook; Popodi, Ellen; Townes, Jesse P.; Tang, Haixu

    2015-01-01

    A complete understanding of evolutionary processes requires that factors determining spontaneous mutation rates and spectra be identified and characterized. Using mutation accumulation followed by whole-genome sequencing, we found that the mutation rates of three widely diverged commensal Escherichia coli strains differ only by about 50%, suggesting that a rate of 1–2 × 10−3 mutations per generation per genome is common for this bacterium. Four major forces are postulated to contribute to spontaneous mutations: intrinsic DNA polymerase errors, endogenously induced DNA damage, DNA damage caused by exogenous agents, and the activities of error-prone polymerases. To determine the relative importance of these factors, we studied 11 strains, each defective for a major DNA repair pathway. The striking result was that only loss of the ability to prevent or repair oxidative DNA damage significantly impacted mutation rates or spectra. These results suggest that, with the exception of oxidative damage, endogenously induced DNA damage does not perturb the overall accuracy of DNA replication in normally growing cells and that repair pathways may exist primarily to defend against exogenously induced DNA damage. The thousands of mutations caused by oxidative damage recovered across the entire genome revealed strong local-sequence biases of these mutations. Specifically, we found that the identity of the 3′ base can affect the mutability of a purine by oxidative damage by as much as eightfold. PMID:26460006

  18. A damaged DNA binding protein 2 mutation disrupting interaction with proliferating-cell nuclear antigen affects DNA repair and confers proliferation advantage.

    PubMed

    Perucca, Paola; Mocchi, Roberto; Guardamagna, Isabella; Bassi, Elisabetta; Sommatis, Sabrina; Nardo, Tiziana; Prosperi, Ennio; Stivala, Lucia Anna; Cazzalini, Ornella

    2018-06-01

    In mammalian cells, Nucleotide Excision Repair (NER) plays a role in removing DNA damage induced by UV radiation. In Global Genome-NER subpathway, DDB2 protein forms a complex with DDB1 (UV-DDB), recognizing photolesions. During DNA repair, DDB2 interacts directly with PCNA through a conserved region in N-terminal tail and this interaction is important for DDB2 degradation. In this work, we sought to investigate the role of DDB2-PCNA association in DNA repair and cell proliferation after UV-induced DNA damage. To this end, stable clones expressing DDB2 Wt and DDB2 PCNA- were used. We have found that cells expressing a mutant DDB2 show inefficient photolesions removal, and a concomitant lack of binding to damaged DNA in vitro. Unexpected cellular behaviour after DNA damage, such as UV-resistance, increased cell growth and motility were found in DDB2 PCNA- stable cell clones, in which the most significant defects in cell cycle checkpoint were observed, suggesting a role in the new cellular phenotype. Based on these findings, we propose that DDB2-PCNA interaction may contribute to a correct DNA damage response for maintaining genome integrity. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. PPARGC1A variation associated with DNA damage, diabetes, and cardiovascular diseases: the Boston Puerto Rican Health Study.

    PubMed

    Lai, Chao-Qiang; Tucker, Katherine L; Parnell, Laurence D; Adiconis, Xian; García-Bailo, Bibiana; Griffith, John; Meydani, Mohsen; Ordovás, José M

    2008-04-01

    Individuals with type 2 diabetes exhibit higher DNA damage and increased risk of cardiovascular disease (CVD). However, mechanisms underlying the association between DNA damage and development of type 2 diabetes and CVD are not understood. We sought to link peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PPARGC1A), a master transcriptional regulator of mitochondrial oxidative phosphorylation and cellular energy metabolism, with DNA damage, type 2 diabetes, and CVD. We measured DNA damage as urinary 8-hydroxydeoxyguanosine (8-OHdG) concentration and examined the relationship between nine PPARGC1A genetic variants, DNA damage, type 2 diabetes, and self-reported CVD in 959 participants of the Boston Puerto Rican Health Study. With respect to urinary 8-OHdG, PPARGC1A variants showed significant association, and PPARGC1A haplotypes exhibited significant association after correction for multiple testing. Two independent PPARGC1A variants associated significantly with type 2 diabetes (odds ratios [ORs] 1.35 and 2.46; P = 0.045 and <0.001). Carriers of minor alleles of two other PPARGC1A variants, both in strong linkage disequilibrium and associated with lower DNA damage, showed lower prevalence of CVD (ORs 0.53 and 0.65; P = 0.030 and 0.175). Moreover, we found that physical activity correlated negatively with DNA damage. It is plausible that low physical activity combined with risk haplotyes contribute to the high prevalence of type 2 diabetes in this population. We propose that PPARGC1A influences development of type 2 diabetes and CVD via DNA damage. Increasing physical activity, which induces PPARGC1A expression, is a potential strategy to slow DNA damage, thereby decreasing the risk of CVD for individuals with type 2 diabetes.

  20. Escin-induced DNA damage promotes escin-induced apoptosis in human colorectal cancer cells via p62 regulation of the ATM/γH2AX pathway.

    PubMed

    Wang, Zhong; Chen, Qiang; Li, Bin; Xie, Jia-Ming; Yang, Xiao-Dong; Zhao, Kui; Wu, Yong; Ye, Zhen-Yu; Chen, Zheng-Rong; Qin, Zheng-Hong; Xing, Chun-Gen

    2018-05-31

    Escin, a triterpene saponin isolated from horse chestnut seed, has been used to treat encephaledema, tissue swelling and chronic venous insufficiency. Recent studies show that escin induces cell cycle arrest, tumor proliferation inhibition and tumor cell apoptosis. But the relationship between escin-induced DNA damage and cell apoptosis in tumor cells remains unclear. In this study, we investigated whether and how escin-induced DNA damage contributed to escin-induced apoptosis in human colorectal cancer cells. Escin (5-80 μg/mL) dose-dependently inhibited the cell viability and colony formation in HCT116 and HCT8 cells. Escin treatment induced DNA damage, leading to p-ATM and γH2AX upregulation. Meanwhile, escin treatment increased the expression of p62, an adaptor protein, which played a crucial role in controlling cell survival and tumorigenesis, and had a protective effect against escin-induced DNA damage: knockdown of p62 apparently enhanced escin-induced DNA damage, whereas overexpression of p62 reduced escin-induced DNA damage. In addition, escin treatment induced concentration- and time-dependent apoptosis. Similarly, knockdown of p62 significantly increased escin-induced apoptosis in vitro and produced en escin-like antitumor effect in vivo. Overexpression of p62 decreased the rate of apoptosis. Further studies revealed that the functions of p62 in escin-induced DNA damage were associated with escin-induced apoptosis, and p62 knockdown combined with the ATM inhibitor KU55933 augmented escin-induced DNA damage and further increased escin-induced apoptosis. In conclusion, our results demonstrate that p62 regulates ATM/γH2AX pathway-mediated escin-induced DNA damage and apoptosis.

  1. Cisplatin Induces a Mitochondrial-ROS Response That Contributes to Cytotoxicity Depending on Mitochondrial Redox Status and Bioenergetic Functions

    PubMed Central

    Marullo, Rossella; Werner, Erica; Degtyareva, Natalya; Moore, Bryn; Altavilla, Giuseppe; Ramalingam, Suresh S.; Doetsch, Paul W.

    2013-01-01

    Cisplatin is one of the most effective and widely used anticancer agents for the treatment of several types of tumors. The cytotoxic effect of cisplatin is thought to be mediated primarily by the generation of nuclear DNA adducts, which, if not repaired, cause cell death as a consequence of DNA replication and transcription blockage. However, the ability of cisplatin to induce nuclear DNA (nDNA) damage per se is not sufficient to explain its high degree of effectiveness nor the toxic effects exerted on normal, post-mitotic tissues. Oxidative damage has been observed in vivo following exposure to cisplatin in several tissues, suggesting a role for oxidative stress in the pathogenesis of cisplatin-induced dose-limiting toxicities. However, the mechanism of cisplatin-induced generation of ROS and their contribution to cisplatin cytotoxicity in normal and cancer cells is still poorly understood. By employing a panel of normal and cancer cell lines and the budding yeast Saccharomyces cerevisiae as model system, we show that exposure to cisplatin induces a mitochondrial-dependent ROS response that significantly enhances the cytotoxic effect caused by nDNA damage. ROS generation is independent of the amount of cisplatin-induced nDNA damage and occurs in mitochondria as a consequence of protein synthesis impairment. The contribution of cisplatin-induced mitochondrial dysfunction in determining its cytotoxic effect varies among cells and depends on mitochondrial redox status, mitochondrial DNA integrity and bioenergetic function. Thus, by manipulating these cellular parameters, we were able to enhance cisplatin cytotoxicity in cancer cells. This study provides a new mechanistic insight into cisplatin-induced cell killing and may lead to the design of novel therapeutic strategies to improve anticancer drug efficacy. PMID:24260552

  2. DisA and c-di-AMP act at the intersection between DNA-damage response and stress homeostasis in exponentially growing Bacillus subtilis cells.

    PubMed

    Gándara, Carolina; Alonso, Juan C

    2015-03-01

    Bacillus subtilis contains two vegetative diadenylate cyclases, DisA and CdaA, which produce cyclic di-AMP (c-di-AMP), and one phosphodiesterase, GdpP, that degrades it into a linear di-AMP. We report here that DisA and CdaA contribute to elicit repair of DNA damage generated by alkyl groups and H2O2, respectively, during vegetative growth. disA forms an operon with radA (also termed sms) that encodes a protein distantly related to RecA. Among different DNA damage agents tested, only methyl methane sulfonate (MMS) affected disA null strain viability, while radA showed sensitivity to all of them. A strain lacking both disA and radA was as sensitive to MMS as the most sensitive single parent (epistasis). Low c-di-AMP levels (e.g. by over-expressing GdpP) decreased the ability of cells to repair DNA damage caused by MMS and in less extent by H2O2, while high levels of c-di-AMP (absence of GdpP or expression of sporulation-specific diadenylate cyclase, CdaS) increased cell survival. Taken together, our results support the idea that c-di-AMP is a crucial signalling molecule involved in DNA repair with DisA and CdaA contributing to modulate different DNA damage responses during exponential growth. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Retinoic acid-related orphan receptor-α is induced in the setting of DNA damage and promotes pulmonary emphysema.

    PubMed

    Shi, Ying; Cao, Jiaofei; Gao, Jane; Zheng, Liang; Goodwin, Andrew; An, Chang Hyoek; Patel, Avignat; Lee, Janet S; Duncan, Steven R; Kaminski, Naftali; Pandit, Kusum V; Rosas, Ivan O; Choi, Augustine M K; Morse, Danielle

    2012-09-01

    The discovery that retinoic acid-related orphan receptor (Rora)-α is highly expressed in lungs of patients with COPD led us to hypothesize that Rora may contribute to the pathogenesis of emphysema. To determine the role of Rora in smoke-induced emphysema. Cigarette smoke extract in vitro and elastase or cigarette smoke exposure in vivo were used to model smoke-related cell stress and airspace enlargement. Lung tissue from patients undergoing lung transplantation was examined for markers of DNA damage and Rora expression. Rora expression was induced by cigarette smoke in mice and in cell culture. Gene expression profiling of Rora-null mice exposed to cigarette smoke demonstrated enrichment for genes involved in DNA repair. Rora expression increased and Rora translocated to the nucleus after DNA damage. Inhibition of ataxia telangiectasia mutated decreased the induction of Rora. Gene silencing of Rora attenuated apoptotic cell death in response to cigarette smoke extract, whereas overexpression of Rora enhanced apoptosis. Rora-deficient mice were protected from elastase and cigarette smoke induced airspace enlargement. Finally, lungs of patients with COPD showed evidence of increased DNA damage even in the absence of active smoking. Taken together, these findings suggest that DNA damage may contribute to the pathogenesis of emphysema, and that Rora has a previously unrecognized role in cellular responses to genotoxicity. These findings provide a potential link between emphysema and features of premature ageing, including enhanced susceptibility to lung cancer.

  4. ATM-Dependent Phosphorylation of MEF2D Promotes Neuronal Survival after DNA Damage

    PubMed Central

    Chan, Shing Fai; Sances, Sam; Brill, Laurence M.; Okamoto, Shu-ichi; Zaidi, Rameez; McKercher, Scott R.; Akhtar, Mohd W.; Nakanishi, Nobuki

    2014-01-01

    Mutations in the ataxia telangiectasia mutated (ATM) gene, which encodes a kinase critical for the normal DNA damage response, cause the neurodegenerative disorder ataxia-telangiectasia (AT). The substrates of ATM in the brain are poorly understood. Here we demonstrate that ATM phosphorylates and activates the transcription factor myocyte enhancer factor 2D (MEF2D), which plays a critical role in promoting survival of cerebellar granule cells. ATM associates with MEF2D after DNA damage and phosphorylates the transcription factor at four ATM consensus sites. Knockdown of endogenous MEF2D with a short-hairpin RNA (shRNA) increases sensitivity to etoposide-induced DNA damage and neuronal cell death. Interestingly, substitution of endogenous MEF2D with an shRNA-resistant phosphomimetic MEF2D mutant protects cerebellar granule cells from cell death after DNA damage, whereas an shRNA-resistant nonphosphorylatable MEF2D mutant does not. In vivo, cerebella in Mef2d knock-out mice manifest increased susceptibility to DNA damage. Together, our results show that MEF2D is a substrate for phosphorylation by ATM, thus promoting survival in response to DNA damage. Moreover, dysregulation of the ATM–MEF2D pathway may contribute to neurodegeneration in AT. PMID:24672010

  5. NF-κB inhibition delays DNA damage–induced senescence and aging in mice

    PubMed Central

    Tilstra, Jeremy S.; Robinson, Andria R.; Wang, Jin; Gregg, Siobhán Q.; Clauson, Cheryl L.; Reay, Daniel P.; Nasto, Luigi A.; St Croix, Claudette M.; Usas, Arvydas; Vo, Nam; Huard, Johnny; Clemens, Paula R.; Stolz, Donna B.; Guttridge, Denis C.; Watkins, Simon C.; Garinis, George A.; Wang, Yinsheng; Niedernhofer, Laura J.; Robbins, Paul D.

    2012-01-01

    The accumulation of cellular damage, including DNA damage, is thought to contribute to aging-related degenerative changes, but how damage drives aging is unknown. XFE progeroid syndrome is a disease of accelerated aging caused by a defect in DNA repair. NF-κB, a transcription factor activated by cellular damage and stress, has increased activity with aging and aging-related chronic diseases. To determine whether NF-κB drives aging in response to the accumulation of spontaneous, endogenous DNA damage, we measured the activation of NF-κB in WT and progeroid model mice. As both WT and progeroid mice aged, NF-κB was activated stochastically in a variety of cell types. Genetic depletion of one allele of the p65 subunit of NF-κB or treatment with a pharmacological inhibitor of the NF-κB–activating kinase, IKK, delayed the age-related symptoms and pathologies of progeroid mice. Additionally, inhibition of NF-κB reduced oxidative DNA damage and stress and delayed cellular senescence. These results indicate that the mechanism by which DNA damage drives aging is due in part to NF-κB activation. IKK/NF-κB inhibitors are sufficient to attenuate this damage and could provide clinical benefit for degenerative changes associated with accelerated aging disorders and normal aging. PMID:22706308

  6. What’s the Damage? The Impact of Pathogens on Pathways that Maintain Host Genome Integrity

    PubMed Central

    Weitzman, Matthew D.; Weitzman, Jonathan B.

    2014-01-01

    Maintaining genome integrity and transmission of intact genomes is critical for cellular, organismal, and species survival. Cells can detect damaged DNA, activate checkpoints, and either enable DNA repair or trigger apoptosis to eliminate the damaged cell. Aberrations in these mechanisms lead to somatic mutations and genetic instability, which are hallmarks of cancer. Considering the long history of host-microbe coevolution, an impact of microbial infection on host genome integrity is not unexpected, and emerging links between microbial infections and oncogenesis further reinforce this idea. In this review, we compare strategies employed by viruses, bacteria, and parasites to alter, subvert, or otherwise manipulate host DNA damage and repair pathways. We highlight how microbes contribute to tumorigenesis by directly inducing DNA damage, inactivating checkpoint controls, or manipulating repair processes. We also discuss indirect effects resulting from inflammatory responses, changes in cellular metabolism, nuclear architecture, and epigenome integrity, and the associated evolutionary tradeoffs. PMID:24629335

  7. The Interaction between Checkpoint Kinase 1 (Chk1) and the Minichromosome Maintenance (MCM) Complex Is Required for DNA Damage-induced Chk1 Phosphorylation*

    PubMed Central

    Han, Xiangzi; Aslanian, Aaron; Fu, Kang; Tsuji, Toshiya; Zhang, Youwei

    2014-01-01

    Chk1 is an essential mediator of the DNA damage response and cell cycle checkpoint. However, how exactly Chk1 transduces the checkpoint signaling is not fully understood. Here we report the identification of the heterohexamic minichromosome maintenance (MCM) complex that interacts with Chk1 by mass spectrometry. The interaction between Chk1 and the MCM complex was reduced by DNA damage treatment. We show that the MCM complex, at least partially, contributes to the chromatin association of Chk1, allowing for immediate phosphorylation of Chk1 by ataxia telangiectasia mutated and Rad3-related (ATR) in the presence of DNA damage. Further, phosphorylation of Chk1 at ATR sites reduces the interaction between Chk1 and the MCM complex, facilitating chromatin release of phosphorylated Chk1, a critical step in the initiation and amplification of cell cycle checkpoint. Together, these data provide novel insights into the activation of Chk1 in response to DNA damage. PMID:25049228

  8. The intersection between DNA damage response and cell death pathways.

    PubMed

    Nowsheen, S; Yang, E S

    2012-10-01

    Apoptosis is a finely regulated process that serves to determine the fate of cells in response to various stresses. One such stress is DNA damage, which not only can signal repair processes but is also intimately involved in regulating cell fate. In this review we examine the relationship between the DNA damage/repair response in cell survival and apoptosis following insults to the DNA. Elucidating these pathways and the crosstalk between them is of great importance, as they eventually contribute to the etiology of human disease such as cancer and may play key roles in determining therapeutic response. This article is part of a Special Issue entitled "Apoptosis: Four Decades Later".

  9. Context Matters: Contribution of Specific DNA Adducts to the Genotoxic Properties of the Tobacco-Specific Nitrosamine NNK.

    PubMed

    Peterson, Lisa A

    2017-01-17

    The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent pulmonary carcinogen in laboratory animals. It is classified as a Group 1 human carcinogen by the International Agency for Cancer Research. NNK is bioactivated upon cytochrome P450 catalyzed hydroxylation of the carbon atoms adjacent to the nitrosamino group to both methylating and pyridyloxobutylating agents. Both pathways generate a spectrum of DNA damage that contributes to the overall mutagenic and toxic properties of this compound. NNK is also reduced to form 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), which is also carcinogenic. Like NNK, NNAL requires metabolic activation to DNA alkylating agents. Methyl hydroxylation of NNAL generates pyridylhydroxybutyl DNA adducts, and methylene hydroxylation leads to DNA methyl adducts. The consequence of this complex metabolism is that NNK generates a vast spectrum of DNA damage, any form of which can contribute to the overall carcinogenic properties of this potent pulmonary carcinogen. This Perspective reviews the chemistry and genotoxic properties of the collection of DNA adducts formed from NNK. In addition, it provides evidence that multiple adducts contribute to the overall carcinogenic properties of this chemical. The adduct that contributes to the genotoxic effects of NNK depends on the context, such as the relative amounts of each DNA alkylating pathway occurring in the model system, the levels and genetic variants of key repair enzymes, and the gene targeted for mutation.

  10. The ovarian DNA damage repair response is induced prior to phosphoramide mustard-induced follicle depletion, and ataxia telangiectasia mutated inhibition prevents PM-induced follicle depletion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu

    Phosphoramide mustard (PM) is an ovotoxic metabolite of cyclophosphamide and destroys primordial and primary follicles potentially by DNA damage induction. The temporal pattern by which PM induces DNA damage and initiation of the ovarian response to DNA damage has not yet been well characterized. This study investigated DNA damage initiation, the DNA repair response, as well as induction of follicular demise using a neonatal rat ovarian culture system. Additionally, to delineate specific mechanisms involved in the ovarian response to PM exposure, utility was made of PKC delta (PKCδ) deficient mice as well as an ATM inhibitor (KU 55933; AI). Fishermore » 344 PND4 rat ovaries were cultured for 12, 24, 48 or 96 h in medium containing DMSO ± 60 μM PM or KU 55933 (48 h; 10 nM). PM-induced activation of DNA damage repair genes was observed as early as 12 h post-exposure. ATM, PARP1, E2F7, P73 and CASP3 abundance were increased but RAD51 and BCL2 protein decreased after 96 h of PM exposure. PKCδ deficiency reduced numbers of all follicular stages, but did not have an additive impact on PM-induced ovotoxicity. ATM inhibition protected all follicle stages from PM-induced depletion. In conclusion, the ovarian DNA damage repair response is active post-PM exposure, supporting that DNA damage contributes to PM-induced ovotoxicity. - Highlights: • PM exposure induces DNA damage repair gene expression. • Inhibition of ATM prevented PM-induced follicle depletion. • PKCδ deficiency did not impact PM-induced ovotoxicity.« less

  11. Epigenetic Telomere Protection by Drosophila DNA Damage Response Pathways

    PubMed Central

    Oikemus, Sarah R; Queiroz-Machado, Joana; Lai, KuanJu; McGinnis, Nadine; Sunkel, Claudio; Brodsky, Michael H

    2006-01-01

    Analysis of terminal deletion chromosomes indicates that a sequence-independent mechanism regulates protection of Drosophila telomeres. Mutations in Drosophila DNA damage response genes such as atm/tefu, mre11, or rad50 disrupt telomere protection and localization of the telomere-associated proteins HP1 and HOAP, suggesting that recognition of chromosome ends contributes to telomere protection. However, the partial telomere protection phenotype of these mutations limits the ability to test if they act in the epigenetic telomere protection mechanism. We examined the roles of the Drosophila atm and atr-atrip DNA damage response pathways and the nbs homolog in DNA damage responses and telomere protection. As in other organisms, the atm and atr-atrip pathways act in parallel to promote telomere protection. Cells lacking both pathways exhibit severe defects in telomere protection and fail to localize the protection protein HOAP to telomeres. Drosophila nbs is required for both atm- and atr-dependent DNA damage responses and acts in these pathways during DNA repair. The telomere fusion phenotype of nbs is consistent with defects in each of these activities. Cells defective in both the atm and atr pathways were used to examine if DNA damage response pathways regulate telomere protection without affecting telomere specific sequences. In these cells, chromosome fusion sites retain telomere-specific sequences, demonstrating that loss of these sequences is not responsible for loss of protection. Furthermore, terminally deleted chromosomes also fuse in these cells, directly implicating DNA damage response pathways in the epigenetic protection of telomeres. We propose that recognition of chromosome ends and recruitment of HP1 and HOAP by DNA damage response proteins is essential for the epigenetic protection of Drosophila telomeres. Given the conserved roles of DNA damage response proteins in telomere function, related mechanisms may act at the telomeres of other organisms. PMID:16710445

  12. Epigenetic telomere protection by Drosophila DNA damage response pathways.

    PubMed

    Oikemus, Sarah R; Queiroz-Machado, Joana; Lai, KuanJu; McGinnis, Nadine; Sunkel, Claudio; Brodsky, Michael H

    2006-05-01

    Analysis of terminal deletion chromosomes indicates that a sequence-independent mechanism regulates protection of Drosophila telomeres. Mutations in Drosophila DNA damage response genes such as atm/tefu, mre11, or rad50 disrupt telomere protection and localization of the telomere-associated proteins HP1 and HOAP, suggesting that recognition of chromosome ends contributes to telomere protection. However, the partial telomere protection phenotype of these mutations limits the ability to test if they act in the epigenetic telomere protection mechanism. We examined the roles of the Drosophila atm and atr-atrip DNA damage response pathways and the nbs homolog in DNA damage responses and telomere protection. As in other organisms, the atm and atr-atrip pathways act in parallel to promote telomere protection. Cells lacking both pathways exhibit severe defects in telomere protection and fail to localize the protection protein HOAP to telomeres. Drosophila nbs is required for both atm- and atr-dependent DNA damage responses and acts in these pathways during DNA repair. The telomere fusion phenotype of nbs is consistent with defects in each of these activities. Cells defective in both the atm and atr pathways were used to examine if DNA damage response pathways regulate telomere protection without affecting telomere specific sequences. In these cells, chromosome fusion sites retain telomere-specific sequences, demonstrating that loss of these sequences is not responsible for loss of protection. Furthermore, terminally deleted chromosomes also fuse in these cells, directly implicating DNA damage response pathways in the epigenetic protection of telomeres. We propose that recognition of chromosome ends and recruitment of HP1 and HOAP by DNA damage response proteins is essential for the epigenetic protection of Drosophila telomeres. Given the conserved roles of DNA damage response proteins in telomere function, related mechanisms may act at the telomeres of other organisms.

  13. A Small-Molecule Inducible Synthetic Circuit for Control of the SOS Gene Network without DNA Damage.

    PubMed

    Kubiak, Jeffrey M; Culyba, Matthew J; Liu, Monica Yun; Mo, Charlie Y; Goulian, Mark; Kohli, Rahul M

    2017-11-17

    The bacterial SOS stress-response pathway is a pro-mutagenic DNA repair system that mediates bacterial survival and adaptation to genotoxic stressors, including antibiotics and UV light. The SOS pathway is composed of a network of genes under the control of the transcriptional repressor, LexA. Activation of the pathway involves linked but distinct events: an initial DNA damage event leads to activation of RecA, which promotes autoproteolysis of LexA, abrogating its repressor function and leading to induction of the SOS gene network. These linked events can each independently contribute to DNA repair and mutagenesis, making it difficult to separate the contributions of the different events to observed phenotypes. We therefore devised a novel synthetic circuit to unlink these events and permit induction of the SOS gene network in the absence of DNA damage or RecA activation via orthogonal cleavage of LexA. Strains engineered with the synthetic SOS circuit demonstrate small-molecule inducible expression of SOS genes as well as the associated resistance to UV light. Exploiting our ability to activate SOS genes independently of upstream events, we further demonstrate that the majority of SOS-mediated mutagenesis on the chromosome does not readily occur with orthogonal pathway induction alone, but instead requires DNA damage. More generally, our approach provides an exemplar for using synthetic circuit design to separate an environmental stressor from its associated stress-response pathway.

  14. Oncogenic Ras regulates BRIP1 expression to induce dissociation of BRCA1 from chromatin, inhibit DNA repair, and promote senescence

    PubMed Central

    Tu, Zhigang; Aird, Katherine M.; Bitler, Benjamin G.; Nicodemus, Jasmine P.; Beeharry, Neil; Xia, Bing; Yen, Tim J.; Zhang, Rugang

    2011-01-01

    Summary Here, we report a cell-intrinsic mechanism by which oncogenic RAS promotes senescence while predisposing cells to senescence bypass by allowing for secondary hits. We show that oncogenic RAS inactivates the BRCA1 DNA repair complex by dissociating BRCA1 from chromatin. This event precedes senescence-associated cell cycle exit and coincides with the accumulation of DNA damage. Downregulation of BRIP1, a physiological partner of BRCA1 in the DNA repair pathway, triggers BRCA1 chromatin dissociation. Conversely, ectopic BRIP1 rescues BRCA1 chromatin dissociation and suppresses RAS-induced senescence and the DNA damage response. Significantly, cells undergoing senescence do not exhibit a BRCA1-dependent DNA repair response when exposed to DNA damage. Overall, our study provides a molecular basis by which oncogenic RAS promotes senescence. Since DNA damage has the potential to produce additional "hits" that promote senescence bypass, our findings may also suggest one way a small minority of cells might bypass senescence and contribute to cancer development. PMID:22137763

  15. Depletion of ribosomal protein L37 occurs in response to DNA damage and activates p53 through the L11/MDM2 pathway

    PubMed Central

    Llanos, Susana; Serrano, Manuel

    2013-01-01

    Perturbation of ribosomal biogenesis has recently emerged as a relevant p53-activating pathway. This pathway can be initiated by depletion of certain ribosomal proteins, which is followed by the binding and inhibition of MDM2 by a different subset of ribosomal proteins that includes L11. Here, we report that depletion of L37 leads to cell cycle arrest in a L11- and p53-dependent manner. DNA damage can initiate ribosomal stress, although little is known about the mechanisms involved. We have found that some genotoxic insults, namely UV light and cisplatin, lead to proteasomal degradation of L37 in the nucleoplasm and to the ensuing L11-dependent stabilization of p53. Moreover, ectopic L37 overexpression can attenuate the DNA damage response mediated by p53. These results support the concept that DNA damage-induced proteasomal degradation of L37 constitutes a mechanistic link between DNA damage and the ribosomal stress pathway, and is a relevant contributing signaling pathway for the activation of p53 in response to DNA damage. PMID:20935493

  16. Accelerated age-related cognitive decline and neurodegeneration, caused by deficient DNA repair.

    PubMed

    Borgesius, Nils Z; de Waard, Monique C; van der Pluijm, Ingrid; Omrani, Azar; Zondag, Gerben C M; van der Horst, Gijsbertus T J; Melton, David W; Hoeijmakers, Jan H J; Jaarsma, Dick; Elgersma, Ype

    2011-08-31

    Age-related cognitive decline and neurodegenerative diseases are a growing challenge for our societies with their aging populations. Accumulation of DNA damage has been proposed to contribute to these impairments, but direct proof that DNA damage results in impaired neuronal plasticity and memory is lacking. Here we take advantage of Ercc1(Δ/-) mutant mice, which are impaired in DNA nucleotide excision repair, interstrand crosslink repair, and double-strand break repair. We show that these mice exhibit an age-dependent decrease in neuronal plasticity and progressive neuronal pathology, suggestive of neurodegenerative processes. A similar phenotype is observed in mice where the mutation is restricted to excitatory forebrain neurons. Moreover, these neuron-specific mutants develop a learning impairment. Together, these results suggest a causal relationship between unrepaired, accumulating DNA damage, and age-dependent cognitive decline and neurodegeneration. Hence, accumulated DNA damage could therefore be an important factor in the onset and progression of age-related cognitive decline and neurodegenerative diseases.

  17. DNA damage response in nephrotoxic and ischemic kidney injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Mingjuan; Tang, Chengyuan

    DNA damage activates specific cell signaling cascades for DNA repair, cell cycle arrest, senescence, and/or cell death. Recent studies have demonstrated DNA damage response (DDR) in experimental models of acute kidney injury (AKI). In cisplatin-induced AKI or nephrotoxicity, the DDR pathway of ATR/Chk2/p53 is activated and contributes to renal tubular cell apoptosis. In ischemic AKI, DDR seems more complex and involves at least the ataxia telangiectasia mutated (ATM), a member of the phosphatidylinositol 3-kinase-related kinase (PIKK) family, and p53; however, while ATM may promote DNA repair, p53 may trigger cell death. Targeting DDR for kidney protection in AKI therefore reliesmore » on a thorough elucidation of the DDR pathways in various forms of AKI.« less

  18. CpG island methylator phenotype (CIMP) in cancer: causes and implications.

    PubMed

    Teodoridis, Jens M; Hardie, Catriona; Brown, Robert

    2008-09-18

    Strong evidence exists for a subgroup of tumours, from a variety of tissue types, exhibiting concordant tumour specific DNA methylation: the "CpG island methylator phenotype" (CIMP). Occurrence of CIMP is associated with a range of genetic and environmental factors, although the molecular causes are not well-understood. Both increased expression and aberrant targeting of DNA methyltransferases (DNMTs) could contribute to the occurrence of CIMP. One under-explored area is the possibility that DNA damage may induce or select for CIMP during carcinogenesis or treatment of tumours with chemotherapy. DNA damaging agents can induce DNA damage at guanine rich regions throughout the genome, including CpG islands. This DNA damage can result in stalled DNA synthesis, which will lead to localised increased DNMT1 concentration and therefore potentially increased DNA methylation at these sites. Chemotherapy can select for cells which have increased tolerance to DNA damage due to increased lesion bypass, in some cases by mechanisms which involve inactivation of genes by CpG island methylation. CIMP has been associated with worse patient prognosis, probably due to increased epigenetic plasticity. Therefore, further clinical testing of the diagnostic and prognostic value of the current CIMP markers, as well as increasing our understanding of the molecular causes underlying CIMP are required.

  19. Inhibition of Ku70 acetylation by INHAT subunit SET/TAF-Iβ regulates Ku70-mediated DNA damage response.

    PubMed

    Kim, Kee-Beom; Kim, Dong-Wook; Park, Jin Woo; Jeon, Young-Joo; Kim, Daehwan; Rhee, Sangmyung; Chae, Jung-Il; Seo, Sang-Beom

    2014-07-01

    DNA double-strand breaks (DSBs) can cause either cell death or genomic instability. The Ku heterodimer Ku70/80 is required for the NHEJ (non-homologous end-joining) DNA DSB repair pathway. The INHAT (inhibitor of histone acetyltransferases) complex subunit, SET/TAF-Iβ, can inhibit p300- and PCAF-mediated acetylation of both histone and p53, thereby repressing general transcription and that of p53 target genes. Here, we show that SET/TAF-Iβ interacts with Ku70/80, and that this interaction inhibits CBP- and PCAF-mediated Ku70 acetylation in an INHAT domain-dependent manner. Notably, DNA damage by UV disrupted the interaction between SET/TAF-Iβ and Ku70. Furthermore, we demonstrate that overexpressed SET/TAF-Iβ inhibits recruitment of Ku70/80 to DNA damage sites. We propose that dysregulation of SET/TAF-Iβ expression prevents repair of damaged DNA and also contributes to cellular proliferation. All together, our findings indicate that SET/TAF-Iβ interacts with Ku70/80 in the nucleus and inhibits Ku70 acetylation. Upon DNA damage, SET/TAF-Iβ dissociates from the Ku complex and releases Ku70/Ku80, which are then recruited to DNA DSB sites via the NHEJ DNA repair pathway.

  20. LRRK2 interacts with ATM and regulates Mdm2-p53 cell proliferation axis in response to genotoxic stress.

    PubMed

    Chen, Zhongcan; Cao, Zhen; Zhang, Wei; Gu, Minxia; Zhou, Zhi Dong; Li, Baojie; Li, Jing; Tan, Eng King; Zeng, Li

    2017-11-15

    Pathogenic leucine-rich repeat kinase 2 (LRRK2) mutations are recognized as the most common cause of familial Parkinson's disease in certain populations. Recently, LRRK2 mutations were shown to be associated with a higher risk of hormone-related cancers. However, how LRRK2 itself contributes to cancer risk remains unknown. DNA damage causes cancer, and DNA damage responses are among the most important pathways in cancer biology. To understand the role of LRRK2 in DNA damage response pathway, we induced DNA damage by applying genotoxic stress to the cells with Adriamycin. We found that DNA damage enhances LRRK2 phosphorylation at Serine 910, Serine 935 and Serine 1292. We further showed that LRRK2 phosphorylation is abolished in the absence of ATM, suggesting that LRRK2 phosphorylation requires ATM. It should also be noted that LRRK2 interacts with ATM. In contrast, overexpression or knockdown of LRRK2 does not affect ATM phosphorylation, indicating that LRRK2 is the downstream target of ATM in response to DNA damage. Moreover, we demonstrated that LRRK2 increases the expression of p53 and p21 by increasing the Mdm2 phosphorylation in response to DNA damage. Loss-of-function in LRRK2 has the opposite effect to that of LRRK2. In addition, FACS analysis revealed that LRRK2 enhances cell cycle progression into S phase in response to DNA damage, a finding that was confirmed by 5-bromo-2'-deoxyuridine immunostaining. Taken together, our findings demonstrate that LRRK2 plays an important role in the ATM-Mdm2-p53 pathway that regulates cell proliferation in response to DNA damage. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. DNA Excision Repair at Telomeres

    PubMed Central

    Jia, Pingping; Her, Chengtao; Chai, Weihang

    2015-01-01

    DNA damage is caused by either endogenous cellular metabolic processes such as hydrolysis, oxidation, alkylation, and DNA base mismatches, or exogenous sources including ultraviolet (UV) light, ionizing radiation, and chemical agents. Damaged DNA that is not properly repaired can lead to genomic instability, driving tumorigenesis. To protect genomic stability, mammalian cells have evolved highly conserved DNA repair mechanisms to remove and repair DNA lesions. Telomeres are composed of long tandem TTAGGG repeats located at the ends of chromosomes. Maintenance of functional telomeres is critical for preventing genome instability. The telomeric sequence possesses unique features that predispose telomeres to a variety of DNA damage induced by environmental genotoxins. This review briefly describes the relevance of excision repair pathways in telomere maintenance, with the focus on base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR). By summarizing current knowledge on excision repair of telomere damage and outlining many unanswered questions, it is our hope to stimulate further interest in a better understanding of excision repair processes at telomeres and in how these processes contribute to telomere maintenance. PMID:26422132

  2. Chronic Oxidative Damage together with Genome Repair Deficiency in the Neurons is a Double Whammy for Neurodegeneration: Is Damage Response Signaling a Potential Therapeutic Target?

    PubMed Central

    Wang, Haibo; Dharmalingam, Prakash; Vasquez, Velmarini; Mitra, Joy; Boldogh, Istvan; Rao, K. S.; Kent, Thomas A.; Mitra, Sankar; Hegde, Muralidhar L.

    2016-01-01

    A foremost challenge for the neurons, which are among the most oxygenated cells, is the genome damage caused by chronic exposure to endogenous reactive oxygen species (ROS), formed as cellular respiratory byproducts. Strong metabolic activity associated with high transcriptional levels in these long lived post-mitotic cells render them vulnerable to oxidative genome damage, including DNA strand breaks and mutagenic base lesions. There is growing evidence for the accumulation of unrepaired DNA lesions in the central nervous system (CNS) during accelerated ageing and progressive neurodegeneration. Several germ line mutations in DNA repair or DNA damage response (DDR) signaling genes are uniquely manifested in the phenotype of neuronal dysfunction and are etiologically linked to many neurodegenerative disorders. Studies in our lab and elsewhere revealed that pro-oxidant metals, ROS and misfolded amyloidogenic proteins not only contribute to genome damage in CNS, but also impede their repair/DDR signaling leading to persistent damage accumulation, a common feature in sporadic neurodegeneration. Here, we have reviewed recent advances in our understanding of the etiological implications of DNA damage vs. repair imbalance, abnormal DDR signaling in triggering neurodegeneration and potential of DDR as a target for the amelioration of neurodegenerative diseases. PMID:27663141

  3. Copper-mediated DNA damage by the neurotransmitter dopamine and L-DOPA: A pro-oxidant mechanism.

    PubMed

    Rehmani, Nida; Zafar, Atif; Arif, Hussain; Hadi, Sheikh Mumtaz; Wani, Altaf A

    2017-04-01

    Oxidative DNA damage has been implicated in the pathogenesis of neurological disorders, cancer and ageing. Owing to the established link between labile copper concentrations and neurological diseases, it is critical to explore the interactions of neurotransmitters and drug supplements with copper. Herein, we investigate the pro-oxidant DNA damage induced by the interaction of L-DOPA and dopamine (DA) with copper. The DNA binding affinity order of the compounds has been determined by in silico molecular docking. Agarose gel electrophoresis reveals that L-DOPA and DA are able to induce strand scission in plasmid pcDNA3.1 (+/-) in a copper dependent reaction. These metabolites also cause cellular DNA breakage in human lymphocytes by mobilizing endogenous copper, as assessed by comet assay. Further, L-DOPA and DA-mediated DNA breaks were detected by the appearance of post-DNA damage sensitive marker γH2AX in cancer cell lines accumulating high copper. Immunofluorescence demonstrated the co-localization of downstream repair factor 53BP1 at the damaged induced γH2AX foci in cancer cells. The present study corroborates and provides a mechanism to the hypothesis that suggests metal-mediated oxidation of catecholamines contributes to the pathogenesis of neurodegenerative diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Overexpression of the base excision repair NTHL1 glycosylase causes genomic instability and early cellular hallmarks of cancer

    PubMed Central

    Limpose, Kristin L; Trego, Kelly S; Li, Zhentian; Leung, Sara W; Sarker, Altaf H; Shah, Jason A; Ramalingam, Suresh S; Werner, Erica M; Dynan, William S; Cooper, Priscilla K; Corbett, Anita H; Doetsch, Paul W

    2018-01-01

    Abstract Base excision repair (BER), which is initiated by DNA N-glycosylase proteins, is the frontline for repairing potentially mutagenic DNA base damage. The NTHL1 glycosylase, which excises DNA base damage caused by reactive oxygen species, is thought to be a tumor suppressor. However, in addition to NTHL1 loss-of-function mutations, our analysis of cancer genomic datasets reveals that NTHL1 frequently undergoes amplification or upregulation in some cancers. Whether NTHL1 overexpression could contribute to cancer phenotypes has not yet been explored. To address the functional consequences of NTHL1 overexpression, we employed transient overexpression. Both NTHL1 and a catalytically-dead NTHL1 (CATmut) induce DNA damage and genomic instability in non-transformed human bronchial epithelial cells (HBEC) when overexpressed. Strikingly, overexpression of either NTHL1 or CATmut causes replication stress signaling and a decrease in homologous recombination (HR). HBEC cells that overexpress NTHL1 or CATmut acquire the ability to grow in soft agar and exhibit loss of contact inhibition, suggesting that a mechanism independent of NTHL1 catalytic activity contributes to acquisition of cancer-related cellular phenotypes. We provide evidence that NTHL1 interacts with the multifunctional DNA repair protein XPG suggesting that interference with HR is a possible mechanism that contributes to acquisition of early cellular hallmarks of cancer. PMID:29522130

  5. Oxidative damage and antioxidant defense in thymus of malnourished lactating rats.

    PubMed

    Gavia-García, Graciela; González-Martínez, Haydeé; Miliar-García, Ángel; Bonilla-González, Edmundo; Rosas-Trejo, María de Los Ángeles; Königsberg, Mina; Nájera-Medina, Oralia; Luna-López, Armando; González-Torres, María Cristina

    2015-01-01

    Malnutrition has been associated with oxidative damage by altered antioxidant protection mechanisms. Specifically, the aim of this study was to evaluate oxidative damage (DNA and lipid) and antioxidant status (superoxide dismutase [SOD], glutathione peroxidase [GPx], and catalase [CAT] mRNA, and protein expression) in thymus from malnourished rat pups. Malnutrition was induced during the lactation period by the food competition method. Oxidative DNA damage was determined quantifying 8-oxo-7, 8-dihydro-2'-deoxyguanosine adduct by high-performance liquid chromatography. Lipid peroxidation was assessed by the formation of thiobarbituric acid-reactive substances. Levels of gene and protein expression of SOD, GPx, and CAT were evaluated by real-time polymerase chain reaction and Western blot, respectively. Antioxidant enzyme activities were measured spectrophotometrically. Oxidative DNA damage and lipid peroxidation significantly increased in second-degree (MN-2) and third-degree malnourished (MN-3) rats compared with well-nourished rats. Higher amounts of oxidative damage, lower mRNA expression, and lower relative concentrations of protein, as well as decreased antioxidant activity of SOD, GPx, and CAT were associated with the MN-2 and MN-3 groups. The results of this study demonstrated that higher body-weight deficits were related to alterations in antioxidant protection, which contribute to increased levels of damage in the thymus. To our knowledge, this study demonstrated for the first time that early in life, malnutrition leads to increased DNA and lipid oxidative damage, attributable to damaged antioxidant mechanisms including transcriptional and enzymatic activity alterations. These findings may contribute to the elucidation of the causes of previously reported thymus dysfunction, and might explain partially why children and adults who have overcome child undernourishment experience immunologic deficiencies. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. DNA double strand breaks induced by the indirect effect of radiation are more efficiently repaired by non-homologous end joining compared to homologous recombination repair.

    PubMed

    Bajinskis, Ainars; Natarajan, Adayapalam T; Erixon, Klaus; Harms-Ringdahl, Mats

    2013-08-30

    The aim of this study was to investigate the relative involvement of three major DNA repair pathways, i.e., non-homologous end joining (NHEJ), homologous recombination (HRR) and base excision (BER) in repair of DNA lesions of different complexity induced by low- or high-LET radiation with emphasis on the contribution of the indirect effect of radiation for these radiation qualities. A panel of DNA repair-deficient CHO cell lines was irradiated by (137)Cs γ-rays or radon progeny α-particles. Irradiation was also performed in the presence of 2M DMSO to reduce the indirect effect of radiation and the complexity of the DNA damage formed. Clonogenic survival and micronucleus assays were used to estimate efficiencies of the different repair pathways for DNA damages produced by direct and indirect effects. Removal of the indirect effect of low-LET radiation by DMSO increased clonogenic survival and decreased MN formation for all cell lines investigated. A direct contribution of the indirect effect of radiation to DNA base damage was suggested by the significant protection by DMSO seen for the BER deficient cell line. Lesions formed by the indirect effect are more readily repaired by the NHEJ pathway than by HRR after irradiation with γ-rays or α-particles as evaluated by cell survival and the yields of MN. The results obtained with BER- and NHEJ-deficient cells suggest that the indirect effect of radiation contributes significantly to the formation of repair substrates for these pathways. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. DNA damage and repair after high LET radiation

    NASA Astrophysics Data System (ADS)

    O'Neill, Peter; Cucinotta, Francis; Anderson, Jennifer

    Predictions from biophysical models of interactions of radiation tracks with cellular DNA indicate that clustered DNA damage sites, defined as two or more lesions formed within one or two helical turns of the DNA by passage of a single radiation track, are formed in mammalian cells. These complex DNA damage sites are regarded as a signature of ionizing radiation exposure particularly as the likelihood of clustered damage sites arising endogenously is low. For instance, it was predicted from biophysical modelling that 30-40% of low LET-induced double strand breaks (DSB), a form of clustered damage, are complex with the yield increasing to >90% for high LET radiation, consistent with the reduced reparability of DSB with increasing ionization density of the radiation. The question arises whether the increased biological effects such as mutagenesis, carcinogenesis and lethality is in part related to DNA damage complexity and/or spatial distribution of the damage sites, which may lead to small DNA fragments. With particle radiation it is also important to consider not only delta-rays which may cause clustered damaged sites and may be highly mutagenic but the non-random spatial distribution of DSB which may lead to deletions. In this overview I will concentrate on the molecular aspects of the variation of the complexity of DNA damage on radiation quality and the challenges this complexity presents the DNA damage repair pathways. I will draw on data from micro-irradiations which indicate that the repair of DSBs by non-homologous end joining is highly regulated with pathway choice and kinetics of repair dependent on the chemical complexity of the DSB. In summary the aim is to emphasis the link between the spatial distribution of energy deposition events related to the track, the molecular products formed and the consequence of damage complexity contributing to biological effects and to present some of the outstanding molecular challenges with particle radiation.

  8. Interplay between Ubiquitin, SUMO, and Poly(ADP-Ribose) in the Cellular Response to Genotoxic Stress

    PubMed Central

    Pellegrino, Stefania; Altmeyer, Matthias

    2016-01-01

    Cells employ a complex network of molecular pathways to cope with endogenous and exogenous genotoxic stress. This multilayered response ensures that genomic lesions are efficiently detected and faithfully repaired in order to safeguard genome integrity. The molecular choreography at sites of DNA damage relies heavily on post-translational modifications (PTMs). Protein modifications with ubiquitin and the small ubiquitin-like modifier SUMO have recently emerged as important regulatory means to coordinate DNA damage signaling and repair. Both ubiquitylation and SUMOylation can lead to extensive chain-like protein modifications, a feature that is shared with yet another DNA damage-induced PTM, the modification of proteins with poly(ADP-ribose) (PAR). Chains of ubiquitin, SUMO, and PAR all contribute to the multi-protein assemblies found at sites of DNA damage and regulate their spatio-temporal dynamics. Here, we review recent advancements in our understanding of how ubiquitin, SUMO, and PAR coordinate the DNA damage response and highlight emerging examples of an intricate interplay between these chain-like modifications during the cellular response to genotoxic stress. PMID:27148359

  9. A Small-Molecule Inducible Synthetic Circuit for Control of the SOS Gene Network without DNA Damage

    PubMed Central

    2017-01-01

    The bacterial SOS stress-response pathway is a pro-mutagenic DNA repair system that mediates bacterial survival and adaptation to genotoxic stressors, including antibiotics and UV light. The SOS pathway is composed of a network of genes under the control of the transcriptional repressor, LexA. Activation of the pathway involves linked but distinct events: an initial DNA damage event leads to activation of RecA, which promotes autoproteolysis of LexA, abrogating its repressor function and leading to induction of the SOS gene network. These linked events can each independently contribute to DNA repair and mutagenesis, making it difficult to separate the contributions of the different events to observed phenotypes. We therefore devised a novel synthetic circuit to unlink these events and permit induction of the SOS gene network in the absence of DNA damage or RecA activation via orthogonal cleavage of LexA. Strains engineered with the synthetic SOS circuit demonstrate small-molecule inducible expression of SOS genes as well as the associated resistance to UV light. Exploiting our ability to activate SOS genes independently of upstream events, we further demonstrate that the majority of SOS-mediated mutagenesis on the chromosome does not readily occur with orthogonal pathway induction alone, but instead requires DNA damage. More generally, our approach provides an exemplar for using synthetic circuit design to separate an environmental stressor from its associated stress-response pathway. PMID:28826208

  10. Cancer prevention, the need to preserve the integrity of the genome at all cost.

    PubMed

    Okafor, M T; Nwagha, T U; Anusiem, C; Okoli, U A; Nubila, N I; Al-Alloosh, F; Udenyia, I J

    2018-05-01

    The entire genetic information carried by an organism makes up its genome. Genes have a diverse number of functions. They code different proteins for normal proliferation of cells. However, changes in the base sequence of genes affect their protein by-products which act as messengers for normal cellular functions such as proliferation and repairs. Salient processes for maintaining the integrity of the genome are hinged on intricate mechanisms put in place for the evolution to tackle genomic stresses. To discuss how cells sense and repair damage to their deoxyribonucleic acid (DNA) as well as to highlight how defects in the genes involved in DNA repair contribute to cancer development. Methodology: Online searches on the following databases such as Google Scholar, PubMed, Biomed Central, and SciELO were done. Attempt was made to review articles with keywords such as cancer, cell cycle, tumor suppressor genes, and DNA repair. The cell cycle, tumor suppression genes, DNA repair mechanism, as well as their contribution to cancer development, were discussed and reviewed. Knowledge on how cells detect and repair DNA damage through an array of mechanisms should allay our anxiety as regards cancer development. More studies on DNA damage detection and repair processes are important toward a holistic approach to cancer treatment.

  11. Contributions of DNA repair and damage response pathways to the non-linear genotoxic responses of alkylating agents

    PubMed Central

    Klapacz, Joanna; Pottenger, Lynn H.; Engelward, Bevin P.; Heinen, Christopher D.; Johnson, George E.; Clewell, Rebecca A.; Carmichael, Paul L.; Adeleye, Yeyejide; Andersen, Melvin E.

    2016-01-01

    From a risk assessment perspective, DNA-reactive agents are conventionally assumed to have genotoxic risks at all exposure levels, thus applying a linear extrapolation for low-dose responses. New approaches discussed here, including more diverse and sensitive methods for assessing DNA damage and DNA repair, strongly support the existence of measurable regions where genotoxic responses with increasing doses are insignificant relative to control. Model monofunctional alkylating agents have in vitro and in vivo datasets amenable to determination of points of departure (PoDs) for genotoxic effects. A session at the 2013 Society of Toxicology meeting provided an opportunity to survey the progress in understanding the biological basis of empirically-observed PoDs for DNA alkylating agents. Together with the literature published since, this review discusses cellular pathways activated by endogenous and exogenous alkylation DNA damage. Cells have evolved conserved processes that monitor and counteract a spontaneous steady-state level of DNA damage. The ubiquitous network of DNA repair pathways serves as the first line of defense for clearing of the DNA damage and preventing mutation. Other biological pathways discussed here that are activated by genotoxic stress include post-translational activation of cell cycle networks and transcriptional networks for apoptosis/cell death. The interactions of various DNA repair and DNA damage response pathways provide biological bases for the observed PoD behaviors seen with genotoxic compounds. Thus, after formation of DNA adducts, the activation of cellular pathways can lead to the avoidance a mutagenic outcome. The understanding of the cellular mechanisms acting within the low-dose region will serve to better characterize risks from exposures to DNA-reactive agents at environmentally-relevant concentrations. PMID:27036068

  12. Contributions of DNA repair and damage response pathways to the non-linear genotoxic responses of alkylating agents.

    PubMed

    Klapacz, Joanna; Pottenger, Lynn H; Engelward, Bevin P; Heinen, Christopher D; Johnson, George E; Clewell, Rebecca A; Carmichael, Paul L; Adeleye, Yeyejide; Andersen, Melvin E

    2016-01-01

    From a risk assessment perspective, DNA-reactive agents are conventionally assumed to have genotoxic risks at all exposure levels, thus applying a linear extrapolation for low-dose responses. New approaches discussed here, including more diverse and sensitive methods for assessing DNA damage and DNA repair, strongly support the existence of measurable regions where genotoxic responses with increasing doses are insignificant relative to control. Model monofunctional alkylating agents have in vitro and in vivo datasets amenable to determination of points of departure (PoDs) for genotoxic effects. A session at the 2013 Society of Toxicology meeting provided an opportunity to survey the progress in understanding the biological basis of empirically-observed PoDs for DNA alkylating agents. Together with the literature published since, this review discusses cellular pathways activated by endogenous and exogenous alkylation DNA damage. Cells have evolved conserved processes that monitor and counteract a spontaneous steady-state level of DNA damage. The ubiquitous network of DNA repair pathways serves as the first line of defense for clearing of the DNA damage and preventing mutation. Other biological pathways discussed here that are activated by genotoxic stress include post-translational activation of cell cycle networks and transcriptional networks for apoptosis/cell death. The interactions of various DNA repair and DNA damage response pathways provide biological bases for the observed PoD behaviors seen with genotoxic compounds. Thus, after formation of DNA adducts, the activation of cellular pathways can lead to the avoidance of a mutagenic outcome. The understanding of the cellular mechanisms acting within the low-dose region will serve to better characterize risks from exposures to DNA-reactive agents at environmentally-relevant concentrations. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Poly(GR) in C9ORF72-Related ALS/FTD Compromises Mitochondrial Function and Increases Oxidative Stress and DNA Damage in iPSC-Derived Motor Neurons.

    PubMed

    Lopez-Gonzalez, Rodrigo; Lu, Yubing; Gendron, Tania F; Karydas, Anna; Tran, Helene; Yang, Dejun; Petrucelli, Leonard; Miller, Bruce L; Almeida, Sandra; Gao, Fen-Biao

    2016-10-19

    GGGGCC repeat expansions in C9ORF72 are the most common genetic cause of both ALS and FTD. To uncover underlying pathogenic mechanisms, we found that DNA damage was greater, in an age-dependent manner, in motor neurons differentiated from iPSCs of multiple C9ORF72 patients than control neurons. Ectopic expression of the dipeptide repeat (DPR) protein (GR) 80 in iPSC-derived control neurons increased DNA damage, suggesting poly(GR) contributes to DNA damage in aged C9ORF72 neurons. Oxidative stress was also increased in C9ORF72 neurons in an age-dependent manner. Pharmacological or genetic reduction of oxidative stress partially rescued DNA damage in C9ORF72 neurons and control neurons expressing (GR) 80 or (GR) 80 -induced cellular toxicity in flies. Moreover, interactome analysis revealed that (GR) 80 preferentially bound to mitochondrial ribosomal proteins and caused mitochondrial dysfunction. Thus, poly(GR) in C9ORF72 neurons compromises mitochondrial function and causes DNA damage in part by increasing oxidative stress, revealing another pathogenic mechanism in C9ORF72-related ALS and FTD. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Cellular redistribution of Rad51 in response to DNA damage: novel role for Rad51C.

    PubMed

    Gildemeister, Otto S; Sage, Jay M; Knight, Kendall L

    2009-11-13

    Exposure of cells to DNA-damaging agents results in a rapid increase in the formation of subnuclear complexes containing Rad51. To date, it has not been determined to what extent DNA damage-induced cytoplasmic to nuclear transport of Rad51 may contribute to this process. We have analyzed subcellular fractions of HeLa and HCT116 cells and found a significant increase in nuclear Rad51 levels following exposure to a modest dose of ionizing radiation (2 grays). We also observed a DNA damage-induced increase in nuclear Rad51 in the Brca2-defective cell line Capan-1. To address a possible Brca2-independent mechanism for Rad51 nuclear transport, we analyzed subcellular fractions for two other Rad51-interacting proteins, Rad51C and Xrcc3. Rad51C has a functional nuclear localization signal, and although we found that the subcellular distribution of Xrcc3 was not significantly affected by DNA damage, there was a damage-induced increase in nuclear Rad51C. Furthermore, RNA interference-mediated depletion of Rad51C in HeLa and Capan-1 cells resulted in lower steady-state levels of nuclear Rad51 as well as a diminished DNA damage-induced increase. Our results provide important insight into the cellular regulation of Rad51 nuclear entry and a role for Rad51C in this process.

  15. Redundancy of mammalian Y family DNA polymerases in cellular responses to genomic DNA lesions induced by ultraviolet light

    PubMed Central

    Jansen, Jacob G.; Temviriyanukul, Piya; Wit, Niek; Delbos, Frédéric; Reynaud, Claude-Agnès; Jacobs, Heinz; de Wind, Niels

    2014-01-01

    Short-wave ultraviolet light induces both mildly helix-distorting cyclobutane pyrimidine dimers (CPDs) and severely distorting (6–4) pyrimidine pyrimidone photoproducts ((6–4)PPs). The only DNA polymerase (Pol) that is known to replicate efficiently across CPDs is Polη, a member of the Y family of translesion synthesis (TLS) DNA polymerases. Phenotypes of Polη deficiency are transient, suggesting redundancy with other DNA damage tolerance pathways. Here we performed a comprehensive analysis of the temporal requirements of Y-family Pols ι and κ as backups for Polη in (i) bypassing genomic CPD and (6–4)PP lesions in vivo, (ii) suppressing DNA damage signaling, (iii) maintaining cell cycle progression and (iv) promoting cell survival, by using mouse embryonic fibroblast lines with single and combined disruptions in these Pols. The contribution of Polι is restricted to TLS at a subset of the photolesions. Polκ plays a dominant role in rescuing stalled replication forks in Polη-deficient mouse embryonic fibroblasts, both at CPDs and (6–4)PPs. This dampens DNA damage signaling and cell cycle arrest, and results in increased survival. The role of relatively error-prone Pols ι and κ as backups for Polη contributes to the understanding of the mutator phenotype of xeroderma pigmentosum variant, a syndrome caused by Polη defects. PMID:25170086

  16. NEIL2 Protects against Oxidative DNA Damage Induced by Sidestream Smoke in Human Cells

    PubMed Central

    Sarker, Altaf H.; Chatterjee, Arpita; Williams, Monique; Lin, Sabrina; Havel, Christopher; Jacob III, Peyton; Boldogh, Istvan; Hazra, Tapas K.; Talbot, Prudence; Hang, Bo

    2014-01-01

    Secondhand smoke (SHS) is a confirmed lung carcinogen that introduces thousands of toxic chemicals into the lungs. SHS contains chemicals that have been implicated in causing oxidative DNA damage in the airway epithelium. Although DNA repair is considered a key defensive mechanism against various environmental attacks, such as cigarette smoking, the associations of individual repair enzymes with susceptibility to lung cancer are largely unknown. This study investigated the role of NEIL2, a DNA glycosylase excising oxidative base lesions, in human lung cells treated with sidestream smoke (SSS), the main component of SHS. To do so, we generated NEIL2 knockdown cells using siRNA-technology and exposed them to SSS-laden medium. Representative SSS chemical compounds in the medium were analyzed by mass spectrometry. An increased production of reactive oxygen species (ROS) in SSS-exposed cells was detected through the fluorescent detection and the induction of HIF-1α. The long amplicon–quantitative PCR (LA-QPCR) assay detected significant dose-dependent increases of oxidative DNA damage in the HPRT gene of cultured human pulmonary fibroblasts (hPF) and BEAS-2B epithelial cells exposed to SSS for 24 h. These data suggest that SSS exposure increased oxidative stress, which could contribute to SSS-mediated toxicity. siRNA knockdown of NEIL2 in hPF and HEK 293 cells exposed to SSS for 24 h resulted in significantly more oxidative DNA damage in HPRT and POLB than in cells with control siRNA. Taken together, our data strongly suggest that decreased repair of oxidative DNA base lesions due to an impaired NEIL2 expression in non-smokers exposed to SSS would lead to accumulation of mutations in genomic DNA of lung cells over time, thus contributing to the onset of SSS-induced lung cancer. PMID:24595271

  17. Adaptation of the neutral bacterial comet assay to assess antimicrobial-mediated DNA double-strand breaks in Escherichia coli

    PubMed Central

    SOLANKY, DIPESH; HAYDEL, SHELLEY E.

    2012-01-01

    This study aimed to determine the mechanism of action of a natural antibacterial clay mineral mixture, designated CB, by investigating the induction of DNA double-strand breaks (DSBs) in Escherichia coli. To quantify DNA damage upon exposure to soluble antimicrobial compounds, we modified a bacterial neutral comet assay, which primarily associates the general length of an electrophoresed chromosome, or comet, with the degree of DSB-associated DNA damage. To appropriately account for antimicrobial-mediated strand fragmentation, suitable control reactions consisting of exposures to water, ethanol, kanamycin, and bleomycin were developed and optimized for the assay. Bacterial exposure to the CB clay resulted in significantly longer comet lengths, compared to water and kanamycin exposures, suggesting that the induction of DNA DSBs contributes to the killing activity of this antibacterial clay mineral mixture. The comet assay protocol described herein provides a general technique for evaluating soluble antimicrobial-derived DNA damage and for comparing DNA fragmentation between experimental and control assays. PMID:22940101

  18. Unraveling Fungal Radiation Resistance Regulatory Networks through the Genome-Wide Transcriptome and Genetic Analyses of Cryptococcus neoformans

    PubMed Central

    Jung, Kwang-Woo; Yang, Dong-Hoon; Kim, Min-Kyu; Seo, Ho Seong

    2016-01-01

    ABSTRACT The basidiomycetous fungus Cryptococcus neoformans has been known to be highly radiation resistant and has been found in fatal radioactive environments such as the damaged nuclear reactor at Chernobyl. To elucidate the mechanisms underlying the radiation resistance phenotype of C. neoformans, we identified genes affected by gamma radiation through genome-wide transcriptome analysis and characterized their functions. We found that genes involved in DNA damage repair systems were upregulated in response to gamma radiation. Particularly, deletion of recombinase RAD51 and two DNA-dependent ATPase genes, RAD54 and RDH54, increased cellular susceptibility to both gamma radiation and DNA-damaging agents. A variety of oxidative stress response genes were also upregulated. Among them, sulfiredoxin contributed to gamma radiation resistance in a peroxiredoxin/thioredoxin-independent manner. Furthermore, we found that genes involved in molecular chaperone expression, ubiquitination systems, and autophagy were induced, whereas genes involved in the biosynthesis of proteins and fatty acids/sterols were downregulated. Most importantly, we discovered a number of novel C. neoformans genes, the expression of which was modulated by gamma radiation exposure, and their deletion rendered cells susceptible to gamma radiation exposure, as well as DNA damage insults. Among these genes, we found that a unique transcription factor containing the basic leucine zipper domain, named Bdr1, served as a regulator of the gamma radiation resistance of C. neoformans by controlling expression of DNA repair genes, and its expression was regulated by the evolutionarily conserved DNA damage response protein kinase Rad53. Taken together, the current transcriptome and functional analyses contribute to the understanding of the unique molecular mechanism of the radiation-resistant fungus C. neoformans. PMID:27899501

  19. XRCC1 Arg399Gln was associated with repair capacity for DNA damage induced by occupational chromium exposure

    PubMed Central

    2012-01-01

    Background Occupational chromium exposure may induce DNA damage and lead to lung cancer and other work-related diseases. DNA repair gene polymorphisms, which may alter the efficiency of DNA repair, thus may contribute to genetic susceptibility of DNA damage. The aim of this study was to test the hypothesis that the genetic variations of 9 major DNA repair genes could modulate the hexavalent chromium (Cr (VI))-induced DNA damage. Findings The median (P25-P75) of Olive tail moment was 0.93 (0.58–1.79) for individuals carrying GG genotype of XRCC1 Arg399Gln (G/A), 0.73 (0.46–1.35) for GA heterozygote and 0.50 (0.43–0.93) for AA genotype. Significant difference was found among the subjects with three different genotypes (P = 0.048) after adjusting the confounding factors. The median of Olive tail moment of the subjects carrying A allele (the genotypes of AA and GA) was 0.66 (0.44–1.31), which was significantly lower than that of subjects with GG genotype (P = 0.043). The A allele conferred a significantly reduced risk of DNA damage with the OR of 0.39 (95% CI: 0.15–0.99, P = 0.048). No significant association was found between the XRCC1Arg194Trp, ERCC1 C8092A, ERCC5 His1104Asp, ERCC6 Gly399Asp, GSTP1 Ile105Val, OGG1 Ser326Cys, XPC Lys939Gln, XPD Lys751Gln and DNA damage. Conclusion The polymorphism of Arg399Gln in XRCC1 was associated with the Cr (VI)- induced DNA damage. XRCC1 Arg399Gln may serve as a genetic biomarker of susceptibility for Cr (VI)- induced DNA damage. PMID:22642904

  20. Comparison of the effect of UV laser radiation and of a radiomimetic substance on chromatin

    NASA Astrophysics Data System (ADS)

    Radulescu, Irina; Radu, Liliana; Serbanescu, Ruxandra; Nelea, V. D.; Martin, C.; Mihailescu, Ion N.

    1998-07-01

    The damages of the complex of deoxyribonucleic acid (DNA) and proteins from chromatin, produced by the UV laser radiation and/or by treatment with a radiomimetic substance, bleomycin, were compared. The laser radiation and bleomycin effects on chromatin structure were determined by the static and dynamic fluorimetry of chromatin complexes with the DNA specific ligand-- proflavine and by the analysis of tryptophan chromatin intrinsic fluorescence. Time resolved spectroscopy is a sensitive technique which allows to determine the excited state lifetimes of chromatin--proflavine complexes. Also, the percentage contributions to the fluorescence of proflavine, bound and unbound to chromatin DNA, were evaluated. The damages produced by the UV laser radiation on chromatin are similar with those of radiomimetic substance action and consists in DNA and proteins destruction. The DNA damage degree has been determined. The obtained results may constitute some indications in the laser utilization in radiochimiotherapy.

  1. The Role of Mitochondrial DNA in Mediating Alveolar Epithelial Cell Apoptosis and Pulmonary Fibrosis

    PubMed Central

    Kim, Seok-Jo; Cheresh, Paul; Jablonski, Renea P.; Williams, David B.; Kamp, David W.

    2015-01-01

    Convincing evidence has emerged demonstrating that impairment of mitochondrial function is critically important in regulating alveolar epithelial cell (AEC) programmed cell death (apoptosis) that may contribute to aging-related lung diseases, such as idiopathic pulmonary fibrosis (IPF) and asbestosis (pulmonary fibrosis following asbestos exposure). The mammalian mitochondrial DNA (mtDNA) encodes for 13 proteins, including several essential for oxidative phosphorylation. We review the evidence implicating that oxidative stress-induced mtDNA damage promotes AEC apoptosis and pulmonary fibrosis. We focus on the emerging role for AEC mtDNA damage repair by 8-oxoguanine DNA glycosylase (OGG1) and mitochondrial aconitase (ACO-2) in maintaining mtDNA integrity which is important in preventing AEC apoptosis and asbestos-induced pulmonary fibrosis in a murine model. We then review recent studies linking the sirtuin (SIRT) family members, especially SIRT3, to mitochondrial integrity and mtDNA damage repair and aging. We present a conceptual model of how SIRTs modulate reactive oxygen species (ROS)-driven mitochondrial metabolism that may be important for their tumor suppressor function. The emerging insights into the pathobiology underlying AEC mtDNA damage and apoptosis is suggesting novel therapeutic targets that may prove useful for the management of age-related diseases, including pulmonary fibrosis and lung cancer. PMID:26370974

  2. Microbial pathogens trigger host DNA double-strand breaks whose abundance is reduced by plant defense responses.

    PubMed

    Song, Junqi; Bent, Andrew F

    2014-04-01

    Immune responses and DNA damage repair are two fundamental processes that have been characterized extensively, but the links between them remain largely unknown. We report that multiple bacterial, fungal and oomycete plant pathogen species induce double-strand breaks (DSBs) in host plant DNA. DNA damage detected by histone γ-H2AX abundance or DNA comet assays arose hours before the disease-associated necrosis caused by virulent Pseudomonas syringae pv. tomato. Necrosis-inducing paraquat did not cause detectable DSBs at similar stages after application. Non-pathogenic E. coli and Pseudomonas fluorescens bacteria also did not induce DSBs. Elevation of reactive oxygen species (ROS) is common during plant immune responses, ROS are known DNA damaging agents, and the infection-induced host ROS burst has been implicated as a cause of host DNA damage in animal studies. However, we found that DSB formation in Arabidopsis in response to P. syringae infection still occurs in the absence of the infection-associated oxidative burst mediated by AtrbohD and AtrbohF. Plant MAMP receptor stimulation or application of defense-activating salicylic acid or jasmonic acid failed to induce a detectable level of DSBs in the absence of introduced pathogens, further suggesting that pathogen activities beyond host defense activation cause infection-induced DNA damage. The abundance of infection-induced DSBs was reduced by salicylic acid and NPR1-mediated defenses, and by certain R gene-mediated defenses. Infection-induced formation of γ-H2AX still occurred in Arabidopsis atr/atm double mutants, suggesting the presence of an alternative mediator of pathogen-induced H2AX phosphorylation. In summary, pathogenic microorganisms can induce plant DNA damage. Plant defense mechanisms help to suppress rather than promote this damage, thereby contributing to the maintenance of genome integrity in somatic tissues.

  3. Increased methylation of repetitive elements and DNA repair genes is associated with higher DNA oxidation in children in an urbanized, industrial environment.

    PubMed

    Alvarado-Cruz, Isabel; Sánchez-Guerra, Marco; Hernández-Cadena, Leticia; De Vizcaya-Ruiz, Andrea; Mugica, Violeta; Pelallo-Martínez, Nadia Azenet; Solís-Heredia, María de Jesús; Byun, Hyang-Min; Baccarelli, Andrea; Quintanilla-Vega, Betzabet

    2017-01-01

    DNA methylation in DNA repair genes participates in the DNA damage regulation. Particulate matter (PM), which has metals and polycyclic aromatic hydrocarbons (PAHs) adsorbed, among others has been linked to adverse health outcomes and may modify DNA methylation. To evaluate PM exposure impact on repetitive elements and gene-specific DNA methylation and DNA damage, we conducted a cross-sectional study in 150 schoolchildren (7-10 years old) from an urbanized, industrial area of the metropolitan area of Mexico City (MAMC), which frequently exhibits PM concentrations above safety standards. Methylation (5mC) of long interspersed nuclear element-1 (LINE1) and DNA repair gene (OGG1, APEX, and PARP1) was assessed by pyrosequencing in peripheral mononuclear cells, DNA damage by comet assay and DNA oxidation by 8-OHdG content. PAH and metal contents in PM 10 (≤10μm aerodynamic diameter) were determined by HPLC-MS and ICP-AES, respectively. Multiple regression analysis between DNA methylation, DNA damage, and PM 10 exposure showed that PM 10 was significantly associated with oxidative DNA damage; a 1% increase in 5mC at all CpG sites in PARP1 promoter was associated with a 35% increase in 8-OHdG, while a 1% increase at 1, 2, and 3 CpG sites resulted in 38, 9, and 56% increments, respectively. An increase of 10pg/m 3 in benzo[b]fluoranthene content of PM 10 was associated with a 6% increase in LINE1 methylation. Acenaphthene, indene [1,2,3-cd] pyrene, and pyrene concentrations correlated with higher dinucleotide methylation in OGG1, APEX and PARP1 genes, respectively. Vanadium concentration correlated with increased methylation at selected APEX and PARP1 CpG sites. DNA repair gene methylation was significantly correlated with DNA damage and with specific PM 10 -associated PAHs and Vanadium. Data suggest that exposure to PM and its components are associated with differences in DNA methylation of repair genes in children, which may contribute to DNA damage. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Mitochondrial dysfunction due to oxidative mitochondrial DNA damage is reduced through cooperative actions of diverse proteins.

    PubMed

    O'Rourke, Thomas W; Doudican, Nicole A; Mackereth, Melinda D; Doetsch, Paul W; Shadel, Gerald S

    2002-06-01

    The mitochondrial genome is a significant target of exogenous and endogenous genotoxic agents; however, the determinants that govern this susceptibility and the pathways available to resist mitochondrial DNA (mtDNA) damage are not well characterized. Here we report that oxidative mtDNA damage is elevated in strains lacking Ntg1p, providing the first direct functional evidence that this mitochondrion-localized, base excision repair enzyme functions to protect mtDNA. However, ntg1 null strains did not exhibit a mitochondrial respiration-deficient (petite) phenotype, suggesting that mtDNA damage is negotiated by the cooperative actions of multiple damage resistance pathways. Null mutations in ABF2 or PIF1, two genes implicated in mtDNA maintenance and recombination, exhibit a synthetic-petite phenotype in combination with ntg1 null mutations that is accompanied by enhanced mtDNA point mutagenesis in the corresponding double-mutant strains. This phenotype was partially rescued by malonic acid, indicating that reactive oxygen species generated by the electron transport chain contribute to mitochondrial dysfunction in abf2 Delta strains. In contrast, when two other genes involved in mtDNA recombination, CCE1 and NUC1, were inactivated a strong synthetic-petite phenotype was not observed, suggesting that the effects mediated by Abf2p and Pif1p are due to novel activities of these proteins other than recombination. These results document the existence of recombination-independent mechanisms in addition to base excision repair to cope with oxidative mtDNA damage in Saccharomyces cerevisiae. Such systems are likely relevant to those operating in human cells where mtDNA recombination is less prevalent, validating yeast as a model system in which to study these important issues.

  5. Ataxia telangiectasia mutated (ATM) interacts with p400 ATPase for an efficient DNA damage response.

    PubMed

    Smith, Rebecca J; Savoian, Matthew S; Weber, Lauren E; Park, Jeong Hyeon

    2016-11-04

    Ataxia telangiectasia mutated (ATM) and TRRAP proteins belong to the phosphatidylinositol 3-kinase-related kinase family and are involved in DNA damage repair and chromatin remodeling. ATM is a checkpoint kinase that is recruited to sites of DNA double-strand breaks where it phosphorylates a diverse range of proteins that are part of the chromatin and DNA repair machinery. As an integral subunit of the TRRAP-TIP60 complexes, p400 ATPase is a chromatin remodeler that is also targeted to DNA double-strand break sites. While it is understood that DNA binding transcriptional activators recruit p400 ATPase into a regulatory region of the promoter, how p400 recognises and moves to DNA double-strand break sites is far less clear. Here we investigate a possibility whether ATM serves as a shuttle to deliver p400 to break sites. Our data indicate that p400 co-immunoprecipitates with ATM independently of DNA damage state and that the N-terminal domain of p400 is vital for this interaction. Heterologous expression studies using Sf9 cells revealed that the ATM-p400 complex can be reconstituted without other mammalian bridging proteins. Overexpression of ATM-interacting p400 regions in U2OS cells induced dominant negative effects including the inhibition of both DNA damage repair and cell proliferation. Consistent with the dominant negative effect, the stable expression of an N-terminal p400 fragment showed a decrease in the association of p400 with ATM, but did not alter the association of p400 with TRRAP. Taken together, our findings suggest that a protein-protein interaction between ATM and p400 ATPase occurs independently of DNA damage and contributes to efficient DNA damage response and repair.

  6. Endothelial Cell Bioenergetics and Mitochondrial DNA Damage Differ in Humans Having African or West Eurasian Maternal Ancestry

    PubMed Central

    Krzywanski, David M.; Moellering, Douglas R.; Westbrook, David G.; Dunham-Snary, Kimberly J.; Brown, Jamelle; Bray, Alexander W.; Feeley, Kyle P.; Sammy, Melissa J.; Smith, Matthew R.; Schurr, Theodore G.; Vita, Joseph A.; Ambalavanan, Namasivayam; Calhoun, David; Dell’Italia, Louis; Ballinger, Scott W.

    2016-01-01

    Background We hypothesized that endothelial cells having distinct mitochondrial genetic backgrounds would show variation in mitochondrial function and oxidative stress markers concordant with known differential cardiovascular disease susceptibilities. To test this hypothesis, mitochondrial bioenergetics were determined in endothelial cells from healthy individuals with African versus European maternal ancestries. Methods and Results Bioenergetics and mitochondrial DNA (mtDNA) damage were assessed in single donor human umbilical vein endothelial cells (HUVECs) belonging to mtDNA haplogroups H and L, representing West Eurasian and African maternal ancestry, respectively. HUVECs from haplogroup L utilized less oxygen for ATP production and had increased levels of mtDNA damage compared to those in haplogroup H. Differences in bioenergetic capacity were also observed in that HUVECs belonging to haplogroup L had decreased maximal bioenergetic capacities compared to haplogroup H. Analysis of peripheral blood mononuclear cells from age-matched healthy controls with West Eurasian or African maternal ancestries showed that haplogroups sharing an A to G mtDNA mutation at nucleotide pair (np) 10,398 had increased mtDNA damage compared to those lacking this mutation. Further study of angiographically proven coronary artery disease patients and age-matched healthy controls revealed that mtDNA damage was associated with vascular function and remodeling, and that age of disease onset was later in individuals from haplogroups lacking the A to G mutation at np 10,398. Conclusions Differences in mitochondrial bioenergetics and mtDNA damage associated with maternal ancestry may contribute to endothelial dysfunction and vascular disease. PMID:26787433

  7. Structure analysis of FAAP24 reveals single-stranded DNA-binding activity and domain functions in DNA damage response

    PubMed Central

    Wang, Yucai; Han, Xiao; Wu, Fangming; Leung, Justin W; Lowery, Megan G; Do, Huong; Chen, Junjie; Shi, Chaowei; Tian, Changlin; Li, Lei; Gong, Weimin

    2013-01-01

    The FANCM/FAAP24 heterodimer has distinct functions in protecting cells from complex DNA lesions such as interstrand crosslinks. These functions rely on the biochemical activity of FANCM/FAAP24 to recognize and bind to damaged DNA or stalled replication forks. However, the DNA-binding activity of this complex was not clearly defined. We investigated how FAAP24 contributes to the DNA-interacting functions of the FANCM/FAAP24 complex by acquiring the N-terminal and C-terminal solution structures of human FAAP24. Modeling of the FAAP24 structure indicates that FAAP24 may possess a high affinity toward single-stranded DNA (ssDNA). Testing of various FAAP24 mutations in vitro and in vivo validated this prediction derived from structural analyses. We found that the DNA-binding and FANCM-interacting functions of FAAP24, although both require the C-terminal (HhH)2 domain, can be distinguished by segregation-of-function mutations. These results demonstrate dual roles of FAAP24 in DNA damage response against crosslinking lesions, one through the formation of FANCM/FAAP24 heterodimer and the other via its ssDNA-binding activity required in optimized checkpoint activation. PMID:23999858

  8. MOF Suppresses Replication Stress and Contributes to Resolution of Stalled Replication Forks.

    PubMed

    Singh, Dharmendra Kumar; Pandita, Raj K; Singh, Mayank; Chakraborty, Sharmistha; Hambarde, Shashank; Ramnarain, Deepti; Charaka, Vijaya; Ahmed, Kazi Mokim; Hunt, Clayton R; Pandita, Tej K

    2018-03-15

    The human MOF (hMOF) protein belongs to the MYST family of histone acetyltransferases and plays a critical role in transcription and the DNA damage response. MOF is essential for cell proliferation; however, its role during replication and replicative stress is unknown. Here we demonstrate that cells depleted of MOF and under replicative stress induced by cisplatin, hydroxyurea, or camptothecin have reduced survival, a higher frequency of S-phase-specific chromosome damage, and increased R-loop formation. MOF depletion decreased replication fork speed and, when combined with replicative stress, also increased stalled replication forks as well as new origin firing. MOF interacted with PCNA, a key coordinator of replication and repair machinery at replication forks, and affected its ubiquitination and recruitment to the DNA damage site. Depletion of MOF, therefore, compromised the DNA damage repair response as evidenced by decreased Mre11, RPA70, Rad51, and PCNA focus formation, reduced DNA end resection, and decreased CHK1 phosphorylation in cells after exposure to hydroxyurea or cisplatin. These results support the argument that MOF plays an important role in suppressing replication stress induced by genotoxic agents at several stages during the DNA damage response. Copyright © 2018 American Society for Microbiology.

  9. Paternal levels of DNA damage in spermatozoa and maternal parity influence offspring mortality in an endangered ungulate.

    PubMed

    Ruiz-López, María José; Espeso, Gerardo; Evenson, Donald P; Roldan, Eduardo R S; Gomendio, Montserrat

    2010-08-22

    Understanding which factors influence offspring mortality rates is a major challenge since it influences population dynamics and may constrain the chances of recovery among endangered species. Most studies have focused on the effects of maternal and environmental factors, but little is known about paternal factors. Among most polygynous mammals, males only contribute the haploid genome to their offspring, but the possibility that sperm DNA integrity may influence offspring survival has not been explored. We examined several maternal, paternal and individual factors that may influence offspring survival in an endangered species (Gazella cuvieri). Levels of sperm DNA damage had the largest impact upon offspring mortality rates, followed by maternal parity. In addition, there was a significant interaction between these two variables, so that offspring born to primiparous mothers were more likely to die if their father had high levels of sperm DNA damage, but this was not the case among multiparous mothers. Thus, multiparous mothers seem to protect their offspring from the deleterious effects of sperm DNA damage. Since levels of sperm DNA damage seem to be higher among endangered species, more attention should be paid to the impact of this largely ignored factor among the viability of endangered species.

  10. DNA Damage and Repair in Schizophrenia and Autism: Implications for Cancer Comorbidity and Beyond

    PubMed Central

    Markkanen, Enni; Meyer, Urs; Dianov, Grigory L.

    2016-01-01

    Schizophrenia and autism spectrum disorder (ASD) are multi-factorial and multi-symptomatic psychiatric disorders, each affecting 0.5%–1% of the population worldwide. Both are characterized by impairments in cognitive functions, emotions and behaviour, and they undermine basic human processes of perception and judgment. Despite decades of extensive research, the aetiologies of schizophrenia and ASD are still poorly understood and remain a significant challenge to clinicians and scientists alike. Adding to this unsatisfactory situation, patients with schizophrenia or ASD often develop a variety of peripheral and systemic disturbances, one prominent example of which is cancer, which shows a direct (but sometimes inverse) comorbidity in people affected with schizophrenia and ASD. Cancer is a disease characterized by uncontrolled proliferation of cells, the molecular origin of which derives from mutations of a cell’s DNA sequence. To counteract such mutations and repair damaged DNA, cells are equipped with intricate DNA repair pathways. Oxidative stress, oxidative DNA damage, and deficient repair of oxidative DNA lesions repair have been proposed to contribute to the development of schizophrenia and ASD. In this article, we summarize the current evidence of cancer comorbidity in these brain disorders and discuss the putative roles of oxidative stress, DNA damage and DNA repair in the aetiopathology of schizophrenia and ASD. PMID:27258260

  11. Base excision repair: NMR backbone assignments of Escherichia coli formamidopyrimidine-DNA glycosylase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchko, Garry W.; Wallace, Susan S.; Kennedy, Michael A.

    2002-03-01

    Oxidative damage is emerging as one of the most important mechanisms responsible for mutagenesis, carcinogenesis, aging, and various diseases (Farr and Kogma, 1991). One of the potential targets for oxidation is cellular DNA. While exposure to exogenous agents, such as ionizing radiation and chemicals, contributes to damaging DNA, the most important oxidative agents are endogenous, such as the reactive free radicals produced during normal oxidative metabolism (Adelman et., 1988). To mitigate the potentially deleterious effects of oxidative DNA damage virtually all aerobic organisms have developed complex repair mechanisms (Petit and Sancar, 1999). One repair mechanism, base excision repair (BER), appearsmore » to be responsible for replacing most oxidative DNA damage (David and Williams, 1998). Formamidopyrimidine-DNA glycosylase (Fpg), a 269-residue metalloprotein with a molecular weight of 30.2 kDa, is a key BER enzyme in prokaryotes (Boiteaux et al., 1987). Substrates recognized and released by Fpg include 7,8-dihydro-8-oxoguanine (8-oxoG), 2,6 diamino-4-hydroxy-5-formamido pyrimidine (Fapy-G), the adenine equivalents 8-oxoA and Fapy-A, 5-hydroxycytosine, 5-hydroxyuracil, B ureidoisobutiric acid, and a-R-hydroxy-B-ureidoisobutiric acid (Freidberg et al., 1995). In vitro Fpg bind double-stranded DNA and performs three catalytic activities: (i) DNA glycosylase, (ii) AP lyase, and (iii) deoxyribophosphodiesterase.« less

  12. Correlation between energy deposition and molecular damage from Auger electrons: A case study of ultra-low energy (5-18 eV) electron interactions with DNA.

    PubMed

    Rezaee, Mohammad; Hunting, Darel J; Sanche, Léon

    2014-07-01

    The present study introduces a new method to establish a direct correlation between biologically related physical parameters (i.e., stopping and damaging cross sections, respectively) for an Auger-electron emitting radionuclide decaying within a target molecule (e.g., DNA), so as to evaluate the efficacy of the radionuclide at the molecular level. These parameters can be applied to the dosimetry of Auger electrons and the quantification of their biological effects, which are the main criteria to assess the therapeutic efficacy of Auger-electron emitting radionuclides. Absorbed dose and stopping cross section for the Auger electrons of 5-18 eV emitted by(125)I within DNA were determined by developing a nanodosimetric model. The molecular damages induced by these Auger electrons were investigated by measuring damaging cross section, including that for the formation of DNA single- and double-strand breaks. Nanoscale films of pure plasmid DNA were prepared via the freeze-drying technique and subsequently irradiated with low-energy electrons at various fluences. The damaging cross sections were determined by employing a molecular survival model to the measured exposure-response curves for induction of DNA strand breaks. For a single decay of(125)I within DNA, the Auger electrons of 5-18 eV deposit the energies of 12.1 and 9.1 eV within a 4.2-nm(3) volume of a hydrated or dry DNA, which results in the absorbed doses of 270 and 210 kGy, respectively. DNA bases have a major contribution to the deposited energies. Ten-electronvolt and high linear energy transfer 100-eV electrons have a similar cross section for the formation of DNA double-strand break, while 100-eV electrons are twice as efficient as 10 eV in the induction of single-strand break. Ultra-low-energy electrons (<18 eV) substantially contribute to the absorbed dose and to the molecular damage from Auger-electron emitting radionuclides; hence, they should be considered in the dosimetry calculation of such radionuclides. Moreover, absorbed dose is not an appropriate physical parameter for nanodosimetry. Instead, stopping cross section, which describes the probability of energy deposition in a target molecule can be an appropriate nanodosimetric parameter. The stopping cross section is correlated with a damaging cross section (e.g., cross section for the double-strand break formation) to quantify the number of each specific lesion in a target molecule for each nuclear decay of a single Auger-electron emitting radionuclide.

  13. Differential effects of silver nanoparticles on DNA damage and DNA repair gene expression in Ogg1-deficient and wild type mice.

    PubMed

    Nallanthighal, Sameera; Chan, Cadia; Murray, Thomas M; Mosier, Aaron P; Cady, Nathaniel C; Reliene, Ramune

    2017-10-01

    Due to extensive use in consumer goods, it is important to understand the genotoxicity of silver nanoparticles (AgNPs) and identify susceptible populations. 8-Oxoguanine DNA glycosylase 1 (OGG1) excises 8-oxo-7,8-dihydro-2-deoxyguanine (8-oxoG), a pro-mutagenic lesion induced by oxidative stress. To understand whether defects in OGG1 is a possible genetic factor increasing an individual's susceptibly to AgNPs, we determined DNA damage, genome rearrangements, and expression of DNA repair genes in Ogg1-deficient and wild type mice exposed orally to 4 mg/kg of citrate-coated AgNPs over a period of 7 d. DNA damage was examined at 3 and 7 d of exposure and 7 and 14 d post-exposure. AgNPs induced 8-oxoG, double strand breaks (DSBs), chromosomal damage, and DNA deletions in both genotypes. However, 8-oxoG was induced earlier in Ogg1-deficient mice and 8-oxoG levels were higher after 7-d treatment and persisted longer after exposure termination. AgNPs downregulated DNA glycosylases Ogg1, Neil1, and Neil2 in wild type mice, but upregulated Myh, Neil1, and Neil2 glycosylases in Ogg1-deficient mice. Neil1 and Neil2 can repair 8-oxoG. Thus, AgNP-mediated downregulation of DNA glycosylases in wild type mice may contribute to genotoxicity, while upregulation thereof in Ogg1-deficient mice could serve as an adaptive response to AgNP-induced DNA damage. However, our data show that Ogg1 is indispensable for the efficient repair of AgNP-induced damage. In summary, citrate-coated AgNPs are genotoxic in both genotypes and Ogg1 deficiency exacerbates the effect. These data suggest that humans with genetic polymorphisms and mutations in OGG1 may have increased susceptibility to AgNP-mediated DNA damage.

  14. Chronic Obstructive Pulmonary Disease: From Injury to Genomic Stability.

    PubMed

    Sergio, Luiz Philippe da Silva; de Paoli, Flavia; Mencalha, Andre Luiz; da Fonseca, Adenilson de Souza

    2017-08-01

    Chronic obstructive pulmonary disease (COPD) is the fourth cause of death in the world and it is currently presenting a major global public health challenge, causing premature death from pathophysiological complications and rising economic and social burdens. COPD develops from a combination of factors following exposure to pollutants and cigarette smoke, presenting a combination of both emphysema and chronic obstructive bronchitis, which causes lung airflow limitations that are not fully reversible by bronchodilators. Oxidative stress plays a key role in the maintenance and amplification of inflammation in tissue injury, and also induces DNA damages. Once the DNA molecule is damaged, enzymatic mechanisms act in order to repair the DNA molecule. These mechanisms are specific to repair of oxidative damages, such as nitrogen base modifications, or larger DNA damages, such as double-strand breaks. In addition, there is an enzymatic mechanism for the control of telomere length. All these mechanisms contribute to cell viability and homeostasis. Thus, therapies based on modulation of DNA repair and genomic stability could be effective in improving repair and recovery of lung tissue in patients with COPD.

  15. Nanoparticle-induced neuronal toxicity across placental barriers is mediated by autophagy and dependent on astrocytes.

    PubMed

    Hawkins, Simon J; Crompton, Lucy A; Sood, Aman; Saunders, Margaret; Boyle, Noreen T; Buckley, Amy; Minogue, Aedín M; McComish, Sarah F; Jiménez-Moreno, Natalia; Cordero-Llana, Oscar; Stathakos, Petros; Gilmore, Catherine E; Kelly, Stephen; Lane, Jon D; Case, C Patrick; Caldwell, Maeve A

    2018-05-01

    The potential for maternal nanoparticle (NP) exposures to cause developmental toxicity in the fetus without the direct passage of NPs has previously been shown, but the mechanism remained elusive. We now demonstrate that exposure of cobalt and chromium NPs to BeWo cell barriers, an in vitro model of the human placenta, triggers impairment of the autophagic flux and release of interleukin-6. This contributes to the altered differentiation of human neural progenitor cells and DNA damage in the derived neurons and astrocytes. Crucially, neuronal DNA damage is mediated by astrocytes. Inhibiting the autophagic degradation in the BeWo barrier by overexpression of the dominant-negative human ATG4B C74A significantly reduces the levels of DNA damage in astrocytes. In vivo, indirect NP toxicity in mice results in neurodevelopmental abnormalities with reactive astrogliosis and increased DNA damage in the fetal hippocampus. Our results demonstrate the potential importance of autophagy to elicit NP toxicity and the risk of indirect developmental neurotoxicity after maternal NP exposure.

  16. Nanoparticle-induced neuronal toxicity across placental barriers is mediated by autophagy and dependent on astrocytes

    NASA Astrophysics Data System (ADS)

    Hawkins, Simon J.; Crompton, Lucy A.; Sood, Aman; Saunders, Margaret; Boyle, Noreen T.; Buckley, Amy; Minogue, Aedín M.; McComish, Sarah F.; Jiménez-Moreno, Natalia; Cordero-Llana, Oscar; Stathakos, Petros; Gilmore, Catherine E.; Kelly, Stephen; Lane, Jon D.; Case, C. Patrick; Caldwell, Maeve A.

    2018-05-01

    The potential for maternal nanoparticle (NP) exposures to cause developmental toxicity in the fetus without the direct passage of NPs has previously been shown, but the mechanism remained elusive. We now demonstrate that exposure of cobalt and chromium NPs to BeWo cell barriers, an in vitro model of the human placenta, triggers impairment of the autophagic flux and release of interleukin-6. This contributes to the altered differentiation of human neural progenitor cells and DNA damage in the derived neurons and astrocytes. Crucially, neuronal DNA damage is mediated by astrocytes. Inhibiting the autophagic degradation in the BeWo barrier by overexpression of the dominant-negative human ATG4BC74A significantly reduces the levels of DNA damage in astrocytes. In vivo, indirect NP toxicity in mice results in neurodevelopmental abnormalities with reactive astrogliosis and increased DNA damage in the fetal hippocampus. Our results demonstrate the potential importance of autophagy to elicit NP toxicity and the risk of indirect developmental neurotoxicity after maternal NP exposure.

  17. The tumour suppressor CYLD regulates the p53 DNA damage response

    PubMed Central

    Fernández-Majada, Vanesa; Welz, Patrick-Simon; Ermolaeva, Maria A.; Schell, Michael; Adam, Alexander; Dietlein, Felix; Komander, David; Büttner, Reinhard; Thomas, Roman K.; Schumacher, Björn; Pasparakis, Manolis

    2016-01-01

    The tumour suppressor CYLD is a deubiquitinase previously shown to inhibit NF-κB, MAP kinase and Wnt signalling. However, the tumour suppressing mechanisms of CYLD remain poorly understood. Here we show that loss of CYLD catalytic activity causes impaired DNA damage-induced p53 stabilization and activation in epithelial cells and sensitizes mice to chemical carcinogen-induced intestinal and skin tumorigenesis. Mechanistically, CYLD interacts with and deubiquitinates p53 facilitating its stabilization in response to genotoxic stress. Ubiquitin chain-restriction analysis provides evidence that CYLD removes K48 ubiquitin chains from p53 indirectly by cleaving K63 linkages, suggesting that p53 is decorated with complex K48/K63 chains. Moreover, CYLD deficiency also diminishes CEP-1/p53-dependent DNA damage-induced germ cell apoptosis in the nematode Caenorhabditis elegans. Collectively, our results identify CYLD as a deubiquitinase facilitating DNA damage-induced p53 activation and suggest that regulation of p53 responses to genotoxic stress contributes to the tumour suppressor function of CYLD. PMID:27561390

  18. Apigenin induces DNA damage through the PKCδ-dependent activation of ATM and H2AX causing down-regulation of genes involved in cell cycle control and DNA repair

    PubMed Central

    Arango, Daniel; Parihar, Arti; Villamena, Frederick A.; Wang, Liwen; Freitas, Michael A.; Grotewold, Erich; Doseff, Andrea I.

    2014-01-01

    Apigenin, an abundant plant flavonoid, exhibits anti-proliferative and anti-carcinogenic activities through mechanisms yet not fully defined. In the present study, we show that the treatment of leukemia cells with apigenin resulted in the induction of DNA damage preceding the activation of the apoptotic program. Apigenin-induced DNA damage was mediated by p38 and protein kinase C-delta (PKCδ), yet was independent of reactive oxygen species or caspase activity. Treatment of monocytic leukemia cells with apigenin induced the phosphorylation of the ataxia-telangiectasia mutated (ATM) kinase and histone H2AX, two key regulators of the DNA damage response, without affecting the ataxia-telangiectasia mutated and Rad-3-related (ATR) kinase. Silencing and pharmacological inhibition of PKCδ abrogated ATM and H2AX phosphorylation, whereas inhibition of p38 reduced H2AX phosphorylation independently of ATM. We established that apigenin delayed cell cycle progression at G1/S and increased the number of apoptotic cells. In addition, genome-wide mRNA analyses showed that apigenin-induced DNA damage led to down-regulation of genes involved in cell-cycle control and DNA repair. Taken together, the present results show that the PKCδ-dependent activation of ATM and H2AX define the signaling networks responsible for the regulation of DNA damage promoting genome-wide mRNA alterations that result in cell cycle arrest, hence contributing to the anti-carcinogenic activities of this flavonoid. PMID:22985621

  19. Resistance to DNA-damaging treatment in non-small cell lung cancer tumor-initiating cells involves reduced DNA-PK/ATM activation and diminished cell cycle arrest

    PubMed Central

    Lundholm, L; Hååg, P; Zong, D; Juntti, T; Mörk, B; Lewensohn, R; Viktorsson, K

    2013-01-01

    Increasing evidence suggests that tumor-initiating cells (TICs), also called cancer stem cells, are partly responsible for resistance to DNA-damaging treatment. Here we addressed if such a phenotype may contribute to radio- and cisplatin resistance in non-small cell lung cancer (NSCLC). We showed that four out of eight NSCLC cell lines (H125, A549, H1299 and H23) possess sphere-forming capacity when cultured in stem cell media and three of these display elevated levels of CD133. Indeed, sphere-forming NSCLC cells, hereafter called TICs, showed a reduced apoptotic response and increased survival after irradiation (IR), as compared with the corresponding bulk cell population. Decreased cytotoxicity and apoptotic signaling manifested by diminished poly (ADP-ribose) polymerase (PARP) cleavage and caspase 3 activity was also evident in TICs after cisplatin treatment. Neither radiation nor cisplatin resistance was due to quiescence as H125 TICs proliferated at a rate comparable to bulk cells. However, TICs displayed less pronounced G2 cell cycle arrest and S/G2-phase block after IR and cisplatin, respectively. Additionally, we confirmed a cisplatin-refractory phenotype of H125 TICs in vivo in a mouse xenograft model. We further examined TICs for altered expression or activation of DNA damage repair proteins as a way to explain their increased radio- and/or chemotherapy resistance. Indeed, we found that TICs exhibited increased basal γH2AX (H2A histone family, member X) expression and diminished DNA damage-induced phosphorylation of DNA-dependent protein kinase (DNA-PK), ataxia telangiectasia-mutated (ATM), Krüppel-associated protein 1 (KAP1) and monoubiquitination of Fanconi anemia, complementation group D2 (FANCD2). As a proof of principle, ATM inhibition in bulk cells increased their cisplatin resistance, as demonstrated by reduced PARP cleavage. In conclusion, we show that reduced apoptotic response, altered DNA repair signaling and cell cycle perturbations in NSCLC TICs are possible factors contributing to their therapy resistance, which may be exploited for DNA damage-sensitizing purposes. PMID:23370278

  20. Ultraviolet Radiation-Induced Skin Aging: The Role of DNA Damage and Oxidative Stress in Epidermal Stem Cell Damage Mediated Skin Aging

    PubMed Central

    Panich, Uraiwan; Sittithumcharee, Gunya; Rathviboon, Natwarath

    2016-01-01

    Skin is the largest human organ. Skin continually reconstructs itself to ensure its viability, integrity, and ability to provide protection for the body. Some areas of skin are continuously exposed to a variety of environmental stressors that can inflict direct and indirect damage to skin cell DNA. Skin homeostasis is maintained by mesenchymal stem cells in inner layer dermis and epidermal stem cells (ESCs) in the outer layer epidermis. Reduction of skin stem cell number and function has been linked to impaired skin homeostasis (e.g., skin premature aging and skin cancers). Skin stem cells, with self-renewal capability and multipotency, are frequently affected by environment. Ultraviolet radiation (UVR), a major cause of stem cell DNA damage, can contribute to depletion of stem cells (ESCs and mesenchymal stem cells) and damage of stem cell niche, eventually leading to photoinduced skin aging. In this review, we discuss the role of UV-induced DNA damage and oxidative stress in the skin stem cell aging in order to gain insights into the pathogenesis and develop a way to reduce photoaging of skin cells. PMID:27148370

  1. Chromosome damage evolution after low and high LET irradiation

    NASA Astrophysics Data System (ADS)

    Andreev, Sergey; Eidelman, Yuri

    Ionizing radiation induces DNA and chromatin lesions which are converted to chromosome lesions detected in the first post-irradiation mitosis by classic cytogenetic techniques as chromosomal aberrations (CAs). These techniques allow to monitor also delayed aberrations observed after many cell generations post-irradiation - the manifestation of chromosomal instability phenotype (CIN). The problem discussed is how to predict time evolution from initial to delayed DNA/chromosome damage. To address this question, in the present work a mechanistic model of CIN is elaborated which integrates pathways of (*) DNA damage induction and its conversion to chromosome lesions (aberrations), (**) lesion transmission and generation through cell cycles. Delayed aberrations in subsequent cycles are formed in the model owing to two pathways, DNA damage generation de novo as well as CA transmission from previous cycles. DNA damage generation rate is assumed to consist of bystander and non-bystander components. Bystander signals impact all cells roughly equally, whereas non-bystander DSB generation rate differs for the descendants of unirradiated and irradiated cells. Monte Carlo simulation of processes underlying CIN allows to predict the time evolution of initial radiation-induced damage - kinetics curve for delayed unstable aberrations (dicentrics) together with dose response and RBE as a function of time after high vs low LET irradiation. The experimental data for radiation-induced CIN in TK6 lymphoblastoid cells and human lymphocytes irradiated with low (gamma) and high (Fe, C) LET radiation are analyzed on the basis of the proposed model. One of the conclusions is that without bystander signaling, just taking into account the initial DNA damage and non-bystander DSB generation, it is impossible to describe the available experimental data for high-LET-induced CIN. The exact contribution of bystander effects for high vs low LET remains unknown, but the relative contribution may be assessed at large times after initial acute irradiation. RBE for delayed aberrations depends on LET, time and cell line, which probably reflects a genetic background for bystander component. The proposed modeling approach creates a basis for integration of complex network of bystander/inflammatory signaling in systems-level platform for quantification of radiation induced CIN.

  2. NOD2 expression, DNA damage and oxido-inflammatory status in atopic bronchial asthma: Exploring their nexus to disease severity.

    PubMed

    Gaballah, Hanaa H; Gaber, Rasha A; Sharshar, Ragia S; Elshweikh, Samah A

    2018-06-20

    Allergic asthma is a chronically relapsing inflammatory airway disease with a complex pathophysiology. This study was undertaken to investigate the potential contribution of NOD2 signaling, proinflammatory cytokines, chitotriosidase (CHIT1) activity, oxidative stress and DNA damage to atopic asthma pathogenesis, as well as to explore their possible role as surrogate noninvasive biomarkers for monitoring asthma severity. Sixty patients with atopic bronchial asthma who were divided according to asthma severity into 40 mild-moderate, 20 severe atopic asthmatics, in addition to thirty age-matched healthy controls were enrolled in this study. NOD2 expression in PBMCs was assessed by quantitative real-time RT-PCR. DNA damage indices were assessed by alkaline comet assay. Serum IgE, IL-17, IL-8 and 3-Nitrotyrosine levels were estimated by ELISA. Serum CHIT1and GST activities, as well as MDA levels, were measured. NOD2 mRNA relative expression levels were significantly decreased in atopic asthmatic cases relative to controls with lower values among severe atopic asthmatics. On the other hand, IL-17 and IL-8 serum levels, CHIT1 activity, DNA damage indices and oxidative stress markers were significantly increased in atopic asthmatic cases relative to controls with higher values among severe atopic asthmatics. The change in these parameters correlated significantly with the degree of decline in lung function. The interplay between NOD2 signaling, proinflammatory cytokines, CHIT1 activity, heightened oxidative stress and DNA damage orchestrates allergic airway inflammation and thus contributing to the pathogenesis of atopic asthma. These parameters qualified for measurement as part of new noninvasive biomarker panels for monitoring asthma severity. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. DNA repair efficiency in germ cells and early mouse embryos and consequences for radiation-induced transgenerational genomic damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchetti, Francesco; Wyrobek, Andrew J.

    Exposure to ionizing radiation and other environmental agents can affect the genomic integrity of germ cells and induce adverse health effects in the progeny. Efficient DNA repair during gametogenesis and the early embryonic cycles after fertilization is critical for preventing transmission of DNA damage to the progeny and relies on maternal factors stored in the egg before fertilization. The ability of the maternal repair machinery to repair DNA damage in both parental genomes in the fertilizing egg is especially crucial for the fertilizing male genome that has not experienced a DNA repair-competent cellular environment for several weeks prior to fertilization.more » During the DNA repair-deficient period of spermatogenesis, DNA lesions may accumulate in sperm and be carried into the egg where, if not properly repaired, could result in the formation of heritable chromosomal aberrations or mutations and associated birth defects. Studies with female mice deficient in specific DNA repair genes have shown that: (i) cell cycle checkpoints are activated in the fertilized egg by DNA damage carried by the sperm; and (ii) the maternal genotype plays a major role in determining the efficiency of repairing genomic lesions in the fertilizing sperm and directly affect the risk for abnormal reproductive outcomes. There is also growing evidence that implicates DNA damage carried by the fertilizing gamete as a mediator of postfertilization processes that contribute to genomic instability in subsequent generations. Transgenerational genomic instability most likely involves epigenetic mechanisms or error-prone DNA repair processes in the early embryo. Maternal and embryonic DNA repair processes during the early phases of mammalian embryonic development can have far reaching consequences for the genomic integrity and health of subsequent generations.« less

  4. Single Cell Analysis of Human RAD18-Dependent DNA Post-Replication Repair by Alkaline Bromodeoxyuridine Comet Assay

    PubMed Central

    Mórocz, Mónika; Gali, Himabindu; Raskó, István; Downes, C. Stephen; Haracska, Lajos

    2013-01-01

    Damage to DNA can block replication progression resulting in gaps in the newly synthesized DNA. Cells utilize a number of post-replication repair (PRR) mechanisms such as the RAD18 controlled translesion synthesis or template switching to overcome the discontinuities formed opposite the DNA lesions and to complete DNA replication. Gaining more insights into the role of PRR genes promotes better understanding of DNA damage tolerance and of how their malfunction can lead to increased genome instability and cancer. However, a simple and efficient method to characterise gene specific PRR deficiencies at a single cell level has not been developed. Here we describe the so named BrdU comet PRR assay to test the contribution of human RAD18 to PRR at a single cell level, by which we kinetically characterized the consequences of the deletion of human RAD18 on the replication of UV-damaged DNA. Moreover, we demonstrate the capability of our method to evaluate PRR at a single cell level in unsynchronized cell population. PMID:23936422

  5. Xenopus egg extract: A powerful tool to study genome maintenance mechanisms.

    PubMed

    Hoogenboom, Wouter S; Klein Douwel, Daisy; Knipscheer, Puck

    2017-08-15

    DNA repair pathways are crucial to maintain the integrity of our genome and prevent genetic diseases such as cancer. There are many different types of DNA damage and specific DNA repair mechanisms have evolved to deal with these lesions. In addition to these repair pathways there is an extensive signaling network that regulates processes important for repair, such as cell cycle control and transcription. Despite extensive research, DNA damage repair and signaling are not fully understood. In vitro systems such as the Xenopus egg extract system, have played, and still play, an important role in deciphering the molecular details of these processes. Xenopus laevis egg extracts contain all factors required to efficiently perform DNA repair outside a cell, using mechanisms conserved in humans. These extracts have been used to study several genome maintenance pathways, including mismatch repair, non-homologous end joining, ICL repair, DNA damage checkpoint activation, and replication fork stability. Here we describe how the Xenopus egg extract system, in combination with specifically designed DNA templates, contributed to our detailed understanding of these pathways. Copyright © 2017. Published by Elsevier Inc.

  6. Anthocyanin-rich blackberry extract suppresses the DNA-damaging properties of topoisomerase I and II poisons in colon carcinoma cells.

    PubMed

    Esselen, Melanie; Boettler, Ute; Teller, Nicole; Bachler, Simone; Hutter, Melanie; Rufer, Corinna E; Skrbek, Susanne; Marko, Doris

    2011-07-13

    In the present study, we addressed the question whether cyanidin-3-glucoside (C3G) or complex C3G-rich blackberry extracts affect human topoisomerases with special emphasis on the contribution of the potential degradation products phloroglucinol aldehyde (PGA) and protocatechuic acid (PCA). In HT29 colon carcinoma cells a C3G-rich blackberry extract suppressed camptothecin- (CPT-) or doxorubicin- (DOX-) induced stabilization of the covalent DNA-topoisomerase intermediate, thus antagonizing the effects of these classical topoisomerase poisons on DNA integrity. As a single compound, C3G (100 μM) decreased the DNA-damaging effects of CPT as well, but did not significantly affect those induced by DOX. At the highest applied concentration (100 μM), cyanidin protected DNA from CPT- and DOX-induced damage. Earlier reports on DNA-damaging properties of cyanidin were found to result most likely from the formation of hydrogen peroxide as an artifact in the cell culture medium when the incubation was performed in the absence of catalase. The suppression of hydrogen peroxide accumulation, achieved by the addition of catalase, demonstrated that cyanidin does not exhibit DNA-damaging properties in HT29 cells (up to 100 μM). The observed effects on topoisomerase interference and DNA protection against CPT or DOX were clearly limited to the parent compound and were not observed for the potential cyanidin degradation products PGA and PCA.

  7. SNM1B/Apollo in the DNA damage response and telomere maintenance

    PubMed Central

    Schmiester, Maren; Demuth, Ilja

    2017-01-01

    hSNM1B/Apollo is a member of the highly conserved β-CASP subgroup within the MBL superfamily of proteins. It interacts with several DNA repair proteins and functions within the Fanconi anemia pathway in response to DNA interstrand crosslinks. As a shelterin accessory protein, hSNM1B/Apollo is also vital for the generation and maintenance of telomeric overhangs. In this review, we will summarize studies on hSNM1B/Apollo's function, including its contribution to DNA damage signaling, replication fork maintenance, control of topological stress and telomere protection. Furthermore, we will highlight recent studies illustrating hSNM1B/Apollo's putative role in human disease. PMID:28430596

  8. SNM1B/Apollo in the DNA damage response and telomere maintenance.

    PubMed

    Schmiester, Maren; Demuth, Ilja

    2017-07-18

    hSNM1B/Apollo is a member of the highly conserved β-CASP subgroup within the MBL superfamily of proteins. It interacts with several DNA repair proteins and functions within the Fanconi anemia pathway in response to DNA interstrand crosslinks. As a shelterin accessory protein, hSNM1B/Apollo is also vital for the generation and maintenance of telomeric overhangs. In this review, we will summarize studies on hSNM1B/Apollo's function, including its contribution to DNA damage signaling, replication fork maintenance, control of topological stress and telomere protection. Furthermore, we will highlight recent studies illustrating hSNM1B/Apollo's putative role in human disease.

  9. Sunlight damage to cellular DNA: Focus on oxidatively generated lesions.

    PubMed

    Schuch, André Passaglia; Moreno, Natália Cestari; Schuch, Natielen Jacques; Menck, Carlos Frederico Martins; Garcia, Camila Carrião Machado

    2017-06-01

    The routine and often unavoidable exposure to solar ultraviolet (UV) radiation makes it one of the most significant environmental DNA-damaging agents to which humans are exposed. Sunlight, specifically UVB and UVA, triggers various types of DNA damage. Although sunlight, mainly UVB, is necessary for the production of vitamin D, which is necessary for human health, DNA damage may have several deleterious consequences, such as cell death, mutagenesis, photoaging and cancer. UVA and UVB photons can be directly absorbed not only by DNA, which results in lesions, but also by the chromophores that are present in skin cells. This process leads to the formation of reactive oxygen species, which may indirectly cause DNA damage. Despite many decades of investigation, the discrimination among the consequences of these different types of lesions is not clear. However, human cells have complex systems to avoid the deleterious effects of the reactive species produced by sunlight. These systems include antioxidants, that protect DNA, and mechanisms of DNA damage repair and tolerance. Genetic defects in these mechanisms that have clear harmful effects in the exposed skin are found in several human syndromes. The best known of these is xeroderma pigmentosum (XP), whose patients are defective in the nucleotide excision repair (NER) and translesion synthesis (TLS) pathways. These patients are mainly affected due to UV-induced pyrimidine dimers, but there is growing evidence that XP cells are also defective in the protection against other types of lesions, including oxidized DNA bases. This raises a question regarding the relative roles of the various forms of sunlight-induced DNA damage on skin carcinogenesis and photoaging. Therefore, knowledge of what occurs in XP patients may still bring important contributions to the understanding of the biological impact of sunlight-induced deleterious effects on the skin cells. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Hepatitis B virus X protein (HBx)-induced abnormalities of nucleic acid metabolism revealed by (1)H-NMR-based metabonomics.

    PubMed

    Dan Yue; Zhang, Yuwei; Cheng, Liuliu; Ma, Jinhu; Xi, Yufeng; Yang, Liping; Su, Chao; Shao, Bin; Huang, Anliang; Xiang, Rong; Cheng, Ping

    2016-04-14

    Hepatitis B virus X protein (HBx) plays an important role in HBV-related hepatocarcinogenesis; however, mechanisms underlying HBx-mediated carcinogenesis remain unclear. In this study, an NMR-based metabolomics approach was applied to systematically investigate the effects of HBx on cell metabolism. EdU incorporation assay was conducted to examine the effects of HBx on DNA synthesis, an important feature of nucleic acid metabolism. The results revealed that HBx disrupted metabolism of glucose, lipids, and amino acids, especially nucleic acids. To understand the potential mechanism of HBx-induced abnormalities of nucleic acid metabolism, gene expression profiles of HepG2 cells expressing HBx were investigated. The results showed that 29 genes involved in DNA damage and DNA repair were differentially expressed in HBx-expressing HepG2 cells. HBx-induced DNA damage was further demonstrated by karyotyping, comet assay, Western blotting, immunofluorescence and immunohistochemistry analyses. Many studies have previously reported that DNA damage can induce abnormalities of nucleic acid metabolism. Thus, our results implied that HBx initially induces DNA damage, and then disrupts nucleic acid metabolism, which in turn blocks DNA repair and induces the occurrence of hepatocellular carcinoma (HCC). These findings further contribute to our understanding of the occurrence of HCC.

  11. Single-stranded DNA Binding by the Helix-Hairpin-Helix Domain of XPF Protein Contributes to the Substrate Specificity of the ERCC1-XPF Protein Complex*

    PubMed Central

    Das, Devashish; Faridounnia, Maryam; Kovacic, Lidija; Kaptein, Robert; Boelens, Rolf; Folkers, Gert E.

    2017-01-01

    The nucleotide excision repair protein complex ERCC1-XPF is required for incision of DNA upstream of DNA damage. Functional studies have provided insights into the binding of ERCC1-XPF to various DNA substrates. However, because no structure for the ERCC1-XPF-DNA complex has been determined, the mechanism of substrate recognition remains elusive. Here we biochemically characterize the substrate preferences of the helix-hairpin-helix (HhH) domains of XPF and ERCC-XPF and show that the binding to single-stranded DNA (ssDNA)/dsDNA junctions is dependent on joint binding to the DNA binding domain of ERCC1 and XPF. We reveal that the homodimeric XPF is able to bind various ssDNA sequences but with a clear preference for guanine-containing substrates. NMR titration experiments and in vitro DNA binding assays also show that, within the heterodimeric ERCC1-XPF complex, XPF specifically recognizes ssDNA. On the other hand, the HhH domain of ERCC1 preferentially binds dsDNA through the hairpin region. The two separate non-overlapping DNA binding domains in the ERCC1-XPF heterodimer jointly bind to an ssDNA/dsDNA substrate and, thereby, at least partially dictate the incision position during damage removal. Based on structural models, NMR titrations, DNA-binding studies, site-directed mutagenesis, charge distribution, and sequence conservation, we propose that the HhH domain of ERCC1 binds to dsDNA upstream of the damage, and XPF binds to the non-damaged strand within a repair bubble. PMID:28028171

  12. Diseases Associated with Defective Responses to DNA Damage

    PubMed Central

    O’Driscoll, Mark

    2012-01-01

    Within the last decade, multiple novel congenital human disorders have been described with genetic defects in known and/or novel components of several well-known DNA repair and damage response pathways. Examples include disorders of impaired nucleotide excision repair, DNA double-strand and single-strand break repair, as well as compromised DNA damage-induced signal transduction including phosphorylation and ubiquitination. These conditions further reinforce the importance of multiple genome stability pathways for health and development in humans. Furthermore, these conditions inform our knowledge of the biology of the mechanics of genome stability and in some cases provide potential routes to help exploit these pathways therapeutically. Here, I will review a selection of these exciting findings from the perspective of the disorders themselves, describing how they were identified, how genotype informs phenotype, and how these defects contribute to our growing understanding of genome stability pathways. PMID:23209155

  13. Photoinduced Oxidative DNA Damage Revealed by an Agarose Gel Nicking Assay: A Biophysical Chemistry Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Shafirovich, Vladimir; Singh, Carolyn; Geacintov, Nicholas E.

    2003-11-01

    Oxidative damage of DNA molecules associated with electron-transfer reactions is an important phenomenon in living cells, which can lead to mutations and contribute to carcinogenesis and the aging processes. This article describes the design of several simple experiments to explore DNA damage initiated by photoinduced electron-transfer reactions sensitized by the acridine derivative, proflavine (PF). A supercoiled DNA agarose gel nicking assay is employed as a sensitive probe of DNA strand cleavage. A low-cost experimental and computer-interfaced imaging apparatus is described allowing for the digital recording and analysis of the gel electrophoresis results. The first experiment describes the formation of direct strand breaks in double-stranded DNA induced by photoexcitation of the intercalated PF molecules. The second experiment demonstrates that the addition of the well-known electron acceptor, methylviologen, gives rise to a significant enhancement of the photochemical DNA strand cleavage effect. This occurs by an electron transfer step to methylviologen that renders the inital photoinduced charge separation between photoexcited PF and DNA irreversible. The third experiment demonstrates that the action spectrum of the DNA photocleavage matches the absorption spectrum of DNA-bound, intercalated PF molecules, which differs from that of free PF molecules. This result demonstrates that the photoinduced DNA strand cleavage is initiated by intercalated rather than free PF molecules.

  14. HIV-1 Tat protein induces DNA damage in human peripheral blood B-lymphocytes via mitochondrial ROS production.

    PubMed

    El-Amine, Rawan; Germini, Diego; Zakharova, Vlada V; Tsfasman, Tatyana; Sheval, Eugene V; Louzada, Ruy A N; Dupuy, Corinne; Bilhou-Nabera, Chrystèle; Hamade, Aline; Najjar, Fadia; Oksenhendler, Eric; Lipinski, Marс; Chernyak, Boris V; Vassetzky, Yegor S

    2018-05-01

    Human immunodeficiency virus (HIV) infection is associated with B-cell malignancies in patients though HIV-1 is not able to infect B-cells. The rate of B-cell lymphomas in HIV-infected individuals remains high even under the combined antiretroviral therapy (cART) that reconstitutes the immune function. Thus, the contribution of HIV-1 to B-cell oncogenesis remains enigmatic. HIV-1 induces oxidative stress and DNA damage in infected cells via multiple mechanisms, including viral Tat protein. We have detected elevated levels of reactive oxygen species (ROS) and DNA damage in B-cells of HIV-infected individuals. As Tat is present in blood of infected individuals and is able to transduce cells, we hypothesized that it could induce oxidative DNA damage in B-cells promoting genetic instability and malignant transformation. Indeed, incubation of B-cells isolated from healthy donors with purified Tat protein led to oxidative stress, a decrease in the glutathione (GSH) levels, DNA damage and appearance of chromosomal aberrations. The effects of Tat relied on its transcriptional activity and were mediated by NF-κB activation. Tat stimulated oxidative stress in B-cells mostly via mitochondrial ROS production which depended on the reverse electron flow in Complex I of respiratory chain. We propose that Tat-induced oxidative stress, DNA damage and chromosomal aberrations are novel oncogenic factors favoring B-cell lymphomas in HIV-1 infected individuals. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Stressed out mitochondria: the role of mitochondria in ageing and cancer focussing on strategies and opportunities in human skin.

    PubMed

    Tulah, Asif S; Birch-Machin, Mark A

    2013-09-01

    Mitochondrial DNA damage has been used as a successful and unique biomarker of tissue stress. A valuable example of this is sun damage in human skin which leads to ageing and skin cancer. The skin is constantly exposed to the harmful effects of sunlight, such as ultraviolet radiation, which causes it to age with observable characteristic features as well as clinical precancerous lesions and skin cancer. Formation of free radicals by the sun's harmful rays which contribute to oxidative stress has been linked to the induction of deletions and mutations in the mitochondrial DNA. These markers of mitochondrial DNA damage have been proposed to contribute to the mechanisms of ageing in many tissues including skin and are associated with many diseases including cancer. In this article we highlight the role of this important organelle in ageing and cancer with particular emphasis on experimental strategies in the skin. Copyright © 2012 © Elsevier B.V. and Mitochondria Research Society. All rights reserved. Published by Elsevier B.V. All rights reserved.

  16. Hydroxychavicol, a key ingredient of Piper betle induces bacterial cell death by DNA damage and inhibition of cell division.

    PubMed

    Singh, Deepti; Narayanamoorthy, Shwetha; Gamre, Sunita; Majumdar, Ananda Guha; Goswami, Manish; Gami, Umesh; Cherian, Susan; Subramanian, Mahesh

    2018-05-20

    Antibiotic resistance is a global problem and there is an urgent need to augment the arsenal against pathogenic bacteria. The emergence of different drug resistant bacteria is threatening human lives to be pushed towards the pre-antibiotic era. Botanical sources remain a vital source of diverse organic molecules that possess antibacterial property as well as augment existing antibacterial molecules. Piper betle, a climber, is widely used in south and south-east Asia whose leaves and nuts are consumed regularly. Hydroxychavicol (HC) isolated from Piper betle has been reported to possess antibacterial activity. It is currently not clear how the antibacterial activity of HC is manifested. In this investigation we show HC generates superoxide in E. coli cells. Antioxidants protected E. coli against HC induced cell death while gshA mutant was more sensitive to HC than wild type. DNA damage repair deficient mutants are hypersensitive to HC and HC induces the expression of DNA damage repair genes that repair oxidative DNA damage. HC treated E. coli cells are inhibited from growth and undergo DNA condensation. In vitro HC binds to DNA and cleaves it in presence of copper. Our data strongly indicates HC mediates bacterial cell death by ROS generation and DNA damage. Damage to iron sulfur proteins in the cells contribute to amplification of oxidative stress initiated by HC. Further HC is active against a number of Gram negative bacteria isolated from patients with a wide range of clinical symptoms and varied antibiotic resistance profiles. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Persistent activation of DNA damage signaling in response to complex mixtures of PAHs in air particulate matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarvis, Ian W.H., E-mail: Ian.Jarvis@ki.se; Bergvall, Christoffer, E-mail: Christoffer.Bergvall@anchem.su.se; Bottai, Matteo, E-mail: Matteo.Bottai@ki.se

    2013-02-01

    Complex mixtures of polycyclic aromatic hydrocarbons (PAHs) are present in air particulate matter (PM) and have been associated with many adverse human health effects including cancer and respiratory disease. However, due to their complexity, the risk of exposure to mixtures is difficult to estimate. In the present study the effects of binary mixtures of benzo[a]pyrene (BP) and dibenzo[a,l]pyrene (DBP) and complex mixtures of PAHs in urban air PM extracts on DNA damage signaling was investigated. Applying a statistical model to the data we observed a more than additive response for binary mixtures of BP and DBP on activation of DNAmore » damage signaling. Persistent activation of checkpoint kinase 1 (Chk1) was observed at significantly lower BP equivalent concentrations in air PM extracts than BP alone. Activation of DNA damage signaling was also more persistent in air PM fractions containing PAHs with more than four aromatic rings suggesting larger PAHs contribute a greater risk to human health. Altogether our data suggests that human health risk assessment based on additivity such as toxicity equivalency factor scales may significantly underestimate the risk of exposure to complex mixtures of PAHs. The data confirms our previous findings with PAH-contaminated soil (Niziolek-Kierecka et al., 2012) and suggests a possible role for Chk1 Ser317 phosphorylation as a biological marker for future analyses of complex mixtures of PAHs. -- Highlights: ► Benzo[a]pyrene (BP), dibenzo[a,l]pyrene (DBP) and air PM PAH extracts were compared. ► Binary mixture of BP and DBP induced a more than additive DNA damage response. ► Air PM PAH extracts were more potent than toxicity equivalency factor estimates. ► Larger PAHs (> 4 rings) contribute more to the genotoxicity of PAHs in air PM. ► Chk1 is a sensitive marker for persistent activation of DNA damage signaling from PAH mixtures.« less

  18. The repair of low dose UV light-induced damage to human skin DNA in condition of trace amount Mg 2+

    NASA Astrophysics Data System (ADS)

    Gao, Fang; Guo, Zhouyi; Zheng, Changchun; Wang, Rui; Liu, Zhiming; Meng, Pei; Zhai, Juan

    2008-12-01

    Ultraviolet light-induced damage to human skin DNA was widely investigated. The primary mechanism of this damage contributed to form cyclobutane pyrimidine dimmers (CPDs). Although the distribution of UV light-induced CPDs within a defined sequence is similar, the damage in cellular environment which shields the nuclear DNA was higher than that in organism in apparent dose. So we use low UVB light as main study agent. Low dose UV-irradiated HDF-a cells (Human Dermal Fibroblasts-adult cells) which is weaker than epidermic cells were cultured with DMEM at different trace amount of Mg2+ (0mmol/L , 0.1mmol/L , 0.2mmol/L, 0.4mmol/L, 0.8mmol/L, 1.2mmol/L) free-serum DMEM and the repair of DNA strands injured were observed. Treat these cells with DNA strand breaks detection, photoproducts detection and the repair of photoproducts detection. Then quantitate the role of trace amount Mg2+ in repair of UV light-induced damage to human skin. The experiment results indicated that epidermic cells have capability of resistance to UV-radiation at a certain extent. And Mg2+ can regulate the UV-induced damage repair and relative vitality. It can offer a rationale and experiment data to relieve UV light-induced skin disease.

  19. PARP-1 dependent recruitment of the amyotrophic lateral sclerosis-associated protein FUS/TLS to sites of oxidative DNA damage

    PubMed Central

    Rulten, Stuart L.; Rotheray, Amy; Green, Ryan L.; Grundy, Gabrielle J.; Moore, Duncan A. Q.; Gómez-Herreros, Fernando; Hafezparast, Majid; Caldecott, Keith W

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is associated with progressive degeneration of motor neurons. Several of the genes associated with this disease encode proteins involved in RNA processing, including fused-in-sarcoma/translocated-in-sarcoma (FUS/TLS). FUS is a member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family of proteins that bind thousands of pre-mRNAs and can regulate their splicing. Here, we have examined the possibility that FUS is also a component of the cellular response to DNA damage. We show that both GFP-tagged and endogenous FUS re-localize to sites of oxidative DNA damage induced by UVA laser, and that FUS recruitment is greatly reduced or ablated by an inhibitor of poly (ADP-ribose) polymerase activity. Consistent with this, we show that recombinant FUS binds directly to poly (ADP-ribose) in vitro, and that both GFP-tagged and endogenous FUS fail to accumulate at sites of UVA laser induced damage in cells lacking poly (ADP-ribose) polymerase-1. Finally, we show that GFP-FUSR521G, harbouring a mutation that is associated with ALS, exhibits reduced ability to accumulate at sites of UVA laser-induced DNA damage. Together, these data suggest that FUS is a component of the cellular response to DNA damage, and that defects in this response may contribute to ALS. PMID:24049082

  20. Impact of Age and Insulin-Like Growth Factor-1 on DNA Damage Responses in UV-Irradiated Human Skin.

    PubMed

    Kemp, Michael G; Spandau, Dan F; Travers, Jeffrey B

    2017-02-26

    The growing incidence of non-melanoma skin cancer (NMSC) necessitates a thorough understanding of its primary risk factors, which include exposure to ultraviolet (UV) wavelengths of sunlight and age. Whereas UV radiation (UVR) has long been known to generate photoproducts in genomic DNA that promote genetic mutations that drive skin carcinogenesis, the mechanism by which age contributes to disease pathogenesis is less understood and has not been sufficiently studied. In this review, we highlight studies that have considered age as a variable in examining DNA damage responses in UV-irradiated skin and then discuss emerging evidence that the reduced production of insulin-like growth factor-1 (IGF-1) by senescent fibroblasts in the dermis of geriatric skin creates an environment that negatively impacts how epidermal keratinocytes respond to UVR-induced DNA damage. In particular, recent data suggest that two principle components of the cellular response to DNA damage, including nucleotide excision repair and DNA damage checkpoint signaling, are both partially defective in keratinocytes with inactive IGF-1 receptors. Overcoming these tumor-promoting conditions in aged skin may therefore provide a way to lower aging-associated skin cancer risk, and thus we will consider how dermal wounding and related clinical interventions may work to rejuvenate the skin, re-activate IGF-1 signaling, and prevent the initiation of NMSC.

  1. Impact of Age and Insulin-Like Growth Factor-1 on DNA Damage Responses in UV-Irradiated Human Skin

    PubMed Central

    Kemp, Michael G.; Spandau, Dan F; Travers, Jeffrey B.

    2017-01-01

    The growing incidence of non-melanoma skin cancer (NMSC) necessitates a thorough understanding of its primary risk factors, which include exposure to ultraviolet (UV) wavelengths of sunlight and age. Whereas UV radiation (UVR) has long been known to generate photoproducts in genomic DNA that promote genetic mutations that drive skin carcinogenesis, the mechanism by which age contributes to disease pathogenesis is less understood and has not been sufficiently studied. In this review, we highlight studies that have considered age as a variable in examining DNA damage responses in UV-irradiated skin and then discuss emerging evidence that the reduced production of insulin-like growth factor-1 (IGF-1) by senescent fibroblasts in the dermis of geriatric skin creates an environment that negatively impacts how epidermal keratinocytes respond to UVR-induced DNA damage. In particular, recent data suggest that two principle components of the cellular response to DNA damage, including nucleotide excision repair and DNA damage checkpoint signaling, are both partially defective in keratinocytes with inactive IGF-1 receptors. Overcoming these tumor-promoting conditions in aged skin may therefore provide a way to lower aging-associated skin cancer risk, and thus we will consider how dermal wounding and related clinical interventions may work to rejuvenate the skin, re-activate IGF-1 signaling, and prevent the initiation of NMSC. PMID:28245638

  2. A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis.

    PubMed

    Niedernhofer, Laura J; Garinis, George A; Raams, Anja; Lalai, Astrid S; Robinson, Andria Rasile; Appeldoorn, Esther; Odijk, Hanny; Oostendorp, Roos; Ahmad, Anwaar; van Leeuwen, Wibeke; Theil, Arjan F; Vermeulen, Wim; van der Horst, Gijsbertus T J; Meinecke, Peter; Kleijer, Wim J; Vijg, Jan; Jaspers, Nicolaas G J; Hoeijmakers, Jan H J

    2006-12-21

    XPF-ERCC1 endonuclease is required for repair of helix-distorting DNA lesions and cytotoxic DNA interstrand crosslinks. Mild mutations in XPF cause the cancer-prone syndrome xeroderma pigmentosum. A patient presented with a severe XPF mutation leading to profound crosslink sensitivity and dramatic progeroid symptoms. It is not known how unrepaired DNA damage accelerates ageing or its relevance to natural ageing. Here we show a highly significant correlation between the liver transcriptome of old mice and a mouse model of this progeroid syndrome. Expression data from XPF-ERCC1-deficient mice indicate increased cell death and anti-oxidant defences, a shift towards anabolism and reduced growth hormone/insulin-like growth factor 1 (IGF1) signalling, a known regulator of lifespan. Similar changes are seen in wild-type mice in response to chronic genotoxic stress, caloric restriction, or with ageing. We conclude that unrepaired cytotoxic DNA damage induces a highly conserved metabolic response mediated by the IGF1/insulin pathway, which re-allocates resources from growth to somatic preservation and life extension. This highlights a causal contribution of DNA damage to ageing and demonstrates that ageing and end-of-life fitness are determined both by stochastic damage, which is the cause of functional decline, and genetics, which determines the rates of damage accumulation and decline.

  3. Spatial Dependence of DNA Damage in Bacteria due to Low-Temperature Plasma Application as Assessed at the Single Cell Level

    NASA Astrophysics Data System (ADS)

    Privat-Maldonado, Angela; O'Connell, Deborah; Welch, Emma; Vann, Roddy; van der Woude, Marjan W.

    2016-10-01

    Low temperature plasmas (LTPs) generate a cocktail of reactive nitrogen and oxygen species (RNOS) with bactericidal activity. The RNOS however are spatially unevenly distributed in the plasma. Here we test the hypothesis that this distribution will affect the mechanisms underpinning plasma bactericidal activity focussing on the level of DNA damage in situ. For the first time, a quantitative, single cell approach was applied to assess the level of DNA damage in bacteria as a function of the radial distance from the centre of the plasma jet. Salmonella enterica on a solid, dry surface was treated with two types of LTP: an atmospheric-pressure dielectric barrier discharge plasma jet (charged and neutral species) and a radio-frequency atmospheric-pressure plasma jet (neutral species). In both cases, there was an inverse correlation between the degree of DNA damage and the radial distance from the centre of the plasma, with the highest DNA damage occurring directly under the plasma. This trend was also observed with Staphylococcus aureus. LTP-generated UV radiation was eliminated as a contributing factor. Thus valuable mechanistic information can be obtained from assays on biological material, which can inform the development of LTP as a complementary or alternative therapy for (topical) bacterial infections.

  4. Spatial Dependence of DNA Damage in Bacteria due to Low-Temperature Plasma Application as Assessed at the Single Cell Level

    PubMed Central

    Privat-Maldonado, Angela; O’Connell, Deborah; Welch, Emma; Vann, Roddy; van der Woude, Marjan W.

    2016-01-01

    Low temperature plasmas (LTPs) generate a cocktail of reactive nitrogen and oxygen species (RNOS) with bactericidal activity. The RNOS however are spatially unevenly distributed in the plasma. Here we test the hypothesis that this distribution will affect the mechanisms underpinning plasma bactericidal activity focussing on the level of DNA damage in situ. For the first time, a quantitative, single cell approach was applied to assess the level of DNA damage in bacteria as a function of the radial distance from the centre of the plasma jet. Salmonella enterica on a solid, dry surface was treated with two types of LTP: an atmospheric-pressure dielectric barrier discharge plasma jet (charged and neutral species) and a radio-frequency atmospheric-pressure plasma jet (neutral species). In both cases, there was an inverse correlation between the degree of DNA damage and the radial distance from the centre of the plasma, with the highest DNA damage occurring directly under the plasma. This trend was also observed with Staphylococcus aureus. LTP-generated UV radiation was eliminated as a contributing factor. Thus valuable mechanistic information can be obtained from assays on biological material, which can inform the development of LTP as a complementary or alternative therapy for (topical) bacterial infections. PMID:27759098

  5. Loss of Nek11 Prevents G2/M Arrest and Promotes Cell Death in HCT116 Colorectal Cancer Cells Exposed to Therapeutic DNA Damaging Agents

    PubMed Central

    Sabir, Sarah R.; Sahota, Navdeep K.; Jones, George D. D.; Fry, Andrew M.

    2015-01-01

    The Nek11 kinase is a potential mediator of the DNA damage response whose expression is upregulated in early stage colorectal cancers (CRCs). Here, using RNAi-mediated depletion, we examined the role of Nek11 in HCT116 WT and p53-null CRC cells exposed to ionizing radiation (IR) or the chemotherapeutic drug, irinotecan. We demonstrate that depletion of Nek11 prevents the G2/M arrest induced by these genotoxic agents and promotes p53-dependent apoptosis both in the presence and absence of DNA damage. Interestingly, Nek11 depletion also led to long-term loss of cell viability that was independent of p53 and exacerbated following IR exposure. CRC cells express four splice variants of Nek11 (L/S/C/D). These are predominantly cytoplasmic, but undergo nucleocytoplasmic shuttling mediated through adjacent nuclear import and export signals in the C-terminal non-catalytic domain. In HCT116 cells, Nek11S in particular has an important role in the DNA damage response. These data provide strong evidence that Nek11 contributes to the response of CRC cells to genotoxic agents and is essential for survival either with or without exposure to DNA damage. PMID:26501353

  6. An evaluation of the differences in DNA damage in lymphocytes and repair efficiencies in patients with schizophrenia and schizoaffective disorder.

    PubMed

    Topak, Osman Zulkif; Ozdel, Osman; Dodurga, Yavuz; Secme, Mucahit

    2018-06-27

    Schizophrenia and schizoaffective disorder are chronic and debilitating psychiatric disorders. The present study was designed to determine DNA damage in patients with schizophrenia and schizoaffective disorder to assess the roles of oxidative metabolism and DNA repair mechanisms in this process, to assess the contribution of drugs, and thus to demonstrate the differences between schizophrenia and schizoaffective disorder. Thirty schizophrenia and 30 schizoaffective disorder patients, each having at least five years of disease history, aged between 18 and 60 years with no physical or neurological diseases, and 30 healthy volunteers participated in the study. Psychometric scales were applied, and 5 ml of blood was taken from all participants. The DNA damage was measured in lymphocytes by the comet assay method; the total oxidative parameters by ELISA; OGG1 and NEIL1 gene expressions by real-time PCR; and the role of drugs by in vitro assays. The most important finding in this study was that patients with schizophrenia had significantly greater DNA damage than schizoaffective disorder patients and the controls. This study also provides evidence of high oxidative stress statuses and inadequate DNA repair capacities in patients with schizophrenia. Moreover, psychotropic drugs did not induce any DNA damage to the lymphocytes according to in vitro analyses. The use of clozapine and adequate repair processes of the patients were the decisive factors in the prevention of DNA damage. The results of this study provide a reexamination of schizoaffective disorder within the schizophrenia spectrum and indicate that schizoaffective disorder may be considered a different diagnostic category. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Streptococcus pneumoniae secretes hydrogen peroxide leading to DNA damage and apoptosis in lung cells.

    PubMed

    Rai, Prashant; Parrish, Marcus; Tay, Ian Jun Jie; Li, Na; Ackerman, Shelley; He, Fang; Kwang, Jimmy; Chow, Vincent T; Engelward, Bevin P

    2015-06-30

    Streptococcus pneumoniae is a leading cause of pneumonia and one of the most common causes of death globally. The impact of S. pneumoniae on host molecular processes that lead to detrimental pulmonary consequences is not fully understood. Here, we show that S. pneumoniae induces toxic DNA double-strand breaks (DSBs) in human alveolar epithelial cells, as indicated by ataxia telangiectasia mutated kinase (ATM)-dependent phosphorylation of histone H2AX and colocalization with p53-binding protein (53BP1). Furthermore, results show that DNA damage occurs in a bacterial contact-independent fashion and that Streptococcus pyruvate oxidase (SpxB), which enables synthesis of H2O2, plays a critical role in inducing DSBs. The extent of DNA damage correlates with the extent of apoptosis, and DNA damage precedes apoptosis, which is consistent with the time required for execution of apoptosis. Furthermore, addition of catalase, which neutralizes H2O2, greatly suppresses S. pneumoniae-induced DNA damage and apoptosis. Importantly, S. pneumoniae induces DSBs in the lungs of animals with acute pneumonia, and H2O2 production by S. pneumoniae in vivo contributes to its genotoxicity and virulence. One of the major DSBs repair pathways is nonhomologous end joining for which Ku70/80 is essential for repair. We find that deficiency of Ku80 causes an increase in the levels of DSBs and apoptosis, underscoring the importance of DNA repair in preventing S. pneumoniae-induced genotoxicity. Taken together, this study shows that S. pneumoniae-induced damage to the host cell genome exacerbates its toxicity and pathogenesis, making DNA repair a potentially important susceptibility factor in people who suffer from pneumonia.

  8. The C-terminal region of Escherichia coli UvrC contributes to the flexibility of the UvrABC nucleotide excision repair system

    PubMed Central

    Verhoeven, Esther E. A.; van Kesteren, Marian; Turner, John J.; van der Marel, Gijs A.; van Boom, Jacques H.; Moolenaar, Geri F.; Goosen, Nora

    2002-01-01

    Nucleotide excision repair in Escherichia coli involves formation of the UvrB–DNA complex and subsequent DNA incisions on either site of the damage by UvrC. In this paper, we studied the incision of substrates with different damages in varying sequence contexts. We show that there is not always a correlation between the incision efficiency and the stability of the UvrB–DNA complex. Both stable and unstable UvrB–DNA complexes can be efficiently incised. However some lesions that give rise to stable UvrB–DNA complexes do result in a very low incision. We present evidence that this poor incision is due to sterical hindrance of the damage itself. In its C-terminal region UvrC contains two helix–hairpin–helix (HhH) motifs. Mutational analysis shows that these motifs constitute one functional unit, probably folded as one structural unit; the (HhH)2 domain. This (HhH)2 domain was previously shown to be important for the 5′ incision on a substrate containing a (cis-Pt)·GG adduct, but not for 3′ incision. Here we show that, mainly depending on the sequence context of the lesion, the (HhH)2 domain can be important for 3′ and/or 5′ incision. We propose that the (HhH)2 domain stabilises specific DNA structures required for the two incisions, thereby contributing to the flexibility of the UvrABC repair system. PMID:12034838

  9. Effect of seven Indian plant extracts on Fenton reaction-mediated damage to DNA constituents.

    PubMed

    Kar, Indrani; Chattopadhyaya, Rajagopal

    2017-11-01

    The influences of substoichiometric amounts of seven plant extracts in the Fenton reaction-mediated damage to deoxynucleosides, deoxynucleoside monophosphates, deoxynucleoside triphosphates, and supercoiled plasmid DNA were studied to rationalize anticancer properties reported in some of these extracts. Extracts from Acacia catechu, Emblica officinalis, Spondias dulcis, Terminalia belerica, Terminalia chebula, as well as gallic acid, epicatechin, chebulagic acid and chebulinic acid enhance the extent of damage in Fenton reactions with all monomeric substrates but protect supercoiled plasmid DNA, compared to standard Fenton reactions. The damage to pyrimidine nucleosides/nucleotides is enhanced by these extracts and compounds to a greater extent than for purine ones in a concentration dependent manner. Dolichos biflorus and Hemidesmus indicus extracts generally do not show this enhancement for the monomeric substrates though they protect plasmid DNA. Compared to standard Fenton reactions for deoxynucleosides with ethanol, the presence of these five plant extracts render ethanol scavenging less effective as the radical is generated in the vicinity of the target. Since substoichiometric amounts of these extracts and the four compounds produce this effect, a catalytic mechanism involving the presence of a ternary complex of the nucleoside/nucleotide substrate, a plant compound and the hydroxyl radical is proposed. Such a mechanism cannot operate for plasmid DNA as the planar rings in the extract compounds cannot stack with the duplex DNA bases. These plant extracts, by enhancing Fenton reaction-mediated damage to deoxynucleoside triphosphates, slow down DNA replication in rapidly dividing cancer cells, thus contributing to their anticancer properties.

  10. DNA Damage Levels Determine Cyclobutyl Pyrimidine Dimer Repair Mechanisms in Alfalfa Seedlings.

    PubMed Central

    Quaite, F. E.; Takayanagi, S.; Ruffini, J.; Sutherland, J. C.; Sutherland, B. M.

    1994-01-01

    Ultraviolet radiation in sunlight damages DNA in plants, but little is understood about the types, lesion capacity, and coordination of repair pathways. We challenged intact alfalfa seedlings with UV doses that induced different initial levels of cyclobutyl pyrimidine dimers and measured repair by excision and photoreactivation. By using alkaline gel electrophoresis of nonradioactive DNAs treated with a cyclobutyl pyrimidine dimer-specific UV endonuclease, we quantitated ethidium-stained DNA by electronic imaging and calculated lesion frequencies from the number average molecular lengths. At low initial dimer frequencies (less than ~30 dimers per million bases), the seedlings used only photoreactivation to repair dimers; excision repair was not significant. At higher damage levels, both excision and photorepair contributed significantly. This strategy would allow plants with low damage levels to use error-free repair requiring only an external light energy source, whereas seedlings subjected to higher damage frequencies could call on additional repair processes requiring cellular energy. Characterization of repair in plants thus requires an investigation of a range of conditions, including the level of initial damage. PMID:12244228

  11. Attenuation of Cisplatin-Induced Neurotoxicity by Cyanidin, a Natural Inhibitor of ROS-Mediated Apoptosis in PC12 Cells.

    PubMed

    Li, Da-wei; Sun, Jing-yi; Wang, Kun; Zhang, Shuai; Hou, Ya-jun; Yang, Ming-feng; Fu, Xiao-yan; Zhang, Zong-yong; Mao, Lei-lei; Yuan, Hui; Fang, Jie; Fan, Cun-dong; Zhu, Mei-jia; Sun, Bao-liang

    2015-10-01

    Cisplatin-based chemotherapy in clinic is severely limited by its adverse effect, including neurotoxicity. Oxidative damage contributes to cisplatin-induced neurotoxicity, but the mechanism remains unclearly. Cyanidin, a natural flavonoid compound, exhibits powerful antioxidant activity. Hence, we investigated the protective effects of cyanidin on PC12 cells against cisplatin-induced neurotoxicity and explored the underlying mechanisms. The results showed that cisplatin-induced cytotoxicity was completely reversed by cyanidin through inhibition of PC12 cell apoptosis, as proved by the attenuation of Sub-G1 peak, PARP cleavage, and caspases-3 activation. Mechanistically, cyanidin significantly inhibited reactive oxygen species (ROS)-induced DNA damage in cisplatin-treated PC12 cells. Our findings revealed that cyanidin as an apoptotic inhibitor effectively blocked cisplatin-induced neurotoxicity through inhibition of ROS-mediated DNA damage and apoptosis, predicating its therapeutic potential in prevention of chemotherapy-induced neurotoxicity. Cisplatin caused DNA damage, activated p53, and subsequently induced PC12 cells apoptosis by triggering ROS overproduction. However, cyanidin administration effectively inhibited DNA damage, attenuated p53 phosphorylation, and eventually reversed cisplatin-induced PC12 cell apoptosis through inhibition ROS accumulation.

  12. The FA pathway counteracts oxidative stress through selective protection of antioxidant defense gene promoters.

    PubMed

    Du, Wei; Rani, Reena; Sipple, Jared; Schick, Jonathan; Myers, Kasiani C; Mehta, Parinda; Andreassen, Paul R; Davies, Stella M; Pang, Qishen

    2012-05-03

    Oxidative stress has been implicated in the pathogenesis of many human diseases including Fanconi anemia (FA), a genetic disorder associated with BM failure and cancer. Here we show that major antioxidant defense genes are down-regulated in FA patients, and that gene down-regulation is selectively associated with increased oxidative DNA damage in the promoters of the antioxidant defense genes. Assessment of promoter activity and DNA damage repair kinetics shows that increased initial damage, rather than a reduced repair rate, contributes to the augmented oxidative DNA damage. Mechanistically, FA proteins act in concert with the chromatin-remodeling factor BRG1 to protect the promoters of antioxidant defense genes from oxidative damage. Specifically, BRG1 binds to the promoters of the antioxidant defense genes at steady state. On challenge with oxidative stress, FA proteins are recruited to promoter DNA, which correlates with significant increase in the binding of BRG1 within promoter regions. In addition, oxidative stress-induced FANCD2 ubiquitination is required for the formation of a FA-BRG1-promoter complex. Taken together, these data identify a role for the FA pathway in cellular antioxidant defense.

  13. Chk2 and REGγ-dependent DBC1 regulation in DNA damage induced apoptosis

    PubMed Central

    Magni, Martina; Ruscica, Vincenzo; Buscemi, Giacomo; Kim, Ja-Eun; Nachimuthu, Benjamin Tamilselvan; Fontanella, Enrico; Delia, Domenico; Zannini, Laura

    2014-01-01

    Human DBC1 (Deleted in Breast Cancer 1; KIAA1967; CCAR2) is a protein implicated in the regulation of apoptosis, transcription and histone modifications. Upon DNA damage, DBC1 is phosphorylated by ATM/ATR on Thr454 and this modification increases its inhibitory interaction with SIRT1, leading to p53 acetylation and p53-dependent apoptosis. Here, we report that the inhibition of SIRT1 by DBC1 in the DNA damage response (DDR) also depends on Chk2, the transducer kinase that is activated by ATM upon DNA lesions and contributes to the spreading of DNA damage signal. Indeed we found that inactivation of Chk2 reduces DBC1-SIRT1 binding, thus preventing p53 acetylation and DBC1-induced apoptosis. These events are mediated by Chk2 phosphorylation of the 11S proteasome activator REGγ on Ser247, which increases REGγ-DBC1 interaction and SIRT1 inhibition. Overall our results clarify the mechanisms underlying the DBC1-dependent SIRT1 inhibition and link, for the first time, Chk2 and REGγ to the ATM-DBC1-SIRT1 axis. PMID:25361978

  14. Correlation between energy deposition and molecular damage from Auger electrons: A case study of ultra-low energy (5–18 eV) electron interactions with DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rezaee, Mohammad, E-mail: Mohammad.Rezaee@USherbrooke.ca; Hunting, Darel J.; Sanche, Léon

    2014-07-15

    Purpose: The present study introduces a new method to establish a direct correlation between biologically related physical parameters (i.e., stopping and damaging cross sections, respectively) for an Auger-electron emitting radionuclide decaying within a target molecule (e.g., DNA), so as to evaluate the efficacy of the radionuclide at the molecular level. These parameters can be applied to the dosimetry of Auger electrons and the quantification of their biological effects, which are the main criteria to assess the therapeutic efficacy of Auger-electron emitting radionuclides. Methods: Absorbed dose and stopping cross section for the Auger electrons of 5–18 eV emitted by{sup 125}I withinmore » DNA were determined by developing a nanodosimetric model. The molecular damages induced by these Auger electrons were investigated by measuring damaging cross section, including that for the formation of DNA single- and double-strand breaks. Nanoscale films of pure plasmid DNA were prepared via the freeze-drying technique and subsequently irradiated with low-energy electrons at various fluences. The damaging cross sections were determined by employing a molecular survival model to the measured exposure–response curves for induction of DNA strand breaks. Results: For a single decay of{sup 125}I within DNA, the Auger electrons of 5–18 eV deposit the energies of 12.1 and 9.1 eV within a 4.2-nm{sup 3} volume of a hydrated or dry DNA, which results in the absorbed doses of 270 and 210 kGy, respectively. DNA bases have a major contribution to the deposited energies. Ten-electronvolt and high linear energy transfer 100-eV electrons have a similar cross section for the formation of DNA double-strand break, while 100-eV electrons are twice as efficient as 10 eV in the induction of single-strand break. Conclusions: Ultra-low-energy electrons (<18 eV) substantially contribute to the absorbed dose and to the molecular damage from Auger-electron emitting radionuclides; hence, they should be considered in the dosimetry calculation of such radionuclides. Moreover, absorbed dose is not an appropriate physical parameter for nanodosimetry. Instead, stopping cross section, which describes the probability of energy deposition in a target molecule can be an appropriate nanodosimetric parameter. The stopping cross section is correlated with a damaging cross section (e.g., cross section for the double-strand break formation) to quantify the number of each specific lesion in a target molecule for each nuclear decay of a single Auger-electron emitting radionuclide.« less

  15. Correlation between energy deposition and molecular damage from Auger electrons: A case study of ultra-low energy (5–18 eV) electron interactions with DNA

    PubMed Central

    Rezaee, Mohammad; Hunting, Darel J.; Sanche, Léon

    2015-01-01

    Purpose The present study introduces a new method to establish a direct correlation between biologically related physical parameters (i.e., stopping and damaging cross sections, respectively) for an Auger-electron emitting radionuclide decaying within a target molecule (e.g., DNA), so as to evaluate the efficacy of the radionuclide at the molecular level. These parameters can be applied to the dosimetry of Auger electrons and the quantification of their biological effects, which are the main criteria to assess the therapeutic efficacy of Auger-electron emitting radionuclides. Methods Absorbed dose and stopping cross section for the Auger electrons of 5–18 eV emitted by 125I within DNA were determined by developing a nanodosimetric model. The molecular damages induced by these Auger electrons were investigated by measuring damaging cross section, including that for the formation of DNA single- and double-strand breaks. Nanoscale films of pure plasmid DNA were prepared via the freeze-drying technique and subsequently irradiated with low-energy electrons at various fluences. The damaging cross sections were determined by employing a molecular survival model to the measured exposure–response curves for induction of DNA strand breaks. Results For a single decay of 125I within DNA, the Auger electrons of 5–18 eV deposit the energies of 12.1 and 9.1 eV within a 4.2-nm3 volume of a hydrated or dry DNA, which results in the absorbed doses of 270 and 210 kGy, respectively. DNA bases have a major contribution to the deposited energies. Ten-electronvolt and high linear energy transfer 100-eV electrons have a similar cross section for the formation of DNA double-strand break, while 100-eV electrons are twice as efficient as 10 eV in the induction of single-strand break. Conclusions Ultra-low-energy electrons (<18 eV) substantially contribute to the absorbed dose and to the molecular damage from Auger-electron emitting radionuclides; hence, they should be considered in the dosimetry calculation of such radionuclides. Moreover, absorbed dose is not an appropriate physical parameter for nanodosimetry. Instead, stopping cross section, which describes the probability of energy deposition in a target molecule can be an appropriate nanodosimetric parameter. The stopping cross section is correlated with a damaging cross section (e.g., cross section for the double-strand break formation) to quantify the number of each specific lesion in a target molecule for each nuclear decay of a single Auger-electron emitting radionuclide. PMID:24989405

  16. Chromosomal Integrity after UV Irradiation Requires FANCD2-Mediated Repair of Double Strand Breaks

    PubMed Central

    Federico, María Belén; Vallerga, María Belén; Radl, Analía; Paviolo, Natalia Soledad; Bocco, José Luis; Di Giorgio, Marina; Soria, Gastón; Gottifredi, Vanesa

    2016-01-01

    Fanconi Anemia (FA) is a rare autosomal recessive disorder characterized by hypersensitivity to inter-strand crosslinks (ICLs). FANCD2, a central factor of the FA pathway, is essential for the repair of double strand breaks (DSBs) generated during fork collapse at ICLs. While lesions different from ICLs can also trigger fork collapse, the contribution of FANCD2 to the resolution of replication-coupled DSBs generated independently from ICLs is unknown. Intriguingly, FANCD2 is readily activated after UV irradiation, a DNA-damaging agent that generates predominantly intra-strand crosslinks but not ICLs. Hence, UV irradiation is an ideal tool to explore the contribution of FANCD2 to the DNA damage response triggered by DNA lesions other than ICL repair. Here we show that, in contrast to ICL-causing agents, UV radiation compromises cell survival independently from FANCD2. In agreement, FANCD2 depletion does not increase the amount of DSBs generated during the replication of UV-damaged DNA and is dispensable for UV-induced checkpoint activation. Remarkably however, FANCD2 protects UV-dependent, replication-coupled DSBs from aberrant processing by non-homologous end joining, preventing the accumulation of micronuclei and chromatid aberrations including non-homologous chromatid exchanges. Hence, while dispensable for cell survival, FANCD2 selectively safeguards chromosomal stability after UV-triggered replication stress. PMID:26765540

  17. Chromosomal Integrity after UV Irradiation Requires FANCD2-Mediated Repair of Double Strand Breaks.

    PubMed

    Federico, María Belén; Vallerga, María Belén; Radl, Analía; Paviolo, Natalia Soledad; Bocco, José Luis; Di Giorgio, Marina; Soria, Gastón; Gottifredi, Vanesa

    2016-01-01

    Fanconi Anemia (FA) is a rare autosomal recessive disorder characterized by hypersensitivity to inter-strand crosslinks (ICLs). FANCD2, a central factor of the FA pathway, is essential for the repair of double strand breaks (DSBs) generated during fork collapse at ICLs. While lesions different from ICLs can also trigger fork collapse, the contribution of FANCD2 to the resolution of replication-coupled DSBs generated independently from ICLs is unknown. Intriguingly, FANCD2 is readily activated after UV irradiation, a DNA-damaging agent that generates predominantly intra-strand crosslinks but not ICLs. Hence, UV irradiation is an ideal tool to explore the contribution of FANCD2 to the DNA damage response triggered by DNA lesions other than ICL repair. Here we show that, in contrast to ICL-causing agents, UV radiation compromises cell survival independently from FANCD2. In agreement, FANCD2 depletion does not increase the amount of DSBs generated during the replication of UV-damaged DNA and is dispensable for UV-induced checkpoint activation. Remarkably however, FANCD2 protects UV-dependent, replication-coupled DSBs from aberrant processing by non-homologous end joining, preventing the accumulation of micronuclei and chromatid aberrations including non-homologous chromatid exchanges. Hence, while dispensable for cell survival, FANCD2 selectively safeguards chromosomal stability after UV-triggered replication stress.

  18. Cisplatin: mode of cytotoxic action and molecular basis of resistance.

    PubMed

    Siddik, Zahid H

    2003-10-20

    Cisplatin is one of the most potent antitumor agents known, displaying clinical activity against a wide variety of solid tumors. Its cytotoxic mode of action is mediated by its interaction with DNA to form DNA adducts, primarily intrastrand crosslink adducts, which activate several signal transduction pathways, including those involving ATR, p53, p73, and MAPK, and culminate in the activation of apoptosis. DNA damage-mediated apoptotic signals, however, can be attenuated, and the resistance that ensues is a major limitation of cisplatin-based chemotherapy. The mechanisms responsible for cisplatin resistance are several, and contribute to the multifactorial nature of the problem. Resistance mechanisms that limit the extent of DNA damage include reduced drug uptake, increased drug inactivation, and increased DNA adduct repair. Origins of these pharmacologic-based mechanisms, however, are at the molecular level. Mechanisms that inhibit propagation of the DNA damage signal to the apoptotic machinery include loss of damage recognition, overexpression of HER-2/neu, activation of the PI3-K/Akt (also known as PI3-K/PKB) pathway, loss of p53 function, overexpression of antiapoptotic bcl-2, and interference in caspase activation. The molecular signature defining the resistant phenotype varies between tumors, and the number of resistance mechanisms activated in response to selection pressures dictates the overall extent of cisplatin resistance.

  19. Put a RING on it: regulation and inhibition of RNF8 and RNF168 RING finger E3 ligases at DNA damage sites

    PubMed Central

    Bartocci, Cristina; Denchi, Eros Lazzerini

    2013-01-01

    RING (Really Interesting New Gene) domain-containing E3 ubiquitin ligases comprise a large family of enzymes that in combination with an E2 ubiquitin-conjugating enzyme, modify target proteins by attaching ubiquitin moieties. A number of RING E3s play an essential role in the cellular response to DNA damage highlighting a crucial contribution for ubiquitin-mediated signaling to the genome surveillance pathway. Among the RING E3s, RNF8 and RNF168 play a critical role in the response to double stranded breaks, one of the most deleterious types of DNA damage. These proteins act as positive regulators of the signaling cascade that initiates at DNA lesions. Inactivation of these enzymes is sufficient to severely impair the ability of cells to respond to DNA damage. Given their central role in the pathway, several layers of regulation act at this nodal signaling point. Here we will summarize current knowledge on the roles of RNF8 and RNF168 in maintaining genome integrity with particular emphasis on recent insights into the multiple layers of regulation that act on these enzymes to fine-tune the cellular response to DNA lesions. PMID:23847653

  20. Estimates of DNA damage by the comet assay in the direct-developing frog Eleutherodactylus johnstonei (Anura, Eleutherodactylidae)

    PubMed Central

    Valencia, Laura Carolina; García, Adriana; Ramírez-Pinilla, Martha Patricia; Fuentes, Jorge Luis

    2011-01-01

    The aim of this study was to use the Comet assay to assess genetic damage in the direct-developing frog Eleutherodactylus johnstonei. A DNA diffusion assay was used to evaluate the effectiveness of alkaline, enzymatic and alkaline/enzymatic treatments for lysing E. johnstonei blood cells and to determine the amount of DNA strand breakage associated with apoptosis and necrosis. Cell sensitivity to the mutagens bleomycin (BLM) and 4-nitro-quinoline-1-oxide (4NQO) was also assessed using the Comet assay, as was the assay reproducibility. Alkaline treatment did not lyse the cytoplasmic and nuclear membranes of E. johnstonei blood cells, whereas enzymatic digestion with proteinase K (40 μg/mL) yielded naked nuclei. The contribution of apoptosis and necrosis (assessed by the DNA diffusion assay) to DNA damage was estimated to range from 0% to 8%. BLM and 4NQO induced DNA damage in E. johnstonei blood cells at different concentrations and exposure times. Dose-effect curves with both mutagens were highly reproducible and showed consistently low coefficients of variation (CV ≤ 10%). The results are discussed with regard to the potential use of the modified Comet assay for assessing the exposure of E. johnstonei to herbicides in ecotoxicological studies. PMID:22215974

  1. Estimates of DNA damage by the comet assay in the direct-developing frog Eleutherodactylus johnstonei (Anura, Eleutherodactylidae).

    PubMed

    Valencia, Laura Carolina; García, Adriana; Ramírez-Pinilla, Martha Patricia; Fuentes, Jorge Luis

    2011-10-01

    The aim of this study was to use the Comet assay to assess genetic damage in the direct-developing frog Eleutherodactylus johnstonei. A DNA diffusion assay was used to evaluate the effectiveness of alkaline, enzymatic and alkaline/enzymatic treatments for lysing E. johnstonei blood cells and to determine the amount of DNA strand breakage associated with apoptosis and necrosis. Cell sensitivity to the mutagens bleomycin (BLM) and 4-nitro-quinoline-1-oxide (4NQO) was also assessed using the Comet assay, as was the assay reproducibility. Alkaline treatment did not lyse the cytoplasmic and nuclear membranes of E. johnstonei blood cells, whereas enzymatic digestion with proteinase K (40 μg/mL) yielded naked nuclei. The contribution of apoptosis and necrosis (assessed by the DNA diffusion assay) to DNA damage was estimated to range from 0% to 8%. BLM and 4NQO induced DNA damage in E. johnstonei blood cells at different concentrations and exposure times. Dose-effect curves with both mutagens were highly reproducible and showed consistently low coefficients of variation (CV ≤ 10%). The results are discussed with regard to the potential use of the modified Comet assay for assessing the exposure of E. johnstonei to herbicides in ecotoxicological studies.

  2. Transcriptional activation of short interspersed elements by DNA-damaging agents.

    PubMed

    Rudin, C M; Thompson, C B

    2001-01-01

    Short interspersed elements (SINEs), typified by the human Alu repeat, are RNA polymerase III (pol III)-transcribed sequences that replicate within the genome through an RNA intermediate. Replication of SINEs has been extensive in mammalian evolution: an estimated 5% of the human genome consists of Alu repeats. The mechanisms regulating transcription, reverse transcription, and reinsertion of SINE elements in genomic DNA are poorly understood. Here we report that expression of murine SINE transcripts of both the B1 and B2 classes is strongly upregulated after prolonged exposure to cisplatin, etoposide, or gamma radiation. A similar induction of Alu transcripts in human cells occurs under these conditions. This induction is not due to a general upregulation of pol III activity in either species. Genotoxic treatment of murine cells containing an exogenous human Alu element induced Alu transcription. Concomitant with the increased expression of SINEs, an increase in cellular reverse transcriptase was observed after exposure to these same DNA-damaging agents. These findings suggest that genomic damage may be an important activator of SINEs, and that SINE mobility may contribute to secondary malignancy after exposure to DNA-damaging chemotherapy.

  3. Long Non-coding RNA, PANDA, Contributes to the Stabilization of p53 Tumor Suppressor Protein.

    PubMed

    Kotake, Yojiro; Kitagawa, Kyoko; Ohhata, Tatsuya; Sakai, Satoshi; Uchida, Chiharu; Niida, Hiroyuki; Naemura, Madoka; Kitagawa, Masatoshi

    2016-04-01

    P21-associated noncoding RNA DNA damage-activated (PANDA) is induced in response to DNA damage and represses apoptosis by inhibiting the function of nuclear transcription factor Y subunit alpha (NF-YA) transcription factor. Herein, we report that PANDA affects regulation of p53 tumor-suppressor protein. U2OS cells were transfected with PANDA siRNAs. At 72 h post-transfection, cells were subjected to immunoblotting and quantitative reverse transcription-polymerase chain reaction. Depletion of PANDA was associated with decreased levels of p53 protein, but not p53 mRNA. The stability of p53 protein was markedly reduced by PANDA silencing. Degradation of p53 protein by silencing PANDA was prevented by treatment of MG132, a proteasome inhibitor. Moreover, depletion of PANDA prevented accumulation of p53 protein, as a result of DNA damage, induced by the genotoxic agent etoposide. These results suggest that PANDA stabilizes p53 protein in response to DNA damage, and provide new insight into the regulatory mechanisms of p53. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  4. An investigation of the effects of MitoQ on human peripheral mononuclear cells.

    PubMed

    Marthandan, Shiva; Murphy, Michael P; Billett, Ellen; Barnett, Yvonne

    2011-03-01

    MitoQ is a ubiquinone derivative targeted to mitochondria which is known to have both antioxidant and anti-apoptotic properties within mammalian cells. Previous research has suggested that the age-related increase in oxidative DNA damage in T lymphocytes might contribute to their functional decline with age. This paper describes the impact of mitoQ on unchallenged or oxidatively challenged ex vivo human peripheral blood mononuclear cells from healthy 25-30 or 55-60 year old volunteers. When cells were challenged with hydrogen peroxide (H(2)O(2)), following mitoQ treatment (0.1-1.0 μM), the ratio of reduced to oxidized forms of glutathione increased, the levels of oxidative DNA damage decreased and there was an increase in the mitochondrial membrane potential. Low levels of mitoQ (0.1 or 0.25 μM) had no impact on endogenous DNA damage, whilst higher levels (0.5 and 1.0 μM) of mitoQ significantly reduced endogenous levels of DNA damage. The results of this investigation suggest that mitoQ may have anti-immunosenescent potential.

  5. DNA repair targeted therapy: the past or future of cancer treatment?

    PubMed Central

    Gavande, Navnath S.; VanderVere-Carozza, Pamela S.; Hinshaw, Hilary D.; Jalal, Shadia I.; Sears, Catherine R.; Pawelczak, Katherine S.; Turchi, John J.

    2016-01-01

    The repair of DNA damage is a complex process that relies on particular pathways to remedy specific types of damage to DNA. The range of insults to DNA includes small, modest changes in structure including mismatched bases and simple methylation events to oxidized bases, intra- and interstrand DNA crosslinks, DNA double strand breaks and protein-DNA adducts. Pathways required for the repair of these lesions include mismatch repair, base excision repair, nucleotide excision repair, and the homology directed repair/Fanconi anemia pathway. Each of these pathways contributes to genetic stability, and mutations in genes encoding proteins involved in these pathways have been demonstrated to promote genetic instability and cancer. In fact, it has been suggested all cancers display defects in DNA repair. It has also been demonstrated that the ability of cancer cells to repair therapeutically induced DNA damage impacts therapeutic efficacy. This has led to targeting DNA repair pathways and proteins to develop anti-cancer agents that will increase sensitivity to traditional chemotherapeutics. While initial studies languished and were plagued by a lack of specificity and a defined mechanism of action, more recent approaches to exploit synthetic lethal interaction and develop high affinity chemical inhibitors have proven considerably more effective. In this review we will highlight recent advances and discuss previous failures in targeting DNA repair to pave the way for future DNA repair targeted agents and their use in cancer therapy. PMID:26896565

  6. The effect of dimethyl sulfoxide on the induction of DNA strand breaks in plasmid DNA and colony formation of PC Cl3 mammalian cells by alpha-, beta-, and Auger electron emitters (223)Ra, (188)Re, and (99m)Tc.

    PubMed

    Runge, Roswitha; Oehme, Liane; Kotzerke, Jörg; Freudenberg, Robert

    2016-12-01

    DNA damage occurs as a consequence of both direct and indirect effects of ionizing radiation. The severity of DNA damage depends on the physical characteristics of the radiation quality, e.g., the linear energy transfer (LET). There are still contrary findings regarding direct or indirect interactions of high-LET emitters with DNA. Our aim is to determine DNA damage and the effect on cellular survival induced by (223)Ra compared to (188)Re and (99m)Tc modulated by the radical scavenger dimethyl sulfoxide (DMSO). Radioactive solutions of (223)Ra, (188)Re, or (99m)Tc were added to either plasmid DNA or to PC Cl3 cells in the absence or presence of DMSO. Following irradiation, single strand breaks (SSB) and double strand breaks (DSB) in plasmid DNA were analyzed by gel electrophoresis. To determine the radiosensitivity of the rat thyroid cell line (PC Cl3), survival curves were performed using the colony formation assay. Exposure to 120 Gy of (223)Ra, (188)Re, or (99m)Tc leads to maximal yields of SSB (80 %) in plasmid DNA. Irradiation with 540 Gy (223)Ra and 500 Gy (188)Re or (99m)Tc induced 40, 28, and 64 % linear plasmid conformations, respectively. DMSO prevented the SSB and DSB in a similar way for all radionuclides. However, with the α-emitter (223)Ra, a low level of DSB could not be prevented by DMSO. Irradiation of PC Cl3 cells with (223)Ra, (188)Re, and (99m)Tc pre-incubated with DMSO revealed enhanced survival fractions (SF) in comparison to treatment without DMSO. Protection factors (PF) were calculated using the fitted survival curves. These factors are 1.23 ± 0.04, 1.20 ± 0.19, and 1.34 ± 0.05 for (223)Ra, (188)Re, and (99m)Tc, respectively. For (223)Ra, as well as for (188)Re and (99m)Tc, dose-dependent radiation effects were found applicable for plasmid DNA and PC Cl3 cells. The radioprotection by DMSO was in the same range for high- and low-LET emitter. Overall, the results indicate the contribution of mainly indirect radiation effects for each of the radionuclides regarding DNA damage and cell survival. In summary, our findings may contribute to fundamental knowledge about the α-particle induced DNA damage.

  7. Evidence That BRCA1- or BRCA2-Associated Cancers Are Not Inevitable

    PubMed Central

    Levin, Bess; Lech, Denise; Friedenson, Bernard

    2012-01-01

    Inheriting a BRCA1 or BRCA2 gene mutation can cause a deficiency in repairing complex DNA damage. This step leads to genomic instability and probably contributes to an inherited predisposition to breast and ovarian cancer. Complex DNA damage has been viewed as an integral part of DNA replication before cell division. It causes temporary replication blocks, replication fork collapse, chromosome breaks and sister chromatid exchanges (SCEs). Chemical modification of DNA may also occur spontaneously as a byproduct of normal processes. Pathways containing BRCA1 and BRCA2 gene products are essential to repair spontaneous complex DNA damage or to carry out SCEs if repair is not possible. This scenario creates a theoretical limit that effectively means there are spontaneous BRCA1/2-associated cancers that cannot be prevented or delayed. However, much evidence for high rates of spontaneous DNA mutation is based on measuring SCEs by using bromodeoxyuridine (BrdU). Here we find that the routine use of BrdU has probably led to overestimating spontaneous DNA damage and SCEs because BrdU is itself a mutagen. Evidence based on spontaneous chromosome abnormalities and epidemiologic data indicates strong effects from exogenous mutagens and does not support the inevitability of cancer in all BRCA1/2 mutation carriers. We therefore remove a theoretical argument that has limited efforts to develop chemoprevention strategies to delay or prevent cancers in BRCA1/2 mutation carriers. PMID:22972572

  8. The Nucleolus: In Genome Maintenance and Repair.

    PubMed

    Tsekrekou, Maria; Stratigi, Kalliopi; Chatzinikolaou, Georgia

    2017-07-01

    The nucleolus is the subnuclear membrane-less organelle where rRNA is transcribed and processed and ribosomal assembly occurs. During the last 20 years, however, the nucleolus has emerged as a multifunctional organelle, regulating processes that go well beyond its traditional role. Moreover, the unique organization of rDNA in tandem arrays and its unusually high transcription rates make it prone to unscheduled DNA recombination events and frequent RNA:DNA hybrids leading to DNA double strand breaks (DSBs). If not properly repaired, rDNA damage may contribute to premature disease onset and aging. Deregulation of ribosomal synthesis at any level from transcription and processing to ribosomal subunit assembly elicits a stress response and is also associated with disease onset. Here, we discuss how genome integrity is maintained within nucleoli and how such structures are functionally linked to nuclear DNA damage response and repair giving an emphasis on the newly emerging roles of the nucleolus in mammalian physiology and disease.

  9. REC-2006-A Fractionated Extract of Podophyllum hexandrum Protects Cellular DNA from Radiation-Induced Damage by Reducing the Initial Damage and Enhancing Its Repair In Vivo.

    PubMed

    Chaudhary, Pankaj; Shukla, Sandeep Kumar; Sharma, Rakesh Kumar

    2011-01-01

    Podophyllum hexandrum, a perennial herb commonly known as the Himalayan May Apple, is well known in Indian and Chinese traditional systems of medicine. P. hexandrum has been widely used for the treatment of venereal warts, skin infections, bacterial and viral infections, and different cancers of the brain, lung and bladder. This study aimed at elucidating the effect of REC-2006, a bioactive fractionated extract from the rhizome of P. hexandrum, on the kinetics of induction and repair of radiation-induced DNA damage in murine thymocytes in vivo. We evaluated its effect on non-specific radiation-induced DNA damage by the alkaline halo assay in terms of relative nuclear spreading factor (RNSF) and gene-specific radiation-induced DNA damage via semi-quantitative polymerase chain reaction. Whole body exposure of animals with gamma rays (10 Gy) caused a significant amount of DNA damage in thymocytes (RNSF values 17.7 ± 0.47, 12.96 ± 1.64 and 3.3 ± 0.014) and a reduction in the amplification of β-globin gene to 0, 28 and 43% at 0, 15 and 60 min, respectively. Administrating REC-2006 at a radioprotective concentration (15 mg kg(-1) body weight) 1 h before irradiation resulted in time-dependent reduction of DNA damage evident as a decrease in RNSF values 6.156 ± 0.576, 1.647 ± 0.534 and 0.496 ± 0.012, and an increase in β-globin gene amplification 36, 95 and 99%, at 0, 15 and 60 min, respectively. REC-2006 scavenged radiation-induced hydroxyl radicals in a dose-dependent manner stabilized DPPH free radicals and also inhibited superoxide anions. Various polyphenols and flavonoides present in REC-2006 might contribute to scavenging of radiation-induced free radicals, thereby preventing DNA damage and stimulating its repair.

  10. REC-2006—A Fractionated Extract of Podophyllum hexandrum Protects Cellular DNA from Radiation-Induced Damage by Reducing the Initial Damage and Enhancing Its Repair In Vivo

    PubMed Central

    Chaudhary, Pankaj; Shukla, Sandeep Kumar; Sharma, Rakesh Kumar

    2011-01-01

    Podophyllum hexandrum, a perennial herb commonly known as the Himalayan May Apple, is well known in Indian and Chinese traditional systems of medicine. P. hexandrum has been widely used for the treatment of venereal warts, skin infections, bacterial and viral infections, and different cancers of the brain, lung and bladder. This study aimed at elucidating the effect of REC-2006, a bioactive fractionated extract from the rhizome of P. hexandrum, on the kinetics of induction and repair of radiation-induced DNA damage in murine thymocytes in vivo. We evaluated its effect on non-specific radiation-induced DNA damage by the alkaline halo assay in terms of relative nuclear spreading factor (RNSF) and gene-specific radiation-induced DNA damage via semi-quantitative polymerase chain reaction. Whole body exposure of animals with gamma rays (10 Gy) caused a significant amount of DNA damage in thymocytes (RNSF values 17.7 ± 0.47, 12.96 ± 1.64 and 3.3 ± 0.014) and a reduction in the amplification of β-globin gene to 0, 28 and 43% at 0, 15 and 60 min, respectively. Administrating REC-2006 at a radioprotective concentration (15 mg kg−1 body weight) 1 h before irradiation resulted in time-dependent reduction of DNA damage evident as a decrease in RNSF values 6.156 ± 0.576, 1.647 ± 0.534 and 0.496 ± 0.012, and an increase in β-globin gene amplification 36, 95 and 99%, at 0, 15 and 60 min, respectively. REC-2006 scavenged radiation-induced hydroxyl radicals in a dose-dependent manner stabilized DPPH free radicals and also inhibited superoxide anions. Various polyphenols and flavonoides present in REC-2006 might contribute to scavenging of radiation-induced free radicals, thereby preventing DNA damage and stimulating its repair. PMID:20008078

  11. Nitrative DNA damage induced by multi-walled carbon nanotube via endocytosis in human lung epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Feiye, E-mail: zhizi0269@doc.medic.mie-u.ac.jp; Ma, Ning, E-mail: maning@suzuka-u.ac.jp; Horibe, Yoshiteru, E-mail: violinteru@yahoo.co.jp

    Carbon nanotube (CNT) has a promising usage in the field of material science for industrial purposes because of its unique physicochemical property. However, intraperitoneal administration of CNT was reported to cause mesothelioma in experimental animals. Chronic inflammation may contribute to carcinogenesis induced by fibrous materials. 8-Nitroguanine is a mutagenic DNA lesion formed during inflammation and may play a role in CNT-induced carcinogenesis. In this study, we examined 8-nitroguanine formation in A549 human lung alveolar epithelial cells treated with multi-walled CNT (MWCNT) by fluorescent immunocytochemistry. Both MWCNTs with diameter of 20–30 nm (CNT20) and 40–70 nm (CNT40) significantly induced 8-nitroguanine formationmore » at 5 and 10 μg/ml (p < 0.05), which persisted for 24 h, although there was no significant difference in DNA-damaging abilities of these MWCNTs. MWCNTs significantly induced the expression of inducible nitric oxide synthase (iNOS) for 24 h (p < 0.05). MWCNTs also significantly increased the level of nitrite, a hydrolysis product of oxidized NO, in the culture supernatant at 4 and 8 h (p < 0.05). MWCNT-induced 8-nitroguanine formation and iNOS expression were largely suppressed by inhibitors of iNOS (1400 W), nuclear factor-κB (Bay11-7082), actin polymerization (cytochalasin D), caveolae-mediated endocytosis (methyl-β-cyclodextrin, MBCD) and clathrin-mediated endocytosis (monodansylcadaverine, MDC). Electron microscopy revealed that MWCNT was mainly located in vesicular structures in the cytoplasm, and its cellular internalization was reduced by MBCD and MDC. These results suggest that MWCNT is internalized into cells via clathrin- and caveolae-mediated endocytosis, leading to inflammatory reactions including iNOS expression and resulting nitrative DNA damage, which may contribute to carcinogenesis. Highlights: ►Multi-walled carbon nanotube (MWCNT) caused DNA damage in A549 cells. ►MWCNT formed 8-nitroguanine, a DNA lesion associated with inflammatory response. ►MWCNT was internalized into cells via caveolin- and clathrin-mediated endocytosis. ►8-Nitroguanine formation and iNOS expression involved these types of endocytosis. ►Internalized MWCNT plays a key role in inflammatory response and DNA damage.« less

  12. Ablation of XP-V gene causes adipose tissue senescence and metabolic abnormalities

    PubMed Central

    Chen, Yih-Wen; Harris, Robert A.; Hatahet, Zafer; Chou, Kai-ming

    2015-01-01

    Obesity and the metabolic syndrome have evolved to be major health issues throughout the world. Whether loss of genome integrity contributes to this epidemic is an open question. DNA polymerase η (pol η), encoded by the xeroderma pigmentosum (XP-V) gene, plays an essential role in preventing cutaneous cancer caused by UV radiation-induced DNA damage. Herein, we demonstrate that pol η deficiency in mice (pol η−/−) causes obesity with visceral fat accumulation, hepatic steatosis, hyperleptinemia, hyperinsulinemia, and glucose intolerance. In comparison to WT mice, adipose tissue from pol η−/− mice exhibits increased DNA damage and a greater DNA damage response, indicated by up-regulation and/or phosphorylation of ataxia telangiectasia mutated (ATM), phosphorylated H2AX (γH2AX), and poly[ADP-ribose] polymerase 1 (PARP-1). Concomitantly, increased cellular senescence in the adipose tissue from pol η−/− mice was observed and measured by up-regulation of senescence markers, including p53, p16Ink4a, p21, senescence-associated (SA) β-gal activity, and SA secretion of proinflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) as early as 4 wk of age. Treatment of pol η−/− mice with a p53 inhibitor, pifithrin-α, reduced adipocyte senescence and attenuated the metabolic abnormalities. Furthermore, elevation of adipocyte DNA damage with a high-fat diet or sodium arsenite exacerbated adipocyte senescence and metabolic abnormalities in pol η−/− mice. In contrast, reduction of adipose DNA damage with N-acetylcysteine or metformin ameliorated cellular senescence and metabolic abnormalities. These studies indicate that elevated DNA damage is a root cause of adipocyte senescence, which plays a determining role in the development of obesity and insulin resistance. PMID:26240351

  13. Intestinal inflammation induces genotoxicity to extraintestinal tissues and cell types in mice

    PubMed Central

    Westbrook, Aya M.; Wei, Bo; Braun, Jonathan; Schiestl, Robert H.

    2011-01-01

    Chronic intestinal inflammation leads to increased risk of colorectal and small intestinal cancers, and is also associated with extraintestinal manifestations such as lymphomas, other solid cancers, and autoimmune disorders. We have previously found that acute and chronic intestinal inflammation causes DNA damage to circulating peripheral leukocytes, manifesting a systemic effect in genetic and chemically-induced models of intestinal inflammation. This study addresses the scope of tissue targets and genotoxic damage induced by inflammation-associated genotoxicity. Using several experimental models of intestinal inflammation, we analyzed various types of DNA damage in leukocyte subpopulations of the blood, spleen, mesenteric and peripheral lymph nodes; and, in intestinal epithelial cells, hepatocytes, and the brain. Genotoxicity in the form of DNA single and double stranded breaks accompanied by oxidative base damage was found in leukocyte subpopulations of the blood, diverse lymphoid organs, intestinal epithelial cells, and hepatocytes. The brain did not demonstrate significant levels of DNA double strand breaks as measured by γ-H2AX immunostaining. CD4+ and CD8+ T-cells were most sensitive to DNA damage versus other cell types in the peripheral blood. In vivo measurements and in vitro modeling suggested that genotoxicity was induced by increased levels of systemically circulating proinflammatory cytokines. Moreover, genotoxicity involved increased damage rather than reduced repair, since it not associated with decreased expression of the DNA double-strand break recognition and repair protein, ataxia telangiectasia mutated (ATM). These findings suggest that levels of intestinal inflammation contribute to the remote tissue burden of genotoxicity, with potential effects on non-intestinal diseases and cancer. PMID:21520038

  14. Mitochondria and mitochondrial DNA as relevant targets for environmental contaminants.

    PubMed

    Roubicek, Deborah A; Souza-Pinto, Nadja C de

    2017-11-01

    The mitochondrial DNA (mtDNA) is a closed circular molecule that encodes, in humans, 13 polypeptides components of the oxidative phosphorylation complexes. Integrity of the mitochondrial genome is essential for mitochondrial function and cellular homeostasis, and mutations and deletions in the mtDNA lead to oxidative stress, mitochondrial dysfunction and cell death. In vitro and in situ studies suggest that when exposed to certain genotoxins, mtDNA accumulates more damage than nuclear DNA, likely owing to its organization and localization in the mitochondrial matrix, which tends to accumulate lipophilic, positively charged molecules. In that regard, several relevant environmental and occupational contaminants have physical-chemical characteristics that indicate that they might accumulate in mitochondria and target mtDNA. Nonetheless, very little is known so far about mtDNA damage and mitochondrial dysfunction due to environmental exposure, either in model organisms or in humans. In this article, we discuss some of the characteristics of mtDNA which render it a potentially relevant target for damage by environmental contaminants, as well as possible functional consequences of damage/mutation accumulation. In addition, we review the data available in the literature focusing on mitochondrial effects of the most common classes of environmental pollutants. From that, we conclude that several lines of experimental evidence support the idea that mitochondria and mtDNA are susceptible and biologically relevant targets for pollutants, and more studies, including mechanistic ones, are needed to shed more light into the contribution of mitochondrial dysfunction to the environmental and human health effects of chemical exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Trypanocidal nitroimidazole derivatives: relationships among chemical structure and genotoxic activity.

    PubMed

    Buschini, Annamaria; Giordani, Federica; de Albuquerque, Cristina Northfleet; Pellacani, Claudia; Pelosi, Giorgio; Rossi, Carlo; Zucchi, Tânia Maria Araújo Domingues; Poli, Paola

    2007-05-15

    Human American trypanosomiasis is resurgent in Latin Americans, and new drugs are urgently required as current medications suffer from a number of drawbacks. Some nitroheterocycles have been demonstrated to exert a potent activity against trypanosomes. However, host toxicity issues halted their development as trypanocides. As part of the efforts to develop new compounds in order to treat parasitic infections, it is important to define their structure-activity relationship. In this study, 5-nitromegazol and two of its analogues, 4-nitromegazol, and 1-methyl-5-nitro-2-imidazolecarboxaldehyde 5-nitroimidazole-thiosemicarbazone, were tested and compared for in vitro induction of DNA damage in human leukocytes by the comet assay, performed at different pHs to better identify the types of damage. Specific oxidatively generated damage to DNA was also measured by using the comet assay with endonucleases. DNA damage was found in 5-nitromegazol-treated cells: oxidative stress appeared as the main source of DNA damage. 4-Nitromegazol did not produce any significant effect, thus confirming that 4-nitroimidazoles isomers have no important biological activity. The 5-nitroimidazole-thiosemicarbazone induced DNA damage with a higher efficiency than 5-nitromegazol. The central role in the reduction process played by the acidic hydrazine proton present in the thiosemicarbazone group but not in the cyclic (thiadiazole) form can contribute to rationalise our results. Given its versatility, thiosemicarbazone moiety could be involved in different reactions with nitrogenous bases (nucleophilic and/or electrophilic attacks).

  16. Diadenosine 5', 5'''-P(1),P(4)-tetraphosphate (Ap4A) is synthesized in response to DNA damage and inhibits the initiation of DNA replication.

    PubMed

    Marriott, Andrew S; Copeland, Nikki A; Cunningham, Ryan; Wilkinson, Mark C; McLennan, Alexander G; Jones, Nigel J

    2015-09-01

    The level of intracellular diadenosine 5', 5'''-P(1),P(4)-tetraphosphate (Ap4A) increases several fold in mammalian cells treated with non-cytotoxic doses of interstrand DNA-crosslinking agents such as mitomycin C. It is also increased in cells lacking DNA repair proteins including XRCC1, PARP1, APTX and FANCG, while >50-fold increases (up to around 25 μM) are achieved in repair mutants exposed to mitomycin C. Part of this induced Ap4A is converted into novel derivatives, identified as mono- and di-ADP-ribosylated Ap4A. Gene knockout experiments suggest that DNA ligase III is primarily responsible for the synthesis of damage-induced Ap4A and that PARP1 and PARP2 can both catalyze its ADP-ribosylation. Degradative proteins such as aprataxin may also contribute to the increase. Using a cell-free replication system, Ap4A was found to cause a marked inhibition of the initiation of DNA replicons, while elongation was unaffected. Maximum inhibition of 70-80% was achieved with 20 μM Ap4A. Ap3A, Ap5A, Gp4G and ADP-ribosylated Ap4A were without effect. It is proposed that Ap4A acts as an important inducible ligand in the DNA damage response to prevent the replication of damaged DNA. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Antiproliferative, DNA intercalation and redox cycling activities of dioxonaphtho[2,3-d]imidazolium analogs of YM155: A structure-activity relationship study.

    PubMed

    Ho, Si-Han Sherman; Sim, Mei-Yi; Yee, Wei-Loong Sherman; Yang, Tianming; Yuen, Shyi-Peng John; Go, Mei-Lin

    2015-11-02

    The anticancer agent YM155 is widely investigated as a specific survivin suppressant. More recently, YM155 was found to induce DNA damage and this has raised doubts as to whether survivin is its primary target. In an effort to assess the contribution of DNA damage to the anticancer activity of YM155, several analogs were prepared and evaluated for antiproliferative activity on malignant cells, participation in DNA intercalation and free radical generation by redox cycling. The intact positively charged scaffold was found to be essential for antiproliferative activity and intercalation but was less critical for redox cycling where the minimal requirement was a pared down bicyclic quinone. Side chain requirements at the N(1) and N(3) positions of the scaffold were more alike for redox cycling and intercalation than antiproliferative activity, underscoring yet again, the limited structural overlaps for these activities. Furthermore, antiproliferative activities were poorly correlated to DNA intercalation and redox cycling. Potent antiproliferative activity (IC50 9-23 nM), exceeding that of YM155, was found for a minimally substituted methyl analog AB7. Like YM155 and other dioxonaphthoimidazoliums, AB7 was a modest DNA intercalator but with weak redox cycling activity. Thus, the capacity of this scaffold to inflict direct DNA damage leading to cell death may not be significant and YM155 should not be routinely classified as a DNA damaging agent. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  18. SMC1-Mediated Intra-S-Phase Arrest Facilitates Bocavirus DNA Replication

    PubMed Central

    Luo, Yong; Deng, Xuefeng; Cheng, Fang; Li, Yi

    2013-01-01

    Activation of a host DNA damage response (DDR) is essential for DNA replication of minute virus of canines (MVC), a member of the genus Bocavirus of the Parvoviridae family; however, the mechanism by which DDR contributes to viral DNA replication is unknown. In the current study, we demonstrate that MVC infection triggers the intra-S-phase arrest to slow down host cellular DNA replication and to recruit cellular DNA replication factors for viral DNA replication. The intra-S-phase arrest is regulated by ATM (ataxia telangiectasia-mutated kinase) signaling in a p53-independent manner. Moreover, we demonstrate that SMC1 (structural maintenance of chromosomes 1) is the key regulator of the intra-S-phase arrest induced during infection. Either knockdown of SMC1 or complementation with a dominant negative SMC1 mutant blocks both the intra-S-phase arrest and viral DNA replication. Finally, we show that the intra-S-phase arrest induced during MVC infection was caused neither by damaged host cellular DNA nor by viral proteins but by replicating viral genomes physically associated with the DNA damage sensor, the Mre11-Rad50-Nbs1 (MRN) complex. In conclusion, the feedback loop between MVC DNA replication and the intra-S-phase arrest is mediated by ATM-SMC1 signaling and plays a critical role in MVC DNA replication. Thus, our findings unravel the mechanism underlying DDR signaling-facilitated MVC DNA replication and demonstrate a novel strategy of DNA virus-host interaction. PMID:23365434

  19. Overexpressed DNA polymerase iota regulated by JNK/c-Jun contributes to hypermutagenesis in bladder cancer.

    PubMed

    Yuan, Fang; Xu, Zhigang; Yang, Mingzhen; Wei, Quanfang; Zhang, Yi; Yu, Jin; Zhi, Yi; Liu, Yang; Chen, Zhiwen; Yang, Jin

    2013-01-01

    Human DNA polymerase iota (pol ι) possesses high error-prone DNA replication features and performs translesion DNA synthesis. It may be specialized and strictly regulated in normal mammalian cells. Dysregulation of pol ι may contribute to the acquisition of a mutator phenotype. However, there are few reports describing the transcription regulatory mechanism of pol ι, and there is controversy regarding its role in carcinogenesis. In this study, we performed the deletion and point-mutation experiment, EMSA, ChIP, RNA interference and western blot assay to prove that c-Jun activated by c-Jun N-terminal kinase (JNK) regulates the transcription of pol ι in normal and cancer cells. Xeroderma pigmentosum group C protein (XPC) and ataxia-telangiectasia mutated related protein (ATR) promote early JNK activation in response to DNA damage and consequently enhance the expression of pol ι, indicating that the novel role of JNK signal pathway is involved in DNA damage response. Furthermore, associated with elevated c-Jun activity, the overexpression of pol ι is positively correlated with the clinical tumor grade in 97 bladder cancer samples and may contribute to the hypermutagenesis. The overexpressed pol ι-involved mutagenesis is dependent on JNK/c-Jun pathway in bladder cancer cells identifying by the special mutation spectra. Our results support the conclusion that dysregulation of pol ι by JNK/c-Jun is involved in carcinogenesis and offer a novel understanding of the role of pol ι or c-Jun in mutagenesis.

  20. Overexpressed DNA Polymerase Iota Regulated by JNK/c-Jun Contributes to Hypermutagenesis in Bladder Cancer

    PubMed Central

    Yuan, Fang; Xu, Zhigang; Yang, Mingzhen; Wei, Quanfang; Zhang, Yi; Yu, Jin; Zhi, Yi; Liu, Yang; Chen, Zhiwen; Yang, Jin

    2013-01-01

    Human DNA polymerase iota (pol ι) possesses high error-prone DNA replication features and performs translesion DNA synthesis. It may be specialized and strictly regulated in normal mammalian cells. Dysregulation of pol ι may contribute to the acquisition of a mutator phenotype. However, there are few reports describing the transcription regulatory mechanism of pol ι, and there is controversy regarding its role in carcinogenesis. In this study, we performed the deletion and point-mutation experiment, EMSA, ChIP, RNA interference and western blot assay to prove that c-Jun activated by c-Jun N-terminal kinase (JNK) regulates the transcription of pol ι in normal and cancer cells. Xeroderma pigmentosum group C protein (XPC) and ataxia-telangiectasia mutated related protein (ATR) promote early JNK activation in response to DNA damage and consequently enhance the expression of pol ι, indicating that the novel role of JNK signal pathway is involved in DNA damage response. Furthermore, associated with elevated c-Jun activity, the overexpression of pol ι is positively correlated with the clinical tumor grade in 97 bladder cancer samples and may contribute to the hypermutagenesis. The overexpressed pol ι-involved mutagenesis is dependent on JNK/c-Jun pathway in bladder cancer cells identifying by the special mutation spectra. Our results support the conclusion that dysregulation of pol ι by JNK/c-Jun is involved in carcinogenesis and offer a novel understanding of the role of pol ι or c-Jun in mutagenesis. PMID:23922701

  1. BRCA1 is Required for Post-replication Repair After UV-induced DNA Damage

    PubMed Central

    Pathania, Shailja; Nguyen, Jenna; Hill, Sarah J.; Scully, Ralph; Feunteun, Jean; Livingston, David M.

    2011-01-01

    BRCA1 contributes to the response to UV irradiation. Utilizing its BRCT motifs, it is recruited during S/G2 to UV-damaged sites in a DNA replication-dependent, but nucleotide excision repair- independent manner. More specifically, at UV- stalled replication forks, it promotes photoproduct excision, suppression of translesion synthesis, and the localization and activation of replication factor C complex (RFC) subunits. The last function, in turn, triggers post-UV checkpoint activation and post- replicative repair. These BRCA1 functions differ from those required for DSBR. PMID:21963239

  2. Expanded CAG/CTG Repeat DNA Induces a Checkpoint Response That Impacts Cell Proliferation in Saccharomyces cerevisiae

    PubMed Central

    Sundararajan, Rangapriya; Freudenreich, Catherine H.

    2011-01-01

    Repetitive DNA elements are mutational hotspots in the genome, and their instability is linked to various neurological disorders and cancers. Although it is known that expanded trinucleotide repeats can interfere with DNA replication and repair, the cellular response to these events has not been characterized. Here, we demonstrate that an expanded CAG/CTG repeat elicits a DNA damage checkpoint response in budding yeast. Using microcolony and single cell pedigree analysis, we found that cells carrying an expanded CAG repeat frequently experience protracted cell division cycles, persistent arrests, and morphological abnormalities. These phenotypes were further exacerbated by mutations in DSB repair pathways, including homologous recombination and end joining, implicating a DNA damage response. Cell cycle analysis confirmed repeat-dependent S phase delays and G2/M arrests. Furthermore, we demonstrate that the above phenotypes are due to the activation of the DNA damage checkpoint, since expanded CAG repeats induced the phosphorylation of the Rad53 checkpoint kinase in a rad52Δ recombination deficient mutant. Interestingly, cells mutated for the MRX complex (Mre11-Rad50-Xrs2), a central component of DSB repair which is required to repair breaks at CAG repeats, failed to elicit repeat-specific arrests, morphological defects, or Rad53 phosphorylation. We therefore conclude that damage at expanded CAG/CTG repeats is likely sensed by the MRX complex, leading to a checkpoint response. Finally, we show that repeat expansions preferentially occur in cells experiencing growth delays. Activation of DNA damage checkpoints in repeat-containing cells could contribute to the tissue degeneration observed in trinucleotide repeat expansion diseases. PMID:21437275

  3. Monitoring follow up of two areas affected by the Prestige oil four years after the spillage.

    PubMed

    Fernández-Tajes, Juan; Rábade, Tamara; Laffon, Blanca; Méndez, Josefina

    2011-01-01

    The sinking of the oil tanker Prestige in November 2002 resulted in the spill of more than 63,000 tonnes of crude oil, and polluted more than 1,000 km of coastline, especially affecting Galicia (northwestern Spain). Four years after the accident, a new biological monitoring study was undertaken of two Galician areas intensely affected by the spill, Lira and Ancoradoiro, previously evaluated in the months following the accident ( Laffon et al. 2006 ). The mussel Mytilus galloprovincialis was employed as bioindicator organism to determine both polycyclic aromatic hydrocarbons (PAH) levels and genotoxic effects. PAH were determined chromatographically in seawater samples and mussel tissues collected from November 2006 to January 2008. The results obtained showed that PAH pollution was still present in these areas, but bioaccumulation of these compounds in mussels was low, compared to reference mussels, and lower than in our previous study. DNA damage assessment was also performed in gills and hemolymph cells by means of the alkaline comet assay. DNA damage levels were higher in mussels from the exposed areas than in reference mussels. DNA damage decreased after a 7-d recovery period in the laboratory, but prolonging the recovery period up to 14 d did not contribute to less DNA damage in gill cells. Hemolymph cells were more sensitive than gill cells to the induction of DNA damage.

  4. Lurbinectedin induces depletion of tumor-associated macrophages, an essential component of its in vivo synergism with gemcitabine, in pancreatic adenocarcinoma mouse models

    PubMed Central

    Céspedes, María Virtudes; Guillén, María José; López-Casas, Pedro Pablo; Sarno, Francesca; Gallardo, Alberto; Álamo, Patricia; Cuevas, Carmen; Hidalgo, Manuel; Galmarini, Carlos María; Allavena, Paola; Avilés, Pablo; Mangues, Ramón

    2016-01-01

    ABSTRACT We explored whether the combination of lurbinectedin (PM01183) with the antimetabolite gemcitabine could result in a synergistic antitumor effect in pancreatic ductal adenocarcinoma (PDA) mouse models. We also studied the contribution of lurbinectedin to this synergism. This drug presents a dual pharmacological effect that contributes to its in vivo antitumor activity: (i) specific binding to DNA minor grooves, inhibiting active transcription and DNA repair; and (ii) specific depletion of tumor-associated macrophages (TAMs). We evaluated the in vivo antitumor activity of lurbinectedin and gemcitabine as single agents and in combination in SW-1990 and MIA PaCa-2 cell-line xenografts and in patient-derived PDA models (AVATAR). Lurbinectedin-gemcitabine combination induced a synergistic effect on both MIA PaCa-2 [combination index (CI)=0.66] and SW-1990 (CI=0.80) tumor xenografts. It also induced complete tumor remissions in four out of six patient-derived PDA xenografts. This synergism was associated with enhanced DNA damage (anti-γ-H2AX), cell cycle blockage, caspase-3 activation and apoptosis. In addition to the enhanced DNA damage, which is a consequence of the interaction of the two drugs with the DNA, lurbinectedin induced TAM depletion leading to cytidine deaminase (CDA) downregulation in PDA tumors. This effect could, in turn, induce an increase of gemcitabine-mediated DNA damage that was especially relevant in high-density TAM tumors. These results show that lurbinectedin can be used to develop ‘molecularly targeted’ combination strategies. PMID:27780828

  5. Bacteroides fragilis RecA protein overexpression causes resistance to metronidazole

    PubMed Central

    Steffens, Laura S.; Nicholson, Samantha; Paul, Lynthia V.; Nord, Carl Erik; Patrick, Sheila; Abratt, Valerie R.

    2010-01-01

    Bacteroides fragilis is a human gut commensal and an opportunistic pathogen causing anaerobic abscesses and bacteraemias which are treated with metronidazole (Mtz), a DNA damaging agent. This study examined the role of the DNA repair protein, RecA, in maintaining endogenous DNA stability and its contribution to resistance to Mtz and other DNA damaging agents. RT-PCR of B. fragilis genomic DNA showed that the recA gene was co-transcribed as an operon together with two upstream genes, putatively involved in repairing oxygen damage. A B. fragilis recA mutant was generated using targeted gene inactivation. Fluorescence microscopy using DAPI staining revealed increased numbers of mutant cells with reduced intact double-stranded DNA. Alkaline gel electrophoresis of the recA mutant DNA showed increased amounts of strand breaks under normal growth conditions, and the recA mutant also showed less spontaneous mutagenesis relative to the wild type strain. The recA mutant was sensitive to Mtz, ultraviolet light and hydrogen peroxide. A B. fragilis strain overexpressing the RecA protein exhibited increased resistance to Mtz compared to the wild type. This is the first study to show that overexpression of a DNA repair protein in B. fragilis increases Mtz resistance. This represents a novel drug resistance mechanism in this bacterium. PMID:20435137

  6. Polyhydroxylated fatty alcohols derived from avocado suppress inflammatory response and provide non-sunscreen protection against UV-induced damage in skin cells.

    PubMed

    Rosenblat, Gennady; Meretski, Shai; Segal, Joseph; Tarshis, Mark; Schroeder, Avi; Zanin-Zhorov, Alexandra; Lion, Gilead; Ingber, Arieh; Hochberg, Malka

    2011-05-01

    Exposing skin to ultraviolet (UV) radiation contributes to photoaging and to the development of skin cancer by DNA lesions and triggering inflammatory and other harmful cellular cascades. The present study tested the ability of unique lipid molecules, polyhydroxylated fatty alcohols (PFA), extracted from avocado, to reduce UVB-induced damage and inflammation in skin. Introducing PFA to keratinocytes prior to their exposure to UVB exerted a protective effect, increasing cell viability, decreasing the secretion of IL-6 and PGE(2), and enhancing DNA repair. In human skin explants, treating with PFA reduced significantly UV-induced cellular damage. These results support the idea that PFA can play an important role as a photo-protective agent in UV-induced skin damage.

  7. DNA damage in Mexican children living in high-risk contaminated scenarios.

    PubMed

    Jasso-Pineda, Yolanda; Díaz-Barriga, Fernando; Yáñez-Estrada, Leticia; Pérez-Vázquez, Francisco Javier; Pérez-Maldonado, Ivan Nelinho

    2015-06-15

    The aim of this study was to evaluate the deoxyribonucleic acid (DNA) damage (as a biomarker of biological effects) in children living in areas at high risk of contamination in Mexico using the comet assay. The alkaline comet assay was performed in order to assess DNA damage levels in blood cells of 276 children living in eleven communities in four states of Mexico. Moreover, levels of arsenic and 1-hydroxypyrene (1-OHP) in urine and lead and total DDT [sum of 1,1-dichloro-2,2-bis(p-chlorophenyl) ethylene (DDE) and 1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane (DDT)] in blood were quantified. We found urinary 1-OHP levels between

  8. Recognition of DNA abasic site nanocavity by fluorophore-switched probe: Suitable for all sequence environments

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Hu, Yuehua; Wu, Tao; Zhang, Lihua; Liu, Hua; Zhou, Xiaoshun; Shao, Yong

    2016-01-01

    Removal of a damaged base in DNA produces an abasic site (AP site) nanocavity. If left un-repaired in vivo by the specific enzyme, this nanocavity will result in nucleotide mutation in the following DNA replication. Therefore, selective recognition of AP site nanocavity by small molecules is important for identification of such DNA damage and development of genetic drugs. In this work, we investigate the fluorescence behavior of isoquinoline alkaloids including palmatine (PAL), berberine (BER), epiberberine (EPI), jatrorrhizine (JAT), coptisine (COP), coralyne (COR), worenine (WOR), berberrubine (BEU), sanguinarine (SAN), chelerythrine (CHE), and nitidine (NIT) upon binding with the AP nanocavity. PAL is screened out as the most efficient fluorophore-switched probe to recognize the AP nanocavity over the fully matched DNA. Its fluorescence enhancement occurs for all of the AP nanocavity sequence environments, which has not been achieved by the previously used probes. The bridged π conjugation effect should partially contribute to the AP nanocavity-specific fluorescence, as opposed to the solvent effect. Due to the strong binding with the AP nanocavity, PAL will find wide applications in the DNA damage recognition and sensor development.

  9. Impact of acid mine drainage on haematological, histopathological and genotoxic effects in golden mahaseer, Tor putitora.

    PubMed

    Shahi, Neetu; Sarma, Debaji; Pandey, Jyoti; Das, Partha; Sarma, Dandadhar; Mallik, Sumanta Kumar

    2016-07-01

    The present study was carried out to evaluate sub-lethal mechanism of acid mine drainage toxicity in fingerlings (9.5 ± 2.4 cm) of golden mahseer, Tor putitora. Exposed fingerlings showed significant reduction (P < 0.01) in blood erythrocytes, neutrophils, thrombocytes, lymphocytes and leukocytes in contrast to increase in number of immature circulating cells. Hyperplasia, degeneration of glomeruli, presence of inflammatory cells and increased number of melanomacrophage aggregates, vacuolization of cell cytoplasm, hepatocyte swelling were marked in kidney and liver of fish. Ladder in, an increment of 180-200 bp of hepatic and kidney DNA, by electrophoresis were consistent with DNA damage. 10 day exposure to acid mine drainage resulted in reduction of double stranded DNA to 46.0 and 48.0 in hepatocytes and kidney cells respectively. Significant increase (P < 0.01) in tail length and percent tail DNA was evident by comet assay. The results suggest that exposure to acid mine drainage might cause irreversible damage to immune cells, tissue and DNA of fish, and this model of DNA damage may contribute in identifying novel molecular mechanism of interest for bioremediation application.

  10. Contribution of indirect effects to clustered damage in DNA irradiated with protons.

    PubMed

    Pachnerová Brabcová, K; Štěpán, V; Karamitros, M; Karabín, M; Dostálek, P; Incerti, S; Davídková, M; Sihver, L

    2015-09-01

    Protons are the dominant particles both in galactic cosmic rays and in solar particle events and, furthermore, proton irradiation becomes increasingly used in tumour treatment. It is believed that complex DNA damage is the determining factor for the consequent cellular response to radiation. DNA plasmid pBR322 was irradiated at U120-M cyclotron with 30 MeV protons and treated with two Escherichia coli base excision repair enzymes. The yields of SSBs and DSBs were analysed using agarose gel electrophoresis. DNA has been irradiated in the presence of hydroxyl radical scavenger (coumarin-3-carboxylic acid) in order to distinguish between direct and indirect damage of the biological target. Pure scavenger solution was used as a probe for measurement of induced OH· radical yields. Experimental OH· radical yield kinetics was compared with predictions computed by two theoretical models-RADAMOL and Geant4-DNA. Both approaches use Geant4-DNA for description of physical stages of radiation action, and then each of them applies a distinct model for description of the pre-chemical and chemical stage. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Opposing effects of pericentrin and microcephalin on the pericentriolar material regulate CHK1 activation in the DNA damage response.

    PubMed

    Antonczak, A K; Mullee, L I; Wang, Y; Comartin, D; Inoue, T; Pelletier, L; Morrison, C G

    2016-04-14

    Genotoxic stresses lead to centrosome amplification, a frequently-observed feature in cancer that may contribute to genome instability and to tumour cell invasion. Here we have explored how the centrosome controls DNA damage responses. For most of the cell cycle, centrosomes consist of two centrioles embedded in the proteinaceous pericentriolar material (PCM). Recent data indicate that the PCM is not an amorphous assembly of proteins, but actually a highly organised scaffold around the centrioles. The large coiled-coil protein, pericentrin, participates in PCM assembly and has been implicated in the control of DNA damage responses (DDRs) through its interactions with checkpoint kinase 1 (CHK1) and microcephalin (MCPH1). CHK1 is required for DNA damage-induced centrosome amplification, whereas MCPH1 deficiency greatly increases the amplification seen after DNA damage. We found that the PCM showed a marked expansion in volume and a noticeable change in higher-order organisation after ionising radiation treatment. PCM expansion was dependent on CHK1 kinase activity and was potentiated by MCPH1 deficiency. Furthermore, pericentrin deficiency or mutation of a separase cleavage site blocked DNA damage-induced PCM expansion. The extent of nuclear CHK1 activation after DNA damage reflected the level of PCM expansion, with a reduction in pericentrin-deficient or separase cleavage site mutant-expressing cells, and an increase in MCPH1-deficient cells that was suppressed by the loss of pericentrin. Deletion of the nuclear export signal of CHK1 led to its hyperphosphorylation after irradiation and reduced centrosome amplification. Deletion of the nuclear localisation signal led to low CHK1 activation and low centrosome amplification. From these data, we propose a feedback loop from the PCM to the nuclear DDR in which CHK1 regulates pericentrin-dependent PCM expansion to control its own activation.

  12. Photodamage: all signs lead to actinic keratosis and early squamous cell carcinoma.

    PubMed

    Wei, Jerry; Kok, Lai Fong; Byrne, Scott N; Halliday, Gary M

    2015-01-01

    Ultraviolet (UV) radiation is likely to drive the initiation and progression of skin cancer from actinic keratosis to squamous cell carcinoma. Signs of photodamage occur at multiple steps. UV radiation damages many cellular constituents, including lipids, proteins and DNA, all of which are likely to contribute to UV-induced skin cancer. Two biological events culminating from photodamage are mutations in the genes critical to the control of cell division, differentiation and invasion and immunosuppression. DNA photodamage, if unrepaired prior to cell division, can result in the incorporation of an incorrect nucleotide into newly synthesised DNA. Mutations in critical genes contribute to carcinogenesis. Photodamage to proteins such as those involved in DNA repair or proteins or lipids involved in cellular signalling can interfere with this repair process and contribute to mutagenesis. Mutations in key genes, including TP53, BRM, PTCH1, and HRAS, contribute to skin carcinogenesis. UV also damages immunity. Photodamage to DNA and signalling lipids as well as other molecular changes are detrimental to the key cells that regulate immunity. Photodamaged dendritic cells and altered responses by mast cells lead to the activation of T and B regulatory cells that suppress immunity to the protein products of UV-mutated genes. This stops the immune response from its protective function of destroying mutated cells, enabling the transformed cells to progress to skin cancer. UV appears to play a pivotal role at each of these steps, and therefore, signs of photodamage point to the development of skin cancer. © 2015 S. Karger AG, Basel.

  13. Telomere shortening triggers a feedback loop to enhance end protection

    PubMed Central

    Yang, Chia-Wei; Tseng, Shun-Fu; Yu, Chia-Jung; Chung, Chia-Yu; Chang, Cheng-Yen; Pobiega, Sabrina

    2017-01-01

    Abstract Telomere homeostasis is controlled by both telomerase machinery and end protection. Telomere shortening induces DNA damage sensing kinases ATM/ATR for telomerase recruitment. Yet, whether telomere shortening also governs end protection is poorly understood. Here we discover that yeast ATM/ATR controls end protection. Rap1 is phosphorylated by Tel1 and Mec1 kinases at serine 731, and this regulation is stimulated by DNA damage and telomere shortening. Compromised Rap1 phosphorylation hampers the interaction between Rap1 and its interacting partner Rif1, which thereby disturbs the end protection. As expected, reduction of Rap1–Rif1 association impairs telomere length regulation and increases telomere–telomere recombination. These results indicate that ATM/ATR DNA damage checkpoint signal contributes to telomere protection by strengthening the Rap1–Rif1 interaction at short telomeres, and the checkpoint signal oversees both telomerase recruitment and end capping pathways to maintain telomere homeostasis. PMID:28575419

  14. Wild-type H- and N-Ras promote mutant K-Ras driven tumorigenesis by modulating the DNA damage response

    PubMed Central

    Grabocka, Elda; Pylayeva-Gupta, Yuliya; Jones, Mathew JK; Lubkov, Veronica; Yemanaberhan, Eyoel; Taylor, Laura; Jeng, Hao Hsuan; Bar-Sagi, Dafna

    2014-01-01

    SUMMARY Mutations in KRAS are prevalent in human cancers and universally predictive of resistance to anti-cancer therapeutics. Although it is widely accepted that acquisition of an activating mutation endows RAS genes with functional autonomy, recent studies suggest that the wild-type forms of Ras may contribute to mutant Ras-driven tumorigenesis. Here we show that downregulation of wild-type H-Ras or N-Ras in mutant K-Ras cancer cells leads to hyperactivation of the Erk/p90RSK and PI3K/Akt pathways, and consequently, the phosphorylation of Chk1 at an inhibitory site, Ser 280. The resulting inhibition of ATR/Chk1 signaling abrogates the activation of the G2 DNA damage checkpoint and confers specific sensitization of mutant K-Ras cancer cells to DNA damage chemotherapeutic agents in vitro and in vivo. PMID:24525237

  15. Distinct effects of acute and chronic sleep loss on DNA damage in rats.

    PubMed

    Andersen, M L; Ribeiro, D A; Bergamaschi, C T; Alvarenga, T A; Silva, A; Zager, A; Campos, R R; Tufik, S

    2009-04-30

    The aim of this investigation was to evaluate genetic damage induced in male rats by experimental sleep loss for short-term (24 and 96 h) and long-term (21 days) intervals, as well as their respective recovery periods in peripheral blood, brain, liver and heart tissue by the single cell gel (comet) assay. Rats were paradoxically deprived of sleep (PSD) by the platform technique for 24 or 96 h, or chronically sleep-restricted (SR) for 21 days. We also sought to verify the time course of their recovery after 24 h of rebound sleep. The results showed DNA damage in blood cells of rats submitted to PSD for 96 h. Brain tissue showed extensive genotoxic damage in PSD rats (both 24 and 96 h), though the effect was more pronounced in the 96 h group. Rats allowed to recover from the PSD-96 h and SR-21 days treatments showed DNA damage as compared to negative controls. Liver and heart did not display any genotoxicity activity. Corticosterone concentrations were increased after PSD (24 and 96 h) relative to control rats, whereas these levels were unaffected in the SR group. Collectively, these findings reveal that sleep loss was able to induce genetic damage in blood and brain cells, especially following acute exposure. Since DNA damage is an important step in events leading to genomic instability, this study represents a relevant contribution to the understanding of the potential health risks associated with sleep deprivation.

  16. Does a role for selenium in DNA damage repair explain apparent controversies in its use in chemoprevention?

    PubMed Central

    Diamond, Alan M.

    2013-01-01

    The trace element selenium is an essential micronutrient that has received considerable attention for its potential use in the prevention of cancer. In spite of this interest, the mechanism(s) by which selenium might function as a chemopreventive remain to be determined. Considerable experimental evidence indicates that one possible mechanism by which selenium supplementation may exert its benefits is by enhancing the DNA damage repair response, and this includes data obtained using cultured cells, animal models as well as in human clinical studies. In these studies, selenium supplementation has been shown to be beneficial in reducing the frequency of DNA adducts and chromosome breaks, consequentially reducing the likelihood of detrimental mutations that ultimately contribute to carcinogenesis. The benefits of selenium can be envisioned as being due, at least in part, to it being a critical constituent of selenoproteins such as glutathione peroxidases and thioredoxin reductases, proteins that play important roles in antioxidant defence and maintaining the cellular reducing environment. Selenium, therefore, may be protective by preventing DNA damage from occurring as well as by increasing the activity of repair enzymes such as DNA glycosylases and DNA damage repair pathways that involve p53, BRCA1 and Gadd45. An improved understanding of the mechanism of selenium’s impact on DNA repair processes may help to resolve the apparently contradicting data obtained from decades of animal work, human epidemiology and more recently, clinical supplementation studies. PMID:23204505

  17. Age-dependent systemic DNA damage in early Type 2 Diabetes mellitus.

    PubMed

    Rogulj, Dinko; El Aklouk, Ismail; Konjevoda, Paško; Ljubić, Spomenka; Pibernik Okanović, Mirjana; Barbir, Ante; Luburić, Marijana; Radman, Maja; Budinski, Ninoslav; Vučić Lovrenčić, Marijana

    2017-01-01

    Oxidative stress, capable of eliciting damage to various biomolecules including DNA, is a recognized component of diabetes mellitus and its complications. Metabolic syndrome (MetS) is associated with the development of type 2 diabetes mellitus (T2DM), as well as other unfavorable outcomes. The aim of this study was to elucidate the role of oxidative stress in the development of T2DM, by investigating association of oxidative DNA damage with metabolic parameters in subjects with MetS and early T2DM. Selected anthropometric and biochemical parameters of MetS, inflammation and oxidative DNA damage: body mass index (BMI), fatty liver index (FLI), waist circumference (WC), total cholesterol, HDL and LDL-cholesterol, gamma-glutamyl transpeptidase (GGT), uric acid, C-reactive protein (CRP), total leukocyte/neutrophil count, and urinary 8-hidroxy-deoxyguanosine (u-8-OHdG) were assessed in male subjects with MetS and both younger (≤55 years) and older (>55 years) subjects with T2DM of short duration without complications. BMI, FLI, WC, total and LDL-cholesterol and uric acid were higher, while the u-8-OHdG was lower in MetS group, when compared to older T2DM subjects. None of these parameters were different neither between MetS and younger T2DM, nor between two sub-groups of subjects with T2DM. Values of CRP, HDL-cholesterol, triglycerides, GGT, leukocytes and neutrophils were not different between all examined groups of subjects. Higher 8-OHdG in older subjects with T2DM suggests that both aging process and diabetes could contribute to the development of DNA damage. Oxidative DNA damage cannot serve as an universal early marker of T2DM.

  18. In Barrett's esophagus patients and Barrett's cell lines, ursodeoxycholic acid increases antioxidant expression and prevents DNA damage by bile acids.

    PubMed

    Peng, Sui; Huo, Xiaofang; Rezaei, Davood; Zhang, Qiuyang; Zhang, Xi; Yu, Chunhua; Asanuma, Kiyotaka; Cheng, Edaire; Pham, Thai H; Wang, David H; Chen, Minhu; Souza, Rhonda F; Spechler, Stuart Jon

    2014-07-15

    Hydrophobic bile acids like deoxycholic acid (DCA), which cause oxidative DNA damage and activate NF-κB in Barrett's metaplasia, might contribute to carcinogenesis in Barrett's esophagus. We have explored mechanisms whereby ursodeoxycholic acid (UDCA, a hydrophilic bile acid) protects against DCA-induced injury in vivo in patients and in vitro using nonneoplastic, telomerase-immortalized Barrett's cell lines. We took biopsies of Barrett's esophagus from 21 patients before and after esophageal perfusion with DCA (250 μM) at baseline and after 8 wk of oral UDCA treatment. DNA damage was assessed by phospho-H2AX expression, neutral CometAssay, and phospho-H2AX nuclear foci formation. Quantitative PCR was performed for antioxidants including catalase and GPX1. Nrf2, catalase, and GPX1 were knocked down with siRNAs. Reporter assays were performed using a plasmid construct containing antioxidant responsive element. In patients, baseline esophageal perfusion with DCA significantly increased phospho-H2AX and phospho-p65 in Barrett's metaplasia. Oral UDCA increased GPX1 and catalase levels in Barrett's metaplasia and prevented DCA perfusion from inducing DNA damage and NF-κB activation. In cells, DCA-induced DNA damage and NF-κB activation was prevented by 24-h pretreatment with UDCA, but not by mixing UDCA with DCA. UDCA activated Nrf2 signaling to increase GPX1 and catalase expression, and protective effects of UDCA pretreatment were blocked by siRNA knockdown of these antioxidants. UDCA increases expression of antioxidants that prevent toxic bile acids from causing DNA damage and NF-κB activation in Barrett's metaplasia. Elucidation of this molecular pathway for UDCA protection provides rationale for clinical trials on UDCA for chemoprevention in Barrett's esophagus. Copyright © 2014 the American Physiological Society.

  19. In Barrett's esophagus patients and Barrett's cell lines, ursodeoxycholic acid increases antioxidant expression and prevents DNA damage by bile acids

    PubMed Central

    Peng, Sui; Huo, Xiaofang; Rezaei, Davood; Zhang, Qiuyang; Zhang, Xi; Yu, Chunhua; Asanuma, Kiyotaka; Cheng, Edaire; Pham, Thai H.; Wang, David H.; Chen, Minhu; Spechler, Stuart Jon

    2014-01-01

    Hydrophobic bile acids like deoxycholic acid (DCA), which cause oxidative DNA damage and activate NF-κB in Barrett's metaplasia, might contribute to carcinogenesis in Barrett's esophagus. We have explored mechanisms whereby ursodeoxycholic acid (UDCA, a hydrophilic bile acid) protects against DCA-induced injury in vivo in patients and in vitro using nonneoplastic, telomerase-immortalized Barrett's cell lines. We took biopsies of Barrett's esophagus from 21 patients before and after esophageal perfusion with DCA (250 μM) at baseline and after 8 wk of oral UDCA treatment. DNA damage was assessed by phospho-H2AX expression, neutral CometAssay, and phospho-H2AX nuclear foci formation. Quantitative PCR was performed for antioxidants including catalase and GPX1. Nrf2, catalase, and GPX1 were knocked down with siRNAs. Reporter assays were performed using a plasmid construct containing antioxidant responsive element. In patients, baseline esophageal perfusion with DCA significantly increased phospho-H2AX and phospho-p65 in Barrett's metaplasia. Oral UDCA increased GPX1 and catalase levels in Barrett's metaplasia and prevented DCA perfusion from inducing DNA damage and NF-κB activation. In cells, DCA-induced DNA damage and NF-κB activation was prevented by 24-h pretreatment with UDCA, but not by mixing UDCA with DCA. UDCA activated Nrf2 signaling to increase GPX1 and catalase expression, and protective effects of UDCA pretreatment were blocked by siRNA knockdown of these antioxidants. UDCA increases expression of antioxidants that prevent toxic bile acids from causing DNA damage and NF-κB activation in Barrett's metaplasia. Elucidation of this molecular pathway for UDCA protection provides rationale for clinical trials on UDCA for chemoprevention in Barrett's esophagus. PMID:24852569

  20. DNA strand breaks and TDP-43 mislocation are absent in the murine hSOD1G93A model of amyotrophic lateral sclerosis in vivo and in vitro

    PubMed Central

    Witte, Otto W.; Grosskreutz, Julian

    2017-01-01

    Mutations in the human Cu/Zn superoxide dismutase type-1 (hSOD1) gene are common in familial amyotrophic lateral sclerosis (fALS). The pathophysiology has been linked to, e.g., organelle dysfunction, RNA metabolism and oxidative DNA damage conferred by SOD1 malfunction. However, apart from metabolically evoked DNA oxidation, it is unclear whether severe genotoxicity including DNA single-strand breaks (SSBs) and double-strand breaks (DSBs), originates from loss of function of nuclear SOD1 enzyme. Factors that endogenously interfere with DNA integrity and repair complexes in hSOD1-mediated fALS remain similarly unexplored. In this regard, uncontrolled activation of transposable elements (TEs) might contribute to DNA disintegration and neurodegeneration. The aim of this study was to elucidate the role of the fALS-causing hSOD1G93A mutation in the generation of severe DNA damage beyond well-characterized DNA base oxidation. Therefore, DNA damage was assessed in spinal tissue of hSOD1G93A-overexpressing mice and in corresponding motor neuron-enriched cell cultures in vitro. Overexpression of the hSOD1G93A locus did not change the threshold for severe DNA damage per se. We found that levels of SSBs and DSBs were unaltered between hSOD1G93A and control conditions, as demonstrated in post-mitotic motor neurons and in astrocytes susceptible to replication-dependent DNA breakage. Analogously, parameters indicative of DNA damage response processes were not activated in vivo or in vitro. Evidence for a mutation-related elevation in TE activation was not detected, in accordance with the absence of TAR DNA binding protein 43 (TDP-43) proteinopathy in terms of cytoplasmic mislocation or nuclear loss, as nuclear TDP-43 is supposed to silence TEs physiologically. Conclusively, the superoxide dismutase function of SOD1 might not be required to preserve DNA integrity in motor neurons, at least when the function of TDP-43 is unaltered. Our data establish a foundation for further investigations addressing functional TDP-43 interaction with ALS-relevant genetic mutations. PMID:28832631

  1. Novel Connections Between DNA Replication, Telomere Homeostasis, and the DNA Damage Response Revealed by a Genome-Wide Screen for TEL1/ATM Interactions in Saccharomyces cerevisiae

    PubMed Central

    Piening, Brian D.; Huang, Dongqing; Paulovich, Amanda G.

    2013-01-01

    Tel1 is the budding yeast ortholog of the mammalian tumor suppressor and DNA damage response (DDR) kinase ATM. However, tel1-Δ cells, unlike ATM-deficient cells, do not exhibit sensitivity to DNA-damaging agents, but do display shortened (but stably maintained) telomere lengths. Neither the extent to which Tel1p functions in the DDR nor the mechanism by which Tel1 contributes to telomere metabolism is well understood. To address the first question, we present the results from a comprehensive genome-wide screen for genetic interactions with tel1-Δ that cause sensitivity to methyl methanesulfonate (MMS) and/or ionizing radiation, along with follow-up characterizations of the 13 interactions yielded by this screen. Surprisingly, many of the tel1-Δ interactions that confer DNA damage sensitivity also exacerbate the short telomere phenotype, suggesting a connection between these two phenomena. Restoration of normal telomere length in the tel1-Δ xxx-Δ mutants results in only minor suppression of the DNA damage sensitivity, demonstrating that the sensitivity of these mutants must also involve mechanisms independent of telomere length. In support of a model for increased replication stress in the tel1-Δ xxx-Δ mutants, we show that depletion of dNTP pools through pretreatment with hydroxyurea renders tel1-Δ cells (but not wild type) MMS-sensitive, demonstrating that, under certain conditions, Tel1p does indeed play a critical role in the DDR. PMID:23378069

  2. Cell cycle stage-specific roles of Rad18 in tolerance and repair of oxidative DNA damage

    PubMed Central

    Yang, Yang; Durando, Michael; Smith-Roe, Stephanie L.; Sproul, Chris; Greenwalt, Alicia M.; Kaufmann, William; Oh, Sehyun; Hendrickson, Eric A.; Vaziri, Cyrus

    2013-01-01

    The E3 ubiquitin ligase Rad18 mediates tolerance of replication fork-stalling bulky DNA lesions, but whether Rad18 mediates tolerance of bulky DNA lesions acquired outside S-phase is unclear. Using synchronized cultures of primary human cells, we defined cell cycle stage-specific contributions of Rad18 to genome maintenance in response to ultraviolet C (UVC) and H2O2-induced DNA damage. UVC and H2O2 treatments both induced Rad18-mediated proliferating cell nuclear antigen mono-ubiquitination during G0, G1 and S-phase. Rad18 was important for repressing H2O2-induced (but not ultraviolet-induced) double strand break (DSB) accumulation and ATM S1981 phosphorylation only during G1, indicating a specific role for Rad18 in processing of oxidative DNA lesions outside S-phase. However, H2O2-induced DSB formation in Rad18-depleted G1 cells was not associated with increased genotoxin sensitivity, indicating that back-up DSB repair mechanisms compensate for Rad18 deficiency. Indeed, in DNA LigIV-deficient cells Rad18-depletion conferred H2O2-sensitivity, demonstrating functional redundancy between Rad18 and non-homologous end joining for tolerance of oxidative DNA damage acquired during G1. In contrast with G1-synchronized cultures, S-phase cells were H2O2-sensitive following Rad18-depletion. We conclude that although Rad18 pathway activation by oxidative lesions is not restricted to S-phase, Rad18-mediated trans-lesion synthesis by Polη is dispensable for damage-tolerance in G1 (because of back-up non-homologous end joining-mediated DSB repair), yet Rad18 is necessary for damage tolerance during S-phase. PMID:23295675

  3. The Nucleolus: In Genome Maintenance and Repair

    PubMed Central

    Tsekrekou, Maria; Stratigi, Kalliopi; Chatzinikolaou, Georgia

    2017-01-01

    The nucleolus is the subnuclear membrane-less organelle where rRNA is transcribed and processed and ribosomal assembly occurs. During the last 20 years, however, the nucleolus has emerged as a multifunctional organelle, regulating processes that go well beyond its traditional role. Moreover, the unique organization of rDNA in tandem arrays and its unusually high transcription rates make it prone to unscheduled DNA recombination events and frequent RNA:DNA hybrids leading to DNA double strand breaks (DSBs). If not properly repaired, rDNA damage may contribute to premature disease onset and aging. Deregulation of ribosomal synthesis at any level from transcription and processing to ribosomal subunit assembly elicits a stress response and is also associated with disease onset. Here, we discuss how genome integrity is maintained within nucleoli and how such structures are functionally linked to nuclear DNA damage response and repair giving an emphasis on the newly emerging roles of the nucleolus in mammalian physiology and disease. PMID:28671574

  4. The multifaceted influence of histone deacetylases on DNA damage signalling and DNA repair

    PubMed Central

    Roos, Wynand Paul; Krumm, Andrea

    2016-01-01

    Histone/protein deacetylases play multiple roles in regulating gene expression and protein activation and stability. Their deregulation during cancer initiation and progression cause resistance to therapy. Here, we review the role of histone deacetylases (HDACs) and the NAD+ dependent sirtuins (SIRTs) in the DNA damage response (DDR). These lysine deacetylases contribute to DNA repair by base excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR), non-homologous end joining (NHEJ), homologous recombination (HR) and interstrand crosslink (ICL) repair. Furthermore, we discuss possible mechanisms whereby these histone/protein deacetylases facilitate the switch between DNA double-strand break (DSB) repair pathways, how SIRTs play a central role in the crosstalk between DNA repair and cell death pathways due to their dependence on NAD+, and the influence of small molecule HDAC inhibitors (HDACi) on cancer cell resistance to genotoxin based therapies. Throughout the review, we endeavor to identify the specific HDAC targeted by HDACi leading to therapy sensitization. PMID:27738139

  5. UV Damage-Induced Phosphorylation of HBO1 Triggers CRL4DDB2-Mediated Degradation To Regulate Cell Proliferation

    PubMed Central

    Matsunuma, Ryoichi; Ohhata, Tatsuya; Kitagawa, Kyoko; Sakai, Satoshi; Uchida, Chiharu; Shiotani, Bunsyo; Matsumoto, Masaki; Nakayama, Keiichi I.; Ogura, Hiroyuki; Shiiya, Norihiko; Kitagawa, Masatoshi

    2015-01-01

    Histone acetyltransferase binding to ORC-1 (HBO1) is a critically important histone acetyltransferase for forming the prereplicative complex (pre-RC) at the replication origin. Pre-RC formation is completed by loading of the MCM2-7 heterohexameric complex, which functions as a helicase in DNA replication. HBO1 recruited to the replication origin by CDT1 acetylates histone H4 to relax the chromatin conformation and facilitates loading of the MCM complex onto replication origins. However, the acetylation status and mechanism of regulation of histone H3 at replication origins remain elusive. HBO1 positively regulates cell proliferation under normal cell growth conditions. Whether HBO1 regulates proliferation in response to DNA damage is poorly understood. In this study, we demonstrated that HBO1 was degraded after DNA damage to suppress cell proliferation. Ser50 and Ser53 of HBO1 were phosphorylated in an ATM/ATR DNA damage sensor-dependent manner after UV treatment. ATM/ATR-dependently phosphorylated HBO1 preferentially interacted with DDB2 and was ubiquitylated by CRL4DDB2. Replacement of endogenous HBO1 in Ser50/53Ala mutants maintained acetylation of histone H3K14 and impaired cell cycle regulation in response to UV irradiation. Our findings demonstrate that HBO1 is one of the targets in the DNA damage checkpoint. These results show that ubiquitin-dependent control of the HBO1 protein contributes to cell survival during UV irradiation. PMID:26572825

  6. PRAP1 is a novel executor of p53-dependent mechanisms in cell survival after DNA damage

    PubMed Central

    Huang, B H; Zhuo, J L; Leung, C H W; Lu, G D; Liu, J J; Yap, C T; Hooi, S C

    2012-01-01

    p53 has a crucial role in governing cellular mechanisms in response to a broad range of genotoxic stresses. During DNA damage, p53 can either promote cell survival by activating senescence or cell-cycle arrest and DNA repair to maintain genomic integrity for cell survival or direct cells to undergo apoptosis to eliminate extensively damaged cells. The ability of p53 to execute these two opposing cell fates depends on distinct signaling pathways downstream of p53. In this study, we showed that under DNA damage conditions induced by chemotherapeutic drugs, gamma irradiation and hydrogen peroxide, p53 upregulates a novel protein, proline-rich acidic protein 1 (PRAP1). We identified functional p53-response elements within intron 1 of PRAP1 gene and showed that these regions interact directly with p53 using ChIP assays, indicating that PRAP1 is a novel p53 target gene. The induction of PRAP1 expression by p53 may promote resistance of cancer cells to chemotherapeutic drugs such as 5-fluorouracil (5-FU), as knockdown of PRAP1 increases apoptosis in cancer cells after 5-FU treatment. PRAP1 appears to protect cells from apoptosis by inducing cell-cycle arrest, suggesting that the induction of PRAP1 expression by p53 in response to DNA-damaging agents contributes to cancer cell survival. Our findings provide a greater insight into the mechanisms underlying the pro-survival role of p53 in response to cytotoxic treatments. PMID:23235459

  7. PRAP1 is a novel executor of p53-dependent mechanisms in cell survival after DNA damage.

    PubMed

    Huang, B H; Zhuo, J L; Leung, C H W; Lu, G D; Liu, J J; Yap, C T; Hooi, S C

    2012-12-13

    p53 has a crucial role in governing cellular mechanisms in response to a broad range of genotoxic stresses. During DNA damage, p53 can either promote cell survival by activating senescence or cell-cycle arrest and DNA repair to maintain genomic integrity for cell survival or direct cells to undergo apoptosis to eliminate extensively damaged cells. The ability of p53 to execute these two opposing cell fates depends on distinct signaling pathways downstream of p53. In this study, we showed that under DNA damage conditions induced by chemotherapeutic drugs, gamma irradiation and hydrogen peroxide, p53 upregulates a novel protein, proline-rich acidic protein 1 (PRAP1). We identified functional p53-response elements within intron 1 of PRAP1 gene and showed that these regions interact directly with p53 using ChIP assays, indicating that PRAP1 is a novel p53 target gene. The induction of PRAP1 expression by p53 may promote resistance of cancer cells to chemotherapeutic drugs such as 5-fluorouracil (5-FU), as knockdown of PRAP1 increases apoptosis in cancer cells after 5-FU treatment. PRAP1 appears to protect cells from apoptosis by inducing cell-cycle arrest, suggesting that the induction of PRAP1 expression by p53 in response to DNA-damaging agents contributes to cancer cell survival. Our findings provide a greater insight into the mechanisms underlying the pro-survival role of p53 in response to cytotoxic treatments.

  8. Recombinase and translesion DNA polymerase decrease the speed of replication fork progression during the DNA damage response in Escherichia coli cells

    PubMed Central

    Tan, Kang Wei; Pham, Tuan Minh; Furukohri, Asako; Maki, Hisaji; Akiyama, Masahiro Tatsumi

    2015-01-01

    The SOS response is a DNA damage response pathway that serves as a general safeguard of genome integrity in bacteria. Extensive studies of the SOS response in Escherichia coli have contributed to establishing the key concepts of cellular responses to DNA damage. However, how the SOS response impacts on the dynamics of DNA replication fork movement remains unknown. We found that inducing the SOS response decreases the mean speed of individual replication forks by 30–50% in E. coli cells, leading to a 20–30% reduction in overall DNA synthesis. dinB and recA belong to a group of genes that are upregulated during the SOS response, and encode the highly conserved proteins DinB (also known as DNA polymerase IV) and RecA, which, respectively, specializes in translesion DNA synthesis and functions as the central recombination protein. Both genes were independently responsible for the SOS-dependent slowdown of replication fork progression. Furthermore, fork speed was reduced when each gene was ectopically expressed in SOS-uninduced cells to the levels at which they are expressed in SOS-induced cells. These results clearly indicate that the increased expression of dinB and recA performs a novel role in restraining the progression of an unperturbed replication fork during the SOS response. PMID:25628359

  9. Pro-oxidant Induced DNA Damage in Human Lymphoblastoid Cells: Homeostatic Mechanisms of Genotoxic Tolerance

    PubMed Central

    Seager, Anna L.

    2012-01-01

    Oxidative stress contributes to many disease etiologies including ageing, neurodegeneration, and cancer, partly through DNA damage induction (genotoxicity). Understanding the i nteractions of free radicals with DNA is fundamental to discern mutation risks. In genetic toxicology, regulatory authorities consider that most genotoxins exhibit a linear relationship between dose and mutagenic response. Yet, homeostatic mechanisms, including DNA repair, that allow cells to tolerate low levels of genotoxic exposure exist. Acceptance of thresholds for genotoxicity has widespread consequences in terms of understanding cancer risk and regulating human exposure to chemicals/drugs. Three pro-oxidant chemicals, hydrogen peroxide (H2O2), potassium bromate (KBrO3), and menadione, were examined for low dose-response curves in human lymphoblastoid cells. DNA repair and antioxidant capacity were assessed as possible threshold mechanisms. H2O2 and KBrO3, but not menadione, exhibited thresholded responses, containing a range of nongenotoxic low doses. Levels of the DNA glycosylase 8-oxoguanine glycosylase were unchanged in response to pro- oxidant stress. DNA repair–focused gene expression arrays reported changes in ATM and BRCA1, involved in double-strand break repair, in response to low-dose pro-oxidant exposure; however, these alterations were not substantiated at the protein level. Determination of oxidatively induced DNA damage in H2O2-treated AHH-1 cells reported accumulation of thymine glycol above the genotoxic threshold. Further, the H2O2 dose-response curve was shifted by modulating the antioxidant glutathione. Hence, observed pro- oxidant thresholds were due to protective capacities of base excision repair enzymes and antioxidants against DNA damage, highlighting the importance of homeostatic mechanisms in “genotoxic tolerance.” PMID:22539617

  10. Homology-dependent repair is involved in 45S rDNA loss in plant CAF-1 mutants

    PubMed Central

    Muchová, Veronika; Amiard, Simon; Mozgová, Iva; Dvořáčková, Martina; Gallego, Maria E; White, Charles; Fajkus, Jiří

    2015-01-01

    Arabidopsis thaliana mutants in FAS1 and FAS2 subunits of chromatin assembly factor 1 (CAF1) show progressive loss of 45S rDNA copies and telomeres. We hypothesized that homology-dependent DNA damage repair (HDR) may contribute to the loss of these repeats in fas mutants. To test this, we generated double mutants by crossing fas mutants with knock-out mutants in RAD51B, one of the Rad51 paralogs of A. thaliana. Our results show that the absence of RAD51B decreases the rate of rDNA loss, confirming the implication of RAD51B-dependent recombination in rDNA loss in the CAF1 mutants. Interestingly, this effect is not observed for telomeric repeat loss, which thus differs from that acting in rDNA loss. Involvement of DNA damage repair in rDNA dynamics in fas mutants is further supported by accumulation of double-stranded breaks (measured as γ-H2AX foci) in 45S rDNA. Occurrence of the foci is not specific for S-phase, and is ATM-independent. While the foci in fas mutants occur both in the transcribed (intranucleolar) and non-transcribed (nucleoplasmic) fraction of rDNA, double fas rad51b mutants show a specific increase in the number of the intranucleolar foci. These results suggest that the repair of double-stranded breaks present in the transcribed rDNA region is RAD51B dependent and that this contributes to rDNA repeat loss in fas mutants, presumably via the single-stranded annealing recombination pathway. Our results also highlight the importance of proper chromatin assembly in the maintenance of genome stability. PMID:25359579

  11. Aprataxin resolves adenylated RNA–DNA junctions to maintain genome integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumbale, Percy; Williams, Jessica S.; Schellenberg, Matthew J.

    2013-12-22

    Faithful maintenance and propagation of eukaryotic genomes is ensured by three-step DNA ligation reactions used by ATP-dependent DNA ligases. Paradoxically, when DNA ligases encounter nicked DNA structures with abnormal DNA termini, DNA ligase catalytic activity can generate and/or exacerbate DNA damage through abortive ligation that produces chemically adducted, toxic 5'-adenylated (5'-AMP) DNA lesions. Aprataxin (APTX) reverses DNA adenylation but the context for deadenylation repair is unclear. Here we examine the importance of APTX to RNase-H2-dependent excision repair (RER) of a lesion that is very frequently introduced into DNA, a ribonucleotide. We show that ligases generate adenylated 5' ends containing amore » ribose characteristic of RNase H2 incision. APTX efficiently repairs adenylated RNA–DNA, and acting in an RNA–DNA damage response (RDDR), promotes cellular survival and prevents S-phase checkpoint activation in budding yeast undergoing RER. Structure–function studies of human APTX–RNA–DNA–AMP–Zn complexes define a mechanism for detecting and reversing adenylation at RNA–DNA junctions. This involves A-form RNA binding, proper protein folding and conformational changes, all of which are affected by heritable APTX mutations in ataxia with oculomotor apraxia 1. Together, these results indicate that accumulation of adenylated RNA–DNA may contribute to neurological disease.« less

  12. Quantitative comparison between in vivo DNA adduct formation from exposure to selected DNA-reactive carcinogens, natural background levels of DNA adduct formation and tumour incidence in rodent bioassays.

    PubMed

    Paini, Alicia; Scholz, Gabriele; Marin-Kuan, Maricel; Schilter, Benoît; O'Brien, John; van Bladeren, Peter J; Rietjens, Ivonne M C M

    2011-09-01

    This study aimed at quantitatively comparing the occurrence/formation of DNA adducts with the carcinogenicity induced by a selection of DNA-reactive genotoxic carcinogens. Contrary to previous efforts, we used a very uniform set of data, limited to in vivo rat liver studies in order to investigate whether a correlation can be obtained, using a benchmark dose (BMD) approach. Dose-response data on both carcinogenicity and in vivo DNA adduct formation were available for six compounds, i.e. 2-acetylaminofluorene, aflatoxin B1, methyleugenol, safrole, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline and tamoxifen. BMD(10) values for liver carcinogenicity were calculated using the US Environmental Protection Agency BMD software. DNA adduct levels at this dose were extrapolated assuming linearity of the DNA adduct dose response. In addition, the levels of DNA adducts at the BMD(10) were compared to available data on endogenous background DNA damage in the target organ. Although for an individual carcinogen the tumour response increases when adduct levels increase, our results demonstrate that when comparing different carcinogens, no quantitative correlation exists between the level of DNA adduct formation and carcinogenicity. These data confirm that the quantity of DNA adducts formed by a DNA-reactive compound is not a carcinogenicity predictor but that other factors such as type of adduct and mutagenic potential may be equally relevant. Moreover, comparison to background DNA damage supports the notion that the mere occurrence of DNA adducts above or below the level of endogenous DNA damage is neither correlated to development of cancer. These data strongly emphasise the need to apply the mode of action framework to understand the contribution of other biological effect markers playing a role in carcinogenicity.

  13. Primer-Independent DNA Synthesis by a Family B DNA Polymerase from Self-Replicating Mobile Genetic Elements.

    PubMed

    Redrejo-Rodríguez, Modesto; Ordóñez, Carlos D; Berjón-Otero, Mónica; Moreno-González, Juan; Aparicio-Maldonado, Cristian; Forterre, Patrick; Salas, Margarita; Krupovic, Mart

    2017-11-07

    Family B DNA polymerases (PolBs) play a central role during replication of viral and cellular chromosomes. Here, we report the discovery of a third major group of PolBs, which we denote primer-independent PolB (piPolB), that might be a link between the previously known protein-primed and RNA/DNA-primed PolBs. PiPolBs are encoded by highly diverse mobile genetic elements, pipolins, integrated in the genomes of diverse bacteria and also present as circular plasmids in mitochondria. Biochemical characterization showed that piPolB displays efficient DNA polymerization activity that can use undamaged and damaged templates and is endowed with proofreading and strand displacement capacities. Remarkably, the protein is also capable of template-dependent de novo DNA synthesis, i.e., DNA-priming activity, thereby breaking the long-standing dogma that replicative DNA polymerases require a pre-existing primer for DNA synthesis. We suggest that piPolBs are involved in self-replication of pipolins and may also contribute to bacterial DNA damage tolerance. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Identification of evolutionarily conserved DNA damage response genes that alter sensitivity to cisplatin

    PubMed Central

    Gaponova, Anna V.; Deneka, Alexander Y.; Beck, Tim N.; Liu, Hanqing; Andrianov, Gregory; Nikonova, Anna S.; Nicolas, Emmanuelle; Einarson, Margret B.; Golemis, Erica A.; Serebriiskii, Ilya G.

    2017-01-01

    Ovarian, head and neck, and other cancers are commonly treated with cisplatin and other DNA damaging cytotoxic agents. Altered DNA damage response (DDR) contributes to resistance of these tumors to chemotherapies, some targeted therapies, and radiation. DDR involves multiple protein complexes and signaling pathways, some of which are evolutionarily ancient and involve protein orthologs conserved from yeast to humans. To identify new regulators of cisplatin-resistance in human tumors, we integrated high throughput and curated datasets describing yeast genes that regulate sensitivity to cisplatin and/or ionizing radiation. Next, we clustered highly validated genes based on chemogenomic profiling, and then mapped orthologs of these genes in expanded genomic networks for multiple metazoans, including humans. This approach identified an enriched candidate set of genes involved in the regulation of resistance to radiation and/or cisplatin in humans. Direct functional assessment of selected candidate genes using RNA interference confirmed their activity in influencing cisplatin resistance, degree of γH2AX focus formation and ATR phosphorylation, in ovarian and head and neck cancer cell lines, suggesting impaired DDR signaling as the driving mechanism. This work enlarges the set of genes that may contribute to chemotherapy resistance and provides a new contextual resource for interpreting next generation sequencing (NGS) genomic profiling of tumors. PMID:27863405

  15. Activation of Poly(ADP-Ribose)Polymerase in rat hepatocytes does not contribute to their cell death by oxidative stress.

    PubMed

    Latour, I; Leunda-Casi, A; Denef, J F; Buc Calderon, P

    2000-01-10

    Oxidative stress induced by tert-butyl hydroperoxide (tBOOH) in freshly isolated rat hepatocytes caused DNA damage and loss of membrane integrity. Such DNA lesions are likely to be single strand breaks since neither caryolysis nor chromatine condensation was seen in electron micrographs from tBOOH-treated cells. In addition, pulsed field gel electrophoresis of genomic DNA from both control and tBOOH-treated hepatocytes showed similar profiles, indicating the absence of internucleosomal DNA cleavage, a classical reflection of apoptotic endonuclease activity. The activation of the repair enzyme poly(ADP-ribose)polymerase (PARP) following DNA damage by tBOOH induced a dramatic drop in both NAD(+) and ATP. The inhibition of PARP by 3-aminobenzamide enhanced DNA damage by tBOOH, restored NAD(+) and ATP levels, but did not result in better survival against cell killing by tBOOH. The lack of the protective effect of PARP inhibitor, therefore, does not implicate PARP in the mechanism of tBOOH-induced cytotoxicity. Electron micrographs also show no mitochondrial swelling in cells under oxidative stress, but such organelles were mainly located around the nucleus, a picture already observed in autoschizis, a new suggested kind of cell death which shows both apoptotic and necrotic morphological characteristics. Copyright 2000 Academic Press.

  16. Modulation of proteostasis counteracts oxidative stress and affects DNA base excision repair capacity in ATM-deficient cells

    PubMed Central

    Yang, Di; Fletcher, Sally C.; Vendrell, Iolanda; Fischer, Roman; Legrand, Arnaud J.

    2017-01-01

    Abstract Ataxia telangiectasia (A-T) is a syndrome associated with loss of ATM protein function. Neurodegeneration and cancer predisposition, both hallmarks of A-T, are likely to emerge as a consequence of the persistent oxidative stress and DNA damage observed in this disease. Surprisingly however, despite these severe features, a lack of functional ATM is still compatible with early life, suggesting that adaptation mechanisms contributing to cell survival must be in place. Here we address this gap in our knowledge by analysing the process of human fibroblast adaptation to the lack of ATM. We identify profound rearrangement in cellular proteostasis occurring very early on after loss of ATM in order to counter protein damage originating from oxidative stress. Change in proteostasis, however, is not without repercussions. Modulating protein turnover in ATM-depleted cells also has an adverse effect on the DNA base excision repair pathway, the major DNA repair system that deals with oxidative DNA damage. As a consequence, the burden of unrepaired endogenous DNA lesions intensifies, progressively leading to genomic instability. Our study provides a glimpse at the cellular consequences of loss of ATM and highlights a previously overlooked role for proteostasis in maintaining cell survival in the absence of ATM function. PMID:28973444

  17. Computational Study on Full-length Human Ku70 with Double Stranded DNA: Dynamics, Interactions and Functional Implications

    NASA Technical Reports Server (NTRS)

    Hu, Shaowen; Cucinotta, Francis A.

    2009-01-01

    The Ku70/80 heterodimer is the first repair protein in the initial binding of double-strand break (DSB) ends following DNA damage, and is a component of nonhomologous end joining repair, the primary pathway for DSB repair in mammalian cells. In this study we constructed a full-length human Ku70 structure based on its crystal structure, and performed 20 ns conventional molecular dynamic (CMD) simulations on this protein and several other complexes with short DNA duplexes of different sequences. The trajectories of these simulations indicated that, without the topological support of Ku80, the residues in the bridge and C-terminal arm of Ku70 are more flexible than other experimentally identified domains. We studied the two missing loops in the crystal structure and predicted that they are also very flexible. Simulations revealed that they make an important contribution to the Ku70 interaction with DNA. Dislocation of the previously studied SAP domain was observed in several systems, implying its role in DNA binding. Targeted molecular dynamic (TMD) simulation was also performed for one system with a far-away 14bp DNA duplex. The TMD trajectory and energetic analysis disclosed detailed interactions of the DNA-binding residues during the DNA dislocation, and revealed a possible conformational transition for a DSB end when encountering Ku70 in solution. Compared to experimentally based analysis, this study identified more detailed interactions between DNA and Ku70. Free energy analysis indicated Ku70 alone is able to bind DNA with relatively high affinity, with consistent contributions from various domains of Ku70 in different systems. The functional implications of these domains in the processes of Ku heterodimerization and DNA damage recognition and repair can be characterized in detail based upon this analysis.

  18. Laser microbeams for DNA damage induction, optical tweezers for the search on blood pressure relaxing drugs: contributions to ageing research

    NASA Astrophysics Data System (ADS)

    Grigaravicius, P.; Monajembashi, S.; Hoffmann, M.; Altenberg, B.; Greulich, K. O.

    2009-08-01

    One essential cause of human ageing is the accumulation of DNA damages during lifetime. Experimental studies require quantitative induction of damages and techniques to visualize the subsequent DNA repair. A new technique, the "immuno fluorescent comet assay", is used to directly visualize DNA damages in the microscope. Using DNA repair proteins fluorescently labeled with green fluorescent protein, it could be shown that the repair of the most dangerous DNA double strand breaks starts with the inaccurate "non homologous end joining" pathway and only after 1 - 1 ½ minutes may switch to the more accurate "homologous recombination repair". One might suggest investigating whether centenarians use "homologous recombination repair" differently from those ageing at earlier years and speculate whether it is possible, for example by nutrition, to shift DNA repair to a better use of the error free pathway and thus promote healthy ageing. As a complementary technique optical tweezers, and particularly its variant "erythrocyte mediated force application", is used to simulate the effects of blood pressure on HUVEC cells representing the inner lining of human blood vessels. Stimulating one cell induces in the whole neighbourhood waves of calcium and nitric oxide, known to relax blood vessels. NIFEDIPINE and AMLODIPINE, both used as drugs in the therapy of high blood pressure, primarily a disease of the elderly, prolong the availability of nitric oxide. This partially explains their mode of action. In contrast, VERAPAMILE, also a blood pressure reducing drug, does not show this effect, indicating that obviously an alternative mechanism must be responsible for vessel relaxation.

  19. Histone H3 K79 methylation states play distinct roles in UV-induced sister chromatid exchange and cell cycle checkpoint arrest in Saccharomyces cerevisiae

    PubMed Central

    Rossodivita, Alyssa A.; Boudoures, Anna L.; Mecoli, Jonathan P.; Steenkiste, Elizabeth M.; Karl, Andrea L.; Vines, Eudora M.; Cole, Arron M.; Ansbro, Megan R.; Thompson, Jeffrey S.

    2014-01-01

    Histone post-translational modifications have been shown to contribute to DNA damage repair. Prior studies have suggested that specific H3K79 methylation states play distinct roles in the response to UV-induced DNA damage. To evaluate these observations, we examined the effect of altered H3K79 methylation patterns on UV-induced G1/S checkpoint response and sister chromatid exchange (SCE). We found that the di- and trimethylated states both contribute to activation of the G1/S checkpoint to varying degrees, depending on the synchronization method, although methylation is not required for checkpoint in response to high levels of UV damage. In contrast, UV-induced SCE is largely a product of the trimethylated state, which influences the usage of gene conversion versus popout mechanisms. Regulation of H3K79 methylation by H2BK123 ubiquitylation is important for both checkpoint function and SCE. H3K79 methylation is not required for the repair of double-stranded breaks caused by transient HO endonuclease expression, but does play a modest role in survival from continuous exposure. The overall results provide evidence for the participation of H3K79 methylation in UV-induced recombination repair and checkpoint activation, and further indicate that the di- and trimethylation states play distinct roles in these DNA damage response pathways. PMID:24748660

  20. Recruitment of TRF2 to laser-induced DNA damage sites.

    PubMed

    Huda, Nazmul; Abe, Satoshi; Gu, Ling; Mendonca, Marc S; Mohanty, Samarendra; Gilley, David

    2012-09-01

    Several lines of evidence suggest that the telomere-associated protein TRF2 plays critical roles in the DNA damage response. TRF2 is rapidly and transiently phosphorylated by an ATM-dependent pathway in response to DNA damage and this DNA damage-induced phosphoryation is essential for the DNA-PK-dependent pathway of DNA double-strand break repair (DSB). However, the type of DNA damage that induces TRF2 localization to the damage sites, the requirement for DNA damage-induced phosphorylation of TRF2 for its recruitment, as well as the detailed kinetics of TRF2 accumulation at DNA damage sites have not been fully investigated. In order to address these questions, we used an ultrafast femtosecond multiphoton laser and a continuous wave 405-nm single photon laser to induce DNA damage at defined nuclear locations. Our results showed that DNA damage produced by a femtosecond multiphoton laser was sufficient for localization of TRF2 to these DNA damage sites. We also demonstrate that ectopically expressed TRF2 was recruited to DNA lesions created by a 405-nm laser. Our data suggest that ATM and DNA-PKcs kinases are not required for TRF2 localization to DNA damage sites. Furthermore, we found that phosphorylation of TRF2 at residue T188 was not essential for its recruitment to laser-induced DNA damage sites. Thus, we provide further evidence that a protein known to function in telomere maintenance, TRF2, is recruited to sites of DNA damage and plays critical roles in the DNA damage response. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Caspase 3 promotes genetic instability and carcinogenesis

    PubMed Central

    Liu, Xinjian; He, Yujun; Li, Fang; Huang, Qian; Kato, Takamitsu A.; Hall, Russell P; Li, Chuan-Yuan

    2015-01-01

    Summary Apoptosis is typically considered an anti-oncogenic process since caspase activation can promote the elimination of genetically unstable or damaged cells. We report that a central effector of apoptosis, caspase 3, facilitates, rather than suppresses, chemical and radiation-induced genetic instability and carcinogenesis. We found that a significant fraction of mammalian cells treated with ionizing radiation can survive, despite caspase 3 activation. Moreover, this sublethal activation of caspase 3 promoted persistent DNA damage and oncogenic transformation. In addition, chemically-induced skin carcinogenesis was significantly reduced in mice genetically deficient in caspase 3. Furthermore, attenuation of Endo G activity significantly reduced radiation-induced DNA damage and oncogenic transformation, identifying Endo G as a downstream effector of caspase 3 in this pathway. Our findings suggest that rather than acting as a broad inhibitor of carcinogenesis, caspase 3 activation may contribute to genome instability and play a pivotal role in tumor formation following damage. PMID:25866249

  2. Fasting protects mice from lethal DNA damage by promoting small intestinal epithelial stem cell survival.

    PubMed

    Tinkum, Kelsey L; Stemler, Kristina M; White, Lynn S; Loza, Andrew J; Jeter-Jones, Sabrina; Michalski, Basia M; Kuzmicki, Catherine; Pless, Robert; Stappenbeck, Thaddeus S; Piwnica-Worms, David; Piwnica-Worms, Helen

    2015-12-22

    Short-term fasting protects mice from lethal doses of chemotherapy through undetermined mechanisms. Herein, we demonstrate that fasting preserves small intestinal (SI) architecture by maintaining SI stem cell viability and SI barrier function following exposure to high-dose etoposide. Nearly all SI stem cells were lost in fed mice, whereas fasting promoted sufficient SI stem cell survival to preserve SI integrity after etoposide treatment. Lineage tracing demonstrated that multiple SI stem cell populations, marked by Lgr5, Bmi1, or HopX expression, contributed to fasting-induced survival. DNA repair and DNA damage response genes were elevated in SI stem/progenitor cells of fasted etoposide-treated mice, which importantly correlated with faster resolution of DNA double-strand breaks and less apoptosis. Thus, fasting preserved SI stem cell viability as well as SI architecture and barrier function suggesting that fasting may reduce host toxicity in patients undergoing dose intensive chemotherapy.

  3. Hereditary Disorders with Defective Repair of UV-Induced DNA Damage

    PubMed Central

    Moriwaki, Shinichi

    2013-01-01

    Nucleotide excision repair (NER) is an essential system for correcting ultraviolet (UV)—induced DNA damage. Lesions remaining in DNA due to reduced capacity of NER may result in cellular death, premature aging, mutagenesis and carcinogenesis of the skin. So, NER is an important protection against these changes. There are three representative genodermatoses resulting from genetic defects in NER: xeroderma pigmentosum (XP), Cockayne syndrome (CS), and trichothiodystrophy (TTD). In Japan, CS is similarly rare but XP is more common and TTD is less common compared to Western countries. In 1998, we established the system for the diagnosis of these disorders and we have been performing DNA repair and genetic analysis for more than 400 samples since then. At present, there is no cure for any human genetic disorder. Early diagnosis and symptomatic treatment of neurological, ocular and dermatological abnormalities should contribute to prolonging life and elevating QOL in patients. PMID:23966815

  4. Induction of apoptosis by plumbagin through reactive oxygen species-mediated inhibition of topoisomerase II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawiak, Anna; Piosik, Jacek; Stasilojc, Grzegorz

    2007-09-15

    Reactive oxygen species (ROS) have been recognized as key molecules, which can selectively modify proteins and therefore regulate cellular signalling including apoptosis. Plumbagin, a naphthoquinone exhibiting antitumor activity, is known to generate ROS and has been found to inhibit the activity of topoisomerase II (Topo II) through the stabilization of the Topo II-DNA cleavable complex. The objective of this research was to clarify the role of ROS and Topo II inhibition in the induction of apoptosis mediated by plumbagin. As determined by the comet assay, plumbagin induced DNA cleavage in HL-60 cells, whereas in a cell line with reduced Topomore » II activity-HL-60/MX2, the level of DNA damage was significantly decreased. The onset of DNA strand break formation in HL-60 cells was delayed in comparison with the generation of intracellular ROS. In HL-60/MX2 cells, ROS were generated at a similar rate, whereas a significant reduction in the level of DNA damage was detected. The pretreatment of cells with N-acetylcysteine (NAC) attenuated plumbagin-induced DNA damage, pointing out to the involvement of ROS generation in cleavable complex formation. These results suggest that plumbagin-induced ROS does not directly damage DNA but requires the involvement of Topo II. Furthermore, experiments carried out using light spectroscopy indicated no direct interactions between plumbagin and DNA. The induction of apoptosis was significantly delayed in HL-60/MX2 cells indicating the involvement of Topo II inhibition in plumbagin-mediated apoptosis. Thus, these findings strongly suggest ROS-mediated inhibition of Topo II as an important mechanism contributing to the apoptosis-inducing properties of plumbagin.« less

  5. Requirement of the Mre11 complex and exonuclease 1 for activation of the Mec1 signaling pathway.

    PubMed

    Nakada, Daisuke; Hirano, Yukinori; Sugimoto, Katsunori

    2004-11-01

    The large protein kinases, ataxia-telangiectasia mutated (ATM) and ATM-Rad3-related (ATR), orchestrate DNA damage checkpoint pathways. In budding yeast, ATM and ATR homologs are encoded by TEL1 and MEC1, respectively. The Mre11 complex consists of two highly related proteins, Mre11 and Rad50, and a third protein, Xrs2 in budding yeast or Nbs1 in mammals. The Mre11 complex controls the ATM/Tel1 signaling pathway in response to double-strand break (DSB) induction. We show here that the Mre11 complex functions together with exonuclease 1 (Exo1) in activation of the Mec1 signaling pathway after DNA damage and replication block. Mec1 controls the checkpoint responses following UV irradiation as well as DSB induction. Correspondingly, the Mre11 complex and Exo1 play an overlapping role in activation of DSB- and UV-induced checkpoints. The Mre11 complex and Exo1 collaborate in producing long single-stranded DNA (ssDNA) tails at DSB ends and promote Mec1 association with the DSBs. The Ddc1-Mec3-Rad17 complex associates with sites of DNA damage and modulates the Mec1 signaling pathway. However, Ddc1 association with DSBs does not require the function of the Mre11 complex and Exo1. Mec1 controls checkpoint responses to stalled DNA replication as well. Accordingly, the Mre11 complex and Exo1 contribute to activation of the replication checkpoint pathway. Our results provide a model in which the Mre11 complex and Exo1 cooperate in generating long ssDNA tracts and thereby facilitate Mec1 association with sites of DNA damage or replication block.

  6. Histone H3 and the histone acetyltransferase Hat1p contribute to DNA double-strand break repair.

    PubMed

    Qin, Song; Parthun, Mark R

    2002-12-01

    The modification of newly synthesized histones H3 and H4 by type B histone acetyltransferases has been proposed to play a role in the process of chromatin assembly. The type B histone acetyltransferase Hat1p and specific lysine residues in the histone H3 NH(2)-terminal tail (primarily lysine 14) are redundantly required for telomeric silencing. As many gene products, including other factors involved in chromatin assembly, have been found to participate in both telomeric silencing and DNA damage repair, we tested whether mutations in HAT1 and the histone H3 tail were also sensitive to DNA-damaging agents. Indeed, mutations both in specific lysine residues in the histone H3 tail and in HAT1 resulted in sensitivity to methyl methanesulfonate. The DNA damage sensitivity of the histone H3 and HAT1 mutants was specific for DNA double-strand breaks, as these mutants were sensitive to the induction of an exogenous restriction endonuclease, EcoRI, but not to UV irradiation. While histone H3 mutations had minor effects on nonhomologous end joining, the primary defect in the histone H3 and HAT1 mutants was in the recombinational repair of DNA double-strand breaks. Epistasis analysis indicates that the histone H3 and HAT1 mutants may influence DNA double-strand break repair through Asf1p-dependent chromatin assembly.

  7. Aldosterone induces fibrosis, oxidative stress and DNA damage in livers of male rats independent of blood pressure changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Queisser, Nina; Happ, Kathrin; Link, Samuel

    Mineralocorticoid receptor blockers show antifibrotic potential in hepatic fibrosis. The mechanism of this protective effect is not known yet, although reactive oxygen species seem to play an important role. Here, we investigated the effects of elevated levels of aldosterone (Ald), the primary ligand of the mineralocorticoid receptor, on livers of rats in a hyperaldosteronism model: aldosterone-induced hypertension. Male Sprague–Dawley rats were treated for 4 weeks with aldosterone. To distinguish if damage caused in the liver depended on increased blood pressure or on increased Ald levels, the mineralocorticoid receptor antagonist spironolactone was given in a subtherapeutic dose, not normalizing blood pressure.more » To investigate the impact of oxidative stress, the antioxidant tempol was administered. Aldosterone induced fibrosis, detected histopathologically, and by expression analysis of the fibrosis marker, α-smooth muscle actin. Further, the mRNA amount of the profibrotic cytokine TGF-β was increased significantly. Fibrosis could be reduced by scavenging reactive oxygen species, and also by blocking the mineralocorticoid receptor. Furthermore, aldosterone treatment caused oxidative stress and DNA double strand breaks in livers, as well as the elevation of DNA repair activity. An increase of the transcription factor Nrf2, the main regulator of the antioxidative response could be observed, and of its target genes heme oxygenase-1 and γ-glutamylcysteine synthetase. All these effects of aldosterone were prevented by spironolactone and tempol. Already after 4 weeks of treatment, aldosteroneinfusion induced fibrosis in the liver. This effect was independent of elevated blood pressure. DNA damage caused by aldosterone might contribute to fibrosis progression when aldosterone is chronically increased. - Highlights: • Aldosterone has direct profibrotic effects on the liver independent of blood pressure. • Fibrosis is mediated by the mineralocorticoid receptor and oxidative stress. • Aldosterone induces transcription factor Nrf2 and Nrf2-regulated genes in the liver. • DNA damage caused by aldosterone might contribute to fibrosis progression.« less

  8. Targeting HDAC3, a new partner protein of AKT in the reversal of chemoresistance in acute myeloid leukemia via DNA damage response.

    PubMed

    Long, J; Fang, W Y; Chang, L; Gao, W H; Shen, Y; Jia, M Y; Zhang, Y X; Wang, Y; Dou, H B; Zhang, W J; Zhu, J; Liang, A B; Li, J M; Hu, Jiong

    2017-12-01

    Resistance to cytotoxic chemotherapy drugs remains as the major cause of treatment failure in acute myeloid leukemia. Histone deacetylases (HDAC) are important regulators to maintain chromatin structure and control DNA damage; nevertheless, how each HDAC regulates genome stability remains unclear, especially under genome stress conditions. Here, we identified a mechanism by which HDAC3 regulates DNA damage repair and mediates resistance to chemotherapy drugs. In addition to inducing DNA damage, chemotherapy drugs trigger upregulation of HDAC3 expression in leukemia cells. Using genetic and pharmacological approaches, we show that HDAC3 contributes to chemotherapy resistance by regulating the activation of AKT, a well-documented factor in drug resistance development. HDAC3 binds to AKT and deacetylates it at the site Lys20, thereby promoting the phosphorylation of AKT. Chemotherapy drug exposure enhances the interaction between HDAC3 and AKT, resulting in decrease in AKT acetylation and increase in AKT phosphorylation. Whereas HDAC3 depletion or inhibition abrogates these responses and meanwhile sensitizes leukemia cells to chemotoxicity-induced apoptosis. Importantly, in vivo HDAC3 suppression reduces leukemia progression and sensitizes MLL-AF9 + leukemia to chemotherapy. Our findings suggest that combination therapy with HDAC3 inhibitor and genotoxic agents may constitute a successful strategy for overcoming chemotherapy resistance.

  9. Canonical DNA Repair Pathways Influence R-Loop-Driven Genome Instability.

    PubMed

    Stirling, Peter C; Hieter, Philip

    2017-10-27

    DNA repair defects create cancer predisposition in humans by fostering a higher rate of mutations. While DNA repair is quite well characterized, recent studies have identified previously unrecognized relationships between DNA repair and R-loop-mediated genome instability. R-loops are three-stranded nucleic acid structures in which RNA binds to genomic DNA to displace a loop of single-stranded DNA. Mutations in homologous recombination, nucleotide excision repair, crosslink repair, and DNA damage checkpoints have all now been linked to formation and function of transcription-coupled R-loops. This perspective will summarize recent literature linking DNA repair to R-loop-mediated genomic instability and discuss how R-loops may contribute to mutagenesis in DNA-repair-deficient cancers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The Translesion Polymerase Pol η Is Required for Efficient Epstein-Barr Virus Infectivity and Is Regulated by the Viral Deubiquitinating Enzyme BPLF1

    PubMed Central

    Dyson, Ossie F.; Pagano, Joseph S.

    2017-01-01

    ABSTRACT Epstein-Barr virus (EBV) infection and lytic replication are known to induce a cellular DNA damage response. We previously showed that the virally encoded BPLF1 protein interacts with and regulates several members of the translesion synthesis (TLS) pathway, a DNA damage tolerance pathway, and that these cellular factors enhance viral infectivity. BPLF1 is a late lytic cycle gene, but the protein is also packaged in the viral tegument, indicating that BPLF1 may function both early and late during infection. The BPLF1 protein expresses deubiquitinating activity that is strictly conserved across the Herpesviridae; mutation of the active site cysteine results in a loss of enzymatic activity. Infection with an EBV BPLF1 knockout virus results in decreased EBV infectivity. Polymerase eta (Pol η), a specialized DNA repair polymerase, functions in TLS and allows for DNA replication complexes to bypass lesions in DNA. Here we report that BPLF1 interacts with Pol η and that Pol η protein levels are increased in the presence of functional BPLF1. BPLF1 promotes a nuclear relocalization of Pol η molecules which are focus-like in appearance, consistent with the localization observed when Pol η is recruited to sites of DNA damage. Knockdown of Pol η resulted in decreased production of infectious virus, and further, Pol η was found to bind to EBV DNA, suggesting that it may allow for bypass of damaged viral DNA during its replication. The results suggest a mechanism by which EBV recruits cellular repair factors, such as Pol η, to sites of viral DNA damage via BPLF1, thereby allowing for efficient viral DNA replication. IMPORTANCE Epstein-Barr virus is the causative agent of infectious mononucleosis and infects approximately 90% of the world's population. It causes lymphomas in individuals with acquired and innate immune disorders and is strongly associated with Hodgkin's lymphoma, Burkitt's lymphoma, diffuse large B-cell lymphomas, nasopharyngeal carcinoma (NPC), and lymphomas that develop in organ transplant recipients. Cellular DNA damage is a major determinant in the establishment of oncogenic processes and is well studied, but there are few studies of endogenous repair of viral DNA. This work evaluates how EBV's BPLF1 protein and its conserved deubiquitinating activity regulate the cellular DNA repair enzyme polymerase eta and recruit it to potential sites of viral damage and replication, resulting in enhanced production of infectious virus. These findings help to establish how EBV enlists and manipulates cellular DNA repair factors during the viral lytic cycle, contributing to efficient infectious virion production. PMID:28724765

  11. The Translesion Polymerase Pol η Is Required for Efficient Epstein-Barr Virus Infectivity and Is Regulated by the Viral Deubiquitinating Enzyme BPLF1.

    PubMed

    Dyson, Ossie F; Pagano, Joseph S; Whitehurst, Christopher B

    2017-10-01

    Epstein-Barr virus (EBV) infection and lytic replication are known to induce a cellular DNA damage response. We previously showed that the virally encoded BPLF1 protein interacts with and regulates several members of the translesion synthesis (TLS) pathway, a DNA damage tolerance pathway, and that these cellular factors enhance viral infectivity. BPLF1 is a late lytic cycle gene, but the protein is also packaged in the viral tegument, indicating that BPLF1 may function both early and late during infection. The BPLF1 protein expresses deubiquitinating activity that is strictly conserved across the Herpesviridae ; mutation of the active site cysteine results in a loss of enzymatic activity. Infection with an EBV BPLF1 knockout virus results in decreased EBV infectivity. Polymerase eta (Pol η), a specialized DNA repair polymerase, functions in TLS and allows for DNA replication complexes to bypass lesions in DNA. Here we report that BPLF1 interacts with Pol η and that Pol η protein levels are increased in the presence of functional BPLF1. BPLF1 promotes a nuclear relocalization of Pol η molecules which are focus-like in appearance, consistent with the localization observed when Pol η is recruited to sites of DNA damage. Knockdown of Pol η resulted in decreased production of infectious virus, and further, Pol η was found to bind to EBV DNA, suggesting that it may allow for bypass of damaged viral DNA during its replication. The results suggest a mechanism by which EBV recruits cellular repair factors, such as Pol η, to sites of viral DNA damage via BPLF1, thereby allowing for efficient viral DNA replication. IMPORTANCE Epstein-Barr virus is the causative agent of infectious mononucleosis and infects approximately 90% of the world's population. It causes lymphomas in individuals with acquired and innate immune disorders and is strongly associated with Hodgkin's lymphoma, Burkitt's lymphoma, diffuse large B-cell lymphomas, nasopharyngeal carcinoma (NPC), and lymphomas that develop in organ transplant recipients. Cellular DNA damage is a major determinant in the establishment of oncogenic processes and is well studied, but there are few studies of endogenous repair of viral DNA. This work evaluates how EBV's BPLF1 protein and its conserved deubiquitinating activity regulate the cellular DNA repair enzyme polymerase eta and recruit it to potential sites of viral damage and replication, resulting in enhanced production of infectious virus. These findings help to establish how EBV enlists and manipulates cellular DNA repair factors during the viral lytic cycle, contributing to efficient infectious virion production. Copyright © 2017 American Society for Microbiology.

  12. Selective enzymatic cleavage and labeling for sensitive capillary electrophoresis laser-induced fluorescence analysis of oxidized DNA bases.

    PubMed

    Li, Cuiping; Wang, Hailin

    2015-08-07

    Oxidatively generated DNA damage is considered to be a significant contributing factor to cancer, aging, and age-related human diseases. It is important to detect oxidatively generated DNA damage to understand and clinically diagnosis diseases caused by oxidative damage. In this study, using selective enzymatic cleavage and quantum dot (QD) labeling, we developed a novel capillary electrophoresis-laser induced fluorescence method for the sensitive detection of oxidized DNA bases. First, oxidized DNA bases are recognized and removed by one DNA base excision repair glycosylase, leaving apurinic and apyrimidinic sites (AP sites) at the oxidized positions. The AP sites are further excised by the AP nicking activity of the chosen glycosylase, generating a nucleotide gap with 5'- and 3'- phosphate groups. After dephosphorylation with one alkaline phosphatase, a biotinylated ddNTP is introduced into the nucleotide space within the DNA strand by DNA polymerase I. The biotin-tagged DNA is further labeled with a QD-streptavidin conjugate via non-covalent interactions. The DNA-bound QD is well-separated from excess DNA-unbound QD by highly efficient capillary electrophoresis and is sensitively detected by online coupled laser-induced fluorescence analysis. Using this method, we can assess the trace levels of oxidized DNA bases induced by the Fenton reaction and UV irradiation. Interestingly, the use of the formamidopyrimidine glycosylase (FPG) protein and endonuclease VIII enables the detection of oxidized purine and pyrimidine bases, respectively. Using the synthesized standard DNA, the approach has low limits of detection of 1.1×10(-19)mol in mass and 2.9pM in concentration. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. High Glutathione and Glutathione Peroxidase-2 Levels Mediate Cell-Type-Specific DNA Damage Protection in Human Induced Pluripotent Stem Cells

    PubMed Central

    Dannenmann, Benjamin; Lehle, Simon; Hildebrand, Dominic G.; Kübler, Ayline; Grondona, Paula; Schmid, Vera; Holzer, Katharina; Fröschl, Mirjam; Essmann, Frank; Rothfuss, Oliver; Schulze-Osthoff, Klaus

    2015-01-01

    Summary Pluripotent stem cells must strictly maintain genomic integrity to prevent transmission of mutations. In human induced pluripotent stem cells (iPSCs), we found that genome surveillance is achieved via two ways, namely, a hypersensitivity to apoptosis and a very low accumulation of DNA lesions. The low apoptosis threshold was mediated by constitutive p53 expression and a marked upregulation of proapoptotic p53 target genes of the BCL-2 family, ensuring the efficient iPSC removal upon genotoxic insults. Intriguingly, despite the elevated apoptosis sensitivity, both mitochondrial and nuclear DNA lesions induced by genotoxins were less frequent in iPSCs compared to fibroblasts. Gene profiling identified that mRNA expression of several antioxidant proteins was considerably upregulated in iPSCs. Knockdown of glutathione peroxidase-2 and depletion of glutathione impaired protection against DNA lesions. Thus, iPSCs ensure genomic integrity through enhanced apoptosis induction and increased antioxidant defense, contributing to protection against DNA damage. PMID:25937369

  14. Impaired tRNA nuclear export links DNA damage and cell-cycle checkpoint.

    PubMed

    Ghavidel, Ata; Kislinger, Thomas; Pogoutse, Oxana; Sopko, Richelle; Jurisica, Igor; Emili, Andrew

    2007-11-30

    In response to genotoxic stress, cells evoke a plethora of physiological responses collectively aimed at enhancing viability and maintaining the integrity of the genome. Here, we report that unspliced tRNA rapidly accumulates in the nuclei of yeast Saccharomyces cerevisiae after DNA damage. This response requires an intact MEC1- and RAD53-dependent signaling pathway that impedes the nuclear export of intron-containing tRNA via differential relocalization of the karyopherin Los1 to the cytoplasm. The accumulation of unspliced tRNA in the nucleus signals the activation of Gcn4 transcription factor, which, in turn, contributes to cell-cycle arrest in G1 in part by delaying accumulation of the cyclin Cln2. The regulated nucleocytoplasmic tRNA trafficking thus constitutes an integral physiological adaptation to DNA damage. These data further illustrate how signal-mediated crosstalk between distinct functional modules, namely, tRNA nucleocytoplasmic trafficking, protein synthesis, and checkpoint execution, allows for functional coupling of tRNA biogenesis and cell-cycle progression.

  15. Telomere shortening triggers a feedback loop to enhance end protection.

    PubMed

    Yang, Chia-Wei; Tseng, Shun-Fu; Yu, Chia-Jung; Chung, Chia-Yu; Chang, Cheng-Yen; Pobiega, Sabrina; Teng, Shu-Chun

    2017-08-21

    Telomere homeostasis is controlled by both telomerase machinery and end protection. Telomere shortening induces DNA damage sensing kinases ATM/ATR for telomerase recruitment. Yet, whether telomere shortening also governs end protection is poorly understood. Here we discover that yeast ATM/ATR controls end protection. Rap1 is phosphorylated by Tel1 and Mec1 kinases at serine 731, and this regulation is stimulated by DNA damage and telomere shortening. Compromised Rap1 phosphorylation hampers the interaction between Rap1 and its interacting partner Rif1, which thereby disturbs the end protection. As expected, reduction of Rap1-Rif1 association impairs telomere length regulation and increases telomere-telomere recombination. These results indicate that ATM/ATR DNA damage checkpoint signal contributes to telomere protection by strengthening the Rap1-Rif1 interaction at short telomeres, and the checkpoint signal oversees both telomerase recruitment and end capping pathways to maintain telomere homeostasis. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Relative contribution of homologous recombination and non-homologous end-joining to DNA double-strand break repair after oxidative stress in Saccharomyces cerevisiae.

    PubMed

    Letavayová, Lucia; Marková, Eva; Hermanská, Katarína; Vlcková, Viera; Vlasáková, Danusa; Chovanec, Miroslav; Brozmanová, Jela

    2006-05-10

    Oxidative damage to DNA seems to be an important factor in developing many human diseases including cancer. It involves base and sugar damage, base-free sites, DNA-protein cross-links and DNA single-strand (SSB) and double-strand (DSB) breaks. Oxidative DSB can be formed in various ways such as their direct induction by the drug or their generation either through attempted and aborted repair of primary DNA lesions or through DNA replication-dependent conversion of SSB. In general, two main pathways are responsible for repairing DSB, homologous recombination (HR) and non-homologous end-joining (NHEJ), with both of them being potential candidates for the repair of oxidative DSB. We have examined relative contribution of HR and NHEJ to cellular response after oxidative stress in Saccharomyces cerevisiae. Therefore, cell survival, mutagenesis and DSB induction and repair in the rad52, yku70 and rad52 yku70 mutants after hydrogen peroxide (H(2)O(2)), menadione (MD) or bleomycin (BLM) exposure were compared to those obtained for the corresponding wild type. We show that MD exposure does not lead to observable DSB induction in yeast, suggesting that the toxic effects of this agent are mediated by other types of DNA damage. Although H(2)O(2) treatment generates some DSB, their yield is relatively low and hence DSB may only partially be responsible for toxicity of H(2)O(2), particularly at high doses of the agent. On the other hand, the basis of the BLM toxicity resides primarily in DSB induction. Both HR and NHEJ act on BLM-induced DSB, although their relative participation in the process is not equal. Based on our results we suggest that the complexity and/or the quality of the BLM-induced DSB might represent an obstacle for the NHEJ pathway.

  17. 11th International Conference of Radiation Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-07-18

    Topics discussed in the conference included the following: Radiation Physics, Radiation Chemistry and modelling--Radiation physics and dosimetry; Electron transfer in biological media; Radiation chemistry; Biophysical and biochemical modelling; Mechanisms of DNA damage; Assays of DNA damage; Energy deposition in micro volumes; Photo-effects; Special techniques and technologies; Oxidative damage. Molecular and cellular effects-- Photobiology; Cell cycle effects; DNA damage: Strand breaks; DNA damage: Bases; DNA damage Non-targeted; DNA damage: other; Chromosome aberrations: clonal; Chromosomal aberrations: non-clonal; Interactions: Heat/Radiation/Drugs; Biochemical effects; Protein expression; Gene induction; Co-operative effects; ``Bystander'' effects; Oxidative stress effects; Recovery from radiation damage. DNA damage and repair -- DNAmore » repair genes; DNA repair deficient diseases; DNA repair enzymology; Epigenetic effects on repair; and Ataxia and ATM.« less

  18. Lung Basal Stem Cells Rapidly Repair DNA Damage Using the Error-Prone Nonhomologous End-Joining Pathway

    PubMed Central

    Weeden, Clare E.; Chen, Yunshun; Ma, Stephen B.; Hu, Yifang; Ramm, Georg; Sutherland, Kate D.; Smyth, Gordon K.

    2017-01-01

    Lung squamous cell carcinoma (SqCC), the second most common subtype of lung cancer, is strongly associated with tobacco smoking and exhibits genomic instability. The cellular origins and molecular processes that contribute to SqCC formation are largely unexplored. Here we show that human basal stem cells (BSCs) isolated from heavy smokers proliferate extensively, whereas their alveolar progenitor cell counterparts have limited colony-forming capacity. We demonstrate that this difference arises in part because of the ability of BSCs to repair their DNA more efficiently than alveolar cells following ionizing radiation or chemical-induced DNA damage. Analysis of mice harbouring a mutation in the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a key enzyme in DNA damage repair by nonhomologous end joining (NHEJ), indicated that BSCs preferentially repair their DNA by this error-prone process. Interestingly, polyploidy, a phenomenon associated with genetically unstable cells, was only observed in the human BSC subset. Expression signature analysis indicated that BSCs are the likely cells of origin of human SqCC and that high levels of NHEJ genes in SqCC are correlated with increasing genomic instability. Hence, our results favour a model in which heavy smoking promotes proliferation of BSCs, and their predilection for error-prone NHEJ could lead to the high mutagenic burden that culminates in SqCC. Targeting DNA repair processes may therefore have a role in the prevention and therapy of SqCC. PMID:28125611

  19. Molecular mechanisms by which oxidative DNA damage promotes telomerase activity.

    PubMed

    Lee, Hui-Ting; Bose, Arindam; Lee, Chun-Ying; Opresko, Patricia L; Myong, Sua

    2017-11-16

    Telomeres are highly susceptible to oxidative DNA damage, which if left unrepaired can lead to dysregulation of telomere length homeostasis. Here we employed single molecule FRET, single molecule pull-down and biochemical analysis to investigate how the most common oxidative DNA lesions, 8-oxoguanine (8oxoG) and thymine glycol (Tg), regulate the structural properties of telomeric DNA and telomerase extension activity. In contrast to 8oxoG which disrupts the telomeric DNA structure, Tg exhibits substantially reduced perturbation of G-quadruplex folding. As a result, 8oxoG induces high accessibility, whereas Tg retains limited accessibility, of telomeric G-quadruplex DNA to complementary single stranded DNA and to telomere binding protein POT1. Surprisingly, the Tg lesion stimulates telomerase loading and activity to a similar degree as an 8oxoG lesion. We demonstrate that this unexpected stimulation arises from Tg-induced conformational alterations and dynamics in telomeric DNA. Despite impacting structure by different mechanisms, both 8oxoG and Tg enhance telomerase binding and extension activity to the same degree, potentially contributing to oncogenesis. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Environmental polycyclic aromatic hydrocarbon (PAH) exposure and DNA damage in Mexican children.

    PubMed

    Sánchez-Guerra, Marco; Pelallo-Martínez, Nadia; Díaz-Barriga, Fernando; Rothenberg, Stephen J; Hernández-Cadena, Leticia; Faugeron, Sylvain; Oropeza-Hernández, Luis F; Guaderrama-Díaz, Margarita; Quintanilla-Vega, Betzabet

    2012-02-18

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants presenting a public health risk, particularly to children, a vulnerable population. PAHs have genotoxic and carcinogenic properties, which depend on their metabolism. Many enzymes involved in PAH metabolism, including CYP1A1, CYP1B1, GSTM and GSTT are polymorphic, which may modulate the activation/deactivation of these compounds. We evaluated PAH exposure and DNA damage in children living in the vicinity of the main petrochemical complex located in the Gulf of Mexico, and explored the modulation by genetic polymorphisms of PAH excretion and related DNA damage. The participants (n=82) were children aged 6-10y attending schools near the industrial area. Urinary 1-hydroxypyrene (1-OHP; a biomarker of PAH exposure) was determined by reverse-phase-HPLC; DNA damage by the comet assay (Olive Tail Moment (OTM) parameter); CYP1A1*2C and CYP1B1*3 polymorphisms by real time-PCR; and GSTM1*0 and GSTT1*0 by multiplex PCR. The median value of 1-OHP was 0.37μmol/mol creatinine; 59% of children had higher 1-OHP concentrations than those reported in environmentally exposed adults (0.24μmol/mol creatinine). A stratified analysis showed increased DNA damage in children with 1-OHP concentrations greater than the median value. We observed higher 1-OHP concentrations in children with CYP1A1*2C or GSTM1*0 polymorphisms, and a positive influence of CYP1A1*2C on OTM values in children with the highest PAH exposure. The data indicate that children living in the surroundings of petrochemical industrial areas are exposed to high PAH levels, contributing to DNA damage and suggesting an increased health risk; furthermore, data suggest that polymorphisms affecting activation enzymes may modulate PAH metabolism and toxicity. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Protection against oxidative DNA damage and stress in human prostate by glutathione S-transferase P1

    PubMed Central

    Kanwal, Rajnee; Pandey, Mitali; Bhaskaran, Natarajan; MacLennan, Gregory T; Fu, Pingfu; Ponsky, Lee E; Gupta, Sanjay

    2014-01-01

    The pi-class glutathione S-transferase (GSTP1) actively protect cells from carcinogens and electrophilic compounds. Loss of GSTP1 expression via promoter hypermethylation is the most common epigenetic alteration observed in human prostate cancer. Silencing of GSTP1 can increase generation of reactive oxygen species (ROS) and DNA damage in cells. In this study we investigated whether loss of GSTP1 contributes to increased DNA damage that may predispose men to a higher risk of prostate cancer. We found significantly elevated (103%; P<0.0001) levels of 8-oxo-2′-deoxogunosine (8-OHdG), an oxidative DNA damage marker, in adenocarcinomas, compared to benign counterparts, which positively correlated (r=0.2) with loss of GSTP1 activity (34%; P<0.0001). Silencing of GSTP1 using siRNA approach in normal human prostate epithelial RWPE1 cells caused increased intracellular production of ROS and higher susceptibility of cells to H2O2-mediated oxidative stress. Additionally, human prostate carcinoma LNCaP cells, which contain a silenced GSTP1 gene, were genetically modified to constitutively express high levels of GSTP1. Induction of GSTP1 activity lowered endogenous ROS levels in LNCaP-pLPCX-GSTP1 cells, and when exposed to H2O2, these cells exhibited significantly reduced production of ROS and 8-OHdG levels, compared to vector control LNCaP-pLPCX cells. Furthermore, exposure of LNCaP cells to green tea polyphenols caused re-expression of GSTP1, which protected the cells from H2O2-mediated DNA damage through decreased ROS production compared to non-exposed cells. These results suggest that loss of GSTP1 expression in human prostate cells, a process that increases their susceptibility to oxidative stress-induced DNA damage, may be an important target for primary prevention of prostate cancer. PMID:22833520

  2. ATM Is Required for the Prolactin-Induced HSP90-Mediated Increase in Cellular Viability and Clonogenic Growth After DNA Damage.

    PubMed

    Karayazi Atici, Ödül; Urbanska, Anna; Gopinathan, Sesha Gopal; Boutillon, Florence; Goffin, Vincent; Shemanko, Carrie S

    2018-02-01

    Prolactin (PRL) acts as a survival factor for breast cancer cells, but the PRL signaling pathway and the mechanism are unknown. Previously, we identified the master chaperone, heat shock protein 90 (HSP90) α, as a prolactin-Janus kinase 2 (JAK2)-signal transducer and activator of transcription 5 (STAT5) target gene involved in survival, and here we investigated the role of HSP90 in the mechanism of PRL-induced viability in response to DNA damage. The ataxia-telangiectasia mutated kinase (ATM) protein plays a critical role in the cellular response to double-strand DNA damage. We observed that PRL increased viability of breast cancer cells treated with doxorubicin or etoposide. The increase in cellular resistance is specific to the PRL receptor, because the PRL receptor antagonist, Δ1-9-G129R-hPRL, prevented the increase in viability. Two different HSP90 inhibitors, 17-allylamino-17-demethoxygeldanamycin and BIIB021, reduced the PRL-mediated increase in cell viability of doxorubicin-treated cells and led to a decrease in JAK2, ATM, and phosphorylated ATM protein levels. Inhibitors of JAK2 (G6) and ATM (KU55933) abolished the PRL-mediated increase in cell viability of DNA-damaged cells, supporting the involvement of each, as well as the crosstalk of ATM with the PRL pathway in the context of DNA damage. Drug synergism was detected between the ATM inhibitor (KU55933) and doxorubicin and between the HSP90 inhibitor (BIIB021) and doxorubicin. Short interfering RNA directed against ATM prevented the PRL-mediated increase in cell survival in two-dimensional cell culture, three-dimensional collagen gel cultures, and clonogenic cell survival, after doxorubicin treatment. Our results indicate that ATM contributes to the PRL-JAK2-STAT5-HSP90 pathway in mediating cellular resistance to DNA-damaging agents. Copyright © 2018 Endocrine Society.

  3. Genetic polymorphisms in 19q13.3 genes associated with alteration of repair capacity to BPDE-DNA adducts in primary cultured lymphocytes.

    PubMed

    Xiao, Mingyang; Xiao, Sha; Straaten, Tahar van der; Xue, Ping; Zhang, Guopei; Zheng, Xiao; Zhang, Qianye; Cai, Yuan; Jin, Cuihong; Yang, Jinghua; Wu, Shengwen; Zhu, Guolian; Lu, Xiaobo

    2016-12-01

    Benzo[a]pyrene(B[a]P), and its ultimate metabolite Benzo[a]pyrene 7,8-diol 9,10-epoxide (BPDE), are classic DNA damaging carcinogens. DNA damage in cells caused by BPDE is normally repaired by Nucleotide Excision Repair (NER) and Base Excision Repair (BER). Genetic variations in NER and BER can change individual DNA repair capacity to DNA damage induced by BPDE. In the present study we determined the number of in vitro induced BPDE-DNA adducts in lymphocytes, to reflect individual susceptibility to Polycyclic aromatic hydrocarbons (PAHs)-induced carcinogenesis. The BPDE-DNA adduct level in lymphocytes were assessed by high performance liquid chromatography (HPLC) in 281 randomly selected participants. We genotyped for 9 single nucleotide polymorphisms (SNPs) in genes involved in NER (XPB rs4150441, XPC rs2228001, rs2279017 and XPF rs4781560), BER (XRCC1 rs25487, rs25489 and rs1799782) and genes located on chromosome 19q13.2-3 (PPP1R13L rs1005165 and CAST rs967591). We found that 3 polymorphisms in chromosome 19q13.2-3 were associated with lower levels of BPDE-DNA adducts (MinorT allele in XRCC1 rs1799782, minor T allele in PPP1R13L rs1005165 and minor A allele in CAST rs967571). In addition, a modified comet assay was performed to further confirm the above conclusions. We found both minor T allele in PPP1R13L rs1005165 and minor A allele in CAST rs967571 were associated with the lower levels of BPDE-adducts. Our data suggested that the variant genotypes of genes in chromosome 19q13.2-3 are associated with the alteration of repair efficiency to DNA damage caused by Benzo[a]pyrene, and may contribute to enhance predictive value for individual's DNA repair capacity in response to environmental carcinogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. E2F1 interactions with hHR23A inhibit its degradation and promote DNA repair.

    PubMed

    Singh, Randeep K; Dagnino, Lina

    2016-05-03

    Nucleotide excision repair (NER) is a major mechanism for removal of DNA lesions induced by exposure to UV radiation in the epidermis. Recognition of damaged DNA sites is the initial step in their repair, and requires multiprotein complexes that contain XPC and hHR23 proteins, or their orthologues. A variety of transcription factors are also involved in NER, including E2F1. In epidermal keratinocytes, UV exposure induces E2F1 phosphorylation, which allows it to recruit various NER factors to sites of DNA damage. However, the relationship between E2F1 and hHR23 proteins vis-à-vis NER has remained unexplored. We now show that E2F1 and hHR23 proteins can interact, and this interaction stabilizes E2F1, inhibiting its proteasomal degradation. Reciprocally, E2F1 regulates hHR23A subcellular localization, recruiting it to sites of DNA photodamage. As a result, E2F1 and hHR23A enhance DNA repair following exposure to UV radiation, contributing to genomic stability in the epidermis.

  5. Switch on the engine: how the eukaryotic replicative helicase MCM2-7 becomes activated.

    PubMed

    Tognetti, Silvia; Riera, Alberto; Speck, Christian

    2015-03-01

    A crucial step during eukaryotic initiation of DNA replication is the correct loading and activation of the replicative DNA helicase, which ensures that each replication origin fires only once. Unregulated DNA helicase loading and activation, as it occurs in cancer, can cause severe DNA damage and genomic instability. The essential mini-chromosome maintenance proteins 2-7 (MCM2-7) represent the core of the eukaryotic replicative helicase that is loaded at DNA replication origins during G1-phase of the cell cycle. The MCM2-7 helicase activity, however, is only triggered during S-phase once the holo-helicase Cdc45-MCM2-7-GINS (CMG) has been formed. A large number of factors and several kinases interact and contribute to CMG formation and helicase activation, though the exact mechanisms remain unclear. Crucially, upon DNA damage, this reaction is temporarily halted to ensure genome integrity. Here, we review the current understanding of helicase activation; we focus on protein interactions during CMG formation, discuss structural changes during helicase activation, and outline similarities and differences of the prokaryotic and eukaryotic helicase activation process.

  6. Recent Advancements in DNA Damage-Transcription Crosstalk and High-Resolution Mapping of DNA Breaks.

    PubMed

    Vitelli, Valerio; Galbiati, Alessandro; Iannelli, Fabio; Pessina, Fabio; Sharma, Sheetal; d'Adda di Fagagna, Fabrizio

    2017-08-31

    Until recently, DNA damage arising from physiological DNA metabolism was considered a detrimental by-product for cells. However, an increasing amount of evidence has shown that DNA damage could have a positive role in transcription activation. In particular, DNA damage has been detected in transcriptional elements following different stimuli. These physiological DNA breaks are thought to be instrumental for the correct expression of genomic loci through different mechanisms. In this regard, although a plethora of methods are available to precisely map transcribed regions and transcription start sites, commonly used techniques for mapping DNA breaks lack sufficient resolution and sensitivity to draw a robust correlation between DNA damage generation and transcription. Recently, however, several methods have been developed to map DNA damage at single-nucleotide resolution, thus providing a new set of tools to correlate DNA damage and transcription. Here, we review how DNA damage can positively regulate transcription initiation, the current techniques for mapping DNA breaks at high resolution, and how these techniques can benefit future studies of DNA damage and transcription.

  7. Rad51 recombinase prevents Mre11 nuclease-dependent degradation and excessive PrimPol-mediated elongation of nascent DNA after UV irradiation

    PubMed Central

    Vallerga, María Belén; Mansilla, Sabrina F.; Federico, María Belén; Bertolin, Agustina P.; Gottifredi, Vanesa

    2015-01-01

    After UV irradiation, DNA polymerases specialized in translesion DNA synthesis (TLS) aid DNA replication. However, it is unclear whether other mechanisms also facilitate the elongation of UV-damaged DNA. We wondered if Rad51 recombinase (Rad51), a factor that escorts replication forks, aids replication across UV lesions. We found that depletion of Rad51 impairs S-phase progression and increases cell death after UV irradiation. Interestingly, Rad51 and the TLS polymerase polη modulate the elongation of nascent DNA in different ways, suggesting that DNA elongation after UV irradiation does not exclusively rely on TLS events. In particular, Rad51 protects the DNA synthesized immediately before UV irradiation from degradation and avoids excessive elongation of nascent DNA after UV irradiation. In Rad51-depleted samples, the degradation of DNA was limited to the first minutes after UV irradiation and required the exonuclease activity of the double strand break repair nuclease (Mre11). The persistent dysregulation of nascent DNA elongation after Rad51 knockdown required Mre11, but not its exonuclease activity, and PrimPol, a DNA polymerase with primase activity. By showing a crucial contribution of Rad51 to the synthesis of nascent DNA, our results reveal an unanticipated complexity in the regulation of DNA elongation across UV-damaged templates. PMID:26627254

  8. The distribution of DNA damage is defined by region-specific susceptibility to DNA damage formation rather than repair differences.

    PubMed

    Strand, Janne M; Scheffler, Katja; Bjørås, Magnar; Eide, Lars

    2014-06-01

    The cellular genomes are continuously damaged by reactive oxygen species (ROS) from aerobic processes. The impact of DNA damage depends on the specific site as well as the cellular state. The steady-state level of DNA damage is the net result of continuous formation and subsequent repair, but it is unknown to what extent heterogeneous damage distribution is caused by variations in formation or repair of DNA damage. Here, we used a restriction enzyme/qPCR based method to analyze DNA damage in promoter and coding regions of four nuclear genes: the two house-keeping genes Gadph and Tbp, and the Ndufa9 and Ndufs2 genes encoding mitochondrial complex I subunits, as well as mt-Rnr1 encoded by mitochondrial DNA (mtDNA). The distribution of steady-state levels of damage varied in a site-specific manner. Oxidative stress induced damage in nDNA to a similar extent in promoter and coding regions, and more so in mtDNA. The subsequent removal of damage from nDNA was efficient and comparable with recovery times depending on the initial damage load, while repair of mtDNA was delayed with subsequently slower repair rate. The repair was furthermore found to be independent of transcription or the transcription-coupled repair factor CSB, but dependent on cellular ATP. Our results demonstrate that the capacity to repair DNA is sufficient to remove exogenously induced damage. Thus, we conclude that the heterogeneous steady-state level of DNA damage in promoters and coding regions is caused by site-specific DNA damage/modifications that take place under normal metabolism. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Radiation damage to macromolecules: kill or cure?

    PubMed

    Garman, Elspeth F; Weik, Martin

    2015-03-01

    Radiation damage induced by X-ray beams during macromolecular diffraction experiments remains an issue of concern in structural biology. While advances in our understanding of this phenomenon, driven in part by a series of workshops in this area, undoubtedly have been and are still being made, there are still questions to be answered. Eight papers in this volume give a flavour of ongoing investigations, addressing various issues. These range over: a proposed new metric derived from atomic B-factors for identifying potentially damaged amino acid residues, a study of the relative damage susceptibility of protein and DNA in a DNA/protein complex, a report of an indication of specific radiation damage to a protein determined from data collected using an X-ray free-electron laser (FEL), an account of the challenges in FEL raw diffraction data analysis, an exploration of the possibilities of using radiation damage induced phasing to solve structures using FELs, simulations of radiation damage as a function of FEL temporal pulse profiles, results on the influence of radiation damage during scanning X-ray diffraction measurements and, lastly, consideration of strategies for minimizing radiation damage during SAXS experiments. In this short introduction, these contributions are briefly placed in the context of other current work on radiation damage in the field.

  10. Protein Interactions in T7 DNA Replisome Facilitate DNA Damage Bypass.

    PubMed

    Zou, Zhenyu; Chen, Ze; Xue, Qizhen; Xu, Ying; Xiong, Jingyuan; Yang, Ping; Le, Shuai; Zhang, Huidong

    2018-06-14

    DNA replisome inevitably encounters DNA damage during DNA replication. T7 DNA replisome contains DNA polymerase (gp5), the processivity factor thioredoxin (trx), helicase-primase (gp4), and ssDNA binding protein (gp2.5). T7 protein interactions mediate this DNA replication. However, whether the protein interactions could promote DNA damage bypass is still little addressed. In this study, we investigated the strand-displacement DNA synthesis past 8-oxoG or O6-MeG at the synthetic DNA fork by T7 DNA replisome. DNA damage does not obviously affect the binding affinities among helicase, polymerase, and DNA fork. Relative to unmodified G, both 8-oxoG and O6-MeG, as well as GC-rich template sequence clusters, inhibit the strand-displacement DNA synthesis and produce partial extension products. Relative to gp4 ΔC-tail, gp4 promotes the DNA damage bypass. The presence of gp2.5 further promotes this bypass. Thus, the interactions of polymerase with helicase and ssDNA binidng protein faciliate the DNA damage bypass. Similarly, accessory proteins in other complicated DNA replisomes also facilitate the DNA damage bypass. This work provides the novel mechanism information of DNA damage bypass by DNA replisome. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Functions of Fun30 Chromatin Remodeler in Regulating Cellular Resistance to Genotoxic Stress

    PubMed Central

    Bi, Xin; Yu, Qun; Siler, Jasmine; Li, Chong; Khan, Ali

    2015-01-01

    The Saccharomyces cerevisiae Fun30 chromatin remodeler has recently been shown to facilitate long-range resection of DNA double strand break (DSB) ends, which proceeds homologous recombination (HR). This is believed to underlie the role of Fun30 in promoting cellular resistance to DSB inducing agent camptothecin. We show here that Fun30 also contributes to cellular resistance to genotoxins methyl methanesulfonate (MMS) and hydroxyurea (HU) that can stall the progression of DNA replication. We present evidence implicating DNA end resection in Fun30-dependent MMS-resistance. On the other hand, we show that Fun30 deletion suppresses the MMS- and HU-sensitivity of cells lacking the Rad5/Mms2/Ubc13-dependent error-free DNA damage tolerance mechanism. This suppression is not the result of a reduction in DNA end resection, and is dependent on the key HR component Rad51. We further show that Fun30 negatively regulates the recovery of rad5Δ mutant from MMS induced G2/M arrest. Therefore, Fun30 has two functions in DNA damage repair: one is the promotion of cellular resistance to genotoxic stress by aiding in DNA end resection, and the other is the negative regulation of a Rad51-dependent, DNA end resection-independent mechanism for countering replicative stress. The latter becomes manifest when Rad5 dependent DNA damage tolerance is impaired. In addition, we find that the putative ubiquitin-binding CUE domain of Fun30 serves to restrict the ability of Fun30 to hinder MMS- and HU-tolerance in the absence of Rad5. PMID:25806814

  12. Mitochondria regulate DNA damage and genomic instability induced by high LET radiation

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Davidson, Mercy M.; Hei, Tom K.

    2014-04-01

    High linear energy transfer (LET) radiation including α particles and heavy ions is the major type of radiation found in space and is considered a potential health risk for astronauts. Even though the chance that these high LET particles traversing through the cytoplasm of cells is higher than that through the nuclei, the contribution of targeted cytoplasmic irradiation to the induction of genomic instability and other chromosomal damages induced by high LET radiation is not known. In the present study, we investigated whether mitochondria are the potential cytoplasmic target of high LET radiation in mediating cellular damage using a mitochondrial DNA (mtDNA) depleted (ρ0) human small airway epithelial (SAE) cell model and a precision charged particle microbeam with a beam width of merely one micron. Targeted cytoplasmic irradiation by high LET α particles induced DNA oxidative damage and double strand breaks in wild type ρ+ SAE cells. Furthermore, there was a significant increase in autophagy and micronuclei, which is an indication of genomic instability, together with the activation of nuclear factor kappa-B (NF-κB) and mitochondrial inducible nitric oxide synthase (iNOS) signaling pathways in ρ+ SAE cells. In contrast, ρ0 SAE cells exhibited a significantly lower response to these same endpoints examined after cytoplasmic irradiation with high LET α particles. The results indicate that mitochondria are essential in mediating cytoplasmic radiation induced genotoxic damage in mammalian cells. Furthermore, the findings may shed some light in the design of countermeasures for space radiation.

  13. In vitro Cytotoxicity and Genotoxicity Analysis of Ten Tannery Chemicals Using SOS/umu Tests and High-content In vitro Micronucleus Tests.

    PubMed

    Huang, Zehao; Li, Na; Rao, Kaifeng; Liu, Cuiting; Wang, Zijian; Ma, Mei

    2018-01-01

    More than 2,000 chemicals have been used in the tannery industry. Although some tannery chemicals have been reported to have harmful effects on both human health and the environment, only a few have been subjected to genotoxicity and cytotoxicity evaluations. This study focused on cytotoxicity and genotoxicity of ten tannery chemicals widely used in China. DNA-damaging effects were measured using the SOS/umu test with Salmonella typhimurium TA1535/pSK1002. Chromosome-damaging and cytotoxic effects were determined with the high-content in vitro Micronucleus test (MN test) using the human-derived cell lines MGC-803 and A549. The cytotoxicity of the ten tannery chemicals differed somewhat between the two cell assays, with A549 cells being more sensitive than MGC-803 cells. None of the chemicals induced DNA damage before metabolism, but one was found to have DNA-damaging effects on metabolism. Four of the chemicals, DY64, SB1, DB71 and RR120, were found to have chromosome-damaging effects. A Quantitative Structure-Activity Relationship (QSAR) analysis indicated that one structural feature favouring chemical genotoxicity, Hacceptor-path3-Hacceptor, may contribute to the chromosome-damaging effects of the four MN-test-positive chemicals. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Repair of Oxidative DNA Damage in Saccharomyces cerevisiae.

    PubMed

    Chalissery, Jisha; Jalal, Deena; Al-Natour, Zeina; Hassan, Ahmed H

    2017-03-01

    Malfunction of enzymes that detoxify reactive oxygen species leads to oxidative attack on biomolecules including DNA and consequently activates various DNA repair pathways. The nature of DNA damage and the cell cycle stage at which DNA damage occurs determine the appropriate repair pathway to rectify the damage. Oxidized DNA bases are primarily repaired by base excision repair and nucleotide incision repair. Nucleotide excision repair acts on lesions that distort DNA helix, mismatch repair on mispaired bases, and homologous recombination and non-homologous end joining on double stranded breaks. Post-replication repair that overcomes replication blocks caused by DNA damage also plays a crucial role in protecting the cell from the deleterious effects of oxidative DNA damage. Mitochondrial DNA is also prone to oxidative damage and is efficiently repaired by the cellular DNA repair machinery. In this review, we discuss the DNA repair pathways in relation to the nature of oxidative DNA damage in Saccharomyces cerevisiae. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Impaired mitochondrial Fe-S cluster biogenesis activates the DNA damage response through different signaling mediators.

    PubMed

    Pijuan, Jordi; María, Carlos; Herrero, Enrique; Bellí, Gemma

    2015-12-15

    Fe-S cluster biogenesis machinery is required for multiple DNA metabolism processes. In this work, we show that, in Saccharomyces cerevisiae, defects at different stages of the mitochondrial Fe-S cluster assembly machinery (ISC) result in increased spontaneous mutation rate and hyper-recombination, accompanied by an increment in Rad52-associated DNA repair foci and a higher phosphorylated state of γH2A histone, altogether supporting the presence of constitutive DNA lesions. Furthermore, ISC assembly machinery deficiency elicits a DNA damage response that upregulates ribonucleotide reductase activity by promoting the reduction of Sml1 levels and the cytosolic redistribution of Rnr2 and Rnr4 enzyme subunits. Depending on the impaired stage of the ISC machinery, different signaling pathway mediators contribute to such a response, converging on Dun1. Thus, cells lacking the glutaredoxin Grx5, which are compromised at the core ISC system, show Mec1- and Rad53-independent Dun1 activation, whereas both Mec1 and Chk1 are required when the non-core ISC member Iba57 is absent. Grx5-null cells exhibit a strong dependence on the error-free post-replication repair and the homologous recombination pathways, demonstrating that a DNA damage response needs to be activated upon ISC impairment to preserve cell viability. © 2015. Published by The Company of Biologists Ltd.

  16. Modulation of proteostasis counteracts oxidative stress and affects DNA base excision repair capacity in ATM-deficient cells.

    PubMed

    Poletto, Mattia; Yang, Di; Fletcher, Sally C; Vendrell, Iolanda; Fischer, Roman; Legrand, Arnaud J; Dianov, Grigory L

    2017-09-29

    Ataxia telangiectasia (A-T) is a syndrome associated with loss of ATM protein function. Neurodegeneration and cancer predisposition, both hallmarks of A-T, are likely to emerge as a consequence of the persistent oxidative stress and DNA damage observed in this disease. Surprisingly however, despite these severe features, a lack of functional ATM is still compatible with early life, suggesting that adaptation mechanisms contributing to cell survival must be in place. Here we address this gap in our knowledge by analysing the process of human fibroblast adaptation to the lack of ATM. We identify profound rearrangement in cellular proteostasis occurring very early on after loss of ATM in order to counter protein damage originating from oxidative stress. Change in proteostasis, however, is not without repercussions. Modulating protein turnover in ATM-depleted cells also has an adverse effect on the DNA base excision repair pathway, the major DNA repair system that deals with oxidative DNA damage. As a consequence, the burden of unrepaired endogenous DNA lesions intensifies, progressively leading to genomic instability. Our study provides a glimpse at the cellular consequences of loss of ATM and highlights a previously overlooked role for proteostasis in maintaining cell survival in the absence of ATM function. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Unraveling Fungal Radiation Resistance Regulatory Networks through the Genome-Wide Transcriptome and Genetic Analyses of Cryptococcus neoformans.

    PubMed

    Jung, Kwang-Woo; Yang, Dong-Hoon; Kim, Min-Kyu; Seo, Ho Seong; Lim, Sangyong; Bahn, Yong-Sun

    2016-11-29

    The basidiomycetous fungus Cryptococcus neoformans has been known to be highly radiation resistant and has been found in fatal radioactive environments such as the damaged nuclear reactor at Chernobyl. To elucidate the mechanisms underlying the radiation resistance phenotype of C. neoformans, we identified genes affected by gamma radiation through genome-wide transcriptome analysis and characterized their functions. We found that genes involved in DNA damage repair systems were upregulated in response to gamma radiation. Particularly, deletion of recombinase RAD51 and two DNA-dependent ATPase genes, RAD54 and RDH54, increased cellular susceptibility to both gamma radiation and DNA-damaging agents. A variety of oxidative stress response genes were also upregulated. Among them, sulfiredoxin contributed to gamma radiation resistance in a peroxiredoxin/thioredoxin-independent manner. Furthermore, we found that genes involved in molecular chaperone expression, ubiquitination systems, and autophagy were induced, whereas genes involved in the biosynthesis of proteins and fatty acids/sterols were downregulated. Most importantly, we discovered a number of novel C. neoformans genes, the expression of which was modulated by gamma radiation exposure, and their deletion rendered cells susceptible to gamma radiation exposure, as well as DNA damage insults. Among these genes, we found that a unique transcription factor containing the basic leucine zipper domain, named Bdr1, served as a regulator of the gamma radiation resistance of C. neoformans by controlling expression of DNA repair genes, and its expression was regulated by the evolutionarily conserved DNA damage response protein kinase Rad53. Taken together, the current transcriptome and functional analyses contribute to the understanding of the unique molecular mechanism of the radiation-resistant fungus C. neoformans IMPORTANCE: Although there are no natural environments under intense radiation, some living organisms have been found to show high radiation resistance. Organisms harboring the ability of radiation resistance have unique regulatory networks to overcome this stress. Cryptococcus neoformans is one of the radiation-resistant fungi and is found in highly radioactive environments. However, it remains elusive how radiation-resistant eukaryotic microorganisms work differentially from radiation-sensitive ones. Here, we performed transcriptome analysis of C. neoformans to explore gene expression profiles after gamma radiation exposure and functionally characterized some of identified radiation resistance genes. Notably, we identified a novel regulator of radiation resistance, named Bdr1 (a bZIP TF for DNA damage response 1), which is a transcription factor (TF) that is not closely homologous to any known TF and is transcriptionally controlled by the Rad53 kinase. Therefore, our work could shed light on understanding not only the radiation response but also the radiation resistance mechanism of C. neoformans. Copyright © 2016 Jung et al.

  18. Damage to cellular DNA from particulate radiations, the efficacy of its processing and the radiosensitivity of mammalian cells. Emphasis on DNA double strand breaks and chromatin breaks

    NASA Technical Reports Server (NTRS)

    Lett, J. T.

    1992-01-01

    For several years, it has been evident that cellular radiation biology is in a necessary period of consolidation and transition (Lett 1987, 1990; Lett et al. 1986, 1987). Both changes are moving apace, and have been stimulated by studies with heavy charged particles. From the standpoint of radiation chemistry, there is now a consensus of opinion that the DNA hydration shell must be distinguished from bulk water in the cell nucleus and treated as an integral part of DNA (chromatin) (Lett 1987). Concomitantly, sentiment is strengthening for the abandonment of the classical notions of "direct" and "indirect" action (Fielden and O'Neill 1991; O'Neill 1991; O'Neill et al. 1991; Schulte-Frohlinde and Bothe 1991 and references therein). A layer of water molecules outside, or in the outer edge of, the DNA (chromatin) hydration shell influences cellular radiosensitivity in ways not fully understood. Charge and energy transfer processes facilitated by, or involving, DNA hydration must be considered in rigorous theories of radiation action on cells. The induction and processing of double stand breaks (DSBs) in DNA (chromatin) seem to be the predominant determinants of the radiotoxicity of normally radioresistant mammalian cells, the survival curves of which reflect the patterns of damage induced and the damage present after processing ceases, and can be modelled in formal terms by the use of reaction (enzyme) kinetics. Incongruities such as sublethal damage are neither scientifically sound nor relevant to cellular radiation biology (Calkins 1991; Lett 1990; Lett et al. 1987a). Increases in linear energy transfer (LET infinity) up to 100-200 keV micron-1 cause increases in the extents of neighboring chemical and physical damage in DNA denoted by the general term DSB. Those changes are accompanied by decreasing abilities of cells normally radioresistant to sparsely ionizing radiations to process DSBs in DNA and chromatin and to recover from radiation exposure, so they make significant contributions to the relative biological effectiveness (RBE) of a given radiation.(ABSTRACT TRUNCATED AT 400 WORDS).

  19. Epigenetic regulation of hematopoietic stem cell aging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beerman, Isabel, E-mail: isabel.beerman@childrens.harvard.edu; Department of Pediatrics, Harvard Medical School, Boston, MA 02115; Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, MA 02116

    2014-12-10

    Aging is invariably associated with alterations of the hematopoietic stem cell (HSC) compartment, including loss of functional capacity, altered clonal composition, and changes in lineage contribution. Although accumulation of DNA damage occurs during HSC aging, it is unlikely such consistent aging phenotypes could be solely attributed to changes in DNA integrity. Another mechanism by which heritable traits could contribute to the changes in the functional potential of aged HSCs is through alterations in the epigenetic landscape of adult stem cells. Indeed, recent studies on hematopoietic stem cells have suggested that altered epigenetic profiles are associated with HSC aging and playmore » a key role in modulating the functional potential of HSCs at different stages during ontogeny. Even small changes of the epigenetic landscape can lead to robustly altered expression patterns, either directly by loss of regulatory control or through indirect, additive effects, ultimately leading to transcriptional changes of the stem cells. Potential drivers of such changes in the epigenetic landscape of aged HSCs include proliferative history, DNA damage, and deregulation of key epigenetic enzymes and complexes. This review will focus largely on the two most characterized epigenetic marks – DNA methylation and histone modifications – but will also discuss the potential role of non-coding RNAs in regulating HSC function during aging.« less

  20. Entropy in DNA Double-Strand Break, Detection and Signaling

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Schindler, Christina; Heermann, Dieter

    2014-03-01

    In biology, the term entropy is often understood as a measure of disorder - a restrictive interpretation that can even be misleading. Recently it has become clearer and clearer that entropy, contrary to conventional wisdom, can help to order and guide biological processes in living cells. DNA double-strand breaks (DSBs) are among the most dangerous lesions and efficient damage detection and repair is essential for organism viability. However, what remains unknown is the precise mechanism of targeting the site of damage within billions of intact nucleotides and a crowded nuclear environment, a process which is often referred to as recruitment or signaling. Here we show that the change in entropy associated with inflicting a DSB facilitates the recruitment of damage sensor proteins. By means of computational modeling we found that higher mobility and local chromatin structure accelerate protein association at DSB ends. We compared the effect of different chromatin architectures on protein dynamics and concentrations in the vicinity of DSBs, and related these results to experiments on repair in heterochromatin. Our results demonstrate how entropy contributes to a more efficient damage detection. We identify entropy as the physical basis for DNA double-strand break signaling.

  1. Maintenance of cellular ATP level by caloric restriction correlates chronological survival of budding yeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Joon-Seok; Lee, Cheol-Koo, E-mail: cklee2005@korea.ac.kr

    Highlights: •CR decreases total ROS and mitochondrial superoxide during the chronological aging. •CR does not affect the levels of oxidative damage on protein and DNA. •CR contributes extension of chronological lifespan by maintenance of ATP level -- Abstract: The free radical theory of aging emphasizes cumulative oxidative damage in the genome and intracellular proteins due to reactive oxygen species (ROS), which is a major cause for aging. Caloric restriction (CR) has been known as a representative treatment that prevents aging; however, its mechanism of action remains elusive. Here, we show that CR extends the chronological lifespan (CLS) of budding yeastmore » by maintaining cellular energy levels. CR reduced the generation of total ROS and mitochondrial superoxide; however, CR did not reduce the oxidative damage in proteins and DNA. Subsequently, calorie-restricted yeast had higher mitochondrial membrane potential (MMP), and it sustained consistent ATP levels during the process of chronological aging. Our results suggest that CR extends the survival of the chronologically aged cells by improving the efficiency of energy metabolism for the maintenance of the ATP level rather than reducing the global oxidative damage of proteins and DNA.« less

  2. Identification of conserved pathways of DNA-damage response and radiation protection by genome-wide RNAi.

    PubMed

    van Haaften, Gijs; Romeijn, Ron; Pothof, Joris; Koole, Wouter; Mullenders, Leon H F; Pastink, Albert; Plasterk, Ronald H A; Tijsterman, Marcel

    2006-07-11

    Ionizing radiation is extremely harmful for human cells, and DNA double-strand breaks (DSBs) are considered to be the main cytotoxic lesions induced. Improper processing of DSBs contributes to tumorigenesis, and mutations in DSB response genes underlie several inherited disorders characterized by cancer predisposition. Here, we performed a comprehensive screen for genes that protect animal cells against ionizing radiation. A total of 45 C. elegans genes were identified in a genome-wide RNA interference screen for increased sensitivity to ionizing radiation in germ cells. These genes include orthologs of well-known human cancer predisposition genes as well as novel genes, including human disease genes not previously linked to defective DNA-damage responses. Knockdown of eleven genes also impaired radiation-induced cell-cycle arrest, and seven genes were essential for apoptosis upon exposure to irradiation. The gene set was further clustered on the basis of increased sensitivity to DNA-damaging cancer drugs cisplatin and camptothecin. Almost all genes are conserved across animal phylogeny, and their relevance for humans was directly demonstrated by showing that their knockdown in human cells results in radiation sensitivity, indicating that this set of genes is important for future cancer profiling and drug development.

  3. Interplay between DNA repair and inflammation, and the link to cancer

    PubMed Central

    Kidane, Dawit; Chae, Wook Jin; Czochor, Jennifer; Eckert, Kristin A.; Glazer, Peter M.; Bothwell, Alfred L. M.; Sweasy, Joann B.

    2015-01-01

    DNA damage and repair are linked to cancer. DNA damage that is induced endogenously or from exogenous sources has the potential to result in mutations and genomic instability if not properly repaired, eventually leading to cancer. Inflammation is also linked to cancer. Reactive oxygen and nitrogen species (RONs) produced by inflammatory cells at sites of infection can induce DNA damage. RONs can also amplify inflammatory responses, leading to increased DNA damage. Here, we focus on the links between DNA damage, repair, and inflammation, as they relate to cancer. We examine the interplay between chronic inflammation, DNA damage and repair and review recent findings in this rapidly emerging field, including the links between DNA damage and the innate immune system, and the roles of inflammation in altering the microbiome, which subsequently leads to the induction of DNA damage in the colon. Mouse models of defective DNA repair and inflammatory control are extensively reviewed, including treatment of mouse models with pathogens, which leads to DNA damage. The roles of microRNAs in regulating inflammation and DNA repair are discussed. Importantly, DNA repair and inflammation are linked in many important ways, and in some cases balance each other to maintain homeostasis. The failure to repair DNA damage or to control inflammatory responses has the potential to lead to cancer. PMID:24410153

  4. Mitochondrial DNA damage is associated with damage accrual and disease duration in patients with Systemic Lupus Erythematosus

    PubMed Central

    López-López, Linnette; Nieves-Plaza, Mariely; Castro, María del R.; Font, Yvonne M.; Torres-Ramos, Carlos; Vilá, Luis M.; Ayala-Peña, Sylvette

    2014-01-01

    Objective To determine the extent of mitochondrial DNA (mtDNA) damage in systemic lupus erythematosus (SLE) patients compared to healthy subjects and to determine the factors associated with mtDNA damage among SLE patients. Methods A cross-sectional study was performed in 86 SLE patients (per American College of Rheumatology classification criteria) and 86 healthy individuals matched for age and gender. Peripheral blood mononuclear cells (PBMCs) were collected from subjects to assess the relative amounts of mtDNA damage. Quantitative polymerase chain reaction assay was used to measure the frequency of mtDNA lesions and mtDNA abundance. Socioeconomic-demographic features, clinical manifestations, pharmacologic treatment, disease activity, and damage accrual were determined. Statistical analyses were performed using t test, pairwise correlation, and Pearson’s chi-square test (or Fisher’s exact test) as appropriate. Results Among SLE patients, 93.0% were women. The mean (SD) age was 38.0 (10.4) years and the mean (SD) disease duration was 8.7 (7.5) years. SLE patients exhibited increased levels of mtDNA damage as shown by higher levels of mtDNA lesions and decreased mtDNA abundance as compared to healthy individuals. There was a negative correlation between disease damage and mtDNA abundance and a positive correlation between mtDNA lesions and disease duration. No association was found between disease activity and mtDNA damage. Conclusion PBMCs from SLE patients exhibited more mtDNA damage compared to healthy subjects. Higher levels of mtDNA damage were observed among SLE patients with major organ involvement and damage accrual. These results suggest that mtDNA damage have a potential role in the pathogenesis of SLE. PMID:24899636

  5. Mitochondrial DNA damage is associated with damage accrual and disease duration in patients with systemic lupus erythematosus.

    PubMed

    López-López, L; Nieves-Plaza, M; Castro, M del R; Font, Y M; Torres-Ramos, C A; Vilá, L M; Ayala-Peña, S

    2014-10-01

    To determine the extent of mitochondrial DNA (mtDNA) damage in systemic lupus erythematosus (SLE) patients compared to healthy subjects and to determine the factors associated with mtDNA damage among SLE patients. A cross-sectional study was performed in 86 SLE patients (per American College of Rheumatology classification criteria) and 86 healthy individuals matched for age and gender. Peripheral blood mononuclear cells (PBMCs) were collected from subjects to assess the relative amounts of mtDNA damage. Quantitative polymerase chain reaction assay was used to measure the frequency of mtDNA lesions and mtDNA abundance. Socioeconomic-demographic features, clinical manifestations, pharmacologic treatment, disease activity, and damage accrual were determined. Statistical analyses were performed using t test, pairwise correlation, and Pearson's chi-square test (or Fisher's exact test) as appropriate. Among SLE patients, 93.0% were women. The mean (SD) age was 38.0 (10.4) years and the mean (SD) disease duration was 8.7 (7.5) years. SLE patients exhibited increased levels of mtDNA damage as shown by higher levels of mtDNA lesions and decreased mtDNA abundance as compared to healthy individuals. There was a negative correlation between disease damage and mtDNA abundance and a positive correlation between mtDNA lesions and disease duration. No association was found between disease activity and mtDNA damage. PBMCs from SLE patients exhibited more mtDNA damage compared to healthy subjects. Higher levels of mtDNA damage were observed among SLE patients with major organ involvement and damage accrual. These results suggest that mtDNA damage have a potential role in the pathogenesis of SLE. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  6. RING finger and WD repeat domain 3 (RFWD3) associates with replication protein A (RPA) and facilitates RPA-mediated DNA damage response.

    PubMed

    Liu, Shangfeng; Chu, Jessica; Yucer, Nur; Leng, Mei; Wang, Shih-Ya; Chen, Benjamin P C; Hittelman, Walter N; Wang, Yi

    2011-06-24

    DNA damage response is crucial for maintaining genomic integrity and preventing cancer by coordinating the activation of checkpoints and the repair of damaged DNA. Central to DNA damage response are the two checkpoint kinases ATM and ATR that phosphorylate a wide range of substrates. RING finger and WD repeat domain 3 (RFWD3) was initially identified as a substrate of ATM/ATR from a proteomic screen. Subsequent studies showed that RFWD3 is an E3 ubiquitin ligase that ubiquitinates p53 in vitro and positively regulates p53 levels in response to DNA damage. We report here that RFWD3 associates with replication protein A (RPA), a single-stranded DNA-binding protein that plays essential roles in DNA replication, recombination, and repair. Binding of RPA to single-stranded DNA (ssDNA), which is generated by DNA damage and repair, is essential for the recruitment of DNA repair factors to damaged sites and the activation of checkpoint signaling. We show that RFWD3 is physically associated with RPA and rapidly localizes to sites of DNA damage in a RPA-dependent manner. In vitro experiments suggest that the C terminus of RFWD3, which encompass the coiled-coil domain and the WD40 domain, is necessary for binding to RPA. Furthermore, DNA damage-induced phosphorylation of RPA and RFWD3 is dependent upon each other. Consequently, loss of RFWD3 results in the persistent foci of DNA damage marker γH2AX and the repair protein Rad51 in damaged cells. These findings suggest that RFWD3 is recruited to sites of DNA damage and facilitates RPA-mediated DNA damage signaling and repair.

  7. Types and Consequences of DNA Damage

    EPA Science Inventory

    This review provides a concise overview of the types of DNA damage and the molecular mechanisms by which a cell senses DNA damage, repairs the damage, converts the damage into a mutation, or dies as a consequence of unrepaired DNA damage. Such information is important in consid...

  8. RNF168 forms a functional complex with RAD6 during the DNA damage response

    PubMed Central

    Liu, Chao; Wang, Degui; Wu, Jiaxue; Keller, Jennifer; Ma, Teng; Yu, Xiaochun

    2013-01-01

    Summary Protein ubiquitination plays an important role in initiating the DNA damage response. Following DNA damage, E2 ubiquitin conjugating enzymes are crucial for catalyzing substrate ubiquitination that recruits downstream DNA repair factors to DNA lesions. To identify novel E2 conjugating enzymes important for initiating the DNA-damage-induced ubiquitination cascade, we screened most of the known E2 enzymes and found that RAD6A and RAD6B function together with RNF168 in the ionizing radiation (IR)-induced DNA damage response. Similarly to RNF168-deficient cells, RAD6A- or RAD6B-deficient cells exhibit a reduction in DNA-damage-induced protein ubiquitination. Correspondingly, DNA-damage-induced foci formation of DNA damage repair proteins, such as BRCA1 and 53BP1, is impaired in the absence of RAD6A or RAD6B. Moreover, the RNF168–RAD6 complex targeted histone H1.2 for ubiquitination in vitro and regulated DNA-damage-induced histone H1.2 ubiquitination in vivo. Collectively, these data demonstrate that RNF168, in complex with RAD6A or RAD6B, is activated in the DNA-damage-induced protein ubiquitination cascade. PMID:23525009

  9. TERT regulates telomere-related senescence and apoptosis through DNA damage response in male germ cells exposed to BPDE in vitro and to B[a]P in vivo.

    PubMed

    Ling, Xi; Yang, Wang; Zou, Peng; Zhang, Guowei; Wang, Zhi; Zhang, Xi; Chen, Hongqiang; Peng, Kaige; Han, Fei; Liu, Jinyi; Cao, Jia; Ao, Lin

    2018-04-01

    Increasing evidence shows that impaired telomere function is associated with male infertility, and various environmental factors are believed to play a pivotal role in telomerase deficiency and telomere shortening. Benzo[a]pyrene (B[a]P), a ubiquitous pollutant of polycyclic aromatic hydrocarbons (PAHs), can act as a reproductive toxicant; however, the adverse effect of B[a]P on telomeres in male reproductive cells has never been studied, and the related mechanisms remain unclear. In this study, we explored the effects of benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), the active metabolite of B[a]P, on telomere dysfunction in mouse spermatocyte-derived cells (GC-2) and also the potential role of telomerase in BPDE-induced spermatogenic cell damage. The results showed that BPDE induced cell viability inhibition, senescence, and apoptosis in GC-2 cells in a dose-dependent manner. Shortened telomeres, telomere-associated DNA damage, reduced telomerase activity, and TERT expression were also observed in BPDE-treated cells, accompanied with the activation of DNA damage response pathway (ATM/Chk1/p53/p21). Moreover, by establishing the TERT knockdown and re-expression cell models, we found that TERT regulated telomere length and the expression of DNA damage response-related proteins to influence senescence and apoptosis in GC-2 cells. These in vitro findings were further confirmed in vivo in the testicular cells of rats orally administrated with B[a]P for 7 days. B[a]P treatment resulted in histological lesions, apoptosis, and senescence in the testes of rats, which were accompanied by shortened telomeres, reduced levels of TERT protein, and increased expression of DNA damage response-related proteins. In conclusion, it can be concluded that TERT-mediated telomere dysfunction contributes to B[a]P- and BPDE-induced senescence and apoptosis through DNA damage response in male reproductive cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Intracellular Copper Does Not Catalyze the Formation of Oxidative DNA Damage in Escherichia coli▿

    PubMed Central

    Macomber, Lee; Rensing, Christopher; Imlay, James A.

    2007-01-01

    Because copper catalyzes the conversion of H2O2 to hydroxyl radicals in vitro, it has been proposed that oxidative DNA damage may be an important component of copper toxicity. Elimination of the copper export genes, copA, cueO, and cusCFBA, rendered Escherichia coli sensitive to growth inhibition by copper and provided forcing circumstances in which this hypothesis could be tested. When the cells were grown in medium supplemented with copper, the intracellular copper content increased 20-fold. However, the copper-loaded mutants were actually less sensitive to killing by H2O2 than cells grown without copper supplementation. The kinetics of cell death showed that excessive intracellular copper eliminated iron-mediated oxidative killing without contributing a copper-mediated component. Measurements of mutagenesis and quantitative PCR analysis confirmed that copper decreased the rate at which H2O2 damaged DNA. Electron paramagnetic resonance (EPR) spin trapping showed that the copper-dependent H2O2 resistance was not caused by inhibition of the Fenton reaction, for copper-supplemented cells exhibited substantial hydroxyl radical formation. However, copper EPR spectroscopy suggested that the majority of H2O2-oxidizable copper is located in the periplasm; therefore, most of the copper-mediated hydroxyl radical formation occurs in this compartment and away from the DNA. Indeed, while E. coli responds to H2O2 stress by inducing iron sequestration proteins, H2O2-stressed cells do not induce proteins that control copper levels. These observations do not explain how copper suppresses iron-mediated damage. However, it is clear that copper does not catalyze significant oxidative DNA damage in vivo; therefore, copper toxicity must occur by a different mechanism. PMID:17189367

  11. Deficiencies in the Fanconi anemia DNA damage response pathway increase sensitivity to HPV-associated head and neck cancer.

    PubMed

    Park, Jung Wook; Pitot, Henry C; Strati, Katerina; Spardy, Nicole; Duensing, Stefan; Grompe, Markus; Lambert, Paul F

    2010-12-01

    Patients with the rare genetic disease, Fanconi anemia (FA), are highly susceptible to squamous cell carcinomas arising at multiple anatomic sites including the head and neck region. Human papillomaviruses (HPVs), particularly HPV16, are associated with ∼20% of head and neck squamous cell carcinomas (HNSCCs) in the general population. Some but not other investigators have reported that HNSCCs in FA patients are much more frequently positive for HPV. In addition, studies have demonstrated an interaction between the HPV16 E7 oncoprotein and the FA pathway, a DNA damage response pathway deficient in FA patients. On the basis of these studies, it was hypothesized that the FA pathway contributes to repair of DNA damage induced by HPV16 E7, providing one explanation for why FA patients are predisposed to HPV-associated HNSCCs. To determine the importance of the FA pathway in modulating the oncogenic abilities of E7, we crossed K14E7 transgenic (K14E7) and fancD2 knockout mice (FancD2(-/-)) to establish K14E7/FancD2(-/-) and K14E7/FancD2(+/+) mice and monitored their susceptibility to HNSCC when treated with a chemical carcinogen. K14E7/FancD2(-/-) mice had a significantly higher incidence of HNSCC compared with K14E7/FancD2(+/+) mice. This difference correlated with an increased proliferative index and the increase in expression of biomarkers that are used to assess levels of DNA damage. These animal studies support the hypotheses that FA patients have increased susceptibility to HPV-associated cancer and that the FA DNA damage response pathway normally attenuates the oncogenic potential of HPV16 E7.

  12. Unrepaired DNA damage in macrophages causes elevation of particulate matter- induced airway inflammatory response.

    PubMed

    Luo, Man; Bao, Zhengqiang; Xu, Feng; Wang, Xiaohui; Li, Fei; Li, Wen; Chen, Zhihua; Ying, Songmin; Shen, Huahao

    2018-04-14

    The inflammatory cascade can be initiated with the recognition of damaged DNA. Macrophages play an essential role in particulate matter (PM)-induced airway inflammation. In this study, we aim to explore the PM induced DNA damage response of macrophages and its function in airway inflammation. The DNA damage response and inflammatory response were assessed using bone marrow-derived macrophages following PM treatment and mouse model instilled intratracheally with PM. We found that PM induced significant DNA damage both in vitro and in vivo and simultaneously triggered a rapid DNA damage response, represented by nuclear RPA, 53BP1 and γH2AX foci formation. Genetic ablation or chemical inhibition of the DNA damage response sensor amplified the production of cytokines including Cxcl1, Cxcl2 and Ifn-γ after PM stimulation in bone marrow-derived macrophages. Similar to that seen in vitro , mice with myeloid-specific deletion of RAD50 showed higher levels of airway inflammation in response to the PM challenge, suggesting a protective role of DNA damage sensor during inflammation. These data demonstrate that PM exposure induces DNA damage and activation of DNA damage response sensor MRN complex in macrophages. Disruption of MRN complex lead to persistent, unrepaired DNA damage that causes elevated inflammatory response.

  13. Repair Rate of Clustered Abasic DNA Lesions by Human Endonuclease: Molecular Bases of Sequence Specificity.

    PubMed

    Gattuso, Hugo; Durand, Elodie; Bignon, Emmanuelle; Morell, Christophe; Georgakilas, Alexandros G; Dumont, Elise; Chipot, Christophe; Dehez, François; Monari, Antonio

    2016-10-06

    In the present contribution, the interaction between damaged DNA and repair enzymes is examined by means of molecular dynamics simulations. More specifically, we consider clustered abasic DNA lesions processed by the primary human apurinic/apyrimidinic (AP) endonuclease, APE1. Our results show that, in stark contrast with the corresponding bacterial endonucleases, human APE1 imposes strong geometrical constraints on the DNA duplex. As a consequence, the level of recognition and, hence, the repair rate is higher. Important features that guide the DNA/protein interactions are the presence of an extended positively charged region and of a molecular tweezers that strongly constrains DNA. Our results are on very good agreement with the experimentally determined repair rate of clustered abasic lesions. The lack of repair for one particular arrangement of the two abasic sites is also explained considering the peculiar destabilizing interaction between the recognition region and the second lesion, resulting in a partial opening of the molecular tweezers and, thus, a less stable complex. This contribution cogently establishes the molecular bases for the recognition and repair of clustered DNA lesions by means of human endonucleases.

  14. Track structure based modelling of light ion radiation effects on nuclear and mitochondrial DNA

    NASA Astrophysics Data System (ADS)

    Schmitt, Elke; Ottolenghi, Andrea; Dingfelder, Michael; Friedland, Werner; Kundrat, Pavel; Baiocco, Giorgio

    2016-07-01

    Space radiation risk assessment is of great importance for manned spaceflights in order to estimate risks and to develop counter-measures to reduce them. Biophysical simulations with PARTRAC can help greatly to improve the understanding of initial biological response to ionizing radiation. Results from modelling radiation quality dependent DNA damage and repair mechanisms up to chromosomal aberrations (e.g. dicentrics) can be used to predict radiation effects depending on the kind of mixed radiation field exposure. Especially dicentric yields can serve as a biomarker for an increased risk due to radiation and hence as an indicator for the effectiveness of the used shielding. PARTRAC [1] is a multi-scale biophysical research MC code for track structure based initial DNA damage and damage response modelling. It integrates physics, radiochemistry, detailed nuclear DNA structure and molecular biology of DNA repair by NHEJ-pathway to assess radiation effects on cellular level [2]. Ongoing experiments with quasi-homogeneously distributed compared to sub-micrometre focused bunches of protons, lithium and carbon ions allow a separation of effects due to DNA damage complexity on nanometre scale from damage clustering on (sub-) micrometre scale [3, 4]. These data provide an unprecedented benchmark for the DNA damage response model in PARTRAC and help understand the mechanisms leading to cell killing and chromosomal aberrations (e.g. dicentrics) induction. A large part of space radiation is due to a mixed ion field of high energy protons and few heavier ions that can be only partly absorbed by the shielding. Radiation damage induced by low-energy ions significantly contributes to the high relative biological efficiency (RBE) of ion beams around Bragg peak regions. For slow light ions the physical cross section data basis in PARTRAC has been extended to investigate radiation quality effects in the Bragg peak region [5]. The resulting range and LET values agree with ICRU data and SRIM calculations. Preliminary studies regarding the biological endpoints DSB (cluster) and chromosomal aberrations have been performed for selected light ions up to neon. Validation with experimental data as well as further calculations are underway and final results will be presented at the meeting. Mitochondrial alterations have been implicated in radiation-induced cardiovascular effects. To extend the applicability of PARTRAC biophysical tool towards effects on mitochondria, the nuclear DNA and chromatin as the primary target of radiation has been complemented by a model of mitochondrial DNA (mtDNA) to mimic a coronary cell with thousand mitochondria contained in the cytoplasm. Induced mtDNA damage (SSB, DSB) has been scored for 60Co photons and 5 MeV alpha-particle irradiation, assuming alternative radical scavenging capacities within the mitochondria. While direct radiation effects in mtDNA are identical to nuclear DNA, indirect effects in mtDNA are in general larger due to lower scavenging and the lack of DNA-protecting histones. These simulations complement the scarce experimental data on radiation-induced mtDNA damage and help elucidate the relative roles of initial mtDNA versus nuclear DNA damage and of pathways that amplify their respective effects. Ongoing and planned developments of PARTRAC include coupling with a radiation transport code and track-structure based calculations of cell killing for RBE studies on macroscopic scales within a mixed ion field. [1] Friedland, Dingfelder et al. (2011): "Track structures, DNA targets and radiation effects in the biophysical Monte Carlo simulation code PARTRAC", Mutat. Res. 711, 28-40 [2] Friedland et al. (2013): "Track structure based modelling of chromosome aberrations after photon and alpha-particle irradiation", Mutat. Res. 756, 213-223 [3] Schmid, Friedland et al. (2015): "Sub-micrometer 20 MeV protons or 45 MeV lithium spot irradiation enhances yields of dicentric chromosomes due to clustering of DNA double-strand breaks", Mutat. Res. 793, 30-40 [4] Friedland, Schmitt, Kundrat (2015): "Modelling Proton bunches focussed to submicrometre scales: Low-LET Radiation damage in high-LET-like spatial structure", Radiat. Prot. Dosim. 166, 34-37 [5] Schmitt, Friedland, Kundrat, Dingfelder, Ottolenghi (2015): "Cross section scaling for track structure simulations of low-energy ions in liquid water", Radiat. Prot. Dosim. 166, 15-18} Supported by the European Atomic Energy Community's Seventh Framework Programme (FP7/2007-2011) under grant agreement no 249689 "DoReMi" and the German Federal Ministry on Education and Research (KVSF-Projekt "LET-Verbund").

  15. Mitochondrial dependent oxidative stress in cell culture induced by laser radiation at 1265 nm.

    PubMed

    Saenko, Yury V; Glushchenko, Eugenia S; Zolotovskii, Igor O; Sholokhov, Evgeny; Kurkov, Andrey

    2016-04-01

    Photodynamic therapy is the main technique applied for surface carcinoma treatment. This technique employs singlet oxygen generated via a laser excited photosensitizer as a main damaging agent. However, prolonged sensitivity to intensive light, relatively low tissue penetration by activating light the cost of photosensitizer (PS) administration can limit photodynamic therapy applications. Early was reported singlet oxygen generation without photosensitizer induced by a laser irradiation at the wavelength of 1250-1270 nm. Here, we study the dynamics of oxidative stress, DNA damage, changes of mitochondrial potential, and mitochondrial mass induced by a laser at 1265 nm have been studied in HCT-116 and CHO-K cells. Laser irradiation of HCT-116 and CHO-K cells has induced a dose-dependent cell death via increasing intracellular reactive oxygen species (ROS) concentration, increase of DNA damage, decrease of mitochondrial potential, and reduced glutathione. It has been shown that, along with singlet oxygen generation, the increase of the intracellular ROS concentration induced by mitochondrial damage contributes to the damaging effect of the laser irradiation at 1265 nm.

  16. Catch the live show: Visualizing damaged DNA in vivo.

    PubMed

    Oshidari, Roxanne; Mekhail, Karim

    2018-06-01

    The health of an organism is intimately linked to its ability to repair damaged DNA. Importantly, DNA repair processes are highly dynamic. This highlights the necessity of characterizing DNA repair in live cells. Advanced genome editing and imaging approaches allow us to visualize damaged DNA and its associated factors in real time. Here, we summarize both established and recent methods that are used to induce DNA damage and visualize damaged DNA and its repair in live cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Repair and recombination of X-irradiated plasmids in Xenopus laevis oocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweigert, S.E.; Carroll, D.

    1990-11-01

    Plasmid DNA substrates were X-irradiated and injected into the nuclei of Xenopus laevis oocytes. After incubation for 20 h, DNA was recovered from the oocytes and analyzed simultaneously for repair and for intermolecular homologous recombination by electrophoresis and bacterial transformation. Oocyte-mediated repair of DNA strand breaks was observed with both methods. Using a repair-deficient mutant Escherichia coli strain and its repair-proficient parent as hosts for the transformation assay, we also demonstrated that oocytes repaired oxidative-type DNA base damage induced by X-rays. X-irradiation of a circular DNA stimulated its potential to recombine with a homologous linear partner. Recombination products were detectedmore » directly by Southern blot hybridization and as bacterial transformant clones expressing two antibiotic resistance markers originally carried separately on the two substrates. The increase in recombination was dependent on X-ray dose. There is some suggestion that lesions other than double-strand breaks contribute to the stimulation of oocyte-mediated homologous recombination. In summary, oocytes have considerable capacity to repair X-ray-induced damage, and some X-ray lesions stimulate homologous recombination in these cells.« less

  18. Induction of NEIL1 and NEIL2 DNA glycosylases in aniline-induced splenic toxicity

    PubMed Central

    Ma, Huaxian; Wang, Jianling; Abdel-Rahman, Sherif Z.; Hazra, Tapas K.; Boor, Paul J.; Khan, M. Firoze

    2011-01-01

    The mechanisms by which aniline exposure elicits splenotoxic response, especially the tumorigenic response, are not well-understood. Earlier, we have shown that aniline-induced oxidative stress is associated with increased oxidative DNA damage in rat spleen. The base excision repair (BER) pathway is the major mechanism for the repair of oxidative DNA base lesions, and we have shown an up-regulation of 8-oxoguanine glycosylase 1 (OGG1), a specific DNA glycosylase involved in the removal of 8-hydroxy-2′-deoxyguanosine (8-OHdG) adducts, following aniline exposure. Nei-like DNA glycosylases (NEIL1/2) belong to a family of BER proteins that are distinct from other DNA glycosylases, including OGG1. However, contribution of NEIL1/2 in the repair of aniline-induced oxidative DNA damage in the spleen is not known. This study was, therefore, focused on evaluating if NEILs also contribute to the repair of oxidative DNA lesions in the spleen following aniline exposure. To achieve that, male SD rats were subchronically exposed to aniline (0.5 mmol/kg/day via drinking water for 30 days), while controls received drinking water only. The BER activity of NEIL1/2 was assayed using a bubble structure substrate containing 5-OHU (preferred substrates for NEIL1 and NEIL2) and by quantitating the cleavage products. Aniline treatment led to a 1.25-fold increase in the NEIL1/2-associated BER activity in the nuclear extracts of spleen compared to the controls. Real-time PCR analysis for NEIL1 and NEIL2 mRNA expression in the spleen revealed 2.7- and 3.9-fold increases, respectively, in aniline-treated rats compared to controls. Likewise, Western blot analysis showed that protein expression of NEIL1 and NEIL2 in the nuclear extract of spleens from aniline-treated rats was 2.0- and 3.8-fold higher than controls, respectively. Aniline treatment also led to stronger immunoreactivity for NEIL1 and NEIL2 in the spleens, confined to the red pulp areas. These studies, thus, show that aniline-induced oxidative stress is associated with an induction of NEIL1/2. The increased NIELs-mediated BER activity is another indication of aniline-induced oxidative damage in the spleen and could constitute another important mechanism of removal of oxidative DNA lesions, especially in transcribed DNA following aniline insult. PMID:21145906

  19. Method for assaying clustered DNA damages

    DOEpatents

    Sutherland, Betsy M.

    2004-09-07

    Disclosed is a method for detecting and quantifying clustered damages in DNA. In this method, a first aliquot of the DNA to be tested for clustered damages with one or more lesion-specific cleaving reagents under conditions appropriate for cleavage of the DNA to produce single-strand nicks in the DNA at sites of damage lesions. The number average molecular length (Ln) of double stranded DNA is then quantitatively determined for the treated DNA. The number average molecular length (Ln) of double stranded DNA is also quantitatively determined for a second, untreated aliquot of the DNA. The frequency of clustered damages (.PHI..sub.c) in the DNA is then calculated.

  20. Repriming by PrimPol is critical for DNA replication restart downstream of lesions and chain-terminating nucleosides.

    PubMed

    Kobayashi, Kaori; Guilliam, Thomas A; Tsuda, Masataka; Yamamoto, Junpei; Bailey, Laura J; Iwai, Shigenori; Takeda, Shunichi; Doherty, Aidan J; Hirota, Kouji

    2016-08-02

    PrimPol is a DNA damage tolerance enzyme possessing both translesion synthesis (TLS) and primase activities. To uncover its potential role in TLS-mediated IgVλ hypermutation and define its interplay with other TLS polymerases, PrimPol(-/-) and PrimPol(-/-)/Polη(-/-)/Polζ (-/-) gene knockouts were generated in avian cells. Loss of PrimPol had no significant impact on the rate of hypermutation or the mutation spectrum of IgVλ. However, PrimPol(-/-) cells were sensitive to methylmethane sulfonate, suggesting that it may bypass abasic sites at the IgVλ segment by repriming DNA synthesis downstream of these sites. PrimPol(-/-) cells were also sensitive to cisplatin and hydroxyurea, indicating that it assists in maintaining / restarting replication at a variety of lesions. To accurately measure the relative contribution of the TLS and primase activities, we examined DNA damage sensitivity in PrimPol(-/-) cells complemented with polymerase or primase-deficient PrimPol. Polymerase-defective, but not primase-deficient, PrimPol suppresses the hypersensitivity of PrimPol(-/-) cells. This indicates that its primase, rather than TLS activity, is pivotal for DNA damage tolerance. Loss of TLS polymerases, Polη and Polζ has an additive effect on the sensitivity of PrimPol(-/-) cells. Moreover, we found that PrimPol and Polη-Polζ redundantly prevented cell death and facilitated unperturbed cell cycle progression. PrimPol(-/-) cells also exhibited increased sensitivity to a wide variety of chain-terminating nucleoside analogs (CTNAs). PrimPol could perform close-coupled repriming downstream of CTNAs and oxidative damage in vitro. Together, these results indicate that PrimPol's repriming activity plays a central role in reinitiating replication downstream from CTNAs and other specific DNA lesions.

  1. A germline FANCA alteration that is associated with increased sensitivity to DNA damaging agents

    PubMed Central

    Wilkes, David C.; Sailer, Verena; Xue, Hui; Cheng, Hongwei; Collins, Colin C.; Gleave, Martin; Wang, Yuzhuo; Demichelis, Francesca; Beltran, Himisha; Rubin, Mark A.; Rickman, David S.

    2017-01-01

    Defects in genes involved in DNA damage repair (DDR) pathway are emerging as novel biomarkers and targets for new prostate cancer drug therapies. A previous report revealed an association between an exceptional response to cisplatin treatment and a somatic loss of heterozygosity (LOH) of FANCA in a patient with metastatic prostate cancer who also harbored a germline FANCA variant (S1088F). Although germline FANCA mutations are the most frequent alterations in patients with Fanconi anemia, germline alterations are less common in prostate cancer. We hypothesized that the germline S1088F FANCA variant in combination with FANCA LOH was deleterious for FANCA function and contributed to the patient's exceptional response to cisplatin. We show that although it properly localizes to the nucleus, the S1088F FANCA mutant protein disrupts the FANC protein complex resulting in increased sensitivity to DNA damaging agents. Because molecular stratification is emerging as a strategy for treating men with metastatic, castrate-resistant prostate cancer harboring specific DDR gene defects, our findings suggest that more biomarker studies are needed to better define clinically relevant germline and somatic alterations. PMID:28864460

  2. Genome health nutrigenomics and nutrigenetics--diagnosis and nutritional treatment of genome damage on an individual basis.

    PubMed

    Fenech, Michael

    2008-04-01

    The term nutrigenomics refers to the effect of diet on gene expression. The term nutrigenetics refers to the impact of inherited traits on the response to a specific dietary pattern, functional food or supplement on a specific health outcome. The specific fields of genome health nutrigenomics and genome health nutrigenetics are emerging as important new research areas because it is becoming increasingly evident that (a) risk for developmental and degenerative disease increases with DNA damage which in turn is dependent on nutritional status and (b) optimal concentration of micronutrients for prevention of genome damage is also dependent on genetic polymorphisms that alter function of genes involved directly or indirectly in uptake and metabolism of micronutrients required for DNA repair and DNA replication. Development of dietary patterns, functional foods and supplements that are designed to improve genome health maintenance in humans with specific genetic backgrounds may provide an important contribution to a new optimum health strategy based on the diagnosis and individualised nutritional treatment of genome instability i.e. Genome Health Clinics.

  3. Lymphocyte DNA damage in Turkish asphalt workers detected by the comet assay.

    PubMed

    Bacaksiz, Aysegul; Kayaalti, Zeliha; Soylemez, Esma; Tutkun, Engin; Soylemezoglu, Tulin

    2014-01-01

    Asphalt has a highly complex structure and it contains several organic compounds including polycyclic aromatic hydrocarbons and heterocyclic compounds. In this study, comet assay was used to detect the DNA damage in blood lymphocytes of 30 workers exposed to asphalt fumes and 30 nonexposed controls. This is the first report on Turkish asphalt workers' investigated DNA damage using the alkaline single cell gel electrophoresis (SCGE). The DNA damage was evaluated by the percentage of DNA in the comet tail (% tail DNA) for each cell. According to our results, workers exposed to asphalt fumes had higher DNA damage than the control group (p < 0.01). The present study showed that asphalt fumes caused a significant increase in DNA damage and the comet assay is a suitable method for determining DNA damage in asphalt workers.

  4. Super DNAging-New insights into DNA integrity, genome stability and telomeres in the oldest old.

    PubMed

    Franzke, Bernhard; Neubauer, Oliver; Wagner, Karl-Heinz

    2015-01-01

    Reductions in DNA integrity, genome stability, and telomere length are strongly associated with the aging process, age-related diseases as well as the age-related loss of muscle mass. However, in people reaching an age far beyond their statistical life expectancy the prevalence of diseases, such as cancer, cardiovascular disease, diabetes or dementia, is much lower compared to "averagely" aged humans. These inverse observations in nonagenarians (90-99 years), centenarians (100-109 years) and super-centenarians (110 years and older) require a closer look into dynamics underlying DNA damage within the oldest old of our society. Available data indicate improved DNA repair and antioxidant defense mechanisms in "super old" humans, which are comparable with much younger cohorts. Partly as a result of these enhanced endogenous repair and protective mechanisms, the oldest old humans appear to cope better with risk factors for DNA damage over their lifetime compared to subjects whose lifespan coincides with the statistical life expectancy. This model is supported by study results demonstrating superior chromosomal stability, telomere dynamics and DNA integrity in "successful agers". There is also compelling evidence suggesting that life-style related factors including regular physical activity, a well-balanced diet and minimized psycho-social stress can reduce DNA damage and improve chromosomal stability. The most conclusive picture that emerges from reviewing the literature is that reaching "super old" age appears to be primarily determined by hereditary/genetic factors, while a healthy lifestyle additionally contributes to achieving the individual maximum lifespan in humans. More research is required in this rapidly growing population of super old people. In particular, there is need for more comprehensive investigations including short- and long-term lifestyle interventions as well as investigations focusing on the mechanisms causing DNA damage, mutations, and telomere shortening. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. DNA Damage and Repair: Relevance to Mechanisms of Neurodegeneration

    PubMed Central

    Martin, Lee J.

    2008-01-01

    DNA damage is a form of cell stress and injury that has been implicated in the pathogenesis of many neurologic disorders, including amyotrophic lateral sclerosis, Alzheimer disease, Down syndrome, Parkinson disease, cerebral ischemia, and head trauma. However, most data reveal only associations, and the role for DNA damage in direct mechanisms of neurodegeneration is vague with respect to being a definitive upstream cause of neuron cell death, rather than a consequence of the degeneration. Although neurons seem inclined to develop DNA damage during oxidative stress, most of the existing work on DNA damage and repair mechanisms has been done in the context of cancer biology using cycling non-neuronal cells but not nondividing (i.e. postmitotic) neurons. Nevertheless, the identification of mutations in genes that encode proteins that function in DNA repair and DNA damage response in human hereditary DNA repair deficiency syndromes and ataxic disorders is establishing a mechanistic precedent that clearly links DNA damage and DNA repair abnormalities with progressive neurodegeneration. This review summarizes DNA damage and repair mechanisms and their potential relevance to the evolution of degeneration in postmitotic neurons. PMID:18431258

  6. Telomeres and telomere dynamics: relevance to cancers of the gastrointestinal tract

    PubMed Central

    Basu, Nivedita; Skinner, Halcyon G.; Litzelman, Kristin; Vanderboom, Russell; Baichoo, Esha; Boardman, Lisa A.

    2013-01-01

    Summary Aberrations in telomere length and telomere maintenance contribute to cancer development. In this article, we review basic principles of telomere length in normal and tumor tissue and the presence of the two main telomere maintenance pathways as they pertain to GI tract cancer. Peripheral blood telomeres are shorter in patients with many types of GI tract cancers. Telomere length in tumor DNA also appears to shorten early in cancer development. Tumor telomere shortening is often accompanied by telomerase activation to protect genetically damaged DNA from normal cell senescence or apoptosis, allowing immortalized but damaged DNA to persist. Alternative lengthening of telomeres (ALT) is another mechanism used by cancer to maintain telomere length in cancer cells. Telomerase and ALT activators and inhibitors may become important chemopreventive or chemotherapeutic agents as our understanding of telomere biology, specific telomere related phenotypes, and its relationship to carcinogenesis increases. PMID:24161135

  7. VUV absorption spectroscopy of bacterial spores and DNA components

    NASA Astrophysics Data System (ADS)

    Fiebrandt, Marcel; Lackmann, Jan-Wilm; Raguse, Marina; Moeller, Ralf; Awakowicz, Peter; Stapelmann, Katharina

    2017-01-01

    Low-pressure plasmas can be used to inactivate bacterial spores and sterilize goods for medical and pharmaceutical applications. A crucial factor are damages induced by UV and VUV radiation emitted by the plasma. To analyze inactivation processes and protection strategies of spores, absorption spectra of two B. subtilis strains are measured. The results indicate, that the inner and outer coat of the spore significantly contribute to the absorption of UV-C and also of the VUV, protecting the spore against radiation based damages. As the sample preparation can significantly influence the absorption spectra due to salt residues, the cleaning procedure and sample deposition is tested for its reproducibility by measuring DNA oligomers and pUC18 plasmid DNA. The measurements are compared and discussed with results from the literature, showing a strong decrease of the salt content enabling the detection of absorption structures in the samples.

  8. Efficient removal of cyclobutane pyrimidine dimers in barley: differential contribution of light-dependent and dark DNA repair pathways.

    PubMed

    Manova, Vasilissa; Georgieva, Ralitsa; Borisov, Borislav; Stoilov, Lubomir

    2016-10-01

    Barley stress response to ultraviolet radiation (UV) has been intensively studied at both the physiological and morphological level. However, the ability of barley genome to repair UV-induced lesions at the DNA level is far less characterized. In this study, we have investigated the relative contribution of light-dependent and dark DNA repair pathways for the efficient elimination of cyclobutane pyrimidine dimers (CPDs) from the genomic DNA of barley leaf seedlings. The transcriptional activity of barley CPD photolyase gene in respect to the light-growth conditions and UV-C irradiation of the plants has also been analyzed. Our results show that CPDs induced in the primary barley leaf at frequencies potentially damaging DNA at the single-gene level are removed efficiently and exclusively by photorepair pathway, whereas dark repair is hardly detectable, even at higher CPD frequency. A decrease of initially induced CPDs under dark is observed but only after prolonged incubation, suggesting the activation of light-independent DNA damage repair and/or tolerance mechanisms. The green barley seedlings possess greater capacity for CPD photorepair than the etiolated ones, with efficiency of CPD removal dependent on the intensity and quality of recovering light. The higher repair rate of CPDs measured in the green leaves correlates with the higher transcriptional activity of barley CPD photolyase gene. Visible light and UV-C radiation affect differentially the expression of CPD photolyase gene particularly in the etiolated leaves. We propose that the CPD repair potential of barley young seedlings may influence their response to UV-stress. © 2016 Scandinavian Plant Physiology Society.

  9. Geant4-DNA: overview and recent developments

    NASA Astrophysics Data System (ADS)

    Štěpán, Václav

    Space travel and high altitude flights are inherently associated with prolonged exposure to cosmic and solar radiation. Understanding and simulation of radiation action on cellular and subcellular level contributes to precise assessment of the associated health risks and remains a challenge of today’s radiobiology research. The Geant4-DNA project (http://geant4-dna.org) aims at developing an experimentally validated simulation platform for modelling of the damage induced by ionizing radiation at DNA level. The platform is based on the Geant4 Monte Carlo simulation toolkit. This project extends specific functionalities of Geant4 in following areas: The step-by-step single scattering modelling of elementary physical interactions of electrons, protons, alpha particles and light ions with liquid water and DNA bases, for the so-called “physical” stage. The modelling of the “physico-chemical and chemical” stages corresponding to the production, the diffusion, the chemical reactions occurring between chemical species produced by water radiolysis, and to the radical attack on the biological targets. Physical and chemical stage simulations are combined with biological target models on several scales, from DNA double helix, through nucleosome, to chromatin segments and cell geometries. In addition, data mining clustering algorithms have been developed and optimised for the purpose of DNA damage scoring in simulated tracks. Experimental measurements on pBR322 plasmid DNA are being carried out in order to validate the Geant4-DNA models. The plasmid DNA has been irradiated in dry conditions by protons with energies from 100 keV to 30 MeV and in aqueous conditions, with and without scavengers, by 30 MeV protons, 290 MeV/u carbon and 500 MeV/u iron ions. Agarose gel electrophoresis combined with enzymatic treatment has been used to measure the resulting DNA damage. An overview of the developments undertaken by the Geant4-DNA collaboration including a description of software already available for download, as well as future perspectives, will be presented, on behalf of the Geant4-DNA Collaboration.

  10. Transcription and DNA Damage: Holding Hands or Crossing Swords?

    PubMed

    D'Alessandro, Giuseppina; d'Adda di Fagagna, Fabrizio

    2017-10-27

    Transcription has classically been considered a potential threat to genome integrity. Collision between transcription and DNA replication machinery, and retention of DNA:RNA hybrids, may result in genome instability. On the other hand, it has been proposed that active genes repair faster and preferentially via homologous recombination. Moreover, while canonical transcription is inhibited in the proximity of DNA double-strand breaks, a growing body of evidence supports active non-canonical transcription at DNA damage sites. Small non-coding RNAs accumulate at DNA double-strand break sites in mammals and other organisms, and are involved in DNA damage signaling and repair. Furthermore, RNA binding proteins are recruited to DNA damage sites and participate in the DNA damage response. Here, we discuss the impact of transcription on genome stability, the role of RNA binding proteins at DNA damage sites, and the function of small non-coding RNAs generated upon damage in the signaling and repair of DNA lesions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Poly(ADP-ribose) Contributes to an Association between Poly(ADP-ribose) Polymerase-1 and Xeroderma Pigmentosum Complementation Group A in Nucleotide Excision Repair*

    PubMed Central

    King, Brenee S.; Cooper, Karen L.; Liu, Ke Jian; Hudson, Laurie G.

    2012-01-01

    Exposure to ultraviolet radiation (UVR) promotes the formation of UVR-induced, DNA helix distorting photolesions such as (6-4) pyrimidine-pyrimidone photoproducts and cyclobutane pyrimidine dimers. Effective repair of such lesions by the nucleotide excision repair (NER) pathway is required to prevent DNA mutations and chromosome aberrations. Poly(ADP-ribose) polymerase-1 (PARP-1) is a zinc finger protein with well documented involvement in base excision repair. PARP-1 is activated in response to DNA damage and catalyzes the formation of poly(ADP-ribose) subunits that assist in the assembly of DNA repair proteins at sites of damage. In this study, we present evidence for PARP-1 contributions to NER, extending the knowledge of PARP-1 function in DNA repair beyond the established role in base excision repair. Silencing the PARP-1 protein or inhibiting PARP activity leads to retention of UVR-induced photolesions. PARP activation following UVR exposure promotes association between PARP-1 and XPA, a central protein in NER. Administration of PARP inhibitors confirms that poly(ADP-ribose) facilitates PARP-1 association with XPA in whole cell extracts, in isolated chromatin complexes, and in vitro. Furthermore, inhibition of PARP activity decreases UVR-stimulated XPA chromatin association, illustrating that these relationships occur in a meaningful context for NER. These results provide a mechanistic link for PARP activity in the repair of UVR-induced photoproducts. PMID:23038248

  12. Survival and SOS response induction in ultraviolet B irradiated Escherichia coli cells with defective repair mechanisms.

    PubMed

    Prada Medina, Cesar Augusto; Aristizabal Tessmer, Elke Tatjana; Quintero Ruiz, Nathalia; Serment-Guerrero, Jorge; Fuentes, Jorge Luis

    2016-06-01

    Purpose In this paper, the contribution of different genes involved in DNA repair for both survival and SOS induction in Escherichia coli mutants exposed to ultraviolet B radiation (UVB, [wavelength range 280-315 nm]) was evaluated. Materials and methods E. coli strains defective in uvrA, oxyR, recO, recN, recJ, exoX, recB, recD or xonA genes were used to determine cell survival. All strains also had the genetic sulA::lacZ fusion, which allowed for the quantification of SOS induction through the SOS Chromotest. Results Five gene products were particularly important for survival, as follows: UvrA > RecB > RecO > RecJ > XonA. Strains defective in uvrA and recJ genes showed elevated SOS induction compared with the wild type, which remained stable for up to 240 min after UVB-irradiation. In addition, E. coli strains carrying the recO or recN mutation showed no SOS induction. Conclusions The nucleotide excision and DNA recombination pathways were equally used to repair UVB-induced DNA damage in E. coli cells. The sulA gene was not turned off in strains defective in UvrA and RecJ. RecO protein was essential for processing DNA damage prior to SOS induction. In this study, the roles of DNA repair proteins and their contributions to the mechanisms that induce SOS genes in E. coli are proposed.

  13. E2F1 interactions with hHR23A inhibit its degradation and promote DNA repair

    PubMed Central

    Singh, Randeep K.; Dagnino, Lina

    2016-01-01

    Nucleotide excision repair (NER) is a major mechanism for removal of DNA lesions induced by exposure to UV radiation in the epidermis. Recognition of damaged DNA sites is the initial step in their repair, and requires multiprotein complexes that contain XPC and hHR23 proteins, or their orthologues. A variety of transcription factors are also involved in NER, including E2F1. In epidermal keratinocytes, UV exposure induces E2F1 phosphorylation, which allows it to recruit various NER factors to sites of DNA damage. However, the relationship between E2F1 and hHR23 proteins vis-à-vis NER has remained unexplored. We now show that E2F1 and hHR23 proteins can interact, and this interaction stabilizes E2F1, inhibiting its proteasomal degradation. Reciprocally, E2F1 regulates hHR23A subcellular localization, recruiting it to sites of DNA photodamage. As a result, E2F1 and hHR23A enhance DNA repair following exposure to UV radiation, contributing to genomic stability in the epidermis. PMID:27028861

  14. Mitochondrial DNA Damage and Diseases.

    PubMed

    Singh, Gyanesh; Pachouri, U C; Khaidem, Devika Chanu; Kundu, Aman; Chopra, Chirag; Singh, Pushplata

    2015-01-01

    Various endogenous and environmental factors can cause mitochondrial DNA (mtDNA) damage.  One of the reasons for enhanced mtDNA damage could be its proximity to the source of oxidants, and lack of histone-like protective proteins. Moreover, mitochondria contain inadequate DNA repair pathways, and, diminished DNA repair capacity may be one of the factors responsible for high mutation frequency of the mtDNA. mtDNA damage might cause impaired mitochondrial function, and, unrepaired mtDNA damage has been frequently linked with several diseases. Exploration of mitochondrial perspective of diseases might lead to a better understanding of several diseases, and will certainly open new avenues for detection, cure, and prevention of ailments.

  15. Interplay of space radiation and microgravity in DNA damage and DNA damage response.

    PubMed

    Moreno-Villanueva, María; Wong, Michael; Lu, Tao; Zhang, Ye; Wu, Honglu

    2017-01-01

    In space, multiple unique environmental factors, particularly microgravity and space radiation, pose constant threat to the DNA integrity of living organisms. Specifically, space radiation can cause damage to DNA directly, through the interaction of charged particles with the DNA molecules themselves, or indirectly through the production of free radicals. Although organisms have evolved strategies on Earth to confront such damage, space environmental conditions, especially microgravity, can impact DNA repair resulting in accumulation of severe DNA lesions. Ultimately these lesions, namely double strand breaks, chromosome aberrations, micronucleus formation, or mutations, can increase the risk for adverse health effects, such as cancer. How spaceflight factors affect DNA damage and the DNA damage response has been investigated since the early days of the human space program. Over the years, these experiments have been conducted either in space or using ground-based analogs. This review summarizes the evidence for DNA damage induction by space radiation and/or microgravity as well as spaceflight-related impacts on the DNA damage response. The review also discusses the conflicting results from studies aimed at addressing the question of potential synergies between microgravity and radiation with regard to DNA damage and cellular repair processes. We conclude that further experiments need to be performed in the true space environment in order to address this critical question.

  16. Detection of in vivo DNA damage induced by ethanol in multiple organs of pregnant mice using the alkaline single cell gel electrophoresis (Comet) assay.

    PubMed

    Kido, Ryoko; Sato, Itaru; Tsuda, Shuji

    2006-01-01

    Ethanol is principal ingredient of alcohol beverage, but considered as human carcinogen, and has neurotoxicity. Alcohol consumption during pregnancy often causes fetal alcohol syndrome. The DNA damage is one of the important factors in carcinogenicity or teratogenicity. To detect the DNA damage induced by ethanol, we used an in vivo alkaline single cell gel electrophoresis (Comet) assay in pregnant mice organs and embryos. Pregnant ICR mice on Day 7 of gestation were treated with 2, 4 or 8 g/kg ethanol, and maternal organs/tissues and embryos were subjected to the Comet assay at 4, 8, 12 and 24 hr after ethanol treatment. Four and 8 g/kg ethanol induced DNA damage in brain, lung and embryos at 4 or 8 hr after the treatment. Two g/kg ethanol did not cause any DNA damage, and 8 g/kg ethanol only increased the duration of DNA damage without distinct increase in the degree of the damage. No significant DNA damage was observed in the liver. To detect the effect of acetaldehyde, disulfiram, acetaldehyde dehydrogenase inhibitor, was administered before 4 g/kg ethanol treatment. No significant increase of DNA damage was observed in the disulfiram pre-treated group. These data indicate that ethanol induces DNA damage, which might be related to ethanol toxicity. Since pre-treatment of disulfiram did not increase DNA damage, DNA damage observed in this study might not be the effect of acetaldehyde.

  17. Amplification of unscheduled DNA synthesis signal enables fluorescence-based single cell quantification of transcription-coupled nucleotide excision repair

    PubMed Central

    Wienholz, Franziska; Vermeulen, Wim

    2017-01-01

    Abstract Nucleotide excision repair (NER) comprises two damage recognition pathways: global genome NER (GG-NER) and transcription-coupled NER (TC-NER), which remove a wide variety of helix-distorting lesions including UV-induced damage. During NER, a short stretch of single-stranded DNA containing damage is excised and the resulting gap is filled by DNA synthesis in a process called unscheduled DNA synthesis (UDS). UDS is measured by quantifying the incorporation of nucleotide analogues into repair patches to provide a measure of NER activity. However, this assay is unable to quantitatively determine TC-NER activity due to the low contribution of TC-NER to the overall NER activity. Therefore, we developed a user-friendly, fluorescence-based single-cell assay to measure TC-NER activity. We combined the UDS assay with tyramide-based signal amplification to greatly increase the UDS signal, thereby allowing UDS to be quantified at low UV doses, as well as DNA-repair synthesis of other excision-based repair mechanisms such as base excision repair and mismatch repair. Importantly, we demonstrated that the amplified UDS is sufficiently sensitive to quantify TC-NER-derived repair synthesis in GG-NER-deficient cells. This assay is important as a diagnostic tool for NER-related disorders and as a research tool for obtaining new insights into the mechanism and regulation of excision repair. PMID:28088761

  18. Sensing of dangerous DNA.

    PubMed

    Gasser, Stephan; Zhang, Wendy Y L; Tan, Nikki Yi Jie; Tripathi, Shubhita; Suter, Manuel A; Chew, Zhi Huan; Khatoo, Muznah; Ngeow, Joanne; Cheung, Florence S G

    2017-07-01

    The presence of damaged and microbial DNA can pose a threat to the survival of organisms. Cells express various sensors that recognize specific aspects of such potentially dangerous DNA. Recognition of damaged or microbial DNA by sensors induces cellular processes that are important for DNA repair and inflammation. Here, we review recent evidence that the cellular response to DNA damage and microbial DNA are tightly intertwined. We also discuss insights into the parameters that enable DNA sensors to distinguish damaged and microbial DNA from DNA present in healthy cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Orchestration of DNA Damage Checkpoint Dynamics across the Human Cell Cycle.

    PubMed

    Chao, Hui Xiao; Poovey, Cere E; Privette, Ashley A; Grant, Gavin D; Chao, Hui Yan; Cook, Jeanette G; Purvis, Jeremy E

    2017-11-22

    Although molecular mechanisms that prompt cell-cycle arrest in response to DNA damage have been elucidated, the systems-level properties of DNA damage checkpoints are not understood. Here, using time-lapse microscopy and simulations that model the cell cycle as a series of Poisson processes, we characterize DNA damage checkpoints in individual, asynchronously proliferating cells. We demonstrate that, within early G1 and G2, checkpoints are stringent: DNA damage triggers an abrupt, all-or-none cell-cycle arrest. The duration of this arrest correlates with the severity of DNA damage. After the cell passes commitment points within G1 and G2, checkpoint stringency is relaxed. By contrast, all of S phase is comparatively insensitive to DNA damage. This checkpoint is graded: instead of halting the cell cycle, increasing DNA damage leads to slower S phase progression. In sum, we show that a cell's response to DNA damage depends on its exact cell-cycle position and that checkpoints are phase-dependent, stringent or relaxed, and graded or all-or-none. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. The effects of metal ions on the DNA damage induced by hydrogen peroxide.

    PubMed

    Kobayashi, S; Ueda, K; Komano, T

    1990-01-01

    The effects of metal ions on DNA damage induced by hydrogen peroxide were investigated using two methods, agarose-gel electrophoretic analysis of supercoiled DNA and sequencing-gel analysis of single end-labeled DNA fragments of defined sequences. Hydrogen peroxide induced DNA damage when iron or copper ion was present. At least two classes of DNA damage were induced, one being direct DNA-strand cleavage, and the other being base modification labile to hot piperidine. The investigation of the damaged sites and the inhibitory effects of radical scavengers revealed that hydroxyl radical was the species which attacked DNA in the reaction of H2O2/Fe(II). On the other hand, two types of DNA damage were induced by H2O2/Cu(II). Type I damage was predominant and inhibited by potassium iodide, but type II was not. The sites of the base-modification induced by type I damage were similar to those by lipid peroxidation products and by ascorbate in the presence of Cu(II), suggesting the involvement of radical species other than free hydroxyl radical in the damaging reactions.

  1. Mechanisms of mutagenesis: DNA replication in the presence of DNA damage

    PubMed Central

    Liu, Binyan; Xue, Qizhen; Tang, Yong; Cao, Jia; Guengerich, F. Peter; Zhang, Huidong

    2017-01-01

    Environmental mutagens cause DNA damage that disturbs replication and produces mutations, leading to cancer and other diseases. We discuss mechanisms of mutagenesis resulting from DNA damage, from the level of DNA replication by a single polymerase to the complex DNA replisome of some typical model organisms (including bacteriophage T7, T4, Sulfolobus solfataricus, E. coli, yeast and human). For a single DNA polymerase, DNA damage can affect replication in three major ways: reducing replication fidelity, causing frameshift mutations, and blocking replication. For the DNA replisome, protein interactions and the functions of accessory proteins can yield rather different results even with a single DNA polymerase. The mechanism of mutation during replication performed by the DNA replisome is a long-standing question. Using new methods and techniques, the replisomes of certain organisms and human cell extracts can now be investigated with regard to the bypass of DNA damage. In this review, we consider the molecular mechanism of mutagenesis resulting from DNA damage in replication at the levels of single DNA polymerases and complex DNA replisomes, including translesion DNA synthesis. PMID:27234563

  2. Mechanisms of mutagenesis: DNA replication in the presence of DNA damage.

    PubMed

    Liu, Binyan; Xue, Qizhen; Tang, Yong; Cao, Jia; Guengerich, F Peter; Zhang, Huidong

    2016-01-01

    Environmental mutagens cause DNA damage that disturbs replication and produces mutations, leading to cancer and other diseases. We discuss mechanisms of mutagenesis resulting from DNA damage, from the level of DNA replication by a single polymerase to the complex DNA replisome of some typical model organisms (including bacteriophage T7, T4, Sulfolobus solfataricus, Escherichia coli, yeast and human). For a single DNA polymerase, DNA damage can affect replication in three major ways: reducing replication fidelity, causing frameshift mutations, and blocking replication. For the DNA replisome, protein interactions and the functions of accessory proteins can yield rather different results even with a single DNA polymerase. The mechanism of mutation during replication performed by the DNA replisome is a long-standing question. Using new methods and techniques, the replisomes of certain organisms and human cell extracts can now be investigated with regard to the bypass of DNA damage. In this review, we consider the molecular mechanism of mutagenesis resulting from DNA damage in replication at the levels of single DNA polymerases and complex DNA replisomes, including translesion DNA synthesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Human T-cell leukemia virus-I tax oncoprotein functionally targets a subnuclear complex involved in cellular DNA damage-response.

    PubMed

    Haoudi, Abdelali; Daniels, Rodney C; Wong, Eric; Kupfer, Gary; Semmes, O John

    2003-09-26

    The virally encoded oncoprotein Tax has been implicated in HTLV-1-mediated cellular transformation. The exact mechanism by which this protein contributes to the oncogenic process is not known. However, it has been hypothesized that Tax induces genomic instability via repression of cellular DNA repair. We examined the effect of de novo Tax expression upon the cell cycle, because appropriate activation of cell cycle checkpoints is essential to a robust damage-repair response. Upon induction of tax expression, Jurkat T-cells displayed a pronounced accumulation in G2/M that was reversible by caffeine. We examined the G2-specific checkpoint signaling response in these cells and found activation of the ATM/chk2-mediated pathway, whereas the ATR/chk1-mediated response was unaffected. Immunoprecipitation with anti-chk2 antibody results in co-precipitation of Tax demonstrating a direct interaction of Tax with a chk2-containing complex. We also show that Tax targets a discrete nuclear site and co-localizes with chk2 and not chk1. This nuclear site, previously identified as Tax Speckled Structures (TSS), also contains the early damage response factor 53BP1. The recruitment of 53BP1 to TSS is dependent upon ATM signaling and requires expression of Tax. Specifically, Tax expression induces redistribution of diffuse nuclear 53BP1 to the TSS foci. Taken together these data suggest that the TSS describe a unique nuclear site involved in DNA damage recognition, repair response, and cell cycle checkpoint activation. We suggest that association of Tax with this multifunctional subnuclear site results in disruption of a subset of the site-specific activities and contributes to cellular genomic instability.

  4. Validation of 64Cu-ATSM damaging DNA via high-LET Auger electron emission

    PubMed Central

    McMillan, Dayton D.; Maeda, Junko; Bell, Justin J.; Genet, Matthew D.; Phoonswadi, Garrett; Mann, Kelly A.; Kraft, Susan L.; Kitamura, Hisashi; Fujimori, Akira; Yoshii, Yukie; Furukawa, Takako; Fujibayashi, Yasuhisa; Kato, Takamitsu A.

    2015-01-01

    Radioactive copper (II) (diacetyl-bis N4-methylthiosemicarbazone) (Cu-ATSM) isotopes were originally developed for the imaging of hypoxia in tumors. Because the decay of a 64Cu atom is emitting not only positrons but also Auger electrons, this radionuclide has great potential as a theranostic agent. However, the success of 64Cu-ATSM internal radiation therapy would depend on the contribution of Auger electrons to tumor cell killing. Therefore, we designed a cell culture system to define the contributions to cell death from Auger electrons to support or refute our hypothesis that the majority of cell death from 64Cu-ATSM is a result of high-LET Auger electrons and not positrons or other low-LET radiation. Chinese hamster ovary (CHO) wild type and DNA repair–deficient xrs5 cells were exposed to 64Cu-ATSM during hypoxic conditions. Surviving fractions were compared with those surviving gamma-radiation, low-LET hadron radiation, and high-LET heavy ion exposure. The ratio of the D10 values (doses required to achieve 10% cell survival) between CHO wild type and xrs5 cells suggested that 64Cu-ATSM toxicity is similar to that of high-LET Carbon ion radiation (70 keV/μm). γH2AX foci assays confirmed DNA double-strand breaks and cluster damage by high-LET Auger electrons from 64Cu decay, and complex types of chromosomal aberrations typical of high-LET radiation were observed after 64Cu-ATSM exposure. The majority of cell death was caused by high-LET radiation. This work provides strong evidence that 64Cu-ATSM damages DNA via high-LET Auger electrons, supporting further study and consideration of 64Cu-ATSM as a cancer treatment modality for hypoxic tumors. PMID:26251463

  5. Effects of Moderate Alcohol Consumption on Gene Expression Related to Colonic Inflammation and Antioxidant Enzymes in Rats

    PubMed Central

    Klarich, DawnKylee S.; Penprase, Jerrold; Cintora, Patricia; Medrano, Octavio; Erwin, Danielle; Brasser, Susan M.; Hong, Mee Young

    2017-01-01

    Excessive alcohol consumption is a risk factor associated with colorectal cancer; however, some studies have reported that moderate alcohol consumption may not contribute additional risk for developing colorectal cancer while others suggest that moderate alcohol consumption provides a protective effect that reduces colorectal cancer risk. The purpose of this study was to determine the effects of moderate voluntary alcohol (20% ethanol) intake on alternate days for 3 months in outbred Wistar rats on risk factors associated with colorectal cancer development. Colonic gene expression of cyclooxygenase-2, RelA, 8-oxoguanine DNA glycosylase 1, superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase M1, and aldehyde dehydrogenase 2 were determined. Blood alcohol content, liver function enzyme activities, and 8-oxo-deoxyguanosine DNA adducts were also assessed. Alcohol-treated rats were found to have significantly lower 8-oxo-deoxyguanosine levels in blood, a marker of DNA damage. Alanine aminotransferase and lactate dehydrogenase were both significantly lower in the alcohol group. Moderate alcohol significantly decreased cyclooxygenase-2 gene expression, an inflammatory marker associated with colorectal cancer risk. The alcohol group had significantly increased glutathione-S-transferase M1 expression, an antioxidant enzyme that helps detoxify carcinogens, such as acetaldehyde, and significantly increased aldehyde dehydrogenase 2 expression, which allows for greater acetaldehyde clearance. Increased expression of glutathione-S-transferase M1 and aldehyde dehydrogenase 2 likely contributed to reduce mucosal damage that is caused by acetaldehyde accumulation. These results indicate that moderate alcohol may reduce the risk for colorectal cancer development, which was evidenced by reduced inflammation activity and lower DNA damage after alcohol exposure. PMID:28599714

  6. USP7S-dependent inactivation of Mule regulates DNA damage signalling and repair.

    PubMed

    Khoronenkova, Svetlana V; Dianov, Grigory L

    2013-02-01

    The E3 ubiquitin ligase Mule/ARF-BP1 plays an important role in the cellular DNA damage response by controlling base excision repair and p53 protein levels. However, how the activity of Mule is regulated in response to DNA damage is currently unknown. Here, we report that the Ser18-containing isoform of the USP7 deubiquitylation enzyme (USP7S) controls Mule stability by preventing its self-ubiquitylation and subsequent proteasomal degradation. We find that in response to DNA damage, downregulation of USP7S leads to self-ubiquitylation and proteasomal degradation of Mule, which eventually leads to p53 accumulation. Cells that are unable to downregulate Mule show reduced ability to upregulate p53 levels in response to DNA damage. We also find that, as Mule inactivation is required for stabilization of base excision repair enzymes, the failure of cells to downregulate Mule after DNA damage results in deficient DNA repair. Our data describe a novel mechanism by which Mule is regulated in response to DNA damage and coordinates cellular DNA damage responses and DNA repair.

  7. Inactivating UBE2M impacts the DNA damage response and genome integrity involving multiple cullin ligases.

    PubMed

    Cukras, Scott; Morffy, Nicholas; Ohn, Takbum; Kee, Younghoon

    2014-01-01

    Protein neddylation is involved in a wide variety of cellular processes. Here we show that the DNA damage response is perturbed in cells inactivated with an E2 Nedd8 conjugating enzyme UBE2M, measured by RAD51 foci formation kinetics and cell based DNA repair assays. UBE2M knockdown increases DNA breakages and cellular sensitivity to DNA damaging agents, further suggesting heightened genomic instability and defective DNA repair activity. Investigating the downstream Cullin targets of UBE2M revealed that silencing of Cullin 1, 2, and 4 ligases incurred significant DNA damage. In particular, UBE2M knockdown, or defective neddylation of Cullin 2, leads to a blockade in the G1 to S progression and is associated with delayed S-phase dependent DNA damage response. Cullin 4 inactivation leads to an aberrantly high DNA damage response that is associated with increased DNA breakages and sensitivity of cells to DNA damaging agents, suggesting a DNA repair defect is associated. siRNA interrogation of key Cullin substrates show that CDT1, p21, and Claspin are involved in elevated DNA damage in the UBE2M knockdown cells. Therefore, UBE2M is required to maintain genome integrity by activating multiple Cullin ligases throughout the cell cycle.

  8. Involvement of oxidatively damaged DNA and repair in cancer development and aging

    PubMed Central

    Tudek, Barbara; Winczura, Alicja; Janik, Justyna; Siomek, Agnieszka; Foksinski, Marek; Oliński, Ryszard

    2010-01-01

    DNA damage and DNA repair may mediate several cellular processes, like replication and transcription, mutagenesis and apoptosis and thus may be important factors in the development and pathology of an organism, including cancer. DNA is constantly damaged by reactive oxygen species (ROS) and reactive nitrogen species (RNS) directly and also by products of lipid peroxidation (LPO), which form exocyclic adducts to DNA bases. A wide variety of oxidatively-generated DNA lesions are present in living cells. 8-oxoguanine (8-oxoGua) is one of the best known DNA lesions due to its mutagenic properties. Among LPO-derived DNA base modifications the most intensively studied are ethenoadenine and ethenocytosine, highly miscoding DNA lesions considered as markers of oxidative stress and promutagenic DNA damage. Although at present it is impossible to directly answer the question concerning involvement of oxidatively damaged DNA in cancer etiology, it is likely that oxidatively modified DNA bases may serve as a source of mutations that initiate carcinogenesis and are involved in aging (i.e. they may be causal factors responsible for these processes). To counteract the deleterious effect of oxidatively damaged DNA, all organisms have developed several DNA repair mechanisms. The efficiency of oxidatively damaged DNA repair was frequently found to be decreased in cancer patients. The present work reviews the basis for the biological significance of DNA damage, particularly effects of 8-oxoGua and ethenoadduct occurrence in DNA in the aspect of cancer development, drawing attention to the multiplicity of proteins with repair activities. PMID:20589166

  9. Causes of genome instability: the effect of low dose chemical exposures in modern society

    PubMed Central

    Langie, Sabine A.S.; Koppen, Gudrun; Desaulniers, Daniel; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Azqueta, Amaya; Bisson, William H.; Brown, Dustin; Brunborg, Gunnar; Charles, Amelia K.; Chen, Tao; Colacci, Annamaria; Darroudi, Firouz; Forte, Stefano; Gonzalez, Laetitia; Hamid, Roslida A.; Knudsen, Lisbeth E.; Leyns, Luc; Lopez de Cerain Salsamendi, Adela; Memeo, Lorenzo; Mondello, Chiara; Mothersill, Carmel; Olsen, Ann-Karin; Pavanello, Sofia; Raju, Jayadev; Rojas, Emilio; Roy, Rabindra; Ryan, Elizabeth; Ostrosky-Wegman, Patricia; Salem, Hosni K.; Scovassi, Ivana; Singh, Neetu; Vaccari, Monica; Van Schooten, Frederik J.; Valverde, Mahara; Woodrick, Jordan; Zhang, Luoping; van Larebeke, Nik; Kirsch-Volders, Micheline; Collins, Andrew R.

    2015-01-01

    Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome’s integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling, telomere length), acrylamide (DNA repair, chromosome segregation), bisphenol A (epigenetic modification, DNA damage signaling, mitochondrial function, chromosome segregation), benomyl (chromosome segregation), quinones (epigenetic modification) and nano-sized particles (epigenetic pathways, mitochondrial function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make scientists aware of the increasing need to unravel the underlying mechanisms via which chemicals at low doses can induce genome instability and thus promote carcinogenesis. PMID:26106144

  10. β2-spectrin depletion impairs DNA damage repair

    PubMed Central

    Horikoshi, Nobuo; Pandita, Raj K.; Mujoo, Kalpana; Hambarde, Shashank; Sharma, Dharmendra; Mattoo, Abid R.; Chakraborty, Sharmistha; Charaka, Vijaya; Hunt, Clayton R.; Pandita, Tej K.

    2016-01-01

    β2-Spectrin (β2SP/SPTBN1, gene SPTBN1) is a key TGF-β/SMAD3/4 adaptor and transcriptional cofactor that regulates TGF-β signaling and can contribute to liver cancer development. Here we report that cells deficient in β2-Spectrin (β2SP) are moderately sensitive to ionizing radiation (IR) and extremely sensitive to agents that cause interstrand cross-links (ICLs) or replication stress. In response to treatment with IR or ICL agents (formaldehyde, cisplatin, camptothecin, mitomycin), β2SP deficient cells displayed a higher frequency of cells with delayed γ-H2AX removal and a higher frequency of residual chromosome aberrations. Following hydroxyurea (HU)-induced replication stress, β2SP-deficient cells displayed delayed disappearance of γ-H2AX foci along with defective repair factor recruitment (MRE11, CtIP, RAD51, RPA, and FANCD2) as well as defective restart of stalled replication forks. Repair factor recruitment is a prerequisite for initiation of DNA damage repair by the homologous recombination (HR) pathway, which was also defective in β2SP deficient cells. We propose that β2SP is required for maintaining genomic stability following replication fork stalling, whether induced by either ICL damage or replicative stress, by facilitating fork regression as well as DNA damage repair by homologous recombination. PMID:27248179

  11. Evaluation of the genotoxic and antigenotoxic potential of Baccharis dracunculifolia extract on V79 cells by the comet assay.

    PubMed

    Munari, Carla Carolina; Alves, Jacqueline Morais; Bastos, Jairo Kenupp; Tavares, Denise Crispim

    2010-01-01

    Baccharis dracunculifolia (Asteraceae), the main botanical source of green propolis, is a shrub of the Brazilian 'cerrado'. In folk medicine it is used as an anti-inflammatory agent, mainly for the treatment of gastrointestinal diseases. The aim of the present study was to evaluate the genotoxic and antigenotoxic effects of B. dracunculifolia ethyl acetate extract (Bd-EAE) on Chinese hamster lung fibroblasts (V79 cells) by the comet assay. Methyl methanesulfonate (MMS; 200 microM) was used as an inducer of DNA damage. Genotoxicity was evaluated using four different concentrations of Bd-EAE: 12.5, 25.0, 50.0 and 100.0 microg ml(-1). Antigenotoxicity was assessed before, simultaneously, and after treatment with the mutagen. The results showed a significant increase in the frequency of DNA damage in cultures treated with 50.0 and 100.0 microg ml(-1) Bd-EAE. Regarding its antigenotoxic potential, Bd-EAE reduced the frequency of DNA damage induced by MMS. However, this chemopreventive activity depended on the concentrations and treatment regimens used. The antioxidant activity of phenolic components present in Bd-EAE may contribute to reduce the alkylation damage induced by MMS. In conclusion, our findings confirmed the chemopreventive activity of Bd-EAE and showed that this effect occurs under different mechanism.

  12. Simulation of the radiolysis of water using Green's functions of the diffusion equation.

    PubMed

    Plante, I; Cucinotta, F A

    2015-09-01

    Radiation chemistry is of fundamental importance in the understanding of the effects of ionising radiation, notably with regard to DNA damage by indirect effect (e.g. damage by ·OH radicals created by the radiolysis of water). In the recent years, Green's functions of the diffusion equation (GFDEs) have been used extensively in biochemistry, notably to simulate biochemical networks in time and space. In the present work, an approach based on the GFDE will be used to refine existing models on the indirect effect of ionising radiation on DNA. As a starting point, the code RITRACKS (relativistic ion tracks) will be used to simulate the radiation track structure and calculate the position of all radiolytic species formed during irradiation. The chemical reactions between these radiolytic species and with DNA will be done by using an efficient Monte Carlo sampling algorithm for the GFDE of reversible reactions with an intermediate state that has been developed recently. These simulations should help the understanding of the contribution of the indirect effect in the formation of DNA damage, particularly with regards to the formation of double-strand breaks. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. MMS Exposure Promotes Increased MtDNA Mutagenesis in the Presence of Replication-Defective Disease-Associated DNA Polymerase γ Variants

    PubMed Central

    Stumpf, Jeffrey D.; Copeland, William C.

    2014-01-01

    Mitochondrial DNA (mtDNA) encodes proteins essential for ATP production. Mutant variants of the mtDNA polymerase cause mutagenesis that contributes to aging, genetic diseases, and sensitivity to environmental agents. We interrogated mtDNA replication in Saccharomyces cerevisiae strains with disease-associated mutations affecting conserved regions of the mtDNA polymerase, Mip1, in the presence of the wild type Mip1. Mutant frequency arising from mtDNA base substitutions that confer erythromycin resistance and deletions between 21-nucleotide direct repeats was determined. Previously, increased mutagenesis was observed in strains encoding mutant variants that were insufficient to maintain mtDNA and that were not expected to reduce polymerase fidelity or exonuclease proofreading. Increased mutagenesis could be explained by mutant variants stalling the replication fork, thereby predisposing the template DNA to irreparable damage that is bypassed with poor fidelity. This hypothesis suggests that the exogenous base-alkylating agent, methyl methanesulfonate (MMS), would further increase mtDNA mutagenesis. Mitochondrial mutagenesis associated with MMS exposure was increased up to 30-fold in mip1 mutants containing disease-associated alterations that affect polymerase activity. Disrupting exonuclease activity of mutant variants was not associated with increased spontaneous mutagenesis compared with exonuclease-proficient alleles, suggesting that most or all of the mtDNA was replicated by wild type Mip1. A novel subset of C to G transversions was responsible for about half of the mutants arising after MMS exposure implicating error-prone bypass of methylated cytosines as the predominant mutational mechanism. Exposure to MMS does not disrupt exonuclease activity that suppresses deletions between 21-nucleotide direct repeats, suggesting the MMS-induce mutagenesis is not explained by inactivated exonuclease activity. Further, trace amounts of CdCl2 inhibit mtDNA replication but suppresses MMS-induced mutagenesis. These results suggest a novel mechanism wherein mutations that lead to hypermutation by DNA base-damaging agents and associate with mitochondrial disease may contribute to previously unexplained phenomena, such as the wide variation of age of disease onset and acquired mitochondrial toxicities. PMID:25340760

  14. MMS exposure promotes increased MtDNA mutagenesis in the presence of replication-defective disease-associated DNA polymerase γ variants.

    PubMed

    Stumpf, Jeffrey D; Copeland, William C

    2014-10-01

    Mitochondrial DNA (mtDNA) encodes proteins essential for ATP production. Mutant variants of the mtDNA polymerase cause mutagenesis that contributes to aging, genetic diseases, and sensitivity to environmental agents. We interrogated mtDNA replication in Saccharomyces cerevisiae strains with disease-associated mutations affecting conserved regions of the mtDNA polymerase, Mip1, in the presence of the wild type Mip1. Mutant frequency arising from mtDNA base substitutions that confer erythromycin resistance and deletions between 21-nucleotide direct repeats was determined. Previously, increased mutagenesis was observed in strains encoding mutant variants that were insufficient to maintain mtDNA and that were not expected to reduce polymerase fidelity or exonuclease proofreading. Increased mutagenesis could be explained by mutant variants stalling the replication fork, thereby predisposing the template DNA to irreparable damage that is bypassed with poor fidelity. This hypothesis suggests that the exogenous base-alkylating agent, methyl methanesulfonate (MMS), would further increase mtDNA mutagenesis. Mitochondrial mutagenesis associated with MMS exposure was increased up to 30-fold in mip1 mutants containing disease-associated alterations that affect polymerase activity. Disrupting exonuclease activity of mutant variants was not associated with increased spontaneous mutagenesis compared with exonuclease-proficient alleles, suggesting that most or all of the mtDNA was replicated by wild type Mip1. A novel subset of C to G transversions was responsible for about half of the mutants arising after MMS exposure implicating error-prone bypass of methylated cytosines as the predominant mutational mechanism. Exposure to MMS does not disrupt exonuclease activity that suppresses deletions between 21-nucleotide direct repeats, suggesting the MMS-induce mutagenesis is not explained by inactivated exonuclease activity. Further, trace amounts of CdCl2 inhibit mtDNA replication but suppresses MMS-induced mutagenesis. These results suggest a novel mechanism wherein mutations that lead to hypermutation by DNA base-damaging agents and associate with mitochondrial disease may contribute to previously unexplained phenomena, such as the wide variation of age of disease onset and acquired mitochondrial toxicities.

  15. Mitochondrial DNA Damage and Diseases

    PubMed Central

    Singh, Gyanesh; Pachouri, U C; Khaidem, Devika Chanu; Kundu, Aman; Chopra, Chirag; Singh, Pushplata

    2015-01-01

    Various endogenous and environmental factors can cause mitochondrial DNA (mtDNA) damage.  One of the reasons for enhanced mtDNA damage could be its proximity to the source of oxidants, and lack of histone-like protective proteins. Moreover, mitochondria contain inadequate DNA repair pathways, and, diminished DNA repair capacity may be one of the factors responsible for high mutation frequency of the mtDNA. mtDNA damage might cause impaired mitochondrial function, and, unrepaired mtDNA damage has been frequently linked with several diseases. Exploration of mitochondrial perspective of diseases might lead to a better understanding of several diseases, and will certainly open new avenues for detection, cure, and prevention of ailments. PMID:27508052

  16. DNA damage induced by ascorbate in the presence of Cu2+.

    PubMed

    Kobayashi, S; Ueda, K; Morita, J; Sakai, H; Komano, T

    1988-01-25

    DNA damage induced by ascorbate in the presence of Cu2+ was investigated by use of bacteriophage phi X174 double-stranded supercoiled DNA and linear restriction fragments as substrates. Single-strand cleavage was induced when supercoiled DNA was incubated with 5 microM-10 mM ascorbate and 50 microM Cu2+ at 37 degrees C for 10 min. The induced DNA damage was analyzed by sequencing of fragments singly labeled at their 5'- or 3'-end. DNA was cleaved directly and almost uniformly at every nucleotide by ascorbate and Cu2+. Piperidine treatment after the reaction showed that ascorbate and Cu2+ induced another kind of DNA damage different from the direct cleavage. The damage proceeded to DNA cleavage by piperidine treatment and was sequence-specific rather than random. These results indicate that ascorbate induces two classes of DNA damage in the presence of Cu2+, one being direct strand cleavage, probably via damage to the DNA backbone, and the other being a base modification labile to alkali treatment. These two classes of DNA damage were inhibited by potassium iodide, catalase and metal chelaters, suggesting the involvement of radicals generated from ascorbate hydroperoxide.

  17. Nucleotide excision repair-dependent DNA double-strand break formation and ATM signaling activation in mammalian quiescent cells.

    PubMed

    Wakasugi, Mitsuo; Sasaki, Takuma; Matsumoto, Megumi; Nagaoka, Miyuki; Inoue, Keiko; Inobe, Manabu; Horibata, Katsuyoshi; Tanaka, Kiyoji; Matsunaga, Tsukasa

    2014-10-10

    Histone H2A variant H2AX is phosphorylated at Ser(139) in response to DNA double-strand break (DSB) and single-stranded DNA (ssDNA) formation. UV light dominantly induces pyrimidine photodimers, which are removed from the mammalian genome by nucleotide excision repair (NER). We previously reported that in quiescent G0 phase cells, UV induces ATR-mediated H2AX phosphorylation plausibly caused by persistent ssDNA gap intermediates during NER. In this study, we have found that DSB is also generated following UV irradiation in an NER-dependent manner and contributes to an earlier fraction of UV-induced H2AX phosphorylation. The NER-dependent DSB formation activates ATM kinase and triggers the accumulation of its downstream factors, MRE11, NBS1, and MDC1, at UV-damaged sites. Importantly, ATM-deficient cells exhibited enhanced UV sensitivity under quiescent conditions compared with asynchronously growing conditions. Finally, we show that the NER-dependent H2AX phosphorylation is also observed in murine peripheral T lymphocytes, typical nonproliferating quiescent cells in vivo. These results suggest that in vivo quiescent cells may suffer from NER-mediated secondary DNA damage including ssDNA and DSB. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Extracellular Mitochondria and Mitochondrial Components Act as Damage-Associated Molecular Pattern Molecules in the Mouse Brain.

    PubMed

    Wilkins, Heather M; Koppel, Scott J; Weidling, Ian W; Roy, Nairita; Ryan, Lauren N; Stanford, John A; Swerdlow, Russell H

    2016-12-01

    Mitochondria and mitochondrial debris are found in the brain's extracellular space, and extracellular mitochondrial components can act as damage associated molecular pattern (DAMP) molecules. To characterize the effects of potential mitochondrial DAMP molecules on neuroinflammation, we injected either isolated mitochondria or mitochondrial DNA (mtDNA) into hippocampi of C57BL/6 mice and seven days later measured markers of inflammation. Brains injected with whole mitochondria showed increased Tnfα and decreased Trem2 mRNA, increased GFAP protein, and increased NFκB phosphorylation. Some of these effects were also observed in brains injected with mtDNA (decreased Trem2 mRNA, increased GFAP protein, and increased NFκB phosphorylation), and mtDNA injection also caused several unique changes including increased CSF1R protein and AKT phosphorylation. To further establish the potential relevance of this response to Alzheimer's disease (AD), a brain disorder characterized by neurodegeneration, mitochondrial dysfunction, and neuroinflammation we also measured App mRNA, APP protein, and Aβ 1-42 levels. We found mitochondria (but not mtDNA) injections increased these parameters. Our data show that in the mouse brain extracellular mitochondria and its components can induce neuroinflammation, extracellular mtDNA or mtDNA-associated proteins can contribute to this effect, and mitochondria derived-DAMP molecules can influence AD-associated biomarkers.

  19. Cytotoxicity of mequindox and its metabolites in HepG2 cells in vitro and murine hepatocytes in vivo.

    PubMed

    Liu, Yingchun; Jiang, Wei; Chen, Yongjun; Liu, Yanyan; Zeng, Peng; Xue, Feiqun; Wang, Quan

    2016-02-01

    Mequindox, a quinoxaline 1,4-dioxide, is widely used as a feed additive in the Chinese livestock industry because of its effective antibacterial properties. Many recent studies have found that mequindox is rapidly metabolized to numerous metabolites following administration to animals. There have, however, been few reports describing the cytotoxicity of mequindox metabolites. In this study, HepG2 cells were treated with mequindox (0, 2, 10, 50 or 100 μg/ml) or its major metabolites (0, 40, 100, 250 or 500 μg/ml) for 24h. Mice were administrated with mequindox (0, 50, 200 or 500 mg/kg.bw) for five days. DNA damage in the HepG2 cells and mouse hepatocytes was then assessed using an SCGE assay. The cell cycle of the HepG2 cells was also determined by flow cytometry. Mequindox was found to induce cell cycle arrest to the G2/M phase and cause dose-dependent DNA damage in HepG2 cells in vitro and in murine hepatocytes in vivo. Compared with mequindox, the major metabolites had much smaller effects on the cell cycle and caused much less DNA damage in HepG2 cells. And the results indicated that the process of metabolites formed by reduction of the MEQ acetyl group or reduction of the N → O groups could contribute to DNA damage in murine hepatocytes in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Treacher Collins syndrome TCOF1 protein cooperates with NBS1 in the DNA damage response.

    PubMed

    Ciccia, Alberto; Huang, Jen-Wei; Izhar, Lior; Sowa, Mathew E; Harper, J Wade; Elledge, Stephen J

    2014-12-30

    The signal transduction pathway of the DNA damage response (DDR) is activated to maintain genomic integrity following DNA damage. The DDR promotes genomic integrity by regulating a large network of cellular activities that range from DNA replication and repair to transcription, RNA splicing, and metabolism. In this study we define an interaction between the DDR factor NBS1 and TCOF1, a nucleolar protein that regulates ribosomal DNA (rDNA) transcription and is mutated in Treacher Collins syndrome. We show that NBS1 relocalizes to nucleoli after DNA damage in a manner dependent on TCOF1 and on casein kinase II and ATM, which are known to modify TCOF1 by phosphorylation. Moreover, we identify a putative ATM phosphorylation site that is required for NBS1 relocalization to nucleoli in response to DNA damage. Last, we report that TCOF1 promotes cellular resistance to DNA damaging agents. Collectively, our findings identify TCOF1 as a DDR factor that could cooperate with ATM and NBS1 to suppress inappropriate rDNA transcription and maintain genomic integrity after DNA damage.

  1. Treacher Collins syndrome TCOF1 protein cooperates with NBS1 in the DNA damage response

    PubMed Central

    Ciccia, Alberto; Huang, Jen-Wei; Izhar, Lior; Sowa, Mathew E.; Harper, J. Wade; Elledge, Stephen J.

    2014-01-01

    The signal transduction pathway of the DNA damage response (DDR) is activated to maintain genomic integrity following DNA damage. The DDR promotes genomic integrity by regulating a large network of cellular activities that range from DNA replication and repair to transcription, RNA splicing, and metabolism. In this study we define an interaction between the DDR factor NBS1 and TCOF1, a nucleolar protein that regulates ribosomal DNA (rDNA) transcription and is mutated in Treacher Collins syndrome. We show that NBS1 relocalizes to nucleoli after DNA damage in a manner dependent on TCOF1 and on casein kinase II and ATM, which are known to modify TCOF1 by phosphorylation. Moreover, we identify a putative ATM phosphorylation site that is required for NBS1 relocalization to nucleoli in response to DNA damage. Last, we report that TCOF1 promotes cellular resistance to DNA damaging agents. Collectively, our findings identify TCOF1 as a DDR factor that could cooperate with ATM and NBS1 to suppress inappropriate rDNA transcription and maintain genomic integrity after DNA damage. PMID:25512513

  2. PRP19 Transforms into a Sensor of RPA-ssDNA after DNA Damage and Drives ATR Activation via a Ubiquitin-Mediated Circuitry

    PubMed Central

    Maréchal, Alexandre; Wu, Ching-Shyi; Yazinski, Stephanie A.; Nguyen, Hai Dang; Liu, Shizhou; Jiménez, Amanda E.; Jin, Jianping; Zou, Lee

    2014-01-01

    Summary PRP19 is a ubiquitin ligase involved in pre-mRNA splicing and the DNA damage response (DDR). While the role for PRP19 in splicing is well characterized, its role in the DDR remains elusive. Through a proteomic screen for proteins that interact with RPA-coated single-stranded DNA (RPA-ssDNA), we identified PRP19 as a sensor of DNA damage. PRP19 binds RPA directly and localizes to DNA damage sites via RPA, promoting RPA ubiquitylation in a DNA damage-induced manner. PRP19 facilitates the accumulation of ATRIP, the regulatory partner of the ATR kinase, at DNA damage sites. Depletion of PRP19 compromised the phosphorylation of ATR substrates, the recovery of stalled replication forks, and the progression of replication forks on damaged DNA. Importantly, PRP19 mutants that cannot bind RPA or function as an E3 ligase failed to support the ATR response, revealing that PRP19 drives ATR activation by acting as an RPA-ssDNA-sensing ubiquitin ligase during the DDR. PMID:24332808

  3. Nanogravimetric and voltammetric DNA-hybridization biosensors for studies of DNA damage by common toxicants and pollutants.

    PubMed

    Nowicka, Anna M; Kowalczyk, Agata; Stojek, Zbigniew; Hepel, Maria

    2010-01-01

    Electrochemical and nanogravimetric DNA-hybridization biosensors have been developed for sensing single mismatches in the probe-target ssDNA sequences. The voltammetric transduction was achieved by coupling ferrocene moiety to streptavidin linked to biotinylated tDNA. The mass-related frequency transduction was implemented by immobilizing the sensory pDNA on a gold-coated quartz crystal piezoresonators oscillating in the 10MHz band. The high sensitivity of these sensors enabled us to study DNA damage caused by representative toxicants and environmental pollutants, including Cr(VI) species, common pesticides and herbicides. We have found that the sensor responds rapidly to any damage caused by Cr(VI) species, with more severe DNA damage observed for Cr(2)O(7)(2-) and for CrO(4)(2-) in the presence of H(2)O(2) as compared to CrO(4)(2-) alone. All herbicides and pesticides examined caused DNA damage or structural alterations leading to the double-helix unwinding. Among these compounds, paraoxon-ethyl and atrazine caused the fastest and most severe damage to DNA. The physico-chemical mechanism of damaging interactions between toxicants and DNA has been proposed. The methodology of testing voltammetric and nanogravimetric DNA-hybridization biosensors developed in this work can be employed as a simple protocol to obtain rapid comparative data concerning DNA damage caused by herbicide, pesticides and other toxic pollutants. The DNA-hybridization biosensor can, therefore, be utilized as a rapid screening device for classifying environmental pollutants and to evaluate DNA damage induced by these compounds.

  4. Alpha-phellandrene-induced DNA damage and affect DNA repair protein expression in WEHI-3 murine leukemia cells in vitro.

    PubMed

    Lin, Jen-Jyh; Wu, Chih-Chung; Hsu, Shu-Chun; Weng, Shu-Wen; Ma, Yi-Shih; Huang, Yi-Ping; Lin, Jaung-Geng; Chung, Jing-Gung

    2015-11-01

    Although there are few reports regarding α-phellandrene (α-PA), a natural compound from Schinus molle L. essential oil, there is no report to show that α-PA induced DNA damage and affected DNA repair associated protein expression. Herein, we investigated the effects of α-PA on DNA damage and repair associated protein expression in murine leukemia cells. Flow cytometric assay was used to measure the effects of α-PA on total cell viability and the results indicated that α-PA induced cell death. Comet assay and 4,6-diamidino-2-phenylindole dihydrochloride staining were used for measuring DNA damage and condensation, respectively, and the results indicated that α-PA induced DNA damage and condensation in a concentration-dependent manner. DNA gel electrophoresis was used to examine the DNA damage and the results showed that α-PA induced DNA damage in WEHI-3 cells. Western blotting assay was used to measure the changes of DNA damage and repair associated protein expression and the results indicated that α-PA increased p-p53, p-H2A.X, 14-3-3-σ, and MDC1 protein expression but inhibited the protein of p53, MGMT, DNA-PK, and BRCA-1. © 2014 Wiley Periodicals, Inc.

  5. Sperm DNA damage has a negative association with live-birth rates after IVF.

    PubMed

    Simon, L; Proutski, I; Stevenson, M; Jennings, D; McManus, J; Lutton, D; Lewis, S E M

    2013-01-01

    Sperm DNA damage has a negative impact on pregnancy rates following assisted reproduction treatment (ART). The aim of the present study was to examine the relationship between sperm DNA fragmentation and live-birth rates after IVF and intracytoplasmic sperm injection (ICSI). The alkaline Comet assay was employed to measure sperm DNA fragmentation in native semen and in spermatozoa following density-gradient centrifugation in semen samples from 203 couples undergoing IVF and 136 couples undergoing ICSI. Men were divided into groups according to sperm DNA damage. Following IVF, couples with <25% sperm DNA fragmentation had a live-birth rate of 33%; in contrast, couples with >50% sperm DNA fragmentation had a much lower live-birth rate of 13%. Following ICSI, no significant differences in sperm DNA damage were found between any groups of patients. Sperm DNA damage was also associated with low live-birth rates following IVF in both men and couples with idiopathic infertility: 39% of couples and 41% of men with idiopathic infertility have high sperm DNA damage. Sperm DNA damage assessed by the Comet assay has a close inverse relationship with live-birth rates after IVF. Sperm DNA damage has a negative impact on assisted reproduction treatment outcome, in particular, on pregnancy rates. The aim of the present study was to examine the relationship between sperm DNA fragmentation and live-birth rates after IVF and intracytoplasmic sperm injection (ICSI). The alkaline Comet assay was employed to measure sperm DNA fragmentation in native semen and in spermatozoa following density-gradient centrifugation in semen samples from 203 couples undergoing IVF and 136 couples undergoing ICSI. Men were divided into groups according to sperm DNA damage and treatment outcome. Following IVF, couples with <25% sperm DNA fragmentation had a live birth rate of 33%. In contrast, couples with >50% sperm DNA fragmentation had a much lower live-birth rate of 13% following IVF. Following ICSI, there were no significant differences in levels of sperm DNA damage between any groups of patients. Sperm DNA damage was also associated with the very low live-birth rates following IVF in both men and couples with idiopathic infertility: 39% of couples and 41% of men have high level of sperm DNA damage. Sperm DNA damage assessed by the Comet assay has a close inverse relationship with live-birth rates after IVF. Copyright © 2012 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  6. DNA Damage Repair System in Plants: A Worldwide Research Update.

    PubMed

    Gimenez, Estela; Manzano-Agugliaro, Francisco

    2017-10-30

    Living organisms are usually exposed to various DNA damaging agents so the mechanisms to detect and repair diverse DNA lesions have developed in all organisms with the result of maintaining genome integrity. Defects in DNA repair machinery contribute to cancer, certain diseases, and aging. Therefore, conserving the genomic sequence in organisms is key for the perpetuation of life. The machinery of DNA damage repair (DDR) in prokaryotes and eukaryotes is similar. Plants also share mechanisms for DNA repair with animals, although they differ in other important details. Plants have, surprisingly, been less investigated than other living organisms in this context, despite the fact that numerous lethal mutations in animals are viable in plants. In this manuscript, a worldwide bibliometric analysis of DDR systems and DDR research in plants was made. A comparison between both subjects was accomplished. The bibliometric analyses prove that the first study about DDR systems in plants (1987) was published thirteen years later than that for other living organisms (1975). Despite the increase in the number of papers about DDR mechanisms in plants in recent decades, nowadays the number of articles published each year about DDR systems in plants only represents 10% of the total number of articles about DDR. The DDR research field was done by 74 countries while the number of countries involved in the DDR & Plant field is 44. This indicates the great influence that DDR research in the plant field currently has, worldwide. As expected, the percentage of studies published about DDR systems in plants has increased in the subject area of agricultural and biological sciences and has diminished in medicine with respect to DDR studies in other living organisms. In short, bibliometric results highlight the current interest in DDR research in plants among DDR studies and can open new perspectives in the research field of DNA damage repair.

  7. HIPK2 restricts SIRT1 activity upon severe DNA damage by a phosphorylation-controlled mechanism

    PubMed Central

    Conrad, E; Polonio-Vallon, T; Meister, M; Matt, S; Bitomsky, N; Herbel, C; Liebl, M; Greiner, V; Kriznik, B; Schumacher, S; Krieghoff-Henning, E; Hofmann, T G

    2016-01-01

    Upon severe DNA damage a cellular signalling network initiates a cell death response through activating tumour suppressor p53 in association with promyelocytic leukaemia (PML) nuclear bodies. The deacetylase Sirtuin 1 (SIRT1) suppresses cell death after DNA damage by antagonizing p53 acetylation. To facilitate efficient p53 acetylation, SIRT1 function needs to be restricted. How SIRT1 activity is regulated under these conditions remains largely unclear. Here we provide evidence that SIRT1 activity is limited upon severe DNA damage through phosphorylation by the DNA damage-responsive kinase HIPK2. We found that DNA damage provokes interaction of SIRT1 and HIPK2, which phosphorylates SIRT1 at Serine 682 upon lethal damage. Furthermore, upon DNA damage SIRT1 and HIPK2 colocalize at PML nuclear bodies, and PML depletion abrogates DNA damage-induced SIRT1 Ser682 phosphorylation. We show that Ser682 phosphorylation inhibits SIRT1 activity and impacts on p53 acetylation, apoptotic p53 target gene expression and cell death. Mechanistically, we found that DNA damage-induced SIRT1 Ser682 phosphorylation provokes disruption of the complex between SIRT1 and its activator AROS. Our findings indicate that phosphorylation-dependent restriction of SIRT1 activity by HIPK2 shapes the p53 response. PMID:26113041

  8. DNA damage, DNA susceptibility to oxidation and glutathione redox status in patients with Alzheimer's disease treated with and without memantine.

    PubMed

    Akkaya, Çağlayan; Yavuzer, Serap Sahin; Yavuzer, Hakan; Erkol, Gökhan; Bozluolcay, Melda; Dinçer, Yıldız

    2017-07-15

    The aim of the current study was to compare oxidative DNA damage, DNA susceptibility to oxidation, and ratio of GSH/GSSG in patients with Alzheimer's disease (AD) treated with acetylcholinesterase inhibitor (AChEI) and combined AChEI+memantine. The study included 67 patients with AD and 42 volunteers as control. DNA damage parameters (strand breaks, oxidized purines, H 2 O 2 -induced DNA damage) in lymphocyte DNA and GSH/GSSG ratio in erythrocytes were determined by the comet assay and spectrophotometric assay, respectively. DNA damage was found to be higher, GSH/GSSG ratio was found to be lower in the AD group than those in the control group. DNA strand breaks and H 2 O 2 -induced DNA damage were lower in the patients taking AChEI+memantine than those in the patients taking AChEI but no significant difference was determined between the groups for oxidized purines and GSH/GSSG ratio. In conclusion, increased systemic oxidative DNA damage and DNA susceptibility to oxidation may be resulted from diminished GSH/GSSG ratio in AD patients. Although DNA strand breaks and H 2 O 2 -induced DNA damage are lower in the AD patients treated with combined AChEI and memantine, this may not indicate protective effect of memantine against DNA oxidation due to similar levels of oxidized purines in the patients treated with AChEI and AChEI+memantine. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Adenovirus Core Protein VII Downregulates the DNA Damage Response on the Host Genome

    PubMed Central

    Avgousti, Daphne C.; Della Fera, Ashley N.; Otter, Clayton J.; Herrmann, Christin; Pancholi, Neha J.

    2017-01-01

    ABSTRACT Viral manipulation of cellular proteins allows viruses to suppress host defenses and generate infectious progeny. Due to the linear double-stranded DNA nature of the adenovirus genome, the cellular DNA damage response (DDR) is considered a barrier to successful infection. The adenovirus genome is packaged with protein VII, a virally encoded histone-like core protein that is suggested to protect incoming viral genomes from detection by the cellular DNA damage machinery. We showed that protein VII localizes to host chromatin during infection, leading us to hypothesize that protein VII may affect DNA damage responses on the cellular genome. Here we show that protein VII at cellular chromatin results in a significant decrease in accumulation of phosphorylated H2AX (γH2AX) following irradiation, indicating that protein VII inhibits DDR signaling. The oncoprotein SET was recently suggested to modulate the DDR by affecting access of repair proteins to chromatin. Since protein VII binds SET, we investigated a role for SET in DDR inhibition by protein VII. We show that knockdown of SET partially rescues the protein VII-induced decrease in γH2AX accumulation on the host genome, suggesting that SET is required for inhibition. Finally, we show that knockdown of SET also allows ATM to localize to incoming viral genomes bound by protein VII during infection with a mutant lacking early region E4. Together, our data suggest that the protein VII-SET interaction contributes to DDR evasion by adenovirus. Our results provide an additional example of a strategy used by adenovirus to abrogate the host DDR and show how viruses can modify cellular processes through manipulation of host chromatin. IMPORTANCE The DNA damage response (DDR) is a cellular network that is crucial for maintaining genome integrity. DNA viruses replicating in the nucleus challenge the resident genome and must overcome cellular responses, including the DDR. Adenoviruses are prevalent human pathogens that can cause a multitude of diseases, such as respiratory infections and conjunctivitis. Here we describe how a small adenovirus core protein that localizes to host chromatin during infection can globally downregulate the DDR. Our study focuses on key players in the damage signaling pathway and highlights how viral manipulation of chromatin may influence access of DDR proteins to the host genome. PMID:28794020

  10. Affinity of yeast nucleotide excision repair factor 2, consisting of the Rad4 and Rad23 proteins, for ultraviolet damaged DNA.

    PubMed

    Guzder, S N; Sung, P; Prakash, L; Prakash, S

    1998-11-20

    Saccharomyces cerevisiae Rad4 and Rad23 proteins are required for the nucleotide excision repair of UV light-damaged DNA. Previous studies have indicated that these two DNA repair proteins are associated in a tight complex, which we refer to as nucleotide excision repair factor 2 (NEF2). In a reconstituted nucleotide excision repair reaction, incision of UV-damaged DNA is dependent on NEF2, indicating a role of NEF2 in an early step of the repair process. NEF2 does not, however, possess an enzymatic activity, and its function in the damage-specific incision reaction has not yet been defined. Here we use a DNA mobility shift assay to demonstrate that NEF2 binds specifically to UV-damaged DNA. Elimination of cyclobutane pyrimidine dimers from the UV-damaged DNA by enzymatic photoreactivation has little effect on the affinity of NEF2 for the DNA, suggesting that NEF2 recognizes the 6-(1, 2)-dihydro-2-oxo-4-pyrimidinyl)-5-methyl-2,4-(1H,3H)-pyrimidinedione photoproducts in the damaged DNA. These results highlight the intricacy of the DNA damage-demarcation reaction during nucleotide excision repair in eukaryotes.

  11. Visualizing the Search for Radiation-damaged DNA Bases in Real Time.

    PubMed

    Lee, Andrea J; Wallace, Susan S

    2016-11-01

    The Base Excision Repair (BER) pathway removes the vast majority of damages produced by ionizing radiation, including the plethora of radiation-damaged purines and pyrimidines. The first enzymes in the BER pathway are DNA glycosylases, which are responsible for finding and removing the damaged base. Although much is known about the biochemistry of DNA glycosylases, how these enzymes locate their specific damage substrates among an excess of undamaged bases has long remained a mystery. Here we describe the use of single molecule fluorescence to observe the bacterial DNA glycosylases, Nth, Fpg and Nei, scanning along undamaged and damaged DNA. We show that all three enzymes randomly diffuse on the DNA molecule and employ a wedge residue to search for and locate damage. The search behavior of the Escherichia coli DNA glycosylases likely provides a paradigm for their homologous mammalian counterparts.

  12. Visualizing the search for radiation-damaged DNA bases in real time

    NASA Astrophysics Data System (ADS)

    Lee, Andrea J.; Wallace, Susan S.

    2016-11-01

    The Base Excision Repair (BER) pathway removes the vast majority of damages produced by ionizing radiation, including the plethora of radiation-damaged purines and pyrimidines. The first enzymes in the BER pathway are DNA glycosylases, which are responsible for finding and removing the damaged base. Although much is known about the biochemistry of DNA glycosylases, how these enzymes locate their specific damage substrates among an excess of undamaged bases has long remained a mystery. Here we describe the use of single molecule fluorescence to observe the bacterial DNA glycosylases, Nth, Fpg and Nei, scanning along undamaged and damaged DNA. We show that all three enzymes randomly diffuse on the DNA molecule and employ a wedge residue to search for and locate damage. The search behavior of the Escherichia coli DNA glycosylases likely provides a paradigm for their homologous mammalian counterparts.

  13. The Fanconi anemia associated protein FAAP24 uses two substrate specific binding surfaces for DNA recognition

    PubMed Central

    Wienk, Hans; Slootweg, Jack C.; Speerstra, Sietske; Kaptein, Robert; Boelens, Rolf; Folkers, Gert E.

    2013-01-01

    To maintain the integrity of the genome, multiple DNA repair systems exist to repair damaged DNA. Recognition of altered DNA, including bulky adducts, pyrimidine dimers and interstrand crosslinks (ICL), partially depends on proteins containing helix-hairpin-helix (HhH) domains. To understand how ICL is specifically recognized by the Fanconi anemia proteins FANCM and FAAP24, we determined the structure of the HhH domain of FAAP24. Although it resembles other HhH domains, the FAAP24 domain contains a canonical hairpin motif followed by distorted motif. The HhH domain can bind various DNA substrates; using nuclear magnetic resonance titration experiments, we demonstrate that the canonical HhH motif is required for double-stranded DNA (dsDNA) binding, whereas the unstructured N-terminus can interact with single-stranded DNA. Both DNA binding surfaces are used for binding to ICL-like single/double-strand junction-containing DNA substrates. A structural model for FAAP24 bound to dsDNA has been made based on homology with the translesion polymerase iota. Site-directed mutagenesis, sequence conservation and charge distribution support the dsDNA-binding model. Analogous to other HhH domain-containing proteins, we suggest that multiple FAAP24 regions together contribute to binding to single/double-strand junction, which could contribute to specificity in ICL DNA recognition. PMID:23661679

  14. DNA Damage in Euonymus japonicus Leaf Cells Caused by Roadside Pollution in Beijing

    PubMed Central

    Li, Tianxin; Zhang, Minjie; Gu, Ke; Herman, Uwizeyimana; Crittenden, John; Lu, Zhongming

    2016-01-01

    The inhalable particles from vehicle exhaust can cause DNA damage to exposed organisms. Research on DNA damage is primarily focused on the influence of specific pollutants on certain species or the effect of environmental pollution on human beings. To date, little research has quantitatively studied the relationship between roadside pollution and DNA damage. Based on an investigation of the roadside pollution in Beijing, Euonymus japonicus leaves of differing ages grown in heavily-polluted sections were chosen as biomonitors to detect DNA damage using the comet assay technique. The percentage of DNA in the tail and tail moment was chosen as the analysis index based on SPSS data analysis. The roadside samples showed significantly higher levels of DNA damage than non-roadside samples, which increased in older leaves, and the DNA damage to Euonymus japonicus leaf cells was positively correlated with haze-aggravated roadside pollution. The correlation between damage and the Air Quality Index (AQI) are 0.921 (one-year-old leaves), 0.894 (two-year-old leaves), and 0.878 (three-year-old leaves). Over time, the connection between DNA damage and AQI weakened, with the sensitivity coefficient for δyear 1 being larger than δyear 2 and δyear 3. These findings support the suitability and sensitivity of the comet assay for surveying plants for an estimation of DNA damage induced by environmental genotoxic agents. This study might be applied as a preliminary quantitative method for Chinese urban air pollution damage assessment caused by environmental stress. PMID:27455298

  15. Aldehydes with high and low toxicities inactivate cells by damaging distinct cellular targets.

    PubMed

    Xie, Ming-Zhang; Shoulkamy, Mahmoud I; Salem, Amir M H; Oba, Shunya; Goda, Mizuki; Nakano, Toshiaki; Ide, Hiroshi

    2016-04-01

    Aldehydes are genotoxic and cytotoxic molecules and have received considerable attention for their associations with the pathogenesis of various human diseases. In addition, exposure to anthropogenic aldehydes increases human health risks. The general mechanism of aldehyde toxicity involves adduct formation with biomolecules such as DNA and proteins. Although the genotoxic effects of aldehydes such as mutations and chromosomal aberrations are directly related to DNA damage, the role of DNA damage in the cytotoxic effects of aldehydes is poorly understood because concurrent protein damage by aldehydes has similar effects. In this study, we have analysed how saturated and α,β-unsaturated aldehydes exert cytotoxic effects through DNA and protein damage. Interestingly, DNA repair is essential for alleviating the cytotoxic effect of weakly toxic aldehydes such as saturated aldehydes but not highly toxic aldehydes such as long α,β-unsaturated aldehydes. Thus, highly toxic aldehydes inactivate cells exclusively by protein damage. Our data suggest that DNA interstrand crosslinks, but not DNA-protein crosslinks and DNA double-strand breaks, are the critical cytotoxic DNA damage induced by aldehydes. Further, we show that the depletion of intracellular glutathione and the oxidation of thioredoxin 1 partially account for the DNA damage-independent cytotoxicity of aldehydes. On the basis of these findings, we have proposed a mechanistic model of aldehyde cytotoxicity mediated by DNA and protein damage. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. DNA adducts and oxidative DNA damage induced by organic extracts from PM2.5 in an acellular assay.

    PubMed

    Topinka, Jan; Rossner, Pavel; Milcova, Alena; Schmuczerova, Jana; Svecova, Vlasta; Sram, Radim J

    2011-05-10

    The genotoxic activities of complex mixtures of organic extracts from the urban air particles collected in various localities of the Czech Republic, which differed in the extent and sources of air pollution, were compared. For this purpose, PM2.5 particles were collected by high volume samplers in the most polluted area of the Czech Republic--Ostrava region (localities Bartovice, Poruba and Karvina) and in the locality exhibiting a low level of air pollution--Trebon--a small town in the non-industrial region of Southern Bohemia. To prepare extractable organic matter (EOM), PM2.5 particles were extracted by dichloromethane and c-PAHs contents in the EOMs were determined. As markers of genotoxic potential, DNA adduct levels and oxidative DNA damage (8-oxo-7,8-dihydro-2'-deoxyguanosine, 8-oxodG, levels) induced by EOMs in an acellular assay of calf thymus DNA coupled with ³²P-postlabeling (DNA adducts) and ELISA (8-oxodG) in the presence and absence of microsomal S9 fraction were employed. Twofold higher DNA adduct levels (17.20 adducts/10⁸ nucleotides/m³ vs. 8.49 adducts/10⁸ nucleotides/m³) were induced by EOM from Ostrava-Bartovice (immediate proximity of heavy industry) compared with that from Ostrava-Poruba (mostly traffic emissions). Oxidative DNA damage induced by EOM from Ostrava-Bartovice was more than fourfold higher than damage induced by EOM from Trebon (8-oxodG/10⁸ dG/m³: 0.131 vs. 0.030 for Ostrava-Bartovice vs. Trebon, respectively). Since PM2.5 particles collected in various localities differ with respect to their c-PAHs content, and c-PAHs significantly contribute to genotoxicity (DNA adduct levels), we suggest that monitoring of PM2.5 levels is not a sufficient basis to assess genotoxicity of respirable aerosols. It seems likely that the industrial emissions prevailing in Ostrava-Bartovice represent a substantially higher genotoxic risk than mostly traffic-related emissions in Ostrava-Poruba. B[a]P and c-PAH contents in EOMs are the most important factors relating to their genotoxic potential. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. Bioactivation of carboxylic acid compounds by UDP-Glucuronosyltransferases to DNA-damaging intermediates: role of glycoxidation and oxidative stress in genotoxicity.

    PubMed

    Sallustio, Benedetta C; Degraaf, Yvette C; Weekley, Josephine S; Burcham, Philip C

    2006-05-01

    Nonenzymatic modification of proteins by acyl glucuronides is well documented; however, little is known about their potential to damage DNA. We have previously reported that clofibric acid undergoes glucuronidation-dependent bioactivation to DNA-damaging species in cultured mouse hepatocytes. The aim of this study was to investigate the mechanisms underlying such DNA damage, and to screen chemically diverse carboxylic acid drugs for their DNA-damaging potential in glucuronidation proficient murine hepatocytes. Cells were incubated with each aglycone for 18 h, followed by assessment of compound cytotoxicity using the MTT assay and evaluation of DNA damage using the Comet assay. Relative cytotoxic potencies were ketoprofen > diclofenac, benoxaprofen, nafenopin > gemfibrozil, probenecid > bezafibrate > clofibric acid. At a noncytotoxic (0.1 mM) concentration, only benoxaprofen, nafenopin, clofibric acid, and probenecid significantly increased Comet moments (P < 0.05 Kruskal-Wallis). Clofibric acid and probenecid exhibited the greatest DNA-damaging potency, producing significant DNA damage at 0.01 mM concentrations. The two drugs produced maximal increases in Comet moment of 4.51 x and 2.57 x control, respectively. The glucuronidation inhibitor borneol (1 mM) abolished the induction of DNA damage by 0.5 mM concentrations of clofibric acid and probenecid. In an in vitro cell-free system, clofibric acid glucuronide was 10 x more potent than glucuronic acid in causing DNA strand-nicking, although both compounds showed similar rates of autoxidation to generate hydroxyl radicals. In cultured hepatocytes, the glycation inhibitor, aminoguanidine, and the iron chelator, desferrioxamine mesylate, inhibited DNA damage by clofibric acid, whereas the free radical scavengers Trolox and butylated hydroxytoluene, and the superoxide dismutase mimetic bis-3,5-diisopropylsalicylate had no effect. In conclusion, clinically relevant concentrations of two structurally unrelated carboxylic acids, probenecid and clofibric acid, induced DNA damage in isolated hepatocytes via glucuronidation- dependent pathways. These findings suggest acyl glucuronides are able to access and damage nuclear DNA via iron-catalyzed glycation/glycoxidative processes.

  18. Effects of methyl and inorganic mercury exposure on genome homeostasis and mitochondrial function in Caenorhabditis elegans.

    PubMed

    Wyatt, Lauren H; Luz, Anthony L; Cao, Xiou; Maurer, Laura L; Blawas, Ashley M; Aballay, Alejandro; Pan, William K Y; Meyer, Joel N

    2017-04-01

    Mercury toxicity mechanisms have the potential to induce DNA damage and disrupt cellular processes, like mitochondrial function. Proper mitochondrial function is important for cellular bioenergetics and immune signaling and function. Reported impacts of mercury on the nuclear genome (nDNA) are conflicting and inconclusive, and mitochondrial DNA (mtDNA) impacts are relatively unknown. In this study, we assessed genotoxic (mtDNA and nDNA), metabolic, and innate immune impacts of inorganic and organic mercury exposure in Caenorhabditis elegans. Genotoxic outcomes measured included DNA damage, DNA damage repair (nucleotide excision repair, NER; base excision repair, BER), and genomic copy number following MeHg and HgCl 2 exposure alone and in combination with known DNA damage-inducing agents ultraviolet C radiation (UVC) and hydrogen peroxide (H 2 O 2 ), which cause bulky DNA lesions and oxidative DNA damage, respectively. Following exposure to both MeHg and HgCl 2 , low-level DNA damage (∼0.25 lesions/10kb mtDNA and nDNA) was observed. Unexpectedly, a higher MeHg concentration reduced damage in both genomes compared to controls. However, this observation was likely the result of developmental delay. In co-exposure treatments, both mercury compounds increased initial DNA damage (mtDNA and nDNA) in combination with H 2 O 2 exposure, but had no impact in combination with UVC exposure. Mercury exposure both increased and decreased DNA damage removal via BER. DNA repair after H 2 O 2 exposure in mercury-exposed nematodes resulted in damage levels lower than measured in controls. Impacts to NER were not detected. mtDNA copy number was significantly decreased in the MeHg-UVC and MeHg-H 2 O 2 co-exposure treatments. Mercury exposure had metabolic impacts (steady-state ATP levels) that differed between the compounds; HgCl 2 exposure decreased these levels, while MeHg slightly increased levels or had no impact. Both mercury species reduced mRNA levels for immune signaling-related genes, but had mild or no effects on survival on pathogenic bacteria. Overall, mercury exposure disrupted mitochondrial endpoints in a mercury-compound dependent fashion. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Effects of methyl and inorganic mercury exposure on genome homeostasis and mitochondrial function in Caenorhabditis elegans

    PubMed Central

    Wyatt, Lauren H.; Luz, Anthony L.; Cao, Xiou; Maurer, Laura L.; Blawas, Ashley M.; Aballay, Alejandro; Pan, William K.; Meyer, Joel N.

    2017-01-01

    Mercury toxicity mechanisms have the potential to induce DNA damage and disrupt cellular processes, like mitochondrial function. Proper mitochondrial function is important for cellular bioenergetics and immune signaling and function. Impacts of mercury on the nuclear genome (nDNA) are conflicting and inconclusive, and mitochondrial DNA (mtDNA) impacts are relatively unknown. In this study, we assessed genotoxic (mtDNA and nDNA), metabolic, and innate immune impacts of inorganic and organic mercury exposure in Caenorhabditis elegans. Genotoxic outcomes measured included DNA damage, DNA damage repair (nucleotide excision repair, NER; base excision repair, BER), and genomic copy number following MeHg and HgCl2 exposure alone and in combination with known DNA damage-inducing agents ultraviolet C radiation (UVC) and hydrogen peroxide (H2O2), which cause bulky DNA lesions and oxidative DNA damage, respectively. Following exposure to both MeHg and HgCl2, low-level DNA damage (~0.25 lesions/10 kb mtDNA and nDNA) was observed. Unexpectedly, a higher MeHg concentration reduced damage in both genomes compared to controls. However, this observation was likely the result of developmental delay. In co-exposure treatments, both mercury compounds increased initial DNA damage (mtDNA and nDNA) in combination with H2O2 exposure, but had no impact in combination with UVC exposure. Mercury exposure both increased and decreased DNA damage removal via BER. DNA repair after H2O2 exposure in mercury-exposed nematodes resulted in damage levels lower than measured in controls. Impacts to NER were not detected. mtDNA copy number was significantly decreased in the MeHg-UVC and MeHg-H2O2 co-exposure treatments. Mercury exposure had metabolic impacts (steady-state ATP levels) that differed between the compounds; HgCl2 exposure decreased these levels, while MeHg slightly increased levels or had no impact. Both mercury species reduced mRNA levels for immune signaling-related genes, but had mild or no effects on survival on pathogenic bacteria. Overall, mercury exposure disrupted mitochondrial endpoints in a mercury-compound dependent fashion. PMID:28242054

  20. Evaluating the potential genotoxicity of phthalates esters (PAEs) in perfumes using in vitro assays.

    PubMed

    Al-Saleh, Iman; Al-Rajudi, Tahreer; Al-Qudaihi, Ghofran; Manogaran, Pulicat

    2017-10-01

    We previously reported high levels of phthalate esters (PAEs) added as solvents or fixatives in 47 brands of perfumes. Diethyl phthalate was the most abundant compound (0.232-23,649 ppm), and 83.3% of the perfumes had levels >1 ppm, the threshold limit cited by a Greenpeace investigation. All samples had dimethyl phthalate levels higher than its threshold limit of 0.1 ppm, and 88, 38, and 7% of the perfumes had benzyl butyl phthalate, di(2-ethylhexyl) phthalate, and dibutyl phthalate levels, respectively, above their threshold limits. The role of PAEs as endocrine disruptors has been well documented, but their effect on genotoxic behavior has received little attention. We used in vitro single-cell gel electrophoresis (comet) and micronucleus (MN) assays with human lymphoblastoid TK6 cells to evaluate the genotoxic potency of 42 of the same perfumes and to determine its association with PAEs. All perfumes induced more DNA damage than a negative control (NEG), ≥ 90% of the samples caused more damage than cells treated with the vehicles possibly used in perfume's preparations such as methanol (ME) and ethanol (ET), and 11.6% of the perfumes caused more DNA damage than a positive control (hydrogen peroxide). Chromosome breakage expressed as MN frequency was higher in cells treated with 71.4, 64.3, 57.1, and 4.8% of the perfumes than in NEG, cells treated with ME or ET, and another positive control (x-rays), respectively. The genotoxic responses in the comet and MN assays were not correlated. The comet assay indicated that the damage in TK6 cells treated with five PAEs at concentrations of 0.05 and 0.2 ppm either individually or as a mixture did not differ significantly from the damage in cells treated with the perfumes. Unlike the comet assay, the sensitivity of the MN assay to PAEs was weak at both low and high concentrations, and MN frequencies were generally low. This study demonstrates for the first time the possible contribution of PAEs in perfumes to DNA damage and suggests that their use as solvents or fixatives should be regulated. Other ingredients with mutagenic/genotoxic properties, however, may also have contributed to the DNA damage. Future studies should focus on applying a series of assays that use different cellular models with various endpoints to identify the spectrum of genotoxic mechanisms involved.

  1. Characterization of UVC-induced DNA damage in bloodstains: forensic implications.

    PubMed

    Hall, Ashley; Ballantyne, Jack

    2004-09-01

    The ability to detect DNA polymorphisms using molecular genetic techniques has revolutionized the forensic analysis of biological evidence. DNA typing now plays a critical role within the criminal justice system, but one of the limiting factors with the technology is that DNA isolated from biological stains recovered from the crime scene is sometimes so damaged as to be intractable to analysis. Potential remedies for damaged DNA are likely to be dependent upon the precise nature of the DNA damage present in any particular sample but, unfortunately, current knowledge of the biochemical nature, and the extent, of such DNA damage in dried biological stains is rudimentary. As a model for DNA damage assessment in biological stains recovered from crime scenes, we have subjected human bloodstains and naked DNA in the hydrated and dehydrated states to varying doses of UVC radiation. It was possible to damage the DNA sufficiently in a bloodstain to cause a standard autosomal short tandem repeat (STR) profile to be lost. However, a detailed analysis of the process, based upon assays developed to detect bipyrimidine photoproducts (BPPPs), single- and double-strand breaks, and DNA-DNA crosslinks, produced some unexpected findings. Contrary to the situation with living tissues or cells in culture, the predominant UVC-induced damage to DNA in bloodstains appears not to be pyrimidine dimers. Although some evidence for the presence of BPPPs and DNA crosslinks was obtained, the major form of UVC damage causing genetic profile loss appeared to be single-strand breaks. It was not possible, however, to preclude the possibility that a combination of damage types was responsible for the profile loss observed. We demonstrate here that a significant measure of protection against UVC-mediated genetic profile loss in dried biological stain material is afforded by the dehydrated state of the DNA and, to a lesser extent, the DNA cellular milieu.

  2. House dust mite-induced asthma causes oxidative damage and DNA double-strand breaks in the lungs.

    PubMed

    Chan, Tze Khee; Loh, Xin Yi; Peh, Hong Yong; Tan, W N Felicia; Tan, W S Daniel; Li, Na; Tay, Ian J J; Wong, W S Fred; Engelward, Bevin P

    2016-07-01

    Asthma is related to airway inflammation and oxidative stress. High levels of reactive oxygen and nitrogen species can induce cytotoxic DNA damage. Nevertheless, little is known about the possible role of allergen-induced DNA damage and DNA repair as modulators of asthma-associated pathology. We sought to study DNA damage and DNA damage responses induced by house dust mite (HDM) in vivo and in vitro. We measured DNA double-strand breaks (DSBs), DNA repair proteins, and apoptosis in an HDM-induced allergic asthma model and in lung samples from asthmatic patients. To study DNA repair, we treated mice with the DSB repair inhibitor NU7441. To study the direct DNA-damaging effect of HDM on human bronchial epithelial cells, we exposed BEAS-2B cells to HDM and measured DNA damage and reactive oxygen species levels. HDM challenge increased lung levels of oxidative damage to proteins (3-nitrotyrosine), lipids (8-isoprostane), and nucleic acid (8-oxoguanine). Immunohistochemical evidence for HDM-induced DNA DSBs was revealed by increased levels of the DSB marker γ Histone 2AX (H2AX) foci in bronchial epithelium. BEAS-2B cells exposed to HDM showed enhanced DNA damage, as measured by using the comet assay and γH2AX staining. In lung tissue from human patients with asthma, we observed increased levels of DNA repair proteins and apoptosis, as shown by caspase-3 cleavage, caspase-activated DNase levels, and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling staining. Notably, NU7441 augmented DNA damage and cytokine production in the bronchial epithelium and apoptosis in the allergic airway, implicating DSBs as an underlying driver of asthma pathophysiology. This work calls attention to reactive oxygen and nitrogen species and HDM-induced cytotoxicity and to a potential role for DNA repair as a modulator of asthma-associated pathophysiology. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  3. TDP1 repairs nuclear and mitochondrial DNA damage induced by chain-terminating anticancer and antiviral nucleoside analogs

    PubMed Central

    Huang, Shar-yin N.; Murai, Junko; Dalla Rosa, Ilaria; Dexheimer, Thomas S.; Naumova, Alena; Gmeiner, William H.; Pommier, Yves

    2013-01-01

    Chain-terminating nucleoside analogs (CTNAs) that cause stalling or premature termination of DNA replication forks are widely used as anticancer and antiviral drugs. However, it is not well understood how cells repair the DNA damage induced by these drugs. Here, we reveal the importance of tyrosyl–DNA phosphodiesterase 1 (TDP1) in the repair of nuclear and mitochondrial DNA damage induced by CTNAs. On investigating the effects of four CTNAs—acyclovir (ACV), cytarabine (Ara-C), zidovudine (AZT) and zalcitabine (ddC)—we show that TDP1 is capable of removing the covalently linked corresponding CTNAs from DNA 3′-ends. We also show that Tdp1−/− cells are hypersensitive and accumulate more DNA damage when treated with ACV and Ara-C, implicating TDP1 in repairing CTNA-induced DNA damage. As AZT and ddC are known to cause mitochondrial dysfunction, we examined whether TDP1 repairs the mitochondrial DNA damage they induced. We find that AZT and ddC treatment leads to greater depletion of mitochondrial DNA in Tdp1−/− cells. Thus, TDP1 seems to be critical for repairing nuclear and mitochondrial DNA damage caused by CTNAs. PMID:23775789

  4. PRP19 transforms into a sensor of RPA-ssDNA after DNA damage and drives ATR activation via a ubiquitin-mediated circuitry.

    PubMed

    Maréchal, Alexandre; Li, Ju-Mei; Ji, Xiao Ye; Wu, Ching-Shyi; Yazinski, Stephanie A; Nguyen, Hai Dang; Liu, Shizhou; Jiménez, Amanda E; Jin, Jianping; Zou, Lee

    2014-01-23

    PRP19 is a ubiquitin ligase involved in pre-mRNA splicing and the DNA damage response (DDR). Although the role for PRP19 in splicing is well characterized, its role in the DDR remains elusive. Through a proteomic screen for proteins that interact with RPA-coated single-stranded DNA (RPA-ssDNA), we identified PRP19 as a sensor of DNA damage. PRP19 directly binds RPA and localizes to DNA damage sites via RPA, promoting RPA ubiquitylation in a DNA-damage-induced manner. PRP19 facilitates the accumulation of ATRIP, the regulatory partner of the ataxia telangiectasia mutated and Rad3-related (ATR) kinase, at DNA damage sites. Depletion of PRP19 compromised the phosphorylation of ATR substrates, recovery of stalled replication forks, and progression of replication forks on damaged DNA. Importantly, PRP19 mutants that cannot bind RPA or function as an E3 ligase failed to support the ATR response, revealing that PRP19 drives ATR activation by acting as an RPA-ssDNA-sensing ubiquitin ligase during the DDR. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Contribution of DNA unwrapping from histone octamers to the repair of oxidatively damaged DNA in nucleosomes

    PubMed Central

    Maher, Robyn L.; Prasad, Amalthiya; Rizvanova, Olga; Wallace, Susan S.; Pederson, David S.

    2013-01-01

    Reactive oxygen species generate ~20,000 oxidative lesions in the DNA of every cell, every day. Most of these lesions are located within nucleosomes, which package DNA in chromatin and impede base excision repair (BER). We demonstrated previously that periodic, spontaneous partial unwrapping of DNA from the underlying histone octamer enables BER enzymes to bind to oxidative lesions that would otherwise be sterically inaccessible. In the present study, we asked if these periodic DNA unwrapping events are frequent enough to account for the estimated rates of BER in vivo. We measured rates of excision of oxidative lesions from sites in nucleosomes that are accessible only during unwrapping episodes. Using reaction conditions appropriate for presteady-state kinetic analyses, we derived lesion exposure rates for both 601 and 5S rDNA-based nucleosomes. Although DNA unwrapping-mediated exposure of a lesion ~16 NT from the nucleosome edge occurred ~7–8 times per minute, exposure rates fell dramatically for lesions located 10 or more NT further in from the nucleosome edge. The rates likely are too low to account for observed rates of BER in cells. Thus, chromatin remodeling, either BER-specific or that associated with transcription, replication, or other DNA repair processes, probably contributes to efficient BER in vivo. PMID:24051050

  6. Quantifying clustered DNA damage induction and repair by gel electrophoresis, electronic imaging and number average length analysis

    NASA Technical Reports Server (NTRS)

    Sutherland, Betsy M.; Georgakilas, Alexandros G.; Bennett, Paula V.; Laval, Jacques; Sutherland, John C.; Gewirtz, A. M. (Principal Investigator)

    2003-01-01

    Assessing DNA damage induction, repair and consequences of such damages requires measurement of specific DNA lesions by methods that are independent of biological responses to such lesions. Lesions affecting one DNA strand (altered bases, abasic sites, single strand breaks (SSB)) as well as damages affecting both strands (clustered damages, double strand breaks) can be quantified by direct measurement of DNA using gel electrophoresis, gel imaging and number average length analysis. Damage frequencies as low as a few sites per gigabase pair (10(9)bp) can be quantified by this approach in about 50ng of non-radioactive DNA, and single molecule methods may allow such measurements in DNA from single cells. This review presents the theoretical basis, biochemical requirements and practical aspects of this approach, and shows examples of their applications in identification and quantitation of complex clustered damages.

  7. Direct Detection and Sequencing of Damaged DNA Bases

    PubMed Central

    2011-01-01

    Products of various forms of DNA damage have been implicated in a variety of important biological processes, such as aging, neurodegenerative diseases, and cancer. Therefore, there exists great interest to develop methods for interrogating damaged DNA in the context of sequencing. Here, we demonstrate that single-molecule, real-time (SMRT®) DNA sequencing can directly detect damaged DNA bases in the DNA template - as a by-product of the sequencing method - through an analysis of the DNA polymerase kinetics that are altered by the presence of a modified base. We demonstrate the sequencing of several DNA templates containing products of DNA damage, including 8-oxoguanine, 8-oxoadenine, O6-methylguanine, 1-methyladenine, O4-methylthymine, 5-hydroxycytosine, 5-hydroxyuracil, 5-hydroxymethyluracil, or thymine dimers, and show that these base modifications can be readily detected with single-modification resolution and DNA strand specificity. We characterize the distinct kinetic signatures generated by these DNA base modifications. PMID:22185597

  8. Direct detection and sequencing of damaged DNA bases.

    PubMed

    Clark, Tyson A; Spittle, Kristi E; Turner, Stephen W; Korlach, Jonas

    2011-12-20

    Products of various forms of DNA damage have been implicated in a variety of important biological processes, such as aging, neurodegenerative diseases, and cancer. Therefore, there exists great interest to develop methods for interrogating damaged DNA in the context of sequencing. Here, we demonstrate that single-molecule, real-time (SMRT®) DNA sequencing can directly detect damaged DNA bases in the DNA template - as a by-product of the sequencing method - through an analysis of the DNA polymerase kinetics that are altered by the presence of a modified base. We demonstrate the sequencing of several DNA templates containing products of DNA damage, including 8-oxoguanine, 8-oxoadenine, O6-methylguanine, 1-methyladenine, O4-methylthymine, 5-hydroxycytosine, 5-hydroxyuracil, 5-hydroxymethyluracil, or thymine dimers, and show that these base modifications can be readily detected with single-modification resolution and DNA strand specificity. We characterize the distinct kinetic signatures generated by these DNA base modifications.

  9. The contribution of mitochondrial thymidylate synthesis in preventing the nuclear genome stress.

    PubMed

    Lee, Ming-Hsiang; Wang, Liya; Chang, Zee-Fen

    2014-04-01

    In quiescent fibroblasts, the expression levels of cytosolic enzymes for thymidine triphosphate (dTTP) synthesis are down-regulated, causing a marked reduction in the dTTP pool. In this study, we provide evidence that mitochondrial thymidylate synthesis via thymidine kinase 2 (TK2) is a limiting factor for the repair of ultraviolet (UV) damage in the nuclear compartment in quiescent fibroblasts. We found that TK2 deficiency causes secondary DNA double-strand breaks formation in the nuclear genome of quiescent cells at the late stage of recovery from UV damage. Despite slower repair of quiescent fibroblast deficient in TK2, DNA damage signals eventually disappeared, and these cells were capable of re-entering the S phase after serum stimulation. However, these cells displayed severe genome stress as revealed by the dramatic increase in 53BP1 nuclear body in the G1 phase of the successive cell cycle. Here, we conclude that mitochondrial thymidylate synthesis via TK2 plays a role in facilitating the quality repair of UV damage for the maintenance of genome integrity in the cells that are temporarily arrested in the quiescent state.

  10. UV Light Potentiates STING (Stimulator of Interferon Genes)-dependent Innate Immune Signaling through Deregulation of ULK1 (Unc51-like Kinase 1)*

    PubMed Central

    Kemp, Michael G.; Lindsey-Boltz, Laura A.; Sancar, Aziz

    2015-01-01

    The mechanism by which ultraviolet (UV) wavelengths of sunlight trigger or exacerbate the symptoms of the autoimmune disorder lupus erythematosus is not known but may involve a role for the innate immune system. Here we show that UV radiation potentiates STING (stimulator of interferon genes)-dependent activation of the immune signaling transcription factor interferon regulatory factor 3 (IRF3) in response to cytosolic DNA and cyclic dinucleotides in keratinocytes and other human cells. Furthermore, we find that modulation of this innate immune response also occurs with UV-mimetic chemical carcinogens and in a manner that is independent of DNA repair and several DNA damage and cell stress response signaling pathways. Rather, we find that the stimulation of STING-dependent IRF3 activation by UV is due to apoptotic signaling-dependent disruption of ULK1 (Unc51-like kinase 1), a pro-autophagic protein that negatively regulates STING. Thus, deregulation of ULK1 signaling by UV-induced DNA damage may contribute to the negative effects of sunlight UV exposure in patients with autoimmune disorders. PMID:25792739

  11. Detection of DNA damage by using hairpin molecular beacon probes and graphene oxide.

    PubMed

    Zhou, Jie; Lu, Qian; Tong, Ying; Wei, Wei; Liu, Songqin

    2012-09-15

    A hairpin molecular beacon tagged with carboxyfluorescein in combination with graphene oxide as a quencher reagent was used to detect the DNA damage by chemical reagents. The fluorescence of molecular beacon was quenched sharply by graphene oxide; while in the presence of its complementary DNA the quenching efficiency decreased because their hybridization prevented the strong adsorbability of molecular beacon on graphene oxide. If the complementary DNA was damaged by a chemical reagent and could not form intact duplex structure with molecular beacon, more molecular beacon would adsorb on graphene oxide increasing the quenching efficiency. Thus, damaged DNA could be detected based on different quenching efficiencies afforded by damaged and intact complementary DNA. The damage effects of chlorpyrifos-methyl and three metabolites of styrene such as mandelieaeids, phenylglyoxylieaeids and epoxystyrene on DNA were studied as models. The method for detection of DNA damage was reliable, rapid and simple compared to the biological methods. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Repair of Clustered Damage and DNA Polymerase Iota.

    PubMed

    Belousova, E A; Lavrik, O I

    2015-08-01

    Multiple DNA lesions occurring within one or two turns of the DNA helix known as clustered damage are a source of double-stranded DNA breaks, which represent a serious threat to the cells. Repair of clustered lesions is accomplished in several steps. If a clustered lesion contains oxidized bases, an individual DNA lesion is repaired by the base excision repair (BER) mechanism involving a specialized DNA polymerase after excising DNA damage. Here, we investigated DNA synthesis catalyzed by DNA polymerase iota using damaged DNA templates. Two types of DNA substrates were used as model DNAs: partial DNA duplexes containing breaks of different length, and DNA duplexes containing 5-formyluracil (5-foU) and uracil as a precursor of apurinic/apyrimidinic sites (AP) in opposite DNA strands. For the first time, we showed that DNA polymerase iota is able to catalyze DNA synthesis using partial DNA duplexes having breaks of different length as substrates. In addition, we found that DNA polymerase iota could catalyze DNA synthesis during repair of clustered damage via the BER system by using both undamaged and 5-foU-containing templates. We found that hPCNA (human proliferating cell nuclear antigen) increased efficacy of DNA synthesis catalyzed by DNA polymerase iota.

  13. Noise Induced DNA Damage Within the Auditory Nerve.

    PubMed

    Guthrie, O'neil W

    2017-03-01

    An understanding of the molecular pathology that underlies noise induced neurotoxicity is a prerequisite to the design of targeted therapies. The objective of the current experiment was to determine whether or not DNA damage is part of the pathophysiologic sequela of noise induced neurotoxicity. The experiment consisted of 41 hooded Long-Evans rats (2 month old males) that were randomized into control and noise exposed groups. Both the control and the noise group followed the same time schedule and therefore started and ended the experiment together. The noise dose consisted of a 6000 Hz noise band at 105 dB SPL. Temporal bones from both groups were harvested, and immunohistochemistry was used to identify neurons with DNA damage. Quantitative morphometric analyses was then employed to determine the level of DNA damage. Neural action potentials were recorded to assess the functional impact of noise induced DNA damage. Immunohistochemical reactions revealed that the noise exposure precipitated DNA damage within the nucleus of auditory neurons. Quantitative morphometry confirmed the noise induced increase in DNA damage levels and the precipitation of DNA damage was associated with a significant loss of nerve sensitivity. Therefore, DNA damage is part of the molecular pathology that drives noise induced neurotoxicity. Anat Rec, 300:520-526, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. DNA-damage response during mitosis induces whole-chromosome missegregation.

    PubMed

    Bakhoum, Samuel F; Kabeche, Lilian; Murnane, John P; Zaki, Bassem I; Compton, Duane A

    2014-11-01

    Many cancers display both structural (s-CIN) and numerical (w-CIN) chromosomal instabilities. Defective chromosome segregation during mitosis has been shown to cause DNA damage that induces structural rearrangements of chromosomes (s-CIN). In contrast, whether DNA damage can disrupt mitotic processes to generate whole chromosomal instability (w-CIN) is unknown. Here, we show that activation of the DNA-damage response (DDR) during mitosis selectively stabilizes kinetochore-microtubule (k-MT) attachments to chromosomes through Aurora-A and PLK1 kinases, thereby increasing the frequency of lagging chromosomes during anaphase. Inhibition of DDR proteins, ATM or CHK2, abolishes the effect of DNA damage on k-MTs and chromosome segregation, whereas activation of the DDR in the absence of DNA damage is sufficient to induce chromosome segregation errors. Finally, inhibiting the DDR during mitosis in cancer cells with persistent DNA damage suppresses inherent chromosome segregation defects. Thus, the DDR during mitosis inappropriately stabilizes k-MTs, creating a link between s-CIN and w-CIN. The genome-protective role of the DDR depends on its ability to delay cell division until damaged DNA can be fully repaired. Here, we show that when DNA damage is induced during mitosis, the DDR unexpectedly induces errors in the segregation of entire chromosomes, thus linking structural and numerical chromosomal instabilities. ©2014 American Association for Cancer Research.

  15. Amphetamines promote mitochondrial dysfunction and DNA damage in pulmonary hypertension

    PubMed Central

    Chen, Pin-I; Cao, Aiqin; Miyagawa, Kazuya; Tojais, Nancy F.; Hennigs, Jan K.; Li, Caiyun G.; Sweeney, Nathaly M.; Inglis, Audrey S.; Wang, Lingli; Li, Dan; Ye, Matthew; Feldman, Brian J.

    2017-01-01

    Amphetamine (AMPH) or methamphetamine (METH) abuse can cause oxidative damage and is a risk factor for diseases including pulmonary arterial hypertension (PAH). Pulmonary artery endothelial cells (PAECs) from AMPH-associated-PAH patients show DNA damage as judged by γH2AX foci and DNA comet tails. We therefore hypothesized that AMPH induces DNA damage and vascular pathology by interfering with normal adaptation to an environmental perturbation causing oxidative stress. Consistent with this, we found that AMPH alone does not cause DNA damage in normoxic PAECs, but greatly amplifies DNA damage in hypoxic PAECs. The mechanism involves AMPH activation of protein phosphatase 2A, which potentiates inhibition of Akt. This increases sirtuin 1, causing deacetylation and degradation of HIF1α, thereby impairing its transcriptional activity, resulting in a reduction in pyruvate dehydrogenase kinase 1 and impaired cytochrome c oxidase 4 isoform switch. Mitochondrial oxidative phosphorylation is inappropriately enhanced and, as a result of impaired electron transport and mitochondrial ROS increase, caspase-3 is activated and DNA damage is induced. In mice given binge doses of METH followed by hypoxia, HIF1α is suppressed and pulmonary artery DNA damage foci are associated with worse pulmonary vascular remodeling. Thus, chronic AMPH/METH can induce DNA damage associated with vascular disease by subverting the adaptive responses to oxidative stress. PMID:28138562

  16. Lymphocyte DNA damage and oxidative stress in patients with iron deficiency anemia.

    PubMed

    Aslan, Mehmet; Horoz, Mehmet; Kocyigit, Abdurrahim; Ozgonül, Saadet; Celik, Hakim; Celik, Metin; Erel, Ozcan

    2006-10-10

    Oxidant stress has been shown to play an important role in the pathogenesis of iron deficiency anemia. The aim of this study was to investigate the association between lymphocyte DNA damage, total antioxidant capacity and the degree of anemia in patients with iron deficiency anemia. Twenty-two female with iron deficiency anemia and 22 healthy females were enrolled in the study. Peripheral DNA damage was assessed using alkaline comet assay and plasma total antioxidant capacity was determined using an automated measurement method. Lymphocyte DNA damage of patients with iron deficiency anemia was significantly higher than controls (p<0.05), while total antioxidant capacity was significantly lower (p<0.001). While there was a positive correlation between total antioxidant capacity and hemoglobin levels (r=0.706, p<0.001), both total antioxidant capacity and hemoglobin levels were negatively correlated with DNA damage (r=-0.330, p<0.05 and r=-0.323, p<0.05, respectively). In conclusion, both oxidative stress and DNA damage are increased in IDA patients. Increased oxidative stress seems as an important factor that inducing DNA damage in those IDA patients. The relationships of oxidative stress and DNA damage with the severity of anemia suggest that both oxidative stress and DNA damage may, in part, have a role in the pathogenesis of IDA.

  17. RNF8- and Ube2S-Dependent Ubiquitin Lysine 11-Linkage Modification in Response to DNA Damage.

    PubMed

    Paul, Atanu; Wang, Bin

    2017-05-18

    Ubiquitin modification of proteins plays pivotal roles in the cellular response to DNA damage. Given the complexity of ubiquitin conjugation due to the formation of poly-conjugates of different linkages, functional roles of linkage-specific ubiquitin modification at DNA damage sites are largely unclear. We identify that Lys11-linkage ubiquitin modification occurs at DNA damage sites in an ATM-dependent manner, and ubiquitin-modifying enzymes, including Ube2S E2-conjugating enzyme and RNF8 E3 ligase, are responsible for the assembly of Lys11-linkage conjugates on damaged chromatin, including histone H2A/H2AX. We show that RNF8- and Ube2S-dependent Lys11-linkage ubiquitin conjugation plays an important role in regulating DNA damage-induced transcriptional silencing, distinct from the role of Lys63-linkage ubiquitin in the recruitment of DNA damage repair proteins 53BP1 and BRCA1. Thus, our study highlights the importance of linkage-specific ubiquitination at DNA damage sites, and it reveals that Lys11-linkage ubiquitin modification plays a crucial role in the DNA damage response. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Evaluation of basal DNA damage and oxidative stress in Wistar rat leukocytes after exposure to microwave radiation.

    PubMed

    Garaj-Vrhovac, Vera; Gajski, Goran; Trosić, Ivancica; Pavicić, Ivan

    2009-05-17

    The aim of this study was to assess whether microwave-induced DNA damage is basal or it is also generated through reactive oxygen species (ROS) formation. After having irradiated Wistar rats with 915MHz microwave radiation, we assessed different DNA alterations in peripheral leukocytes using standard and formamidopyrimidine DNA-glycosylase (Fpg)-modified comet assay. The first is a sensitive tool for detecting primary DNA damage, and the second is much more specific for detecting oxidative damage. The animals were irradiated for 1h a day for 2 weeks at a field power density of 2.4W/m(2), and the whole-body average specific absorption rate (SAR) of 0.6W/kg. Both the standard and the Fpg-modified comet assay detected increased DNA damage in blood leukocytes of the exposed rats. The significant increase in Fpg-detected DNA damage in the exposed rats suggests that oxidative stress is likely to be responsible. DNA damage detected by the standard comet assay indicates that some other mechanisms may also be involved. In addition, both methods served proved sensitive enough to measure basal and oxidative DNA damage after long-term exposure to 915MHz microwave radiation in vivo.

  19. Peripheral Blood Mitochondrial DNA Damage as a Potential Noninvasive Biomarker of Diabetic Retinopathy

    PubMed Central

    Mishra, Manish; Lillvis, John; Seyoum, Berhane; Kowluru, Renu A.

    2016-01-01

    Purpose In the development of diabetic retinopathy, retinal mitochondria become dysfunctional, and mitochondrial DNA (mtDNA) is damaged. Because retinopathy is a progressive disease, and circulating glucose levels are high in diabetes, our aim was to investigate if peripheral blood mtDNA damage can serve as a potential biomarker of diabetic retinopathy. Methods Peripheral blood mtDNA damage was investigated by extended-length PCR in rats and mice, diabetic for 10 to 12 months (streptozotocin-induced, type 1 model), and in 12- and 40-week-old Zucker diabetic fatty rats (ZDF, type 2). Mitochondrial copy number (in gDNA) and transcription (in cDNA) were quantified by qPCR. Similar parameters were measured in blood from diabetic patients with/without retinopathy. Results Peripheral blood from diabetic rodents had significantly increased mtDNA damage and decreased copy numbers and transcription. Lipoic acid administration in diabetic rats, or Sod2 overexpression or MMP-9 knockdown in mice, the therapies that prevent diabetic retinopathy, also ameliorated blood mtDNA damage and restored copy numbers and transcription. Although blood from 40-week-old ZDF rats had significant mtDNA damage, 12-week-old rats had normal mtDNA. Diabetic patients with retinopathy had increased blood mtDNA damage, and decreased transcription and copy numbers compared with diabetic patients without retinopathy and nondiabetic individuals. Conclusions Type 1 diabetic rodents with oxidative stress modulated by pharmacologic/genetic means, and type 2 animal model and patients with/without diabetic retinopathy, demonstrate a strong relation between peripheral blood mtDNA damage and diabetic retinopathy, and suggest the possibility of use of peripheral blood mtDNA as a noninvasive biomarker of diabetic retinopathy. PMID:27494345

  20. Metabolic responses induced by DNA damage and poly (ADP-ribose) polymerase (PARP) inhibition in MCF-7 cells

    PubMed Central

    Bhute, Vijesh J.; Palecek, Sean P.

    2015-01-01

    Genomic instability is one of the hallmarks of cancer. Several chemotherapeutic drugs and radiotherapy induce DNA damage to prevent cancer cell replication. Cells in turn activate different DNA damage response (DDR) pathways to either repair the damage or induce cell death. These DDR pathways also elicit metabolic alterations which can play a significant role in the proper functioning of the cells. The understanding of these metabolic effects resulting from different types of DNA damage and repair mechanisms is currently lacking. In this study, we used NMR metabolomics to identify metabolic pathways which are altered in response to different DNA damaging agents. By comparing the metabolic responses in MCF-7 cells, we identified the activation of poly (ADP-ribose) polymerase (PARP) in methyl methanesulfonate (MMS)-induced DNA damage. PARP activation led to a significant depletion of NAD+. PARP inhibition using veliparib (ABT-888) was able to successfully restore the NAD+ levels in MMS-treated cells. In addition, double strand break induction by MMS and veliparib exhibited similar metabolic responses as zeocin, suggesting an application of metabolomics to classify the types of DNA damage responses. This prediction was validated by studying the metabolic responses elicited by radiation. Our findings indicate that cancer cell metabolic responses depend on the type of DNA damage responses and can also be used to classify the type of DNA damage. PMID:26478723

  1. [Occupational hazards, DNA damage, and oxidative stress on exposure to waste anesthetic gases].

    PubMed

    Lucio, Lorena M C; Braz, Mariana G; do Nascimento Junior, Paulo; Braz, José Reinaldo C; Braz, Leandro G

    The waste anesthetic gases (WAGs) present in the ambient air of operating rooms (OR), are associated with various occupational hazards. This paper intends to discuss occupational exposure to WAGs and its impact on exposed professionals, with emphasis on genetic damage and oxidative stress. Despite the emergence of safer inhaled anesthetics, occupational exposure to WAGs remains a current concern. Factors related to anesthetic techniques and anesthesia workstations, in addition to the absence of a scavenging system in the OR, contribute to anesthetic pollution. In order to minimize the health risks of exposed professionals, several countries have recommended legislation with maximum exposure limits. However, developing countries still require measurement of WAGs and regulation for occupational exposure to WAGs. WAGs are capable of inducing damage to the genetic material, such as DNA damage assessed using the comet assay and increased frequency of micronucleus in professionals with long-term exposure. Oxidative stress is also associated with WAGs exposure, as it induces lipid peroxidation, oxidative damage in DNA, and impairment of the antioxidant defense system in exposed professionals. The occupational hazards related to WAGs including genotoxicity, mutagenicity and oxidative stress, stand as a public health issue and must be acknowledged by exposed personnel and responsible authorities, especially in developing countries. Thus, it is urgent to stablish maximum safe limits of concentration of WAGs in ORs and educational practices and protocols for exposed professionals. Copyright © 2017 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  2. Induction of base excision repair enzymes NTH1 and APE1 in rat spleen following aniline exposure

    PubMed Central

    Ma, Huaxian; Wang, Jianling; Abdel-Rahman, Sherif Z.; Boor, Paul J.; Khan, M. Firoze

    2013-01-01

    Mechanisms by which aniline exposure elicits splenotoxicity, especially a tumorigenic response, are not well-understood. Earlier, we have shown that aniline exposure leads to oxidative DNA damage and up-regulation of OGG1 and NEIL1/2 DNA glycosylases in rat spleen. However, the contribution of endonuclease III homolog 1 (NTH1) and apurinic/apyrimidinic endonuclease 1 (APE1) in the repair of aniline-induced oxidative DNA damage in the spleen is not known. This study was, therefore, focused on examining whether NTH1 and APE1 contribute to the repair of oxidative DNA lesions in the spleen, in an experimental condition preceding tumorigenesis. To achieve this, male SD rats were subchronically exposed to aniline (0.5 mmol/kg/day via drinking water for 30 days), while controls received drinking water only. By quantitating the cleavage products, the activities of NTH1 and APE1 were assayed using substrates containing thymine glycol (Tg) and tetrahydrofuran, respectively. Aniline treatment led to significant increases in NTH1- and APE1-mediated BER activity in the nuclear extracts of spleen of aniline-treated rats compared to the controls. NTH1 and APE1 mRNA expression in the spleen showed 2.9- and 3.2-fold increases, respectively, in aniline-treated rats compared to controls. Likewise, Western blot analysis showed that protein expression of NTH1 and APE1 in the nuclear extracts of spleen from aniline-treated rats was 1.9- and 2.7-fold higher than controls, respectively. Immunohistochemistry indicated that aniline treatment also led to stronger immunoreactivity for both NTH1 and APE1 in the spleens, confined to the red pulp areas. These results, thus, show that aniline exposure is associated with induction of NTH1 and APE1 in the spleen. The increased repair activity of NTH1 and APE1 could be an important mechanism for the removal of oxidative DNA lesions. These findings thus identify a novel mechanism through which NTH1 and APE1 may regulate the repair of oxidative DNA damage in aniline-induced splenic toxicity. PMID:23352893

  3. Induction of base excision repair enzymes NTH1 and APE1 in rat spleen following aniline exposure.

    PubMed

    Ma, Huaxian; Wang, Jianling; Abdel-Rahman, Sherif Z; Boor, Paul J; Khan, M Firoze

    2013-03-15

    Mechanisms by which aniline exposure elicits splenotoxicity, especially a tumorigenic response, are not well-understood. Earlier, we have shown that aniline exposure leads to oxidative DNA damage and up-regulation of OGG1 and NEIL1/2 DNA glycosylases in rat spleen. However, the contribution of endonuclease III homolog 1 (NTH1) and apurinic/apyrimidinic endonuclease 1 (APE1) in the repair of aniline-induced oxidative DNA damage in the spleen is not known. This study was, therefore, focused on examining whether NTH1 and APE1 contribute to the repair of oxidative DNA lesions in the spleen, in an experimental condition preceding tumorigenesis. To achieve this, male SD rats were subchronically exposed to aniline (0.5 mmol/kg/day via drinking water for 30 days), while controls received drinking water only. By quantitating the cleavage products, the activities of NTH1 and APE1 were assayed using substrates containing thymine glycol (Tg) and tetrahydrofuran, respectively. Aniline treatment led to significant increases in NTH1- and APE1-mediated BER activity in the nuclear extracts of spleen of aniline-treated rats compared to the controls. NTH1 and APE1 mRNA expression in the spleen showed 2.9- and 3.2-fold increases, respectively, in aniline-treated rats compared to the controls. Likewise, Western blot analysis showed that protein expression of NTH1 and APE1 in the nuclear extracts of spleen from aniline-treated rats was 1.9- and 2.7-fold higher than the controls, respectively. Immunohistochemistry indicated that aniline treatment also led to stronger immunoreactivity for both NTH1 and APE1 in the spleens, confined to the red pulp areas. These results, thus, show that aniline exposure is associated with induction of NTH1 and APE1 in the spleen. The increased repair activity of NTH1 and APE1 could be an important mechanism for the removal of oxidative DNA lesions. These findings thus identify a novel mechanism through which NTH1 and APE1 may regulate the repair of oxidative DNA damage in aniline-induced splenic toxicity. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. A germline FANCA alteration that is associated with increased sensitivity to DNA damaging agents.

    PubMed

    Wilkes, David C; Sailer, Verena; Xue, Hui; Cheng, Hongwei; Collins, Colin C; Gleave, Martin; Wang, Yuzhuo; Demichelis, Francesca; Beltran, Himisha; Rubin, Mark A; Rickman, David S

    2017-09-01

    Defects in genes involved in DNA damage repair (DDR) pathway are emerging as novel biomarkers and targets for new prostate cancer drug therapies. A previous report revealed an association between an exceptional response to cisplatin treatment and a somatic loss of heterozygosity (LOH) of FANCA in a patient with metastatic prostate cancer who also harbored a germline FANCA variant (S1088F). Although germline FANCA mutations are the most frequent alterations in patients with Fanconi anemia, germline alterations are less common in prostate cancer. We hypothesized that the germline S1088F FANCA variant in combination with FANCA LOH was deleterious for FANCA function and contributed to the patient's exceptional response to cisplatin. We show that although it properly localizes to the nucleus, the S1088F FANCA mutant protein disrupts the FANC protein complex resulting in increased sensitivity to DNA damaging agents. Because molecular stratification is emerging as a strategy for treating men with metastatic, castrate-resistant prostate cancer harboring specific DDR gene defects, our findings suggest that more biomarker studies are needed to better define clinically relevant germline and somatic alterations. © 2017 Wilkes et al.; Published by Cold Spring Harbor Laboratory Press.

  5. Heat shock factor-1 modulates p53 activity in the transcriptional response to DNA damage

    PubMed Central

    Logan, Ian R.; McNeill, Hesta V.; Cook, Susan; Lu, Xiaohong; Meek, David W.; Fuller-Pace, Frances V.; Lunec, John; Robson, Craig N.

    2009-01-01

    Here we define an important role for heat shock factor 1 (HSF1) in the cellular response to genotoxic agents. We demonstrate for the first time that HSF1 can complex with nuclear p53 and that both proteins are co-operatively recruited to p53-responsive genes such as p21. Analysis of natural and synthetic cis elements demonstrates that HSF1 can enhance p53-mediated transcription, whilst depletion of HSF1 reduces the expression of p53-responsive transcripts. We find that HSF1 is required for optimal p21 expression and p53-mediated cell-cycle arrest in response to genotoxins while loss of HSF1 attenuates apoptosis in response to these agents. To explain these novel properties of HSF1 we show that HSF1 can complex with DNA damage kinases ATR and Chk1 to effect p53 phosphorylation in response to DNA damage. Our data reveal HSF1 as a key transcriptional regulator in response to genotoxic compounds widely used in the clinical setting, and suggest that HSF1 will contribute to the efficacy of these agents. PMID:19295133

  6. Genome-health nutrigenomics and nutrigenetics: nutritional requirements or 'nutriomes' for chromosomal stability and telomere maintenance at the individual level.

    PubMed

    Bull, Caroline; Fenech, Michael

    2008-05-01

    It is becoming increasingly evident that (a) risk for developmental and degenerative disease increases with more DNA damage, which in turn is dependent on nutritional status, and (b) the optimal concentration of micronutrients for prevention of genome damage is also dependent on genetic polymorphisms that alter the function of genes involved directly or indirectly in the uptake and metabolism of micronutrients required for DNA repair and DNA replication. The development of dietary patterns, functional foods and supplements that are designed to improve genome-health maintenance in individuals with specific genetic backgrounds may provide an important contribution to an optimum health strategy based on the diagnosis and individualised nutritional prevention of genome damage, i.e. genome health clinics. The present review summarises some of the recent knowledge relating to micronutrients that are associated with chromosomal stability and provides some initial insights into the likely nutritional factors that may be expected to have an impact on the maintenance of telomeres. It is evident that developing effective strategies for defining nutrient doses and combinations or 'nutriomes' for genome-health maintenance at the individual level is essential for further progress in this research field.

  7. Aspm sustains postnatal cerebellar neurogenesis and medulloblastoma growth in mice

    PubMed Central

    Williams, Scott E.; Garcia, Idoia; Crowther, Andrew J.; Li, Shiyi; Stewart, Alyssa; Liu, Hedi; Lough, Kendall J.; O'Neill, Sean; Veleta, Katherine; Oyarzabal, Esteban A.; Merrill, Joseph R.; Shih, Yen-Yu Ian; Gershon, Timothy R.

    2015-01-01

    Alterations in genes that regulate brain size may contribute to both microcephaly and brain tumor formation. Here, we report that Aspm, a gene that is mutated in familial microcephaly, regulates postnatal neurogenesis in the cerebellum and supports the growth of medulloblastoma, the most common malignant pediatric brain tumor. Cerebellar granule neuron progenitors (CGNPs) express Aspm when maintained in a proliferative state by sonic hedgehog (Shh) signaling, and Aspm is expressed in Shh-driven medulloblastoma in mice. Genetic deletion of Aspm reduces cerebellar growth, while paradoxically increasing the mitotic rate of CGNPs. Aspm-deficient CGNPs show impaired mitotic progression, altered patterns of division orientation and differentiation, and increased DNA damage, which causes progenitor attrition through apoptosis. Deletion of Aspm in mice with Smo-induced medulloblastoma reduces tumor growth and increases DNA damage. Co-deletion of Aspm and either of the apoptosis regulators Bax or Trp53 (also known as p53) rescues the survival of neural progenitors and reduces the growth restriction imposed by Aspm deletion. Our data show that Aspm functions to regulate mitosis and to mitigate DNA damage during CGNP cell division, causes microcephaly through progenitor apoptosis when mutated, and sustains tumor growth in medulloblastoma. PMID:26450969

  8. CPTAC Develops Fit-for-Purpose Multiplex Immuno-MRM Assay for Profiling the DNA Damage Response Pathway | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    Ionizing radiation (IR) is a commonly employed cancer treatment that kills cancer cells by damaging their DNA. While the DNA damage response (DDR) pathway may be key to determining tumor responses, radiochemical damage due to IR can target the patients’ healthy dividing cells, leading to the formation of secondary hematologic and solid tumors after DNA-damaging therapy.

  9. In Vivo Alkaline Comet Assay and Enzyme-modified Alkaline Comet Assay for Measuring DNA Strand Breaks and Oxidative DNA Damage in Rat Liver

    PubMed Central

    Ding, Wei; Bishop, Michelle E.; Lyn-Cook, Lascelles E.; Davis, Kelly J.; Manjanatha, Mugimane G.

    2016-01-01

    Unrepaired DNA damage can lead to genetic instability, which in turn may enhance cancer development. Therefore, identifying potential DNA damaging agents is important for protecting public health. The in vivo alkaline comet assay, which detects DNA damage as strand breaks, is especially relevant for assessing the genotoxic hazards of xenobiotics, as its responses reflect the in vivo absorption, tissue distribution, metabolism and excretion (ADME) of chemicals, as well as DNA repair process. Compared to other in vivo DNA damage assays, the assay is rapid, sensitive, visual and inexpensive, and, by converting oxidative DNA damage into strand breaks using specific repair enzymes, the assay can measure oxidative DNA damage in an efficient and relatively artifact-free manner. Measurement of DNA damage with the comet assay can be performed using both acute and subchronic toxicology study designs, and by integrating the comet assay with other toxicological assessments, the assay addresses animal welfare requirements by making maximum use of animal resources. Another major advantage of the assays is that they only require a small amount of cells, and the cells do not have to be derived from proliferating cell populations. The assays also can be performed with a variety of human samples obtained from clinically or occupationally exposed individuals. PMID:27166647

  10. In Vivo Alkaline Comet Assay and Enzyme-modified Alkaline Comet Assay for Measuring DNA Strand Breaks and Oxidative DNA Damage in Rat Liver.

    PubMed

    Ding, Wei; Bishop, Michelle E; Lyn-Cook, Lascelles E; Davis, Kelly J; Manjanatha, Mugimane G

    2016-05-04

    Unrepaired DNA damage can lead to genetic instability, which in turn may enhance cancer development. Therefore, identifying potential DNA damaging agents is important for protecting public health. The in vivo alkaline comet assay, which detects DNA damage as strand breaks, is especially relevant for assessing the genotoxic hazards of xenobiotics, as its responses reflect the in vivo absorption, tissue distribution, metabolism and excretion (ADME) of chemicals, as well as DNA repair process. Compared to other in vivo DNA damage assays, the assay is rapid, sensitive, visual and inexpensive, and, by converting oxidative DNA damage into strand breaks using specific repair enzymes, the assay can measure oxidative DNA damage in an efficient and relatively artifact-free manner. Measurement of DNA damage with the comet assay can be performed using both acute and subchronic toxicology study designs, and by integrating the comet assay with other toxicological assessments, the assay addresses animal welfare requirements by making maximum use of animal resources. Another major advantage of the assays is that they only require a small amount of cells, and the cells do not have to be derived from proliferating cell populations. The assays also can be performed with a variety of human samples obtained from clinically or occupationally exposed individuals.

  11. Colorimetric detection of DNA damage by using hemin-graphene nanocomposites

    NASA Astrophysics Data System (ADS)

    Wei, W.; Zhang, D. M.; Yin, L. H.; Pu, Y. P.; Liu, S. Q.

    2013-04-01

    A colorimetric method for detection of DNA damage was developed by using hemin-graphene nanosheets (H-GNs). H-GNs were skillfully synthesized by adsorping of hemin on graphene through π-π interactions. The as-prepared H-GNs possessed both the ability of graphene to differentiate the damage DNA from intact DNA and the catalytic action of hemin. The damaged DNA made H-GNs coagulated to different degrees from the intact DNA because there were different amount of negative charge exposed on their surface, which made a great impact on the solubility of H-GNs. As a result, the corresponding centrifugal supernatant of H-GNs solution showed different color in the presence of 3,3',5,5'-tetramethylbenzidine (TMB) and H2O2, which could be discriminated by naked eyes or by ultraviolet (UV)-visible spectrometer. Based on this, the damaged effects of styrene oxide (SO), NaAsO2 and UV radiation on DNA were studied. Results showed that SO exerted most serious damage effect on DNA although all of them damaged DNA seriously. The new method for detection of DNA damage showed good prospect in the evaluation of genotoxicity of new compounds, the maximum limit of pesticide residue, food additives, and so on, which is important in the fields of food science, pharmaceutical science and pesticide science.

  12. Assessment of the role of DNA repair in damaged forensic samples.

    PubMed

    Ambers, Angie; Turnbough, Meredith; Benjamin, Robert; King, Jonathan; Budowle, Bruce

    2014-11-01

    Previous studies on DNA damage and repair have involved in vitro laboratory procedures that induce a single type of lesion in naked templates. Although repair of singular, sequestered types of DNA damage has shown some success, forensic and ancient specimens likely contain a number of different types of lesions. This study sought to (1) develop protocols to damage DNA in its native state, (2) generate a pool of candidate samples for repair that more likely emulate authentic forensic samples, and (3) assess the ability of the PreCR(TM) Repair Mix to repair the resultant lesions. Complexed, native DNA is more difficult to damage than naked DNA. Modified procedures included the use of higher concentrations and longer exposure times. Three types of samples, those that demonstrated damage based on short tandem repeat (STR) profile signals, were selected for repair experiments: environmentally damaged bloodstains, bleach-damaged whole blood, and human skeletal remains. Results showed trends of improved performance of STR profiling of bleach-damaged DNA. However, the repair assay did not improve DNA profiles from environmentally damaged bloodstains or bone, and in some cases resulted in lower RFU values for STR alleles. The extensive spectrum of DNA damage and myriad combinations of lesions that can be present in forensic samples appears to pose a challenge for the in vitro PreCR(TM) assay. The data suggest that the use of PreCR in casework should be considered with caution due to the assay's varied results.

  13. A Preliminary Study: Human Fibroid Stro-1+/CD44+ Stem Cells Isolated From Uterine Fibroids Demonstrate Decreased DNA Repair and Genomic Integrity Compared to Adjacent Myometrial Stro-1+/CD44+ Cells.

    PubMed

    Prusinski Fernung, Lauren E; Al-Hendy, Ayman; Yang, Qiwei

    2018-01-01

    Although uterine fibroids (UFs) continue to place a major burden on female reproductive health, the mechanisms behind their origin remain undetermined. Normal myometrial stem cells may be transformed into tumor-initiating stem cells, causing UFs, due to unknown causes of somatic mutations in MED12, found in up to 85% of sporadically formed UFs. It is well established in other tumor types that defective DNA repair increases the risk of such tumorigenic somatic mutations, mechanisms not yet studied in UFs. To examine the putative cause(s) of this stem cell transformation, we analyzed DNA repair within stem cells from human UFs compared to those from adjacent myometrium to determine whether DNA repair in fibroid stem cells is compromised. Human fibroid (F) and adjacent myometrial (Myo) stem cells were isolated from fresh tissues, and gene expression relating to DNA repair was analyzed. Fibroid stem cells differentially expressed DNA repair genes related to DNA double- (DSBs) and single-strand breaks. DNA damage was measured using alkaline comet assay. Additionally, DNA DSBs were induced in these stem cells and DNA DSB repair evaluated (1) by determining changes in phosphorylation of DNA DSB-related proteins and (2) by determining differences in γ-H2AX foci formation and relative DNA repair protein RAD50 expression. Overall, F stem cells demonstrated increased DNA damage and altered DNA repair gene expression and signaling, suggesting that human F stem cells demonstrate impaired DNA repair. Compromised F stem cell DNA repair may contribute to further mutagenesis and, consequently, further growth and propagation of UF tumors.

  14. DNA-PKcs deficiency leads to persistence of oxidatively-induced clustered DNA lesions in human tumor cells

    PubMed Central

    Peddi, Prakash; Loftin, Charles W.; Dickey, Jennifer S.; Hair, Jessica M.; Burns, Kara J.; Aziz, Khaled; Francisco, Dave C.; Panayiotidis, Mihalis I.; Sedelnikova, Olga A.; Bonner, William M.; Winters, Thomas A.; Georgakilas, Alexandros G.

    2010-01-01

    DNA-dependent protein kinase (DNA-PK) is a key non-homologous end joining (NHEJ) nuclear serine/threonine protein kinase involved in various DNA metabolic and damage signaling pathways contributing to the maintenance of genomic stability and prevention of cancer. In order to examine the role of DNA-PK in processing of non-DSB clustered DNA damage, we have used three different models of DNA-PK deficiency i.e. chemical inactivation of its kinase activity by novel inhibitors IC86621 and NU7026, knock-down and complete absence of the protein in human breast cancer (MCF-7) and glioblastoma cell lines (MO59-J/K). Compromised DNA-PK repair pathway has lead to accumulation of clustered DNA lesions induced by γ-rays. Tumor cells lacking protein expression or with inhibited kinase activity showed a marked decrease in their ability to process oxidatively-induced non-DSB clustered DNA lesions measured using a modified version of pulsed field gel electrophoresis or single cell gel electrophoresis (Comet assay). In all cases, DNA-PK inactivation lead to a higher level of lesion persistence even after 24–72 hrs of repair. We suggest a model in which DNA-PK deficiency affects the processing of these clusters by first compromising base excision repair and second by the presence of catalytically inactive DNA-PK inhibiting the efficient processing of these lesions due to the failure of DNA-PK to disassociate from the DNA ends. The information rendered will be important not only for understating cancer etiology in the presence of a NHEJ deficiency but also lead to a better understanding of cancer treatments based on the induction of oxidative stress and inhibition of cluster repair. PMID:20193758

  15. Disruption of nucleotide excision repair by the human T-cell leukemia virus type 1 Tax protein.

    PubMed

    Kao, S Y; Marriott, S J

    1999-05-01

    The Tax protein of human T-cell leukemia virus type 1 (HTLV-1) is a transcriptional transactivator and viral oncogene. Since cellular transformation has been frequently linked to alterations in genome stability, we investigated the effect of Tax on nucleotide excision repair (NER), a prominent cellular DNA repair pathway. Cells expressing Tax exhibited a reduced capacity for NER as measured by unscheduled DNA synthesis and host cell reactivation assays. The cellular proliferating cell nuclear antigen (PCNA) gene product regulates DNA replication and repair pathways, including NER. Since Tax activates transcription of the PCNA promoter, we investigated whether this activity contributes to the reduction of NER. Tax increased endogenous PCNA protein expression, and analysis of Tax mutant proteins demonstrated that the reduction in NER correlated with Tax transactivation of PCNA gene expression. Direct overexpression of PCNA also reduced NER. We propose that overexpression of PCNA, and disruption of NER induced by Tax, predisposes cells to accumulate DNA damage and contributes to HTLV-1 transformation.

  16. The DNA damage response during mitosis.

    PubMed

    Heijink, Anne Margriet; Krajewska, Małgorzata; van Vugt, Marcel A T M

    2013-10-01

    Cells are equipped with a cell-intrinsic signaling network called the DNA damage response (DDR). This signaling network recognizes DNA lesions and initiates various downstream pathways to coordinate a cell cycle arrest with the repair of the damaged DNA. Alternatively, the DDR can mediate clearance of affected cells that are beyond repair through apoptosis or senescence. The DDR can be activated in response to DNA damage throughout the cell cycle, although the extent of DDR signaling is different in each cell cycle phase. Especially in response to DNA double strand breaks, only a very marginal response was observed during mitosis. Early on it was recognized that cells which are irradiated during mitosis continued division without repairing broken chromosomes. Although these initial observations indicated diminished DNA repair and lack of an acute DNA damage-induced cell cycle arrest, insight into the mechanistic re-wiring of DDR signaling during mitosis was only recently provided. Different mechanisms appear to be at play to inactivate specific signaling axes of the DDR network in mitosis. Importantly, mitotic cells not simply inactivate the entire DDR, but appear to mark their DNA damage for repair after mitotic exit. Since the treatment of cancer frequently involves agents that induce DNA damage as well as agents that block mitotic progression, it is clinically relevant to obtain a better understanding of how cancer cells deal with DNA damage during interphase versus mitosis. In this review, the molecular details concerning DDR signaling during mitosis as well as the consequences of encountering DNA damage during mitosis for cellular fate are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. DNA damage in an animal model of maple syrup urine disease.

    PubMed

    Scaini, Giselli; Jeremias, Isabela C; Morais, Meline O S; Borges, Gabriela D; Munhoz, Bruna P; Leffa, Daniela D; Andrade, Vanessa M; Schuck, Patrícia F; Ferreira, Gustavo C; Streck, Emilio L

    2012-06-01

    Maple syrup urine disease is an inborn error of metabolism caused by a severe deficiency of the branched chain alpha-ketoacid dehydrogenase complex. Neurological dysfunction is a common finding in patients with maple syrup urine disease. However, the mechanisms underlying the neuropathology of brain damage in this disorder are poorly understood. In this study, we investigated whether acute or chronic administration of a branched chain amino acid pool (leucine, isoleucine and valine) causes transient DNA damage, as determined by the alkaline comet assay, in the brain and blood of rats during development and whether antioxidant treatment prevented the alterations induced by branched chain amino acids. Our results showed that the acute administration of branched chain amino acids increased the DNA damage frequency and damage index in the hippocampus. However, the chronic administration of branched chain amino acids increased the DNA damage frequency and damage index in both the hippocampus and the striatum, and the antioxidant treatment was able to prevent DNA damage in the hippocampus and striatum. The present study demonstrated that metabolite accumulation in MSUD induces DNA damage in the hippocampus and striatum and that it may be implicated in the neuropathology observed in the affected patients. We demonstrated that the effect of antioxidant treatment (N-acetylcysteine plus deferoxamine) prevented DNA damage, suggesting the involvement of oxidative stress in DNA damage. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Modulation of inflammation and disease tolerance by DNA damage response pathways.

    PubMed

    Neves-Costa, Ana; Moita, Luis F

    2017-03-01

    The accurate replication and repair of DNA is central to organismal survival. This process is challenged by the many factors that can change genetic information such as replication errors and direct damage to the DNA molecule by chemical and physical agents. DNA damage can also result from microorganism invasion as an integral step of their life cycle or as collateral damage from host defense mechanisms against pathogens. Here we review the complex crosstalk of DNA damage response and immune response pathways that might be evolutionarily connected and argue that DNA damage response pathways can be explored therapeutically to induce disease tolerance through the activation of tissue damage control processes. Such approach may constitute the missing pillar in the treatment of critical illnesses caused by multiple organ failure, such as sepsis and septic shock. © 2016 Federation of European Biochemical Societies.

  19. Role of isolated and clustered DNA damage and the post-irradiating repair process in the effects of heavy ion beam irradiation.

    PubMed

    Tokuyama, Yuka; Furusawa, Yoshiya; Ide, Hiroshi; Yasui, Akira; Terato, Hiroaki

    2015-05-01

    Clustered DNA damage is a specific type of DNA damage induced by ionizing radiation. Any type of ionizing radiation traverses the target DNA molecule as a beam, inducing damage along its track. Our previous study showed that clustered DNA damage yields decreased with increased linear energy transfer (LET), leading us to investigate the importance of clustered DNA damage in the biological effects of heavy ion beam radiation. In this study, we analyzed the yield of clustered base damage (comprising multiple base lesions) in cultured cells irradiated with various heavy ion beams, and investigated isolated base damage and the repair process in post-irradiation cultured cells. Chinese hamster ovary (CHO) cells were irradiated by carbon, silicon, argon and iron ion beams with LETs of 13, 55, 90 and 200 keV µm(-1), respectively. Agarose gel electrophoresis of the cells with enzymatic treatments indicated that clustered base damage yields decreased as the LET increased. The aldehyde reactive probe procedure showed that isolated base damage yields in the irradiated cells followed the same pattern. To analyze the cellular base damage process, clustered DNA damage repair was investigated using DNA repair mutant cells. DNA double-strand breaks accumulated in CHO mutant cells lacking Xrcc1 after irradiation, and the cell viability decreased. On the other hand, mouse embryonic fibroblast (Mef) cells lacking both Nth1 and Ogg1 became more resistant than the wild type Mef. Thus, clustered base damage seems to be involved in the expression of heavy ion beam biological effects via the repair process. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  20. Changes in DnaA-dependent gene expression contribute to the transcriptional and developmental response of Bacillus subtilis to manganese limitation in Luria-Bertani medium.

    PubMed

    Hoover, Sharon E; Xu, Weihong; Xiao, Wenzhong; Burkholder, William F

    2010-08-01

    The SOS response to DNA damage in bacteria is a well-known component of the complex transcriptional responses to genotoxic environmental stresses such as exposure to reactive oxygen species, alkylating agents, and many of the antibiotics targeting DNA replication. However, bacteria such as Bacillus subtilis also respond to conditions that perturb DNA replication via a transcriptional response mediated by the replication initiation protein DnaA. In addition to regulating the initiation of DNA replication, DnaA directly regulates the transcription of specific genes. Conditions that perturb DNA replication can trigger the accumulation of active DnaA, activating or repressing the transcription of genes in the DnaA regulon. We report here that simply growing B. subtilis in LB medium altered DnaA-dependent gene expression in a manner consistent with the accumulation of active DnaA and that this was part of a general transcriptional response to manganese limitation. The SOS response to DNA damage was not induced under these conditions. One of the genes positively regulated by DnaA in Bacillus subtilis encodes a protein that inhibits the initiation of sporulation, Sda. Sda expression was induced as cells entered stationary phase in LB medium but not in LB medium supplemented with manganese, and the induction of Sda inhibited sporulation-specific gene expression and the onset of spore morphogenesis. In the absence of Sda, manganese-limited cells initiated spore development but failed to form mature spores. These data highlight that DnaA-dependent gene expression may influence the response of bacteria to a range of environmental conditions, including conditions that are not obviously associated with genotoxic stress.

  1. Changes in DnaA-Dependent Gene Expression Contribute to the Transcriptional and Developmental Response of Bacillus subtilis to Manganese Limitation in Luria-Bertani Medium▿ †

    PubMed Central

    Hoover, Sharon E.; Xu, Weihong; Xiao, Wenzhong; Burkholder, William F.

    2010-01-01

    The SOS response to DNA damage in bacteria is a well-known component of the complex transcriptional responses to genotoxic environmental stresses such as exposure to reactive oxygen species, alkylating agents, and many of the antibiotics targeting DNA replication. However, bacteria such as Bacillus subtilis also respond to conditions that perturb DNA replication via a transcriptional response mediated by the replication initiation protein DnaA. In addition to regulating the initiation of DNA replication, DnaA directly regulates the transcription of specific genes. Conditions that perturb DNA replication can trigger the accumulation of active DnaA, activating or repressing the transcription of genes in the DnaA regulon. We report here that simply growing B. subtilis in LB medium altered DnaA-dependent gene expression in a manner consistent with the accumulation of active DnaA and that this was part of a general transcriptional response to manganese limitation. The SOS response to DNA damage was not induced under these conditions. One of the genes positively regulated by DnaA in Bacillus subtilis encodes a protein that inhibits the initiation of sporulation, Sda. Sda expression was induced as cells entered stationary phase in LB medium but not in LB medium supplemented with manganese, and the induction of Sda inhibited sporulation-specific gene expression and the onset of spore morphogenesis. In the absence of Sda, manganese-limited cells initiated spore development but failed to form mature spores. These data highlight that DnaA-dependent gene expression may influence the response of bacteria to a range of environmental conditions, including conditions that are not obviously associated with genotoxic stress. PMID:20511500

  2. Factors influencing heterogeneity of radiation-induced DNA-damage measured by the alkaline comet assay.

    PubMed

    Seidel, Clemens; Lautenschläger, Christine; Dunst, Jürgen; Müller, Arndt-Christian

    2012-04-20

    To investigate whether different conditions of DNA structure and radiation treatment could modify heterogeneity of response. Additionally to study variance as a potential parameter of heterogeneity for radiosensitivity testing. Two-hundred leukocytes per sample of healthy donors were split into four groups. I: Intact chromatin structure; II: Nucleoids of histone-depleted DNA; III: Nucleoids of histone-depleted DNA with 90 mM DMSO as antioxidant. Response to single (I-III) and twice (IV) irradiation with 4 Gy and repair kinetics were evaluated using %Tail-DNA. Heterogeneity of DNA damage was determined by calculation of variance of DNA-damage (V) and mean variance (Mvar), mutual comparisons were done by one-way analysis of variance (ANOVA). Heterogeneity of initial DNA-damage (I, 0 min repair) increased without histones (II). Absence of histones was balanced by addition of antioxidants (III). Repair reduced heterogeneity of all samples (with and without irradiation). However double irradiation plus repair led to a higher level of heterogeneity distinguishable from single irradiation and repair in intact cells. Increase of mean DNA damage was associated with a similarly elevated variance of DNA damage (r = +0.88). Heterogeneity of DNA-damage can be modified by histone level, antioxidant concentration, repair and radiation dose and was positively correlated with DNA damage. Experimental conditions might be optimized by reducing scatter of comet assay data by repair and antioxidants, potentially allowing better discrimination of small differences. Amount of heterogeneity measured by variance might be an additional useful parameter to characterize radiosensitivity.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srinivas, L.; Shalini, V.K.

    Twigs-dry leaves smoke condensate (TDS), as a source of clastogenic ROS and carcinogenic PAH, was investigated for its in vitro DNA-damaging effect in calf thymus DNA and human peripheral lymphocytes. An aqueous turmeric component--Aq.T--with an established antioxidant activity, was tested as a DNA protectant. TDS induced 13-fold damage to calf thymus DNA as judged by the emergence of a DNA damage specific, fluorescent product (em: 405 nm). Aq.T at 800 ng/microL extended 69% protection to calf thymus DNA and was comparable to the other protectants such as curcumin, BHA, vitamin E, SOD, and CAT. In human peripheral lymphocytes, TDS inducedmore » extensive DNA damage in comparison with the tumor promoter TPA, as judged by FADU. Aq.T at 300 ng/microL extended 90% protection to human lymphocyte DNA against TDS-induced damage, and was more effective than the other protectants--DABCO, D-mannitol, sodium benzoate, vitamin E (ROS quenchers), SOD, CAT (antioxidant enzymes), tannic acid, flufenamic acid, BHA, BHT, n-PG, curcumin and quercetin (antioxidants). Aq.T offered 65% protection to human lymphocyte DNA against TPA-induced damage and was comparable to SOD. The above results indicate that TDS induces substantial DNA damage in calf thymus DNA and human lymphocytes and Aq.T is an efficient protectant.« less

  4. Methamphetamine induces autophagy and apoptosis in a mesencephalic dopaminergic neuronal culture model: role of cathepsin-D in methamphetamine-induced apoptotic cell death.

    PubMed

    Kanthasamy, Arthi; Anantharam, V; Ali, Syed F; Kanthasamy, A G

    2006-08-01

    Autophagy is a phylogenetically conserved process that plays a critical role in the degradation of oxidatively damaged proteins and organelle turnover. The role of oxidative stress and apoptosis in methamphetamine (METH)-induced neurotoxicity is well known; however, the potential contribution of autophagy to METH-induced oxidative damage in dopaminergic neuronal systems remains unclear. The goals of the present article were twofold: (a) to develop an in vitro dopaminergic cell culture model to study cellular and molecular mechanisms underlying METH-induced autophagy and apoptosis, and (b) to determine whether lysosomal protease cathepsin-D activation, resulting from the loss of lysosomal membrane integrity, contributes to METH-induced apoptosis. To accomplish these goals, we characterized morphological and biochemical changes in an immortalized mesencephalic dopaminergic neuronal cell line (N27 cells) following treatment with METH. Exposure of METH (2 mM) to N27 cells resulted in the appearance of cytoplasmic vacuolar structures reminiscent of autophagic vacuoles within 3 h. In order to ascertain the identity of the vacuolar structures that are formed following METH exposure, immunohistochemical staining for markers of autophagy were performed. LAMP 2, a classical marker of autophagolysosomes, revealed an extensive punctuate pattern of distribution on the vacuolar membrane surface, with exclusive localization in the cytoplasm. Additionally, using DNA fragmentation analysis we showed a dose-dependent increase in fragmented DNA in METH treated N27 cells. Since METH-induced autophagy preceded DNA fragmentation, we tested whether dysfunction of the autophagolysosomal system contributes to nuclear damage. Immunofluorescence studies with cathepsin-d demonstrated a granular pattern of staining in untreated cells, whereas an increased cathepsin- D immunoreactivity with a globular pattern of staining was observed in METH-treated cells. Nevertheless, blockade of cathepsin-D activation by pepstatin-A, cathepsin-D inhibitor, failed to alter METH-induced DNA fragmentation. Collectively, these results demonstrate that N27 dopaminergic neuronal cell model may serve as an excellent in vitro model to study the mechanisms of METH-induced autophagy and apoptosis. Furthermore, it is less likely that cathepsin-D may serve as a trigger for the induction of apoptosis subsequent to exposure of N27 dopaminergic neuronal cells to METH.

  5. Effects of 17beta-estradiol, and its metabolite, 4-hydroxyestradiol on fertilization, embryo development and oxidative DNA damage in sand dollar (Dendraster excentricus) sperm.

    PubMed

    Rempel, Mary Ann; Hester, Brian; Deharo, Hector; Hong, Haizheng; Wang, Yinsheng; Schlenk, Daniel

    2009-03-15

    Oxidative compounds have been demonstrated to decrease the fertilization capability and viability of offspring of treated spermatozoa. As estrogen and its hydroxylated metabolites readily undergo redox cycling, this study was undertaken to determine if estrogens and other oxidants could damage DNA and impair sperm function. Sperm was preexposed to either 17beta-estradiol (E2), 4-hydroxyestradiol (4OHE2) or the oxidant t-butyl hydroperoxide (t-BOOH), and allowed to fertilize untreated eggs. The fertilization rates and development of the larvae were assessed, as well as the amount of 8-oxodeoxyguanosine (8-oxodG) as an indication of oxidative DNA damage. All compounds caused significant decreases in fertilization and increases in pathological abnormalities in offspring, with 4OHE2 being the most toxic. Treatment with 4OHE2 caused a significant increase of 8-oxodG, but E2 failed to show any effect. Pathological abnormalities were significantly correlated (r(2)=0.44, p< or =0.05) with 8-oxodG levels in sperm treated with t-BOOH and 4OHE2, but not E2. 8-OxodG levels also were somewhat weakly correlated with impaired fertilization in 4OHE2-treated sperm (r(2)=0.33, p< or =0.05). The results indicate that biotransformation of E2 to 4OHE2 enhances oxidative damage of DNA in sperm, which can reduce fertilization and impair embryonic development, but other mechanisms of action may also contribute to these effects.

  6. Effects of 17β-estradiol, and its metabolite, 4-hydroxyestradiol on fertilization, embryo development and oxidative DNA damage in sand dollar (Dendraster excentricus) sperm

    PubMed Central

    Rempel, Mary Ann; Hester, Brian; DeHaro, Hector; Hong, Haizheng; Wang, Yinsheng; Schlenk, Daniel

    2011-01-01

    Oxidative compounds have been demonstrated to decrease the fertilization capability and viability of offspring of treated spermatozoa. As estrogen and its hydroxylated metabolites readily undergo redox cycling, this study was undertaken to determine if estrogens and other oxidants could damage DNA and impair sperm function. Sperm was preexposed to either 17β-estradiol (E2), 4-hydroxyestradiol (4OHE2) or the oxidant t-butyl hydroperoxide (t-BOOH), and allowed to fertilize untreated eggs. The fertilization rates and development of the larvae were assessed, as well as the amount of 8-oxodeoxyguanosine (8-oxodG) as an indication of oxidative DNA damage. All compounds caused significant decreases in fertilization and increases in pathological abnormalities in offspring, with 4OHE2 being the most toxic. Treatment with 4OHE2 caused a significant increase of 8-oxodG, but E2 failed to show any effect. Pathological abnormalities were significantly correlated (r2 = 0.44, p ≤ 0.05) with 8-oxodG levels in sperm treated with t-BOOH and 4OHE2, but not E2. 8-OxodG levels also were somewhat weakly correlated with impaired fertilization in 4OHE2-treated sperm (r2 = 0.33, p ≤ 0.05). The results indicate that biotransformation of E2 to 4OHE2 enhances oxidative damage of DNA in sperm, which can reduce fertilization and impair embryonic development, but other mechanisms of action may also contribute to these effects. PMID:19171371

  7. Roles of the checkpoint sensor clamp Rad9-Rad1-Hus1 (911)-complex and the clamp loaders Rad17-RFC and Ctf18-RFC in Schizosaccharomyces pombe telomere maintenance.

    PubMed

    Khair, Lyne; Chang, Ya-Ting; Subramanian, Lakxmi; Russell, Paul; Nakamura, Toru M

    2010-06-01

    While telomeres must provide mechanisms to prevent DNA repair and DNA damage checkpoint factors from fusing chromosome ends and causing permanent cell cycle arrest, these factors associate with functional telomeres and play critical roles in the maintenance of telomeres. Previous studies have established that Tel1 (ATM) and Rad3 (ATR) kinases play redundant but essential roles for telomere maintenance in fission yeast. In addition, the Rad9-Rad1-Hus1 (911) and Rad17-RFC complexes work downstream of Rad3 (ATR) in fission yeast telomere maintenance. Here, we investigated how 911, Rad17-RFC and another RFC-like complex Ctf18-RFC contribute to telomere maintenance in fission yeast cells lacking Tel1 and carrying a novel hypomorphic allele of rad3 (DBD-rad3), generated by the fusion between the DNA binding domain (DBD) of the fission yeast telomere capping protein Pot1 and Rad3. Our investigations have uncovered a surprising redundancy for Rad9 and Hus1 in allowing Rad1 to contribute to telomere maintenance in DBD-rad3 tel1 cells. In addition, we found that Rad17-RFC and Ctf18-RFC carry out redundant telomere maintenance functions in DBD-rad3 tel1 cells. Since checkpoint sensor proteins are highly conserved, genetic redundancies uncovered here may be relevant to telomere maintenance and detection of DNA damage in other eukaryotes.

  8. Roles of the Checkpoint Sensor Clamp Rad9-Rad1-Hus1 (911)-Complex and the Clamp Loaders Rad17-RFC and Ctf18-RFC in Schizosaccharomyces pombe Telomere Maintenance

    PubMed Central

    Khair, Lyne; Chang, Ya-Ting; Subramanian, Lakxmi; Russell, Paul; Nakamura, Toru M.

    2011-01-01

    While telomeres must provide mechanisms to prevent DNA repair and DNA damage checkpoint factors from fusing chromosome ends and causing permanent cell cycle arrest, these factors associate with functional telomeres and play critical roles in the maintenance of telomeres. Previous studies have established that Tel1 (ATM) and Rad3 (ATR) kinases play redundant but essential roles for telomere maintenance in fission yeast. In addition, the Rad9-Rad1-Hus1 (911) and Rad17-RFC complexes work downstream of Rad3 (ATR) in fission yeast telomere maintenance. Here, we investigated how 911, Rad17-RFC and another RFC-like complex Ctf18-RFC contribute to telomere maintenance in fission yeast cells lacking Tel1 and carrying a novel hypomorphic allele of rad3 (DBD-rad3), generated by the fusion between the DNA binding domain (DBD) of the fission yeast telomere capping protein Pot1 and Rad3. Our investigations have uncovered a surprising redundancy for Rad9 and Hus1 in allowing Rad1 to contribute to telomere maintenance in DBD-rad3 tel1Δ cells. In addition, we found that Rad17-RFC and Ctf18-RFC carry out redundant telomere maintenance functions in DBD-rad3 tel1Δ cells. Since checkpoint sensor proteins are highly conserved, genetic redundancies uncovered here may be relevant to telomere maintenance and detection of DNA damage in other eukaryotes. PMID:20505337

  9. Viral interference with DNA repair by targeting of the single-stranded DNA binding protein RPA.

    PubMed

    Banerjee, Pubali; DeJesus, Rowena; Gjoerup, Ole; Schaffhausen, Brian S

    2013-10-01

    Correct repair of damaged DNA is critical for genomic integrity. Deficiencies in DNA repair are linked with human cancer. Here we report a novel mechanism by which a virus manipulates DNA damage responses. Infection with murine polyomavirus sensitizes cells to DNA damage by UV and etoposide. Polyomavirus large T antigen (LT) alone is sufficient to sensitize cells 100 fold to UV and other kinds of DNA damage. This results in activated stress responses and apoptosis. Genetic analysis shows that LT sensitizes via the binding of its origin-binding domain (OBD) to the single-stranded DNA binding protein replication protein A (RPA). Overexpression of RPA protects cells expressing OBD from damage, and knockdown of RPA mimics the LT phenotype. LT prevents recruitment of RPA to nuclear foci after DNA damage. This leads to failure to recruit repair proteins such as Rad51 or Rad9, explaining why LT prevents repair of double strand DNA breaks by homologous recombination. A targeted intervention directed at RPA based on this viral mechanism could be useful in circumventing the resistance of cancer cells to therapy.

  10. Distinct mechanisms act in concert to mediate cell cycle arrest.

    PubMed

    Toettcher, Jared E; Loewer, Alexander; Ostheimer, Gerard J; Yaffe, Michael B; Tidor, Bruce; Lahav, Galit

    2009-01-20

    In response to DNA damage, cells arrest at specific stages in the cell cycle. This arrest must fulfill at least 3 requirements: it must be activated promptly; it must be sustained as long as damage is present to prevent loss of genomic information; and after the arrest, cells must re-enter into the appropriate cell cycle phase to ensure proper ploidy. Multiple molecular mechanisms capable of arresting the cell cycle have been identified in mammalian cells; however, it is unknown whether each mechanism meets all 3 requirements or whether they act together to confer specific functions to the arrest. To address this question, we integrated mathematical models describing the cell cycle and the DNA damage signaling networks and tested the contributions of each mechanism to cell cycle arrest and re-entry. Predictions from this model were then tested with quantitative experiments to identify the combined action of arrest mechanisms in irradiated cells. We find that different arrest mechanisms serve indispensable roles in the proper cellular response to DNA damage over time: p53-independent cyclin inactivation confers immediate arrest, whereas p53-dependent cyclin downregulation allows this arrest to be sustained. Additionally, p21-mediated inhibition of cyclin-dependent kinase activity is indispensable for preventing improper cell cycle re-entry and endoreduplication. This work shows that in a complex signaling network, seemingly redundant mechanisms, acting in a concerted fashion, can achieve a specific cellular outcome.

  11. Inhibition of Transforming Growth Factor-Beta1 SignalingAttenuates Ataxia Telangiectasia Mutated Activity in Response toGenotoxic Stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirshner, Julia; Jobling, Michael F.; Pajares, Maria Jose

    2006-01-01

    Ionizing radiation causes DNA damage that elicits a cellular program of damage control coordinated by the kinase activity of ataxia telangiectasia mutated protein (ATM). Transforming growth factor {beta} (TGF{beta})-1, which is activated by radiation, is a potent and pleiotropic mediator of physiologic and pathologic processes. Here we show that TGF{beta} inhibition impedes the canonical cellular DNA damage stress response. Irradiated Tgf{beta}I null murine epithelial cells or human epithelial cells treated with a small-molecule inhibitor of TGF{beta} type I receptor kinase exhibit decreased phosphorylation of Chk2, Rad17, and p53; reduced H2AX radiation-induced foci; and increased radiosensitivity compared with TGF{beta} competent cells.more » We determined that loss of TGF{beta} signaling in epithelial cells truncated ATM autophosphorylation and significantly reduced its kinase activity, without affecting protein abundance. Addition of TGF{beta} restored functional ATM and downstream DNA damage responses. These data reveal a heretofore undetected critical link between the microenvironment and ATM, which directs epithelial cell stress responses, cell fate, and tissue integrity. Thus, Tgf{beta}I, in addition to its role in homoeostatic growth control, plays a complex role in regulating responses to genotoxic stress, the failure of which would contribute to the development of cancer; conversely, inhibiting TGF{beta} may be used to advantage in cancer therapy.« less

  12. ATM inhibition induces synthetic lethality and enhances sensitivity of PTEN-deficient breast cancer cells to cisplatin.

    PubMed

    Li, Ke; Yan, Huaying; Guo, Wenhao; Tang, Mei; Zhao, Xinyu; Tong, Aiping; Peng, Yong; Li, Qintong; Yuan, Zhu

    2018-05-01

    PTEN deficiency often causes defects in DNA damage repair. Currently, effective therapies for breast cancer are lacking. ATM is an attractive target for cancer treatment. Previous studies suggested a synthetic lethality between PTEN and PARP. However, the synthetically lethal interaction between PTEN and ATM in breast cancer has not been reported. Moreover, the mechanism remains elusive. Here, using KU-60019, an ATM kinase inhibitor, we investigated ATM inhibition as a synthetically lethal strategy to target breast cancer cells with PTEN defects. We found that KU-60019 preferentially sensitizes PTEN-deficient MDA-MB-468 breast cancer cells to cisplatin, though it also slightly enhances sensitivity of PTEN wild-type breast cancer cells. The increased cytotoxic sensitivity is associated with apoptosis, as evidenced by flow cytometry and PARP cleavage. Additionally, the increase of DNA damage accumulation due to the decreased capability of DNA repair, as indicated by γ-H2AX and Rad51 foci, also contributed to this selective cytotoxicity. Mechanistically, compared with PTEN wild-type MDA-MB-231 cells, PTEN-deficient MDA-MB-468 cells have lower level of Rad51, higher ATM kinase activity, and display the elevated level of DNA damage. Moreover, these differences could be further enlarged by cisplatin. Our findings suggest that ATM is a promising target for PTEN-defective breast cancer. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. ICAM-1 and AMPK regulate cell detachment and apoptosis by N-methyl-N Prime -nitro-N-nitrosoguanidine, a widely spread environmental chemical, in human hormone-refractory prostate cancers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yi-Cheng; Lu, Pin-Hsuan; Hsu, Jui-Ling

    2011-12-15

    Poly(ADP-ribose) polymerase-1 (PARP-1), a sensor of DNA damage, plays a crucial role in the regulation of DNA repair. PARP-1 hyperactivation causes DNA damage and cell death. The underlying mechanism is complicated and is through diverse pathways. The understanding of responsible signaling pathways may offer implications for effective therapies. After concentration-response determination of N-Methyl-N Prime -Nitro-N-Nitrosoguanidine (MNNG, a PARP-1 activating agent and an environmental mutagen) in human hormone-refractory prostate cancers, the data showed that concentrations below 5 {mu}M did not change cell survival but cause a time-dependent up-regulation of intracellular adhesion molecule-1 (ICAM-1) in mRNA, total protein and cell surface levels.more » Detection of phosphorylation and degradation of I{kappa}B-{alpha} and nuclear translocation of NF-{kappa}B showed that MNNG induced the activation of NF-{kappa}B that was responsible for the ICAM-1 up-regulation since PDTC (a NF-{kappa}B inhibitor) significantly abolished this effect. However, higher concentrations (e.g., 10 {mu}M) of MNNG induced a 61% detachment of the cells which were apoptosis associated with the activation of AMP-activated protein kinase (AMPK), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). Further identification showed that both AMPK and JNK other than p38 MAPK functionally contributed to cell death. The remaining 39% attached cells were survival associated with high ICAM-1 expression. In conclusion, the data suggest that NF-{kappa}B-dependent up-regulation of ICAM-1 plays a key role on cell attachment and survival; whereas, activation of AMPK and JNK participates in cytotoxic signaling pathways in detached cells caused by PARP-1 activation. Highlights: Black-Right-Pointing-Pointer Low level of DNA damage helps cell attachment and survival via ICAM-1 upregulation. Black-Right-Pointing-Pointer High level of DNA damage causes AMPK- and JNK-involved cell detachment and death. Black-Right-Pointing-Pointer The study provides an anticancer approach targeting PARP-1 and DNA damage response.« less

  14. Regulation of error-prone translesion synthesis by Spartan/C1orf124

    PubMed Central

    Kim, Myoung Shin; Machida, Yuka; Vashisht, Ajay A.; Wohlschlegel, James A.; Pang, Yuan-Ping; Machida, Yuichi J.

    2013-01-01

    Translesion synthesis (TLS) employs low fidelity polymerases to replicate past damaged DNA in a potentially error-prone process. Regulatory mechanisms that prevent TLS-associated mutagenesis are unknown; however, our recent studies suggest that the PCNA-binding protein Spartan plays a role in suppression of damage-induced mutagenesis. Here, we show that Spartan negatively regulates error-prone TLS that is dependent on POLD3, the accessory subunit of the replicative DNA polymerase Pol δ. We demonstrate that the putative zinc metalloprotease domain SprT in Spartan directly interacts with POLD3 and contributes to suppression of damage-induced mutagenesis. Depletion of Spartan induces complex formation of POLD3 with Rev1 and the error-prone TLS polymerase Pol ζ, and elevates mutagenesis that relies on POLD3, Rev1 and Pol ζ. These results suggest that Spartan negatively regulates POLD3 function in Rev1/Pol ζ-dependent TLS, revealing a previously unrecognized regulatory step in error-prone TLS. PMID:23254330

  15. Preterm newborns show slower repair of oxidative damage and paternal smoking associated DNA damage.

    PubMed

    Vande Loock, Kim; Ciardelli, Roberta; Decordier, Ilse; Plas, Gina; Haumont, Dominique; Kirsch-Volders, Micheline

    2012-09-01

    Newborns have to cope with hypoxia during delivery and a sudden increase in oxygen at birth. Oxygen will partly be released as reactive oxygen species having the potential to cause damage to DNA and proteins. In utero, increase of most (non)-enzymatic antioxidants occurs during last weeks of gestation, making preterm neonates probably more sensitive to oxidative stress. Moreover, it has been hypothesized that oxidative stress might be the common etiological factor for certain neonatal diseases in preterm infants. The aim of this study was to assess background DNA damage; in vitro H(2)O(2) induced oxidative DNA damage and repair capacity (residual DNA damage) in peripheral blood mononucleated cells from 25 preterm newborns and their mothers. In addition, demographic data were taken into account and repair capacity of preterm was compared with full-term newborns. Multivariate linear regression analysis revealed that preterm infants from smoking fathers have higher background DNA damage levels than those from non-smoking fathers, emphasizing the risk of paternal smoking behaviour for the progeny. Significantly higher residual DNA damage found after 15-min repair in preterm children compared to their mothers and higher residual DNA damage after 2 h compared to full-term newborns suggest a slower DNA repair capacity in preterm children. In comparison with preterm infants born by caesarean delivery, preterm infants born by vaginal delivery do repair more slowly the in vitro induced oxidative DNA damage. Final impact of passive smoking and of the slower DNA repair activity of preterm infants need to be confirmed in a larger study population combining transgenerational genetic and/or epigenetic effects, antioxidant levels, genotypes, repair enzyme efficiency/levels and infant morbidity.

  16. Phosphorylation of human INO80 is involved in DNA damage tolerance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, Dai; Waki, Mayumi; Umezawa, Masaki

    Highlights: Black-Right-Pointing-Pointer Depletion of hINO80 significantly reduced PCNA ubiquitination. Black-Right-Pointing-Pointer Depletion of hINO80 significantly reduced nuclear dots intensity of RAD18 after UV irradiation. Black-Right-Pointing-Pointer Western blot analyses showed phosphorylated hINO80 C-terminus. Black-Right-Pointing-Pointer Overexpression of phosphorylation mutant hINO80 reduced PCNA ubiquitination. -- Abstract: Double strand breaks (DSBs) are the most serious type of DNA damage. DSBs can be generated directly by exposure to ionizing radiation or indirectly by replication fork collapse. The DNA damage tolerance pathway, which is conserved from bacteria to humans, prevents this collapse by overcoming replication blockages. The INO80 chromatin remodeling complex plays an important role in themore » DNA damage response. The yeast INO80 complex participates in the DNA damage tolerance pathway. The mechanisms regulating yINO80 complex are not fully understood, but yeast INO80 complex are necessary for efficient proliferating cell nuclear antigen (PCNA) ubiquitination and for recruitment of Rad18 to replication forks. In contrast, the function of the mammalian INO80 complex in DNA damage tolerance is less clear. Here, we show that human INO80 was necessary for PCNA ubiquitination and recruitment of Rad18 to DNA damage sites. Moreover, the C-terminal region of human INO80 was phosphorylated, and overexpression of a phosphorylation-deficient mutant of human INO80 resulted in decreased ubiquitination of PCNA during DNA replication. These results suggest that the human INO80 complex, like the yeast complex, was involved in the DNA damage tolerance pathway and that phosphorylation of human INO80 was involved in the DNA damage tolerance pathway. These findings provide new insights into the DNA damage tolerance pathway in mammalian cells.« less

  17. DNA damage in cells exhibiting radiation-induced genomic instability

    DOE PAGES

    Keszenman, Deborah J.; Kolodiuk, Lucia; Baulch, Janet E.

    2015-02-22

    Cells exhibiting radiation induced genomic instability exhibit varied spectra of genetic and chromosomal aberrations. Even so, oxidative stress remains a common theme in the initiation and/or perpetuation of this phenomenon. Isolated oxidatively modified bases, abasic sites, DNA single strand breaks and clustered DNA damage are induced in normal mammalian cultured cells and tissues due to endogenous reactive oxygen species generated during normal cellular metabolism in an aerobic environment. While sparse DNA damage may be easily repaired, clustered DNA damage may lead to persistent cytotoxic or mutagenic events that can lead to genomic instability. In this study, we tested the hypothesismore » that DNA damage signatures characterised by altered levels of endogenous, potentially mutagenic, types of DNA damage and chromosomal breakage are related to radiation-induced genomic instability and persistent oxidative stress phenotypes observed in the chromosomally unstable progeny of irradiated cells. The measurement of oxypurine, oxypyrimidine and abasic site endogenous DNA damage showed differences in non-double-strand breaks (DSB) clusters among the three of the four unstable clones evaluated as compared to genomically stable clones and the parental cell line. These three unstable clones also had increased levels of DSB clusters. The results of this study demonstrate that each unstable cell line has a unique spectrum of persistent damage and lead us to speculate that alterations in DNA damage signaling and repair may be related to the perpetuation of genomic instability.« less

  18. Clustered DNA damages induced in isolated DNA and in human cells by low doses of ionizing radiation

    NASA Technical Reports Server (NTRS)

    Sutherland, B. M.; Bennett, P. V.; Sidorkina, O.; Laval, J.; Lowenstein, D. I. (Principal Investigator)

    2000-01-01

    Clustered DNA damages-two or more closely spaced damages (strand breaks, abasic sites, or oxidized bases) on opposing strands-are suspects as critical lesions producing lethal and mutagenic effects of ionizing radiation. However, as a result of the lack of methods for measuring damage clusters induced by ionizing radiation in genomic DNA, neither the frequencies of their production by physiological doses of radiation, nor their repairability, nor their biological effects are known. On the basis of methods that we developed for quantitating damages in large DNAs, we have devised and validated a way of measuring ionizing radiation-induced clustered lesions in genomic DNA, including DNA from human cells. DNA is treated with an endonuclease that induces a single-strand cleavage at an oxidized base or abasic site. If there are two closely spaced damages on opposing strands, such cleavage will reduce the size of the DNA on a nondenaturing gel. We show that ionizing radiation does induce clustered DNA damages containing abasic sites, oxidized purines, or oxidized pyrimidines. Further, the frequency of each of these cluster classes is comparable to that of frank double-strand breaks; among all complex damages induced by ionizing radiation, double-strand breaks are only about 20%, with other clustered damage constituting some 80%. We also show that even low doses (0.1-1 Gy) of high linear energy transfer ionizing radiation induce clustered damages in human cells.

  19. A novel transcription factor gene FHS1 is involved in the DNA damage response in Fusarium graminearum

    PubMed Central

    Son, Hokyoung; Fu, Minmin; Lee, Yoonji; Lim, Jae Yun; Min, Kyunghun; Kim, Jin-Cheol; Choi, Gyung Ja; Lee, Yin-Won

    2016-01-01

    Cell cycle regulation and the maintenance of genome integrity are crucial for the development and virulence of the pathogenic plant fungus Fusarium graminearum. To identify transcription factors (TFs) related to these processes, four DNA-damaging agents were applied to screen a F. graminearum TF mutant library. Sixteen TFs were identified to be likely involved in DNA damage responses. Fhs1 is a fungal specific Zn(II)2Cys6 TF that localises exclusively to nuclei. fhs1 deletion mutants were hypersensitive to hydroxyurea and defective in mitotic cell division. Moreover, deletion of FHS1 resulted in defects in perithecia production and virulence and led to the accumulation of DNA damage. Our genetic evidence demonstrated that the FHS1-associated signalling pathway for DNA damage response is independent of the ATM or ATR pathways. This study identified sixteen genes involved in the DNA damage response and is the first to characterise the novel transcription factor gene FHS1, which is involved in the DNA damage response. The results provide new insights into mechanisms underlying DNA damage responses in fungi, including F. graminearum. PMID:26888604

  20. Polyphosphate is a key factor for cell survival after DNA damage in eukaryotic cells.

    PubMed

    Bru, Samuel; Samper-Martín, Bàrbara; Quandt, Eva; Hernández-Ortega, Sara; Martínez-Laínez, Joan M; Garí, Eloi; Rafel, Marta; Torres-Torronteras, Javier; Martí, Ramón; Ribeiro, Mariana P C; Jiménez, Javier; Clotet, Josep

    2017-09-01

    Cells require extra amounts of dNTPs to repair DNA after damage. Polyphosphate (polyP) is an evolutionary conserved linear polymer of up to several hundred inorganic phosphate (Pi) residues that is involved in many functions, including Pi storage. In the present article, we report on findings demonstrating that polyP functions as a source of Pi when required to sustain the dNTP increment essential for DNA repair after damage. We show that mutant yeast cells without polyP produce less dNTPs upon DNA damage and that their survival is compromised. In contrast, when polyP levels are ectopically increased, yeast cells become more resistant to DNA damage. More importantly, we show that when polyP is reduced in HEK293 mammalian cell line cells and in human dermal primary fibroblasts (HDFa), these cells become more sensitive to DNA damage, suggesting that the protective role of polyP against DNA damage is evolutionary conserved. In conclusion, we present polyP as a molecule involved in resistance to DNA damage and suggest that polyP may be a putative target for new approaches in cancer treatment or prevention. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Comparison of the effect of NaOH and TE buffer on 25 to 100 eV electron induced damage to ΦX174 dsDNA

    NASA Astrophysics Data System (ADS)

    Kumar, S. V. K.; Murali, Megha; Kushwaha, Preksha

    2015-09-01

    In this article we report the usage of (1) ΦX174 dsDNA as a model for electron - DNA interaction studies, (2) semiconductor grade 100 silicon wafer, gold on chrome on glass, and tantalum foil substrates, drying process and effect of temperature, on the DNA film formation and its stability, (3) stability of DNA films formed from DNA suspended in nano pure water and with additives like NaOH and TE buffer, and (4) effect of 0.001 mM NaOH and TE buffer (at pH 7.5) additives on DNA damage induced by 25 to 100 eV electrons. The results show that when tantalum foils are used as a substrate, it results in films, which have DNA distributed fairly uniformly and is also stable against strand breaks affected due to the stress of the drying. Electron irradiation of DNA suspended in TE buffer result in the formation of only relaxed form. When the DNA is suspended in 0.001 mM NaOH and irradiated similarly, linear form and cross links are also formed, in addition to relaxed form. This could be likely due to the secondary electrons interacting with Na+ ions that are bound to the DNA causing a second strand break in the opposite strand. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene Surdutovich.

  2. The translesion DNA polymerases Pol ζ and Rev1 are activated independently of PCNA ubiquitination upon UV radiation in mutants of DNA polymerase δ

    PubMed Central

    Ma, Emilie; Veaute, Xavier; Coïc, Eric

    2017-01-01

    Replicative DNA polymerases cannot insert efficiently nucleotides at sites of base lesions. This function is taken over by specialized translesion DNA synthesis (TLS) polymerases to allow DNA replication completion in the presence of DNA damage. In eukaryotes, Rad6- and Rad18-mediated PCNA ubiquitination at lysine 164 promotes recruitment of TLS polymerases, allowing cells to efficiently cope with DNA damage. However, several studies showed that TLS polymerases can be recruited also in the absence of PCNA ubiquitination. We hypothesized that the stability of the interactions between DNA polymerase δ (Pol δ) subunits and/or between Pol δ and PCNA at the primer/template junction is a crucial factor to determine the requirement of PCNA ubiquitination. To test this hypothesis, we used a structural mutant of Pol δ in which the interaction between Pol3 and Pol31 is inhibited. We found that in yeast, rad18Δ-associated UV hypersensitivity is suppressed by pol3-ct, a mutant allele of the POL3 gene that encodes the catalytic subunit of replicative Pol δ. pol3-ct suppressor effect was specifically dependent on the Rev1 and Pol ζ TLS polymerases. This result strongly suggests that TLS polymerases could rely much less on PCNA ubiquitination when Pol δ interaction with PCNA is partially compromised by mutations. In agreement with this model, we found that the pol3-FI allele suppressed rad18Δ-associated UV sensitivity as observed for pol3-ct. This POL3 allele carries mutations within a putative PCNA Interacting Peptide (PIP) motif. We then provided molecular and genetic evidence that this motif could contribute to Pol δ-PCNA interaction indirectly, although it is not a bona fide PIP. Overall, our results suggest that the primary role of PCNA ubiquitination is to allow TLS polymerases to outcompete Pol δ for PCNA access upon DNA damage. PMID:29281621

  3. Activation of Dun1 in response to nuclear DNA instability accounts for the increase in mitochondrial point mutations in Rad27/FEN1 deficient S. cerevisiae.

    PubMed

    Kaniak-Golik, Aneta; Kuberska, Renata; Dzierzbicki, Piotr; Sledziewska-Gojska, Ewa

    2017-01-01

    Rad27/FEN1 nuclease that plays important roles in the maintenance of DNA stability in the nucleus has recently been shown to reside in mitochondria. Accordingly, it has been established that Rad27 deficiency causes increased mutagenesis, but decreased microsatellite instability and homologous recombination in mitochondria. Our current analysis of mutations leading to erythromycin resistance indicates that only some of them arise in mitochondrial DNA and that the GC→AT transition is a hallmark of the mitochondrial mutagenesis in rad27 null background. We also show that the mitochondrial mutator phenotype resulting from Rad27 deficiency entirely depends on the DNA damage checkpoint kinase Dun1. DUN1 inactivation suppresses the mitochondrial mutator phenotype caused by Rad27 deficiency and this suppression is eliminated at least in part by subsequent deletion of SML1 encoding a repressor of ribonucleotide reductase. We conclude that Rad27 deficiency causes a mitochondrial mutator phenotype via activation of DNA damage checkpoint kinase Dun1 and that a Dun1-mediated increase of dNTP pools contributes to this phenomenon. These results point to the nuclear DNA instability as the source of mitochondrial mutagenesis. Consistently, we show that mitochondrial mutations occurring more frequently in yeast devoid of Rrm3, a DNA helicase involved in rDNA replication, are also dependent on Dun1. In addition, we have established that overproduction of Exo1, which suppresses DNA damage sensitivity and replication stress in nuclei of Rad27 deficient cells, but does not enter mitochondria, suppresses the mitochondrial mutagenesis. Exo1 overproduction restores also a great part of allelic recombination and microsatellite instability in mitochondria of Rad27 deficient cells. In contrast, the overproduction of Exo1 does not influence mitochondrial direct-repeat mediated deletions in rad27 null background, pointing to this homologous recombination pathway as the direct target of Rad27 activity in mitochondria.

  4. Activation of Dun1 in response to nuclear DNA instability accounts for the increase in mitochondrial point mutations in Rad27/FEN1 deficient S. cerevisiae

    PubMed Central

    Dzierzbicki, Piotr

    2017-01-01

    Rad27/FEN1 nuclease that plays important roles in the maintenance of DNA stability in the nucleus has recently been shown to reside in mitochondria. Accordingly, it has been established that Rad27 deficiency causes increased mutagenesis, but decreased microsatellite instability and homologous recombination in mitochondria. Our current analysis of mutations leading to erythromycin resistance indicates that only some of them arise in mitochondrial DNA and that the GC→AT transition is a hallmark of the mitochondrial mutagenesis in rad27 null background. We also show that the mitochondrial mutator phenotype resulting from Rad27 deficiency entirely depends on the DNA damage checkpoint kinase Dun1. DUN1 inactivation suppresses the mitochondrial mutator phenotype caused by Rad27 deficiency and this suppression is eliminated at least in part by subsequent deletion of SML1 encoding a repressor of ribonucleotide reductase. We conclude that Rad27 deficiency causes a mitochondrial mutator phenotype via activation of DNA damage checkpoint kinase Dun1 and that a Dun1-mediated increase of dNTP pools contributes to this phenomenon. These results point to the nuclear DNA instability as the source of mitochondrial mutagenesis. Consistently, we show that mitochondrial mutations occurring more frequently in yeast devoid of Rrm3, a DNA helicase involved in rDNA replication, are also dependent on Dun1. In addition, we have established that overproduction of Exo1, which suppresses DNA damage sensitivity and replication stress in nuclei of Rad27 deficient cells, but does not enter mitochondria, suppresses the mitochondrial mutagenesis. Exo1 overproduction restores also a great part of allelic recombination and microsatellite instability in mitochondria of Rad27 deficient cells. In contrast, the overproduction of Exo1 does not influence mitochondrial direct-repeat mediated deletions in rad27 null background, pointing to this homologous recombination pathway as the direct target of Rad27 activity in mitochondria. PMID:28678842

  5. DNA damage in blood cells in relation to chemotherapy and nutritional status in colorectal cancer patients-A pilot study.

    PubMed

    Kværner, Ane Sørlie; Minaguchi, Jun; Yamani, Naouale El; Henriksen, Christine; Ræder, Hanna; Paur, Ingvild; Henriksen, Hege Berg; Wiedswang, Gro; Smeland, Sigbjørn; Blomhoff, Rune; Collins, Andrew Richard; Bøhn, Siv Kjølsrud

    2018-03-01

    DNA damage can be considered as a biomarker for toxicity and response to chemotherapy. It is not known whether the chemotherapy-induced genotoxicity is associated with malnutrition. In this pilot study, we assess genotoxicity by means of DNA damage in patients with lymph-node positive colorectal cancer (CRC) and explore associations with chemotherapy treatment and nutritional status. DNA damage was compared between patients receiving chemotherapy (n = 24) and those not receiving chemotherapy (n = 20). DNA damage was measured in frozen whole blood by the comet assay. Associations between DNA damage and various indicators of malnutrition were also explored, including Patient-Generated Subjective Global Assessment (PG-SGA), bioelectrical impedance analysis (BIA) and anthropometric measurements, using multiple linear regression models. Patients on chemotherapy have higher levels of DNA damage in blood cells than patients not receiving chemotherapy (median of 16.9 and 7.9% tail DNA respectively, p = 0.001). The moderately malnourished patients (PG-SGA category B), representing 41% of the patients, have higher levels of cellular DNA damage than patients with good nutritional status (mean difference of 7.5% tail DNA, p = 0.033). In conclusion, adjuvant chemotherapy and malnutrition are both associated with increased levels of DNA damage in blood cells of CRC patients. Carefully controlled longitudinal studies or randomized controlled trials should be performed to determine whether good nutritional status may protect against chemotherapy-induced genotoxicity and enhance compliance to therapy in CRC patients. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Radioprotective effects of honeybee venom (Apis mellifera) against 915-MHz microwave radiation-induced DNA damage in wistar rat lymphocytes: in vitro study.

    PubMed

    Gajski, Goran; Garaj-Vrhovac, Vera

    2009-01-01

    The aim of this study is to investigate the radioprotective effect of bee venom against DNA damage induced by 915-MHz microwave radiation (specific absorption rate of 0.6 W/kg) in Wistar rats. Whole blood lymphocytes of Wistar rats are treated with 1 microg/mL bee venom 4 hours prior to and immediately before irradiation. Standard and formamidopyrimidine-DNA glycosylase (Fpg)-modified comet assays are used to assess basal and oxidative DNA damage produced by reactive oxygen species. Bee venom shows a decrease in DNA damage compared with irradiated samples. Parameters of Fpg-modified comet assay are statistically different from controls, making this assay more sensitive and suggesting that oxidative stress is a possible mechanism of DNA damage induction. Bee venom is demonstrated to have a radioprotective effect against basal and oxidative DNA damage. Furthermore, bee venom is not genotoxic and does not produce oxidative damage in the low concentrations used in this study.

  7. Unrepaired clustered DNA lesions induce chromosome breakage in human cells

    PubMed Central

    Asaithamby, Aroumougame; Hu, Burong; Chen, David J.

    2011-01-01

    Clustered DNA damage induced by ionizing radiation is refractory to repair and may trigger carcinogenic events for reasons that are not well understood. Here, we used an in situ method to directly monitor induction and repair of clustered DNA lesions in individual cells. We showed, consistent with biophysical modeling, that the kinetics of loss of clustered DNA lesions was substantially compromised in human fibroblasts. The unique spatial distribution of different types of DNA lesions within the clustered damages, but not the physical location of these damages within the subnuclear domains, determined the cellular ability to repair the damage. We then examined checkpoint arrest mechanisms and yield of gross chromosomal aberrations. Induction of nonrepairable clustered damage affected only G2 accumulation but not the early G2/M checkpoint. Further, cells that were released from the G2/M checkpoint with unrepaired clustered damage manifested a spectrum of chromosome aberrations in mitosis. Difficulties associated with clustered DNA damage repair and checkpoint release before the completion of clustered DNA damage repair appear to promote genome instability that may lead to carcinogenesis. PMID:21527720

  8. Inhibition of exportin-1 function results in rapid cell cycle-associated DNA damage in cancer cells

    PubMed Central

    Burke, Russell T.; Marcus, Joshua M.; Orth, James D.

    2017-01-01

    Selective inhibitors of nuclear export (SINE) are small molecules in development as anti-cancer agents. The first-in-class SINE, selinexor, is in clinical trials for blood and solid cancers. Selinexor forms a covalent bond with exportin-1 at cysteine-528, and blocks its ability to export cargos. Previous work has shown strong cell cycle effects and drug-induced cell death across many different cancer-derived cell lines. Here, we report strong cell cycle-associated DNA double-stranded break formation upon the treatment of cancer cells with SINE. In multiple cell models, selinexor treatment results in the formation of clustered DNA damage foci in 30-40% of cells within 8 hours that is dependent upon cysteine-528. DNA damage strongly correlates with G1/S-phase and decreased DNA replication. Live cell microscopy reveals an association between DNA damage and cell fate. Cells that form damage in G1-phase more often die or arrest, while those damaged in S/G2-phase frequently progress to cell division. Up to half of all treated cells form damage foci, and most cells that die after being damaged, were damaged in G1-phase. By comparison, non-transformed cell lines show strong cell cycle effects but little DNA damage and less death than cancer cells. Significant drug combination effects occur when selinexor is paired with different classes of agents that either cause DNA damage or that diminish DNA damage repair. These data present a novel effect of exportin-1 inhibition and provide a strong rationale for multiple combination treatments of selinexor with agents that are currently in use for the treatment of different solid cancers. PMID:28467801

  9. Antioxidant and prooxidant effects of polyphenol compounds on copper-mediated DNA damage.

    PubMed

    Perron, Nathan R; García, Carla R; Pinzón, Julio R; Chaur, Manuel N; Brumaghim, Julia L

    2011-05-01

    Inhibition of copper-mediated DNA damage has been determined for several polyphenol compounds. The 50% inhibition concentration values (IC(50)) for most of the tested polyphenols are between 8 and 480 μM for copper-mediated DNA damage prevention. Although most tested polyphenols were antioxidants under these conditions, they generally inhibited Cu(I)-mediated DNA damage less effectively than Fe(II)-mediated damage, and some polyphenols also displayed prooxidant activity. Because semiquinone radicals and hydroxyl radical adducts were detected by EPR spectroscopy in solutions of polyphenols, Cu(I), and H(2)O(2), it is likely that weak polyphenol-Cu(I) interactions permit a redox-cycling mechanism, whereby the necessary reactants to cause DNA damage (Cu(I), H(2)O(2), and reducing agents) are regenerated. The polyphenol compounds that prevent copper-mediated DNA damage likely follow a radical scavenging pathway as determined by EPR spectroscopy. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Repair of DNA Damage Induced by the Cytidine Analog Zebularine Requires ATR and ATM in Arabidopsis[OPEN

    PubMed Central

    Liu, Chun-Hsin; Finke, Andreas; Díaz, Mariana; Rozhon, Wilfried; Poppenberger, Brigitte; Baubec, Tuncay; Pecinka, Ales

    2015-01-01

    DNA damage repair is an essential cellular mechanism that maintains genome stability. Here, we show that the nonmethylable cytidine analog zebularine induces a DNA damage response in Arabidopsis thaliana, independent of changes in DNA methylation. In contrast to genotoxic agents that induce damage in a cell cycle stage-independent manner, zebularine induces damage specifically during strand synthesis in DNA replication. The signaling of this damage is mediated by additive activity of ATAXIA TELANGIECTASIA MUTATED AND RAD3-RELATED and ATAXIA TELANGIECTASIA MUTATED kinases, which cause postreplicative cell cycle arrest and increased endoreplication. The repair requires a functional STRUCTURAL MAINTENANCE OF CHROMOSOMES5 (SMC5)-SMC6 complex and is accomplished predominantly by synthesis-dependent strand-annealing homologous recombination. Here, we provide insight into the response mechanism for coping with the genotoxic effects of zebularine and identify several components of the zebularine-induced DNA damage repair pathway. PMID:26023162

  11. Sam68 Is Required for DNA Damage Responses via Regulating Poly(ADP-ribosyl)ation

    PubMed Central

    Hodgson, Andrea; Wier, Eric M.; Wen, Matthew G.; Kamenyeva, Olena; Xia, Xue; Koo, Lily Y.

    2016-01-01

    The rapid and robust synthesis of polymers of adenosine diphosphate (ADP)-ribose (PAR) chains, primarily catalyzed by poly(ADP-ribose) polymerase 1 (PARP1), is crucial for cellular responses to DNA damage. However, the precise mechanisms through which PARP1 is activated and PAR is robustly synthesized are not fully understood. Here, we identified Src-associated substrate during mitosis of 68 kDa (Sam68) as a novel signaling molecule in DNA damage responses (DDRs). In the absence of Sam68, DNA damage-triggered PAR production and PAR-dependent DNA repair signaling were dramatically diminished. With serial cellular and biochemical assays, we demonstrated that Sam68 is recruited to and significantly overlaps with PARP1 at DNA lesions and that the interaction between Sam68 and PARP1 is crucial for DNA damage-initiated and PARP1-conferred PAR production. Utilizing cell lines and knockout mice, we illustrated that Sam68-deleted cells and animals are hypersensitive to genotoxicity caused by DNA-damaging agents. Together, our findings suggest that Sam68 plays a crucial role in DDR via regulating DNA damage-initiated PAR production. PMID:27635653

  12. Titanium dioxide food additive (E171) induces ROS formation and genotoxicity: contribution of micro and nano-sized fractions.

    PubMed

    Proquin, Héloïse; Rodríguez-Ibarra, Carolina; Moonen, Carolyn G J; Urrutia Ortega, Ismael M; Briedé, Jacob J; de Kok, Theo M; van Loveren, Henk; Chirino, Yolanda I

    2017-01-01

    Since 1969, the European Union approves food-grade titanium dioxide (TiO 2 ), also known as E171 colouring food additive. E171 is a mixture of micro-sized particles (MPs) and nano-sized particles (NPs). Previous studies have indicated adverse effects of oral exposure to E171, i.e. facilitation of colon tumour growth. This could potentially be partially mediated by the capacity to induce reactive oxygen species (ROS). The aim of the present study is to determine whether E171 exposure induces ROS formation and DNA damage in an in vitro model using human Caco-2 and HCT116 cells and to investigate the contribution of the separate MPs and NPs TiO 2 fractions to these effects. After suspension of the particles in Hanks' balanced salt solution buffer and cell culture medium with either bovine serum albumin (BSA) or foetal bovine serum, characterization of the particles was performed by dynamic light scattering, ROS formation was determined by electron spin/paramagnetic resonance spectroscopy and DNA damage was determined by the comet and micronucleus assays. The results showed that E171, MPs and NPs are stable in cell culture medium with 0.05% BSA. The capacity for ROS generation in a cell-free environment was highest for E171, followed by NPs and MPs. Only MPs were capable to induce ROS formation in exposed Caco-2 cells. E171, MPs and NPs all induced single-strand DNA breaks. Chromosome damage was shown to be induced by E171, as tested with the micronucleus assay in HCT116 cells. In conclusion, E171 has the capability to induce ROS formation in a cell-free environment and E171, MPs and NPs have genotoxic potential. The capacity of E171 to induce ROS formation and DNA damage raises concerns about potential adverse effects associated with E171 (TiO 2 ) in food. © The Author 2016. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Systems Biology Model of Interactions between Tissue Growth Factors and DNA Damage Pathways: Low Dose Response and Cross-Talk in TGFβ and ATM Signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cucinotta, Francis A

    The etiology of radiation carcinogenesis has been described in terms of aberrant changes that span several levels of biological organization. Growth factors regulate many important cellular and tissue functions including apoptosis, differentiation and proliferation. A variety of genetic and epigenetic changes of growth factors have been shown to contribute to cancer initiation and progression. It is known that cellular and tissue damage to ionizing radiation is in part initiated by the production of reactive oxygen species, which can activate cytokine signaling, and the DNA damage response pathways, most notably the ATM signaling pathway. Recently, the transforming growth factor β (TGFβ)more » pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation. The relevance of this interaction with the ATM pathway is not known although p53 becomes phosphorylated and DNA damage responses are involved. However, growth factor interactions with DNA damage responses have not been elucidated particularly at low doses, and further characterization of their relationship to cancer processes is warranted. Our goal will be to use a systems biology approach to mathematically and experimentally describe the low-dose responses and cross-talk between the ATM and TGFβ pathways initiated by low- and high-LET radiation. We will characterize ATM and TGFβ signaling in epithelial and fibroblast cells using 2D models and ultimately extending to 3D organotypic cell culture models to begin to elucidate possible differences that may occur for different cell types and/or inter-cellular communication. We will investigate the roles of the Smad and Activating transcription factor 2 (ATF2) proteins as the potential major contributors to crosstalk between the TGFβ and ATM pathways, and links to cell cycle control and/or the DNA damage response, and potential differences in their responses at low and high doses. We have developed various experimental approaches to apply to these problems using confocal microscopy and flow cytometry to detail changes at low dose/dose-rate in order to understand individual cell responses, and will establish our mathematical models based on the experimental findings resulting from changes in DNA repair, apoptosis and proliferation.« less

  14. Systems Biology Model of Interactions Between Tissue Growth Factors and DNA Damage Pathways: Low Dose Response and Cross-Talk in TGFbeta and ATM Signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Neill, Peter; Anderson, Jennifer

    The etiology of radiation carcinogenesis has been described in terms of aberrant changes that span several levels of biological organization. Growth factors regulate many important cellular and tissue functions including apoptosis, differentiation and proliferation. A variety of genetic and epigenetic changes of growth factors have been shown to contribute to cancer initiation and progression. It is known that cellular and tissue damage to ionizing radiation is in part initiated by the production of reactive oxygen species, which can activate cytokine signaling, and the DNA damage response pathways, most notably the ATM signaling pathway. Recently the transforming growth factor β (TGFβ)more » pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation. The relevance of this interaction with the ATM pathway is not known although p53 becomes phosphorylated and DNA damage responses are involved. However, growth factor interactions with DNA damage responses have not been elucidated particularly at low doses and further characterization of their relationship to cancer processes is warranted. Our goal will be to use a systems biology approach to mathematically and experimentally describe the low dose responses and cross-talk between the ATM and TGFβ pathways initiated by low and high LET radiation. We will characterize ATM and TGFβ signaling in epithelial and fibroblast cells using 2D models and ultimately extending to 3D organotypic cell culture models to begin to elucidate possible differences that may occur for different cell types and/or inter-cellular communication. We will investigate the roles of the Smad and Activating transcription factor 2 (ATF2) proteins as the potential major contributors to cross- talk between the TGFβ and ATM pathways, and links to cell cycle control and/or the DNA damage response, and potential differences in their responses at low and high doses. We have developed various experimental approaches to apply to these problems using confocal microscopy and flow cytometry to detail changes at low dose/dose-rate in order to understand individual cell responses, and will establish our mathematical models based on the experimental findings resulting from changes in DNA repair, apoptosis and proliferation.« less

  15. Epigenetic silencing of miR-124 prevents spermine oxidase regulation: implications for Helicobacter pylori-induced gastric cancer.

    PubMed

    Murray-Stewart, T; Sierra, J C; Piazuelo, M B; Mera, R M; Chaturvedi, R; Bravo, L E; Correa, P; Schneider, B G; Wilson, K T; Casero, R A

    2016-10-20

    Chronic inflammation contributes to the development of various forms of cancer. The polyamine catabolic enzyme spermine oxidase (SMOX) is induced in chronic inflammatory conditions, including Helicobacter pylori-associated gastritis, where its production of hydrogen peroxide contributes to DNA damage and subsequent tumorigenesis. MicroRNA expression levels are also altered in inflammatory conditions; specifically, the tumor suppressor miR-124 becomes silenced by DNA methylation. We sought to determine if this repression of miR-124 is associated with elevated SMOX activity and concluded that miR-124 is indeed a negative regulator of SMOX. In gastric adenocarcinoma cells harboring highly methylated and silenced mir-124 gene loci, 5-azacytidine treatment allowed miR-124 re-expression and decreased SMOX expression. Overexpression of an exogenous miR-124-3p mimic repressed SMOX mRNA and protein expression as well as H 2 O 2 production by >50% within 24 h. Reporter assays indicated that direct interaction of miR-124 with the 3'-untranslated region of SMOX mRNA contributes to this negative regulation. Importantly, overexpression of miR-124 before infection with H. pylori prevented the induction of SMOX believed to contribute to inflammation-associated tumorigenesis. Compelling human in vivo data from H. pylori-positive gastritis tissues indicated that the mir-124 gene loci are more heavily methylated in a Colombian population characterized by elevated SMOX expression and a high risk for gastric cancer. Furthermore, the degree of mir-124 methylation significantly correlated with SMOX expression throughout the population. These results indicate a protective role for miR-124 through the inhibition of SMOX-mediated DNA damage in the etiology of H. pylori-associated gastric cancer.

  16. Epigenetic silencing of miR-124 prevents spermine oxidase regulation: Implications for Helicobacter pylori-induced gastric cancer

    PubMed Central

    Murray-Stewart, Tracy; Sierra, Johanna C.; Piazuelo, M. Blanca; Mera, Robertino M.; Chaturvedi, Rupesh; Bravo, Luis E.; Correa, Pelayo; Schneider, Barbara G.; Wilson, Keith T.; Casero, Robert A.

    2016-01-01

    Chronic inflammation contributes to the development of various forms of cancer. The polyamine catabolic enzyme spermine oxidase (SMOX) is induced in chronic inflammatory conditions, including Helicobacter pylori-associated gastritis, where its production of hydrogen peroxide contributes to DNA damage and subsequent tumorigenesis. MicroRNA expression levels are also altered in inflammatory conditions; specifically, the tumor suppressor miR-124 becomes silenced by DNA methylation. We sought to determine if this repression of miR-124 is associated with elevated SMOX activity and concluded that miR-124 is indeed a negative regulator of SMOX. In gastric adenocarcinoma cells harboring highly methylated and silenced mir-124 gene loci, 5-azacytidine treatment allowed miR-124 re-expression and decreased SMOX expression. Overexpression of an exogenous miR-124-3p mimic repressed SMOX mRNA and protein expression as well as H2O2 production by >50% within 24 hours. Reporter assays indicated that direct interaction of miR-124 with the 3′-untranslated region of SMOX mRNA contributes to this negative regulation. Importantly, overexpression of miR-124 prior to infection with H. pylori prevented the induction of SMOX believed to contribute to inflammation-associated tumorigenesis. Compelling human in vivo data from H. pylori-positive gastritis tissues indicated that the mir-124 gene loci are more heavily methylated in a Colombian population characterized by elevated SMOX expression and a high risk for gastric cancer. Furthermore, the degree of mir-124 methylation significantly correlated with SMOX expression throughout the population. These results indicate a protective role for miR-124 through the inhibition of SMOX-mediated DNA damage in the etiology of H. pylori-associated gastric cancer. PMID:27041578

  17. Mathematical Methods for Studying DNA and Protein Interactions

    NASA Astrophysics Data System (ADS)

    LeGresley, Sarah

    Deoxyribnucleic Acid (DNA) damage can lead to health related issues such as developmental disorders, aging, and cancer. It has been estimated that damage rates may be as high as 100,000 per cell per day. Because of the devastating effects that DNA damage can have, DNA repair mechanisms are of great interest yet are not completely understood. To gain a better understanding of possible DNA repair mechanisms, my dissertation focused on mathematical methods for understanding the interactions between DNA and proteins. I developed a damaged DNA model to estimate the probabilities of damaged DNA being located at specific positions. Experiments were then performed that suggested that the damaged DNA may be repositioned. These experimental results were consistent with the model's prediction that damaged DNA has preferred locations. To study how proteins might be moving along the DNA, I studied the use of the uniform motion "n-step" model. The n-step model has been used to determine the kinetics parameters (e.g. rates at which a protein moves along the DNA, how much energy is required to move a protein along a specified amount of DNA, etc.) of proteins moving along the DNA. Monte Carlo methods were used to simulate proteins moving with different types of non-uniform motion (e.g. backward, jumping, etc.) along the DNA. Estimates for the kinetics parameters in the n-step model were found by fitting of the Monte Carlo simulation data. Analysis indicated that non-uniform motion of the protein may lead to over or underestimation of the kinetic parameters of this n-step model.

  18. On binding specificity of (6-4) photolyase to a T(6-4)T DNA photoproduct*

    NASA Astrophysics Data System (ADS)

    Jepsen, Katrine Aalbæk; Solov'yov, Ilia A.

    2017-06-01

    Different factors lead to DNA damage and if it is not repaired in due time, the damaged DNA could initiate mutagenesis and cancer. To avoid this deadly scenario, specific enzymes can scavenge and repair the DNA, but the enzymes have to bind first to the damaged sites. We have investigated this binding for a specific enzyme called (6-4) photolyase, which is capable of repairing certain UV-induced damage in DNA. Through molecular dynamics simulations we describe the binding between photolyase and the DNA and reveal that several charged amino acid residues in the enzyme, such as arginines and lysines turn out to be important. Especially R421 is crucial, as it keeps the DNA strands at the damaged site inside the repair pocket of the enzyme separated. DNA photolyase is structurally highly homologous to a protein called cryptochrome. Both proteins are biologically activated similarly, namely through flavin co-factor photoexcitation. It is, however, striking that cryptochrome cannot repair UV-damaged DNA. The present investigation allowed us to conclude on the small but, apparently, critical differences between photolyase and cryptochrome. The performed analysis gives insight into important factors that govern the binding of UV-damaged DNA and reveal why cryptochrome cannot have this functionality.

  19. Factors influencing heterogeneity of radiation-induced DNA-damage measured by the alkaline comet assay

    PubMed Central

    2012-01-01

    Background To investigate whether different conditions of DNA structure and radiation treatment could modify heterogeneity of response. Additionally to study variance as a potential parameter of heterogeneity for radiosensitivity testing. Methods Two-hundred leukocytes per sample of healthy donors were split into four groups. I: Intact chromatin structure; II: Nucleoids of histone-depleted DNA; III: Nucleoids of histone-depleted DNA with 90 mM DMSO as antioxidant. Response to single (I-III) and twice (IV) irradiation with 4 Gy and repair kinetics were evaluated using %Tail-DNA. Heterogeneity of DNA damage was determined by calculation of variance of DNA-damage (V) and mean variance (Mvar), mutual comparisons were done by one-way analysis of variance (ANOVA). Results Heterogeneity of initial DNA-damage (I, 0 min repair) increased without histones (II). Absence of histones was balanced by addition of antioxidants (III). Repair reduced heterogeneity of all samples (with and without irradiation). However double irradiation plus repair led to a higher level of heterogeneity distinguishable from single irradiation and repair in intact cells. Increase of mean DNA damage was associated with a similarly elevated variance of DNA damage (r = +0.88). Conclusions Heterogeneity of DNA-damage can be modified by histone level, antioxidant concentration, repair and radiation dose and was positively correlated with DNA damage. Experimental conditions might be optimized by reducing scatter of comet assay data by repair and antioxidants, potentially allowing better discrimination of small differences. Amount of heterogeneity measured by variance might be an additional useful parameter to characterize radiosensitivity. PMID:22520045

  20. Reduction of arsenite-enhanced ultraviolet radiation-induced DNA damage by supplemental zinc

    PubMed Central

    Cooper, Karen L.; King, Brenee S.; Sandoval, Monica M.; Liu, Ke Jian; Hudson, Laurie G.

    2013-01-01

    Arsenic is a recognized human carcinogen and there is evidence that arsenic augments the carcinogenicity of DNA damaging agents such as ultraviolet radiation (UVR) thereby acting as a co-carcinogen. Inhibition of DNA repair is one proposed mechanism to account for the co-carcinogenic actions of arsenic. We and others find that arsenite interferes with the function of certain zinc finger DNA repair proteins. Furthermore, we reported that zinc reverses the effects of arsenite in cultured cells and a DNA repair target protein, poly (ADP-ribose) polymerase-1. In order to determine whether zinc ameliorates the effects of arsenite on UVR-induced DNA damage in human keratinocytes and in an in vivo model, normal human epidermal keratinocytes and SKH-1 hairless mice were exposed to arsenite, zinc or both before solar-simulated (ss) UVR exposure. Poly (ADP-ribose) polymerase activity, DNA damage and mutation frequencies at the hprt locus were measured in each treatment group in normal human keratinocytes. DNA damage was assessed in vivo by immunohistochemical staining of skin sections isolated from SKH-1 hairless mice. Cell-based findings demonstrate that ssUVR-induced DNA damage and mutagenesis are enhanced by arsenite, and supplemental zinc partially reverses the arsenite effect. In vivo studies confirm that zinc supplementation decreases arsenite-enhanced DNA damage in response to ssUVR exposure. From these data we can conclude that zinc offsets the impact of arsenic on ssUVR-stimulated DNA damage in cells and in vivo suggesting that zinc supplementation may provide a strategy to improve DNA repair capacity in arsenic exposed human populations. PMID:23523584

  1. Individual variations in the correlation between erythemal threshold, UV-induced DNA damage and sun-burn cell formation.

    PubMed

    Heenen, M; Giacomoni, P U; Golstein, P

    2001-10-01

    A linear correlation between erythema intensity and DNA damage upon exposure to UV has not been firmly established. Many of the deleterious effects of UV exposure do occur after exposure to suberythemal doses. After DNA damage, cells undergo DNA repair. It is commonly accepted that when the burden of damage is beyond the repair capacities, the cell undergoes programmed cell death or apoptosis. The aim of this study is to quantify the amount of UV-induced DNA damage (estimated via the measurement of DNA repair or unscheduled DNA synthesis or UDS) and cellular damage (estimated via the determination of the density of sunburn cells or SBC). If DNA damage and erythema are correlated, similar intensity of UDS and similar density of SBC should be found in volunteers irradiated with a UV dose equal to two minimal erythema doses (MED). Our results show that in 15 different individuals the same relative dose (2 MEDs) provokes UDS values, which vary within a factor of 4. An even larger variability affects SBC counts after the same relative dose. When DNA damage or SBC are plotted versus the absolute dose (i.e. the dose expressed in J/m(2)), there is a rough correlation (with several exceptions) between dose and extent of UDS and SBC counts. It seems possible to divide the volunteers into two subpopulations with different susceptibilities to UV damage. It is well known that UDS and SBC measurements are often affected by large experimental indeterminacy, yet, the analysis of our results makes it plausible to suggest that for the triggering of erythema, a common threshold value for DNA damage or for SBC count are not to be found. In conclusion, the erythema response seems to be loosely correlated with DNA damage. This suggests that the protection offered by the sunscreens against DNA damage, the molecular basis of UV-induced mutagenesis, might not be related to the sun protection factor (SPF) indicated on the label of sunscreens, which is evaluated using the erythema as an endpoint.

  2. WHERE MULTIFUNCTIONAL DNA REPAIR PROTEINS MEET: MAPPING THE INTERACTION DOMAINS BETWEEN XPG AND WRN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rangaraj, K.; Cooper, P.K.; Trego, K.S.

    The rapid recognition and repair of DNA damage is essential for the maintenance of genomic integrity and cellular survival. Multiple complex and interconnected DNA damage responses exist within cells to preserve the human genome, and these repair pathways are carried out by a specifi c interplay of protein-protein interactions. Thus a failure in the coordination of these processes, perhaps brought about by a breakdown in any one multifunctional repair protein, can lead to genomic instability, developmental and immunological abnormalities, cancer and premature aging. This study demonstrates a novel interaction between two such repair proteins, Xeroderma pigmentosum group G protein (XPG)more » and Werner syndrome helicase (WRN), that are both highly pleiotropic and associated with inherited genetic disorders when mutated. XPG is a structure-specifi c endonuclease required for the repair of UV-damaged DNA by nucleotide excision repair (NER), and mutations in XPG result in the diseases Xeroderma pigmentosum (XP) and Cockayne syndrome (CS). A loss of XPG incision activity results in XP, whereas a loss of non-enzymatic function(s) of XPG causes CS. WRN is a multifunctional protein involved in double-strand break repair (DSBR), and consists of 3’–5’ DNA-dependent helicase, 3’–5’ exonuclease, and single-strand DNA annealing activities. Nonfunctional WRN protein leads to Werner syndrome, a premature aging disorder with increased cancer incidence. Far Western analysis was used to map the interacting domains between XPG and WRN by denaturing gel electrophoresis, which separated purifi ed full length and recombinant XPG and WRN deletion constructs, based primarily upon the length of each polypeptide. Specifi c interacting domains were visualized when probed with the secondary protein of interest which was then detected by traditional Western analysis using the antibody of the secondary protein. The interaction between XPG and WRN was mapped to the C-terminal region of XPG as well as the C-terminal region of WRN. The physical interaction between XPG and WRN links NER, (made evident by the disease XP) with DSBR, which imparts additional knowledge of the overlapping nature of these two proteins and the previously distinct DNA repair pathways they are associated with. Since genomic integrity is constantly threatened by both endogenous and exogenous (internal and external) damage, understanding the roles of these proteins in coordinating DNA repair processes with replication will signifi cantly further understanding how defects instigate physiological consequences in response to various DNA damaging sources. This ultimately contributes to our understanding of cancer and premature aging.« less

  3. A systematic analysis of factors localized to damaged chromatin reveals PARP-dependent recruitment of transcription factors

    PubMed Central

    Izhar, Lior; Adamson, Britt; Ciccia, Alberto; Lewis, Jedd; Pontano-Vaites, Laura; Leng, Yumei; Liang, Anthony C.; Westbrook, Thomas F.; Harper, J. Wade; Elledge, Stephen J.

    2015-01-01

    Localization to sites of DNA damage is a hallmark of DNA damage response (DDR) proteins. To identify new DDR factors, we screened epitope-tagged proteins for localization to sites of chromatin damaged by UV laser microirradiation and found >120 proteins that localize to damaged chromatin. These include the BAF tumor suppressor complex and the ALS candidate protein TAF15. TAF15 contains multiple domains that bind damaged chromatin in a PARP-dependent manner, suggesting a possible role as glue that tethers multiple PAR chains together. Many positives were transcription factors and >70% of randomly tested transcription factors localized to sites of DNA damage and approximately 90% were PARP-dependent for localization. Mutational analyses showed that localization to damaged chromatin is DNA-binding domain-dependent. By examining Hoechst staining patterns at damage sites, we see evidence of chromatin decompaction that is PARP-dependent. We propose that PARP-regulated chromatin remodeling at sites of damage allows transient accessibility of DNA-binding proteins. PMID:26004182

  4. Review: DNA oxidation, its consequences and efficacy of GC-MS and SPME-GC-MS for In Vitro quantification of DNA oxidative products

    NASA Astrophysics Data System (ADS)

    Singh, Himansha; Udawat, Abhishek; Franklin, Tony; Sarathi, Sai Partha

    2012-10-01

    DNA oxidation could be one of the main factors contributing to DNA damage, eventually leading to carcinogenesis, mutations or non-carcinogenic diseases such as Parkinsonís and Alzheimerís. Only recently has the focus turned towards identifying oxidative products of DNA and their consequences. Metabolism activities in vitro produce reactive radicals, which can break DNA strands to cause lesions. These lesions could also act as biomarkers for diagnostic purposes. This review provides an insight of the DNA oxidation mechanism, its harmful consequences and the advantages/disadvantages of available techniques to quantify such DNA oxidative products, focussing mainly on the use GC-MS along with derivatization reaction. In addition, the review also discusses the use of Solid Phase Micro Extraction (SPME) before conducting GC-MS as a potential assay to overcome the discrepancies involved in using GC-MS alone for the identification of DNA oxidative products.

  5. Markers of oxidative DNA damage in human interventions with fruit and berries.

    PubMed

    Freese, Riitta

    2006-01-01

    Diets rich in fruit and vegetables are associated with a decreased risk of several cancers via numerous possible mechanisms. For example, phytochemicals may decrease oxidative DNA damage and enhance DNA repair. Markers of oxidative DNA damage in human dietary intervention trials used most frequently include oxidized nucleosides such as 7-hydro-8-oxo-2'-deoxyguanosine, which can be analyzed from isolated DNA or urine. Single-cell gel electrophoresis has been widely used to measure baseline or H2O2-induced DNA strand breaks or sites of modified bases sensitive to repair enzymes recognizing oxidized purines or pyrimidines. Recently, markers of DNA repair also have been used. Few controlled human dietary interventions have investigated the specific effects of fruit or berries. There are indications that kiwifruit can decrease H2O2 sensitivity of lymphocyte DNA ex vivo and enhance DNA repair. Carefully controlled studies with flavonoid-rich fruit or berry juices found only few significant differences; less rigorously controlled studies gave more optimistic results. Data on the effects of fruit and berries on DNA damage in humans are scarce and inconclusive; adequately controlled studies with validated markers are needed. Because levels of DNA damage are usually low in young healthy volunteers, groups with an enhanced risk of DNA damage should be studied.

  6. Extracellular self-DNA as a damage-associated molecular pattern (DAMP) that triggers self-specific immunity induction in plants.

    PubMed

    Duran-Flores, Dalia; Heil, Martin

    2017-10-16

    Mammals sense self or non-self extracellular or extranuclear DNA fragments (hereinafter collectively termed eDNA) as indicators of injury or infection and respond with immunity. We hypothesised that eDNA acts as a damage-associated molecular pattern (DAMP) also in plants and that it contributes to self versus non-self discrimination. Treating plants and suspension-cultured cells of common bean (Phaseolus vulgaris) with fragmented self eDNA (obtained from other plants of the same species) induced early, immunity-related signalling responses such as H 2 O 2 generation and MAPK activation, decreased the infection by a bacterial pathogen (Pseudomonas syringae) and increased an indirect defence to herbivores (extrafloral nectar secretion). By contrast, non-self DNA (obtained from lima bean, Phaseolus lunatus, and Acacia farnesiana) had significantly lower or no detectable effects. Only fragments below a size of 700 bp were active, and treating the eDNA preparation DNAse abolished its inducing effects, whereas treatment with RNAse or proteinase had no detectable effect. These findings indicate that DNA fragments, rather than small RNAs, single nucleotides or proteins, accounted for the observed effects. We suggest that eDNA functions a DAMP in plants and that plants discriminate self from non-self at a species-specific level. The immune systems of plants and mammals share multiple central elements, but further work will be required to understand the mechanisms and the selective benefits of an immunity response that is triggered by eDNA in a species-specific manner. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Destabilization of the MutSα's protein-protein interface due to binding to the DNA adduct induced by anticancer agent carboplatin via molecular dynamics simulations.

    PubMed

    Negureanu, Lacramioara; Salsbury, Freddie R

    2013-11-01

    DNA mismatch repair (MMR) proteins maintain genetic integrity in all organisms by recognizing and repairing DNA errors. Such alteration of hereditary information can lead to various diseases, including cancer. Besides their role in DNA repair, MMR proteins detect and initiate cellular responses to certain type of DNA damage. Its response to the damaged DNA has made the human MMR pathway a useful target for anticancer agents such as carboplatin. This study indicates that strong, specific interactions at the interface of MutSα in response to the mismatched DNA recognition are replaced by weak, non-specific interactions in response to the damaged DNA recognition. Data suggest a severe impairment of the dimerization of MutSα in response to the damaged DNA recognition. While the core of MutSα is preserved in response to the damaged DNA recognition, the loss of contact surface and the rearrangement of contacts at the protein interface suggest a different packing in response to the damaged DNA recognition. Coupled in response to the mismatched DNA recognition, interaction energies, hydrogen bonds, salt bridges, and solvent accessible surface areas at the interface of MutSα and within the subunits are uncoupled or asynchronously coupled in response to the damaged DNA recognition. These pieces of evidence suggest that the loss of a synchronous mode of response in the MutSα's surveillance for DNA errors would possibly be one of the mechanism(s) of signaling the MMR-dependent programed cell death much wanted in anticancer therapies. The analysis was drawn from dynamics simulations.

  8. Curcumin causes DNA damage and affects associated protein expression in HeLa human cervical cancer cells.

    PubMed

    Shang, Hung-Sheng; Chang, Chuan-Hsun; Chou, Yu-Ru; Yeh, Ming-Yang; Au, Man-Kuan; Lu, Hsu-Feng; Chu, Yung-Lin; Chou, Hsiao-Min; Chou, Hsiu-Chen; Shih, Yung-Luen; Chung, Jing-Gung

    2016-10-01

    Cervical cancer is one of the most common cancers in women worldwide and it is a prominent cause of cancer mortality. Curcumin is one of the major compounds from Turmeric and has been shown to induce cytotoxic cell death in human cervical cancer cells. However, there is no study to show curcumin induced DNA damage action via the effect on the DNA damage and repair protein in cervical cancer cells in detail. In this study, we investigated whether or not curcumin induced cell death via DNA damage, chromatin condensation in human cervical cancer HeLa cells by using comet assay and DAPI staining, respectively, we found that curcumin induced cell death through the induction of DNA damage, and chromatin condensation. Western blotting and confocal laser microscopy examination were used to examine the effects of curcumin on protein expression associated with DNA damage, repair and translocation of proteins. We found that curcumin at 13 µM increased the protein levels associated with DNA damage and repair, such as O6-methylguanine-DNA methyltransferase, early-onset breast cancer 1 (BRCA1), mediator of DNA damage checkpoint 1, p-p53 and p-H2A.XSer140 in HeLa cells. Results from confocal laser systems microscopy indicated that curcumin increased the translocation of p-p53 and p-H2A.XSer140 from cytosol to nuclei in HeLa cells. In conclusion, curcumin induced cell death in HeLa cells via induction of DNA damage, and chromatin condensation in vitro.

  9. DNA Damage during G2 Phase Does Not Affect Cell Cycle Progression of the Green Alga Scenedesmus quadricauda

    PubMed Central

    Vítová, Milada; Bišová, Kateřina; Zachleder, Vilém

    2011-01-01

    DNA damage is a threat to genomic integrity in all living organisms. Plants and green algae are particularly susceptible to DNA damage especially that caused by UV light, due to their light dependency for photosynthesis. For survival of a plant, and other eukaryotic cells, it is essential for an organism to continuously check the integrity of its genetic material and, when damaged, to repair it immediately. Cells therefore utilize a DNA damage response pathway that is responsible for sensing, reacting to and repairing damaged DNA. We have studied the effect of 5-fluorodeoxyuridine, zeocin, caffeine and combinations of these on the cell cycle of the green alga Scenedesmus quadricauda. The cells delayed S phase and underwent a permanent G2 phase block if DNA metabolism was affected prior to S phase; the G2 phase block imposed by zeocin was partially abolished by caffeine. No cell cycle block was observed if the treatment with zeocin occurred in G2 phase and the cells divided normally. CDKA and CDKB kinases regulate mitosis in S. quadricauda; their kinase activities were inhibited by Wee1. CDKA, CDKB protein levels were stabilized in the presence of zeocin. In contrast, the protein level of Wee1 was unaffected by DNA perturbing treatments. Wee1 therefore does not appear to be involved in the DNA damage response in S. quadricauda. Our results imply a specific reaction to DNA damage in S. quadricauda, with no cell cycle arrest, after experiencing DNA damage during G2 phase. PMID:21603605

  10. Dimethylarsinic acid in drinking water changed the morphology of urinary bladder but not the expression of DNA repair genes of bladder transitional epithelium in F344 rats.

    PubMed

    Wang, Amy; Wolf, Douglas C; Sen, Banalata; Knapp, Geremy W; Holladay, Steven D; Huckle, William R; Caceci, Thomas; Robertson, John L

    2009-06-01

    Inorganic arsenic increases urinary bladder transitional cell carcinoma in humans. In F344 rats, dimethylarsinic acid (DMA[V]) increases transitional cell carcinoma. Arsenic-induced inhibition of DNA repair has been reported in cultured cell lines and in lymphocytes of arsenic-exposed humans, but it has not been studied in urinary bladder. Should inhibition of DNA damage repair in transitional epithelium occur, it may contribute to carcinogenesis or cocarcinogenesis. We investigated morphology and expression of DNA repair genes in F344 rat transitional cells following up to 100 ppm DMA(V) in drinking water for four weeks. Mitochondria were very sensitive to DMA(V), and swollen mitochondria appeared to be the main source of vacuoles in the transitional epithelium. Real-time reverse transcriptase polymerase chain reaction (Real-Time RT PCR) showed the mRNA levels of tested DNA repair genes, ataxia telangectasia mutant (ATM), X-ray repair cross-complementing group 1 (XRCC1), excision repair cross-complementing group 3/xeroderma pigmentosum B (ERCC3/XPB), and DNA polymerase beta (Polbeta), were not altered by DMA(V). These data suggested that either DMA(V) does not affect DNA repair in the bladder or DMA(V) affects DNA repair without affecting baseline mRNA levels of repair genes. The possibility remains that DMA(V) may lower damage-induced increases in repair gene expression or cause post-translational modification of repair enzymes.

  11. Exo1 plays a major role in DNA end resection in humans and influences double-strand break repair and damage signaling decisions

    PubMed Central

    Tomimatsu, Nozomi; Mukherjee, Bipasha; Deland, Katherine; Kurimasa, Akihiro; Bolderson, Emma; Khanna, Kum Kum; Burma, Sandeep

    2012-01-01

    The resection of DNA double-strand breaks (DSBs) to generate ssDNA tails is a pivotal event in the cellular response to these breaks. In the two-step model of resection, primarily elucidated in yeast, initial resection by Mre11/CtIP is followed by extensive resection by two distinct pathways involving Exo1 or BLM/WRN/Dna2. However, resection pathways and their exact contributions in humans in vivo are not as clearly worked out as in yeast. Here, we examined the contribution of Exo1 to DNA end resection in humans in vivo in response to ionizing radiation (IR) and its relationship with other resection pathways (Mre11/CtIP or BLM/WRN). We find that Exo1 plays a predominant role in resection in human cells along with an alternate pathway dependent on WRN. While Mre11 and CtIP stimulate resection in human cells, they are not absolutely required for this process and Exo1 can function in resection even in the absence of Mre11/CtIP. Interestingly, the recruitment of Exo1 to DNA breaks appears to be inhibited by the NHEJ protein Ku80, and the higher level of resection that occurs upon siRNA-mediated depletion of Ku80 is dependent on Exo1. In addition, Exo1 may be regulated by 53BP1 and Brca1, and the restoration of resection in BRCA1-deficient cells upon depletion of 53BP1 is dependent on Exo1. Finally, we find that Exo1-mediated resection facilitates a transition from ATM- to ATR-mediated cell cycle checkpoint signaling. Our results identify Exo1 as a key mediator of DNA end resection and DSB repair and damage signaling decisions in human cells. PMID:22326273

  12. Mechanisms of free radical-induced damage to DNA.

    PubMed

    Dizdaroglu, Miral; Jaruga, Pawel

    2012-04-01

    Endogenous and exogenous sources cause free radical-induced DNA damage in living organisms by a variety of mechanisms. The highly reactive hydroxyl radical reacts with the heterocyclic DNA bases and the sugar moiety near or at diffusion-controlled rates. Hydrated electron and H atom also add to the heterocyclic bases. These reactions lead to adduct radicals, further reactions of which yield numerous products. These include DNA base and sugar products, single- and double-strand breaks, 8,5'-cyclopurine-2'-deoxynucleosides, tandem lesions, clustered sites and DNA-protein cross-links. Reaction conditions and the presence or absence of oxygen profoundly affect the types and yields of the products. There is mounting evidence for an important role of free radical-induced DNA damage in the etiology of numerous diseases including cancer. Further understanding of mechanisms of free radical-induced DNA damage, and cellular repair and biological consequences of DNA damage products will be of outmost importance for disease prevention and treatment.

  13. Synthesis and binding properties of new selective ligands for the nucleobase opposite the AP site.

    PubMed

    Abe, Yukiko; Nakagawa, Osamu; Yamaguchi, Rie; Sasaki, Shigeki

    2012-06-01

    DNA is continuously damaged by endogenous and exogenous factors such as oxidative stress or DNA alkylating agents. These damaged nucleobases are removed by DNA N-glycosylase and form apurinic/apyrimidinic sites (AP sites) as intermediates in the base excision repair (BER) pathway. AP sites are also representative DNA damages formed by spontaneous hydrolysis. The AP sites block DNA polymerase and a mismatch nucleobase is inserted opposite the AP sites by polymerization to cause acute toxicities and mutations. Thus, AP site specific compounds have attracted much attention for therapeutic and diagnostic purposes. In this study, we have developed nucleobase-polyamine conjugates as the AP site binding ligand by expecting that the nucleobase part would play a role in the specific recognition of the nucleobase opposite the AP site by the Watson-Crick base pair formation and that the polyamine part should contribute to the access of the ligand to the AP site by a non-specific interaction to the DNA phosphate backbone. The nucleobase conjugated with 3,3'-diaminodipropylamine (A-ligand, G-ligand, C-ligand, T-ligand and U-ligand) showed a specific stabilization of the duplex containing the AP site depending on the complementary combination with the nucleobase opposite the AP site; that is A-ligand to T, G-ligand to C, C-ligand to G, T- and U-ligand to A. The thermodynamic binding parameters clearly indicated that the specific stabilization is due to specific binding of the ligands to the complementary AP site. These results have suggested that the complementary base pairs of the Watson-Crick type are formed at the AP site. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Role of UME6 in transcriptional regulation of a DNA repair gene in Saccharomyces cerevisiae.

    PubMed

    Sweet, D H; Jang, Y K; Sancar, G B

    1997-11-01

    In Saccharomyces cerevisiae UV radiation and a variety of chemical DNA-damaging agents induce the transcription of specific genes, including several involved in DNA repair. One of the best characterized of these genes is PHR1, which encodes the apoenzyme for DNA photolyase. Basal-level and damage-induced expression of PHR1 require an upstream activation sequence, UAS(PHR1), which has homology with DRC elements found upstream of at least 19 other DNA repair and DNA metabolism genes in yeast. Here we report the identification of the UME6 gene of S. cerevisiae as a regulator of UAS(PHR1) activity. Multiple copies of UME6 stimulate expression from UAS(PHR1) and the intact PHR1 gene. Surprisingly, the effect of deletion of UME6 is growth phase dependent. In wild-type cells PHR1 is induced in late exponential phase, concomitant with the initiation of glycogen accumulation that precedes the diauxic shift. Deletion of UME6 abolishes this induction, decreases the steady-state concentration of photolyase molecules and PHR1 mRNA, and increases the UV sensitivity of a rad2 mutant. Despite the fact that UAS(PHR1) does not contain the URS1 sequence, which has been previously implicated in UME6-mediated transcriptional regulation, we find that Ume6p binds to UAS(PHR1) with an affinity and a specificity similar to those seen for a URS1 site. Similar binding is also seen for DRC elements from RAD2, RAD7, and RAD53, suggesting that UME6 contributes to the regulated expression of a subset of damage-responsive genes in yeast.

  15. A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE INDUCED BY TOXIC INDUSTRIAL CHEMICALS

    EPA Science Inventory

    One of the reported effects for exposure to many of the toxic industrial chemicals is DNA damage. The present study describes a simple, rapid and innovative assay to detect DNA damage resulting from exposure of surrogate DNA to toxic industrial chemicals (acrolein, allylamine, ch...

  16. A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE INDUCED BY STYRENE OXIDE

    EPA Science Inventory

    A rapid and simple assay to detect DNA damage to calf thymus DNA caused by styrene oxide (SO) is reported. This assay is based on changes observed in the melting and annealing behavior of the damaged DNA. The melting annealing process was monitored using a fluorescence indicat...

  17. Role of Mitochondrial Oxidative Stress in Spaceflight-Induced Tissue Degeneration

    NASA Technical Reports Server (NTRS)

    Torres, Samantha M.; Schreurs, Ann-Sofie; Truong, Tiffany A.; Tahimic, Candice; Globus, Ruth

    2017-01-01

    Microgravity and ionizing radiation in the spaceflight environment poses multiple challenges to homeostasis and may contribute to cellular stress. Effects may include increased generation of reactive oxygen species (ROS), DNA damage and repair error, cell cycle arrest, cell senescence or death. Our central hypothesis is that prolonged exposure to the spaceflight environment leads to the excess production of ROS and oxidative damage, culminating in accelerated tissue degeneration. The main goal of this project is to determine the importance of cellular redox defense for physiological adaptations and tissue degeneration in the space environment.

  18. The SOS and RpoS Regulons Contribute to Bacterial Cell Robustness to Genotoxic Stress by Synergistically Regulating DNA Polymerase Pol II.

    PubMed

    Dapa, Tanja; Fleurier, Sébastien; Bredeche, Marie-Florence; Matic, Ivan

    2017-07-01

    Mitomycin C (MMC) is a genotoxic agent that induces DNA cross-links, DNA alkylation, and the production of reactive oxygen species (ROS). MMC induces the SOS response and RpoS regulons in Escherichia coli SOS-encoded functions are required for DNA repair, whereas the RpoS regulon is typically induced by metabolic stresses that slow growth. Thus, induction of the RpoS regulon by MMC may be coincidental, because DNA damage slows growth; alternatively, the RpoS regulon may be an adaptive response contributing to cell survival. In this study, we show that the RpoS regulon is primarily induced by MMC-induced ROS production. We also show that RpoS regulon induction is required for the survival of MMC-treated growing cells. The major contributor to RpoS-dependent resistance to MMC treatment is DNA polymerase Pol II, which is encoded by the polB gene belonging to the SOS regulon. The observation that polB gene expression is controlled by the two major stress response regulons that are required to maximize survival and fitness further emphasizes the key role of this DNA polymerase as an important factor in genome stability. Copyright © 2017 by the Genetics Society of America.

  19. DNA Damage Response, Redox Status and Hematopoiesis

    PubMed Central

    Weiss, Cary N.; Ito, Keisuke

    2013-01-01

    The ability of hematopoietic stem cells (HSCs) to self-renew and differentiate into progenitors is essential for homeostasis of the hematopoietic system. The longevity of HSCs makes them vulnerable to accumulating DNA damage, which may be leukemogenic or result in senescence and cell death. Additionally, the ability of HSCs to self-renew and differentiate allows DNA damage to spread throughout the hematologic system, leaving the organism vulnerable to disease. In this review we discuss cell fate decisions made in the face of DNA damage and other cellular stresses, and the role of reactive oxygen species in the long-term maintenance of HSCs and their DNA damage response. PMID:24041596

  20. Role of genetic polymorphisms of CYP1A1, CYP3A5, CYP2C9, CYP2D6, and PON1 in the modulation of DNA damage in workers occupationally exposed to organophosphate pesticides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Satyender; Kumar, Vivek; Vashisht, Kapil

    2011-11-15

    Organophosphate pesticides (OPs) are primarily metabolized by several xenobiotic metabolizing enzymes (XMEs). Very few studies have explored genetic polymorphisms of XMEs and their association with DNA damage in pesticide-exposed workers. The present study was designed to determine the role of genetic polymorphisms of CYP1A1, CYP3A5, CYP2C9, CYP2D6, and PON1 in the modulation of DNA damage in workers occupationally exposed to OPs. We examined 284 subjects including 150 workers occupationally exposed to OPs and 134 normal healthy controls. The DNA damage was evaluated using the alkaline comet assay and genotyping was done using PCR-RFLP. The results revealed that the PONase activitymore » toward paraoxonase and AChE activity was found significantly lowered in workers as compared to control subjects (p < 0.001). Workers showed significantly higher DNA damage compared to control subjects (14.37 {+-} 2.15 vs. 6.24 {+-} 1.37 tail% DNA, p < 0.001). Further, the workers with CYP2D6*3 PM and PON1 (QQ and MM) genotypes were found to have significantly higher DNA damage when compared to other genotypes (p < 0.05). In addition, significant increase in DNA damage was also observed in workers with concomitant presence of certain CYP2D6 and PON1 (Q192R and L55M) genotypes which need further extensive studies. In conclusion, the results indicate that the PON1 and CYP2D6 genotypes can modulate DNA damage elicited by some OPs possibly through gene-environment interactions. -- Highlights: Black-Right-Pointing-Pointer Role of CYP1A1, CYP3A5, CYP2C, CYP2D6 and PON1 genotypes on DNA damage. Black-Right-Pointing-Pointer Workers exposed to some OPs demonstrated increased DNA damage. Black-Right-Pointing-Pointer CYP2D6 *3 PM and PON1 (Q192R and L55M) genotypes are associated with DNA damage. Black-Right-Pointing-Pointer Concomitant presence of certain CYP2D6 and PON1 genotypes can increase DNA damage.« less

  1. Formation of Clustered DNA Damage after High-LET Irradiation: A Review

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; Georgakilas, Alexandros G.

    2008-01-01

    Radiation can cause as well as cure cancer. The risk of developing radiation-induced cancer has traditionally been estimated from cancer incidence among survivors of the atomic bombs in Hiroshima and Nagasaki. These data provide the best estimate of human cancer risk over the dose range for low linear energy transfer (LET) radiations, such as X- or gamma-rays. The situation of estimating the real biological effects becomes even more difficult in the case of high LET particles encountered in space or as the result of domestic exposure to particles from radon gas emitters or other radioactive emitters like uranium-238. Complex DNA damage, i.e., the signature of high-LET radiations comprises by closely spaced DNA lesions forming a cluster of DNA damage. The two basic groups of complex DNA damage are double strand breaks (DSBs) and non-DSB oxidative clustered DNA lesions (OCDL). Theoretical analysis and experimental evidence suggest there is increased complexity and severity of complex DNA damage with increasing LET (linear energy transfer) and a high mutagenic or carcinogenic potential. Data available on the formation of clustered DNA damage (DSBs and OCDL) by high-LET radiations are often controversial suggesting a variable response to dose and type of radiation. The chemical nature and cellular repair mechanisms of complex DNA damage have been much less characterized than those of isolated DNA lesions like an oxidized base or a single strand break especially in the case of high-LET radiation. This review will focus on the induction of clustered DNA damage by high-LET radiations presenting the earlier and recent relative data.

  2. Novel targets for ATM-deficient malignancies

    PubMed Central

    Winkler, Johannes; Hofmann, Kay; Chen, Shuhua

    2014-01-01

    Conventional chemo- and radiotherapies for the treatment of cancer target rapidly dividing cells in both tumor and non-tumor tissues and can exhibit severe cytotoxicity in normal tissue and impair the patient's immune system. Novel targeted strategies aim for higher efficacy and tumor specificity. The role of ATM protein in the DNA damage response is well known and ATM deficiency frequently plays a role in tumorigenesis and development of malignancy. In addition to contributing to disease development, ATM deficiency also renders malignant cells heavily dependent on other pathways that cooperate with the ATM-mediated DNA damage response to ensure tumor cell survival. Disturbing those cooperative pathways by inhibiting critical protein components allows specific targeting of tumors while sparing healthy cells with normal ATM status. We review druggable candidate targets for the treatment of ATM-deficient malignancies and the mechanisms underlying such targeted therapies. PMID:27308314

  3. An improved method for the isolation of rat alveolar type II lung cells: Use in the Comet assay to determine DNA damage induced by cigarette smoke.

    PubMed

    Dalrymple, Annette; Ordoñez, Patricia; Thorne, David; Dillon, Debbie; Meredith, Clive

    2015-06-01

    Smoking is a cause of serious diseases, including lung cancer, emphysema, chronic bronchitis and heart disease. DNA damage is thought to be one of the mechanisms by which cigarette smoke (CS) initiates disease in the lung. Indeed, CS induced DNA damage can be measured in vitro and in vivo. The potential of the Comet assay to measure DNA damage in isolated rat lung alveolar type II epithelial cells (AEC II) was explored as a means to include a genotoxicity end-point in rodent sub-chronic inhalation studies. In this study, published AEC II isolation methods were improved to yield viable cells suitable for use in the Comet assay. The improved method reduced the level of basal DNA damage and DNA repair in isolated AEC II. CS induced DNA damage could also be quantified in isolated cells following a single or 5 days CS exposure. In conclusion, the Comet assay has the potential to determine CS or other aerosol induced DNA damage in AEC II isolated from rodents used in sub-chronic inhalation studies. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Oxidation in the nucleotide pool, the DNA damage response and cellular senescence: Defective bricks build a defective house.

    PubMed

    Rai, Priyamvada

    2010-11-28

    Activation of persistent DNA damage response (DDR) signaling is associated with the induction of a permanent proliferative arrest known as cellular senescence, a phenomenon intrinsically linked to both tissue aging as well as tumor suppression. The DNA damage observed in senescent cells has been attributed to elevated levels of reactive oxygen species (ROS), failing DNA damage repair processes, and/or oncogenic activation. It is not clear how labile molecules such as ROS are able to damage chromatin-bound DNA to a sufficient extent to invoke persistent DNA damage and DDR signaling. Recent evidence suggests that the nucleotide pool is a significant target for oxidants and that oxidized nucleotides, once incorporated into genomic DNA, can lead to the induction of a DNA strand break-associated DDR that triggers senescence in normal cells and in cells sustaining oncogene activation. Evasion of this DDR and resulting senescence is a key step in tumor progression. This review will explore the role of oxidation in the nucleotide pool as a major effector of oxidative stress-induced genotoxic damage and DDR in the context of cellular senescence and tumorigenic transformation. 2010 Elsevier B.V. All rights reserved.

  5. The response of mammalian cells to UV-light reveals Rad54-dependent and independent pathways of homologous recombination.

    PubMed

    Eppink, Berina; Tafel, Agnieszka A; Hanada, Katsuhiro; van Drunen, Ellen; Hickson, Ian D; Essers, Jeroen; Kanaar, Roland

    2011-11-10

    Ultraviolet (UV) radiation-induced DNA lesions can be efficiently repaired by nucleotide excision repair (NER). However, NER is less effective during replication of UV-damaged chromosomes. In contrast, translesion DNA synthesis (TLS) and homologous recombination (HR) are capable of dealing with lesions in replicating DNA. The core HR protein in mammalian cells is the strand exchange protein RAD51, which is aided by numerous proteins, including RAD54. We used RAD54 as a cellular marker for HR to study the response of mammalian embryonic stem (ES) cells to UV irradiation. In contrast to yeast, ES cells lacking RAD54 are not UV sensitive. Here we show that the requirement for mammalian RAD54 is masked by active NER. By genetically inactivating NER and HR through disruption of the Xpa and Rad54 genes, respectively, we demonstrate the contribution of HR to chromosomal integrity upon UV irradiation. We demonstrate using chromosome fiber analysis at the individual replication fork level, that HR activity is important for the restart of DNA replication after induction of DNA damage by UV-light in NER-deficient cells. Furthermore, our data reveal RAD54-dependent and -independent contributions of HR to the cellular sensitivity to UV-light, and they uncover that RAD54 can compensate for the loss of TLS polymerase η with regard to UV-light sensitivity. In conclusion, we show that HR is important for the progression of UV-stalled replication forks in ES cells, and that protection of the fork is an interplay between HR and TLS. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Vitamin E Modifies High-Fat Diet-Induced Increase of DNA Strand Breaks, and Changes in Expression and DNA Methylation of Dnmt1 and MLH1 in C57BL/6J Male Mice.

    PubMed

    Remely, Marlene; Ferk, Franziska; Sterneder, Sonja; Setayesh, Tahereh; Kepcija, Tatjana; Roth, Sylvia; Noorizadeh, Rahil; Greunz, Martina; Rebhan, Irene; Wagner, Karl-Heinz; Knasmüller, Siegfried; Haslberger, Alexander

    2017-06-14

    Obesity is associated with low-grade inflammation, increased ROS production and DNA damage. Supplementation with antioxidants might ameliorate DNA damage and support epigenetic regulation of DNA repair. C57BL/6J male mice were fed a high-fat (HFD) or a control diet (CD) with and without vitamin E supplementation (4.5 mg/kg body weight (b.w.)) for four months. DNA damage, DNA promoter methylation and gene expression of Dnmt1 and a DNA repair gene ( MLH1 ) were assayed in liver and colon. The HFD resulted in organ specific changes in DNA damage, the epigenetically important Dnmt1 gene, and the DNA repair gene MLH1 . Vitamin E reduced DNA damage and showed organ-specific effects on MLH1 and Dnmt1 gene expression and methylation. These results suggest that interventions with antioxidants and epigenetic active food ingredients should be developed as an effective prevention for obesity-and oxidative stress-induced health risks.

  7. Hide and seek: How do DNA glycosylases locate oxidatively damaged DNA bases amidst a sea of undamaged bases?

    PubMed

    Lee, Andrea J; Wallace, Susan S

    2017-06-01

    The first step of the base excision repair (BER) pathway responsible for removing oxidative DNA damage utilizes DNA glycosylases to find and remove the damaged DNA base. How glycosylases find the damaged base amidst a sea of undamaged bases has long been a question in the BER field. Single molecule total internal reflection fluorescence microscopy (SM TIRFM) experiments have allowed for an exciting look into this search mechanism and have found that DNA glycosylases scan along the DNA backbone in a bidirectional and random fashion. By comparing the search behavior of bacterial glycosylases from different structural families and with varying substrate specificities, it was found that glycosylases search for damage by periodically inserting a wedge residue into the DNA stack as they redundantly search tracks of DNA that are 450-600bp in length. These studies open up a wealth of possibilities for further study in real time of the interactions of DNA glycosylases and other BER enzymes with various DNA substrates. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Impaired Mitochondrial Biogenesis Precedes Heart Failure in Right Ventricular Hypertrophy in Congenital Heart Disease

    PubMed Central

    Karamanlidis, Georgios; Bautista-Hernandez, Victor; Fynn-Thompson, Francis; Nido, Pedro del; Tian, Rong

    2011-01-01

    Background The outcome of the surgical repair in congenital heart disease (CHD) correlates with the degree of myocardial damage. In this study we determined whether mitochondrial DNA depletion is a sensitive marker of right ventricular (RV) damage and whether impaired mitochondrial DNA (mtDNA) replication contributes to the transition from compensated hypertrophy to failure. Methods and Results RV samples obtained from 31 patients undergoing cardiac surgery were compared to 5 RV samples from non-failing hearts (control). Patients were divided into compensated hypertrophy and failure groups based on preoperative echocardiography, catheterization and/or MRI data. Mitochondrial enzyme activities (citrate synthase and succinate dehydrogenase) were maintained during hypertrophy and decreased by ~40% (p<0.05 vs. control) at the stage of failure. In contrast, mtDNA content was progressively decreased in the hypertrophied RV through failure (by 28±8% and 67±11% respectively, p<0.05 for both), whereas mtDNA encoded gene expression was sustained by increased transcriptional activity during compensated hypertrophy but not in failure. MtDNA depletion was attributed to reduced mtDNA replication in both hypertrophied and failing RV and it was independent of PGC-1 down-regulation but was accompanied by reduced expression of proteins constituting the mtDNA replication fork. Decreased mtDNA content in compensated hypertrophy was also associated with pathological changes of mitochondria ultrastructure. Conclusions Impaired mtDNA replication causes early and progressive depletion of mtDNA in the RV of the CHD patients during the transition from hypertrophy to failure. Decreased mtDNA content is likely a sensitive marker of mitochondrial injury in this patient population. PMID:21840936

  9. Increased plasma levels of circulating cell-free mitochondrial DNA in suicide attempters: associations with HPA-axis hyperactivity

    PubMed Central

    Lindqvist, D; Fernström, J; Grudet, C; Ljunggren, L; Träskman-Bendz, L; Ohlsson, L; Westrin, Å

    2016-01-01

    Preclinical data suggest that chronic stress may cause cellular damage and mitochondrial dysfunction, potentially leading to the release of mitochondrial DNA (mtDNA) into the bloodstream. Major depressive disorder has been associated with an increased amount of mtDNA in leukocytes from saliva samples and blood; however, no previous studies have measured plasma levels of free-circulating mtDNA in a clinical psychiatric sample. In this study, free circulating mtDNA was quantified in plasma samples from 37 suicide attempters, who had undergone a dexamethasone suppression test (DST), and 37 healthy controls. We hypothesized that free circulating mtDNA would be elevated in the suicide attempters and would be associated with hypothalamic–pituitary–adrenal (HPA)-axis hyperactivity. Suicide attempters had significantly higher plasma levels of free-circulating mtDNA compared with healthy controls at different time points (pre- and post-DST; all P-values<2.98E−12, Cohen's d ranging from 2.55 to 4.01). Pre-DST plasma levels of mtDNA were positively correlated with post-DST cortisol levels (rho=0.49, P<0.003). Suicide attempters may have elevated plasma levels of free-circulating mtDNA, which are related to impaired HPA-axis negative feedback. This peripheral index is consistent with an increased cellular or mitochondrial damage. The specific cells and tissues contributing to plasma levels of free-circulating mtDNA are not known, as is the specificity of this finding for suicide attempters. Future studies are needed in order to better understand the relevance of increased free-circulating mtDNA in relation to the pathophysiology underlying suicidal behavior and depression. PMID:27922635

  10. Assessment of Multiple Types of DNA Damage in Human Placentas from Smoking and Non-smoking Women in the Czech Republic

    PubMed Central

    Margaret Pratt, M.; King, Leon C.; Adams, Linda D.; John, Kaarthik; Sirajuddin, Paul; Olivero, Ofelia A.; Manchester, David K.; Sram, Radim J.; DeMarini, David M.; Poirier, Miriam C.

    2010-01-01

    Three classes of DNA damage were assessed in human placentas collected (in 2000-4) from 51 women living in the Teplice region of the Czech Republic, a mining area considered to have some of the worst environmental pollution in Europe in the 1980s. Polycyclic aromatic hydrocarbon (PAH)-DNA adducts were localized and semiquantified using immunohistochemistry (IHC) and the Automated Cellular Imaging System (ACIS). More generalized DNA damage was measured both by 32P-postlabeling and by abasic (AB) site analysis. Placenta stained with antiserum elicited against DNA modified with r7, t8-dihydroxy-t-9, 10-oxy-7,8,9,10-tetrahydro-benzo[a]pyrene (BPDE) revealed PAH-DNA adduct localization in nuclei of the cytotrophoblast (CT) cells and syncytiotrophoblast (ST) knots lining the chorionic villi. The highest levels of DNA damage, 49–312 PAH-DNA adducts/108 nucleotides, were found by IHC/ACIS in 14 immediately-fixed placenta samples. An additional 37 placenta samples were stored frozen before fixation and embedding, and because PAH-DNA adducts were largely undetectable in these samples, freezing was implicated in the loss of IHC signal. The same placentas (n = 37) contained 1.7 – 8.6 stable/bulky DNA adducts/108 nucleotides and 0.6 – 47.2 AB sites/105 nucleotides. For all methods there was no correlation among types of DNA damage and no difference in extent of DNA damage between smokers and non-smokers. Therefore, the data show that DNA from placentas obtained in Teplice contained multiple types of DNA damage, which likely arose from various environmental exposures. In addition, PAH-DNA adducts were present at high concentrations in the CT cells and ST knots of the chorionic villi. PMID:20839217

  11. Assessment of multiple types of DNA damage in human placentas from smoking and nonsmoking women in the Czech Republic.

    PubMed

    Pratt, M Margaret; King, Leon C; Adams, Linda D; John, Kaarthik; Sirajuddin, Paul; Olivero, Ofelia A; Manchester, David K; Sram, Radim J; DeMarini, David M; Poirier, Miriam C

    2011-01-01

    Three classes of DNA damage were assessed in human placentas collected (2000-2004) from 51 women living in the Teplice region of the Czech Republic, a mining area considered to have some of the worst environmental pollution in Europe in the 1980s. Polycyclic aromatic hydrocarbon (PAH)-DNA adducts were localized and semiquantified using immunohistochemistry (IHC) and the Automated Cellular Imaging System (ACIS). More generalized DNA damage was measured both by (32)P-postlabeling and by abasic (AB) site analysis. Placenta stained with antiserum elicited against DNA modified with 7β,8α-dihydroxy-9α,10α-epoxy-7,8,9,10-tetrahydro-benzo[a]pyrene (BPDE) revealed PAH-DNA adduct localization in nuclei of the cytotrophoblast (CT) cells and syncytiotrophoblast (ST) knots lining the chorionic villi. The highest levels of DNA damage, 49-312 PAH-DNA adducts/10(8) nucleotides, were found by IHC/ACIS in 14 immediately fixed placenta samples. An additional 37 placenta samples were stored frozen before fixation and embedding, and because PAH-DNA adducts were largely undetectable in these samples, freezing was implicated in the loss of IHC signal. The same placentas (n = 37) contained 1.7-8.6 stable/bulky DNA adducts/10(8) nucleotides and 0.6-47.2 AB sites/10(5) nucleotides. For all methods, there was no correlation among types of DNA damage and no difference in extent of DNA damage between smokers and nonsmokers. Therefore, the data show that DNA from placentas obtained in Teplice contained multiple types of DNA damage, which likely arose from various environmental exposures. In addition, PAH-DNA adducts were present at high concentrations in the CT cells and ST knots of the chorionic villi. Copyright © 2010 Wiley-Liss, Inc.

  12. MGMT hypomethylation is associated with DNA damage in workers exposed to low-dose benzene.

    PubMed

    Li, Jie; Zhang, Xinjie; He, Zhini; Sun, Qing; Qin, Fei; Huang, Zhenlie; Zhang, Xiao; Sun, Xin; Liu, Linhua; Chen, Liping; Gao, Chen; Wang, Shan; Wang, Fangping; Li, Daochuan; Zeng, Xiaowen; Deng, Qifei; Wang, Qing; Zhang, Bo; Tang, Huanwen; Chen, Wen; Xiao, Yongmei

    2017-07-01

    This study aims to assess the effects of low-dose benzene on DNA damage and O 6 -methylguanine-DNA methyltransferase (MGMT) methylation in occupational workers. We recruited 96 nonsmoking male petrochemical industry workers exposed to low-dose benzene and 100 matched control workers. Urinary S-phenylmercapturic acid (SPMA) and S-benzylmercapturic acid (SBMA) were measured for indicating internal exposure of benzene and toluene. The degree of DNA damage was determined by the Comet assay. The levels of MGMT methylation were detected quantitatively by bisulphite-PCR pyrosequencing assay. The benzene-exposed workers had significantly higher levels of urinary SPMA, degree of DNA damage but decreased MGMT methylation than the controls (all p < 0.05). In contrast, the level of urinary SBMA does not differ between benzene-exposed workers and the controls. In all participants, MGMT methylation was negatively associated with the urinary SPMA and the degree of DNA damage, indicating that epigenetic regulation might be involved in response to low-dose benzene exposure-induced genetic damage. MGMT methylation could be a potent biomarker associated with low-dose benzene exposure and benzene-induced DNA damage.

  13. Independent mechanisms recruit the cohesin loader protein NIPBL to sites of DNA damage.

    PubMed

    Bot, Christopher; Pfeiffer, Annika; Giordano, Fosco; Manjeera, Dharani E; Dantuma, Nico P; Ström, Lena

    2017-03-15

    NIPBL is required to load the cohesin complex on to DNA. While the canonical role of cohesin is to couple replicated sister chromatids together until the onset of mitosis, it also promotes tolerance to DNA damage. Here, we show that NIPBL is recruited to DNA damage throughout the cell cycle via independent mechanisms, influenced by type of damage. First, the heterochromatin protein HP1γ (also known as CBX3) recruits NIPBL to DNA double-strand breaks (DSBs) through the corresponding HP1-binding motif within the N-terminus. By contrast, the C-terminal HEAT repeat domain is unable to recruit NIPBL to DSBs but independently targets NIPBL to laser microirradiation-induced DNA damage. Each mechanism is dependent on the RNF8 and RNF168 ubiquitylation pathway, while the recruitment of the HEAT repeat domain requires further ATM or ATR activity. Thus, NIPBL has evolved a sophisticated response to damaged DNA that is influenced by the form of damage, suggesting a highly dynamic role for NIPBL in maintaining genomic stability. © 2017. Published by The Company of Biologists Ltd.

  14. Biological damage of UV radiation in environments of F-type stars

    NASA Astrophysics Data System (ADS)

    Sato, Satoko

    I investigate the general astrobiological significance of F-type main-sequence stars with special consideration to stellar evolutionary aspects due to nuclear evolution. DNA is taken as a proxy for carbon-based macromolecules following the assumption that exobiology is most likely based on hydrocarbons. The DNA action spectrum is utilized to represent the relative damage of the stellar UV radiation. Planetary atmospheric attenuation is taken into account in the form of parameterized attenuation functions. My work is motivated by previous studies indicating that the UV environment of solar-like stars is one of the most critical elements in determining the habitability of exoplanets and exomoons. It contributes further to the exploration of the exobiological suitability of stars that are hotter and emit much higher photospheric UV fluxes than the Sun. I found that the damage inflicted on DNA for planets at Earth-equivalent positions is between 2.5 and 7.1 times higher than for solar-like stars, and there are intricate relations for the time-dependence of damage during stellar main-sequence evolution. If atmospheric attenuation is included, however, less damage is obtained in alignment to the attenuation parameters. Also, the outer part of late F-type stars have similar UV conditions to Earth. Therefore, F-type circumstellar environments should not be excluded from candidates for habitable places on the grounds of higher stellar UV emission than the Sun. Besides the extensive theoretical component of this study, emphasis is furthermore placed on applications to observed planetary systems including CoRoT-3, WASP-14, HD 197286, HD 179949, upsilon And, and HD 86264.

  15. Vehicle and positive control values from the in vivo rodent comet assay and biomonitoring studies using human lymphocytes: historical database and influence of technical aspects.

    PubMed

    Pant, Kamala; Springer, S; Bruce, S; Lawlor, T; Hewitt, N; Aardema, M J

    2014-10-01

    There is increased interest in the in vivo comet assay in rodents as a follow-up approach for determining the biological relevance of chemicals that are genotoxic in in vitro assays. This is partly because, unlike other assays, DNA damage can be assessed in this assay in virtually any tissue. Since background levels of DNA damage can vary with the species, tissue, and cell processing method, a robust historical control database covering multiple tissues is essential. We describe extensive vehicle and positive control data for multiple tissues from rats and mice. In addition, we report historical data from control and genotoxin-treated human blood. Technical issues impacting comet results are described, including the method of cell preparation and freezing. Cell preparation by scraping (stomach and other GI tract organs) resulted in higher % tail DNA than mincing (liver, spleen, kidney etc) or direct collection (blood or bone marrow). Treatment with the positive control genotoxicant, ethyl methanesulfonate (EMS) in rats and methyl methanesulfonate in mice, resulted in statistically significant increases in % tail DNA. Background DNA damage was not markedly increased when cell suspensions were stored frozen prior to preparing slides, and the outcome of the assay was unchanged (EMS was always positive). In conclusion, historical data from our laboratory for the in vivo comet assay for multiple tissues from rats and mice, as well as human blood show very good reproducibility. These data and recommendations provided are aimed at contributing to the design and proper interpretation of results from comet assays. © 2014 Wiley Periodicals, Inc.

  16. Thyroid hormone-induced oxidative damage on lipids, glutathione and DNA in the mouse heart.

    PubMed

    Gredilla, R; Barja, G; López-Torres, M

    2001-10-01

    Oxygen radicals of mitochondrial origin are involved in oxidative damage. In order to analyze the possible relationship between metabolic rate, oxidative stress and oxidative damage, OF1 female mice were rendered hyper- and hypothyroid by chronic administration of 0.0012% L-thyroxine (T4) and 0.05% 6-n-propyl-2-thiouracil (PTU), respectively, in their drinking water for 5 weeks. Hyperthyroidism significantly increased the sensitivity to lipid peroxidation in the heart, although the endogenous levels of lipid peroxidation were not altered. Thyroid hormone-induced oxidative stress also resulted in higher levels of GSSG and GSSG/GSH ratio. Oxidative damage to mitochondrial DNA was greater than that to genomic DNA. Hyperthyroidism decreased oxidative damage to genomic DNA. Hypothyroidism did not modify oxidative damage in the lipid fraction but significantly decreased GSSG and GSSG/GSH ratio and oxidative damage to mitochondrial DNA. These results indicate that thyroid hormones modulate oxidative damage to lipids and DNA, and cellular redox potential in the mouse heart. A higher oxidative stress in the hyperthyroid group is presumably neutralized in the case of nuclear DNA by an increase in repair activity, thus protecting this key molecule. Treatment with PTU, a thyroid hormone inhibitor, reduced oxidative damage in the different cell compartments.

  17. Fructose-Rich Diet Affects Mitochondrial DNA Damage and Repair in Rats.

    PubMed

    Cioffi, Federica; Senese, Rosalba; Lasala, Pasquale; Ziello, Angela; Mazzoli, Arianna; Crescenzo, Raffaella; Liverini, Giovanna; Lanni, Antonia; Goglia, Fernando; Iossa, Susanna

    2017-03-24

    Evidence indicates that many forms of fructose-induced metabolic disturbance are associated with oxidative stress and mitochondrial dysfunction. Mitochondria are prominent targets of oxidative damage; however, it is not clear whether mitochondrial DNA (mtDNA) damage and/or its lack of repair are events involved in metabolic disease resulting from a fructose-rich diet. In the present study, we evaluated the degree of oxidative damage to liver mtDNA and its repair, in addition to the state of oxidative stress and antioxidant defense in the liver of rats fed a high-fructose diet. We used male rats feeding on a high-fructose or control diet for eight weeks. Our results showed an increase in mtDNA damage in the liver of rats fed a high-fructose diet and this damage, as evaluated by the expression of DNA polymerase γ, was not repaired; in addition, the mtDNA copy number was found to be significantly reduced. A reduction in the mtDNA copy number is indicative of impaired mitochondrial biogenesis, as is the finding of a reduction in the expression of genes involved in mitochondrial biogenesis. In conclusion, a fructose-rich diet leads to mitochondrial and mtDNA damage, which consequently may have a role in liver dysfunction and metabolic diseases.

  18. Non-homologous end joining pathway is the major route of protection against 4β-hydroxywithanolide E-induced DNA damage in MCF-7 cells.

    PubMed

    You, B-J; Wu, Y-C; Lee, C-L; Lee, H-Z

    2014-03-01

    4β-Hydroxywithanolide E is a bioactive withanolide extracted from Physalis peruviana. 4β-Hydroxywithanolide E caused reactive oxygen species production and cell apoptosis in human breast cancer MCF-7 cells. We further found that 4β-hydroxywithanolide E induced DNA damage and regulated the DNA damage signaling in MCF-7 cells. The DNA damage sensors and repair proteins act promptly to remove DNA lesions by 4β-hydroxywithanolide E. The ataxia-telangiectasia mutated protein (ATM)-dependent DNA damage signaling pathway is involved in 4β-hydroxywithanolide E-induced apoptosis of MCF-7 cells. Non-homologous end joining pathway, but not homologous recombination, is the major route of protection of MCF-7 cells against 4β-hydroxywithanolide E-induced DNA damage. 4β-Hydroxywithanolide E had no significant impact on the base excision repair pathway. In this study, we examined the 4β-hydroxywithanolide E-induced DNA damage as a research tool in project investigating the DNA repair signaling in breast cancer cells. We also suggest that 4β-hydroxywithanolide E assert its anti-tumor activity in carcinogenic progression and develop into a dietary chemopreventive agent. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Alterations of GSH and MDA levels and their association with bee venom-induced DNA damage in human peripheral blood leukocytes.

    PubMed

    Gajski, Goran; Domijan, Ana-Marija; Garaj-Vrhovac, Vera

    2012-07-01

    Bee venom (BV) has toxic effects in a variety of cell systems and oxidative stress has been proposed as a possible mechanism of its toxicity. This study investigated the in vitro effect of BV on glutathione (GSH) and malondialdehyde (MDA) levels, and their association with BV-induced DNA strand breaks and oxidative DNA damage in human peripheral blood leukocytes (HPBLs). Blood samples were treated with BV at concentrations ranging from 0.1 to 10 μg/ml over different lengths of time, and DNA damage in HPBLs was monitored with the alkaline and formamidopyrimidine glycoslyase (FPG)-modified comet assays, while GSH and MDA levels were determined in whole blood. Results showed a significant increase in overall DNA damage and FPG-sensitive sites in DNA of HPBLs exposed to BV compared with HPBLs from controls. An increase in DNA damage (assessed with both comet assays) was significantly associated with changes in MDA and GSH levels. When pretreated with N-acetyl-L-cysteine, a source of cysteine for the synthesis of the endogenous antioxidant GSH, a significant reduction of the DNA damaging effects of BV in HPBLs was noted. This suggests that oxidative stress is at least partly responsible for the DNA damaging effects of BV. Copyright © 2012 Wiley Periodicals, Inc.

  20. Validation of 64Cu-ATSM damaging DNA via high-LET Auger electron emission.

    PubMed

    McMillan, Dayton D; Maeda, Junko; Bell, Justin J; Genet, Matthew D; Phoonswadi, Garrett; Mann, Kelly A; Kraft, Susan L; Kitamura, Hisashi; Fujimori, Akira; Yoshii, Yukie; Furukawa, Takako; Fujibayashi, Yasuhisa; Kato, Takamitsu A

    2015-09-01

    Radioactive copper (II) (diacetyl-bis N4-methylthiosemicarbazone) (Cu-ATSM) isotopes were originally developed for the imaging of hypoxia in tumors. Because the decay of a (64)Cu atom is emitting not only positrons but also Auger electrons, this radionuclide has great potential as a theranostic agent. However, the success of (64)Cu-ATSM internal radiation therapy would depend on the contribution of Auger electrons to tumor cell killing. Therefore, we designed a cell culture system to define the contributions to cell death from Auger electrons to support or refute our hypothesis that the majority of cell death from (64)Cu-ATSM is a result of high-LET Auger electrons and not positrons or other low-LET radiation. Chinese hamster ovary (CHO) wild type and DNA repair-deficient xrs5 cells were exposed to (64)Cu-ATSM during hypoxic conditions. Surviving fractions were compared with those surviving gamma-radiation, low-LET hadron radiation, and high-LET heavy ion exposure. The ratio of the D(10) values (doses required to achieve 10% cell survival) between CHO wild type and xrs5 cells suggested that (64)Cu-ATSM toxicity is similar to that of high-LET Carbon ion radiation (70 keV/μm). γH2AX foci assays confirmed DNA double-strand breaks and cluster damage by high-LET Auger electrons from (64)Cu decay, and complex types of chromosomal aberrations typical of high-LET radiation were observed after (64)Cu-ATSM exposure. The majority of cell death was caused by high-LET radiation. This work provides strong evidence that (64)Cu-ATSM damages DNA via high-LET Auger electrons, supporting further study and consideration of (64)Cu-ATSM as a cancer treatment modality for hypoxic tumors. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  1. Chemotherapeutic Drugs: DNA Damage and Repair in Glioblastoma.

    PubMed

    Annovazzi, Laura; Mellai, Marta; Schiffer, Davide

    2017-05-26

    Despite improvements in therapeutic strategies, glioblastoma (GB) remains one of the most lethal cancers. The presence of the blood-brain barrier, the infiltrative nature of the tumor and several resistance mechanisms account for the failure of current treatments. Distinct DNA repair pathways can neutralize the cytotoxicity of chemo- and radio-therapeutic agents, driving resistance and tumor relapse. It seems that a subpopulation of stem-like cells, indicated as glioma stem cells (GSCs), is responsible for tumor initiation, maintenance and recurrence and they appear to be more resistant owing to their enhanced DNA repair capacity. Recently, attention has been focused on the pivotal role of the DNA damage response (DDR) in tumorigenesis and in the modulation of therapeutic treatment effects. In this review, we try to summarize the knowledge concerning the main molecular mechanisms involved in the removal of genotoxic lesions caused by alkylating agents, emphasizing the role of GSCs. Beside their increased DNA repair capacity in comparison with non-stem tumor cells, GSCs show a constitutive checkpoint expression that enables them to survive to treatments in a quiescent, non-proliferative state. The targeted inhibition of checkpoint/repair factors of DDR can contribute to eradicate the GSC population and can have a great potential therapeutic impact aiming at sensitizing malignant gliomas to treatments, improving the overall survival of patients.

  2. THE FORK AND THE KINASE: A DNA REPLICATION TALE FROM A CHK1 PERSPECTIVE

    PubMed Central

    González Besteiro, Marina A.; Gottifredi, Vanesa

    2014-01-01

    Replication fork progression is being continuously hampered by exogenously introduced and naturally occurring DNA lesions and other physical obstacles. The checkpoint kinase 1 (Chk1) is activated at replication forks that encounter damaged-DNA. Chk1 inhibits the initiation of new replication factories and stimulates the firing of dormant origins (those in the vicinity of stalled forks). Chk1 also avoids fork collapse into DSBs (double strand breaks) and promotes fork elongation. At the molecular level, the current model considers stalled forks as the site of Chk1 activation and the nucleoplasm as the location where Chk1 phosphorylates target proteins. This model certainly serves to explain how Chk1 modulates origin firing, but how Chk1 controls the fate of stalled forks is less clear. Interestingly, recent reports demonstrating that Chk1 phosphorylates chromatin-bound proteins and even holds kinase-independent functions might shed light on how Chk1 contributes to the elongation of damaged DNA. Such findings unveil a puzzling connection between Chk1 and DNA-lesion bypass, which might be central to promoting fork elongation and checkpoint attenuation. In summary, the multifaceted and versatile functions of Chk1 at ongoing forks and replication origins determine the extent and quality of the cellular response to replication stress. PMID:25795119

  3. Industrialization and the increasing risk of genome instability in developing countries: nutrigenomics as a promising antidote.

    PubMed

    Anetor, J I

    2010-12-01

    Increased reliance on chemicals in the industrializing developing countries places new demands on them, as they have limited resources to adequately regulate exposure to these chemicals. Majority of the chemicals cause mutation in DNA among others. The consequences of increased exposure to chemicals on the genome and their mitigation by Nutrigenomics, a science concerned with the prevention of genome damage by nutritional factors is poorly recognized in these countries. Growing evidence indicates that genome instability in the absence of overt exposure to genotoxicants is a sensitive marker of nutritional deficiency. Therefore, the increasing prevalence of chemicals in these countries which contribute to genome disturbances and the widespread nutritional deficiency, at least double the risk of genome instability.Environmental pollutants such polychlorobiphenyls, metal fumes, and fly ash, common in these countries are known to increase urinary level of 8-hydroxy deoxyguanosine (8-OHdG), a marker of oxidative DNA damage, precursor of genome instability.Increasing evidence emphasizes the importance of zinc in both genetic stability and function. Zinc deficiency has been linked with oxidative stress, DNA damage and impairment of repair mechanisms as well as risk of cancer. Zinc plays an important role in vitamin A metabolism from which the retinoids are derived. Zinc is also an important component of the p53 protein, a DNA damage sensor which prevents genetic lesions contributing to genome instability.Zinc deficiency ranks among the top 10 leading causes of death in developing countries. A large proportion of the population in these countries ingests less than 50% of the RDA for Zn.This makes this genome protective nutrient among others grossly inadequate. Folate now also recognized for its role in genome stability, is among the nutrients frequently cited as critical to genome stability. Folate deficiency of sub- clinical degree is common. Reduced folate intake causes as much genome damage as that induced by exposure to a high dose of ionizing radiation. Even moderate folate deficiency causes very severe damage to the genome in the general population. All these accentuate the susceptibility of populations in these nations to environmental toxic assault requiring preventive measures employing the science of Nutrigenomics, probably augmented with adaptive response pathways such as the Nrf2 signaling pathway. Human populations in developing countries are increasingly exposed to a diverse array of industrial chemicals, which adversely modify the genome, the precursor of many diseases especially cancer. Nutrigenomics encompasses nutritional factors that protect the genome from damage and is a promising new field that can be exploited, perhaps augmented with the Nrf2 signaling pathway with international collaboration in these nations as an antidote to chemical-induced genome instability.

  4. Reaction of protein chloramines with DNA and nucleosides: evidence for the formation of radicals, protein-DNA cross-links and DNA fragmentation.

    PubMed Central

    Hawkins, Clare L; Pattison, David I; Davies, Michael J

    2002-01-01

    Stimulated phagocyte cells produce the oxidant HOCl, via the release of the enzyme myeloperoxidase and hydrogen peroxide. HOCl is important in bacterial cell killing, but excessive or misplaced generation can damage the host tissue and may lead to the development of certain diseases such as cancer. The role of HOCl in the oxidation of isolated proteins, DNA and their components has been investigated extensively, but little work has been performed on the protein-DNA (nucleosome) complexes present in eukaryotic cell nuclei. Neither the selectivity of damage in such complexes nor the possibility of transfer of damage from the protein to DNA or vice versa, has been studied. In the present study, kinetic modelling has been employed to predict that reaction occurs predominantly with the protein and not with the DNA in the nucleosome, using molar HOCl excesses of up to 200-fold. With 50-200-fold excesses, 50-80% of the HOCl is predicted to react with histone lysine and histidine residues to yield chloramines. The yield and stability of such chloramines predicted by these modelling studies agrees well with experimental data. Decomposition of these species gives protein-derived, nitrogen-centred radicals, probably on the lysine side chains, as characterized by the EPR and spin-trapping experiments. It is shown that isolated lysine, histidine, peptide and protein chloramines can react with plasmid DNA to cause strand breaks. The protection against such damage afforded by the radical scavengers Trolox (a water-soluble alpha-tocopherol derivative) and 5,5-dimethyl-1-pyrroline-N-oxide suggests a radical-mediated process. The EPR experiments and product analyses have also provided evidence for the rapid addition of protein radicals, formed on chloramine decomposition, to pyrimidine nucleosides to give nucleobase radicals. Further evidence for the formation of such covalent cross-links has been obtained from experiments performed using (3)H-lysine and (14)C-histidine chloramines. These results are consistent with the predictions of the kinetic model and suggest that histones are major targets for HOCl in the nucleosome. Furthermore, the resulting protein chloramines and the radicals derived from them may act as contributing agents in HOCl-mediated DNA oxidation. PMID:12010123

  5. Evaluating experimental molecular physics studies of radiation damage in DNA*

    NASA Astrophysics Data System (ADS)

    Śmiałek, Małgorzata A.

    2016-11-01

    The field of Atomic and Molecular Physics (AMP) is a mature field exploring the spectroscopy, excitation, ionisation of atoms and molecules in all three phases. Understanding of the spectroscopy and collisional dynamics of AMP has been fundamental to the development and application of quantum mechanics and is applied across a broad range of disparate disciplines including atmospheric sciences, astrochemistry, combustion and environmental science, and in central to core technologies such as semiconductor fabrications, nanotechnology and plasma processing. In recent years the molecular physics also started significantly contributing to the area of the radiation damage at molecular level and thus cancer therapy improvement through both experimental and theoretical advances, developing new damage measurement and analysis techniques. It is therefore worth to summarise and highlight the most prominent findings from the AMP community that contribute towards better understanding of the fundamental processes in biologically-relevant systems as well as to comment on the experimental challenges that were met for more complex investigation targets. Contribution to the Topical Issue "Low-Energy Interactions related to Atmospheric and Extreme Conditions", edited by S. Ptasinska, M. Smialek-Telega, A. Milosavljevic, B. Sivaraman.

  6. Mus308 Processes Oxygen and Nitrogen Ethylation DNA Damage in Germ Cells of Drosophila

    PubMed Central

    Díaz-Valdés, Nancy; Comendador, Miguel A.; Sierra, L. María

    2010-01-01

    The D. melanogaster mus308 gene, highly conserved among higher eukaryotes, is implicated in the repair of cross-links and of O-ethylpyrimidine DNA damage, working in a DNA damage tolerance mechanism. However, despite its relevance, its possible role on the processing of different DNA ethylation damages is not clear. To obtain data on mutation frequency and on mutation spectra in mus308 deficient (mus308−) conditions, the ethylating agent diethyl sulfate (DES) was analysed in postmeiotic male germ cells. These data were compared with those corresponding to mus308 efficient conditions. Our results indicate that Mus308 is necessary for the processing of oxygen and N-ethylation damage, for the survival of fertilized eggs depending on the level of induced DNA damage, and for an influence of the DNA damage neighbouring sequence. These results support the role of mus308 in a tolerance mechanism linked to a translesion synthesis pathway and also to the alternative end-joinig system. PMID:20936147

  7. Chromosome territories reposition during DNA damage-repair response

    PubMed Central

    2013-01-01

    Background Local higher-order chromatin structure, dynamics and composition of the DNA are known to determine double-strand break frequencies and the efficiency of repair. However, how DNA damage response affects the spatial organization of chromosome territories is still unexplored. Results Our report investigates the effect of DNA damage on the spatial organization of chromosome territories within interphase nuclei of human cells. We show that DNA damage induces a large-scale spatial repositioning of chromosome territories that are relatively gene dense. This response is dose dependent, and involves territories moving from the nuclear interior to the periphery and vice versa. Furthermore, we have found that chromosome territory repositioning is contingent upon double-strand break recognition and damage sensing. Importantly, our results suggest that this is a reversible process where, following repair, chromosome territories re-occupy positions similar to those in undamaged control cells. Conclusions Thus, our report for the first time highlights DNA damage-dependent spatial reorganization of whole chromosomes, which might be an integral aspect of cellular damage response. PMID:24330859

  8. Genotoxic effect of ethacrynic acid and impact of antioxidants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, William M.; Hoffman, Jared D.; Loo, George, E-mail: g_loo@uncg.edu

    It is known that ethacrynic acid (EA) decreases the intracellular levels of glutathione. Whether the anticipated oxidative stress affects the structural integrity of DNA is unknown. Therefore, DNA damage was assessed in EA-treated HCT116 cells, and the impact of several antioxidants was also determined. EA caused both concentration-dependent and time-dependent DNA damage that eventually resulted in cell death. Unexpectedly, the DNA damage caused by EA was intensified by either ascorbic acid or trolox. In contrast, EA-induced DNA damage was reduced by N-acetylcysteine and by the iron chelator, deferoxamine. In elucidating the DNA damage, it was determined that EA increased themore » production of reactive oxygen species, which was inhibited by N-acetylcysteine and deferoxamine but not by ascorbic acid and trolox. Also, EA decreased glutathione levels, which were inhibited by N-acetylcysteine. But, ascorbic acid, trolox, and deferoxamine neither inhibited nor enhanced the capacity of EA to decrease glutathione. Interestingly, the glutathione synthesis inhibitor, buthionine sulfoxime, lowered glutathione to a similar degree as EA, but no noticeable DNA damage was found. Nevertheless, buthionine sulfoxime potentiated the glutathione-lowering effect of EA and intensified the DNA damage caused by EA. Additionally, in examining redox-sensitive stress gene expression, it was found that EA increased HO-1, GADD153, and p21mRNA expression, in association with increased nuclear localization of Nrf-2 and p53 proteins. In contrast to ascorbic acid, trolox, and deferoxamine, N-acetylcysteine suppressed the EA-induced upregulation of GADD153, although not of HO-1. Overall, it is concluded that EA has genotoxic properties that can be amplified by certain antioxidants. - Highlights: • Ethacrynic acid (EA) caused cellular DNA damage. • EA-induced DNA damage was potentiated by ascorbic acid or trolox. • EA increased ROS production, not inhibited by ascorbic acid or trolox. • EA decreased glutathione levels, not prevented by ascorbic acid or trolox. • Buthionine sulfoxime intensified the DNA damage caused by EA.« less

  9. DNA Damage among Wood Workers Assessed with the Comet Assay

    PubMed Central

    Bruschweiler, Evin Danisman; Wild, Pascal; Huynh, Cong Khanh; Savova-Bianchi, Dessislava; Danuser, Brigitta; Hopf, Nancy B.

    2016-01-01

    Exposure to wood dust, a human carcinogen, is common in wood-related industries, and millions of workers are occupationally exposed to wood dust worldwide. The comet assay is a rapid, simple, and sensitive method for determining DNA damage. The objective of this study was to investigate the DNA damage associated with occupational exposure to wood dust using the comet assay (peripheral blood samples) among nonsmoking wood workers (n = 31, furniture and construction workers) and controls (n = 19). DNA damage was greater in the group exposed to composite wood products compared to the group exposed to natural woods and controls (P < 0.001). No difference in DNA damage was observed between workers exposed to natural woods and controls (P = 0.13). Duration of exposure and current dust concentrations had no effect on DNA damage. In future studies, workers’ exposures should include cumulative dust concentrations and exposures originating from the binders used in composite wood products. PMID:27398027

  10. [Study on three kinds of gasoline oxygenates-induced DNA damage in mice fibroblasts].

    PubMed

    Song, Chonglin; Zhang, Zhifu; Chen, Xue; Zhang, Yanfeng; Wang, Chunhua; Liu, Keming

    2002-10-01

    To study DNA damage of three kinds of gasoline oxygenates. Single cell gel electrophoresis assay(Comet assay) was used to detect the damage effects of three gasoline oxygenates[methyl tertiary butyl ether(MTBE), ethanol anhydrous(EA) and dimethyl carbonate(DMC)] on DNA in L-929 mice fibroblasts. In certain concentation(37.500-150.000 mg/ml), MTBE could directly cause DNA damage of L-929 mice fibroblasts. There was obvious dose-effect relationship, i.e. when the concentration of MTBE was increased from 9.375 to 150.000 mg/ml, the comet rate also increased from 4% to 85%, and the length of comet tail changed correspondingly. The results of EA and DMC were negative. Under the condition of this experiment(150.000 mg/ml), MTBE could directly cause DNA damage while the effect of EA and DMC on DNA damage was not found.

  11. DNA damage in blood cells exposed to low-level lasers.

    PubMed

    Sergio, Luiz Philippe da Silva; Silva, Ana Paula Almeida da; Amorim, Philipi Freitas; Campos, Vera Maria Araújo; Magalhães, Luis Alexandre Gonçalves; de Paoli, Flavia; de Souza da Fonseca, Adenilson

    2015-04-01

    In regenerative medicine, there are increasing applications of low-level lasers in therapeutic protocols for treatment of diseases in soft and in bone tissues. However, there are doubts about effects on DNA, and an adequate dosimetry could improve the safety of clinical applications of these lasers. This work aimed to evaluate DNA damage in peripheral blood cells of Wistar rats induced by low-level red and infrared lasers at different fluences, powers, and emission modes according to therapeutic protocols. Peripheral blood samples were exposed to lasers and DNA damage was accessed by comet assay. In other experiments, DNA damage was accessed in blood cells by modified comet assay using formamidopyrimidine DNA glycosylase (Fpg) and endonuclease III enzymes. Data show that exposure to low-level red and infrared lasers induce DNA damage depending on fluence, power and emission mode, which are targeted by Fpg and endonuclease III. Oxidative DNA damage should be considered for therapeutic efficacy and patient safety in clinical applications based on low-level red and infrared lasers. © 2015 Wiley Periodicals, Inc.

  12. ATM directs DNA damage responses and proteostasis via genetically separable pathways

    PubMed Central

    Lee, Ji-Hoon; Mand, Michael R.; Kao, Chung-Hsuan; Zhou, Yi; Ryu, Seung W.; Richards, Alicia L.; Coon, Joshua J.; Paull, Tanya T.

    2018-01-01

    The protein kinase ATM is a master regulator of the DNA damage response but also responds directly to oxidative stress. Loss of ATM causes Ataxia telangiectasia, a neurodegenerative disorder with pleiotropic symptoms that include cerebellar dysfunction, cancer, diabetes, and premature aging. Here, we genetically separated DNA damage activation of ATM from oxidative activation using separation-of-function mutations. We found that deficiency in ATM activation by Mre11-Rad50-Nbs1 and DNA double-strand breaks resulted in loss of cell viability, checkpoint activation, and DNA end resection in response to DNA damage. In contrast, loss of oxidative activation of ATM had minimal effects on DNA damage-related outcomes but blocked ATM-mediated initiation of checkpoint responses after oxidative stress and resulted in deficiencies in mitochondrial function and autophagy. In addition, expression of ATM lacking oxidative activation generates widespread protein aggregation. These results indicate a direct relationship between the mechanism of ATM activation and its effects on cellular metabolism and DNA damage responses in human cells and implicates ATM in the control of protein homeostasis. PMID:29317520

  13. Phosphoramide mustard exposure induces DNA adduct formation and the DNA damage repair response in rat ovarian granulosa cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu

    Phosphoramide mustard (PM), the ovotoxic metabolite of the anti-cancer agent cyclophosphamide (CPA), destroys rapidly dividing cells by forming NOR-G-OH, NOR-G and G-NOR-G adducts with DNA, potentially leading to DNA damage. A previous study demonstrated that PM induces ovarian DNA damage in rat ovaries. To investigate whether PM induces DNA adduct formation, DNA damage and induction of the DNA repair response, rat spontaneously immortalized granulosa cells (SIGCs) were treated with vehicle control (1% DMSO) or PM (3 or 6 μM) for 24 or 48 h. Cell viability was reduced (P < 0.05) after 48 h of exposure to 3 or 6more » μM PM. The NOR-G-OH DNA adduct was detected after 24 h of 6 μM PM exposure, while the more cytotoxic G-NOR-G DNA adduct was formed after 48 h by exposure to both PM concentrations. Phosphorylated H2AX (γH2AX), a marker of DNA double stranded break occurrence, was also increased by PM exposure, coincident with DNA adduct formation. Additionally, induction of genes (Atm, Parp1, Prkdc, Xrcc6, and Brca1) and proteins (ATM, γH2AX, PARP-1, PRKDC, XRCC6, and BRCA1) involved in DNA repair were observed in both a time- and dose-dependent manner. These data support that PM induces DNA adduct formation in ovarian granulosa cells, induces DNA damage and elicits the ovarian DNA repair response. - Highlights: • PM forms ovarian DNA adducts. • DNA damage marker γH2AX increased by PM exposure. • PM induces ovarian DNA double strand break repair.« less

  14. Fanconi anemia proteins FANCD2 and FANCI exhibit different DNA damage responses during S-phase

    PubMed Central

    Sareen, Archana; Chaudhury, Indrajit; Adams, Nicole; Sobeck, Alexandra

    2012-01-01

    Fanconi anemia (FA) pathway members, FANCD2 and FANCI, contribute to the repair of replication-stalling DNA lesions. FA pathway activation relies on phosphorylation of FANCI by the ataxia telangiectasia and Rad3-related (ATR) kinase, followed by monoubiquitination of FANCD2 and FANCI by the FA core complex. FANCD2 and FANCI are thought to form a functional heterodimer during DNA repair, but it is unclear how dimer formation is regulated or what the functions of the FANCD2–FANCI complex versus the monomeric proteins are. We show that the FANCD2–FANCI complex forms independently of ATR and FA core complex, and represents the inactive form of both proteins. DNA damage-induced FA pathway activation triggers dissociation of FANCD2 from FANCI. Dissociation coincides with FANCD2 monoubiquitination, which significantly precedes monoubiquitination of FANCI; moreover, monoubiquitination responses of FANCD2 and FANCI exhibit distinct DNA substrate specificities. A phosphodead FANCI mutant fails to dissociate from FANCD2, whereas phosphomimetic FANCI cannot interact with FANCD2, indicating that FANCI phosphorylation is the molecular trigger for FANCD2–FANCI dissociation. Following dissociation, FANCD2 binds replicating chromatin prior to—and independently of—FANCI. Moreover, the concentration of chromatin-bound FANCD2 exceeds that of FANCI throughout replication. Our results suggest that FANCD2 and FANCI function separately at consecutive steps during DNA repair in S-phase. PMID:22753026

  15. The contribution of mitochondrial thymidylate synthesis in preventing the nuclear genome stress

    PubMed Central

    Lee, Ming-Hsiang; Wang, Liya; Chang, Zee-Fen

    2014-01-01

    In quiescent fibroblasts, the expression levels of cytosolic enzymes for thymidine triphosphate (dTTP) synthesis are down-regulated, causing a marked reduction in the dTTP pool. In this study, we provide evidence that mitochondrial thymidylate synthesis via thymidine kinase 2 (TK2) is a limiting factor for the repair of ultraviolet (UV) damage in the nuclear compartment in quiescent fibroblasts. We found that TK2 deficiency causes secondary DNA double-strand breaks formation in the nuclear genome of quiescent cells at the late stage of recovery from UV damage. Despite slower repair of quiescent fibroblast deficient in TK2, DNA damage signals eventually disappeared, and these cells were capable of re-entering the S phase after serum stimulation. However, these cells displayed severe genome stress as revealed by the dramatic increase in 53BP1 nuclear body in the G1 phase of the successive cell cycle. Here, we conclude that mitochondrial thymidylate synthesis via TK2 plays a role in facilitating the quality repair of UV damage for the maintenance of genome integrity in the cells that are temporarily arrested in the quiescent state. PMID:24561807

  16. Male-mediated developmental toxicity.

    PubMed

    Anderson, Diana; Schmid, Thomas E; Baumgartner, Adolf

    2014-01-01

    Male-mediated developmental toxicity has been of concern for many years. The public became aware of male-mediated developmental toxicity in the early 1990s when it was reported that men working at Sellafield might be causing leukemia in their children. Human and animal studies have contributed to our current understanding of male-mediated effects. Animal studies in the 1980s and 1990s suggested that genetic damage after radiation and chemical exposure might be transmitted to offspring. With the increasing understanding that there is histone retention and modification, protamine incorporation into the chromatin and DNA methylation in mature sperm and that spermatozoal RNA transcripts can play important roles in the epigenetic state of sperm, heritable studies began to be viewed differently. Recent reports using molecular approaches have demonstrated that DNA damage can be transmitted to babies from smoking fathers, and expanded simple tandem repeats minisatellite mutations were found in the germline of fathers who were exposed to radiation from the Chernobyl nuclear power plant disaster. In epidemiological studies, it is possible to clarify whether damage is transmitted to the sons after exposure of the fathers. Paternally transmitted damage to the offspring is now recognized as a complex issue with genetic as well as epigenetic components.

  17. Destabilization of the MutSα’s protein-protein interface due to binding to the DNA adduct induced by anticancer agent Carboplatin via molecular dynamics simulations

    PubMed Central

    Negureanu, Lacramioara; Salsbury, Freddie R

    2013-01-01

    DNA mismatch repair (MMR) proteins maintain genetic integrity in all organisms by recognizing and repairing DNA errors. Such alteration of hereditary information can lead to various diseases, including cancer. Besides their role in DNA repair, MMR proteins detect and initiate cellular responses to certain type of DNA damage. Its response to the damaged DNA has made the human MMR pathway a useful target for anticancer agents such as carboplatin. This study indicates that strong, specific interactions at the interface of MutSα in response to the mismatched DNA recognition are replaced by weak, non-specific interactions in response to the damaged DNA recognition. Data suggest a severe impairment of the dimerization of MutSα in response to the damaged DNA recognition. While the core of MutSα is preserved in response to the damaged DNA recognition, the loss of contact surface and the rearrangement of contacts at the protein interface suggest a different packing in response to the damaged DNA recognition. Coupled in response to the mismatched DNA recognition, interaction energies, hydrogen bonds, salt bridges, and solvent accessible surface areas at the interface of MutSα and within the subunits are uncoupled or asynchronously coupled in response to the damaged DNA recognition. These pieces of evidence suggest that the loss of a synchronous mode of response in the MutSα’s surveillance for DNA errors would possible be one of the mechanism(s) of signaling the MMR-dependent programed cell death much wanted in anticancer therapies. The analysis was drawn from dynamics simulations. PMID:24061854

  18. UV and ionizing radiations induced DNA damage, differences and similarities

    NASA Astrophysics Data System (ADS)

    Ravanat, Jean-Luc; Douki, Thierry

    2016-11-01

    Both UV and ionizing radiations damage DNA. Two main mechanisms, so-called direct and indirect pathways, are involved in the degradation of DNA induced by ionizing radiations. The direct effect of radiation corresponds to direct ionization of DNA (one electron ejection) whereas indirect effects are produced by reactive oxygen species generated through water radiolysis, including the highly reactive hydroxyl radicals, which damage DNA. UV (and visible) light damages DNA by again two distinct mechanisms. UVC and to a lesser extend UVB photons are directly absorbed by DNA bases, generating their excited states that are at the origin of the formation of pyrimidine dimers. UVA (and visible) light by interaction with endogenous or exogenous photosensitizers induce the formation of DNA damage through photosensitization reactions. The excited photosensitizer is able to induce either a one-electron oxidation of DNA (type I) or to produce singlet oxygen (type II) that reacts with DNA. In addition, through an energy transfer from the excited photosensitizer to DNA bases (sometime called type III mechanism) formation of pyrimidine dimers could be produced. Interestingly it has been shown recently that pyrimidine dimers are also produced by direct absorption of UVA light by DNA, even if absorption of DNA bases at these wavelengths is very low. It should be stressed that some excited photosensitizers (such as psoralens) could add directly to DNA bases to generate adducts. The review will described the differences and similarities in terms of damage formation (structure and mechanisms) between these two physical genotoxic agents.

  19. Identification of irradiated refrigerated pork with the DNA comet assay

    NASA Astrophysics Data System (ADS)

    Araújo, M. M.; Marin-Huachaca, N. S.; Mancini-Filho, J.; Delincée, H.; Villavicencio, A. L. C. H.

    2004-09-01

    Food irradiation can contribute to a safer and more plentiful food supply by inactivating pathogens, eradicating pests and by extending shelf-life. Particularly in the case of pork meat, this process could be a useful way to inactivate harmful parasites such as Trichinella and Taenia solium. Ionizing radiation causes damage to the DNA of the cells (e.g. strand breaks), which can be used to detect irradiated food. Microelectrophoresis of single cells (``Comet Assay'') is a simple and rapid test for DNA damage and can be used over a wide dose range and for a variety of products. Refrigerated pork meat was irradiated with a 60Co source, Gammacell 220 (A.E.C.L.) installed in IPEN (Sa~o Paulo, Brazil). The doses given were 0, 1.5, 3.0 and 4.5kGy for refrigerated samples. Immediately after irradiation the samples were returned to the refrigerator (6°C). Samples were kept in the refrigerator after irradiation. Pork meat was analyzed 1, 8 and 10 days after irradiation using the DNA ``Comet Assay''. This method showed to be an inexpensive and rapid technique for qualitative detection of irradiation treatment.

  20. G-quadruplex formation in telomeres enhances POT1/TPP1 protection against RPA binding

    PubMed Central

    Ray, Sujay; Bandaria, Jigar N.; Qureshi, Mohammad H.; Yildiz, Ahmet; Balci, Hamza

    2014-01-01

    Human telomeres terminate with a single-stranded 3′ G overhang, which can be recognized as a DNA damage site by replication protein A (RPA). The protection of telomeres (POT1)/POT1-interacting protein 1 (TPP1) heterodimer binds specifically to single-stranded telomeric DNA (ssTEL) and protects G overhangs against RPA binding. The G overhang spontaneously folds into various G-quadruplex (GQ) conformations. It remains unclear whether GQ formation affects the ability of POT1/TPP1 to compete against RPA to access ssTEL. Using single-molecule Förster resonance energy transfer, we showed that POT1 stably loads to a minimal DNA sequence adjacent to a folded GQ. At 150 mM K+, POT1 loading unfolds the antiparallel GQ, as the parallel conformation remains folded. POT1/TPP1 loading blocks RPA’s access to both folded and unfolded telomeres by two orders of magnitude. This protection is not observed at 150 mM Na+, in which ssTEL forms only a less-stable antiparallel GQ. These results suggest that GQ formation of telomeric overhangs may contribute to suppression of DNA damage signals. PMID:24516170

  1. Dose-rate effect of ultrashort electron beam radiation on DNA damage and repair in vitro.

    PubMed

    Babayan, Nelly; Hovhannisyan, Galina; Grigoryan, Bagrat; Grigoryan, Ruzanna; Sarkisyan, Natalia; Tsakanova, Gohar; Haroutiunian, Samvel; Aroutiounian, Rouben

    2017-11-01

    Laser-generated electron beams are distinguished from conventional accelerated particles by ultrashort beam pulses in the femtoseconds to picoseconds duration range, and their application may elucidate primary radiobiological effects. The aim of the present study was to determine the dose-rate effect of laser-generated ultrashort pulses of 4 MeV electron beam radiation on DNA damage and repair in human cells. The dose rate was increased via changing the pulse repetition frequency, without increasing the electron energy. The human chronic myeloid leukemia K-562 cell line was used to estimate the DNA damage and repair after irradiation, via the comet assay. A distribution analysis of the DNA damage was performed. The same mean level of initial DNA damages was observed at low (3.6 Gy/min) and high (36 Gy/min) dose-rate irradiation. In the case of low-dose-rate irradiation, the detected DNA damages were completely repairable, whereas the high-dose-rate irradiation demonstrated a lower level of reparability. The distribution analysis of initial DNA damages after high-dose-rate irradiation revealed a shift towards higher amounts of damage and a broadening in distribution. Thus, increasing the dose rate via changing the pulse frequency of ultrafast electrons leads to an increase in the complexity of DNA damages, with a consequent decrease in their reparability. Since the application of an ultrashort pulsed electron beam permits us to describe the primary radiobiological effects, it can be assumed that the observed dose-rate effect on DNA damage/repair is mainly caused by primary lesions appearing at the moment of irradiation. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  2. Induction and repair of DNA damage measured by the comet assay in human T lymphocytes separated by immunomagnetic cell sorting.

    PubMed

    Bausinger, Julia; Speit, Günter

    2014-11-01

    The comet assay is widely used in human biomonitoring to measure DNA damage in whole blood or isolated peripheral blood mononuclear cells (PBMC) as a marker of exposure to genotoxic agents. Cytogenetic assays with phytohemagglutinin (PHA)-stimulated cultured T lymphocytes are also frequently performed in human biomonitoring. Cytogenetic effects (micronuclei, chromosome aberrations, sister chromatid exchanges) may be induced in vivo but also occur ex vivo during the cultivation of lymphocytes as a consequence of DNA damage present in lymphocytes at the time of sampling. To better understand whether DNA damage measured by the comet assay in PBMC is representative for DNA damage in T cells, we comparatively investigated DNA damage and its repair in PBMC and T cells obtained by immunomagnetic cell sorting. PBMC cultures and T cell cultures were exposed to mutagens with different modes of genotoxic action and DNA damage was measured by the comet assay after the end of a 2h exposure and after 18h post-incubation. The mutagens tested were methyl methanesulfonate (MMS), (±)-anti-B[a]P-7,8-dihydrodiol-9,10-epoxide (BPDE), 4-nitroquinoline-1-oxide (4NQO), styrene oxide and potassium bromate. MMS and potassium bromate were also tested by the modified comet assay with formamido pyrimidine glycosylase (FPG) protein. The results indicate that the mutagens tested induce DNA damage in PBMC and T cells in the same range of concentrations and removal of induced DNA lesions occurs to a comparable extent. Based on these results, we conclude that the comet assay with PBMC is suited to predict DNA damage and its removal in T cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Chemical form of selenium differentially influences DNA repair pathways following exposure to lead nitrate.

    PubMed

    McKelvey, Shauna M; Horgan, Karina A; Murphy, Richard A

    2015-01-01

    Lead, an environmental toxin is known to induce a broad range of physiological and biochemical dysfunctions in humans through a number of mechanisms including the deactivation of antioxidants thus leading to generation of reactive oxygen species (ROS) and subsequent DNA damage. Selenium on the other hand has been proven to play an important role in the protection of cells from free radical damage and oxidative stress, though its effects are thought to be form and dose dependent. As the liver is the primary organ required for metabolite detoxification, HepG2 cells were chosen to assess the protective effects of various selenium compounds following exposure to the genotoxic agent lead nitrate. Initially DNA damage was quantified using a comet assay, gene expression patterns associated with DNA damage and signalling were also examined using PCR arrays and the biological pathways which were most significantly affected by selenium were identified. Interestingly, the organic type selenium compounds (selenium yeast and selenomethionine) conferred protection against lead induced DNA damage in HepG2 cells; this is evident by reduction in the quantity of DNA present in the comet tail of cells cultured in their presence with lead. This trend also followed through the gene expression changes noted in DNA damage pathways analysed. These results were in contrast with those of inorganic sodium selenite which promoted lead induced DNA damage evident in both the comet assay results and the gene expression analysis. Over all this study provided valuable insights into the effects which various selenium compounds had on the DNA damage and signalling pathway indicating the potential for using organic forms of selenium such as selenium enriched yeast to protect against DNA damaging agents. Copyright © 2014 Elsevier GmbH. All rights reserved.

  4. Role of shielding in modulating the effects of solar particle events: Monte Carlo calculation of absorbed dose and DNA complex lesions in different organs

    NASA Technical Reports Server (NTRS)

    Ballarini, F.; Biaggi, M.; De Biaggi, L.; Ferrari, A.; Ottolenghi, A.; Panzarasa, A.; Paretzke, H. G.; Pelliccioni, M.; Sala, P.; Scannicchio, D.; hide

    2004-01-01

    Distributions of absorbed dose and DNA clustered damage yields in various organs and tissues following the October 1989 solar particle event (SPE) were calculated by coupling the FLUKA Monte Carlo transport code with two anthropomorphic phantoms (a mathematical model and a voxel model), with the main aim of quantifying the role of the shielding features in modulating organ doses. The phantoms, which were assumed to be in deep space, were inserted into a shielding box of variable thickness and material and were irradiated with the proton spectra of the October 1989 event. Average numbers of DNA lesions per cell in different organs were calculated by adopting a technique already tested in previous works, consisting of integrating into "condensed-history" Monte Carlo transport codes--such as FLUKA--yields of radiobiological damage, either calculated with "event-by-event" track structure simulations, or taken from experimental works available in the literature. More specifically, the yields of "Complex Lesions" (or "CL", defined and calculated as a clustered DNA damage in a previous work) per unit dose and DNA mass (CL Gy-1 Da-1) due to the various beam components, including those derived from nuclear interactions with the shielding and the human body, were integrated in FLUKA. This provided spatial distributions of CL/cell yields in different organs, as well as distributions of absorbed doses. The contributions of primary protons and secondary hadrons were calculated separately, and the simulations were repeated for values of Al shielding thickness ranging between 1 and 20 g/cm2. Slight differences were found between the two phantom types. Skin and eye lenses were found to receive larger doses with respect to internal organs; however, shielding was more effective for skin and lenses. Secondary particles arising from nuclear interactions were found to have a minor role, although their relative contribution was found to be larger for the Complex Lesions than for the absorbed dose, due to their higher LET and thus higher biological effectiveness. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  5. Role of shielding in modulating the effects of solar particle events: Monte Carlo calculation of absorbed dose and DNA complex lesions in different organs

    NASA Astrophysics Data System (ADS)

    Ballarini, F.; Biaggi, M.; De Biaggi, L.; Ferrari, A.; Ottolenghi, A.; Panzarasa, A.; Paretzke, H. G.; Pelliccioni, M.; Sala, P.; Scannicchio, D.; Zankl, M.

    2004-01-01

    Distributions of absorbed dose and DNA clustered damage yields in various organs and tissues following the October 1989 solar particle event (SPE) were calculated by coupling the FLUKA Monte Carlo transport code with two anthropomorphic phantoms (a mathematical model and a voxel model), with the main aim of quantifying the role of the shielding features in modulating organ doses. The phantoms, which were assumed to be in deep space, were inserted into a shielding box of variable thickness and material and were irradiated with the proton spectra of the October 1989 event. Average numbers of DNA lesions per cell in different organs were calculated by adopting a technique already tested in previous works, consisting of integrating into "condensed-history" Monte Carlo transport codes - such as FLUKA - yields of radiobiological damage, either calculated with "event-by-event" track structure simulations, or taken from experimental works available in the literature. More specifically, the yields of "Complex Lesions" (or "CL", defined and calculated as a clustered DNA damage in a previous work) per unit dose and DNA mass (CL Gy -1 Da -1) due to the various beam components, including those derived from nuclear interactions with the shielding and the human body, were integrated in FLUKA. This provided spatial distributions of CL/cell yields in different organs, as well as distributions of absorbed doses. The contributions of primary protons and secondary hadrons were calculated separately, and the simulations were repeated for values of Al shielding thickness ranging between 1 and 20 g/cm 2. Slight differences were found between the two phantom types. Skin and eye lenses were found to receive larger doses with respect to internal organs; however, shielding was more effective for skin and lenses. Secondary particles arising from nuclear interactions were found to have a minor role, although their relative contribution was found to be larger for the Complex Lesions than for the absorbed dose, due to their higher LET and thus higher biological effectiveness.

  6. Chronic exposure to the cytolethal distending toxins of Gram-negative bacteria promotes genomic instability and altered DNA damage response

    PubMed Central

    Guidi, Riccardo; Guerra, Lina; Levi, Laura; Stenerlöw, Bo; Fox, James G.; Josenhans, Christine; Masucci, Maria G.; Frisan, Teresa

    2014-01-01

    Summary Epidemiological evidence links chronic bacterial infections to the increased incidence of certain types of cancer but the molecular mechanisms by which bacteria contribute to tumour initiation and progression are still poorly characterized. Here we show that chronic exposure to the genotoxin cytolethal distending toxin (CDT) of Gram-negative bacteria promotes genomic instability and acquisition of phenotypic properties of malignancy in fibroblasts and colon epithelial cells. Cells grown for more than 30 weeks in the presence of sublethal doses of CDT showed increased mutation frequency, and accumulation of chromatin and chromosomal aberrations in the absence of significant alterations of cell cycle distribution, decreased viability or senescence. Cell survival was dependent on sustained activity of the p38 MAP kinase. The ongoing genomic instability was associated with impaired activation of the DNA damage response and failure to efficiently activate cell cycle checkpoints upon exposure to genotoxic stress. Independently selected sublines showed enhanced anchorage-independent growth as assessed by the formation of colonies in semisolid agarose. These findings support the notion that chronic infection by CDT-producing bacteria may promote malignant transformation, and point to the impairment of cellular control mechanisms associated with the detection and repair of DNA damage as critical events in the process. PMID:22998585

  7. Effects of different extenders on DNA integrity of boar spermatozoa following freezing-thawing.

    PubMed

    Hu, Jian-hong; Li, Qing-wang; Jiang, Zhong-liang; Li, Wen-ye

    2008-12-01

    The sperm-rich fraction, collected from eight mature Yorkshire boars, was frozen in an extender containing 9% LDL (w/v), 100mM trehalose, or 20% yolk (v/v), respectively. Sperm DNA integrity was assessed using the single-cell gel electrophoresis (SCGE). Other sperm quality characteristics such as motility, acrosome and membrane integrity were also monitored. The results showed that freezing-thawing caused an increase in sperm DNA fragmentation, and extender containing 9% LDL could significantly protect sperm DNA integrity (P<0.05) from the damage caused by cryopreservation and decrease DNA damages compared with extender containing 100mM trehalose and 20% yolk (v/v). No significant difference in damaged DNA was detected between frozen and unfrozen semen samples for extender of 9% LDL and 100mM trehalose, but cryopreservation could increase the degree of DNA damage (P<0.05), the percentage of damaged DNA degree of grade 2 and 3 was significantly increased. The deterioration in post-thaw sperm DNA integrity was concurrent with reduced sperm characteristics. The data here demonstrated that the cryoprotectant played a fundamental role in reducing boar sperm DNA damage and protecting DNA integrity. It can be suggested that evaluation of sperm DNA integrity, coupled with correlative and basic characteristics such as motility, acrosome integrity and membrane integrity, may aid in determining the quality of frozen boar semen.

  8. Role of mitochondrial DNA damage and dysfunction in veterans with Gulf War Illness.

    PubMed

    Chen, Yang; Meyer, Joel N; Hill, Helene Z; Lange, Gudrun; Condon, Michael R; Klein, Jacquelyn C; Ndirangu, Duncan; Falvo, Michael J

    2017-01-01

    Gulf War Illness (GWI) is a chronic multi-symptom illness not currently diagnosed by standard medical or laboratory test that affects 30% of veterans who served during the 1990-1991 Gulf War. The clinical presentation of GWI is comparable to that of patients with certain mitochondrial disorders-i.e., clinically heterogeneous multisystem symptoms. Therefore, we hypothesized that mitochondrial dysfunction may contribute to both the symptoms of GWI as well as its persistence over time. We recruited 21 cases of GWI (CDC and Kansas criteria) and 7 controls to participate in this study. Peripheral blood samples were obtained in all participants and a quantitative polymerase chain reaction (QPCR) based assay was performed to quantify mitochondrial and nuclear DNA lesion frequency and mitochondrial DNA (mtDNA) copy number (mtDNAcn) from peripheral blood mononuclear cells. Samples were also used to analyze nuclear DNA lesion frequency and enzyme activity for mitochondrial complexes I and IV. Both mtDNA lesion frequency (p = 0.015, d = 1.13) and mtDNAcn (p = 0.001; d = 1.69) were elevated in veterans with GWI relative to controls. Nuclear DNA lesion frequency was also elevated in veterans with GWI (p = 0.344; d = 1.41), but did not reach statistical significance. Complex I and IV activity (p > 0.05) were similar between groups and greater mtDNA lesion frequency was associated with reduced complex I (r2 = -0.35, p = 0.007) and IV (r2 = -0.28, p < 0.01) enzyme activity. In conclusion, veterans with GWI exhibit greater mtDNA damage which is consistent with mitochondrial dysfunction.

  9. BCR/ABL downregulates DNA-PK(CS)-dependent and upregulates backup non-homologous end joining in leukemic cells.

    PubMed

    Poplawski, Tomasz; Blasiak, Janusz

    2010-06-01

    Non-homologous end joining (NHEJ) and homologous recombination repair (HRR) are the main mechanisms involved in the processing of DNA double strand breaks (DSBs) in humans. We showed previously that the oncogenic tyrosine kinase BCR/ABL stimulated DSBs repair by HRR. To evaluate the role of BCR/ABL in DSBs repair by NHEJ we examined the ability of leukemic BCR/ABL-expressing cell line BV173 to repair DNA damage induced by two DNA topoisomerase II inhibitors: etoposide and sobuzoxane. DNA lesions induced by sobuzoxane are repaired by a NHEJ pathway which is dependent on the catalytic subunit of protein kinase dependent on DNA (DNA-PK(CS); D-NHEJ), whereas damage evoked by etoposide are repaired by two distinct NHEJ pathways, dependent on or independent of DNA-PK(CS) (backup NHEJ, B-NHEJ). Cells incubated with STI571, a highly specific inhibitor of BCR/ABL, displayed resistance to these agents associated with an accelerated kinetics of DSBs repair, as measured by the neutral comet assay and pulsed field gel electrophoresis. However, in a functional NHEJ assay, cells preincubated with STI571 repaired DSBs induced by a restriction enzyme with a lower efficacy than without the preincubation and addition of wortmannin, a specific inhibitor of DNA-PK(CS), did not change efficacy of the NHEJ reaction. We suggest that BCR/ABL switch on B-NHEJ which is more error-prone then D-NHEJ and in such manner contribute to the increase of the genomic instability of leukemic cells.

  10. Nucleosomes suppress the formation of double-strand DNA breaks during attempted base excision repair of clustered oxidative damages.

    PubMed

    Cannan, Wendy J; Tsang, Betty P; Wallace, Susan S; Pederson, David S

    2014-07-18

    Exposure to ionizing radiation can produce multiple, clustered oxidative lesions in DNA. The near simultaneous excision of nearby lesions in opposing DNA strands by the base excision repair (BER) enzymes can produce double-strand DNA breaks (DSBs). This attempted BER accounts for many of the potentially lethal or mutagenic DSBs that occur in vivo. To assess the impact of nucleosomes on the frequency and pattern of BER-dependent DSB formation, we incubated nucleosomes containing oxidative damages in opposing DNA strands with selected DNA glycosylases and human apurinic/apyrimidinic endonuclease 1. Overall, nucleosomes substantially suppressed DSB formation. However, the degree of suppression varied as a function of (i) the lesion type and DNA glycosylase tested, (ii) local sequence context and the stagger between opposing strand lesions, (iii) the helical orientation of oxidative lesions relative to the underlying histone octamer, and (iv) the distance between the lesion cluster and the nucleosome edge. In some instances the binding of a BER factor to one nucleosomal lesion appeared to facilitate binding to the opposing strand lesion. DSB formation did not invariably lead to nucleosome dissolution, and in some cases, free DNA ends resulting from DSB formation remained associated with the histone octamer. These observations explain how specific structural and dynamic properties of nucleosomes contribute to the suppression of BER-generated DSBs. These studies also suggest that most BER-generated DSBs will occur in linker DNA and in genomic regions associated with elevated rates of nucleosome turnover or remodeling. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Nucleosomes Suppress the Formation of Double-strand DNA Breaks during Attempted Base Excision Repair of Clustered Oxidative Damages*

    PubMed Central

    Cannan, Wendy J.; Tsang, Betty P.; Wallace, Susan S.; Pederson, David S.

    2014-01-01

    Exposure to ionizing radiation can produce multiple, clustered oxidative lesions in DNA. The near simultaneous excision of nearby lesions in opposing DNA strands by the base excision repair (BER) enzymes can produce double-strand DNA breaks (DSBs). This attempted BER accounts for many of the potentially lethal or mutagenic DSBs that occur in vivo. To assess the impact of nucleosomes on the frequency and pattern of BER-dependent DSB formation, we incubated nucleosomes containing oxidative damages in opposing DNA strands with selected DNA glycosylases and human apurinic/apyrimidinic endonuclease 1. Overall, nucleosomes substantially suppressed DSB formation. However, the degree of suppression varied as a function of (i) the lesion type and DNA glycosylase tested, (ii) local sequence context and the stagger between opposing strand lesions, (iii) the helical orientation of oxidative lesions relative to the underlying histone octamer, and (iv) the distance between the lesion cluster and the nucleosome edge. In some instances the binding of a BER factor to one nucleosomal lesion appeared to facilitate binding to the opposing strand lesion. DSB formation did not invariably lead to nucleosome dissolution, and in some cases, free DNA ends resulting from DSB formation remained associated with the histone octamer. These observations explain how specific structural and dynamic properties of nucleosomes contribute to the suppression of BER-generated DSBs. These studies also suggest that most BER-generated DSBs will occur in linker DNA and in genomic regions associated with elevated rates of nucleosome turnover or remodeling. PMID:24891506

  12. Characterization of the interactions of PARP-1 with UV-damaged DNA in vivo and in vitro

    PubMed Central

    Purohit, Nupur K.; Robu, Mihaela; Shah, Rashmi G.; Geacintov, Nicholas E.; Shah, Girish M.

    2016-01-01

    The existing methodologies for studying robust responses of poly (ADP-ribose) polymerase-1 (PARP-1) to DNA damage with strand breaks are often not suitable for examining its subtle responses to altered DNA without strand breaks, such as UV-damaged DNA. Here we describe two novel assays with which we characterized the interaction of PARP-1 with UV-damaged DNA in vivo and in vitro. Using an in situ fractionation technique to selectively remove free PARP-1 while retaining the DNA-bound PARP-1, we demonstrate a direct recruitment of the endogenous or exogenous PARP-1 to the UV-lesion site in vivo after local irradiation. In addition, using the model oligonucleotides with single UV lesion surrounded by multiple restriction enzyme sites, we demonstrate in vitro that DDB2 and PARP-1 can simultaneously bind to UV-damaged DNA and that PARP-1 casts a bilateral asymmetric footprint from −12 to +9 nucleotides on either side of the UV-lesion. These techniques will permit characterization of different roles of PARP-1 in the repair of UV-damaged DNA and also allow the study of normal housekeeping roles of PARP-1 with undamaged DNA. PMID:26753915

  13. A CAF-1–PCNA-Mediated Chromatin Assembly Pathway Triggered by Sensing DNA Damage

    PubMed Central

    Moggs, Jonathan G.; Grandi, Paola; Quivy, Jean-Pierre; Jónsson, Zophonías O.; Hübscher, Ulrich; Becker, Peter B.; Almouzni, Geneviève

    2000-01-01

    Sensing DNA damage is crucial for the maintenance of genomic integrity and cell cycle progression. The participation of chromatin in these events is becoming of increasing interest. We show that the presence of single-strand breaks and gaps, formed either directly or during DNA damage processing, can trigger the propagation of nucleosomal arrays. This nucleosome assembly pathway involves the histone chaperone chromatin assembly factor 1 (CAF-1). The largest subunit (p150) of this factor interacts directly with proliferating cell nuclear antigen (PCNA), and critical regions for this interaction on both proteins have been mapped. To isolate proteins specifically recruited during DNA repair, damaged DNA linked to magnetic beads was used. The binding of both PCNA and CAF-1 to this damaged DNA was dependent on the number of DNA lesions and required ATP. Chromatin assembly linked to the repair of single-strand breaks was disrupted by depletion of PCNA from a cell-free system. This defect was rescued by complementation with recombinant PCNA, arguing for role of PCNA in mediating chromatin assembly linked to DNA repair. We discuss the importance of the PCNA–CAF-1 interaction in the context of DNA damage processing and checkpoint control. PMID:10648606

  14. Chemical determination of free radical-induced damage to DNA.

    PubMed

    Dizdaroglu, M

    1991-01-01

    Free radical-induced damage to DNA in vivo can result in deleterious biological consequences such as the initiation and promotion of cancer. Chemical characterization and quantitation of such DNA damage is essential for an understanding of its biological consequences and cellular repair. Methodologies incorporating the technique of gas chromatography/mass spectrometry (GC/MS) have been developed in recent years for measurement of free radical-induced DNA damage. The use of GC/MS with selected-ion monitoring (SIM) facilitates unequivocal identification and quantitation of a large number of products of all four DNA bases produced in DNA by reactions with hydroxyl radical, hydrated electron, and H atom. Hydroxyl radical-induced DNA-protein cross-links in mammalian chromatin, and products of the sugar moiety in DNA are also unequivocally identified and quantitated. The sensitivity and selectivity of the GC/MS-SIM technique enables the measurement of DNA base products even in isolated mammalian chromatin without the necessity of first isolating DNA, and despite the presence of histones. Recent results reviewed in this article demonstrate the usefulness of the GC/MS technique for chemical determination of free radical-induced DNA damage in DNA as well as in mammalian chromatin under a vast variety of conditions of free radical production.

  15. AtlA Mediates Extracellular DNA Release, Which Contributes to Streptococcus mutans Biofilm Formation in an Experimental Rat Model of Infective Endocarditis

    PubMed Central

    Hsu, Ron-Bin; Shun, Chia-Tung; Hsu, Chih-Chieh

    2017-01-01

    ABSTRACT Host factors, such as platelets, have been shown to enhance biofilm formation by oral commensal streptococci, inducing infective endocarditis (IE), but how bacterial components contribute to biofilm formation in vivo is still not clear. We demonstrated previously that an isogenic mutant strain of Streptococcus mutans deficient in autolysin AtlA (ΔatlA) showed a reduced ability to cause vegetation in a rat model of bacterial endocarditis. However, the role of AtlA in bacterial biofilm formation is unclear. In this study, confocal laser scanning microscopy analysis showed that extracellular DNA (eDNA) was embedded in S. mutans GS5 floes during biofilm formation on damaged heart valves, but an ΔatlA strain could not form bacterial aggregates. Semiquantification of eDNA by PCR with bacterial 16S rRNA primers demonstrated that the ΔatlA mutant strain produced dramatically less eDNA than the wild type. Similar results were observed with in vitro biofilm models. The addition of polyanethol sulfonate, a chemical lysis inhibitor, revealed that eDNA release mediated by bacterial cell lysis is required for biofilm initiation and maturation in the wild-type strain. Supplementation of cultures with calcium ions reduced wild-type growth but increased eDNA release and biofilm mass. The effect of calcium ions on biofilm formation was abolished in ΔatlA cultures and by the addition of polyanethol sulfonate. The VicK sensor, but not CiaH, was found to be required for the induction of eDNA release or the stimulation of biofilm formation by calcium ions. These data suggest that calcium ion-regulated AtlA maturation mediates the release of eDNA by S. mutans, which contributes to biofilm formation in infective endocarditis. PMID:28674029

  16. Sperm DNA oxidative damage and DNA adducts

    PubMed Central

    Jeng, Hueiwang Anna; Pan, Chih-Hong; Chao, Mu-Rong; Lin, Wen-Yi

    2015-01-01

    The objective of this study was to investigate DNA damage and adducts in sperm from coke oven workers who have been exposed to polycyclic aromatic hydrocarbons. A longitudinal study was conducted with repeated measurements during spermatogenesis. Coke-oven workers (n=112) from a coke-oven plant served the PAH-exposed group, while administrators and security personnel (n=67) served the control. Routine semen parameters (concentration, motility, vitality, and morphology) were analyzed simultaneously; the assessment of sperm DNA integrity endpoints included DNA fragmentation, bulky DNA adducts, and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxo-dGuo). The degree of sperm DNA fragmentation was measured using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay and sperm chromatin structure assay (SCSA). The PAH-exposed group had a significant increase in bulky DNA adducts and 8-oxo-dGuo compared to the control subjects (Ps = 0.002 and 0.045, respectively). Coke oven workers' percentages of DNA fragmentation and denaturation from the PAH-exposed group were not significantly different from those of the control subjects (Ps = 0.232 and 0.245, respectively). Routine semen parameters and DNA integrity endpoints were not correlated. Concentrations of 8-oxo-dGuo were positively correlated with percentages of DNA fragmentation measured by both TUNEL and SCSA (Ps = 0.045 and 0.034, respectively). However, the concentrations of 8-oxo-dGuo and percentages of DNA fragmentation did not correlate with concentrations of bulky DNA adducts. In summary, coke oven workers with chronic exposure to PAHs experienced decreased sperm DNA integrity. Oxidative stress could contribute to the degree of DNA fragmentation. Bulky DNA adducts may be independent of the formation of DNA fragmentation and oxidative adducts in sperm. Monitoring sperm DNA integrity is recommended as a part of the process of assessing the impact of occupational and environmental toxins on sperm. PMID:26653986

  17. Introducing a true internal standard for the Comet assay to minimize intra- and inter-experiment variability in measures of DNA damage and repair

    PubMed Central

    Zainol, Murizal; Stoute, Julia; Almeida, Gabriela M.; Rapp, Alexander; Bowman, Karen J.; Jones, George D. D.

    2009-01-01

    The Comet assay (CA) is a sensitive/simple measure of genotoxicity. However, many features of CA contribute variability. To minimize these, we have introduced internal standard materials consisting of ‘reference’ cells which have their DNA substituted with BrdU. Using a fluorescent anti-BrdU antibody, plus an additional barrier filter, comets derived from these cells could be readily distinguished from the ‘test’-cell comets, present in the same gel. In experiments to evaluate the reference cell comets as external and internal standards, the reference and test cells were present in separate gels on the same slide or mixed together in the same gel, respectively, before their co-exposure to X-irradiation. Using the reference cell comets as internal standards led to substantial reductions in the coefficient of variation (CoV) for intra- and inter-experimental measures of comet formation and DNA damage repair; only minor reductions in CoV were noted when the reference and test cell comets were in separate gels. These studies indicate that differences between individual gels appreciably contribute to CA variation. Further studies using the reference cells as internal standards allowed greater significance to be obtained between groups of replicate samples. Ultimately, we anticipate that development will deliver robust quality assurance materials for CA. PMID:19828597

  18. A Systematic Analysis of Factors Localized to Damaged Chromatin Reveals PARP-Dependent Recruitment of Transcription Factors.

    PubMed

    Izhar, Lior; Adamson, Britt; Ciccia, Alberto; Lewis, Jedd; Pontano-Vaites, Laura; Leng, Yumei; Liang, Anthony C; Westbrook, Thomas F; Harper, J Wade; Elledge, Stephen J

    2015-06-09

    Localization to sites of DNA damage is a hallmark of DNA damage response (DDR) proteins. To identify DDR factors, we screened epitope-tagged proteins for localization to sites of chromatin damaged by UV laser microirradiation and found >120 proteins that localize to damaged chromatin. These include the BAF tumor suppressor complex and the amyotrophic lateral sclerosis (ALS) candidate protein TAF15. TAF15 contains multiple domains that bind damaged chromatin in a poly-(ADP-ribose) polymerase (PARP)-dependent manner, suggesting a possible role as glue that tethers multiple PAR chains together. Many positives were transcription factors; > 70% of randomly tested transcription factors localized to sites of DNA damage, and of these, ∼90% were PARP dependent for localization. Mutational analyses showed that localization to damaged chromatin is DNA-binding-domain dependent. By examining Hoechst staining patterns at damage sites, we see evidence of chromatin decompaction that is PARP dependent. We propose that PARP-regulated chromatin remodeling at sites of damage allows transient accessibility of DNA-binding proteins. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Mechanisms of DNA damage, repair and mutagenesis

    PubMed Central

    Chatterjee, Nimrat; Walker, Graham C.

    2017-01-01

    Living organisms are continuously exposed to a myriad of DNA damaging agents that can impact health and modulate disease-states. However, robust DNA repair and damage-bypass mechanisms faithfully protect the DNA by either removing or tolerating the damage to ensure an overall survival. Deviations in this fine-tuning are known to destabilize cellular metabolic homeostasis, as exemplified in diverse cancers where disruption or deregulation of DNA repair pathways results in genome instability. Because routinely used biological, physical and chemical agents impact human health, testing their genotoxicity and regulating their use have become important. In this introductory review, we will delineate mechanisms of DNA damage and the counteracting repair/tolerance pathways to provide insights into the molecular basis of genotoxicity in cells that lays the foundation for subsequent articles in this issue. PMID:28485537

  20. Influence of DNA Lesions on Polymerase-Mediated DNA Replication at Single-Molecule Resolution.

    PubMed

    Gahlon, Hailey L; Romano, Louis J; Rueda, David

    2017-11-20

    Faithful replication of DNA is a critical aspect in maintaining genome integrity. DNA polymerases are responsible for replicating DNA, and high-fidelity polymerases do this rapidly and at low error rates. Upon exposure to exogenous or endogenous substances, DNA can become damaged and this can alter the speed and fidelity of a DNA polymerase. In this instance, DNA polymerases are confronted with an obstacle that can result in genomic instability during replication, for example, by nucleotide misinsertion or replication fork collapse. It is important to know how DNA polymerases respond to damaged DNA substrates to understand the mechanism of mutagenesis and chemical carcinogenesis. Single-molecule techniques have helped to improve our current understanding of DNA polymerase-mediated DNA replication, as they enable the dissection of mechanistic details that can otherwise be lost in ensemble-averaged experiments. These techniques have also been used to gain a deeper understanding of how single DNA polymerases behave at the site of the damage in a DNA substrate. In this review, we evaluate single-molecule studies that have examined the interaction between DNA polymerases and damaged sites on a DNA template.

  1. A survey of the sequence-specific interaction of damaging agents with DNA: emphasis on antitumor agents.

    PubMed

    Murray, V

    1999-01-01

    This article reviews the literature concerning the sequence specificity of DNA-damaging agents. DNA-damaging agents are widely used in cancer chemotherapy. It is important to understand fully the determinants of DNA sequence specificity so that more effective DNA-damaging agents can be developed as antitumor drugs. There are five main methods of DNA sequence specificity analysis: cleavage of end-labeled fragments, linear amplification with Taq DNA polymerase, ligation-mediated polymerase chain reaction (PCR), single-strand ligation PCR, and footprinting. The DNA sequence specificity in purified DNA and in intact mammalian cells is reviewed for several classes of DNA-damaging agent. These include agents that form covalent adducts with DNA, free radical generators, topoisomerase inhibitors, intercalators and minor groove binders, enzymes, and electromagnetic radiation. The main sites of adduct formation are at the N-7 of guanine in the major groove of DNA and the N-3 of adenine in the minor groove, whereas free radical generators abstract hydrogen from the deoxyribose sugar and topoisomerase inhibitors cause enzyme-DNA cross-links to form. Several issues involved in the determination of the DNA sequence specificity are discussed. The future directions of the field, with respect to cancer chemotherapy, are also examined.

  2. Bim directly antagonizes Bcl-xl in doxorubicin-induced prostate cancer cell apoptosis independently of p53.

    PubMed

    Yang, Min-Chi; Lin, Ru-Wei; Huang, Shih-Bo; Huang, Shin-Yuan; Chen, Wen-Jie; Wang, Shiaw; Hong, Yi-Ren; Wang, Chihuei

    2016-01-01

    Doxorubicin and other anthracycline compounds exert their anti-cancer effects by causing DNA damage and initiating cell cycle arrest in cancer cells, followed by apoptosis. DNA damage generally activates a p53-mediated pathway to initiate apoptosis by increasing the level of the BH3-only protein, Puma. However, p53-mediated apoptosis in response to DNA damage has not yet been validated in prostate cancers. In the current study, we used LNCaP and PC3 prostate cancer cells, representing wild type p53 and a p53-null model, to determine if DNA damage activates p53-mediated apoptosis in prostate cancers. Our results revealed that PC3 cells were 4 to 8-fold less sensitive than LNCaP cells to doxorubicin-inuced apoptosis. We proved that the differential response of LNCaP and PC3 to doxorubicin was p53-independent by introducing wild-type or dominant negative p53 into PC3 or LNCaP cells, respectively. By comparing several apoptosis-related proteins in both cell lines, we found that Bcl-xl proteins were much more abundant in PC3 cells than in LNCaP cells. We further demonstrated that Bcl-xl protects LNCaP and PC3 cells from doxorubicin-induced apoptosis by using ABT-263, an inhibitor of Bcl-xl, as a single agent or in combination with doxorubicin to treat LNCaP or PC3 cells. Bcl-xl rather than p53, likely contributes to the differential response of LNCaP and PC3 to doxorubicin in apoptosis. Finally, co-immunoprecipitation and siRNA analysis revealed that a BH3-only protein, Bim, is involved in doxorubicin-induced apoptosis by directly counteracting Bcl-xl.

  3. Increased oxidative phosphorylation in response to acute and chronic DNA damage

    PubMed Central

    Brace, Lear E; Vose, Sarah C; Stanya, Kristopher; Gathungu, Rose M; Marur, Vasant R; Longchamp, Alban; Treviño-Villarreal, Humberto; Mejia, Pedro; Vargas, Dorathy; Inouye, Karen; Bronson, Roderick T; Lee, Chih-Hao; Neilan, Edward; Kristal, Bruce S; Mitchell, James R

    2016-01-01

    Accumulation of DNA damage is intricately linked to aging, aging-related diseases and progeroid syndromes such as Cockayne syndrome (CS). Free radicals from endogenous oxidative energy metabolism can damage DNA, however the potential of acute or chronic DNA damage to modulate cellular and/or organismal energy metabolism remains largely unexplored. We modeled chronic endogenous genotoxic stress using a DNA repair-deficient Csa−/−|Xpa−/− mouse model of CS. Exogenous genotoxic stress was modeled in mice in vivo and primary cells in vitro treated with different genotoxins giving rise to diverse spectrums of lesions, including ultraviolet radiation, intrastrand crosslinking agents and ionizing radiation. Both chronic endogenous and acute exogenous genotoxic stress increased mitochondrial fatty acid oxidation (FAO) on the organismal level, manifested by increased oxygen consumption, reduced respiratory exchange ratio, progressive adipose loss and increased FAO in tissues ex vivo. In multiple primary cell types, the metabolic response to different genotoxins manifested as a cell-autonomous increase in oxidative phosphorylation (OXPHOS) subsequent to a transient decline in steady-state NAD+ and ATP levels, and required the DNA damage sensor PARP-1 and energy-sensing kinase AMPK. We conclude that increased FAO/OXPHOS is a general, beneficial, adaptive response to DNA damage on cellular and organismal levels, illustrating a fundamental link between genotoxic stress and energy metabolism driven by the energetic cost of DNA damage. Our study points to therapeutic opportunities to mitigate detrimental effects of DNA damage on primary cells in the context of radio/chemotherapy or progeroid syndromes. PMID:28721274

  4. The comparison of DNA damage induced by micro DBD plasma and low energy electron for curing human diseases

    NASA Astrophysics Data System (ADS)

    Park, Yeunsoo

    2015-09-01

    It is well known that low energy electrons (LEE, especially below 10 eV) can generate DNA damage via indirect action named dissociative electron attachment (DEA). We can now explain some parts of the exact mechanism on DNA damage by LEE collision with direct ionization effect when cancer patients get the radiotherapy. It is kind of remarkable information in the field of radiation therapy. However, it is practically very difficult to directly apply this finding to human disease cure due to difficulty of LEE therapy actualization and request of further clinical studies. Recently, there is a novel challenge in plasma application, that is, how we can apply plasma technology to diagnosis and treatment of many serious diseases like cancer. Cold atmospheric pressure plasma (CAPP) is a very good source to apply to plasma medicine and bio-applications because of low temperature, low cost, and easy handling. Some scientists have already reported good results related to clinical plasma application. The purposes of this study are to further find out exact mechanisms of DNA damage by LEE at the molecular level, to verify new DNA damage like structural alteration on DNA subunits and to compare DNA damage by LEE and plasma source. We will keep expanding our study to DNA damage by plasma source to develop plasma-based new medical and biological applications. We will show some recent results, DNA damage by LEE and non-thermal plasma.

  5. Genome-wide map of Apn1 binding sites under oxidative stress in Saccharomyces cerevisiae.

    PubMed

    Morris, Lydia P; Conley, Andrew B; Degtyareva, Natalya; Jordan, I King; Doetsch, Paul W

    2017-11-01

    The DNA is cells is continuously exposed to reactive oxygen species resulting in toxic and mutagenic DNA damage. Although the repair of oxidative DNA damage occurs primarily through the base excision repair (BER) pathway, the nucleotide excision repair (NER) pathway processes some of the same lesions. In addition, damage tolerance mechanisms, such as recombination and translesion synthesis, enable cells to tolerate oxidative DNA damage, especially when BER and NER capacities are exceeded. Thus, disruption of BER alone or disruption of BER and NER in Saccharomyces cerevisiae leads to increased mutations as well as large-scale genomic rearrangements. Previous studies demonstrated that a particular region of chromosome II is susceptible to chronic oxidative stress-induced chromosomal rearrangements, suggesting the existence of DNA damage and/or DNA repair hotspots. Here we investigated the relationship between oxidative damage and genomic instability utilizing chromatin immunoprecipitation combined with DNA microarray technology to profile DNA repair sites along yeast chromosomes under different oxidative stress conditions. We targeted the major yeast AP endonuclease Apn1 as a representative BER protein. Our results indicate that Apn1 target sequences are enriched for cytosine and guanine nucleotides. We predict that BER protects these sites in the genome because guanines and cytosines are thought to be especially susceptible to oxidative attack, thereby preventing large-scale genome destabilization from chronic accumulation of DNA damage. Information from our studies should provide insight into how regional deployment of oxidative DNA damage management systems along chromosomes protects against large-scale rearrangements. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  6. DNA Damage Signals and Space Radiation Risk

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2011-01-01

    Space radiation is comprised of high-energy and charge (HZE) nuclei and protons. The initial DNA damage from HZE nuclei is qualitatively different from X-rays or gamma rays due to the clustering of damage sites which increases their complexity. Clustering of DNA damage occurs on several scales. First there is clustering of single strand breaks (SSB), double strand breaks (DSB), and base damage within a few to several hundred base pairs (bp). A second form of damage clustering occurs on the scale of a few kbp where several DSB?s may be induced by single HZE nuclei. These forms of damage clusters do not occur at low to moderate doses of X-rays or gamma rays thus presenting new challenges to DNA repair systems. We review current knowledge of differences that occur in DNA repair pathways for different types of radiation and possible relationships to mutations, chromosomal aberrations and cancer risks.

  7. In situ analysis of DNA damage response and repair using laser microirradiation.

    PubMed

    Kim, Jong-Soo; Heale, Jason T; Zeng, Weihua; Kong, Xiangduo; Krasieva, Tatiana B; Ball, Alexander R; Yokomori, Kyoko

    2007-01-01

    A proper response to DNA damage is critical for the maintenance of genome integrity. However, it is difficult to study the in vivo kinetics and factor requirements of the damage recognition process in mammalian cells. In order to address how the cell reacts to DNA damage, we utilized a second harmonic (532 nm) pulsed Nd:YAG laser to induce highly concentrated damage in a small area in interphase cell nuclei and cytologically analyzed both protein recruitment and modification. Our results revealed for the first time the sequential recruitment of factors involved in two major DNA double-strand break (DSB) repair pathways, non-homologous end-joining (NHEJ) and homologous recombination (HR), and the cell cycle-specific recruitment of the sister chromatid cohesion complex cohesin to the damage site. In this chapter, the strategy developed to study the DNA damage response using the 532-nm Nd:YAG laser will be summarized.

  8. Evaluating In Vitro DNA Damage Using Comet Assay.

    PubMed

    Lu, Yanxin; Liu, Yang; Yang, Chunzhang

    2017-10-11

    DNA damage is a common phenomenon for each cell during its lifespan, and is defined as an alteration of the chemical structure of genomic DNA. Cancer therapies, such as radio- and chemotherapy, introduce enormous amount of additional DNA damage, leading to cell cycle arrest and apoptosis to limit cancer progression. Quantitative assessment of DNA damage during experimental cancer therapy is a key step to justify the effectiveness of a genotoxic agent. In this study, we focus on a single cell electrophoresis assay, also known as the comet assay, which can quantify single and double-strand DNA breaks in vitro. The comet assay is a DNA damage quantification method that is efficient and easy to perform, and has low time/budget demands and high reproducibility. Here, we highlight the utility of the comet assay for a preclinical study by evaluating the genotoxic effect of olaparib/temozolomide combination therapy to U251 glioma cells.

  9. Cidofovir is active against human papillomavirus positive and negative head and neck and cervical tumor cells by causing DNA damage as one of its working mechanisms.

    PubMed

    Mertens, Barbara; Nogueira, Tatiane; Stranska, Ruzena; Naesens, Lieve; Andrei, Graciela; Snoeck, Robert

    2016-07-26

    Human papillomavirus (HPV) causes cervical cancer and a large fraction of head and neck squamous cell carcinomas (HNSCC). Cidofovir (CDV) proved efficacious in the treatment of several HPV-induced benign and malignant hyper proliferations. To provide a better insight into how CDV selectively eradicates transformed cells, HPV+ and HPV- cervical carcinoma and HNSCC cell lines were compared to normal cells for antiproliferative effects, CDV metabolism, drug incorporation into cellular DNA, and DNA damage. Incorporation of CDV into cellular DNA was higher in tumor cells than in normal cells and correlated with CDV antiproliferative effects, which were independent of HPV status. Increase in phospho-ATM levels was detected following CDV exposure and higher levels of γ-H2AX (a quantitative marker of double-strand breaks) were measured in tumor cells compared to normal cells. A correlation between DNA damage and CDV incorporation into DNA was found but not between DNA damage and CDV antiproliferative effects. These data indicate that CDV antiproliferative effects result from incorporation of the drug into DNA causing DNA damage. However, the anti-tumor effects of CDV cannot be exclusively ascribed to DNA damage. Furthermore, CDV can be considered a promising broad spectrum anti-cancer agent, not restricted to HPV+ lesions.

  10. Differences in DNA-damage in non-smoking men and women exposed to environmental tobacco smoke (ETS).

    PubMed

    Collier, Abby C; Dandge, Sachin D; Woodrow, James E; Pritsos, Chris A

    2005-07-28

    There is much data implicating environmental tobacco smoke (ETS) in the development and progression of disease, notably cancer, yet the mechanisms for this remain unclear. As ETS is both a pro-oxidant stressor and carcinogen, we investigated the relationship of ETS exposure to intracellular and serum levels of DNA-damage, both oxidative 8-hydroxy-2-deoxyguanosine (8OHdG) and general, in non-smokers from non-smoking households, occupationally exposed to ETS. General DNA-damage consisting of single and double strand breaks, alkali-labile sites and incomplete base-excision repair, increased significantly in a dose-dependent manner with ETS exposure in men (P=0.015, n=32, Pearson) but not women (P=0.736, n=17). Intracellular 8OHdG-DNA-damage and general DNA-damage were both greater in men than women (P=0.0005 and 0.016, respectively) but 8OHdG serum levels did not differ between the genders. Neither 8OHdG-DNA-damage nor serum levels correlated with increasing ETS exposure. This is the first study to demonstrate dose-dependent increases in DNA-damage from workplace ETS exposure. Perhaps most interesting was that despite equivalent ETS exposure, significantly greater DNA-damage occurred in men than women. These data may begin to provide a mechanistic rationale for the generally higher incidence of some diseases in males due to tobacco smoke and/or other genotoxic stressors.

  11. Chk1 Promotes DNA Damage Response Bypass following Oxidative Stress in a Model of Hydrogen Peroxide-Associated Ulcerative Colitis through JNK Inactivation and Chromatin Binding.

    PubMed

    Reissig, Kathrin; Silver, Andrew; Hartig, Roland; Schinlauer, Antje; Walluscheck, Diana; Guenther, Thomas; Siedentopf, Sandra; Ross, Jochen; Vo, Diep-Khanh; Roessner, Albert; Poehlmann-Nitsche, Angela

    2017-01-01

    Dysregulation of c-Jun N -terminal kinase (JNK) activation promoted DNA damage response bypass and tumorigenesis in our model of hydrogen peroxide-associated ulcerative colitis (UC) and in patients with quiescent UC (QUC), UC-related dysplasia, and UC-related carcinoma (UC-CRC), thereby adapting to oxidative stress. In the UC model, we have observed features of oncogenic transformation: increased proliferation, undetected DNA damage, and apoptosis resistance. Here, we show that Chk1 was downregulated but activated in the acute and quiescent chronic phases. In both phases, Chk1 was linked to DNA damage response bypass by suppressing JNK activation following oxidative stress, promoting cell cycle progression despite DNA damage. Simultaneously, activated Chk1 was bound to chromatin. This triggered histone acetylation and the binding of histone acetyltransferases and transcription factors to chromatin. Thus, chromatin-immobilized activated Chk1 executed a dual function by suppressing DNA damage response and simultaneously inducing chromatin modulation. This caused undetected DNA damage and increased cellular proliferation through failure to transmit the appropriate DNA damage signal. Findings in vitro were corroborated by chromatin accumulation of activated Chk1, Ac-H3, Ac-H4, and c-Jun in active UC (AUC) in vivo. Targeting chromatin-bound Chk1, GCN5, PCAF, and p300/CBP could be a novel therapeutic strategy to prevent UC-related tumor progression.

  12. Mechanisms of sulfur mustard analog 2-chloroethyl ethyl sulfide-induced DNA damage in skin epidermal cells and fibroblasts.

    PubMed

    Inturi, Swetha; Tewari-Singh, Neera; Gu, Mallikarjuna; Shrotriya, Sangeeta; Gomez, Joe; Agarwal, Chapla; White, Carl W; Agarwal, Rajesh

    2011-12-15

    Employing mouse skin epidermal JB6 cells and dermal fibroblasts, here we examined the mechanisms of DNA damage by 2-chloroethyl ethyl sulfide (CEES), a monofunctional analog of sulfur mustard (SM). CEES exposure caused H2A.X and p53 phosphorylation as well as p53 accumulation in both cell types, starting at 1h, that was sustained for 24h, indicating a DNA-damaging effect of CEES, which was also confirmed and quantified by alkaline comet assay. CEES exposure also induced oxidative stress and oxidative DNA damage in both cell types, measured by an increase in mitochondrial and cellular reactive oxygen species and 8-hydroxydeoxyguanosine levels, respectively. In the studies distinguishing between oxidative and direct DNA damage, 1h pretreatment with glutathione (GSH) or the antioxidant Trolox showed a decrease in CEES-induced oxidative stress and oxidative DNA damage. However, only GSH pretreatment decreased CEES-induced total DNA damage measured by comet assay, H2A.X and p53 phosphorylation, and total p53 levels. This was possibly due to the formation of GSH-CEES conjugates detected by LC-MS analysis. Together, our results show that CEES causes both direct and oxidative DNA damage, suggesting that to rescue SM-caused skin injuries, pleiotropic agents (or cocktails) are needed that could target multiple pathways of mustard skin toxicities. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. E2F1 and E2F2 induction in response to DNA damage preserves genomic stability in neuronal cells.

    PubMed

    Castillo, Daniela S; Campalans, Anna; Belluscio, Laura M; Carcagno, Abel L; Radicella, J Pablo; Cánepa, Eduardo T; Pregi, Nicolás

    2015-01-01

    E2F transcription factors regulate a wide range of biological processes, including the cellular response to DNA damage. In the present study, we examined whether E2F family members are transcriptionally induced following treatment with several genotoxic agents, and have a role on the cell DNA damage response. We show a novel mechanism, conserved among diverse species, in which E2F1 and E2F2, the latter specifically in neuronal cells, are transcriptionally induced after DNA damage. This upregulation leads to increased E2F1 and E2F2 protein levels as a consequence of de novo protein synthesis. Ectopic expression of these E2Fs in neuronal cells reduces the level of DNA damage following genotoxic treatment, while ablation of E2F1 and E2F2 leads to the accumulation of DNA lesions and increased apoptotic response. Cell viability and DNA repair capability in response to DNA damage induction are also reduced by the E2F1 and E2F2 deficiencies. Finally, E2F1 and E2F2 accumulate at sites of oxidative and UV-induced DNA damage, and interact with γH2AX DNA repair factor. As previously reported for E2F1, E2F2 promotes Rad51 foci formation, interacts with GCN5 acetyltransferase and induces histone acetylation following genotoxic insult. The results presented here unveil a new mechanism involving E2F1 and E2F2 in the maintenance of genomic stability in response to DNA damage in neuronal cells.

  14. E2F1 and E2F2 induction in response to DNA damage preserves genomic stability in neuronal cells

    PubMed Central

    Castillo, Daniela S; Campalans, Anna; Belluscio, Laura M; Carcagno, Abel L; Radicella, J Pablo; Cánepa, Eduardo T; Pregi, Nicolás

    2015-01-01

    E2F transcription factors regulate a wide range of biological processes, including the cellular response to DNA damage. In the present study, we examined whether E2F family members are transcriptionally induced following treatment with several genotoxic agents, and have a role on the cell DNA damage response. We show a novel mechanism, conserved among diverse species, in which E2F1 and E2F2, the latter specifically in neuronal cells, are transcriptionally induced after DNA damage. This upregulation leads to increased E2F1 and E2F2 protein levels as a consequence of de novo protein synthesis. Ectopic expression of these E2Fs in neuronal cells reduces the level of DNA damage following genotoxic treatment, while ablation of E2F1 and E2F2 leads to the accumulation of DNA lesions and increased apoptotic response. Cell viability and DNA repair capability in response to DNA damage induction are also reduced by the E2F1 and E2F2 deficiencies. Finally, E2F1 and E2F2 accumulate at sites of oxidative and UV-induced DNA damage, and interact with γH2AX DNA repair factor. As previously reported for E2F1, E2F2 promotes Rad51 foci formation, interacts with GCN5 acetyltransferase and induces histone acetylation following genotoxic insult. The results presented here unveil a new mechanism involving E2F1 and E2F2 in the maintenance of genomic stability in response to DNA damage in neuronal cells. PMID:25892555

  15. Alteration/deficiency in activation-3 (Ada3) plays a critical role in maintaining genomic stability

    PubMed Central

    Mirza, Sameer; Katafiasz, Bryan J.; Kumar, Rakesh; Wang, Jun; Mohibi, Shakur; Jain, Smrati; Gurumurthy, Channabasavaiah Basavaraju; Pandita, Tej K.; Dave, Bhavana J.; Band, Hamid; Band, Vimla

    2012-01-01

    Cell cycle regulation and DNA repair following damage are essential for maintaining genome integrity. DNA damage activates checkpoints in order to repair damaged DNA prior to exit to the next phase of cell cycle. Recently, we have shown the role of Ada3, a component of various histone acetyltransferase complexes, in cell cycle regulation, and loss of Ada3 results in mouse embryonic lethality. Here, we used adenovirus-Cre-mediated Ada3 deletion in Ada3fl/fl mouse embryonic fibroblasts (MEFs) to assess the role of Ada3 in DNA damage response following exposure to ionizing radiation (IR). We report that Ada3 depletion was associated with increased levels of phospho-ATM (pATM), γH2AX, phospho-53BP1 (p53BP1) and phospho-RAD51 (pRAD51) in untreated cells; however, radiation response was intact in Ada3−/− cells. Notably, Ada3−/− cells exhibited a significant delay in disappearance of DNA damage foci for several critical proteins involved in the DNA repair process. Significantly, loss of Ada3 led to enhanced chromosomal aberrations, such as chromosome breaks, fragments, deletions and translocations, which further increased upon DNA damage. Notably, the total numbers of aberrations were more clearly observed in S-phase, as compared with G₁ or G₂ phases of cell cycle with IR. Lastly, comparison of DNA damage in Ada3fl/fl and Ada3−/− cells confirmed higher residual DNA damage in Ada3−/− cells, underscoring a critical role of Ada3 in the DNA repair process. Taken together, these findings provide evidence for a novel role for Ada3 in maintenance of the DNA repair process and genomic stability. PMID:23095635

  16. FF483–484 motif of human Polη mediates its interaction with the POLD2 subunit of Polδ and contributes to DNA damage tolerance

    PubMed Central

    Baldeck, Nadège; Janel-Bintz, Régine; Wagner, Jérome; Tissier, Agnès; Fuchs, Robert P.; Burkovics, Peter; Haracska, Lajos; Despras, Emmanuelle; Bichara, Marc; Chatton, Bruno; Cordonnier, Agnès M.

    2015-01-01

    Switching between replicative and translesion synthesis (TLS) DNA polymerases are crucial events for the completion of genomic DNA synthesis when the replication machinery encounters lesions in the DNA template. In eukaryotes, the translesional DNA polymerase η (Polη) plays a central role for accurate bypass of cyclobutane pyrimidine dimers, the predominant DNA lesions induced by ultraviolet irradiation. Polη deficiency is responsible for a variant form of the Xeroderma pigmentosum (XPV) syndrome, characterized by a predisposition to skin cancer. Here, we show that the FF483–484 amino acids in the human Polη (designated F1 motif) are necessary for the interaction of this TLS polymerase with POLD2, the B subunit of the replicative DNA polymerase δ, both in vitro and in vivo. Mutating this motif impairs Polη function in the bypass of both an N-2-acetylaminofluorene adduct and a TT-CPD lesion in cellular extracts. By complementing XPV cells with different forms of Polη, we show that the F1 motif contributes to the progression of DNA synthesis and to the cell survival after UV irradiation. We propose that the integrity of the F1 motif of Polη, necessary for the Polη/POLD2 interaction, is required for the establishment of an efficient TLS complex. PMID:25662213

  17. DNA-PKcs, ATM, and ATR Interplay Maintains Genome Integrity during Neurogenesis.

    PubMed

    Enriquez-Rios, Vanessa; Dumitrache, Lavinia C; Downing, Susanna M; Li, Yang; Brown, Eric J; Russell, Helen R; McKinnon, Peter J

    2017-01-25

    The DNA damage response (DDR) orchestrates a network of cellular processes that integrates cell-cycle control and DNA repair or apoptosis, which serves to maintain genome stability. DNA-PKcs (the catalytic subunit of the DNA-dependent kinase, encoded by PRKDC), ATM (ataxia telangiectasia, mutated), and ATR (ATM and Rad3-related) are related PI3K-like protein kinases and central regulators of the DDR. Defects in these kinases have been linked to neurodegenerative or neurodevelopmental syndromes. In all cases, the key neuroprotective function of these kinases is uncertain. It also remains unclear how interactions between the three DNA damage-responsive kinases coordinate genome stability, particularly in a physiological context. Here, we used a genetic approach to identify the neural function of DNA-PKcs and the interplay between ATM and ATR during neurogenesis. We found that DNA-PKcs loss in the mouse sensitized neuronal progenitors to apoptosis after ionizing radiation because of excessive DNA damage. DNA-PKcs was also required to prevent endogenous DNA damage accumulation throughout the adult brain. In contrast, ATR coordinated the DDR during neurogenesis to direct apoptosis in cycling neural progenitors, whereas ATM regulated apoptosis in both proliferative and noncycling cells. We also found that ATR controls a DNA damage-induced G 2 /M checkpoint in cortical progenitors, independent of ATM and DNA-PKcs. These nonoverlapping roles were further confirmed via sustained murine embryonic or cortical development after all three kinases were simultaneously inactivated. Thus, our results illustrate how DNA-PKcs, ATM, and ATR have unique and essential roles during the DDR, collectively ensuring comprehensive genome maintenance in the nervous system. The DNA damage response (DDR) is essential for prevention of a broad spectrum of different human neurologic diseases. However, a detailed understanding of the DDR at a physiological level is lacking. In contrast to many in vitro cellular studies, here we demonstrate independent biological roles for the DDR kinases DNA-PKcs, ATM, and ATR during neurogenesis. We show that DNA-PKcs is central to DNA repair in nonproliferating cells, and restricts DNA damage accumulation, whereas ATR controls damage-induced G 2 checkpoint control and apoptosis in proliferating cells. Conversely, ATM is critical for controlling apoptosis in immature noncycling neural cells after DNA damage. These data demonstrate functionally distinct, but cooperative, roles for each kinase in preserving genome stability in the nervous system. Copyright © 2017 the authors 0270-6474/17/370893-13$15.00/0.

  18. The p21 and PCNA partnership: a new twist for an old plot.

    PubMed

    Prives, Carol; Gottifredi, Vanesa

    2008-12-15

    The contribution of error-prone DNA polymerases to the DNA damage response has been a subject of great interest in the last decade. Error-prone polymerases are required for translesion DNA synthesis (TLS), a process that involves synthesis past a DNA lesion. Under certain circumstances, TLS polymerases can achieve bypass with good efficiency and fidelity. However, they can also in some cases be mutagenic, and so negative regulators of TLS polymerases would have the important function of inhibiting their recruitment to undamaged DNA templates. Recent work from Livneh's and our groups have provided evidence regarding the role of the cyclin kinase inhibitor p21 as a negative regulator of TLS. Interestingly, both the cyclin dependent kinase (CDK) and proliferating cell nuclear antigen (PCNA) binding domains of p21 are involved in different aspects of the modulation of TLS, affecting both the interaction between PCNA and the TLS-specific pol eta as well as PCNA ubiquitination status. In line with this, p21 was shown to reduce the efficiency but increase the accuracy of TLS. Hence, in absence of DNA damage p21 may work to impede accidental loading of pol eta to undamaged DNA and avoid consequential mutagenesis. After UV irradiation, when TLS plays a decisive role, p21 is progressively degraded. This might allow gradual release of replication fork blockage by TLS polymerases. For these reasons, in higher eukaryotes p21 might represent a key regulator of the equilibrium between mutagenesis and cell survival.

  19. The Kinase Activity of Ataxia-Telangiectasia Mutated Interferes with Adenovirus E4 Mutant DNA Replication

    PubMed Central

    Gautam, Dipendra

    2013-01-01

    Adenovirus (Ad) mutants that lack early region 4 (E4) are unable to produce the early regulatory proteins that normally inactivate the Mre11/Rad50/Nbs1 (MRN) sensor complex, which is a critical component for the ability of cells to respond to DNA damage. E4 mutant infection therefore activates a DNA damage response, which in turn interferes with a productive viral infection. MRN complex proteins localize to viral DNA replication centers in E4 mutant-infected cells, and this complex is critical for activating the kinases ataxia-telangiectasia mutated (ATM) and ATM and Rad3-related (ATR), which phosphorylate numerous substrates important for DNA repair, cell cycle checkpoint activation, and apoptosis. E4 mutant growth defects are substantially rescued in cells lacking an intact MRN complex. We have assessed the role of the downstream ATM and ATR kinases in several MRN-dependent E4 mutant phenotypes. We did not identify a role for either ATM or ATR in “repair” of E4 mutant genomes to form concatemers. ATR was also not observed to contribute to E4 mutant defects in late protein production. In contrast, the kinase activity of ATM was important for preventing efficient E4 mutant DNA replication and late gene expression. Our results suggest that the MRN complex interferes with E4 mutant DNA replication at least in part through its ability to activate ATM. PMID:23740981

  20. Causes of genome instability: the effect of low dose chemical exposures in modern society.

    PubMed

    Langie, Sabine A S; Koppen, Gudrun; Desaulniers, Daniel; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Azqueta, Amaya; Bisson, William H; Brown, Dustin G; Brunborg, Gunnar; Charles, Amelia K; Chen, Tao; Colacci, Annamaria; Darroudi, Firouz; Forte, Stefano; Gonzalez, Laetitia; Hamid, Roslida A; Knudsen, Lisbeth E; Leyns, Luc; Lopez de Cerain Salsamendi, Adela; Memeo, Lorenzo; Mondello, Chiara; Mothersill, Carmel; Olsen, Ann-Karin; Pavanello, Sofia; Raju, Jayadev; Rojas, Emilio; Roy, Rabindra; Ryan, Elizabeth P; Ostrosky-Wegman, Patricia; Salem, Hosni K; Scovassi, A Ivana; Singh, Neetu; Vaccari, Monica; Van Schooten, Frederik J; Valverde, Mahara; Woodrick, Jordan; Zhang, Luoping; van Larebeke, Nik; Kirsch-Volders, Micheline; Collins, Andrew R

    2015-06-01

    Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling, telomere length), acrylamide (DNA repair, chromosome segregation), bisphenol A (epigenetic modification, DNA damage signaling, mitochondrial function, chromosome segregation), benomyl (chromosome segregation), quinones (epigenetic modification) and nano-sized particles (epigenetic pathways, mitochondrial function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make scientists aware of the increasing need to unravel the underlying mechanisms via which chemicals at low doses can induce genome instability and thus promote carcinogenesis. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

Top