Noise Induced DNA Damage Within the Auditory Nerve.
Guthrie, O'neil W
2017-03-01
An understanding of the molecular pathology that underlies noise induced neurotoxicity is a prerequisite to the design of targeted therapies. The objective of the current experiment was to determine whether or not DNA damage is part of the pathophysiologic sequela of noise induced neurotoxicity. The experiment consisted of 41 hooded Long-Evans rats (2 month old males) that were randomized into control and noise exposed groups. Both the control and the noise group followed the same time schedule and therefore started and ended the experiment together. The noise dose consisted of a 6000 Hz noise band at 105 dB SPL. Temporal bones from both groups were harvested, and immunohistochemistry was used to identify neurons with DNA damage. Quantitative morphometric analyses was then employed to determine the level of DNA damage. Neural action potentials were recorded to assess the functional impact of noise induced DNA damage. Immunohistochemical reactions revealed that the noise exposure precipitated DNA damage within the nucleus of auditory neurons. Quantitative morphometry confirmed the noise induced increase in DNA damage levels and the precipitation of DNA damage was associated with a significant loss of nerve sensitivity. Therefore, DNA damage is part of the molecular pathology that drives noise induced neurotoxicity. Anat Rec, 300:520-526, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Interplay of space radiation and microgravity in DNA damage and DNA damage response.
Moreno-Villanueva, María; Wong, Michael; Lu, Tao; Zhang, Ye; Wu, Honglu
2017-01-01
In space, multiple unique environmental factors, particularly microgravity and space radiation, pose constant threat to the DNA integrity of living organisms. Specifically, space radiation can cause damage to DNA directly, through the interaction of charged particles with the DNA molecules themselves, or indirectly through the production of free radicals. Although organisms have evolved strategies on Earth to confront such damage, space environmental conditions, especially microgravity, can impact DNA repair resulting in accumulation of severe DNA lesions. Ultimately these lesions, namely double strand breaks, chromosome aberrations, micronucleus formation, or mutations, can increase the risk for adverse health effects, such as cancer. How spaceflight factors affect DNA damage and the DNA damage response has been investigated since the early days of the human space program. Over the years, these experiments have been conducted either in space or using ground-based analogs. This review summarizes the evidence for DNA damage induction by space radiation and/or microgravity as well as spaceflight-related impacts on the DNA damage response. The review also discusses the conflicting results from studies aimed at addressing the question of potential synergies between microgravity and radiation with regard to DNA damage and cellular repair processes. We conclude that further experiments need to be performed in the true space environment in order to address this critical question.
NASA Astrophysics Data System (ADS)
Shafirovich, Vladimir; Singh, Carolyn; Geacintov, Nicholas E.
2003-11-01
Oxidative damage of DNA molecules associated with electron-transfer reactions is an important phenomenon in living cells, which can lead to mutations and contribute to carcinogenesis and the aging processes. This article describes the design of several simple experiments to explore DNA damage initiated by photoinduced electron-transfer reactions sensitized by the acridine derivative, proflavine (PF). A supercoiled DNA agarose gel nicking assay is employed as a sensitive probe of DNA strand cleavage. A low-cost experimental and computer-interfaced imaging apparatus is described allowing for the digital recording and analysis of the gel electrophoresis results. The first experiment describes the formation of direct strand breaks in double-stranded DNA induced by photoexcitation of the intercalated PF molecules. The second experiment demonstrates that the addition of the well-known electron acceptor, methylviologen, gives rise to a significant enhancement of the photochemical DNA strand cleavage effect. This occurs by an electron transfer step to methylviologen that renders the inital photoinduced charge separation between photoexcited PF and DNA irreversible. The third experiment demonstrates that the action spectrum of the DNA photocleavage matches the absorption spectrum of DNA-bound, intercalated PF molecules, which differs from that of free PF molecules. This result demonstrates that the photoinduced DNA strand cleavage is initiated by intercalated rather than free PF molecules.
Liu, Shangfeng; Chu, Jessica; Yucer, Nur; Leng, Mei; Wang, Shih-Ya; Chen, Benjamin P C; Hittelman, Walter N; Wang, Yi
2011-06-24
DNA damage response is crucial for maintaining genomic integrity and preventing cancer by coordinating the activation of checkpoints and the repair of damaged DNA. Central to DNA damage response are the two checkpoint kinases ATM and ATR that phosphorylate a wide range of substrates. RING finger and WD repeat domain 3 (RFWD3) was initially identified as a substrate of ATM/ATR from a proteomic screen. Subsequent studies showed that RFWD3 is an E3 ubiquitin ligase that ubiquitinates p53 in vitro and positively regulates p53 levels in response to DNA damage. We report here that RFWD3 associates with replication protein A (RPA), a single-stranded DNA-binding protein that plays essential roles in DNA replication, recombination, and repair. Binding of RPA to single-stranded DNA (ssDNA), which is generated by DNA damage and repair, is essential for the recruitment of DNA repair factors to damaged sites and the activation of checkpoint signaling. We show that RFWD3 is physically associated with RPA and rapidly localizes to sites of DNA damage in a RPA-dependent manner. In vitro experiments suggest that the C terminus of RFWD3, which encompass the coiled-coil domain and the WD40 domain, is necessary for binding to RPA. Furthermore, DNA damage-induced phosphorylation of RPA and RFWD3 is dependent upon each other. Consequently, loss of RFWD3 results in the persistent foci of DNA damage marker γH2AX and the repair protein Rad51 in damaged cells. These findings suggest that RFWD3 is recruited to sites of DNA damage and facilitates RPA-mediated DNA damage signaling and repair.
Singh, Sarika; Goswami, Poonam; Swarnkar, Supriya; Singh, Sheelendra Pratap; Wahajuddin; Nath, Chandishwar; Sharma, Sharad
2011-11-27
Piracetam is a nootropic drug that protects neurons in neuropathological and age-related diseases and the activation and modulation of peripheral blood cells in patients with neuropathological conditions is well known. Therefore, in the present study, in vivo, ex vivo, and in vitro tests were conducted to investigate the effect of piracetam on leukocytes and macrophages. Lipopolysaccharide (LPS) causes oxidative DNA damage; thus, in the present study, LPS was used as a tool to induce DNA damage. In vivo experiments were conducted on Sprague Dawley rats, and piracetam (600mg/kg, oral) was provided for five consecutive days. On the fifth day, a single injection of LPS (10mg/kg, i.p.) was administered. Three hours after LPS injection, blood leukocytes and peritoneal macrophages were collected and processed, and a variety of different assays were conducted. Ex vivo treatments were performed on isolated rat blood leukocytes, and in vitro experiments were conducted on rat macrophage cell line J774A.1. Cell viability and the level of reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and DNA damage were estimated in untreated (control) and piracetam-, LPS- and LPS+piracetam-treated leukocytes and macrophages. In vivo experiments revealed that rats pretreated with piracetam were significantly protected against LPS-induced increases in ROS levels and DNA damage. Ex vivo isolated leukocytes and J774A.1 cells treated with LPS exhibited augmented ROS levels and DNA damage, which were attenuated with piracetam treatment. Thus, the present study revealed the salutary effect of piracetam against LPS-induced oxidative stress and DNA damage in leukocytes and macrophages. Copyright © 2011 Elsevier B.V. All rights reserved.
[Study on three kinds of gasoline oxygenates-induced DNA damage in mice fibroblasts].
Song, Chonglin; Zhang, Zhifu; Chen, Xue; Zhang, Yanfeng; Wang, Chunhua; Liu, Keming
2002-10-01
To study DNA damage of three kinds of gasoline oxygenates. Single cell gel electrophoresis assay(Comet assay) was used to detect the damage effects of three gasoline oxygenates[methyl tertiary butyl ether(MTBE), ethanol anhydrous(EA) and dimethyl carbonate(DMC)] on DNA in L-929 mice fibroblasts. In certain concentation(37.500-150.000 mg/ml), MTBE could directly cause DNA damage of L-929 mice fibroblasts. There was obvious dose-effect relationship, i.e. when the concentration of MTBE was increased from 9.375 to 150.000 mg/ml, the comet rate also increased from 4% to 85%, and the length of comet tail changed correspondingly. The results of EA and DMC were negative. Under the condition of this experiment(150.000 mg/ml), MTBE could directly cause DNA damage while the effect of EA and DMC on DNA damage was not found.
Lee, Andrea J; Wallace, Susan S
2017-06-01
The first step of the base excision repair (BER) pathway responsible for removing oxidative DNA damage utilizes DNA glycosylases to find and remove the damaged DNA base. How glycosylases find the damaged base amidst a sea of undamaged bases has long been a question in the BER field. Single molecule total internal reflection fluorescence microscopy (SM TIRFM) experiments have allowed for an exciting look into this search mechanism and have found that DNA glycosylases scan along the DNA backbone in a bidirectional and random fashion. By comparing the search behavior of bacterial glycosylases from different structural families and with varying substrate specificities, it was found that glycosylases search for damage by periodically inserting a wedge residue into the DNA stack as they redundantly search tracks of DNA that are 450-600bp in length. These studies open up a wealth of possibilities for further study in real time of the interactions of DNA glycosylases and other BER enzymes with various DNA substrates. Copyright © 2016 Elsevier Inc. All rights reserved.
DNA damage in blood cells exposed to low-level lasers.
Sergio, Luiz Philippe da Silva; Silva, Ana Paula Almeida da; Amorim, Philipi Freitas; Campos, Vera Maria Araújo; Magalhães, Luis Alexandre Gonçalves; de Paoli, Flavia; de Souza da Fonseca, Adenilson
2015-04-01
In regenerative medicine, there are increasing applications of low-level lasers in therapeutic protocols for treatment of diseases in soft and in bone tissues. However, there are doubts about effects on DNA, and an adequate dosimetry could improve the safety of clinical applications of these lasers. This work aimed to evaluate DNA damage in peripheral blood cells of Wistar rats induced by low-level red and infrared lasers at different fluences, powers, and emission modes according to therapeutic protocols. Peripheral blood samples were exposed to lasers and DNA damage was accessed by comet assay. In other experiments, DNA damage was accessed in blood cells by modified comet assay using formamidopyrimidine DNA glycosylase (Fpg) and endonuclease III enzymes. Data show that exposure to low-level red and infrared lasers induce DNA damage depending on fluence, power and emission mode, which are targeted by Fpg and endonuclease III. Oxidative DNA damage should be considered for therapeutic efficacy and patient safety in clinical applications based on low-level red and infrared lasers. © 2015 Wiley Periodicals, Inc.
Tse, C Y; Chan, K M; Wong, C K
2010-06-01
In Hong Kong, suspended solids (SS) introduced by dredging and mud disposal activities are a major cause of mass mortality in cage-cultured marine fish. We have used DNA damage in liver cells, as determined by the comet assay, to assess the impact of SS on the orange-spotted grouper Epinephelus coioides. Seabed sediments were collected from a heavily polluted site in Victoria Harbor and two less polluted sites in Port Shelter and Mirs Bay. Sediments from Victoria Harbor contained higher levels of copper (Cu) and polycyclic aromatic hydrocarbons (PAHs) than those from the other sites. In a 10-day experiment, SS from all three sites induced significant increase in comet tail length, but not in percentage (%) tail DNA. In a 20-day experiment, fish exposed to polluted SS from Victoria Harbor exhibited a significant increase in comet tail length after 5 days and % tail DNA after 10 days. After a 10-day recovery period, however, DNA damage was reduced as tail length and % tail DNA returned to control levels. These results suggest that DNA damage measured by the comet assay is a highly sensitive biomarker for assessing the genotoxic effects of SS to marine fish.
Assessment of the role of DNA repair in damaged forensic samples.
Ambers, Angie; Turnbough, Meredith; Benjamin, Robert; King, Jonathan; Budowle, Bruce
2014-11-01
Previous studies on DNA damage and repair have involved in vitro laboratory procedures that induce a single type of lesion in naked templates. Although repair of singular, sequestered types of DNA damage has shown some success, forensic and ancient specimens likely contain a number of different types of lesions. This study sought to (1) develop protocols to damage DNA in its native state, (2) generate a pool of candidate samples for repair that more likely emulate authentic forensic samples, and (3) assess the ability of the PreCR(TM) Repair Mix to repair the resultant lesions. Complexed, native DNA is more difficult to damage than naked DNA. Modified procedures included the use of higher concentrations and longer exposure times. Three types of samples, those that demonstrated damage based on short tandem repeat (STR) profile signals, were selected for repair experiments: environmentally damaged bloodstains, bleach-damaged whole blood, and human skeletal remains. Results showed trends of improved performance of STR profiling of bleach-damaged DNA. However, the repair assay did not improve DNA profiles from environmentally damaged bloodstains or bone, and in some cases resulted in lower RFU values for STR alleles. The extensive spectrum of DNA damage and myriad combinations of lesions that can be present in forensic samples appears to pose a challenge for the in vitro PreCR(TM) assay. The data suggest that the use of PreCR in casework should be considered with caution due to the assay's varied results.
Influence of DNA Lesions on Polymerase-Mediated DNA Replication at Single-Molecule Resolution.
Gahlon, Hailey L; Romano, Louis J; Rueda, David
2017-11-20
Faithful replication of DNA is a critical aspect in maintaining genome integrity. DNA polymerases are responsible for replicating DNA, and high-fidelity polymerases do this rapidly and at low error rates. Upon exposure to exogenous or endogenous substances, DNA can become damaged and this can alter the speed and fidelity of a DNA polymerase. In this instance, DNA polymerases are confronted with an obstacle that can result in genomic instability during replication, for example, by nucleotide misinsertion or replication fork collapse. It is important to know how DNA polymerases respond to damaged DNA substrates to understand the mechanism of mutagenesis and chemical carcinogenesis. Single-molecule techniques have helped to improve our current understanding of DNA polymerase-mediated DNA replication, as they enable the dissection of mechanistic details that can otherwise be lost in ensemble-averaged experiments. These techniques have also been used to gain a deeper understanding of how single DNA polymerases behave at the site of the damage in a DNA substrate. In this review, we evaluate single-molecule studies that have examined the interaction between DNA polymerases and damaged sites on a DNA template.
Oxidative DNA damage background estimated by a system model of base excision repair
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sokhansanj, B A; Wilson, III, D M
Human DNA can be damaged by natural metabolism through free radical production. It has been suggested that the equilibrium between innate damage and cellular DNA repair results in an oxidative DNA damage background that potentially contributes to disease and aging. Efforts to quantitatively characterize the human oxidative DNA damage background level based on measuring 8-oxoguanine lesions as a biomarker have led to estimates varying over 3-4 orders of magnitude, depending on the method of measurement. We applied a previously developed and validated quantitative pathway model of human DNA base excision repair, integrating experimentally determined endogenous damage rates and model parametersmore » from multiple sources. Our estimates of at most 100 8-oxoguanine lesions per cell are consistent with the low end of data from biochemical and cell biology experiments, a result robust to model limitations and parameter variation. Our results show the power of quantitative system modeling to interpret composite experimental data and make biologically and physiologically relevant predictions for complex human DNA repair pathway mechanisms and capacity.« less
Iwamoto, Takuya; Hiraku, Yusuke; Okuda, Masahiro; Kawanishi, Shosuke
2008-03-01
It has been reported that dacarbazine (DTIC) is photogenotoxic. The purpose of this study is to clarify the mechanism of photogenotoxicity induced by DTIC. We examined DNA damage induced by UVA-irradiated DTIC using 32P-5'-end-labeled DNA fragments obtained from human genes. Formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in calf thymus DNA was measured by high performance liquid chromatograph with an electrochemical detector. Electron spin resonance (ESR) spin-trapping experiments were performed to detect radical species generated from UVA-irradiated DTIC. UVA-irradiated DTIC caused DNA damage at guanine residues, especially at the 5'-GGT-3' sequence in the presence of Cu(II) and also induced 8-oxodG generation in calf thymus DNA. DTIC-induced photodamage to DNA fragments was partially inhibited by catalase, whereas 8-oxodG formation was significantly increased by catalase. NaN3, a carbene scavenger, inhibited DNA damage and 8-oxodG formation in a dose-dependent manner, suggesting that carbene intermediates are involved. The ESR spin-trapping experiments demonstrated the generation of aryl radicals in the process of photodegradation of DTIC. Photoactivated DTIC generates the carbene and aryl radicals, which may induce both DNA adduct and 8-oxodG formation, resulting in photogenotoxicity. This study could provide an insight into the safe usage of DTIC.
Mathematical Methods for Studying DNA and Protein Interactions
NASA Astrophysics Data System (ADS)
LeGresley, Sarah
Deoxyribnucleic Acid (DNA) damage can lead to health related issues such as developmental disorders, aging, and cancer. It has been estimated that damage rates may be as high as 100,000 per cell per day. Because of the devastating effects that DNA damage can have, DNA repair mechanisms are of great interest yet are not completely understood. To gain a better understanding of possible DNA repair mechanisms, my dissertation focused on mathematical methods for understanding the interactions between DNA and proteins. I developed a damaged DNA model to estimate the probabilities of damaged DNA being located at specific positions. Experiments were then performed that suggested that the damaged DNA may be repositioned. These experimental results were consistent with the model's prediction that damaged DNA has preferred locations. To study how proteins might be moving along the DNA, I studied the use of the uniform motion "n-step" model. The n-step model has been used to determine the kinetics parameters (e.g. rates at which a protein moves along the DNA, how much energy is required to move a protein along a specified amount of DNA, etc.) of proteins moving along the DNA. Monte Carlo methods were used to simulate proteins moving with different types of non-uniform motion (e.g. backward, jumping, etc.) along the DNA. Estimates for the kinetics parameters in the n-step model were found by fitting of the Monte Carlo simulation data. Analysis indicated that non-uniform motion of the protein may lead to over or underestimation of the kinetic parameters of this n-step model.
Taspinar, Mahmut Sinan; Aydin, Murat; Sigmaz, Burcu; Yildirim, Nalan; Agar, Guleray
2017-10-01
Picloram (4-amino-3,5,6-trichloropicolinic acid) is a liquid auxinic herbicide used to control broad-leaved weeds. Picloram is representing a possible hazard to ecosystems and human health. Therefore, in this study, DNA methylation changes and DNA damage levels in Phaseolus vulgaris exposed to picloram, as well as whether humic acid (HA) has preventive effects on these changes were investigated. Random amplified polymorphic DNA (RAPD) techniques were used for identification of DNA damage and coupled restriction enzyme digestion-random amplification (CRED-RA) techniques were used to detect the changed pattern of DNA methylation. According to the obtained results, picloram (5, 10, 20, and 40 mg/l) caused DNA damage profile changes (RAPDs) increasing, DNA hypomethylation and genomic template stability (GTS) decreasing. On the other hand, different concentrations of applied HA (2, 4, 6, 8, and 10%) reduced hazardous effects of picloram. The results of the experiment have explicitly indicated that HAs could be an alternative for reducing genetic damage in plants. In addition to the alleviate effects of humic acid on genetic damage, its epigenetic effect is hypomethylation.
Tran, Thai Q; Ishak Gabra, Mari B; Lowman, Xazmin H; Yang, Ying; Reid, Michael A; Pan, Min; O'Connor, Timothy R; Kong, Mei
2017-11-01
Driven by oncogenic signaling, glutamine addiction exhibited by cancer cells often leads to severe glutamine depletion in solid tumors. Despite this nutritional environment that tumor cells often experience, the effect of glutamine deficiency on cellular responses to DNA damage and chemotherapeutic treatment remains unclear. Here, we show that glutamine deficiency, through the reduction of alpha-ketoglutarate, inhibits the AlkB homolog (ALKBH) enzymes activity and induces DNA alkylation damage. As a result, glutamine deprivation or glutaminase inhibitor treatment triggers DNA damage accumulation independent of cell death. In addition, low glutamine-induced DNA damage is abolished in ALKBH deficient cells. Importantly, we show that glutaminase inhibitors, 6-Diazo-5-oxo-L-norleucine (DON) or CB-839, hypersensitize cancer cells to alkylating agents both in vitro and in vivo. Together, the crosstalk between glutamine metabolism and the DNA repair pathway identified in this study highlights a potential role of metabolic stress in genomic instability and therapeutic response in cancer.
Tran, Thai Q.; Ishak Gabra, Mari B.; Lowman, Xazmin H.; Yang, Ying; Reid, Michael A.; Pan, Min; O’Connor, Timothy R.
2017-01-01
Driven by oncogenic signaling, glutamine addiction exhibited by cancer cells often leads to severe glutamine depletion in solid tumors. Despite this nutritional environment that tumor cells often experience, the effect of glutamine deficiency on cellular responses to DNA damage and chemotherapeutic treatment remains unclear. Here, we show that glutamine deficiency, through the reduction of alpha-ketoglutarate, inhibits the AlkB homolog (ALKBH) enzymes activity and induces DNA alkylation damage. As a result, glutamine deprivation or glutaminase inhibitor treatment triggers DNA damage accumulation independent of cell death. In addition, low glutamine-induced DNA damage is abolished in ALKBH deficient cells. Importantly, we show that glutaminase inhibitors, 6-Diazo-5-oxo-L-norleucine (DON) or CB-839, hypersensitize cancer cells to alkylating agents both in vitro and in vivo. Together, the crosstalk between glutamine metabolism and the DNA repair pathway identified in this study highlights a potential role of metabolic stress in genomic instability and therapeutic response in cancer. PMID:29107960
Oxidant stress in mitochondrial DNA damage, autophagy and inflammation in atherosclerosis
Ding, Zufeng; Liu, Shijie; Wang, Xianwei; Khaidakov, Magomed; Dai, Yao; Mehta, Jawahar L.
2013-01-01
Our studies in HUVECs show that ox-LDL induced autophagy and damaged mtDNA leading to TLR9 expression. LOX-1 antibody or the ROS inhibitor apocynin attenuated ox-LDL-mediated autophagy, mtDNA damage and TLR9 expression, suggesting that these events are LOX-1 and ROS-dependent phenomena. Experiments using siRNA to DNase II indicated that DNase II digests mtDNA to protect the tissue from inflammation. Next, we studied and found intense autophagy, TLR9 expression and inflammatory signals (CD45 and CD68) in the aortas of LDLR knockout mice fed high cholesterol diet. Deletion of LOX-1 (LDLR/LOX-1 double knockout mice) attenuated autophagy, TLR9 expression as well as CD45 and CD68. Damaged mtDNA signal was also very high in LDLR knockout mice aortas, and this signal was attenuated by LOX-1 deletion. Thus, it appears that oxidative stress-mediated damaged mtDNA that escapes autophagy induces a potent inflammatory response in atherosclerosis. PMID:23326634
The repair of low dose UV light-induced damage to human skin DNA in condition of trace amount Mg 2+
NASA Astrophysics Data System (ADS)
Gao, Fang; Guo, Zhouyi; Zheng, Changchun; Wang, Rui; Liu, Zhiming; Meng, Pei; Zhai, Juan
2008-12-01
Ultraviolet light-induced damage to human skin DNA was widely investigated. The primary mechanism of this damage contributed to form cyclobutane pyrimidine dimmers (CPDs). Although the distribution of UV light-induced CPDs within a defined sequence is similar, the damage in cellular environment which shields the nuclear DNA was higher than that in organism in apparent dose. So we use low UVB light as main study agent. Low dose UV-irradiated HDF-a cells (Human Dermal Fibroblasts-adult cells) which is weaker than epidermic cells were cultured with DMEM at different trace amount of Mg2+ (0mmol/L , 0.1mmol/L , 0.2mmol/L, 0.4mmol/L, 0.8mmol/L, 1.2mmol/L) free-serum DMEM and the repair of DNA strands injured were observed. Treat these cells with DNA strand breaks detection, photoproducts detection and the repair of photoproducts detection. Then quantitate the role of trace amount Mg2+ in repair of UV light-induced damage to human skin. The experiment results indicated that epidermic cells have capability of resistance to UV-radiation at a certain extent. And Mg2+ can regulate the UV-induced damage repair and relative vitality. It can offer a rationale and experiment data to relieve UV light-induced skin disease.
Alkaline Comet Assay for Assessing DNA Damage in Individual Cells.
Pu, Xinzhu; Wang, Zemin; Klaunig, James E
2015-08-06
Single-cell gel electrophoresis, commonly called a comet assay, is a simple and sensitive method for assessing DNA damage at the single-cell level. It is an important technique in genetic toxicological studies. The comet assay performed under alkaline conditions (pH >13) is considered the optimal version for identifying agents with genotoxic activity. The alkaline comet assay is capable of detecting DNA double-strand breaks, single-strand breaks, alkali-labile sites, DNA-DNA/DNA-protein cross-linking, and incomplete excision repair sites. The inclusion of digestion of lesion-specific DNA repair enzymes in the procedure allows the detection of various DNA base alterations, such as oxidative base damage. This unit describes alkaline comet assay procedures for assessing DNA strand breaks and oxidative base alterations. These methods can be applied in a variety of cells from in vitro and in vivo experiments, as well as human studies. Copyright © 2015 John Wiley & Sons, Inc.
Systematic random sampling of the comet assay.
McArt, Darragh G; Wasson, Gillian R; McKerr, George; Saetzler, Kurt; Reed, Matt; Howard, C Vyvyan
2009-07-01
The comet assay is a technique used to quantify DNA damage and repair at a cellular level. In the assay, cells are embedded in agarose and the cellular content is stripped away leaving only the DNA trapped in an agarose cavity which can then be electrophoresed. The damaged DNA can enter the agarose and migrate while the undamaged DNA cannot and is retained. DNA damage is measured as the proportion of the migratory 'tail' DNA compared to the total DNA in the cell. The fundamental basis of these arbitrary values is obtained in the comet acquisition phase using fluorescence microscopy with a stoichiometric stain in tandem with image analysis software. Current methods deployed in such an acquisition are expected to be both objectively and randomly obtained. In this paper we examine the 'randomness' of the acquisition phase and suggest an alternative method that offers both objective and unbiased comet selection. In order to achieve this, we have adopted a survey sampling approach widely used in stereology, which offers a method of systematic random sampling (SRS). This is desirable as it offers an impartial and reproducible method of comet analysis that can be used both manually or automated. By making use of an unbiased sampling frame and using microscope verniers, we are able to increase the precision of estimates of DNA damage. Results obtained from a multiple-user pooled variation experiment showed that the SRS technique attained a lower variability than that of the traditional approach. The analysis of a single user with repetition experiment showed greater individual variances while not being detrimental to overall averages. This would suggest that the SRS method offers a better reflection of DNA damage for a given slide and also offers better user reproducibility.
Development of a molecular method for testing the effectiveness of UV systems on-site.
Nizri, Limor; Vaizel-Ohayon, Dalit; Ben-Amram, Hila; Sharaby, Yehonatan; Halpern, Malka; Mamane, Hadas
2017-12-15
We established a molecular method for quantifying ultraviolet (UV) disinfection efficacy using total bacterial DNA in a water sample. To evaluate UV damage to the DNA, we developed the "DNA damage" factor, which is a novel cultivation-independent approach that reveals UV-exposure efficiency by applying a simple PCR amplification method. The study's goal was to prove the feasibility of this method for demonstrating the efficiency of UV systems in the field using flow-through UV reactors. In laboratory-based experiments using seeded bacteria, the DNA damage tests demonstrated a good correlation between PCR products and UV dose. In the field, natural groundwater sampled before and after being subjected to the full-scale UV reactors was filtered, and the DNA extracted from the filtrate was subjected to PCR amplification for a 900-bp fragment of the 16S rRNA gene with initial DNA concentrations of 0.1 and 1 ng/μL. In both cases, the UV dose predicted and explained a significant proportion of the variance in the log inactivation ratio and DNA damage factor. Log inactivation ratio was very low, as expected in groundwater due to low initial bacterial counts, whereas the DNA damage factor was within the range of values obtained in the laboratory-based experiments. Consequently, the DNA damage factor reflected the true performance of the full-scale UV system during operational water flow by using the indigenous bacterial array present in a water sample. By applying this method, we were able to predict with high confidence, the UV reactor inactivation potential. For method validation, laboratory and field iterations are required to create a practical field calibration curve that can be used to determine the expected efficiency of the full-scale UV system in the field under actual operation. Copyright © 2017 Elsevier Ltd. All rights reserved.
DNA damage under simulated extraterrestrial conditions in bacteriophage T7
NASA Astrophysics Data System (ADS)
Fekete, A.; Módos, K.; Hegedüs, M.; Kovács, G.; Rontó, Gy.; Péter, Á.; Lammer, H.; Panitz, C.
The experiment "Phage and Uracil response" will be accommodated in the EXPOSE facility of the International Space Station. Its objective is to examine and quantify the effect of specific space conditions on nucleic acid models, especially on bacteriophage T7 and isolated T7 DNA thin films. In order to define the environmental and technical requirements of the EXPOSE, the samples were subjected to the experiment verification test (EVT). During EVT, the samples were exposed to vacuum (10 -4-10 -6 Pa) and polychromatic UV-radiation (200-400 nm) in air, in inert atmosphere, as well as in simulated space vacuum. The effect of extreme temperature in vacuum and the influence of temperature fluctuations around 0 °C were also studied. The total intraphage/isolated DNA damage was determined by quantitative PCR using 555 and 3826 bp fragments of T7 DNA. The type of the damage was resolved using a combination of enzymatic probes and neutral and alkaline agarose gel electrophoresis; the structural/chemical effects were analyzed by spectroscopic and microscopical methods. We obtained substantial evidence that DNA lesions accumulate throughout exposure, but the amount of damage depends on the thickness of the layers. According to our preliminary results, the damages by exposure to conditions of dehydration and UV-irradiation are larger than the sum of vacuum alone, or radiation alone case, suggesting a synergistic action of space vacuum and UV radiation with DNA being the critical target.
Genomic and post-genomic effects of anti-glaucoma drugs preservatives in trabecular meshwork.
Izzotti, Alberto; La Maestra, Sebastiano; Micale, Rosanna Tindara; Longobardi, Maria Grazia; Saccà, Sergio Claudio
2015-02-01
Oxidative stress plays an important role in glaucoma. Some preservatives of anti-glaucoma drugs, commonly used in glaucoma therapy, can prevent or induce oxidative stress in the trabecular meshwork. The aim of this study is to evaluate cellular and molecular damage induced in trabecular meshwork by preservatives contained in anti-glaucoma drugs. Cell viability (MTT test), DNA fragmentation (Comet test), oxidative DNA damage (8-oxo-dG), and gene expression (cDNA microarray) have been evaluated in trabecular meshwork specimens and in human trabecular meshwork cells treated with benzalkonium chloride, polyQuad, purite, and sofzia-like mixture. Moreover, antimicrobial effectiveness and safety of preservative contents in drugs was tested. In ex vivo experiments, benzalkonium chloride and polyQuad induced high level of DNA damage in trabecular meshwork specimens, while the effect of purite and sofzia were more attenuated. The level of DNA fragmentation induced by benzalkonium chloride was 2.4-fold higher in subjects older than 50 years than in younger subjects. Benzalkonium chloride, and polyQuad significantly increased oxidative DNA damage as compared to sham-treated specimens. Gene expression was altered by benzalkonium chloride, polyQuad, and purite but not by sofzia. In in vitro experiments, benzalkonium chloride and polyQuad dramatically decreased trabecular meshwork cell viability, increased DNA fragmentation, and altered gene expression. A lesser effect was also exerted by purite and sofzia. Genes targeted by these alterations included Fas and effector caspase-3. The efficacy of the preservatives in inhibiting bacterial growth increased the adverse effects in trabecular meshwork in terms of DNA damage and alteration of gene expression. Presented data indicates the delicate balance between efficacy and safety of drug preservatives as not yet optimized. Copyright © 2014 Elsevier B.V. All rights reserved.
DNA replication after mutagenic treatment in Hordeum vulgare.
Kwasniewska, Jolanta; Kus, Arita; Swoboda, Monika; Braszewska-Zalewska, Agnieszka
2016-12-01
The temporal and spatial properties of DNA replication in plants related to DNA damage and mutagenesis is poorly understood. Experiments were carried out to explore the relationships between DNA replication, chromatin structure and DNA damage in nuclei from barley root tips. We quantitavely analysed the topological organisation of replication foci using pulse EdU labelling during the S phase and its relationship with the DNA damage induced by mutagenic treatment with maleic hydrazide (MH), nitroso-N-methyl-urea (MNU) and gamma ray. Treatment with mutagens did not change the characteristic S-phase patterns in the nuclei; however, the frequencies of the S-phase-labelled cells after treatment differed from those observed in the control cells. The analyses of DNA replication in barley nuclei were extended to the micronuclei induced by mutagens. Replication in the chromatin of the micronuclei was rare. The results of simultanous TUNEL reaction to identify cells with DNA strand breaks and the labelling of the S-phase cells with EdU revealed the possibility of DNA replication occurring in damaged nuclei. For the first time, the intensity of EdU fluorescence to study the rate of DNA replication was analysed. Copyright © 2016 Elsevier B.V. All rights reserved.
Acevedo-Torres, Karina; Fonseca-Williams, Sharon; Ayala-Torres, Sylvette; Torres-Ramos, Carlos A.
2010-01-01
The Saccharomyces cerevisiae APN1 gene that participates in base excision repair has been localized both in the nucleus and the mitochondria. APN1 deficient cells (apn1Δ) show increased mutation frequencies in mitochondrial DNA (mtDNA) suggesting that APN1 is also important for mtDNA stability. To understand APN1-dependent mtDNA repair processes we studied the formation and repair of mtDNA lesions in cells exposed to methyl methanesulfonate (MMS). We show that MMS induces mtDNA damage in a dose-dependent fashion and that deletion of the APN1 gene enhances the susceptibility of mtDNA to MMS. Repair kinetic experiments demonstrate that in wild-type cells (WT) it takes 4 hr to repair the damage induced by 0.1% MMS, whereas in the apn1Δ strain there is a lag in mtDNA repair that results in significant differences in the repair capacity between the two yeast strains. Analysis of lesions in nuclear DNA (nDNA) after treatment with 0.1% MMS shows a significant difference in the amount of nDNA lesions between WT and apn1Δ cells. Interestingly, comparisons between nDNA and mtDNA damage show that nDNA is more sensitive to the effects of MMS treatment. However, both strains are able to repair the nDNA lesions, contrary to mtDNA repair, which is compromised in the apn1Δ mutant strain. Therefore, although nDNA is more sensitive than mtDNA to the effects of MMS, deletion of APN1 has a stronger phenotype in mtDNA repair than in nDNA. These results highlight the prominent role of APN1 in the repair of environmentally induced mtDNA damage. PMID:19197988
Rodeiro, I; Delgado, R; Garrido, G
2014-02-01
Mangifera indica L. (mango) stem bark aqueous extract (MSBE) that has antioxidant, anti-inflammatory and immunomodulatory properties, can be obtained in Cuba. It is rich in polyphenols, where mangiferin is the main component. In this study, we have tested DNA damage and protection effects of MSBE and mangiferin on primary human lymphocytes and lymphoblastoid cells. Cell suspensions were incubated with the products (50-1000 μg/ml) for experiments on damage induction, and evaluation of any potential protective effects (5-100 μg/ml) for 60 min at 37 °C. Irradiation was performed using a γ-ray source, absorbed dose 5 Gy. At the end of exposure, DNA damage, protection and repair processes were evaluated using the comet assay. MSBE (100-1000 μg/ml) induced DNA damage in a concentration dependent manner in both cell types tested, primary cells being more sensitive. Mangiferin (200 μg/ml) only induced light DNA damage at higher concentrations. DNA repair capacity was not affected after MSBE or mangiferin exposure. On the other hand, MSBE (25 and 50 μg/ml) and mangiferin (5-25 ug/ml) protected against gamma radiation-induced DNA damage. These results show MSBE has protector or harmful effects on DNA in vitro depending on the experimental conditions, which suggest that the extract could be acting as an antioxidant or pro-oxidant product. Mangiferin was involved in protective effects of the extract. © 2013 John Wiley & Sons Ltd.
Neighboring base damage induced by permanganate oxidation of 8-oxoguanine in DNA.
Koizume, S; Inoue, H; Kamiya, H; Ohtsuka, E
1998-01-01
We found that single-stranded DNA oligomers containing a 7, 8-dihydro-8-oxoguanine (8-oxo-G) residue have high reactivity toward KMnO4; the oxidation of 8-oxo-G induces damage to the neighboring nucleotide residues. This paper describes the novel reaction in detail, including experiments that demonstrate the mechanism involved in the induction of DNA damage. The results using DNAs of various base compositions indicated that damaged G, T and C (but not A) sites caused strand scissions after hot piperidine treatment and that the damage around the 8-oxo-G occurred at G sites in both single and double strands with high frequency. The latter substrates were less sensitive to damage. Further, kinetic studies of the KMnO4reaction of single-stranded oligomers suggested that thereactivity of the DNA bases at the site 5'-adjacent to the 8-oxo-G was in the order G >A >T, C. This preference correlates with the electron donating abilities of the bases. In addition, we found that the DNA damage at the G site, which was connected with the 8-oxo-G by a long abasic chain, was inhibited in the above order by the addition of dG, dA or dC. On the other hand, the damage reactions proceeded even after the addition of scavengers for active oxygen species. This study suggests the involvement of a redox process in the unique DNA damage initiated by the oxidation of the 8-oxo-G. PMID:9671825
Jackson, J H; Schraufstatter, I U; Hyslop, P A; Vosbeck, K; Sauerheber, R; Weitzman, S A; Cochrane, C G
1987-01-01
The mechanism by which cigarette smoking and asbestos exposure synergistically increase the incidence of lung cancer is unknown. We hypothesized that cigarette smoke and asbestos might synergistically increase DNA damage. To test this hypothesis we exposed isolated bacteriophage PM2 DNA to cigarette smoke and/or asbestos, and assessed DNA strand breaks as an index of DNA damage. Our results supported our hypothesis. 78 +/- 12% of the DNA exposed to both cigarette smoke and asbestos developed strand breaks, while only 9.8 +/- 7.0 or 4.3 +/- 3.3% of the DNA exposed to cigarette smoke or asbestos, respectively, developed strand breaks under the conditions of the experiment. Our experimental evidence suggested that cigarette smoke and asbestos synergistically increased DNA damage by stimulating .OH formation. First, significant amounts of .OH were detected by electron paramagnetic resonance (EPR) in DNA mixtures containing both cigarette smoke and asbestos, but no .OH was detected in mixtures containing cigarette smoke alone or asbestos alone. Second, the .OH scavengers, dimethylsulfoxide (DMSO), mannitol, or Na benzoate decreased both .OH detection by EPR and strand breaks in DNA mixtures exposed to cigarette smoke and asbestos. Third, the H2O2 scavenger, catalase, and the iron chelators, 1,10-phenanthroline and desferrithiocin, decreased both .OH detection and strand breaks in DNA mixtures exposed to cigarette smoke and asbestos. These latter findings suggest that iron contained in asbestos may catalyze the formation of .OH from H2O2 generated by cigarette smoke. In summary, our study indicates that cigarette smoke and asbestos synergistically increase DNA damage and suggests that this synergism may involve .OH production. PMID:2821073
Ceruti, Julieta M; Scassa, María E; Marazita, Mariela C; Carcagno, Abel C; Sirkin, Pablo F; Cánepa, Eduardo T
2009-06-01
p19INK4d promotes survival of several cell lines after UV irradiation due to enhanced DNA repair, independently of CDK4 inhibition. To further understand the action of p19INK4d in the cellular response to DNA damage, we aimed to elucidate whether this novel regulator plays a role only in mechanisms triggered by UV or participates in diverse mechanisms initiated by different genotoxics. We found that p19INK4d is induced in cells injured with cisplatin or beta-amyloid peptide as robustly as with UV. The mentioned genotoxics transcriptionally activate p19INK4d expression as demonstrated by run-on assay without influencing its mRNA stability and with partial requirement of protein synthesis. It is not currently known whether DNA damage-inducible genes are turned on by the DNA damage itself or by the consequences of that damage. Experiments carried out in cells transfected with distinct damaged DNA structures revealed that the damage itself is not responsible for the observed up-regulation. It is also not known whether the increased expression of DNA-damage-inducible genes is related to immediate protective responses such as DNA repair or to more delayed responses such as cell cycle arrest or apoptosis. We found that ectopic expression of p19INK4d improves DNA repair ability and protects neuroblastoma cells from apoptosis caused by cisplatin or beta-amyloid peptide. Using clonal cell lines where p19INK4d levels can be modified at will, we show that p19INK4d expression correlates with increased survival and clonogenicity. The results presented here, prompted us to suggest that p19INK4d displays an important role in an early stage of cellular DNA damage response.
Molecular response of nasal mucosa to therapeutic exposure to broad-band ultraviolet radiation
Mitchell, David; Paniker, Lakshmi; Sanchez, Guillermo; Bella, Zsolt; Garaczi, Edina; Szell, Marta; Hamid, Qutayba; Kemeny, Lajos; Koreck, Andrea
2010-01-01
Abstract Ultraviolet radiation (UVR) phototherapy is a promising new treatment for inflammatory airway diseases. However, the potential carcinogenic risks associated with this treatment are not well understood. UV-specific DNA photoproducts were used as biomarkers to address this issue. Radioimmunoassay was used to quantify cyclobutane pyrimidine dimers (CPDs) and (6–4) photoproducts in DNA purified from two milieus: nasal mucosa samples from subjects exposed to intranasal phototherapy and human airway (EpiAirway™) and human skin (EpiDerm™) tissue models. Immunohistochemistry was used to detect CPD formation and persistence in human nasal biopsies and human tissue models. In subjects exposed to broadband ultraviolet radiation, DNA damage frequencies were determined prior to as well as immediately after treatment and at increasing times post-treatment. We observed significant levels of DNA damage immediately after treatment and efficient removal of the damage within a few days. No residual damage was observed in human subjects exposed to multiple UVB treatments several weeks after the last treatment. To better understand the molecular response of the nasal epithelium to DNA damage, parallel experiments were conducted in EpiAirway and EpiDerm model systems. Repair rates in these two tissues were very similar and comparable to that observed in human skin. The data suggest that the UV-induced DNA damage response of respiratory epithelia is very similar to that of the human epidermis and that nasal mucosa is able to efficiently repair UVB induced DNA damage. PMID:18671762
NASA Technical Reports Server (NTRS)
Schaefer, M.; Zimmermann, H.; Schmitz, C.
1994-01-01
Besides inactivation one of the major interests in our experiments is to study the primary damage in the DNA double strand breaks (DSB) after heavy ion irradiation. These damages lead not only to cell death but also under repair activities to mutations. In further experiments we have investigated the inactivation with two different strains of Deinococcus radiodurans (R1, Rec 30) and the induction of DSB as well as the rejoining of DSB in stationary cells of E. coli (strain B/r) irradiated with radiations of different quality. In the latter case irradiations were done so that the cell survival was roughly at the same level. We measured the DSB using the pulse field gelelectrophoresis which allows to separate between intact (circular) and damaged (linear) DNA. The irradiated cells were transferred to NB medium and incubated for different times to allow rejoining.
Monte Carlo approach in assessing damage in higher order structures of DNA
NASA Technical Reports Server (NTRS)
Chatterjee, A.; Schmidt, J. B.; Holley, W. R.
1994-01-01
We have developed a computer monitor of nuclear DNA in the form of chromatin fibre. The fibres are modeled as a ideal solenoid consisting of twenty helical turns with six nucleosomes per turn. The chromatin model, in combination with are Monte Carlo theory of radiation damage induces by charged particles, based on general features of tack structure and stopping power theory, has been used to evaluate the influence of DNA structure on initial damage. An interesting has emerged from our calculations. Our calculated results predict the existence of strong spatial correlations in damage sites associated with the symmetries in the solenoidal model. We have calculated spectra of short fragments of double stranded DNA produced by multiple double strand breaks induced by both high and low LET radiation. The spectra exhibit peaks at multiples of approximately 85 base pairs (the nucleosome periodicity), and approximately 1000 base pairs (solenoid periodicity). Preliminary experiments to investigate the fragment distributions from irradiated DNA, made by B. Rydberg at Lawrence Berkeley Laboratory, confirm the existence of short DNA fragments and are in substantial agreement with the predictions of our theory.
DNA damage under simulated extraterrestrial conditions in bacteriophage T7
NASA Astrophysics Data System (ADS)
Fekete, A.; Kovács, G.; Hegedüs, M.; Módos, K.; Rontó, Gy.; Lammer, H.; Panitz, C.
The experiment ``Phage and uracil response'' (PUR) will be accommodated in the EXPOSE facility of the ISS aiming to examine and quantify the effect of specific space conditions on bacteriophage T7 and isolated T7 DNA thin films. To achieve this new method was elaborated for the preparation of DNA and nucleoprotein thin films (1). During the EXPOSE Experiment Verification Tests (EVT) the samples were exposed to vacuum (10 -6 Pa), to monochromatic (254 nm) and polychromatic (200-400 nm) UV radiation in air as well in simulated space vacuum. Using neutral density (ND) filters dose-effect curves were performed in order to define the maximum doses tolerated, and we also studied the effect of temperature in vacuum as well as the influence of temperature fluctuations. We obtained substantial evidence that DNA lesions (e.g. strand breaks, DNA-protein cross-links, DNA-DNA cross-links) accumulate throughout exposure. DNA damage was determined by quantitative PCR using 555 bp and 3826 bp fragments of T7 DNA (2) and by neutral and alkaline agarose gel electrophoresis; the structural/chemical effects were analyzed by spectroscopic and microscopical methods. Characteristic changes in the absorption spectrum, in the electrophoretic pattern of DNA and the decrease of the amount of the PCR products have been detected indicating the damage of isolated and intraphage DNA. Preliminary results suggest a synergistic action of space vacuum and UV radiation with DNA being the critical target. Fekete et al. J. Luminescence 102-103, 469-475, 2003 Hegedüs et al. Photochem. Photobiol. 78, 213-219, 2003
Reynolds, Pamela; Botchway, Stanley W.; Parker, Anthony W.; O’Neill, Peter
2013-01-01
The formation of DNA lesions poses a constant threat to cellular stability. Repair of endogenously and exogenously produced lesions has therefore been extensively studied, although the spatiotemporal dynamics of the repair processes has yet to be fully understood. One of the most recent advances to study the kinetics of DNA repair has been the development of laser microbeams to induce and visualize recruitment and loss of repair proteins to base damage in live mammalian cells. However, a number of studies have produced contradictory results that are likely caused by the different laser systems used reflecting in part the wavelength dependence of the damage induced. Additionally, the repair kinetics of laser microbeam induced DNA lesions have generally lacked consideration of the structural and chemical complexity of the DNA damage sites, which are known to greatly influence their reparability. In this review, we highlight the key considerations when embarking on laser microbeam experiments and interpreting the real time data from laser microbeam irradiations. We compare the repair kinetics from live cell imaging with biochemical and direct quantitative cellular measurements for DNA repair. PMID:23688615
Gadd45a deletion aggravates hematopoietic stem cell dysfunction in ATM-deficient mice.
Chen, Yulin; Yang, Runan; Guo, Peng; Ju, Zhenyu
2014-01-01
Ataxia telangiectasia mutated (ATM) kinase plays an essential role in the maintenance of genomic stability. ATM-deficient (ATM(-/-)) mice exhibit hematopoietic stem cell (HSC) dysfunction and a high incidence of lymphoma. Gadd45a controls cell cycle arrest, apoptosis and DNA repair, and is involved in the ATM-p53 mediated DNA damage response. However, the role of Gadd45a in regulating the functionality of ATM(-/-) HSCs is unknown. Here we report that Gadd45a deletion did not rescue the defects of T-cells and B-cells development in ATM(-/-) mice. Instead, ATM and Gadd45a double knockout (ATM(-/-) Gadd45a(-/-)) HSCs exhibited an aggravated defect in long-term self-renewal capacity compared to ATM(-/-) HSCs in HSC transplantation experiments. Further experiments revealed that the aggravated defect of ATM(-/-) Gadd45a(-/-) HSCs was due to a reduction of cell proliferation, associated with an accumulation of DNA damage and subsequent activation of DNA damage response including an up-regulation of p53-p21 signaling pathway. Additionally, ATM(-/-) Gadd45a(-/-) mice showed an increased incidence of hematopoietic malignancies, as well as an increased rate of metastasis than ATM(-/-) mice. In conclusion, Gadd45a deletion aggravated the DNA damage accumulation, which subsequently resulted in a further impaired self-renewal capacity and an increased malignant transformation in ATM(-/-) HSCs.
NASA Astrophysics Data System (ADS)
Moe, Elin; Rollo, Filipe; Silveira, Célia M.; Sezer, Murat; Hildebrandt, Peter; Todorovic, Smilja
2018-01-01
Endonuclease III is a Fe-S containing bifunctional DNA glycosylase which is involved in the repair of oxidation damaged DNA. Here we employ surface enhanced IR spectroelectrochemistry and electrochemistry to study the enzyme from the highly radiation- and desiccation-resistant bacterium Deinococcus radiodurans (DrEndoIII2). The experiments are designed to shed more light onto specific parameters that are currently proposed to govern damage search and recognition by endonucleases III. We demonstrate that electrostatic interactions required for the redox activation of DrEndoIII2 may result in high electric fields that alter its structural and thermodynamic properties. Analysis of inactive DrEndoIII2 (K132A/D150A double mutant) interacting with undamaged DNA, and the active enzyme interacting with damaged DNA also indicate that the electron transfer is modulated by subtle differences in the protein-DNA complex.
Moe, Elin; Rollo, Filipe; Silveira, Célia M; Sezer, Murat; Hildebrandt, Peter; Todorovic, Smilja
2018-01-05
Endonuclease III is a Fe-S containing bifunctional DNA glycosylase which is involved in the repair of oxidation damaged DNA. Here we employ surface enhanced IR spectroelectrochemistry and electrochemistry to study the enzyme from the highly radiation- and desiccation-resistant bacterium Deinococcus radiodurans (DrEndoIII 2 ). The experiments are designed to shed more light onto specific parameters that are currently proposed to govern damage search and recognition by endonucleases III. We demonstrate that electrostatic interactions required for the redox activation of DrEndoIII 2 may result in high electric fields that alter its structural and thermodynamic properties. Analysis of inactive DrEndoIII 2 (K132A/D150A double mutant) interacting with undamaged DNA, and the active enzyme interacting with damaged DNA also indicate that the electron transfer is modulated by subtle differences in the protein-DNA complex. Copyright © 2017 Elsevier B.V. All rights reserved.
Moreno-Villanueva, Maria; von Scheven, Gudrun; Feiveson, Alan; Bürkle, Alexander; Wu, Honglu; Goel, Namni
2018-03-27
Sleep deprivation is associated with impaired immune responses, cancer, and morbidity and mortality, and can degrade cognitive performance, although individual differences exist in such responses. Sleep deprivation induces DNA strand breaks and DNA base oxidation in animals, and psychological stress is associated with increased DNA damage in humans. It remains unknown whether sleep deprivation or psychological stress in humans affects DNA damage response from environmental stressors, and whether these responses predict cognitive performance during sleep deprivation. Sixteen healthy adults (ages 29-52;mean age±SD, 36.4±7.1 years;7 women) participated in a 5-day experiment involving two 8 hour time-in-bed [TIB] baseline nights, followed by 39 hours total sleep deprivation (TSD), and two 8-10 hour TIB recovery nights. A modified Trier Social Stress Test was conducted on the day after TSD. Psychomotor Vigilance Tests measured behavioral attention. DNA damage was assessed in blood cells collected at 5 time points, and blood cells were irradiated ex-vivo. TSD, alone or in combination with psychological stress, did not induce significant increases in DNA damage. By contrast, radiation-induced DNA damage decreased significantly in response to TSD, but increased back to baseline when combined with psychological stress. Cognitively-vulnerable individuals had more radiation-induced DNA strand breaks before TSD, indicating their greater sensitivity to DNA damage from environmental stressors. Our results provide novel insights into the molecular consequences of sleep deprivation, psychological stress, and performance vulnerability. They are important for situations involving sleep loss, radiation exposure and cognitive deficits, including cancer therapy, environmental toxicology, and space medicine.
NASA Astrophysics Data System (ADS)
Bérces, Attila; ten Kate, I. L.; Fekete, A.; Hegedus, M.; Garry, J. R. C.; Lammer, Helmut; Ehrenfreund, Pascale; Peeters, Zan; Kovacs, G.; Ronto, G.
Mars is considered as a main target for astrobiologically relevant exploration programmes. In order to explain the non-detection of organic material to a detection level of several parts per billion (ppb) by the Viking landers, several hypotheses have been suggested, including degradation processes occurring on the martian surface and in the martian soil and subsurface. UV exposure experiments have been performed in which thin layers of glycine ( 300 nm), and aqueous suspensions of phage T7 and isolated T7 DNA were irradiated with a Deuterium lamp and for comparison with a Xenon arc lamp, modified to simulate the solar irradiation on the surface of Mars (MarsUV). The glycine sample was subjected to 24 hours of irradiation with MarsUV. The results of this glycine experiment show a destruction rate comparable to the results of previous experiments in which thin layers of glycine were irradiated with a deuterium lamp (ten Kate et al., 2005, 2006). After exposure of different doses of simulated Martian UV radiation a decrease of the biological activity of phages and characteristic changes in the UV absorption spectrum have been detected, indicating the UV damage of isolated and intraphage T7 DNA. The results of our experiments show that intraphage DNA is 4 times more sensitive to simulated martian UV and deuterium lamp radiation than isolated T7 DNA. This result indicates the significant role that phage proteins play in the UV damage. The effect of simulated martian radiation is smaller than the biological defects observed after the exposure with a deuterium lamp for both cases, in intraphage and isolated DNA, despite of the 100 times larger intensity of the MarsUV lamp. The detected spectral differences are about ten times smaller; the biological activity is about 3 - 4 times smaller, indicating that the shorter wavelength UV radiation from the deuterium lamp is more effective in inducing DNA damage, irrespective of being intraphage or isolated.
Kodaira, Satoshi; Konishi, Teruaki; Kobayashi, Alisa; Maeda, Takeshi; Ahmad, Tengku Ahbrizal Farizal Tengku; Yang, Gen; Akselrod, Mark S.; Furusawa, Yoshiya; Uchihori, Yukio
2015-01-01
Abstract The geometric locations of ion traversals in mammalian cells constitute important information in the study of heavy ion-induced biological effect. Single ion traversal through a cellular nucleus produces complex and massive DNA damage at a nanometer level, leading to cell inactivation, mutations and transformation. We present a novel approach that uses a fluorescent nuclear track detector (FNTD) for the simultaneous detection of the geometrical images of ion traversals and DNA damage in single cells using confocal microscopy. HT1080 or HT1080–53BP1-GFP cells were cultured on the surface of a FNTD and exposed to 5.1-MeV/n neon ions. The positions of the ion traversals were obtained as fluorescent images of a FNTD. Localized DNA damage in cells was identified as fluorescent spots of γ-H2AX or 53BP1-GFP. These track images and images of damaged DNA were obtained in a short time using a confocal laser scanning microscope. The geometrical distribution of DNA damage indicated by fluorescent γ-H2AX spots in fixed cells or fluorescent 53BP1-GFP spots in living cells was found to correlate well with the distribution of the ion traversals. This method will be useful for evaluating the number of ion hits on individual cells, not only for micro-beam but also for random-beam experiments. PMID:25324538
Novel DNA lesions generated by the interaction between therapeutic thiopurines and UVA light.
Zhang, Xiaohong; Jeffs, Graham; Ren, Xiaolin; O'Donovan, Peter; Montaner, Beatriz; Perrett, Conal M; Karran, Peter; Xu, Yao-Zhong
2007-03-01
The therapeutic effect of the thiopurines, 6-thioguanine (6-TG), 6-mercaptopurine, and its prodrug azathioprine, depends on the incorporation of 6-TG into cellular DNA. Unlike normal DNA bases, 6-TG absorbs UVA radiation, and UVA-mediated photochemical damage of DNA 6-TG has potentially harmful side effects. When free 6-TG is UVA irradiated in solution in the presence of molecular oxygen, reactive oxygen species are generated and 6-TG is oxidized to guanine-6-sulfonate (G(SO3)) and guanine-6-thioguanine in reactions involving singlet oxygen. This conversion is prevented by antioxidants, including the dietary vitamin ascorbate. DNA G(SO3) is also the major photoproduct of 6-TG in DNA and it can be selectively introduced into DNA or oligonucleotides in vitro by mild chemical oxidation. Thermal stability measurements indicate that G(SO3) does not form stable base pairs with any of the normal DNA bases in duplex oligonucleotides and is a powerful block for elongation by Klenow DNA polymerase in primer extension experiments. In cultured human cells, DNA damage produced by 6-TG and UVA treatment is associated with replication inhibition and provokes a p53-dependent DNA damage response.
Liu, Zhong-Jie; Zhao, Wei; Zhang, Qing-Guo; Li, Le; Lai, Lu-Ying; Jiang, Shan; Xu, Shi-Yuan
2015-01-01
Hyperglycemia can inhibit expression of the 8-oxoG-DNA glycosylase (OGG1) which is one of the key repair enzymes for DNA oxidative damage. The effect of hyperglycemia on OGG1 expression in response to local anesthetics-induced DNA damage is unknown. This study was designed to determine whether high glucose inhibits OGG1 expression and aggravates bupivacaine-induced DNA damage via reactive oxygen species (ROS). SH-SY5Y cells were cultured with or without 50 mM glucose for 8 days before they were treated with 1.5 mM bupivacaine for 24 h. OGG1 expression was measured by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. ROS was estimated using the redox-sensitive fluorescent dye DCFH-DA. DNA damage was investigated with immunostaining for 8-oxodG and comet assays. OGG1 expression was inhibited in cells exposed to high glucose with concomitant increase in ROS production and more severe DNA damage as compared to control culture conditions, and these changes were further exacerbated by bupivacaine. Treatment with the antioxidant N-acetyl-L-cysteine (NAC) prevented high glucose and bupivacaine mediated increase in ROS production and restored functional expression of OGG1, which lead to attenuated high glucose-mediated exacerbation of bupivacaine neurotoxicity. Our findings indicate that subjects with diabetes may experience more detrimental effects following bupivacaine use. PMID:26161242
Chen, Zhenchuan; Zhang, Wei; Yun, Zhimin; Zhang, Xue; Gong, Feng; Wang, Yunfang; Ji, Shouping; Leng, Ling
2018-06-01
In response to DNA damage, proliferating cell nuclear antigen (PCNA) has an important role as a positive regulator and as a scaffold protein associated with DNA damage bypass and repair pathways by serving as a platform for the recruitment of associated components. As demonstrated in the present study, the ubiquitin‑like modifier human leukocyte antigen F locus adjacent transcript 10 (FAT10), which binds to PCNA but has not previously been demonstrated to be associated with the DNA damage response (DDR), is induced by ultraviolet/ionizing radiation and VP‑16 treatment in HeLa cells. Furthermore, DNA damage enhances FAT10 expression. Immunoprecipitation analysis suggested PCNA is modified by FAT10, and the degradation of FATylated PCNA located in the cytoplasm is regulated by the 26S proteasome, which is also responsible for the upregulation of nuclear foci formation. Furthermore, immunofluorescence experiment suggested FAT10 co‑localizes with PCNA in nuclear foci, thus suggesting that FATylation of PCNA may affect DDR via the induction of PCNA degradation in the cytoplasm or nucleus. In addition, immunohistochemistry experiment suggested the expression levels of FAT10 and PCNA are enhanced in HCC tissues compared with healthy liver tissues; however, the expression of FAT10 is suppressed in regenerated liver tissues, which express high levels of PCNA, thus suggesting that the association between FAT10 and PCNA expression is only exhibited in tumor tissues. In conclusion, the results of the present study suggest that FAT10 may be involved in DDR and therefore the progression of tumorigenesis.
Ferrando-May, Elisa; Tomas, Martin; Blumhardt, Philipp; Stöckl, Martin; Fuchs, Matthias; Leitenstorfer, Alfred
2013-01-01
Our understanding of the mechanisms governing the response to DNA damage in higher eucaryotes crucially depends on our ability to dissect the temporal and spatial organization of the cellular machinery responsible for maintaining genomic integrity. To achieve this goal, we need experimental tools to inflict DNA lesions with high spatial precision at pre-defined locations, and to visualize the ensuing reactions with adequate temporal resolution. Near-infrared femtosecond laser pulses focused through high-aperture objective lenses of advanced scanning microscopes offer the advantage of inducing DNA damage in a 3D-confined volume of subnuclear dimensions. This high spatial resolution results from the highly non-linear nature of the excitation process. Here we review recent progress based on the increasing availability of widely tunable and user-friendly technology of ultrafast lasers in the near infrared. We present a critical evaluation of this approach for DNA microdamage as compared to the currently prevalent use of UV or VIS laser irradiation, the latter in combination with photosensitizers. Current and future applications in the field of DNA repair and DNA-damage dependent chromatin dynamics are outlined. Finally, we discuss the requirement for proper simulation and quantitative modeling. We focus in particular on approaches to measure the effect of DNA damage on the mobility of nuclear proteins and consider the pros and cons of frequently used analysis models for FRAP and photoactivation and their applicability to non-linear photoperturbation experiments. PMID:23882280
Pairing of heterochromatin in response to cellular stress.
Abdel-Halim, H I; Mullenders, L H F; Boei, J J W A
2006-07-01
We previously reported that exposure of human cells to DNA-damaging agents (X-rays and mitomycin C (MMC)) induces pairing of the homologous paracentromeric heterochromatin of chromosome 9 (9q12-13). Here, we show that UV irradiation and also heat shock treatment of human cells lead to similar effects. Since the various agents induce very different types and frequencies of damage to cellular constituents, the data suggest a general stress response as the underlying mechanism. Moreover, local UV irradiation experiments revealed that pairing of heterochromatin is an event that can be triggered without induction of DNA damage in the heterochromatic sequences. The repair deficient xeroderma pigmentosum cells (group F) previously shown to fail pairing after MMC displayed elevated pairing after heat shock treatment but not after UV exposure. Taken together, the present results indicate that pairing of heterochromatin following exposure to DNA-damaging agents is initiated by a general stress response and that the sensing of stress or the maintenance of the paired status of the heterochromatin might be dependent on DNA repair.
Das, Devashish; Faridounnia, Maryam; Kovacic, Lidija; Kaptein, Robert; Boelens, Rolf; Folkers, Gert E.
2017-01-01
The nucleotide excision repair protein complex ERCC1-XPF is required for incision of DNA upstream of DNA damage. Functional studies have provided insights into the binding of ERCC1-XPF to various DNA substrates. However, because no structure for the ERCC1-XPF-DNA complex has been determined, the mechanism of substrate recognition remains elusive. Here we biochemically characterize the substrate preferences of the helix-hairpin-helix (HhH) domains of XPF and ERCC-XPF and show that the binding to single-stranded DNA (ssDNA)/dsDNA junctions is dependent on joint binding to the DNA binding domain of ERCC1 and XPF. We reveal that the homodimeric XPF is able to bind various ssDNA sequences but with a clear preference for guanine-containing substrates. NMR titration experiments and in vitro DNA binding assays also show that, within the heterodimeric ERCC1-XPF complex, XPF specifically recognizes ssDNA. On the other hand, the HhH domain of ERCC1 preferentially binds dsDNA through the hairpin region. The two separate non-overlapping DNA binding domains in the ERCC1-XPF heterodimer jointly bind to an ssDNA/dsDNA substrate and, thereby, at least partially dictate the incision position during damage removal. Based on structural models, NMR titrations, DNA-binding studies, site-directed mutagenesis, charge distribution, and sequence conservation, we propose that the HhH domain of ERCC1 binds to dsDNA upstream of the damage, and XPF binds to the non-damaged strand within a repair bubble. PMID:28028171
Interactions and Localization of Escherichia coli Error-Prone DNA Polymerase IV after DNA Damage.
Mallik, Sarita; Popodi, Ellen M; Hanson, Andrew J; Foster, Patricia L
2015-09-01
Escherichia coli's DNA polymerase IV (Pol IV/DinB), a member of the Y family of error-prone polymerases, is induced during the SOS response to DNA damage and is responsible for translesion bypass and adaptive (stress-induced) mutation. In this study, the localization of Pol IV after DNA damage was followed using fluorescent fusions. After exposure of E. coli to DNA-damaging agents, fluorescently tagged Pol IV localized to the nucleoid as foci. Stepwise photobleaching indicated ∼60% of the foci consisted of three Pol IV molecules, while ∼40% consisted of six Pol IV molecules. Fluorescently tagged Rep, a replication accessory DNA helicase, was recruited to the Pol IV foci after DNA damage, suggesting that the in vitro interaction between Rep and Pol IV reported previously also occurs in vivo. Fluorescently tagged RecA also formed foci after DNA damage, and Pol IV localized to them. To investigate if Pol IV localizes to double-strand breaks (DSBs), an I-SceI endonuclease-mediated DSB was introduced close to a fluorescently labeled LacO array on the chromosome. After DSB induction, Pol IV localized to the DSB site in ∼70% of SOS-induced cells. RecA also formed foci at the DSB sites, and Pol IV localized to the RecA foci. These results suggest that Pol IV interacts with RecA in vivo and is recruited to sites of DSBs to aid in the restoration of DNA replication. DNA polymerase IV (Pol IV/DinB) is an error-prone DNA polymerase capable of bypassing DNA lesions and aiding in the restart of stalled replication forks. In this work, we demonstrate in vivo localization of fluorescently tagged Pol IV to the nucleoid after DNA damage and to DNA double-strand breaks. We show colocalization of Pol IV with two proteins: Rep DNA helicase, which participates in replication, and RecA, which catalyzes recombinational repair of stalled replication forks. Time course experiments suggest that Pol IV recruits Rep and that RecA recruits Pol IV. These findings provide in vivo evidence that Pol IV aids in maintaining genomic stability not only by bypassing DNA lesions but also by participating in the restoration of stalled replication forks. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Li, Tianxin; Zhang, Minjie; Lu, Zhongming; Herman, Uwizeyimana; Mumbengegwi, Dzivaidzo; Crittenden, John
2016-01-01
Air and soil pollution from mining activities has been considered as a critical issue to the health of living organisms. However, few efforts have been made in distinguishing the main pathway of organism genetic damage by heavy metals related to mining activities. Therefore, we investigated the genetic damage of Leymus chinensis leaf cells, the air particulate matter (PM) contents, and concentrations of the main heavy metals (Pb, Cd, Cr, Hg) in soil and foliar dust samples collected from seven experiment points at the core mining area and one control point 20 kilometers away from the core mining area in Inner Mongolia in 2013. Comet assay was used to test the genetic damage of the Leymus chinensis leaf cells; the Tail DNA% and Tail Moment were used to characterize the genetic damage degree of the plant cells. The comet assay results showed that the cell genetic damage ratio was up to 77.0% in experiment points but was only 35.0% in control point. The control point also had the slight Tail DNA% and Tail Moment values than other experiment groups. The cell damage degree of the control group was 0.935 and experiment groups were 1.299–1.815. The geo-accumulation index and comperehensive pollution index(CPI) were used to characterize heavy metal pollution in foliar dust samples, and single factor pollution index and CPI were used to characterize the heavy metal pollution in soil samples. The CPIfoliar dust of control group was 0.36 and experiment groups were 1.45–2.57; the CPIsoil of control group was 0.04 and experiment groups were 0.07–0.12. The results of correlation analyze showed that Air Quality Index (AQI) -CPIfoliar dust(r = 0.955**)>Damage degree-CPIfoliar dust(r = 0.923**)>Damage degree-AQI(r = 0.908**)>Damage degree-CPIsoil (r = 0.824*). The present research proved that mining activity had a high level of positive correlation with organism genetic damage caused by heavy metals through comparing with the control point; soil and atmosphere were both the important action pathway for heavy metal induced genetic damage in mining area. Furthermore, heavy metal contents in foliar dust showed a higher positive correlation with genetic damage than when compared with soil. This means the heavy metal contents that L.chinensis absorbed through respiration from the atmosphere could make more serious genetic damage than when absorbed by root systems from soil in the mining area. This study can provide theoretical support for research on plant genetic damage mechanisms and exposure pathways induced by environmental pollution. PMID:27935969
Li, Tianxin; Zhang, Minjie; Lu, Zhongming; Herman, Uwizeyimana; Mumbengegwi, Dzivaidzo; Crittenden, John
2016-01-01
Air and soil pollution from mining activities has been considered as a critical issue to the health of living organisms. However, few efforts have been made in distinguishing the main pathway of organism genetic damage by heavy metals related to mining activities. Therefore, we investigated the genetic damage of Leymus chinensis leaf cells, the air particulate matter (PM) contents, and concentrations of the main heavy metals (Pb, Cd, Cr, Hg) in soil and foliar dust samples collected from seven experiment points at the core mining area and one control point 20 kilometers away from the core mining area in Inner Mongolia in 2013. Comet assay was used to test the genetic damage of the Leymus chinensis leaf cells; the Tail DNA% and Tail Moment were used to characterize the genetic damage degree of the plant cells. The comet assay results showed that the cell genetic damage ratio was up to 77.0% in experiment points but was only 35.0% in control point. The control point also had the slight Tail DNA% and Tail Moment values than other experiment groups. The cell damage degree of the control group was 0.935 and experiment groups were 1.299-1.815. The geo-accumulation index and comperehensive pollution index(CPI) were used to characterize heavy metal pollution in foliar dust samples, and single factor pollution index and CPI were used to characterize the heavy metal pollution in soil samples. The CPIfoliar dust of control group was 0.36 and experiment groups were 1.45-2.57; the CPIsoil of control group was 0.04 and experiment groups were 0.07-0.12. The results of correlation analyze showed that Air Quality Index (AQI) -CPIfoliar dust(r = 0.955**)>Damage degree-CPIfoliar dust(r = 0.923**)>Damage degree-AQI(r = 0.908**)>Damage degree-CPIsoil (r = 0.824*). The present research proved that mining activity had a high level of positive correlation with organism genetic damage caused by heavy metals through comparing with the control point; soil and atmosphere were both the important action pathway for heavy metal induced genetic damage in mining area. Furthermore, heavy metal contents in foliar dust showed a higher positive correlation with genetic damage than when compared with soil. This means the heavy metal contents that L.chinensis absorbed through respiration from the atmosphere could make more serious genetic damage than when absorbed by root systems from soil in the mining area. This study can provide theoretical support for research on plant genetic damage mechanisms and exposure pathways induced by environmental pollution.
Awad, Wageha A.; Ghareeb, Khaled; Dadak, Agnes; Hess, Michael; Böhm, Josef
2014-01-01
The immune and intestinal epithelial cells are particularly sensitive to the toxic effects of deoxynivalenol (DON). The aim of this experiment was to study the effects of DON and/or a microbial feed additive on the DNA damage of blood lymphocytes and on the level of thiobarbituric acid reactive substance (TBARS) as an indicator of lipid peroxidation and oxidative stress in broilers. A total of forty 1-d-old broiler chicks were randomly assigned to 1 of 4 dietary treatments (10 birds per group) for 5 wk. The dietary treatments were 1) basal diet; 2) basal diet contaminated with 10 mg DON/kg feed; 3) basal diet contaminated with 10 mg DON/kg feed and supplemented with 2.5 kg/ton of feed of Mycofix Select; 4) basal diet supplemented with Mycofix Select (2.5 kg/ton of feed). At the end of the feeding trial, blood were collected for measuring the level of lymphocyte DNA damage of blood and the TBARS level was measured in plasma, heart, kidney, duodenum and jejunum. The dietary exposure of DON caused a significant increase (P = 0.001) of DNA damage in blood lymphocytes (31.99±0.89%) as indicated in the tail of comet assay. Interestingly addition of Mycofix Select to DON contaminated diet decreased (P = 0.001) the DNA damage (19.82±1.75%) induced by DON. In order to clarify the involvement of lipid peroxidation in the DNA damage of DON, TBARS levels was measured. A significant increase (P = 0.001) in the level of TBARS (23±2 nmol/mg) was observed in the jejunal tissue suggesting that the lipid peroxidation might be involved in the DNA damage. The results indicate that DON is cytotoxic and genotoxic to the chicken intestinal and immune cells and the feed additive have potential ability to prevent DNA damage induced by DON. PMID:24498242
Alkylating agent (MNU)-induced mutation in space environment
NASA Astrophysics Data System (ADS)
Ohnishi, T.; Takahashi, A.; Ohnishi, K.; Takahashi, S.; Masukawa, M.; Sekikawa, K.; Amano, T.; Nakano, T.; Nagaoka, S.
2001-01-01
In recent years, some contradictory data about the effects of microgravity on radiation-induced biological responses in space experiments have been reported. We prepared a damaged template DNA produced with an alkylating agent (N-methyl-N-nitroso urea; MNU) to measure incorrect base-incorporation during DNA replication in microgravity. We examined whether mutation frequency is affected by microgravity during DNA replication for a DNA template damaged by an alkylating agent. Using an in vitro enzymatic reaction system, DNA synthesis by Taq polymerase or polymerase III was done during a US space shuttle mission (Discovery, STS-91). After the flight, DNA replication and mutation frequencies were measured. We found that there was almost no effect of microgravity on DNA replication and mutation frequency. It is suggested that microgravity might not affect at the stage of substrate incorporation in induced-mutation frequency.
Radiation damage to macromolecules: kill or cure?
Garman, Elspeth F; Weik, Martin
2015-03-01
Radiation damage induced by X-ray beams during macromolecular diffraction experiments remains an issue of concern in structural biology. While advances in our understanding of this phenomenon, driven in part by a series of workshops in this area, undoubtedly have been and are still being made, there are still questions to be answered. Eight papers in this volume give a flavour of ongoing investigations, addressing various issues. These range over: a proposed new metric derived from atomic B-factors for identifying potentially damaged amino acid residues, a study of the relative damage susceptibility of protein and DNA in a DNA/protein complex, a report of an indication of specific radiation damage to a protein determined from data collected using an X-ray free-electron laser (FEL), an account of the challenges in FEL raw diffraction data analysis, an exploration of the possibilities of using radiation damage induced phasing to solve structures using FELs, simulations of radiation damage as a function of FEL temporal pulse profiles, results on the influence of radiation damage during scanning X-ray diffraction measurements and, lastly, consideration of strategies for minimizing radiation damage during SAXS experiments. In this short introduction, these contributions are briefly placed in the context of other current work on radiation damage in the field.
Bisphenol A Promotes Cell Survival Following Oxidative DNA Damage in Mouse Fibroblasts
Gassman, Natalie R.; Coskun, Erdem; Stefanick, Donna F.; Horton, Julie K.; Jaruga, Pawel; Dizdaroglu, Miral; Wilson, Samuel H.
2015-01-01
Bisphenol A (BPA) is a biologically active industrial chemical used in production of consumer products. BPA has become a target of intense public scrutiny following concerns about its association with human diseases such as obesity, diabetes, reproductive disorders, and cancer. Recent studies link BPA with the generation of reactive oxygen species, and base excision repair (BER) is responsible for removing oxidatively induced DNA lesions. Yet, the relationship between BPA and BER has yet to be examined. Further, the ubiquitous nature of BPA allows continuous exposure of the human genome concurrent with the normal endogenous and exogenous insults to the genome, and this co-exposure may impact the DNA damage response and repair. To determine the effect of BPA exposure on base excision repair of oxidatively induced DNA damage, cells compromised in double-strand break repair were treated with BPA alone or co-exposed with either potassium bromate (KBrO3) or laser irradiation as oxidative damaging agents. In experiments with KBrO3, co-treatment with BPA partially reversed the KBrO3-induced cytotoxicity observed in these cells, and this was coincident with an increase in guanine base lesions in genomic DNA. The improvement in cell survival and the increase in oxidatively induced DNA base lesions were reminiscent of previous results with alkyl adenine DNA glycosylase-deficient cells, suggesting that BPA may prevent initiation of repair of oxidized base lesions. With laser irradiation-induced DNA damage, treatment with BPA suppressed DNA repair as revealed by several indicators. These results are consistent with the hypothesis that BPA can induce a suppression of oxidized base lesion DNA repair by the base excision repair pathway. PMID:25693136
Weber, Laura; Carvalho, Ligia; Sá, Natália; Silva, Viviane; Beraldini, Nathalia; Souza, Valderes; Conceição, Moisés
2013-05-01
Amphipod crustaceans have been widely used as invertebrate models in ecotoxicology due to their importance in the food chain. However, few studies have evaluated the genotoxic effects of pollutants in this model using the comet assay. The main obstacle to using amphipods in the comet assay is the difficulty in obtaining enough blood cells from a single individual. In this study, we evaluated the genotoxic effects of the water-soluble fraction (WSF) of heavy oil on the brackish/freshwater amphipod Quadrivisio aff. lutzi, which is common in the coastal lagoons of southeastern Brazil, using hemocytes obtained from single amphipods (without pooling) after optimizing hemolymph extraction. The comet assay revealed significantly higher DNA damage levels (2- to 6-fold higher) in treated amphipods compared to untreated ones with a sublethal concentration of 17.6 % of the WSF within 72 h of treatment. Two independent experiments confirmed an "up and down" pattern of DNA damage, measured as the % of DNA contained in the tail of the comets. Elevations in DNA damage levels were observed at the 6 and 48 h time points, while very low levels of DNA damage were observed at the 24 and 72 h time points. Furthermore, the comet assay revealed gender variability in the levels of DNA damage after short-term exposure.
Doxorubicin (DOX) is an effective drug for treating cancers ranging from leukemia and lymphoma to solid tumors, such as breast cancer. DOX kills dividing cells in two ways: inserting between the base pairs of DNA and trapping a complex of DNA and an enzyme that cuts DNA, topoisomerase 2α, preventing DNA repair. However, DOX also causes congestive heart failure in about 30 percent of adult cancer patients and delayed onset heart failure in a significant number of pediatric cancer patients. The mechanism of this DOX-mediated cardiotoxicity is not well understood since heart muscle cells neither divide nor express Top2α, and there are currently no genetic factors that identify patients who are susceptible to cardiac damage from DOX. However, a recent study showed that mice lacking another topoisomerase, Top2β, did not experience cardiac damage after treatment with DOX.
Radiation damage to DNA in DNA-protein complexes.
Spotheim-Maurizot, M; Davídková, M
2011-06-03
The most aggressive product of water radiolysis, the hydroxyl (OH) radical, is responsible for the indirect effect of ionizing radiations on DNA in solution and aerobic conditions. According to radiolytic footprinting experiments, the resulting strand breaks and base modifications are inhomogeneously distributed along the DNA molecule irradiated free or bound to ligands (polyamines, thiols, proteins). A Monte-Carlo based model of simulation of the reaction of OH radicals with the macromolecules, called RADACK, allows calculating the relative probability of damage of each nucleotide of DNA irradiated alone or in complexes with proteins. RADACK calculations require the knowledge of the three dimensional structure of DNA and its complexes (determined by X-ray crystallography, NMR spectroscopy or molecular modeling). The confrontation of the calculated values with the results of the radiolytic footprinting experiments together with molecular modeling calculations show that: (1) the extent and location of the lesions are strongly dependent on the structure of DNA, which in turns is modulated by the base sequence and by the binding of proteins and (2) the regions in contact with the protein can be protected against the attack by the hydroxyl radicals via masking of the binding site and by scavenging of the radicals. 2011 Elsevier B.V. All rights reserved.
Majeed, S Abdul; Nambi, K S N; Taju, G; Vimal, S; Venkatesan, C; Hameed, A S Sahul
2014-12-01
The cytotoxicity, genotoxicity and oxidative stress of malachite green (MG) was investigated using the fish Channa striata kidney (CSK) and Channa striata gill (CSG) cell lines. Five concentrations ranging from 0.001 to 10 μg mL(-1) were tested in three independent experiments. Cytotoxicity was assessed by 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, Rhodamine 123 and Alamar Blue. The mitochondrial changes and apoptosis of MG-exposed cells were observed by Rhodamine 123 and acridine orange/ethidium bromide (AO/EB) staining, respectively. In vitro potential DNA damaging effect of MG was tested using comet assay. Mitochondrial damage, apoptosis and DNA fragmentation increased in a concentration-dependent manner. Additionally, DNA electrophoretic mobility experiments were carried out to study the binding effect of MG to double-stranded DNA (dsDNA) of cells. DNA shift mobility experiments showed that MG is capable of strongly binding to linear dsDNA causing its degradation. Biochemical parameters such as lipid peroxidation (MDA), catalase (CAT) activity and reduced glutathione (GSH) levels were evaluated after exposure to MG. In CSK and CSG cell lines exposed to MG for 48 h, a significant increase in lipid peroxidation, which might be associated with decreased levels of reduced glutathione and catalase activity in these cell lines (p < 0.001), was observed.
Problem-Solving Test: Analysis of DNA Damage Recognizing Proteins in Yeast and Human Cells
ERIC Educational Resources Information Center
Szeberenyi, Jozsef
2013-01-01
The experiment described in this test was aimed at identifying DNA repair proteins in human and yeast cells. Terms to be familiar with before you start to solve the test: DNA repair, germline mutation, somatic mutation, inherited disease, cancer, restriction endonuclease, radioactive labeling, [alpha-[superscript 32]P]ATP, [gamma-[superscript…
Giovannelli, L; Testa, G; De Filippo, C; Cheynier, V; Clifford, M N; Dolara, P
2000-10-01
Dietary polyphenols have been reported to have a variety of biological actions, including anti-carcinogenic, antioxidant and anti-inflammatory activities. In the present study we have evaluated the effect of an oral treatment with complex polyphenols and tannins from red wine and tea on DNA oxidative damage in the rat colon mucosa. Isolated colonocytes were prepared from the colon mucosa of rats treated for ten days with either wine complex polyphenols (57.2 mg/kg/d) or thearubigin (40 mg/kg/d) by oral gavage. Colonocyte oxidative DNA damage was analysed at the single cell level using a modification of the comet assay technique. The results show that wine complex polyphenols and tannins induce a significant decrease (-62% for pyrimidine and -57% for purine oxidation) in basal DNA oxidative damage in colon mucosal cells without affecting the basal level of single-strand breaks. On the other hand, tea polyphenols, namely a crude extract of thearubigin, did not affect either strand breaks or pyrimidine oxidation in colon mucosal cells. Our experiments are the first demonstration that dietary polyphenols can modulate in vivo oxidative damage in the gastrointestinal tract of rodents. These data support the hypothesis that dietary polyphenols might have both a protective and a therapeutic potential in oxidative damage-related pathologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, K.; Hayakawa, H.; Sekiguchi, M.
1977-07-01
The specific action of T4 endonuclease V on damaged DNA in xeroderma pigmentosum cells was examined using an in vivo assay system with hemagglutinating virus of Japan (Sendai virus) inactivated by uv light. A clear dose response was observed between the level of uv-induced unscheduled DNA synthesis of xeroderma pigmentosum cells and the amount of T4 endonuclease V activity added. The T4 enzyme was unstable in human cells, and its half-life was 3 hr. Fractions derived from an extract of Escherichia coli infected with T4v/sub 1/, a mutant defective in the endonuclease V gene, showed no ability to restore themore » uv-induced unscheduled DNA synthesis of xeroderma pigmentosum cells. However, fractions derived from an extract of T4D-infected E. coli with endonuclease V activity were effective. The T4 enzyme was effective in xeroderma pigmentosum cells on DNA damaged by uv light but not in cells damaged by 4-nitroquinoline 1-oxide. The results of these experiments show that the T4 enzyme has a specific action on human cell DNA in vivo. Treatment with the T4 enzyme increased the survival of group A xeroderma pigmentosum cells after uv irradiation.« less
Hawkins, Clare L; Pattison, David I; Davies, Michael J
2002-01-01
Stimulated phagocyte cells produce the oxidant HOCl, via the release of the enzyme myeloperoxidase and hydrogen peroxide. HOCl is important in bacterial cell killing, but excessive or misplaced generation can damage the host tissue and may lead to the development of certain diseases such as cancer. The role of HOCl in the oxidation of isolated proteins, DNA and their components has been investigated extensively, but little work has been performed on the protein-DNA (nucleosome) complexes present in eukaryotic cell nuclei. Neither the selectivity of damage in such complexes nor the possibility of transfer of damage from the protein to DNA or vice versa, has been studied. In the present study, kinetic modelling has been employed to predict that reaction occurs predominantly with the protein and not with the DNA in the nucleosome, using molar HOCl excesses of up to 200-fold. With 50-200-fold excesses, 50-80% of the HOCl is predicted to react with histone lysine and histidine residues to yield chloramines. The yield and stability of such chloramines predicted by these modelling studies agrees well with experimental data. Decomposition of these species gives protein-derived, nitrogen-centred radicals, probably on the lysine side chains, as characterized by the EPR and spin-trapping experiments. It is shown that isolated lysine, histidine, peptide and protein chloramines can react with plasmid DNA to cause strand breaks. The protection against such damage afforded by the radical scavengers Trolox (a water-soluble alpha-tocopherol derivative) and 5,5-dimethyl-1-pyrroline-N-oxide suggests a radical-mediated process. The EPR experiments and product analyses have also provided evidence for the rapid addition of protein radicals, formed on chloramine decomposition, to pyrimidine nucleosides to give nucleobase radicals. Further evidence for the formation of such covalent cross-links has been obtained from experiments performed using (3)H-lysine and (14)C-histidine chloramines. These results are consistent with the predictions of the kinetic model and suggest that histones are major targets for HOCl in the nucleosome. Furthermore, the resulting protein chloramines and the radicals derived from them may act as contributing agents in HOCl-mediated DNA oxidation. PMID:12010123
Pinto, A Viviana; Deodato, Elder L; Cardoso, Janine S; Oliveira, Eliza F; Machado, Sérgio L; Toma, Helena K; Leitão, Alvaro C; de Pádula, Marcelo
2010-06-01
Although titanium dioxide (TiO(2)) has been considered to be biologically inert, finding use in cosmetics, paints and food colorants, recent reports have demonstrated that when TiO(2) is attained by UVA radiation oxidative genotoxic and cytotoxic effects are observed in living cells. However, data concerning TiO(2)-UVB association is poor, even if UVB radiation represents a major environmental carcinogen. Herein, we investigated DNA damage, repair and mutagenesis induced by TiO(2) associated with UVB irradiation in vitro and in vivo using Saccharomyces cerevisiae model. It was found that TiO(2) plus UVB treatment in plasmid pUC18 generated, in addition to cyclobutane pyrimidine dimers (CPDs), specific damage to guanine residues, such as 8-oxo-7,8-dihydroguanine (8-oxoG) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG), which are characteristic oxidatively generated lesions. In vivo experiments showed that, although the presence of TiO(2) protects yeast cells from UVB cytotoxicity, high mutation frequencies are observed in the wild-type (WT) and in an ogg1 strain (deficient in 8-oxoG and FapyG repair). Indeed, after TiO(2) plus UVB treatment, induced mutagenesis was drastically enhanced in ogg1 cells, indicating that mutagenic DNA lesions are repaired by the Ogg1 protein. This effect could be attenuated by the presence of metallic ion chelators: neocuproine or dipyridyl, which partially block oxidatively generated damage occurring via Fenton reactions. Altogether, the results indicate that TiO(2) plus UVB potentates UVB oxidatively generated damage to DNA, possibly via Fenton reactions involving the production of DNA base damage, such as 8-oxo-7,8-dihydroguanine. Copyright 2010 Elsevier B.V. All rights reserved.
Yilmaz, Bayram; Sandal, Suleyman; Ayvaci, Habibe; Tug, Niyazi; Vitrinel, Ayca
2012-12-12
We have investigated the presence of DNA damage in human mammary epithelial cells collected from healthy lactating mothers (age, 20-35 years) who were resident in the Istanbul area. Breast milk (10ml) was collected from 30 women between one and two weeks post-partum. Demographic information (parity, breast cancer, occupation, duration of residency in Istanbul, consumption of fish, beef and poultry) was also obtained. Milk samples were diluted 1:1 with RPMI 1640 medium and centrifuged to collect cells. The cells were re-suspended and cell viability was determined by use of 0.4% trypan blue. DNA damage was assessed by use of the comet assay (alkaline single-cell gel electrophoresis). Fifty cells per slide and two slides per sample were scored to evaluate DNA damage. The cells were visually classified into four categories on the basis of extent of migration: undamaged (UD), lightly damaged (LD), moderately damaged (MD) and highly damaged (HD). Total comet scores (TCS) were calculated as: 1× UD+2× LD+3× MD+4× HD. Exfoliated mammary cells of the donors showed high (TCS≥150a.u.), moderate and low DNA damage in 10 (33.3%), 8 (26.7%) and 12 (40%) mothers, respectively. There was no significant correlation between TCS for DNA damage and the duration of previous breastfeeding, parity or age. None of the mothers was vegetarian, smoker or on any medication. Meat and chicken consumption did not significantly correlate with the TCS values. Fish consumption was significantly correlated with TCS results (Spearman's rho=0.39, p<0.05). No significant correlation was found between the DNA-damage scores and the period of residency in Istanbul, but fish consumption increased as the duration of stay was longer (Spearman's rho=0.53, p<0.01). These findings suggest that the primary causes of differences in genotoxicity detected in lactating mothers in Istanbul may be of dietary origin. Our experience also confirms that sampling breast milk from lactating mothers provides a valuable and non-invasive tool to study DNA damage in mammary cells. Copyright © 2012 Elsevier B.V. All rights reserved.
Platinum nanoparticles induce damage to DNA and inhibit DNA replication
Nejdl, Lukas; Kudr, Jiri; Moulick, Amitava; Hegerova, Dagmar; Ruttkay-Nedecky, Branislav; Gumulec, Jaromir; Cihalova, Kristyna; Smerkova, Kristyna; Dostalova, Simona; Krizkova, Sona; Novotna, Marie; Kopel, Pavel
2017-01-01
Sparsely tested group of platinum nanoparticles (PtNPs) may have a comparable effect as complex platinum compounds. The aim of this study was to observe the effect of PtNPs in in vitro amplification of DNA fragment of phage λ, on the bacterial cultures (Staphylococcus aureus), human foreskin fibroblasts and erythrocytes. In vitro synthesized PtNPs were characterized by dynamic light scattering (PtNPs size range 4.8–11.7 nm), zeta potential measurements (-15 mV at pH 7.4), X-ray fluorescence, UV/vis spectrophotometry and atomic absorption spectrometry. The PtNPs inhibited the DNA replication and affected the secondary structure of DNA at higher concentrations, which was confirmed by polymerase chain reaction, DNA sequencing and DNA denaturation experiments. Further, cisplatin (CisPt), as traditional chemotherapy agent, was used in all parallel experiments. Moreover, the encapsulation of PtNPs in liposomes (LipoPtNPs) caused an approximately 2.4x higher of DNA damage in comparison with CisPt, LipoCisPt and PtNPs. The encapsulation of PtNPs in liposomes also increased their antibacterial, cytostatic and cytotoxic effect, which was determined by the method of growth curves on S. aureus and HFF cells. In addition, both the bare and encapsulated PtNPs caused lower oxidative stress (determined by GSH/GSSG ratio) in the human erythrocytes compared to the bare and encapsulated CisPt. CisPt was used in all parallel experiments as traditional chemotherapy agent. PMID:28704436
Platinum nanoparticles induce damage to DNA and inhibit DNA replication.
Nejdl, Lukas; Kudr, Jiri; Moulick, Amitava; Hegerova, Dagmar; Ruttkay-Nedecky, Branislav; Gumulec, Jaromir; Cihalova, Kristyna; Smerkova, Kristyna; Dostalova, Simona; Krizkova, Sona; Novotna, Marie; Kopel, Pavel; Adam, Vojtech
2017-01-01
Sparsely tested group of platinum nanoparticles (PtNPs) may have a comparable effect as complex platinum compounds. The aim of this study was to observe the effect of PtNPs in in vitro amplification of DNA fragment of phage λ, on the bacterial cultures (Staphylococcus aureus), human foreskin fibroblasts and erythrocytes. In vitro synthesized PtNPs were characterized by dynamic light scattering (PtNPs size range 4.8-11.7 nm), zeta potential measurements (-15 mV at pH 7.4), X-ray fluorescence, UV/vis spectrophotometry and atomic absorption spectrometry. The PtNPs inhibited the DNA replication and affected the secondary structure of DNA at higher concentrations, which was confirmed by polymerase chain reaction, DNA sequencing and DNA denaturation experiments. Further, cisplatin (CisPt), as traditional chemotherapy agent, was used in all parallel experiments. Moreover, the encapsulation of PtNPs in liposomes (LipoPtNPs) caused an approximately 2.4x higher of DNA damage in comparison with CisPt, LipoCisPt and PtNPs. The encapsulation of PtNPs in liposomes also increased their antibacterial, cytostatic and cytotoxic effect, which was determined by the method of growth curves on S. aureus and HFF cells. In addition, both the bare and encapsulated PtNPs caused lower oxidative stress (determined by GSH/GSSG ratio) in the human erythrocytes compared to the bare and encapsulated CisPt. CisPt was used in all parallel experiments as traditional chemotherapy agent.
DNA damage and genetic methylation changes caused by Cd in Arabidopsis thaliana seedlings.
Li, Zhaoling; Liu, Zhihong; Chen, Ruijuan; Li, Xiaojun; Tai, Peidong; Gong, Zongqiang; Jia, Chunyun; Liu, Wan
2015-09-01
Amplified fragment length polymorphism (AFLP) and methylation-sensitive amplification polymorphism (MASP) techniques are sensitive to deoxyribonucleic acid (DNA) damage and genetic methylation, respectively. Using these 2 techniques, Arabidopsis thaliana cultured with 0 mg/L (control), 0.5 mg/L, 1.5 mg/L, and 5.0 mg/L Cd(2+) for 16 d was used to analyze the DNA damage and methylation changes as a result of cadmium (Cd). The DNA was amplified by 14 AFLP primer pairs and 13 MSAP primer combinations. In the AFLP experiment, 62 polymorphic sites were found in the patterns of 11 primer combinations and a total of 1116 fragments were obtained in these patterns. There were no polymorphic bands in the remaining 3 pairs. The proportions of polymorphic sites in the 0.5-mg/L Cd(2+) and 5.0-mg/L Cd(2+) treatments were significantly different. Seven polymorphic fragments were then separated and successfully sequenced, yielding 6 nucleobase substitutions and 1 nucleobase deletion. Similarly, in the MSAP experiment, the MSAP% and number of demethylated-type bands were unchanged after Cd treatment, but the number of methylated-type bands was increased significantly in the 5.0-mg/L Cd(2+) treatment group, a finding that may be associated with the AFLP results. The polymorphic bands were also sequenced and the functions of their homologous genes were determined. The DNA damage and methylation changes may be the primary cause of certain pathology changes as a result of Cd uptake in plants. © 2015 SETAC.
Wu, Qiong; Chen, Xia; Jia, Lizhen; Wang, Yi; Sun, Ying; Huang, Xingjun; Shen, Yuxiang; Wang, Jun
2017-11-01
The interaction of DNA with Bis [N,N-bis (carboxymethyl) aminomethyl] fluorescein-Ferrous(III) (Fluorescein-DA-Fe(III)) with dual functional (sonodynamic and sonocatalytic) activity was studied by UV-vis spectroscopy, fluorescence spectroscopy, FT-IR spectroscopy, circular dichroism (CD) spectroscopy and viscosity measurements. And then, the damage of DNA caused by Fluorescein-DA-Fe(III) under ultrasonic irradiation (US) was researched by agarose gel electrophoresis and cytotoxicity assay. Meanwhile, some influenced factors such as ultrasonic irradiation time and Fluorescein-DA-Fe(III) concentration on the damage degree of DNA molecules were also examined. As a control, for Bis [N,N-bis (carboxymethyl) aminomethyl] fluorescein (Fluorescein-DA), the same experiments were carried out. The results showed that both Fluorescein-DA-Fe(III) and Fluorescein-DA can interact with DNA molecules. Under ultrasonic irradiation, Fluorescein-DA shows sonodynamic activity, which can damage DNA molecules. While, in the presence of Fe(III) ion, the Fluorescein-DA-Fe(III) displays not only sonodynamic activity but also sonocatalytic activity under ultrasonic irradiation, which injures DNA more serious than Fluorescein-DA. The researches confirmed the dual function (sonodynamic activity and sonocatalytic activity) of Fluorescein-DA-Fe(III) and expanded the usage of Fluorescein-DA-Fe(III) as a sonosensitizer in sonodynamic therapy (SDT). Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Shu-Huei; Lin, Pei-Ya; Chiu, Ya-Chen; Huang, Ju-Sui; Kuo, Yi-Tsen; Wu, Jen-Chine; Chen, Chin-Chuan
2015-01-01
Chemo- and radiotherapy cause multiple forms of DNA damage and lead to the death of cancer cells. Inhibitors of the DNA damage response are candidate drugs for use in combination therapies to increase the efficacy of such treatments. In this study, we show that curcumin, a plant polyphenol, sensitizes budding yeast to DNA damage by counteracting the DNA damage response. Following DNA damage, the Mec1-dependent DNA damage checkpoint is inactivated and Rad52 recombinase is degraded by curcumin, which results in deficiencies in double-stand break repair. Additive effects on damage-induced apoptosis and the inhibition of damage-induced autophagy by curcumin were observed. Moreover, rpd3 mutants were found to mimic the curcumin-induced suppression of the DNA damage response. In contrast, hat1 mutants were resistant to DNA damage, and Rad52 degradation was impaired following curcumin treatment. These results indicate that the histone deacetylase inhibitor activity of curcumin is critical to DSB repair and DNA damage sensitivity. PMID:26218133
Aag DNA Glycosylase Promotes Alkylation-Induced Tissue Damage Mediated by Parp1
Calvo, Jennifer A.; Moroski-Erkul, Catherine A.; Lake, Annabelle; Eichinger, Lindsey W.; Shah, Dharini; Jhun, Iny; Limsirichai, Prajit; Bronson, Roderick T.; Christiani, David C.; Meira, Lisiane B.; Samson, Leona D.
2013-01-01
Alkylating agents comprise a major class of front-line cancer chemotherapeutic compounds, and while these agents effectively kill tumor cells, they also damage healthy tissues. Although base excision repair (BER) is essential in repairing DNA alkylation damage, under certain conditions, initiation of BER can be detrimental. Here we illustrate that the alkyladenine DNA glycosylase (AAG) mediates alkylation-induced tissue damage and whole-animal lethality following exposure to alkylating agents. Aag-dependent tissue damage, as observed in cerebellar granule cells, splenocytes, thymocytes, bone marrow cells, pancreatic β-cells, and retinal photoreceptor cells, was detected in wild-type mice, exacerbated in Aag transgenic mice, and completely suppressed in Aag −/− mice. Additional genetic experiments dissected the effects of modulating both BER and Parp1 on alkylation sensitivity in mice and determined that Aag acts upstream of Parp1 in alkylation-induced tissue damage; in fact, cytotoxicity in WT and Aag transgenic mice was abrogated in the absence of Parp1. These results provide in vivo evidence that Aag-initiated BER may play a critical role in determining the side-effects of alkylating agent chemotherapies and that Parp1 plays a crucial role in Aag-mediated tissue damage. PMID:23593019
Recruitment of TRF2 to laser-induced DNA damage sites.
Huda, Nazmul; Abe, Satoshi; Gu, Ling; Mendonca, Marc S; Mohanty, Samarendra; Gilley, David
2012-09-01
Several lines of evidence suggest that the telomere-associated protein TRF2 plays critical roles in the DNA damage response. TRF2 is rapidly and transiently phosphorylated by an ATM-dependent pathway in response to DNA damage and this DNA damage-induced phosphoryation is essential for the DNA-PK-dependent pathway of DNA double-strand break repair (DSB). However, the type of DNA damage that induces TRF2 localization to the damage sites, the requirement for DNA damage-induced phosphorylation of TRF2 for its recruitment, as well as the detailed kinetics of TRF2 accumulation at DNA damage sites have not been fully investigated. In order to address these questions, we used an ultrafast femtosecond multiphoton laser and a continuous wave 405-nm single photon laser to induce DNA damage at defined nuclear locations. Our results showed that DNA damage produced by a femtosecond multiphoton laser was sufficient for localization of TRF2 to these DNA damage sites. We also demonstrate that ectopically expressed TRF2 was recruited to DNA lesions created by a 405-nm laser. Our data suggest that ATM and DNA-PKcs kinases are not required for TRF2 localization to DNA damage sites. Furthermore, we found that phosphorylation of TRF2 at residue T188 was not essential for its recruitment to laser-induced DNA damage sites. Thus, we provide further evidence that a protein known to function in telomere maintenance, TRF2, is recruited to sites of DNA damage and plays critical roles in the DNA damage response. Copyright © 2012 Elsevier Inc. All rights reserved.
Enhanced replication of herpes simplex virus type 1 in human cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, C.S.; Smith, K.O.
1991-02-01
The effects of DNA-damaging agents on the replication of herpes simplex virus type 1 (HSV-1) were assessed in vitro. Monolayers of human lung fibroblast cell lines were exposed to DNA-damaging agents (methyl methanesulfonate (MMS), methyl methanethiosulfonate (MMTS), ultraviolet light (UV), or gamma radiation (GR)) at specific intervals, before or after inoculation with low levels of HSV-1. The ability of cell monolayers to support HSV-1 replication was measured by direct plaque assay and was compared with that of untreated control samples. In this system, monolayers of different cell lines infected with identical HSV-1 strains demonstrated dissimilar levels of recovery of themore » infectious virus. Exposure of DNA-repair-competent cell cultures to DNA-damaging agents produced time-dependent enhanced virus replication. Treatment with agent before virus inoculation significantly (p less than 0.025) increased the number of plaques by 10 to 68%, compared with untreated control cultures, while treatment with agent after virus adsorption significantly increased (p less than 0.025) the number of plaques by 7 to 15%. In a parallel series of experiments, cells deficient in DNA repair (xeroderma pigmentosum) failed to support enhanced virus replication. These results suggest that after exposure to DNA-damaging agents, fibroblasts competent in DNA repair amplify the replication of HSV-1, and that DNA-repair mechanisms that act on a variety of chromosomal lesions may be involved in the repair and biological activation of HSV-1 genomes.« less
Marriott, Andrew S; Copeland, Nikki A; Cunningham, Ryan; Wilkinson, Mark C; McLennan, Alexander G; Jones, Nigel J
2015-09-01
The level of intracellular diadenosine 5', 5'''-P(1),P(4)-tetraphosphate (Ap4A) increases several fold in mammalian cells treated with non-cytotoxic doses of interstrand DNA-crosslinking agents such as mitomycin C. It is also increased in cells lacking DNA repair proteins including XRCC1, PARP1, APTX and FANCG, while >50-fold increases (up to around 25 μM) are achieved in repair mutants exposed to mitomycin C. Part of this induced Ap4A is converted into novel derivatives, identified as mono- and di-ADP-ribosylated Ap4A. Gene knockout experiments suggest that DNA ligase III is primarily responsible for the synthesis of damage-induced Ap4A and that PARP1 and PARP2 can both catalyze its ADP-ribosylation. Degradative proteins such as aprataxin may also contribute to the increase. Using a cell-free replication system, Ap4A was found to cause a marked inhibition of the initiation of DNA replicons, while elongation was unaffected. Maximum inhibition of 70-80% was achieved with 20 μM Ap4A. Ap3A, Ap5A, Gp4G and ADP-ribosylated Ap4A were without effect. It is proposed that Ap4A acts as an important inducible ligand in the DNA damage response to prevent the replication of damaged DNA. Copyright © 2015 Elsevier B.V. All rights reserved.
Sundararajan, Rangapriya; Freudenreich, Catherine H.
2011-01-01
Repetitive DNA elements are mutational hotspots in the genome, and their instability is linked to various neurological disorders and cancers. Although it is known that expanded trinucleotide repeats can interfere with DNA replication and repair, the cellular response to these events has not been characterized. Here, we demonstrate that an expanded CAG/CTG repeat elicits a DNA damage checkpoint response in budding yeast. Using microcolony and single cell pedigree analysis, we found that cells carrying an expanded CAG repeat frequently experience protracted cell division cycles, persistent arrests, and morphological abnormalities. These phenotypes were further exacerbated by mutations in DSB repair pathways, including homologous recombination and end joining, implicating a DNA damage response. Cell cycle analysis confirmed repeat-dependent S phase delays and G2/M arrests. Furthermore, we demonstrate that the above phenotypes are due to the activation of the DNA damage checkpoint, since expanded CAG repeats induced the phosphorylation of the Rad53 checkpoint kinase in a rad52Δ recombination deficient mutant. Interestingly, cells mutated for the MRX complex (Mre11-Rad50-Xrs2), a central component of DSB repair which is required to repair breaks at CAG repeats, failed to elicit repeat-specific arrests, morphological defects, or Rad53 phosphorylation. We therefore conclude that damage at expanded CAG/CTG repeats is likely sensed by the MRX complex, leading to a checkpoint response. Finally, we show that repeat expansions preferentially occur in cells experiencing growth delays. Activation of DNA damage checkpoints in repeat-containing cells could contribute to the tissue degeneration observed in trinucleotide repeat expansion diseases. PMID:21437275
Glutathione-deficient Plasmodium berghei parasites exhibit growth delay and nuclear DNA damage.
Padín-Irizarry, Vivian; Colón-Lorenzo, Emilee E; Vega-Rodríguez, Joel; Castro, María Del R; González-Méndez, Ricardo; Ayala-Peña, Sylvette; Serrano, Adelfa E
2016-06-01
Plasmodium parasites are exposed to endogenous and exogenous oxidative stress during their complex life cycle. To minimize oxidative damage, the parasites use glutathione (GSH) and thioredoxin (Trx) as primary antioxidants. We previously showed that disruption of the Plasmodium berghei gamma-glutamylcysteine synthetase (pbggcs-ko) or the glutathione reductase (pbgr-ko) genes resulted in a significant reduction of GSH in intraerythrocytic stages, and a defect in growth in the pbggcs-ko parasites. In this report, time course experiments of parasite intraerythrocytic development and morphological studies showed a growth delay during the ring to schizont progression. Morphological analysis shows a significant reduction in size (diameter) of trophozoites and schizonts with increased number of cytoplasmic vacuoles in the pbggcs-ko parasites in comparison to the wild type (WT). Furthermore, the pbggcs-ko mutants exhibited an impaired response to oxidative stress and increased levels of nuclear DNA (nDNA) damage. Reduced GSH levels did not result in mitochondrial DNA (mtDNA) damage or protein carbonylations in neither pbggcs-ko nor pbgr-ko parasites. In addition, the pbggcs-ko mutant parasites showed an increase in mRNA expression of genes involved in oxidative stress detoxification and DNA synthesis, suggesting a potential compensatory mechanism to allow for parasite proliferation. These results reveal that low GSH levels affect parasite development through the impairment of oxidative stress reduction systems and damage to the nDNA. Our studies provide new insights into the role of the GSH antioxidant system in the intraerythrocytic development of Plasmodium parasites, with potential translation into novel pharmacological interventions. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Zelensky, Alex N.; Sanchez, Humberto; Ristic, Dejan; Vidic, Iztok; van Rossum-Fikkert, Sari E.; Essers, Jeroen; Wyman, Claire; Kanaar, Roland
2013-01-01
Caffeine is a widely used inhibitor of the protein kinases that play a central role in the DNA damage response. We used chemical inhibitors and genetically deficient mouse embryonic stem cell lines to study the role of DNA damage response in stable integration of the transfected DNA and found that caffeine rapidly, efficiently and reversibly inhibited homologous integration of the transfected DNA as measured by several homologous recombination-mediated gene-targeting assays. Biochemical and structural biology experiments revealed that caffeine interfered with a pivotal step in homologous recombination, homologous joint molecule formation, through increasing interactions of the RAD51 nucleoprotein filament with non-homologous DNA. Our results suggest that recombination pathways dependent on extensive homology search are caffeine-sensitive and stress the importance of considering direct checkpoint-independent mechanisms in the interpretation of the effects of caffeine on DNA repair. PMID:23666627
Genetic compensation of high dose radiation-induced damage in an anhydrobiotic insect
NASA Astrophysics Data System (ADS)
Gusev, Oleg; Nakahara, Yuichi; Sakashita, Tetsuya; Kikawada, Takahiro; Okuda, Takashi
Anhydrobiotic larvae of African chironomid Polypedilum vanderplanki are known to show an extremely high tolerance against a range of stresses. The tolerance against various extreme environments exhibited by that insect might be due to being almost completely desiccated replacing water with trehalose, a state where little or no chemical reactions occur. From 2005 dried larvae of this insect are being used in a number of space experiments, both inside and outside of ISS as a model organism for estimation the limits of higher organisms' resistance to space environment stresses and long-term storage of the alive anhydrobiotic organisms during continues spaceflight. We have shown previously that both hydrated and dried larvae of Polypedilum vanderplanki have very higher tolerance against both highand low-linear energy transfer (LET), surviving after 7000Gy irradiation. It was suggested that the larvae would have effective DNA-reparation system in addition to artificial protection provided by glass-stage without water. In the present study we conducted analysis of stress-related gene expression in the larvae after 70-2000 Gy irradiations. Both DNA damage level and activity of DNA-reparation, anti-apoptotic and protein-damage related genes were analyzed. Direct visualization of DNA damage in the larvae fat body cells using Comet Assay showed that fragmented by radiation DNA is re-arranged within 76-98 hours after exposure. We found that massive overexpression of hsp and anti-oxidant genes occur in larvae entering anhydrobiosis , and provides refolding of proteins after rehydration. In the irradiated larvae overexpression of DNA-reparation enzymes anti-apoptotic genes was confirmed, suggesting that survival after high-dose irradiation is a result of combination of highly effective blocking of entering the apoptosis after severe DNA damage and DNA reparation.
Analysis of nicotine-induced DNA damage in cells of the human respiratory tract.
Ginzkey, Christian; Stueber, Thomas; Friehs, Gudrun; Koehler, Christian; Hackenberg, Stephan; Richter, Elmar; Hagen, Rudolf; Kleinsasser, Norbert H
2012-01-05
Epithelium of the upper and lower airways is a common origin of tobacco-related cancer. The main tobacco alkaloid nicotine may be associated with tumor progression. The potential of nicotine in inducing DNA mutations as a step towards cancer initiation is still controversially discussed. Different subtypes of nicotinic acetylcholine receptors (nAChR) are expressed in human nasal mucosa and a human bronchial cell line representing respiratory mucosa as a possible target for receptor-mediated pathways. In the present study, both cell systems were investigated with respect to DNA damage induced by nicotine and its mechanisms. Specimens of human nasal mucosa were harvested during surgery of the nasal air passage. After enzymatic digestion over night, single cells were exposed to an increasing nicotine concentration between 0.001 mM and 4.0mM. In a second step co-incubation was performed using the antioxidant N-acetylcysteine (NAC) and the nAChR antagonist mecamylamine. DNA damage was assessed using the alkali version of the comet assay. Dose finding experiments for mecamylamine to evaluate the maximal inhibitory effect were performed in the human bronchial cell line BEAS-2B with an increasing mecamylamine concentration and a constant nicotine concentration. The influence of nicotine in the apoptotic pathway was evaluated in BEAS-2B cells with the TUNEL assay combined with flow cytometry. After 1h of nicotine exposure with 0.001, 0.01, 0.1, 1.0 and 4.0mM, significant DNA damage was determined at 1.0mM. Further co-incubation experiments with mecamylamine and NAC were performed using 1.0mM of nicotine. The strongest inhibitory effect was measured at 1.0mM mecamylamine and this concentration was used for co-incubation. Both, the antioxidant NAC at a concentration of 1.0mM, based on the literature, as well as the receptor antagonist were capable of complete inhibition of the nicotine-induced DNA migration in the comet assay. A nicotine-induced increase or decrease in apoptosis as assessed by the TUNEL assay in BEAS-2B could not be detected. These results support the hypothesis that oxidative stress is responsible for nicotine-induced DNA damage. Similar results exist for other antioxidants in different cell systems. The decrease in DNA damage after co-incubation with a nAChR antagonist indicates a receptor-dependent pathway of induction for oxidative stress. Further investigations concerning pathways of receptor-mediated DNA damage via nAChR, the role of reactive oxygen species and apoptosis in this cell system will elucidate underlying mechanisms. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
11th International Conference of Radiation Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1999-07-18
Topics discussed in the conference included the following: Radiation Physics, Radiation Chemistry and modelling--Radiation physics and dosimetry; Electron transfer in biological media; Radiation chemistry; Biophysical and biochemical modelling; Mechanisms of DNA damage; Assays of DNA damage; Energy deposition in micro volumes; Photo-effects; Special techniques and technologies; Oxidative damage. Molecular and cellular effects-- Photobiology; Cell cycle effects; DNA damage: Strand breaks; DNA damage: Bases; DNA damage Non-targeted; DNA damage: other; Chromosome aberrations: clonal; Chromosomal aberrations: non-clonal; Interactions: Heat/Radiation/Drugs; Biochemical effects; Protein expression; Gene induction; Co-operative effects; ``Bystander'' effects; Oxidative stress effects; Recovery from radiation damage. DNA damage and repair -- DNAmore » repair genes; DNA repair deficient diseases; DNA repair enzymology; Epigenetic effects on repair; and Ataxia and ATM.« less
NASA Astrophysics Data System (ADS)
Billi, Daniela; Viaggiu, Emanuela; Cockell, Charles S.; Rabbow, Elke; Horneck, Gerda; Onofri, Silvano
2011-01-01
The cyanobacterium Chroococcidiopsis, overlain by 3mm of Antarctic sandstone, was exposed as dried multilayers to simulated space and martian conditions. Ground-based experiments were conducted in the context of Lichens and Fungi Experiments (EXPOSE-E mission, European Space Agency), which were performed to evaluate, after 1.5 years on the International Space Station, the survival of cyanobacteria (Chroococcidiopsis), lichens, and fungi colonized on Antarctic rock. The survival potential and the role played by protection and repair mechanisms in the response of dried Chroococcidiopsis cells to ground-based experiments were both investigated. Different methods were employed, including evaluation of the colony-forming ability, single-cell analysis of subcellular integrities based on membrane integrity molecular and redox probes, evaluation of the photosynthetic pigment autofluorescence, and assessment of the genomic DNA integrity with a PCR-based assay. Desiccation survivors of strain CCMEE 123 (coastal desert, Chile) were better suited than CCMEE 134 (Beacon Valley, Antarctica) to withstand cellular damage imposed by simulated space and martian conditions. Exposed dried cells of strain CCMEE 123 formed colonies, maintained subcellular integrities, and, depending on the exposure conditions, also escaped DNA damage or repaired the induced damage upon rewetting.
Light-Induced Toxic Effects of Tamoxifen: A Chemotherapeutic and Chemopreventive Agent.
Wang, Lei; Wang, Shuguang; Yin, Jun-Jie; Fu, Peter P; Yu, Hongtao
2009-01-01
Tamoxifen is a powerful drug used to treat breast cancer patients, and more than 500,000 women in the U. S. are being treated with this drug. In our study, tamoxifen is found to be photomutagenic in Salmonella typhimurium TA102 at concentrations as low as 0.08 muM and reaches maximum photomutagenicity at 0.4 muM under a light dose equivalent to 20 min sunlight. These concentrations are comparable to the plasma tamoxifen concentration of 0.4 to 3 muM for patients undergoing tamoxifen therapy. The toxicity seems to be the result of DNA damage and/or lipid peroxidation caused by light irradiation of tamoxifen. The DNA damage caused by irradiation of PhiX174 DNA in the presence of tamoxifen appears to be formation of DNA-tamoxifen covalent adducts, not single strand/double strand cleavages, and there is no oxygen involvement. This is confirmed by EPR experiments that carbon-centerd radicals are formed by light irradiation of tamoxifen and there is no singlet oxygen formation. Although superoxide radical is formed, it is not involved in DNA damage.
Kouass Sahbani, Saloua; Sanche, Leon; Cloutier, Pierre; Bass, Andrew D; Hunting, Darel J
2014-11-20
Low energy electrons (LEEs) of energies less than 20 eV are generated in large quantities by ionizing radiation in biological matter. While LEEs are known to induce single (SSBs) and double strand breaks (DSBs) in DNA, their ability to inactivate cells by inducing nonreparable lethal damage has not yet been demonstrated. Here we observe the effect of LEEs on the functionality of DNA, by measuring the efficiency of transforming Escherichia coli with a [pGEM-3Zf (-)] plasmid irradiated with 10 eV electrons. Highly ordered DNA films were prepared on pyrolitic graphite by molecular self-assembly using 1,3-diaminopropane ions (Dap(2+)). The uniformity of these films permits the inactivation of approximately 50% of the plasmids compared to <10% using previous methods, which is sufficient for the subsequent determination of their functionality. Upon LEE irradiation, the fraction of functional plasmids decreased exponentially with increasing electron fluence, while LEE-induced isolated base damage, frank DSB, and non DSB-cluster damage increased linearly with fluence. While DSBs can be toxic, their levels were too low to explain the loss of plasmid functionality observed upon LEE irradiation. Similarly, non-DSB cluster damage, revealed by transforming cluster damage into DSBs by digestion with repair enzymes, also occurred relatively infrequently. The exact nature of the lethal damage remains unknown, but it is probably a form of compact cluster damage in which the lesions are too close to be revealed by purified repair enzymes. In addition, this damage is either not repaired or is misrepaired by E. coli, since it results in plasmid inactivation, when they contain an average of three lesions. Comparison with previous results from a similar experiment performed with γ-irradiated plasmids indicates that the type of clustered DNA lesions, created directly on cellular DNA by LEEs, may be more difficult to repair than those produced by other species from radiolysis.
Zunino, Susan J.; Storms, David H.
2017-01-01
Resveratrol has been reported to inhibit or induce DNA damage, depending upon the type of cell and the experimental conditions. Dietary resveratrol is present in the body predominantly as metabolites and limited data is available concerning the activities of these metabolic products. In the present study, physiologically obtainable levels of the resveratrol metabolites resveratrol-3-O-glucuronide, resveratrol-4′-O-glucuronide and resveratrol-3-O-sulfate were evaluated for their ability to protect Jurkat T cells against DNA damage induced by the topoisomerase I inhibitors camptothecin and topotecan. The cells were pretreated for 24 h with 10 µM resveratrol aglycone or each resveratrol metabolite prior to the induction of DNA damage with camptothecin or topotecan. In separate experiments, the cells were co-treated with resveratrol or its metabolites, and a topoisomerase I inhibitor. The detection of histone 2AX phosphorylation and terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) were used to determine DNA damage, and apoptosis was measured using an antibody against cleaved poly ADP-ribose polymerase. It was identified that pretreatment of the cells with resveratrol-3-O-glucuronide and resveratrol-4′-O-glucuronide reduced the mean fluorescence intensity of staining for DNA strand breaks following treatment with camptothecin, while the percentage of cells undergoing apoptosis was unchanged. However, pretreatment of the cells with resveratrol aglycone increased the DNA damage and apoptosis induced by the drugs. These results suggest that the glucuronide metabolites of resveratrol partially protected the cells from DNA damage, but did not influence the induction of cell death by camptothecin and topotecan. These data suggest that resveratrol aglycone treatment may be beneficial for treating types of cancer that have direct contact with resveratrol prior to its metabolism, including gastrointestinal cancers, which are routinely treated with topoisomerase I inhibitors. PMID:28781690
Zunino, Susan J; Storms, David H
2017-08-01
Resveratrol has been reported to inhibit or induce DNA damage, depending upon the type of cell and the experimental conditions. Dietary resveratrol is present in the body predominantly as metabolites and limited data is available concerning the activities of these metabolic products. In the present study, physiologically obtainable levels of the resveratrol metabolites resveratrol-3-O-glucuronide, resveratrol-4'-O-glucuronide and resveratrol-3-O-sulfate were evaluated for their ability to protect Jurkat T cells against DNA damage induced by the topoisomerase I inhibitors camptothecin and topotecan. The cells were pretreated for 24 h with 10 µM resveratrol aglycone or each resveratrol metabolite prior to the induction of DNA damage with camptothecin or topotecan. In separate experiments, the cells were co-treated with resveratrol or its metabolites, and a topoisomerase I inhibitor. The detection of histone 2AX phosphorylation and terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) were used to determine DNA damage, and apoptosis was measured using an antibody against cleaved poly ADP-ribose polymerase. It was identified that pretreatment of the cells with resveratrol-3-O-glucuronide and resveratrol-4'-O-glucuronide reduced the mean fluorescence intensity of staining for DNA strand breaks following treatment with camptothecin, while the percentage of cells undergoing apoptosis was unchanged. However, pretreatment of the cells with resveratrol aglycone increased the DNA damage and apoptosis induced by the drugs. These results suggest that the glucuronide metabolites of resveratrol partially protected the cells from DNA damage, but did not influence the induction of cell death by camptothecin and topotecan. These data suggest that resveratrol aglycone treatment may be beneficial for treating types of cancer that have direct contact with resveratrol prior to its metabolism, including gastrointestinal cancers, which are routinely treated with topoisomerase I inhibitors.
Fibroblasts Cultured on Nanowires Exhibit Low Motility, Impaired Cell Division, and DNA Damage
Persson, Henrik; Købler, Carsten; Mølhave, Kristian; Samuelson, Lars; Tegenfeldt, Jonas O; Oredsson, Stina; Prinz, Christelle N
2013-01-01
Nanowires are commonly used as tools for interfacing living cells, acting as biomolecule-delivery vectors or electrodes. It is generally assumed that the small size of the nanowires ensures a minimal cellular perturbation, yet the effects of nanowires on cell migration and proliferation remain largely unknown. Fibroblast behaviour on vertical nanowire arrays is investigated, and it is shown that cell motility and proliferation rate are reduced on nanowires. Fibroblasts cultured on long nanowires exhibit failed cell division, DNA damage, increased ROS content and respiration. Using focused ion beam milling and scanning electron microscopy, highly curved but intact nuclear membranes are observed, showing no direct contact between the nanowires and the DNA. The nanowires possibly induce cellular stress and high respiration rates, which trigger the formation of ROS, which in turn results in DNA damage. These results are important guidelines to the design and interpretation of experiments involving nanowire-based transfection and electrical characterization of living cells. PMID:23813871
Mohamad, Osama; Sishc, Brock J; Saha, Janapriya; Pompos, Arnold; Rahimi, Asal; Story, Michael D; Davis, Anthony J; Kim, D W Nathan
2017-06-09
Compared to conventional photon-based external beam radiation (PhXRT), carbon ion radiotherapy (CIRT) has superior dose distribution, higher linear energy transfer (LET), and a higher relative biological effectiveness (RBE). This enhanced RBE is driven by a unique DNA damage signature characterized by clustered lesions that overwhelm the DNA repair capacity of malignant cells. These physical and radiobiological characteristics imbue heavy ions with potent tumoricidal capacity, while having the potential for simultaneously maximally sparing normal tissues. Thus, CIRT could potentially be used to treat some of the most difficult to treat tumors, including those that are hypoxic, radio-resistant, or deep-seated. Clinical data, mostly from Japan and Germany, are promising, with favorable oncologic outcomes and acceptable toxicity. In this manuscript, we review the physical and biological rationales for CIRT, with an emphasis on DNA damage and repair, as well as providing a comprehensive overview of the translational and clinical data using CIRT.
Mohamad, Osama; Sishc, Brock J.; Saha, Janapriya; Pompos, Arnold; Rahimi, Asal; Story, Michael D.; Davis, Anthony J.; Kim, D.W. Nathan
2017-01-01
Compared to conventional photon-based external beam radiation (PhXRT), carbon ion radiotherapy (CIRT) has superior dose distribution, higher linear energy transfer (LET), and a higher relative biological effectiveness (RBE). This enhanced RBE is driven by a unique DNA damage signature characterized by clustered lesions that overwhelm the DNA repair capacity of malignant cells. These physical and radiobiological characteristics imbue heavy ions with potent tumoricidal capacity, while having the potential for simultaneously maximally sparing normal tissues. Thus, CIRT could potentially be used to treat some of the most difficult to treat tumors, including those that are hypoxic, radio-resistant, or deep-seated. Clinical data, mostly from Japan and Germany, are promising, with favorable oncologic outcomes and acceptable toxicity. In this manuscript, we review the physical and biological rationales for CIRT, with an emphasis on DNA damage and repair, as well as providing a comprehensive overview of the translational and clinical data using CIRT. PMID:28598362
DNA Damage in Bone Marrow Cells Induced by Femtosecond and Nanosecond Ultraviolet Laser Pulses.
Morkunas, Vaidotas; Gabryte, Egle; Vengris, Mikas; Danielius, Romualdas; Danieliene, Egle; Ruksenas, Osvaldas
2015-12-01
The purpose of this study was to investigate the possible genotoxic impact of new generation 205 nm femtosecond solid-state laser irradiation on the DNA of murine bone marrow cells in vitro, and to compare the DNA damage caused by both femtosecond and nanosecond UV laser pulses. Recent experiments of corneal stromal ablation in vitro and in vivo applying femtosecond UV pulses showed results comparable with or superior to those obtained using nanosecond UV lasers. However, the possible genotoxic effect of ultrashort laser pulses was not investigated. Mouse bone marrow cells were exposed to different doses of 205 nm femtosecond, 213 and 266 nm nanosecond lasers, and 254 nm UV lamp irradiation. The comet assay was used for the evaluation of DNA damage. All types of irradiation demonstrated intensity-dependent genotoxic impact. The DNA damage induced depended mainly upon wavelength rather than on other parameters such as pulse duration, repetition rate, or beam delivery to a target. Both 205 nm femtosecond and clinically applied 213 nm nanosecond lasers' pulses induced a comparable amount of DNA breakage in cells exposed to the same irradiation dose. To further evaluate the suitability of femtosecond UV laser sources for microsurgery, a separate investigation of the genotoxic and mutagenic effects on corneal cells in vitro and, particularly, in vivo is needed.
In vitro antioxidation activity and genoprotective effect of selected Chinese medicinal herbs.
Szeto, Yim Tong; Wong, Shirley Ching Yee; Wong, Julia Wai Ming; Kalle, Wouter; Pak, Sok Cheon
2011-01-01
Some traditional Chinese medicinal seeds and fruits are well known for their antioxidant properties. This research aims to investigate whether Fructus Lycii, Fructus Schisandrae Chinensis, Fructus Ligustri Lucidi and Semen Cuscutae protect DNA from oxidant challenge by hydrogen peroxide (H(2)O(2)). The standard comet assay was used to assess the genoprotective effect of these medicinal herbs. Blood was taken from three healthy adults, aged from 36 to 42. Lymphocytes were isolated and treated with different concentrations of aqueous herbal extracts, while controls were treated with phosphate buffered saline. The lymphocytes were stressed with 50 μM H(2)O(2). Treated cells were embedded in agarose and layered on slides. These sandwiched lymphocytes were lysed and afterwards subjected to an electric field in an alkaline environment. Damaged DNA was pulled out from the nucleus towards the positive electrode as a comet tail; its density was related to the degree of DNA damage. Finally, the slides were stained with fluorescence dye and tails were visually scored for 100 cells. The experiment was repeated three times and DNA damage in treated cells was compared to the controls. There was no statistical difference in DNA damage among the herb treated cells and untreated cells in the comet assay. Our data demonstrated that the selected medicinal herbs did not show in vitro DNA protection in the comet assay against oxidant challenge.
Oxidative DNA damage and mammary cell proliferation by alcohol-derived salsolinol.
Murata, Mariko; Midorikawa, Kaoru; Kawanishi, Shosuke
2013-10-21
Drinking alcohol is a risk factor for breast cancer. Salsolinol (SAL) is endogenously formed by a condensation reaction of dopamine with acetaldehyde, a major ethanol metabolite, and SAL is detected in blood and urine after alcohol intake. We investigated the possibility that SAL can participate in tumor initiation and promotion by causing DNA damage and cell proliferation, leading to alcohol-associated mammary carcinogenesis. SAL caused oxidative DNA damage including 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), in the presence of transition metal ions, such as Cu(II) and Fe(III)EDTA. Inhibitory effects of scavengers on SAL-induced DNA damage and the electron spin resonance study indicated the involvement of H₂O₂, which is generated via the SAL radical. Experiments on scavengers and site specificity of DNA damage suggested ·OH generation via a Fenton reaction and copper-peroxide complexes in the presence of Fe(III)EDTA and Cu(II), respectively. SAL significantly increased 8-oxodG formation in normal mammary epithelial MCF-10A cells. In addition, SAL induced cell proliferation in estrogen receptor (ER)-negative MCF-10A cells, and the proliferation was inhibited by an antioxidant N-acetylcysteine and an epidermal growth factor receptor (EGFR) inhibitor AG1478, suggesting that reactive oxygen species may participate in the proliferation of MCF-10A cells via EGFR activation. Furthermore, SAL induced proliferation in estrogen-sensitive breast cancer MCF-7 cells, and a surface plasmon resonance sensor revealed that SAL significantly increased the binding activity of ERα to the estrogen response element but not ERβ. In conclusion, SAL-induced DNA damage and cell proliferation may play a role in tumor initiation and promotion of multistage mammary carcinogenesis in relation to drinking alcohol.
Recent Advancements in DNA Damage-Transcription Crosstalk and High-Resolution Mapping of DNA Breaks.
Vitelli, Valerio; Galbiati, Alessandro; Iannelli, Fabio; Pessina, Fabio; Sharma, Sheetal; d'Adda di Fagagna, Fabrizio
2017-08-31
Until recently, DNA damage arising from physiological DNA metabolism was considered a detrimental by-product for cells. However, an increasing amount of evidence has shown that DNA damage could have a positive role in transcription activation. In particular, DNA damage has been detected in transcriptional elements following different stimuli. These physiological DNA breaks are thought to be instrumental for the correct expression of genomic loci through different mechanisms. In this regard, although a plethora of methods are available to precisely map transcribed regions and transcription start sites, commonly used techniques for mapping DNA breaks lack sufficient resolution and sensitivity to draw a robust correlation between DNA damage generation and transcription. Recently, however, several methods have been developed to map DNA damage at single-nucleotide resolution, thus providing a new set of tools to correlate DNA damage and transcription. Here, we review how DNA damage can positively regulate transcription initiation, the current techniques for mapping DNA breaks at high resolution, and how these techniques can benefit future studies of DNA damage and transcription.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarwar, Tarique; Zafaryab, Md; Husain, Mohammed Amir
Ferulic acid (FA) is a plant polyphenol showing diverse therapeutic effects against cancer, diabetes, cardiovascular and neurodegenerative diseases. FA is a known antioxidant at lower concentrations, however at higher concentrations or in the presence of metal ions such as copper, it may act as a pro-oxidant. It has been reported that copper levels are significantly raised in different malignancies. Cancer cells are under increased oxidative stress as compared to normal cells. Certain therapeutic substances like polyphenols can further increase this oxidative stress and kill cancer cells without affecting the proliferation of normal cells. Through various in vitro experiments we havemore » shown that the pro-oxidant properties of FA are enhanced in the presence of copper. Comet assay demonstrated the ability of FA to cause oxidative DNA breakage in human peripheral lymphocytes which was ameliorated by specific copper-chelating agent such as neocuproine and scavengers of ROS. This suggested the mobilization of endogenous copper in ROS generation and consequent DNA damage. These results were further validated through cytotoxicity experiments involving different cell lines. Thus, we conclude that such a pro-oxidant mechanism involving endogenous copper better explains the anticancer activities of FA. This would be an alternate non-enzymatic, and copper-mediated pathway for the cytotoxic activities of FA where it can selectively target cancer cells with elevated levels of copper and ROS. - Highlights: • Pro-oxidant properties of ferulic acid are enhanced in presence of copper. • Ferulic acid causes oxidative DNA damage in lymphocytes as observed by comet assay. • DNA damage was ameliorated by copper chelating agent neocuproine and ROS scavengers. • Endogenous copper is involved in ROS generation causing DNA damage. • Ferulic acid exerts cancer cell specific cytotoxicity as observed by MTT assay.« less
Strand, Janne M; Scheffler, Katja; Bjørås, Magnar; Eide, Lars
2014-06-01
The cellular genomes are continuously damaged by reactive oxygen species (ROS) from aerobic processes. The impact of DNA damage depends on the specific site as well as the cellular state. The steady-state level of DNA damage is the net result of continuous formation and subsequent repair, but it is unknown to what extent heterogeneous damage distribution is caused by variations in formation or repair of DNA damage. Here, we used a restriction enzyme/qPCR based method to analyze DNA damage in promoter and coding regions of four nuclear genes: the two house-keeping genes Gadph and Tbp, and the Ndufa9 and Ndufs2 genes encoding mitochondrial complex I subunits, as well as mt-Rnr1 encoded by mitochondrial DNA (mtDNA). The distribution of steady-state levels of damage varied in a site-specific manner. Oxidative stress induced damage in nDNA to a similar extent in promoter and coding regions, and more so in mtDNA. The subsequent removal of damage from nDNA was efficient and comparable with recovery times depending on the initial damage load, while repair of mtDNA was delayed with subsequently slower repair rate. The repair was furthermore found to be independent of transcription or the transcription-coupled repair factor CSB, but dependent on cellular ATP. Our results demonstrate that the capacity to repair DNA is sufficient to remove exogenously induced damage. Thus, we conclude that the heterogeneous steady-state level of DNA damage in promoters and coding regions is caused by site-specific DNA damage/modifications that take place under normal metabolism. Copyright © 2014 Elsevier B.V. All rights reserved.
Guthrie, O'neil W
2015-10-01
Xeroderma pigmentosum-A (XPA) is a C4-type zinc-finger scaffolding protein that regulates the removal of bulky-helix distorting DNA damage products from the genome. Phosphorylation of serine residues within the XPA protein is associated with improved protection of genomic DNA and cell death resistance. Therefore, kinase signaling is one important mechanism for regulating the protective function of XPA. Previous experiments have shown that spiral ganglion neurons (SGNs) may mobilize XPA as a general stress response to chemical and physical ototoxicants. Therapeutic optimization of XPA via kinase signaling could serve as a means to improve DNA repair capacity within neurons following injury. The kinase signaling activity of the epidermal growth factor receptor (EGFR) has been shown in tumor cell lines to increase the repair of DNA damage products that are primarily repaired by XPA. Such observations suggest that EGFR may regulate the protective function of XPA. However, it is not known whether SGNs in particular or neurons in general could co-express XPA and EGFR. In the current study gene and protein expression of XPA and EGFR were determined from cochlear homogenates. Immunofluorescence assays were then employed to localize neurons expressing both EGFR and XPA within the ganglion. This work was then confirmed with double-immunohistochemistry. Rosenthal's canal served as the reference space in these experiments and design-based stereology was employed in first-order stereology quantification of immunoreactive neurons. The results confirmed that a population of SGNs that constitutively express XPA may also express the EGFR. These results provide the basis for future experiments designed to therapeutically manipulate the EGFR in order to regulate XPA activity and restore gene function in neurons following DNA damage. Copyright © 2015 Elsevier GmbH. All rights reserved.
Protein Interactions in T7 DNA Replisome Facilitate DNA Damage Bypass.
Zou, Zhenyu; Chen, Ze; Xue, Qizhen; Xu, Ying; Xiong, Jingyuan; Yang, Ping; Le, Shuai; Zhang, Huidong
2018-06-14
DNA replisome inevitably encounters DNA damage during DNA replication. T7 DNA replisome contains DNA polymerase (gp5), the processivity factor thioredoxin (trx), helicase-primase (gp4), and ssDNA binding protein (gp2.5). T7 protein interactions mediate this DNA replication. However, whether the protein interactions could promote DNA damage bypass is still little addressed. In this study, we investigated the strand-displacement DNA synthesis past 8-oxoG or O6-MeG at the synthetic DNA fork by T7 DNA replisome. DNA damage does not obviously affect the binding affinities among helicase, polymerase, and DNA fork. Relative to unmodified G, both 8-oxoG and O6-MeG, as well as GC-rich template sequence clusters, inhibit the strand-displacement DNA synthesis and produce partial extension products. Relative to gp4 ΔC-tail, gp4 promotes the DNA damage bypass. The presence of gp2.5 further promotes this bypass. Thus, the interactions of polymerase with helicase and ssDNA binidng protein faciliate the DNA damage bypass. Similarly, accessory proteins in other complicated DNA replisomes also facilitate the DNA damage bypass. This work provides the novel mechanism information of DNA damage bypass by DNA replisome. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Sarabipour, Sarvenaz; Sarvenaz Sarabipour, Ms; Michaud, Marc; Deng, Zongwu; Huels, Michael A.
The overriding environmental factor that presently limits human endeavors in space is exposure to heavy ion radiation. While knowledge of its damage to living tissue is essential for radiation protection and risk estimates for astronauts, very little data exists at the molecular level regarding the nascent DNA damage by the primary particle track, or by secondary species during subsequent reaction cascades. This persistent lack of a basic understanding of nascent damage induced by such low dose, high LET radiation, introduces unacceptable errors in radiation risk estimates (based mainly on extrapolation from high dose, low LET radiation), particularly for long term exposure. Mutagenic effects induced by heavy ion radiation to cells are largely due to DNA damage by secondary transient species, i.e. secondary ballistic ions, electrons and radicals generated along the ion tracks; the secondary ions have hyperthermal energies up to several 100 eV, which they will deposit within a few nm in the surrounding medium; thus their LET is very high, and yields lethal clustered DNA lesions. We present measurements of molecular damage induced in films of DNA components by ions with precisely such low energies (1-100 eV) and compare results to conventional electron impact measurements. Experiments are conducted in UHV using a mass selected low energy ion source, and a high-resolution quadrupole MS to monitor ion yields desorbing from molecular films. Among the major fragments, NH4 + is identified in the desorption mass spectra of irradiated films of Adenine, Guanine, Cytosine, indicating efficient deamination; in cells this results in pre-mutagenic lesions. Experiments with 5-amino-Uracil, and comparison to previous results on uracil and thymine show that deamination is a key step in the NH4 + fragment formation. For Adenine, we also observe formation of amine aducts in the films, viz. amination of Adenine, and global fragmentation in all ion impact mass spectra, attributed mainly to kinetic & potential ion scattering.[Funded by NSERC and the Canadian Space Agency].
NASA Astrophysics Data System (ADS)
Hegedüs, M.; Fekete, A.; Módos, K.; Kovács, G.; Rontó, Gy.; Lammer, H.; Panitz, C.
2007-02-01
The experiment "Phage and uracil response" (PUR) will be accommodated in the EXPOSE facility of the ISS. Bacteriophage T7/isolated T7 DNA will be exposed to different subsets of extreme environmental parameters in space, in order to study the Responses of Organisms to the Space Environment (ROSE). Launch into orbit is preceded by EXPOSE Experiment Verification Tests (EVT) to optimize the methods and the evaluation. Bacteriophage T7/isolated T7 DNA thin layers were exposed to vacuum ( 10-6Pa), to monochromatic (254 nm) and polychromatic (200-400 nm) UV radiation in air as well as in simulated space vacuum. Using neutral density (ND) filters dose-effect curves were performed in order to define the maximum doses tolerated. The effect of temperature fluctuation in vacuum was also studied. The structural/chemical effects on bacteriophage T7/isolated T7 DNA were analyzed by spectroscopic and microscopical methods. Characteristic changes in the absorption spectrum and in the electrophoretic pattern of phage/DNA have been detected indicating the damage of isolated and intraphage DNA. DNA damage was also determined by quantitative PCR (QPCR) using 555 and 3826 bp fragments of T7 DNA. We obtained substantial evidence that DNA lesions (e.g. strand breaks, DNA-protein cross-links, cyclobutane pirimidine dimers (CPDs) etc.) accumulate throughout exposure. Preliminary results suggest a synergistic action of space vacuum and UV radiation with DNA being the critical target.
Repair of Oxidative DNA Damage in Saccharomyces cerevisiae.
Chalissery, Jisha; Jalal, Deena; Al-Natour, Zeina; Hassan, Ahmed H
2017-03-01
Malfunction of enzymes that detoxify reactive oxygen species leads to oxidative attack on biomolecules including DNA and consequently activates various DNA repair pathways. The nature of DNA damage and the cell cycle stage at which DNA damage occurs determine the appropriate repair pathway to rectify the damage. Oxidized DNA bases are primarily repaired by base excision repair and nucleotide incision repair. Nucleotide excision repair acts on lesions that distort DNA helix, mismatch repair on mispaired bases, and homologous recombination and non-homologous end joining on double stranded breaks. Post-replication repair that overcomes replication blocks caused by DNA damage also plays a crucial role in protecting the cell from the deleterious effects of oxidative DNA damage. Mitochondrial DNA is also prone to oxidative damage and is efficiently repaired by the cellular DNA repair machinery. In this review, we discuss the DNA repair pathways in relation to the nature of oxidative DNA damage in Saccharomyces cerevisiae. Copyright © 2017 Elsevier B.V. All rights reserved.
Mechanisms for radiation damage in DNA. Progress report, January 1, 1980-December 31, 1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sevilla, M D
1980-09-01
In this project several mechanisms are proposed for radiation damage to DNA constituents and DNA, and a series of experiments detailed utilizing electron spin resonance spectrometry to test the proposed mechanisms. Under current investigation are irradiated systems of DNA constituents which may shed light on indirect effects. In addition, studies of radiation effects on lipids have been undertaken which will shed light on the only other proposed site for cell kill, the membrane. Studies completed during the past year are: (1) ..pi.. cations produced in DNA bases by attack of oxidizing radicals; (2) INDO studies of radicals produced in peptidesmore » and carboxylic acid model compounds; (3) electron reactions with carboxylic acids, ketones and aldehydes; and (4) ..gamma..-irradiation of esters and triglycerides. Progress has been made this year in a study of radicals generated in model compounds for the sugar-phosphate backbone.« less
Interplay between DNA repair and inflammation, and the link to cancer
Kidane, Dawit; Chae, Wook Jin; Czochor, Jennifer; Eckert, Kristin A.; Glazer, Peter M.; Bothwell, Alfred L. M.; Sweasy, Joann B.
2015-01-01
DNA damage and repair are linked to cancer. DNA damage that is induced endogenously or from exogenous sources has the potential to result in mutations and genomic instability if not properly repaired, eventually leading to cancer. Inflammation is also linked to cancer. Reactive oxygen and nitrogen species (RONs) produced by inflammatory cells at sites of infection can induce DNA damage. RONs can also amplify inflammatory responses, leading to increased DNA damage. Here, we focus on the links between DNA damage, repair, and inflammation, as they relate to cancer. We examine the interplay between chronic inflammation, DNA damage and repair and review recent findings in this rapidly emerging field, including the links between DNA damage and the innate immune system, and the roles of inflammation in altering the microbiome, which subsequently leads to the induction of DNA damage in the colon. Mouse models of defective DNA repair and inflammatory control are extensively reviewed, including treatment of mouse models with pathogens, which leads to DNA damage. The roles of microRNAs in regulating inflammation and DNA repair are discussed. Importantly, DNA repair and inflammation are linked in many important ways, and in some cases balance each other to maintain homeostasis. The failure to repair DNA damage or to control inflammatory responses has the potential to lead to cancer. PMID:24410153
López-López, Linnette; Nieves-Plaza, Mariely; Castro, María del R.; Font, Yvonne M.; Torres-Ramos, Carlos; Vilá, Luis M.; Ayala-Peña, Sylvette
2014-01-01
Objective To determine the extent of mitochondrial DNA (mtDNA) damage in systemic lupus erythematosus (SLE) patients compared to healthy subjects and to determine the factors associated with mtDNA damage among SLE patients. Methods A cross-sectional study was performed in 86 SLE patients (per American College of Rheumatology classification criteria) and 86 healthy individuals matched for age and gender. Peripheral blood mononuclear cells (PBMCs) were collected from subjects to assess the relative amounts of mtDNA damage. Quantitative polymerase chain reaction assay was used to measure the frequency of mtDNA lesions and mtDNA abundance. Socioeconomic-demographic features, clinical manifestations, pharmacologic treatment, disease activity, and damage accrual were determined. Statistical analyses were performed using t test, pairwise correlation, and Pearson’s chi-square test (or Fisher’s exact test) as appropriate. Results Among SLE patients, 93.0% were women. The mean (SD) age was 38.0 (10.4) years and the mean (SD) disease duration was 8.7 (7.5) years. SLE patients exhibited increased levels of mtDNA damage as shown by higher levels of mtDNA lesions and decreased mtDNA abundance as compared to healthy individuals. There was a negative correlation between disease damage and mtDNA abundance and a positive correlation between mtDNA lesions and disease duration. No association was found between disease activity and mtDNA damage. Conclusion PBMCs from SLE patients exhibited more mtDNA damage compared to healthy subjects. Higher levels of mtDNA damage were observed among SLE patients with major organ involvement and damage accrual. These results suggest that mtDNA damage have a potential role in the pathogenesis of SLE. PMID:24899636
López-López, L; Nieves-Plaza, M; Castro, M del R; Font, Y M; Torres-Ramos, C A; Vilá, L M; Ayala-Peña, S
2014-10-01
To determine the extent of mitochondrial DNA (mtDNA) damage in systemic lupus erythematosus (SLE) patients compared to healthy subjects and to determine the factors associated with mtDNA damage among SLE patients. A cross-sectional study was performed in 86 SLE patients (per American College of Rheumatology classification criteria) and 86 healthy individuals matched for age and gender. Peripheral blood mononuclear cells (PBMCs) were collected from subjects to assess the relative amounts of mtDNA damage. Quantitative polymerase chain reaction assay was used to measure the frequency of mtDNA lesions and mtDNA abundance. Socioeconomic-demographic features, clinical manifestations, pharmacologic treatment, disease activity, and damage accrual were determined. Statistical analyses were performed using t test, pairwise correlation, and Pearson's chi-square test (or Fisher's exact test) as appropriate. Among SLE patients, 93.0% were women. The mean (SD) age was 38.0 (10.4) years and the mean (SD) disease duration was 8.7 (7.5) years. SLE patients exhibited increased levels of mtDNA damage as shown by higher levels of mtDNA lesions and decreased mtDNA abundance as compared to healthy individuals. There was a negative correlation between disease damage and mtDNA abundance and a positive correlation between mtDNA lesions and disease duration. No association was found between disease activity and mtDNA damage. PBMCs from SLE patients exhibited more mtDNA damage compared to healthy subjects. Higher levels of mtDNA damage were observed among SLE patients with major organ involvement and damage accrual. These results suggest that mtDNA damage have a potential role in the pathogenesis of SLE. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Types and Consequences of DNA Damage
This review provides a concise overview of the types of DNA damage and the molecular mechanisms by which a cell senses DNA damage, repairs the damage, converts the damage into a mutation, or dies as a consequence of unrepaired DNA damage. Such information is important in consid...
RNF168 forms a functional complex with RAD6 during the DNA damage response
Liu, Chao; Wang, Degui; Wu, Jiaxue; Keller, Jennifer; Ma, Teng; Yu, Xiaochun
2013-01-01
Summary Protein ubiquitination plays an important role in initiating the DNA damage response. Following DNA damage, E2 ubiquitin conjugating enzymes are crucial for catalyzing substrate ubiquitination that recruits downstream DNA repair factors to DNA lesions. To identify novel E2 conjugating enzymes important for initiating the DNA-damage-induced ubiquitination cascade, we screened most of the known E2 enzymes and found that RAD6A and RAD6B function together with RNF168 in the ionizing radiation (IR)-induced DNA damage response. Similarly to RNF168-deficient cells, RAD6A- or RAD6B-deficient cells exhibit a reduction in DNA-damage-induced protein ubiquitination. Correspondingly, DNA-damage-induced foci formation of DNA damage repair proteins, such as BRCA1 and 53BP1, is impaired in the absence of RAD6A or RAD6B. Moreover, the RNF168–RAD6 complex targeted histone H1.2 for ubiquitination in vitro and regulated DNA-damage-induced histone H1.2 ubiquitination in vivo. Collectively, these data demonstrate that RNF168, in complex with RAD6A or RAD6B, is activated in the DNA-damage-induced protein ubiquitination cascade. PMID:23525009
Oxidative damage and antioxidant defense in thymus of malnourished lactating rats.
Gavia-García, Graciela; González-Martínez, Haydeé; Miliar-García, Ángel; Bonilla-González, Edmundo; Rosas-Trejo, María de Los Ángeles; Königsberg, Mina; Nájera-Medina, Oralia; Luna-López, Armando; González-Torres, María Cristina
2015-01-01
Malnutrition has been associated with oxidative damage by altered antioxidant protection mechanisms. Specifically, the aim of this study was to evaluate oxidative damage (DNA and lipid) and antioxidant status (superoxide dismutase [SOD], glutathione peroxidase [GPx], and catalase [CAT] mRNA, and protein expression) in thymus from malnourished rat pups. Malnutrition was induced during the lactation period by the food competition method. Oxidative DNA damage was determined quantifying 8-oxo-7, 8-dihydro-2'-deoxyguanosine adduct by high-performance liquid chromatography. Lipid peroxidation was assessed by the formation of thiobarbituric acid-reactive substances. Levels of gene and protein expression of SOD, GPx, and CAT were evaluated by real-time polymerase chain reaction and Western blot, respectively. Antioxidant enzyme activities were measured spectrophotometrically. Oxidative DNA damage and lipid peroxidation significantly increased in second-degree (MN-2) and third-degree malnourished (MN-3) rats compared with well-nourished rats. Higher amounts of oxidative damage, lower mRNA expression, and lower relative concentrations of protein, as well as decreased antioxidant activity of SOD, GPx, and CAT were associated with the MN-2 and MN-3 groups. The results of this study demonstrated that higher body-weight deficits were related to alterations in antioxidant protection, which contribute to increased levels of damage in the thymus. To our knowledge, this study demonstrated for the first time that early in life, malnutrition leads to increased DNA and lipid oxidative damage, attributable to damaged antioxidant mechanisms including transcriptional and enzymatic activity alterations. These findings may contribute to the elucidation of the causes of previously reported thymus dysfunction, and might explain partially why children and adults who have overcome child undernourishment experience immunologic deficiencies. Copyright © 2015 Elsevier Inc. All rights reserved.
Single-molecule analysis of DNA cross-links using nanopore technology
NASA Astrophysics Data System (ADS)
Wolna, Anna H.
The alpha-hemolysin (alpha-HL) protein ion channel is a potential next-generation sequencing platform that has been extensively used to study nucleic acids at a single-molecule level. After applying a potential across a lipid bilayer, the imbedded alpha-HL allows monitoring of the duration and current levels of DNA translocation and immobilization. Because this method does not require DNA amplification prior to sequencing, all the DNA damage present in the cell at any given time will be present during the sequencing experiment. The goal of this research is to determine if these damage sites give distinguishable current levels beyond those observed for the canonical nucleobases. Because DNA cross-links are one of the most prevalent types of DNA damage occurring in vivo, the blockage current levels were determined for thymine-dimers, guanine(C8)-thymine(N3) cross-links and platinum adducts. All of these cross-links give a different blockage current level compared to the undamaged strands when immobilized in the ion channel, and they all can easily translocate across the alpha-HL channel. Additionally, the alpha-HL nanopore technique presents a unique opportunity to study the effects of DNA cross-links, such as thymine-dimers, on the secondary structure of DNA G-quadruplexes folded from the human telomere sequence. Using this single-molecule nanopore technique we can detect subtle structural differences that cannot be easily addressed using conventional methods. The human telomere plays crucial roles in maintaining genome stability. In the presence of suitable cations, the repetitive 5'-TTAGGG human telomere sequence can fold into G-quadruplexes that adopt the hybrid fold in vivo. The telomere sequence is hypersensitive to UV-induced thymine-dimer (T=T) formation, and yet the presence of thymine dimers does not cause telomere shortening. The potential structural disruption and thermodynamic stability of the T=T-containing natural telomere sequences were studied to understand how this damage is tolerated in telomeric DNA. The alpha-HL experiments determined that T=Ts disrupt double-chain reversal loop formation but are well tolerated in edgewise and diagonal loops of the hybrid G-quadruplexes. These studies demonstrated the power of the alpha-HL ion channel to analyze DNA modifications and secondary structures at a single-molecule level.
NASA Astrophysics Data System (ADS)
Hawkins Evans, D.; Mbene, A.; Zungu, I.; Houreld, N.; Abrahamse, H.
2009-02-01
Phototherapy has become more popular and widely used in the treatment of a variety of medical conditions. To ensure sound results as evidence of its effectiveness, well designed experiments must be conducted when determining the effect of phototherapy. Cell culture models such as hypoxic, acidotic and wounded cell cultures simulating different disease conditions including ischemic heart disease, diabetes and wound healing were used to determine the effect of laser irradiation on the genetic integrity of the cell. Even though phototherapy has been found to be beneficial in a wide spectrum of conditions, it has been shown to induce DNA damage. However, this damage appears to be repairable. The risk lies in the fact that phototherapy may help the medical condition initially but damage DNA at the same time leaving undetected damage that may result in late onset, more severe, induced medical conditions including cancer. Human skin fibroblasts were cultured and used to induce a wound (by the central scratch model), hypoxic (by incubation in an anaerobic jar, 95% N2 and 5% O2) and acidotic (reducing the pH of the media to 6.7) conditions. Different models were irradiated using a Helium-Neon (632.8 nm) laser with a power density of 2.07 mW/cm2 and a fluence of 5 J/cm2 or 16 J/cm2. The effect of the irradiation was determined using the Comet assay 1 and 24 h after irradiation. In addition, the Comet assay was performed with the addition of formamidopyrimidine glycosylase (FPG) obviating strand brakes in oxidized bases at a high fluence of 16 J/cm2. A significant increase in DNA damage was seen in all three injured models at both 1 and 24 h post-irradiation when compared to the normal un-injured cells. However, when compared to non-irradiated controls the acidotic model showed a significant decrease in DNA damage 24 h after irradiation indicating the possible induction of cellular DNA repair mechanisms. When wounded cells were irradiated with higher fluences of 16 J/cm2, there was a significant increase in DNA damage in irradiated cells with and without the addition of FPG. These results are indicative of the importance of both cell injury model as well as fluence when assessing the effect of phototherapy on DNA integrity.
Fox, Candace R; Parks, Griffith D
2018-04-01
A parainfluenza virus 5 (PIV5) with mutations in the P/V gene (P/V-CPI - ) is restricted for spread in normal cells but not in cancer cells in vitro and is effective at reducing tumor burdens in mouse model systems. Here we show that P/V-CPI - infection of HEp-2 human laryngeal cancer cells results in the majority of the cells dying, but unexpectedly, over time, there is an emergence of a population of cells that survive as P/V-CPI - persistently infected (PI) cells. P/V-CPI - PI cells had elevated levels of basal caspase activation, and viability was highly dependent on the activity of cellular inhibitor-of-apoptosis proteins (IAPs) such as Survivin and XIAP. In challenge experiments with external inducers of apoptosis, PI cells were more sensitive to cisplatin-induced DNA damage and cell death. This increased cisplatin sensitivity correlated with defects in DNA damage signaling pathways such as phosphorylation of Chk1 and translocation of damage-specific DNA binding protein 1 (DDB1) to the nucleus. Cisplatin-induced killing of PI cells was sensitive to the inhibition of wild-type (WT) p53-inducible protein 1 (WIP1), a phosphatase which acts to terminate DNA damage signaling pathways. A similar sensitivity to cisplatin was seen with cells during acute infection with P/V-CPI - as well as during acute infections with WT PIV5 and the related virus human parainfluenza virus type 2 (hPIV2). Our results have general implications for the design of safer paramyxovirus-based vectors that cannot establish PI as well as the potential for combining chemotherapy with oncolytic RNA virus vectors. IMPORTANCE There is intense interest in developing oncolytic viral vectors with increased potency against cancer cells, particularly those cancer cells that have gained resistance to chemotherapies. We have found that infection with cytoplasmically replicating parainfluenza virus can result in increases in the killing of cancer cells by agents that induce DNA damage, and this is linked to alterations to DNA damage signaling pathways that balance cell survival versus death. Our results have general implications for the design of safer paramyxovirus-based vectors that cannot establish persistent infection, the repurposing of drugs that target cellular IAPs as antivirals, and the combined use of DNA-damaging chemotherapy agents in conjunction with oncolytic RNA virus vectors. Copyright © 2018 American Society for Microbiology.
Erturk, Filiz Aygun; Aydin, Murat; Sigmaz, Burcu; Taspinar, M Sinan; Arslan, Esra; Agar, Guleray; Yagci, Semra
2015-12-01
Arsenic is a well-known toxic substance on the living organisms. However, limited efforts have been made to study its DNA methylation, genomic instability, and long terminal repeat (LTR) retrotransposon polymorphism causing properties in different crops. In the present study, effects of As2O3 (arsenic trioxide) on LTR retrotransposon polymorphism and DNA methylation as well as DNA damage in Zea mays seedlings were investigated. The results showed that all of arsenic doses caused a decreasing genomic template stability (GTS) and an increasing Random Amplified Polymorphic DNAs (RAPDs) profile changes (DNA damage). In addition, increasing DNA methylation and LTR retrotransposon polymorphism characterized a model to explain the epigenetically changes in the gene expression were also found. The results of this experiment have clearly shown that arsenic has epigenetic effect as well as its genotoxic effect. Especially, the increasing of polymorphism of some LTR retrotransposon under arsenic stress may be a part of the defense system against the stress.
Neoplastic cell transformation by high-LET radiation - Molecular mechanisms
NASA Technical Reports Server (NTRS)
Yang, Tracy Chui-Hsu; Craise, Laurie M.; Tobias, Cornelius A.; Mei, Man-Tong
1989-01-01
Quantitative data were collected on dose-response curves of cultured mouse-embryo cells (C3H10T1/2) irradiated with heavy ions of various charges and energies. Results suggests that two breaks formed on DNA within 80 A may cause cell transformation and that two DNA breaks formed within 20 A may be lethal. From results of experiments with restriction enzymes which produce DNA damages at specific sites, it was found that DNA double strand breaks are important primary lesions for radiogenic cell transformation and that blunt-ended double-strand breaks can form lethal as well as transformational damages due to misrepair or incomplete repair in the cell. The RBE-LET relationship for high-LET radiation is similar to that for HGPRT locus mutation, chromosomal deletion, and cell transformation, indicating that common lesions may be involved in these radiation effects.
Luo, Man; Bao, Zhengqiang; Xu, Feng; Wang, Xiaohui; Li, Fei; Li, Wen; Chen, Zhihua; Ying, Songmin; Shen, Huahao
2018-04-14
The inflammatory cascade can be initiated with the recognition of damaged DNA. Macrophages play an essential role in particulate matter (PM)-induced airway inflammation. In this study, we aim to explore the PM induced DNA damage response of macrophages and its function in airway inflammation. The DNA damage response and inflammatory response were assessed using bone marrow-derived macrophages following PM treatment and mouse model instilled intratracheally with PM. We found that PM induced significant DNA damage both in vitro and in vivo and simultaneously triggered a rapid DNA damage response, represented by nuclear RPA, 53BP1 and γH2AX foci formation. Genetic ablation or chemical inhibition of the DNA damage response sensor amplified the production of cytokines including Cxcl1, Cxcl2 and Ifn-γ after PM stimulation in bone marrow-derived macrophages. Similar to that seen in vitro , mice with myeloid-specific deletion of RAD50 showed higher levels of airway inflammation in response to the PM challenge, suggesting a protective role of DNA damage sensor during inflammation. These data demonstrate that PM exposure induces DNA damage and activation of DNA damage response sensor MRN complex in macrophages. Disruption of MRN complex lead to persistent, unrepaired DNA damage that causes elevated inflammatory response.
DNA damage preceding dopamine neuron degeneration in A53T human α-synuclein transgenic mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Degui; Yu, Tianyu; Liu, Yongqiang
Defective DNA repair has been linked with age-associated neurodegenerative disorders. Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by genetic and environmental factors. Whether damages to nuclear DNA contribute to neurodegeneration of PD still remain obscure. in this study we aim to explore whether nuclear DNA damage induce dopamine neuron degeneration in A53T human α-Synuclein over expressed mouse model. We investigated the effects of X-ray irradiation on A53T-α-Syn MEFs and A53T-α-Syn transgene mice. Our results indicate that A53T-α-Syn MEFs show a prolonged DNA damage repair process and senescense phenotype. DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenicmore » mice and decrease the number of nigrostriatal dopaminergic neurons. Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages. - Highlights: • This study explore contribution of DNA damage to neurodegeneration in Parkinson's disease mice. • A53T-α-Syn MEF cells show a prolonged DNA damage repair process and senescense phenotype. • DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenic mice. • DNA damage decrease the number of nigrostriatal dopaminergic neurons. • Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages.« less
High-coverage methylation data of a gene model before and after DNA damage and homologous repair.
Pezone, Antonio; Russo, Giusi; Tramontano, Alfonso; Florio, Ermanno; Scala, Giovanni; Landi, Rosaria; Zuchegna, Candida; Romano, Antonella; Chiariotti, Lorenzo; Muller, Mark T; Gottesman, Max E; Porcellini, Antonio; Avvedimento, Enrico V
2017-04-11
Genome-wide methylation analysis is limited by its low coverage and the inability to detect single variants below 10%. Quantitative analysis provides accurate information on the extent of methylation of single CpG dinucleotide, but it does not measure the actual polymorphism of the methylation profiles of single molecules. To understand the polymorphism of DNA methylation and to decode the methylation signatures before and after DNA damage and repair, we have deep sequenced in bisulfite-treated DNA a reporter gene undergoing site-specific DNA damage and homologous repair. In this paper, we provide information on the data generation, the rationale for the experiments and the type of assays used, such as cytofluorimetry and immunoblot data derived during a previous work published in Scientific Reports, describing the methylation and expression changes of a model gene (GFP) before and after formation of a double-strand break and repair by homologous-recombination or non-homologous-end-joining. These data provide: 1) a reference for the analysis of methylation polymorphism at selected loci in complex cell populations; 2) a platform and the tools to compare transcription and methylation profiles.
High-coverage methylation data of a gene model before and after DNA damage and homologous repair
Pezone, Antonio; Russo, Giusi; Tramontano, Alfonso; Florio, Ermanno; Scala, Giovanni; Landi, Rosaria; Zuchegna, Candida; Romano, Antonella; Chiariotti, Lorenzo; Muller, Mark T.; Gottesman, Max E.; Porcellini, Antonio; Avvedimento, Enrico V.
2017-01-01
Genome-wide methylation analysis is limited by its low coverage and the inability to detect single variants below 10%. Quantitative analysis provides accurate information on the extent of methylation of single CpG dinucleotide, but it does not measure the actual polymorphism of the methylation profiles of single molecules. To understand the polymorphism of DNA methylation and to decode the methylation signatures before and after DNA damage and repair, we have deep sequenced in bisulfite-treated DNA a reporter gene undergoing site-specific DNA damage and homologous repair. In this paper, we provide information on the data generation, the rationale for the experiments and the type of assays used, such as cytofluorimetry and immunoblot data derived during a previous work published in Scientific Reports, describing the methylation and expression changes of a model gene (GFP) before and after formation of a double-strand break and repair by homologous-recombination or non-homologous-end-joining. These data provide: 1) a reference for the analysis of methylation polymorphism at selected loci in complex cell populations; 2) a platform and the tools to compare transcription and methylation profiles. PMID:28398335
Catch the live show: Visualizing damaged DNA in vivo.
Oshidari, Roxanne; Mekhail, Karim
2018-06-01
The health of an organism is intimately linked to its ability to repair damaged DNA. Importantly, DNA repair processes are highly dynamic. This highlights the necessity of characterizing DNA repair in live cells. Advanced genome editing and imaging approaches allow us to visualize damaged DNA and its associated factors in real time. Here, we summarize both established and recent methods that are used to induce DNA damage and visualize damaged DNA and its repair in live cells. Copyright © 2018 Elsevier Inc. All rights reserved.
Method for assaying clustered DNA damages
Sutherland, Betsy M.
2004-09-07
Disclosed is a method for detecting and quantifying clustered damages in DNA. In this method, a first aliquot of the DNA to be tested for clustered damages with one or more lesion-specific cleaving reagents under conditions appropriate for cleavage of the DNA to produce single-strand nicks in the DNA at sites of damage lesions. The number average molecular length (Ln) of double stranded DNA is then quantitatively determined for the treated DNA. The number average molecular length (Ln) of double stranded DNA is also quantitatively determined for a second, untreated aliquot of the DNA. The frequency of clustered damages (.PHI..sub.c) in the DNA is then calculated.
The comet moment as a measure of DNA damage in the comet assay.
Kent, C R; Eady, J J; Ross, G M; Steel, G G
1995-06-01
The development of rapid assays of radiation-induced DNA damage requires the definition of reliable parameters for the evaluation of dose-response relationships to compare with cellular endpoints. We have used the single-cell gel electrophoresis (SCGE) or 'comet' assay to measure DNA damage in individual cells after irradiation. Both the alkaline and neutral protocols were used. In both cases, DNA was stained with ethidium bromide and viewed using a fluorescence microscope at 516-560 nm. Images of comets were stored as 512 x 512 pixel images using OPTIMAS, an image analysis software package. Using this software we tested various parameters for measuring DNA damage. We have developed a method of analysis that rigorously conforms to the mathematical definition of the moment of inertia of a plane figure. This parameter does not require the identification of separate head and tail regions, but rather calculates a moment of the whole comet image. We have termed this parameter 'comet moment'. This method is simple to calculate and can be performed using most image analysis software packages that support macro facilities. In experiments on CHO-K1 cells, tail length was found to increase linearly with dose, but plateaued at higher doses. Comet moment also increased linearly with dose, but over a larger dose range than tail length and had no tendency to plateau.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, B.; Sutherland, B.; Bennett, P. V.
We tested the ability of melatonin (N-acetyl-5 methoxytryptamine), a highly effective radical scavenger and human hormone, to protect DNA in solution and in human cells against induction of complex DNA clusters and biological damage induced by low or high linear energy transfer radiation (100 kVp X-rays, 970 MeV/nucleon Fe ions). Plasmid DNA in solution was treated with increasing concentrations of melatonin (0.0-3.5 mM) and were irradiated with X-rays. Human cells (28SC monocytes) were also irradiated with X-rays and Fe ions with and without 2 mM melatonin. Agarose plugs containing genomic DNA were subjected to Contour Clamped Homogeneous Electrophoretic Field (CHEF)more » followed by imaging and clustered DNA damages were measured by using Number Average length analysis. Transformation experiments on human primary fibroblast cells using soft agar colony assay were carried out which were irradiated with Fe ions with or without 2 mM melatonin. In plasmid DNA in solution, melatonin reduced the induction of single- and double-strand breaks. Pretreatment of human 28SC cells for 24 h before irradiation with 2 mM melatonin reduced the level of X-ray induced double-strand breaks by {approx}50%, of abasic clustered damages about 40%, and of Fe ion-induced double-strand breaks (41% reduction) and abasic clusters (34% reduction). It decreased transformation to soft agar growth of human primary cells by a factor of 10, but reduced killing by Fe ions only by 20-40%. Melatonin's effective reduction of radiation-induced critical DNA damages, cell killing, and striking decrease of transformation suggest that it is an excellent candidate as a countermeasure against radiation exposure, including radiation exposure to astronaut crews in space travel.« less
Lymphocyte DNA damage in Turkish asphalt workers detected by the comet assay.
Bacaksiz, Aysegul; Kayaalti, Zeliha; Soylemez, Esma; Tutkun, Engin; Soylemezoglu, Tulin
2014-01-01
Asphalt has a highly complex structure and it contains several organic compounds including polycyclic aromatic hydrocarbons and heterocyclic compounds. In this study, comet assay was used to detect the DNA damage in blood lymphocytes of 30 workers exposed to asphalt fumes and 30 nonexposed controls. This is the first report on Turkish asphalt workers' investigated DNA damage using the alkaline single cell gel electrophoresis (SCGE). The DNA damage was evaluated by the percentage of DNA in the comet tail (% tail DNA) for each cell. According to our results, workers exposed to asphalt fumes had higher DNA damage than the control group (p < 0.01). The present study showed that asphalt fumes caused a significant increase in DNA damage and the comet assay is a suitable method for determining DNA damage in asphalt workers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawiak, Anna; Piosik, Jacek; Stasilojc, Grzegorz
2007-09-15
Reactive oxygen species (ROS) have been recognized as key molecules, which can selectively modify proteins and therefore regulate cellular signalling including apoptosis. Plumbagin, a naphthoquinone exhibiting antitumor activity, is known to generate ROS and has been found to inhibit the activity of topoisomerase II (Topo II) through the stabilization of the Topo II-DNA cleavable complex. The objective of this research was to clarify the role of ROS and Topo II inhibition in the induction of apoptosis mediated by plumbagin. As determined by the comet assay, plumbagin induced DNA cleavage in HL-60 cells, whereas in a cell line with reduced Topomore » II activity-HL-60/MX2, the level of DNA damage was significantly decreased. The onset of DNA strand break formation in HL-60 cells was delayed in comparison with the generation of intracellular ROS. In HL-60/MX2 cells, ROS were generated at a similar rate, whereas a significant reduction in the level of DNA damage was detected. The pretreatment of cells with N-acetylcysteine (NAC) attenuated plumbagin-induced DNA damage, pointing out to the involvement of ROS generation in cleavable complex formation. These results suggest that plumbagin-induced ROS does not directly damage DNA but requires the involvement of Topo II. Furthermore, experiments carried out using light spectroscopy indicated no direct interactions between plumbagin and DNA. The induction of apoptosis was significantly delayed in HL-60/MX2 cells indicating the involvement of Topo II inhibition in plumbagin-mediated apoptosis. Thus, these findings strongly suggest ROS-mediated inhibition of Topo II as an important mechanism contributing to the apoptosis-inducing properties of plumbagin.« less
DNA Damage and Repair: Relevance to Mechanisms of Neurodegeneration
Martin, Lee J.
2008-01-01
DNA damage is a form of cell stress and injury that has been implicated in the pathogenesis of many neurologic disorders, including amyotrophic lateral sclerosis, Alzheimer disease, Down syndrome, Parkinson disease, cerebral ischemia, and head trauma. However, most data reveal only associations, and the role for DNA damage in direct mechanisms of neurodegeneration is vague with respect to being a definitive upstream cause of neuron cell death, rather than a consequence of the degeneration. Although neurons seem inclined to develop DNA damage during oxidative stress, most of the existing work on DNA damage and repair mechanisms has been done in the context of cancer biology using cycling non-neuronal cells but not nondividing (i.e. postmitotic) neurons. Nevertheless, the identification of mutations in genes that encode proteins that function in DNA repair and DNA damage response in human hereditary DNA repair deficiency syndromes and ataxic disorders is establishing a mechanistic precedent that clearly links DNA damage and DNA repair abnormalities with progressive neurodegeneration. This review summarizes DNA damage and repair mechanisms and their potential relevance to the evolution of degeneration in postmitotic neurons. PMID:18431258
Zhang, Xurui; Ye, Caiyong; Sun, Fang; Wei, Wenjun; Hu, Burong; Wang, Jufang
2016-01-01
Persistent DNA damage is considered as a main cause of cellular senescence induced by ionizing radiation. However, the molecular bases of the DNA damage and their contribution to cellular senescence are not completely clear. In this study, we found that both heavy ions and X-rays induced senescence in human uveal melanoma 92–1 cells. By measuring senescence associated-β-galactosidase and cell proliferation, we identified that heavy ions were more effective at inducing senescence than X-rays. We observed less efficient repair when DNA damage was induced by heavy ions compared with X-rays and most of the irreparable damage was complex of single strand breaks and double strand breaks, while DNA damage induced by X-rays was mostly repaired in 24 hours and the remained damage was preferentially associated with telomeric DNA. Our results suggest that DNA damage induced by heavy ion is often complex and difficult to repair, thus presents as persistent DNA damage and pushes the cell into senescence. In contrast, persistent DNA damage induced by X-rays is preferentially associated with telomeric DNA and the telomere-favored persistent DNA damage contributes to X-rays induced cellular senescence. These findings provide new insight into the understanding of high relative biological effectiveness of heavy ions relevant to cancer therapy and space radiation research. PMID:27187621
Transcription and DNA Damage: Holding Hands or Crossing Swords?
D'Alessandro, Giuseppina; d'Adda di Fagagna, Fabrizio
2017-10-27
Transcription has classically been considered a potential threat to genome integrity. Collision between transcription and DNA replication machinery, and retention of DNA:RNA hybrids, may result in genome instability. On the other hand, it has been proposed that active genes repair faster and preferentially via homologous recombination. Moreover, while canonical transcription is inhibited in the proximity of DNA double-strand breaks, a growing body of evidence supports active non-canonical transcription at DNA damage sites. Small non-coding RNAs accumulate at DNA double-strand break sites in mammals and other organisms, and are involved in DNA damage signaling and repair. Furthermore, RNA binding proteins are recruited to DNA damage sites and participate in the DNA damage response. Here, we discuss the impact of transcription on genome stability, the role of RNA binding proteins at DNA damage sites, and the function of small non-coding RNAs generated upon damage in the signaling and repair of DNA lesions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ramirez-Garcés, Diana; Camborde, Laurent; Pel, Michiel J C; Jauneau, Alain; Martinez, Yves; Néant, Isabelle; Leclerc, Catherine; Moreau, Marc; Dumas, Bernard; Gaulin, Elodie
2016-04-01
To successfully colonize their host, pathogens produce effectors that can interfere with host cellular processes. Here we investigated the function of CRN13 candidate effectors produced by plant pathogenic oomycetes and detected in the genome of the amphibian pathogenic chytrid fungus Batrachochytrium dendrobatidis (BdCRN13). When expressed in Nicotiana, AeCRN13, from the legume root pathogen Aphanomyces euteiches, increases the susceptibility of the leaves to the oomycete Phytophthora capsici. When transiently expressed in amphibians or plant cells, AeCRN13 and BdCRN13 localize to the cell nuclei, triggering aberrant cell development and eventually causing cell death. Using Förster resonance energy transfer experiments in plant cells, we showed that both CRN13s interact with nuclear DNA and trigger plant DNA damage response (DDR). Mutating key amino acid residues in a predicted HNH-like endonuclease motif abolished the interaction of AeCRN13 with DNA, the induction of DDR and the enhancement of Nicotiana susceptibility to P. capsici. Finally, H2AX phosphorylation, a marker of DNA damage, and enhanced expression of genes involved in the DDR were observed in A. euteiches-infected Medicago truncatula roots. These results show that CRN13 from plant and animal eukaryotic pathogens promotes host susceptibility by targeting nuclear DNA and inducing DDR. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Mitochondrial DNA Damage and Diseases.
Singh, Gyanesh; Pachouri, U C; Khaidem, Devika Chanu; Kundu, Aman; Chopra, Chirag; Singh, Pushplata
2015-01-01
Various endogenous and environmental factors can cause mitochondrial DNA (mtDNA) damage. One of the reasons for enhanced mtDNA damage could be its proximity to the source of oxidants, and lack of histone-like protective proteins. Moreover, mitochondria contain inadequate DNA repair pathways, and, diminished DNA repair capacity may be one of the factors responsible for high mutation frequency of the mtDNA. mtDNA damage might cause impaired mitochondrial function, and, unrepaired mtDNA damage has been frequently linked with several diseases. Exploration of mitochondrial perspective of diseases might lead to a better understanding of several diseases, and will certainly open new avenues for detection, cure, and prevention of ailments.
Kido, Ryoko; Sato, Itaru; Tsuda, Shuji
2006-01-01
Ethanol is principal ingredient of alcohol beverage, but considered as human carcinogen, and has neurotoxicity. Alcohol consumption during pregnancy often causes fetal alcohol syndrome. The DNA damage is one of the important factors in carcinogenicity or teratogenicity. To detect the DNA damage induced by ethanol, we used an in vivo alkaline single cell gel electrophoresis (Comet) assay in pregnant mice organs and embryos. Pregnant ICR mice on Day 7 of gestation were treated with 2, 4 or 8 g/kg ethanol, and maternal organs/tissues and embryos were subjected to the Comet assay at 4, 8, 12 and 24 hr after ethanol treatment. Four and 8 g/kg ethanol induced DNA damage in brain, lung and embryos at 4 or 8 hr after the treatment. Two g/kg ethanol did not cause any DNA damage, and 8 g/kg ethanol only increased the duration of DNA damage without distinct increase in the degree of the damage. No significant DNA damage was observed in the liver. To detect the effect of acetaldehyde, disulfiram, acetaldehyde dehydrogenase inhibitor, was administered before 4 g/kg ethanol treatment. No significant increase of DNA damage was observed in the disulfiram pre-treated group. These data indicate that ethanol induces DNA damage, which might be related to ethanol toxicity. Since pre-treatment of disulfiram did not increase DNA damage, DNA damage observed in this study might not be the effect of acetaldehyde.
Mitochondrial DNA Damage and its Consequences for Mitochondrial Gene Expression
Cline, Susan D.
2012-01-01
How mitochondria process DNA damage and whether a change in the steady-state level of mitochondrial DNA damage (mtDNA) contributes to mitochondrial dysfunction are questions that fuel burgeoning areas of research into aging and disease pathogenesis. Over the past decade, researchers have identified and measured various forms of endogenous and environmental mtDNA damage and have elucidated mtDNA repair pathways. Interestingly, mitochondria do not appear to contain the full range of DNA repair mechanisms that operate in the nucleus, although mtDNA contains types of damage that are targets of each nuclear DNA repair pathway. The reduced repair capacity may, in part, explain the high mutation frequency of the mitochondrial chromosome. Since mtDNA replication is dependent on transcription, mtDNA damage may alter mitochondrial gene expression at three levels: by causing DNA polymerase γ nucleotide incorporation errors leading to mutations, by interfering with the priming of mtDNA replication by the mitochondrial RNA polymerase, or by inducing transcriptional mutagenesis or premature transcript termination. This review summarizes our current knowledge of mtDNA damage, its repair, and its effects on mtDNA integrity and gene expression. PMID:22728831
Gasser, Stephan; Zhang, Wendy Y L; Tan, Nikki Yi Jie; Tripathi, Shubhita; Suter, Manuel A; Chew, Zhi Huan; Khatoo, Muznah; Ngeow, Joanne; Cheung, Florence S G
2017-07-01
The presence of damaged and microbial DNA can pose a threat to the survival of organisms. Cells express various sensors that recognize specific aspects of such potentially dangerous DNA. Recognition of damaged or microbial DNA by sensors induces cellular processes that are important for DNA repair and inflammation. Here, we review recent evidence that the cellular response to DNA damage and microbial DNA are tightly intertwined. We also discuss insights into the parameters that enable DNA sensors to distinguish damaged and microbial DNA from DNA present in healthy cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Orchestration of DNA Damage Checkpoint Dynamics across the Human Cell Cycle.
Chao, Hui Xiao; Poovey, Cere E; Privette, Ashley A; Grant, Gavin D; Chao, Hui Yan; Cook, Jeanette G; Purvis, Jeremy E
2017-11-22
Although molecular mechanisms that prompt cell-cycle arrest in response to DNA damage have been elucidated, the systems-level properties of DNA damage checkpoints are not understood. Here, using time-lapse microscopy and simulations that model the cell cycle as a series of Poisson processes, we characterize DNA damage checkpoints in individual, asynchronously proliferating cells. We demonstrate that, within early G1 and G2, checkpoints are stringent: DNA damage triggers an abrupt, all-or-none cell-cycle arrest. The duration of this arrest correlates with the severity of DNA damage. After the cell passes commitment points within G1 and G2, checkpoint stringency is relaxed. By contrast, all of S phase is comparatively insensitive to DNA damage. This checkpoint is graded: instead of halting the cell cycle, increasing DNA damage leads to slower S phase progression. In sum, we show that a cell's response to DNA damage depends on its exact cell-cycle position and that checkpoints are phase-dependent, stringent or relaxed, and graded or all-or-none. Copyright © 2017 Elsevier Inc. All rights reserved.
The effects of metal ions on the DNA damage induced by hydrogen peroxide.
Kobayashi, S; Ueda, K; Komano, T
1990-01-01
The effects of metal ions on DNA damage induced by hydrogen peroxide were investigated using two methods, agarose-gel electrophoretic analysis of supercoiled DNA and sequencing-gel analysis of single end-labeled DNA fragments of defined sequences. Hydrogen peroxide induced DNA damage when iron or copper ion was present. At least two classes of DNA damage were induced, one being direct DNA-strand cleavage, and the other being base modification labile to hot piperidine. The investigation of the damaged sites and the inhibitory effects of radical scavengers revealed that hydroxyl radical was the species which attacked DNA in the reaction of H2O2/Fe(II). On the other hand, two types of DNA damage were induced by H2O2/Cu(II). Type I damage was predominant and inhibited by potassium iodide, but type II was not. The sites of the base-modification induced by type I damage were similar to those by lipid peroxidation products and by ascorbate in the presence of Cu(II), suggesting the involvement of radical species other than free hydroxyl radical in the damaging reactions.
Mechanisms of mutagenesis: DNA replication in the presence of DNA damage
Liu, Binyan; Xue, Qizhen; Tang, Yong; Cao, Jia; Guengerich, F. Peter; Zhang, Huidong
2017-01-01
Environmental mutagens cause DNA damage that disturbs replication and produces mutations, leading to cancer and other diseases. We discuss mechanisms of mutagenesis resulting from DNA damage, from the level of DNA replication by a single polymerase to the complex DNA replisome of some typical model organisms (including bacteriophage T7, T4, Sulfolobus solfataricus, E. coli, yeast and human). For a single DNA polymerase, DNA damage can affect replication in three major ways: reducing replication fidelity, causing frameshift mutations, and blocking replication. For the DNA replisome, protein interactions and the functions of accessory proteins can yield rather different results even with a single DNA polymerase. The mechanism of mutation during replication performed by the DNA replisome is a long-standing question. Using new methods and techniques, the replisomes of certain organisms and human cell extracts can now be investigated with regard to the bypass of DNA damage. In this review, we consider the molecular mechanism of mutagenesis resulting from DNA damage in replication at the levels of single DNA polymerases and complex DNA replisomes, including translesion DNA synthesis. PMID:27234563
Mechanisms of mutagenesis: DNA replication in the presence of DNA damage.
Liu, Binyan; Xue, Qizhen; Tang, Yong; Cao, Jia; Guengerich, F Peter; Zhang, Huidong
2016-01-01
Environmental mutagens cause DNA damage that disturbs replication and produces mutations, leading to cancer and other diseases. We discuss mechanisms of mutagenesis resulting from DNA damage, from the level of DNA replication by a single polymerase to the complex DNA replisome of some typical model organisms (including bacteriophage T7, T4, Sulfolobus solfataricus, Escherichia coli, yeast and human). For a single DNA polymerase, DNA damage can affect replication in three major ways: reducing replication fidelity, causing frameshift mutations, and blocking replication. For the DNA replisome, protein interactions and the functions of accessory proteins can yield rather different results even with a single DNA polymerase. The mechanism of mutation during replication performed by the DNA replisome is a long-standing question. Using new methods and techniques, the replisomes of certain organisms and human cell extracts can now be investigated with regard to the bypass of DNA damage. In this review, we consider the molecular mechanism of mutagenesis resulting from DNA damage in replication at the levels of single DNA polymerases and complex DNA replisomes, including translesion DNA synthesis. Copyright © 2016 Elsevier B.V. All rights reserved.
USP7S-dependent inactivation of Mule regulates DNA damage signalling and repair.
Khoronenkova, Svetlana V; Dianov, Grigory L
2013-02-01
The E3 ubiquitin ligase Mule/ARF-BP1 plays an important role in the cellular DNA damage response by controlling base excision repair and p53 protein levels. However, how the activity of Mule is regulated in response to DNA damage is currently unknown. Here, we report that the Ser18-containing isoform of the USP7 deubiquitylation enzyme (USP7S) controls Mule stability by preventing its self-ubiquitylation and subsequent proteasomal degradation. We find that in response to DNA damage, downregulation of USP7S leads to self-ubiquitylation and proteasomal degradation of Mule, which eventually leads to p53 accumulation. Cells that are unable to downregulate Mule show reduced ability to upregulate p53 levels in response to DNA damage. We also find that, as Mule inactivation is required for stabilization of base excision repair enzymes, the failure of cells to downregulate Mule after DNA damage results in deficient DNA repair. Our data describe a novel mechanism by which Mule is regulated in response to DNA damage and coordinates cellular DNA damage responses and DNA repair.
Interactions between low energy electrons and DNA: a perspective from first-principles simulations
NASA Astrophysics Data System (ADS)
Kohanoff, Jorge; McAllister, Maeve; Tribello, Gareth A.; Gu, Bin
2017-09-01
DNA damage caused by irradiation has been studied for many decades. Such studies allow us to better assess the dangers posed by radiation, and to increase the efficiency of the radiotherapies that are used to combat cancer. A full description of the irradiation process involves multiple size and time scales. It starts with the interaction of radiation—either photons or swift ions—and the biological medium, which causes electronic excitation and ionisation. The two main products of ionising radiation are thus electrons and radicals. Both of these species can cause damage to biological molecules, in particular DNA. In the long run, this molecular level damage can prevent cells from replicating and can hence lead to cell death. For a long time it was assumed that the main actors in the damage process were the radicals. However, experiments in a seminal paper by the group of Leon Sanche in 2000 showed that low-energy electrons (LEE), such as those generated when ionising biological targets, can also cause bond breaks in biomolecules, and strand breaks in plasmid DNA in particular (Boudaiffa et al 2000 Science 287 1658-60). These results prompted a significant amount of experimental and theoretical work aimed at elucidating the role played by LEE in DNA damage. In this Topical Review we provide a general overview of the problem. We discuss experimental findings and theoretical results hand in hand with the aim of describing the physics and chemistry that occurs during the process of radiation damage, from the initial stages of electronic excitation, through the inelastic propagation of electrons in the medium, the interaction of electrons with DNA, and the chemical end-point effects on DNA. A very important aspect of this discussion is the consideration of a realistic, physiological environment. The role played by the aqueous solution and the amino acids from the histones in chromatin must be considered. Moreover, thermal fluctuations must be incorporated when studying these phenomena. Hence, a special place in this Topical Review is occupied by our recent first-principles molecular dynamics simulations that address the issue of how the environment favours or prevents LEEs from causing damage to DNA. We finish by summarising the conclusions achieved so far, and by suggesting a number of possible directions for further study.
Interactions between low energy electrons and DNA: a perspective from first-principles simulations.
Kohanoff, Jorge; McAllister, Maeve; Tribello, Gareth A; Gu, Bin
2017-09-27
DNA damage caused by irradiation has been studied for many decades. Such studies allow us to better assess the dangers posed by radiation, and to increase the efficiency of the radiotherapies that are used to combat cancer. A full description of the irradiation process involves multiple size and time scales. It starts with the interaction of radiation-either photons or swift ions-and the biological medium, which causes electronic excitation and ionisation. The two main products of ionising radiation are thus electrons and radicals. Both of these species can cause damage to biological molecules, in particular DNA. In the long run, this molecular level damage can prevent cells from replicating and can hence lead to cell death. For a long time it was assumed that the main actors in the damage process were the radicals. However, experiments in a seminal paper by the group of Leon Sanche in 2000 showed that low-energy electrons (LEE), such as those generated when ionising biological targets, can also cause bond breaks in biomolecules, and strand breaks in plasmid DNA in particular (Boudaiffa et al 2000 Science 287 1658-60). These results prompted a significant amount of experimental and theoretical work aimed at elucidating the role played by LEE in DNA damage. In this Topical Review we provide a general overview of the problem. We discuss experimental findings and theoretical results hand in hand with the aim of describing the physics and chemistry that occurs during the process of radiation damage, from the initial stages of electronic excitation, through the inelastic propagation of electrons in the medium, the interaction of electrons with DNA, and the chemical end-point effects on DNA. A very important aspect of this discussion is the consideration of a realistic, physiological environment. The role played by the aqueous solution and the amino acids from the histones in chromatin must be considered. Moreover, thermal fluctuations must be incorporated when studying these phenomena. Hence, a special place in this Topical Review is occupied by our recent first-principles molecular dynamics simulations that address the issue of how the environment favours or prevents LEEs from causing damage to DNA. We finish by summarising the conclusions achieved so far, and by suggesting a number of possible directions for further study.
Cukras, Scott; Morffy, Nicholas; Ohn, Takbum; Kee, Younghoon
2014-01-01
Protein neddylation is involved in a wide variety of cellular processes. Here we show that the DNA damage response is perturbed in cells inactivated with an E2 Nedd8 conjugating enzyme UBE2M, measured by RAD51 foci formation kinetics and cell based DNA repair assays. UBE2M knockdown increases DNA breakages and cellular sensitivity to DNA damaging agents, further suggesting heightened genomic instability and defective DNA repair activity. Investigating the downstream Cullin targets of UBE2M revealed that silencing of Cullin 1, 2, and 4 ligases incurred significant DNA damage. In particular, UBE2M knockdown, or defective neddylation of Cullin 2, leads to a blockade in the G1 to S progression and is associated with delayed S-phase dependent DNA damage response. Cullin 4 inactivation leads to an aberrantly high DNA damage response that is associated with increased DNA breakages and sensitivity of cells to DNA damaging agents, suggesting a DNA repair defect is associated. siRNA interrogation of key Cullin substrates show that CDT1, p21, and Claspin are involved in elevated DNA damage in the UBE2M knockdown cells. Therefore, UBE2M is required to maintain genome integrity by activating multiple Cullin ligases throughout the cell cycle.
Involvement of oxidatively damaged DNA and repair in cancer development and aging
Tudek, Barbara; Winczura, Alicja; Janik, Justyna; Siomek, Agnieszka; Foksinski, Marek; Oliński, Ryszard
2010-01-01
DNA damage and DNA repair may mediate several cellular processes, like replication and transcription, mutagenesis and apoptosis and thus may be important factors in the development and pathology of an organism, including cancer. DNA is constantly damaged by reactive oxygen species (ROS) and reactive nitrogen species (RNS) directly and also by products of lipid peroxidation (LPO), which form exocyclic adducts to DNA bases. A wide variety of oxidatively-generated DNA lesions are present in living cells. 8-oxoguanine (8-oxoGua) is one of the best known DNA lesions due to its mutagenic properties. Among LPO-derived DNA base modifications the most intensively studied are ethenoadenine and ethenocytosine, highly miscoding DNA lesions considered as markers of oxidative stress and promutagenic DNA damage. Although at present it is impossible to directly answer the question concerning involvement of oxidatively damaged DNA in cancer etiology, it is likely that oxidatively modified DNA bases may serve as a source of mutations that initiate carcinogenesis and are involved in aging (i.e. they may be causal factors responsible for these processes). To counteract the deleterious effect of oxidatively damaged DNA, all organisms have developed several DNA repair mechanisms. The efficiency of oxidatively damaged DNA repair was frequently found to be decreased in cancer patients. The present work reviews the basis for the biological significance of DNA damage, particularly effects of 8-oxoGua and ethenoadduct occurrence in DNA in the aspect of cancer development, drawing attention to the multiplicity of proteins with repair activities. PMID:20589166
Mitochondrial DNA Damage and Diseases
Singh, Gyanesh; Pachouri, U C; Khaidem, Devika Chanu; Kundu, Aman; Chopra, Chirag; Singh, Pushplata
2015-01-01
Various endogenous and environmental factors can cause mitochondrial DNA (mtDNA) damage. One of the reasons for enhanced mtDNA damage could be its proximity to the source of oxidants, and lack of histone-like protective proteins. Moreover, mitochondria contain inadequate DNA repair pathways, and, diminished DNA repair capacity may be one of the factors responsible for high mutation frequency of the mtDNA. mtDNA damage might cause impaired mitochondrial function, and, unrepaired mtDNA damage has been frequently linked with several diseases. Exploration of mitochondrial perspective of diseases might lead to a better understanding of several diseases, and will certainly open new avenues for detection, cure, and prevention of ailments. PMID:27508052
DNA damage induced by ascorbate in the presence of Cu2+.
Kobayashi, S; Ueda, K; Morita, J; Sakai, H; Komano, T
1988-01-25
DNA damage induced by ascorbate in the presence of Cu2+ was investigated by use of bacteriophage phi X174 double-stranded supercoiled DNA and linear restriction fragments as substrates. Single-strand cleavage was induced when supercoiled DNA was incubated with 5 microM-10 mM ascorbate and 50 microM Cu2+ at 37 degrees C for 10 min. The induced DNA damage was analyzed by sequencing of fragments singly labeled at their 5'- or 3'-end. DNA was cleaved directly and almost uniformly at every nucleotide by ascorbate and Cu2+. Piperidine treatment after the reaction showed that ascorbate and Cu2+ induced another kind of DNA damage different from the direct cleavage. The damage proceeded to DNA cleavage by piperidine treatment and was sequence-specific rather than random. These results indicate that ascorbate induces two classes of DNA damage in the presence of Cu2+, one being direct strand cleavage, probably via damage to the DNA backbone, and the other being a base modification labile to alkali treatment. These two classes of DNA damage were inhibited by potassium iodide, catalase and metal chelaters, suggesting the involvement of radicals generated from ascorbate hydroperoxide.
Treacher Collins syndrome TCOF1 protein cooperates with NBS1 in the DNA damage response.
Ciccia, Alberto; Huang, Jen-Wei; Izhar, Lior; Sowa, Mathew E; Harper, J Wade; Elledge, Stephen J
2014-12-30
The signal transduction pathway of the DNA damage response (DDR) is activated to maintain genomic integrity following DNA damage. The DDR promotes genomic integrity by regulating a large network of cellular activities that range from DNA replication and repair to transcription, RNA splicing, and metabolism. In this study we define an interaction between the DDR factor NBS1 and TCOF1, a nucleolar protein that regulates ribosomal DNA (rDNA) transcription and is mutated in Treacher Collins syndrome. We show that NBS1 relocalizes to nucleoli after DNA damage in a manner dependent on TCOF1 and on casein kinase II and ATM, which are known to modify TCOF1 by phosphorylation. Moreover, we identify a putative ATM phosphorylation site that is required for NBS1 relocalization to nucleoli in response to DNA damage. Last, we report that TCOF1 promotes cellular resistance to DNA damaging agents. Collectively, our findings identify TCOF1 as a DDR factor that could cooperate with ATM and NBS1 to suppress inappropriate rDNA transcription and maintain genomic integrity after DNA damage.
Treacher Collins syndrome TCOF1 protein cooperates with NBS1 in the DNA damage response
Ciccia, Alberto; Huang, Jen-Wei; Izhar, Lior; Sowa, Mathew E.; Harper, J. Wade; Elledge, Stephen J.
2014-01-01
The signal transduction pathway of the DNA damage response (DDR) is activated to maintain genomic integrity following DNA damage. The DDR promotes genomic integrity by regulating a large network of cellular activities that range from DNA replication and repair to transcription, RNA splicing, and metabolism. In this study we define an interaction between the DDR factor NBS1 and TCOF1, a nucleolar protein that regulates ribosomal DNA (rDNA) transcription and is mutated in Treacher Collins syndrome. We show that NBS1 relocalizes to nucleoli after DNA damage in a manner dependent on TCOF1 and on casein kinase II and ATM, which are known to modify TCOF1 by phosphorylation. Moreover, we identify a putative ATM phosphorylation site that is required for NBS1 relocalization to nucleoli in response to DNA damage. Last, we report that TCOF1 promotes cellular resistance to DNA damaging agents. Collectively, our findings identify TCOF1 as a DDR factor that could cooperate with ATM and NBS1 to suppress inappropriate rDNA transcription and maintain genomic integrity after DNA damage. PMID:25512513
Maréchal, Alexandre; Wu, Ching-Shyi; Yazinski, Stephanie A.; Nguyen, Hai Dang; Liu, Shizhou; Jiménez, Amanda E.; Jin, Jianping; Zou, Lee
2014-01-01
Summary PRP19 is a ubiquitin ligase involved in pre-mRNA splicing and the DNA damage response (DDR). While the role for PRP19 in splicing is well characterized, its role in the DDR remains elusive. Through a proteomic screen for proteins that interact with RPA-coated single-stranded DNA (RPA-ssDNA), we identified PRP19 as a sensor of DNA damage. PRP19 binds RPA directly and localizes to DNA damage sites via RPA, promoting RPA ubiquitylation in a DNA damage-induced manner. PRP19 facilitates the accumulation of ATRIP, the regulatory partner of the ATR kinase, at DNA damage sites. Depletion of PRP19 compromised the phosphorylation of ATR substrates, the recovery of stalled replication forks, and the progression of replication forks on damaged DNA. Importantly, PRP19 mutants that cannot bind RPA or function as an E3 ligase failed to support the ATR response, revealing that PRP19 drives ATR activation by acting as an RPA-ssDNA-sensing ubiquitin ligase during the DDR. PMID:24332808
Merle, Patrick; Morvan, Daniel; Caillaud, Denis; Demidem, Aicha
2008-01-01
Chloroethylnitrosourea (CENU) chemotherapy is used for the treatment of melanoma tumors. The main mechanism of action of this anticancer agent is via DNA damage. We recently showed in murine experiments using a parental double B16 melanoma tumor model that, after treatment of primary tumors with cystemustine (CENU agent), untreated secondary tumors exhibited growth inhibition and metabolism disorders. The response of secondary untreated tumor was called the chemotherapy-induced bystander effect. To see whether chemotherapy-induced bystander effects were induced with other members of the CENU family, we compared three CENU(s) used in melanoma treatment: cystemustine, carmustine and fotemustine. Our results demonstrate that fotemustine, like cystemustine, but not carmustine induced a protective effect against secondary untreated tumors including alterations in phospholipid derivative and glutathione which are the metabolic signature of the bystander effect. From these data we may conclude that DNA damage to the primary tumor is not sufficient to explain chemotherapy-induced bystander effects.
Nowicka, Anna M; Kowalczyk, Agata; Stojek, Zbigniew; Hepel, Maria
2010-01-01
Electrochemical and nanogravimetric DNA-hybridization biosensors have been developed for sensing single mismatches in the probe-target ssDNA sequences. The voltammetric transduction was achieved by coupling ferrocene moiety to streptavidin linked to biotinylated tDNA. The mass-related frequency transduction was implemented by immobilizing the sensory pDNA on a gold-coated quartz crystal piezoresonators oscillating in the 10MHz band. The high sensitivity of these sensors enabled us to study DNA damage caused by representative toxicants and environmental pollutants, including Cr(VI) species, common pesticides and herbicides. We have found that the sensor responds rapidly to any damage caused by Cr(VI) species, with more severe DNA damage observed for Cr(2)O(7)(2-) and for CrO(4)(2-) in the presence of H(2)O(2) as compared to CrO(4)(2-) alone. All herbicides and pesticides examined caused DNA damage or structural alterations leading to the double-helix unwinding. Among these compounds, paraoxon-ethyl and atrazine caused the fastest and most severe damage to DNA. The physico-chemical mechanism of damaging interactions between toxicants and DNA has been proposed. The methodology of testing voltammetric and nanogravimetric DNA-hybridization biosensors developed in this work can be employed as a simple protocol to obtain rapid comparative data concerning DNA damage caused by herbicide, pesticides and other toxic pollutants. The DNA-hybridization biosensor can, therefore, be utilized as a rapid screening device for classifying environmental pollutants and to evaluate DNA damage induced by these compounds.
Lin, Jen-Jyh; Wu, Chih-Chung; Hsu, Shu-Chun; Weng, Shu-Wen; Ma, Yi-Shih; Huang, Yi-Ping; Lin, Jaung-Geng; Chung, Jing-Gung
2015-11-01
Although there are few reports regarding α-phellandrene (α-PA), a natural compound from Schinus molle L. essential oil, there is no report to show that α-PA induced DNA damage and affected DNA repair associated protein expression. Herein, we investigated the effects of α-PA on DNA damage and repair associated protein expression in murine leukemia cells. Flow cytometric assay was used to measure the effects of α-PA on total cell viability and the results indicated that α-PA induced cell death. Comet assay and 4,6-diamidino-2-phenylindole dihydrochloride staining were used for measuring DNA damage and condensation, respectively, and the results indicated that α-PA induced DNA damage and condensation in a concentration-dependent manner. DNA gel electrophoresis was used to examine the DNA damage and the results showed that α-PA induced DNA damage in WEHI-3 cells. Western blotting assay was used to measure the changes of DNA damage and repair associated protein expression and the results indicated that α-PA increased p-p53, p-H2A.X, 14-3-3-σ, and MDC1 protein expression but inhibited the protein of p53, MGMT, DNA-PK, and BRCA-1. © 2014 Wiley Periodicals, Inc.
Liu, Wei; Tan, Zhenyu; Zhang, Liming; Champion, Christophe
2018-05-01
This study presents the correlation between energy deposition and clustered DNA damage, based on a Monte Carlo simulation of the spectrum of direct DNA damage induced by low-energy electrons including the dissociative electron attachment. Clustered DNA damage is classified as simple and complex in terms of the combination of single-strand breaks (SSBs) or double-strand breaks (DSBs) and adjacent base damage (BD). The results show that the energy depositions associated with about 90% of total clustered DNA damage are below 150 eV. The simple clustered DNA damage, which is constituted of the combination of SSBs and adjacent BD, is dominant, accounting for 90% of all clustered DNA damage, and the spectra of the energy depositions correlating with them are similar for different primary energies. One type of simple clustered DNA damage is the combination of a SSB and 1-5 BD, which is denoted as SSB + BD. The average contribution of SSB + BD to total simple clustered DNA damage reaches up to about 84% for the considered primary energies. In all forms of SSB + BD, the SSB + BD including only one base damage is dominant (above 80%). In addition, for the considered primary energies, there is no obvious difference between the average energy depositions for a fixed complexity of SSB + BD determined by the number of base damage, but average energy depositions increase with the complexity of SSB + BD. In the complex clustered DNA damage constituted by the combination of DSBs and BD around them, a relatively simple type is a DSB combining adjacent BD, marked as DSB + BD, and it is of substantial contribution (on average up to about 82%). The spectrum of DSB + BD is given mainly by the DSB in combination with different numbers of base damage, from 1 to 5. For the considered primary energies, the DSB combined with only one base damage contributes about 83% of total DSB + BD, and the average energy deposition is about 106 eV. However, the energy deposition increases with the complexity of clustered DNA damage, and therefore, the clustered DNA damage with high complexity still needs to be considered in the study of radiation biological effects, in spite of their small contributions to all clustered DNA damage.
Kozmin, Stanislav G.; Jinks-Robertson, Sue
2013-01-01
Following the irradiation of nondividing yeast cells with ultraviolet (UV) light, most induced mutations are inherited by both daughter cells, indicating that complementary changes are introduced into both strands of duplex DNA prior to replication. Early analyses demonstrated that such two-strand mutations depend on functional nucleotide excision repair (NER), but the molecular mechanism of this unique type of mutagenesis has not been further explored. In the experiments reported here, an ade2 adeX colony-color system was used to examine the genetic control of UV-induced mutagenesis in nondividing cultures of Saccharomyces cerevisiae. We confirmed a strong suppression of two-strand mutagenesis in NER-deficient backgrounds and demonstrated that neither mismatch repair nor interstrand crosslink repair affects the production of these mutations. By contrast, proteins involved in the error-prone bypass of DNA damage (Rev3, Rev1, PCNA, Rad18, Pol32, and Rad5) and in the early steps of the DNA-damage checkpoint response (Rad17, Mec3, Ddc1, Mec1, and Rad9) were required for the production of two-strand mutations. There was no involvement, however, for the Pol η translesion synthesis DNA polymerase, the Mms2-Ubc13 postreplication repair complex, downstream DNA-damage checkpoint factors (Rad53, Chk1, and Dun1), or the Exo1 exonuclease. Our data support models in which UV-induced mutagenesis in nondividing cells occurs during the Pol ζ-dependent filling of lesion-containing, NER-generated gaps. The requirement for specific DNA-damage checkpoint proteins suggests roles in recruiting and/or activating factors required to fill such gaps. PMID:23307894
Simulation experiments of the effect of space environment on bacteriophage and DNA thin films
NASA Astrophysics Data System (ADS)
Fekete, A.; Rontó, Gy.; Hegedüs, M.; Módos, K.; Bérces, A.; Kovács, G.; Lammer, H.; Panitz, C.
2004-01-01
The main goal of PUR experiment (phage and uracil response) is to examine and quantify the effect of specific space conditions on nucleic acid models. To achieve this an improved method was elaborated for the preparation of DNA and bacteriophage thin films. The homogeneity of the films was controlled by UV spectroscopy and microscopy. To provide experimental evidence for the hypothesis that interplanetary transfer of the genetic material is possible, phage T7 and isolated T7 DNA thin films have been exposed to selected space conditions: intense UVC radiation ( λ=254 nm) and high vacuum (10 -4 Pa). The effects of DNA hydration, conformation and packing on UV radiation damage were examined. Characteristic changes in the absorption spectrum, in the electrophoretic pattern of DNA and the decrease of the amount of PCR products have been detected indicating the photodamage of isolated and intraphage DNA.
Micropatterned comet assay enables high throughput and sensitive DNA damage quantification
Ge, Jing; Chow, Danielle N.; Fessler, Jessica L.; Weingeist, David M.; Wood, David K.; Engelward, Bevin P.
2015-01-01
The single cell gel electrophoresis assay, also known as the comet assay, is a versatile method for measuring many classes of DNA damage, including base damage, abasic sites, single strand breaks and double strand breaks. However, limited throughput and difficulties with reproducibility have limited its utility, particularly for clinical and epidemiological studies. To address these limitations, we created a microarray comet assay. The use of a micrometer scale array of cells increases the number of analysable comets per square centimetre and enables automated imaging and analysis. In addition, the platform is compatible with standard 24- and 96-well plate formats. Here, we have assessed the consistency and sensitivity of the microarray comet assay. We showed that the linear detection range for H2O2-induced DNA damage in human lymphoblastoid cells is between 30 and 100 μM, and that within this range, inter-sample coefficient of variance was between 5 and 10%. Importantly, only 20 comets were required to detect a statistically significant induction of DNA damage for doses within the linear range. We also evaluated sample-to-sample and experiment-to-experiment variation and found that for both conditions, the coefficient of variation was lower than what has been reported for the traditional comet assay. Finally, we also show that the assay can be performed using a 4× objective (rather than the standard 10× objective for the traditional assay). This adjustment combined with the microarray format makes it possible to capture more than 50 analysable comets in a single image, which can then be automatically analysed using in-house software. Overall, throughput is increased more than 100-fold compared to the traditional assay. Together, the results presented here demonstrate key advances in comet assay technology that improve the throughput, sensitivity, and robustness, thus enabling larger scale clinical and epidemiological studies. PMID:25527723
Micropatterned comet assay enables high throughput and sensitive DNA damage quantification.
Ge, Jing; Chow, Danielle N; Fessler, Jessica L; Weingeist, David M; Wood, David K; Engelward, Bevin P
2015-01-01
The single cell gel electrophoresis assay, also known as the comet assay, is a versatile method for measuring many classes of DNA damage, including base damage, abasic sites, single strand breaks and double strand breaks. However, limited throughput and difficulties with reproducibility have limited its utility, particularly for clinical and epidemiological studies. To address these limitations, we created a microarray comet assay. The use of a micrometer scale array of cells increases the number of analysable comets per square centimetre and enables automated imaging and analysis. In addition, the platform is compatible with standard 24- and 96-well plate formats. Here, we have assessed the consistency and sensitivity of the microarray comet assay. We showed that the linear detection range for H2O2-induced DNA damage in human lymphoblastoid cells is between 30 and 100 μM, and that within this range, inter-sample coefficient of variance was between 5 and 10%. Importantly, only 20 comets were required to detect a statistically significant induction of DNA damage for doses within the linear range. We also evaluated sample-to-sample and experiment-to-experiment variation and found that for both conditions, the coefficient of variation was lower than what has been reported for the traditional comet assay. Finally, we also show that the assay can be performed using a 4× objective (rather than the standard 10× objective for the traditional assay). This adjustment combined with the microarray format makes it possible to capture more than 50 analysable comets in a single image, which can then be automatically analysed using in-house software. Overall, throughput is increased more than 100-fold compared to the traditional assay. Together, the results presented here demonstrate key advances in comet assay technology that improve the throughput, sensitivity, and robustness, thus enabling larger scale clinical and epidemiological studies. © The Author 2014. Published by Oxford University Press on behalf of the Mutagenesis Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Allen, Christopher; Borak, Thomas B.; Tsujii, Hirohiko; Nickoloff, Jac A.
2011-01-01
Ionizing radiation causes many types of DNA damage, including base damage and single- and double-strand breaks. Photons, including X-rays and γ-rays, are the most widely used type of ionizing radiation in radiobiology experiments, and in radiation cancer therapy. Charged particles, including protons and carbon ions, are seeing increased use as an alternative therapeutic modality. Although the facilities needed to produce high energy charged particle beams are more costly than photon facilities, particle therapy has shown improved cancer survival rates, reflecting more highly focused dose distributions and more severe DNA damage to tumor cells. Despite early successes of charged particle radiotherapy, there is room for further improvement, and much remains to be learned about normal and cancer cell responses to charged particle radiation. PMID:21376738
Sperm DNA damage has a negative association with live-birth rates after IVF.
Simon, L; Proutski, I; Stevenson, M; Jennings, D; McManus, J; Lutton, D; Lewis, S E M
2013-01-01
Sperm DNA damage has a negative impact on pregnancy rates following assisted reproduction treatment (ART). The aim of the present study was to examine the relationship between sperm DNA fragmentation and live-birth rates after IVF and intracytoplasmic sperm injection (ICSI). The alkaline Comet assay was employed to measure sperm DNA fragmentation in native semen and in spermatozoa following density-gradient centrifugation in semen samples from 203 couples undergoing IVF and 136 couples undergoing ICSI. Men were divided into groups according to sperm DNA damage. Following IVF, couples with <25% sperm DNA fragmentation had a live-birth rate of 33%; in contrast, couples with >50% sperm DNA fragmentation had a much lower live-birth rate of 13%. Following ICSI, no significant differences in sperm DNA damage were found between any groups of patients. Sperm DNA damage was also associated with low live-birth rates following IVF in both men and couples with idiopathic infertility: 39% of couples and 41% of men with idiopathic infertility have high sperm DNA damage. Sperm DNA damage assessed by the Comet assay has a close inverse relationship with live-birth rates after IVF. Sperm DNA damage has a negative impact on assisted reproduction treatment outcome, in particular, on pregnancy rates. The aim of the present study was to examine the relationship between sperm DNA fragmentation and live-birth rates after IVF and intracytoplasmic sperm injection (ICSI). The alkaline Comet assay was employed to measure sperm DNA fragmentation in native semen and in spermatozoa following density-gradient centrifugation in semen samples from 203 couples undergoing IVF and 136 couples undergoing ICSI. Men were divided into groups according to sperm DNA damage and treatment outcome. Following IVF, couples with <25% sperm DNA fragmentation had a live birth rate of 33%. In contrast, couples with >50% sperm DNA fragmentation had a much lower live-birth rate of 13% following IVF. Following ICSI, there were no significant differences in levels of sperm DNA damage between any groups of patients. Sperm DNA damage was also associated with the very low live-birth rates following IVF in both men and couples with idiopathic infertility: 39% of couples and 41% of men have high level of sperm DNA damage. Sperm DNA damage assessed by the Comet assay has a close inverse relationship with live-birth rates after IVF. Copyright © 2012 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Expression Profile of DNA Damage Signaling Genes in Proton Exposed Mouse Brain
NASA Astrophysics Data System (ADS)
Ramesh, Govindarajan; Wu, Honglu
Exposure of living systems to radiation results in a wide assortment of lesions, the most signif-icant of is damage to genomic DNA which induce several cellular functions such as cell cycle arrest, repair, apoptosis etc. The radiation induced DNA damage investigation is one of the im-portant area in biology, but still the information available regarding the effects of proton is very limited. In this report, we investigated the differential gene expression pattern of DNA damage signaling genes particularly, damaged DNA binding, repair, cell cycle arrest, checkpoints and apoptosis using quantitative real-time RT-PCR array in proton exposed mouse brain tissues. The expression profiles showed significant changes in DNA damage related genes in 2Gy proton exposed mouse brain tissues as compared with control brain tissues. Furthermore, we also show that significantly increased levels of apoptotic related genes, caspase-3 and 8 activities in these cells, suggesting that in addition to differential expression of DNA damage genes, the alteration of apoptosis related genes may also contribute to the radiation induced DNA damage followed by programmed cell death. In summary, our findings suggest that proton exposed brain tissue undergo severe DNA damage which in turn destabilize the chromatin stability.
HIPK2 restricts SIRT1 activity upon severe DNA damage by a phosphorylation-controlled mechanism
Conrad, E; Polonio-Vallon, T; Meister, M; Matt, S; Bitomsky, N; Herbel, C; Liebl, M; Greiner, V; Kriznik, B; Schumacher, S; Krieghoff-Henning, E; Hofmann, T G
2016-01-01
Upon severe DNA damage a cellular signalling network initiates a cell death response through activating tumour suppressor p53 in association with promyelocytic leukaemia (PML) nuclear bodies. The deacetylase Sirtuin 1 (SIRT1) suppresses cell death after DNA damage by antagonizing p53 acetylation. To facilitate efficient p53 acetylation, SIRT1 function needs to be restricted. How SIRT1 activity is regulated under these conditions remains largely unclear. Here we provide evidence that SIRT1 activity is limited upon severe DNA damage through phosphorylation by the DNA damage-responsive kinase HIPK2. We found that DNA damage provokes interaction of SIRT1 and HIPK2, which phosphorylates SIRT1 at Serine 682 upon lethal damage. Furthermore, upon DNA damage SIRT1 and HIPK2 colocalize at PML nuclear bodies, and PML depletion abrogates DNA damage-induced SIRT1 Ser682 phosphorylation. We show that Ser682 phosphorylation inhibits SIRT1 activity and impacts on p53 acetylation, apoptotic p53 target gene expression and cell death. Mechanistically, we found that DNA damage-induced SIRT1 Ser682 phosphorylation provokes disruption of the complex between SIRT1 and its activator AROS. Our findings indicate that phosphorylation-dependent restriction of SIRT1 activity by HIPK2 shapes the p53 response. PMID:26113041
Akkaya, Çağlayan; Yavuzer, Serap Sahin; Yavuzer, Hakan; Erkol, Gökhan; Bozluolcay, Melda; Dinçer, Yıldız
2017-07-15
The aim of the current study was to compare oxidative DNA damage, DNA susceptibility to oxidation, and ratio of GSH/GSSG in patients with Alzheimer's disease (AD) treated with acetylcholinesterase inhibitor (AChEI) and combined AChEI+memantine. The study included 67 patients with AD and 42 volunteers as control. DNA damage parameters (strand breaks, oxidized purines, H 2 O 2 -induced DNA damage) in lymphocyte DNA and GSH/GSSG ratio in erythrocytes were determined by the comet assay and spectrophotometric assay, respectively. DNA damage was found to be higher, GSH/GSSG ratio was found to be lower in the AD group than those in the control group. DNA strand breaks and H 2 O 2 -induced DNA damage were lower in the patients taking AChEI+memantine than those in the patients taking AChEI but no significant difference was determined between the groups for oxidized purines and GSH/GSSG ratio. In conclusion, increased systemic oxidative DNA damage and DNA susceptibility to oxidation may be resulted from diminished GSH/GSSG ratio in AD patients. Although DNA strand breaks and H 2 O 2 -induced DNA damage are lower in the AD patients treated with combined AChEI and memantine, this may not indicate protective effect of memantine against DNA oxidation due to similar levels of oxidized purines in the patients treated with AChEI and AChEI+memantine. Copyright © 2017 Elsevier B.V. All rights reserved.
Track structure based modelling of light ion radiation effects on nuclear and mitochondrial DNA
NASA Astrophysics Data System (ADS)
Schmitt, Elke; Ottolenghi, Andrea; Dingfelder, Michael; Friedland, Werner; Kundrat, Pavel; Baiocco, Giorgio
2016-07-01
Space radiation risk assessment is of great importance for manned spaceflights in order to estimate risks and to develop counter-measures to reduce them. Biophysical simulations with PARTRAC can help greatly to improve the understanding of initial biological response to ionizing radiation. Results from modelling radiation quality dependent DNA damage and repair mechanisms up to chromosomal aberrations (e.g. dicentrics) can be used to predict radiation effects depending on the kind of mixed radiation field exposure. Especially dicentric yields can serve as a biomarker for an increased risk due to radiation and hence as an indicator for the effectiveness of the used shielding. PARTRAC [1] is a multi-scale biophysical research MC code for track structure based initial DNA damage and damage response modelling. It integrates physics, radiochemistry, detailed nuclear DNA structure and molecular biology of DNA repair by NHEJ-pathway to assess radiation effects on cellular level [2]. Ongoing experiments with quasi-homogeneously distributed compared to sub-micrometre focused bunches of protons, lithium and carbon ions allow a separation of effects due to DNA damage complexity on nanometre scale from damage clustering on (sub-) micrometre scale [3, 4]. These data provide an unprecedented benchmark for the DNA damage response model in PARTRAC and help understand the mechanisms leading to cell killing and chromosomal aberrations (e.g. dicentrics) induction. A large part of space radiation is due to a mixed ion field of high energy protons and few heavier ions that can be only partly absorbed by the shielding. Radiation damage induced by low-energy ions significantly contributes to the high relative biological efficiency (RBE) of ion beams around Bragg peak regions. For slow light ions the physical cross section data basis in PARTRAC has been extended to investigate radiation quality effects in the Bragg peak region [5]. The resulting range and LET values agree with ICRU data and SRIM calculations. Preliminary studies regarding the biological endpoints DSB (cluster) and chromosomal aberrations have been performed for selected light ions up to neon. Validation with experimental data as well as further calculations are underway and final results will be presented at the meeting. Mitochondrial alterations have been implicated in radiation-induced cardiovascular effects. To extend the applicability of PARTRAC biophysical tool towards effects on mitochondria, the nuclear DNA and chromatin as the primary target of radiation has been complemented by a model of mitochondrial DNA (mtDNA) to mimic a coronary cell with thousand mitochondria contained in the cytoplasm. Induced mtDNA damage (SSB, DSB) has been scored for 60Co photons and 5 MeV alpha-particle irradiation, assuming alternative radical scavenging capacities within the mitochondria. While direct radiation effects in mtDNA are identical to nuclear DNA, indirect effects in mtDNA are in general larger due to lower scavenging and the lack of DNA-protecting histones. These simulations complement the scarce experimental data on radiation-induced mtDNA damage and help elucidate the relative roles of initial mtDNA versus nuclear DNA damage and of pathways that amplify their respective effects. Ongoing and planned developments of PARTRAC include coupling with a radiation transport code and track-structure based calculations of cell killing for RBE studies on macroscopic scales within a mixed ion field. [1] Friedland, Dingfelder et al. (2011): "Track structures, DNA targets and radiation effects in the biophysical Monte Carlo simulation code PARTRAC", Mutat. Res. 711, 28-40 [2] Friedland et al. (2013): "Track structure based modelling of chromosome aberrations after photon and alpha-particle irradiation", Mutat. Res. 756, 213-223 [3] Schmid, Friedland et al. (2015): "Sub-micrometer 20 MeV protons or 45 MeV lithium spot irradiation enhances yields of dicentric chromosomes due to clustering of DNA double-strand breaks", Mutat. Res. 793, 30-40 [4] Friedland, Schmitt, Kundrat (2015): "Modelling Proton bunches focussed to submicrometre scales: Low-LET Radiation damage in high-LET-like spatial structure", Radiat. Prot. Dosim. 166, 34-37 [5] Schmitt, Friedland, Kundrat, Dingfelder, Ottolenghi (2015): "Cross section scaling for track structure simulations of low-energy ions in liquid water", Radiat. Prot. Dosim. 166, 15-18} Supported by the European Atomic Energy Community's Seventh Framework Programme (FP7/2007-2011) under grant agreement no 249689 "DoReMi" and the German Federal Ministry on Education and Research (KVSF-Projekt "LET-Verbund").
Guzder, S N; Sung, P; Prakash, L; Prakash, S
1998-11-20
Saccharomyces cerevisiae Rad4 and Rad23 proteins are required for the nucleotide excision repair of UV light-damaged DNA. Previous studies have indicated that these two DNA repair proteins are associated in a tight complex, which we refer to as nucleotide excision repair factor 2 (NEF2). In a reconstituted nucleotide excision repair reaction, incision of UV-damaged DNA is dependent on NEF2, indicating a role of NEF2 in an early step of the repair process. NEF2 does not, however, possess an enzymatic activity, and its function in the damage-specific incision reaction has not yet been defined. Here we use a DNA mobility shift assay to demonstrate that NEF2 binds specifically to UV-damaged DNA. Elimination of cyclobutane pyrimidine dimers from the UV-damaged DNA by enzymatic photoreactivation has little effect on the affinity of NEF2 for the DNA, suggesting that NEF2 recognizes the 6-(1, 2)-dihydro-2-oxo-4-pyrimidinyl)-5-methyl-2,4-(1H,3H)-pyrimidinedione photoproducts in the damaged DNA. These results highlight the intricacy of the DNA damage-demarcation reaction during nucleotide excision repair in eukaryotes.
Visualizing the Search for Radiation-damaged DNA Bases in Real Time.
Lee, Andrea J; Wallace, Susan S
2016-11-01
The Base Excision Repair (BER) pathway removes the vast majority of damages produced by ionizing radiation, including the plethora of radiation-damaged purines and pyrimidines. The first enzymes in the BER pathway are DNA glycosylases, which are responsible for finding and removing the damaged base. Although much is known about the biochemistry of DNA glycosylases, how these enzymes locate their specific damage substrates among an excess of undamaged bases has long remained a mystery. Here we describe the use of single molecule fluorescence to observe the bacterial DNA glycosylases, Nth, Fpg and Nei, scanning along undamaged and damaged DNA. We show that all three enzymes randomly diffuse on the DNA molecule and employ a wedge residue to search for and locate damage. The search behavior of the Escherichia coli DNA glycosylases likely provides a paradigm for their homologous mammalian counterparts.
Visualizing the search for radiation-damaged DNA bases in real time
NASA Astrophysics Data System (ADS)
Lee, Andrea J.; Wallace, Susan S.
2016-11-01
The Base Excision Repair (BER) pathway removes the vast majority of damages produced by ionizing radiation, including the plethora of radiation-damaged purines and pyrimidines. The first enzymes in the BER pathway are DNA glycosylases, which are responsible for finding and removing the damaged base. Although much is known about the biochemistry of DNA glycosylases, how these enzymes locate their specific damage substrates among an excess of undamaged bases has long remained a mystery. Here we describe the use of single molecule fluorescence to observe the bacterial DNA glycosylases, Nth, Fpg and Nei, scanning along undamaged and damaged DNA. We show that all three enzymes randomly diffuse on the DNA molecule and employ a wedge residue to search for and locate damage. The search behavior of the Escherichia coli DNA glycosylases likely provides a paradigm for their homologous mammalian counterparts.
DNA Damage in Euonymus japonicus Leaf Cells Caused by Roadside Pollution in Beijing
Li, Tianxin; Zhang, Minjie; Gu, Ke; Herman, Uwizeyimana; Crittenden, John; Lu, Zhongming
2016-01-01
The inhalable particles from vehicle exhaust can cause DNA damage to exposed organisms. Research on DNA damage is primarily focused on the influence of specific pollutants on certain species or the effect of environmental pollution on human beings. To date, little research has quantitatively studied the relationship between roadside pollution and DNA damage. Based on an investigation of the roadside pollution in Beijing, Euonymus japonicus leaves of differing ages grown in heavily-polluted sections were chosen as biomonitors to detect DNA damage using the comet assay technique. The percentage of DNA in the tail and tail moment was chosen as the analysis index based on SPSS data analysis. The roadside samples showed significantly higher levels of DNA damage than non-roadside samples, which increased in older leaves, and the DNA damage to Euonymus japonicus leaf cells was positively correlated with haze-aggravated roadside pollution. The correlation between damage and the Air Quality Index (AQI) are 0.921 (one-year-old leaves), 0.894 (two-year-old leaves), and 0.878 (three-year-old leaves). Over time, the connection between DNA damage and AQI weakened, with the sensitivity coefficient for δyear 1 being larger than δyear 2 and δyear 3. These findings support the suitability and sensitivity of the comet assay for surveying plants for an estimation of DNA damage induced by environmental genotoxic agents. This study might be applied as a preliminary quantitative method for Chinese urban air pollution damage assessment caused by environmental stress. PMID:27455298
Song, Zhangfa; von Figura, Guido; Liu, Yan; Kraus, Johann M.; Torrice, Chad; Dillon, Patric; Rudolph-Watabe, Masami; Ju, Zhenyu; Kestler, Hans A.; Sanoff, Hanna; Rudolph, K. Lenhard
2010-01-01
Summary Cellular aging is characterised by telomere shortening, which can lead to uncapping of chromosome ends (telomere dysfunction) and that activation of DNA damage responses. There is some evidence the DNA damage accumulates during human aging and that lifestyle factors contribute to the accumulation of DNA damage. Recent studies have identified a set of serum markers that are induced by telomere dysfunction and DNA damage and these markers showed an increased expression in blood during human aging. Here, we investigated the influence of lifestyle factors (such as exercise, smoking, body mass) on the aging associated expression of serum markers of DNA damage (CRAMP, EF-1α, Stathmin, n-acetyl-glucosaminidase, and chitinase) in comparison to other described markers of cellular aging (p16INK4a upregulation and telomere shortening) in human peripheral blood. The study shows that lifestyle factors have an age-independent impact on the expression level of biomarkers of DNA damage. Smoking and increased body mass indices were associated with elevated levels of biomarkers of DNA damage independent of the age of the individuals. In contrast, exercise was associated with an age-independent reduction in the expression of biomarkers of DNA damage in human blood. The expression of biomarkers of DNA damage correlated positively with p16INK4a expression and negatively with telomere length in peripheral blood T-lymphocytes. Together, these data provide experimental evidence that both aging and lifestyle impact on the accumulation of DNA damage during human aging. PMID:20560902
Aldehydes with high and low toxicities inactivate cells by damaging distinct cellular targets.
Xie, Ming-Zhang; Shoulkamy, Mahmoud I; Salem, Amir M H; Oba, Shunya; Goda, Mizuki; Nakano, Toshiaki; Ide, Hiroshi
2016-04-01
Aldehydes are genotoxic and cytotoxic molecules and have received considerable attention for their associations with the pathogenesis of various human diseases. In addition, exposure to anthropogenic aldehydes increases human health risks. The general mechanism of aldehyde toxicity involves adduct formation with biomolecules such as DNA and proteins. Although the genotoxic effects of aldehydes such as mutations and chromosomal aberrations are directly related to DNA damage, the role of DNA damage in the cytotoxic effects of aldehydes is poorly understood because concurrent protein damage by aldehydes has similar effects. In this study, we have analysed how saturated and α,β-unsaturated aldehydes exert cytotoxic effects through DNA and protein damage. Interestingly, DNA repair is essential for alleviating the cytotoxic effect of weakly toxic aldehydes such as saturated aldehydes but not highly toxic aldehydes such as long α,β-unsaturated aldehydes. Thus, highly toxic aldehydes inactivate cells exclusively by protein damage. Our data suggest that DNA interstrand crosslinks, but not DNA-protein crosslinks and DNA double-strand breaks, are the critical cytotoxic DNA damage induced by aldehydes. Further, we show that the depletion of intracellular glutathione and the oxidation of thioredoxin 1 partially account for the DNA damage-independent cytotoxicity of aldehydes. On the basis of these findings, we have proposed a mechanistic model of aldehyde cytotoxicity mediated by DNA and protein damage. Copyright © 2016 Elsevier B.V. All rights reserved.
Sykora, Peter; Chiari, Ylenia; Heaton, Andrew; Moreno, Nickolas; Glaberman, Scott; Sobol, Robert W
2018-05-01
DNA damage has been linked to genomic instability and the progressive breakdown of cellular and organismal homeostasis, leading to the onset of disease and reduced longevity. Insults to DNA from endogenous sources include base deamination, base hydrolysis, base alkylation, and metabolism-induced oxidative damage that can lead to single-strand and double-strand DNA breaks. Alternatively, exposure to environmental pollutants, radiation or ultra-violet light, can also contribute to exogenously derived DNA damage. We previously validated a novel, high through-put approach to measure levels of DNA damage in cultured mammalian cells. This new CometChip Platform builds on the classical single cell gel electrophoresis or comet methodology used extensively in environmental toxicology and molecular biology. We asked whether the CometChip Platform could be used to measure DNA damage in samples derived from environmental field studies. To this end, we determined that nucleated erythrocytes from multiple species of turtle could be successfully evaluated in the CometChip Platform to quantify levels of DNA damage. In total, we compared levels of DNA damage in 40 animals from two species: the box turtle (Terrapene carolina) and the red-eared slider (Trachemys scripta elegans). Endogenous levels of DNA damage were identical between the two species, yet we did discover some sex-linked differences and changes in DNA damage accumulation. Based on these results, we confirm that the CometChip Platform allows for the measurement of DNA damage in a large number of samples quickly and accurately, and is particularly adaptable to environmental studies using field-collected samples. Environ. Mol. Mutagen. 59:322-333, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Razo-Aguilera, G; Baez-Reyes, R; Alvarez-González, I; Paniagua-Pérez, R; Madrigal-Bujaidar, E
2011-11-01
By means of the comet assay we demonstrated a strong effect by hydrogen peroxide (HP) and no damage by grapefruit juice (GJ) in human lymphocytes. Cells exposed to HP and treated with three concentrations of GJ (10-90 min) showed an increase of DNA damage by HP over the control level, and a decrease of such damage by GJ. With the comet assay plus formamidopyrimidine-DNA-glycosylase we found the strongest increase of DNA damage by HP over the control level, and the strongest reduction of such damage by GJ. By applying the comet/FISH method we determined 98% of the p53 gene signals in the comet head of control cells along the experiment (10-90 min), in contrast with about 90% signals in the comet tail of cells exposed to HP. Cells treated with both agents showed a significant, concentration/time dependent return of p53 signals to the head, suggesting enhancement of the gene repair. Finally, with the annexin V assay we found an increase in apoptosis and necrosis by HP, and no effect by GJ; when GJ was added to HP treated cells no modification was observed in regard to apoptosis, although a decrease of necrosis was observed. Copyright © 2011 Elsevier Ltd. All rights reserved.
DNA Replication Arrest and DNA Damage Responses Induced by Alkylating Minor Groove Binders
2001-05-01
We are interested in the molecular mechanisms involved in DNA replication arrest by the S phase DNA damage checkpoints. Using in vitro simian virus...40 DNA replication assays, we have found three factors that directly contribute to DNA damage-induced DNA replication arrest: Replication Protein A...trans-acting inhibitors. RPA is the major eukaryotic single-stranded DNA binding protein required for DNA replication , repair and recombination. Upon DNA
Whelan, Donna R.; Bambery, Keith R.; Heraud, Philip; Tobin, Mark J.; Diem, Max; McNaughton, Don; Wood, Bayden R.
2011-01-01
The ability to detect DNA conformation in eukaryotic cells is of paramount importance in understanding how some cells retain functionality in response to environmental stress. It is anticipated that the B to A transition might play a role in resistance to DNA damage such as heat, desiccation and toxic damage. To this end, conformational detail about the molecular structure of DNA has been derived primarily from in vitro experiments on extracted or synthetic DNA. Here, we report that a B- to A-like DNA conformational change can occur in the nuclei of intact cells in response to dehydration. This transition is reversible upon rehydration in air-dried cells. By systematically monitoring the dehydration and rehydration of single and double-stranded DNA, RNA, extracted nuclei and three types of eukaryotic cells including chicken erythrocytes, mammalian lymphocytes and cancerous rodent fibroblasts using Fourier transform infrared (FTIR) spectroscopy, we unequivocally assign the important DNA conformation marker bands within these cells. We also demonstrate that by applying FTIR spectroscopy to hydrated samples, the DNA bands become sharper and more intense. This is anticipated to provide a methodology enabling differentiation of cancerous from non-cancerous cells based on the increased DNA content inherent to dysplastic and neoplastic tissue. PMID:21447564
Sharma, Sonia; Sharma, Sushant; Vig, Adarsh Pal
2016-01-01
The in vitro antimutagenic and DNA protecting potential of organic (methanol, hexane, n-butanol) and aqueous extract/fractions of Parkinsonia aculeata L. (Fabaceae) was investigated by employing Ames assay and DNA nicking assay. DNA damage by hydroxyl radicals was effectively inhibited by all the extract/fractions. A marked antimutagenic effect was observed against 4-Nitro-o-phenylenediamine and sodium azide (direct acting mutagens) and 2-Aminofluorene (indirect acting mutagen) in TA98 and TA100 strains of Salmonella typhimurium. In Ames assay, two different modes of experiments i.e. pre-incubation and co-incubation were performed and it was observed that all the extract/fractions showed better results in the pre-incubation as compared to co- incubation mode. Out of all the extract/fractions tested, n-butanol fraction was found to be the most effective in preventing DNA damage and inhibiting mutagenesis. UHPLC analysis of extract/fractions revealed presence of polyphenols such as gallic acid, catechin, chlorogenic acid, caffeic acid, umbelliferone, coumaric acid, rutin, and ellagic acid etc. DNA protecting and antimutagenic activity of this plant could be attributed to presence of these polyphenols. The results of this study indicate the presence of potent antioxidant factors in Parkinsonia aculeata L, which are being explored further for their mechanism of action.
Sallustio, Benedetta C; Degraaf, Yvette C; Weekley, Josephine S; Burcham, Philip C
2006-05-01
Nonenzymatic modification of proteins by acyl glucuronides is well documented; however, little is known about their potential to damage DNA. We have previously reported that clofibric acid undergoes glucuronidation-dependent bioactivation to DNA-damaging species in cultured mouse hepatocytes. The aim of this study was to investigate the mechanisms underlying such DNA damage, and to screen chemically diverse carboxylic acid drugs for their DNA-damaging potential in glucuronidation proficient murine hepatocytes. Cells were incubated with each aglycone for 18 h, followed by assessment of compound cytotoxicity using the MTT assay and evaluation of DNA damage using the Comet assay. Relative cytotoxic potencies were ketoprofen > diclofenac, benoxaprofen, nafenopin > gemfibrozil, probenecid > bezafibrate > clofibric acid. At a noncytotoxic (0.1 mM) concentration, only benoxaprofen, nafenopin, clofibric acid, and probenecid significantly increased Comet moments (P < 0.05 Kruskal-Wallis). Clofibric acid and probenecid exhibited the greatest DNA-damaging potency, producing significant DNA damage at 0.01 mM concentrations. The two drugs produced maximal increases in Comet moment of 4.51 x and 2.57 x control, respectively. The glucuronidation inhibitor borneol (1 mM) abolished the induction of DNA damage by 0.5 mM concentrations of clofibric acid and probenecid. In an in vitro cell-free system, clofibric acid glucuronide was 10 x more potent than glucuronic acid in causing DNA strand-nicking, although both compounds showed similar rates of autoxidation to generate hydroxyl radicals. In cultured hepatocytes, the glycation inhibitor, aminoguanidine, and the iron chelator, desferrioxamine mesylate, inhibited DNA damage by clofibric acid, whereas the free radical scavengers Trolox and butylated hydroxytoluene, and the superoxide dismutase mimetic bis-3,5-diisopropylsalicylate had no effect. In conclusion, clinically relevant concentrations of two structurally unrelated carboxylic acids, probenecid and clofibric acid, induced DNA damage in isolated hepatocytes via glucuronidation- dependent pathways. These findings suggest acyl glucuronides are able to access and damage nuclear DNA via iron-catalyzed glycation/glycoxidative processes.
Wyatt, Lauren H; Luz, Anthony L; Cao, Xiou; Maurer, Laura L; Blawas, Ashley M; Aballay, Alejandro; Pan, William K Y; Meyer, Joel N
2017-04-01
Mercury toxicity mechanisms have the potential to induce DNA damage and disrupt cellular processes, like mitochondrial function. Proper mitochondrial function is important for cellular bioenergetics and immune signaling and function. Reported impacts of mercury on the nuclear genome (nDNA) are conflicting and inconclusive, and mitochondrial DNA (mtDNA) impacts are relatively unknown. In this study, we assessed genotoxic (mtDNA and nDNA), metabolic, and innate immune impacts of inorganic and organic mercury exposure in Caenorhabditis elegans. Genotoxic outcomes measured included DNA damage, DNA damage repair (nucleotide excision repair, NER; base excision repair, BER), and genomic copy number following MeHg and HgCl 2 exposure alone and in combination with known DNA damage-inducing agents ultraviolet C radiation (UVC) and hydrogen peroxide (H 2 O 2 ), which cause bulky DNA lesions and oxidative DNA damage, respectively. Following exposure to both MeHg and HgCl 2 , low-level DNA damage (∼0.25 lesions/10kb mtDNA and nDNA) was observed. Unexpectedly, a higher MeHg concentration reduced damage in both genomes compared to controls. However, this observation was likely the result of developmental delay. In co-exposure treatments, both mercury compounds increased initial DNA damage (mtDNA and nDNA) in combination with H 2 O 2 exposure, but had no impact in combination with UVC exposure. Mercury exposure both increased and decreased DNA damage removal via BER. DNA repair after H 2 O 2 exposure in mercury-exposed nematodes resulted in damage levels lower than measured in controls. Impacts to NER were not detected. mtDNA copy number was significantly decreased in the MeHg-UVC and MeHg-H 2 O 2 co-exposure treatments. Mercury exposure had metabolic impacts (steady-state ATP levels) that differed between the compounds; HgCl 2 exposure decreased these levels, while MeHg slightly increased levels or had no impact. Both mercury species reduced mRNA levels for immune signaling-related genes, but had mild or no effects on survival on pathogenic bacteria. Overall, mercury exposure disrupted mitochondrial endpoints in a mercury-compound dependent fashion. Copyright © 2017 Elsevier B.V. All rights reserved.
Wyatt, Lauren H.; Luz, Anthony L.; Cao, Xiou; Maurer, Laura L.; Blawas, Ashley M.; Aballay, Alejandro; Pan, William K.; Meyer, Joel N.
2017-01-01
Mercury toxicity mechanisms have the potential to induce DNA damage and disrupt cellular processes, like mitochondrial function. Proper mitochondrial function is important for cellular bioenergetics and immune signaling and function. Impacts of mercury on the nuclear genome (nDNA) are conflicting and inconclusive, and mitochondrial DNA (mtDNA) impacts are relatively unknown. In this study, we assessed genotoxic (mtDNA and nDNA), metabolic, and innate immune impacts of inorganic and organic mercury exposure in Caenorhabditis elegans. Genotoxic outcomes measured included DNA damage, DNA damage repair (nucleotide excision repair, NER; base excision repair, BER), and genomic copy number following MeHg and HgCl2 exposure alone and in combination with known DNA damage-inducing agents ultraviolet C radiation (UVC) and hydrogen peroxide (H2O2), which cause bulky DNA lesions and oxidative DNA damage, respectively. Following exposure to both MeHg and HgCl2, low-level DNA damage (~0.25 lesions/10 kb mtDNA and nDNA) was observed. Unexpectedly, a higher MeHg concentration reduced damage in both genomes compared to controls. However, this observation was likely the result of developmental delay. In co-exposure treatments, both mercury compounds increased initial DNA damage (mtDNA and nDNA) in combination with H2O2 exposure, but had no impact in combination with UVC exposure. Mercury exposure both increased and decreased DNA damage removal via BER. DNA repair after H2O2 exposure in mercury-exposed nematodes resulted in damage levels lower than measured in controls. Impacts to NER were not detected. mtDNA copy number was significantly decreased in the MeHg-UVC and MeHg-H2O2 co-exposure treatments. Mercury exposure had metabolic impacts (steady-state ATP levels) that differed between the compounds; HgCl2 exposure decreased these levels, while MeHg slightly increased levels or had no impact. Both mercury species reduced mRNA levels for immune signaling-related genes, but had mild or no effects on survival on pathogenic bacteria. Overall, mercury exposure disrupted mitochondrial endpoints in a mercury-compound dependent fashion. PMID:28242054
Characterization of UVC-induced DNA damage in bloodstains: forensic implications.
Hall, Ashley; Ballantyne, Jack
2004-09-01
The ability to detect DNA polymorphisms using molecular genetic techniques has revolutionized the forensic analysis of biological evidence. DNA typing now plays a critical role within the criminal justice system, but one of the limiting factors with the technology is that DNA isolated from biological stains recovered from the crime scene is sometimes so damaged as to be intractable to analysis. Potential remedies for damaged DNA are likely to be dependent upon the precise nature of the DNA damage present in any particular sample but, unfortunately, current knowledge of the biochemical nature, and the extent, of such DNA damage in dried biological stains is rudimentary. As a model for DNA damage assessment in biological stains recovered from crime scenes, we have subjected human bloodstains and naked DNA in the hydrated and dehydrated states to varying doses of UVC radiation. It was possible to damage the DNA sufficiently in a bloodstain to cause a standard autosomal short tandem repeat (STR) profile to be lost. However, a detailed analysis of the process, based upon assays developed to detect bipyrimidine photoproducts (BPPPs), single- and double-strand breaks, and DNA-DNA crosslinks, produced some unexpected findings. Contrary to the situation with living tissues or cells in culture, the predominant UVC-induced damage to DNA in bloodstains appears not to be pyrimidine dimers. Although some evidence for the presence of BPPPs and DNA crosslinks was obtained, the major form of UVC damage causing genetic profile loss appeared to be single-strand breaks. It was not possible, however, to preclude the possibility that a combination of damage types was responsible for the profile loss observed. We demonstrate here that a significant measure of protection against UVC-mediated genetic profile loss in dried biological stain material is afforded by the dehydrated state of the DNA and, to a lesser extent, the DNA cellular milieu.
House dust mite-induced asthma causes oxidative damage and DNA double-strand breaks in the lungs.
Chan, Tze Khee; Loh, Xin Yi; Peh, Hong Yong; Tan, W N Felicia; Tan, W S Daniel; Li, Na; Tay, Ian J J; Wong, W S Fred; Engelward, Bevin P
2016-07-01
Asthma is related to airway inflammation and oxidative stress. High levels of reactive oxygen and nitrogen species can induce cytotoxic DNA damage. Nevertheless, little is known about the possible role of allergen-induced DNA damage and DNA repair as modulators of asthma-associated pathology. We sought to study DNA damage and DNA damage responses induced by house dust mite (HDM) in vivo and in vitro. We measured DNA double-strand breaks (DSBs), DNA repair proteins, and apoptosis in an HDM-induced allergic asthma model and in lung samples from asthmatic patients. To study DNA repair, we treated mice with the DSB repair inhibitor NU7441. To study the direct DNA-damaging effect of HDM on human bronchial epithelial cells, we exposed BEAS-2B cells to HDM and measured DNA damage and reactive oxygen species levels. HDM challenge increased lung levels of oxidative damage to proteins (3-nitrotyrosine), lipids (8-isoprostane), and nucleic acid (8-oxoguanine). Immunohistochemical evidence for HDM-induced DNA DSBs was revealed by increased levels of the DSB marker γ Histone 2AX (H2AX) foci in bronchial epithelium. BEAS-2B cells exposed to HDM showed enhanced DNA damage, as measured by using the comet assay and γH2AX staining. In lung tissue from human patients with asthma, we observed increased levels of DNA repair proteins and apoptosis, as shown by caspase-3 cleavage, caspase-activated DNase levels, and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling staining. Notably, NU7441 augmented DNA damage and cytokine production in the bronchial epithelium and apoptosis in the allergic airway, implicating DSBs as an underlying driver of asthma pathophysiology. This work calls attention to reactive oxygen and nitrogen species and HDM-induced cytotoxicity and to a potential role for DNA repair as a modulator of asthma-associated pathophysiology. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
1993-04-29
corresponding to ACIa-PADPRP truncated by 44 amino acids, was identified below the 113 kud cndogenous murine PADPRP in clones 42 and 49 but not in the...strand breaks. A third avenue, originally suggested to be addressed in Aim I of the application (1992) involved the swapping of the DNA binding zinc...subsequent to DNA damage or perhaps during DNA replication and such experiments will be underway during the second and third of the granting period. C
Huang, Shar-yin N.; Murai, Junko; Dalla Rosa, Ilaria; Dexheimer, Thomas S.; Naumova, Alena; Gmeiner, William H.; Pommier, Yves
2013-01-01
Chain-terminating nucleoside analogs (CTNAs) that cause stalling or premature termination of DNA replication forks are widely used as anticancer and antiviral drugs. However, it is not well understood how cells repair the DNA damage induced by these drugs. Here, we reveal the importance of tyrosyl–DNA phosphodiesterase 1 (TDP1) in the repair of nuclear and mitochondrial DNA damage induced by CTNAs. On investigating the effects of four CTNAs—acyclovir (ACV), cytarabine (Ara-C), zidovudine (AZT) and zalcitabine (ddC)—we show that TDP1 is capable of removing the covalently linked corresponding CTNAs from DNA 3′-ends. We also show that Tdp1−/− cells are hypersensitive and accumulate more DNA damage when treated with ACV and Ara-C, implicating TDP1 in repairing CTNA-induced DNA damage. As AZT and ddC are known to cause mitochondrial dysfunction, we examined whether TDP1 repairs the mitochondrial DNA damage they induced. We find that AZT and ddC treatment leads to greater depletion of mitochondrial DNA in Tdp1−/− cells. Thus, TDP1 seems to be critical for repairing nuclear and mitochondrial DNA damage caused by CTNAs. PMID:23775789
Maréchal, Alexandre; Li, Ju-Mei; Ji, Xiao Ye; Wu, Ching-Shyi; Yazinski, Stephanie A; Nguyen, Hai Dang; Liu, Shizhou; Jiménez, Amanda E; Jin, Jianping; Zou, Lee
2014-01-23
PRP19 is a ubiquitin ligase involved in pre-mRNA splicing and the DNA damage response (DDR). Although the role for PRP19 in splicing is well characterized, its role in the DDR remains elusive. Through a proteomic screen for proteins that interact with RPA-coated single-stranded DNA (RPA-ssDNA), we identified PRP19 as a sensor of DNA damage. PRP19 directly binds RPA and localizes to DNA damage sites via RPA, promoting RPA ubiquitylation in a DNA-damage-induced manner. PRP19 facilitates the accumulation of ATRIP, the regulatory partner of the ataxia telangiectasia mutated and Rad3-related (ATR) kinase, at DNA damage sites. Depletion of PRP19 compromised the phosphorylation of ATR substrates, recovery of stalled replication forks, and progression of replication forks on damaged DNA. Importantly, PRP19 mutants that cannot bind RPA or function as an E3 ligase failed to support the ATR response, revealing that PRP19 drives ATR activation by acting as an RPA-ssDNA-sensing ubiquitin ligase during the DDR. Copyright © 2014 Elsevier Inc. All rights reserved.
Casorelli, Ida; Bossa, Cecilia; Bignami, Margherita
2012-01-01
Most antitumour therapies damage tumour cell DNA either directly or indirectly. Without repair, damage can result in genetic instability and eventually cancer. The strong association between the lack of DNA damage repair, mutations and cancer is dramatically demonstrated by a number of cancer-prone human syndromes, such as xeroderma pigmentosum, ataxia-telangiectasia and Fanconi anemia. Notably, DNA damage responses, and particularly DNA repair, influence the outcome of therapy. Because DNA repair normally excises lethal DNA lesions, it is intuitive that efficient repair will contribute to intrinsic drug resistance. Unexpectedly, a paradoxical relationship between DNA mismatch repair and drug sensitivity has been revealed by model studies in cell lines. This suggests that connections between DNA repair mechanism efficiency and tumour therapy might be more complex. Here, we review the evidence for the contribution of carcinogenic properties of several drugs as well as of alterations in specific mechanisms involved in drug-induced DNA damage response and repair in the pathogenesis of therapy-related cancers. PMID:23066388
NASA Technical Reports Server (NTRS)
Sutherland, Betsy M.; Georgakilas, Alexandros G.; Bennett, Paula V.; Laval, Jacques; Sutherland, John C.; Gewirtz, A. M. (Principal Investigator)
2003-01-01
Assessing DNA damage induction, repair and consequences of such damages requires measurement of specific DNA lesions by methods that are independent of biological responses to such lesions. Lesions affecting one DNA strand (altered bases, abasic sites, single strand breaks (SSB)) as well as damages affecting both strands (clustered damages, double strand breaks) can be quantified by direct measurement of DNA using gel electrophoresis, gel imaging and number average length analysis. Damage frequencies as low as a few sites per gigabase pair (10(9)bp) can be quantified by this approach in about 50ng of non-radioactive DNA, and single molecule methods may allow such measurements in DNA from single cells. This review presents the theoretical basis, biochemical requirements and practical aspects of this approach, and shows examples of their applications in identification and quantitation of complex clustered damages.
Hamperl, Stephan; Cimprich, Karlene A.
2014-01-01
Accurate DNA replication and DNA repair are crucial for the maintenance of genome stability, and it is generally accepted that failure of these processes is a major source of DNA damage in cells. Intriguingly, recent evidence suggests that DNA damage is more likely to occur at genomic loci with high transcriptional activity. Furthermore, loss of certain RNA processing factors in eukaryotic cells is associated with increased formation of co-transcriptional RNA:DNA hybrid structures known as R-loops, resulting in double-strand breaks (DSBs) and DNA damage. However, the molecular mechanisms by which R-loop structures ultimately lead to DNA breaks and genome instability is not well understood. In this review, we summarize the current knowledge about the formation, recognition and processing of RNA:DNA hybrids, and discuss possible mechanisms by which these structures contribute to DNA damage and genome instability in the cell. PMID:24746923
Direct Detection and Sequencing of Damaged DNA Bases
2011-01-01
Products of various forms of DNA damage have been implicated in a variety of important biological processes, such as aging, neurodegenerative diseases, and cancer. Therefore, there exists great interest to develop methods for interrogating damaged DNA in the context of sequencing. Here, we demonstrate that single-molecule, real-time (SMRT®) DNA sequencing can directly detect damaged DNA bases in the DNA template - as a by-product of the sequencing method - through an analysis of the DNA polymerase kinetics that are altered by the presence of a modified base. We demonstrate the sequencing of several DNA templates containing products of DNA damage, including 8-oxoguanine, 8-oxoadenine, O6-methylguanine, 1-methyladenine, O4-methylthymine, 5-hydroxycytosine, 5-hydroxyuracil, 5-hydroxymethyluracil, or thymine dimers, and show that these base modifications can be readily detected with single-modification resolution and DNA strand specificity. We characterize the distinct kinetic signatures generated by these DNA base modifications. PMID:22185597
Direct detection and sequencing of damaged DNA bases.
Clark, Tyson A; Spittle, Kristi E; Turner, Stephen W; Korlach, Jonas
2011-12-20
Products of various forms of DNA damage have been implicated in a variety of important biological processes, such as aging, neurodegenerative diseases, and cancer. Therefore, there exists great interest to develop methods for interrogating damaged DNA in the context of sequencing. Here, we demonstrate that single-molecule, real-time (SMRT®) DNA sequencing can directly detect damaged DNA bases in the DNA template - as a by-product of the sequencing method - through an analysis of the DNA polymerase kinetics that are altered by the presence of a modified base. We demonstrate the sequencing of several DNA templates containing products of DNA damage, including 8-oxoguanine, 8-oxoadenine, O6-methylguanine, 1-methyladenine, O4-methylthymine, 5-hydroxycytosine, 5-hydroxyuracil, 5-hydroxymethyluracil, or thymine dimers, and show that these base modifications can be readily detected with single-modification resolution and DNA strand specificity. We characterize the distinct kinetic signatures generated by these DNA base modifications.
DNA damage and polyploidization.
Chow, Jeremy; Poon, Randy Y C
2010-01-01
A growing body of evidence indicates that polyploidization triggers chromosomal instability and contributes to tumorigenesis. DNA damage is increasingly being recognized for its roles in promoting polyploidization. Although elegant mechanisms known as the DNA damage checkpoints are responsible for halting the cell cycle after DNA damage, agents that uncouple the checkpoints can induce unscheduled entry into mitosis. Likewise, defects of the checkpoints in several disorders permit mitotic entry even in the presence of DNA damage. Forcing cells with damaged DNA into mitosis causes severe chromosome segregation defects, including lagging chromosomes, chromosomal fragments and chromosomal bridges. The presence of these lesions in the cleavage plane is believed to abort cytokinesis. It is postulated that if cytokinesis failure is coupled with defects of the p53-dependent postmitotic checkpoint pathway, cells can enter S phase and become polyploids. Progress in the past several years has unraveled some of the underlying principles of these pathways and underscored the important role of DNA damage in polyploidization. Furthermore, polyploidization per se may also be an important determinant of sensitivity to DNA damage, thereby may offer an opportunity for novel therapies.
Entropy in DNA Double-Strand Break, Detection and Signaling
NASA Astrophysics Data System (ADS)
Zhang, Yang; Schindler, Christina; Heermann, Dieter
2014-03-01
In biology, the term entropy is often understood as a measure of disorder - a restrictive interpretation that can even be misleading. Recently it has become clearer and clearer that entropy, contrary to conventional wisdom, can help to order and guide biological processes in living cells. DNA double-strand breaks (DSBs) are among the most dangerous lesions and efficient damage detection and repair is essential for organism viability. However, what remains unknown is the precise mechanism of targeting the site of damage within billions of intact nucleotides and a crowded nuclear environment, a process which is often referred to as recruitment or signaling. Here we show that the change in entropy associated with inflicting a DSB facilitates the recruitment of damage sensor proteins. By means of computational modeling we found that higher mobility and local chromatin structure accelerate protein association at DSB ends. We compared the effect of different chromatin architectures on protein dynamics and concentrations in the vicinity of DSBs, and related these results to experiments on repair in heterochromatin. Our results demonstrate how entropy contributes to a more efficient damage detection. We identify entropy as the physical basis for DNA double-strand break signaling.
Detection of DNA damage by using hairpin molecular beacon probes and graphene oxide.
Zhou, Jie; Lu, Qian; Tong, Ying; Wei, Wei; Liu, Songqin
2012-09-15
A hairpin molecular beacon tagged with carboxyfluorescein in combination with graphene oxide as a quencher reagent was used to detect the DNA damage by chemical reagents. The fluorescence of molecular beacon was quenched sharply by graphene oxide; while in the presence of its complementary DNA the quenching efficiency decreased because their hybridization prevented the strong adsorbability of molecular beacon on graphene oxide. If the complementary DNA was damaged by a chemical reagent and could not form intact duplex structure with molecular beacon, more molecular beacon would adsorb on graphene oxide increasing the quenching efficiency. Thus, damaged DNA could be detected based on different quenching efficiencies afforded by damaged and intact complementary DNA. The damage effects of chlorpyrifos-methyl and three metabolites of styrene such as mandelieaeids, phenylglyoxylieaeids and epoxystyrene on DNA were studied as models. The method for detection of DNA damage was reliable, rapid and simple compared to the biological methods. Copyright © 2012 Elsevier B.V. All rights reserved.
Repair of Clustered Damage and DNA Polymerase Iota.
Belousova, E A; Lavrik, O I
2015-08-01
Multiple DNA lesions occurring within one or two turns of the DNA helix known as clustered damage are a source of double-stranded DNA breaks, which represent a serious threat to the cells. Repair of clustered lesions is accomplished in several steps. If a clustered lesion contains oxidized bases, an individual DNA lesion is repaired by the base excision repair (BER) mechanism involving a specialized DNA polymerase after excising DNA damage. Here, we investigated DNA synthesis catalyzed by DNA polymerase iota using damaged DNA templates. Two types of DNA substrates were used as model DNAs: partial DNA duplexes containing breaks of different length, and DNA duplexes containing 5-formyluracil (5-foU) and uracil as a precursor of apurinic/apyrimidinic sites (AP) in opposite DNA strands. For the first time, we showed that DNA polymerase iota is able to catalyze DNA synthesis using partial DNA duplexes having breaks of different length as substrates. In addition, we found that DNA polymerase iota could catalyze DNA synthesis during repair of clustered damage via the BER system by using both undamaged and 5-foU-containing templates. We found that hPCNA (human proliferating cell nuclear antigen) increased efficacy of DNA synthesis catalyzed by DNA polymerase iota.
Scherzad, Agmal; Meyer, Till; Kleinsasser, Norbert
2017-01-01
Background: Zinc oxide nanoparticles (ZnO NPs) are among the most frequently applied nanomaterials in consumer products. Evidence exists regarding the cytotoxic effects of ZnO NPs in mammalian cells; however, knowledge about the potential genotoxicity of ZnO NPs is rare, and results presented in the current literature are inconsistent. Objectives: The aim of this review is to summarize the existing data regarding the DNA damage that ZnO NPs induce, and focus on the possible molecular mechanisms underlying genotoxic events. Methods: Electronic literature databases were systematically searched for studies that report on the genotoxicity of ZnO NPs. Results: Several methods and different endpoints demonstrate the genotoxic potential of ZnO NPs. Most publications describe in vitro assessments of the oxidative DNA damage triggered by dissoluted Zn2+ ions. Most genotoxicological investigations of ZnO NPs address acute exposure situations. Conclusion: Existing evidence indicates that ZnO NPs possibly have the potential to damage DNA. However, there is a lack of long-term exposure experiments that clarify the intracellular bioaccumulation of ZnO NPs and the possible mechanisms of DNA repair and cell survival. PMID:29240707
In silico nanodosimetry: new insights into nontargeted biological responses to radiation.
Kuncic, Zdenka; Byrne, Hilary L; McNamara, Aimee L; Guatelli, Susanna; Domanova, Westa; Incerti, Sébastien
2012-01-01
The long-held view that radiation-induced biological damage must be initiated in the cell nucleus, either on or near DNA itself, is being confronted by mounting evidence to suggest otherwise. While the efficacy of cell death may be determined by radiation damage to nuclear DNA, a plethora of less deterministic biological responses has been observed when DNA is not targeted. These so-called nontargeted responses cannot be understood in the framework of DNA-centric radiobiological models; what is needed are new physically motivated models that address the damage-sensing signalling pathways triggered by the production of reactive free radicals. To this end, we have conducted a series of in silico experiments aimed at elucidating the underlying physical processes responsible for nontargeted biological responses to radiation. Our simulation studies implement new results on very low-energy electromagnetic interactions in liquid water (applicable down to nanoscales) and we also consider a realistic simulation of extranuclear microbeam irradiation of a cell. Our results support the idea that organelles with important functional roles, such as mitochondria and lysosomes, as well as membranes, are viable targets for ionizations and excitations, and their chemical composition and density are critical to determining the free radical yield and ensuing biological responses.
DNA-damage response during mitosis induces whole-chromosome missegregation.
Bakhoum, Samuel F; Kabeche, Lilian; Murnane, John P; Zaki, Bassem I; Compton, Duane A
2014-11-01
Many cancers display both structural (s-CIN) and numerical (w-CIN) chromosomal instabilities. Defective chromosome segregation during mitosis has been shown to cause DNA damage that induces structural rearrangements of chromosomes (s-CIN). In contrast, whether DNA damage can disrupt mitotic processes to generate whole chromosomal instability (w-CIN) is unknown. Here, we show that activation of the DNA-damage response (DDR) during mitosis selectively stabilizes kinetochore-microtubule (k-MT) attachments to chromosomes through Aurora-A and PLK1 kinases, thereby increasing the frequency of lagging chromosomes during anaphase. Inhibition of DDR proteins, ATM or CHK2, abolishes the effect of DNA damage on k-MTs and chromosome segregation, whereas activation of the DDR in the absence of DNA damage is sufficient to induce chromosome segregation errors. Finally, inhibiting the DDR during mitosis in cancer cells with persistent DNA damage suppresses inherent chromosome segregation defects. Thus, the DDR during mitosis inappropriately stabilizes k-MTs, creating a link between s-CIN and w-CIN. The genome-protective role of the DDR depends on its ability to delay cell division until damaged DNA can be fully repaired. Here, we show that when DNA damage is induced during mitosis, the DDR unexpectedly induces errors in the segregation of entire chromosomes, thus linking structural and numerical chromosomal instabilities. ©2014 American Association for Cancer Research.
Amphetamines promote mitochondrial dysfunction and DNA damage in pulmonary hypertension
Chen, Pin-I; Cao, Aiqin; Miyagawa, Kazuya; Tojais, Nancy F.; Hennigs, Jan K.; Li, Caiyun G.; Sweeney, Nathaly M.; Inglis, Audrey S.; Wang, Lingli; Li, Dan; Ye, Matthew; Feldman, Brian J.
2017-01-01
Amphetamine (AMPH) or methamphetamine (METH) abuse can cause oxidative damage and is a risk factor for diseases including pulmonary arterial hypertension (PAH). Pulmonary artery endothelial cells (PAECs) from AMPH-associated-PAH patients show DNA damage as judged by γH2AX foci and DNA comet tails. We therefore hypothesized that AMPH induces DNA damage and vascular pathology by interfering with normal adaptation to an environmental perturbation causing oxidative stress. Consistent with this, we found that AMPH alone does not cause DNA damage in normoxic PAECs, but greatly amplifies DNA damage in hypoxic PAECs. The mechanism involves AMPH activation of protein phosphatase 2A, which potentiates inhibition of Akt. This increases sirtuin 1, causing deacetylation and degradation of HIF1α, thereby impairing its transcriptional activity, resulting in a reduction in pyruvate dehydrogenase kinase 1 and impaired cytochrome c oxidase 4 isoform switch. Mitochondrial oxidative phosphorylation is inappropriately enhanced and, as a result of impaired electron transport and mitochondrial ROS increase, caspase-3 is activated and DNA damage is induced. In mice given binge doses of METH followed by hypoxia, HIF1α is suppressed and pulmonary artery DNA damage foci are associated with worse pulmonary vascular remodeling. Thus, chronic AMPH/METH can induce DNA damage associated with vascular disease by subverting the adaptive responses to oxidative stress. PMID:28138562
Lymphocyte DNA damage and oxidative stress in patients with iron deficiency anemia.
Aslan, Mehmet; Horoz, Mehmet; Kocyigit, Abdurrahim; Ozgonül, Saadet; Celik, Hakim; Celik, Metin; Erel, Ozcan
2006-10-10
Oxidant stress has been shown to play an important role in the pathogenesis of iron deficiency anemia. The aim of this study was to investigate the association between lymphocyte DNA damage, total antioxidant capacity and the degree of anemia in patients with iron deficiency anemia. Twenty-two female with iron deficiency anemia and 22 healthy females were enrolled in the study. Peripheral DNA damage was assessed using alkaline comet assay and plasma total antioxidant capacity was determined using an automated measurement method. Lymphocyte DNA damage of patients with iron deficiency anemia was significantly higher than controls (p<0.05), while total antioxidant capacity was significantly lower (p<0.001). While there was a positive correlation between total antioxidant capacity and hemoglobin levels (r=0.706, p<0.001), both total antioxidant capacity and hemoglobin levels were negatively correlated with DNA damage (r=-0.330, p<0.05 and r=-0.323, p<0.05, respectively). In conclusion, both oxidative stress and DNA damage are increased in IDA patients. Increased oxidative stress seems as an important factor that inducing DNA damage in those IDA patients. The relationships of oxidative stress and DNA damage with the severity of anemia suggest that both oxidative stress and DNA damage may, in part, have a role in the pathogenesis of IDA.
RNF8- and Ube2S-Dependent Ubiquitin Lysine 11-Linkage Modification in Response to DNA Damage.
Paul, Atanu; Wang, Bin
2017-05-18
Ubiquitin modification of proteins plays pivotal roles in the cellular response to DNA damage. Given the complexity of ubiquitin conjugation due to the formation of poly-conjugates of different linkages, functional roles of linkage-specific ubiquitin modification at DNA damage sites are largely unclear. We identify that Lys11-linkage ubiquitin modification occurs at DNA damage sites in an ATM-dependent manner, and ubiquitin-modifying enzymes, including Ube2S E2-conjugating enzyme and RNF8 E3 ligase, are responsible for the assembly of Lys11-linkage conjugates on damaged chromatin, including histone H2A/H2AX. We show that RNF8- and Ube2S-dependent Lys11-linkage ubiquitin conjugation plays an important role in regulating DNA damage-induced transcriptional silencing, distinct from the role of Lys63-linkage ubiquitin in the recruitment of DNA damage repair proteins 53BP1 and BRCA1. Thus, our study highlights the importance of linkage-specific ubiquitination at DNA damage sites, and it reveals that Lys11-linkage ubiquitin modification plays a crucial role in the DNA damage response. Copyright © 2017 Elsevier Inc. All rights reserved.
Garaj-Vrhovac, Vera; Gajski, Goran; Trosić, Ivancica; Pavicić, Ivan
2009-05-17
The aim of this study was to assess whether microwave-induced DNA damage is basal or it is also generated through reactive oxygen species (ROS) formation. After having irradiated Wistar rats with 915MHz microwave radiation, we assessed different DNA alterations in peripheral leukocytes using standard and formamidopyrimidine DNA-glycosylase (Fpg)-modified comet assay. The first is a sensitive tool for detecting primary DNA damage, and the second is much more specific for detecting oxidative damage. The animals were irradiated for 1h a day for 2 weeks at a field power density of 2.4W/m(2), and the whole-body average specific absorption rate (SAR) of 0.6W/kg. Both the standard and the Fpg-modified comet assay detected increased DNA damage in blood leukocytes of the exposed rats. The significant increase in Fpg-detected DNA damage in the exposed rats suggests that oxidative stress is likely to be responsible. DNA damage detected by the standard comet assay indicates that some other mechanisms may also be involved. In addition, both methods served proved sensitive enough to measure basal and oxidative DNA damage after long-term exposure to 915MHz microwave radiation in vivo.
Mishra, Manish; Lillvis, John; Seyoum, Berhane; Kowluru, Renu A.
2016-01-01
Purpose In the development of diabetic retinopathy, retinal mitochondria become dysfunctional, and mitochondrial DNA (mtDNA) is damaged. Because retinopathy is a progressive disease, and circulating glucose levels are high in diabetes, our aim was to investigate if peripheral blood mtDNA damage can serve as a potential biomarker of diabetic retinopathy. Methods Peripheral blood mtDNA damage was investigated by extended-length PCR in rats and mice, diabetic for 10 to 12 months (streptozotocin-induced, type 1 model), and in 12- and 40-week-old Zucker diabetic fatty rats (ZDF, type 2). Mitochondrial copy number (in gDNA) and transcription (in cDNA) were quantified by qPCR. Similar parameters were measured in blood from diabetic patients with/without retinopathy. Results Peripheral blood from diabetic rodents had significantly increased mtDNA damage and decreased copy numbers and transcription. Lipoic acid administration in diabetic rats, or Sod2 overexpression or MMP-9 knockdown in mice, the therapies that prevent diabetic retinopathy, also ameliorated blood mtDNA damage and restored copy numbers and transcription. Although blood from 40-week-old ZDF rats had significant mtDNA damage, 12-week-old rats had normal mtDNA. Diabetic patients with retinopathy had increased blood mtDNA damage, and decreased transcription and copy numbers compared with diabetic patients without retinopathy and nondiabetic individuals. Conclusions Type 1 diabetic rodents with oxidative stress modulated by pharmacologic/genetic means, and type 2 animal model and patients with/without diabetic retinopathy, demonstrate a strong relation between peripheral blood mtDNA damage and diabetic retinopathy, and suggest the possibility of use of peripheral blood mtDNA as a noninvasive biomarker of diabetic retinopathy. PMID:27494345
Bhute, Vijesh J.; Palecek, Sean P.
2015-01-01
Genomic instability is one of the hallmarks of cancer. Several chemotherapeutic drugs and radiotherapy induce DNA damage to prevent cancer cell replication. Cells in turn activate different DNA damage response (DDR) pathways to either repair the damage or induce cell death. These DDR pathways also elicit metabolic alterations which can play a significant role in the proper functioning of the cells. The understanding of these metabolic effects resulting from different types of DNA damage and repair mechanisms is currently lacking. In this study, we used NMR metabolomics to identify metabolic pathways which are altered in response to different DNA damaging agents. By comparing the metabolic responses in MCF-7 cells, we identified the activation of poly (ADP-ribose) polymerase (PARP) in methyl methanesulfonate (MMS)-induced DNA damage. PARP activation led to a significant depletion of NAD+. PARP inhibition using veliparib (ABT-888) was able to successfully restore the NAD+ levels in MMS-treated cells. In addition, double strand break induction by MMS and veliparib exhibited similar metabolic responses as zeocin, suggesting an application of metabolomics to classify the types of DNA damage responses. This prediction was validated by studying the metabolic responses elicited by radiation. Our findings indicate that cancer cell metabolic responses depend on the type of DNA damage responses and can also be used to classify the type of DNA damage. PMID:26478723
Ionizing radiation (IR) is a commonly employed cancer treatment that kills cancer cells by damaging their DNA. While the DNA damage response (DDR) pathway may be key to determining tumor responses, radiochemical damage due to IR can target the patients’ healthy dividing cells, leading to the formation of secondary hematologic and solid tumors after DNA-damaging therapy.
Ding, Wei; Bishop, Michelle E.; Lyn-Cook, Lascelles E.; Davis, Kelly J.; Manjanatha, Mugimane G.
2016-01-01
Unrepaired DNA damage can lead to genetic instability, which in turn may enhance cancer development. Therefore, identifying potential DNA damaging agents is important for protecting public health. The in vivo alkaline comet assay, which detects DNA damage as strand breaks, is especially relevant for assessing the genotoxic hazards of xenobiotics, as its responses reflect the in vivo absorption, tissue distribution, metabolism and excretion (ADME) of chemicals, as well as DNA repair process. Compared to other in vivo DNA damage assays, the assay is rapid, sensitive, visual and inexpensive, and, by converting oxidative DNA damage into strand breaks using specific repair enzymes, the assay can measure oxidative DNA damage in an efficient and relatively artifact-free manner. Measurement of DNA damage with the comet assay can be performed using both acute and subchronic toxicology study designs, and by integrating the comet assay with other toxicological assessments, the assay addresses animal welfare requirements by making maximum use of animal resources. Another major advantage of the assays is that they only require a small amount of cells, and the cells do not have to be derived from proliferating cell populations. The assays also can be performed with a variety of human samples obtained from clinically or occupationally exposed individuals. PMID:27166647
Ding, Wei; Bishop, Michelle E; Lyn-Cook, Lascelles E; Davis, Kelly J; Manjanatha, Mugimane G
2016-05-04
Unrepaired DNA damage can lead to genetic instability, which in turn may enhance cancer development. Therefore, identifying potential DNA damaging agents is important for protecting public health. The in vivo alkaline comet assay, which detects DNA damage as strand breaks, is especially relevant for assessing the genotoxic hazards of xenobiotics, as its responses reflect the in vivo absorption, tissue distribution, metabolism and excretion (ADME) of chemicals, as well as DNA repair process. Compared to other in vivo DNA damage assays, the assay is rapid, sensitive, visual and inexpensive, and, by converting oxidative DNA damage into strand breaks using specific repair enzymes, the assay can measure oxidative DNA damage in an efficient and relatively artifact-free manner. Measurement of DNA damage with the comet assay can be performed using both acute and subchronic toxicology study designs, and by integrating the comet assay with other toxicological assessments, the assay addresses animal welfare requirements by making maximum use of animal resources. Another major advantage of the assays is that they only require a small amount of cells, and the cells do not have to be derived from proliferating cell populations. The assays also can be performed with a variety of human samples obtained from clinically or occupationally exposed individuals.
Colorimetric detection of DNA damage by using hemin-graphene nanocomposites
NASA Astrophysics Data System (ADS)
Wei, W.; Zhang, D. M.; Yin, L. H.; Pu, Y. P.; Liu, S. Q.
2013-04-01
A colorimetric method for detection of DNA damage was developed by using hemin-graphene nanosheets (H-GNs). H-GNs were skillfully synthesized by adsorping of hemin on graphene through π-π interactions. The as-prepared H-GNs possessed both the ability of graphene to differentiate the damage DNA from intact DNA and the catalytic action of hemin. The damaged DNA made H-GNs coagulated to different degrees from the intact DNA because there were different amount of negative charge exposed on their surface, which made a great impact on the solubility of H-GNs. As a result, the corresponding centrifugal supernatant of H-GNs solution showed different color in the presence of 3,3',5,5'-tetramethylbenzidine (TMB) and H2O2, which could be discriminated by naked eyes or by ultraviolet (UV)-visible spectrometer. Based on this, the damaged effects of styrene oxide (SO), NaAsO2 and UV radiation on DNA were studied. Results showed that SO exerted most serious damage effect on DNA although all of them damaged DNA seriously. The new method for detection of DNA damage showed good prospect in the evaluation of genotoxicity of new compounds, the maximum limit of pesticide residue, food additives, and so on, which is important in the fields of food science, pharmaceutical science and pesticide science.
DNA Damage, DNA Repair, Aging, and Neurodegeneration
Maynard, Scott; Fang, Evandro Fei; Scheibye-Knudsen, Morten; Croteau, Deborah L.; Bohr, Vilhelm A.
2015-01-01
Aging in mammals is accompanied by a progressive atrophy of tissues and organs, and stochastic damage accumulation to the macromolecules DNA, RNA, proteins, and lipids. The sequence of the human genome represents our genetic blueprint, and accumulating evidence suggests that loss of genomic maintenance may causally contribute to aging. Distinct evidence for a role of imperfect DNA repair in aging is that several premature aging syndromes have underlying genetic DNA repair defects. Accumulation of DNA damage may be particularly prevalent in the central nervous system owing to the low DNA repair capacity in postmitotic brain tissue. It is generally believed that the cumulative effects of the deleterious changes that occur in aging, mostly after the reproductive phase, contribute to species-specific rates of aging. In addition to nuclear DNA damage contributions to aging, there is also abundant evidence for a causative link between mitochondrial DNA damage and the major phenotypes associated with aging. Understanding the mechanistic basis for the association of DNA damage and DNA repair with aging and age-related diseases, such as neurodegeneration, would give insight into contravening age-related diseases and promoting a healthy life span. PMID:26385091
Deshmukh, Pravin Suryakantrao; Megha, Kanu; Banerjee, Basu Dev; Ahmed, Rafat Sultana; Chandna, Sudhir; Abegaonkar, Mahesh Pandurang; Tripathi, Ashok Kumar
2013-01-01
Background: Non-ionizing radiofrequency radiation has been increasingly used in industry, commerce, medicine and especially in mobile phone technology and has become a matter of serious concern in present time. Objective: The present study was designed to investigate the possible deoxyribonucleic acid (DNA) damaging effects of low-level microwave radiation in brain of Fischer rats. Materials and Methods: Experiments were performed on male Fischer rats exposed to microwave radiation for 30 days at three different frequencies: 900, 1800 and 2450 MHz. Animals were divided into 4 groups: Group I (Sham exposed): Animals not exposed to microwave radiation but kept under same conditions as that of other groups, Group II: Animals exposed to microwave radiation at frequency 900 MHz at specific absorption rate (SAR) 5.953 × 10−4 W/kg, Group III: Animals exposed to 1800 MHz at SAR 5.835 × 10−4 W/kg and Group IV: Animals exposed to 2450 MHz at SAR 6.672 × 10−4 W/kg. At the end of the exposure period animals were sacrificed immediately and DNA damage in brain tissue was assessed using alkaline comet assay. Results: In the present study, we demonstrated DNA damaging effects of low level microwave radiation in brain. Conclusion: We concluded that low SAR microwave radiation exposure at these frequencies may induce DNA strand breaks in brain tissue. PMID:23833433
The DNA damage response during mitosis.
Heijink, Anne Margriet; Krajewska, Małgorzata; van Vugt, Marcel A T M
2013-10-01
Cells are equipped with a cell-intrinsic signaling network called the DNA damage response (DDR). This signaling network recognizes DNA lesions and initiates various downstream pathways to coordinate a cell cycle arrest with the repair of the damaged DNA. Alternatively, the DDR can mediate clearance of affected cells that are beyond repair through apoptosis or senescence. The DDR can be activated in response to DNA damage throughout the cell cycle, although the extent of DDR signaling is different in each cell cycle phase. Especially in response to DNA double strand breaks, only a very marginal response was observed during mitosis. Early on it was recognized that cells which are irradiated during mitosis continued division without repairing broken chromosomes. Although these initial observations indicated diminished DNA repair and lack of an acute DNA damage-induced cell cycle arrest, insight into the mechanistic re-wiring of DDR signaling during mitosis was only recently provided. Different mechanisms appear to be at play to inactivate specific signaling axes of the DDR network in mitosis. Importantly, mitotic cells not simply inactivate the entire DDR, but appear to mark their DNA damage for repair after mitotic exit. Since the treatment of cancer frequently involves agents that induce DNA damage as well as agents that block mitotic progression, it is clinically relevant to obtain a better understanding of how cancer cells deal with DNA damage during interphase versus mitosis. In this review, the molecular details concerning DDR signaling during mitosis as well as the consequences of encountering DNA damage during mitosis for cellular fate are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.
DNA damage in an animal model of maple syrup urine disease.
Scaini, Giselli; Jeremias, Isabela C; Morais, Meline O S; Borges, Gabriela D; Munhoz, Bruna P; Leffa, Daniela D; Andrade, Vanessa M; Schuck, Patrícia F; Ferreira, Gustavo C; Streck, Emilio L
2012-06-01
Maple syrup urine disease is an inborn error of metabolism caused by a severe deficiency of the branched chain alpha-ketoacid dehydrogenase complex. Neurological dysfunction is a common finding in patients with maple syrup urine disease. However, the mechanisms underlying the neuropathology of brain damage in this disorder are poorly understood. In this study, we investigated whether acute or chronic administration of a branched chain amino acid pool (leucine, isoleucine and valine) causes transient DNA damage, as determined by the alkaline comet assay, in the brain and blood of rats during development and whether antioxidant treatment prevented the alterations induced by branched chain amino acids. Our results showed that the acute administration of branched chain amino acids increased the DNA damage frequency and damage index in the hippocampus. However, the chronic administration of branched chain amino acids increased the DNA damage frequency and damage index in both the hippocampus and the striatum, and the antioxidant treatment was able to prevent DNA damage in the hippocampus and striatum. The present study demonstrated that metabolite accumulation in MSUD induces DNA damage in the hippocampus and striatum and that it may be implicated in the neuropathology observed in the affected patients. We demonstrated that the effect of antioxidant treatment (N-acetylcysteine plus deferoxamine) prevented DNA damage, suggesting the involvement of oxidative stress in DNA damage. Copyright © 2012 Elsevier Inc. All rights reserved.
Modulation of inflammation and disease tolerance by DNA damage response pathways.
Neves-Costa, Ana; Moita, Luis F
2017-03-01
The accurate replication and repair of DNA is central to organismal survival. This process is challenged by the many factors that can change genetic information such as replication errors and direct damage to the DNA molecule by chemical and physical agents. DNA damage can also result from microorganism invasion as an integral step of their life cycle or as collateral damage from host defense mechanisms against pathogens. Here we review the complex crosstalk of DNA damage response and immune response pathways that might be evolutionarily connected and argue that DNA damage response pathways can be explored therapeutically to induce disease tolerance through the activation of tissue damage control processes. Such approach may constitute the missing pillar in the treatment of critical illnesses caused by multiple organ failure, such as sepsis and septic shock. © 2016 Federation of European Biochemical Societies.
Allen, Christopher; Borak, Thomas B; Tsujii, Hirohiko; Nickoloff, Jac A
2011-06-03
Ionizing radiation causes many types of DNA damage, including base damage and single- and double-strand breaks. Photons, including X-rays and γ-rays, are the most widely used type of ionizing radiation in radiobiology experiments, and in radiation cancer therapy. Charged particles, including protons and carbon ions, are seeing increased use as an alternative therapeutic modality. Although the facilities needed to produce high energy charged particle beams are more costly than photon facilities, particle therapy has shown improved cancer survival rates, reflecting more highly focused dose distributions and more severe DNA damage to tumor cells. Despite early successes of charged particle radiotherapy, there is room for further improvement, and much remains to be learned about normal and cancer cell responses to charged particle radiation. 2011 Elsevier B.V. All rights reserved.
Tokuyama, Yuka; Furusawa, Yoshiya; Ide, Hiroshi; Yasui, Akira; Terato, Hiroaki
2015-05-01
Clustered DNA damage is a specific type of DNA damage induced by ionizing radiation. Any type of ionizing radiation traverses the target DNA molecule as a beam, inducing damage along its track. Our previous study showed that clustered DNA damage yields decreased with increased linear energy transfer (LET), leading us to investigate the importance of clustered DNA damage in the biological effects of heavy ion beam radiation. In this study, we analyzed the yield of clustered base damage (comprising multiple base lesions) in cultured cells irradiated with various heavy ion beams, and investigated isolated base damage and the repair process in post-irradiation cultured cells. Chinese hamster ovary (CHO) cells were irradiated by carbon, silicon, argon and iron ion beams with LETs of 13, 55, 90 and 200 keV µm(-1), respectively. Agarose gel electrophoresis of the cells with enzymatic treatments indicated that clustered base damage yields decreased as the LET increased. The aldehyde reactive probe procedure showed that isolated base damage yields in the irradiated cells followed the same pattern. To analyze the cellular base damage process, clustered DNA damage repair was investigated using DNA repair mutant cells. DNA double-strand breaks accumulated in CHO mutant cells lacking Xrcc1 after irradiation, and the cell viability decreased. On the other hand, mouse embryonic fibroblast (Mef) cells lacking both Nth1 and Ogg1 became more resistant than the wild type Mef. Thus, clustered base damage seems to be involved in the expression of heavy ion beam biological effects via the repair process. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Hill, M.A.; O'Neill, P.; McKenna, W.G.
2016-01-01
Magnetic resonance imaging (MRI) is increasingly being used in cardiology to detect heart disease and guide therapy. It is mooted to be a safer alternative to imaging techniques, such as computed tomography (CT) or coronary angiographic imaging. However, there has recently been an increased interest in the potential long-term health risks of MRI, especially in the light of the controversy resulting from a small number of research studies reporting an increase in DNA damage following exposure, with calls to limit its use and avoid unnecessary examination, according to the precautionary principle. Overall the published data are somewhat limited and inconsistent; the ability of MRI to produce DNA lesions has yet to be robustly demonstrated and future experiments should be carefully designed to optimize sensitivity and benchmarked to validate and assess reproducibility. The majority of the current studies have focussed on the initial induction of DNA damage, and this has led to comparisons between the reported induction of γH2AX and implied double-strand break (DSB) yields produced following MRI with induction by imaging techniques using ionizing radiation. However, γH2AX is not only a marker of classical double-ended DSB, but also a marker of stalled replication forks and in certain circumstances stalled DNA transcription. Additionally, ionizing radiation is efficient at producing complex DNA damage, unique to ionizing radiation, with an associated reduction in repairability. Even if the fields associated with MRI are capable of producing DNA damage, the lesions produced will in general be simple, similar to those produced by endogenous processes. It is therefore inappropriate to try and infer cancer risk by simply comparing the yields of γH2AX foci or DNA lesions potentially produced by MRI to those produced by a given exposure of ionizing radiation, which will generally be more biologically effective and have a greater probability of leading to long-term health effects. As a result, it is important to concentrate on more relevant downstream end points (e.g. chromosome aberration production), along with potential mechanisms by which MRI may lead to DNA lesions. This could potentially involve a perturbation in homeostasis of oxidative stress, modifying the background rate of endogenous DNA damage induction. In summary, what the field needs at the moment is more research and less fear mongering. PMID:27550664
Seidel, Clemens; Lautenschläger, Christine; Dunst, Jürgen; Müller, Arndt-Christian
2012-04-20
To investigate whether different conditions of DNA structure and radiation treatment could modify heterogeneity of response. Additionally to study variance as a potential parameter of heterogeneity for radiosensitivity testing. Two-hundred leukocytes per sample of healthy donors were split into four groups. I: Intact chromatin structure; II: Nucleoids of histone-depleted DNA; III: Nucleoids of histone-depleted DNA with 90 mM DMSO as antioxidant. Response to single (I-III) and twice (IV) irradiation with 4 Gy and repair kinetics were evaluated using %Tail-DNA. Heterogeneity of DNA damage was determined by calculation of variance of DNA-damage (V) and mean variance (Mvar), mutual comparisons were done by one-way analysis of variance (ANOVA). Heterogeneity of initial DNA-damage (I, 0 min repair) increased without histones (II). Absence of histones was balanced by addition of antioxidants (III). Repair reduced heterogeneity of all samples (with and without irradiation). However double irradiation plus repair led to a higher level of heterogeneity distinguishable from single irradiation and repair in intact cells. Increase of mean DNA damage was associated with a similarly elevated variance of DNA damage (r = +0.88). Heterogeneity of DNA-damage can be modified by histone level, antioxidant concentration, repair and radiation dose and was positively correlated with DNA damage. Experimental conditions might be optimized by reducing scatter of comet assay data by repair and antioxidants, potentially allowing better discrimination of small differences. Amount of heterogeneity measured by variance might be an additional useful parameter to characterize radiosensitivity.
Hawkins, Clare L; Davies, Michael J
2002-01-01
Stimulated monocytes and neutrophils generate hypochlorite (HOCl) via the release of the enzyme myeloperoxidase and hydrogen peroxide. HOCl is a key bactericidal agent, but can also damage host tissue. As there is a strong link between chronic inflammation and some cancers, we have investigated HOCl damage to DNA, RNA, and polynucleotides. Reaction of HOCl with these materials is shown to yield multiple semistable chloramines (RNHCl/RR'NCl), which are the major initial products, and account for 50-95% of the added HOCl. These chloramines decay by thermal and metal-ion catalyzed processes, to give nucleoside-derived, nitrogen-centered, radicals. The latter have been characterized by EPR spin trapping. The propensity for radical formation with polynucleotides is cytidine > adenosine = guanosine > uridine = thymidine. The rates of decay, and yield of radicals formed, are dependent on the nature of the nucleobase on which they are formed, with chloramines formed from ring heterocyclic amine groups being less stable than those formed on exocyclic amines (RNH2 groups). Evidence is presented for chlorine transfer from the former, kinetically favored, sites to the more thermodynamically favored exocyclic amines. EPR experiments have also provided evidence for the rapid addition of pyrimidine-derived nitrogen-centered radicals to other nucleobases to give dimers and the oxidation of DNA by radicals derived from preformed nucleoside chloramines. Direct reaction of HOCl with plasmid DNA gives rise to single- and double-strand breaks via chloramine-mediated reactions. Preformed nucleoside chloramines also induce plasmid cleavage, though this only occurs to a significant extent with unstable thymidine- and uridine-derived chloramines, where radical formation is rapid. Overall the data rationalize the preferential formation of chlorinated 2'-deoxycytidine and 2'-deoxyadenosine in DNA and suggest that DNA damage induced by HOCl, and preformed chloramines, occurs at sequence-specific sites.
Szeto, Yim Tong; Wong, Kam Shing; Han, Andrea; Pak, Sok Cheon; Kalle, Wouter
2016-01-01
The aim of this clinical study is to provide scientific evidence for supporting traditional Chinese application and usage to the patients. For this purpose, we tested the ability if Panax ginseng extract to lower oxidative damage to nuclear DNA in human lymphocytes by comparing the effect of cooked Chinese turnip on this effect. Seven healthy subjects (4 males and 3 females from 37 to 60 years) participated two occasions which were at least 2 weeks apart. About 2 mL of fasting blood sample for baseline measurement was taken on arrival. They were requested to ingest the content of 5 ginseng capsules in 200 mL water. The subject remained fasting for 2 h until the second blood sample taken. In the other occasion, the experiment was repeated except a piece of cooked turnip (10 g) was taken with the ginseng extract. The two occasions could be interchanged. Comet assay was performed on two specimens on the same day for the evaluation of lymphocytic DNA damage with or without oxidative stress. For the group with ginseng supplementation, there was a significant decrease in comet score for hydrogen peroxide (H 2 O 2 ) treatment over the 2-h period while no change in DNA damage for unstressed sample. For the group with ginseng together with turnip supplementation, there was no significant difference in comet score for both H 2 O 2 treatment and phosphate-buffered saline treatment. Ginseng extract could reduce DNA damage mediated by H 2 O 2 effectively, but this protection effect was antagonized by the ingestion of cooked turnip at the same time. In the current study, commercial ginseng extract was used for supplementing volunteers. Ginseng extract could protect DNA from oxidative stress in vivo while turnip diminished the protection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srinivas, L.; Shalini, V.K.
Twigs-dry leaves smoke condensate (TDS), as a source of clastogenic ROS and carcinogenic PAH, was investigated for its in vitro DNA-damaging effect in calf thymus DNA and human peripheral lymphocytes. An aqueous turmeric component--Aq.T--with an established antioxidant activity, was tested as a DNA protectant. TDS induced 13-fold damage to calf thymus DNA as judged by the emergence of a DNA damage specific, fluorescent product (em: 405 nm). Aq.T at 800 ng/microL extended 69% protection to calf thymus DNA and was comparable to the other protectants such as curcumin, BHA, vitamin E, SOD, and CAT. In human peripheral lymphocytes, TDS inducedmore » extensive DNA damage in comparison with the tumor promoter TPA, as judged by FADU. Aq.T at 300 ng/microL extended 90% protection to human lymphocyte DNA against TDS-induced damage, and was more effective than the other protectants--DABCO, D-mannitol, sodium benzoate, vitamin E (ROS quenchers), SOD, CAT (antioxidant enzymes), tannic acid, flufenamic acid, BHA, BHT, n-PG, curcumin and quercetin (antioxidants). Aq.T offered 65% protection to human lymphocyte DNA against TPA-induced damage and was comparable to SOD. The above results indicate that TDS induces substantial DNA damage in calf thymus DNA and human lymphocytes and Aq.T is an efficient protectant.« less
Jomova, Klaudia; Lawson, Michael; Drostinova, Lenka; Lauro, Peter; Poprac, Patrik; Brezova, Vlasta; Michalik, Martin; Lukes, Vladimir; Valko, Marian
2017-12-01
The radical scavenging and metal chelating properties of flavonoids indicate that they may play a protective role in diseases with perturbed metal homeostasis such as Alzheimer's disease. In this work we investigated the effect of the coordination of quercetin to copper(II) in view of the formation of ROS in Cu-catalyzed Fenton reaction. ABTS and DPPH assays confirmed that the copper(II)-quercetin complex exhibits a stronger radical scavenging activity than does quercetin alone. EPR spin trapping experiments have shown that chelation of quercetin to copper significantly suppressed the formation of hydroxyl radicals in the Cu(II)-Fenton reaction. DNA damage experiments revealed a protective effect for quercetin, but only at higher stoichiometric ratios of quercetin relative to copper. DNA protective effect of quercetin against ROS attack was described by two mechanisms. The first mechanism lies in suppressed formation of ROS due to the decreased catalytic action of copper in the Fenton reaction, as a consequence of its chelation and direct scavenging of ROS by free quercetin. Since the Cu-quercetin complex intercalates into DNA, the second mechanism was attributed to a suppressed intercalating ability of the Cu-quercetin complex due to the mildly intercalating free quercetin into DNA, thus creating a protective wall against stronger intercalators. Copyright © 2017 Elsevier Ltd. All rights reserved.
Induction of homologous recombination in Saccharomyces cerevisiae.
Simon, J R; Moore, P D
1988-09-01
We have investigated the effects of UV irradiation of Saccharomyces cerevisiae in order to distinguish whether UV-induced recombination results from the induction of enzymes required for homologous recombination, or the production of substrate sites for recombination containing regions of DNA damage. We utilized split-dose experiments to investigate the induction of proteins required for survival, gene conversion, and mutation in a diploid strain of S. cerevisiae. We demonstrate that inducing doses of UV irradiation followed by a 6 h period of incubation render the cells resistant to challenge doses of UV irradiation. The effects of inducing and challenge doses of UV irradiation upon interchromosomal gene conversion and mutation are strictly additive. Using the yeast URA3 gene cloned in non-replicating single- and double-stranded plasmid vectors that integrate into chromosomal genes upon transformation, we show that UV irradiation of haploid yeast cells and homologous plasmid DNA sequences each stimulate homologous recombination approximately two-fold, and that these effects are additive. Non-specific DNA damage has little effect on the stimulation of homologous recombination, as shown by studies in which UV-irradiated heterologous DNA was included in transformation/recombination experiments. We further demonstrate that the effect of competing single- and double-stranded heterologous DNA sequences differs in UV-irradiated and unirradiated cells, suggesting an induction of recombinational machinery in UV-irradiated S. cerevisiae cells.
The PARTRAC code: Status and recent developments
NASA Astrophysics Data System (ADS)
Friedland, Werner; Kundrat, Pavel
Biophysical modeling is of particular value for predictions of radiation effects due to manned space missions. PARTRAC is an established tool for Monte Carlo-based simulations of radiation track structures, damage induction in cellular DNA and its repair [1]. Dedicated modules describe interactions of ionizing particles with the traversed medium, the production and reactions of reactive species, and score DNA damage determined by overlapping track structures with multi-scale chromatin models. The DNA repair module describes the repair of DNA double-strand breaks (DSB) via the non-homologous end-joining pathway; the code explicitly simulates the spatial mobility of individual DNA ends in parallel with their processing by major repair enzymes [2]. To simulate the yields and kinetics of radiation-induced chromosome aberrations, the repair module has been extended by tracking the information on the chromosome origin of ligated fragments as well as the presence of centromeres [3]. PARTRAC calculations have been benchmarked against experimental data on various biological endpoints induced by photon and ion irradiation. The calculated DNA fragment distributions after photon and ion irradiation reproduce corresponding experimental data and their dose- and LET-dependence. However, in particular for high-LET radiation many short DNA fragments are predicted below the detection limits of the measurements, so that the experiments significantly underestimate DSB yields by high-LET radiation [4]. The DNA repair module correctly describes the LET-dependent repair kinetics after (60) Co gamma-rays and different N-ion radiation qualities [2]. First calculations on the induction of chromosome aberrations have overestimated the absolute yields of dicentrics, but correctly reproduced their relative dose-dependence and the difference between gamma- and alpha particle irradiation [3]. Recent developments of the PARTRAC code include a model of hetero- vs euchromatin structures to enable accounting for variations in DNA damage yields, complexity and repair between these regions. Second, the applicability of the code to low-energy ions has been extended to full stopping by using a modified Barkas scaling of proton cross sections for ions heavier than helium. Third, ongoing studies aim at hitherto unprecedented benchmarking of the code against experiments with sub-muµm focused bunches of low-LET ions mimicking single high-LET ion tracks [5] which separate effects of damage clustering on a sub-mum scale from DNA damage complexity on a nanometer scale. Fourth, motivated by implications for the involvement of mitochondria in intercellular signaling and radiation-induced bystander effects, ongoing work extends the range of PARTRAC DNA models to radiation effects on mitochondrial DNA. The contribution will discuss the PARTRAC modules, benchmarks to experimental data, recent and ongoing developments of the code, with special attention to its implications and potential applications in radiation protection and space research. Acknowledgement. This work was partially funded by the EU (Contract FP7-249689 ‘DoReMi’). References 1. Friedland et al., Mutat. Res. 711, 28 (2011) 2. Friedland et al., Int. J. Radiat. Biol. 88, 129 (2012) 3. Friedland et al., Mutat. Res. 756, 213 (2013) 4. Alloni et al., Radiat. Res. 179, 690 (2013) 5. Schmid et al., Phys. Med. Biol. 57, 5889 (2012)
Viral interference with DNA repair by targeting of the single-stranded DNA binding protein RPA.
Banerjee, Pubali; DeJesus, Rowena; Gjoerup, Ole; Schaffhausen, Brian S
2013-10-01
Correct repair of damaged DNA is critical for genomic integrity. Deficiencies in DNA repair are linked with human cancer. Here we report a novel mechanism by which a virus manipulates DNA damage responses. Infection with murine polyomavirus sensitizes cells to DNA damage by UV and etoposide. Polyomavirus large T antigen (LT) alone is sufficient to sensitize cells 100 fold to UV and other kinds of DNA damage. This results in activated stress responses and apoptosis. Genetic analysis shows that LT sensitizes via the binding of its origin-binding domain (OBD) to the single-stranded DNA binding protein replication protein A (RPA). Overexpression of RPA protects cells expressing OBD from damage, and knockdown of RPA mimics the LT phenotype. LT prevents recruitment of RPA to nuclear foci after DNA damage. This leads to failure to recruit repair proteins such as Rad51 or Rad9, explaining why LT prevents repair of double strand DNA breaks by homologous recombination. A targeted intervention directed at RPA based on this viral mechanism could be useful in circumventing the resistance of cancer cells to therapy.
DNA Repair and the Evolution of Transformation in Bacillus Subtilis. II. Role of Inducible Repair
Wojciechowski, M. F.; Hoelzer, M. A.; Michod, R. E.
1989-01-01
In Bacillus subtilis, DNA repair and recombination are intimately associated with competence, the physiological state in which the bacterium can bind, take up and recombine exogenous DNA. Previously, we have shown that the homologous DNA transformation rate (ratio of transformants to total cells) increases with increasing UV dosage if cells are transformed after exposure to UV radiation (UV-DNA), whereas the transformation rate decreases if cells are transformed before exposure to UV (DNA-UV). In this report, by using different DNA repair-deficient mutants, we show that the greater increase in transformation rate in UV-DNA experiments than in DNA-UV experiments does not depend upon excision repair or inducible SOS-like repair, although certain quantitative aspects of the response do depend upon these repair systems. We also show that there is no increase in the transformation rate in a UV-DNA experiment when repair and recombination proficient cells are transformed with nonhomologous plasmid DNA, although the results in a DNA-UV experiment are essentially unchanged by using plasmid DNA. We have used din operon fusions as a sensitive means of assaying for the expression of genes under the control of the SOS-like regulon in both competent and noncompetent cell subpopulations as a consequence of competence development and our subsequent experimental treatments. Results indicate that the SOS-like system is induced in both competent and noncompetent subpopulations in our treatments and so should not be a major factor in the differential response in transformation rate observed in UV-DNA and DNA-UV treatments. These results provide further support to the hypothesis that the evolutionary function of competence is to bring DNA into the cell for use as template in the repair of DNA damage. PMID:2497048
Preterm newborns show slower repair of oxidative damage and paternal smoking associated DNA damage.
Vande Loock, Kim; Ciardelli, Roberta; Decordier, Ilse; Plas, Gina; Haumont, Dominique; Kirsch-Volders, Micheline
2012-09-01
Newborns have to cope with hypoxia during delivery and a sudden increase in oxygen at birth. Oxygen will partly be released as reactive oxygen species having the potential to cause damage to DNA and proteins. In utero, increase of most (non)-enzymatic antioxidants occurs during last weeks of gestation, making preterm neonates probably more sensitive to oxidative stress. Moreover, it has been hypothesized that oxidative stress might be the common etiological factor for certain neonatal diseases in preterm infants. The aim of this study was to assess background DNA damage; in vitro H(2)O(2) induced oxidative DNA damage and repair capacity (residual DNA damage) in peripheral blood mononucleated cells from 25 preterm newborns and their mothers. In addition, demographic data were taken into account and repair capacity of preterm was compared with full-term newborns. Multivariate linear regression analysis revealed that preterm infants from smoking fathers have higher background DNA damage levels than those from non-smoking fathers, emphasizing the risk of paternal smoking behaviour for the progeny. Significantly higher residual DNA damage found after 15-min repair in preterm children compared to their mothers and higher residual DNA damage after 2 h compared to full-term newborns suggest a slower DNA repair capacity in preterm children. In comparison with preterm infants born by caesarean delivery, preterm infants born by vaginal delivery do repair more slowly the in vitro induced oxidative DNA damage. Final impact of passive smoking and of the slower DNA repair activity of preterm infants need to be confirmed in a larger study population combining transgenerational genetic and/or epigenetic effects, antioxidant levels, genotypes, repair enzyme efficiency/levels and infant morbidity.
Phosphorylation of human INO80 is involved in DNA damage tolerance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, Dai; Waki, Mayumi; Umezawa, Masaki
Highlights: Black-Right-Pointing-Pointer Depletion of hINO80 significantly reduced PCNA ubiquitination. Black-Right-Pointing-Pointer Depletion of hINO80 significantly reduced nuclear dots intensity of RAD18 after UV irradiation. Black-Right-Pointing-Pointer Western blot analyses showed phosphorylated hINO80 C-terminus. Black-Right-Pointing-Pointer Overexpression of phosphorylation mutant hINO80 reduced PCNA ubiquitination. -- Abstract: Double strand breaks (DSBs) are the most serious type of DNA damage. DSBs can be generated directly by exposure to ionizing radiation or indirectly by replication fork collapse. The DNA damage tolerance pathway, which is conserved from bacteria to humans, prevents this collapse by overcoming replication blockages. The INO80 chromatin remodeling complex plays an important role in themore » DNA damage response. The yeast INO80 complex participates in the DNA damage tolerance pathway. The mechanisms regulating yINO80 complex are not fully understood, but yeast INO80 complex are necessary for efficient proliferating cell nuclear antigen (PCNA) ubiquitination and for recruitment of Rad18 to replication forks. In contrast, the function of the mammalian INO80 complex in DNA damage tolerance is less clear. Here, we show that human INO80 was necessary for PCNA ubiquitination and recruitment of Rad18 to DNA damage sites. Moreover, the C-terminal region of human INO80 was phosphorylated, and overexpression of a phosphorylation-deficient mutant of human INO80 resulted in decreased ubiquitination of PCNA during DNA replication. These results suggest that the human INO80 complex, like the yeast complex, was involved in the DNA damage tolerance pathway and that phosphorylation of human INO80 was involved in the DNA damage tolerance pathway. These findings provide new insights into the DNA damage tolerance pathway in mammalian cells.« less
DNA damage in cells exhibiting radiation-induced genomic instability
Keszenman, Deborah J.; Kolodiuk, Lucia; Baulch, Janet E.
2015-02-22
Cells exhibiting radiation induced genomic instability exhibit varied spectra of genetic and chromosomal aberrations. Even so, oxidative stress remains a common theme in the initiation and/or perpetuation of this phenomenon. Isolated oxidatively modified bases, abasic sites, DNA single strand breaks and clustered DNA damage are induced in normal mammalian cultured cells and tissues due to endogenous reactive oxygen species generated during normal cellular metabolism in an aerobic environment. While sparse DNA damage may be easily repaired, clustered DNA damage may lead to persistent cytotoxic or mutagenic events that can lead to genomic instability. In this study, we tested the hypothesismore » that DNA damage signatures characterised by altered levels of endogenous, potentially mutagenic, types of DNA damage and chromosomal breakage are related to radiation-induced genomic instability and persistent oxidative stress phenotypes observed in the chromosomally unstable progeny of irradiated cells. The measurement of oxypurine, oxypyrimidine and abasic site endogenous DNA damage showed differences in non-double-strand breaks (DSB) clusters among the three of the four unstable clones evaluated as compared to genomically stable clones and the parental cell line. These three unstable clones also had increased levels of DSB clusters. The results of this study demonstrate that each unstable cell line has a unique spectrum of persistent damage and lead us to speculate that alterations in DNA damage signaling and repair may be related to the perpetuation of genomic instability.« less
Clustered DNA damages induced in isolated DNA and in human cells by low doses of ionizing radiation
NASA Technical Reports Server (NTRS)
Sutherland, B. M.; Bennett, P. V.; Sidorkina, O.; Laval, J.; Lowenstein, D. I. (Principal Investigator)
2000-01-01
Clustered DNA damages-two or more closely spaced damages (strand breaks, abasic sites, or oxidized bases) on opposing strands-are suspects as critical lesions producing lethal and mutagenic effects of ionizing radiation. However, as a result of the lack of methods for measuring damage clusters induced by ionizing radiation in genomic DNA, neither the frequencies of their production by physiological doses of radiation, nor their repairability, nor their biological effects are known. On the basis of methods that we developed for quantitating damages in large DNAs, we have devised and validated a way of measuring ionizing radiation-induced clustered lesions in genomic DNA, including DNA from human cells. DNA is treated with an endonuclease that induces a single-strand cleavage at an oxidized base or abasic site. If there are two closely spaced damages on opposing strands, such cleavage will reduce the size of the DNA on a nondenaturing gel. We show that ionizing radiation does induce clustered DNA damages containing abasic sites, oxidized purines, or oxidized pyrimidines. Further, the frequency of each of these cluster classes is comparable to that of frank double-strand breaks; among all complex damages induced by ionizing radiation, double-strand breaks are only about 20%, with other clustered damage constituting some 80%. We also show that even low doses (0.1-1 Gy) of high linear energy transfer ionizing radiation induce clustered damages in human cells.
Son, Hokyoung; Fu, Minmin; Lee, Yoonji; Lim, Jae Yun; Min, Kyunghun; Kim, Jin-Cheol; Choi, Gyung Ja; Lee, Yin-Won
2016-01-01
Cell cycle regulation and the maintenance of genome integrity are crucial for the development and virulence of the pathogenic plant fungus Fusarium graminearum. To identify transcription factors (TFs) related to these processes, four DNA-damaging agents were applied to screen a F. graminearum TF mutant library. Sixteen TFs were identified to be likely involved in DNA damage responses. Fhs1 is a fungal specific Zn(II)2Cys6 TF that localises exclusively to nuclei. fhs1 deletion mutants were hypersensitive to hydroxyurea and defective in mitotic cell division. Moreover, deletion of FHS1 resulted in defects in perithecia production and virulence and led to the accumulation of DNA damage. Our genetic evidence demonstrated that the FHS1-associated signalling pathway for DNA damage response is independent of the ATM or ATR pathways. This study identified sixteen genes involved in the DNA damage response and is the first to characterise the novel transcription factor gene FHS1, which is involved in the DNA damage response. The results provide new insights into mechanisms underlying DNA damage responses in fungi, including F. graminearum. PMID:26888604
Polyphosphate is a key factor for cell survival after DNA damage in eukaryotic cells.
Bru, Samuel; Samper-Martín, Bàrbara; Quandt, Eva; Hernández-Ortega, Sara; Martínez-Laínez, Joan M; Garí, Eloi; Rafel, Marta; Torres-Torronteras, Javier; Martí, Ramón; Ribeiro, Mariana P C; Jiménez, Javier; Clotet, Josep
2017-09-01
Cells require extra amounts of dNTPs to repair DNA after damage. Polyphosphate (polyP) is an evolutionary conserved linear polymer of up to several hundred inorganic phosphate (Pi) residues that is involved in many functions, including Pi storage. In the present article, we report on findings demonstrating that polyP functions as a source of Pi when required to sustain the dNTP increment essential for DNA repair after damage. We show that mutant yeast cells without polyP produce less dNTPs upon DNA damage and that their survival is compromised. In contrast, when polyP levels are ectopically increased, yeast cells become more resistant to DNA damage. More importantly, we show that when polyP is reduced in HEK293 mammalian cell line cells and in human dermal primary fibroblasts (HDFa), these cells become more sensitive to DNA damage, suggesting that the protective role of polyP against DNA damage is evolutionary conserved. In conclusion, we present polyP as a molecule involved in resistance to DNA damage and suggest that polyP may be a putative target for new approaches in cancer treatment or prevention. Copyright © 2017 Elsevier B.V. All rights reserved.
Two familial ALS proteins function in prevention/repair of transcription-associated DNA damage.
Hill, Sarah J; Mordes, Daniel A; Cameron, Lisa A; Neuberg, Donna S; Landini, Serena; Eggan, Kevin; Livingston, David M
2016-11-29
Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron dysfunction disease that leads to paralysis and death. There is currently no established molecular pathogenesis pathway. Multiple proteins involved in RNA processing are linked to ALS, including FUS and TDP43, and we propose a disease mechanism in which loss of function of at least one of these proteins leads to an accumulation of transcription-associated DNA damage contributing to motor neuron cell death and progressive neurological symptoms. In support of this hypothesis, we find that FUS or TDP43 depletion leads to increased sensitivity to a transcription-arresting agent due to increased DNA damage. Thus, these proteins normally contribute to the prevention or repair of transcription-associated DNA damage. In addition, both FUS and TDP43 colocalize with active RNA polymerase II at sites of DNA damage along with the DNA damage repair protein, BRCA1, and FUS and TDP43 participate in the prevention or repair of R loop-associated DNA damage, a manifestation of aberrant transcription and/or RNA processing. Gaining a better understanding of the role(s) that FUS and TDP43 play in transcription-associated DNA damage could shed light on the mechanisms underlying ALS pathogenesis.
Two familial ALS proteins function in prevention/repair of transcription-associated DNA damage
Hill, Sarah J.; Mordes, Daniel A.; Cameron, Lisa A.; Neuberg, Donna S.; Landini, Serena; Eggan, Kevin; Livingston, David M.
2016-01-01
Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron dysfunction disease that leads to paralysis and death. There is currently no established molecular pathogenesis pathway. Multiple proteins involved in RNA processing are linked to ALS, including FUS and TDP43, and we propose a disease mechanism in which loss of function of at least one of these proteins leads to an accumulation of transcription-associated DNA damage contributing to motor neuron cell death and progressive neurological symptoms. In support of this hypothesis, we find that FUS or TDP43 depletion leads to increased sensitivity to a transcription-arresting agent due to increased DNA damage. Thus, these proteins normally contribute to the prevention or repair of transcription-associated DNA damage. In addition, both FUS and TDP43 colocalize with active RNA polymerase II at sites of DNA damage along with the DNA damage repair protein, BRCA1, and FUS and TDP43 participate in the prevention or repair of R loop-associated DNA damage, a manifestation of aberrant transcription and/or RNA processing. Gaining a better understanding of the role(s) that FUS and TDP43 play in transcription-associated DNA damage could shed light on the mechanisms underlying ALS pathogenesis. PMID:27849576
Kværner, Ane Sørlie; Minaguchi, Jun; Yamani, Naouale El; Henriksen, Christine; Ræder, Hanna; Paur, Ingvild; Henriksen, Hege Berg; Wiedswang, Gro; Smeland, Sigbjørn; Blomhoff, Rune; Collins, Andrew Richard; Bøhn, Siv Kjølsrud
2018-03-01
DNA damage can be considered as a biomarker for toxicity and response to chemotherapy. It is not known whether the chemotherapy-induced genotoxicity is associated with malnutrition. In this pilot study, we assess genotoxicity by means of DNA damage in patients with lymph-node positive colorectal cancer (CRC) and explore associations with chemotherapy treatment and nutritional status. DNA damage was compared between patients receiving chemotherapy (n = 24) and those not receiving chemotherapy (n = 20). DNA damage was measured in frozen whole blood by the comet assay. Associations between DNA damage and various indicators of malnutrition were also explored, including Patient-Generated Subjective Global Assessment (PG-SGA), bioelectrical impedance analysis (BIA) and anthropometric measurements, using multiple linear regression models. Patients on chemotherapy have higher levels of DNA damage in blood cells than patients not receiving chemotherapy (median of 16.9 and 7.9% tail DNA respectively, p = 0.001). The moderately malnourished patients (PG-SGA category B), representing 41% of the patients, have higher levels of cellular DNA damage than patients with good nutritional status (mean difference of 7.5% tail DNA, p = 0.033). In conclusion, adjuvant chemotherapy and malnutrition are both associated with increased levels of DNA damage in blood cells of CRC patients. Carefully controlled longitudinal studies or randomized controlled trials should be performed to determine whether good nutritional status may protect against chemotherapy-induced genotoxicity and enhance compliance to therapy in CRC patients. Copyright © 2018 Elsevier B.V. All rights reserved.
Gajski, Goran; Garaj-Vrhovac, Vera
2009-01-01
The aim of this study is to investigate the radioprotective effect of bee venom against DNA damage induced by 915-MHz microwave radiation (specific absorption rate of 0.6 W/kg) in Wistar rats. Whole blood lymphocytes of Wistar rats are treated with 1 microg/mL bee venom 4 hours prior to and immediately before irradiation. Standard and formamidopyrimidine-DNA glycosylase (Fpg)-modified comet assays are used to assess basal and oxidative DNA damage produced by reactive oxygen species. Bee venom shows a decrease in DNA damage compared with irradiated samples. Parameters of Fpg-modified comet assay are statistically different from controls, making this assay more sensitive and suggesting that oxidative stress is a possible mechanism of DNA damage induction. Bee venom is demonstrated to have a radioprotective effect against basal and oxidative DNA damage. Furthermore, bee venom is not genotoxic and does not produce oxidative damage in the low concentrations used in this study.
Unrepaired clustered DNA lesions induce chromosome breakage in human cells
Asaithamby, Aroumougame; Hu, Burong; Chen, David J.
2011-01-01
Clustered DNA damage induced by ionizing radiation is refractory to repair and may trigger carcinogenic events for reasons that are not well understood. Here, we used an in situ method to directly monitor induction and repair of clustered DNA lesions in individual cells. We showed, consistent with biophysical modeling, that the kinetics of loss of clustered DNA lesions was substantially compromised in human fibroblasts. The unique spatial distribution of different types of DNA lesions within the clustered damages, but not the physical location of these damages within the subnuclear domains, determined the cellular ability to repair the damage. We then examined checkpoint arrest mechanisms and yield of gross chromosomal aberrations. Induction of nonrepairable clustered damage affected only G2 accumulation but not the early G2/M checkpoint. Further, cells that were released from the G2/M checkpoint with unrepaired clustered damage manifested a spectrum of chromosome aberrations in mitosis. Difficulties associated with clustered DNA damage repair and checkpoint release before the completion of clustered DNA damage repair appear to promote genome instability that may lead to carcinogenesis. PMID:21527720
Kurashige, Tomomi; Shimamura, Mika; Nagayama, Yuji
2017-11-01
We evaluated the effect of the antioxidant N-acetyl-L-cysteine (NAC) on the levels of reactive oxygen species (ROS), DNA double strand breaks (DSB) and micronuclei (MN) induced by internal and external irradiation using a rat thyroid cell line PCCL3. In internal irradiation experiments, ROS and DSB levels increased immediately after 131 I addition and then gradually declined, resulting in very high levels of MN at 24 and 48 h. NAC administration both pre- and also post- 131 I addition suppressed ROS, DSB and MN. In external irradiation experiments with a low dose (0.5 Gy), ROS and DSB increased shortly and could be prevented by NAC administration pre-, but not post-irradiation. In contrast, external irradiation with a high dose (5 Gy) increased ROS and DSB in a bimodal way: ROS and DSB levels increased immediately after irradiation, quickly returned to the basal levels and gradually rose again after >24 h. The second phase was in parallel with an increase in 4-hydroxy-2-nonenal. The number of MN induced by the second wave of ROS/DSB elevations was much higher than that by the first peak. In this situation, NAC administered pre- and post-irradiation comparably suppressed MN induced by a delayed ROS elevation. In conclusion, a prolonged ROS increase during internal irradiation and a delayed ROS increase after external irradiation with a high dose caused serious DNA damage, which were efficiently prevented by NAC. Thus, NAC administration even both after internal or external irradiation prevents ROS increase and eventual DNA damage.
Inhibition of exportin-1 function results in rapid cell cycle-associated DNA damage in cancer cells
Burke, Russell T.; Marcus, Joshua M.; Orth, James D.
2017-01-01
Selective inhibitors of nuclear export (SINE) are small molecules in development as anti-cancer agents. The first-in-class SINE, selinexor, is in clinical trials for blood and solid cancers. Selinexor forms a covalent bond with exportin-1 at cysteine-528, and blocks its ability to export cargos. Previous work has shown strong cell cycle effects and drug-induced cell death across many different cancer-derived cell lines. Here, we report strong cell cycle-associated DNA double-stranded break formation upon the treatment of cancer cells with SINE. In multiple cell models, selinexor treatment results in the formation of clustered DNA damage foci in 30-40% of cells within 8 hours that is dependent upon cysteine-528. DNA damage strongly correlates with G1/S-phase and decreased DNA replication. Live cell microscopy reveals an association between DNA damage and cell fate. Cells that form damage in G1-phase more often die or arrest, while those damaged in S/G2-phase frequently progress to cell division. Up to half of all treated cells form damage foci, and most cells that die after being damaged, were damaged in G1-phase. By comparison, non-transformed cell lines show strong cell cycle effects but little DNA damage and less death than cancer cells. Significant drug combination effects occur when selinexor is paired with different classes of agents that either cause DNA damage or that diminish DNA damage repair. These data present a novel effect of exportin-1 inhibition and provide a strong rationale for multiple combination treatments of selinexor with agents that are currently in use for the treatment of different solid cancers. PMID:28467801
Antioxidant and prooxidant effects of polyphenol compounds on copper-mediated DNA damage.
Perron, Nathan R; García, Carla R; Pinzón, Julio R; Chaur, Manuel N; Brumaghim, Julia L
2011-05-01
Inhibition of copper-mediated DNA damage has been determined for several polyphenol compounds. The 50% inhibition concentration values (IC(50)) for most of the tested polyphenols are between 8 and 480 μM for copper-mediated DNA damage prevention. Although most tested polyphenols were antioxidants under these conditions, they generally inhibited Cu(I)-mediated DNA damage less effectively than Fe(II)-mediated damage, and some polyphenols also displayed prooxidant activity. Because semiquinone radicals and hydroxyl radical adducts were detected by EPR spectroscopy in solutions of polyphenols, Cu(I), and H(2)O(2), it is likely that weak polyphenol-Cu(I) interactions permit a redox-cycling mechanism, whereby the necessary reactants to cause DNA damage (Cu(I), H(2)O(2), and reducing agents) are regenerated. The polyphenol compounds that prevent copper-mediated DNA damage likely follow a radical scavenging pathway as determined by EPR spectroscopy. Copyright © 2011 Elsevier Inc. All rights reserved.
Liu, Chun-Hsin; Finke, Andreas; Díaz, Mariana; Rozhon, Wilfried; Poppenberger, Brigitte; Baubec, Tuncay; Pecinka, Ales
2015-01-01
DNA damage repair is an essential cellular mechanism that maintains genome stability. Here, we show that the nonmethylable cytidine analog zebularine induces a DNA damage response in Arabidopsis thaliana, independent of changes in DNA methylation. In contrast to genotoxic agents that induce damage in a cell cycle stage-independent manner, zebularine induces damage specifically during strand synthesis in DNA replication. The signaling of this damage is mediated by additive activity of ATAXIA TELANGIECTASIA MUTATED AND RAD3-RELATED and ATAXIA TELANGIECTASIA MUTATED kinases, which cause postreplicative cell cycle arrest and increased endoreplication. The repair requires a functional STRUCTURAL MAINTENANCE OF CHROMOSOMES5 (SMC5)-SMC6 complex and is accomplished predominantly by synthesis-dependent strand-annealing homologous recombination. Here, we provide insight into the response mechanism for coping with the genotoxic effects of zebularine and identify several components of the zebularine-induced DNA damage repair pathway. PMID:26023162
Sam68 Is Required for DNA Damage Responses via Regulating Poly(ADP-ribosyl)ation
Hodgson, Andrea; Wier, Eric M.; Wen, Matthew G.; Kamenyeva, Olena; Xia, Xue; Koo, Lily Y.
2016-01-01
The rapid and robust synthesis of polymers of adenosine diphosphate (ADP)-ribose (PAR) chains, primarily catalyzed by poly(ADP-ribose) polymerase 1 (PARP1), is crucial for cellular responses to DNA damage. However, the precise mechanisms through which PARP1 is activated and PAR is robustly synthesized are not fully understood. Here, we identified Src-associated substrate during mitosis of 68 kDa (Sam68) as a novel signaling molecule in DNA damage responses (DDRs). In the absence of Sam68, DNA damage-triggered PAR production and PAR-dependent DNA repair signaling were dramatically diminished. With serial cellular and biochemical assays, we demonstrated that Sam68 is recruited to and significantly overlaps with PARP1 at DNA lesions and that the interaction between Sam68 and PARP1 is crucial for DNA damage-initiated and PARP1-conferred PAR production. Utilizing cell lines and knockout mice, we illustrated that Sam68-deleted cells and animals are hypersensitive to genotoxicity caused by DNA-damaging agents. Together, our findings suggest that Sam68 plays a crucial role in DDR via regulating DNA damage-initiated PAR production. PMID:27635653
Oxidative damage to DNA: counterion-assisted addition of water to ionized DNA.
Barnett, Robert N; Bongiorno, Angelo; Cleveland, Charles L; Joy, Abraham; Landman, Uzi; Schuster, Gary B
2006-08-23
Oxidative damage to DNA, implicated in mutagenesis, aging, and cancer, follows electron loss that generates a radical cation that migrates to a guanine, where it may react with water to form 8-oxo-7,8-dihydroguanine (8-OxoG). Molecular dynamics and ab initio quantum simulations on a B-DNA tetradecamer reveal activated reaction pathways that depend on the local counterion arrangement. The lowest activation barrier, 0.73 eV, is found for a reaction that starts from a configuration where a Na(+) resides in the major groove near the N7 atoms of adjacent guanines, and evolves through a transition state where a bond between a water oxygen atom and a carbon atom forms concurrently with displacement of a proton toward a neighboring water molecule. Subsequently, a bonded complex of a hydronium ion and the nearest backbone phosphate group forms. This counterion-assisted proton shuttle mechanism is supported by experiments exploiting selective substitution of backbone phosphates by methylphosphonates.
On binding specificity of (6-4) photolyase to a T(6-4)T DNA photoproduct*
NASA Astrophysics Data System (ADS)
Jepsen, Katrine Aalbæk; Solov'yov, Ilia A.
2017-06-01
Different factors lead to DNA damage and if it is not repaired in due time, the damaged DNA could initiate mutagenesis and cancer. To avoid this deadly scenario, specific enzymes can scavenge and repair the DNA, but the enzymes have to bind first to the damaged sites. We have investigated this binding for a specific enzyme called (6-4) photolyase, which is capable of repairing certain UV-induced damage in DNA. Through molecular dynamics simulations we describe the binding between photolyase and the DNA and reveal that several charged amino acid residues in the enzyme, such as arginines and lysines turn out to be important. Especially R421 is crucial, as it keeps the DNA strands at the damaged site inside the repair pocket of the enzyme separated. DNA photolyase is structurally highly homologous to a protein called cryptochrome. Both proteins are biologically activated similarly, namely through flavin co-factor photoexcitation. It is, however, striking that cryptochrome cannot repair UV-damaged DNA. The present investigation allowed us to conclude on the small but, apparently, critical differences between photolyase and cryptochrome. The performed analysis gives insight into important factors that govern the binding of UV-damaged DNA and reveal why cryptochrome cannot have this functionality.
Liu, Wei; Tan, Zhenyu; Zhang, Liming; Champion, Christophe
2017-03-01
In this work, direct DNA damage induced by low-energy electrons (sub-keV) is simulated using a Monte Carlo method. The characteristics of the present simulation are to consider the new mechanism of DNA damage due to dissociative electron attachment (DEA) and to allow determining damage to specific bases (i.e., adenine, thymine, guanine, or cytosine). The electron track structure in liquid water is generated, based on the dielectric response model for describing electron inelastic scattering and on a free-parameter theoretical model and the NIST database for calculating electron elastic scattering. Ionization cross sections of DNA bases are used to generate base radicals, and available DEA cross sections of DNA components are applied for determining DNA-strand breaks and base damage induced by sub-ionization electrons. The electron elastic scattering from DNA components is simulated using cross sections from different theoretical calculations. The resulting yields of various strand breaks and base damage in cellular environment are given. Especially, the contributions of sub-ionization electrons to various strand breaks and base damage are quantitatively presented, and the correlation between complex clustered DNA damage and the corresponding damaged bases is explored. This work shows that the contribution of sub-ionization electrons to strand breaks is substantial, up to about 40-70%, and this contribution is mainly focused on single-strand break. In addition, the base damage induced by sub-ionization electrons contributes to about 20-40% of the total base damage, and there is an evident correlation between single-strand break and damaged base pair A-T.
2012-01-01
Background To investigate whether different conditions of DNA structure and radiation treatment could modify heterogeneity of response. Additionally to study variance as a potential parameter of heterogeneity for radiosensitivity testing. Methods Two-hundred leukocytes per sample of healthy donors were split into four groups. I: Intact chromatin structure; II: Nucleoids of histone-depleted DNA; III: Nucleoids of histone-depleted DNA with 90 mM DMSO as antioxidant. Response to single (I-III) and twice (IV) irradiation with 4 Gy and repair kinetics were evaluated using %Tail-DNA. Heterogeneity of DNA damage was determined by calculation of variance of DNA-damage (V) and mean variance (Mvar), mutual comparisons were done by one-way analysis of variance (ANOVA). Results Heterogeneity of initial DNA-damage (I, 0 min repair) increased without histones (II). Absence of histones was balanced by addition of antioxidants (III). Repair reduced heterogeneity of all samples (with and without irradiation). However double irradiation plus repair led to a higher level of heterogeneity distinguishable from single irradiation and repair in intact cells. Increase of mean DNA damage was associated with a similarly elevated variance of DNA damage (r = +0.88). Conclusions Heterogeneity of DNA-damage can be modified by histone level, antioxidant concentration, repair and radiation dose and was positively correlated with DNA damage. Experimental conditions might be optimized by reducing scatter of comet assay data by repair and antioxidants, potentially allowing better discrimination of small differences. Amount of heterogeneity measured by variance might be an additional useful parameter to characterize radiosensitivity. PMID:22520045
Reduction of arsenite-enhanced ultraviolet radiation-induced DNA damage by supplemental zinc
Cooper, Karen L.; King, Brenee S.; Sandoval, Monica M.; Liu, Ke Jian; Hudson, Laurie G.
2013-01-01
Arsenic is a recognized human carcinogen and there is evidence that arsenic augments the carcinogenicity of DNA damaging agents such as ultraviolet radiation (UVR) thereby acting as a co-carcinogen. Inhibition of DNA repair is one proposed mechanism to account for the co-carcinogenic actions of arsenic. We and others find that arsenite interferes with the function of certain zinc finger DNA repair proteins. Furthermore, we reported that zinc reverses the effects of arsenite in cultured cells and a DNA repair target protein, poly (ADP-ribose) polymerase-1. In order to determine whether zinc ameliorates the effects of arsenite on UVR-induced DNA damage in human keratinocytes and in an in vivo model, normal human epidermal keratinocytes and SKH-1 hairless mice were exposed to arsenite, zinc or both before solar-simulated (ss) UVR exposure. Poly (ADP-ribose) polymerase activity, DNA damage and mutation frequencies at the hprt locus were measured in each treatment group in normal human keratinocytes. DNA damage was assessed in vivo by immunohistochemical staining of skin sections isolated from SKH-1 hairless mice. Cell-based findings demonstrate that ssUVR-induced DNA damage and mutagenesis are enhanced by arsenite, and supplemental zinc partially reverses the arsenite effect. In vivo studies confirm that zinc supplementation decreases arsenite-enhanced DNA damage in response to ssUVR exposure. From these data we can conclude that zinc offsets the impact of arsenic on ssUVR-stimulated DNA damage in cells and in vivo suggesting that zinc supplementation may provide a strategy to improve DNA repair capacity in arsenic exposed human populations. PMID:23523584
Heenen, M; Giacomoni, P U; Golstein, P
2001-10-01
A linear correlation between erythema intensity and DNA damage upon exposure to UV has not been firmly established. Many of the deleterious effects of UV exposure do occur after exposure to suberythemal doses. After DNA damage, cells undergo DNA repair. It is commonly accepted that when the burden of damage is beyond the repair capacities, the cell undergoes programmed cell death or apoptosis. The aim of this study is to quantify the amount of UV-induced DNA damage (estimated via the measurement of DNA repair or unscheduled DNA synthesis or UDS) and cellular damage (estimated via the determination of the density of sunburn cells or SBC). If DNA damage and erythema are correlated, similar intensity of UDS and similar density of SBC should be found in volunteers irradiated with a UV dose equal to two minimal erythema doses (MED). Our results show that in 15 different individuals the same relative dose (2 MEDs) provokes UDS values, which vary within a factor of 4. An even larger variability affects SBC counts after the same relative dose. When DNA damage or SBC are plotted versus the absolute dose (i.e. the dose expressed in J/m(2)), there is a rough correlation (with several exceptions) between dose and extent of UDS and SBC counts. It seems possible to divide the volunteers into two subpopulations with different susceptibilities to UV damage. It is well known that UDS and SBC measurements are often affected by large experimental indeterminacy, yet, the analysis of our results makes it plausible to suggest that for the triggering of erythema, a common threshold value for DNA damage or for SBC count are not to be found. In conclusion, the erythema response seems to be loosely correlated with DNA damage. This suggests that the protection offered by the sunscreens against DNA damage, the molecular basis of UV-induced mutagenesis, might not be related to the sun protection factor (SPF) indicated on the label of sunscreens, which is evaluated using the erythema as an endpoint.
NASA Technical Reports Server (NTRS)
Ponomarev, Artem; Cucinotta, F.
2011-01-01
To create a generalized mechanistic model of DNA damage in human cells that will generate analytical and image data corresponding to experimentally observed DNA damage foci and will help to improve the experimental foci yields by simulating spatial foci patterns and resolving problems with quantitative image analysis. Material and Methods: The analysis of patterns of RIFs (radiation-induced foci) produced by low- and high-LET (linear energy transfer) radiation was conducted by using a Monte Carlo model that combines the heavy ion track structure with characteristics of the human genome on the level of chromosomes. The foci patterns were also simulated in the maximum projection plane for flat nuclei. Some data analysis was done with the help of image segmentation software that identifies individual classes of RIFs and colocolized RIFs, which is of importance to some experimental assays that assign DNA damage a dual phosphorescent signal. Results: The model predicts the spatial and genomic distributions of DNA DSBs (double strand breaks) and associated RIFs in a human cell nucleus for a particular dose of either low- or high-LET radiation. We used the model to do analyses for different irradiation scenarios. In the beam-parallel-to-the-disk-of-a-flattened-nucleus scenario we found that the foci appeared to be merged due to their high density, while, in the perpendicular-beam scenario, the foci appeared as one bright spot per hit. The statistics and spatial distribution of regions of densely arranged foci, termed DNA foci chains, were predicted numerically using this model. Another analysis was done to evaluate the number of ion hits per nucleus, which were visible from streaks of closely located foci. In another analysis, our image segmentaiton software determined foci yields directly from images with single-class or colocolized foci. Conclusions: We showed that DSB clustering needs to be taken into account to determine the true DNA damage foci yield, which helps to determine the DSB yield. Using the model analysis, a researcher can refine the DSB yield per nucleus per particle. We showed that purely geometric artifacts, present in the experimental images, can be analytically resolved with the model, and that the quantization of track hits and DSB yields can be provided to the experimentalists who use enumeration of radiation-induced foci in immunofluorescence experiments using proteins that detect DNA damage. An automated image segmentaiton software can prove useful in a faster and more precise object counting for colocolized foci images.
Beevers, Carol; Henderson, Debbie; Lillford, Lucinda
2015-07-01
As part of the Japanese Center for the Validation of Alternative Methods (JaCVAM)-initiative international validation study of the in vivo rat alkaline comet assay (comet assay), we examined sodium arsenite, thioacetamide, and diethanolamine. Using the JaCVAM approved study protocol version 14.2, each chemical was tested in male rats up to maximum tolerated dose levels and DNA damage in the liver and stomach was assessed approximately 3h after the final administration by gavage. Histopathology assessments of liver and stomach sections from the same animals were also examined for evidence of cytotoxicity or necrosis. No evidence of DNA damage was observed in the stomach of animals treated with sodium arsenite at 7.5, 15, or 30 mg/kg/day. However, equivocal findings were found in the liver, where increases in DNA migration were observed in two independent experiments, but not in all treated animals and not at the same dose levels. Thioacetamide caused an increase in DNA migration in the stomach of rats treated at 19, 38, and 75 mg/kg/day, but not in the liver, despite evidence of marked hepatotoxicity following histopathology assessments. No evidence of DNA damage was observed in the stomach or liver of animals treated with diethanolamine at 175, 350, or 700 mg/kg/day. Copyright © 2015 Elsevier B.V. All rights reserved.
Izhar, Lior; Adamson, Britt; Ciccia, Alberto; Lewis, Jedd; Pontano-Vaites, Laura; Leng, Yumei; Liang, Anthony C.; Westbrook, Thomas F.; Harper, J. Wade; Elledge, Stephen J.
2015-01-01
Localization to sites of DNA damage is a hallmark of DNA damage response (DDR) proteins. To identify new DDR factors, we screened epitope-tagged proteins for localization to sites of chromatin damaged by UV laser microirradiation and found >120 proteins that localize to damaged chromatin. These include the BAF tumor suppressor complex and the ALS candidate protein TAF15. TAF15 contains multiple domains that bind damaged chromatin in a PARP-dependent manner, suggesting a possible role as glue that tethers multiple PAR chains together. Many positives were transcription factors and >70% of randomly tested transcription factors localized to sites of DNA damage and approximately 90% were PARP-dependent for localization. Mutational analyses showed that localization to damaged chromatin is DNA-binding domain-dependent. By examining Hoechst staining patterns at damage sites, we see evidence of chromatin decompaction that is PARP-dependent. We propose that PARP-regulated chromatin remodeling at sites of damage allows transient accessibility of DNA-binding proteins. PMID:26004182
Simulation experiments of the effect of space environment on bacteriophage and DNA thin films
NASA Technical Reports Server (NTRS)
Fekete, A.; Ronto, Gy; Hegedus, M.; Modos, K.; Berces, A.; Kovacs, G.; Lammer, H.; Panitz, C.
2004-01-01
The main goal of PUR experiment (phage and uracil response) is to examine and quantify the effect of specific space conditions on nucleic acid models. To achieve this an improved method was elaborated for the preparation of DNA and bacteriophage thin films. The homogeneity of the films was controlled by UV spectroscopy and microscopy. To provide experimental evidence for the hypothesis that interplanetary transfer of the genetic material is possible, phage T7 and isolated T7 DNA thin films have been exposed to selected space conditions: intense UVC radiation (lambda=254 nm) and high vacuum (10(-4) Pa). The effects of DNA hydration, conformation and packing on UV radiation damage were examined. Characteristic changes in the absorption spectrum, in the electrophoretic pattern of DNA and the decrease of the amount of PCR products have been detected indicating the photodamage of isolated and intraphage DNA. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
DNA Charge Transport within the Cell
Grodick, Michael A.; Muren, Natalie B.; Barton, Jacqueline K.
2015-01-01
The unique characteristics of DNA charge transport (CT) have prompted an examination of roles for this chemistry within a biological context. Not only can DNA CT facilitate long range oxidative damage of DNA, but redox-active proteins can couple to the DNA base stack and participate in long range redox reactions using DNA CT. DNA transcription factors with redox-active moieties such as SoxR and p53 can use DNA CT as a form of redox sensing. DNA CT chemistry also provides a means to monitor the integrity of the DNA, given the sensitivity of DNA CT to perturbations in base stacking as arise with mismatches and lesions. Enzymes that utilize this chemistry include an interesting and ever-growing class of DNA-processing enzymes involved in DNA repair, replication, and transcription that have been found to contain 4Fe-4S clusters. DNA repair enzymes containing 4Fe-4S clusters, that include Endonuclease III (EndoIII), MutY, and DinG from bacteria, as well as XPD from archaea, have been shown to be redox-active when bound to DNA, share a DNA-bound redox potential, and can be reduced and oxidized at long range via DNA CT. Interactions between DNA and these proteins in solution, in addition to genetics experiments within E. coli, suggest that DNA-mediated CT can be used as a means of cooperative signaling among DNA repair proteins that contain 4Fe-4S clusters as a first step in finding DNA damage, even within cells. Based on these data, we can consider also how DNA-mediated CT may be used as a means of signaling to coordinate DNA processing across the genome. PMID:25606780
Lai, Chao-Qiang; Tucker, Katherine L; Parnell, Laurence D; Adiconis, Xian; García-Bailo, Bibiana; Griffith, John; Meydani, Mohsen; Ordovás, José M
2008-04-01
Individuals with type 2 diabetes exhibit higher DNA damage and increased risk of cardiovascular disease (CVD). However, mechanisms underlying the association between DNA damage and development of type 2 diabetes and CVD are not understood. We sought to link peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PPARGC1A), a master transcriptional regulator of mitochondrial oxidative phosphorylation and cellular energy metabolism, with DNA damage, type 2 diabetes, and CVD. We measured DNA damage as urinary 8-hydroxydeoxyguanosine (8-OHdG) concentration and examined the relationship between nine PPARGC1A genetic variants, DNA damage, type 2 diabetes, and self-reported CVD in 959 participants of the Boston Puerto Rican Health Study. With respect to urinary 8-OHdG, PPARGC1A variants showed significant association, and PPARGC1A haplotypes exhibited significant association after correction for multiple testing. Two independent PPARGC1A variants associated significantly with type 2 diabetes (odds ratios [ORs] 1.35 and 2.46; P = 0.045 and <0.001). Carriers of minor alleles of two other PPARGC1A variants, both in strong linkage disequilibrium and associated with lower DNA damage, showed lower prevalence of CVD (ORs 0.53 and 0.65; P = 0.030 and 0.175). Moreover, we found that physical activity correlated negatively with DNA damage. It is plausible that low physical activity combined with risk haplotyes contribute to the high prevalence of type 2 diabetes in this population. We propose that PPARGC1A influences development of type 2 diabetes and CVD via DNA damage. Increasing physical activity, which induces PPARGC1A expression, is a potential strategy to slow DNA damage, thereby decreasing the risk of CVD for individuals with type 2 diabetes.
Wang, Zhong; Chen, Qiang; Li, Bin; Xie, Jia-Ming; Yang, Xiao-Dong; Zhao, Kui; Wu, Yong; Ye, Zhen-Yu; Chen, Zheng-Rong; Qin, Zheng-Hong; Xing, Chun-Gen
2018-05-31
Escin, a triterpene saponin isolated from horse chestnut seed, has been used to treat encephaledema, tissue swelling and chronic venous insufficiency. Recent studies show that escin induces cell cycle arrest, tumor proliferation inhibition and tumor cell apoptosis. But the relationship between escin-induced DNA damage and cell apoptosis in tumor cells remains unclear. In this study, we investigated whether and how escin-induced DNA damage contributed to escin-induced apoptosis in human colorectal cancer cells. Escin (5-80 μg/mL) dose-dependently inhibited the cell viability and colony formation in HCT116 and HCT8 cells. Escin treatment induced DNA damage, leading to p-ATM and γH2AX upregulation. Meanwhile, escin treatment increased the expression of p62, an adaptor protein, which played a crucial role in controlling cell survival and tumorigenesis, and had a protective effect against escin-induced DNA damage: knockdown of p62 apparently enhanced escin-induced DNA damage, whereas overexpression of p62 reduced escin-induced DNA damage. In addition, escin treatment induced concentration- and time-dependent apoptosis. Similarly, knockdown of p62 significantly increased escin-induced apoptosis in vitro and produced en escin-like antitumor effect in vivo. Overexpression of p62 decreased the rate of apoptosis. Further studies revealed that the functions of p62 in escin-induced DNA damage were associated with escin-induced apoptosis, and p62 knockdown combined with the ATM inhibitor KU55933 augmented escin-induced DNA damage and further increased escin-induced apoptosis. In conclusion, our results demonstrate that p62 regulates ATM/γH2AX pathway-mediated escin-induced DNA damage and apoptosis.
Markers of oxidative DNA damage in human interventions with fruit and berries.
Freese, Riitta
2006-01-01
Diets rich in fruit and vegetables are associated with a decreased risk of several cancers via numerous possible mechanisms. For example, phytochemicals may decrease oxidative DNA damage and enhance DNA repair. Markers of oxidative DNA damage in human dietary intervention trials used most frequently include oxidized nucleosides such as 7-hydro-8-oxo-2'-deoxyguanosine, which can be analyzed from isolated DNA or urine. Single-cell gel electrophoresis has been widely used to measure baseline or H2O2-induced DNA strand breaks or sites of modified bases sensitive to repair enzymes recognizing oxidized purines or pyrimidines. Recently, markers of DNA repair also have been used. Few controlled human dietary interventions have investigated the specific effects of fruit or berries. There are indications that kiwifruit can decrease H2O2 sensitivity of lymphocyte DNA ex vivo and enhance DNA repair. Carefully controlled studies with flavonoid-rich fruit or berry juices found only few significant differences; less rigorously controlled studies gave more optimistic results. Data on the effects of fruit and berries on DNA damage in humans are scarce and inconclusive; adequately controlled studies with validated markers are needed. Because levels of DNA damage are usually low in young healthy volunteers, groups with an enhanced risk of DNA damage should be studied.
Negureanu, Lacramioara; Salsbury, Freddie R
2013-11-01
DNA mismatch repair (MMR) proteins maintain genetic integrity in all organisms by recognizing and repairing DNA errors. Such alteration of hereditary information can lead to various diseases, including cancer. Besides their role in DNA repair, MMR proteins detect and initiate cellular responses to certain type of DNA damage. Its response to the damaged DNA has made the human MMR pathway a useful target for anticancer agents such as carboplatin. This study indicates that strong, specific interactions at the interface of MutSα in response to the mismatched DNA recognition are replaced by weak, non-specific interactions in response to the damaged DNA recognition. Data suggest a severe impairment of the dimerization of MutSα in response to the damaged DNA recognition. While the core of MutSα is preserved in response to the damaged DNA recognition, the loss of contact surface and the rearrangement of contacts at the protein interface suggest a different packing in response to the damaged DNA recognition. Coupled in response to the mismatched DNA recognition, interaction energies, hydrogen bonds, salt bridges, and solvent accessible surface areas at the interface of MutSα and within the subunits are uncoupled or asynchronously coupled in response to the damaged DNA recognition. These pieces of evidence suggest that the loss of a synchronous mode of response in the MutSα's surveillance for DNA errors would possibly be one of the mechanism(s) of signaling the MMR-dependent programed cell death much wanted in anticancer therapies. The analysis was drawn from dynamics simulations.
Shang, Hung-Sheng; Chang, Chuan-Hsun; Chou, Yu-Ru; Yeh, Ming-Yang; Au, Man-Kuan; Lu, Hsu-Feng; Chu, Yung-Lin; Chou, Hsiao-Min; Chou, Hsiu-Chen; Shih, Yung-Luen; Chung, Jing-Gung
2016-10-01
Cervical cancer is one of the most common cancers in women worldwide and it is a prominent cause of cancer mortality. Curcumin is one of the major compounds from Turmeric and has been shown to induce cytotoxic cell death in human cervical cancer cells. However, there is no study to show curcumin induced DNA damage action via the effect on the DNA damage and repair protein in cervical cancer cells in detail. In this study, we investigated whether or not curcumin induced cell death via DNA damage, chromatin condensation in human cervical cancer HeLa cells by using comet assay and DAPI staining, respectively, we found that curcumin induced cell death through the induction of DNA damage, and chromatin condensation. Western blotting and confocal laser microscopy examination were used to examine the effects of curcumin on protein expression associated with DNA damage, repair and translocation of proteins. We found that curcumin at 13 µM increased the protein levels associated with DNA damage and repair, such as O6-methylguanine-DNA methyltransferase, early-onset breast cancer 1 (BRCA1), mediator of DNA damage checkpoint 1, p-p53 and p-H2A.XSer140 in HeLa cells. Results from confocal laser systems microscopy indicated that curcumin increased the translocation of p-p53 and p-H2A.XSer140 from cytosol to nuclei in HeLa cells. In conclusion, curcumin induced cell death in HeLa cells via induction of DNA damage, and chromatin condensation in vitro.
Vítová, Milada; Bišová, Kateřina; Zachleder, Vilém
2011-01-01
DNA damage is a threat to genomic integrity in all living organisms. Plants and green algae are particularly susceptible to DNA damage especially that caused by UV light, due to their light dependency for photosynthesis. For survival of a plant, and other eukaryotic cells, it is essential for an organism to continuously check the integrity of its genetic material and, when damaged, to repair it immediately. Cells therefore utilize a DNA damage response pathway that is responsible for sensing, reacting to and repairing damaged DNA. We have studied the effect of 5-fluorodeoxyuridine, zeocin, caffeine and combinations of these on the cell cycle of the green alga Scenedesmus quadricauda. The cells delayed S phase and underwent a permanent G2 phase block if DNA metabolism was affected prior to S phase; the G2 phase block imposed by zeocin was partially abolished by caffeine. No cell cycle block was observed if the treatment with zeocin occurred in G2 phase and the cells divided normally. CDKA and CDKB kinases regulate mitosis in S. quadricauda; their kinase activities were inhibited by Wee1. CDKA, CDKB protein levels were stabilized in the presence of zeocin. In contrast, the protein level of Wee1 was unaffected by DNA perturbing treatments. Wee1 therefore does not appear to be involved in the DNA damage response in S. quadricauda. Our results imply a specific reaction to DNA damage in S. quadricauda, with no cell cycle arrest, after experiencing DNA damage during G2 phase. PMID:21603605
Mechanisms of free radical-induced damage to DNA.
Dizdaroglu, Miral; Jaruga, Pawel
2012-04-01
Endogenous and exogenous sources cause free radical-induced DNA damage in living organisms by a variety of mechanisms. The highly reactive hydroxyl radical reacts with the heterocyclic DNA bases and the sugar moiety near or at diffusion-controlled rates. Hydrated electron and H atom also add to the heterocyclic bases. These reactions lead to adduct radicals, further reactions of which yield numerous products. These include DNA base and sugar products, single- and double-strand breaks, 8,5'-cyclopurine-2'-deoxynucleosides, tandem lesions, clustered sites and DNA-protein cross-links. Reaction conditions and the presence or absence of oxygen profoundly affect the types and yields of the products. There is mounting evidence for an important role of free radical-induced DNA damage in the etiology of numerous diseases including cancer. Further understanding of mechanisms of free radical-induced DNA damage, and cellular repair and biological consequences of DNA damage products will be of outmost importance for disease prevention and treatment.
A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE INDUCED BY TOXIC INDUSTRIAL CHEMICALS
One of the reported effects for exposure to many of the toxic industrial chemicals is DNA damage. The present study describes a simple, rapid and innovative assay to detect DNA damage resulting from exposure of surrogate DNA to toxic industrial chemicals (acrolein, allylamine, ch...
A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE INDUCED BY STYRENE OXIDE
A rapid and simple assay to detect DNA damage to calf thymus DNA caused by styrene oxide (SO) is reported. This assay is based on changes observed in the melting and annealing behavior of the damaged DNA. The melting annealing process was monitored using a fluorescence indicat...
A Green's Function Approach to Simulate DNA Damage by the Indirect Effect
NASA Technical Reports Server (NTRS)
Plante, Ianik; Cicinotta, Francis A.
2013-01-01
The DNA damage is of fundamental importance in the understanding of the effects of ionizing radiation. DNA is damaged by the direct effect of radiation (e.g. direct ionization) and by indirect effect (e.g. damage by.OH radicals created by the radiolysis of water). Despite years of research, many questions on the DNA damage by ionizing radiation remains. In the recent years, the Green's functions of the diffusion equation (GFDE) have been used extensively in biochemistry [1], notably to simulate biochemical networks in time and space [2]. In our future work on DNA damage, we wish to use an approach based on the GFDE to refine existing models on the indirect effect of ionizing radiation on DNA. To do so, we will use the code RITRACKS [3] developed at the NASA Johnson Space Center to simulate the radiation track structure and calculate the position of radiolytic species after irradiation. We have also recently developed an efficient Monte-Carlo sampling algorithm for the GFDE of reversible reactions with an intermediate state [4], which can be modified and adapted to simulate DNA damage by free radicals. To do so, we will use the known reaction rate constants between radicals (OH, eaq, H,...) and the DNA bases, sugars and phosphates and use the sampling algorithms to simulate the diffusion of free radicals and chemical reactions with DNA. These techniques should help the understanding of the contribution of the indirect effect in the formation of DNA damage and double-strand breaks.
DNA Damage Response, Redox Status and Hematopoiesis
Weiss, Cary N.; Ito, Keisuke
2013-01-01
The ability of hematopoietic stem cells (HSCs) to self-renew and differentiate into progenitors is essential for homeostasis of the hematopoietic system. The longevity of HSCs makes them vulnerable to accumulating DNA damage, which may be leukemogenic or result in senescence and cell death. Additionally, the ability of HSCs to self-renew and differentiate allows DNA damage to spread throughout the hematologic system, leaving the organism vulnerable to disease. In this review we discuss cell fate decisions made in the face of DNA damage and other cellular stresses, and the role of reactive oxygen species in the long-term maintenance of HSCs and their DNA damage response. PMID:24041596
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Satyender; Kumar, Vivek; Vashisht, Kapil
2011-11-15
Organophosphate pesticides (OPs) are primarily metabolized by several xenobiotic metabolizing enzymes (XMEs). Very few studies have explored genetic polymorphisms of XMEs and their association with DNA damage in pesticide-exposed workers. The present study was designed to determine the role of genetic polymorphisms of CYP1A1, CYP3A5, CYP2C9, CYP2D6, and PON1 in the modulation of DNA damage in workers occupationally exposed to OPs. We examined 284 subjects including 150 workers occupationally exposed to OPs and 134 normal healthy controls. The DNA damage was evaluated using the alkaline comet assay and genotyping was done using PCR-RFLP. The results revealed that the PONase activitymore » toward paraoxonase and AChE activity was found significantly lowered in workers as compared to control subjects (p < 0.001). Workers showed significantly higher DNA damage compared to control subjects (14.37 {+-} 2.15 vs. 6.24 {+-} 1.37 tail% DNA, p < 0.001). Further, the workers with CYP2D6*3 PM and PON1 (QQ and MM) genotypes were found to have significantly higher DNA damage when compared to other genotypes (p < 0.05). In addition, significant increase in DNA damage was also observed in workers with concomitant presence of certain CYP2D6 and PON1 (Q192R and L55M) genotypes which need further extensive studies. In conclusion, the results indicate that the PON1 and CYP2D6 genotypes can modulate DNA damage elicited by some OPs possibly through gene-environment interactions. -- Highlights: Black-Right-Pointing-Pointer Role of CYP1A1, CYP3A5, CYP2C, CYP2D6 and PON1 genotypes on DNA damage. Black-Right-Pointing-Pointer Workers exposed to some OPs demonstrated increased DNA damage. Black-Right-Pointing-Pointer CYP2D6 *3 PM and PON1 (Q192R and L55M) genotypes are associated with DNA damage. Black-Right-Pointing-Pointer Concomitant presence of certain CYP2D6 and PON1 genotypes can increase DNA damage.« less
Formation of Clustered DNA Damage after High-LET Irradiation: A Review
NASA Technical Reports Server (NTRS)
Hada, Megumi; Georgakilas, Alexandros G.
2008-01-01
Radiation can cause as well as cure cancer. The risk of developing radiation-induced cancer has traditionally been estimated from cancer incidence among survivors of the atomic bombs in Hiroshima and Nagasaki. These data provide the best estimate of human cancer risk over the dose range for low linear energy transfer (LET) radiations, such as X- or gamma-rays. The situation of estimating the real biological effects becomes even more difficult in the case of high LET particles encountered in space or as the result of domestic exposure to particles from radon gas emitters or other radioactive emitters like uranium-238. Complex DNA damage, i.e., the signature of high-LET radiations comprises by closely spaced DNA lesions forming a cluster of DNA damage. The two basic groups of complex DNA damage are double strand breaks (DSBs) and non-DSB oxidative clustered DNA lesions (OCDL). Theoretical analysis and experimental evidence suggest there is increased complexity and severity of complex DNA damage with increasing LET (linear energy transfer) and a high mutagenic or carcinogenic potential. Data available on the formation of clustered DNA damage (DSBs and OCDL) by high-LET radiations are often controversial suggesting a variable response to dose and type of radiation. The chemical nature and cellular repair mechanisms of complex DNA damage have been much less characterized than those of isolated DNA lesions like an oxidized base or a single strand break especially in the case of high-LET radiation. This review will focus on the induction of clustered DNA damage by high-LET radiations presenting the earlier and recent relative data.
Dalrymple, Annette; Ordoñez, Patricia; Thorne, David; Dillon, Debbie; Meredith, Clive
2015-06-01
Smoking is a cause of serious diseases, including lung cancer, emphysema, chronic bronchitis and heart disease. DNA damage is thought to be one of the mechanisms by which cigarette smoke (CS) initiates disease in the lung. Indeed, CS induced DNA damage can be measured in vitro and in vivo. The potential of the Comet assay to measure DNA damage in isolated rat lung alveolar type II epithelial cells (AEC II) was explored as a means to include a genotoxicity end-point in rodent sub-chronic inhalation studies. In this study, published AEC II isolation methods were improved to yield viable cells suitable for use in the Comet assay. The improved method reduced the level of basal DNA damage and DNA repair in isolated AEC II. CS induced DNA damage could also be quantified in isolated cells following a single or 5 days CS exposure. In conclusion, the Comet assay has the potential to determine CS or other aerosol induced DNA damage in AEC II isolated from rodents used in sub-chronic inhalation studies. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Rai, Priyamvada
2010-11-28
Activation of persistent DNA damage response (DDR) signaling is associated with the induction of a permanent proliferative arrest known as cellular senescence, a phenomenon intrinsically linked to both tissue aging as well as tumor suppression. The DNA damage observed in senescent cells has been attributed to elevated levels of reactive oxygen species (ROS), failing DNA damage repair processes, and/or oncogenic activation. It is not clear how labile molecules such as ROS are able to damage chromatin-bound DNA to a sufficient extent to invoke persistent DNA damage and DDR signaling. Recent evidence suggests that the nucleotide pool is a significant target for oxidants and that oxidized nucleotides, once incorporated into genomic DNA, can lead to the induction of a DNA strand break-associated DDR that triggers senescence in normal cells and in cells sustaining oncogene activation. Evasion of this DDR and resulting senescence is a key step in tumor progression. This review will explore the role of oxidation in the nucleotide pool as a major effector of oxidative stress-induced genotoxic damage and DDR in the context of cellular senescence and tumorigenic transformation. 2010 Elsevier B.V. All rights reserved.
Remely, Marlene; Ferk, Franziska; Sterneder, Sonja; Setayesh, Tahereh; Kepcija, Tatjana; Roth, Sylvia; Noorizadeh, Rahil; Greunz, Martina; Rebhan, Irene; Wagner, Karl-Heinz; Knasmüller, Siegfried; Haslberger, Alexander
2017-06-14
Obesity is associated with low-grade inflammation, increased ROS production and DNA damage. Supplementation with antioxidants might ameliorate DNA damage and support epigenetic regulation of DNA repair. C57BL/6J male mice were fed a high-fat (HFD) or a control diet (CD) with and without vitamin E supplementation (4.5 mg/kg body weight (b.w.)) for four months. DNA damage, DNA promoter methylation and gene expression of Dnmt1 and a DNA repair gene ( MLH1 ) were assayed in liver and colon. The HFD resulted in organ specific changes in DNA damage, the epigenetically important Dnmt1 gene, and the DNA repair gene MLH1 . Vitamin E reduced DNA damage and showed organ-specific effects on MLH1 and Dnmt1 gene expression and methylation. These results suggest that interventions with antioxidants and epigenetic active food ingredients should be developed as an effective prevention for obesity-and oxidative stress-induced health risks.
Margaret Pratt, M.; King, Leon C.; Adams, Linda D.; John, Kaarthik; Sirajuddin, Paul; Olivero, Ofelia A.; Manchester, David K.; Sram, Radim J.; DeMarini, David M.; Poirier, Miriam C.
2010-01-01
Three classes of DNA damage were assessed in human placentas collected (in 2000-4) from 51 women living in the Teplice region of the Czech Republic, a mining area considered to have some of the worst environmental pollution in Europe in the 1980s. Polycyclic aromatic hydrocarbon (PAH)-DNA adducts were localized and semiquantified using immunohistochemistry (IHC) and the Automated Cellular Imaging System (ACIS). More generalized DNA damage was measured both by 32P-postlabeling and by abasic (AB) site analysis. Placenta stained with antiserum elicited against DNA modified with r7, t8-dihydroxy-t-9, 10-oxy-7,8,9,10-tetrahydro-benzo[a]pyrene (BPDE) revealed PAH-DNA adduct localization in nuclei of the cytotrophoblast (CT) cells and syncytiotrophoblast (ST) knots lining the chorionic villi. The highest levels of DNA damage, 49–312 PAH-DNA adducts/108 nucleotides, were found by IHC/ACIS in 14 immediately-fixed placenta samples. An additional 37 placenta samples were stored frozen before fixation and embedding, and because PAH-DNA adducts were largely undetectable in these samples, freezing was implicated in the loss of IHC signal. The same placentas (n = 37) contained 1.7 – 8.6 stable/bulky DNA adducts/108 nucleotides and 0.6 – 47.2 AB sites/105 nucleotides. For all methods there was no correlation among types of DNA damage and no difference in extent of DNA damage between smokers and non-smokers. Therefore, the data show that DNA from placentas obtained in Teplice contained multiple types of DNA damage, which likely arose from various environmental exposures. In addition, PAH-DNA adducts were present at high concentrations in the CT cells and ST knots of the chorionic villi. PMID:20839217
Pratt, M Margaret; King, Leon C; Adams, Linda D; John, Kaarthik; Sirajuddin, Paul; Olivero, Ofelia A; Manchester, David K; Sram, Radim J; DeMarini, David M; Poirier, Miriam C
2011-01-01
Three classes of DNA damage were assessed in human placentas collected (2000-2004) from 51 women living in the Teplice region of the Czech Republic, a mining area considered to have some of the worst environmental pollution in Europe in the 1980s. Polycyclic aromatic hydrocarbon (PAH)-DNA adducts were localized and semiquantified using immunohistochemistry (IHC) and the Automated Cellular Imaging System (ACIS). More generalized DNA damage was measured both by (32)P-postlabeling and by abasic (AB) site analysis. Placenta stained with antiserum elicited against DNA modified with 7β,8α-dihydroxy-9α,10α-epoxy-7,8,9,10-tetrahydro-benzo[a]pyrene (BPDE) revealed PAH-DNA adduct localization in nuclei of the cytotrophoblast (CT) cells and syncytiotrophoblast (ST) knots lining the chorionic villi. The highest levels of DNA damage, 49-312 PAH-DNA adducts/10(8) nucleotides, were found by IHC/ACIS in 14 immediately fixed placenta samples. An additional 37 placenta samples were stored frozen before fixation and embedding, and because PAH-DNA adducts were largely undetectable in these samples, freezing was implicated in the loss of IHC signal. The same placentas (n = 37) contained 1.7-8.6 stable/bulky DNA adducts/10(8) nucleotides and 0.6-47.2 AB sites/10(5) nucleotides. For all methods, there was no correlation among types of DNA damage and no difference in extent of DNA damage between smokers and nonsmokers. Therefore, the data show that DNA from placentas obtained in Teplice contained multiple types of DNA damage, which likely arose from various environmental exposures. In addition, PAH-DNA adducts were present at high concentrations in the CT cells and ST knots of the chorionic villi. Copyright © 2010 Wiley-Liss, Inc.
MGMT hypomethylation is associated with DNA damage in workers exposed to low-dose benzene.
Li, Jie; Zhang, Xinjie; He, Zhini; Sun, Qing; Qin, Fei; Huang, Zhenlie; Zhang, Xiao; Sun, Xin; Liu, Linhua; Chen, Liping; Gao, Chen; Wang, Shan; Wang, Fangping; Li, Daochuan; Zeng, Xiaowen; Deng, Qifei; Wang, Qing; Zhang, Bo; Tang, Huanwen; Chen, Wen; Xiao, Yongmei
2017-07-01
This study aims to assess the effects of low-dose benzene on DNA damage and O 6 -methylguanine-DNA methyltransferase (MGMT) methylation in occupational workers. We recruited 96 nonsmoking male petrochemical industry workers exposed to low-dose benzene and 100 matched control workers. Urinary S-phenylmercapturic acid (SPMA) and S-benzylmercapturic acid (SBMA) were measured for indicating internal exposure of benzene and toluene. The degree of DNA damage was determined by the Comet assay. The levels of MGMT methylation were detected quantitatively by bisulphite-PCR pyrosequencing assay. The benzene-exposed workers had significantly higher levels of urinary SPMA, degree of DNA damage but decreased MGMT methylation than the controls (all p < 0.05). In contrast, the level of urinary SBMA does not differ between benzene-exposed workers and the controls. In all participants, MGMT methylation was negatively associated with the urinary SPMA and the degree of DNA damage, indicating that epigenetic regulation might be involved in response to low-dose benzene exposure-induced genetic damage. MGMT methylation could be a potent biomarker associated with low-dose benzene exposure and benzene-induced DNA damage.
Independent mechanisms recruit the cohesin loader protein NIPBL to sites of DNA damage.
Bot, Christopher; Pfeiffer, Annika; Giordano, Fosco; Manjeera, Dharani E; Dantuma, Nico P; Ström, Lena
2017-03-15
NIPBL is required to load the cohesin complex on to DNA. While the canonical role of cohesin is to couple replicated sister chromatids together until the onset of mitosis, it also promotes tolerance to DNA damage. Here, we show that NIPBL is recruited to DNA damage throughout the cell cycle via independent mechanisms, influenced by type of damage. First, the heterochromatin protein HP1γ (also known as CBX3) recruits NIPBL to DNA double-strand breaks (DSBs) through the corresponding HP1-binding motif within the N-terminus. By contrast, the C-terminal HEAT repeat domain is unable to recruit NIPBL to DSBs but independently targets NIPBL to laser microirradiation-induced DNA damage. Each mechanism is dependent on the RNF8 and RNF168 ubiquitylation pathway, while the recruitment of the HEAT repeat domain requires further ATM or ATR activity. Thus, NIPBL has evolved a sophisticated response to damaged DNA that is influenced by the form of damage, suggesting a highly dynamic role for NIPBL in maintaining genomic stability. © 2017. Published by The Company of Biologists Ltd.
Thyroid hormone-induced oxidative damage on lipids, glutathione and DNA in the mouse heart.
Gredilla, R; Barja, G; López-Torres, M
2001-10-01
Oxygen radicals of mitochondrial origin are involved in oxidative damage. In order to analyze the possible relationship between metabolic rate, oxidative stress and oxidative damage, OF1 female mice were rendered hyper- and hypothyroid by chronic administration of 0.0012% L-thyroxine (T4) and 0.05% 6-n-propyl-2-thiouracil (PTU), respectively, in their drinking water for 5 weeks. Hyperthyroidism significantly increased the sensitivity to lipid peroxidation in the heart, although the endogenous levels of lipid peroxidation were not altered. Thyroid hormone-induced oxidative stress also resulted in higher levels of GSSG and GSSG/GSH ratio. Oxidative damage to mitochondrial DNA was greater than that to genomic DNA. Hyperthyroidism decreased oxidative damage to genomic DNA. Hypothyroidism did not modify oxidative damage in the lipid fraction but significantly decreased GSSG and GSSG/GSH ratio and oxidative damage to mitochondrial DNA. These results indicate that thyroid hormones modulate oxidative damage to lipids and DNA, and cellular redox potential in the mouse heart. A higher oxidative stress in the hyperthyroid group is presumably neutralized in the case of nuclear DNA by an increase in repair activity, thus protecting this key molecule. Treatment with PTU, a thyroid hormone inhibitor, reduced oxidative damage in the different cell compartments.
Fructose-Rich Diet Affects Mitochondrial DNA Damage and Repair in Rats.
Cioffi, Federica; Senese, Rosalba; Lasala, Pasquale; Ziello, Angela; Mazzoli, Arianna; Crescenzo, Raffaella; Liverini, Giovanna; Lanni, Antonia; Goglia, Fernando; Iossa, Susanna
2017-03-24
Evidence indicates that many forms of fructose-induced metabolic disturbance are associated with oxidative stress and mitochondrial dysfunction. Mitochondria are prominent targets of oxidative damage; however, it is not clear whether mitochondrial DNA (mtDNA) damage and/or its lack of repair are events involved in metabolic disease resulting from a fructose-rich diet. In the present study, we evaluated the degree of oxidative damage to liver mtDNA and its repair, in addition to the state of oxidative stress and antioxidant defense in the liver of rats fed a high-fructose diet. We used male rats feeding on a high-fructose or control diet for eight weeks. Our results showed an increase in mtDNA damage in the liver of rats fed a high-fructose diet and this damage, as evaluated by the expression of DNA polymerase γ, was not repaired; in addition, the mtDNA copy number was found to be significantly reduced. A reduction in the mtDNA copy number is indicative of impaired mitochondrial biogenesis, as is the finding of a reduction in the expression of genes involved in mitochondrial biogenesis. In conclusion, a fructose-rich diet leads to mitochondrial and mtDNA damage, which consequently may have a role in liver dysfunction and metabolic diseases.
Aging of hematopoietic stem cells: DNA damage and mutations?
Moehrle, Bettina M; Geiger, Hartmut
2016-10-01
Aging in the hematopoietic system and the stem cell niche contributes to aging-associated phenotypes of hematopoietic stem cells (HSCs), including leukemia and aging-associated immune remodeling. Among others, the DNA damage theory of aging of HSCs is well established, based on the detection of a significantly larger amount of γH2AX foci and a higher tail moment in the comet assay, both initially thought to be associated with DNA damage in aged HSCs compared with young cells, and bone marrow failure in animals devoid of DNA repair factors. Novel data on the increase in and nature of DNA mutations in the hematopoietic system with age, the quality of the DNA damage response in aged HSCs, and the nature of γH2AX foci question a direct link between DNA damage and the DNA damage response and aging of HSCs, and rather favor changes in epigenetics, splicing-factors or three-dimensional architecture of the cell as major cell intrinsic factors of HSCs aging. Aging of HSCs is also driven by a strong contribution of aging of the niche. This review discusses the DNA damage theory of HSC aging in the light of these novel mechanisms of aging of HSCs. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.
You, B-J; Wu, Y-C; Lee, C-L; Lee, H-Z
2014-03-01
4β-Hydroxywithanolide E is a bioactive withanolide extracted from Physalis peruviana. 4β-Hydroxywithanolide E caused reactive oxygen species production and cell apoptosis in human breast cancer MCF-7 cells. We further found that 4β-hydroxywithanolide E induced DNA damage and regulated the DNA damage signaling in MCF-7 cells. The DNA damage sensors and repair proteins act promptly to remove DNA lesions by 4β-hydroxywithanolide E. The ataxia-telangiectasia mutated protein (ATM)-dependent DNA damage signaling pathway is involved in 4β-hydroxywithanolide E-induced apoptosis of MCF-7 cells. Non-homologous end joining pathway, but not homologous recombination, is the major route of protection of MCF-7 cells against 4β-hydroxywithanolide E-induced DNA damage. 4β-Hydroxywithanolide E had no significant impact on the base excision repair pathway. In this study, we examined the 4β-hydroxywithanolide E-induced DNA damage as a research tool in project investigating the DNA repair signaling in breast cancer cells. We also suggest that 4β-hydroxywithanolide E assert its anti-tumor activity in carcinogenic progression and develop into a dietary chemopreventive agent. Copyright © 2014 Elsevier Ltd. All rights reserved.
Gajski, Goran; Domijan, Ana-Marija; Garaj-Vrhovac, Vera
2012-07-01
Bee venom (BV) has toxic effects in a variety of cell systems and oxidative stress has been proposed as a possible mechanism of its toxicity. This study investigated the in vitro effect of BV on glutathione (GSH) and malondialdehyde (MDA) levels, and their association with BV-induced DNA strand breaks and oxidative DNA damage in human peripheral blood leukocytes (HPBLs). Blood samples were treated with BV at concentrations ranging from 0.1 to 10 μg/ml over different lengths of time, and DNA damage in HPBLs was monitored with the alkaline and formamidopyrimidine glycoslyase (FPG)-modified comet assays, while GSH and MDA levels were determined in whole blood. Results showed a significant increase in overall DNA damage and FPG-sensitive sites in DNA of HPBLs exposed to BV compared with HPBLs from controls. An increase in DNA damage (assessed with both comet assays) was significantly associated with changes in MDA and GSH levels. When pretreated with N-acetyl-L-cysteine, a source of cysteine for the synthesis of the endogenous antioxidant GSH, a significant reduction of the DNA damaging effects of BV in HPBLs was noted. This suggests that oxidative stress is at least partly responsible for the DNA damaging effects of BV. Copyright © 2012 Wiley Periodicals, Inc.
Cwikel, Julie G; Gidron, Yori; Quastel, Michael
2010-01-01
Radiation causes DNA damage, increases risk of cancer, and is associated with psychological stress responses. This article proposes an evidence-based integrative model in which psychological factors could interact with radiation by either augmenting or moderating the adverse effects of radiation on DNA integrity and eventual tumorigenesis. Based on a review of the literature, we demonstrate the following: (1) the effects of low-dose radiation exposures on DNA integrity and on tumorigenesis; (2) the effects of low-dose radiation exposure on psychological distress; (3) the relationship between psychological factors and DNA damage; and (4) the possibility that psychological stress augments and that psychological resource variables moderate radiation-induced DNA damage and risk of cancer. The additional contribution of psychological processes to radiation-DNA damage-cancer relationships needs further study, and if verified, has clinical implications.
FOLATE DEFICIENCY ENHANCES ARSENIC-INDUCED GENOTOXICITY IN MICE
Folate deficiency increases background levels of DNA damage and can enhance the mutagenicity of chemical agents. Duplicate experiments were performed to investigate the effect of dietary folate deficiency on arsenic induction of micronuclei (MN) in peripheral blood cells. Male C5...
DIETARY FOLATE DEFICIENCY ENHANCES ARSENIC-INDUCED MICRONUCLEUS FORMATION IN MICE
Dietary folate deficiency enhances arsenic-induced micronucleus formation in mice.
Folate deficiency increases background levels ofDNA damage and can enhance the mutagenicity of chemical agents. Duplicate experiments were performed to investigate the effect of dietary...
Repair of DNA damage caused by cytosine deamination in mitochondrial DNA of forensic case samples.
Gorden, Erin M; Sturk-Andreaggi, Kimberly; Marshall, Charla
2018-05-01
DNA sequence damage from cytosine deamination is well documented in degraded samples, such as those from ancient and forensic contexts. This study examined the effect of a DNA repair treatment on mitochondrial DNA (mtDNA) from aged and degraded skeletal samples. DNA extracts from 21 non-probative, degraded skeletal samples (aged 50-70 years) were utilized for the analysis. A portion of each sample extract was subjected to DNA repair using a commercial repair kit, the New England BioLabs' NEBNext FFPE DNA Repair Kit (Ipswich, MA). MtDNA was enriched using PCR and targeted capture in a side-by-side experiment of untreated and repaired DNA. Sequencing was performed using both traditional (Sanger-type; STS) and next-generation sequencing (NGS) methods Although cytosine deamination was evident in the mtDNA sequence data, the observed level of damaged bases varied by sequencing method as well as by enrichment type. The STS PCR amplicon data did not show evidence of cytosine deamination that could be distinguished from background signal in either the untreated or repaired sample set. However, the same PCR amplicons showed 850 C → T/G → A substitutions consistent with cytosine deamination with variant frequencies (VFs) of up to 25% when sequenced using NGS methods The occurrence of base misincorporation due to cytosine deamination was reduced by 98% (to 10) in the NGS amplicon data after repair. The NGS capture data indicated low levels (1-2%) of cytosine deamination in mtDNA fragments that was effectively mitigated by DNA repair. The observed difference in the level of cytosine deamination between the PCR and capture enrichment methods can be attributed to the greater propensity for stochastic effects from the PCR enrichment technique employed (e.g., low template input, increased PCR cycles). Altogether these results indicate that DNA repair may be required when sequencing PCR-amplified DNA from degraded forensic case samples with NGS methods. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Porreca, Immacolata; Ulloa Severino, Luisa; D’Angelo, Fulvio; Cuomo, Danila; Ceccarelli, Michele; Altucci, Lucia; Amendola, Elena; Nebbioso, Angela; Mallardo, Massimo
2016-01-01
Epidemiological and experimental data highlighted the thyroid-disrupting activity of bisphenol A (BPA). Although pivotal to identify the mechanisms of toxicity, direct low-dose BPA effects on thyrocytes have not been assessed. Here, we report the results of microarray experiments revealing that the transcriptome reacts dynamically to low-dose BPA exposure, adapting the changes in gene expression to the exposure duration. The response involves many genes, enriching specific pathways and biological functions mainly cell death/proliferation or DNA repair. Their expression is only slightly altered but, since they enrich specific pathways, this results in major effects as shown here for transcripts involved in the DNA repair pathway. Indeed, even though no phenotypic changes are induced by the treatment, we show that the exposure to BPA impairs the cell response to further stressors. We experimentally verify that prolonged exposure to low doses of BPA results in a delayed response to UV-C-induced DNA damage, due to impairment of p21-Tp53 axis, with the BPA-treated cells more prone to cell death and DNA damage accumulation. The present findings shed light on a possible mechanism by which BPA, not able to directly cause genetic damage at environmental dose, may exert an indirect genotoxic activity. PMID:26982218
Mus308 Processes Oxygen and Nitrogen Ethylation DNA Damage in Germ Cells of Drosophila
Díaz-Valdés, Nancy; Comendador, Miguel A.; Sierra, L. María
2010-01-01
The D. melanogaster mus308 gene, highly conserved among higher eukaryotes, is implicated in the repair of cross-links and of O-ethylpyrimidine DNA damage, working in a DNA damage tolerance mechanism. However, despite its relevance, its possible role on the processing of different DNA ethylation damages is not clear. To obtain data on mutation frequency and on mutation spectra in mus308 deficient (mus308−) conditions, the ethylating agent diethyl sulfate (DES) was analysed in postmeiotic male germ cells. These data were compared with those corresponding to mus308 efficient conditions. Our results indicate that Mus308 is necessary for the processing of oxygen and N-ethylation damage, for the survival of fertilized eggs depending on the level of induced DNA damage, and for an influence of the DNA damage neighbouring sequence. These results support the role of mus308 in a tolerance mechanism linked to a translesion synthesis pathway and also to the alternative end-joinig system. PMID:20936147
Chromosome territories reposition during DNA damage-repair response
2013-01-01
Background Local higher-order chromatin structure, dynamics and composition of the DNA are known to determine double-strand break frequencies and the efficiency of repair. However, how DNA damage response affects the spatial organization of chromosome territories is still unexplored. Results Our report investigates the effect of DNA damage on the spatial organization of chromosome territories within interphase nuclei of human cells. We show that DNA damage induces a large-scale spatial repositioning of chromosome territories that are relatively gene dense. This response is dose dependent, and involves territories moving from the nuclear interior to the periphery and vice versa. Furthermore, we have found that chromosome territory repositioning is contingent upon double-strand break recognition and damage sensing. Importantly, our results suggest that this is a reversible process where, following repair, chromosome territories re-occupy positions similar to those in undamaged control cells. Conclusions Thus, our report for the first time highlights DNA damage-dependent spatial reorganization of whole chromosomes, which might be an integral aspect of cellular damage response. PMID:24330859
DNA damage preceding dopamine neuron degeneration in A53T human α-synuclein transgenic mice.
Wang, Degui; Yu, Tianyu; Liu, Yongqiang; Yan, Jun; Guo, Yingli; Jing, Yuhong; Yang, Xuguang; Song, Yanfeng; Tian, Yingxia
2016-12-02
Defective DNA repair has been linked with age-associated neurodegenerative disorders. Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by genetic and environmental factors. Whether damages to nuclear DNA contribute to neurodegeneration of PD still remain obscure. in this study we aim to explore whether nuclear DNA damage induce dopamine neuron degeneration in A53T human α-Synuclein over expressed mouse model. We investigated the effects of X-ray irradiation on A53T-α-Syn MEFs and A53T-α-Syn transgene mice. Our results indicate that A53T-α-Syn MEFs show a prolonged DNA damage repair process and senescense phenotype. DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenic mice and decrease the number of nigrostriatal dopaminergic neurons. Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages. Copyright © 2016 Elsevier Inc. All rights reserved.
Genotoxic effect of ethacrynic acid and impact of antioxidants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, William M.; Hoffman, Jared D.; Loo, George, E-mail: g_loo@uncg.edu
It is known that ethacrynic acid (EA) decreases the intracellular levels of glutathione. Whether the anticipated oxidative stress affects the structural integrity of DNA is unknown. Therefore, DNA damage was assessed in EA-treated HCT116 cells, and the impact of several antioxidants was also determined. EA caused both concentration-dependent and time-dependent DNA damage that eventually resulted in cell death. Unexpectedly, the DNA damage caused by EA was intensified by either ascorbic acid or trolox. In contrast, EA-induced DNA damage was reduced by N-acetylcysteine and by the iron chelator, deferoxamine. In elucidating the DNA damage, it was determined that EA increased themore » production of reactive oxygen species, which was inhibited by N-acetylcysteine and deferoxamine but not by ascorbic acid and trolox. Also, EA decreased glutathione levels, which were inhibited by N-acetylcysteine. But, ascorbic acid, trolox, and deferoxamine neither inhibited nor enhanced the capacity of EA to decrease glutathione. Interestingly, the glutathione synthesis inhibitor, buthionine sulfoxime, lowered glutathione to a similar degree as EA, but no noticeable DNA damage was found. Nevertheless, buthionine sulfoxime potentiated the glutathione-lowering effect of EA and intensified the DNA damage caused by EA. Additionally, in examining redox-sensitive stress gene expression, it was found that EA increased HO-1, GADD153, and p21mRNA expression, in association with increased nuclear localization of Nrf-2 and p53 proteins. In contrast to ascorbic acid, trolox, and deferoxamine, N-acetylcysteine suppressed the EA-induced upregulation of GADD153, although not of HO-1. Overall, it is concluded that EA has genotoxic properties that can be amplified by certain antioxidants. - Highlights: • Ethacrynic acid (EA) caused cellular DNA damage. • EA-induced DNA damage was potentiated by ascorbic acid or trolox. • EA increased ROS production, not inhibited by ascorbic acid or trolox. • EA decreased glutathione levels, not prevented by ascorbic acid or trolox. • Buthionine sulfoxime intensified the DNA damage caused by EA.« less
DNA Damage among Wood Workers Assessed with the Comet Assay
Bruschweiler, Evin Danisman; Wild, Pascal; Huynh, Cong Khanh; Savova-Bianchi, Dessislava; Danuser, Brigitta; Hopf, Nancy B.
2016-01-01
Exposure to wood dust, a human carcinogen, is common in wood-related industries, and millions of workers are occupationally exposed to wood dust worldwide. The comet assay is a rapid, simple, and sensitive method for determining DNA damage. The objective of this study was to investigate the DNA damage associated with occupational exposure to wood dust using the comet assay (peripheral blood samples) among nonsmoking wood workers (n = 31, furniture and construction workers) and controls (n = 19). DNA damage was greater in the group exposed to composite wood products compared to the group exposed to natural woods and controls (P < 0.001). No difference in DNA damage was observed between workers exposed to natural woods and controls (P = 0.13). Duration of exposure and current dust concentrations had no effect on DNA damage. In future studies, workers’ exposures should include cumulative dust concentrations and exposures originating from the binders used in composite wood products. PMID:27398027
Selenium Potentiates Chemotherapeutic Selectivity: Improving Efficacy and Reducing Toxicity
2007-04-01
regulates the rate-limiting step in global genomic repair through transcriptional control of the DNA damage recognition proteins xeroderma pigmentosum ...31). Xeroderma pigmentosum XPA cells defective in DNA repair served as a negative control for some experiments, as previously described (28). Cell...simian virus 40-transformed human cells. Mol Carcinog 2000;29:17–24. 14. Hwang BJ, Ford JM, Hanawalt PC, Chu G. Expression of the p48 xeroderma pigmentosum
ATM directs DNA damage responses and proteostasis via genetically separable pathways
Lee, Ji-Hoon; Mand, Michael R.; Kao, Chung-Hsuan; Zhou, Yi; Ryu, Seung W.; Richards, Alicia L.; Coon, Joshua J.; Paull, Tanya T.
2018-01-01
The protein kinase ATM is a master regulator of the DNA damage response but also responds directly to oxidative stress. Loss of ATM causes Ataxia telangiectasia, a neurodegenerative disorder with pleiotropic symptoms that include cerebellar dysfunction, cancer, diabetes, and premature aging. Here, we genetically separated DNA damage activation of ATM from oxidative activation using separation-of-function mutations. We found that deficiency in ATM activation by Mre11-Rad50-Nbs1 and DNA double-strand breaks resulted in loss of cell viability, checkpoint activation, and DNA end resection in response to DNA damage. In contrast, loss of oxidative activation of ATM had minimal effects on DNA damage-related outcomes but blocked ATM-mediated initiation of checkpoint responses after oxidative stress and resulted in deficiencies in mitochondrial function and autophagy. In addition, expression of ATM lacking oxidative activation generates widespread protein aggregation. These results indicate a direct relationship between the mechanism of ATM activation and its effects on cellular metabolism and DNA damage responses in human cells and implicates ATM in the control of protein homeostasis. PMID:29317520
Lewis, Sheena E M; John Aitken, R; Conner, Sarah J; Iuliis, Geoffry De; Evenson, Donald P; Henkel, Ralph; Giwercman, Aleksander; Gharagozloo, Parviz
2013-10-01
Sperm DNA damage is a useful biomarker for male infertility diagnosis and prediction of assisted reproduction outcomes. It is associated with reduced fertilization rates, embryo quality and pregnancy rates, and higher rates of spontaneous miscarriage and childhood diseases. This review provides a synopsis of the most recent studies from each of the authors, all of whom have major track records in the field of sperm DNA damage in the clinical setting. It explores current laboratory tests and the accumulating body of knowledge concerning the relationship between sperm DNA damage and clinical outcomes. The paper proceeds to discuss the strengths, weaknesses and clinical applicability of current sperm DNA tests. Next, the biological significance of DNA damage in the male germ line is considered. Finally, as sperm DNA damage is often the result of oxidative stress in the male reproductive tract, the potential contribution of antioxidant therapy in the clinical management of this condition is discussed. DNA damage in human spermatozoa is an important attribute of semen quality. It should be part of the clinical work up and properly controlled trials addressing the effectiveness of antioxidant therapy should be undertaken as a matter of urgency. Sperm DNA damage is a useful biomarker for male infertility diagnosis and prediction of assisted reproduction outcomes. It is associated with reduced fertilization rates, embryo quality and pregnancy rates, and higher rates of spontaneous miscarriage and childhood diseases. With all of these fertility check points, it shows more promise than conventional semen parameters from a diagnostic perspective. Despite this, few infertility clinics use it routinely. This review provides a synopsis of the most recent studies from each of the authors, all of whom have major track records in the field of sperm DNA damage in the clinical setting. It explores current laboratory tests and the accumulating body of knowledge concerning the relationship between sperm DNA damage and clinical outcomes. The paper proceeds to discuss the strengths and weaknesses and clinical applicability of current sperm DNA fragmentation tests. Next, the biological significance of DNA damage in the male germ line is considered. Finally, as sperm DNA damage is often the result of increased oxidative stress in the male reproductive tract, the potential contribution of antioxidant therapy in the clinical management of this condition is discussed. As those working in this field of clinical research, we conclude that DNA damage in human spermatozoa is an important attribute of semen quality which should be carefully assessed in the clinical work up of infertile couples and that properly controlled trials addressing the effectiveness of antioxidant therapy should be undertaken as a matter of urgency. Copyright © 2013 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu
Phosphoramide mustard (PM), the ovotoxic metabolite of the anti-cancer agent cyclophosphamide (CPA), destroys rapidly dividing cells by forming NOR-G-OH, NOR-G and G-NOR-G adducts with DNA, potentially leading to DNA damage. A previous study demonstrated that PM induces ovarian DNA damage in rat ovaries. To investigate whether PM induces DNA adduct formation, DNA damage and induction of the DNA repair response, rat spontaneously immortalized granulosa cells (SIGCs) were treated with vehicle control (1% DMSO) or PM (3 or 6 μM) for 24 or 48 h. Cell viability was reduced (P < 0.05) after 48 h of exposure to 3 or 6more » μM PM. The NOR-G-OH DNA adduct was detected after 24 h of 6 μM PM exposure, while the more cytotoxic G-NOR-G DNA adduct was formed after 48 h by exposure to both PM concentrations. Phosphorylated H2AX (γH2AX), a marker of DNA double stranded break occurrence, was also increased by PM exposure, coincident with DNA adduct formation. Additionally, induction of genes (Atm, Parp1, Prkdc, Xrcc6, and Brca1) and proteins (ATM, γH2AX, PARP-1, PRKDC, XRCC6, and BRCA1) involved in DNA repair were observed in both a time- and dose-dependent manner. These data support that PM induces DNA adduct formation in ovarian granulosa cells, induces DNA damage and elicits the ovarian DNA repair response. - Highlights: • PM forms ovarian DNA adducts. • DNA damage marker γH2AX increased by PM exposure. • PM induces ovarian DNA double strand break repair.« less
Mutagenicity of p-aminophenol in E. coli WP2uvrA/pKM101 and its relevance to oxidative DNA damage.
Yoshida, R; Oikawa, S; Ogawa, Y; Miyakoshi, Y; Ooida, M; Asanuma, K; Shimizu, H
1998-07-08
It was recently reported that p-aminophenol (p-AP) induces DNA cleavage in mouse lymphoma cells, CHO cells and human lymphoblastoid cells. The mutagenicity of p-AP has not, however, been detected by reverse mutation assays. The purpose of this study was to assess the mutagenicity of p-AP by reverse mutation assay using Escherichia coli WP2uvrA/pKM101, which has a spectrum for detecting mutations different from those of other strains in the family with an AT base pair at the mutation site and has higher sensitivity to certain oxidative mutagens as compared to other strains. We found that p-AP was mutagenic to E. coli WP2uvrA/pKM101. The mutagenic activity of this compound was suppressed with the addition of dimethylsulfoxide or catalase, suggesting the involvement of active oxygen species in the mutagenic process induced by p-AP. To further elucidate the underlying mechanism, we used isolated DNA for the following experiments. It was revealed, by gel electrophoretic analysis, that p-AP induced DNA cleavage in the presence of Fe(III). However, p-AP alone did not induce this cleavage. Formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine by p-AP in calf thymus DNA was also detected in the presence of Fe(III) by HPLC with an electrochemical detector. ESR-spin trapping experiments using DMPO detected the production of hydroxyl radical (.OH) in the solution of p-AP with Fe(III). Both p-AP mediated DNA damages and .OH production by p-AP in the presence of Fe(III) were completely inhibited by .OH scavengers (ethanol, mannitol, sodium formate, dimethylsulfoxide) and catalase. These results suggest that .OH derived from the reaction between H2O2 and Fe(III) (Fenton reaction) participates in the oxidative DNA damage. Accordingly, the same mechanism might be working in E. coli WP2uvrA/pKM101 during induction of the mutation by p-AP.
Negureanu, Lacramioara; Salsbury, Freddie R
2013-01-01
DNA mismatch repair (MMR) proteins maintain genetic integrity in all organisms by recognizing and repairing DNA errors. Such alteration of hereditary information can lead to various diseases, including cancer. Besides their role in DNA repair, MMR proteins detect and initiate cellular responses to certain type of DNA damage. Its response to the damaged DNA has made the human MMR pathway a useful target for anticancer agents such as carboplatin. This study indicates that strong, specific interactions at the interface of MutSα in response to the mismatched DNA recognition are replaced by weak, non-specific interactions in response to the damaged DNA recognition. Data suggest a severe impairment of the dimerization of MutSα in response to the damaged DNA recognition. While the core of MutSα is preserved in response to the damaged DNA recognition, the loss of contact surface and the rearrangement of contacts at the protein interface suggest a different packing in response to the damaged DNA recognition. Coupled in response to the mismatched DNA recognition, interaction energies, hydrogen bonds, salt bridges, and solvent accessible surface areas at the interface of MutSα and within the subunits are uncoupled or asynchronously coupled in response to the damaged DNA recognition. These pieces of evidence suggest that the loss of a synchronous mode of response in the MutSα’s surveillance for DNA errors would possible be one of the mechanism(s) of signaling the MMR-dependent programed cell death much wanted in anticancer therapies. The analysis was drawn from dynamics simulations. PMID:24061854
UV and ionizing radiations induced DNA damage, differences and similarities
NASA Astrophysics Data System (ADS)
Ravanat, Jean-Luc; Douki, Thierry
2016-11-01
Both UV and ionizing radiations damage DNA. Two main mechanisms, so-called direct and indirect pathways, are involved in the degradation of DNA induced by ionizing radiations. The direct effect of radiation corresponds to direct ionization of DNA (one electron ejection) whereas indirect effects are produced by reactive oxygen species generated through water radiolysis, including the highly reactive hydroxyl radicals, which damage DNA. UV (and visible) light damages DNA by again two distinct mechanisms. UVC and to a lesser extend UVB photons are directly absorbed by DNA bases, generating their excited states that are at the origin of the formation of pyrimidine dimers. UVA (and visible) light by interaction with endogenous or exogenous photosensitizers induce the formation of DNA damage through photosensitization reactions. The excited photosensitizer is able to induce either a one-electron oxidation of DNA (type I) or to produce singlet oxygen (type II) that reacts with DNA. In addition, through an energy transfer from the excited photosensitizer to DNA bases (sometime called type III mechanism) formation of pyrimidine dimers could be produced. Interestingly it has been shown recently that pyrimidine dimers are also produced by direct absorption of UVA light by DNA, even if absorption of DNA bases at these wavelengths is very low. It should be stressed that some excited photosensitizers (such as psoralens) could add directly to DNA bases to generate adducts. The review will described the differences and similarities in terms of damage formation (structure and mechanisms) between these two physical genotoxic agents.
Dose-rate effect of ultrashort electron beam radiation on DNA damage and repair in vitro.
Babayan, Nelly; Hovhannisyan, Galina; Grigoryan, Bagrat; Grigoryan, Ruzanna; Sarkisyan, Natalia; Tsakanova, Gohar; Haroutiunian, Samvel; Aroutiounian, Rouben
2017-11-01
Laser-generated electron beams are distinguished from conventional accelerated particles by ultrashort beam pulses in the femtoseconds to picoseconds duration range, and their application may elucidate primary radiobiological effects. The aim of the present study was to determine the dose-rate effect of laser-generated ultrashort pulses of 4 MeV electron beam radiation on DNA damage and repair in human cells. The dose rate was increased via changing the pulse repetition frequency, without increasing the electron energy. The human chronic myeloid leukemia K-562 cell line was used to estimate the DNA damage and repair after irradiation, via the comet assay. A distribution analysis of the DNA damage was performed. The same mean level of initial DNA damages was observed at low (3.6 Gy/min) and high (36 Gy/min) dose-rate irradiation. In the case of low-dose-rate irradiation, the detected DNA damages were completely repairable, whereas the high-dose-rate irradiation demonstrated a lower level of reparability. The distribution analysis of initial DNA damages after high-dose-rate irradiation revealed a shift towards higher amounts of damage and a broadening in distribution. Thus, increasing the dose rate via changing the pulse frequency of ultrafast electrons leads to an increase in the complexity of DNA damages, with a consequent decrease in their reparability. Since the application of an ultrashort pulsed electron beam permits us to describe the primary radiobiological effects, it can be assumed that the observed dose-rate effect on DNA damage/repair is mainly caused by primary lesions appearing at the moment of irradiation. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Bausinger, Julia; Speit, Günter
2014-11-01
The comet assay is widely used in human biomonitoring to measure DNA damage in whole blood or isolated peripheral blood mononuclear cells (PBMC) as a marker of exposure to genotoxic agents. Cytogenetic assays with phytohemagglutinin (PHA)-stimulated cultured T lymphocytes are also frequently performed in human biomonitoring. Cytogenetic effects (micronuclei, chromosome aberrations, sister chromatid exchanges) may be induced in vivo but also occur ex vivo during the cultivation of lymphocytes as a consequence of DNA damage present in lymphocytes at the time of sampling. To better understand whether DNA damage measured by the comet assay in PBMC is representative for DNA damage in T cells, we comparatively investigated DNA damage and its repair in PBMC and T cells obtained by immunomagnetic cell sorting. PBMC cultures and T cell cultures were exposed to mutagens with different modes of genotoxic action and DNA damage was measured by the comet assay after the end of a 2h exposure and after 18h post-incubation. The mutagens tested were methyl methanesulfonate (MMS), (±)-anti-B[a]P-7,8-dihydrodiol-9,10-epoxide (BPDE), 4-nitroquinoline-1-oxide (4NQO), styrene oxide and potassium bromate. MMS and potassium bromate were also tested by the modified comet assay with formamido pyrimidine glycosylase (FPG) protein. The results indicate that the mutagens tested induce DNA damage in PBMC and T cells in the same range of concentrations and removal of induced DNA lesions occurs to a comparable extent. Based on these results, we conclude that the comet assay with PBMC is suited to predict DNA damage and its removal in T cells. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu
Phosphoramide mustard (PM) is an ovotoxic metabolite of cyclophosphamide and destroys primordial and primary follicles potentially by DNA damage induction. The temporal pattern by which PM induces DNA damage and initiation of the ovarian response to DNA damage has not yet been well characterized. This study investigated DNA damage initiation, the DNA repair response, as well as induction of follicular demise using a neonatal rat ovarian culture system. Additionally, to delineate specific mechanisms involved in the ovarian response to PM exposure, utility was made of PKC delta (PKCδ) deficient mice as well as an ATM inhibitor (KU 55933; AI). Fishermore » 344 PND4 rat ovaries were cultured for 12, 24, 48 or 96 h in medium containing DMSO ± 60 μM PM or KU 55933 (48 h; 10 nM). PM-induced activation of DNA damage repair genes was observed as early as 12 h post-exposure. ATM, PARP1, E2F7, P73 and CASP3 abundance were increased but RAD51 and BCL2 protein decreased after 96 h of PM exposure. PKCδ deficiency reduced numbers of all follicular stages, but did not have an additive impact on PM-induced ovotoxicity. ATM inhibition protected all follicle stages from PM-induced depletion. In conclusion, the ovarian DNA damage repair response is active post-PM exposure, supporting that DNA damage contributes to PM-induced ovotoxicity. - Highlights: • PM exposure induces DNA damage repair gene expression. • Inhibition of ATM prevented PM-induced follicle depletion. • PKCδ deficiency did not impact PM-induced ovotoxicity.« less
McKelvey, Shauna M; Horgan, Karina A; Murphy, Richard A
2015-01-01
Lead, an environmental toxin is known to induce a broad range of physiological and biochemical dysfunctions in humans through a number of mechanisms including the deactivation of antioxidants thus leading to generation of reactive oxygen species (ROS) and subsequent DNA damage. Selenium on the other hand has been proven to play an important role in the protection of cells from free radical damage and oxidative stress, though its effects are thought to be form and dose dependent. As the liver is the primary organ required for metabolite detoxification, HepG2 cells were chosen to assess the protective effects of various selenium compounds following exposure to the genotoxic agent lead nitrate. Initially DNA damage was quantified using a comet assay, gene expression patterns associated with DNA damage and signalling were also examined using PCR arrays and the biological pathways which were most significantly affected by selenium were identified. Interestingly, the organic type selenium compounds (selenium yeast and selenomethionine) conferred protection against lead induced DNA damage in HepG2 cells; this is evident by reduction in the quantity of DNA present in the comet tail of cells cultured in their presence with lead. This trend also followed through the gene expression changes noted in DNA damage pathways analysed. These results were in contrast with those of inorganic sodium selenite which promoted lead induced DNA damage evident in both the comet assay results and the gene expression analysis. Over all this study provided valuable insights into the effects which various selenium compounds had on the DNA damage and signalling pathway indicating the potential for using organic forms of selenium such as selenium enriched yeast to protect against DNA damaging agents. Copyright © 2014 Elsevier GmbH. All rights reserved.
Epigenetic Telomere Protection by Drosophila DNA Damage Response Pathways
Oikemus, Sarah R; Queiroz-Machado, Joana; Lai, KuanJu; McGinnis, Nadine; Sunkel, Claudio; Brodsky, Michael H
2006-01-01
Analysis of terminal deletion chromosomes indicates that a sequence-independent mechanism regulates protection of Drosophila telomeres. Mutations in Drosophila DNA damage response genes such as atm/tefu, mre11, or rad50 disrupt telomere protection and localization of the telomere-associated proteins HP1 and HOAP, suggesting that recognition of chromosome ends contributes to telomere protection. However, the partial telomere protection phenotype of these mutations limits the ability to test if they act in the epigenetic telomere protection mechanism. We examined the roles of the Drosophila atm and atr-atrip DNA damage response pathways and the nbs homolog in DNA damage responses and telomere protection. As in other organisms, the atm and atr-atrip pathways act in parallel to promote telomere protection. Cells lacking both pathways exhibit severe defects in telomere protection and fail to localize the protection protein HOAP to telomeres. Drosophila nbs is required for both atm- and atr-dependent DNA damage responses and acts in these pathways during DNA repair. The telomere fusion phenotype of nbs is consistent with defects in each of these activities. Cells defective in both the atm and atr pathways were used to examine if DNA damage response pathways regulate telomere protection without affecting telomere specific sequences. In these cells, chromosome fusion sites retain telomere-specific sequences, demonstrating that loss of these sequences is not responsible for loss of protection. Furthermore, terminally deleted chromosomes also fuse in these cells, directly implicating DNA damage response pathways in the epigenetic protection of telomeres. We propose that recognition of chromosome ends and recruitment of HP1 and HOAP by DNA damage response proteins is essential for the epigenetic protection of Drosophila telomeres. Given the conserved roles of DNA damage response proteins in telomere function, related mechanisms may act at the telomeres of other organisms. PMID:16710445
Epigenetic telomere protection by Drosophila DNA damage response pathways.
Oikemus, Sarah R; Queiroz-Machado, Joana; Lai, KuanJu; McGinnis, Nadine; Sunkel, Claudio; Brodsky, Michael H
2006-05-01
Analysis of terminal deletion chromosomes indicates that a sequence-independent mechanism regulates protection of Drosophila telomeres. Mutations in Drosophila DNA damage response genes such as atm/tefu, mre11, or rad50 disrupt telomere protection and localization of the telomere-associated proteins HP1 and HOAP, suggesting that recognition of chromosome ends contributes to telomere protection. However, the partial telomere protection phenotype of these mutations limits the ability to test if they act in the epigenetic telomere protection mechanism. We examined the roles of the Drosophila atm and atr-atrip DNA damage response pathways and the nbs homolog in DNA damage responses and telomere protection. As in other organisms, the atm and atr-atrip pathways act in parallel to promote telomere protection. Cells lacking both pathways exhibit severe defects in telomere protection and fail to localize the protection protein HOAP to telomeres. Drosophila nbs is required for both atm- and atr-dependent DNA damage responses and acts in these pathways during DNA repair. The telomere fusion phenotype of nbs is consistent with defects in each of these activities. Cells defective in both the atm and atr pathways were used to examine if DNA damage response pathways regulate telomere protection without affecting telomere specific sequences. In these cells, chromosome fusion sites retain telomere-specific sequences, demonstrating that loss of these sequences is not responsible for loss of protection. Furthermore, terminally deleted chromosomes also fuse in these cells, directly implicating DNA damage response pathways in the epigenetic protection of telomeres. We propose that recognition of chromosome ends and recruitment of HP1 and HOAP by DNA damage response proteins is essential for the epigenetic protection of Drosophila telomeres. Given the conserved roles of DNA damage response proteins in telomere function, related mechanisms may act at the telomeres of other organisms.
Romano, Christine A; Sontz, Pamela A; Barton, Jacqueline K
2011-07-12
Endonuclease III (EndoIII) is a base excision repair glycosylase that targets damaged pyrimidines and contains a [4Fe-4S] cluster. We have proposed a model where BER proteins that contain redox-active [4Fe-4S] clusters utilize DNA charge transport (CT) as a first step in the detection of DNA lesions. Here, several mutants of EndoIII were prepared to probe their efficiency of DNA/protein charge transport. Cyclic voltammetry experiments on DNA-modified electrodes show that aromatic residues F30, Y55, Y75, and Y82 help mediate charge transport between DNA and the [4Fe-4S] cluster. On the basis of circular dichroism studies to measure protein stability, mutations at residues W178 and Y185 are found to destabilize the protein; these residues may function to protect the [4Fe-4S] cluster. Atomic force microscopy studies furthermore reveal a correlation in the ability of mutants to carry out protein/DNA CT and their ability to relocalize onto DNA strands containing a single base mismatch; EndoIII mutants that are defective in carrying out DNA/protein CT do not redistribute onto mismatch-containing strands, consistent with our model. These results demonstrate a link between the ability of the repair protein to carry out DNA CT and its ability to relocalize near lesions, thus pointing to DNA CT as a key first step in the detection of base damage in the genome.
Romano, Christine A.; Sontz, Pamela A.; Barton, Jacqueline K.
2011-01-01
Endonuclease III (EndoIII) is a base excision repair glycosylase that targets damaged pyrimidines and contains a [4Fe-4S] cluster. We have proposed a model where BER proteins that contain redox-active [4Fe-4S] clusters utilize DNA charge transport (CT) as a first step in the detection of DNA lesions. Here, several mutants of EndoIII were prepared to probe their efficiency of DNA/protein charge transport. Cyclic voltammetry experiments on DNA-modified electrodes show that aromatic residues F30, Y55, Y75 and Y82 help mediate charge transport between DNA and the [4Fe-4S] cluster. Based on circular dichroism studies to measure protein stability, mutations at residues W178 and Y185 are found to destabilize the protein; these residues may function to protect the [4Fe-4S] cluster. Atomic force microscopy studies furthermore reveal a correlation in the ability of mutants to carry out protein/DNA CT and their ability to relocalize onto DNA strands containing a single base mismatch; EndoIII mutants that are defective in carrying out DNA/protein CT do not redistribute onto mismatch-containing strands, consistent with our model. These results demonstrate a link between the ability of the repair protein to carry out DNA CT and its ability to relocalize near lesions, thus pointing to DNA CT as a key first step in the detection of base damage in the genome. PMID:21651304
Effects of different extenders on DNA integrity of boar spermatozoa following freezing-thawing.
Hu, Jian-hong; Li, Qing-wang; Jiang, Zhong-liang; Li, Wen-ye
2008-12-01
The sperm-rich fraction, collected from eight mature Yorkshire boars, was frozen in an extender containing 9% LDL (w/v), 100mM trehalose, or 20% yolk (v/v), respectively. Sperm DNA integrity was assessed using the single-cell gel electrophoresis (SCGE). Other sperm quality characteristics such as motility, acrosome and membrane integrity were also monitored. The results showed that freezing-thawing caused an increase in sperm DNA fragmentation, and extender containing 9% LDL could significantly protect sperm DNA integrity (P<0.05) from the damage caused by cryopreservation and decrease DNA damages compared with extender containing 100mM trehalose and 20% yolk (v/v). No significant difference in damaged DNA was detected between frozen and unfrozen semen samples for extender of 9% LDL and 100mM trehalose, but cryopreservation could increase the degree of DNA damage (P<0.05), the percentage of damaged DNA degree of grade 2 and 3 was significantly increased. The deterioration in post-thaw sperm DNA integrity was concurrent with reduced sperm characteristics. The data here demonstrated that the cryoprotectant played a fundamental role in reducing boar sperm DNA damage and protecting DNA integrity. It can be suggested that evaluation of sperm DNA integrity, coupled with correlative and basic characteristics such as motility, acrosome integrity and membrane integrity, may aid in determining the quality of frozen boar semen.
Characterization of the interactions of PARP-1 with UV-damaged DNA in vivo and in vitro
Purohit, Nupur K.; Robu, Mihaela; Shah, Rashmi G.; Geacintov, Nicholas E.; Shah, Girish M.
2016-01-01
The existing methodologies for studying robust responses of poly (ADP-ribose) polymerase-1 (PARP-1) to DNA damage with strand breaks are often not suitable for examining its subtle responses to altered DNA without strand breaks, such as UV-damaged DNA. Here we describe two novel assays with which we characterized the interaction of PARP-1 with UV-damaged DNA in vivo and in vitro. Using an in situ fractionation technique to selectively remove free PARP-1 while retaining the DNA-bound PARP-1, we demonstrate a direct recruitment of the endogenous or exogenous PARP-1 to the UV-lesion site in vivo after local irradiation. In addition, using the model oligonucleotides with single UV lesion surrounded by multiple restriction enzyme sites, we demonstrate in vitro that DDB2 and PARP-1 can simultaneously bind to UV-damaged DNA and that PARP-1 casts a bilateral asymmetric footprint from −12 to +9 nucleotides on either side of the UV-lesion. These techniques will permit characterization of different roles of PARP-1 in the repair of UV-damaged DNA and also allow the study of normal housekeeping roles of PARP-1 with undamaged DNA. PMID:26753915
A CAF-1–PCNA-Mediated Chromatin Assembly Pathway Triggered by Sensing DNA Damage
Moggs, Jonathan G.; Grandi, Paola; Quivy, Jean-Pierre; Jónsson, Zophonías O.; Hübscher, Ulrich; Becker, Peter B.; Almouzni, Geneviève
2000-01-01
Sensing DNA damage is crucial for the maintenance of genomic integrity and cell cycle progression. The participation of chromatin in these events is becoming of increasing interest. We show that the presence of single-strand breaks and gaps, formed either directly or during DNA damage processing, can trigger the propagation of nucleosomal arrays. This nucleosome assembly pathway involves the histone chaperone chromatin assembly factor 1 (CAF-1). The largest subunit (p150) of this factor interacts directly with proliferating cell nuclear antigen (PCNA), and critical regions for this interaction on both proteins have been mapped. To isolate proteins specifically recruited during DNA repair, damaged DNA linked to magnetic beads was used. The binding of both PCNA and CAF-1 to this damaged DNA was dependent on the number of DNA lesions and required ATP. Chromatin assembly linked to the repair of single-strand breaks was disrupted by depletion of PCNA from a cell-free system. This defect was rescued by complementation with recombinant PCNA, arguing for role of PCNA in mediating chromatin assembly linked to DNA repair. We discuss the importance of the PCNA–CAF-1 interaction in the context of DNA damage processing and checkpoint control. PMID:10648606
Chemical determination of free radical-induced damage to DNA.
Dizdaroglu, M
1991-01-01
Free radical-induced damage to DNA in vivo can result in deleterious biological consequences such as the initiation and promotion of cancer. Chemical characterization and quantitation of such DNA damage is essential for an understanding of its biological consequences and cellular repair. Methodologies incorporating the technique of gas chromatography/mass spectrometry (GC/MS) have been developed in recent years for measurement of free radical-induced DNA damage. The use of GC/MS with selected-ion monitoring (SIM) facilitates unequivocal identification and quantitation of a large number of products of all four DNA bases produced in DNA by reactions with hydroxyl radical, hydrated electron, and H atom. Hydroxyl radical-induced DNA-protein cross-links in mammalian chromatin, and products of the sugar moiety in DNA are also unequivocally identified and quantitated. The sensitivity and selectivity of the GC/MS-SIM technique enables the measurement of DNA base products even in isolated mammalian chromatin without the necessity of first isolating DNA, and despite the presence of histones. Recent results reviewed in this article demonstrate the usefulness of the GC/MS technique for chemical determination of free radical-induced DNA damage in DNA as well as in mammalian chromatin under a vast variety of conditions of free radical production.
Izhar, Lior; Adamson, Britt; Ciccia, Alberto; Lewis, Jedd; Pontano-Vaites, Laura; Leng, Yumei; Liang, Anthony C; Westbrook, Thomas F; Harper, J Wade; Elledge, Stephen J
2015-06-09
Localization to sites of DNA damage is a hallmark of DNA damage response (DDR) proteins. To identify DDR factors, we screened epitope-tagged proteins for localization to sites of chromatin damaged by UV laser microirradiation and found >120 proteins that localize to damaged chromatin. These include the BAF tumor suppressor complex and the amyotrophic lateral sclerosis (ALS) candidate protein TAF15. TAF15 contains multiple domains that bind damaged chromatin in a poly-(ADP-ribose) polymerase (PARP)-dependent manner, suggesting a possible role as glue that tethers multiple PAR chains together. Many positives were transcription factors; > 70% of randomly tested transcription factors localized to sites of DNA damage, and of these, ∼90% were PARP dependent for localization. Mutational analyses showed that localization to damaged chromatin is DNA-binding-domain dependent. By examining Hoechst staining patterns at damage sites, we see evidence of chromatin decompaction that is PARP dependent. We propose that PARP-regulated chromatin remodeling at sites of damage allows transient accessibility of DNA-binding proteins. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Mechanisms of DNA damage, repair and mutagenesis
Chatterjee, Nimrat; Walker, Graham C.
2017-01-01
Living organisms are continuously exposed to a myriad of DNA damaging agents that can impact health and modulate disease-states. However, robust DNA repair and damage-bypass mechanisms faithfully protect the DNA by either removing or tolerating the damage to ensure an overall survival. Deviations in this fine-tuning are known to destabilize cellular metabolic homeostasis, as exemplified in diverse cancers where disruption or deregulation of DNA repair pathways results in genome instability. Because routinely used biological, physical and chemical agents impact human health, testing their genotoxicity and regulating their use have become important. In this introductory review, we will delineate mechanisms of DNA damage and the counteracting repair/tolerance pathways to provide insights into the molecular basis of genotoxicity in cells that lays the foundation for subsequent articles in this issue. PMID:28485537
Murray, V
1999-01-01
This article reviews the literature concerning the sequence specificity of DNA-damaging agents. DNA-damaging agents are widely used in cancer chemotherapy. It is important to understand fully the determinants of DNA sequence specificity so that more effective DNA-damaging agents can be developed as antitumor drugs. There are five main methods of DNA sequence specificity analysis: cleavage of end-labeled fragments, linear amplification with Taq DNA polymerase, ligation-mediated polymerase chain reaction (PCR), single-strand ligation PCR, and footprinting. The DNA sequence specificity in purified DNA and in intact mammalian cells is reviewed for several classes of DNA-damaging agent. These include agents that form covalent adducts with DNA, free radical generators, topoisomerase inhibitors, intercalators and minor groove binders, enzymes, and electromagnetic radiation. The main sites of adduct formation are at the N-7 of guanine in the major groove of DNA and the N-3 of adenine in the minor groove, whereas free radical generators abstract hydrogen from the deoxyribose sugar and topoisomerase inhibitors cause enzyme-DNA cross-links to form. Several issues involved in the determination of the DNA sequence specificity are discussed. The future directions of the field, with respect to cancer chemotherapy, are also examined.
Increased oxidative phosphorylation in response to acute and chronic DNA damage
Brace, Lear E; Vose, Sarah C; Stanya, Kristopher; Gathungu, Rose M; Marur, Vasant R; Longchamp, Alban; Treviño-Villarreal, Humberto; Mejia, Pedro; Vargas, Dorathy; Inouye, Karen; Bronson, Roderick T; Lee, Chih-Hao; Neilan, Edward; Kristal, Bruce S; Mitchell, James R
2016-01-01
Accumulation of DNA damage is intricately linked to aging, aging-related diseases and progeroid syndromes such as Cockayne syndrome (CS). Free radicals from endogenous oxidative energy metabolism can damage DNA, however the potential of acute or chronic DNA damage to modulate cellular and/or organismal energy metabolism remains largely unexplored. We modeled chronic endogenous genotoxic stress using a DNA repair-deficient Csa−/−|Xpa−/− mouse model of CS. Exogenous genotoxic stress was modeled in mice in vivo and primary cells in vitro treated with different genotoxins giving rise to diverse spectrums of lesions, including ultraviolet radiation, intrastrand crosslinking agents and ionizing radiation. Both chronic endogenous and acute exogenous genotoxic stress increased mitochondrial fatty acid oxidation (FAO) on the organismal level, manifested by increased oxygen consumption, reduced respiratory exchange ratio, progressive adipose loss and increased FAO in tissues ex vivo. In multiple primary cell types, the metabolic response to different genotoxins manifested as a cell-autonomous increase in oxidative phosphorylation (OXPHOS) subsequent to a transient decline in steady-state NAD+ and ATP levels, and required the DNA damage sensor PARP-1 and energy-sensing kinase AMPK. We conclude that increased FAO/OXPHOS is a general, beneficial, adaptive response to DNA damage on cellular and organismal levels, illustrating a fundamental link between genotoxic stress and energy metabolism driven by the energetic cost of DNA damage. Our study points to therapeutic opportunities to mitigate detrimental effects of DNA damage on primary cells in the context of radio/chemotherapy or progeroid syndromes. PMID:28721274
NASA Astrophysics Data System (ADS)
Park, Yeunsoo
2015-09-01
It is well known that low energy electrons (LEE, especially below 10 eV) can generate DNA damage via indirect action named dissociative electron attachment (DEA). We can now explain some parts of the exact mechanism on DNA damage by LEE collision with direct ionization effect when cancer patients get the radiotherapy. It is kind of remarkable information in the field of radiation therapy. However, it is practically very difficult to directly apply this finding to human disease cure due to difficulty of LEE therapy actualization and request of further clinical studies. Recently, there is a novel challenge in plasma application, that is, how we can apply plasma technology to diagnosis and treatment of many serious diseases like cancer. Cold atmospheric pressure plasma (CAPP) is a very good source to apply to plasma medicine and bio-applications because of low temperature, low cost, and easy handling. Some scientists have already reported good results related to clinical plasma application. The purposes of this study are to further find out exact mechanisms of DNA damage by LEE at the molecular level, to verify new DNA damage like structural alteration on DNA subunits and to compare DNA damage by LEE and plasma source. We will keep expanding our study to DNA damage by plasma source to develop plasma-based new medical and biological applications. We will show some recent results, DNA damage by LEE and non-thermal plasma.
Genome-wide map of Apn1 binding sites under oxidative stress in Saccharomyces cerevisiae.
Morris, Lydia P; Conley, Andrew B; Degtyareva, Natalya; Jordan, I King; Doetsch, Paul W
2017-11-01
The DNA is cells is continuously exposed to reactive oxygen species resulting in toxic and mutagenic DNA damage. Although the repair of oxidative DNA damage occurs primarily through the base excision repair (BER) pathway, the nucleotide excision repair (NER) pathway processes some of the same lesions. In addition, damage tolerance mechanisms, such as recombination and translesion synthesis, enable cells to tolerate oxidative DNA damage, especially when BER and NER capacities are exceeded. Thus, disruption of BER alone or disruption of BER and NER in Saccharomyces cerevisiae leads to increased mutations as well as large-scale genomic rearrangements. Previous studies demonstrated that a particular region of chromosome II is susceptible to chronic oxidative stress-induced chromosomal rearrangements, suggesting the existence of DNA damage and/or DNA repair hotspots. Here we investigated the relationship between oxidative damage and genomic instability utilizing chromatin immunoprecipitation combined with DNA microarray technology to profile DNA repair sites along yeast chromosomes under different oxidative stress conditions. We targeted the major yeast AP endonuclease Apn1 as a representative BER protein. Our results indicate that Apn1 target sequences are enriched for cytosine and guanine nucleotides. We predict that BER protects these sites in the genome because guanines and cytosines are thought to be especially susceptible to oxidative attack, thereby preventing large-scale genome destabilization from chronic accumulation of DNA damage. Information from our studies should provide insight into how regional deployment of oxidative DNA damage management systems along chromosomes protects against large-scale rearrangements. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
DNA Damage Signals and Space Radiation Risk
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.
2011-01-01
Space radiation is comprised of high-energy and charge (HZE) nuclei and protons. The initial DNA damage from HZE nuclei is qualitatively different from X-rays or gamma rays due to the clustering of damage sites which increases their complexity. Clustering of DNA damage occurs on several scales. First there is clustering of single strand breaks (SSB), double strand breaks (DSB), and base damage within a few to several hundred base pairs (bp). A second form of damage clustering occurs on the scale of a few kbp where several DSB?s may be induced by single HZE nuclei. These forms of damage clusters do not occur at low to moderate doses of X-rays or gamma rays thus presenting new challenges to DNA repair systems. We review current knowledge of differences that occur in DNA repair pathways for different types of radiation and possible relationships to mutations, chromosomal aberrations and cancer risks.
In situ analysis of DNA damage response and repair using laser microirradiation.
Kim, Jong-Soo; Heale, Jason T; Zeng, Weihua; Kong, Xiangduo; Krasieva, Tatiana B; Ball, Alexander R; Yokomori, Kyoko
2007-01-01
A proper response to DNA damage is critical for the maintenance of genome integrity. However, it is difficult to study the in vivo kinetics and factor requirements of the damage recognition process in mammalian cells. In order to address how the cell reacts to DNA damage, we utilized a second harmonic (532 nm) pulsed Nd:YAG laser to induce highly concentrated damage in a small area in interphase cell nuclei and cytologically analyzed both protein recruitment and modification. Our results revealed for the first time the sequential recruitment of factors involved in two major DNA double-strand break (DSB) repair pathways, non-homologous end-joining (NHEJ) and homologous recombination (HR), and the cell cycle-specific recruitment of the sister chromatid cohesion complex cohesin to the damage site. In this chapter, the strategy developed to study the DNA damage response using the 532-nm Nd:YAG laser will be summarized.
Evaluating In Vitro DNA Damage Using Comet Assay.
Lu, Yanxin; Liu, Yang; Yang, Chunzhang
2017-10-11
DNA damage is a common phenomenon for each cell during its lifespan, and is defined as an alteration of the chemical structure of genomic DNA. Cancer therapies, such as radio- and chemotherapy, introduce enormous amount of additional DNA damage, leading to cell cycle arrest and apoptosis to limit cancer progression. Quantitative assessment of DNA damage during experimental cancer therapy is a key step to justify the effectiveness of a genotoxic agent. In this study, we focus on a single cell electrophoresis assay, also known as the comet assay, which can quantify single and double-strand DNA breaks in vitro. The comet assay is a DNA damage quantification method that is efficient and easy to perform, and has low time/budget demands and high reproducibility. Here, we highlight the utility of the comet assay for a preclinical study by evaluating the genotoxic effect of olaparib/temozolomide combination therapy to U251 glioma cells.
Dutertre, Martin; Vagner, Stéphan
2017-10-27
Upon DNA damage, cells trigger an early DNA-damage response (DDR) involving DNA repair and cell cycle checkpoints, and late responses involving gene expression regulation that determine cell fate. Screens for genes involved in the DDR have found many RNA-binding proteins (RBPs), while screens for novel RBPs have identified DDR proteins. An increasing number of RBPs are involved in early and/or late DDR. We propose to call this new class of actors of the DDR, which contain an RNA-binding activity, DNA-damage response RNA-binding proteins (DDRBPs). We then discuss how DDRBPs contribute not only to gene expression regulation in the late DDR but also to early DDR signaling, DNA repair, and chromatin modifications at DNA-damage sites through interactions with both long and short noncoding RNAs. Copyright © 2016 Elsevier Ltd. All rights reserved.
GuhaMajumdar, M; Baldwin, S; Sears, B B
2004-02-01
Oenothera plants homozygous for the recessive plastome mutator allele ( pm) show chloroplast DNA (cpDNA) mutation frequencies that are about 1,000-fold higher than spontaneous levels. The pm-encoded gene product has been hypothesized to have a function in cpDNA replication, repair and/or mutation avoidance. Previous chemical mutagenesis experiments with the alkylating agent nitroso-methyl urea (NMU) showed a synergistic effect of NMU on the induction of mutations in the pm line, suggesting an interaction between the pm-encoded gene product and one of the repair systems that corrects alkylation damage. The goal of the experiments described here was to examine whether the pm activity extends to the repair of damage caused by non-alkylating mutagens. To this end, the intercalating mutagen, 9-aminoacridine hydrochloride (9AA) was tested for synergism with the plastome mutator. A statistical analysis of the data reported here indicates that the pm-encoded gene product is not involved in the repair of the 9AA-induced mutations. However, the recovery of chlorotic sectors in plants derived from the mutagenized seeds shows that 9AA can act as a mutagen of the chloroplast genome.
Kassegne, Sam; Wibowo, Denni; Chi, James; Ramesh, Varsha; Narenji, Alaleh; Khosla, Ajit; Mokili, John
2015-06-01
In this study, AC characterisation of DNA molecular wires, effects of frequency, temperature and UV irradiation on their conductivity is presented. λ-DNA molecular wires suspended between high aspect-ratio electrodes exhibit highly frequency-dependent conductivity that approaches metal-like behaviour at high frequencies (∼MHz). Detailed temperature dependence experiments were performed that traced the impedance response of λ-DNA until its denaturation. UV irradiation experiments where conductivity was lost at higher and longer UV exposures helped to establish that it is indeed λ-DNA molecular wires that generate conductivity. The subsequent renaturation of λ-DNA resulted in the recovery of current conduction, providing yet another proof of the conducting DNA molecular wire bridge. The temperature results also revealed hysteretic and bi-modal impedance responses that could make DNA a candidate for nanoelectronics components like thermal transistors and switches. Further, these experiments shed light on the charge transfer mechanism in DNA. At higher temperatures, the expected increase in thermal-induced charge hopping may account for the decrease in impedance supporting the 'charge hopping mechanism' theory. UV light, on the other hand, causes damage to GC base-pairs and phosphate groups reducing the path available both for hopping and short-range tunneling mechanisms, and hence increasing impedance--this again supporting both the 'charge hopping' and 'tunneling' mechanism theories.
Mertens, Barbara; Nogueira, Tatiane; Stranska, Ruzena; Naesens, Lieve; Andrei, Graciela; Snoeck, Robert
2016-07-26
Human papillomavirus (HPV) causes cervical cancer and a large fraction of head and neck squamous cell carcinomas (HNSCC). Cidofovir (CDV) proved efficacious in the treatment of several HPV-induced benign and malignant hyper proliferations. To provide a better insight into how CDV selectively eradicates transformed cells, HPV+ and HPV- cervical carcinoma and HNSCC cell lines were compared to normal cells for antiproliferative effects, CDV metabolism, drug incorporation into cellular DNA, and DNA damage. Incorporation of CDV into cellular DNA was higher in tumor cells than in normal cells and correlated with CDV antiproliferative effects, which were independent of HPV status. Increase in phospho-ATM levels was detected following CDV exposure and higher levels of γ-H2AX (a quantitative marker of double-strand breaks) were measured in tumor cells compared to normal cells. A correlation between DNA damage and CDV incorporation into DNA was found but not between DNA damage and CDV antiproliferative effects. These data indicate that CDV antiproliferative effects result from incorporation of the drug into DNA causing DNA damage. However, the anti-tumor effects of CDV cannot be exclusively ascribed to DNA damage. Furthermore, CDV can be considered a promising broad spectrum anti-cancer agent, not restricted to HPV+ lesions.
Shaw, Jyoti; Chakraborty, Ayan; Nag, Arijit; Chattopadyay, Arnab; Dasgupta, Anjan K; Bhattacharyya, Maitreyee
2017-11-01
To investigate the cause and effects of intracellular iron overload in lymphocytes of thalassemia major patients. Sixty-six thalassemia major patients having iron overload and 10 age-matched controls were chosen for the study. Blood sample was collected, and serum ferritin, oxidative stress; lymphocyte DNA damage were examined, and infective episodes were also counted. Case-control analysis revealed significant oxidative stress, iron overload, DNA damage, and rate of infections in thalassemia cases as compared to controls. For cases, oxidative stress (ROS) and iron overload (serum ferritin) showed good correlation with R 2 = 0.934 and correlation between DNA damage and ROS gave R 2 = 0.961. We also demonstrated that intracellular iron overload in thalassemia caused oxidative damage of lymphocyte DNA as exhibited by DNA damage assay. The inference is further confirmed by partial inhibition of such damage by chelation of iron and the concurrent lowering of the ROS level in the presence of chelator deferasirox. Therefore, intracellular iron overload caused DNA fragmentation, which may ultimately hamper lymphocyte function, and this may contribute to immune dysfunction and increased susceptibility to infections in thalassemia patients as indicated by the good correlation (R 2 = 0.91) between lymphocyte DNA damage and rate of infection found in this study. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Differences in DNA-damage in non-smoking men and women exposed to environmental tobacco smoke (ETS).
Collier, Abby C; Dandge, Sachin D; Woodrow, James E; Pritsos, Chris A
2005-07-28
There is much data implicating environmental tobacco smoke (ETS) in the development and progression of disease, notably cancer, yet the mechanisms for this remain unclear. As ETS is both a pro-oxidant stressor and carcinogen, we investigated the relationship of ETS exposure to intracellular and serum levels of DNA-damage, both oxidative 8-hydroxy-2-deoxyguanosine (8OHdG) and general, in non-smokers from non-smoking households, occupationally exposed to ETS. General DNA-damage consisting of single and double strand breaks, alkali-labile sites and incomplete base-excision repair, increased significantly in a dose-dependent manner with ETS exposure in men (P=0.015, n=32, Pearson) but not women (P=0.736, n=17). Intracellular 8OHdG-DNA-damage and general DNA-damage were both greater in men than women (P=0.0005 and 0.016, respectively) but 8OHdG serum levels did not differ between the genders. Neither 8OHdG-DNA-damage nor serum levels correlated with increasing ETS exposure. This is the first study to demonstrate dose-dependent increases in DNA-damage from workplace ETS exposure. Perhaps most interesting was that despite equivalent ETS exposure, significantly greater DNA-damage occurred in men than women. These data may begin to provide a mechanistic rationale for the generally higher incidence of some diseases in males due to tobacco smoke and/or other genotoxic stressors.
Foster, Patricia L.; Lee, Heewook; Popodi, Ellen; Townes, Jesse P.; Tang, Haixu
2015-01-01
A complete understanding of evolutionary processes requires that factors determining spontaneous mutation rates and spectra be identified and characterized. Using mutation accumulation followed by whole-genome sequencing, we found that the mutation rates of three widely diverged commensal Escherichia coli strains differ only by about 50%, suggesting that a rate of 1–2 × 10−3 mutations per generation per genome is common for this bacterium. Four major forces are postulated to contribute to spontaneous mutations: intrinsic DNA polymerase errors, endogenously induced DNA damage, DNA damage caused by exogenous agents, and the activities of error-prone polymerases. To determine the relative importance of these factors, we studied 11 strains, each defective for a major DNA repair pathway. The striking result was that only loss of the ability to prevent or repair oxidative DNA damage significantly impacted mutation rates or spectra. These results suggest that, with the exception of oxidative damage, endogenously induced DNA damage does not perturb the overall accuracy of DNA replication in normally growing cells and that repair pathways may exist primarily to defend against exogenously induced DNA damage. The thousands of mutations caused by oxidative damage recovered across the entire genome revealed strong local-sequence biases of these mutations. Specifically, we found that the identity of the 3′ base can affect the mutability of a purine by oxidative damage by as much as eightfold. PMID:26460006
Reissig, Kathrin; Silver, Andrew; Hartig, Roland; Schinlauer, Antje; Walluscheck, Diana; Guenther, Thomas; Siedentopf, Sandra; Ross, Jochen; Vo, Diep-Khanh; Roessner, Albert; Poehlmann-Nitsche, Angela
2017-01-01
Dysregulation of c-Jun N -terminal kinase (JNK) activation promoted DNA damage response bypass and tumorigenesis in our model of hydrogen peroxide-associated ulcerative colitis (UC) and in patients with quiescent UC (QUC), UC-related dysplasia, and UC-related carcinoma (UC-CRC), thereby adapting to oxidative stress. In the UC model, we have observed features of oncogenic transformation: increased proliferation, undetected DNA damage, and apoptosis resistance. Here, we show that Chk1 was downregulated but activated in the acute and quiescent chronic phases. In both phases, Chk1 was linked to DNA damage response bypass by suppressing JNK activation following oxidative stress, promoting cell cycle progression despite DNA damage. Simultaneously, activated Chk1 was bound to chromatin. This triggered histone acetylation and the binding of histone acetyltransferases and transcription factors to chromatin. Thus, chromatin-immobilized activated Chk1 executed a dual function by suppressing DNA damage response and simultaneously inducing chromatin modulation. This caused undetected DNA damage and increased cellular proliferation through failure to transmit the appropriate DNA damage signal. Findings in vitro were corroborated by chromatin accumulation of activated Chk1, Ac-H3, Ac-H4, and c-Jun in active UC (AUC) in vivo. Targeting chromatin-bound Chk1, GCN5, PCAF, and p300/CBP could be a novel therapeutic strategy to prevent UC-related tumor progression.
Inturi, Swetha; Tewari-Singh, Neera; Gu, Mallikarjuna; Shrotriya, Sangeeta; Gomez, Joe; Agarwal, Chapla; White, Carl W; Agarwal, Rajesh
2011-12-15
Employing mouse skin epidermal JB6 cells and dermal fibroblasts, here we examined the mechanisms of DNA damage by 2-chloroethyl ethyl sulfide (CEES), a monofunctional analog of sulfur mustard (SM). CEES exposure caused H2A.X and p53 phosphorylation as well as p53 accumulation in both cell types, starting at 1h, that was sustained for 24h, indicating a DNA-damaging effect of CEES, which was also confirmed and quantified by alkaline comet assay. CEES exposure also induced oxidative stress and oxidative DNA damage in both cell types, measured by an increase in mitochondrial and cellular reactive oxygen species and 8-hydroxydeoxyguanosine levels, respectively. In the studies distinguishing between oxidative and direct DNA damage, 1h pretreatment with glutathione (GSH) or the antioxidant Trolox showed a decrease in CEES-induced oxidative stress and oxidative DNA damage. However, only GSH pretreatment decreased CEES-induced total DNA damage measured by comet assay, H2A.X and p53 phosphorylation, and total p53 levels. This was possibly due to the formation of GSH-CEES conjugates detected by LC-MS analysis. Together, our results show that CEES causes both direct and oxidative DNA damage, suggesting that to rescue SM-caused skin injuries, pleiotropic agents (or cocktails) are needed that could target multiple pathways of mustard skin toxicities. Copyright © 2011 Elsevier Inc. All rights reserved.
E2F1 and E2F2 induction in response to DNA damage preserves genomic stability in neuronal cells.
Castillo, Daniela S; Campalans, Anna; Belluscio, Laura M; Carcagno, Abel L; Radicella, J Pablo; Cánepa, Eduardo T; Pregi, Nicolás
2015-01-01
E2F transcription factors regulate a wide range of biological processes, including the cellular response to DNA damage. In the present study, we examined whether E2F family members are transcriptionally induced following treatment with several genotoxic agents, and have a role on the cell DNA damage response. We show a novel mechanism, conserved among diverse species, in which E2F1 and E2F2, the latter specifically in neuronal cells, are transcriptionally induced after DNA damage. This upregulation leads to increased E2F1 and E2F2 protein levels as a consequence of de novo protein synthesis. Ectopic expression of these E2Fs in neuronal cells reduces the level of DNA damage following genotoxic treatment, while ablation of E2F1 and E2F2 leads to the accumulation of DNA lesions and increased apoptotic response. Cell viability and DNA repair capability in response to DNA damage induction are also reduced by the E2F1 and E2F2 deficiencies. Finally, E2F1 and E2F2 accumulate at sites of oxidative and UV-induced DNA damage, and interact with γH2AX DNA repair factor. As previously reported for E2F1, E2F2 promotes Rad51 foci formation, interacts with GCN5 acetyltransferase and induces histone acetylation following genotoxic insult. The results presented here unveil a new mechanism involving E2F1 and E2F2 in the maintenance of genomic stability in response to DNA damage in neuronal cells.
E2F1 and E2F2 induction in response to DNA damage preserves genomic stability in neuronal cells
Castillo, Daniela S; Campalans, Anna; Belluscio, Laura M; Carcagno, Abel L; Radicella, J Pablo; Cánepa, Eduardo T; Pregi, Nicolás
2015-01-01
E2F transcription factors regulate a wide range of biological processes, including the cellular response to DNA damage. In the present study, we examined whether E2F family members are transcriptionally induced following treatment with several genotoxic agents, and have a role on the cell DNA damage response. We show a novel mechanism, conserved among diverse species, in which E2F1 and E2F2, the latter specifically in neuronal cells, are transcriptionally induced after DNA damage. This upregulation leads to increased E2F1 and E2F2 protein levels as a consequence of de novo protein synthesis. Ectopic expression of these E2Fs in neuronal cells reduces the level of DNA damage following genotoxic treatment, while ablation of E2F1 and E2F2 leads to the accumulation of DNA lesions and increased apoptotic response. Cell viability and DNA repair capability in response to DNA damage induction are also reduced by the E2F1 and E2F2 deficiencies. Finally, E2F1 and E2F2 accumulate at sites of oxidative and UV-induced DNA damage, and interact with γH2AX DNA repair factor. As previously reported for E2F1, E2F2 promotes Rad51 foci formation, interacts with GCN5 acetyltransferase and induces histone acetylation following genotoxic insult. The results presented here unveil a new mechanism involving E2F1 and E2F2 in the maintenance of genomic stability in response to DNA damage in neuronal cells. PMID:25892555
Alteration/deficiency in activation-3 (Ada3) plays a critical role in maintaining genomic stability
Mirza, Sameer; Katafiasz, Bryan J.; Kumar, Rakesh; Wang, Jun; Mohibi, Shakur; Jain, Smrati; Gurumurthy, Channabasavaiah Basavaraju; Pandita, Tej K.; Dave, Bhavana J.; Band, Hamid; Band, Vimla
2012-01-01
Cell cycle regulation and DNA repair following damage are essential for maintaining genome integrity. DNA damage activates checkpoints in order to repair damaged DNA prior to exit to the next phase of cell cycle. Recently, we have shown the role of Ada3, a component of various histone acetyltransferase complexes, in cell cycle regulation, and loss of Ada3 results in mouse embryonic lethality. Here, we used adenovirus-Cre-mediated Ada3 deletion in Ada3fl/fl mouse embryonic fibroblasts (MEFs) to assess the role of Ada3 in DNA damage response following exposure to ionizing radiation (IR). We report that Ada3 depletion was associated with increased levels of phospho-ATM (pATM), γH2AX, phospho-53BP1 (p53BP1) and phospho-RAD51 (pRAD51) in untreated cells; however, radiation response was intact in Ada3−/− cells. Notably, Ada3−/− cells exhibited a significant delay in disappearance of DNA damage foci for several critical proteins involved in the DNA repair process. Significantly, loss of Ada3 led to enhanced chromosomal aberrations, such as chromosome breaks, fragments, deletions and translocations, which further increased upon DNA damage. Notably, the total numbers of aberrations were more clearly observed in S-phase, as compared with G₁ or G₂ phases of cell cycle with IR. Lastly, comparison of DNA damage in Ada3fl/fl and Ada3−/− cells confirmed higher residual DNA damage in Ada3−/− cells, underscoring a critical role of Ada3 in the DNA repair process. Taken together, these findings provide evidence for a novel role for Ada3 in maintenance of the DNA repair process and genomic stability. PMID:23095635
DNA-PKcs, ATM, and ATR Interplay Maintains Genome Integrity during Neurogenesis.
Enriquez-Rios, Vanessa; Dumitrache, Lavinia C; Downing, Susanna M; Li, Yang; Brown, Eric J; Russell, Helen R; McKinnon, Peter J
2017-01-25
The DNA damage response (DDR) orchestrates a network of cellular processes that integrates cell-cycle control and DNA repair or apoptosis, which serves to maintain genome stability. DNA-PKcs (the catalytic subunit of the DNA-dependent kinase, encoded by PRKDC), ATM (ataxia telangiectasia, mutated), and ATR (ATM and Rad3-related) are related PI3K-like protein kinases and central regulators of the DDR. Defects in these kinases have been linked to neurodegenerative or neurodevelopmental syndromes. In all cases, the key neuroprotective function of these kinases is uncertain. It also remains unclear how interactions between the three DNA damage-responsive kinases coordinate genome stability, particularly in a physiological context. Here, we used a genetic approach to identify the neural function of DNA-PKcs and the interplay between ATM and ATR during neurogenesis. We found that DNA-PKcs loss in the mouse sensitized neuronal progenitors to apoptosis after ionizing radiation because of excessive DNA damage. DNA-PKcs was also required to prevent endogenous DNA damage accumulation throughout the adult brain. In contrast, ATR coordinated the DDR during neurogenesis to direct apoptosis in cycling neural progenitors, whereas ATM regulated apoptosis in both proliferative and noncycling cells. We also found that ATR controls a DNA damage-induced G 2 /M checkpoint in cortical progenitors, independent of ATM and DNA-PKcs. These nonoverlapping roles were further confirmed via sustained murine embryonic or cortical development after all three kinases were simultaneously inactivated. Thus, our results illustrate how DNA-PKcs, ATM, and ATR have unique and essential roles during the DDR, collectively ensuring comprehensive genome maintenance in the nervous system. The DNA damage response (DDR) is essential for prevention of a broad spectrum of different human neurologic diseases. However, a detailed understanding of the DDR at a physiological level is lacking. In contrast to many in vitro cellular studies, here we demonstrate independent biological roles for the DDR kinases DNA-PKcs, ATM, and ATR during neurogenesis. We show that DNA-PKcs is central to DNA repair in nonproliferating cells, and restricts DNA damage accumulation, whereas ATR controls damage-induced G 2 checkpoint control and apoptosis in proliferating cells. Conversely, ATM is critical for controlling apoptosis in immature noncycling neural cells after DNA damage. These data demonstrate functionally distinct, but cooperative, roles for each kinase in preserving genome stability in the nervous system. Copyright © 2017 the authors 0270-6474/17/370893-13$15.00/0.
NASA Technical Reports Server (NTRS)
Baily, N. A.
1973-01-01
The radiological implications of statistical variations in energy deposition by ionizing radiation were investigated in the conduct of the following experiments: (1) study of the production of secondary particles generated by the passage of the primary radiation through bone and muscle; (2) the study of the ratio of nonreparable to reparable damage in DNA as a function of different energy deposition patterns generated by X rays versus heavy fast charged particles; (3) the use of electronic radiography systems for direct fluoroscopic tomography and for the synthesis of multiple planes and; (4) the determination of the characteristics of systems response to split fields having different contrast levels, and of minimum detectable contrast levels between the halves under realistic clinical situations.
Assessing the Fidelity of Ancient DNA Sequences Amplified From Nuclear Genes
Binladen, Jonas; Wiuf, Carsten; Gilbert, M. Thomas P.; Bunce, Michael; Barnett, Ross; Larson, Greger; Greenwood, Alex D.; Haile, James; Ho, Simon Y. W.; Hansen, Anders J.; Willerslev, Eske
2006-01-01
To date, the field of ancient DNA has relied almost exclusively on mitochondrial DNA (mtDNA) sequences. However, a number of recent studies have reported the successful recovery of ancient nuclear DNA (nuDNA) sequences, thereby allowing the characterization of genetic loci directly involved in phenotypic traits of extinct taxa. It is well documented that postmortem damage in ancient mtDNA can lead to the generation of artifactual sequences. However, as yet no one has thoroughly investigated the damage spectrum in ancient nuDNA. By comparing clone sequences from 23 fossil specimens, recovered from environments ranging from permafrost to desert, we demonstrate the presence of miscoding lesion damage in both the mtDNA and nuDNA, resulting in insertion of erroneous bases during amplification. Interestingly, no significant differences in the frequency of miscoding lesion damage are recorded between mtDNA and nuDNA despite great differences in cellular copy numbers. For both mtDNA and nuDNA, we find significant positive correlations between total sequence heterogeneity and the rates of type 1 transitions (adenine → guanine and thymine → cytosine) and type 2 transitions (cytosine → thymine and guanine → adenine), respectively. Type 2 transitions are by far the most dominant and increase relative to those of type 1 with damage load. The results suggest that the deamination of cytosine (and 5-methyl cytosine) to uracil (and thymine) is the main cause of miscoding lesions in both ancient mtDNA and nuDNA sequences. We argue that the problems presented by postmortem damage, as well as problems with contamination from exogenous sources of conserved nuclear genes, allelic variation, and the reliance on single nucleotide polymorphisms, call for great caution in studies relying on ancient nuDNA sequences. PMID:16299392
Complex DNA Damage: A Route to Radiation-Induced Genomic Instability and Carcinogenesis
Mavragani, Ifigeneia V.; Nikitaki, Zacharenia; Souli, Maria P.; Aziz, Asef; Nowsheen, Somaira; Aziz, Khaled; Rogakou, Emmy
2017-01-01
Cellular effects of ionizing radiation (IR) are of great variety and level, but they are mainly damaging since radiation can perturb all important components of the cell, from the membrane to the nucleus, due to alteration of different biological molecules ranging from lipids to proteins or DNA. Regarding DNA damage, which is the main focus of this review, as well as its repair, all current knowledge indicates that IR-induced DNA damage is always more complex than the corresponding endogenous damage resulting from endogenous oxidative stress. Specifically, it is expected that IR will create clusters of damage comprised of a diversity of DNA lesions like double strand breaks (DSBs), single strand breaks (SSBs) and base lesions within a short DNA region of up to 15–20 bp. Recent data from our groups and others support two main notions, that these damaged clusters are: (1) repair resistant, increasing genomic instability (GI) and malignant transformation and (2) can be considered as persistent “danger” signals promoting chronic inflammation and immune response, causing detrimental effects to the organism (like radiation toxicity). Last but not least, the paradigm shift for the role of radiation-induced systemic effects is also incorporated in this picture of IR-effects and consequences of complex DNA damage induction and its erroneous repair. PMID:28718816
Complex DNA Damage: A Route to Radiation-Induced Genomic Instability and Carcinogenesis.
Mavragani, Ifigeneia V; Nikitaki, Zacharenia; Souli, Maria P; Aziz, Asef; Nowsheen, Somaira; Aziz, Khaled; Rogakou, Emmy; Georgakilas, Alexandros G
2017-07-18
Cellular effects of ionizing radiation (IR) are of great variety and level, but they are mainly damaging since radiation can perturb all important components of the cell, from the membrane to the nucleus, due to alteration of different biological molecules ranging from lipids to proteins or DNA. Regarding DNA damage, which is the main focus of this review, as well as its repair, all current knowledge indicates that IR-induced DNA damage is always more complex than the corresponding endogenous damage resulting from endogenous oxidative stress. Specifically, it is expected that IR will create clusters of damage comprised of a diversity of DNA lesions like double strand breaks (DSBs), single strand breaks (SSBs) and base lesions within a short DNA region of up to 15-20 bp. Recent data from our groups and others support two main notions, that these damaged clusters are: (1) repair resistant, increasing genomic instability (GI) and malignant transformation and (2) can be considered as persistent "danger" signals promoting chronic inflammation and immune response, causing detrimental effects to the organism (like radiation toxicity). Last but not least, the paradigm shift for the role of radiation-induced systemic effects is also incorporated in this picture of IR-effects and consequences of complex DNA damage induction and its erroneous repair.
Lisowska, Halina; Cheng, Lei; Sollazzo, Alice; Lundholm, Lovisa; Wegierek-Ciuk, Aneta; Sommer, Sylwester; Lankoff, Anna; Wojcik, Andrzej
2018-06-01
Low temperature at exposure has been shown to act in a radioprotective manner at the level of cytogenetic damage. It was suggested to be due to an effective transformation of DNA damage to chromosomal damage at low temperature. The purpose of the study was to analyze the kinetics of aberration formation during the first hours after exposing human peripheral blood lymphocytes to ionizing radiation at 0.8 °C and 37 °C. To this end, we applied the technique of premature chromosome condensation. In addition, DNA damage response was analyzed by measuring the levels of phosphorylated DNA damage responsive proteins ATM, DNA-PK and p53 and mRNA levels of the radiation-responsive genes BBC3, FDXR, GADD45A, XPC, MDM2 and CDKN1A. A consistently lower frequency of chromosomal breaks was observed in cells exposed at 0.8 °C as compared to 37 °C already after 30 minutes postexposure. This effect was accompanied by elevated levels of phosphorylated ATM and DNA-PK proteins and a reduced immediate level of phosphorylated p53 and of the responsive genes. Low temperature at exposure appears to promote DNA repair leading to reduced transformation of DNA damage to chromosomal aberrations.
Genome-Wide Requirements for Resistance to Functionally Distinct DNA-Damaging Agents
Proctor, Michael; Flaherty, Patrick; Jordan, Michael I; Arkin, Adam P; Davis, Ronald W; Nislow, Corey; Giaever, Guri
2005-01-01
The mechanistic and therapeutic differences in the cellular response to DNA-damaging compounds are not completely understood, despite intense study. To expand our knowledge of DNA damage, we assayed the effects of 12 closely related DNA-damaging agents on the complete pool of ~4,700 barcoded homozygous deletion strains of Saccharomyces cerevisiae. In our protocol, deletion strains are pooled together and grown competitively in the presence of compound. Relative strain sensitivity is determined by hybridization of PCR-amplified barcodes to an oligonucleotide array carrying the barcode complements. These screens identified genes in well-characterized DNA-damage-response pathways as well as genes whose role in the DNA-damage response had not been previously established. High-throughput individual growth analysis was used to independently confirm microarray results. Each compound produced a unique genome-wide profile. Analysis of these data allowed us to determine the relative importance of DNA-repair modules for resistance to each of the 12 profiled compounds. Clustering the data for 12 distinct compounds uncovered both known and novel functional interactions that comprise the DNA-damage response and allowed us to define the genetic determinants required for repair of interstrand cross-links. Further genetic analysis allowed determination of epistasis for one of these functional groups. PMID:16121259
Structural Basis of Mec1-Ddc2-RPA Assembly and Activation on Single-Stranded DNA at Sites of Damage.
Deshpande, Ishan; Seeber, Andrew; Shimada, Kenji; Keusch, Jeremy J; Gut, Heinz; Gasser, Susan M
2017-10-19
Mec1-Ddc2 (ATR-ATRIP) is a key DNA-damage-sensing kinase that is recruited through the single-stranded (ss) DNA-binding replication protein A (RPA) to initiate the DNA damage checkpoint response. Activation of ATR-ATRIP in the absence of DNA damage is lethal. Therefore, it is important that damage-specific recruitment precedes kinase activation, which is achieved at least in part by Mec1-Ddc2 homodimerization. Here, we report a structural, biochemical, and functional characterization of the yeast Mec1-Ddc2-RPA assembly. High-resolution co-crystal structures of Ddc2-Rfa1 and Ddc2-Rfa1-t11 (K45E mutant) N termini and of the Ddc2 coiled-coil domain (CCD) provide insight into Mec1-Ddc2 homodimerization and damage-site targeting. Based on our structural and functional findings, we present a Mec1-Ddc2-RPA-ssDNA composite structural model. By way of validation, we show that RPA-dependent recruitment of Mec1-Ddc2 is crucial for maintaining its homodimeric state at ssDNA and that Ddc2's recruitment domain and CCD are important for Mec1-dependent survival of UV-light-induced DNA damage. Copyright © 2017 Elsevier Inc. All rights reserved.
Nguyen, Jenny; Ma, Yuhan; Luo, Ting; Bristow, Robert G.; Jaffray, David A.; Lu, Qing-Bin
2011-01-01
Both water and electron-transfer reactions play important roles in chemistry, physics, biology, and the environment. Oxidative DNA damage is a well-known mechanism, whereas the relative role of reductive DNA damage is unknown. The prehydrated electron (), a novel species of electrons in water, is a fascinating species due to its fundamental importance in chemistry, biology, and the environment. is an ideal agent to observe reductive DNA damage. Here, we report both the first in situ femtosecond time-resolved laser spectroscopy measurements of ultrafast-electron-transfer (UET) reactions of with various scavengers (KNO3, isopropanol, and dimethyl sulfoxide) and the first gel electrophoresis measurements of DNA strand breaks induced by and OH• radicals co-produced by two-UV-photon photolysis of water. We strikingly found that the yield of reductive DNA strand breaks induced by each is twice the yield of oxidative DNA strand breaks induced by each OH• radical. Our results not only unravel the long-standing mystery about the relative role of radicals in inducing DNA damage under ionizing radiation, but also challenge the conventional notion that oxidative damage is the main pathway for DNA damage. The results also show the potential of femtomedicine as a new transdisciplinary frontier and the broad significance of UET reactions of in many processes in chemistry, physics, biology, and the environment. PMID:21730183
Deshmukh, Jayesh; Pofahl, Ruth; Haase, Ingo
2017-01-01
Non-melanoma skin cancer (NMSC) is the most common type of cancer. Increased expression and activity of Rac1, a small Rho GTPase, has been shown previously in NMSC and other human cancers; suggesting that Rac1 may function as an oncogene in skin. DMBA/TPA skin carcinogenesis studies in mice have shown that Rac1 is required for chemically induced skin papilloma formation. However, UVB radiation by the sun, which causes DNA damage, is the most relevant cause for NMSC. A potential role of Rac1 in UV-light-induced skin carcinogenesis has not been investigated so far. To investigate this, we irradiated mice with epidermal Rac1 deficiency (Rac1-EKO) and their controls using a well-established protocol for long-term UV-irradiation. Most of the Rac1-EKO mice developed severe skin erosions upon long-term UV-irradiation, unlike their controls. These skin erosions in Rac1-EKO mice healed subsequently. Surprisingly, we observed development of squamous cell carcinomas (SCCs) within the UV-irradiation fields. This shows that the presence of Rac1 in the epidermis protects from UV-light-induced skin carcinogenesis. Short-term UV-irradiation experiments revealed increased UV-light-induced apoptosis of Rac1-deficient epidermal keratinocytes in vitro as well as in vivo. Further investigations using cyclobutane pyrimidine dimer photolyase transgenic mice revealed that the observed increase in UV-light-induced keratinocyte apoptosis in Rac1-EKO mice is DNA damage dependent and correlates with caspase-8 activation. Furthermore, Rac1-deficient keratinocytes showed reduced levels of p53, γ-H2AX and p-Chk1 suggesting an attenuated DNA damage response upon UV-irradiation. Taken together, our data provide direct evidence for a protective role of Rac1 in UV-light-induced skin carcinogenesis and keratinocyte apoptosis probably through regulating mechanisms of the DNA damage response and repair pathways. PMID:28277539
Deshmukh, Jayesh; Pofahl, Ruth; Haase, Ingo
2017-03-09
Non-melanoma skin cancer (NMSC) is the most common type of cancer. Increased expression and activity of Rac1, a small Rho GTPase, has been shown previously in NMSC and other human cancers; suggesting that Rac1 may function as an oncogene in skin. DMBA/TPA skin carcinogenesis studies in mice have shown that Rac1 is required for chemically induced skin papilloma formation. However, UVB radiation by the sun, which causes DNA damage, is the most relevant cause for NMSC. A potential role of Rac1 in UV-light-induced skin carcinogenesis has not been investigated so far. To investigate this, we irradiated mice with epidermal Rac1 deficiency (Rac1-EKO) and their controls using a well-established protocol for long-term UV-irradiation. Most of the Rac1-EKO mice developed severe skin erosions upon long-term UV-irradiation, unlike their controls. These skin erosions in Rac1-EKO mice healed subsequently. Surprisingly, we observed development of squamous cell carcinomas (SCCs) within the UV-irradiation fields. This shows that the presence of Rac1 in the epidermis protects from UV-light-induced skin carcinogenesis. Short-term UV-irradiation experiments revealed increased UV-light-induced apoptosis of Rac1-deficient epidermal keratinocytes in vitro as well as in vivo. Further investigations using cyclobutane pyrimidine dimer photolyase transgenic mice revealed that the observed increase in UV-light-induced keratinocyte apoptosis in Rac1-EKO mice is DNA damage dependent and correlates with caspase-8 activation. Furthermore, Rac1-deficient keratinocytes showed reduced levels of p53, γ-H2AX and p-Chk1 suggesting an attenuated DNA damage response upon UV-irradiation. Taken together, our data provide direct evidence for a protective role of Rac1 in UV-light-induced skin carcinogenesis and keratinocyte apoptosis probably through regulating mechanisms of the DNA damage response and repair pathways.
ELF alternating magnetic field decreases reproduction by DNA damage induction.
Panagopoulos, Dimitris J; Karabarbounis, Andreas; Lioliousis, Constantinos
2013-11-01
In the present experiments, the effect of 50-Hz alternating magnetic field on Drosophila melanogaster reproduction was studied. Newly eclosed insects were separated into identical groups of ten males and ten females and exposed to three different intensities of the ELF magnetic field (1, 11, and 21 G) continuously during the first 5 days of their adult lives. The reproductive capacity was assessed by the number of F1 pupae according to a well-defined protocol of ours. The magnetic field was found to decrease reproduction by up to 4.3%. The effect increased with increasing field intensities. The decline in reproductive capacity was found to be due to severe DNA damage (DNA fragmentation) and consequent cell death induction in the reproductive cells as determined by the TUNEL assay applied during early and mid-oogenesis (from germarium to stage 10) where physiological apoptosis does not occur. The increase in DNA damage was more significant than the corresponding decrease in reproductive capacity (up to ~7.5%). The TUNEL-positive signal denoting DNA fragmentation was observed exclusively at the two most sensitive developmental stages of oogenesis: the early and mid-oogenesis checkpoints (i.e. region 2a/2b of the germarium and stages 7-8 just before the onset of vitellogenesis)-in contrast to exposure to microwave radiation of earlier work of ours in which the DNA fragmentation was induced at all developmental stages of early and mid-oogenesis. Moreover, the TUNEL-positive signal was observed in all three types of egg chamber cells, mainly in the nurse and follicle cells and also in the oocyte, in agreement with the microwave exposure of our earlier works. According to previous reports, cell death induction in the oocyte was observed only in the case of microwave exposure and not after exposure to other stress factors as toxic chemicals or food deprivation. Now it is also observed for the first time after ELF magnetic field exposure. Finally, in contrast to microwave exposure of previous experiments of ours in which the germarium checkpoint was found to be more sensitive than stage 7-8, in the magnetic field exposure of the present experiments the mid-oogenesis checkpoint was found to be more sensitive than the germarium.
Stress-induced DNA Damage biomarkers: Applications and limitations
NASA Astrophysics Data System (ADS)
Nikitaki, Zacharenia; Hellweg, Christine; Georgakilas, Alexandros; Ravanat, Jean-Luc
2015-06-01
A variety of environmental stresses like chemicals, UV and ionizing radiation and organism’s endogenous processes like replication stress and metabolism can lead to the generation of reactive oxygen and nitrogen species (ROS/RNS) that can attack cellular vital components like DNA, proteins and lipid membranes. Among them, much attention has been focused on DNA since DNA damages play a role in several biological disorders and aging processes. Thus, DNA damage can be used as a biomarker in a reliable and accurate way to quantify for example radiation exposure and can indicate its possible long term effects and cancer risk. Based on the type of DNA lesions detected one can hypothesize on the most probable mechanisms involved in the formation of these lesions for example in the case of UV and ionizing radiation (e.g. X- or α-, γ-rays, energetic ions, neutrons). In this review we describe the most accepted chemical pathways for DNA damage induction and the different types of DNA lesions, i.e. single, complex DNA lesions etc. that can be used as biomarkers. We critically compare DNA damage detection methods and their limitations. In addition to such DNA damage products, we suggest possible gene inductions that can be used to characterize responses to different types of stresses i.e. radiation, oxidative and replication stress, based on bioinformatic approaches and stringent meta-analysis of literature data.
Qiu, Yanyan; Qu, Xiangjin; Dong, Jing; Ai, Shiyun; Han, Ruixia
2011-06-15
A new electrochemical biosensor for directly detecting DNA damage induced by acrylamide (AA) and its metabolite was presented in this work. The graphene-ionic liquid-Nafion modified pyrolytic graphite electrode (PGE) was prepared, and then horseradish peroxidase (HRP) and natural double-stranded DNA were alternately assembled on the modified electrode by the layer-by-layer method. The PGE/graphene-ionic liquid-Nafion and the construction of the (HRP/DNA)(n) film were characterized by electrochemical impedance spectroscopy. With the guanine signal in DNA as an indicator, the damage of DNA was detected by differential pulse voltammetry after PGE/graphene-ionic liquid-Nafion/(HRP/DNA)(n) was incubated in AA solution or AA+H(2)O(2) solution at 37°C. This method provides a new model to mimic and directly detect DNA damage induced by chemical pollutants and their metabolites in vitro. The results indicated that, in the presence of H(2)O(2), HRP was activated and catalyzed the transformation of AA to glycidamide, which could form DNA adducts and induce more serious damage of DNA than AA. In order to further verify these results, UV-vis spectrophotometry was also used to investigate DNA damage induced by AA and its metabolites in solution and the similar results were obtained. Copyright © 2011 Elsevier B.V. All rights reserved.
The nucleosome: orchestrating DNA damage signaling and repair within chromatin.
Agarwal, Poonam; Miller, Kyle M
2016-10-01
DNA damage occurs within the chromatin environment, which ultimately participates in regulating DNA damage response (DDR) pathways and repair of the lesion. DNA damage activates a cascade of signaling events that extensively modulates chromatin structure and organization to coordinate DDR factor recruitment to the break and repair, whilst also promoting the maintenance of normal chromatin functions within the damaged region. For example, DDR pathways must avoid conflicts between other DNA-based processes that function within the context of chromatin, including transcription and replication. The molecular mechanisms governing the recognition, target specificity, and recruitment of DDR factors and enzymes to the fundamental repeating unit of chromatin, i.e., the nucleosome, are poorly understood. Here we present our current view of how chromatin recognition by DDR factors is achieved at the level of the nucleosome. Emerging evidence suggests that the nucleosome surface, including the nucleosome acidic patch, promotes the binding and activity of several DNA damage factors on chromatin. Thus, in addition to interactions with damaged DNA and histone modifications, nucleosome recognition by DDR factors plays a key role in orchestrating the requisite chromatin response to maintain both genome and epigenome integrity.
Carreras Puigvert, Jordi; von Stechow, Louise; Siddappa, Ramakrishnaiah; Pines, Alex; Bahjat, Mahnoush; Haazen, Lizette C J M; Olsen, Jesper V; Vrieling, Harry; Meerman, John H N; Mullenders, Leon H F; van de Water, Bob; Danen, Erik H J
2013-01-22
In pluripotent stem cells, DNA damage triggers loss of pluripotency and apoptosis as a safeguard to exclude damaged DNA from the lineage. An intricate DNA damage response (DDR) signaling network ensures that the response is proportional to the severity of the damage. We combined an RNA interference screen targeting all kinases, phosphatases, and transcription factors with global transcriptomics and phosphoproteomics to map the DDR in mouse embryonic stem cells treated with the DNA cross-linker cisplatin. Networks derived from canonical pathways shared in all three data sets were implicated in DNA damage repair, cell cycle and survival, and differentiation. Experimental probing of these networks identified a mode of DNA damage-induced Wnt signaling that limited apoptosis. Silencing or deleting the p53 gene demonstrated that genotoxic stress elicited Wnt signaling in a p53-independent manner. Instead, this response occurred through reduced abundance of Csnk1a1 (CK1α), a kinase that inhibits β-catenin. Together, our findings reveal a balance between p53-mediated elimination of stem cells (through loss of pluripotency and apoptosis) and Wnt signaling that attenuates this response to tune the outcome of the DDR.
Imaging and radiation effects of gold nanoparticles in tumour cells
McQuaid, Harold N.; Muir, Mark F.; Taggart, Laura E.; McMahon, Stephen J.; Coulter, Jonathan A.; Hyland, Wendy B.; Jain, Suneil; Butterworth, Karl T.; Schettino, Giuseppe; Prise, Kevin M.; Hirst, David G.; Botchway, Stanley W.; Currell, Fred J.
2016-01-01
Gold nanoparticle radiosensitization represents a novel technique in enhancement of ionising radiation dose and its effect on biological systems. Variation between theoretical predictions and experimental measurement is significant enough that the mechanism leading to an increase in cell killing and DNA damage is still not clear. We present the first experimental results that take into account both the measured biodistribution of gold nanoparticles at the cellular level and the range of the product electrons responsible for energy deposition. Combining synchrotron-generated monoenergetic X-rays, intracellular gold particle imaging and DNA damage assays, has enabled a DNA damage model to be generated that includes the production of intermediate electrons. We can therefore show for the first time good agreement between the prediction of biological outcomes from both the Local Effect Model and a DNA damage model with experimentally observed cell killing and DNA damage induction via the combination of X-rays and GNPs. However, the requirement of two distinct models as indicated by this mechanistic study, one for short-term DNA damage and another for cell survival, indicates that, at least for nanoparticle enhancement, it is not safe to equate the lethal lesions invoked in the local effect model with DNA damage events. PMID:26787230
Protective effect of KI in mtDNA in porcine thyroid: comparison with KIO₃ and nDNA.
Karbownik-Lewinska, Malgorzata; Stepniak, Jan; Milczarek, Magdalena; Lewinski, Andrzej
2015-03-01
Iodine, bivalent iron (Fe²⁺), and hydrogen peroxide (H₂O₂), all significantly affecting the red-ox balance, are required for thyroid hormone synthesis. Intracellular iodine excess (≥10⁻³ M) transiently blocks thyroid hormonogenesis (an adaptive mechanism called Wolff-Chaikoff effect). The aim of the study was to evaluate the effects of iodine, used as potassium iodide (KI) or potassium iodate (KIO₃), in concentrations corresponding to those typical for Wolff-Chaikoff effect, on the level of oxidative damage to nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) isolated from porcine thyroid under basal conditions and in the presence of Fenton reaction (Fe²⁺+H₂O₂ → Fe³⁺+(·)OH + OH⁻) substrates. Thyroid nDNA and mtDNA were incubated in the presence of either KI or KIO₃ (2.5-50 mM), without/with FeSO₄ (30 µM) + H₂O₂ (0.5 mM). Index of DNA damage, i.e., 8-oxo-7,8-dihydro-2'-deoxyguanosine, was measured by HPLC. Neither KI nor KIO₃ increased the basal level of 8-oxodG in both nDNA and mtDNA. KI-in all used concentrations-completely prevented the damaging effect of Fenton reaction substrates in mtDNA, and it partially prevented this damage in nDNA. KIO₃ partially prevented Fe²⁺+H₂O₂-induced oxidative damage in both DNA only in its highest used concentrations (≥25 mM). Without additional prooxidative abuse, both iodine compounds, i.e., KI and KIO₃, seem to be safe in terms of their potential oxidative damage to DNA in the thyroid. The superiority of KI over KIO₃ relies on its stronger protective effects against oxidative damage to mtDNA, which constitutes an argument for its preferential utility in iodine prophylaxis.
MDC1: The art of keeping things in focus.
Jungmichel, Stephanie; Stucki, Manuel
2010-08-01
The chromatin structure is important for recognition and repair of DNA damage. Many DNA damage response proteins accumulate in large chromatin domains flanking sites of DNA double-strand breaks. The assembly of these structures-usually termed DNA damage foci-is primarily regulated by MDC1, a large nuclear mediator/adaptor protein that is composed of several distinct structural and functional domains. Here, we are summarizing the latest discoveries about the mechanisms by which MDC1 mediates DNA damage foci formation, and we are reviewing the considerable efforts taken to understand the functional implication of these structures.
Selective Targeting of Brain Tumors with Gold Nanoparticle-Induced Radiosensitization
Joh, Daniel Y.; Sun, Lova; Stangl, Melissa; Al Zaki, Ajlan; Murty, Surya; Santoiemma, Phillip P.; Davis, James J.; Baumann, Brian C.; Alonso-Basanta, Michelle; Bhang, Dongha; Kao, Gary D.; Tsourkas, Andrew; Dorsey, Jay F.
2013-01-01
Successful treatment of brain tumors such as glioblastoma multiforme (GBM) is limited in large part by the cumulative dose of Radiation Therapy (RT) that can be safely given and the blood-brain barrier (BBB), which limits the delivery of systemic anticancer agents into tumor tissue. Consequently, the overall prognosis remains grim. Herein, we report our pilot studies in cell culture experiments and in an animal model of GBM in which RT is complemented by PEGylated-gold nanoparticles (GNPs). GNPs significantly increased cellular DNA damage inflicted by ionizing radiation in human GBM-derived cell lines and resulted in reduced clonogenic survival (with dose-enhancement ratio of ∼1.3). Intriguingly, combined GNP and RT also resulted in markedly increased DNA damage to brain blood vessels. Follow-up in vitro experiments confirmed that the combination of GNP and RT resulted in considerably increased DNA damage in brain-derived endothelial cells. Finally, the combination of GNP and RT increased survival of mice with orthotopic GBM tumors. Prior treatment of mice with brain tumors resulted in increased extravasation and in-tumor deposition of GNP, suggesting that RT-induced BBB disruption can be leveraged to improve the tumor-tissue targeting of GNP and thus further optimize the radiosensitization of brain tumors by GNP. These exciting results together suggest that GNP may be usefully integrated into the RT treatment of brain tumors, with potential benefits resulting from increased tumor cell radiosensitization to preferential targeting of tumor-associated vasculature. PMID:23638079
DNA ELECTROPHORESIS AT SURFACES
DOE Office of Scientific and Technical Information (OSTI.GOV)
RAFAILOVICH, MIRIAM; SOKOLOV, JONATHAN; GERSAPPE, DILIP
2003-09-01
During this year we performed two major projects: I. We developed a detailed theoretical model which complements our experiments on surface DNA electrophoresis. We found that it was possible to enhance the separation of DNA chains by imposing a chemical nanoscale pattern on the surface. This approach utilized the surface interaction effect of the DNA chains with the substrate and is a refinement to our previous method in which DNA chains were separated on homogeneous flat surfaces. By introducing the nano-patterns on the surface, the conformational changes of DNA chains of different lengths can be amplified, which results in themore » different friction strengths with the substrate surface. Our results also show that, when compared to the DNA electrophoresis performed on homogeneous flat surfaces, nanopatterned surfaces offer a larger window in choosing different surface interactions to achieve separation. II. In collaboration with a large international manufacturer of skin care products we also embarked on a project involving photo toxicity of titanium dioxide nanoparticles, which are a key ingredient in sunscreen and cosmetic lotions. The results clearly implicated the nanoparticles in catalyzing damage to chromosomal DNA. We then used this knowledge to develop a polymer/anti-oxidant coating which prevented the photocatalytic reaction on DNA while still retaining the UV absorptive properties of the nanoparticles. The standard gel electrophoresis was not sufficient in determining the extent of the DNA damage. The conclusions of this study were based predominantly on analysis obtained with the surface electrophoresis method.« less
DNA damage and repair after high LET radiation
NASA Astrophysics Data System (ADS)
O'Neill, Peter; Cucinotta, Francis; Anderson, Jennifer
Predictions from biophysical models of interactions of radiation tracks with cellular DNA indicate that clustered DNA damage sites, defined as two or more lesions formed within one or two helical turns of the DNA by passage of a single radiation track, are formed in mammalian cells. These complex DNA damage sites are regarded as a signature of ionizing radiation exposure particularly as the likelihood of clustered damage sites arising endogenously is low. For instance, it was predicted from biophysical modelling that 30-40% of low LET-induced double strand breaks (DSB), a form of clustered damage, are complex with the yield increasing to >90% for high LET radiation, consistent with the reduced reparability of DSB with increasing ionization density of the radiation. The question arises whether the increased biological effects such as mutagenesis, carcinogenesis and lethality is in part related to DNA damage complexity and/or spatial distribution of the damage sites, which may lead to small DNA fragments. With particle radiation it is also important to consider not only delta-rays which may cause clustered damaged sites and may be highly mutagenic but the non-random spatial distribution of DSB which may lead to deletions. In this overview I will concentrate on the molecular aspects of the variation of the complexity of DNA damage on radiation quality and the challenges this complexity presents the DNA damage repair pathways. I will draw on data from micro-irradiations which indicate that the repair of DSBs by non-homologous end joining is highly regulated with pathway choice and kinetics of repair dependent on the chemical complexity of the DSB. In summary the aim is to emphasis the link between the spatial distribution of energy deposition events related to the track, the molecular products formed and the consequence of damage complexity contributing to biological effects and to present some of the outstanding molecular challenges with particle radiation.
Cryopreservation of human blood for alkaline and Fpg-modified comet assay.
Pu, Xinzhu; Wang, Zemin; Klaunig, James E
2016-01-01
The Comet assay is a reproducible and sensitive assay for the detection of DNA damage in eukaryotic cells and tissues. Incorporation of lesion specific, oxidative DNA damage repair enzymes (for example, Fpg, OGG1 and EndoIII) in the standard alkaline Comet assay procedure allows for the detection and measurement of oxidative DNA damage. The Comet assay using white blood cells (WBC) has proven useful in monitoring DNA damage from environmental agents in humans. However, it is often impractical to performance Comet assay immediately after blood sampling. Thus, storage of blood sample is required. In this study, we developed and tested a simple storage method for very small amount of whole blood for standard and Fpg-modified modified Comet assay. Whole blood was stored in RPMI 1640 media containing 10% FBS, 10% DMSO and 1 mM deferoxamine at a sample to media ratio of 1:50. Samples were stored at -20 °C and -80 °C for 1, 7, 14 and 28 days. Isolated lymphocytes from the same subjects were also stored under the same conditions for comparison. Direct DNA strand breakage and oxidative DNA damage in WBC and lymphocytes were analyzed using standard and Fpg-modified alkaline Comet assay and compared with freshly analyzed samples. No significant changes in either direct DNA strand breakage or oxidative DNA damage was seen in WBC and lymphocytes stored at -20 °C for 1 and 7 days compared to fresh samples. However, significant increases in both direct and oxidative DNA damage were seen in samples stored at -20 °C for 14 and 28 days. No changes in direct and oxidative DNA damage were observed in WBC and lymphocytes stored at -80 °C for up to 28 days. These results identified the proper storage conditions for storing whole blood or isolated lymphocytes to evaluate direct and oxidative DNA damage using standard and Fpg-modified alkaline Comet assay.
2014-12-03
DNA damage . It is controlled by a complex network involving the RecA and LexA proteins. We have previously shown that the SOS response to DNA damage ...Research Triangle Park, NC 27709-2211 enteric bacterium E. coli, SOS Response, DNA damage REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT...Report Title The Escherichia coli (E. coli) SOS response is the largest, most complex, and best characterized bacterial network induced by DNA damage
Binding of Substrate Locks the Electrochemistry of CRY-DASH into DNA Repair.
Gindt, Yvonne M; Messyasz, Adriana; Jumbo, Pamela I
2015-05-12
VcCry1, a member of the CRY-DASH family, may serve two diverse roles in vivo, including blue-light signaling and repair of UV-damaged DNA. We have discovered that the electrochemistry of the flavin adenine dinucleotide cofactor of VcCry1 is locked to cycle only between the hydroquinone and neutral semiquinone states when UV-damaged DNA is present. Other potential substrates, including undamaged DNA and ATP, have no discernible effect on the electrochemistry, and the kinetics of the reduction is unaffected by damaged DNA. Binding of the damaged DNA substrate determines the role of the protein and prevents the presumed photochemistry required for blue-light signaling.
Schalk, Catherine; Cognat, Valérie; Graindorge, Stéfanie; Vincent, Timothée; Voinnet, Olivier; Molinier, Jean
2017-01-01
As photosynthetic organisms, plants need to prevent irreversible UV-induced DNA lesions. Through an unbiased, genome-wide approach, we have uncovered a previously unrecognized interplay between Global Genome Repair and small interfering RNAs (siRNAs) in the recognition of DNA photoproducts, prevalently in intergenic regions. Genetic and biochemical approaches indicate that, upon UV irradiation, the DNA DAMAGE-BINDING PROTEIN 2 (DDB2) and ARGONAUTE 1 (AGO1) of Arabidopsis thaliana form a chromatin-bound complex together with 21-nt siRNAs, which likely facilitates recognition of DNA damages in an RNA/DNA complementary strand-specific manner. The biogenesis of photoproduct-associated siRNAs involves the noncanonical, concerted action of RNA POLYMERASE IV, RNA-DEPENDENT RNA POLYMERASE-2, and DICER-LIKE-4. Furthermore, the chromatin association/dissociation of the DDB2-AGO1 complex is under the control of siRNA abundance and DNA damage signaling. These findings reveal unexpected nuclear functions for DCL4 and AGO1, and shed light on the interplay between small RNAs and DNA repair recognition factors at damaged sites. PMID:28325872
DNA Strand Breaks in Mitotic Germ Cells of Caenorhabditis elegans Evaluated by Comet Assay
Park, Sojin; Choi, Seoyun; Ahn, Byungchan
2016-01-01
DNA damage responses are important for the maintenance of genome stability and the survival of organisms. Such responses are activated in the presence of DNA damage and lead to cell cycle arrest, apoptosis, and DNA repair. In Caenorhabditis elegans, double-strand breaks induced by DNA damaging agents have been detected indirectly by antibodies against DSB recognizing proteins. In this study we used a comet assay to detect DNA strand breaks and to measure the elimination of DNA strand breaks in mitotic germline nuclei of C. elegans. We found that C. elegans brc-1 mutants were more sensitive to ionizing radiation and camptothecin than the N2 wild-type strain and repaired DNA strand breaks less efficiently than N2. This study is the first demonstration of direct measurement of DNA strand breaks in mitotic germline nuclei of C. elegans. This newly developed assay can be applied to detect DNA strand breaks in different C. elegans mutants that are sensitive to DNA damaging agents. PMID:26903030
Effects of seven chemicals on DNA damage in the rat urinary bladder: a comet assay study.
Wada, Kunio; Yoshida, Toshinori; Takahashi, Naofumi; Matsumoto, Kyomu
2014-07-15
The in vivo comet assay has been used for the evaluation of DNA damage and repair in various tissues of rodents. However, it can give false-positive results due to non-specific DNA damage associated with cell death. In this study, we examined whether the in vivo comet assay can distinguish between genotoxic and non-genotoxic DNA damage in urinary bladder cells, by using the following seven chemicals related to urinary bladder carcinogenesis in rodents: N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN), glycidol, 2,2-bis(bromomethyl)-1,3-propanediol (BMP), 2-nitroanisole (2-NA), benzyl isothiocyanate (BITC), uracil, and melamine. BBN, glycidol, BMP, and 2-NA are known to be Ames test-positive and they are expected to produce DNA damage in the absence of cytotoxicity. BITC, uracil, and melamine are Ames test-negative with metabolic activation but have the potential to induce non-specific DNA damage due to cytotoxicity. The test chemicals were administered orally to male Sprague-Dawley rats (five per group) for each of two consecutive days. Urinary bladders were sampled 3h after the second administration and urothelial cells were analyzed by the comet assay and subjected to histopathological examination to evaluate cytotoxicity. In the urinary bladders of rats treated with BBN, glycidol, and BMP, DNA damage was detected. In contrast, 2-NA induced neither DNA damage nor cytotoxicity. The non-genotoxic chemicals (BITC, uracil, and melamine) did not induce DNA damage in the urinary bladders under conditions where some histopathological changes were observed. The results indicate that the comet assay could distinguish between genotoxic and non-genotoxic chemicals and that no false-positive responses were obtained. Copyright © 2014 Elsevier B.V. All rights reserved.
Takada, Saeko; Collins, Eric R; Kurahashi, Kayo
2015-05-15
DNA damage responses, including mitotic centrosome inactivation, cell-cycle delay in mitosis, and nuclear dropping from embryo cortex, maintain genome integrity in syncytial Drosophila embryos. A conserved signaling kinase, Chk2, known as Mnk/Loki, is essential for the responses. Here we demonstrate that functional EGFP-Mnk expressed from a transgene localizes to the nucleus, centrosomes, interkinetochore/centromere region, midbody, and pseudocleavage furrows without DNA damage and in addition forms numerous foci/aggregates on mitotic chromosomes upon DNA damage. We expressed EGFP-tagged Mnk deletion or point mutation variants and investigated domain functions of Mnk in vivo. A triple mutation in the phosphopeptide-binding site of the forkhead-associated (FHA) domain disrupted normal Mnk localization except to the nucleus. The mutation also disrupted Mnk foci formation on chromosomes upon DNA damage. FHA mutations and deletion of the SQ/TQ-cluster domain (SCD) abolished Mnk transphosphorylations and autophosphorylations, indicative of kinase activation after DNA damage. A potent NLS was found at the C-terminus, which is required for normal Mnk function. We propose that the FHA domain in Mnk plays essential dual functions in mediating embryonic DNA damage responses by means of its phosphopeptide-binding ability: activating Mnk in the nucleus upon DNA damage and recruiting Mnk to multiple subcellular structures independently of DNA damage. © 2015 Takada et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Chen, Zhongcan; Cao, Zhen; Zhang, Wei; Gu, Minxia; Zhou, Zhi Dong; Li, Baojie; Li, Jing; Tan, Eng King; Zeng, Li
2017-11-15
Pathogenic leucine-rich repeat kinase 2 (LRRK2) mutations are recognized as the most common cause of familial Parkinson's disease in certain populations. Recently, LRRK2 mutations were shown to be associated with a higher risk of hormone-related cancers. However, how LRRK2 itself contributes to cancer risk remains unknown. DNA damage causes cancer, and DNA damage responses are among the most important pathways in cancer biology. To understand the role of LRRK2 in DNA damage response pathway, we induced DNA damage by applying genotoxic stress to the cells with Adriamycin. We found that DNA damage enhances LRRK2 phosphorylation at Serine 910, Serine 935 and Serine 1292. We further showed that LRRK2 phosphorylation is abolished in the absence of ATM, suggesting that LRRK2 phosphorylation requires ATM. It should also be noted that LRRK2 interacts with ATM. In contrast, overexpression or knockdown of LRRK2 does not affect ATM phosphorylation, indicating that LRRK2 is the downstream target of ATM in response to DNA damage. Moreover, we demonstrated that LRRK2 increases the expression of p53 and p21 by increasing the Mdm2 phosphorylation in response to DNA damage. Loss-of-function in LRRK2 has the opposite effect to that of LRRK2. In addition, FACS analysis revealed that LRRK2 enhances cell cycle progression into S phase in response to DNA damage, a finding that was confirmed by 5-bromo-2'-deoxyuridine immunostaining. Taken together, our findings demonstrate that LRRK2 plays an important role in the ATM-Mdm2-p53 pathway that regulates cell proliferation in response to DNA damage. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Fetterman, Jessica L; Holbrook, Monica; Westbrook, David G; Brown, Jamelle A; Feeley, Kyle P; Bretón-Romero, Rosa; Linder, Erika A; Berk, Brittany D; Weisbrod, Robert M; Widlansky, Michael E; Gokce, Noyan; Ballinger, Scott W; Hamburg, Naomi M
2016-03-31
Prior studies demonstrate mitochondrial dysfunction with increased reactive oxygen species generation in peripheral blood mononuclear cells in diabetes mellitus. Oxidative stress-mediated damage to mitochondrial DNA promotes atherosclerosis in animal models. Thus, we evaluated the relation of mitochondrial DNA damage in peripheral blood mononuclear cells s with vascular function in patients with diabetes mellitus and with atherosclerotic cardiovascular disease. We assessed non-invasive vascular function and mitochondrial DNA damage in 275 patients (age 57 ± 9 years, 60 % women) with atherosclerotic cardiovascular disease alone (N = 55), diabetes mellitus alone (N = 74), combined atherosclerotic cardiovascular disease and diabetes mellitus (N = 48), and controls age >45 without diabetes mellitus or atherosclerotic cardiovascular disease (N = 98). Mitochondrial DNA damage measured by quantitative PCR in peripheral blood mononuclear cells was higher with clinical atherosclerosis alone (0.55 ± 0.65), diabetes mellitus alone (0.65 ± 1.0), and combined clinical atherosclerosis and diabetes mellitus (0.89 ± 1.32) as compared to control subjects (0.23 ± 0.64, P < 0.0001). In multivariable models adjusting for age, sex, and relevant cardiovascular risk factors, clinical atherosclerosis and diabetes mellitus remained associated with higher mitochondrial DNA damage levels (β = 0.14 ± 0.13, P = 0.04 and β = 0.21 ± 0.13, P = 0.002, respectively). Higher mitochondrial DNA damage was associated with higher baseline pulse amplitude, a measure of arterial pulsatility, but not with flow-mediated dilation or hyperemic response, measures of vasodilator function. We found greater mitochondrial DNA damage in patients with diabetes mellitus and clinical atherosclerosis. The association of mitochondrial DNA damage and baseline pulse amplitude may suggest a link between mitochondrial dysfunction and excessive small artery pulsatility with potentially adverse microvascular impact.
Xu, Ruijuan; Wang, Kai; Mileva, Izolda; Hannun, Yusuf A.; Obeid, Lina M.; Mao, Cungui
2016-01-01
Human cells respond to DNA damage by elevating sphingosine, a bioactive sphingolipid that induces programmed cell death (PCD) in response to various forms of stress, but its regulation and role in the DNA damage response remain obscure. Herein we demonstrate that DNA damage increases sphingosine levels in tumor cells by upregulating alkaline ceramidase 2 (ACER2) and that the upregulation of the ACER2/sphingosine pathway induces PCD in response to DNA damage by increasing the production of reactive oxygen species (ROS). Treatment with the DNA damaging agent doxorubicin increased both ACER2 expression and sphingosine levels in HCT116 cells in a dose-dependent manner. ACER2 overexpression increased sphingosine in HeLa cells whereas knocking down ACER2 inhibited the doxorubicin-induced increase in sphingosine in HCT116 cells, suggesting that DNA damage elevates sphingosine by upregulating ACER2. Knocking down ACER2 inhibited an increase in the apoptotic and necrotic cell population and the cleavage of poly ADP ribose polymerase (PARP) in HCT116 cells in response to doxorubicin as well as doxorubicin-induced release of lactate dehydrogenase (LDH) from these cells. Similar to treatment with doxorubicin, ACER2 overexpression induced an increase in the apoptotic and necrotic cell population and PARP cleavage in HeLa cells and LDH release from cells, suggesting that ACER2 upregulation mediates PCD in response to DNA damage through sphingosine. Mechanistic studies demonstrated that the upregulation of the ACER2/sphingosine pathway induces PCD by increasing ROS levels. Taken together, these results suggest that the ACER2/sphingosine pathway mediates PCD in response to DNA damage through ROS production. PMID:26943039
Detection of damaged DNA bases by DNA glycosylase enzymes.
Friedman, Joshua I; Stivers, James T
2010-06-22
A fundamental and shared process in all forms of life is the use of DNA glycosylase enzymes to excise rare damaged bases from genomic DNA. Without such enzymes, the highly ordered primary sequences of genes would rapidly deteriorate. Recent structural and biophysical studies are beginning to reveal a fascinating multistep mechanism for damaged base detection that begins with short-range sliding of the glycosylase along the DNA chain in a distinct conformation we call the search complex (SC). Sliding is frequently punctuated by the formation of a transient "interrogation" complex (IC) where the enzyme extrahelically inspects both normal and damaged bases in an exosite pocket that is distant from the active site. When normal bases are presented in the exosite, the IC rapidly collapses back to the SC, while a damaged base will efficiently partition forward into the active site to form the catalytically competent excision complex (EC). Here we review the unique problems associated with enzymatic detection of rare damaged DNA bases in the genome and emphasize how each complex must have specific dynamic properties that are tuned to optimize the rate and efficiency of damage site location.
Sowmithra, K; Shetty, N J; Jha, S K; Chaubey, R C
2015-12-01
Earthworms (Eisenia fetida) most suitable biological indicators of radioactive pollution. Radiation-induced lesions in DNA can be considered to be molecular markers for early effects of ionizing radiation. Gamma radiation produces a wide spectrum of DNA. Some of these lesions, i.e., DNA strand breaks and alkali labile sites can be detected by the single-cell gel electrophoresis (SCGE) or comet assay by measuring the migration of DNA from immobilized nuclear DNA. E. fetida were exposed to different doses of gamma radiation, i.e., 1, 5, 10, 20, 30, 40 and 50Gy, and comet assay was performed for all the doses along with control at 1, 3 and 5h post irradiation to evaluate the genotoxicity of gamma radiation in this organism. The DNA damage was measured as percentage of comet tail DNA. A significant increase in DNA damage was observed in samples exposed to 5Gy and above, and the increase in DNA damage was dose dependent i.e., DNA damage was increased with increased doses of radiation. The highest DNA damage was noticed at 1h post irradiation and gradually decreased with time, i.e., at 3 and 5h post irradiation. The present study reveals that gamma radiation induces DNA damage in E. fetida and the comet assay is a sensitive and rapid method for its detection to detect genotoxicity of gamma radiation. Copyright © 2015 Elsevier B.V. All rights reserved.
Aflatoxin B₁-Induced Developmental and DNA Damage in Caenorhabditis elegans.
Feng, Wei-Hong; Xue, Kathy S; Tang, Lili; Williams, Phillip L; Wang, Jia-Sheng
2016-12-26
Aflatoxin B₁ (AFB₁) is a ubiquitous mycotoxin produced by toxicogenic Aspergillus species. AFB₁ has been reported to cause serious adverse health effects, such as cancers and abnormal development and reproduction, in animals and humans. AFB₁ is also a potent genotoxic mutagen that causes DNA damage in vitro and in vivo. However, the link between DNA damage and abnormal development and reproduction is unclear. To address this issue, we examined the DNA damage, germline apoptosis, growth, and reproductive toxicity following exposure to AFB₁, using Caenorhabditis elegans as a study model. Results found that AFB₁ induced DNA damage and germline apoptosis, and significantly inhibited growth and reproduction of the nematodes in a concentration-dependent manner. Exposure to AFB₁ inhibited growth or reproduction more potently in the DNA repair-deficient xpa-1 nematodes than the wild-type N2 strain. According to the relative expression level of pathway-related genes measured by real-time PCR, the DNA damage response (DDR) pathway was found to be associated with AFB₁-induced germline apoptosis, which further played an essential role in the dysfunction of growth and reproduction in C. elegans .
Measurements of DNA Damage and Repair in Bacillus anthracis Sterne Spores by UV Radiation
2014-09-18
MEASUREMENTS OF DNA DAMAGE AND REPAIR IN BACILLUS ANTHRACIS STERNE SPORES BY UV RADIATION...AFIT-ENP-T-14-S-01 MEASUREMENTS OF DNA DAMAGE AND REPAIR IN BACILLUS ANTHRACIS STERNE SPORES BY UV RADIATION THESIS Presented to the... DAMAGE AND REPAIR IN BACILLUS ANTHRACIS STERNE SPORES BY UV RADIATION Chelsea C. Marcum, BS Approved
Multiple roles of the cell cycle inhibitor p21(CDKN1A) in the DNA damage response.
Cazzalini, Ornella; Scovassi, A Ivana; Savio, Monica; Stivala, Lucia A; Prosperi, Ennio
2010-01-01
Among cell cycle regulatory proteins that are activated following DNA damage, the cyclin-dependent kinase inhibitor p21(CDKN1A) plays essential roles in the DNA damage response, by inducing cell cycle arrest, direct inhibition of DNA replication, as well as by regulating fundamental processes, like apoptosis and transcription. These functions are performed through the ability of p21 to interact with a number of proteins involved in these processes. Despite an initial controversy, during the last years several lines of evidence have also indicated that p21 may be directly involved in DNA repair. In particular, the participation of p21 in nucleotide excision repair (NER), base excision repair (BER), and DNA translesion synthesis (TLS), has been suggested to occur thanks to its interaction with proliferating cell nuclear antigen (PCNA), a crucial protein involved in several aspects of DNA metabolism, and cell-cycle regulation. In this review, the multiple roles of p21 in the DNA damage response, including regulation of cell cycle, apoptosis and gene transcription, are discussed together with the most recent findings supporting the direct participation of p21 protein in DNA repair processes. In particular, spatio-temporal dynamics of p21 recruitment to sites of DNA damage will be considered together with several lines of evidence indicating a regulatory role for p21. In addition, the relevance of post-translational regulation in the fate (e.g. degradation) of p21 protein after cell exposure to DNA damaging agents will be analyzed. Both sets of evidence will be discussed in terms of the overall DNA damage response. 2010 Elsevier B.V. All rights reserved.
Differential sensitivities of cellular XPA and PARP-1 to arsenite inhibition and zinc rescue.
Ding, Xiaofeng; Zhou, Xixi; Cooper, Karen L; Huestis, Juliana; Hudson, Laurie G; Liu, Ke Jian
2017-09-15
Arsenite directly binds to the zinc finger domains of the DNA repair protein poly (ADP ribose) polymerase (PARP)-1, and inhibits PARP-1 activity in the base excision repair (BER) pathway. PARP inhibition by arsenite enhances ultraviolet radiation (UVR)-induced DNA damage in keratinocytes, and the increase in DNA damage is reduced by zinc supplementation. However, little is known about the effects of arsenite and zinc on the zinc finger nucleotide excision repair (NER) protein xeroderma pigmentosum group A (XPA). In this study, we investigated the difference in response to arsenite exposure between XPA and PARP-1, and the differential effectiveness of zinc supplementation in restoring protein DNA binding and DNA damage repair. Arsenite targeted both XPA and PARP-1 in human keratinocytes, resulting in zinc loss from each protein and a pronounced decrease in XPA and PARP-1 binding to chromatin as demonstrated by Chip-on-Western assays. Zinc effectively restored DNA binding of PARP-1 and XPA to chromatin when zinc concentrations were equal to those of arsenite. In contrast, zinc was more effective in rescuing arsenite-augmented direct UVR-induced DNA damage than oxidative DNA damage. Taken together, our findings indicate that arsenite interferes with PARP-1 and XPA binding to chromatin, and that zinc supplementation fully restores DNA binding activity to both proteins in the cellular context. Interestingly, rescue of arsenite-inhibited DNA damage repair by supplemental zinc was more sensitive for DNA damage repaired by the XPA-associated NER pathway than for the PARP-1-dependent BER pathway. This study expands our understanding of arsenite's role in DNA repair inhibition and co-carcinogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.
Ogara, María F; Sirkin, Pablo F; Carcagno, Abel L; Marazita, Mariela C; Sonzogni, Silvina V; Ceruti, Julieta M; Cánepa, Eduardo T
2013-01-01
The maintenance of genomic integrity is of main importance to the survival and health of organisms which are continuously exposed to genotoxic stress. Cells respond to DNA damage by activating survival pathways consisting of cell cycle checkpoints and repair mechanisms. However, the signal that triggers the DNA damage response is not necessarily a direct detection of the primary DNA lesion. In fact, chromatin defects may serve as initiating signals to activate those mechanisms. If the modulation of chromatin structure could initiate a checkpoint response in a direct manner, this supposes the existence of specific chromatin sensors. p19INK4d, a member of the INK4 cell cycle inhibitors, plays a crucial role in regulating genomic stability and cell viability by enhancing DNA repair. Its expression is induced in cells injured by one of several genotoxic treatments like cis-platin, UV light or neocarzinostatin. Nevertheless, when exogenous DNA damaged molecules are introduced into the cell, this induction is not observed. Here, we show that p19INK4d is enhanced after chromatin relaxation even in the absence of DNA damage. This induction was shown to depend upon ATM/ATR, Chk1/Chk2 and E2F activity, as is the case of p19INK4d induction by endogenous DNA damage. Interestingly, p19INK4d improves DNA repair when the genotoxic damage is caused in a relaxed-chromatin context. These results suggest that changes in chromatin structure, and not DNA damage itself, is the actual trigger of p19INK4d induction. We propose that, in addition to its role as a cell cycle inhibitor, p19INK4d could participate in a signaling network directed to detecting and eventually responding to chromatin anomalies.
Ganapathy, Vengatesh; Manyanga, Jimmy; Brame, Lacy; McGuire, Dehra; Sadhasivam, Balaji; Floyd, Evan; Rubenstein, David A.; Ramachandran, Ilangovan; Wagener, Theodore
2017-01-01
Background Electronic cigarette (EC) aerosols contain unique compounds in addition to toxicants and carcinogens traditionally found in tobacco smoke. Studies are warranted to understand the public health risks of ECs. Objective The aim of this study was to determine the genotoxicity and the mechanisms induced by EC aerosol extracts on human oral and lung epithelial cells. Methods Cells were exposed to EC aerosol or mainstream smoke extracts and DNA damage was measured using the primer anchored DNA damage detection assay (q-PADDA) and 8-oxo-dG ELISA assay. Cell viability, reactive oxygen species (ROS) and total antioxidant capacity (TAC) were measured using standard methods. mRNA and protein expression were evaluated by RT-PCR and western blot, respectively. Results EC aerosol extracts induced DNA damage in a dose-dependent manner, but independently of nicotine concentration. Overall, EC aerosol extracts induced significantly less DNA damage than mainstream smoke extracts, as measured by q-PADDA. However, the levels of oxidative DNA damage, as indicated by the presence of 8-oxo-dG, a highly mutagenic DNA lesion, were similar or slightly higher after exposure to EC aerosol compared to mainstream smoke extracts. Mechanistically, while exposure to EC extracts significantly increased ROS, it decreased TAC as well as the expression of 8-oxoguanine DNA glycosylase (OGG1), an enzyme essential for the removal of oxidative DNA damage. Conclusions Exposure to EC aerosol extracts suppressed the cellular antioxidant defenses and led to significant DNA damage. These findings emphasize the urgent need to investigate the potential long-term cancer risk of exposure to EC aerosol for vapers and the general public. PMID:28542301
Perucca, Paola; Mocchi, Roberto; Guardamagna, Isabella; Bassi, Elisabetta; Sommatis, Sabrina; Nardo, Tiziana; Prosperi, Ennio; Stivala, Lucia Anna; Cazzalini, Ornella
2018-06-01
In mammalian cells, Nucleotide Excision Repair (NER) plays a role in removing DNA damage induced by UV radiation. In Global Genome-NER subpathway, DDB2 protein forms a complex with DDB1 (UV-DDB), recognizing photolesions. During DNA repair, DDB2 interacts directly with PCNA through a conserved region in N-terminal tail and this interaction is important for DDB2 degradation. In this work, we sought to investigate the role of DDB2-PCNA association in DNA repair and cell proliferation after UV-induced DNA damage. To this end, stable clones expressing DDB2 Wt and DDB2 PCNA- were used. We have found that cells expressing a mutant DDB2 show inefficient photolesions removal, and a concomitant lack of binding to damaged DNA in vitro. Unexpected cellular behaviour after DNA damage, such as UV-resistance, increased cell growth and motility were found in DDB2 PCNA- stable cell clones, in which the most significant defects in cell cycle checkpoint were observed, suggesting a role in the new cellular phenotype. Based on these findings, we propose that DDB2-PCNA interaction may contribute to a correct DNA damage response for maintaining genome integrity. Copyright © 2018 Elsevier B.V. All rights reserved.
The effects of male age on sperm DNA damage in healthy non-smokers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmid, T; Eskenazi, B; Baumgartner, A
The trend for men to have children at older ages raises concerns that advancing age may increase the production of genetically defective sperm, increasing the risks of transmitting germ-line mutations. We investigated the associations between male age and sperm DNA damage and the influence of several lifestyle factors in a healthy non-clinical group of 80 non-smokers (age: 22-80) with no known fertility problems using the sperm Comet analyses. The average percent of DNA that migrated out of the sperm nucleus under alkaline electrophoresis increased with age (0.18% per year, p=0.006); but there was no age association for damage measured undermore » neutral conditions (p=0.7). Men who consumed >3 cups coffee per day had {approx}20% higher % tail DNA under neutral but not alkaline conditions compared to men who consumed no caffeine (p=0.005). Our findings indicate that (a) older men have increased sperm DNA damage associated with alkali-labile sites or single-strand DNA breaks, and (b) independent of age, men with substantial daily caffeine consumption have increased sperm DNA damage associated with double-strand DNA breaks. DNA damage in sperm can be converted to chromosomal aberrations and gene mutations after fertilization increasing the risks for developmental defects and genetic diseases among offspring.« less
Alleva, Renata; Manzella, Nicola; Gaetani, Simona; Ciarapica, Veronica; Bracci, Massimo; Caboni, Maria Fiorenza; Pasini, Federica; Monaco, Federica; Amati, Monica; Borghi, Battista; Tomasetti, Marco
2016-10-01
Glyphosate (GLY) and organophosphorus insecticides such as chlorpyrifos (CPF) may cause DNA damage and cancer in exposed individuals through mitochondrial dysfunction. Polyphenols ubiquitously present in fruits and vegetables, have been viewed as antioxidant molecules, but also influence mitochondrial homeostasis. Here, honey containing polyphenol compounds was evaluated for its potential protective effect on pesticide-induced genotoxicity. Honey extracts from four floral organic sources were evaluated for their polyphenol content, antioxidant activity, and potential protective effects on pesticide-related mitochondrial destabilization, reactive oxygen and nitrogen species formation, and DNA damage response in human bronchial epithelial and neuronal cells. The protective effect of honey was, then evaluated in a residential population chronically exposed to pesticides. The four honey types showed a different polyphenol profile associated with a different antioxidant power. The pesticide-induced mitochondrial dysfunction parallels ROS formation from mitochondria (mtROS) and consequent DNA damage. Honey extracts efficiently inhibited pesticide-induced mtROS formation, and reduced DNA damage by upregulation of DNA repair through NFR2. Honey supplementation enhanced DNA repair activity in a residential population chronically exposed to pesticides, which resulted in a marked reduction of pesticide-induced DNA lesions. These results provide new insight regarding the effect of honey containing polyphenols on pesticide-induced DNA damage response. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wu, Wei; Yao, Ke; Wang, Kai-jun; Lu, De-qiang; He, Ji-liang; Xu, Li-hong; Sun, Wen-jun
2008-01-01
To investigate whether the exposure to the electromagnetic noise can block reactive oxygen species (ROS) production and DNA damage of lens epithelial cells induced by 1800 MHz mobile phone radiation. The DCFH-DA method and comet assay were used respectively to detect the intracellular ROS and DNA damage of cultured human lens epithelial cells induced by 4 W/kg 1800 MHz mobile phone radiation or/and 2 muT electromagnetic noise for 24 h intermittently. 1800 MHz mobile phone radiation at 4 W/kg for 24 h increased intracellular ROS and DNA damage significantly (P<0.05). However, the ROS level and DNA damage of mobile phone radiation plus noise group were not significant enhanced (P>0.05) as compared to sham exposure group. Electromagnetic noise can block intracellular ROS production and DNA damage of human lens epithelial cells induced by 1800 MHz mobile phone radiation.
DNA damage and repair in plants under ultraviolet and ionizing radiations.
Gill, Sarvajeet S; Anjum, Naser A; Gill, Ritu; Jha, Manoranjan; Tuteja, Narendra
2015-01-01
Being sessile, plants are continuously exposed to DNA-damaging agents present in the environment such as ultraviolet (UV) and ionizing radiations (IR). Sunlight acts as an energy source for photosynthetic plants; hence, avoidance of UV radiations (namely, UV-A, 315-400 nm; UV-B, 280-315 nm; and UV-C, <280 nm) is unpreventable. DNA in particular strongly absorbs UV-B; therefore, it is the most important target for UV-B induced damage. On the other hand, IR causes water radiolysis, which generates highly reactive hydroxyl radicals (OH(•)) and causes radiogenic damage to important cellular components. However, to maintain genomic integrity under UV/IR exposure, plants make use of several DNA repair mechanisms. In the light of recent breakthrough, the current minireview (a) introduces UV/IR and overviews UV/IR-mediated DNA damage products and (b) critically discusses the biochemistry and genetics of major pathways responsible for the repair of UV/IR-accrued DNA damage. The outcome of the discussion may be helpful in devising future research in the current context.
GSTM1 and GSTT1 Genes are Associated With DNA Damage of p53 Gene in Coke-oven Workers.
He, Yuefeng; Qi, Jun; He, Fang; Zhang, Yongchang; Wang, Youlian; Zhang, Ruobing; Li, Gang
2017-06-01
This study investigated whether variations in GSTT1 and GSTM1 gene are associated with the DNA damage level of p53 gene. We quantified urinary 1-hydroxypyrene using high-performance liquid chromatography, and examined the DNA damage level of p53 gene by real-time quantitative PCR in 756 coke-oven workers. Multiplex PCR was used to detect the presence or absence of genes. DNA damage levels of p53 gene in the high exposure group and intermediate exposure group were significantly higher than that of p53 gene in the low exposure group (P < 0.01). In coke-oven workers, the DNA damage levels of subjects with non-null genotype in GSTT1 or GSTM1 gene were significantly higher than that of those with the null genotype (P < 0.01). GSTT1 and GSTM1 may modulate DNA damage levels of p53 gene when exposed to polycyclic aromatic hydrocarbons.
Leucocytes DNA damage in mice exposed to JS-118 by the comet assay.
Zhang, Tao; Hu, Jiye; Zhang, Yuchao; Zhao, Qianfei; Ning, Jun
2011-09-01
JS-118 is an extensively used insecticide in China. The present study investigated the genotoxic effect of JS-118 on whole blood at 24, 48, 72 and 96 h by using alkaline comet assay. Male Kunming mice were given 6.25, 12.5, 25, 50 and 100 mg/kg BW of JS-118 intraperitoneally. A statistically significant increase in all comet parameters indicating DNA damage was observed at 24 h post-treatment (p < 0.05). A clear concentration-dependent increase of DNA damage was revealed as evident by the OTM (arbitrary units), tail length (µm) and tail DNA (%). From 48 h post-treatment, a gradual decrease in mean comet parameters was noted. By 96 h of post-treatment, the mean comet tail length reached control levels indicating repair of damaged DNA. This study on mice showed different DNA damage depending on the concentration of JS-118 and the period of treatment. The present study provided further information of the potential risk of the genetic damage caused by JS-118.
Chronic inflammation-related DNA damage response: a driving force of gastric cardia carcinogenesis
Guo, Yi; Tian, Dongping; Yun, Hailong; Chen, Donglin; Su, Min
2015-01-01
Gastric cardia cancer (GCC) is a highly aggressive disease associated with chronic inflammation. To investigate the relationship between DNA damage response (DDR) and chronic inflammation, we collected 100 non-tumor gastric cardia specimens of Chaoshan littoral, a high-risk region for esophageal and gastric cardia cancer. A significantly higher proportion of severe chronic inflammation was found in dysplastic epithelia (80.9%) in comparison with that in non-dysplastic tissues (40.7%) (P<0.001). Immunohistochemical analysis demonstrated that DNA damage response was parallel with the chronic inflammation degrees from normal to severe inflammation (P<0.05). We found that DNA damage response was progressively increased with the progression of precancerous lesions (P<0.05). These findings provide pathological evidence that persistent chronic inflammation-related DNA damage response may be a driving force of gastric cardia carcinogenesis. Based on these findings, DNA damage response in non-malignant tissues may become a promising biomedical marker for predicting malignant transformation in the gastric cardia. PMID:25650663
Chronic inflammation-related DNA damage response: a driving force of gastric cardia carcinogenesis.
Lin, Runhua; Xiao, Dejun; Guo, Yi; Tian, Dongping; Yun, Hailong; Chen, Donglin; Su, Min
2015-02-20
Gastric cardia cancer (GCC) is a highly aggressive disease associated with chronic inflammation. To investigate the relationship between DNA damage response (DDR) and chronic inflammation, we collected 100 non-tumor gastric cardia specimens of Chaoshan littoral, a high-risk region for esophageal and gastric cardia cancer. A significantly higher proportion of severe chronic inflammation was found in dysplastic epithelia (80.9%) in comparison with that in non-dysplastic tissues (40.7%) (P<0.001). Immunohistochemical analysis demonstrated that DNA damage response was parallel with the chronic inflammation degrees from normal to severe inflammation (P<0.05). We found that DNA damage response was progressively increased with the progression of precancerous lesions (P<0.05). These findings provide pathological evidence that persistent chronic inflammation-related DNA damage response may be a driving force of gastric cardia carcinogenesis. Based on these findings, DNA damage response in non-malignant tissues may become a promising biomedical marker for predicting malignant transformation in the gastric cardia.
Kreuzer, Kenneth N.
2013-01-01
Recent advances in the area of bacterial DNA damage responses are reviewed here. The SOS pathway is still the major paradigm of bacterial DNA damage response, and recent studies have clarified the mechanisms of SOS induction and key physiological roles of SOS including a very major role in genetic exchange and variation. When considering diverse bacteria, it is clear that SOS is not a uniform pathway with one purpose, but rather a platform that has evolved for differing functions in different bacteria. Relating in part to the SOS response, the field has uncovered multiple apparent cell-cycle checkpoints that assist cell survival after DNA damage and remarkable pathways that induce programmed cell death in bacteria. Bacterial DNA damage responses are also much broader than SOS, and several important examples of LexA-independent regulation will be reviewed. Finally, some recent advances that relate to the replication and repair of damaged DNA will be summarized. PMID:24097899
Dynamic maps of UV damage formation and repair for the human genome
Hu, Jinchuan; Adebali, Ogun; Adar, Sheera; Sancar, Aziz
2017-01-01
Formation and repair of UV-induced DNA damage in human cells are affected by cellular context. To study factors influencing damage formation and repair genome-wide, we developed a highly sensitive single-nucleotide resolution damage mapping method [high-sensitivity damage sequencing (HS–Damage-seq)]. Damage maps of both cyclobutane pyrimidine dimers (CPDs) and pyrimidine-pyrimidone (6-4) photoproducts [(6-4)PPs] from UV-irradiated cellular and naked DNA revealed that the effect of transcription factor binding on bulky adducts formation varies, depending on the specific transcription factor, damage type, and strand. We also generated time-resolved UV damage maps of both CPDs and (6-4)PPs by HS–Damage-seq and compared them to the complementary repair maps of the human genome obtained by excision repair sequencing to gain insight into factors that affect UV-induced DNA damage and repair and ultimately UV carcinogenesis. The combination of the two methods revealed that, whereas UV-induced damage is virtually uniform throughout the genome, repair is affected by chromatin states, transcription, and transcription factor binding, in a manner that depends on the type of DNA damage. PMID:28607063
Dynamic maps of UV damage formation and repair for the human genome.
Hu, Jinchuan; Adebali, Ogun; Adar, Sheera; Sancar, Aziz
2017-06-27
Formation and repair of UV-induced DNA damage in human cells are affected by cellular context. To study factors influencing damage formation and repair genome-wide, we developed a highly sensitive single-nucleotide resolution damage mapping method [high-sensitivity damage sequencing (HS-Damage-seq)]. Damage maps of both cyclobutane pyrimidine dimers (CPDs) and pyrimidine-pyrimidone (6-4) photoproducts [(6-4)PPs] from UV-irradiated cellular and naked DNA revealed that the effect of transcription factor binding on bulky adducts formation varies, depending on the specific transcription factor, damage type, and strand. We also generated time-resolved UV damage maps of both CPDs and (6-4)PPs by HS-Damage-seq and compared them to the complementary repair maps of the human genome obtained by excision repair sequencing to gain insight into factors that affect UV-induced DNA damage and repair and ultimately UV carcinogenesis. The combination of the two methods revealed that, whereas UV-induced damage is virtually uniform throughout the genome, repair is affected by chromatin states, transcription, and transcription factor binding, in a manner that depends on the type of DNA damage.
Negureanu, Lacramioara; Salsbury, Freddie R.
2012-01-01
The cellular response to DNA damage signaling by MMR proteins is incompletely understood. It is generally accepted that MMR-dependent apoptosis pathway in response to DNA damage detection is independent of MMR's DNA repair function. In this study we investigate correlated motions in response to the binding of mismatched and PCL DNA fragments by MutSα, as derived from 50 ns molecular dynamics simulations. The protein dynamics in response to the mismatched and damaged DNA recognition suggests that MutSα signals their recognition through independent pathways providing evidence for the molecular origin of the MMR-dependent apoptosis. MSH2 subunit is indicated to play a key role in signaling both mismatched and damaged DNA recognition; localized and collective motions within the protein allow identifying sites on the MSH2 surface possible involved in recruiting proteins responsible for downstream events. Unlike in the mismatch complex, predicted key communication sites specific for the damage recognition are on the list of known cancer causing mutations or deletions. This confirms MSH2's role in signaling DNA-damage induced apoptosis and suggests that defects in MMR alone is sufficient to trigger tumorigenesis, supporting the experimental evidence that MMR-damage response function could protect from the early occurrence of tumors. Identifying these particular communication sites may have implications for the treatment of cancers that are not defective for MMR, but are unable to function optimally for MMR-dependent responses following DNA damage such as the case of resistance to cisplatin. PMID:22712459
Biomarkers of oxidative stress and DNA damage in agricultural workers: A pilot study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muniz, Juan F.; McCauley, Linda; Scherer, J.
Oxidative stress and DNA damage have been proposed as mechanisms linking pesticide exposure to health effects such as cancer and neurological diseases. A study of pesticide applicators and farmworkers was conducted to examine the relationship between organophosphate pesticide exposure and biomarkers of oxidative stress and DNA damage. Urine samples were analyzed for OP metabolites and 8-hydroxy-2'-deoxyguanosine (8-OH-dG). Lymphocytes were analyzed for oxidative DNA repair activity and DNA damage (Comet assay), and serum was analyzed for lipid peroxides (i.e., malondialdehyde, MDA). Cellular damage in agricultural workers was validated using lymphocyte cell cultures. Urinary OP metabolites were significantly higher in farmworkers andmore » applicators (p < 0.001) when compared to controls. 8-OH-dG levels were 8.5 times and 2.3 times higher in farmworkers or applicators (respectively) than in controls. Serum MDA levels were 4.9 times and 24 times higher in farmworkers or applicators (respectively) than in controls. DNA damage (Comet assay) and oxidative DNA repair were significantly greater in lymphocytes from applicators and farmworkers when compared with controls. Markers of oxidative stress (i.e., increased reactive oxygen species and reduced glutathione levels) and DNA damage were also observed in lymphocyte cell cultures treated with an OP. The findings from these in vivo and in vitro studies indicate that organophosphate pesticides induce oxidative stress and DNA damage in agricultural workers. These biomarkers may be useful for increasing our understanding of the link between pesticides and a number of health effects.« less
DNA damage induced by the direct effect of radiation
NASA Astrophysics Data System (ADS)
Yokoya, A.; Shikazono, N.; Fujii, K.; Urushibara, A.; Akamatsu, K.; Watanabe, R.
2008-10-01
We have studied the nature of DNA damage induced by the direct effect of radiation. The yields of single- (SSB) and double-strand breaks (DSB), base lesions and clustered damage were measured using the agarose gel electrophoresis method after exposing to various kinds of radiations to a simple model DNA molecule, fully hydrated closed-circular plasmid DNA (pUC18). The yield of SSB does not show significant dependence on linear energy transfer (LET) values. On the other hand, the yields of base lesions revealed by enzymatic probes, endonuclease III (Nth) and formamidopyrimidine DNA glycosylase (Fpg), which excise base lesions and leave a nick at the damage site, strongly depend on LET values. Soft X-ray photon (150 kVp) irradiation gives a maximum yield of the base lesions detected by the enzymatic probes as SSB and clustered damage, which is composed of one base lesion and proximate other base lesions or SSBs. The clustered damage is visualized as an enzymatically induced DSB. The yields of the enzymatically additional damages strikingly decrease with increasing levels of LET. These results suggest that in higher LET regions, the repair enzymes used as probes are compromised because of the dense damage clustering. The studies using simple plasmid DNA as a irradiation sample, however, have a technical difficulty to detect multiple SSBs in a plasmid DNA. To detect the additional SSBs induced in opposite strand of the first SSB, we have also developed a novel technique of DNA-denaturation assay. This allows us to detect multiply induced SSBs in both strand of DNA, but not induced DSB.
Gene Expression in Mammalian Cells After Exposure to 95 MeV Argon Ions
NASA Astrophysics Data System (ADS)
Arenz, A.; Hellweg, C. E.; Baumstark-Khan, C.
Cell response to genotoxic agents is complex and involves the participation of different classes of genes (DNA repair, cell cycle control, signal transduction, apoptosis and oncogenesis). The unique feature of the space radiation environment is the dominance of high-energy charged particles (HZE or high LET radiation) which present a significant hazard to space flight crews, and accelerator-based experiments are underway to quantify the health risks due to unavoidable radiation exposure. High linear energy transfer (LET) radiation has an increased relative biological effectiveness (RBE) as compared to X-rays for cell death induction, gene mutation, genomic instability, and carcinogenesis. The tumour suppressor gene p53 plays a crucial role in maintaining the integrity of the genome. The p53 protein acts as a transcription factor that mediates cell cycle arrest and apoptosis by binding to DNA and activating transcription of specific genes. It is also though to be involved in damage repair by transcriptional activation of the newly identified p53 dependent ribonuclease subunit R2 (p53R2) that is directly involved in the p53 cell cycle checkpoint for repair of damaged DNA. In that case it is responsible for nucleotide delivery for DNA repair synthesis. DNA damages of cultured human cells (e.g. MCF-7, AGS, A549) exposed to accelerated argon ions at the French heavy ion facility GANIL were analysed for expression levels of certain damage- and apoptosis-relevant genes. RNA was extracted from cells exposed to different particle fluences after various recovery times. A real-time QRT-PCR assay was applied, which employs both relative and absolute quantification of a candidate mRNA biomarker. The expressions of different DNA damage inducible genes (e.g. p53R2, GADD45, p21) were analysed. A reproducible up-regulation representing a twofold to fourfold change in p53R2 gene expression level was confirmed for X-irradiated and Ar-ion exposed cells dependent on dose. Kinetics of p53R2 gene expression modulations shows a response lasting up to 24 hours after irradiation.
Effects of different levels of vitamin C on UV radiation-induced DNA damage
NASA Astrophysics Data System (ADS)
Zhou, Dianfeng; Heng, Hang; Ji, Kang; Ke, Weizhong
2005-05-01
The Raman spectra of DNA in different levels of vitamin C with 10- and 30-min ultraviolet (UV) radiations were reported. The intensity of UV radiation was 18.68 W/m2. The experimental results proved that vitamin C could alone prevent UV radiation from damaging DNA, but the effects depended on the concentration of vitamin C. When the concentration of vitamin C was about 0.08-0.4 mmol/L, vitamin C decreased UV radiation-induced DNA's damage. When the concentration of vitamin C exceeded 0.4 mmol/L, vitamin C accelerated DNA's damage instead. Maybe the reason is that when DNA in aqueous solution is radiated by UV, free radicals come into being, and vitamin C can scavenge free radicals, so vitamin C in lower concentration can protect DNA. The quantity of free radicals is finite, when vitamin C is superfluous, free radicals have been scavenged absolutely and vitamin C is residual. Vitamin C is a strong reductant. When the mixture of DNA and residual vitamin C is radiated by UV, vitamin C reacts with DNA. The more residual vitamin C and the longer time of UV radiation, the more DNA is damaged.
Salazar, J J; Van Houten, B
1997-11-01
To test the hypothesis that mitochondrial DNA (mtDNA) is more prone to reactive oxygen species (ROS) damage than nuclear DNA, a continuous flux of hydrogen peroxide (H2O2) was produced with the glucose/glucose oxidase system. Using a horse radish peroxidase (HRPO)-based colorimetric assay to detect H2O2, glucose oxidase (GO; 12 mU/ml) produced 95 microM of H2O2 in 1 h, whereas only 46 microM of hydrogen peroxide accumulated in the presence of SV40-transformed human fibroblasts ( approximately 1 x 10(6). DNA damage was assessed in the mitochondira and three nuclear regions using a quantitative PCR assay. GO (12 mU/ml) resulted in more damage to the mitochondrial DNA (2.250 +/- 0.045 lesions/10 kb) than in any one of three nuclear targets, which included the non-expressed beta-globin locus (0.436 +/- 0.029 lesions/10 kb); and the active DNA polymerase b gene (0.442 +/- 0.037 lesions/10 kb); and the active hprt gene (0.310 +/- 0.025). Damage to the mtDNA occurred within 15 min of GO treatment, whereas nuclear damage did not appear until after 30 min, and reached a maximum after 60 min. Repair of mitochondrial damage after a 15 min GO (6 mU/ml) treatment was examined. Mitochondria repaired 50% of the damage after 1 h, and by 6 h all the damage was repaired. Higher doses of GO-generated H202, or more extended treatment periods, lead to mitochondrial DNA damage which was not repaired. Mitochondrial function was monitored using the MTT (3,(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide) assay. A 15 min treatment with 6 mU/ml of GO decreased mitochondrial activity to 80% of the control; the activity recovered completely within 1 h after damage. These data show that GO-generated H202 causes acute damage to mtDNA and function, and demonstrate that this organelle is an important site for the cellular toxicity of ROS.
Pedersen, Hege Lynum; Johnson, Kenneth A; McVey, Colin E; Leiros, Ingar; Moe, Elin
2015-10-01
Uracil-DNA N-glycosylase (UNG) is a DNA-repair enzyme in the base-excision repair (BER) pathway which removes uracil from DNA. Here, the crystal structure of UNG from the extremophilic bacterium Deinococcus radiodurans (DrUNG) in complex with DNA is reported at a resolution of 1.35 Å. Prior to the crystallization experiments, the affinity between DrUNG and different DNA oligonucleotides was tested by electrophoretic mobility shift assays (EMSAs). As a result of this analysis, two 16 nt double-stranded DNAs were chosen for the co-crystallization experiments, one of which (16 nt AU) resulted in well diffracting crystals. The DNA in the co-crystal structure contained an abasic site (substrate product) flipped into the active site of the enzyme, with no uracil in the active-site pocket. Despite the high resolution, it was not possible to fit all of the terminal nucleotides of the DNA complex into electron density owing to disorder caused by a lack of stabilizing interactions. However, the DNA which was in contact with the enzyme, close to the active site, was well ordered and allowed detailed analysis of the enzyme-DNA interaction. The complex revealed that the interaction between DrUNG and DNA is similar to that in the previously determined crystal structure of human UNG (hUNG) in complex with DNA [Slupphaug et al. (1996). Nature (London), 384, 87-92]. Substitutions in a (here defined) variable part of the leucine loop result in a shorter loop (eight residues instead of nine) in DrUNG compared with hUNG; regardless of this, it seems to fulfil its role and generate a stabilizing force with the minor groove upon flipping out of the damaged base into the active site. The structure also provides a rationale for the previously observed high catalytic efficiency of DrUNG caused by high substrate affinity by demonstrating an increased number of long-range electrostatic interactions between the enzyme and the DNA. Interestingly, specific interactions between residues in the N-terminus of a symmetry-related molecule and the complementary DNA strand facing away from the active site were also observed which seem to stabilize the enzyme-DNA complex. However, the significance of this observation remains to be investigated. The results provide new insights into the current knowledge about DNA damage recognition and repair by uracil-DNA glycosylases.
Link between DNA damage and centriole disengagement/reduplication in untransformed human cells.
Douthwright, Stephen; Sluder, Greenfield
2014-10-01
The radiation and radiomimetic drugs used to treat human tumors damage DNA in both cancer cells and normal proliferating cells. Centrosome amplification after DNA damage is well established for transformed cell types but is sparsely reported and not fully understood in untransformed cells. We characterize centriole behavior after DNA damage in synchronized untransformed human cells. One hour treatment of S phase cells with the radiomimetic drug, Doxorubicin, prolongs G2 by at least 72 h, though 14% of the cells eventually go through mitosis in that time. By 72 h after DNA damage we observe a 52% incidence of centriole disengagement plus a 10% incidence of extra centrioles. We find that either APC/C or Plk activities can disengage centrioles after DNA damage, though they normally work in concert. All disengaged centrioles are associated with γ-tubulin and maturation markers and thus, should in principle be capable of reduplicating and organizing spindle poles. The low incidence of reduplication of disengaged centrioles during G2 is due to the p53-dependent expression of p21 and the consequent loss of Cdk2 activity. We find that 26% of the cells going through mitosis after DNA damage contain disengaged or extra centrioles. This could produce genomic instability through transient or persistent spindle multipolarity. Thus, for cancer patients the use of DNA damaging therapies raises the chances of genomic instability and evolution of transformed characteristics in proliferating normal cell populations. © 2014 Wiley Periodicals, Inc.
Retana-Ugalde, Raquel; Altamirano-Lozano, Mario; Mendoza-Núñez, Víctor Manuel
2007-01-01
Daily alcohol consumption and ageing have been linked with DNA damage, leading to the hypothesis that chronic alcoholism causes DNA damage similar to that which occurs with ageing. Likewise, it has been suggested that chronic alcoholism is the cause of accelerated or premature ageing. The objective of this study was to evaluate the frequency and magnitude of DNA damage among adults with chronic alcoholism and healthy older adults residing in Mexico City. A cross-sectional and comparative study was carried out in a sample of 53 chronic alcoholics of 25-44 years of age (without alcohol ingestion in the past 30 days) without additional diseases, 26 healthy subjects >or=60 years of age, and 25 healthy adults of 25-44 years of age without alcohol addiction, all residents of Mexico City during the past 10 years. DNA damage was evaluated by single-cell gel electrophoresis technique (Comet assay). Our results showed a similar percentage of DNA damage between healthy elderly subjects and chronic alcoholics (62 vs 55%, P >0.05), although average DNA migration was greater in alcoholics than in the elderly (78.1 +/- 33.2 vs 58.6 +/- 26.2, P = 0.09). However, the percentage of subjects with more than six damaged cells was higher in the older adults subjects group than in the group chronic alcoholics (19 vs 35%, P = 0.16). Data suggest that DNA damage is not similar in young subjects with chronic alcoholism that which occurs with ageing.
Silver, Andrew; Guenther, Thomas; Siedentopf, Sandra; Ross, Jochen; Vo, Diep-Khanh; Roessner, Albert
2017-01-01
Dysregulation of c-Jun N-terminal kinase (JNK) activation promoted DNA damage response bypass and tumorigenesis in our model of hydrogen peroxide-associated ulcerative colitis (UC) and in patients with quiescent UC (QUC), UC-related dysplasia, and UC-related carcinoma (UC-CRC), thereby adapting to oxidative stress. In the UC model, we have observed features of oncogenic transformation: increased proliferation, undetected DNA damage, and apoptosis resistance. Here, we show that Chk1 was downregulated but activated in the acute and quiescent chronic phases. In both phases, Chk1 was linked to DNA damage response bypass by suppressing JNK activation following oxidative stress, promoting cell cycle progression despite DNA damage. Simultaneously, activated Chk1 was bound to chromatin. This triggered histone acetylation and the binding of histone acetyltransferases and transcription factors to chromatin. Thus, chromatin-immobilized activated Chk1 executed a dual function by suppressing DNA damage response and simultaneously inducing chromatin modulation. This caused undetected DNA damage and increased cellular proliferation through failure to transmit the appropriate DNA damage signal. Findings in vitro were corroborated by chromatin accumulation of activated Chk1, Ac-H3, Ac-H4, and c-Jun in active UC (AUC) in vivo. Targeting chromatin-bound Chk1, GCN5, PCAF, and p300/CBP could be a novel therapeutic strategy to prevent UC-related tumor progression. PMID:28751935
Kurath, Gael; Garver, Kyle A.; Corbeil, Serge; Elliott, Diane G.; Anderson, Eric D.; LaPatra, Scott E.
2006-01-01
The DNA vaccine pIHNw-G encodes the glycoprotein of the fish rhabdovirus infectious hematopoietic necrosis virus (IHNV). Vaccine performance in rainbow trout was measured 3, 6, 13, 24, and 25 months after vaccination. At three months all fish vaccinated with 0.1 μg pIHNw-G had detectable neutralizing antibody (NAb) and they were completely protected from lethal IHNV challenge with a relative percent survival (RPS) of 100% compared to control fish. Viral challenges at 6, 13, 24, and 25 months post-vaccination showed protection with RPS values of 47–69%, while NAb seroprevalence declined to undetectable levels. Passive transfer experiments with sera from fish after two years post-vaccination were inconsistent but significant protection was observed in some cases. The long-term duration of protection observed here defined a third temporal phase in the immune response to IHNV DNA vaccination, characterized by reduced but significant levels of protection, and decline or absence of detectable NAb titers. Examination of multiple tissues showed an absence of detectable long-term histopathological damage due to DNA vaccination.
Oxidative DNA damage induced by a hydroperoxide derivative of cyclophosphamide.
Murata, Mariko; Suzuki, Toshinari; Midorikawa, Kaoru; Oikawa, Shinji; Kawanishi, Shosuke
2004-09-15
Interstrand DNA cross-linking has been considered to be the primary action mechanism of cyclophosphamide (CP) and its hydroperoxide derivative, 4-hydroperoxycyclophosphamide (4-HC). To clarify the mechanism of anti-tumor effects by 4-HC, we investigated DNA damage in a human leukemia cell line, HL-60, and its H(2)O(2)-resistant clone HP100. Apoptosis DNA ladder formation was detected in HL-60 cells treated with 4-HC, whereas it was not observed in HP100 cells. 4-HC significantly increased 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formation, a marker of oxidative DNA damage, in HL-60 cells. On the other hand, CP did not significantly induce 8-oxodG formation and apoptosis in HL-60 cells under the same conditions as did 4-HC. Using (32)P-labeled DNA fragments from the human p53 tumor suppressor gene, 4-HC was found to cause Cu(II)-mediated oxidative DNA damage, but CP did not. Catalase inhibited 4-HC-induced DNA damage, including 8-oxodG formation, suggesting the involvement of H(2)O(2). The generation of H(2)O(2) during 4-HC degradation was ascertained by procedures using scopoletin and potassium iodide. We conclude that, in addition to DNA cross-linking, oxidative DNA damage through H(2)O(2) generation may participate in the anti-tumor effects of 4-HC.
Schons-Fonseca, Luciane; da Silva, Josefa B; Milanez, Juliana S; Domingos, Renan H; Smith, Janet L; Nakaya, Helder I; Grossman, Alan D; Ho, Paulo L; da Costa, Renata M A
2016-02-18
We determined the effects of DNA damage caused by ultraviolet radiation on gene expression in Leptospira interrogans using DNA microarrays. These data were integrated with DNA binding in vivo of LexA1, a regulator of the DNA damage response, assessed by chromatin immunoprecipitation and massively parallel DNA sequencing (ChIP-seq). In response to DNA damage, Leptospira induced expression of genes involved in DNA metabolism, in mobile genetic elements and defective prophages. The DNA repair genes involved in removal of photo-damage (e.g. nucleotide excision repair uvrABC, recombinases recBCD and resolvases ruvABC) were not induced. Genes involved in various metabolic pathways were down regulated, including genes involved in cell growth, RNA metabolism and the tricarboxylic acid cycle. From ChIP-seq data, we observed 24 LexA1 binding sites located throughout chromosome 1 and one binding site in chromosome 2. Expression of many, but not all, genes near those sites was increased following DNA damage. Binding sites were found as far as 550 bp upstream from the start codon, or 1 kb into the coding sequence. Our findings indicate that there is a shift in gene expression following DNA damage that represses genes involved in cell growth and virulence, and induces genes involved in mutagenesis and recombination. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Mokra, Katarzyna; Kuźmińska-Surowaniec, Agnieszka; Woźniak, Katarzyna; Michałowicz, Jaromir
2017-02-01
In the present study, we have investigated DNA-damaging potential of BPA and its analogs, i.e. bisphenol S (BPS), bisphenol F (BPF) and bisphenol AF (BPAF) in human peripheral blood mononuclear cells (PBMCs) using the alkaline and neutral versions of the comet assay, which allowed to evaluate DNA single strand-breaks (SSBs) and double strand-breaks (DSBs). The use of the alkaline version of comet assay made also possible to analyze the kinetics of DNA repair in PBMCs after exposure of the cells to BPA or its analogs. We have observed an increase in DNA damage in PBMCs treated with BPA or its analogs in the concentrations ranging from 0.01 to 10 μg/ml after 1 and 4 h incubation. It was noted that bisphenols studied caused DNA damage mainly via SSBs, while DNA fragmentation via double DSBs was low. The strongest changes in DNA damage were provoked by BPA and particularly BPAF, which were capable of inducing SSBs even at 0.01 μg/ml, while BPS caused the lowest changes (only at 10 μg/ml). We have also observed that PBMCs significantly repaired bisphenols-induced DNA damage but they were unable (excluding cells treated with BPS) to repair totally DNA breaks. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mechanisms of cell killing by the new anti-cancer drug SR 4233
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J.
SR 4233 (3-amino-1,2,4-benzotriazine, 1,4-dioxide) is a new potential anti-cancer drug which has a highly selective toxicity to hypoxic cells. This study investigated the mechanism of cell killing by this drug. Enzymatic studies have shown that SR 4233 is reductively metabolized to SR 4317 by the tumor cell lines SCVII and HT 1080 under hypoxic conditions. Cytochrome P-450 may play a major role in the reduction in both cell lines. DT diaphorase is the second most important enzyme in reducing SR 4233. In characterizing the major cellular target for SR 4233, the author has shown that damage to cell mitochondria ismore » produced largely under aerobic conditions, whereas DNA is likely to be the major target for cell death under hypoxic conditions. Further experiments demonstrated that DNA damage was similar to that produced by ionizing radiation at equitoxic doses, and chromosome aberrations can entirely account for cell death by SR 4233 under hypoxic conditions in the low dose range. Nevertheless, chromosome breaks produced by SR 4233 are less repairable than those produced by ionizing radiation, suggesting highly localized damage in the DNA by discrete foci of SR 4233 radicals.« less
Overexpression of SKP2 Inhibits the Radiation-Induced Bystander Effects of Esophageal Carcinoma.
Wang, Xiao-Chun; Zhang, Tie-Jun; Guo, Zi-Jian; Xiao, Chang-Yan; Ding, Xiao-Wen; Fang, Fang; Sheng, Wen-Tao; Shu, Xu; Li, Jue
2017-02-06
To investigate the effects of S-phase kinase protein 2 (SKP2) expression on the radiation induced bystander effect (RIBE) in esophageal cancer (EC) cells. Western blot was used to detect the levels of SKP2, Rad51, and Ku70 in EC cells. Positive transfection, RNAi, micronucleus (MN), and γ-H2AX focus formation assay were used to investigate the effects of SKP2 on RIBE induced by irradiated cells. We found a significant negative correlation between SKP2 expression and MN frequency ( p < 0.05) induced by RIBE. The results were further confirmed by positive transfection, RNAi, and rescue experiments.γ-H2AX focus formation assay results indicated that overexpression of SKP2 in the irradiated cells inhibited the DNA damage of RIBE cells. However, when SKP2 expression decreased in irradiated cells, the DNA damage of RIBE cells increased. Increased or decreased expression levels of SKP2 had effects on Rad51 expression under the conditions of RIBE. These results showed, for the first time, that SKP2 expression can inhibit RIBE of EC cells. The mechanism may function, at least partly, through the regulation of Rad51 in the ability to repair DNA damage.
Alvarado-Cruz, Isabel; Sánchez-Guerra, Marco; Hernández-Cadena, Leticia; De Vizcaya-Ruiz, Andrea; Mugica, Violeta; Pelallo-Martínez, Nadia Azenet; Solís-Heredia, María de Jesús; Byun, Hyang-Min; Baccarelli, Andrea; Quintanilla-Vega, Betzabet
2017-01-01
DNA methylation in DNA repair genes participates in the DNA damage regulation. Particulate matter (PM), which has metals and polycyclic aromatic hydrocarbons (PAHs) adsorbed, among others has been linked to adverse health outcomes and may modify DNA methylation. To evaluate PM exposure impact on repetitive elements and gene-specific DNA methylation and DNA damage, we conducted a cross-sectional study in 150 schoolchildren (7-10 years old) from an urbanized, industrial area of the metropolitan area of Mexico City (MAMC), which frequently exhibits PM concentrations above safety standards. Methylation (5mC) of long interspersed nuclear element-1 (LINE1) and DNA repair gene (OGG1, APEX, and PARP1) was assessed by pyrosequencing in peripheral mononuclear cells, DNA damage by comet assay and DNA oxidation by 8-OHdG content. PAH and metal contents in PM 10 (≤10μm aerodynamic diameter) were determined by HPLC-MS and ICP-AES, respectively. Multiple regression analysis between DNA methylation, DNA damage, and PM 10 exposure showed that PM 10 was significantly associated with oxidative DNA damage; a 1% increase in 5mC at all CpG sites in PARP1 promoter was associated with a 35% increase in 8-OHdG, while a 1% increase at 1, 2, and 3 CpG sites resulted in 38, 9, and 56% increments, respectively. An increase of 10pg/m 3 in benzo[b]fluoranthene content of PM 10 was associated with a 6% increase in LINE1 methylation. Acenaphthene, indene [1,2,3-cd] pyrene, and pyrene concentrations correlated with higher dinucleotide methylation in OGG1, APEX and PARP1 genes, respectively. Vanadium concentration correlated with increased methylation at selected APEX and PARP1 CpG sites. DNA repair gene methylation was significantly correlated with DNA damage and with specific PM 10 -associated PAHs and Vanadium. Data suggest that exposure to PM and its components are associated with differences in DNA methylation of repair genes in children, which may contribute to DNA damage. Copyright © 2016 Elsevier B.V. All rights reserved.
Nair, Nidhi; Shoaib, Muhammad
2017-01-01
Genomic DNA is compacted into chromatin through packaging with histone and non-histone proteins. Importantly, DNA accessibility is dynamically regulated to ensure genome stability. This is exemplified in the response to DNA damage where chromatin relaxation near genomic lesions serves to promote access of relevant enzymes to specific DNA regions for signaling and repair. Furthermore, recent data highlight genome maintenance roles of chromatin through the regulation of endogenous DNA-templated processes including transcription and replication. Here, we review research that shows the importance of chromatin structure regulation in maintaining genome integrity by multiple mechanisms including facilitating DNA repair and directly suppressing endogenous DNA damage. PMID:28698521
Oxidative stress, activity behaviour and body mass in captive parrots
Larcombe, S D; Tregaskes, C A; Coffey, J; Stevenson, A E; Alexander, L G
2015-01-01
Abstract Many parrot species are kept in captivity for conservation, but often show poor reproduction, health and survival. These traits are known to be influenced by oxidative stress, the imbalance between the production of reactive oxygen species (ROS) and ability of antioxidant defences to ameliorate ROS damage. In humans, oxidative stress is linked with obesity, lack of exercise and poor nutrition, all of which are common in captive animals. Here, we tested whether small parrots (budgerigars, Melopsittacus undulatus) maintained in typical pet cages and on ad libitum food varied in oxidative profile, behaviour and body mass. Importantly, as with many birds held in captivity, they did not have enough space to engage in extensive free flight. Four types of oxidative damage, single-stranded DNA breaks (low-pH comet assay), alkali-labile sites in DNA (high-pH comet assay), sensitivity of DNA to ROS (H2O2-treated comet assay) and malondialdehyde (a byproduct of lipid peroxidation), were uncorrelated with each other and with plasma concentrations of dietary antioxidants. Without strenuous exercise over 28 days in a relatively small cage, more naturally ‘active’ individuals had more single-stranded DNA breaks than sedentary birds. High body mass at the start or end of the experiment, coupled with substantial mass gain, were all associated with raised sensitivity of DNA to ROS. Thus, high body mass in these captive birds was associated with oxidative damage. These birds were not lacking dietary antioxidants, because final body mass was positively related to plasma levels of retinol, zeaxanthin and α-tocopherol. Individuals varied widely in activity levels, feeding behaviour, mass gain and oxidative profile despite standardized living conditions. DNA damage is often associated with poor immunocompetence, low fertility and faster ageing. Thus, we have candidate mechanisms for the limited lifespan and fecundity common to many birds kept for conservation purposes. PMID:27293729
Oxidative stress, activity behaviour and body mass in captive parrots.
Larcombe, S D; Tregaskes, C A; Coffey, J; Stevenson, A E; Alexander, L G; Arnold, K E
2015-01-01
Many parrot species are kept in captivity for conservation, but often show poor reproduction, health and survival. These traits are known to be influenced by oxidative stress, the imbalance between the production of reactive oxygen species (ROS) and ability of antioxidant defences to ameliorate ROS damage. In humans, oxidative stress is linked with obesity, lack of exercise and poor nutrition, all of which are common in captive animals. Here, we tested whether small parrots (budgerigars, Melopsittacus undulatus) maintained in typical pet cages and on ad libitum food varied in oxidative profile, behaviour and body mass. Importantly, as with many birds held in captivity, they did not have enough space to engage in extensive free flight. Four types of oxidative damage, single-stranded DNA breaks (low-pH comet assay), alkali-labile sites in DNA (high-pH comet assay), sensitivity of DNA to ROS (H2O2-treated comet assay) and malondialdehyde (a byproduct of lipid peroxidation), were uncorrelated with each other and with plasma concentrations of dietary antioxidants. Without strenuous exercise over 28 days in a relatively small cage, more naturally 'active' individuals had more single-stranded DNA breaks than sedentary birds. High body mass at the start or end of the experiment, coupled with substantial mass gain, were all associated with raised sensitivity of DNA to ROS. Thus, high body mass in these captive birds was associated with oxidative damage. These birds were not lacking dietary antioxidants, because final body mass was positively related to plasma levels of retinol, zeaxanthin and α-tocopherol. Individuals varied widely in activity levels, feeding behaviour, mass gain and oxidative profile despite standardized living conditions. DNA damage is often associated with poor immunocompetence, low fertility and faster ageing. Thus, we have candidate mechanisms for the limited lifespan and fecundity common to many birds kept for conservation purposes.
Szeto, Yim Tong; Wong, Kam Shing; Han, Andrea; Pak, Sok Cheon; Kalle, Wouter
2016-01-01
Aim: The aim of this clinical study is to provide scientific evidence for supporting traditional Chinese application and usage to the patients. For this purpose, we tested the ability if Panax ginseng extract to lower oxidative damage to nuclear DNA in human lymphocytes by comparing the effect of cooked Chinese turnip on this effect. Materials and Methods: Seven healthy subjects (4 males and 3 females from 37 to 60 years) participated two occasions which were at least 2 weeks apart. About 2 mL of fasting blood sample for baseline measurement was taken on arrival. They were requested to ingest the content of 5 ginseng capsules in 200 mL water. The subject remained fasting for 2 h until the second blood sample taken. In the other occasion, the experiment was repeated except a piece of cooked turnip (10 g) was taken with the ginseng extract. The two occasions could be interchanged. Comet assay was performed on two specimens on the same day for the evaluation of lymphocytic DNA damage with or without oxidative stress. Results: For the group with ginseng supplementation, there was a significant decrease in comet score for hydrogen peroxide (H2O2) treatment over the 2-h period while no change in DNA damage for unstressed sample. For the group with ginseng together with turnip supplementation, there was no significant difference in comet score for both H2O2 treatment and phosphate-buffered saline treatment. Ginseng extract could reduce DNA damage mediated by H2O2 effectively, but this protection effect was antagonized by the ingestion of cooked turnip at the same time. Conclusion: In the current study, commercial ginseng extract was used for supplementing volunteers. Ginseng extract could protect DNA from oxidative stress in vivo while turnip diminished the protection. PMID:27757261
Impact of genomic damage and ageing on stem cell function
Behrens, Axel; van Deursen, Jan M.; Rudolph, K. Lenhard; Schumacher, Björn
2014-01-01
Impairment of stem cell function contributes to the progressive deterioration of tissue maintenance and repair with ageing. Evidence is mounting that age-dependent accumulation of DNA damage in both stem cells and cells that comprise the stem cell microenvironment are partly responsible for stem cell dysfunction with ageing. Here, we review the impact of the various types of DNA damage that accumulate with ageing on stem cell functionality, as well as the development of cancer. We discuss DNA-damage-induced cell intrinsic and extrinsic alterations that influence these processes, and review recent advances in understanding systemic adjustments to DNA damage and how they affect stem cells. PMID:24576896
Repair Mechanism of UV-damaged DNA in Xeroderma Pigmentosum | Center for Cancer Research
Xeroderma pigmentosum (XP) is a rare, inherited disorder characterized by extreme skin sensitivity to ultraviolet (UV) rays from sunlight. XP is caused by mutations in genes involved in nucleotide excision repair (NER) of damaged DNA. Normal cells are usually able to fix this damage before it leads to problems; however, the DNA damage is not repaired normally in patients with
Shamsi, M B; Venkatesh, S; Tanwar, M; Singh, G; Mukherjee, S; Malhotra, N; Kumar, R; Gupta, N P; Mittal, S; Dada, R
2010-05-01
The growing concern on transmission of genetic diseases in assisted reproduction technique (ART) and the lacunae in the conventional semen analysis to accurately predict the semen quality has led to the need for new techniques to identify the best quality sperm that can be used in assisted procreation techniques. This study analyzes the sperm parameters in the context of DNA damage in cytogenetically normal, AZF non deleted infertile men for DNA damage by comet assay. Seventy infertile men and 40 fertile controls were evaluated for the semen quality by conventional semen parameters and the sperms were also analyzed for DNA integrity by comet assay. The patients were classified into oligozoospermic (O), asthenozoospermic (A), teratozoospermic (T), oligoasthenoteratozoospermic (OAT) categories and infertile men with normal semen profile. The extent of DNA damage was assessed by visual scoring method of comets. Idiopathic infertile men with normal semen profile (n=18) according to conventional method and patients with history of spontaneous abortions and normal semen profile (n=10) had high degree of DNA damage (29 and 47% respectively) as compared to fertile controls (7%). The O, A, T and OAT categories of patients had a variably higher DNA damage load as compared to fertile controls. The normal range and threshold for DNA damage as a predictor of male fertility potential and technique which could assess the sperm DNA damage are necessary to lower the trauma of couples experiencing recurrent spontaneous abortion or failure in ART.
Increased levels of mitochondrial DNA copy number in patients with vitiligo.
Vaseghi, H; Houshmand, M; Jadali, Z
2017-10-01
Oxidative stress is known to be involved in the pathogenesis of autoimmune diseases such as vitiligo. Evidence suggests that the human mitochondrial DNA copy number (mtDNAcn) is vulnerable to damage mediated by oxidative stress. The purpose of this study was to examine and compare peripheral blood mtDNAcn and oxidative DNA damage byproducts (8-hydroxy-2-deoxyguanosine; 8-OHdG) in patients with vitiligo and healthy controls (HCs). The relative mtDNAcn and the oxidative damage (formation of 8-OHdG in mtDNA) of each sample were determined by real-time quantitative PCR. Blood samples were obtained from 56 patients with vitiligo and 46 HCs. The mean mtDNAcn and the degree of mtDNA damage were higher in patients with vitiligo than in HCs. These data suggest that increase in mtDNAcn and oxidative DNA damage may be involved in the pathogenesis of vitiligo. © 2017 British Association of Dermatologists.
A core hSSB1–INTS complex participates in the DNA damage response
Zhang, Feng; Ma, Teng; Yu, Xiaochun
2013-01-01
Summary Human single-stranded DNA-binding protein 1 (hSSB1) plays an important role in the DNA damage response and the maintenance of genomic stability. It has been shown that the core hSSB1 complex contains hSSB1, INTS3 and C9orf80. Using protein affinity purification, we have identified integrator complex subunit 6 (INTS6) as a major subunit of the core hSSB1 complex. INTS6 forms a stable complex with INTS3 and hSSB1 both in vitro and in vivo. In this complex, INTS6 directly interacts with INTS3. In response to the DNA damage response, along with INTS3 and hSSB1, INTS6 relocates to the DNA damage sites. Moreover, the hSSB1–INTS complex regulates the accumulation of RAD51 and BRCA1 at DNA damage sites and the correlated homologous recombination. PMID:23986477
Di Pietro, Angela; Baluce, Barbara; Visalli, Giuseppa; La Maestra, Sebastiano; Micale, Rosanna; Izzotti, Alberto
2011-06-01
Transition metals in fine particulate matter generated by combustion induce oxidative DNA damage and inflammation. However, there is remarkable inter-individual variability in susceptibility to these damages. To assess this variability, an ex vivo study was performed using lymphocytes of 47 Caucasian healthy subjects. Cell samples were exposed to a water solution of oil fly ash (OFA). This was formed by the distinctive transition metals vanadium, iron, and nickel. Oxidative DNA damage was evaluated by testing cell viability, intracellular ROS production and 8-oxo-dG. DNA fragmentation and DNA repair capacity were assessed by using the Alkaline-Halo assay. GSTM1, GSTT1, hOGG1, and C677T and A1298C MTHFR gene polymorphisms were tested. Demographic and behavioral factors, collected by questionnaire, were also considered. OFA induced damages showed: (a) a 20-fold variation in range among different subjects in ROS production, (b) a 7-fold variation in range of 8-oxo-dG, and (c) a 25-fold variation in range in DNA repair capacity. A significant increase in DNA damage was detected in GSTT1-deficent subjects compared with wild type genotype carriers. Increases in cytoplasmic ROS and decreases in DNA repair capacity (P<0.05) were observed in C677T and A1298C variants of MTHFR. A remarkable protective effect of high fruits and vegetable intake was observed for ROS production and DNA damage. Conversely, an adverse effect of meat intake was observed on ROS increase, DNA damage and repair capacity, probably due to the increased intake of bioavailable iron. Smoking decreased DNA repair capacity, while age increased OFA-induced DNA damage. The wide comparative analysis of the complex interactions network, between genetic and behavioral factors provides evidence of the remarkable role of several lifestyle factors. In comparison to genetic polymorphisms they seem to have a higher weight in determining individual susceptibility to the adverse effects of airborne pollutants as transition metals. Copyright © 2011 Elsevier GmbH. All rights reserved.
Origins and consequences of DNA damage in male germ cells.
Aitken, R John; De Iuliis, Geoffry N
2007-06-01
DNA damage in the male germline is associated with poor fertilization rates following IVF, defective preimplantation embryonic development, and high rates of miscarriage and morbidity in the offspring, including childhood cancer. This damage is poorly characterized, but is known to involve hypomethylation of key genes, oxidative base damage, endonuclease-mediated cleavage and the formation of adducts with xenobiotics and the products of lipid peroxidation. There are many possible causes of such DNA damage, including abortive apoptosis, the oxidative stress associated with male genital tract infection, exposure to redox cycling chemicals, and defects of spermiogenesis associated with the retention of excess residual cytoplasm. Physical factors such as exposure to radiofrequency electromagnetic radiation or mild scrotal heating can also induce DNA damage in mammalian spermatozoa, although the underlying mechanisms are unclear. Ultimately, resolving the precise nature of the DNA lesions present in the spermatozoa of infertile men will be an important step towards uncovering the aetiology of this damage and developing strategies for its clinical management.
Reactive oxygen-mediated damage to a human DNA replication and repair protein.
Montaner, Beatriz; O'Donovan, Peter; Reelfs, Olivier; Perrett, Conal M; Zhang, Xiaohong; Xu, Yao-Zhong; Ren, Xiaolin; Macpherson, Peter; Frith, David; Karran, Peter
2007-11-01
Ultraviolet A (UVA) makes up more than 90% of incident terrestrial ultraviolet radiation. Unlike shorter wavelength UVB, which damages DNA directly, UVA is absorbed poorly by DNA and is therefore considered to be less hazardous. Organ transplant patients treated with the immunosuppressant azathioprine frequently develop skin cancer. Their DNA contains 6-thioguanine-a base analogue that generates DNA-damaging singlet oxygen ((1)O(2)) when exposed to UVA. Here, we show that this (1)O(2) damages proliferating cell nuclear antigen (PCNA), the homotrimeric DNA polymerase sliding clamp. It causes covalent oxidative crosslinking between the PCNA subunits through a histidine residue in the intersubunit domain. Crosslinking also occurs after treatment with higher-although still moderate-doses of UVA alone or with chemical oxidants. Chronic accumulation of oxidized proteins is linked to neurodegenerative disorders and ageing. Our findings identify oxidative damage to an important DNA replication and repair protein as a previously unrecognized hazard of acute oxidative stress.
Karentz, Deneb
2015-01-01
The ability to repair DNA is a ubiquitous characteristic of life on Earth and all organisms possess similar mechanisms for dealing with DNA damage, an indication of a very early evolutionary origin for repair processes. James E. Cleaver's career (initiated in the early 1960s) has been devoted to the study of mammalian ultraviolet radiation (UVR) photobiology, specifically the molecular genetics of xeroderma pigmentosum and other human diseases caused by defects in DNA damage recognition and repair. This work by Jim and others has influenced the study of DNA damage and repair in a variety of taxa. Today, the field of DNA repair is enhancing our understanding of not only how to treat and prevent human disease, but is providing insights on the evolutionary history of life on Earth and how natural populations are coping with UVR-induced DNA damage from anthropogenic changes in the environment such as ozone depletion. © 2014 The American Society of Photobiology.
Tang, Jiang-bo; Goellner, Eva M.; Wang, Xiao-hong; Trivedi, Ram N.; Croix, Claudette M. St; Jelezcova, Elena; Svilar, David; Brown, Ashley R.; Sobol, Robert W.
2009-01-01
Base excision repair (BER) protein expression is important for resistance to DNA damage-induced cytotoxicity. Conversely, BER imbalance (Polß deficiency or repair inhibition) enhances cytotoxicity of radiation and chemotherapeutic DNA-damaging agents. Whereas inhibition of critical steps in the BER pathway result in the accumulation of cytotoxic DNA double-strand breaks, we report that DNA damage-induced cytotoxicity due to deficiency in the BER protein Polß triggers cell death dependent on PARP activation yet independent of poly(ADP-ribose) (PAR)-mediated AIF nuclear translocation or PARG, suggesting that cytotoxicity is not from PAR or PAR-catabolite signaling. Cell death is rescued by the NAD+ metabolite NMN and is synergistic with inhibition of NAD+ biosynthesis, demonstrating that DNA damage-induced cytotoxicity mediated via BER inhibition is primarily dependent on cellular metabolite bioavailability. We offer a mechanistic justification for the elevated alkylation-induced cytotoxicity of Polß deficient cells, suggesting a linkage between DNA repair, cell survival and cellular bioenergetics. PMID:20068071
Nakamura, Asako J.; Suzuki, Masatoshi; Redon, Christophe E.; Kuwahara, Yoshikazu; Yamashiro, Hideaki; Abe, Yasuyuki; Takahashi, Shintaro; Fukuda, Tomokazu; Isogai, Emiko; Bonner, William M.; Fukumoto, Manabu
2017-01-01
The Fukushima Daiichi Nuclear Power Plant (FNPP) accident, the largest nuclear incident since the 1986 Chernobyl disaster, occurred when the plant was hit by a tsunami triggered by the Great East Japan Earthquake on March 11, 2011. The subsequent uncontrolled release of radioactive substances resulted in massive evacuations in a 20-km zone. To better understand the biological consequences of the FNPP accident, we have been measuring DNA damage levels in cattle in the evacuation zone. DNA damage was evaluated by assessing the levels of DNA double-strand breaks in peripheral blood lymphocytes by immunocyto-fluorescence-based quantification of γ-H2AX foci. A greater than two-fold increase in the fraction of damaged lymphocytes was observed in all animal cohorts within the evacuation zone, and the levels of DNA damage decreased slightly over the 700-day sample collection period. While the extent of damage appeared to be independent of the distance from the accident site and the estimated radiation dose from radiocesium, we observed age-dependent accumulation of DNA damage. Thus, this study, which was the first to evaluate the biological impact of the FNPP accident utilizing the γ-H2AX assays, indicated the causal relation between high levels of DNA damage in animals living in the evacuation zone and the FNPP accident. PMID:28240558
Nakamura, Asako J; Suzuki, Masatoshi; Redon, Christophe E; Kuwahara, Yoshikazu; Yamashiro, Hideaki; Abe, Yasuyuki; Takahashi, Shintaro; Fukuda, Tomokazu; Isogai, Emiko; Bonner, William M; Fukumoto, Manabu
2017-05-01
The Fukushima Daiichi Nuclear Power Plant (FNPP) accident, the largest nuclear incident since the 1986 Chernobyl disaster, occurred when the plant was hit by a tsunami triggered by the Great East Japan Earthquake on March 11, 2011. The subsequent uncontrolled release of radioactive substances resulted in massive evacuations in a 20-km zone. To better understand the biological consequences of the FNPP accident, we have been measuring DNA damage levels in cattle in the evacuation zone. DNA damage was evaluated by assessing the levels of DNA double-strand breaks in peripheral blood lymphocytes by immunocytofluorescence-based quantification of γ-H2AX foci. A greater than two-fold increase in the fraction of damaged lymphocytes was observed in all animal cohorts within the evacuation zone, and the levels of DNA damage decreased slightly over the 700-day sample collection period. While the extent of damage appeared to be independent of the distance from the accident site and the estimated radiation dose from radiocesium, we observed age-dependent accumulation of DNA damage. Thus, this study, which was the first to evaluate the biological impact of the FNPP accident utilizing the γ-H2AX assays, indicated the causal relation between high levels of DNA damage in animals living in the evacuation zone and the FNPP accident.
Vialard, J E; Gilbert, C S; Green, C M; Lowndes, N F
1998-10-01
The Saccharomyces cerevisiae RAD9 checkpoint gene is required for transient cell-cycle arrests and transcriptional induction of DNA repair genes in response to DNA damage. Polyclonal antibodies raised against the Rad9 protein recognized several polypeptides in asynchronous cultures, and in cells arrested in S or G2/M phases while a single form was observed in G1-arrested cells. Treatment with various DNA damaging agents, i.e. UV, ionizing radiation or methyl methane sulfonate, resulted in the appearance of hypermodified forms of the protein. All modifications detected during a normal cell cycle and after DNA damage were sensitive to phosphatase treatment, indicating that they resulted from phosphorylation. Damage-induced hyperphosphorylation of Rad9 correlated with checkpoint functions (cell-cycle arrest and transcriptional induction) and was cell-cycle stage- and progression-independent. In asynchronous cultures, Rad9 hyperphosphorylation was dependent on MEC1 and TEL1, homologues of the ATR and ATM genes. In G1-arrested cells, damage-dependent hyperphosphorylation required functional MEC1 in addition to RAD17, RAD24, MEC3 and DDC1, demonstrating cell-cycle stage specificity of the checkpoint genes in this response to DNA damage. Analysis of checkpoint protein interactions after DNA damage revealed that Rad9 physically associates with Rad53.
Wu, Zhi-hong; Wang, Mian-rong; Yan, Qi-chang; Pu, Wei; Zhang, Jin-song
2006-11-01
To investigate the mechanism of UV-induced DNA damage and repair and the protective effects of antioxidants on DNA damage in human lens epithelial cells. Human lens epithelial cells were irradiated at UV-doses 0.0 (control group), 2.5, 5.0, 7.5, 10.0 mJ/cm(2) (treated group 1 - 4). The amounts of DNA single strand breaks (SSB) were measured with the alkaline comet assay (CA). The spontaneous repair of DNA SSB after exposure to UV at 10.0 mJ/cm(2) was also determined in human lens epithelial cells. Human lens epithelial cells were treated with different concentration of VitaminC (VitC), taurine, superoxide dismutase (SOD) and epigallocatechin gallate (EGCG) before and after ultraviolet radiation, the effects of antioxidants on DNA damage was examined with alkaline comet assay. The amount of DNA SSB in control group and treated groups 1 - 4 showed increased tendency, was dose-dependent to the dose of UV irradiation, the differences of DNA SSB in 5 group were significantly (P < 0.01). UV-induced DNA SSB at 10.0 mJ/cm(2) in human lens epithelial cells, the half repair time was 60 minutes. Human lens epithelial cells were treated with different concentrations of taurine, SOD and EGCG before ultraviolet radiation. The differences of DNA damage in control and various antioxidant treated groups was statistically significant (F = 6.591, 13.542, 4.626 in cells treated with taurine, SOD and EGCG, respectively, P < 0.01), the difference of VitC effect on DNA in control and treated group were not significantly (F = 1.451, P > 0.05). Human lens epithelial cells were treated with different concentration of VitC, taurine, SOD and EGCG after ultraviolet radiation. The differences of DNA damage between the control and treated group were statistically significant (F = 6.571, 4.810, 6.824, 9.182 in cells treated with VitC, taurine, SOD and EGCG, respectively, P < 0.01). The differences of protective effects on DNA damage in these four different kinds of antioxidants added before UV irradiation were statistically significant (P < 0.01). The differences of protective effects on DNA damage in these four different kinds of antioxidant added after UV irradiation were not significantly (P > 0.05). UV irradiation has a dose-dependent effect on the DNA SSB of lens epithelial cells. Exogenesis VitC, taurine, SOD, EGCG possess protective effective to UV-induced DNA damage. SOD is one of the most powerful antioxidants if added before the UV irradiation and followed by EGCG, taurine and VitC orderly. Four kinds of antioxidants show no apparently differences added after UV-irradiation. SOD and EGCG both are powerful antioxidants.
Casalini, C; Lodovici, M; Briani, C; Paganelli, G; Remy, S; Cheynier, V; Dolara, P
1999-08-01
Flavonoids are polyphenolic antioxidants occurring in vegetables and fruits as well as beverages such as tea and wine which have been thought to influence oxidative damage. We wanted to verify whether a complex mixture of wine tannins (wine complex polyphenols and tannins, WCPT) prevent chemically-induced oxidative DNA damage in vivo. Oxidative DNA damage was evaluated by measuring the ratio of 8-hydroxy-2'-deoxyguanosine (80HdG)/ 2-deoxyguanosine (2dG) x 10(-6) in hydrolyzed DNA using HPLC coupled with electrochemical and UV detectors. We treated rats with WCPT (57 mg/kg p.o.) for 14 d, a dose 10-fold higher than what a moderate wine drinker would be exposed to. WCPT administration significantly reduced the ratio of 80HdG/2dG x 10(-6) in liver DNA obtained from rats treated with 2-nitropropane (2NP) relative to controls administered 2NP only (33. 3 +/- 2.5 vs. 44.9 +/- 3.2 x 10(-6) 2dG; micro +/- SE; p<0.05). On the contrary, pretreatment with WCPT for 10 d did not protect the colon mucosa from oxidative DNA damage induced by 1, 2-dimethylhydrazine (DMH). 2NP and DMH are hepatic and colon carcinogens, respectively, capable of inducing oxidative DNA damage. WCPT have protective action against some types of chemically-induced oxidative DNA damage in vivo.
Radiation damage to nucleoprotein complexes in macromolecular crystallography
Bury, Charles; Garman, Elspeth F.; Ginn, Helen Mary; ...
2015-01-30
Significant progress has been made in macromolecular crystallography over recent years in both the understanding and mitigation of X-ray induced radiation damage when collecting diffraction data from crystalline proteins. Despite the large field that is productively engaged in the study of radiation chemistry of nucleic acids, particularly of DNA, there are currently very few X-ray crystallographic studies on radiation damage mechanisms in nucleic acids. Quantitative comparison of damage to protein and DNA crystals separately is challenging, but many of the issues are circumvented by studying pre-formed biological nucleoprotein complexes where direct comparison of each component can be made under themore » same controlled conditions. A model protein–DNA complex C.Esp1396I is employed to investigate specific damage mechanisms for protein and DNA in a biologically relevant complex over a large dose range (2.07–44.63 MGy). In order to allow a quantitative analysis of radiation damage sites from a complex series of macromolecular diffraction data, a computational method has been developed that is generally applicable to the field. Typical specific damage was observed for both the protein on particular amino acids and for the DNA on, for example, the cleavage of base-sugar N 1—C and sugar-phosphate C—O bonds. Strikingly the DNA component was determined to be far more resistant to specific damage than the protein for the investigated dose range. We observed the protein at low doses and found that they were susceptible to radiation damage while the DNA was far more resistant, damage only being observed at significantly higher doses.« less
Wang, Amy; Robertson, John L; Holladay, Steven D; Tennant, Alan H; Lengi, Andrea J; Ahmed, S Ansar; Huckle, William R; Kligerman, Andrew D
2007-12-01
Urinary bladder transitional epithelium is the main site of bladder cancer, and the use of transitional cells to study carcinogenesis/genotoxicity is recommended over the use of whole bladders. Because the transitional epithelium is only a small fraction of the whole bladder, the alkaline single cell gel electrophoresis assay (Comet assay), which requires only a small number of cells per sample, is especially suitable for measuring DNA damage in transitional cells. However, existed procedures of cell collection did not yield transitional cells with a high purity, and pooling of samples was needed for Comet assay. The goal of this study was to develop an optimized protocol to evaluate DNA damage in the urinary bladder transitional epithelium. This was achieved by an enzymatic stripping method (trypsin-EDTA incubation plus gentle scraping) to selectively harvest transitional cells from rat bladders, and the use of the alkaline Comet assay to detect DNA strand breaks, alkaline labile sites, and DNA-protein crosslinks. Step by step procedures are reported here. Cells collected from a single rat bladder were sufficient for multiple Comet assays. With this new protocol, increases in DNA damage were detected in transitional cells after in vitro exposure to the positive control agents, hydrogen peroxide or formaldehyde. Repair of the induced DNA damage occurred within 4h. This indicated the capacity for DNA repair was maintained in the harvested cells. The new protocol provides a simple and inexpensive method to detect various types of DNA damage and to measure DNA damage repair in urinary bladder transitional cells.
Fertilization capacity with rainbow trout DNA-damaged sperm and embryo developmental success.
Pérez-Cerezales, S; Martínez-Páramo, S; Beirão, J; Herráez, M P
2010-06-01
Mammalian spermatozoa undergo a strong selection process along the female tract to guarantee fertilization by good quality cells, but risks of fertilization with DNA-damaged spermatozoa have been reported. In contrast, most external fertilizers such as fish seem to have weaker selection procedures. This fact, together with their high prolificacy and external embryo development, indicates that fish could be useful for the study of the effects of sperm DNA damage on embryo development. We cryopreserved sperm from rainbow trout using egg yolk and low-density lipoprotein as additives to promote different rates of DNA damage. DNA fragmentation and oxidization were analyzed using comet assay with and without digestion with restriction enzymes, and fertilization trials were performed. Some embryo batches were treated with 3-aminobenzamide (3AB) to inhibit DNA repair by the poly (ADP-ribose) polymerase, which is an enzyme of the base excision repair pathway. Results showed that all the spermatozoa cryopreserved with egg yolk carried more than 10% fragmented DNA, maintaining fertilization rates of 61.1+/-2.3 but a high rate of abortions, especially during gastrulation, and only 14.5+/-4.4 hatching success. Furthermore, after 3AB treatment, hatching dropped to 3.2+/-2.2, showing that at least 10% DNA fragmentation was repaired. We conclude that trout sperm maintains its ability to fertilize in spite of having DNA damage, but that embryo survival is affected. Damage is partially repaired by the oocyte during the first cleavage. Important advantages of using rainbow trout for the study of processes related to DNA damage and repair during development have been reported.
DNA damage and repair in oncogenic transformation by heavy ion radiation
NASA Technical Reports Server (NTRS)
Yang, T. C.; Mei, M.; George, K. A.; Craise, L. M.
1996-01-01
Energetic heavy ions are present in galactic cosmic rays and solar particle events. One of the most important late effects in risk assessment is carcinogenesis. We have studied the carcinogenic effects of heavy ions at the cellular and molecular levels and have obtained quantitative data on dose-response curves and on the repair of oncogenic lesions for heavy particles with various charges and energies. Studies with repair inhibitors and restriction endonucleases indicated that for oncogenic transformation DNA is the primary target. Results from heavy ion experiments showed that the cross section increased with LET and reached a maximum value of about 0.02 micrometer2 at about 500 keV/micrometer. This limited size of cross section suggests that only a fraction of cellular genomic DNA is important in radiogenic transformation. Free radical scavengers, such as DMSO, do not give any effect on induction of oncogenic transformation by 600 MeV/u iron particles, suggesting most oncogenic damage induced by high-LET heavy ions is through direct action. Repair studies with stationary phase cells showed that the amount of reparable oncogenic lesions decreased with an increase of LET and that heavy ions with LET greater than 200 keV/micrometer produced only irreparable oncogenic damage. An enhancement effect for oncogenic transformation was observed in cells irradiated by low-dose-rate argon ions (400 MeV/u; 120 keV/micrometer). Chromosomal aberrations, such as translocation and deletion, but not sister chromatid exchange, are essential for heavy-ion-induced oncogenic transformation. The basic mechanism(s) of misrepair of DNA damage, which form oncogenic lesions, is unknown.
Shih, M K; Hu, M L
1996-03-01
Calf thymus DNA was irradiated with low-intensity UVA (main output at 365 nm, 2 mW cm-2 or 36 kJ m-2 for 30 min), and the role of metal ions, hydrogen peroxide and reactive oxygen species (ROS) was examined. DNA damage was measured as thiobarbituric acid-reactive substances (possibly from degradation of deoxyribose) and as changes in ethidium bromide-DNA fluorescence due to unwinding from strand breaks. Under the present experimental conditions, UVA alone or in the presence of H2O2 had no effect on DNA but slightly enhanced the damage by iron/EDTA. Ultraviolet A strongly enhanced DNA damage (ca four- to five-fold) by the Fenton reaction system (50 microM Fe2+/100 microM EDTA + 0.5 mM H2O2). The results suggest that the Fenton reaction system was "photosensitized" to damage DNA by low-intensity UVA radiation. The enhanced damage by UVA was attributed in part to the reduction of Fe3+ to Fe2+. Ultraviolet A had no effect when iron (ferric or ferrous) ions were replaced by Cu2+, Zn2+, Mn2+ or Cd2+. The ROS involved in the UVA-enhanced damage to DNA by the Fenton reagents were OH and, to a lesser extent, superoxide anions. The UVA-potentiated DNA damage by the Fenton reaction system was then used to examine the protective effect of para-aminobenzoate (PABA), a UVB-absorbing sunscreen that protects against photocarcinogenesis in hairless mice. The results show that PABA and mannitol dose-dependently inhibited the damage with concentrations required for 50% inhibition at 0.1 mM and 3 mM, respectively. The protection by PABA was attributed to its radical-scavenging ability because PABA does not absorb light in the UVA region. These findings may be relevant to the biological damage by UVA and suggest that PABA is useful in protection against photocarcinogenesis by wide-range UV radiation.
DNA integrity determination in marine invertebrates by Fast Micromethod.
Jaksić, Zeljko; Batel, Renato
2003-12-10
This study was focused toward the adaptation of the previously developed Fast Micromethod for DNA damage determination to marine invertebrates for the establishment of biomonitoring assessment. The Fast Micromethod detects DNA damage (strand breaks, alkali-labile sites and incomplete excision repair) and determines DNA integrity in cell suspensions or tissue homogenates in single microplates. The procedure is based on the ability of the specific fluorochrome dye PicoGreen to preferentially interact with high integrity DNA molecules, dsDNA, in the presence of ssDNA and proteins in high alkaline medium, thereby allowing direct fluorometric measurements of dsDNA denaturation without sample handling and stepwise DNA separations. The results presented herein describe the influence of the DNA amount and the pH of the denaturation media on slopes of the kinetic denaturation curves and calculated strand scission factors (SSFs). The optimal amount of DNA in Mytilus galloprovincialis gills homogenate was found to be 100 ng ml(-1) and the greatest differences in DNA unwinding kinetics (slopes and SSF values) were reached at pH 11.5. The induction of DNA damage and loss of DNA integrity was measured in native DNA isolated from cotton-spinner Holothuria tubulosa, marine sponge Suberites domuncula cells and mussel M. galloprovincialis gills homogenate. DNA damage and loss of DNA integrity were detected after induction by different doses of (gamma-rays, generated by 137Cs 1800 Ci; 0-500 rad in marine sponge S. domuncula cells up to SSFx(-1) values 0.082 +/- 0.012 for the highest radiation dose). Analysis by chemical xenobiotics based on the in vitro action of bleomycin (bleomycin-Fe(II) complex 0-50 or 0-83 microg ml(-1) (microM)) with native DNA from cotton-spinner H. tubulosa and mussel M. galloprovincialis gills homogenate yielded values of 0.537 +/- 0.072 and 0.130 +/- 0.018, respectively. In vivo experiments with mussel M. galloprovincialis gills homogenate by 4-nitroquinoline-N-oxide (NQO; 0-1 microg g(-1) NQO mussel) and benzo[a]pyrene (B[a]P; 0-20 microg g(-1) B[a]P mussel) indicated SSFx(-1) values of 0.121 +/- 0.016 and 0.090 +/- 0.007, respectively, for the highest applied doses of chemical xenobiotics. The analytical technique described here allows simple and fast analysis of DNA integrity, requires very short time for multiple analyses (less than 3 h) and even less than 100 ng DNA per single well (50 ng DNA isolated from cotton-spinner, 12,500 sponge cells or about 10 mg of mussel gills homogenate) in a microplate. This makes the Fast Micromethod applicable for the measurement of DNA integrity of small samples for genotoxicity assessment (biomonitoring), the effects of genotoxins on lower marine taxa or sessile invertebrates in marine environment (e.g. sponges, mussels) and the estimation of directional changes and harmful effects in the ecosystem.
Effects of atmospheric pressure plasmas on isolated and cellular DNA-a review.
Arjunan, Krishna Priya; Sharma, Virender K; Ptasinska, Sylwia
2015-01-29
Atmospheric Pressure Plasma (APP) is being used widely in a variety of biomedical applications. Extensive research in the field of plasma medicine has shown the induction of DNA damage by APP in a dose-dependent manner in both prokaryotic and eukaryotic systems. Recent evidence suggests that APP-induced DNA damage shows potential benefits in many applications, such as sterilization and cancer therapy. However, in several other applications, such as wound healing and dentistry, DNA damage can be detrimental. This review reports on the extensive investigations devoted to APP interactions with DNA, with an emphasis on the critical role of reactive species in plasma-induced damage to DNA. The review consists of three main sections dedicated to fundamental knowledge of the interactions of reactive oxygen species (ROS)/reactive nitrogen species (RNS) with DNA and its components, as well as the effects of APP on isolated and cellular DNA in prokaryotes and eukaryotes.
Chen, Y; Feng, H; Chen, D; Abuduwaili, K; Li, X; Zhang, H
2018-01-01
The protective effects of folic acid on DNA damage and DNA methylation induced by N-methyl- N'-nitro- N-nitrosoguanidine (MNNG) in Kazakh esophageal epithelial cells were investigated using a 3 × 3 factorial design trial. The cells were cultured in vitro and exposed to media containing different concentrations of folic acid and MNNG, after which growth indices were detected. DNA damage levels were measured using comet assays, and genome-wide DNA methylation levels (MLs) were measured using high-performance liquid chromatography. The DNA methylation of methylenetetrahydrofolate reductase (MTHFR) and folate receptor- α (FR α) genes was detected by bisulfite sequencing polymerase chain reaction (PCR). The results showed significant increases in tail DNA concentration, tail length, and Olive tail moment ( p < 0.01); a significant reduction of genome-wide DNA MLs ( p < 0.01); and an increase in the methylation frequencies of MTHFR and FR α genes. In particular, significant differences were observed in the promoter regions of both genes ( p < 0.01). Our study indicated that a reduction in folic acid concentration promotes DNA damage and DNA methylation in Kazakh esophageal epithelial cells upon MNNG exposure. Thus, sufficient folic acid levels could play a protective role against the damage induced by this compound.
Nickerson, John M.; Gao, Feng-juan; Sun, Zhongmou; Chen, Xin-ya; Zhang, Shu-jie; Gao, Feng; Chen, Jun-yi; Luo, Yi; Wang, Yan; Sun, Xing-huai
2015-01-01
Glaucoma is a chronic neurodegenerative disease characterized by the progressive loss of retinal ganglion cells (RGCs). Mitochondrial DNA (mtDNA) alterations have been documented as a key component of many neurodegenerative disorders. However, whether mtDNA alterations contribute to the progressive loss of RGCs and the mechanism whereby this phenomenon could occur are poorly understood. We investigated mtDNA alterations in RGCs using a rat model of chronic intraocular hypertension and explored the mechanisms underlying progressive RGC loss. We demonstrate that the mtDNA damage and mutations triggered by intraocular pressure (IOP) elevation are initiating, crucial events in a cascade leading to progressive RGC loss. Damage to and mutation of mtDNA, mitochondrial dysfunction, reduced levels of mtDNA repair/replication enzymes, and elevated reactive oxygen species form a positive feedback loop that produces irreversible mtDNA damage and mutation and contributes to progressive RGC loss, which occurs even after a return to normal IOP. Furthermore, we demonstrate that mtDNA damage and mutations increase the vulnerability of RGCs to elevated IOP and glutamate levels, which are among the most common glaucoma insults. This study suggests that therapeutic approaches that target mtDNA maintenance and repair and that promote energy production may prevent the progressive death of RGCs. PMID:25478814
The human intra-S checkpoint response to UVC-induced DNA damage.
Kaufmann, William K
2010-05-01
The intra-S checkpoint response to 254 nm light (UVC)-induced DNA damage appears to have dual functions to slow the rate of DNA synthesis and stabilize replication forks that become stalled at sites of UVC-induced photoproducts in DNA. These functions should provide more time for repair of damaged DNA before its replication and thereby reduce the frequencies of mutations and chromosomal aberrations in surviving cells. This review tries to summarize the history of discovery of the checkpoint, the current state of understanding of the biological features of intra-S checkpoint signaling and its mechanisms of action with a focus primarily on intra-S checkpoint responses in human cells. The differences in the intra-S checkpoint responses to UVC and ionizing radiation-induced DNA damage are emphasized. Evidence that [6-4]pyrimidine-pyrimidone photoproducts in DNA trigger the response is discussed and the relationships between cellular responses to UVC and the molecular dose of UVC-induced DNA damage are briefly summarized. The role of the intra-S checkpoint response in protecting against solar radiation carcinogenesis remains to be determined.
A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE INDUCED BY RADIATION, CHEMICAL MUTAGENS AND ENZYMES
A simple and rapid assay to detect DNA damage is reported. This novel assay is based on changes in melting/annealing behavior and facilitated using certain dyes that increase their fluorescence upon association with double stranded (ds)DNA. Damage caused by ultraviolet (UV) ra...
The maintenance of genome integrity and function is essen-tial for the survival of cells and organisms. Any damage to our genetic material must be immediately sensed and repaired to preserve a cell’s func-tional integrity. Cells are constantly faced with the challenge of protecting their DNA from assaults by damaging chemicals and ultraviolet light. DNA damage that escapes repair can lead to a variety of genetic disorders and diseases, particularly cancer. To avoid this catastrophe, the cell employs an army of DNA repair factors that “rush to the scene” and initiate a cascade of events to repair the damage. Exactly how different repair factors sense DNA damage and orchestrate their concert-ed response is not well understood.
Aydin, Özge Z.; Marteijn, Jurgen A.; Ribeiro-Silva, Cristina; Rodríguez López, Aida; Wijgers, Nils; Smeenk, Godelieve; van Attikum, Haico; Poot, Raymond A.; Vermeulen, Wim; Lans, Hannes
2014-01-01
Chromatin compaction of deoxyribonucleic acid (DNA) presents a major challenge to the detection and removal of DNA damage. Helix-distorting DNA lesions that block transcription are specifically repaired by transcription-coupled nucleotide excision repair, which is initiated by binding of the CSB protein to lesion-stalled RNA polymerase II. Using live cell imaging, we identify a novel function for two distinct mammalian ISWI adenosine triphosphate (ATP)-dependent chromatin remodeling complexes in resolving lesion-stalled transcription. Human ISWI isoform SMARCA5/SNF2H and its binding partners ACF1 and WSTF are rapidly recruited to UV-C induced DNA damage to specifically facilitate CSB binding and to promote transcription recovery. SMARCA5 targeting to UV-C damage depends on transcription and histone modifications and requires functional SWI2/SNF2-ATPase and SLIDE domains. After initial recruitment to UV damage, SMARCA5 re-localizes away from the center of DNA damage, requiring its HAND domain. Our studies support a model in which SMARCA5 targeting to DNA damage-stalled transcription sites is controlled by an ATP-hydrolysis-dependent scanning and proofreading mechanism, highlighting how SWI2/SNF2 chromatin remodelers identify and bind nucleosomes containing damaged DNA. PMID:24990377
DNA damage in children and adolescents with cardiovascular disease risk factors.
Kliemann, Mariele; Prá, Daniel; Müller, Luiza L; Hermes, Liziane; Horta, Jorge A; Reckziegel, Miriam B; Burgos, Miria S; Maluf, Sharbel W; Franke, Silvia I R; Silva, Juliana da
2012-09-01
The risk of developing cardiovascular disease (CVD) is related to lifestyle (e.g. diet, physical activity and smoking) as well as to genetic factors. This study aimed at evaluating the association between CVD risk factors and DNA damage levels in children and adolescents. Anthropometry, diet and serum CVD risk factors were evaluated by standard procedures. DNA damage levels were accessed by the comet assay (Single cell gel electrophoresis; SCGE) and cytokinesis-blocked micronucleus (CBMN) assays in leukocytes. A total of 34 children and adolescents selected from a population sample were divided into three groups according to their level of CVD risk. Moderate and high CVD risk subjects showed significantly higher body fat and serum CVD risk markers than low risk subjects (P<0.05). High risk subjects also showed a significant increase in DNA damage, which was higher than that provided by low and moderate risk subjects according to SCGE, but not according to the CBMN assay. Vitamin C intake was inversely correlated with DNA damage by SCGE, and micronucleus (MN) was inversely correlated with folate intake. The present results indicate an increase in DNA damage that may be a consequence of oxidative stress in young individuals with risk factors for CVD, indicating that the DNA damage level can aid in evaluating the risk of CVD.
ATM-Dependent Phosphorylation of MEF2D Promotes Neuronal Survival after DNA Damage
Chan, Shing Fai; Sances, Sam; Brill, Laurence M.; Okamoto, Shu-ichi; Zaidi, Rameez; McKercher, Scott R.; Akhtar, Mohd W.; Nakanishi, Nobuki
2014-01-01
Mutations in the ataxia telangiectasia mutated (ATM) gene, which encodes a kinase critical for the normal DNA damage response, cause the neurodegenerative disorder ataxia-telangiectasia (AT). The substrates of ATM in the brain are poorly understood. Here we demonstrate that ATM phosphorylates and activates the transcription factor myocyte enhancer factor 2D (MEF2D), which plays a critical role in promoting survival of cerebellar granule cells. ATM associates with MEF2D after DNA damage and phosphorylates the transcription factor at four ATM consensus sites. Knockdown of endogenous MEF2D with a short-hairpin RNA (shRNA) increases sensitivity to etoposide-induced DNA damage and neuronal cell death. Interestingly, substitution of endogenous MEF2D with an shRNA-resistant phosphomimetic MEF2D mutant protects cerebellar granule cells from cell death after DNA damage, whereas an shRNA-resistant nonphosphorylatable MEF2D mutant does not. In vivo, cerebella in Mef2d knock-out mice manifest increased susceptibility to DNA damage. Together, our results show that MEF2D is a substrate for phosphorylation by ATM, thus promoting survival in response to DNA damage. Moreover, dysregulation of the ATM–MEF2D pathway may contribute to neurodegeneration in AT. PMID:24672010
Wu, Han; Zhang, Huina; Wang, Changjun; Wu, Yihua; Xie, Jiajun; Jin, Xiuming; Yang, Jun
2011-01-01
Purpose The aim of this study was to investigate hyaluronic acid (HA) protection on cultured human corneal epithelial cells (HCEs) against benzalkonium chloride (BAC)-induced DNA damage and intracellular reactive oxygen species (ROS) increase. Methods Cells were incubated with different concentrations of BAC with or without the presence of 0.2% HA for 30 min. DNA damage to HCEs was examined by alkaline comet assay and by immunofluorescence microscopic detection of the phosphorylated form of histone variant H2AX (γH2AX) foci. ROS production was assessed by the fluorescent probe, 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). Cell apoptosis was determined with annexin V staining by flow cytometry. Results HA significantly reduced BAC-induced DNA damage as indicated by the tail length (TL) and tail moment (TM) of alkaline comet assay and by γH2AX foci formation, respectively. Moreover, HA significantly decreased BAC-induced ROS increase and cell apoptosis. However, exposure to HA alone did not produce any significant change in DNA damage, ROS generation, or cell apoptosis. Conclusions BAC could induce DNA damage and cell apoptosis in HCEs, probably through increasing oxidative stress. Furthermore, HA was an effective protective agent that had antioxidant properties and could decrease DNA damage and cell apoptosis induced by BAC. PMID:22219631
Ollero, M; Gil-Guzman, E; Lopez, M C; Sharma, R K; Agarwal, A; Larson, K; Evenson, D; Thomas, A J; Alvarez, J G
2001-09-01
Reactive oxygen species (ROS)-induced damage of membrane phospholipids and DNA in human spermatozoa has been implicated in the pathogenesis of male infertility. In this study, variations in ROS production, DNA structure (as measured by the sperm chromatin structure assay) and lipid composition, were studied in human spermatozoa at different stages of maturation. Sperm subsets were isolated by discontinuous density gradient centrifugation of semen samples obtained from healthy donors and from infertility patients. DNA damage and ROS production were highest in immature spermatozoa with cytoplasmic retention and abnormal head morphology, and lowest in mature spermatozoa. Docosahexaenoic acid and sterol content were highest in immature germ cells and immature spermatozoa, and lowest in mature spermatozoa. The relative proportion of ROS-producing immature spermatozoa in the sample was directly correlated with DNA damage in mature spermatozoa, and inversely correlated with the recovery of motile spermatozoa. There was no correlation between DNA damage and sperm morphology in mature spermatozoa. The high levels of ROS production and DNA damage observed in immature spermatozoa may be indicative of derangements in the regulation of spermiogenesis. DNA damage in mature spermatozoa may be the result of oxidative damage by ROS-producing immature spermatozoa during sperm migration from the seminiferous tubules to the epididymis.
Zhang, Xue; Zhang, Chong; Zhou, Qian-Qian; Zhang, Xiao-Fei; Wang, Li-Yan; Chang, Hai-Bo; Li, He-Ping; Oda, Yoshimitsu; Xing, Xin-Hui
2015-07-01
DNA damage is the dominant source of mutation, which is the driving force of evolution. Therefore, it is important to quantitatively analyze the DNA damage caused by different mutagenesis methods, the subsequent mutation rates, and their relationship. Atmospheric and room temperature plasma (ARTP) mutagenesis has been used for the mutation breeding of more than 40 microorganisms. However, ARTP mutagenesis has not been quantitatively compared with conventional mutation methods. In this study, the umu test using a flow-cytometric analysis was developed to quantify the DNA damage in individual viable cells using Salmonella typhimurium NM2009 as the model strain and to determine the mutation rate. The newly developed method was used to evaluate four different mutagenesis systems: a new ARTP tool, ultraviolet radiation, 4-nitroquinoline-1-oxide (4-NQO), and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) mutagenesis. The mutation rate was proportional to the corresponding SOS response induced by DNA damage. ARTP caused greater DNA damage to individual living cells than the other conventional mutagenesis methods, and the mutation rate was also higher. By quantitatively comparing the DNA damage and consequent mutation rate after different types of mutagenesis, we have shown that ARTP is a potentially powerful mutagenesis tool with which to improve the characteristics of microbial cell factories.
Animal Studies in the Mode of Action of Agents, That Are Antitransformers in Cell Cultures.
1987-10-28
The oel- let was hydrolysed at 90 C in 6% PCA for 30 min. The DNA content (ootical density at 260 nm and 290 nm) and the radioactivitv ( liquid ...required: DNA damage, excision of the damage and DNA-strand polimerization and ligation. The misrepair or incomplete repair of DNA damage may be an ini...with non ionic deter- gents in the ?resence of high salt concentration. The secondary and tertiary structure (supercoils) of DNA remains intact under
Al-Serori, Halh; Ferk, Franziska; Kundi, Michael; Bileck, Andrea; Gerner, Christopher; Mišík, Miroslav; Nersesyan, Armen; Waldherr, Monika; Murbach, Manuel; Lah, Tamara T; Herold-Mende, Christel; Collins, Andrew R; Knasmüller, Siegfried
2018-01-01
Some epidemiological studies indicate that the use of mobile phones causes cancer in humans (in particular glioblastomas). It is known that DNA damage plays a key role in malignant transformation; therefore, we investigated the impact of the UMTS signal which is widely used in mobile telecommunications, on DNA stability in ten different human cell lines (six brain derived cell lines, lymphocytes, fibroblasts, liver and buccal tissue derived cells) under conditions relevant for users (SAR 0.25 to 1.00 W/kg). We found no evidence for induction of damage in single cell gel electrophoresis assays when the cells were cultivated with serum. However, clear positive effects were seen in a p53 proficient glioblastoma line (U87) when the cells were grown under serum free conditions, while no effects were found in p53 deficient glioblastoma cells (U251). Further experiments showed that the damage disappears rapidly in U87 and that exposure induced nucleotide excision repair (NER) and does not cause double strand breaks (DSBs). The observation of NER induction is supported by results of a proteome analysis indicating that several proteins involved in NER are up-regulated after exposure to UMTS; additionally, we found limited evidence for the activation of the γ-interferon pathway. The present findings show that the signal causes transient genetic instability in glioma derived cells and activates cellular defense systems.
Distinct mechanisms act in concert to mediate cell cycle arrest.
Toettcher, Jared E; Loewer, Alexander; Ostheimer, Gerard J; Yaffe, Michael B; Tidor, Bruce; Lahav, Galit
2009-01-20
In response to DNA damage, cells arrest at specific stages in the cell cycle. This arrest must fulfill at least 3 requirements: it must be activated promptly; it must be sustained as long as damage is present to prevent loss of genomic information; and after the arrest, cells must re-enter into the appropriate cell cycle phase to ensure proper ploidy. Multiple molecular mechanisms capable of arresting the cell cycle have been identified in mammalian cells; however, it is unknown whether each mechanism meets all 3 requirements or whether they act together to confer specific functions to the arrest. To address this question, we integrated mathematical models describing the cell cycle and the DNA damage signaling networks and tested the contributions of each mechanism to cell cycle arrest and re-entry. Predictions from this model were then tested with quantitative experiments to identify the combined action of arrest mechanisms in irradiated cells. We find that different arrest mechanisms serve indispensable roles in the proper cellular response to DNA damage over time: p53-independent cyclin inactivation confers immediate arrest, whereas p53-dependent cyclin downregulation allows this arrest to be sustained. Additionally, p21-mediated inhibition of cyclin-dependent kinase activity is indispensable for preventing improper cell cycle re-entry and endoreduplication. This work shows that in a complex signaling network, seemingly redundant mechanisms, acting in a concerted fashion, can achieve a specific cellular outcome.
The Indirect Effect of UV: Some Good News for Microbes?
NASA Technical Reports Server (NTRS)
Rothschild, Lynn J.; Purcell, Diane; Rogoff, Dana; Wilson, Cindy; Brass, James A. (Technical Monitor)
2002-01-01
Ultraviolet (UV) radiation is of great concern because its biological effects are predominantly harmful. UV damage may be direct or indirect, the latter mediated through the photochemical production of reactive oxygen species such as hydrogen peroxide. We measured the effect of H2O2 on various microbes both in the lab and in nature. At our study site in Yellowstone National Park, there is a UV-induced diurnal fluctuation of H2O2 extending up to one micron. Levels of DNA synthesis resulting from exposure to H2O2 were measured in several algal mats. Within naturally-occurring concentrations of H2O2, DNA synthesis increased. Laboratory studies showed that similar concentrations of H2O2 induce mitosis. We hypothesize that the low levels of H2O2 encountered in nature are inducing mitotic division. At higher levels of H2O2 a second peak in DNA synthesis was found which we interpret to represent DNA damage repair. These experiments suggest that in nature, the low levels of H2O2 produced may have a mitogenic rather than damaging effect. Assuming early levels of UV radiation were substantially higher at the time protists evolved, differential mitogenic effects could have influenced protistan evolution. With H2O2 likely to be present on such bodies as Mars and Europa, the response of organisms will be concentration-dependent and not linear.
Aneuploidogenic effects and DNA oxidation induced in vitro by differently sized gold nanoparticles
Di Bucchianico, Sebastiano; Fabbrizi, Maria Rita; Cirillo, Silvia; Uboldi, Chiara; Gilliland, Douglas; Valsami-Jones, Eugenia; Migliore, Lucia
2014-01-01
Gold nanoparticles (Au NPs) are used in many fields, including biomedical applications; however, no conclusive information on their potential cytotoxicity and genotoxicity mechanisms is available. For this reason, experiments in human primary lymphocytes and murine macrophages (Raw264.7) were performed exposing cells to spherical citrate-capped Au NPs with two different nominal diameters (5 nm and 15 nm). The proliferative activity, mitotic, apoptotic, and necrotic markers, as well as chromosomal damage were assessed by the cytokinesis-block micronucleus cytome assay. Fluorescence in situ hybridization with human and murine pancentromeric probes was applied to distinguish between clastogenic and aneuploidogenic effects. Our results indicate that 5 nm and 15 nm Au NPs are able to inhibit cell proliferation by apoptosis and to induce chromosomal damage, in particular chromosome mis-segregation. DNA strand breaks were detected by comet assay, and the modified protocol using endonuclease-III and formamidopyrimidine-DNA glycosylase restriction enzymes showed that pyrimidines and purines were oxidatively damaged by Au NPs. Moreover, we show a size-independent correlation between the cytotoxicity of Au NPs and their tested mass concentration or absolute number, and genotoxic effects which were more severe for Au NP 15 nm compared to Au NP 5 nm. Results indicate that apoptosis, aneuploidy, and DNA oxidation play a pivotal role in the cytotoxicity and genotoxicity exerted by Au NPs in our cell models. PMID:24855356
Aneuploidogenic effects and DNA oxidation induced in vitro by differently sized gold nanoparticles.
Di Bucchianico, Sebastiano; Fabbrizi, Maria Rita; Cirillo, Silvia; Uboldi, Chiara; Gilliland, Douglas; Valsami-Jones, Eugenia; Migliore, Lucia
2014-01-01
Gold nanoparticles (Au NPs) are used in many fields, including biomedical applications; however, no conclusive information on their potential cytotoxicity and genotoxicity mechanisms is available. For this reason, experiments in human primary lymphocytes and murine macrophages (Raw264.7) were performed exposing cells to spherical citrate-capped Au NPs with two different nominal diameters (5 nm and 15 nm). The proliferative activity, mitotic, apoptotic, and necrotic markers, as well as chromosomal damage were assessed by the cytokinesis-block micronucleus cytome assay. Fluorescence in situ hybridization with human and murine pancentromeric probes was applied to distinguish between clastogenic and aneuploidogenic effects. Our results indicate that 5 nm and 15 nm Au NPs are able to inhibit cell proliferation by apoptosis and to induce chromosomal damage, in particular chromosome mis-segregation. DNA strand breaks were detected by comet assay, and the modified protocol using endonuclease-III and formamidopyrimidine-DNA glycosylase restriction enzymes showed that pyrimidines and purines were oxidatively damaged by Au NPs. Moreover, we show a size-independent correlation between the cytotoxicity of Au NPs and their tested mass concentration or absolute number, and genotoxic effects which were more severe for Au NP 15 nm compared to Au NP 5 nm. Results indicate that apoptosis, aneuploidy, and DNA oxidation play a pivotal role in the cytotoxicity and genotoxicity exerted by Au NPs in our cell models.
Clewell, Rebecca A; Andersen, Melvin E
2016-05-01
Assessing the shape of dose-response curves for DNA-damage in cellular systems and for the consequences of DNA damage in intact animals remains a controversial topic. This overview looks at aspects of the pharmacokinetics (PK) and pharmacodynamics (PD) of cellular DNA-damage/repair and their role in defining the shape of dose-response curves using an in vivo example with formaldehyde and in vitro examples for micronuclei (MN) formation with several test compounds. Formaldehyde is both strongly mutagenic and an endogenous metabolite in cells. With increasing inhaled concentrations, there were transitions in gene changes, from activation of selective stress pathway genes at low concentrations, to activation of pathways for cell-cycle control, p53-DNA damage, and stem cell niche pathways at higher exposures. These gene expression changes were more consistent with dose-dependent transitions in the PD responses to formaldehyde in epithelial cells in the intact rat rather than the low-dose linear extrapolation methods currently used for carcinogens. However, more complete PD explanations of non-linear dose response for creation of fixed damage in cells require detailed examination of cellular responses in vitro using measures of DNA damage and repair that are not easily accessible in the intact animal. In the second section of the article, we illustrate an approach from our laboratory that develops fit-for-purpose, in vitro assays and evaluates the PD of DNA damage and repair through studies using prototypical DNA-damaging agents. Examination of a broad range of responses in these cells showed that transcriptional upregulation of cell cycle control and DNA repair pathways only occurred at doses higher than those causing overt damage fixed damage-measured as MN formation. Lower levels of damage appear to be handled by post-translational repair process using pre-existing proteins. In depth evaluation of the PD properties of one such post-translational process (formation of DNA repair centers; DRCs) has indicated that the formation of DRCs and their ability to complete repair before replication are consistent with threshold behaviours for mutagenesis and, by extension, with chemical carcinogenesis. © The Author 2016. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
The histone variant H2A.Bbd is enriched at sites of DNA synthesis
Sansoni, Viola; Casas-Delucchi, Corella S.; Rajan, Malini; Schmidt, Andreas; Bönisch, Clemens; Thomae, Andreas W.; Staege, Martin S.; Hake, Sandra B.; Cardoso, M. Cristina; Imhof, Axel
2014-01-01
Histone variants play an important role in shaping the mammalian epigenome and their aberrant expression is frequently observed in several types of cancer. However, the mechanisms that mediate their function and the composition of the variant-containing chromatin are still largely unknown. A proteomic interrogation of chromatin containing the different H2A variants macroH2A.1.2, H2A.Bbd and H2A revealed a strikingly different protein composition. Gene ontology analysis reveals a strong enrichment of splicing factors as well as components of the mammalian replisome in H2A.Bbd-containing chromatin. We find H2A.Bbd localizing transiently to sites of DNA synthesis during S-phase and during DNA repair. Cells that express H2A.Bbd have a shortened S-phase and are more susceptible to DNA damage, two phenotypes that are also observed in human Hodgkin's lymphoma cells that aberrantly express this variant. Based on our experiments we conclude that H2A.Bbd is targeted to newly synthesized DNA during replication and DNA repair. The transient incorporation of H2A.Bbd may be due to the intrinsic instability of nucleosomes carrying this variant or a faster chromatin loading. This potentially leads to a disturbance of the existing chromatin structure, which may have effects on cell cycle regulation and DNA damage sensitivity. PMID:24753410
Nadhman, Akhtar; Sirajuddin, Muhammad; Nazir, Samina; Yasinzai, Masoom
2016-06-01
Recently, the authors reported newly synthesised polyethylene glycol (PEG)ylated silver (9%)-doped zinc oxide nanoparticle (doped semiconductor nanoparticle (DSN)) which has high potency for killing Leishmania tropica by producing reactive oxygen species on exposure to sunlight. The current report is focused on Leishmania DNA interaction and damage caused by the DSN. Here, we showed that the damage to Leishmania DNA was indirect, as the DSN was unable to interact with the DNA in intact Leishmania cell, indicating the incapability of PEGylated DSN to cross the nucleus barrier. The DNA damage was the result of high production of singlet oxygen on exposure to sunlight. The DNA damage was successfully prevented by singlet oxygen scavenger (sodium azide) confirming involvement of the highly energetic singlet oxygen in the DNA degradation process.
2012-01-01
Background Occupational chromium exposure may induce DNA damage and lead to lung cancer and other work-related diseases. DNA repair gene polymorphisms, which may alter the efficiency of DNA repair, thus may contribute to genetic susceptibility of DNA damage. The aim of this study was to test the hypothesis that the genetic variations of 9 major DNA repair genes could modulate the hexavalent chromium (Cr (VI))-induced DNA damage. Findings The median (P25-P75) of Olive tail moment was 0.93 (0.58–1.79) for individuals carrying GG genotype of XRCC1 Arg399Gln (G/A), 0.73 (0.46–1.35) for GA heterozygote and 0.50 (0.43–0.93) for AA genotype. Significant difference was found among the subjects with three different genotypes (P = 0.048) after adjusting the confounding factors. The median of Olive tail moment of the subjects carrying A allele (the genotypes of AA and GA) was 0.66 (0.44–1.31), which was significantly lower than that of subjects with GG genotype (P = 0.043). The A allele conferred a significantly reduced risk of DNA damage with the OR of 0.39 (95% CI: 0.15–0.99, P = 0.048). No significant association was found between the XRCC1Arg194Trp, ERCC1 C8092A, ERCC5 His1104Asp, ERCC6 Gly399Asp, GSTP1 Ile105Val, OGG1 Ser326Cys, XPC Lys939Gln, XPD Lys751Gln and DNA damage. Conclusion The polymorphism of Arg399Gln in XRCC1 was associated with the Cr (VI)- induced DNA damage. XRCC1 Arg399Gln may serve as a genetic biomarker of susceptibility for Cr (VI)- induced DNA damage. PMID:22642904
Sadhu, Abhishek; Ghosh, Ilika; Moriyasu, Yuji; Mukherjee, Anita; Bandyopadhyay, Maumita
2018-04-13
The effect of cerium oxide nanoparticle (CeNP) in plants has elicited substantial controversy. While some investigators have reported that CeNP possesses antioxidant properties, others observed CeNP to induce reactive oxygen species (ROS). In spite of considerable research carried out on the effects of CeNP in metazoans, fundamental studies that can unveil its intracellular consequences linking ROS production, autophagy and DNA damage are lacking in plants. To elucidate the impact of CeNP within plant cells, tobacco BY-2 cells were treated with 10, 50 and 250 µg ml-1 CeNP (Ce10, Ce50 and Ce250), for 24 h. Results demonstrated concentration-dependent accumulation of Ca2+ and ROS at all CeNP treatment sets. However, significant DNA damage and alteration in antioxidant defence systems were noted prominently at Ce50 and Ce250. Moreover, Ce50 and Ce250 induced DNA damage, analysed by comet assay and DNA diffusion experiments, complied with the concomitant increase in ROS. Furthermore, to evaluate the antioxidant property of CeNP, treated cells were washed after 24 h (to minimise CeNP interference) and challenged with H2O2 for 3 h. Ce10 did not induce genotoxicity and H2O2 exposure to Ce10-treated cells showed lesser DNA breakage than cells treated with H2O2 only. Interestingly, Ce10 provided better protection over N-acetyl-L-cysteine against exogenous H2O2 in BY-2 cells. CeNP exposure to transgenic BY-2 cells expressing GFP-Atg8 fusion protein exhibited formation of autophagosomes at Ce10. Application of vacuolar protease inhibitor E-64c and fluorescent basic dye acridine orange, further demonstrated accumulation of particulate matters in the vacuole and occurrence of acidic compartments, the autophagolysosomes, respectively. BY-2 cells co-treated with CeNP and autophagy inhibitor 3-methyladenine exhibited increased DNA damage in Ce10 and cell death at all assessed treatment sets. Thus, current results substantiate an alternative autophagy-mediated, antioxidant and geno-protective role of CeNP, which will aid in deciphering novel phenomena of plant-nanoparticle interaction at cellular level.
AtPDCD5 Plays a Role in Programmed Cell Death after UV-B Exposure in Arabidopsis1[OPEN
Falcone Ferreyra, María Lorena; D’Andrea, Lucio; AbdElgawad, Hamada
2016-01-01
DNA damage responses have evolved to sense and react to DNA damage; the induction of DNA repair mechanisms can lead to genomic restoration or, if the damaged DNA cannot be adequately repaired, to the execution of a cell death program. In this work, we investigated the role of an Arabidopsis (Arabidopsis thaliana) protein, AtPDCD5, which is highly similar to the human PDCD5 protein; it is induced by ultraviolet (UV)-B radiation and participates in programmed cell death in the UV-B DNA damage response. Transgenic plants expressing AtPDCD5 fused to GREEN FLUORESCENT PROTEIN indicate that AtPDCD5 is localized both in the nucleus and the cytosol. By use of pdcd5 mutants, we here demonstrate that these plants have an altered antioxidant metabolism and accumulate higher levels of DNA damage after UV-B exposure, similar to levels in ham1ham2 RNA interference transgenic lines with decreased expression of acetyltransferases from the MYST family. By coimmunoprecipitation and pull-down assays, we provide evidence that AtPDCD5 interacts with HAM proteins, suggesting that both proteins participate in the same pathway of DNA damage responses. Plants overexpressing AtPDCD5 show less DNA damage but more cell death in root tips upon UV-B exposure. Finally, we here show that AtPDCD5 also participates in age-induced programmed cell death. Together, the data presented here demonstrate that AtPDCD5 plays an important role during DNA damage responses induced by UV-B radiation in Arabidopsis and also participates in programmed cell death programs. PMID:26884483
NASA Technical Reports Server (NTRS)
Ponomarev, A. L.; Huff, J. L.; Cucinotta, F. A.
2011-01-01
Future long-tem space travel will face challenges from radiation concerns as the space environment poses health risk to humans in space from radiations with high biological efficiency and adverse post-flight long-term effects. Solar particles events may dramatically affect the crew performance, while Galactic Cosmic Rays will induce a chronic exposure to high-linear-energy-transfer (LET) particles. These types of radiation, not present on the ground level, can increase the probability of a fatal cancer later in astronaut life. No feasible shielding is possible from radiation in space, especially for the heavy ion component, as suggested solutions will require a dramatic increase in the mass of the mission. Our research group focuses on fundamental research and strategic analysis leading to better shielding design and to better understanding of the biological mechanisms of radiation damage. We present our recent effort to model DNA damage and tissue damage using computational models based on the physics of heavy ion radiation, DNA structure and DNA damage and repair in human cells. Our particular area of expertise include the clustered DNA damage from high-LET radiation, the visualization of DSBs (DNA double strand breaks) via DNA damage foci, image analysis and the statistics of the foci for different experimental situations, chromosomal aberration formation through DSB misrepair, the kinetics of DSB repair leading to a model-derived spectrum of chromosomal aberrations, and, finally, the simulation of human tissue and the pattern of apoptotic cell damage. This compendium of theoretical and experimental data sheds light on the complex nature of radiation interacting with human DNA, cells and tissues, which can lead to mutagenesis and carcinogenesis later in human life after the space mission.
Lauretti, Elisabetta; Hulse, Michael; Siciliano, Micheal; Lupey-Green, Lena N.; Abraham, Aaron; Skorski, Tomasz; Tempera, Italo
2018-01-01
The enzyme Poly(ADP-ribose) polymerase 1 (PARP1) plays a very important role in the DNA damage response, but its role in numerous aspects is not fully understood. We recently showed that in the absence of DNA damage, PARP1 regulates the expression of the chromatin-modifying enzyme EZH2. Work from other groups has shown that EZH2 participates in the DNA damage response. These combined data suggest that EZH2 could be a target of PARP1 in both untreated and genotoxic agent-treated conditions. In this work we tested the hypothesis that, in response to DNA damage, PARP1 regulates EZH2 activity. Here we report that PARP1 regulates EZH2 activity after DNA damage. In particular, we find that EZH2 is a direct target of PARP1 upon induction of alkylating and UV-induced DNA damage in cells and in vitro. PARylation of EZH2 inhibits EZH2 histone methyltransferase (H3K27me) enzymatic activity. We observed in cells that the induction of PARP1 activity by DNA alkylating agents decreases the association of EZH2 with chromatin, and PARylation of histone H3 reduces EZH2 affinity for its target histone H3. Our findings establish that PARP1 and PARylation are important regulators of EZH2 function and link EZH2-mediated heterochromatin formation, DNA damage and PARylation. These findings may also have clinical implications, as they suggest that inhibitors of EZH2 can improve anti-tumor effects of PARP1 inhibitors in BRCA1/2-deficient cancers. PMID:29535829
Singh, Satyender; Kumar, Vivek; Vashisht, Kapil; Singh, Priyanka; Banerjee, Basu Dev; Rautela, Rajender Singh; Grover, Shyam Sunder; Rawat, Devendra Singh; Pasha, Syed Tazeen; Jain, Sudhir Kumar; Rai, Arvind
2011-11-15
Organophosphate pesticides (OPs) are primarily metabolized by several xenobiotic metabolizing enzymes (XMEs). Very few studies have explored genetic polymorphisms of XMEs and their association with DNA damage in pesticide-exposed workers. The present study was designed to determine the role of genetic polymorphisms of CYP1A1, CYP3A5, CYP2C9, CYP2D6, and PON1 in the modulation of DNA damage in workers occupationally exposed to OPs. We examined 284 subjects including 150 workers occupationally exposed to OPs and 134 normal healthy controls. The DNA damage was evaluated using the alkaline comet assay and genotyping was done using PCR-RFLP. The results revealed that the PONase activity toward paraoxonase and AChE activity was found significantly lowered in workers as compared to control subjects (p<0.001). Workers showed significantly higher DNA damage compared to control subjects (14.37±2.15 vs. 6.24±1.37 tail% DNA, p<0.001). Further, the workers with CYP2D6*3PM and PON1 (QQ and MM) genotypes were found to have significantly higher DNA damage when compared to other genotypes (p<0.05). In addition, significant increase in DNA damage was also observed in workers with concomitant presence of certain CYP2D6 and PON1 (Q192R and L55M) genotypes which need further extensive studies. In conclusion, the results indicate that the PON1 and CYP2D6 genotypes can modulate DNA damage elicited by some OPs possibly through gene-environment interactions. Copyright © 2011 Elsevier Inc. All rights reserved.
NF-κB inhibition delays DNA damage–induced senescence and aging in mice
Tilstra, Jeremy S.; Robinson, Andria R.; Wang, Jin; Gregg, Siobhán Q.; Clauson, Cheryl L.; Reay, Daniel P.; Nasto, Luigi A.; St Croix, Claudette M.; Usas, Arvydas; Vo, Nam; Huard, Johnny; Clemens, Paula R.; Stolz, Donna B.; Guttridge, Denis C.; Watkins, Simon C.; Garinis, George A.; Wang, Yinsheng; Niedernhofer, Laura J.; Robbins, Paul D.
2012-01-01
The accumulation of cellular damage, including DNA damage, is thought to contribute to aging-related degenerative changes, but how damage drives aging is unknown. XFE progeroid syndrome is a disease of accelerated aging caused by a defect in DNA repair. NF-κB, a transcription factor activated by cellular damage and stress, has increased activity with aging and aging-related chronic diseases. To determine whether NF-κB drives aging in response to the accumulation of spontaneous, endogenous DNA damage, we measured the activation of NF-κB in WT and progeroid model mice. As both WT and progeroid mice aged, NF-κB was activated stochastically in a variety of cell types. Genetic depletion of one allele of the p65 subunit of NF-κB or treatment with a pharmacological inhibitor of the NF-κB–activating kinase, IKK, delayed the age-related symptoms and pathologies of progeroid mice. Additionally, inhibition of NF-κB reduced oxidative DNA damage and stress and delayed cellular senescence. These results indicate that the mechanism by which DNA damage drives aging is due in part to NF-κB activation. IKK/NF-κB inhibitors are sufficient to attenuate this damage and could provide clinical benefit for degenerative changes associated with accelerated aging disorders and normal aging. PMID:22706308
Corrupting the DNA damage response: a critical role for Rad52 in tumor cell survival.
Lieberman, Rachel; You, Ming
2017-07-15
The DNA damage response enables cells to survive, maintain genome integrity, and to safeguard the transmission of high-fidelity genetic information. Upon sensing DNA damage, cells respond by activating this multi-faceted DNA damage response leading to restoration of the cell, senescence, programmed cell death, or genomic instability if the cell survives without proper repair. However, unlike normal cells, cancer cells maintain a marked level of genomic instability. Because of this enhanced propensity to accumulate DNA damage, tumor cells rely on homologous recombination repair as a means of protection from the lethal effect of both spontaneous and therapy-induced double-strand breaks (DSBs) in DNA. Thus, modulation of DNA repair pathways have important consequences for genomic instability within tumor cell biology and viability maintenance under high genotoxic stress. Efforts are underway to manipulate specific components of the DNA damage response in order to selectively induce tumor cell death by augmenting genomic instability past a viable threshold. New evidence suggests that RAD52, a component of the homologous recombination pathway, is important for the maintenance of tumor genome integrity. This review highlights recent reports indicating that reducing homologous recombination through inhibition of RAD52 may represent an important focus for cancer therapy and the specific efforts that are already demonstrating potential.
Petrović, Jelena; Stanić, Dušanka; Dmitrašinović, Gordana; Plećaš-Solarović, Bosiljka; Ignjatović, Svetlana; Batinić, Bojan; Popović, Dejana
2016-01-01
Sedentary lifestyle is highly associated with increased risk of cardiovascular disease, obesity, and type 2 diabetes. It is known that regular physical activity has positive effects on health; however several studies have shown that acute and strenuous exercise can induce oxidative stress and lead to DNA damage. As magnesium is essential in maintaining DNA integrity, the aim of this study was to determine whether four-week-long magnesium supplementation in students with sedentary lifestyle and rugby players could prevent or diminish impairment of DNA. By using the comet assay, our study demonstrated that the number of peripheral blood lymphocytes (PBL) with basal endogenous DNA damage is significantly higher in rugby players compared to students with sedentary lifestyle. On the other hand, magnesium supplementation significantly decreased the number of cells with high DNA damage, in the presence of exogenous H2O2, in PBL from both students and rugby players, and markedly reduced the number of cells with medium DNA damage in rugby players compared to corresponding control nonsupplemented group. Accordingly, the results of our study suggest that four-week-long magnesium supplementation has marked effects in protecting the DNA from oxidative damage in both rugby players and in young men with sedentary lifestyle. Clinical trial is registered at ANZCTR Trial Id: ACTRN12615001237572. PMID:27042258
Dynamic changes to survivin subcellular localization are initiated by DNA damage
Asumen, Maritess Gay; Ifeacho, Tochukwu V; Cockerham, Luke; Pfandl, Christina; Wall, Nathan R
2010-01-01
Subcellular distribution of the apoptosis inhibitor survivin and its ability to relocalize as a result of cell cycle phase or therapeutic insult has led to the hypothesis that these subcellular pools may coincide with different survivin functions. The PIK kinases (ATM, ATR and DNA-PK) phosphorylate a variety of effector substrates that propagate DNA damage signals, resulting in various biological outputs. Here we demonstrate that subcellular repartitioning of survivin in MCF-7 cells as a result of UV light-mediated DNA damage is dependent upon DNA damage-sensing proteins as treatment with the pan PIK kinase inhibitor wortmannin repartitioned survivin in the mitochondria and diminished it from the cytosol and nucleus. Mitochondrial redistribution of survivin, such as was recorded after wortmannin treatment, occurred in cells lacking any one of the three DNA damage sensing protein kinases: DNA-PK, ATM or ATR. However, failed survivin redistribution from the mitochondria in response to low-dose UV occurred only in the cells lacking ATM, implying that ATM may be the primary kinase involved in this process. Taken together, this data implicates survivian’s subcellular distribution is a dynamic physiological process that appears responsive to UV light-initiated DNA damage and that its distribution may be responsible for its multifunctionality. PMID:20856848
ATM directs DNA damage responses and proteostasis via genetically separable pathways.
Lee, Ji-Hoon; Mand, Michael R; Kao, Chung-Hsuan; Zhou, Yi; Ryu, Seung W; Richards, Alicia L; Coon, Joshua J; Paull, Tanya T
2018-01-09
The protein kinase ATM is a master regulator of the DNA damage response but also responds directly to oxidative stress. Loss of ATM causes ataxia telangiectasia, a neurodegenerative disorder with pleiotropic symptoms that include cerebellar dysfunction, cancer, diabetes, and premature aging. We genetically separated the activation of ATM by DNA damage from that by oxidative stress using separation-of-function mutations. We found that deficient activation of ATM by the Mre11-Rad50-Nbs1 complex and DNA double-strand breaks resulted in loss of cell viability, checkpoint activation, and DNA end resection in response to DNA damage. In contrast, loss of oxidative activation of ATM had minimal effects on DNA damage-related outcomes but blocked ATM-mediated initiation of checkpoint responses after oxidative stress and resulted in deficiencies in mitochondrial function and autophagy. In addition, expression of a variant ATM incapable of activation by oxidative stress resulted in widespread protein aggregation. These results indicate a direct relationship between the mechanism of ATM activation and its effects on cellular metabolism and DNA damage responses in human cells and implicate ATM in the control of protein homeostasis. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Nishimura, Jihei; Dewa, Yasuaki; Muguruma, Masako; Kuroiwa, Yuichi; Yasuno, Hiroaki; Shima, Tomomi; Jin, Mailan; Takahashi, Miwa; Umemura, Takashi; Mitsumori, Kunitoshi
2007-05-01
To investigate the relationship between fenofibrate (FF) and oxidative stress, enzymatic, histopathological, and molecular biological analyses were performed in the liver of male F344 rats fed 2 doses of FF (Experiment 1; 0 and 6000 ppm) for 3 weeks and 3 doses (Experiment 2; 0, 3000, and 6000 ppm) for 9 weeks. FF treatment increased the activity of enzymes such as carnitine acetyltransferase, carnitine palmitoyltransferase, fatty acyl-CoA oxidizing system, and catalase in the liver. However, it decreased those of superoxide dismutase in the liver in both experiments. Increased 8-hydroxy-2'-deoxyguanosine levels in liver DNA and lipofuscin accumulation were observed in the treated rats of Experiment 2. In vitro measurement of reactive oxygen species (ROS) in rat liver microsomes revealed a dose-dependent increase due to FF treatment. Microarray (only Experiment 1) or real-time reverse transcription-polymerase chain reaction analyses revealed that the expression levels of metabolism and DNA repair-related genes such as Aco, Cyp4a1, Cat, Yc2, Gpx2, Apex1, Xrcc5, Mgmt, Mlh1, Gadd45a, and Nbn were increased in FF-treated rats. These results provide evidence of a direct or indirect relationship between oxidative stress and FF treatment. In addition, increases in the expression levels of cell cycle-related genes such as Chek1, Cdc25a, and Ccdn1; increases in the expression levels of cell proliferation-related genes such as Hdgfrp3 and Vegfb; and fluctuations in the expression levels of apoptosis-related genes such as Casp11 and Trp53inp1 were observed in these rats. This suggests that cell proliferation induction, apoptosis suppression, and DNA damage due to oxidative stresses are probably involved in the mechanism of hepatocarcinogenesis due to FF in rats.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiran, Shashi; Oddi, Vineesha; Ramakrishna, Gayatri, E-mail: gayatrirama1@gmail.com
2015-02-01
Maintaining the genomic integrity is a constant challenge in proliferating cells. Amongst various proteins involved in this process, Sirtuins play a key role in DNA damage repair mechanisms in yeast as well as mammals. In the present work we report the role of one of the least explored Sirtuin viz., SIRT7, under conditions of genomic stress when treated with doxorubicin. Knockdown of SIRT7 sensitized osteosarcoma (U2OS) cells to DNA damage induced cell death by doxorubicin. SIRT7 overexpression in NIH3T3 delayed cell cycle progression by causing delay in G1 to S transition. SIRT7 overexpressing cells when treated with low dose ofmore » doxorubicin (0.25 µM) showed delayed onset of senescence, lesser accumulation of DNA damage marker γH2AX and lowered levels of growth arrest markers viz., p53 and p21 when compared to doxorubicin treated control GFP expressing cells. Resistance to DNA damage following SIRT7 overexpression was also evident by EdU incorporation studies where cellular growth arrest was significantly delayed. When treated with higher dose of doxorubicin (>1 µM), SIRT7 conferred resistance to apoptosis by attenuating stress activated kinases (SAPK viz., p38 and JNK) and p53 response thereby shifting the cellular fate towards senescence. Interestingly, relocalization of SIRT7 from nucleolus to nucleoplasm together with its co-localization with SAPK was an important feature associated with DNA damage. SIRT7 mediated resistance to doxorubicin induced apoptosis and senescence was lost when p53 level was restored by nutlin treatment. Overall, we propose SIRT7 attenuates DNA damage, SAPK activation and p53 response thereby promoting cellular survival under conditions of genomic stress. - Highlights: • Knockdown of SIRT7 sensitized cells to DNA damage induced apoptosis. • SIRT7 delayed onset of premature senescence by attenuating DNA damage response. • Overexpression of SIRT7 delayed cell cycle progression by delaying G1/S transition. • Upon DNA damage SIRT7 attenuated p38/JNK activation and also p53 response. • Overall, SIRT7 promoted cellular survival in conditions of genomic stress.« less
NASA Astrophysics Data System (ADS)
Lu, Tao; Wu, Honglu; Karouia, Fathi; Stodieck, Louis; Zhang, Ye; Wong, Michael
2016-07-01
Spaceflights expose human beings to various risk factors. Among them are microgravity related physiological stresses in immune, cytoskeletal, and cardiovascular systems, and space radiation related elevation of cancer risk. Cosmic radiation consists of energetic protons and other heavier charged particles that induce DNA damages. Effective DNA damage response and repair mechanism is important to maintain genomic integrity and reduce cancer risk. There were studies on effects of spaceflight and microgravity on DNA damage response in cell and animal models, but the published results were mostly conflicting and inconsistent. To investigate effects of spaceflight on molecular and cellular responses to DNA damages, bleomycin, an anti-cancer drug and radiomimetic reagent, was used to induce DNA damages in confluent human fibroblasts flown to the International Space Station (ISS) and on ground. After exposure to 1.0 mg/ml bleomycin for 3 hours, cells were fixed for immunofluorescence assays and for RNA preparation. Extents of DNA damages were quantified by focus pattern and focus number counting of phosphorylated histone protein H2AX (γg-H2AX). The cells on the ISS showed modestly increased average focus counts per nucleus while the distribution of patterns was similar to that on the ground. PCR array analysis showed that expressions of several genes, including CDKN1A and PCNA, were significantly changed in response to DNA damages induced by bleomycin in both flight and ground control cells. However, there were no significant differences in the overall expression profiles of DNA damage response genes between the flight and ground samples. Analysis of cellular proliferation status with Ki-67 staining showed a slightly higher proliferating population in cells on the ISS than those on ground. Our results suggested that the difference in γg-H2AX focus counts between flight and ground was due to the higher percentage of proliferating cells in space, but spaceflight did not significantly affect initial transcriptional responses to bleomycin treatment in the selected genes in the DNA damage signaling pathways.
Detection of Damaged DNA Bases by DNA Glycosylase Enzymes†
Friedman, Joshua I.; Stivers, James T.
2010-01-01
A fundamental and shared process in all forms of life is the use of DNA glycosylase enzymes to excise rare damaged bases from genomic DNA. Without such enzymes, the highly-ordered primary sequences of genes would rapidly deteriorate. Recent structural and biophysical studies are beginning to reveal a fascinating multistep mechanism for damaged base detection that begins with short-range sliding of the glycosylase along the DNA chain in a distinct conformation we refer to as the search complex (SC). Sliding is frequently punctuated by the formation of a transient “interrogation” complex (IC) where the enzyme extrahelically inspects both normal and damaged bases in an exosite pocket that is distant from the active site. When normal bases are presented in the exosite, the IC rapidly collapses back to the SC, while a damaged base will efficiently partition forward into the active site to form the catalytically competent excision complex (EC). Here we review the unique problems associated with enzymatic detection of rare damaged DNA bases in the genome, and emphasize how each complex must have specific dynamic properties that are tuned to optimize the rate and efficiency of damage site location. PMID:20469926
Response to DNA damage of CHEK2 missense mutations in familial breast cancer
Roeb, Wendy; Higgins, Jake; King, Mary-Claire
2012-01-01
Comprehensive sequencing of tumor suppressor genes to evaluate inherited predisposition to cancer yields many individually rare missense alleles of unknown functional and clinical consequence. To address this problem for CHEK2 missense alleles, we developed a yeast-based assay to assess in vivo CHEK2-mediated response to DNA damage. Of 25 germline CHEK2 missense alleles detected in familial breast cancer patients, 12 alleles had complete loss of DNA damage response, 8 had partial loss and 5 exhibited a DNA damage response equivalent to that mediated by wild-type CHEK2. Variants exhibiting reduced response to DNA damage were found in all domains of the CHEK2 protein. Assay results were in agreement with epidemiologic assessments of breast cancer risk for those variants sufficiently common for case–control studies to have been undertaken. Assay results were largely concordant with consensus predictions of in silico tools, particularly for damaging alleles in the kinase domain. However, of the 25 variants, 6 were not consistently classifiable by in silico tools. An in vivo assay of cellular response to DNA damage by mutant CHEK2 alleles may complement and extend epidemiologic and genetic assessment of their clinical consequences. PMID:22419737
Response to DNA damage of CHEK2 missense mutations in familial breast cancer.
Roeb, Wendy; Higgins, Jake; King, Mary-Claire
2012-06-15
Comprehensive sequencing of tumor suppressor genes to evaluate inherited predisposition to cancer yields many individually rare missense alleles of unknown functional and clinical consequence. To address this problem for CHEK2 missense alleles, we developed a yeast-based assay to assess in vivo CHEK2-mediated response to DNA damage. Of 25 germline CHEK2 missense alleles detected in familial breast cancer patients, 12 alleles had complete loss of DNA damage response, 8 had partial loss and 5 exhibited a DNA damage response equivalent to that mediated by wild-type CHEK2. Variants exhibiting reduced response to DNA damage were found in all domains of the CHEK2 protein. Assay results were in agreement with epidemiologic assessments of breast cancer risk for those variants sufficiently common for case-control studies to have been undertaken. Assay results were largely concordant with consensus predictions of in silico tools, particularly for damaging alleles in the kinase domain. However, of the 25 variants, 6 were not consistently classifiable by in silico tools. An in vivo assay of cellular response to DNA damage by mutant CHEK2 alleles may complement and extend epidemiologic and genetic assessment of their clinical consequences.
Londoño-Velasco, Elizabeth; Martínez-Perafán, Fabián; Carvajal-Varona, Silvio; García-Vallejo, Felipe; Hoyos-Giraldo, Luz Stella
2016-05-01
Occupational exposure as a painter is associated with DNA damage and development of cancer. Comet assay has been widely adopted as a sensitive and quantitative tool for DNA damage assessment at the individual cell level in populations exposed to genotoxics. The aim of this study was to assess the application of the high-throughput comet assay, to determine the DNA damage in car spray painters. The study population included 52 car spray painters and 52 unexposed subjects. A significant increase in the %TDNA median (p < 0.001) was observed in the exposed group in comparison to the unexposed group. Neither age (%TDNA: p = 0.913) nor time of exposure (%TDNA: p = 0.398) were significantly correlated with DNA damage. The car spray painters who consumed alcohol did not show a significant increase in DNA damage compared to nonalcohol consumers (p > 0.05). The results showed an increase in DNA breaks in car spray painters exposed to organic solvents and paints; furthermore, they demonstrated the application of high-throughput comet assay in an occupational exposure study to genotoxic agents.
Assessment of DNA damage in a group of professional dancers during a 10-month dancing season.
Esteves, Filipa; Teixeira, Eduardo; Amorim, Tânia; Costa, Carla; Pereira, Cristiana; Fraga, Sónia; De Andrade, Vanessa Moraes; Teixeira, João Paulo; Costa, Solange
2017-01-01
Despite the numerous health benefits of physical activity, some studies reported that increased intensity and duration may induce oxidative stress in several cellular components including DNA. The aim of this study was to assess the level of basal DNA damage as well as oxidative DNA damage in a group of professional dancers before and after a 10-month dancing season. A group of individuals from general population was also assessed as a control. The alkaline version of the comet assay was the method selected to measure both basal DNA damage and oxidative stress, since this method quantifies both endpoints. In order to measure oxidative stress, the comet assay was coupled with a lesion-specific endonuclease (formamidopyrimidine glycosylase) to detect oxidized purines. The levels of oxidative DNA damage in dancers were significantly increased after the dancing season. Pre-season levels of oxidative DNA damage were lower in dancers than those obtained from the general population, suggesting an adaptation of antioxidant system in dancers. Results of the present biomonitoring study indicate the need for more effective measures to protect ballet dancers from potentially occupational health risks related to regular intensive physical exercise.
Omics Approaches for Identifying Physiological Adaptations to Genome Instability in Aging.
Edifizi, Diletta; Schumacher, Björn
2017-11-04
DNA damage causally contributes to aging and age-related diseases. The declining functioning of tissues and organs during aging can lead to the increased risk of succumbing to aging-associated diseases. Congenital syndromes that are caused by heritable mutations in DNA repair pathways lead to cancer susceptibility and accelerated aging, thus underlining the importance of genome maintenance for withstanding aging. High-throughput mass-spectrometry-based approaches have recently contributed to identifying signalling response networks and gaining a more comprehensive understanding of the physiological adaptations occurring upon unrepaired DNA damage. The insulin-like signalling pathway has been implicated in a DNA damage response (DDR) network that includes epidermal growth factor (EGF)-, AMP-activated protein kinases (AMPK)- and the target of rapamycin (TOR)-like signalling pathways, which are known regulators of growth, metabolism, and stress responses. The same pathways, together with the autophagy-mediated proteostatic response and the decline in energy metabolism have also been found to be similarly regulated during natural aging, suggesting striking parallels in the physiological adaptation upon persistent DNA damage due to DNA repair defects and long-term low-level DNA damage accumulation occurring during natural aging. These insights will be an important starting point to study the interplay between signalling networks involved in progeroid syndromes that are caused by DNA repair deficiencies and to gain new understanding of the consequences of DNA damage in the aging process.
Omics Approaches for Identifying Physiological Adaptations to Genome Instability in Aging
Edifizi, Diletta; Schumacher, Björn
2017-01-01
DNA damage causally contributes to aging and age-related diseases. The declining functioning of tissues and organs during aging can lead to the increased risk of succumbing to aging-associated diseases. Congenital syndromes that are caused by heritable mutations in DNA repair pathways lead to cancer susceptibility and accelerated aging, thus underlining the importance of genome maintenance for withstanding aging. High-throughput mass-spectrometry-based approaches have recently contributed to identifying signalling response networks and gaining a more comprehensive understanding of the physiological adaptations occurring upon unrepaired DNA damage. The insulin-like signalling pathway has been implicated in a DNA damage response (DDR) network that includes epidermal growth factor (EGF)-, AMP-activated protein kinases (AMPK)- and the target of rapamycin (TOR)-like signalling pathways, which are known regulators of growth, metabolism, and stress responses. The same pathways, together with the autophagy-mediated proteostatic response and the decline in energy metabolism have also been found to be similarly regulated during natural aging, suggesting striking parallels in the physiological adaptation upon persistent DNA damage due to DNA repair defects and long-term low-level DNA damage accumulation occurring during natural aging. These insights will be an important starting point to study the interplay between signalling networks involved in progeroid syndromes that are caused by DNA repair deficiencies and to gain new understanding of the consequences of DNA damage in the aging process. PMID:29113067
The effects of male age on sperm DNA damage in healthy non-smokers.
Schmid, T E; Eskenazi, B; Baumgartner, A; Marchetti, F; Young, S; Weldon, R; Anderson, D; Wyrobek, A J
2007-01-01
The trend for men to have children at older age raises concerns that advancing age may increase the production of genetically defective sperm, increasing the risks of transmitting germ-line mutations. We investigated the associations between male age and sperm DNA damage and the influence of several lifestyle factors in a healthy non-clinical group of 80 non-smokers (mean age: 46.4 years, range: 22-80 years) with no known fertility problems using the sperm Comet analyses. The average percentage of DNA that migrated out of the sperm nucleus under alkaline electrophoresis increased with age (0.18% per year, P = 0.006), but there was no age association for damage measured under neutral conditions (P = 0.7). Men who consumed >3 cups coffee per day had approximately 20% higher percentage tail DNA under neutral but not alkaline conditions compared with men who consumed no caffeine (P = 0.005). Our findings indicate that (i) older men have increased sperm DNA damage associated with alkali-labile sites or single-strand DNA breaks and (ii) independent of age, men with substantial daily caffeine consumption have increased sperm DNA damage associated with double-strand DNA breaks. DNA damage in sperm can be converted to chromosomal aberrations and gene mutations after fertilization, increasing the risks of developmental defects and genetic diseases among offspring.
Archaeal RNA polymerase arrests transcription at DNA lesions.
Gehring, Alexandra M; Santangelo, Thomas J
2017-01-01
Transcription elongation is not uniform and transcription is often hindered by protein-bound factors or DNA lesions that limit translocation and impair catalysis. Despite the high degree of sequence and structural homology of the multi-subunit RNA polymerases (RNAP), substantial differences in response to DNA lesions have been reported. Archaea encode only a single RNAP with striking structural conservation with eukaryotic RNAP II (Pol II). Here, we demonstrate that the archaeal RNAP from Thermococcus kodakarensis is sensitive to a variety of DNA lesions that pause and arrest RNAP at or adjacent to the site of DNA damage. DNA damage only halts elongation when present in the template strand, and the damage often results in RNAP arresting such that the lesion would be encapsulated with the transcription elongation complex. The strand-specific halt to archaeal transcription elongation on modified templates is supportive of RNAP recognizing DNA damage and potentially initiating DNA repair through a process akin to the well-described transcription-coupled DNA repair (TCR) pathways in Bacteria and Eukarya.
Optimised detection of mitochondrial DNA strand breaks.
Hanna, Rebecca; Crowther, Jonathan M; Bulsara, Pallav A; Wang, Xuying; Moore, David J; Birch-Machin, Mark A
2018-05-04
Intrinsic and extrinsic factors that induce cellular oxidative stress damage tissue integrity and promote ageing, resulting in accumulative strand breaks to the mitochondrial DNA (mtDNA) genome. Limited repair mechanisms and close proximity to superoxide generation make mtDNA a prominent biomarker of oxidative damage. Using human DNA we describe an optimised long-range qPCR methodology that sensitively detects mtDNA strand breaks relative to a suite of short mitochondrial and nuclear DNA housekeeping amplicons, which control for any variation in mtDNA copy number. An application is demonstrated by detecting 16-36-fold mtDNA damage in human skin cells induced by hydrogen peroxide and solar simulated radiation. Copyright © 2018 Elsevier B.V. and Mitochondria Research Society. All rights reserved.
Klapacz, Joanna; Pottenger, Lynn H.; Engelward, Bevin P.; Heinen, Christopher D.; Johnson, George E.; Clewell, Rebecca A.; Carmichael, Paul L.; Adeleye, Yeyejide; Andersen, Melvin E.
2016-01-01
From a risk assessment perspective, DNA-reactive agents are conventionally assumed to have genotoxic risks at all exposure levels, thus applying a linear extrapolation for low-dose responses. New approaches discussed here, including more diverse and sensitive methods for assessing DNA damage and DNA repair, strongly support the existence of measurable regions where genotoxic responses with increasing doses are insignificant relative to control. Model monofunctional alkylating agents have in vitro and in vivo datasets amenable to determination of points of departure (PoDs) for genotoxic effects. A session at the 2013 Society of Toxicology meeting provided an opportunity to survey the progress in understanding the biological basis of empirically-observed PoDs for DNA alkylating agents. Together with the literature published since, this review discusses cellular pathways activated by endogenous and exogenous alkylation DNA damage. Cells have evolved conserved processes that monitor and counteract a spontaneous steady-state level of DNA damage. The ubiquitous network of DNA repair pathways serves as the first line of defense for clearing of the DNA damage and preventing mutation. Other biological pathways discussed here that are activated by genotoxic stress include post-translational activation of cell cycle networks and transcriptional networks for apoptosis/cell death. The interactions of various DNA repair and DNA damage response pathways provide biological bases for the observed PoD behaviors seen with genotoxic compounds. Thus, after formation of DNA adducts, the activation of cellular pathways can lead to the avoidance a mutagenic outcome. The understanding of the cellular mechanisms acting within the low-dose region will serve to better characterize risks from exposures to DNA-reactive agents at environmentally-relevant concentrations. PMID:27036068
Klapacz, Joanna; Pottenger, Lynn H; Engelward, Bevin P; Heinen, Christopher D; Johnson, George E; Clewell, Rebecca A; Carmichael, Paul L; Adeleye, Yeyejide; Andersen, Melvin E
2016-01-01
From a risk assessment perspective, DNA-reactive agents are conventionally assumed to have genotoxic risks at all exposure levels, thus applying a linear extrapolation for low-dose responses. New approaches discussed here, including more diverse and sensitive methods for assessing DNA damage and DNA repair, strongly support the existence of measurable regions where genotoxic responses with increasing doses are insignificant relative to control. Model monofunctional alkylating agents have in vitro and in vivo datasets amenable to determination of points of departure (PoDs) for genotoxic effects. A session at the 2013 Society of Toxicology meeting provided an opportunity to survey the progress in understanding the biological basis of empirically-observed PoDs for DNA alkylating agents. Together with the literature published since, this review discusses cellular pathways activated by endogenous and exogenous alkylation DNA damage. Cells have evolved conserved processes that monitor and counteract a spontaneous steady-state level of DNA damage. The ubiquitous network of DNA repair pathways serves as the first line of defense for clearing of the DNA damage and preventing mutation. Other biological pathways discussed here that are activated by genotoxic stress include post-translational activation of cell cycle networks and transcriptional networks for apoptosis/cell death. The interactions of various DNA repair and DNA damage response pathways provide biological bases for the observed PoD behaviors seen with genotoxic compounds. Thus, after formation of DNA adducts, the activation of cellular pathways can lead to the avoidance of a mutagenic outcome. The understanding of the cellular mechanisms acting within the low-dose region will serve to better characterize risks from exposures to DNA-reactive agents at environmentally-relevant concentrations. Copyright © 2015 Elsevier B.V. All rights reserved.
Wang, Qing-Wei; Kamiyama, Chiho; Hidema, Jun; Hikosaka, Kouki
2016-08-01
High doses of ultraviolet-B (UV-B; 280-315 nm) radiation can have detrimental effects on plants, and especially damage their DNA. Plants have DNA repair and protection mechanisms to prevent UV-B damage. However, it remains unclear how DNA damage and tolerance mechanisms vary among field species. We studied DNA damage and tolerance mechanisms in 26 species with different functional groups coexisting in two moorlands at two elevations. We collected current-year leaves in July and August, and determined accumulation of cyclobutane pyrimidine dimer (CPD) as UV-B damage and photorepair activity (PRA) and concentrations of UV-absorbing compounds (UACs) and carotenoids (CARs) as UV-B tolerance mechanisms. DNA damage was greater in dicot than in monocot species, and higher in herbaceous than in woody species. Evergreen species accumulated more CPDs than deciduous species. PRA was higher in Poaceae than in species of other families. UACs were significantly higher in woody than in herbaceous species. The CPD level was not explained by the mechanisms across species, but was significantly related to PRA and UACs when we ignored species with low CPD, PRA and UACs, implying the presence of another effective tolerance mechanism. UACs were correlated negatively with PRA and positively with CARs. Our results revealed that UV-induced DNA damage significantly varies among native species, and this variation is related to functional groups. DNA repair, rather than UV-B protection, dominates in UV-B tolerance in the field. Our findings also suggest that UV-B tolerance mechanisms vary among species under evolutionary trade-off and synergism.
Ganesan, Shanthi; Keating, Aileen F
2015-02-01
Phosphoramide mustard (PM), the ovotoxic metabolite of the anti-cancer agent cyclophosphamide (CPA), destroys rapidly dividing cells by forming NOR-G-OH, NOR-G and G-NOR-G adducts with DNA, potentially leading to DNA damage. A previous study demonstrated that PM induces ovarian DNA damage in rat ovaries. To investigate whether PM induces DNA adduct formation, DNA damage and induction of the DNA repair response, rat spontaneously immortalized granulosa cells (SIGCs) were treated with vehicle control (1% DMSO) or PM (3 or 6μM) for 24 or 48h. Cell viability was reduced (P<0.05) after 48h of exposure to 3 or 6μM PM. The NOR-G-OH DNA adduct was detected after 24h of 6μM PM exposure, while the more cytotoxic G-NOR-G DNA adduct was formed after 48h by exposure to both PM concentrations. Phosphorylated H2AX (γH2AX), a marker of DNA double stranded break occurrence, was also increased by PM exposure, coincident with DNA adduct formation. Additionally, induction of genes (Atm, Parp1, Prkdc, Xrcc6, and Brca1) and proteins (ATM, γH2AX, PARP-1, PRKDC, XRCC6, and BRCA1) involved in DNA repair were observed in both a time- and dose-dependent manner. These data support that PM induces DNA adduct formation in ovarian granulosa cells, induces DNA damage and elicits the ovarian DNA repair response. Copyright © 2014 Elsevier Inc. All rights reserved.
Association of HSP70 and genotoxic damage in lymphocytes of workers exposed to coke-oven emission
Xiao, Chengfeng; Chen, Sheng; Li, Jizhao; Hai, Tao; Lu, Qiaofa; Sun, Enling; Wang, Ruibo; Tanguay, Robert M.; Wu, Tangchun
2002-01-01
Heat shock proteins (Hsps) have been reported to protect cells, tissues, and organisms against damage from a wide variety of stressful stimuli. Whether they protect against deoxyribonucleic acid (DNA) damage in individuals exposed to environmental stresses and chemical carcinogens is unknown. In the study, we investigated the association between Hsp70 levels (the most abundant mammalian Hsp) and genotoxic damage in lymphocytes of workers exposed to coke-oven emission using Western dot blot and 2 DNA damage assays, the comet assay and the micronucleus test. The data show that there is a significant increase in Hsp70 levels, DNA damage score, and micronucleus rates in lymphocytes of workers exposed to coke-oven emission as compared with the control subjects. Furthermore, there was a significant negative correlation of Hsp70 levels with DNA damage scores in the comet assay (r = −0.663, P < 0.01) and with micronucleus rates (r = −0.461, P < 0.01) in the exposed group. In the control group, there was also a light negative correlation between Hsp70 with DNA damage and micronuclei rate (r = −0.236 and r = 0.242, respectively), but it did not reach a statistically significant level (P > 0.05). Our results show that individuals who had high Hsp70 levels generally showed lower genotoxic damage than others. These results suggest a role of Hsp70 in the protection of DNA from genotoxic damage induced by coke-oven emission. PMID:12653484
Karouna-Renier, Natalie K.; White, Carl; Perkins, Christopher R.; Schmerfeld, John J.; Yates, David
2014-01-01
Historical discharges of Hg into the South River near the town of Waynesboro, VA, USA, have resulted in persistently elevated Hg concentrations in sediment, surface water, ground water, soil, and wildlife downstream of the discharge site. In the present study, we examined mercury (Hg) levels in in little brown bats (Myotis lucifugus) from this location and assessed the utility of a non-destructively collected tissue sample (wing punch) for determining mitochondrial DNA (mtDNA) damage in Hg exposed bats. Bats captured 1 and 3 km from the South River, exhibited significantly higher levels of total Hg (THg) in blood and fur than those from the reference location. We compared levels of mtDNA damage using real-time quantitative PCR (qPCR) analysis of two distinct regions of mtDNA. Genotoxicity is among the many known toxic effects of Hg, resulting from direct interactions with DNA or from oxidative damage. Because it lacks many of the protective protein structures and repair mechanisms associated with nuclear DNA, mtDNA is more sensitive to the effects of genotoxic chemicals and therefore may be a useful biomarker in chronically exposed organisms. Significantly higher levels of damage were observed in both regions of mtDNA in bats captured 3 km from the river than in controls. However, levels of mtDNA damage exhibited weak correlations with fur and blood THg levels, suggesting that other factors may play a role in the site-specific differences.
77 FR 18833 - Government-Owned Inventions; Availability for Licensing
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-28
... mass spectra obtained and reproduced for food-borne pathogens. Unique DISI device with gas cylinder... With a Small Molecule CHK2 Inhibitor Description of Technology: DNA damage sensors such as Checkpoint... in response to DNA damage. It has been reported that these DNA damage sensors also play a key role in...
Cancers develop when cells accumulate DNA mutations that allow them to grow and divide inappropriately. Thus, proteins involved in repairing DNA damage are generally suppressors of cancer formation, and their expression is often lost in the early stages of cancer initiation. In contrast, cancer stem cells, like their normal counterparts, must retain their ability to self-renew, which necessitates maintenance of DNA integrity. In hematopoietic stem cells (HSC), for example, double strand breaks and oxidative damage exhaust their regenerative ability. André Nussenzweig, Ph.D., Chief of CCR’s Laboratory of Genome Integrity and his colleagues wondered whether leukemic stem cells might be similarly constrained by DNA damage.
DNA Damage and Repair in Plants under Ultraviolet and Ionizing Radiations
Gill, Sarvajeet S.; Gill, Ritu; Jha, Manoranjan; Tuteja, Narendra
2015-01-01
Being sessile, plants are continuously exposed to DNA-damaging agents present in the environment such as ultraviolet (UV) and ionizing radiations (IR). Sunlight acts as an energy source for photosynthetic plants; hence, avoidance of UV radiations (namely, UV-A, 315–400 nm; UV-B, 280–315 nm; and UV-C, <280 nm) is unpreventable. DNA in particular strongly absorbs UV-B; therefore, it is the most important target for UV-B induced damage. On the other hand, IR causes water radiolysis, which generates highly reactive hydroxyl radicals (OH•) and causes radiogenic damage to important cellular components. However, to maintain genomic integrity under UV/IR exposure, plants make use of several DNA repair mechanisms. In the light of recent breakthrough, the current minireview (a) introduces UV/IR and overviews UV/IR-mediated DNA damage products and (b) critically discusses the biochemistry and genetics of major pathways responsible for the repair of UV/IR-accrued DNA damage. The outcome of the discussion may be helpful in devising future research in the current context. PMID:25729769
Ma, Mingyue; Li, Shuyin; Jin, Huanrong; Zhang, Yumin; Xu, Jia; Chen, Dongmei; Kuimin, Chen; Yuan, Zhou; Xiao, Chunling
2015-09-01
Fine particulate matter (PM2.5) pollution is becoming serious in China. This study aimed to investigate the impact of PM2.5 on DNA damage in Shenyang city. The concentration and composition of PM2.5 in traffic policemen's working sites including fields and indoor offices were obtained. Blood samples of field and office policemen were collected to detect DNA damage by Comet assay. Rats were used to further analyzing the oxidative DNA damage. The average concentration of PM2.5 in exposed group was significantly higher than that in control group. Composition analysis revealed that toxic heavy metal and polycyclic aromatic hydrocarbon substances were main elements of this PM2.5. DNA damage in field policemen was significantly higher than those in non-field group. Moreover, animal studies confirmed the oxidative DNA damage induced by PM2.5. Taken together, high DNA damages are found in the Shenyang traffic policemen and rats exposed to high level of airborne PM2.5. Copyright © 2015 Elsevier B.V. All rights reserved.
Llanos, Susana; Serrano, Manuel
2010-10-01
Perturbation of ribosomal biogenesis has recently emerged as a relevant p53-activating pathway. This pathway can be initiated by depletion of certain ribosomal proteins, which is followed by the binding and inhibition of MDM2 by a different subset of ribosomal proteins that includes L11. Here, we report that depletion of L37 leads to cell cycle arrest in a L11- and p53-dependent manner. DNA damage can initiate ribosomal stress, although little is known about the mechanisms involved. We have found that some genotoxic insults, namely, UV light and cisplatin, lead to proteasomal degradation of L37 in the nucleoplasm and to the ensuing L11-dependent stabilization of p53. Moreover, ectopic L37 overexpression can attenuate the DNA damage response mediated by p53. These results support the concept that DNA damage-induced proteasomal degradation of L37 constitutes a mechanistic link between DNA damage and the ribosomal stress pathway, and is a relevant contributing signaling pathway for the activation of p53 in response to DNA damage.
The sequence specificity of UV-induced DNA damage in a systematically altered DNA sequence.
Khoe, Clairine V; Chung, Long H; Murray, Vincent
2018-06-01
The sequence specificity of UV-induced DNA damage was investigated in a specifically designed DNA plasmid using two procedures: end-labelling and linear amplification. Absorption of UV photons by DNA leads to dimerisation of pyrimidine bases and produces two major photoproducts, cyclobutane pyrimidine dimers (CPDs) and pyrimidine(6-4)pyrimidone photoproducts (6-4PPs). A previous study had determined that two hexanucleotide sequences, 5'-GCTC*AC and 5'-TATT*AA, were high intensity UV-induced DNA damage sites. The UV clone plasmid was constructed by systematically altering each nucleotide of these two hexanucleotide sequences. One of the main goals of this study was to determine the influence of single nucleotide alterations on the intensity of UV-induced DNA damage. The sequence 5'-GCTC*AC was designed to examine the sequence specificity of 6-4PPs and the highest intensity 6-4PP damage sites were found at 5'-GTTC*CC nucleotides. The sequence 5'-TATT*AA was devised to investigate the sequence specificity of CPDs and the highest intensity CPD damage sites were found at 5'-TTTT*CG nucleotides. It was proposed that the tetranucleotide DNA sequence, 5'-YTC*Y (where Y is T or C), was the consensus sequence for the highest intensity UV-induced 6-4PP adduct sites; while it was 5'-YTT*C for the highest intensity UV-induced CPD damage sites. These consensus tetranucleotides are composed entirely of consecutive pyrimidines and must have a DNA conformation that is highly productive for the absorption of UV photons. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Hui; Shi, Qiong; Song, Xiufang
2015-07-01
Our previous studies demonstrated that polychlorinated biphenyl (PCB) quinone induced oxidative DNA damage in HepG2 cells. To promote genomic integrity, DNA damage response (DDR) coordinates cell-cycle transitions, DNA repair and apoptosis. PCB quinone-induced cell cycle arrest and apoptosis have been documented, however, whether PCB quinone insult induce DNA repair signaling is still unknown. In this study, we identified the activation of DDR and corresponding signaling events in HepG2 cells upon the exposure to a synthetic PCB quinone, PCB29-pQ. Our data illustrated that PCB29-pQ induces the phosphorylation of p53, which was mediated by ataxia telangiectasia mutated (ATM) protein kinase. The observedmore » phosphorylated histone H2AX (γ-H2AX) foci and the elevation of 8-hydroxy-2′-deoxyguanosine (8-OHdG) indicated that DDR was stimulated by PCB29-pQ treatment. Additionally, we found PCB29-pQ activates non-homologous end joining (NHEJ), base excision repair (BER) and nucleotide excision repair (NER) signalings. However, these repair pathways are not error-free processes and aberrant repair of DNA damage may cause the potential risk of carcinogenesis and mutagenesis. - Highlights: • Polychlorinated biphenyl quinone induces oxidative DNA damage in HepG2 cells. • The elevation of γ-H2AX and 8-OHdG indicates the activation of DNA damage response. • ATM-p53 signaling acts as the DNA damage sensor and effector. • Polychlorinated biphenyl quinone activates NHEJ, BER and NER signalings.« less
Assessment of genotoxic effects of flumorph by the comet assay in mice organs.
Zhang, T; Zhao, Q; Zhang, Y; Ning, J
2014-03-01
The present study investigated the genotoxic effects of flumorph in various organs (brain, liver, spleen, kidney and sperm) of mice. The DNA damage, measured as comet tail length (µm), was determined using the alkaline comet assay. The comet assay is a sensitive assay for the detection of genotoxicity caused by flumorph using mice as a model. Statistically significant increases in comet assay for both dose-dependent and duration-dependent DNA damage were observed in all the organs assessed. The organs exhibited the maximum DNA damage in 96 h at 54 mg/kg body weight. Brain showed maximum DNA damage followed by spleen > kidney > liver > sperm. Our data demonstrated that flumorph had induced systemic genotoxicity in mammals as it caused DNA damage in all tested vital organs, especially in brain and spleen.
Wang, Zheng; Yin, Hao; Lv, Lei; Feng, Yingying; Chen, Shaopeng; Liang, Junting; Huang, Yun; Jiang, Xiaohua; Jiang, Hanwei; Bukhari, Ihtisham; Wu, Lijun; Cooke, Howard J; Shi, Qinghua
2014-01-01
Elimination of uniparental chromosomes occurs frequently in interspecific hybrid cells. For example, human chromosomes are always eliminated during clone formation when human cells are fused with mouse cells. However, the underlying mechanisms are still elusive. Here, we show that the elimination of human chromosomes in human–mouse hybrid cells is accompanied by continued cell division at the presence of DNA damage on human chromosomes. Deficiency in DNA damage repair on human chromosomes occurs after cell fusion. Furthermore, increasing the level of DNA damage on human chromosomes by irradiation accelerates human chromosome loss in hybrid cells. Our results indicate that the elimination of human chromosomes in human–mouse hybrid cells results from unrepaired DNA damage on human chromosomes. We therefore provide a novel mechanism underlying chromosome instability which may facilitate the understanding of carcinogenesis. PMID:24608870
Gannon, Hugh S.; Woda, Bruce A.; Jones, Stephen N.
2012-01-01
Summary DNA damage induced by ionizing radiation (IR) activates the ATM kinase, which subsequently stabilizes and activates the p53 tumor suppressor protein. Although phosphorylation of p53 by ATM was found previously to modulate p53 levels and transcriptional activities in vivo, it does not appear to be a major regulator of p53 stability. We have utilized mice bearing altered Mdm2 alleles to demonstrate that ATM phosphorylation of Mdm2 serine 394 is required for robust p53 stabilization and activation after DNA damage. In addition, we demonstrate that dephosphorylation of Mdm2 Ser394 regulates attenuation of the p53-mediated response to DNA damage. Therefore, the phosphorylation status of Mdm2 Ser394 governs p53 protein levels and functions in cells undergoing DNA damage. PMID:22624716
Lee, Yann-Leei; Obiako, Boniface; Gorodnya, Olena M; Ruchko, Mykhaylo V; Kuck, Jamie L; Pastukh, Viktor M; Wilson, Glenn L; Simmons, Jon D; Gillespie, Mark N
2017-07-01
Although studies in rat cultured pulmonary artery endothelial cells, perfused lungs, and intact mice support the concept that oxidative mitochondrial (mt) DNA damage triggers acute lung injury (ALI), it has not yet been determined whether enhanced mtDNA repair forestalls development of ALI and its progression to multiple organ system failure (MOSF). Accordingly, here we examined the effect of a fusion protein construct targeting the DNA glycosylase, Ogg1, to mitochondria in a rat model intra-tracheal Pseudomonas aeruginosa (strain 103; PA103)-induced ALI and MOSF. Relative to controls, animals given PA103 displayed increases in lung vascular filtration coefficient accompanied by transient lung tissue oxidative mtDNA damage and variable changes in mtDNA copy number without evidence of nuclear DNA damage. The approximate 40% of animals surviving 24 h after bacterial administration exhibited multiple organ dysfunction, manifest as increased serum and tissue-specific indices of kidney and liver failure, along with depressed heart rate and blood pressure. While administration of mt-targeted Ogg1 to control animals was innocuous, the active fusion protein, but not a DNA repair-deficient mutant, prevented bacteria-induced increases in lung tissue oxidative mtDNA damage, failed to alter mtDNA copy number, and attenuated lung endothelial barrier degradation. These changes were associated with suppression of liver, kidney, and cardiovascular dysfunction and with decreased 24 h mortality. Collectively, the present findings indicate that oxidative mtDNA damage to lung tissue initiates PA103-induced ALI and MOSF in rats.
Xanthohumol Prevents DNA Damage by Dietary Carcinogens: Results of a Human Intervention Trial.
Pichler, Christoph; Ferk, Franziska; Al-Serori, Halh; Huber, Wolfgang; Jäger, Walter; Waldherr, Monika; Mišík, Miroslav; Kundi, Michael; Nersesyan, Armen; Herbacek, Irene; Knasmueller, Siegfried
2017-02-01
Xanthohumol (XN) is a hop flavonoid contained in beers and soft drinks. In vitro and animal studies indicated that XN has DNA and cancer protective properties. To find out if it causes DNA protective effects in humans, an intervention trial was conducted in which the participants (n = 22) consumed a XN containing drink (12 mg XN/P/d). We monitored prevention of DNA damage induced by representatives of major groups of dietary carcinogens [i.e., nitrosodimethylamine (NDMA) benzo(a)pyrene (B(a)P) and the heterocyclic aromatic amine 2-amino-3-methylimidazo[4,5-f]quinoline (IQ)]. Lymphocytes were collected before, during, and after the intervention and incubated with the carcinogens and with human liver homogenate (S9). We found substantial reduction of B(a)P and IQ (P < 0.001 for both substances) induced DNA damage after consumption of the beverage; also, with the nitrosamine a moderate, but significant protective effect was found. The results of a follow-up trial (n = 10) with XN pills showed that the effects are caused by the flavonoid and were confirmed in γH2AX experiments. To elucidate the underlying mechanisms we measured several parameters of glutathione related detoxification. We found clear induction of α-GST (by 42.8%, P < 0.05), but no alteration of π-GST. This observation provides a partial explanation for the DNA protective effects and indicates that the flavonoid also protects against other carcinogens that are detoxified by α-GST. Taken together, our findings support the assumption that XN has anticarcinogenic properties in humans. Cancer Prev Res; 10(2); 153-60. ©2016 AACR. ©2016 American Association for Cancer Research.
Triplex technology in studies of DNA damage, DNA repair, and mutagenesis.
Mukherjee, Anirban; Vasquez, Karen M
2011-08-01
Triplex-forming oligonucleotides (TFOs) can bind to the major groove of homopurine-homopyrimidine stretches of double-stranded DNA in a sequence-specific manner through Hoogsteen hydrogen bonding to form DNA triplexes. TFOs by themselves or conjugated to reactive molecules can be used to direct sequence-specific DNA damage, which in turn results in the induction of several DNA metabolic activities. Triplex technology is highly utilized as a tool to study gene regulation, molecular mechanisms of DNA repair, recombination, and mutagenesis. In addition, TFO targeting of specific genes has been exploited in the development of therapeutic strategies to modulate DNA structure and function. In this review, we discuss advances made in studies of DNA damage, DNA repair, recombination, and mutagenesis by using triplex technology to target specific DNA sequences. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
A Binary-Encounter-Bethe Approach to Simulate DNA Damage by the Direct Effect
NASA Technical Reports Server (NTRS)
Plante, Ianik; Cucinotta, Francis A.
2013-01-01
The DNA damage is of crucial importance in the understanding of the effects of ionizing radiation. The main mechanisms of DNA damage are by the direct effect of radiation (e.g. direct ionization) and by indirect effect (e.g. damage by.OH radicals created by the radiolysis of water). Despite years of research in this area, many questions on the formation of DNA damage remains. To refine existing DNA damage models, an approach based on the Binary-Encounter-Bethe (BEB) model was developed[1]. This model calculates differential cross sections for ionization of the molecular orbitals of the DNA bases, sugars and phosphates using the electron binding energy, the mean kinetic energy and the occupancy number of the orbital. This cross section has an analytic form which is quite convenient to use and allows the sampling of the energy loss occurring during an ionization event. To simulate the radiation track structure, the code RITRACKS developed at the NASA Johnson Space Center is used[2]. This code calculates all the energy deposition events and the formation of the radiolytic species by the ion and the secondary electrons as well. We have also developed a technique to use the integrated BEB cross section for the bases, sugar and phosphates in the radiation transport code RITRACKS. These techniques should allow the simulation of DNA damage by ionizing radiation, and understanding of the formation of double-strand breaks caused by clustered damage in different conditions.
Franke, Silvia I R; Molz, Patrícia; Mai, Camila; Ellwanger, Joel H; Zenkner, Fernanda F; Horta, Jorge A; Prá, Daniel
2018-04-16
We evaluated the influence of hesperidin and vitamin C (VitC) on glycemic parameters, lipid profile, and DNA damage in male Wistar rats treated with sucrose overload. Rats were divided into six experimental groups: I-water control; II-sucrose control; III-hesperidin control; IV-VitC control; V-co-treatment of sucrose plus hesperidin; VI-co-treatment of sucrose plus VitC. We measured the levels of triglycerides, total cholesterol, HDL-c, LDL-c, fasting glucose, and glycated hemoglobin (A1C). DNA damage was evaluated in blood and brain cells using the comet assay and the micronucleus test was used to evaluate chromosomal damages in the rat bone marrow. Co-treatment with VitC, but not with hesperidin, normalized the serum glucose. No effect of co-treatments was observed on A1C. The co-treatment with VitC or hesperidin did not influence the lipid profile (p>0.05). Rats co-treated with hesperidin had a significantly lower DNA damage level in blood (p<0.05) and brain (p<0.05). Rats treated with VitC only, but not those co-treated with VitC plus sucrose, had significantly higher DNA damage in brain (p<0.05). No significant differences were observed in the results of micronucleus test (p>0.05). Hesperidin and VitC showed different effects on sucrose and DNA damage levels. While VitC lowered the serum glucose, hesperidin reduced the DNA damage.
Marcelain, Katherine; De La Torre, Consuelo; González, Patricio; Pincheira, Juana
2005-01-01
Checkpoint response to DNA damage involves the activation of DNA repair and G2 lengthening subpathways. The roles of nibrin (NBS1) and the ATM/ATR kinases in the G2 DNA damage checkpoint, evoked by endogenous and radio-induced DNA damage, were analyzed in control, A-T and NBS lymphoblast cell lines. Short-term responses to G2 treatments were evaluated by recording changes in the yield of chromosomal aberrations in the ensuing mitosis, due to G2 checkpoint adaptation, and also in the duration of G2 itself. The role of ATM/ATR in the G2 checkpoint pathway repairing chromosomal aberrations was unveiled by caffeine inhibition of both kinases in G2. In the control cell lines, nibrin and ATM cooperated to provide optimum G2 repair for endogenous DNA damage. In the A-T cells, ATR kinase substituted successfully for ATM, even though no G2 lengthening occurred. X-ray irradiation (0.4 Gy) in G2 increased chromosomal aberrations and lengthened G2, in both mutant and control cells. However, the repair of radio-induced DNA damage took place only in the controls. It was associated with nibrin-ATM interaction, and ATR did not substitute for ATM. The absence of nibrin prevented the repair of both endogenous and radio-induced DNA damage in the NBS cells and partially affected the induction of G2 lengthening.
TopBP1-mediated DNA processing during mitosis.
Gallina, Irene; Christiansen, Signe Korbo; Pedersen, Rune Troelsgaard; Lisby, Michael; Oestergaard, Vibe H
2016-01-01
Maintenance of genome integrity is crucial to avoid cancer and other genetic diseases. Thus faced with DNA damage, cells mount a DNA damage response to avoid genome instability. The DNA damage response is partially inhibited during mitosis presumably to avoid erroneous processing of the segregating chromosomes. Yet our recent study shows that TopBP1-mediated DNA processing during mitosis is highly important to reduce transmission of DNA damage to daughter cells. (1) Here we provide an overview of the DNA damage response and DNA repair during mitosis. One role of TopBP1 during mitosis is to stimulate unscheduled DNA synthesis at underreplicated regions. We speculated that such genomic regions are likely to hold stalled replication forks or post-replicative gaps, which become the substrate for DNA synthesis upon entry into mitosis. Thus, we addressed whether the translesion pathways for fork restart or post-replicative gap filling are required for unscheduled DNA synthesis in mitosis. Using genetics in the avian DT40 cell line, we provide evidence that unscheduled DNA synthesis in mitosis does not require the translesion synthesis scaffold factor Rev1 or PCNA ubiquitylation at K164, which serve to recruit translesion polymerases to stalled forks. In line with this finding, translesion polymerase η foci do not colocalize with TopBP1 or FANCD2 in mitosis. Taken together, we conclude that TopBP1 promotes unscheduled DNA synthesis in mitosis independently of the examined translesion polymerases.
Modelling and Holographic Visualization of Space Radiation-Induced DNA Damage
NASA Technical Reports Server (NTRS)
Plante, Ianik
2017-01-01
Space radiation is composed by a mixture of ions of different energies. Among these, heavy inos are of particular importance because their health effects are poorly understood. In. the recent years, a software named RITRACKS (Relativistic Ion Tracks) was developed to simulate the detailed radiation track structure, several DNA models and DNA damage. As the DNA structure is complex due to packing, it is difficult to the damage using a regular computer screen.
Effects of Atmospheric Pressure Plasmas on Isolated and Cellular DNA—A Review
Arjunan, Krishna Priya; Sharma, Virender K.; Ptasinska, Sylwia
2015-01-01
Atmospheric Pressure Plasma (APP) is being used widely in a variety of biomedical applications. Extensive research in the field of plasma medicine has shown the induction of DNA damage by APP in a dose-dependent manner in both prokaryotic and eukaryotic systems. Recent evidence suggests that APP-induced DNA damage shows potential benefits in many applications, such as sterilization and cancer therapy. However, in several other applications, such as wound healing and dentistry, DNA damage can be detrimental. This review reports on the extensive investigations devoted to APP interactions with DNA, with an emphasis on the critical role of reactive species in plasma-induced damage to DNA. The review consists of three main sections dedicated to fundamental knowledge of the interactions of reactive oxygen species (ROS)/reactive nitrogen species (RNS) with DNA and its components, as well as the effects of APP on isolated and cellular DNA in prokaryotes and eukaryotes. PMID:25642755
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donahue, B.A.; Augot, M.; Bellon, S.F.
1990-06-19
A factor has been identified in extracts from human HeLa and hamster V79 cells that retards the electrophoretic mobility of several DNA restriction fragments modified with the antitumor drug cis-diamminedichloroplatinum(II) (cisplatin). Binding of the factor to cisplatin-modified DNA was sensitive to pretreatment with proteinase K, establishing that the factor is a protein. Gel mobility shifts were observed with probes containing as few as seven Pt atoms per kilobase of duplex DNA. By competition experiments the dissociation constant, K{sub d}, of the protein from cisplatin-modified DNA was estimated to be (1-20) {times} 10{sup {minus}10} M. Protein binding is selective for DNAmore » modified with cisplatin, (Pt(en)Cl{sub 2}) (en, ethylenediamine), and (Pt(dach)Cl{sub 2}) (dach, 1,2-diaminocyclohexane) but not with chemotherapeutically inactive trans-diamminedichloroplatinum(II) or monofunctionally coordinating (Pt(dien)Cl)Cl (dien, diethylenetriamine) complexes. The protein binds specifically to 1,2-intrastrand d(GpG) and d(ApG) cross-links formed by cisplatin. The apparent molecular weight of the protein is 91,000, as determined by sucrose gradient centrifugation of a preparation partially purified by ammonium sulfate fractionation. Binding of the protein to platinum-modified DNA does not require cofactors but is sensitive to treatment with 5 mM MnCl{sub 2}, CdCl{sub 2}, CoCl{sub 2}, or ZnCl{sub 2} and with 1 mM HgCl{sub 2}. This protein, alone or in conjunction with other cellular constituents, could be of general importance in the initial stages of processing of mammalian DNA damaged by cisplatin or other genotoxic agents and may belong to a wider class of such cellular damage-recognition proteins (DRPs).« less
Visualization of complex DNA damage along accelerated ions tracks
NASA Astrophysics Data System (ADS)
Kulikova, Elena; Boreyko, Alla; Bulanova, Tatiana; Ježková, Lucie; Zadneprianetc, Mariia; Smirnova, Elena
2018-04-01
The most deleterious DNA lesions induced by ionizing radiation are clustered DNA double-strand breaks (DSB). Clustered or complex DNA damage is a combination of a few simple lesions (single-strand breaks, base damage etc.) within one or two DNA helix turns. It is known that yield of complex DNA lesions increases with increasing linear energy transfer (LET) of radiation. For investigation of the induction and repair of complex DNA lesions, human fibroblasts were irradiated with high-LET 15N ions (LET = 183.3 keV/μm, E = 13MeV/n) and low-LET 60Co γ-rays (LET ≈ 0.3 keV/μm) radiation. DNA DSBs (γH2AX and 53BP1) and base damage (OGG1) markers were visualized by immunofluorecence staining and high-resolution microscopy. The obtained results showed slower repair kinetics of induced DSBs in cells irradiated with accelerated ions compared to 60Co γ-rays, indicating induction of more complex DNA damage. Confirming previous assumptions, detailed 3D analysis of γH2AX/53BP1 foci in 15N ions tracks revealed more complicated structure of the foci in contrast to γ-rays. It was shown that proteins 53BP1 and OGG1 involved in repair of DNA DSBs and modified bases, respectively, were colocalized in tracks of 15N ions and thus represented clustered DNA DSBs.
Wu, Ji-Hong; Zhang, Sheng-Hai; Nickerson, John M; Gao, Feng-Juan; Sun, Zhongmou; Chen, Xin-Ya; Zhang, Shu-Jie; Gao, Feng; Chen, Jun-Yi; Luo, Yi; Wang, Yan; Sun, Xing-Huai
2015-02-01
Glaucoma is a chronic neurodegenerative disease characterized by the progressive loss of retinal ganglion cells (RGCs). Mitochondrial DNA (mtDNA) alterations have been documented as a key component of many neurodegenerative disorders. However, whether mtDNA alterations contribute to the progressive loss of RGCs and the mechanism whereby this phenomenon could occur are poorly understood. We investigated mtDNA alterations in RGCs using a rat model of chronic intraocular hypertension and explored the mechanisms underlying progressive RGC loss. We demonstrate that the mtDNA damage and mutations triggered by intraocular pressure (IOP) elevation are initiating, crucial events in a cascade leading to progressive RGC loss. Damage to and mutation of mtDNA, mitochondrial dysfunction, reduced levels of mtDNA repair/replication enzymes, and elevated reactive oxygen species form a positive feedback loop that produces irreversible mtDNA damage and mutation and contributes to progressive RGC loss, which occurs even after a return to normal IOP. Furthermore, we demonstrate that mtDNA damage and mutations increase the vulnerability of RGCs to elevated IOP and glutamate levels, which are among the most common glaucoma insults. This study suggests that therapeutic approaches that target mtDNA maintenance and repair and that promote energy production may prevent the progressive death of RGCs. Copyright © 2014 Elsevier Inc. All rights reserved.
Role of the DNA Damage Response in Human Papillomavirus RNA Splicing and Polyadenylation.
Nilsson, Kersti; Wu, Chengjun; Schwartz, Stefan
2018-06-12
Human papillomaviruses (HPVs) have evolved to use the DNA repair machinery to replicate its DNA genome in differentiated cells. HPV activates the DNA damage response (DDR) in infected cells. Cellular DDR factors are recruited to the HPV DNA genome and position the cellular DNA polymerase on the HPV DNA and progeny genomes are synthesized. Following HPV DNA replication, HPV late gene expression is activated. Recent research has shown that the DDR factors also interact with RNA binding proteins and affects RNA processing. DDR factors activated by DNA damage and that associate with HPV DNA can recruit splicing factors and RNA binding proteins to the HPV DNA and induce HPV late gene expression. This induction is the result of altered alternative polyadenylation and splicing of HPV messenger RNA (mRNA). HPV uses the DDR machinery to replicate its DNA genome and to activate HPV late gene expression at the level of RNA processing.
NASA Technical Reports Server (NTRS)
Ritter, Joe; Branly, R.; Theodorakis, C.; Bickham, J.; Swartz, C.; Friedfeld, R.; Ackerman, E.; Carruthers, C.; DiGirolamo, A.; Faranda, J.
1999-01-01
Because of the large amounts of cosmic radiation in the space environment relative to that on earth, the effects of radiation on the physiology of astronauts is of major concern. Doses of radiation which can cause acute or chronic biological effects are to be avoided, therefore determination of the amount of radiation exposure encountered during space flight and assessment of its impact on biological systems is critical. Quantifying the radiation dosage and damage to biological systems, especially to humans during repetitive high altitude flight and during long duration space flight is important for several reasons. Radiation can cause altered biosynthesis and long term genotoxicity resulting in cancer and birth defects etc. Radiation damage to biological systems depends in a complex way on incident radiation species and their energy spectra. Typically non-biological, i.e. film or electronic monitoring systems with narrow energy band sensitivity are used to perform dosimetry and then results are extrapolated to biological models. For this reason it may be desirable to perform radiation dosimetry by using biological molecules e.g. DNA or RNA strands as passive sensors. A lightweight genotoxicology experiment was constructed to determine the degree to which in vitro naked DNA extracted from tissues of a variety of vertebrate organisms is damaged by exposure to radiation in a space environment. The DNA is assayed by means of agarose gel electrophoresis to determine damage such as strand breakage caused by high momentum particles and photons, and base oxidation caused by free radicals. The length distribution of DNA fragments is directly correlated with the radiation dose. It is hoped that a low mass, low cost, passive biological system to determine dose response relationship (increase in strand breaks with increase in exposure) can be developed to perform radiation dosimetry in support of long duration space flight, and to predict negative effects on biological systems (e.g. astronauts and greenhouses) in space. The payload was flown in a 2.5 cubic foot Get Away Special (GAS) container through NASA's GAS program. It was subjected to the environment of the space shuttle cargo bay for the duration of the STS-91 mission (9 days). Results of the genotoxicology and radiation dosimetry experiment (GRaDEx-1) as well as the design of an improved follow on payload are presented.
NASA Technical Reports Server (NTRS)
Ritter, Joe; Branly, R.; Theodorakis, C.; Bickham, J.; Swartz, C.; Friedfeld, R.; Ackerman, E.; Carruthers, C.; DiGirolamo, A.; Faranda, J.;
1999-01-01
Because of the large amounts of cosmic radiation in the space environment relative to that on earth, the effects of radiation on the physiology of astronauts is of major concern. Doses of radiation which can cause acute or chronic biological effects are to be avoided, therefore determination of the amount of radiation exposure encountered during space flight and assessment of its impact on biological systems is critical. Quantifying the radiation dosage and damage to biological systems, especially to humans during repetitive high altitude flight and during long duration space flight is important for several reasons. Radiation can cause altered biosynthesis and long term genotoxicity resulting in cancer and birth defects, etc. Radiation damage to biological systems depends in a complex way on incident radiation species and their energy spectra. Typically non-biological, i.e. film or electronic monitoring systems with narrow energy band sensitivity are used to perform dosimetry and then results are extrapolated to biological models. For this reason it may be desirable to perform radiation dosimetry by using biological molecules e.g. DNA or RNA strands as passive sensors. A lightweight genotoxicology experiment was constructed to determine the degree to which in-vitro naked DNA extracted from tissues of a variety of vertebrate organisms is damaged by exposure to radiation in a space environment. The DNA is assayed by means of agarose gel electrophoresis to determine damage such as strand breakage caused by high momentum particles and photons, and base oxidation caused by free radicals. The length distribution of DNA fragments is directly correlated with the radiation dose. It is hoped that a low mass, low cost, passive biological system to determine dose-response relationship (increase in strand breaks with increase in exposure) can be developed to perform radiation dosimetry in support of long duration space flight, and to predict negative effects on biological systems (e.g. astronauts and greenhouses) in space. The payload was flown in a 2.5 cubic foot Get Away Special (GAS) container through NASA's GAS program. It was subjected to the environment of the space shuttle cargo bay for the duration of the STS-91 mission (9 days). Results of the genotoxicology and radiation dosimetry experiment (GRaDEx-I) as well as the design of an improved follow on payload are presented.
Hasbal, Canan; Aksu, Bagdagul Y; Himmetoglu, Solen; Dincer, Yildiz; Koc, Eylem E; Hatipoglu, Sami; Akcay, Tulay
2010-06-01
When the production of reactive oxygen species (ROS) exceeds the capacity of antioxidant defences, a condition known as oxidative stress occurs and it has been implicated in many pathological conditions including asthma. Interaction of ROS with DNA may result in mutagenic oxidative base modifications such as 8-hydroxydeoxyguanosine (8-oxo-dGuo) and DNA strand breaks. Reduced glutathione (GSH) serves as a powerful antioxidant against harmful effects of ROS. The aim of this study was to describe DNA damage as level of DNA strand breaks and formamidopyrimidine DNA glycosylase (Fpg)-sensitive sites, which reflects oxidative DNA damage and GSH level in children with mild-to-moderate persistent asthma; and to examine the effect of antiasthmatic therapy on these DNA damage parameters and GSH level. Before and after 8 wk of antiasthmatic therapy blood samples were taken, DNA strand breaks and Fpg-sensitive sites in peripheral leukocytes were determined by comet assay, GSH level of whole blood was measured by spectrophotometric method. DNA strand breaks and Fpg-sensitive sites in the asthma group were found to be increased as compared with control group. GSH level in the asthma group was not significantly different from those in the control group. Levels of strand breaks, Fpg-sensitive sites and GSH were found to be decreased in the asthma group after the treatment. In conclusion, oxidative DNA damage (strand breaks and Fpg-sensitive sites) is at a high level in children with asthma. DNA damage parameters and GSH level were found to be decreased after therapy. Our findings imply that antiasthmatic therapy including glucocorticosteroids not only controls asthma but also decreases mutation risk in children with asthma bronchiale.
Yamamoto, Kimiyo N; Hirota, Kouji; Kono, Koichi; Takeda, Shunichi; Sakamuru, Srilatha; Xia, Menghang; Huang, Ruili; Austin, Christopher P; Witt, Kristine L; Tice, Raymond R
2011-08-01
Included among the quantitative high throughput screens (qHTS) conducted in support of the US Tox21 program are those being evaluated for the detection of genotoxic compounds. One such screen is based on the induction of increased cytotoxicity in seven isogenic chicken DT40 cell lines deficient in DNA repair pathways compared to the parental DNA repair-proficient cell line. To characterize the utility of this approach for detecting genotoxic compounds and identifying the type(s) of DNA damage induced, we evaluated nine of 42 compounds identified as positive for differential cytotoxicity in qHTS (actinomycin D, adriamycin, alachlor, benzotrichloride, diglycidyl resorcinol ether, lovastatin, melphalan, trans-1,4-dichloro-2-butene, tris(2,3-epoxypropyl)isocyanurate) and one non-cytotoxic genotoxic compound (2-aminothiamine) for (1) clastogenicity in mutant and wild-type cells; (2) the comparative induction of γH2AX positive foci by melphalan; (3) the extent to which a 72-hr exposure duration increased assay sensitivity or specificity; (4) the use of 10 additional DT40 DNA repair-deficient cell lines to better analyze the type(s) of DNA damage induced; and (5) the involvement of reactive oxygen species in the induction of DNA damage. All compounds but lovastatin and 2-aminothiamine were more clastogenic in at least one DNA repair-deficient cell line than the wild-type cells. The differential responses across the various DNA repair-deficient cell lines provided information on the type(s) of DNA damage induced. The results demonstrate the utility of this DT40 screen for detecting genotoxic compounds, for characterizing the nature of the DNA damage, and potentially for analyzing mechanisms of mutagenesis. Copyright © 2011 Wiley-Liss, Inc.
Yamamoto, Kimiyo N.; Hirota, Kouji; Kono, Koichi; Takeda, Shunichi; Sakamuru, Srilatha; Xia, Menghang; Huang, Ruili; Austin, Christopher P.; Witt, Kristine L.; Tice, Raymond R.
2012-01-01
Included among the quantitative high throughput screens (qHTS) conducted in support of the U.S. Tox21 program are those being evaluated for the detection of genotoxic compounds. One such screen is based on the induction of increased cytotoxicity in 7 isogenic chicken DT40 cell lines deficient in DNA repair pathways compared to the parental DNA repair-proficient cell line. To characterize the utility of this approach for detecting genotoxic compounds and identifying the type(s) of DNA damage induced, we evaluated nine of 42 compounds identified as positive for differential cytotoxicity in qHTS (actinomycin D, adriamycin, alachlor, benzotrichloride, diglycidyl resorcinol ether, lovastatin, melphalan, trans-1,4-dichloro-2-butene, tris(2,3-epoxypropyl)isocyanurate) and one non-cytotoxic genotoxic compound (2-aminothiamine) for (1) clastogenicity in mutant and wild-type cells; (2) the comparative induction of γH2AX positive foci by melphalan; (3) the extent to which a 72-hr exposure duration increased assay sensitivity or specificity; (4) the use of 10 additional DT40 DNA repair-deficient cell lines to better analyze the type(s) of DNA damage induced; and (5) the involvement of reactive oxygen species in the induction of DNA damage. All compounds but lovastatin and 2-aminothiamine were more clastogenic in at least one DNA repair-deficient cell line than the wild-type cells. The differential responses across the various DNA repair-deficient cell lines provided information on the type(s) of DNA damage induced. The results demonstrate the utility of this DT40 screen for detecting genotoxic compounds, for characterizing the nature of the DNA damage, and potentially for analyzing mechanisms of mutagenesis. PMID:21538559
Carcagno, Abel L.; Marazita, Mariela C.; Sonzogni, Silvina V.; Ceruti, Julieta M.; Cánepa, Eduardo T.
2013-01-01
The maintenance of genomic integrity is of main importance to the survival and health of organisms which are continuously exposed to genotoxic stress. Cells respond to DNA damage by activating survival pathways consisting of cell cycle checkpoints and repair mechanisms. However, the signal that triggers the DNA damage response is not necessarily a direct detection of the primary DNA lesion. In fact, chromatin defects may serve as initiating signals to activate those mechanisms. If the modulation of chromatin structure could initiate a checkpoint response in a direct manner, this supposes the existence of specific chromatin sensors. p19INK4d, a member of the INK4 cell cycle inhibitors, plays a crucial role in regulating genomic stability and cell viability by enhancing DNA repair. Its expression is induced in cells injured by one of several genotoxic treatments like cis-platin, UV light or neocarzinostatin. Nevertheless, when exogenous DNA damaged molecules are introduced into the cell, this induction is not observed. Here, we show that p19INK4d is enhanced after chromatin relaxation even in the absence of DNA damage. This induction was shown to depend upon ATM/ATR, Chk1/Chk2 and E2F activity, as is the case of p19INK4d induction by endogenous DNA damage. Interestingly, p19INK4d improves DNA repair when the genotoxic damage is caused in a relaxed-chromatin context. These results suggest that changes in chromatin structure, and not DNA damage itself, is the actual trigger of p19INK4d induction. We propose that, in addition to its role as a cell cycle inhibitor, p19INK4d could participate in a signaling network directed to detecting and eventually responding to chromatin anomalies. PMID:23593412
Hossain, M. Zulfiquer; Patel, Kalpesh; Kern, Scott E.
2014-01-01
Potent DNA-damaging activities were seen in vitro from dietary chemicals found in coffee, tea, and liquid smoke. A survey of tea varieties confirmed genotoxic activity to be widespread. Constituent pyrogallol-like polyphenols (PLPs) such as epigallocatechin-3-gallate (EGCG), pyrogallol, and gallic acid were proposed as a major source of DNA-damaging activities, inducing DNA double-strand breaks in the p53R assay, a well characterized assay sensitive to DNA strand breaks, and comet assay. Paradoxically, their consumption does not lead to the kind of widespread cellular toxicity and acute disease that might be expected from genotoxic exposure. Existing physiological mechanisms could limit DNA damage from dietary injurants. Serum albumin and salivary α-amylase are known to bind EGCG. Salivary α-amylase, serum albumin, and myoglobin, but not salivary proline-rich proteins, reduced damage from tea, coffee, and PLPs, but did not inhibit damage from the chemotherapeutics etoposide and camptothecin. This represents a novel function for saliva in addition to its known functions including protection against tannins. Cell populations administered repeated pyrogallol exposures had abatement of measured DNA damage by two weeks, indicating an innate cellular adaptation. We suggest that layers of physiological protections may exist toward natural dietary products to which animals have had high-level exposure over evolution. PMID:24842839
Ozdemir, Zeynep Canan; Koc, Ahmet; Aycicek, Ali; Kocyigit, Abdurrahim
2014-01-01
There are several reports that increased oxidative stress and DNA damage were found in β-thalassemia major (β-TM) patients. In this study, we aimed to evaluate the effects of N-acetylcysteine (NAC) and vitamin E on total oxidative stress and DNA damage in children with β-TM. Seventy-five children with transfusion-dependent β-thalassemia (β-thal) were randomly chosen to receive 10 mg/kg/day of NAC or 10 IU/kg/day of vitamin E or no supplementation; 28 healthy controls were also included in the study. Serum total oxidant status (TOS) and total antioxidant capacity (TAC) were measured, oxidative stress index (OSI) was calculated, and mononuclear DNA damage was assessed by alkaline comet assay; they were determined before treatment and after 3 months of treatment. Total oxydent status, OSI, and DNA damage levels were significantly higher and TAC levels were significantly lower in the thalassemic children than in the healthy controls (p < 0.001). In both supplemented groups, mean TOS and OSI levels were decreased; TAC and pre transfusion hemoglobin (Hb) levels were significantly increased after 3 months (p ≤ 0.002). In the NAC group, DNA damage score decreased (p = 0.001). N-Acetylcysteine and vitamin E may be effective in reducing serum oxidative stress and increase pre transfusion Hb levels in children with β-thal. N-Acetylcysteine also can reduce DNA damage.
Hossain, M Zulfiquer; Patel, Kalpesh; Kern, Scott E
2014-08-01
Potent DNA-damaging activities were seen in vitro from dietary chemicals found in coffee, tea, and liquid smoke. A survey of tea varieties confirmed genotoxic activity to be widespread. Constituent pyrogallol-like polyphenols (PLPs) such as epigallocatechin-3-gallate (EGCG), pyrogallol, and gallic acid were proposed as a major source of DNA-damaging activities, inducing DNA double-strand breaks in the p53R assay, a well characterized assay sensitive to DNA strand breaks, and comet assay. Paradoxically, their consumption does not lead to the kind of widespread cellular toxicity and acute disease that might be expected from genotoxic exposure. Existing physiological mechanisms could limit DNA damage from dietary injurants. Serum albumin and salivary α-amylase are known to bind EGCG. Salivary α-amylase, serum albumin, and myoglobin, but not salivary proline-rich proteins, reduced damage from tea, coffee, and PLPs, but did not inhibit damage from the chemotherapeutics etoposide and camptothecin. This represents a novel function for saliva in addition to its known functions including protection against tannins. Cell populations administered repeated pyrogallol exposures had abatement of measured DNA damage by two weeks, indicating an innate cellular adaptation. We suggest that layers of physiological protections may exist toward natural dietary products to which animals have had high-level exposure over evolution. Copyright © 2014 Elsevier Ltd. All rights reserved.
Imtiaz, Muhammad; Mushtaq, Muhammad Adnan; Rizwan, Muhammad Shahid; Arif, Muhammad Saleem; Yousaf, Balal; Ashraf, Muhammad; Shuanglian, Xiong; Rizwan, Muhammad; Mehmood, Sajid; Tu, Shuxin
2016-10-01
The present study was done to elucidate the effects of vanadium (V) on photosynthetic pigments, membrane damage, antioxidant enzymes, protein, and deoxyribonucleic acid (DNA) integrity in the following chickpea genotypes: C-44 (tolerant) and Balkasar (sensitive). Changes in these parameters were strikingly dependent on levels of V, at 60 and 120 mg V L(-1) induced DNA damage in Balkasar only, while photosynthetic pigments and protein were decreased from 15 to 120 mg V L(-1) and membrane was also damaged. It was shown that photosynthetic pigments and protein production declined from 15 to 120 mg V L(-1) and the membrane was also damaged, while DNA damage was not observed at any level of V stress in C-44. Moreover, the antioxidant enzyme activities such as superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) were increased in both genotypes of chickpea against V stress; however, more activities were observed in C-44 than Balkasar. The results suggest that DNA damage in sensitive genotypes can be triggered due to exposure of higher vanadium.
Pulsewidth-dependent nature of laser-induced DNA damage in RPE cells
NASA Astrophysics Data System (ADS)
Hall, Rebecca M.; Glickman, Randolph D.; Rockwell, Benjamin A.; Kumar, Neeru; Noojin, Gary D.
2001-07-01
Ultrashort pulse laser radiation may produce cellular damage through unique mechanisms. Primary cultures of bovine retinal pigment epithelial (RPE) cells were exposed to the out put of a Ti:Sapphire laser producing 30 fs (mode-locked) pulses, 44 amplified fs pulses, or continuous wave exposures at 800 nm. Laser exposures at and below the damage threshold were studied. DNA damage was detected using single cell gel electrophoresis (comet assay). Unexposed (control) cells produced short tails with low tail moments. In contrast, all laser-exposed cells showed some degree of DNA fragmentation, but the size and shape of the resulting comets differed among the various modalities. CW-exposed cells produced generally light and relatively compact tails, suggesting fewer and larger DNA fragments, while mode-locked laser exposures (30 fs pulses) resulted in large and diffuse comets, indicating the DNA was fragmented into many very small pieces. Work is continuing to define the relationship of laser pulsewidth and intensity with the degree of DNA fragmentation. These results suggest that DNA damage may result from multiple mechanisms of laser-cell interaction, including multiphoton absorption.
Effect of cryopreservation on sperm DNA integrity in patients with teratospermia.
Kalthur, Guruprasad; Adiga, Satish Kumar; Upadhya, Dinesh; Rao, Satish; Kumar, Pratap
2008-06-01
To test whether sperm with abnormal head morphology are more likely to undergo DNA damage and/or chromatin modification during the process of freeze-thawing. In this prospective study, the semen samples from forty-four men attending the infertility clinic were included. Samples were divided into aliquots to allow direct comparison of fresh and frozen spermatozoa from the same ejaculate. The sperm morphology and the sperm DNA damage were evaluated before and after cryopreservation. The relationship between sperm head abnormalities and freeze-thaw-induced DNA modification was assessed. University hospital fertility center. Men attending infertility clinic for semen analysis. The normospermic and teratospermic semen samples were evaluated for DNA damage before and after cryopreservation by comet assay and acridine orange bindability test. Elucidation of association between sperm morphologic defect and cryodamage. A threefold increase in the amount of DNA damage was observed in teratospermic samples compared with their normospermic counterparts, indicating a higher susceptibility of morphologically abnormal sperm to cryodamage. The susceptibility of morphologically abnormal sperm to DNA damage/chromatin modification during the freeze-thaw process is significantly higher than that of sperm with normal morphology.
Acevedo, Julyana; Yan, Shan; Michael, W. Matthew
2016-01-01
A critical event for the ability of cells to tolerate DNA damage and replication stress is activation of the ATR kinase. ATR activation is dependent on the BRCT (BRCA1 C terminus) repeat-containing protein TopBP1. Previous work has shown that recruitment of TopBP1 to sites of DNA damage and stalled replication forks is necessary for downstream events in ATR activation; however, the mechanism for this recruitment was not known. Here, we use protein binding assays and functional studies in Xenopus egg extracts to show that TopBP1 makes a direct interaction, via its BRCT2 domain, with RPA-coated single-stranded DNA. We identify a point mutant that abrogates this interaction and show that this mutant fails to accumulate at sites of DNA damage and that the mutant cannot activate ATR. These data thus supply a mechanism for how the critical ATR activator, TopBP1, senses DNA damage and stalled replication forks to initiate assembly of checkpoint signaling complexes. PMID:27129245
Alizadeh, Elahe; Orlando, Thomas M; Sanche, Léon
2015-04-01
Many experimental and theoretical advances have recently allowed the study of direct and indirect effects of low-energy electrons (LEEs) on DNA damage. In an effort to explain how LEEs damage the human genome, researchers have focused efforts on LEE interactions with bacterial plasmids, DNA bases, sugar analogs, phosphate groups, and longer DNA moieties. Here, we summarize the current understanding of the fundamental mechanisms involved in LEE-induced damage of DNA and complex biomolecule films. Results obtained by several laboratories on films prepared and analyzed by different methods and irradiated with different electron-beam current densities and fluencies are presented. Despite varied conditions (e.g., film thicknesses and morphologies, intrinsic water content, substrate interactions, and extrinsic atmospheric compositions), comparisons show a striking resemblance in the types of damage produced and their yield functions. The potential of controlling this damage using molecular and nanoparticle targets with high LEE yields in targeted radiation-based cancer therapies is also discussed.
Mahabir, S; Baer, D J; Johnson, L L; Frenkel, K; Dorgan, J F; Cambell, W; Hartman, T J; Clevidence, B; Albanes, D; Judd, J T; Taylor, P R
2005-08-01
Alcohol consumption is linked to increased breast cancer risk. Since oestrogens increase breast cancer risk, possibly through oxidative damage, and we have shown that alcohol consumption increases serum oestrogens, we tested whether moderate alcohol supplementation increased oxidative DNA damage among healthy postmenopausal women not on hormone replacement therapy in a randomized controlled crossover study. We used serum 5-hydroxymethyl-2-deoxyuridine (5-HMdU) autoantibodies (aAbs) as a marker of oxidative DNA damage. The results showed no evidence for increased or decreased levels of oxidative DNA damage among women who consumed 15 g or 30 g alcohol per day for 8 weeks compared with women in the 0 g alcohol group. We conclude that among healthy women, it is possible that an 8-week trial of moderate alcohol supplementation might be too short to make enough 5-HMdU aAbs to compare differences by alcohol dose. In future studies, a panel of biomarkers for DNA damage should be used.
Amato, Pierre; Doyle, Shawn M; Battista, John R; Christner, Brent C
2010-10-01
The survival of microorganisms over extended time frames in frozen subsurface environments may be limited by chemical (i.e., via hydrolysis and oxidation) and ionizing radiation-induced damage to chromosomal DNA. In an effort to improve estimates for the survival of bacteria in icy terrestrial and extraterrestrial environments, we determined rates of macromolecular synthesis at temperatures down to -15°C in bacteria isolated from Siberian permafrost (Psychrobacter cryohalolentis K5 and P. arcticus 273-4) and the sensitivity of P. cryohalolentis to ionizing radiation. Based on experiments conducted over ≈400 days at -15°C, the rates of protein and DNA synthesis in P. cryohalolentis were <1 to 16 proteins cell(-1) d(-1) and 83 to 150 base pairs (bp) cell(-1) d(-1), respectively; P. arcticus synthesized DNA at rates of 20 to 1625 bp cell(-1) d(-1) at -15°C under the conditions tested. The dose of ionizing radiation at which 37% of the cells survive (D(37)) of frozen suspensions of P. cryohalolentis was 136 Gy, which was ∼2-fold higher (71 Gy) than identical samples exposed as liquid suspensions. Laboratory measurements of [(3)H]thymidine incorporation demonstrate the physiological potential for DNA metabolism at -15°C and suggest a sufficient activity is possible to offset chromosomal damage incurred in near-subsurface terrestrial and martian permafrost. Thus, our data imply that the longevity of microorganisms actively metabolizing within permafrost environments is not constrained by chromosomal DNA damage resulting from ionizing radiation or entropic degradation over geological time.