Gasser, Stephan; Zhang, Wendy Y L; Tan, Nikki Yi Jie; Tripathi, Shubhita; Suter, Manuel A; Chew, Zhi Huan; Khatoo, Muznah; Ngeow, Joanne; Cheung, Florence S G
2017-07-01
The presence of damaged and microbial DNA can pose a threat to the survival of organisms. Cells express various sensors that recognize specific aspects of such potentially dangerous DNA. Recognition of damaged or microbial DNA by sensors induces cellular processes that are important for DNA repair and inflammation. Here, we review recent evidence that the cellular response to DNA damage and microbial DNA are tightly intertwined. We also discuss insights into the parameters that enable DNA sensors to distinguish damaged and microbial DNA from DNA present in healthy cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Luo, Man; Bao, Zhengqiang; Xu, Feng; Wang, Xiaohui; Li, Fei; Li, Wen; Chen, Zhihua; Ying, Songmin; Shen, Huahao
2018-04-14
The inflammatory cascade can be initiated with the recognition of damaged DNA. Macrophages play an essential role in particulate matter (PM)-induced airway inflammation. In this study, we aim to explore the PM induced DNA damage response of macrophages and its function in airway inflammation. The DNA damage response and inflammatory response were assessed using bone marrow-derived macrophages following PM treatment and mouse model instilled intratracheally with PM. We found that PM induced significant DNA damage both in vitro and in vivo and simultaneously triggered a rapid DNA damage response, represented by nuclear RPA, 53BP1 and γH2AX foci formation. Genetic ablation or chemical inhibition of the DNA damage response sensor amplified the production of cytokines including Cxcl1, Cxcl2 and Ifn-γ after PM stimulation in bone marrow-derived macrophages. Similar to that seen in vitro , mice with myeloid-specific deletion of RAD50 showed higher levels of airway inflammation in response to the PM challenge, suggesting a protective role of DNA damage sensor during inflammation. These data demonstrate that PM exposure induces DNA damage and activation of DNA damage response sensor MRN complex in macrophages. Disruption of MRN complex lead to persistent, unrepaired DNA damage that causes elevated inflammatory response.
77 FR 18833 - Government-Owned Inventions; Availability for Licensing
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-28
... mass spectra obtained and reproduced for food-borne pathogens. Unique DISI device with gas cylinder... With a Small Molecule CHK2 Inhibitor Description of Technology: DNA damage sensors such as Checkpoint... in response to DNA damage. It has been reported that these DNA damage sensors also play a key role in...
Maréchal, Alexandre; Wu, Ching-Shyi; Yazinski, Stephanie A.; Nguyen, Hai Dang; Liu, Shizhou; Jiménez, Amanda E.; Jin, Jianping; Zou, Lee
2014-01-01
Summary PRP19 is a ubiquitin ligase involved in pre-mRNA splicing and the DNA damage response (DDR). While the role for PRP19 in splicing is well characterized, its role in the DDR remains elusive. Through a proteomic screen for proteins that interact with RPA-coated single-stranded DNA (RPA-ssDNA), we identified PRP19 as a sensor of DNA damage. PRP19 binds RPA directly and localizes to DNA damage sites via RPA, promoting RPA ubiquitylation in a DNA damage-induced manner. PRP19 facilitates the accumulation of ATRIP, the regulatory partner of the ATR kinase, at DNA damage sites. Depletion of PRP19 compromised the phosphorylation of ATR substrates, the recovery of stalled replication forks, and the progression of replication forks on damaged DNA. Importantly, PRP19 mutants that cannot bind RPA or function as an E3 ligase failed to support the ATR response, revealing that PRP19 drives ATR activation by acting as an RPA-ssDNA-sensing ubiquitin ligase during the DDR. PMID:24332808
Maréchal, Alexandre; Li, Ju-Mei; Ji, Xiao Ye; Wu, Ching-Shyi; Yazinski, Stephanie A; Nguyen, Hai Dang; Liu, Shizhou; Jiménez, Amanda E; Jin, Jianping; Zou, Lee
2014-01-23
PRP19 is a ubiquitin ligase involved in pre-mRNA splicing and the DNA damage response (DDR). Although the role for PRP19 in splicing is well characterized, its role in the DDR remains elusive. Through a proteomic screen for proteins that interact with RPA-coated single-stranded DNA (RPA-ssDNA), we identified PRP19 as a sensor of DNA damage. PRP19 directly binds RPA and localizes to DNA damage sites via RPA, promoting RPA ubiquitylation in a DNA-damage-induced manner. PRP19 facilitates the accumulation of ATRIP, the regulatory partner of the ataxia telangiectasia mutated and Rad3-related (ATR) kinase, at DNA damage sites. Depletion of PRP19 compromised the phosphorylation of ATR substrates, recovery of stalled replication forks, and progression of replication forks on damaged DNA. Importantly, PRP19 mutants that cannot bind RPA or function as an E3 ligase failed to support the ATR response, revealing that PRP19 drives ATR activation by acting as an RPA-ssDNA-sensing ubiquitin ligase during the DDR. Copyright © 2014 Elsevier Inc. All rights reserved.
Guo, Zhipan; Liu, Xiuhui; Liu, Yuelin; Wu, Guofan; Lu, Xiaoquan
2016-12-15
8-Hydroxy-2'-deoxyguanosine (8-OHdG) is commonly identified as a biomarker of oxidative DNA damage. In this work, a novel and facile 8-OHdG sensor was developed based on the multi-walled carbon nanotubes (MWCNTs) modified glassy carbon electrode (GCE). It exhibited good electrochemical responses toward the oxidation of 8-OHdG, and the linear ranges were 5.63×10(-8)-6.08×10(-6)M and 6.08×10(-6)-1.64×10(-5)M, with the detection limit of 1.88×10(-8)M (S/N=3). Moreover, the fabricated sensor was applied for the determination of 8-OHdG generated from damaged DNA and guanine, respectively, and the oxidation currents of 8-OHdG increased along with the damaged DNA and guanine within certain concentrations. These results could be used to evaluate the DNA damage, and provide useful information on diagnosing diseases caused by mutation and deficiency of the immunity system. Copyright © 2016 Elsevier B.V. All rights reserved.
Structure and mechanism of the UvrA-UvrB DNA damage sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pakotiprapha, Danaya; Samuels, Martin; Shen, Koning
2012-04-17
Nucleotide excision repair (NER) is used by all organisms to eliminate DNA lesions. We determined the structure of the Geobacillus stearothermophilus UvrA-UvrB complex, the damage-sensor in bacterial NER and a new structure of UvrA. We observe that the DNA binding surface of UvrA, previously found in an open shape that binds damaged DNA, also exists in a closed groove shape compatible with native DNA only. The sensor contains two UvrB molecules that flank the UvrA dimer along the predicted path for DNA, ~80 Å from the lesion. We show that the conserved signature domain II of UvrA mediates a nexusmore » of contacts among UvrA, UvrB and DNA. Further, in our new structure of UvrA, this domain adopts an altered conformation while an adjacent nucleotide binding site is vacant. Our findings raise unanticipated questions about NER and also suggest a revised picture of its early stages.« less
Nowicka, Anna M; Kowalczyk, Agata; Stojek, Zbigniew; Hepel, Maria
2010-01-01
Electrochemical and nanogravimetric DNA-hybridization biosensors have been developed for sensing single mismatches in the probe-target ssDNA sequences. The voltammetric transduction was achieved by coupling ferrocene moiety to streptavidin linked to biotinylated tDNA. The mass-related frequency transduction was implemented by immobilizing the sensory pDNA on a gold-coated quartz crystal piezoresonators oscillating in the 10MHz band. The high sensitivity of these sensors enabled us to study DNA damage caused by representative toxicants and environmental pollutants, including Cr(VI) species, common pesticides and herbicides. We have found that the sensor responds rapidly to any damage caused by Cr(VI) species, with more severe DNA damage observed for Cr(2)O(7)(2-) and for CrO(4)(2-) in the presence of H(2)O(2) as compared to CrO(4)(2-) alone. All herbicides and pesticides examined caused DNA damage or structural alterations leading to the double-helix unwinding. Among these compounds, paraoxon-ethyl and atrazine caused the fastest and most severe damage to DNA. The physico-chemical mechanism of damaging interactions between toxicants and DNA has been proposed. The methodology of testing voltammetric and nanogravimetric DNA-hybridization biosensors developed in this work can be employed as a simple protocol to obtain rapid comparative data concerning DNA damage caused by herbicide, pesticides and other toxic pollutants. The DNA-hybridization biosensor can, therefore, be utilized as a rapid screening device for classifying environmental pollutants and to evaluate DNA damage induced by these compounds.
cGAS Conducts Micronuclei DNA Surveillance.
de Oliveira Mann, Carina C; Kranzusch, Philip J
2017-10-01
DNA damage elicits a potent proinflammatory immune response. A collection of four papers now reveals that micronuclear DNA is a new cell intrinsic immunostimulatory molecule, and that accumulation of the immune sensor cyclic GMP-AMP synthase (cGAS) in micronuclei leads to a cell-cycle-dependent proinflammatory response following DNA damage. Copyright © 2017 Elsevier Ltd. All rights reserved.
Singh, Swati; Kaushal, Ankur; Khare, Shashi; Kumar, Pradeep; Kumar, Ashok
2014-07-21
The first gold-mercaptopropionic acid-polyethylenimine composite based electrochemical DNA biosensor was fabricated for the early detection of Streptococcus pyogenes infection in humans causing rheumatic heart disease (heart valve damage). No biosensor is available for the detection of rheumatic heart disease (RHD). Therefore, the mga gene based sensor was developed by the covalent immobilization of a 5'-carboxyl modified single stranded DNA probe onto the gold composite electrode. The immobilized probe was hybridized with the genomic DNA (G-DNA) of S. pyogenes from throat swabs and the electrochemical response was measured by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance (EI). Covalent immobilization of the probe onto the gold composite and its hybridization with G-DNA was characterized by FTIR and SEM. The sensitivity of the sensor was 110.25 μA cm(-2) ng(-1) with DPV and the lower limit of detection was 10 pg per 6 μL. The sensor was validated with patient throat swab samples and results were compared with available methods. The sensor is highly specific to S. pyogenes and can prevent damage to heart valves by the early detection of the infection in only 30 min.
Shell, Steven M.; Hawkins, Edward K.; Tsai, Miaw-Sheue; Hlaing, Aye Su; Rizzo, Carmelo J.; Chazin, Walter J.
2013-01-01
The xeroderma pigmentosum complementation group C protein (XPC) serves as the primary initiating factor in the global genome nucleotide excision repair pathway (GG-NER). Recent reports suggest XPC also stimulates repair of oxidative lesions by base excision repair. However, whether XPC distinguishes among various types of DNA lesions remains unclear. Although the DNA binding properties of XPC have been studied by several groups, there is a lack of consensus over whether XPC discriminates between DNA damaged by lesions associated with NER activity versus those that are not. In this study we report a high-throughput fluorescence anisotropy assay used to measure the DNA binding affinity of XPC for a panel of DNA substrates containing a range of chemical lesions in a common sequence. Our results demonstrate that while XPC displays a preference for binding damaged DNA, the identity of the lesion has little effect on the binding affinity of XPC. Moreover, XPC was equally capable of binding to DNA substrates containing lesions not repaired by GG-NER. Our results support an indirect read-out model for sensing the presence of lesions by human XPC and suggest XPC may act as a general sensor of damaged DNA capable of recognizing DNA containing lesions not repaired by NER. PMID:24051049
Lam, Adeline R; Bert, Nina Le; Ho, Samantha Sw; Shen, Yu J; Tang, Li Fm; Xiong, Gordon M; Croxford, John L; Koo, Christine X; Ishii, Ken J; Akira, Shizuo; Raulet, David H; Gasser, Stephan
2014-04-15
The immunoreceptor NKG2D originally identified in natural killer (NK) cells recognizes ligands that are upregulated on tumor cells. Expression of NKG2D ligands (NKG2DL) is induced by the DNA damage response (DDR), which is often activated constitutively in cancer cells, revealing them to NK cells as a mechanism of immunosurveillance. Here, we report that the induction of retinoic acid early transcript 1 (RAE1) ligands for NKG2D by the DDR relies on a STING-dependent DNA sensor pathway involving the effector molecules TBK1 and IRF3. Cytosolic DNA was detected in lymphoma cell lines that express RAE1 and its occurrence required activation of the DDR. Transfection of DNA into ligand-negative cells was sufficient to induce RAE1 expression. Irf3(+/-);Eμ-Myc mice expressed lower levels of RAE1 on tumor cells and showed a reduced survival rate compared with Irf3(+/+);Eμ-Myc mice. Taken together, our results suggest that genomic damage in tumor cells leads to activation of STING-dependent DNA sensor pathways, thereby activating RAE1 and enabling tumor immunosurveillance. ©2014 AACR.
You, B-J; Wu, Y-C; Lee, C-L; Lee, H-Z
2014-03-01
4β-Hydroxywithanolide E is a bioactive withanolide extracted from Physalis peruviana. 4β-Hydroxywithanolide E caused reactive oxygen species production and cell apoptosis in human breast cancer MCF-7 cells. We further found that 4β-hydroxywithanolide E induced DNA damage and regulated the DNA damage signaling in MCF-7 cells. The DNA damage sensors and repair proteins act promptly to remove DNA lesions by 4β-hydroxywithanolide E. The ataxia-telangiectasia mutated protein (ATM)-dependent DNA damage signaling pathway is involved in 4β-hydroxywithanolide E-induced apoptosis of MCF-7 cells. Non-homologous end joining pathway, but not homologous recombination, is the major route of protection of MCF-7 cells against 4β-hydroxywithanolide E-induced DNA damage. 4β-Hydroxywithanolide E had no significant impact on the base excision repair pathway. In this study, we examined the 4β-hydroxywithanolide E-induced DNA damage as a research tool in project investigating the DNA repair signaling in breast cancer cells. We also suggest that 4β-hydroxywithanolide E assert its anti-tumor activity in carcinogenic progression and develop into a dietary chemopreventive agent. Copyright © 2014 Elsevier Ltd. All rights reserved.
DNA Damage Related Crosstalk Between the Nucleus and Mitochondria
Saki, Mohammad; Prakash, Aishwarya
2017-01-01
The electron transport chain is the primary pathway by which a cell generates energy in the form of ATP. Byproducts of this process produce reactive oxygen species that can cause damage to mitochondrial DNA. If not properly repaired, the accumulation of DNA damage can lead to mitochondrial dysfunction linked to several human disorders including neurodegenerative diseases and cancer. Mitochondria are able to combat oxidative DNA damage via repair mechanisms that are analogous to those found in the nucleus. Of the repair pathways currently reported in the mitochondria, the base excision repair pathway is the most comprehensively described. Proteins that are involved with the maintenance of mtDNA are encoded by nuclear genes and translocate to the mitochondria making signaling between the nucleus and mitochondria imperative. In this review, we discuss the current understanding of mitochondrial DNA repair mechanisms and also highlight the sensors and signaling pathways that mediate crosstalk between the nucleus and mitochondria in the event of mitochondrial stress. PMID:27915046
Increased oxidative phosphorylation in response to acute and chronic DNA damage
Brace, Lear E; Vose, Sarah C; Stanya, Kristopher; Gathungu, Rose M; Marur, Vasant R; Longchamp, Alban; Treviño-Villarreal, Humberto; Mejia, Pedro; Vargas, Dorathy; Inouye, Karen; Bronson, Roderick T; Lee, Chih-Hao; Neilan, Edward; Kristal, Bruce S; Mitchell, James R
2016-01-01
Accumulation of DNA damage is intricately linked to aging, aging-related diseases and progeroid syndromes such as Cockayne syndrome (CS). Free radicals from endogenous oxidative energy metabolism can damage DNA, however the potential of acute or chronic DNA damage to modulate cellular and/or organismal energy metabolism remains largely unexplored. We modeled chronic endogenous genotoxic stress using a DNA repair-deficient Csa−/−|Xpa−/− mouse model of CS. Exogenous genotoxic stress was modeled in mice in vivo and primary cells in vitro treated with different genotoxins giving rise to diverse spectrums of lesions, including ultraviolet radiation, intrastrand crosslinking agents and ionizing radiation. Both chronic endogenous and acute exogenous genotoxic stress increased mitochondrial fatty acid oxidation (FAO) on the organismal level, manifested by increased oxygen consumption, reduced respiratory exchange ratio, progressive adipose loss and increased FAO in tissues ex vivo. In multiple primary cell types, the metabolic response to different genotoxins manifested as a cell-autonomous increase in oxidative phosphorylation (OXPHOS) subsequent to a transient decline in steady-state NAD+ and ATP levels, and required the DNA damage sensor PARP-1 and energy-sensing kinase AMPK. We conclude that increased FAO/OXPHOS is a general, beneficial, adaptive response to DNA damage on cellular and organismal levels, illustrating a fundamental link between genotoxic stress and energy metabolism driven by the energetic cost of DNA damage. Our study points to therapeutic opportunities to mitigate detrimental effects of DNA damage on primary cells in the context of radio/chemotherapy or progeroid syndromes. PMID:28721274
Park, Ilwoo; Mukherjee, Joydeep; Ito, Motokazu; Chaumeil, Myriam M.; Jalbert, Llewellyn E.; Gaensler, Karin; Ronen, Sabrina M.; Nelson, Sarah J.; Pieper, Russell O.
2014-01-01
Recent findings show that exposure to temozolomide (TMZ), a DNA damaging drug used to treat glioblastoma, can suppress the conversion of pyruvate to lactate. To understand the mechanistic basis for this effect and its potential utility as a TMZ response biomarker, we compared the response of isogenic glioblastoma cell populations differing only in expression of the DNA repair protein MGMT, a TMZ-sensitivity determinant, after exposure to TMZ in vitro and in vivo. Hyperpolarized [1-(13)C]-pyruvate-based magnetic resonance imaging was used to monitor temporal effects on pyruvate metabolism in parallel with DNA damage responses and tumor cell growth. TMZ exposure decreased conversion of pyruvate to lactate only in MGMT-deficient cells. This effect coincided temporally with TMZ-induced increases in levels of the DNA damage response protein pChk1. Changes in pyruvate to lactate conversion triggered by TMZ preceded tumor growth suppression and were not associated with changes in levels of NADH or lactate dehydrogenase activity in tumors. Instead, they were associated with a TMZ-induced decrease in the expression and activity of pyruvate kinase PKM2, a glycolytic enzyme that indirectly controls pyruvate metabolism. PKM2 silencing decreased pyruvate kinase activity, intracellular lactate levels, and conversion of pyruvate to lactate in the same manner as TMZ, and Chk1 silencing blocked the TMZ-induced decrease in PKM2 expression. Overall, our findings showed how TMZ-induced DNA damage is linked through PKM2 to changes in pyruvate metabolism, and how these changes can be exploited by magnetic resonance imaging methods as an early sensor of TMZ therapeutic response. PMID:25320009
Biological Sensors for Solar Ultraviolet Radiation
Yagura, Teiti; Makita, Kazuo; Yamamoto, Hiromasa; Menck, Carlos F.M.; Schuch, André P.
2011-01-01
Solar ultraviolet (UV) radiation is widely known as a genotoxic environmental agent that affects Earth ecosystems and the human population. As a primary consequence of the stratospheric ozone layer depletion observed over the last decades, the increasing UV incidence levels have heightened the concern regarding deleterious consequences affecting both the biosphere and humans, thereby leading to an increase in scientific efforts to understand the role of sunlight in the induction of DNA damage, mutagenesis, and cell death. In fact, the various UV-wavelengths evoke characteristic biological impacts that greatly depend on light absorption of biomolecules, especially DNA, in living organisms, thereby justifying the increasing importance of developing biological sensors for monitoring the harmful impact of solar UV radiation under various environmental conditions. In this review, several types of biosensors proposed for laboratory and field application, that measure the biological effects of the UV component of sunlight, are described. Basically, the applicability of sensors based on DNA, bacteria or even mammalian cells are presented and compared. Data are also presented showing that on using DNA-based sensors, the various types of damage produced differ when this molecule is exposed in either an aqueous buffer or a dry solution. Apart from the data thus generated, the development of novel biosensors could help in evaluating the biological effects of sunlight on the environment. They also emerge as alternative tools for using live animals in the search for protective sunscreen products. PMID:22163847
Rad50S alleles of the Mre11 complex: questions answered and questions raised.
Usui, Takehiko; Petrini, John H J; Morales, Monica
2006-08-15
We find that Rad50S mutations in yeast and mammals exhibit constitutive PIKK (PI3-kinase like kinase)-dependent signaling [T. Usui, H. Ogawa, J.H. Petrini, A DNA damage response pathway controlled by Tel1 and the Mre11 complex. Mol. Cell 7 (2001) 1255-1266.; M. Morales, J.W. Theunissen, C.F. Kim, R. Kitagawa, M.B. Kastan, J.H. Petrini, The Rad50S allele promotes ATM-dependent DNA damage responses and suppresses ATM deficiency: implications for the Mre11 complex as a DNA damage sensor. Genes Dev. 19 (2005) 3043-4354.]. The signaling depends on Mre11 complex functions, consistent with its role as a DNA damage sensor. Rad50S is distinct from hypomorphic mutations of Mre11 and Nbs1 in mammals [M. Morales, J.W. Theunissen, C.F. Kim, R. Kitagawa, M.B. Kastan, J.H. Petrini, The Rad50S allele promotes ATM-dependent DNA damage responses and suppresses ATM deficiency: implications for the Mre11 complex as a DNA damage sensor. Genes Dev. 19 (2005) 3043-3054.; J.P. Carney, R.S. Maser, H. Olivares, E.M. Davis, Le M. Beau, J.R. Yates, III, L. Hays, W.F. Morgan, J.H. Petrini, The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93 (1998) 477-486.; G.S. Stewart, R.S. Maser, T. Stankovic, D.A. Bressan, M.I. Kaplan, N.G. Jaspers, A. Raams, P.J. Byrd, J.H. Petrini, A.M. Taylor, The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 99 (1999) 577-587.; B.R. Williams, O.K. Mirzoeva, W.F. Morgan, J. Lin, W. Dunnick, J.H. Petrini, A murine model of nijmegen breakage syndrome. Curr. Biol. 12 (2002) 648-653.; J.W. Theunissen, M.I. Kaplan, P.A. Hunt, B.R. Williams, D.O. Ferguson, F.W. Alt, J.H. Petrini, Checkpoint failure and chromosomal instability without lymphomagenesis in Mre11(ATLD1/ATLD1) mice. Mol. Cell 12 (2003) 1511-1523.] and the Mre11 complex deficiency in yeast [T. Usui, H. Ogawa, J.H. Petrini, A DNA damage response pathway controlled by Tel1 and the Mre11 complex. Mol. Cell 7 (2001) 1255-1266.; D'D. Amours, S.P. Jackson, The yeast Xrs2 complex functions in S phase checkpoint regulation. Genes Dev. 15 (2001) 2238-49. ; M. Grenon, C. Gilbert, N.F. Lowndes, Checkpoint activation in response to double-strand breaks requires the Mre11/Rad50/Xrs2 complex. Nat. Cell Biol. 3 (2001) 844-847. ] where the signaling is compromised. Herein, we describe evidence for chronic signaling by Rad50S and discuss possible mechanisms.
Review of Chromium (VI) Apoptosis, Cell-Cycle-Arrest, and Carcinogenesis
Chiu, A; Shi, J; Lee, WKP; Hill, R; Wakeman, TP; Katz, A; Xu, B; Dalal, NS; Robertson, JD; Chen, C; Chiu, N; Donehower, L
2014-01-01
Hexavalent chromium combines with glutathione in chloride intracellular channel carrier to form tetravalent and pentavelent chromium in plasma and organelle membranes. It also combines with NADH/NADPH to form pentavalent chromium in mitochondria. Tetravalent- and pentavalent- chromium (directly and indirectly) mediated DNA double strand breaks activate DNA damage signaling sensors: DNA-dependent-protein-kinase signals p53-dependent intrinsic mitochorndrial apoptosis, and ataxia-telangiectasia-mutated and ataxia-telangiectasia-Rad3-related signal cell-arrest for DNA repair. Tetravalent chromium may be the most potent species since it causes DNA breaks and somatic recombination, but not apoptosis. Upon further failure of apoptosis and senescence/DNA-repair, damaged cells may become immortal with loss-of-heterozygosity and genetic plasticity. PMID:20859824
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koike, Manabu, E-mail: m_koike@nirs.go.jp; Yutoku, Yasutomo; Graduate School of Science, Chiba University, Chiba 263-8522
2011-08-19
Highlights: {yields} p21 accumulated rapidly at laser-irradiated sites via its C-terminal region. {yields} p21 colocalized with the DSB marker {gamma}-H2AX and the DSB sensor Ku80. {yields} Accumulation of p21 is dependent on PCNA, but not p53 and the NHEJ core factors. {yields} Accumulation activity of p21 was conserved among human and animal cells. {yields} p21 is a useful tool as a detection marker of DNA damaged sites. -- Abstract: The cyclin-dependent kinase (CDK) inhibitor p21 plays key roles in p53-dependent DNA-damage responses, i.e., cell cycle checkpoints, senescence, or apoptosis. p21 might also play a role in DNA repair. p21 focimore » arise at heavy-ion-irradiated DNA-double-strand break (DSB) sites, which are mainly repaired by nonhomologous DNA-end-joining (NHEJ). However, no mechanisms of p21 accumulation at double-strand break (DSB) sites have been clarified in detail. Recent works indicate that Ku70 and Ku80 are essential for the accumulation of other NHEJ core factors, e.g., DNA-PKcs, XRCC4 and XLF, and other DNA damage response factors, e.g., BRCA1. Here, we show that p21 foci arise at laser-irradiated sites in cells from various tissues from various species. The accumulation of EGFP-p21 was detected in not only normal cells, but also transformed or cancer cells. Our results also showed that EGFP-p21 accumulated rapidly at irradiated sites, and colocalized with the DSB marker {gamma}-H2AX and with the DSB sensor protein Ku80. On the other hand, the accumulation occurred in Ku70-, Ku80-, or DNA-PKcs-deficient cell lines and in human papillomavirus 18-positive cells, whereas the p21 mutant without the PCNA-binding region (EGFP-p21(1-146)) failed to accumulate at the irradiated sites. These findings suggest that the accumulation of p21, but not functional p53 and the NHEJ core factors, is dependent on PCNA. These findings also suggest that the accumulation activity of p21 at DNA damaged sites is conserved among human and animal cells, and p21 is a useful tool as a detection marker of DNA damaged sites.« less
Break-induced telomere synthesis underlies alternative telomere maintenance
Dilley, Robert L.; Verma, Priyanka; Cho, Nam Woo; Winters, Harrison D.; Wondisford, Anne R.; Greenberg, Roger A.
2017-01-01
Homology-directed DNA repair is essential for genome maintenance through templated DNA synthesis. Alternative lengthening of telomeres (ALT) necessitates homology-directed DNA repair to maintain telomeres in about 10–15% of human cancers. How DNA damage induces assembly and execution of a DNA replication complex (break-induced replisome) at telomeres or elsewhere in the mammalian genome is poorly understood. Here we define break-induced telomere synthesis and demonstrate that it utilizes a specialized replisome, which underlies ALT telomere maintenance. DNA double-strand breaks enact nascent telomere synthesis by long-tract unidirectional replication. Proliferating cell nuclear antigen (PCNA) loading by replication factor C (RFC) acts as the initial sensor of telomere damage to establish predominance of DNA polymerase δ (Pol δ) through its POLD3 subunit. Break-induced telomere synthesis requires the RFC–PCNA–Pol δ axis, but is independent of other canonical replisome components, ATM and ATR, or the homologous recombination protein Rad51. Thus, the inception of telomere damage recognition by the break-induced replisome orchestrates homology-directed telomere maintenance. PMID:27760120
Krishnan, Sadagopan; Bajrami, Besnik; Mani, Vigneshwaran; Pan, Shenmin; Rusling, James F.
2012-01-01
Voltammetric sensors made with films of polyions, double-stranded DNA and liver microsomes adsorbed layer-by-layer onto pyrolytic graphite electrodes were evaluated for reactive metabolite screening. This approach features simple, inexpensive screening without enzyme purification for applications in drug or environmental chemical development. Cytochrome P450 enzymes (CYPs) in the liver microsomes were activated by an NADPH regenerating system or by electrolysis to metabolize model carcinogenic compounds nitrosamine and styrene. Reactive metabolites formed in the films were trapped as adducts with nucleobases on DNA. The DNA damage was detected by square-wave voltammetry (SWV) using Ru(bpy)32+ as a DNA-oxidation catalyst. These sensors showed a larger rate of increase in signal vs. reaction time for a highly toxic nitrosamine than for the moderately toxic styrene due to more rapid reactive metabolite-DNA adduct formation. Results were consistent with reported in vivo TD50 data for the formation of liver tumors in rats. Analogous polyion/ liver microsome films prepared on 500 nm silica nanoparticles (nanoreactors) and reacted with nitrosamine or styrene, provided LC-MS or GC analyses of metabolite formation rates that correlated well with sensor response. PMID:23100998
Ogara, María F; Sirkin, Pablo F; Carcagno, Abel L; Marazita, Mariela C; Sonzogni, Silvina V; Ceruti, Julieta M; Cánepa, Eduardo T
2013-01-01
The maintenance of genomic integrity is of main importance to the survival and health of organisms which are continuously exposed to genotoxic stress. Cells respond to DNA damage by activating survival pathways consisting of cell cycle checkpoints and repair mechanisms. However, the signal that triggers the DNA damage response is not necessarily a direct detection of the primary DNA lesion. In fact, chromatin defects may serve as initiating signals to activate those mechanisms. If the modulation of chromatin structure could initiate a checkpoint response in a direct manner, this supposes the existence of specific chromatin sensors. p19INK4d, a member of the INK4 cell cycle inhibitors, plays a crucial role in regulating genomic stability and cell viability by enhancing DNA repair. Its expression is induced in cells injured by one of several genotoxic treatments like cis-platin, UV light or neocarzinostatin. Nevertheless, when exogenous DNA damaged molecules are introduced into the cell, this induction is not observed. Here, we show that p19INK4d is enhanced after chromatin relaxation even in the absence of DNA damage. This induction was shown to depend upon ATM/ATR, Chk1/Chk2 and E2F activity, as is the case of p19INK4d induction by endogenous DNA damage. Interestingly, p19INK4d improves DNA repair when the genotoxic damage is caused in a relaxed-chromatin context. These results suggest that changes in chromatin structure, and not DNA damage itself, is the actual trigger of p19INK4d induction. We propose that, in addition to its role as a cell cycle inhibitor, p19INK4d could participate in a signaling network directed to detecting and eventually responding to chromatin anomalies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Hui; Shi, Qiong; Song, Xiufang
2015-07-01
Our previous studies demonstrated that polychlorinated biphenyl (PCB) quinone induced oxidative DNA damage in HepG2 cells. To promote genomic integrity, DNA damage response (DDR) coordinates cell-cycle transitions, DNA repair and apoptosis. PCB quinone-induced cell cycle arrest and apoptosis have been documented, however, whether PCB quinone insult induce DNA repair signaling is still unknown. In this study, we identified the activation of DDR and corresponding signaling events in HepG2 cells upon the exposure to a synthetic PCB quinone, PCB29-pQ. Our data illustrated that PCB29-pQ induces the phosphorylation of p53, which was mediated by ataxia telangiectasia mutated (ATM) protein kinase. The observedmore » phosphorylated histone H2AX (γ-H2AX) foci and the elevation of 8-hydroxy-2′-deoxyguanosine (8-OHdG) indicated that DDR was stimulated by PCB29-pQ treatment. Additionally, we found PCB29-pQ activates non-homologous end joining (NHEJ), base excision repair (BER) and nucleotide excision repair (NER) signalings. However, these repair pathways are not error-free processes and aberrant repair of DNA damage may cause the potential risk of carcinogenesis and mutagenesis. - Highlights: • Polychlorinated biphenyl quinone induces oxidative DNA damage in HepG2 cells. • The elevation of γ-H2AX and 8-OHdG indicates the activation of DNA damage response. • ATM-p53 signaling acts as the DNA damage sensor and effector. • Polychlorinated biphenyl quinone activates NHEJ, BER and NER signalings.« less
Al-Ta’ii, Hassan Maktuff Jaber; Amin, Yusoff Mohd; Periasamy, Vengadesh
2016-01-01
Deoxyribonucleic acid or DNA based sensors, especially as humidity and alpha particle sensors have become quite popular in recent times due to flexible and highly optimizable nature of this fundamental biomaterial. Application of DNA electronics allow for more sensitive, accurate and effective sensors to be developed and fabricated. In this work, we examined the effect of different humidity conditions on the capacitive and resistive response of Aluminum (Al)/DNA/Al Schottky barrier structure when bombarded by time-dependent dosages of alpha particles. Based on current-voltage profiles, which demonstrated rectifying behaviours, Schottky diode parameters such as ideality factor, barrier height and series resistance was calculated. Results observed generally pointed towards a decrease in the resistance value from the pristine to the radiated structures. It was also demonstrated that under the effect of humidity, the capacitance of the DNA thin film increased from 0.05894 to 92.736 nF, with rising relative humidity level. We also observed the occurrence of the hypersensitivity phenomena after alpha irradiation between 2 to 4 min by observing a drop in the series resistance, crucial in the study of DNA damage and repair mechanisms. These observations may also suggest the exciting possibility of utilizing Al/DNA/Al Schottky diodes as potentially sensitive humidity sensors. PMID:27160654
Carcagno, Abel L.; Marazita, Mariela C.; Sonzogni, Silvina V.; Ceruti, Julieta M.; Cánepa, Eduardo T.
2013-01-01
The maintenance of genomic integrity is of main importance to the survival and health of organisms which are continuously exposed to genotoxic stress. Cells respond to DNA damage by activating survival pathways consisting of cell cycle checkpoints and repair mechanisms. However, the signal that triggers the DNA damage response is not necessarily a direct detection of the primary DNA lesion. In fact, chromatin defects may serve as initiating signals to activate those mechanisms. If the modulation of chromatin structure could initiate a checkpoint response in a direct manner, this supposes the existence of specific chromatin sensors. p19INK4d, a member of the INK4 cell cycle inhibitors, plays a crucial role in regulating genomic stability and cell viability by enhancing DNA repair. Its expression is induced in cells injured by one of several genotoxic treatments like cis-platin, UV light or neocarzinostatin. Nevertheless, when exogenous DNA damaged molecules are introduced into the cell, this induction is not observed. Here, we show that p19INK4d is enhanced after chromatin relaxation even in the absence of DNA damage. This induction was shown to depend upon ATM/ATR, Chk1/Chk2 and E2F activity, as is the case of p19INK4d induction by endogenous DNA damage. Interestingly, p19INK4d improves DNA repair when the genotoxic damage is caused in a relaxed-chromatin context. These results suggest that changes in chromatin structure, and not DNA damage itself, is the actual trigger of p19INK4d induction. We propose that, in addition to its role as a cell cycle inhibitor, p19INK4d could participate in a signaling network directed to detecting and eventually responding to chromatin anomalies. PMID:23593412
Rein, Katrin; Yanez, Diana A.; Terré, Berta; Palenzuela, Lluís; Aivio, Suvi; Wei, Kaichun; Edelmann, Winfried; Stark, Jeremy M.; Stracker, Travis H.
2015-01-01
The maintenance of genome stability is critical for the suppression of diverse human pathologies that include developmental disorders, premature aging, infertility and predisposition to cancer. The DNA damage response (DDR) orchestrates the appropriate cellular responses following the detection of lesions to prevent genomic instability. The MRE11 complex is a sensor of DNA double strand breaks (DSBs) and plays key roles in multiple aspects of the DDR, including DNA end resection that is critical for signaling and DNA repair. The MRE11 complex has been shown to function both upstream and in concert with the 5′-3′ exonuclease EXO1 in DNA resection, but it remains unclear to what extent EXO1 influences DSB responses independently of the MRE11 complex. Here we examine the genetic relationship of the MRE11 complex and EXO1 during mammalian development and in response to DNA damage. Deletion of Exo1 in mice expressing a hypomorphic allele of Nbs1 leads to severe developmental impairment, embryonic death and chromosomal instability. While EXO1 plays a minimal role in normal cells, its loss strongly influences DNA replication, DNA repair, checkpoint signaling and damage sensitivity in NBS1 hypomorphic cells. Collectively, our results establish a key role for EXO1 in modulating the severity of hypomorphic MRE11 complex mutations. PMID:26160886
Kuriakose, Teneema; Man, Si Ming; Malireddi, R.K. Subbarao; Karki, Rajendra; Kesavardhana, Sannula; Place, David E.; Neale, Geoffrey; Vogel, Peter; Kanneganti, Thirumala-Devi
2016-01-01
The interferon-inducible protein Z-DNA binding protein 1 (ZBP1, also known as DNA-dependent activator of IFN-regulatory factors (DAI) and DLM-1) was identified as a dsDNA sensor, which instigates innate immune responses. However, this classification has been disputed and whether ZBP1 functions as a pathogen sensor during an infection has remained unknown. Herein, we demonstrated ZBP1-mediated sensing of the influenza A virus (IAV) proteins NP and PB1, triggering cell death and inflammatory responses via the RIPK1–RIPK3–Caspase-8 axis. ZBP1 regulates NLRP3 inflammasome activation as well as induction of apoptosis, necroptosis and pyroptosis in IAV-infected cells. Importantly, ZBP1 deficiency protected mice from mortality during IAV infection owing to reduced inflammatory responses and epithelial damage. Overall, these findings indicate that ZBP1 is an innate immune sensor of IAV and highlight its importance in the pathogenesis of IAV infection. PMID:27917412
DNA damage checkpoint kinase ATM regulates germination and maintains genome stability in seeds
Waterworth, Wanda M.; Footitt, Steven; Bray, Clifford M.; Finch-Savage, William E.; West, Christopher E.
2016-01-01
Genome integrity is crucial for cellular survival and the faithful transmission of genetic information. The eukaryotic cellular response to DNA damage is orchestrated by the DNA damage checkpoint kinases ATAXIA TELANGIECTASIA MUTATED (ATM) and ATM AND RAD3-RELATED (ATR). Here we identify important physiological roles for these sensor kinases in control of seed germination. We demonstrate that double-strand breaks (DSBs) are rate-limiting for germination. We identify that desiccation tolerant seeds exhibit a striking transcriptional DSB damage response during germination, indicative of high levels of genotoxic stress, which is induced following maturation drying and quiescence. Mutant atr and atm seeds are highly resistant to aging, establishing ATM and ATR as determinants of seed viability. In response to aging, ATM delays germination, whereas atm mutant seeds germinate with extensive chromosomal abnormalities. This identifies ATM as a major factor that controls germination in aged seeds, integrating progression through germination with surveillance of genome integrity. Mechanistically, ATM functions through control of DNA replication in imbibing seeds. ATM signaling is mediated by transcriptional control of the cell cycle inhibitor SIAMESE-RELATED 5, an essential factor required for the aging-induced delay to germination. In the soil seed bank, seeds exhibit increased transcript levels of ATM and ATR, with changes in dormancy and germination potential modulated by environmental signals, including temperature and soil moisture. Collectively, our findings reveal physiological functions for these sensor kinases in linking genome integrity to germination, thereby influencing seed quality, crucial for plant survival in the natural environment and sustainable crop production. PMID:27503884
DNA damage checkpoint kinase ATM regulates germination and maintains genome stability in seeds.
Waterworth, Wanda M; Footitt, Steven; Bray, Clifford M; Finch-Savage, William E; West, Christopher E
2016-08-23
Genome integrity is crucial for cellular survival and the faithful transmission of genetic information. The eukaryotic cellular response to DNA damage is orchestrated by the DNA damage checkpoint kinases ATAXIA TELANGIECTASIA MUTATED (ATM) and ATM AND RAD3-RELATED (ATR). Here we identify important physiological roles for these sensor kinases in control of seed germination. We demonstrate that double-strand breaks (DSBs) are rate-limiting for germination. We identify that desiccation tolerant seeds exhibit a striking transcriptional DSB damage response during germination, indicative of high levels of genotoxic stress, which is induced following maturation drying and quiescence. Mutant atr and atm seeds are highly resistant to aging, establishing ATM and ATR as determinants of seed viability. In response to aging, ATM delays germination, whereas atm mutant seeds germinate with extensive chromosomal abnormalities. This identifies ATM as a major factor that controls germination in aged seeds, integrating progression through germination with surveillance of genome integrity. Mechanistically, ATM functions through control of DNA replication in imbibing seeds. ATM signaling is mediated by transcriptional control of the cell cycle inhibitor SIAMESE-RELATED 5, an essential factor required for the aging-induced delay to germination. In the soil seed bank, seeds exhibit increased transcript levels of ATM and ATR, with changes in dormancy and germination potential modulated by environmental signals, including temperature and soil moisture. Collectively, our findings reveal physiological functions for these sensor kinases in linking genome integrity to germination, thereby influencing seed quality, crucial for plant survival in the natural environment and sustainable crop production.
Structure of transcribed chromatin is a sensor of DNA damage
Pestov, Nikolay A.; Gerasimova, Nadezhda S.; Kulaeva, Olga I.; Studitsky, Vasily M.
2015-01-01
Early detection and repair of damaged DNA is essential for cell functioning and survival. Although multiple cellular systems are involved in the repair of single-strand DNA breaks (SSBs), it remains unknown how SSBs present in the nontemplate strand (NT-SSBs) of DNA organized in chromatin are detected. The effect of NT-SSBs on transcription through chromatin by RNA polymerase II was studied. NT-SSBs localized in the promoter-proximal region of nucleosomal DNA and hidden in the nucleosome structure can induce a nearly quantitative arrest of RNA polymerase downstream of the break, whereas more promoter-distal SSBs moderately facilitate transcription. The location of the arrest sites on nucleosomal DNA suggests that formation of small intranucleosomal DNA loops causes the arrest. This mechanism likely involves relief of unconstrained DNA supercoiling accumulated during transcription through chromatin by NT-SSBs. These data suggest the existence of a novel chromatin-specific mechanism that allows the detection of NT-SSBs by the transcribing enzyme. PMID:26601207
Silva, Bárbara Alcaraz; Stambaugh, Jessica R.
2013-01-01
Abstract. Telomeres are at the ends of chromosomes. Previous evidence suggests that laser-induced deoxyribose nucleic acid (DNA) breaks at chromosome ends during anaphase results in delayed cytokinesis. A possible explanation for this delay is that the DNA damage response (DDR) mechanism has been activated. We describe a live imaging method to study the effects of DDR activation following focal point near-infrared femtosecond laser microirradiation either at a single chromosome end or at a chromosome arm in mitotic anaphase cells. Laser microirradiation is used in combination with dual fluorescent labeling to monitor the co-localization of double-strand break marker γH2AX along with the DDR factors in PtK2 (Potorous tridactylus) cells. Laser-induced DNA breaks in chromosome ends as well as in chromosome arms results in recruitment of the following: poly(ADP-ribose) polymerase 1, checkpoint sensors (p-Chk1, p-Chk2), DNA repair protein Ku70/Ku80, and proliferating cell nuclear antigen. However, phosphorylated p53 at serine 15 is detected only at chromosome ends and not at chromosome arms. Full activation of DDR on damaged chromosome ends may explain previously published results that showed the delay of cytokinesis. PMID:24064949
Tang, Wenwei; Zhang, Min; Zeng, Xinping
2014-01-01
In this paper, the anti-cancer drug 6-mercaptopurine (6-MP) was taken as the detection object. The biosensor of dsDNA/GNs/chit/GCE was established using the grapheme (GNs) and chitosan (chit) as the compound modified material. The electrochemical behavior of 6-MP on the sensor was discussed, and the damage and its mechanism of 6-MP on DNA were studied. The experimental result showed that, after the modification of GNs-chit, the electrode activation area of GNs/chit/GCE increased remarkably, which was improved from 1.76cm2 to 8.64 cm2, and the responsive oxidation peak current of GNs/chit/GCE to K3[Fe(CN)6] also increased remarkably. At the meantime, it was demonstrated that DNA was effectively fixed on the GNs/chit/GCE electrode;6-MP caused obvious damage to dsDNA, and the damage degree on the adenine was bigger than that on the guanine; the interaction between 6-MP and dsDNA was preliminarily deduced as the intercalation, and its electrochemical oxidation process was an irreversible process controlled by the adsorption.
An electrochemical sensor based on polyaniline for monitoring hydroquinone and its damage on DNA.
Tang, Wenwei; Zhang, Min; Li, Weihao; Zeng, Xinping
2014-09-01
A dsDNA/PANI/CTS/GCE biosensor was constructed by using the biocompatible chitosan (CTS) and the polyaniline (PANI) with excellent electric catalytic properties and large specific surface areas. The electrochemical behavior of hydroquinone on biosensor and its DNA-damaging mechanisms were investigated. Results showed that the redox peak current was remarkably increased after glassy carbon electrode (GCE) was modified by PANI/CTS. The dsDNA damage by hydroquinone was concentration dependent, and increased along with the increase of hydroquinone oxidation peak current and the reduction of dsDNA guanine oxidation peak current. The linear detection range of hydroquinone with dsDNA/PANI/CTS/GCE was 1.25×10(-6)-3.2×10(-4) M, and the detection limit was 9.65×10(-7) M. It was confirmed by the UV method that applying dsDNA/PANI/CTS/GCE to monitor hydroquinone was accurate and reliable. In addition, it could be deduced that the mode of interaction between the hydroquinone and dsDNA was intercalation. The electrochemical oxidation of hydroquinone on the dsDNA/PANI/CTS/GCE electrode was an adsorption-controlled irreversible and a two-electron two-proton transfer process. Copyright © 2014 Elsevier B.V. All rights reserved.
Rein, Katrin; Yanez, Diana A; Terré, Berta; Palenzuela, Lluís; Aivio, Suvi; Wei, Kaichun; Edelmann, Winfried; Stark, Jeremy M; Stracker, Travis H
2015-09-03
The maintenance of genome stability is critical for the suppression of diverse human pathologies that include developmental disorders, premature aging, infertility and predisposition to cancer. The DNA damage response (DDR) orchestrates the appropriate cellular responses following the detection of lesions to prevent genomic instability. The MRE11 complex is a sensor of DNA double strand breaks (DSBs) and plays key roles in multiple aspects of the DDR, including DNA end resection that is critical for signaling and DNA repair. The MRE11 complex has been shown to function both upstream and in concert with the 5'-3' exonuclease EXO1 in DNA resection, but it remains unclear to what extent EXO1 influences DSB responses independently of the MRE11 complex. Here we examine the genetic relationship of the MRE11 complex and EXO1 during mammalian development and in response to DNA damage. Deletion of Exo1 in mice expressing a hypomorphic allele of Nbs1 leads to severe developmental impairment, embryonic death and chromosomal instability. While EXO1 plays a minimal role in normal cells, its loss strongly influences DNA replication, DNA repair, checkpoint signaling and damage sensitivity in NBS1 hypomorphic cells. Collectively, our results establish a key role for EXO1 in modulating the severity of hypomorphic MRE11 complex mutations. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
NASA Astrophysics Data System (ADS)
Wang, Ying; Hu, Yuehua; Wu, Tao; Zhang, Lihua; Liu, Hua; Zhou, Xiaoshun; Shao, Yong
2016-01-01
Removal of a damaged base in DNA produces an abasic site (AP site) nanocavity. If left un-repaired in vivo by the specific enzyme, this nanocavity will result in nucleotide mutation in the following DNA replication. Therefore, selective recognition of AP site nanocavity by small molecules is important for identification of such DNA damage and development of genetic drugs. In this work, we investigate the fluorescence behavior of isoquinoline alkaloids including palmatine (PAL), berberine (BER), epiberberine (EPI), jatrorrhizine (JAT), coptisine (COP), coralyne (COR), worenine (WOR), berberrubine (BEU), sanguinarine (SAN), chelerythrine (CHE), and nitidine (NIT) upon binding with the AP nanocavity. PAL is screened out as the most efficient fluorophore-switched probe to recognize the AP nanocavity over the fully matched DNA. Its fluorescence enhancement occurs for all of the AP nanocavity sequence environments, which has not been achieved by the previously used probes. The bridged π conjugation effect should partially contribute to the AP nanocavity-specific fluorescence, as opposed to the solvent effect. Due to the strong binding with the AP nanocavity, PAL will find wide applications in the DNA damage recognition and sensor development.
SMC1-Mediated Intra-S-Phase Arrest Facilitates Bocavirus DNA Replication
Luo, Yong; Deng, Xuefeng; Cheng, Fang; Li, Yi
2013-01-01
Activation of a host DNA damage response (DDR) is essential for DNA replication of minute virus of canines (MVC), a member of the genus Bocavirus of the Parvoviridae family; however, the mechanism by which DDR contributes to viral DNA replication is unknown. In the current study, we demonstrate that MVC infection triggers the intra-S-phase arrest to slow down host cellular DNA replication and to recruit cellular DNA replication factors for viral DNA replication. The intra-S-phase arrest is regulated by ATM (ataxia telangiectasia-mutated kinase) signaling in a p53-independent manner. Moreover, we demonstrate that SMC1 (structural maintenance of chromosomes 1) is the key regulator of the intra-S-phase arrest induced during infection. Either knockdown of SMC1 or complementation with a dominant negative SMC1 mutant blocks both the intra-S-phase arrest and viral DNA replication. Finally, we show that the intra-S-phase arrest induced during MVC infection was caused neither by damaged host cellular DNA nor by viral proteins but by replicating viral genomes physically associated with the DNA damage sensor, the Mre11-Rad50-Nbs1 (MRN) complex. In conclusion, the feedback loop between MVC DNA replication and the intra-S-phase arrest is mediated by ATM-SMC1 signaling and plays a critical role in MVC DNA replication. Thus, our findings unravel the mechanism underlying DDR signaling-facilitated MVC DNA replication and demonstrate a novel strategy of DNA virus-host interaction. PMID:23365434
Krishnaraj, Jayaraman; Kowshik, Jaganathan; Sebastian, Robin; Raghavan, Sathees C; Nagini, Siddavaram
2017-05-15
Occupational exposure to welding fumes containing a complex mixture of genotoxic heavy metals, radiation, gases and nanoparticles poses a serious health hazard to welders. Since their categorization as possible carcinogens, welding fumes have gained increasing attention as high priority agents for risk assessment. The present study was undertaken to investigate the effects of welding fume inhalation on oxidative stress, DNA damage response (DDR), and nuclear factor erythroid 2-related factor-2 (Nrf2) and nuclear factor kappa B (NFκB) signalling in the lung tissues of male Sprague-Dawley rats . METHODS: Animals were divided into five groups. Group 1 animals served as control. Rats in groups 2-5 were exposed to 50mg/m 3 stainless steel (SS) welding fumes for 1h for 1day, 1 week, 2 weeks, and 4 weeks respectively. Reactive oxygen species (ROS) generation, 8-oxo-2'-deoxyguanosine (8-oxodG), xenobiotic-metabolizing enzymes (XMEs) and antioxidants were analysed. DNA damage sensors, DNA repair enzymes, inflammatory mediators, cell cycle progression, apoptosis and key players in Nrf2 and NFκB signalling were assessed by flow cytometry, quantitative real-time reverse transcriptase PCR, immunoblotting, immunohistochemistry and immunofluorescence. Rats exposed to welding fumes showed increased levels of chromium and ROS in lung tissues associated with accumulation of 8-oxodG and enhanced expression of XMEs and antioxidants. This was accompanied by upregulation of DNA damage sensors, cell cycle arrest in G1/S phase, overexpression of a multitude of DNA repair enzymes and caspase-mediated apoptosis. In addition, exposure to welding fumes induced activation of Nrf2 and NFκB signalling with enhanced expression of inflammatory mediators. The results of the present study unequivocally demonstrate that exposure of rats to SS welding fumes alters the expression of 37 genes involved in oxidative stress, detoxification, inflammation, DNA repair, cell cycle progression, and apoptosis. Activation of DDR and the ROS-sensitive Nrf2 and NFκB signalling pathways may be key molecular events that mediate adaptive cellular response to welding fume exposure. Copyright © 2017 Elsevier B.V. All rights reserved.
Low, Ley-Hian; Chow, Yuh-Lit; Li, Yijia; Goh, Choo-Peng; Putz, Ulrich; Silke, John; Ouchi, Toru; Howitt, Jason; Tan, Seong-Seng
2015-01-01
During injury, cells are vulnerable to apoptosis from a variety of stress conditions including DNA damage causing double-stranded breaks. Without repair, these breaks lead to aberrations in DNA replication and transcription, leading to apoptosis. A major response to DNA damage is provided by the protein kinase ATM (ataxia telangiectasia mutated) that is capable of commanding a plethora of signaling networks for DNA repair, cell cycle arrest, and even apoptosis. A key element in the DNA damage response is the mobilization of activating proteins into the cell nucleus to repair damaged DNA. BRAT1 is one of these proteins, and it functions as an activator of ATM by maintaining its phosphorylated status while also keeping other phosphatases at bay. However, it is unknown how BRAT1 is trafficked into the cell nucleus to maintain ATM phosphorylation. Here we demonstrate that Ndfip1-mediated ubiquitination of BRAT1 leads to BRAT1 trafficking into the cell nucleus. Without Ndfip1, BRAT1 failed to translocate to the nucleus. Under genotoxic stress, cells showed increased expression of both Ndfip1 and phosphorylated ATM. Following brain injury, neurons show increased expression of Ndfip1 and nuclear translocation of BRAT1. These results point to Ndfip1 as a sensor protein during cell injury and Ndfip1 up-regulation as a cue for BRAT1 ubiquitination by Nedd4 E3 ligases, followed by nuclear translocation of BRAT1. PMID:25631046
Functions of Replication Protein A as a Sensor of R Loops and a Regulator of RNaseH1
Nguyen, Hai Dang; Yadav, Tribhuwan; Giri, Sumanprava; Saez, Borja; Graubert, Timothy A.; Zou, Lee
2017-01-01
R loop, a transcription intermediate containing RNA:DNA hybrids and displaced single-stranded DNA (ssDNA), has emerged as a major source of genomic instability. RNaseH1, which cleaves the RNA in RNA:DNA hybrids, plays an important role in R loop suppression. Here, we show that replication protein A (RPA), a ssDNA-binding protein, interacts with RNaseH1 and colocalizes with both RNaseH1 and R loops in cells. In vitro, purified RPA directly enhances the association of RNaseH1 with RNA:DNA hybrids and stimulates the activity of RNaseH1 on R loops. An RPA binding-defective RNaseH1 mutant is not efficiently stimulated by RPA in vitro, fails to accumulate at R loops in cells, and loses the ability to suppress R loops and associated genomic instability. Thus, in addition to sensing DNA damage and replication stress, RPA is a sensor of R loops and a regulator of RNaseH1, extending the versatile role of RPA in suppression of genomic instability. PMID:28257700
Oxidative DNA damage and mammary cell proliferation by alcohol-derived salsolinol.
Murata, Mariko; Midorikawa, Kaoru; Kawanishi, Shosuke
2013-10-21
Drinking alcohol is a risk factor for breast cancer. Salsolinol (SAL) is endogenously formed by a condensation reaction of dopamine with acetaldehyde, a major ethanol metabolite, and SAL is detected in blood and urine after alcohol intake. We investigated the possibility that SAL can participate in tumor initiation and promotion by causing DNA damage and cell proliferation, leading to alcohol-associated mammary carcinogenesis. SAL caused oxidative DNA damage including 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), in the presence of transition metal ions, such as Cu(II) and Fe(III)EDTA. Inhibitory effects of scavengers on SAL-induced DNA damage and the electron spin resonance study indicated the involvement of H₂O₂, which is generated via the SAL radical. Experiments on scavengers and site specificity of DNA damage suggested ·OH generation via a Fenton reaction and copper-peroxide complexes in the presence of Fe(III)EDTA and Cu(II), respectively. SAL significantly increased 8-oxodG formation in normal mammary epithelial MCF-10A cells. In addition, SAL induced cell proliferation in estrogen receptor (ER)-negative MCF-10A cells, and the proliferation was inhibited by an antioxidant N-acetylcysteine and an epidermal growth factor receptor (EGFR) inhibitor AG1478, suggesting that reactive oxygen species may participate in the proliferation of MCF-10A cells via EGFR activation. Furthermore, SAL induced proliferation in estrogen-sensitive breast cancer MCF-7 cells, and a surface plasmon resonance sensor revealed that SAL significantly increased the binding activity of ERα to the estrogen response element but not ERβ. In conclusion, SAL-induced DNA damage and cell proliferation may play a role in tumor initiation and promotion of multistage mammary carcinogenesis in relation to drinking alcohol.
Matsunuma, Ryoichi; Ohhata, Tatsuya; Kitagawa, Kyoko; Sakai, Satoshi; Uchida, Chiharu; Shiotani, Bunsyo; Matsumoto, Masaki; Nakayama, Keiichi I.; Ogura, Hiroyuki; Shiiya, Norihiko; Kitagawa, Masatoshi
2015-01-01
Histone acetyltransferase binding to ORC-1 (HBO1) is a critically important histone acetyltransferase for forming the prereplicative complex (pre-RC) at the replication origin. Pre-RC formation is completed by loading of the MCM2-7 heterohexameric complex, which functions as a helicase in DNA replication. HBO1 recruited to the replication origin by CDT1 acetylates histone H4 to relax the chromatin conformation and facilitates loading of the MCM complex onto replication origins. However, the acetylation status and mechanism of regulation of histone H3 at replication origins remain elusive. HBO1 positively regulates cell proliferation under normal cell growth conditions. Whether HBO1 regulates proliferation in response to DNA damage is poorly understood. In this study, we demonstrated that HBO1 was degraded after DNA damage to suppress cell proliferation. Ser50 and Ser53 of HBO1 were phosphorylated in an ATM/ATR DNA damage sensor-dependent manner after UV treatment. ATM/ATR-dependently phosphorylated HBO1 preferentially interacted with DDB2 and was ubiquitylated by CRL4DDB2. Replacement of endogenous HBO1 in Ser50/53Ala mutants maintained acetylation of histone H3K14 and impaired cell cycle regulation in response to UV irradiation. Our findings demonstrate that HBO1 is one of the targets in the DNA damage checkpoint. These results show that ubiquitin-dependent control of the HBO1 protein contributes to cell survival during UV irradiation. PMID:26572825
Yang, Guang; Liu, Chao; Chen, Shih-Hsun; Kassab, Muzaffer A; Hoff, J Damon; Yu, Xiaochun
2018-01-01
Abstract DNA double-strand breaks (DSBs) are fatal DNA lesions and activate a rapid DNA damage response. However, the earliest stage of DSB sensing remains elusive. Here, we report that PARP1 and the Ku70/80 complex localize to DNA lesions considerably earlier than other DSB sensors. Using super-resolved fluorescent particle tracking, we further examine the relocation kinetics of PARP1 and the Ku70/80 complex to a single DSB, and find that PARP1 and the Ku70/80 complex are recruited to the DSB almost at the same time. Notably, only the Ku70/80 complex occupies the DSB exclusively in the G1 phase; whereas PARP1 competes with the Ku70/80 complex at the DSB in the S/G2 phase. Moreover, in the S/G2 phase, PARP1 removes the Ku70/80 complex through its enzymatic activity, which is further confirmed by in vitro DSB-binding assays. Taken together, our results reveal PARP1 and the Ku70/80 complex as critical DSB sensors, and suggest that PARP1 may function as an important regulator of the Ku70/80 complex at the DSBs in the S/G2 phase. PMID:29447383
Hishiki, Asami; Hara, Kodai; Ikegaya, Yuzu; Yokoyama, Hideshi; Shimizu, Toshiyuki; Sato, Mamoru; Hashimoto, Hiroshi
2015-05-22
HLTF (helicase-like transcription factor) is a yeast RAD5 homolog found in mammals. HLTF has E3 ubiquitin ligase and DNA helicase activities, and plays a pivotal role in the template-switching pathway of DNA damage tolerance. HLTF has an N-terminal domain that has been designated the HIRAN (HIP116 and RAD5 N-terminal) domain. The HIRAN domain has been hypothesized to play a role in DNA binding; however, the structural basis of, and functional evidence for, the HIRAN domain in DNA binding has remained unclear. Here we show for the first time the crystal structure of the HIRAN domain of human HLTF in complex with DNA. The HIRAN domain is composed of six β-strands and two α-helices, forming an OB-fold structure frequently found in ssDNA-binding proteins, including in replication factor A (RPA). Interestingly, this study reveals that the HIRAN domain interacts with not only with a single-stranded DNA but also with a duplex DNA. Furthermore, the structure unexpectedly clarifies that the HIRAN domain specifically recognizes the 3'-end of DNA. These results suggest that the HIRAN domain functions as a sensor to the 3'-end of the primer strand at the stalled replication fork and that the domain facilitates fork regression. HLTF is recruited to a damaged site through the HIRAN domain at the stalled replication fork. Furthermore, our results have implications for the mechanism of template switching. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Lowery, Caitlin D; VanWye, Alle B; Dowless, Michele; Blosser, Wayne; Falcon, Beverly L; Stewart, Julie; Stephens, Jennifer; Beckmann, Richard P; Bence Lin, Aimee; Stancato, Louis F
2017-08-01
Purpose: Checkpoint kinase 1 (CHK1) is a key regulator of the DNA damage response and a mediator of replication stress through modulation of replication fork licensing and activation of S and G 2 -M cell-cycle checkpoints. We evaluated prexasertib (LY2606368), a small-molecule CHK1 inhibitor currently in clinical testing, in multiple preclinical models of pediatric cancer. Following an initial assessment of prexasertib activity, this study focused on the preclinical models of neuroblastoma. Experimental Design: We evaluated the antiproliferative activity of prexasertib in a panel of cancer cell lines; neuroblastoma cell lines were among the most sensitive. Subsequent Western blot and immunofluorescence analyses measured DNA damage and DNA repair protein activation. Prexasertib was investigated in several cell line-derived xenograft mouse models of neuroblastoma. Results: Within 24 hours, single-agent prexasertib promoted γH2AX-positive double-strand DNA breaks and phosphorylation of DNA damage sensors ATM and DNA-PKcs, leading to neuroblastoma cell death. Knockdown of CHK1 and/or CHK2 by siRNA verified that the double-strand DNA breaks and cell death elicited by prexasertib were due to specific CHK1 inhibition. Neuroblastoma xenografts rapidly regressed following prexasertib administration, independent of starting tumor volume. Decreased Ki67 and increased immunostaining of endothelial and pericyte markers were observed in xenografts after only 6 days of exposure to prexasertib, potentially indicating a swift reduction in tumor volume and/or a direct effect on tumor vasculature. Conclusions: Overall, these data demonstrate that prexasertib is a specific inhibitor of CHK1 in neuroblastoma and leads to DNA damage and cell death in preclinical models of this devastating pediatric malignancy. Clin Cancer Res; 23(15); 4354-63. ©2017 AACR . ©2017 American Association for Cancer Research.
Li, Bowen; Sun, Lingbin; Cai, Jiali; Wang, Chonggang; Wang, Mengmeng; Qiu, Huiling; Zuo, Zhenghong
2015-01-01
The toxic effects of tributyltin (TBT) have been extensively documented in several types of cells, but the molecular mechanisms related to the genotoxic effects of TBT have still not been fully elucidated. Our study showed that exposure of human hepatoma G2 cells to 1-4 μmol/L TBT for 3 hr caused severe DNA damage in a concentration-dependent manner. Moreover, the expression levels of key DNA damage sensor genes such as the replication factor C, proliferating cell nuclear antigen and poly (ADP-ribose) polymerase-1 were inhabited in a concentration-dependent manner. We further demonstrated that TBT induced cell apoptosis via the p53-mediated pathway, which was most likely activated by the ataxia telangiectasia mutated and rad-3 related (ATR) protein kinase. The results also showed that cytochrome c, caspase-3, caspase-8, caspase-9, and the B-cell lymphoma 2 were involved in this process. Taken together, we demonstrated for the first time that the inhibition of the DNA repair system might be more responsible for TBT-induced genotoxic effects in cells. Then the generated DNA damage induced by TBT initiated ATR-p53-mediated apoptosis. Copyright © 2014. Published by Elsevier B.V.
Cockayne syndrome group A and B proteins converge on transcription-linked resolution of non-B DNA.
Scheibye-Knudsen, Morten; Tseng, Anne; Borch Jensen, Martin; Scheibye-Alsing, Karsten; Fang, Evandro Fei; Iyama, Teruaki; Bharti, Sanjay Kumar; Marosi, Krisztina; Froetscher, Lynn; Kassahun, Henok; Eckley, David Mark; Maul, Robert W; Bastian, Paul; De, Supriyo; Ghosh, Soumita; Nilsen, Hilde; Goldberg, Ilya G; Mattson, Mark P; Wilson, David M; Brosh, Robert M; Gorospe, Myriam; Bohr, Vilhelm A
2016-11-01
Cockayne syndrome is a neurodegenerative accelerated aging disorder caused by mutations in the CSA or CSB genes. Although the pathogenesis of Cockayne syndrome has remained elusive, recent work implicates mitochondrial dysfunction in the disease progression. Here, we present evidence that loss of CSA or CSB in a neuroblastoma cell line converges on mitochondrial dysfunction caused by defects in ribosomal DNA transcription and activation of the DNA damage sensor poly-ADP ribose polymerase 1 (PARP1). Indeed, inhibition of ribosomal DNA transcription leads to mitochondrial dysfunction in a number of cell lines. Furthermore, machine-learning algorithms predict that diseases with defects in ribosomal DNA (rDNA) transcription have mitochondrial dysfunction, and, accordingly, this is found when factors involved in rDNA transcription are knocked down. Mechanistically, loss of CSA or CSB leads to polymerase stalling at non-B DNA in a neuroblastoma cell line, in particular at G-quadruplex structures, and recombinant CSB can melt G-quadruplex structures. Indeed, stabilization of G-quadruplex structures activates PARP1 and leads to accelerated aging in Caenorhabditis elegans In conclusion, this work supports a role for impaired ribosomal DNA transcription in Cockayne syndrome and suggests that transcription-coupled resolution of secondary structures may be a mechanism to repress spurious activation of a DNA damage response.
Entropy in DNA Double-Strand Break, Detection and Signaling
NASA Astrophysics Data System (ADS)
Zhang, Yang; Schindler, Christina; Heermann, Dieter
2014-03-01
In biology, the term entropy is often understood as a measure of disorder - a restrictive interpretation that can even be misleading. Recently it has become clearer and clearer that entropy, contrary to conventional wisdom, can help to order and guide biological processes in living cells. DNA double-strand breaks (DSBs) are among the most dangerous lesions and efficient damage detection and repair is essential for organism viability. However, what remains unknown is the precise mechanism of targeting the site of damage within billions of intact nucleotides and a crowded nuclear environment, a process which is often referred to as recruitment or signaling. Here we show that the change in entropy associated with inflicting a DSB facilitates the recruitment of damage sensor proteins. By means of computational modeling we found that higher mobility and local chromatin structure accelerate protein association at DSB ends. We compared the effect of different chromatin architectures on protein dynamics and concentrations in the vicinity of DSBs, and related these results to experiments on repair in heterochromatin. Our results demonstrate how entropy contributes to a more efficient damage detection. We identify entropy as the physical basis for DNA double-strand break signaling.
FACT is a sensor of DNA torsional stress in eukaryotic cells
Safina, Alfiya; Cheney, Peter; Pal, Mahadeb; Brodsky, Leonid; Ivanov, Alexander; Kirsanov, Kirill; Lesovaya, Ekaterina; Naberezhnov, Denis; Nesher, Elimelech; Koman, Igor; Wang, Dan; Wang, Jianming; Yakubovskaya, Marianna; Winkler, Duane
2017-01-01
Abstract Transitions of B-DNA to alternative DNA structures (ADS) can be triggered by negative torsional strain, which occurs during replication and transcription, and may lead to genomic instability. However, how ADS are recognized in cells is unclear. We found that the binding of candidate anticancer drug, curaxin, to cellular DNA results in uncoiling of nucleosomal DNA, accumulation of negative supercoiling and conversion of multiple regions of genomic DNA into left-handed Z-form. Histone chaperone FACT binds rapidly to the same regions via the SSRP1 subunit in curaxin-treated cells. In vitro binding of purified SSRP1 or its isolated CID domain to a methylated DNA fragment containing alternating purine/pyrimidines, which is prone to Z-DNA transition, is much stronger than to other types of DNA. We propose that FACT can recognize and bind Z-DNA or DNA in transition from a B to Z form. Binding of FACT to these genomic regions triggers a p53 response. Furthermore, FACT has been shown to bind to other types of ADS through a different structural domain, which also leads to p53 activation. Thus, we propose that FACT acts as a sensor of ADS formation in cells. Recognition of ADS by FACT followed by a p53 response may explain the role of FACT in DNA damage prevention. PMID:28082391
Conformational Dynamics of DNA Repair by Escherichia coli Endonuclease III*
Kuznetsov, Nikita A.; Kladova, Olga A.; Kuznetsova, Alexandra A.; Ishchenko, Alexander A.; Saparbaev, Murat K.; Zharkov, Dmitry O.; Fedorova, Olga S.
2015-01-01
Escherichia coli endonuclease III (Endo III or Nth) is a DNA glycosylase with a broad substrate specificity for oxidized or reduced pyrimidine bases. Endo III possesses two types of activities: N-glycosylase (hydrolysis of the N-glycosidic bond) and AP lyase (elimination of the 3′-phosphate of the AP-site). We report a pre-steady-state kinetic analysis of structural rearrangements of the DNA substrates and uncleavable ligands during their interaction with Endo III. Oligonucleotide duplexes containing 5,6-dihydrouracil, a natural abasic site, its tetrahydrofuran analog, and undamaged duplexes carried fluorescent DNA base analogs 2-aminopurine and 1,3-diaza-2-oxophenoxazine as environment-sensitive reporter groups. The results suggest that Endo III induces several fast sequential conformational changes in DNA during binding, lesion recognition, and adjustment to a catalytically competent conformation. A comparison of two fluorophores allowed us to distinguish between the events occurring in the damaged and undamaged DNA strand. Combining our data with the available structures of Endo III, we conclude that this glycosylase uses a multistep mechanism of damage recognition, which likely involves Gln41 and Leu81 as DNA lesion sensors. PMID:25869130
Ouyang, Jian; Garner, Elizabeth; Hallet, Alexander; Nguyen, Hai Dang; Rickman, Kimberly A.; Gill, Grace; Smogorzewska, Agata; Zou, Lee
2014-01-01
SLX4, a coordinator of multiple DNA structure-specific endonucleases, is important for several DNA repair pathways. Non-covalent interactions of SLX4 with ubiquitin are required for localizing SLX4 to DNA-interstrand crosslinks (ICLs), yet how SLX4 is targeted to other functional contexts remains unclear. Here, we show that SLX4 binds SUMO-2/3 chains via SUMO-interacting motifs (SIMs). The SIMs of SLX4 are dispensable for ICL repair, but important for processing CPT-induced replication intermediates, suppressing fragile site instability, and localizing SLX4 to ALT telomeres. The localization of SLX4 to laser-induced DNA damage also requires the SIMs, as well as DNA-end resection, UBC9 and MDC1. Furthermore, the SUMO binding of SLX4 enhances its interaction with specific DNA-damage sensors or telomere-binding proteins, including RPA, MRE11-RAD50-NBS1 and TRF2. Thus, the interactions of SLX4 with SUMO and ubiquitin increase its affinity for factors recognizing different DNA lesions or telomeres, helping to direct the SLX4 complex in distinct functional contexts. PMID:25533185
Luch, Andreas; Glas, Andreas; Carell, Thomas; Naegeli, Hanspeter
2011-01-01
How tightly packed chromatin is thoroughly inspected for DNA damage is one of the fundamental unanswered questions in biology. In particular, the effective excision of carcinogenic lesions caused by the ultraviolet (UV) radiation of sunlight depends on UV-damaged DNA-binding protein (UV-DDB), but the mechanism by which this DDB1-DDB2 heterodimer stimulates DNA repair remained enigmatic. We hypothesized that a distinctive function of this unique sensor is to coordinate damage recognition in the nucleosome repeat landscape of chromatin. Therefore, the nucleosomes of human cells have been dissected by micrococcal nuclease, thus revealing, to our knowledge for the first time, that UV-DDB associates preferentially with lesions in hypersensitive, hence, highly accessible internucleosomal sites joining the core particles. Surprisingly, the accompanying CUL4A ubiquitin ligase activity is necessary to retain the xeroderma pigmentosum group C (XPC) partner at such internucleosomal repair hotspots that undergo very fast excision kinetics. This CUL4A complex thereby counteracts an unexpected affinity of XPC for core particles that are less permissive than hypersensitive sites to downstream repair subunits. That UV-DDB also adopts a ubiquitin-independent function is evidenced by domain mapping and in situ protein dynamics studies, revealing direct but transient interactions that promote a thermodynamically unfavorable β-hairpin insertion of XPC into substrate DNA. We conclude that the evolutionary advent of UV-DDB correlates with the need for a spatiotemporal organizer of XPC positioning in higher eukaryotic chromatin. PMID:22039351
Arvand, Majid; Sayyar Ardaki, Masoomeh
2017-09-15
A new nanocomposite film constructed of poly-l-cysteine/zinc oxide nanoparticles-electrospun copper oxide nanofibers (PLC/ZnO-NPs-CuO-NFs) was prepared on the surface of the graphite electrode (GE). The novel electrode was successfully applied for the simultaneous determination of guanine (G) and adenine (A), two of the most important components of DNA and RNA. The PLC/ZnO-NPs-CuO-NFs/GE enhanced the anodic peak currents of the purine bases conspicuously and could determine them sensitively and separately in 0.1 M phosphate buffer solution at the physiological pH (7.0). The synthesized nanofibers, nanoparticles and nanocomposite were characterized by different methods such as Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDS). Under the optimum operating conditions, linear calibration curves were obtained in the range of 0.05-6.78 and 0.01-3.87 μM with a detection limit of 12.48 and 1.25 nM for G and A, respectively. The proposed method was applied to quantify A and G in three different DNA samples with satisfactory results. In addition, damage to human blood double-stranded DNA (dsDNA) and DNA purine bases (liberated in previously hydrolyzed human blood dsDNA) caused by UV-C and UV-B were evaluated. The results demonstrated that the proposed biosensing platform not only provides a novel and sensitive approach to detecting DNA damage, but also can be used for simultaneous determination of purine bases and major products of DNA oxidative damage. Copyright © 2017 Elsevier B.V. All rights reserved.
Khair, Lyne; Chang, Ya-Ting; Subramanian, Lakxmi; Russell, Paul; Nakamura, Toru M
2010-06-01
While telomeres must provide mechanisms to prevent DNA repair and DNA damage checkpoint factors from fusing chromosome ends and causing permanent cell cycle arrest, these factors associate with functional telomeres and play critical roles in the maintenance of telomeres. Previous studies have established that Tel1 (ATM) and Rad3 (ATR) kinases play redundant but essential roles for telomere maintenance in fission yeast. In addition, the Rad9-Rad1-Hus1 (911) and Rad17-RFC complexes work downstream of Rad3 (ATR) in fission yeast telomere maintenance. Here, we investigated how 911, Rad17-RFC and another RFC-like complex Ctf18-RFC contribute to telomere maintenance in fission yeast cells lacking Tel1 and carrying a novel hypomorphic allele of rad3 (DBD-rad3), generated by the fusion between the DNA binding domain (DBD) of the fission yeast telomere capping protein Pot1 and Rad3. Our investigations have uncovered a surprising redundancy for Rad9 and Hus1 in allowing Rad1 to contribute to telomere maintenance in DBD-rad3 tel1 cells. In addition, we found that Rad17-RFC and Ctf18-RFC carry out redundant telomere maintenance functions in DBD-rad3 tel1 cells. Since checkpoint sensor proteins are highly conserved, genetic redundancies uncovered here may be relevant to telomere maintenance and detection of DNA damage in other eukaryotes.
Khair, Lyne; Chang, Ya-Ting; Subramanian, Lakxmi; Russell, Paul; Nakamura, Toru M.
2011-01-01
While telomeres must provide mechanisms to prevent DNA repair and DNA damage checkpoint factors from fusing chromosome ends and causing permanent cell cycle arrest, these factors associate with functional telomeres and play critical roles in the maintenance of telomeres. Previous studies have established that Tel1 (ATM) and Rad3 (ATR) kinases play redundant but essential roles for telomere maintenance in fission yeast. In addition, the Rad9-Rad1-Hus1 (911) and Rad17-RFC complexes work downstream of Rad3 (ATR) in fission yeast telomere maintenance. Here, we investigated how 911, Rad17-RFC and another RFC-like complex Ctf18-RFC contribute to telomere maintenance in fission yeast cells lacking Tel1 and carrying a novel hypomorphic allele of rad3 (DBD-rad3), generated by the fusion between the DNA binding domain (DBD) of the fission yeast telomere capping protein Pot1 and Rad3. Our investigations have uncovered a surprising redundancy for Rad9 and Hus1 in allowing Rad1 to contribute to telomere maintenance in DBD-rad3 tel1Δ cells. In addition, we found that Rad17-RFC and Ctf18-RFC carry out redundant telomere maintenance functions in DBD-rad3 tel1Δ cells. Since checkpoint sensor proteins are highly conserved, genetic redundancies uncovered here may be relevant to telomere maintenance and detection of DNA damage in other eukaryotes. PMID:20505337
Mund, Andreas; Schubert, Tobias; Staege, Hannah; Kinkley, Sarah; Reumann, Kerstin; Kriegs, Malte; Fritsch, Lauriane; Battisti, Valentine; Ait-Si-Ali, Slimane; Hoffbeck, Anne-Sophie; Soutoglou, Evi; Will, Hans
2012-01-01
Survival time-associated plant homeodomain (PHD) finger protein in Ovarian Cancer 1 (SPOC1, also known as PHF13) is known to modulate chromatin structure and is essential for testicular stem-cell differentiation. Here we show that SPOC1 is recruited to DNA double-strand breaks (DSBs) in an ATM-dependent manner. Moreover, SPOC1 localizes at endogenous repair foci, including OPT domains and accumulates at large DSB repair foci characteristic for delayed repair at heterochromatic sites. SPOC1 depletion enhances the kinetics of ionizing radiation-induced foci (IRIF) formation after γ-irradiation (γ-IR), non-homologous end-joining (NHEJ) repair activity, and cellular radioresistance, but impairs homologous recombination (HR) repair. Conversely, SPOC1 overexpression delays IRIF formation and γH2AX expansion, reduces NHEJ repair activity and enhances cellular radiosensitivity. SPOC1 mediates dose-dependent changes in chromatin association of DNA compaction factors KAP-1, HP1-α and H3K9 methyltransferases (KMT) GLP, G9A and SETDB1. In addition, SPOC1 interacts with KAP-1 and H3K9 KMTs, inhibits KAP-1 phosphorylation and enhances H3K9 trimethylation. These findings provide the first evidence for a function of SPOC1 in DNA damage response (DDR) and repair. SPOC1 acts as a modulator of repair kinetics and choice of pathways. This involves its dose-dependent effects on DNA damage sensors, repair mediators and key regulators of chromatin structure. PMID:23034801
Laengle, Johannes; Stift, Judith; Bilecz, Agnes; Wolf, Brigitte; Beer, Andrea; Hegedus, Balazs; Stremitzer, Stefan; Starlinger, Patrick; Tamandl, Dietmar; Pils, Dietmar; Bergmann, Michael
2018-01-01
Preclinical models indicate that DNA damage induces type I interferon (IFN), which is crucial for the induction of an anti-tumor immune response. In human cancers, however, the association between DNA damage and an immunogenic cell death (ICD), including the release and sensing of danger signals, the subsequent ER stress response and a functional IFN system, is less clear. Methods: Neoadjuvant-treated colorectal liver metastases (CLM) patients, undergoing liver resection in with a curative intent, were retrospectively enrolled in this study (n=33). DNA damage (γH2AX), RNA and DNA sensors (RIG-I, DDX41, cGAS, STING), ER stress response (p-PKR, p-eIF2α, CALR), type I and type II IFN- induced proteins (MxA, GBP1), mature dendritic cells (CD208), and cytotoxic and memory T cells (CD3, CD8, CD45RO) were investigated by an immunohistochemistry whole-slide tissue scanning approach and further correlated with recurrence-free survival (RFS), overall survival (OS), radiographic and pathologic therapy response. Results: γH2AX is a negative prognostic marker for RFS (HR 1.32, 95% CI 1.04-1.69, p=0.023) and OS (HR 1.61, 95% CI 1.23-2.11, p<0.001). A model comprising of DDX41, STING and p-PKR predicts radiographic therapy response (AUC=0.785, p=0.002). γH2AX predicts prognosis superior to the prognostic value of CD8. CALR positively correlates with GBP1, CD8 and cGAS. A model consisting of γH2AX, p-eIF2α, DDX41, cGAS, CD208 and CD45RO predicts pathological therapy response (AUC=0.944, p<0.001). Conclusion: In contrast to preclinical models, DNA damage inversely correlated with ICD and its associated T cell infiltrate and potentially serves as a therapeutic target in CLM. PMID:29930723
Cellular Responses in Human Dental Pulp Stem Cells Treated with Three Endodontic Materials
Ibañez-Cabellos, José Santiago; de Cutanda, Sergio Bañuls-Sánchez; Berenguer-Pascual, Ester; Beltrán-García, Jesús; García-López, Eva; Pallardó, Federico V.; García-Giménez, José Luis; Pallarés-Sabater, Antonio; Zarzosa-López, Ignacio; Monterde, Manuel
2017-01-01
Human dental pulp stem cells (HDPSCs) are of special relevance in future regenerative dental therapies. Characterizing cytotoxicity and genotoxicity produced by endodontic materials is required to evaluate the potential for regeneration of injured tissues in future strategies combining regenerative and root canal therapies. This study explores the cytotoxicity and genotoxicity mediated by oxidative stress of three endodontic materials that are widely used on HDPSCs: a mineral trioxide aggregate (MTA-Angelus white), an epoxy resin sealant (AH-Plus cement), and an MTA-based cement sealer (MTA-Fillapex). Cell viability and cell death rate were assessed by flow cytometry. Oxidative stress was measured by OxyBlot. Levels of antioxidant enzymes were evaluated by Western blot. Genotoxicity was studied by quantifying the expression levels of DNA damage sensors such as ATM and RAD53 genes and DNA damage repair sensors such as RAD51 and PARP-1. Results indicate that AH-Plus increased apoptosis, oxidative stress, and genotoxicity markers in HDPSCs. MTA-Fillapex was the most cytotoxic oxidative stress inductor and genotoxic material for HDPSCs at longer times in preincubated cell culture medium, and MTA-Angelus was less cytotoxic and genotoxic than AH-Plus and MTA-Fillapex at all times assayed. PMID:28751918
Rubbi, Carlos P.; Milner, Jo
2003-01-01
p53 protects against cancer through its capacity to induce cell cycle arrest or apoptosis under a large variety of cellular stresses. It is not known how such diversity of signals can be integrated by a single molecule. However, the literature reveals that a common denominator in all p53-inducing stresses is nucleolar disruption. We thus postulated that the impairment of nucleolar function might stabilize p53 by preventing its degradation. Using micropore irradiation, we demonstrate that large amounts of nuclear DNA damage fail to stabilize p53 unless the nucleolus is also disrupted. Forcing nucleolar disruption by anti-upstream binding factor (UBF) microinjection (in the absence of DNA damage) also causes p53 stabilization. We propose that the nucleolus is a stress sensor responsible for maintenance of low levels of p53, which are automatically elevated as soon as nucleolar function is impaired in response to stress. Our model integrates all known p53-inducing agents and also explains cell cycle-related variations in p53 levels which correlate with established phases of nucleolar assembly/disassembly through the cell cycle. PMID:14609953
Ye, Weizhen; Blain, Stacy W
2010-08-01
A major phenotype seen in neurodegenerative disorders is the selective loss of neurons due to apoptotic death and evidence suggests that inappropriate re-activation of cell cycle proteins in post-mitotic neurons may be responsible. To investigate whether reactivation of the G1 cell cycle proteins and S phase entry was linked with apoptosis, we examined homocysteine-induced neuronal cell death in a rat cortical neuron tissue culture system. Hyperhomocysteinaemia is a physiological risk factor for a variety of neurodegenerative diseases, including Alzheimer's disease. We found that in response to homocysteine treatment, cyclin D1, and cyclin-dependent kinases 4 and 2 translocated to the nucleus, and p27 levels decreased. Both cyclin-dependent kinases 4 and 2 regained catalytic activity, the G1 gatekeeper retinoblastoma protein was phosphorylated and DNA synthesis was detected, suggesting transit into S phase. Double-labelling immunofluorescence showed a 95% co-localization of anti-bromodeoxyuridine labelling with apoptotic markers, demonstrating that those cells that entered S phase eventually died. Neurons could be protected from homocysteine-induced death by methods that inhibited G1 phase progression, including down-regulation of cyclin D1 expression, inhibition of cyclin-dependent kinases 4 or 2 activity by small molecule inhibitors, or use of the c-Abl kinase inhibitor, Gleevec, which blocked cyclin D and cyclin-dependent kinase 4 nuclear translocation. However, blocking cell cycle progression post G1, using DNA replication inhibitors, did not prevent apoptosis, suggesting that death was not preventable post the G1-S phase checkpoint. While homocysteine treatment caused DNA damage and activated the DNA damage response, its mechanism of action was distinct from that of more traditional DNA damaging agents, such as camptothecin, as it was p53-independent. Likewise, inhibition of the DNA damage sensors, ataxia-telangiectasia mutant and ataxia telangiectasia and Rad3 related proteins, did not rescue apoptosis and in fact exacerbated death, suggesting that the DNA damage response might normally function neuroprotectively to block S phase-dependent apoptosis induction. As cell cycle events appear to be maintained in vivo in affected neurons for weeks to years before apoptosis is observed, activation of the DNA damage response might be able to hold cell cycle-induced death in check.
DNA damage response in renal ischemia-reperfusion and ATP-depletion injury of renal tubular cells
Ma, Zhengwei; Wei, Qingqing; Dong, Guie; Huo, Yuqing; Dong, Zheng
2014-01-01
Renal ischemia-reperfusion leads to acute kidney injury (AKI) that is characterized pathologically by tubular damage and cell death, followed by tubular repair, atrophy and interstitial fibrosis. Recent work suggested the possible presence of DNA damage response (DDR) in AKI. However, the evidence is sketchy and the role and regulation of DDR in ischemic AKI remain elusive. In this study, we demonstrated the induction of phosphorylation of ATM, H2AX, Chk2 and p53 during renal ischemia-reperfusion in mice, suggesting DDR in kidney tissues. DDR was also induced in vitro during the recovery or “reperfusion” of renal proximal tubular cells (RPTCs) after ATP-depletion. DDR in RPTCs was abrogated by supplying glucose to maintain ATP via glycolysis, indicating that the DDR depends on ATP depletion. The DDR was also suppressed by the general caspase inhibitor z-VAD and the overexpression of Bcl-2, supporting a role of apoptosis-associated DNA damage in the DDR. N-acetylcysteine (NAC), an antioxidant, suppressed the phosphorylation of ATM and p53 and, to a less extent, Chk2, but NAC increased the phosphorylation and nuclear foci formation of H2AX. Interestingly, NAC increased apoptosis, which may account for the observed H2AX activation. Ku55933, an ATM inhibitor, blocked ATM phosphorylation and ameliorated the phosphorylation of Chk2 and p53, but it increased H2AX phosphorylation and nuclear foci formation. Ku55933 also increased apoptosis in RPTCs following ATP-depletion. The results suggest that DDR occurs during renal ischemia-reperfusion in vivo and ATP-depletion injury in vitro. The DDR is partially induced by apoptosis and oxidative stress-related DNA damage. ATM, as a sensor in the DDR, may play a cytoprotective role against tubular cell injury and death. PMID:24726884
Structural basis of detection and signaling of DNA single-strand breaks by human PARP-1
Eustermann, Sebastian; Wu, Wing -Fung; Langelier, Marie -France; ...
2015-11-25
Poly(ADP-ribose)polymerase 1 (PARP-1) is a key eukaryotic stress sensor that responds in seconds to DNA single-strand breaks (SSBs), the most frequent genomic damage. A burst of poly(ADP-ribose) synthesis initiates DNA damage response, whereas PARP-1 inhibition kills BRCA-deficient tumor cells selectively, providing the first anti-cancer therapy based on synthetic lethality. However, the mechanism underlying PARP-1’s function remained obscure; inherent dynamics of SSBs and PARP-1’s multi-domain architecture hindered structural studies. Here we reveal the structural basis of SSB detection and how multi-domain folding underlies the allosteric switch that determines PARP-1’s signaling response. Two flexibly linked N-terminal zinc fingers recognize the extreme deformabilitymore » of SSBs and drive co-operative, stepwise self-assembly of remaining PARP-1 domains to control the activity of the C-terminal catalytic domain. Automodifcation in cis explains the subsequent release of monomeric PARP-1 from DNA, allowing repair and replication to proceed. Finally, our results provide a molecular framework for understanding PARP inhibitor action and, more generally, allosteric control of dynamic, multi-domain proteins.« less
The ATM protein kinase and cellular redox signaling: beyond the DNA damage response
Ditch, Scott; Paull, Tanya T.
2011-01-01
The ataxia-telangiectasia mutated (ATM) protein kinase is best known for its role in the DNA damage response, but recent findings suggest that it also functions as a redox sensor that controls the levels of reactive oxygen species in human cells. Here, we review the evidence supporting the conclusion that ATM can be directly activated by oxidation, as well as various observations from ATM-deficient patients and mouse models that point toward the importance of ATM in oxidative stress responses. We also discuss the roles of this kinase in regulating mitochondrial function and metabolic control through its action on tumor suppressor p53, AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR) and hypoxia-inducible factor-1 (HIF-1), and how the regulation of these enzymes may be affected in ATM-deficient patients and in cancer cells. PMID:22079189
The ATM protein kinase and cellular redox signaling: beyond the DNA damage response.
Ditch, Scott; Paull, Tanya T
2012-01-01
The ataxia-telangiectasia mutated (ATM) protein kinase is best known for its role in the DNA damage response, but recent findings suggest that it also functions as a redox sensor that controls the levels of reactive oxygen species in human cells. Here, we review evidence supporting the conclusion that ATM can be directly activated by oxidation, as well as various observations from ATM-deficient patients and mouse models that point to the importance of ATM in oxidative stress responses. We also discuss the roles of this kinase in regulating mitochondrial function and metabolic control through its action on tumor suppressor p53, AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR) and hypoxia-inducible factor 1 (HIF1), and how the regulation of these enzymes may be affected in ATM-deficient patients and in cancer cells. Copyright © 2011 Elsevier Ltd. All rights reserved.
Dampened STING-Dependent Interferon Activation in Bats.
Xie, Jiazheng; Li, Yang; Shen, Xurui; Goh, Geraldine; Zhu, Yan; Cui, Jie; Wang, Lin-Fa; Shi, Zheng-Li; Zhou, Peng
2018-03-14
Compared with terrestrial mammals, bats have a longer lifespan and greater capacity to co-exist with a variety of viruses. In addition to cytosolic DNA generated by these viral infections, the metabolic demands of flight cause DNA damage and the release of self-DNA into the cytoplasm. However, whether bats have an altered DNA sensing/defense system to balance high cytosolic DNA levels remains an open question. We demonstrate that bats have a dampened interferon response due to the replacement of the highly conserved serine residue (S358) in STING, an essential adaptor protein in multiple DNA sensing pathways. Reversing this mutation by introducing S358 restored STING functionality, resulting in interferon activation and virus inhibition. Combined with previous reports on bat-specific changes of other DNA sensors such as TLR9, IFI16, and AIM2, our findings shed light on bat adaptation to flight, their long lifespan, and their unique capacity to serve as a virus reservoir. Copyright © 2018 Elsevier Inc. All rights reserved.
Anthocyanins Delay Ageing-Related Degenerative Changes in the Liver.
Wei, Jie; Zhang, Guokun; Zhang, Xiao; Xu, Dexin; Gao, Jun; Fan, Jungang
2017-12-01
Liver ageing is a significant risk factor for chronic liver diseases. Anthocyanin is a food additive that has previously shown efficacy in increasing longevity. Here, we tested whether anthocyanins could protect young mice from accelerated ageing of the liver. Kunming mice were injected with D-galactose to accelerate ageing and were given 20 or 40 mg/kg anthocyanins as an intervention. After eight weeks, whole liver function and structure were evaluated, and the expression levels of genes involved in the DNA damage signalling pathway were assessed by Western blot analysis. Anthocyanins delayed the reduction of the liver index (p < 0.05), hepatic tissue injury and fibrosis. Anthocyanins also maintained the stability of the redox system (GSH-PX, T-SOD and MDA) in plasma and liver structures (p < 0.001) and reduced the levels of inflammatory factors (IL-1, IL-6 and TNF-α) in the liver (p < 0.05). Moreover, the expression levels of sensors (ATM and ATR), mediators (H2AX and γ-H2AX) and effectors (Chk1, Chk2, p53 and p-p53) in the DNA damage signalling pathway were all reduced. Anthocyanins could be widely used in the field of health products to slow ageing-related deterioration of liver function and structure by inhibiting DNA damage.
Ube2V2 Is a Rosetta Stone Bridging Redox and Ubiquitin Codes, Coordinating DNA Damage Responses.
Zhao, Yi; Long, Marcus J C; Wang, Yiran; Zhang, Sheng; Aye, Yimon
2018-02-28
Posttranslational modifications (PTMs) are the lingua franca of cellular communication. Most PTMs are enzyme-orchestrated. However, the reemergence of electrophilic drugs has ushered mining of unconventional/non-enzyme-catalyzed electrophile-signaling pathways. Despite the latest impetus toward harnessing kinetically and functionally privileged cysteines for electrophilic drug design, identifying these sensors remains challenging. Herein, we designed "G-REX"-a technique that allows controlled release of reactive electrophiles in vivo. Mitigating toxicity/off-target effects associated with uncontrolled bolus exposure, G-REX tagged first-responding innate cysteines that bind electrophiles under true k cat / K m conditions. G-REX identified two allosteric ubiquitin-conjugating proteins-Ube2V1/Ube2V2-sharing a novel privileged-sensor-cysteine. This non-enzyme-catalyzed-PTM triggered responses specific to each protein. Thus, G-REX is an unbiased method to identify novel functional cysteines. Contrasting conventional active-site/off-active-site cysteine-modifications that regulate target activity, modification of Ube2V2 allosterically hyperactivated its enzymatically active binding-partner Ube2N, promoting K63-linked client ubiquitination and stimulating H2AX-dependent DNA damage response. This work establishes Ube2V2 as a Rosetta-stone bridging redox and ubiquitin codes to guard genome integrity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yi-Cheng; Lu, Pin-Hsuan; Hsu, Jui-Ling
2011-12-15
Poly(ADP-ribose) polymerase-1 (PARP-1), a sensor of DNA damage, plays a crucial role in the regulation of DNA repair. PARP-1 hyperactivation causes DNA damage and cell death. The underlying mechanism is complicated and is through diverse pathways. The understanding of responsible signaling pathways may offer implications for effective therapies. After concentration-response determination of N-Methyl-N Prime -Nitro-N-Nitrosoguanidine (MNNG, a PARP-1 activating agent and an environmental mutagen) in human hormone-refractory prostate cancers, the data showed that concentrations below 5 {mu}M did not change cell survival but cause a time-dependent up-regulation of intracellular adhesion molecule-1 (ICAM-1) in mRNA, total protein and cell surface levels.more » Detection of phosphorylation and degradation of I{kappa}B-{alpha} and nuclear translocation of NF-{kappa}B showed that MNNG induced the activation of NF-{kappa}B that was responsible for the ICAM-1 up-regulation since PDTC (a NF-{kappa}B inhibitor) significantly abolished this effect. However, higher concentrations (e.g., 10 {mu}M) of MNNG induced a 61% detachment of the cells which were apoptosis associated with the activation of AMP-activated protein kinase (AMPK), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). Further identification showed that both AMPK and JNK other than p38 MAPK functionally contributed to cell death. The remaining 39% attached cells were survival associated with high ICAM-1 expression. In conclusion, the data suggest that NF-{kappa}B-dependent up-regulation of ICAM-1 plays a key role on cell attachment and survival; whereas, activation of AMPK and JNK participates in cytotoxic signaling pathways in detached cells caused by PARP-1 activation. Highlights: Black-Right-Pointing-Pointer Low level of DNA damage helps cell attachment and survival via ICAM-1 upregulation. Black-Right-Pointing-Pointer High level of DNA damage causes AMPK- and JNK-involved cell detachment and death. Black-Right-Pointing-Pointer The study provides an anticancer approach targeting PARP-1 and DNA damage response.« less
Bantele, Susanne CS; Ferreira, Pedro; Gritenaite, Dalia; Boos, Dominik; Pfander, Boris
2017-01-01
DNA double strand breaks (DSBs) can be repaired by either recombination-based or direct ligation-based mechanisms. Pathway choice is made at the level of DNA end resection, a nucleolytic processing step, which primes DSBs for repair by recombination. Resection is thus under cell cycle control, but additionally regulated by chromatin and nucleosome remodellers. Here, we show that both layers of control converge in the regulation of resection by the evolutionarily conserved Fun30/SMARCAD1 remodeller. Budding yeast Fun30 and human SMARCAD1 are cell cycle-regulated by interaction with the DSB-localized scaffold protein Dpb11/TOPBP1, respectively. In yeast, this protein assembly additionally comprises the 9-1-1 damage sensor, is involved in localizing Fun30 to damaged chromatin, and thus is required for efficient long-range resection of DSBs. Notably, artificial targeting of Fun30 to DSBs is sufficient to bypass the cell cycle regulation of long-range resection, indicating that chromatin remodelling during resection is underlying DSB repair pathway choice. DOI: http://dx.doi.org/10.7554/eLife.21687.001 PMID:28063255
Nanostructured SERS-electrochemical biosensors for testing of anticancer drug interactions with DNA.
Ilkhani, Hoda; Hughes, Taylor; Li, Jing; Zhong, Chuan Jian; Hepel, Maria
2016-06-15
Widely used anti-cancer treatments involving chemotherapeutic drugs result in cancer cell damage due to their strong interaction with DNA. In this work, we have developed laboratory biosensors for screening chemotherapeutic drugs and to aid in the assessment of DNA modification/damage caused by these drugs. The sensors utilize surface-enhanced Raman scattering (SERS) spectroscopy and electrochemical methods to monitor sensory film modification and observe the drug-DNA reactivity. The self-assembled monolayer protected gold-disk electrode (AuDE) was coated with a reduced graphene oxide (rGO), decorated with plasmonic gold-coated Fe2Ni@Au magnetic nanoparticles functionalized with double-stranded DNA (dsDNA), a sequence of the breast cancer gene BRCA1. The nanobiosensors AuDE/SAM/rGO/Fe2Ni@Au/dsDNA were then subjected to the action of a model chemotherapeutic drug, doxorubicin (DOX), to assess the DNA modification and its dose dependence. The designed novel nanobiosensors offer SERS/electrochemical transduction, enabling chemically specific and highly sensitive analytical signals generation. The SERS measurements have corroborated the DOX intercalation into the DNA duplex whereas the electrochemical scans have indicated that the DNA modification by DOX proceeds in a concentration dependent manner, with limit of detection LOD=8 µg/mL (S/N=3), with semilog linearity over 3 orders of magnitude. These new biosensors are sensitive to agents that interact with DNA and facilitate the analysis of functional groups for determination of the binding mode. The proposed nanobiosensors can be applied in the first stage of the drug development for testing the interactions of new drugs with DNA before the drug efficacy can be assessed in more expensive testing in vitro and in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.
Macleod, Kay F.
2010-01-01
Exposure to pro-oxidants and defects in the repair of oxidative base damage are associated with disease and ageing and also contribute to the development of anaemia, bone marrow failure and haematopoietic malignancies. This Review assesses emerging data indicative of a specific role for the RB tumour suppressor pathway in the response of the haematopoietic system to oxidative stress. This is mediated through signalling pathways that involve DNA damage sensors, forkhead box O (Foxo) transcription factors and p38 mitogen-activated protein kinases and has downstream consequences for cell cycle progression, antioxidant capacity, mitochondrial mass and cellular metabolism. PMID:18800074
NASA Astrophysics Data System (ADS)
Gwak, Raekeun; Kim, Hongki; Yoo, Seung Min; Lee, Sang Yup; Lee, Gyoung-Ja; Lee, Min-Ku; Rhee, Chang-Kyu; Kang, Taejoon; Kim, Bongsoo
2016-01-01
Uranium is an essential raw material in nuclear energy generation; however, its use raises concerns about the possibility of severe damage to human health and the natural environment. In this work, we report an ultrasensitive uranyl ion (UO22+) detection method in natural water that uses a plasmonic nanowire interstice (PNI) sensor combined with a DNAzyme-cleaved reaction. UO22+ induces the cleavage of DNAzymes into enzyme strands and released strands, which include Raman-active molecules. A PNI sensor can capture the released strands, providing strong surface-enhanced Raman scattering signal. The combination of a PNI sensor and a DNAzyme-cleaved reaction significantly improves the UO22+ detection performance, resulting in a detection limit of 1 pM and high selectivity. More importantly, the PNI sensor operates perfectly, even in UO22+-contaminated natural water samples. This suggests the potential usefulness of a PNI sensor in practical UO22+-sensing applications. We anticipate that diverse toxic metal ions can be detected by applying various ion-specific DNA-based ligands to PNI sensors.
Gautam, Dipendra
2013-01-01
Adenovirus (Ad) mutants that lack early region 4 (E4) are unable to produce the early regulatory proteins that normally inactivate the Mre11/Rad50/Nbs1 (MRN) sensor complex, which is a critical component for the ability of cells to respond to DNA damage. E4 mutant infection therefore activates a DNA damage response, which in turn interferes with a productive viral infection. MRN complex proteins localize to viral DNA replication centers in E4 mutant-infected cells, and this complex is critical for activating the kinases ataxia-telangiectasia mutated (ATM) and ATM and Rad3-related (ATR), which phosphorylate numerous substrates important for DNA repair, cell cycle checkpoint activation, and apoptosis. E4 mutant growth defects are substantially rescued in cells lacking an intact MRN complex. We have assessed the role of the downstream ATM and ATR kinases in several MRN-dependent E4 mutant phenotypes. We did not identify a role for either ATM or ATR in “repair” of E4 mutant genomes to form concatemers. ATR was also not observed to contribute to E4 mutant defects in late protein production. In contrast, the kinase activity of ATM was important for preventing efficient E4 mutant DNA replication and late gene expression. Our results suggest that the MRN complex interferes with E4 mutant DNA replication at least in part through its ability to activate ATM. PMID:23740981
Mo, Charlie Y; Culyba, Matthew J; Selwood, Trevor; Kubiak, Jeffrey M; Hostetler, Zachary M; Jurewicz, Anthony J; Keller, Paul M; Pope, Andrew J; Quinn, Amy; Schneck, Jessica; Widdowson, Katherine L; Kohli, Rahul M
2018-03-09
The RecA/LexA axis of the bacterial DNA damage (SOS) response is a promising, yet nontraditional, drug target. The SOS response is initiated upon genotoxic stress, when RecA, a DNA damage sensor, induces LexA, the SOS repressor, to undergo autoproteolysis, thereby derepressing downstream genes that can mediate DNA repair and accelerate mutagenesis. As genetic inhibition of the SOS response sensitizes bacteria to DNA damaging antibiotics and decreases acquired resistance, inhibitors of the RecA/LexA axis could potentiate our current antibiotic arsenal. Compounds targeting RecA, which has many mammalian homologues, have been reported; however, small-molecules targeting LexA autoproteolysis, a reaction unique to the prokaryotic SOS response, have remained elusive. Here, we describe the logistics and accomplishments of an academic-industry partnership formed to pursue inhibitors against the RecA/LexA axis. A novel fluorescence polarization assay reporting on RecA-induced self-cleavage of LexA enabled the screening of 1.8 million compounds. Follow-up studies on select leads show distinct activity patterns in orthogonal assays, including several with activity in cell-based assays reporting on SOS activation. Mechanistic assays demonstrate that we have identified first-in-class small molecules that specifically target the LexA autoproteolysis step in SOS activation. Our efforts establish a realistic example for navigating academic-industry partnerships in pursuit of anti-infective drugs and offer starting points for dedicated lead optimization of SOS inhibitors that could act as adjuvants for current antibiotics.
Wang, Shu-Huei; Lin, Pei-Ya; Chiu, Ya-Chen; Huang, Ju-Sui; Kuo, Yi-Tsen; Wu, Jen-Chine; Chen, Chin-Chuan
2015-01-01
Chemo- and radiotherapy cause multiple forms of DNA damage and lead to the death of cancer cells. Inhibitors of the DNA damage response are candidate drugs for use in combination therapies to increase the efficacy of such treatments. In this study, we show that curcumin, a plant polyphenol, sensitizes budding yeast to DNA damage by counteracting the DNA damage response. Following DNA damage, the Mec1-dependent DNA damage checkpoint is inactivated and Rad52 recombinase is degraded by curcumin, which results in deficiencies in double-stand break repair. Additive effects on damage-induced apoptosis and the inhibition of damage-induced autophagy by curcumin were observed. Moreover, rpd3 mutants were found to mimic the curcumin-induced suppression of the DNA damage response. In contrast, hat1 mutants were resistant to DNA damage, and Rad52 degradation was impaired following curcumin treatment. These results indicate that the histone deacetylase inhibitor activity of curcumin is critical to DSB repair and DNA damage sensitivity. PMID:26218133
Harada, K; Sugahara, T; Ohnishi, T; Ozaki, Y; Obiya, Y; Miki, S; Miki, T; Imamura, M; Kobayashi, Y; Watanabe, H; Akashi, M; Furusawa, Y; Mizuma, N; Yamanaka, H; Ohashi, E; Yamaoka, C; Yajima, M; Fukui, M; Nakano, T; Takahashi, S; Amano, T; Sekikawa, K; Yanagawa, K; Nagaoka, S
1998-05-01
We participated in a space experiment, part of the National Space Development Agency of Japan (NASDA) Phase I Space Radiation Environment Measurement Program, conducted during the National Aeronautics and Space Administration (NASA) Shuttle/Mir Mission No. 6 (S/MM-6) project. The aim of our study was to investigate the effects of microgravity on the DNA repair processes of living organisms in the
Recruitment of TRF2 to laser-induced DNA damage sites.
Huda, Nazmul; Abe, Satoshi; Gu, Ling; Mendonca, Marc S; Mohanty, Samarendra; Gilley, David
2012-09-01
Several lines of evidence suggest that the telomere-associated protein TRF2 plays critical roles in the DNA damage response. TRF2 is rapidly and transiently phosphorylated by an ATM-dependent pathway in response to DNA damage and this DNA damage-induced phosphoryation is essential for the DNA-PK-dependent pathway of DNA double-strand break repair (DSB). However, the type of DNA damage that induces TRF2 localization to the damage sites, the requirement for DNA damage-induced phosphorylation of TRF2 for its recruitment, as well as the detailed kinetics of TRF2 accumulation at DNA damage sites have not been fully investigated. In order to address these questions, we used an ultrafast femtosecond multiphoton laser and a continuous wave 405-nm single photon laser to induce DNA damage at defined nuclear locations. Our results showed that DNA damage produced by a femtosecond multiphoton laser was sufficient for localization of TRF2 to these DNA damage sites. We also demonstrate that ectopically expressed TRF2 was recruited to DNA lesions created by a 405-nm laser. Our data suggest that ATM and DNA-PKcs kinases are not required for TRF2 localization to DNA damage sites. Furthermore, we found that phosphorylation of TRF2 at residue T188 was not essential for its recruitment to laser-induced DNA damage sites. Thus, we provide further evidence that a protein known to function in telomere maintenance, TRF2, is recruited to sites of DNA damage and plays critical roles in the DNA damage response. Copyright © 2012 Elsevier Inc. All rights reserved.
Effect of DNA type on response of DNA biosensor for carcinogens
NASA Astrophysics Data System (ADS)
Sani, Nor Diyana bt. Md.; Heng, Lee Yook; Surif, Salmijah; Lazim, Azwani Mat
2013-11-01
Carcinogens are cancer causing chemicals that can bind to DNA and cause damage to the DNA. These chemicals are available everywhere including in water, air, soil and food. Therefore, a sensor that can detect the presence of these chemicals will be a very useful tool. Since carcinogens bind to DNA, DNA can be used as the biological element in a biosensor. This study has utilized different types of DNA in a biosensor for carcinogen detection. The DNAs include double stranded calf thymus DNA, single stranded calf thymus DNA and guanine rich single stranded DNA. The modified SPE was exposed to a carcinogen followed by interaction with methylene blue which acts as the electroactive indicator. The SPE was then analysed using differential pulse voltammetry (DPV). Optimization studies were conducted for MB concentration and accumulation time, DNA concentration, as well as effect of buffer concentration, buffer pH and ionic strength. The performance of the biosensor was tested on a group 1 carcinogen, formaldehyde. The results indicated that the usage of guanine rich single stranded DNA also gives higher response as carcinogens prefer to bind with guanine compared to other bases.
Graphene oxide-DNA based sensors.
Gao, Li; Lian, Chaoqun; Zhou, Yang; Yan, Lirong; Li, Qin; Zhang, Chunxia; Chen, Liang; Chen, Keping
2014-10-15
Since graphene oxide (GO) is readily available and exhibits exceptional optical, electrical, mechanical and chemical properties, it has attracted increasing interests for use in GO-DNA based sensors. This paper reviews the advances in GO-DNA based sensors using DNA as recognition elements. In solution, GO is as an excellent acceptor of fluorescence resonance energy transfer (FRET) to quench the fluorescence in dye labeled DNA sequences. This review discusses the emerging GO-DNA based sensors related to FRET for use in the detection of DNA, proteins, metal ions, cysteine (Cys), and others. The application of the electrochemical GO-DNA based sensors is also summarized because GO possesses exceptional electrochemical properties. The detection mechanisms and the advantages of GO are also revealed and discussed. GO-DNA based sensors perform well at low cost, and high sensitivity, and provide low detection limits. Additionally, GO-DNA based sensors should appear in the near future as scientists explore their usefulness and properties. Finally, future perspectives and possible challenges in this area are outlined. Copyright © 2014 Elsevier B.V. All rights reserved.
11th International Conference of Radiation Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1999-07-18
Topics discussed in the conference included the following: Radiation Physics, Radiation Chemistry and modelling--Radiation physics and dosimetry; Electron transfer in biological media; Radiation chemistry; Biophysical and biochemical modelling; Mechanisms of DNA damage; Assays of DNA damage; Energy deposition in micro volumes; Photo-effects; Special techniques and technologies; Oxidative damage. Molecular and cellular effects-- Photobiology; Cell cycle effects; DNA damage: Strand breaks; DNA damage: Bases; DNA damage Non-targeted; DNA damage: other; Chromosome aberrations: clonal; Chromosomal aberrations: non-clonal; Interactions: Heat/Radiation/Drugs; Biochemical effects; Protein expression; Gene induction; Co-operative effects; ``Bystander'' effects; Oxidative stress effects; Recovery from radiation damage. DNA damage and repair -- DNAmore » repair genes; DNA repair deficient diseases; DNA repair enzymology; Epigenetic effects on repair; and Ataxia and ATM.« less
DNA damage response in renal ischemia-reperfusion and ATP-depletion injury of renal tubular cells.
Ma, Zhengwei; Wei, Qingqing; Dong, Guie; Huo, Yuqing; Dong, Zheng
2014-07-01
Renal ischemia-reperfusion leads to acute kidney injury (AKI) that is characterized pathologically by tubular damage and cell death, followed by tubular repair, atrophy and interstitial fibrosis. Recent work suggested the possible presence of DNA damage response (DDR) in AKI. However, the evidence is sketchy and the role and regulation of DDR in ischemic AKI remain elusive. In this study, we demonstrated the induction of phosphorylation of ATM, H2AX, Chk2 and p53 during renal ischemia-reperfusion in mice, suggesting DDR in kidney tissues. DDR was also induced in vitro during the recovery or "reperfusion" of renal proximal tubular cells (RPTCs) after ATP depletion. DDR in RPTCs was abrogated by supplying glucose to maintain ATP via glycolysis, indicating that the DDR depends on ATP depletion. The DDR was also suppressed by the general caspase inhibitor z-VAD and the overexpression of Bcl-2, supporting a role of apoptosis-associated DNA damage in the DDR. N-acetylcysteine (NAC), an antioxidant, suppressed the phosphorylation of ATM and p53 and, to a less extent, Chk2, but NAC increased the phosphorylation and nuclear foci formation of H2AX. Interestingly, NAC increased apoptosis, which may account for the observed H2AX activation. Ku55933, an ATM inhibitor, blocked ATM phosphorylation and ameliorated the phosphorylation of Chk2 and p53, but it increased H2AX phosphorylation and nuclear foci formation. Ku55933 also increased apoptosis in RPTCs following ATP depletion. The results suggest that DDR occurs during renal ischemia-reperfusion in vivo and ATP-depletion injury in vitro. The DDR is partially induced by apoptosis and oxidative stress-related DNA damage. ATM, as a sensor in the DDR, may play a cytoprotective role against tubular cell injury and death. Copyright © 2014 Elsevier B.V. All rights reserved.
Morgado-Palacin, Isabel; Day, Amanda; Murga, Matilde; Lafarga, Vanesa; Anton, Marta Elena; Tubbs, Anthony; Chen, Hua Tang; Ergan, Aysegul; Anderson, Rhonda; Bhandoola, Avinash; Pike, Kurt G; Barlaam, Bernard; Cadogan, Elaine; Wang, Xi; Pierce, Andrew J; Hubbard, Chad; Armstrong, Scott A; Nussenzweig, André; Fernandez-Capetillo, Oscar
2016-09-13
Among the various subtypes of acute myeloid leukemia (AML), those with chromosomal rearrangements of the MLL oncogene (AML-MLL) have a poor prognosis. AML-MLL tumor cells are resistant to current genotoxic therapies because of an attenuated response by p53, a protein that induces cell cycle arrest and apoptosis in response to DNA damage. In addition to chemicals that damage DNA, efforts have focused on targeting DNA repair enzymes as a general chemotherapeutic approach to cancer treatment. Here, we found that inhibition of the kinase ATR, which is the primary sensor of DNA replication stress, induced chromosomal breakage and death of mouse AML(MLL) cells (with an MLL-ENL fusion and a constitutively active N-RAS independently of p53. Moreover, ATR inhibition as a single agent exhibited antitumoral activity, both reducing tumor burden after establishment and preventing tumors from growing, in an immunocompetent allograft mouse model of AML(MLL) and in xenografts of a human AML-MLL cell line. We also found that inhibition of ATM, a kinase that senses DNA double-strand breaks, also promoted the survival of the AML(MLL) mice. Collectively, these data indicated that ATR or ATM inhibition represent potential therapeutic strategies for the treatment of AML, especially MLL-driven leukemias. Copyright © 2016, American Association for the Advancement of Science.
Lakatos, Petra; Hegedűs, Csaba; Salazar Ayestarán, Nerea; Juarranz, Ángeles; Kövér, Katalin E; Szabó, Éva; Virág, László
2016-08-01
A combination of a photosensitizer with light of matching wavelength is a common treatment modality in various diseases including psoriasis, atopic dermatitis and tumors. DNA damage and production of reactive oxygen intermediates may impact pathological cellular functions and viability. Here we set out to investigate the role of the nuclear DNA nick sensor enzyme poly(ADP-ribose) polymerase 1 in photochemical treatment (PCT)-induced tumor cell killing. We found that silencing PARP-1 or inhibition of its enzymatic activity with Veliparib had no significant effect on the viability of A431 cells exposed to 8-methoxypsoralen (8-MOP) and UVA (2.5J/cm(2)) indicating that PARP-1 is not likely to be a key player in either cell survival or cell death of PCT-exposed cells. Interestingly, however, another commonly used PARP inhibitor PJ-34 proved to be a photosensitizer with potency equal to 8-MOP. Irradiation of PJ-34 with UVA caused changes both in the UV absorption and in the 1H NMR spectra of the compound with the latter suggesting UVA-induced formation of tautomeric forms of the compound. Characterization of the photosensitizing effect revealed that PJ-34+UVA triggers overproduction of reactive oxygen species, induces DNA damage, activation of caspase 3 and caspase 8 and internucleosomal DNA fragmentation. Cell death in this model could not be prevented by antioxidants (ascorbic acid, trolox, glutathione, gallotannin or cell permeable superoxide dismutase or catalase) but could be suppressed by inhibitors of caspase-3 and -8. In conclusion, PJ-34 is a photosensitizer and PJ-34+UVA causes DNA damage and caspase-mediated cell death independently of PARP-1 inhibition. Copyright © 2016 Elsevier B.V. All rights reserved.
Anti-tumor activity of the ATR inhibitor AZD6738 in HER2 positive breast cancer cells.
Kim, Hee-Jun; Min, Ahrum; Im, Seock-Ah; Jang, Hyemin; Lee, Kyung Hun; Lau, Alan; Lee, Miso; Kim, Seongyeong; Yang, Yaewon; Kim, Jungeun; Kim, Tae Yong; Oh, Do-Youn; Brown, Jeffrey; O'Connor, Mark J; Bang, Yung-Jue
2017-01-01
Ataxia telangiectasia and Rad3-related (ATR) proteins are sensors of DNA damage, which induces homologous recombination (HR)-dependent repair. ATR is a master regulator of DNA damage repair (DDR), signaling to control DNA replication, DNA repair and apoptosis. Therefore, the ATR pathway might be an attractive target for developing new drugs. This study was designed to investigate the antitumor effects of the ATR inhibitor, AZD6738 and its underlying mechanism in human breast cancer cells. Growth inhibitory effects of AZD6738 against human breast cancer cell lines were studied using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (methyl thiazolyl tetrazolium, MTT) assay. Cell cycle analysis, Western blotting, immunofluorescence and comet assays were also performed to elucidate underlying mechanisms of AZD6738 action. Anti-proliferative and DDR inhibitory effects of AZD6738 were demonstrated in human breast cancer cell lines. Among 13 cell lines, the IC 50 values of nine cell lines were less than 1 μmol/L using MTT assay. Two cell lines, SK-BR-3 and BT-474, were chosen for further evaluation focused on human epidermal growth factor receptor 2 (HER2)-positive breast cancer cells. Sensitive SK-BR-3 but not the less sensitive BT-474 breast cancer cells showed increased level of apoptosis and S phase arrest and reduced expression levels of phosphorylated check-point kinase 1 (CHK1) and other repair markers. Decreased functional CHK1 expression induced DNA damage accumulation due to HR inactivation. AZD6738 showed synergistic activity with cisplatin. Understanding the antitumor activity and mechanisms of AZD6738 in HER2-positive breast cancer cells creates the possibility for future clinical trials targeting DDR in HER2-positive breast cancer treatment. © 2016 UICC.
Hamidi-Asl, Ezat; Raoof, Jahan Bakhsh; Naghizadeh, Nahid; Akhavan-Niaki, Haleh; Ojani, Reza; Banihashemi, Ali
2016-10-01
The main roles of DNA in the cells are to maintain and properly express genetic information. It is important to have analytical methods capable of fast and sensitive detection of DNA damage. DNA hybridization sensors are well suited for diagnostics and other purposes, including determination of bacteria and viruses. Beta thalassemias (βth) are due to mutations in the β-globin gene. In this study, an electrochemical biosensor which detects the sequences related to the β-globin gene issued from real samples amplified by polymerase chain reaction (PCR) is described for the first time. The biosensor relies on the immobilization of 20-mer single stranded oligonucleotide (probe) related to βth sequence on the carbon paste electrode (CPE) modified by 15% silver (Ag) and platinum (Pt) nanoparticles to prepare the bimetallic nanocomposite electrode and hybridization of this oligonucleotide with its complementary sequence (target). The extent of hybridization between the probe and target sequences was shown by using linear sweep voltammetry (LSV) with methylene blue (MB) as hybridization indicator. The selectivity of sensor was investigated using PCR samples containing non-complementary oligonucleotides. The detection limit of biosensor was calculated about 470.0pg/μL. Copyright © 2016 Elsevier B.V. All rights reserved.
Minchew, Candace L.; Didenko, Vladimir V.
2014-01-01
We describe a new type of bio-nanomachine which runs on thermal noise. The machine is solely powered by the random motion of water molecules in its environment and does not ever require re-fuelling. The construct, which is made of DNA and vaccinia virus topoisomerase protein, can detect DNA damage by employing fluorescence. It uses Brownian motion as a cyclic motor to continually separate and bring together two types of fluorescent hairpins participating in FRET. This bio-molecular oscillator is a fast and specific sensor of 5′OH double-strand DNA breaks present in phagocytic phase of apoptosis. The detection takes 30 s in solution and 3 min in cell suspensions. The phagocytic phase is critical for the effective execution of apoptosis as it ensures complete degradation of the dying cells’ DNA, preventing release of pathological, viral and tumor DNA and self-immunization. The construct can be used as a smart FRET probe in studies of cell death and phagocytosis. PMID:25268504
Recent Advancements in DNA Damage-Transcription Crosstalk and High-Resolution Mapping of DNA Breaks.
Vitelli, Valerio; Galbiati, Alessandro; Iannelli, Fabio; Pessina, Fabio; Sharma, Sheetal; d'Adda di Fagagna, Fabrizio
2017-08-31
Until recently, DNA damage arising from physiological DNA metabolism was considered a detrimental by-product for cells. However, an increasing amount of evidence has shown that DNA damage could have a positive role in transcription activation. In particular, DNA damage has been detected in transcriptional elements following different stimuli. These physiological DNA breaks are thought to be instrumental for the correct expression of genomic loci through different mechanisms. In this regard, although a plethora of methods are available to precisely map transcribed regions and transcription start sites, commonly used techniques for mapping DNA breaks lack sufficient resolution and sensitivity to draw a robust correlation between DNA damage generation and transcription. Recently, however, several methods have been developed to map DNA damage at single-nucleotide resolution, thus providing a new set of tools to correlate DNA damage and transcription. Here, we review how DNA damage can positively regulate transcription initiation, the current techniques for mapping DNA breaks at high resolution, and how these techniques can benefit future studies of DNA damage and transcription.
Detection of influenza A virus using carbon nanotubes field effect transistor based DNA sensor
NASA Astrophysics Data System (ADS)
Tran, Thi Luyen; Nguyen, Thi Thuy; Huyen Tran, Thi Thu; Chu, Van Tuan; Thinh Tran, Quang; Tuan Mai, Anh
2017-09-01
The carbon nanotubes field effect transistor (CNTFET) based DNA sensor was developed, in this paper, for detection of influenza A virus DNA. Number of factors that influence the output signal and analytical results were investigated. The initial probe DNA, decides the available DNA strands on CNTs, was 10 μM. The hybridization time for defined single helix was 120 min. The hybridization temperature was set at 30 °C to get a net change in drain current of the DNA sensor without altering properties of any biological compounds. The response time of the DNA sensor was less than one minute with a high reproducibility. In addition, the DNA sensor has a wide linear detection range from 1 pM to 10 nM, and a very low detection limit of 1 pM. Finally, after 7-month storage in 7.4 pH buffer, the output signal of DNA sensor recovered 97%.
Strand, Janne M; Scheffler, Katja; Bjørås, Magnar; Eide, Lars
2014-06-01
The cellular genomes are continuously damaged by reactive oxygen species (ROS) from aerobic processes. The impact of DNA damage depends on the specific site as well as the cellular state. The steady-state level of DNA damage is the net result of continuous formation and subsequent repair, but it is unknown to what extent heterogeneous damage distribution is caused by variations in formation or repair of DNA damage. Here, we used a restriction enzyme/qPCR based method to analyze DNA damage in promoter and coding regions of four nuclear genes: the two house-keeping genes Gadph and Tbp, and the Ndufa9 and Ndufs2 genes encoding mitochondrial complex I subunits, as well as mt-Rnr1 encoded by mitochondrial DNA (mtDNA). The distribution of steady-state levels of damage varied in a site-specific manner. Oxidative stress induced damage in nDNA to a similar extent in promoter and coding regions, and more so in mtDNA. The subsequent removal of damage from nDNA was efficient and comparable with recovery times depending on the initial damage load, while repair of mtDNA was delayed with subsequently slower repair rate. The repair was furthermore found to be independent of transcription or the transcription-coupled repair factor CSB, but dependent on cellular ATP. Our results demonstrate that the capacity to repair DNA is sufficient to remove exogenously induced damage. Thus, we conclude that the heterogeneous steady-state level of DNA damage in promoters and coding regions is caused by site-specific DNA damage/modifications that take place under normal metabolism. Copyright © 2014 Elsevier B.V. All rights reserved.
Protein Interactions in T7 DNA Replisome Facilitate DNA Damage Bypass.
Zou, Zhenyu; Chen, Ze; Xue, Qizhen; Xu, Ying; Xiong, Jingyuan; Yang, Ping; Le, Shuai; Zhang, Huidong
2018-06-14
DNA replisome inevitably encounters DNA damage during DNA replication. T7 DNA replisome contains DNA polymerase (gp5), the processivity factor thioredoxin (trx), helicase-primase (gp4), and ssDNA binding protein (gp2.5). T7 protein interactions mediate this DNA replication. However, whether the protein interactions could promote DNA damage bypass is still little addressed. In this study, we investigated the strand-displacement DNA synthesis past 8-oxoG or O6-MeG at the synthetic DNA fork by T7 DNA replisome. DNA damage does not obviously affect the binding affinities among helicase, polymerase, and DNA fork. Relative to unmodified G, both 8-oxoG and O6-MeG, as well as GC-rich template sequence clusters, inhibit the strand-displacement DNA synthesis and produce partial extension products. Relative to gp4 ΔC-tail, gp4 promotes the DNA damage bypass. The presence of gp2.5 further promotes this bypass. Thus, the interactions of polymerase with helicase and ssDNA binidng protein faciliate the DNA damage bypass. Similarly, accessory proteins in other complicated DNA replisomes also facilitate the DNA damage bypass. This work provides the novel mechanism information of DNA damage bypass by DNA replisome. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Repair of Oxidative DNA Damage in Saccharomyces cerevisiae.
Chalissery, Jisha; Jalal, Deena; Al-Natour, Zeina; Hassan, Ahmed H
2017-03-01
Malfunction of enzymes that detoxify reactive oxygen species leads to oxidative attack on biomolecules including DNA and consequently activates various DNA repair pathways. The nature of DNA damage and the cell cycle stage at which DNA damage occurs determine the appropriate repair pathway to rectify the damage. Oxidized DNA bases are primarily repaired by base excision repair and nucleotide incision repair. Nucleotide excision repair acts on lesions that distort DNA helix, mismatch repair on mispaired bases, and homologous recombination and non-homologous end joining on double stranded breaks. Post-replication repair that overcomes replication blocks caused by DNA damage also plays a crucial role in protecting the cell from the deleterious effects of oxidative DNA damage. Mitochondrial DNA is also prone to oxidative damage and is efficiently repaired by the cellular DNA repair machinery. In this review, we discuss the DNA repair pathways in relation to the nature of oxidative DNA damage in Saccharomyces cerevisiae. Copyright © 2017 Elsevier B.V. All rights reserved.
Cells and Stripes: A novel quantitative photo-manipulation technique
Mistrik, Martin; Vesela, Eva; Furst, Tomas; Hanzlikova, Hana; Frydrych, Ivo; Gursky, Jan; Majera, Dusana; Bartek, Jiri
2016-01-01
Laser micro-irradiation is a technology widely used in the DNA damage response, checkpoint signaling, chromatin remodeling and related research fields, to assess chromatin modifications and recruitment of diverse DNA damage sensors, mediators and repair proteins to sites of DNA lesions. While this approach has aided numerous discoveries related to cell biology, maintenance of genome integrity, aging and cancer, it has so far been limited by a tedious manual definition of laser-irradiated subcellular regions, with the ensuing restriction to only a small number of cells treated and analyzed in a single experiment. Here, we present an improved and versatile alternative to the micro-irradiation approach: Quantitative analysis of photo-manipulated samples using innovative settings of standard laser-scanning microscopes. Up to 200 cells are simultaneously exposed to a laser beam in a defined pattern of collinear rays. The induced striation pattern is then automatically evaluated by a simple algorithm, which provides a quantitative assessment of various laser-induced phenotypes in live or fixed cells. Overall, this new approach represents a more robust alternative to existing techniques, and provides a versatile tool for a wide range of applications in biomedicine. PMID:26777522
Interplay between DNA repair and inflammation, and the link to cancer
Kidane, Dawit; Chae, Wook Jin; Czochor, Jennifer; Eckert, Kristin A.; Glazer, Peter M.; Bothwell, Alfred L. M.; Sweasy, Joann B.
2015-01-01
DNA damage and repair are linked to cancer. DNA damage that is induced endogenously or from exogenous sources has the potential to result in mutations and genomic instability if not properly repaired, eventually leading to cancer. Inflammation is also linked to cancer. Reactive oxygen and nitrogen species (RONs) produced by inflammatory cells at sites of infection can induce DNA damage. RONs can also amplify inflammatory responses, leading to increased DNA damage. Here, we focus on the links between DNA damage, repair, and inflammation, as they relate to cancer. We examine the interplay between chronic inflammation, DNA damage and repair and review recent findings in this rapidly emerging field, including the links between DNA damage and the innate immune system, and the roles of inflammation in altering the microbiome, which subsequently leads to the induction of DNA damage in the colon. Mouse models of defective DNA repair and inflammatory control are extensively reviewed, including treatment of mouse models with pathogens, which leads to DNA damage. The roles of microRNAs in regulating inflammation and DNA repair are discussed. Importantly, DNA repair and inflammation are linked in many important ways, and in some cases balance each other to maintain homeostasis. The failure to repair DNA damage or to control inflammatory responses has the potential to lead to cancer. PMID:24410153
López-López, Linnette; Nieves-Plaza, Mariely; Castro, María del R.; Font, Yvonne M.; Torres-Ramos, Carlos; Vilá, Luis M.; Ayala-Peña, Sylvette
2014-01-01
Objective To determine the extent of mitochondrial DNA (mtDNA) damage in systemic lupus erythematosus (SLE) patients compared to healthy subjects and to determine the factors associated with mtDNA damage among SLE patients. Methods A cross-sectional study was performed in 86 SLE patients (per American College of Rheumatology classification criteria) and 86 healthy individuals matched for age and gender. Peripheral blood mononuclear cells (PBMCs) were collected from subjects to assess the relative amounts of mtDNA damage. Quantitative polymerase chain reaction assay was used to measure the frequency of mtDNA lesions and mtDNA abundance. Socioeconomic-demographic features, clinical manifestations, pharmacologic treatment, disease activity, and damage accrual were determined. Statistical analyses were performed using t test, pairwise correlation, and Pearson’s chi-square test (or Fisher’s exact test) as appropriate. Results Among SLE patients, 93.0% were women. The mean (SD) age was 38.0 (10.4) years and the mean (SD) disease duration was 8.7 (7.5) years. SLE patients exhibited increased levels of mtDNA damage as shown by higher levels of mtDNA lesions and decreased mtDNA abundance as compared to healthy individuals. There was a negative correlation between disease damage and mtDNA abundance and a positive correlation between mtDNA lesions and disease duration. No association was found between disease activity and mtDNA damage. Conclusion PBMCs from SLE patients exhibited more mtDNA damage compared to healthy subjects. Higher levels of mtDNA damage were observed among SLE patients with major organ involvement and damage accrual. These results suggest that mtDNA damage have a potential role in the pathogenesis of SLE. PMID:24899636
López-López, L; Nieves-Plaza, M; Castro, M del R; Font, Y M; Torres-Ramos, C A; Vilá, L M; Ayala-Peña, S
2014-10-01
To determine the extent of mitochondrial DNA (mtDNA) damage in systemic lupus erythematosus (SLE) patients compared to healthy subjects and to determine the factors associated with mtDNA damage among SLE patients. A cross-sectional study was performed in 86 SLE patients (per American College of Rheumatology classification criteria) and 86 healthy individuals matched for age and gender. Peripheral blood mononuclear cells (PBMCs) were collected from subjects to assess the relative amounts of mtDNA damage. Quantitative polymerase chain reaction assay was used to measure the frequency of mtDNA lesions and mtDNA abundance. Socioeconomic-demographic features, clinical manifestations, pharmacologic treatment, disease activity, and damage accrual were determined. Statistical analyses were performed using t test, pairwise correlation, and Pearson's chi-square test (or Fisher's exact test) as appropriate. Among SLE patients, 93.0% were women. The mean (SD) age was 38.0 (10.4) years and the mean (SD) disease duration was 8.7 (7.5) years. SLE patients exhibited increased levels of mtDNA damage as shown by higher levels of mtDNA lesions and decreased mtDNA abundance as compared to healthy individuals. There was a negative correlation between disease damage and mtDNA abundance and a positive correlation between mtDNA lesions and disease duration. No association was found between disease activity and mtDNA damage. PBMCs from SLE patients exhibited more mtDNA damage compared to healthy subjects. Higher levels of mtDNA damage were observed among SLE patients with major organ involvement and damage accrual. These results suggest that mtDNA damage have a potential role in the pathogenesis of SLE. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Liu, Shangfeng; Chu, Jessica; Yucer, Nur; Leng, Mei; Wang, Shih-Ya; Chen, Benjamin P C; Hittelman, Walter N; Wang, Yi
2011-06-24
DNA damage response is crucial for maintaining genomic integrity and preventing cancer by coordinating the activation of checkpoints and the repair of damaged DNA. Central to DNA damage response are the two checkpoint kinases ATM and ATR that phosphorylate a wide range of substrates. RING finger and WD repeat domain 3 (RFWD3) was initially identified as a substrate of ATM/ATR from a proteomic screen. Subsequent studies showed that RFWD3 is an E3 ubiquitin ligase that ubiquitinates p53 in vitro and positively regulates p53 levels in response to DNA damage. We report here that RFWD3 associates with replication protein A (RPA), a single-stranded DNA-binding protein that plays essential roles in DNA replication, recombination, and repair. Binding of RPA to single-stranded DNA (ssDNA), which is generated by DNA damage and repair, is essential for the recruitment of DNA repair factors to damaged sites and the activation of checkpoint signaling. We show that RFWD3 is physically associated with RPA and rapidly localizes to sites of DNA damage in a RPA-dependent manner. In vitro experiments suggest that the C terminus of RFWD3, which encompass the coiled-coil domain and the WD40 domain, is necessary for binding to RPA. Furthermore, DNA damage-induced phosphorylation of RPA and RFWD3 is dependent upon each other. Consequently, loss of RFWD3 results in the persistent foci of DNA damage marker γH2AX and the repair protein Rad51 in damaged cells. These findings suggest that RFWD3 is recruited to sites of DNA damage and facilitates RPA-mediated DNA damage signaling and repair.
Types and Consequences of DNA Damage
This review provides a concise overview of the types of DNA damage and the molecular mechanisms by which a cell senses DNA damage, repairs the damage, converts the damage into a mutation, or dies as a consequence of unrepaired DNA damage. Such information is important in consid...
RNF168 forms a functional complex with RAD6 during the DNA damage response
Liu, Chao; Wang, Degui; Wu, Jiaxue; Keller, Jennifer; Ma, Teng; Yu, Xiaochun
2013-01-01
Summary Protein ubiquitination plays an important role in initiating the DNA damage response. Following DNA damage, E2 ubiquitin conjugating enzymes are crucial for catalyzing substrate ubiquitination that recruits downstream DNA repair factors to DNA lesions. To identify novel E2 conjugating enzymes important for initiating the DNA-damage-induced ubiquitination cascade, we screened most of the known E2 enzymes and found that RAD6A and RAD6B function together with RNF168 in the ionizing radiation (IR)-induced DNA damage response. Similarly to RNF168-deficient cells, RAD6A- or RAD6B-deficient cells exhibit a reduction in DNA-damage-induced protein ubiquitination. Correspondingly, DNA-damage-induced foci formation of DNA damage repair proteins, such as BRCA1 and 53BP1, is impaired in the absence of RAD6A or RAD6B. Moreover, the RNF168–RAD6 complex targeted histone H1.2 for ubiquitination in vitro and regulated DNA-damage-induced histone H1.2 ubiquitination in vivo. Collectively, these data demonstrate that RNF168, in complex with RAD6A or RAD6B, is activated in the DNA-damage-induced protein ubiquitination cascade. PMID:23525009
Sensitive Leptospira DNA detection using tapered optical fiber sensor.
Zainuddin, Nurul H; Chee, Hui Y; Ahmad, Muhammad Z; Mahdi, Mohd A; Abu Bakar, Muhammad H; Yaacob, Mohd H
2018-03-23
This paper presents the development of tapered optical fiber sensor to detect a specific Leptospira bacteria DNA. The bacteria causes Leptospirosis, a deadly disease but with common early flu-like symptoms. Optical single mode fiber (SMF) of 125 μm diameter is tapered to produce 12 μm waist diameter and 15 cm length. The novel DNA-based optical fiber sensor is functionalized by incubating the tapered region with sodium hydroxide (NaOH), (3-Aminopropyl) triethoxysilane and glutaraldehyde. Probe DNA is immobilized onto the tapered region and subsequently hybridized by its complementary DNA (cDNA). The transmission spectra of the DNA-based optical fiber sensor are measured in the 1500 to 1600 nm wavelength range. It is discovered that the shift of the wavelength in the SMF sensor is linearly proportional with the increase in the cDNA concentrations from 0.1 to 1.0 nM. The sensitivity of the sensor toward DNA is measured to be 1.2862 nm/nM and able to detect as low as 0.1 fM. The sensor indicates high specificity when only minimal shift is detected for non-cDNA testing. The developed sensor is able to distinguish between actual DNA of Leptospira serovars (Canicola and Copenhageni) against Clostridium difficile (control sample) at very low (femtomolar) target concentrations. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Targeting Cytosolic Nucleic Acid-Sensing Pathways for Cancer Immunotherapies.
Iurescia, Sandra; Fioretti, Daniela; Rinaldi, Monica
2018-01-01
The innate immune system provides the first line of defense against pathogen infection though also influences pathways involved in cancer immunosurveillance. The innate immune system relies on a limited set of germ line-encoded sensors termed pattern recognition receptors (PRRs), signaling proteins and immune response factors. Cytosolic receptors mediate recognition of danger damage-associated molecular patterns (DAMPs) signals. Once activated, these sensors trigger multiple signaling cascades, converging on the production of type I interferons and proinflammatory cytokines. Recent studies revealed that PRRs respond to nucleic acids (NA) released by dying, damaged, cancer cells, as danger DAMPs signals, and presence of signaling proteins across cancer types suggests that these signaling mechanisms may be involved in cancer biology. DAMPs play important roles in shaping adaptive immune responses through the activation of innate immune cells and immunological response to danger DAMPs signals is crucial for the host response to cancer and tumor rejection. Furthermore, PRRs mediate the response to NA in several vaccination strategies, including DNA immunization. As route of double-strand DNA intracellular entry, DNA immunization leads to expression of key components of cytosolic NA-sensing pathways. The involvement of NA-sensing mechanisms in the antitumor response makes these pathways attractive drug targets. Natural and synthetic agonists of NA-sensing pathways can trigger cell death in malignant cells, recruit immune cells, such as DCs, CD8 + T cells, and NK cells, into the tumor microenvironment and are being explored as promising adjuvants in cancer immunotherapies. In this minireview, we discuss how cGAS-STING and RIG-I-MAVS pathways have been targeted for cancer treatment in preclinical translational researches. In addition, we present a targeted selection of recent clinical trials employing agonists of cytosolic NA-sensing pathways showing how these pathways are currently being targeted for clinical application in oncology.
DNA damage preceding dopamine neuron degeneration in A53T human α-synuclein transgenic mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Degui; Yu, Tianyu; Liu, Yongqiang
Defective DNA repair has been linked with age-associated neurodegenerative disorders. Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by genetic and environmental factors. Whether damages to nuclear DNA contribute to neurodegeneration of PD still remain obscure. in this study we aim to explore whether nuclear DNA damage induce dopamine neuron degeneration in A53T human α-Synuclein over expressed mouse model. We investigated the effects of X-ray irradiation on A53T-α-Syn MEFs and A53T-α-Syn transgene mice. Our results indicate that A53T-α-Syn MEFs show a prolonged DNA damage repair process and senescense phenotype. DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenicmore » mice and decrease the number of nigrostriatal dopaminergic neurons. Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages. - Highlights: • This study explore contribution of DNA damage to neurodegeneration in Parkinson's disease mice. • A53T-α-Syn MEF cells show a prolonged DNA damage repair process and senescense phenotype. • DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenic mice. • DNA damage decrease the number of nigrostriatal dopaminergic neurons. • Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages.« less
Zhang, Ziping; Tao, Cancan; Yin, Jungang; Wang, Yunhui; Li, Yanshen
2018-04-30
Electrochemical aptamer (EA) sensors based on aptamer-cDNA duplex probes (cDNA: complementary DNA) and target induced strand displacement (TISD) recognition are sensitive, selective and capable of detecting a wide variety of target analytes. While substantial research efforts have focused on engineering of new signaling mechanisms for the improvement of sensor sensitivity, little attention was paid to the enhancement of sensor response rate. Typically, the previous TISD based EA sensors exhibited relatively long response times larger than 30min, which mainly resulted from the suboptimal aptamer-cDNA probe structure in which most of aptamer bases were paired to the cDNA bases. In an effort to improve the response rate of this type of sensors, we report here the rational engineering of a quickly responsive and sensitive aptamer-cDNA probe by employing the conception of bivalent interaction in supramolecular chemistry. We design a bivalent cDNA strand through linking two short monovalent cDNA sequences, and it is simultaneously hybridized to two electrode-immobilized aptamer probes to form a bivalent binding (BB) aptamer-cDNA probe. This class of BB probe possesses the advantages of less aptamer bases paired to the cDNA bases for quick response rate and good structural stability for high sensor sensitivity. By use of the rationally designed BB aptamer-cDNA probe, a TISD based EA sensor against ATP with significantly enhanced response rate (with a displacement equilibrium time of 4min) and high sensitivity was successfully constructed. We believe that our BB probe conception will help guide future designs and applications of TISD based EA sensors. Copyright © 2017 Elsevier B.V. All rights reserved.
Catch the live show: Visualizing damaged DNA in vivo.
Oshidari, Roxanne; Mekhail, Karim
2018-06-01
The health of an organism is intimately linked to its ability to repair damaged DNA. Importantly, DNA repair processes are highly dynamic. This highlights the necessity of characterizing DNA repair in live cells. Advanced genome editing and imaging approaches allow us to visualize damaged DNA and its associated factors in real time. Here, we summarize both established and recent methods that are used to induce DNA damage and visualize damaged DNA and its repair in live cells. Copyright © 2018 Elsevier Inc. All rights reserved.
Jab1 Mediates Protein Degradation of Rad9/Rad1/Hus1 Checkpoint Complex
Huang, Jin; Yuan, Honglin; Lu, Chongyuan; Liu, Ximeng; Cao, Xu; Wan, Mei
2009-01-01
Summary The Rad1-Rad9-Hus1 (9-1-1) complex serves a dual role as a DNA-damage sensor in checkpoint signaling and as a mediator in DNA repair pathway. However, the intercellular mechanisms that regulate 9-1-1 complex are poorly understood. Jab1, the fifth component of the COP9 signalosome complex, plays a central role in the degradation of multiple proteins and is emerging as an important regulator in cancer development. Here, we tested the hypothesis that Jab1 controls the protein stability of the 9-1-1 complex via the proteosome pathway. We provide evidence that Jab1 physically associates with the 9-1-1 complex. This association is mediated through direct interaction between Jab1 and Rad1, one of the subunits of 9-1-1 complex. Importantly, Jab1 causes the translocation of the 9-1-1 complex from the nucleus to the cytoplasm, mediating rapid degradation of the 9-1-1 complex via 26S proteasome. Furthermore, Jab1 significantly suppresses checkpoint signaling activation, DNA synthesis recovery from blockage and cell viability after replication stresses such as UV exposure, γ radiation and hydroxyurea treatment. These results suggest that Jab1 is an important regulator for 9-1-1 protein stability control in cells, which may provide novel information on the involvement of Jab1 in checkpoint and DNA repair signaling in response to DNA damage. PMID:17583730
NASA Technical Reports Server (NTRS)
Sanchez, Hugo; Lewis, Brian; Hanel, Robert
2015-01-01
We are designing and developing a 6U (10 x 22 x 34 cm; 14 kg) nanosatellite as a secondary payload to fly aboard NASAs Space Launch System (SLS) Exploration Mission (EM) 1, scheduled for launch in late 2017. For the first time in over forty years, direct experimental data from biological studies beyond low Earth orbit (LEO) will be obtained during BioSentinels 12- to 18-month mission. BioSentinel will measure the damage and repair of DNA in a biological organism and allow us to compare that to information from onboard physical radiation sensors. In order to understand the relative contributions of the space environments two dominant biological perturbations, reduced gravity and ionizing radiation, results from deep space will be directly compared to data obtained in LEO (on ISS) and on Earth. These data points will be available for validation of existing biological radiation damage and repair models, and for extrapolation to humans, to assist in mitigating risks during future long-term exploration missions beyond LEO. The BioSentinel Payload occupies 4U of the spacecraft and will utilize the monocellular eukaryotic organism Saccharomyces cerevisiae (yeast) to report DNA double-strand-break (DSB) events that result from ambient space radiation. DSB repair exhibits striking conservation of repair proteins from yeast to humans. Yeast was selected because of 1) its similarity to cells in higher organisms, 2) the well-established history of strains engineered to measure DSB repair, 3) its spaceflight heritage, and 4) the wealth of available ground and flight reference data. The S. cerevisiae flight strain will include engineered genetic defects to prevent growth and division until a radiation-induced DSB activates the yeasts DNA repair mechanisms. The triggered culture growth and metabolic activity directly indicate a DSB and its successful repair. The yeast will be carried in the dry state within the 1-atm PL container in 18 separate fluidics cards with each card having 16 independent culture microwells, with integral microchannels and filters to supply nutrients and reagents, confine the yeast to the wells, and enable optical measurement. The measurement subsystem will monitor each subgroup of culture wells continuously for several weeks, optically tracking DSB-triggered cell growth and metabolism. BioSentinel will also include physical radiation sensors based on the TimePix sensor, as implemented by JSCs RadWorks group, which record individual radiation events including estimates of their linear-energy-transfer (LET) values. Radiation-dose and LET data will be compared directly to the rate of DSB-and-repair events measured by the S. cerevisiae biosentinels.
Method for assaying clustered DNA damages
Sutherland, Betsy M.
2004-09-07
Disclosed is a method for detecting and quantifying clustered damages in DNA. In this method, a first aliquot of the DNA to be tested for clustered damages with one or more lesion-specific cleaving reagents under conditions appropriate for cleavage of the DNA to produce single-strand nicks in the DNA at sites of damage lesions. The number average molecular length (Ln) of double stranded DNA is then quantitatively determined for the treated DNA. The number average molecular length (Ln) of double stranded DNA is also quantitatively determined for a second, untreated aliquot of the DNA. The frequency of clustered damages (.PHI..sub.c) in the DNA is then calculated.
Lymphocyte DNA damage in Turkish asphalt workers detected by the comet assay.
Bacaksiz, Aysegul; Kayaalti, Zeliha; Soylemez, Esma; Tutkun, Engin; Soylemezoglu, Tulin
2014-01-01
Asphalt has a highly complex structure and it contains several organic compounds including polycyclic aromatic hydrocarbons and heterocyclic compounds. In this study, comet assay was used to detect the DNA damage in blood lymphocytes of 30 workers exposed to asphalt fumes and 30 nonexposed controls. This is the first report on Turkish asphalt workers' investigated DNA damage using the alkaline single cell gel electrophoresis (SCGE). The DNA damage was evaluated by the percentage of DNA in the comet tail (% tail DNA) for each cell. According to our results, workers exposed to asphalt fumes had higher DNA damage than the control group (p < 0.01). The present study showed that asphalt fumes caused a significant increase in DNA damage and the comet assay is a suitable method for determining DNA damage in asphalt workers.
DNA Damage and Repair: Relevance to Mechanisms of Neurodegeneration
Martin, Lee J.
2008-01-01
DNA damage is a form of cell stress and injury that has been implicated in the pathogenesis of many neurologic disorders, including amyotrophic lateral sclerosis, Alzheimer disease, Down syndrome, Parkinson disease, cerebral ischemia, and head trauma. However, most data reveal only associations, and the role for DNA damage in direct mechanisms of neurodegeneration is vague with respect to being a definitive upstream cause of neuron cell death, rather than a consequence of the degeneration. Although neurons seem inclined to develop DNA damage during oxidative stress, most of the existing work on DNA damage and repair mechanisms has been done in the context of cancer biology using cycling non-neuronal cells but not nondividing (i.e. postmitotic) neurons. Nevertheless, the identification of mutations in genes that encode proteins that function in DNA repair and DNA damage response in human hereditary DNA repair deficiency syndromes and ataxic disorders is establishing a mechanistic precedent that clearly links DNA damage and DNA repair abnormalities with progressive neurodegeneration. This review summarizes DNA damage and repair mechanisms and their potential relevance to the evolution of degeneration in postmitotic neurons. PMID:18431258
Zhang, Xurui; Ye, Caiyong; Sun, Fang; Wei, Wenjun; Hu, Burong; Wang, Jufang
2016-01-01
Persistent DNA damage is considered as a main cause of cellular senescence induced by ionizing radiation. However, the molecular bases of the DNA damage and their contribution to cellular senescence are not completely clear. In this study, we found that both heavy ions and X-rays induced senescence in human uveal melanoma 92–1 cells. By measuring senescence associated-β-galactosidase and cell proliferation, we identified that heavy ions were more effective at inducing senescence than X-rays. We observed less efficient repair when DNA damage was induced by heavy ions compared with X-rays and most of the irreparable damage was complex of single strand breaks and double strand breaks, while DNA damage induced by X-rays was mostly repaired in 24 hours and the remained damage was preferentially associated with telomeric DNA. Our results suggest that DNA damage induced by heavy ion is often complex and difficult to repair, thus presents as persistent DNA damage and pushes the cell into senescence. In contrast, persistent DNA damage induced by X-rays is preferentially associated with telomeric DNA and the telomere-favored persistent DNA damage contributes to X-rays induced cellular senescence. These findings provide new insight into the understanding of high relative biological effectiveness of heavy ions relevant to cancer therapy and space radiation research. PMID:27187621
Transcription and DNA Damage: Holding Hands or Crossing Swords?
D'Alessandro, Giuseppina; d'Adda di Fagagna, Fabrizio
2017-10-27
Transcription has classically been considered a potential threat to genome integrity. Collision between transcription and DNA replication machinery, and retention of DNA:RNA hybrids, may result in genome instability. On the other hand, it has been proposed that active genes repair faster and preferentially via homologous recombination. Moreover, while canonical transcription is inhibited in the proximity of DNA double-strand breaks, a growing body of evidence supports active non-canonical transcription at DNA damage sites. Small non-coding RNAs accumulate at DNA double-strand break sites in mammals and other organisms, and are involved in DNA damage signaling and repair. Furthermore, RNA binding proteins are recruited to DNA damage sites and participate in the DNA damage response. Here, we discuss the impact of transcription on genome stability, the role of RNA binding proteins at DNA damage sites, and the function of small non-coding RNAs generated upon damage in the signaling and repair of DNA lesions. Copyright © 2016 Elsevier Ltd. All rights reserved.
DNA-sensing inflammasomes: regulation of bacterial host defense and the gut microbiota.
Man, Si Ming; Karki, Rajendra; Kanneganti, Thirumala-Devi
2016-06-01
DNA sensors are formidable immune guardians of the host. At least 14 cytoplasmic DNA sensors have been identified in recent years, each with specialized roles in driving inflammation and/or cell death. Of these, AIM2 is a sensor of dsDNA, and forms an inflammasome complex to activate the cysteine protease caspase-1, mediates the release of the proinflammatory cytokines IL-1β and IL-18, and induces pyroptosis. The inflammasome sensor NLRP3 can also respond to DNA in the forms of oxidized mitochondrial DNA and the DNA derivative RNA:DNA hybrids produced by bacteria, whereas the putative inflammasome sensor IFI16 responds to viral DNA in the nucleus. Although inflammasomes provoke inflammation for anti-microbial host defense, they must also maintain homeostasis with commensal microbiota. Here, we outline recent advances highlighting the complex relationship between DNA-sensing inflammasomes, bacterial host defense and the gut microbiota. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Mitochondrial DNA Damage and Diseases.
Singh, Gyanesh; Pachouri, U C; Khaidem, Devika Chanu; Kundu, Aman; Chopra, Chirag; Singh, Pushplata
2015-01-01
Various endogenous and environmental factors can cause mitochondrial DNA (mtDNA) damage. One of the reasons for enhanced mtDNA damage could be its proximity to the source of oxidants, and lack of histone-like protective proteins. Moreover, mitochondria contain inadequate DNA repair pathways, and, diminished DNA repair capacity may be one of the factors responsible for high mutation frequency of the mtDNA. mtDNA damage might cause impaired mitochondrial function, and, unrepaired mtDNA damage has been frequently linked with several diseases. Exploration of mitochondrial perspective of diseases might lead to a better understanding of several diseases, and will certainly open new avenues for detection, cure, and prevention of ailments.
Interplay of space radiation and microgravity in DNA damage and DNA damage response.
Moreno-Villanueva, María; Wong, Michael; Lu, Tao; Zhang, Ye; Wu, Honglu
2017-01-01
In space, multiple unique environmental factors, particularly microgravity and space radiation, pose constant threat to the DNA integrity of living organisms. Specifically, space radiation can cause damage to DNA directly, through the interaction of charged particles with the DNA molecules themselves, or indirectly through the production of free radicals. Although organisms have evolved strategies on Earth to confront such damage, space environmental conditions, especially microgravity, can impact DNA repair resulting in accumulation of severe DNA lesions. Ultimately these lesions, namely double strand breaks, chromosome aberrations, micronucleus formation, or mutations, can increase the risk for adverse health effects, such as cancer. How spaceflight factors affect DNA damage and the DNA damage response has been investigated since the early days of the human space program. Over the years, these experiments have been conducted either in space or using ground-based analogs. This review summarizes the evidence for DNA damage induction by space radiation and/or microgravity as well as spaceflight-related impacts on the DNA damage response. The review also discusses the conflicting results from studies aimed at addressing the question of potential synergies between microgravity and radiation with regard to DNA damage and cellular repair processes. We conclude that further experiments need to be performed in the true space environment in order to address this critical question.
Kido, Ryoko; Sato, Itaru; Tsuda, Shuji
2006-01-01
Ethanol is principal ingredient of alcohol beverage, but considered as human carcinogen, and has neurotoxicity. Alcohol consumption during pregnancy often causes fetal alcohol syndrome. The DNA damage is one of the important factors in carcinogenicity or teratogenicity. To detect the DNA damage induced by ethanol, we used an in vivo alkaline single cell gel electrophoresis (Comet) assay in pregnant mice organs and embryos. Pregnant ICR mice on Day 7 of gestation were treated with 2, 4 or 8 g/kg ethanol, and maternal organs/tissues and embryos were subjected to the Comet assay at 4, 8, 12 and 24 hr after ethanol treatment. Four and 8 g/kg ethanol induced DNA damage in brain, lung and embryos at 4 or 8 hr after the treatment. Two g/kg ethanol did not cause any DNA damage, and 8 g/kg ethanol only increased the duration of DNA damage without distinct increase in the degree of the damage. No significant DNA damage was observed in the liver. To detect the effect of acetaldehyde, disulfiram, acetaldehyde dehydrogenase inhibitor, was administered before 4 g/kg ethanol treatment. No significant increase of DNA damage was observed in the disulfiram pre-treated group. These data indicate that ethanol induces DNA damage, which might be related to ethanol toxicity. Since pre-treatment of disulfiram did not increase DNA damage, DNA damage observed in this study might not be the effect of acetaldehyde.
Mitochondrial DNA Damage and its Consequences for Mitochondrial Gene Expression
Cline, Susan D.
2012-01-01
How mitochondria process DNA damage and whether a change in the steady-state level of mitochondrial DNA damage (mtDNA) contributes to mitochondrial dysfunction are questions that fuel burgeoning areas of research into aging and disease pathogenesis. Over the past decade, researchers have identified and measured various forms of endogenous and environmental mtDNA damage and have elucidated mtDNA repair pathways. Interestingly, mitochondria do not appear to contain the full range of DNA repair mechanisms that operate in the nucleus, although mtDNA contains types of damage that are targets of each nuclear DNA repair pathway. The reduced repair capacity may, in part, explain the high mutation frequency of the mitochondrial chromosome. Since mtDNA replication is dependent on transcription, mtDNA damage may alter mitochondrial gene expression at three levels: by causing DNA polymerase γ nucleotide incorporation errors leading to mutations, by interfering with the priming of mtDNA replication by the mitochondrial RNA polymerase, or by inducing transcriptional mutagenesis or premature transcript termination. This review summarizes our current knowledge of mtDNA damage, its repair, and its effects on mtDNA integrity and gene expression. PMID:22728831
Orchestration of DNA Damage Checkpoint Dynamics across the Human Cell Cycle.
Chao, Hui Xiao; Poovey, Cere E; Privette, Ashley A; Grant, Gavin D; Chao, Hui Yan; Cook, Jeanette G; Purvis, Jeremy E
2017-11-22
Although molecular mechanisms that prompt cell-cycle arrest in response to DNA damage have been elucidated, the systems-level properties of DNA damage checkpoints are not understood. Here, using time-lapse microscopy and simulations that model the cell cycle as a series of Poisson processes, we characterize DNA damage checkpoints in individual, asynchronously proliferating cells. We demonstrate that, within early G1 and G2, checkpoints are stringent: DNA damage triggers an abrupt, all-or-none cell-cycle arrest. The duration of this arrest correlates with the severity of DNA damage. After the cell passes commitment points within G1 and G2, checkpoint stringency is relaxed. By contrast, all of S phase is comparatively insensitive to DNA damage. This checkpoint is graded: instead of halting the cell cycle, increasing DNA damage leads to slower S phase progression. In sum, we show that a cell's response to DNA damage depends on its exact cell-cycle position and that checkpoints are phase-dependent, stringent or relaxed, and graded or all-or-none. Copyright © 2017 Elsevier Inc. All rights reserved.
The effects of metal ions on the DNA damage induced by hydrogen peroxide.
Kobayashi, S; Ueda, K; Komano, T
1990-01-01
The effects of metal ions on DNA damage induced by hydrogen peroxide were investigated using two methods, agarose-gel electrophoretic analysis of supercoiled DNA and sequencing-gel analysis of single end-labeled DNA fragments of defined sequences. Hydrogen peroxide induced DNA damage when iron or copper ion was present. At least two classes of DNA damage were induced, one being direct DNA-strand cleavage, and the other being base modification labile to hot piperidine. The investigation of the damaged sites and the inhibitory effects of radical scavengers revealed that hydroxyl radical was the species which attacked DNA in the reaction of H2O2/Fe(II). On the other hand, two types of DNA damage were induced by H2O2/Cu(II). Type I damage was predominant and inhibited by potassium iodide, but type II was not. The sites of the base-modification induced by type I damage were similar to those by lipid peroxidation products and by ascorbate in the presence of Cu(II), suggesting the involvement of radical species other than free hydroxyl radical in the damaging reactions.
Mechanisms of mutagenesis: DNA replication in the presence of DNA damage
Liu, Binyan; Xue, Qizhen; Tang, Yong; Cao, Jia; Guengerich, F. Peter; Zhang, Huidong
2017-01-01
Environmental mutagens cause DNA damage that disturbs replication and produces mutations, leading to cancer and other diseases. We discuss mechanisms of mutagenesis resulting from DNA damage, from the level of DNA replication by a single polymerase to the complex DNA replisome of some typical model organisms (including bacteriophage T7, T4, Sulfolobus solfataricus, E. coli, yeast and human). For a single DNA polymerase, DNA damage can affect replication in three major ways: reducing replication fidelity, causing frameshift mutations, and blocking replication. For the DNA replisome, protein interactions and the functions of accessory proteins can yield rather different results even with a single DNA polymerase. The mechanism of mutation during replication performed by the DNA replisome is a long-standing question. Using new methods and techniques, the replisomes of certain organisms and human cell extracts can now be investigated with regard to the bypass of DNA damage. In this review, we consider the molecular mechanism of mutagenesis resulting from DNA damage in replication at the levels of single DNA polymerases and complex DNA replisomes, including translesion DNA synthesis. PMID:27234563
Mechanisms of mutagenesis: DNA replication in the presence of DNA damage.
Liu, Binyan; Xue, Qizhen; Tang, Yong; Cao, Jia; Guengerich, F Peter; Zhang, Huidong
2016-01-01
Environmental mutagens cause DNA damage that disturbs replication and produces mutations, leading to cancer and other diseases. We discuss mechanisms of mutagenesis resulting from DNA damage, from the level of DNA replication by a single polymerase to the complex DNA replisome of some typical model organisms (including bacteriophage T7, T4, Sulfolobus solfataricus, Escherichia coli, yeast and human). For a single DNA polymerase, DNA damage can affect replication in three major ways: reducing replication fidelity, causing frameshift mutations, and blocking replication. For the DNA replisome, protein interactions and the functions of accessory proteins can yield rather different results even with a single DNA polymerase. The mechanism of mutation during replication performed by the DNA replisome is a long-standing question. Using new methods and techniques, the replisomes of certain organisms and human cell extracts can now be investigated with regard to the bypass of DNA damage. In this review, we consider the molecular mechanism of mutagenesis resulting from DNA damage in replication at the levels of single DNA polymerases and complex DNA replisomes, including translesion DNA synthesis. Copyright © 2016 Elsevier B.V. All rights reserved.
Grandin, Nathalie; Charbonneau, Michel
2007-01-01
Saccharomyces cerevisiae telomerase-negative cells undergo homologous recombination on subtelomeric or TG1–3 telomeric sequences, thus allowing Type I or Type II post-senescence survival, respectively. Here, we find that the DNA damage sensors, Mec1, Mec3 and Rad24 control Type II recombination, while the Rad9 adaptor protein and the Rad53 and Chk1 effector kinases have no effect on survivor type selection. Therefore, the Mec1 and Mec3 checkpoint complexes control telomeric recombination independently of their roles in generating and amplifying the Mec1-Rad53-Chk1 kinase cascade. rfa1-t11 mutant cells, bearing a mutation in Replication Protein A (RPA) conferring a defect in recruiting Mec1-Ddc2, were also deficient in both types of telomeric recombination. Importantly, expression of an Rfa1-t11-Ddc2 hybrid fusion protein restored checkpoint-dependent arrest, but did not rescue defective telomeric recombination. Therefore, the Rfa1-t11-associated defect in telomeric recombination is not solely due to its failure to recruit Mec1. We have also isolated novel alleles of RFA1 that were deficient in Type I but not in Type II recombination and proficient in checkpoint control. Therefore, the checkpoint and recombination functions of RPA can be genetically separated, as can the RPA-mediated control of the two types of telomeric recombination. PMID:17202155
USP7S-dependent inactivation of Mule regulates DNA damage signalling and repair.
Khoronenkova, Svetlana V; Dianov, Grigory L
2013-02-01
The E3 ubiquitin ligase Mule/ARF-BP1 plays an important role in the cellular DNA damage response by controlling base excision repair and p53 protein levels. However, how the activity of Mule is regulated in response to DNA damage is currently unknown. Here, we report that the Ser18-containing isoform of the USP7 deubiquitylation enzyme (USP7S) controls Mule stability by preventing its self-ubiquitylation and subsequent proteasomal degradation. We find that in response to DNA damage, downregulation of USP7S leads to self-ubiquitylation and proteasomal degradation of Mule, which eventually leads to p53 accumulation. Cells that are unable to downregulate Mule show reduced ability to upregulate p53 levels in response to DNA damage. We also find that, as Mule inactivation is required for stabilization of base excision repair enzymes, the failure of cells to downregulate Mule after DNA damage results in deficient DNA repair. Our data describe a novel mechanism by which Mule is regulated in response to DNA damage and coordinates cellular DNA damage responses and DNA repair.
Cukras, Scott; Morffy, Nicholas; Ohn, Takbum; Kee, Younghoon
2014-01-01
Protein neddylation is involved in a wide variety of cellular processes. Here we show that the DNA damage response is perturbed in cells inactivated with an E2 Nedd8 conjugating enzyme UBE2M, measured by RAD51 foci formation kinetics and cell based DNA repair assays. UBE2M knockdown increases DNA breakages and cellular sensitivity to DNA damaging agents, further suggesting heightened genomic instability and defective DNA repair activity. Investigating the downstream Cullin targets of UBE2M revealed that silencing of Cullin 1, 2, and 4 ligases incurred significant DNA damage. In particular, UBE2M knockdown, or defective neddylation of Cullin 2, leads to a blockade in the G1 to S progression and is associated with delayed S-phase dependent DNA damage response. Cullin 4 inactivation leads to an aberrantly high DNA damage response that is associated with increased DNA breakages and sensitivity of cells to DNA damaging agents, suggesting a DNA repair defect is associated. siRNA interrogation of key Cullin substrates show that CDT1, p21, and Claspin are involved in elevated DNA damage in the UBE2M knockdown cells. Therefore, UBE2M is required to maintain genome integrity by activating multiple Cullin ligases throughout the cell cycle.
Involvement of oxidatively damaged DNA and repair in cancer development and aging
Tudek, Barbara; Winczura, Alicja; Janik, Justyna; Siomek, Agnieszka; Foksinski, Marek; Oliński, Ryszard
2010-01-01
DNA damage and DNA repair may mediate several cellular processes, like replication and transcription, mutagenesis and apoptosis and thus may be important factors in the development and pathology of an organism, including cancer. DNA is constantly damaged by reactive oxygen species (ROS) and reactive nitrogen species (RNS) directly and also by products of lipid peroxidation (LPO), which form exocyclic adducts to DNA bases. A wide variety of oxidatively-generated DNA lesions are present in living cells. 8-oxoguanine (8-oxoGua) is one of the best known DNA lesions due to its mutagenic properties. Among LPO-derived DNA base modifications the most intensively studied are ethenoadenine and ethenocytosine, highly miscoding DNA lesions considered as markers of oxidative stress and promutagenic DNA damage. Although at present it is impossible to directly answer the question concerning involvement of oxidatively damaged DNA in cancer etiology, it is likely that oxidatively modified DNA bases may serve as a source of mutations that initiate carcinogenesis and are involved in aging (i.e. they may be causal factors responsible for these processes). To counteract the deleterious effect of oxidatively damaged DNA, all organisms have developed several DNA repair mechanisms. The efficiency of oxidatively damaged DNA repair was frequently found to be decreased in cancer patients. The present work reviews the basis for the biological significance of DNA damage, particularly effects of 8-oxoGua and ethenoadduct occurrence in DNA in the aspect of cancer development, drawing attention to the multiplicity of proteins with repair activities. PMID:20589166
An electrochemiluminescent DNA sensor based on nano-gold enhancement and ferrocene quenching.
Yao, Wu; Wang, Lun; Wang, Haiyan; Zhang, Xiaolei; Li, Ling; Zhang, Na; Pan, Le; Xing, Nannan
2013-02-15
An electrochemiluminescent DNA (ECL-DNA) sensor based on nano-gold signal enhancement (i.e. gold nanoparticles, GNP) and ferrocene signal quenching was investigated. The Au electrode was first modified with GNPs through electrodeposition method, followed by subsequent immobilization of single-stranded probe DNA labeled with ruthenium complex. The resulting sensor produced a higher ECL signal due to its higher density of self-assembled probe DNAs on the surface. Upon the hybridization of probe DNA with complementary target DNA labeled with ferrocene, ECL intensity decreased significantly due to spatial separation of ECL label from the electrode surface. As a result, the ECL signal was simultaneously quenched by ferrocene. The effects of both nano-gold electrodeposition time and ferrocene on the performance of ECL-DNA sensor were studied in detail and possible reasons for these effects were suggested as well. The reported ECL-DNA sensor showed great sensitivity and may provide an alternative approach for DNA detection in diagnostics and gene analysis. Copyright © 2012 Elsevier B.V. All rights reserved.
Mitochondrial DNA Damage and Diseases
Singh, Gyanesh; Pachouri, U C; Khaidem, Devika Chanu; Kundu, Aman; Chopra, Chirag; Singh, Pushplata
2015-01-01
Various endogenous and environmental factors can cause mitochondrial DNA (mtDNA) damage. One of the reasons for enhanced mtDNA damage could be its proximity to the source of oxidants, and lack of histone-like protective proteins. Moreover, mitochondria contain inadequate DNA repair pathways, and, diminished DNA repair capacity may be one of the factors responsible for high mutation frequency of the mtDNA. mtDNA damage might cause impaired mitochondrial function, and, unrepaired mtDNA damage has been frequently linked with several diseases. Exploration of mitochondrial perspective of diseases might lead to a better understanding of several diseases, and will certainly open new avenues for detection, cure, and prevention of ailments. PMID:27508052
Pamwani, Lavish; Habib, Anowarul; Melandsø, Frank; Ahluwalia, Balpreet Singh; Shelke, Amit
2018-06-22
The main aim of the paper is damage detection at the microscale in the anisotropic piezoelectric sensors using surface acoustic waves (SAWs). A novel technique based on the single input and multiple output of Rayleigh waves is proposed to detect the microscale cracks/flaws in the sensor. A convex-shaped interdigital transducer is fabricated for excitation of divergent SAWs in the sensor. An angularly shaped interdigital transducer (IDT) is fabricated at 0 degrees and ±20 degrees for sensing the convex shape evolution of SAWs. A precalibrated damage was introduced in the piezoelectric sensor material using a micro-indenter in the direction perpendicular to the pointing direction of the SAW. Damage detection algorithms based on empirical mode decomposition (EMD) and principal component analysis (PCA) are implemented to quantify the evolution of damage in piezoelectric sensor material. The evolution of the damage was quantified using a proposed condition indicator (CI) based on normalized Euclidean norm of the change in principal angles, corresponding to pristine and damaged states. The CI indicator provides a robust and accurate metric for detection and quantification of damage.
Electrochemical DNA hybridization sensors based on conducting polymers.
Rahman, Md Mahbubur; Li, Xiao-Bo; Lopa, Nasrin Siraj; Ahn, Sang Jung; Lee, Jae-Joon
2015-02-05
Conducting polymers (CPs) are a group of polymeric materials that have attracted considerable attention because of their unique electronic, chemical, and biochemical properties. This is reflected in their use in a wide range of potential applications, including light-emitting diodes, anti-static coating, electrochromic materials, solar cells, chemical sensors, biosensors, and drug-release systems. Electrochemical DNA sensors based on CPs can be used in numerous areas related to human health. This review summarizes the recent progress made in the development and use of CP-based electrochemical DNA hybridization sensors. We discuss the distinct properties of CPs with respect to their use in the immobilization of probe DNA on electrode surfaces, and we describe the immobilization techniques used for developing DNA hybridization sensors together with the various transduction methods employed. In the concluding part of this review, we present some of the challenges faced in the use of CP-based DNA hybridization sensors, as well as a future perspective.
DNA damage induced by ascorbate in the presence of Cu2+.
Kobayashi, S; Ueda, K; Morita, J; Sakai, H; Komano, T
1988-01-25
DNA damage induced by ascorbate in the presence of Cu2+ was investigated by use of bacteriophage phi X174 double-stranded supercoiled DNA and linear restriction fragments as substrates. Single-strand cleavage was induced when supercoiled DNA was incubated with 5 microM-10 mM ascorbate and 50 microM Cu2+ at 37 degrees C for 10 min. The induced DNA damage was analyzed by sequencing of fragments singly labeled at their 5'- or 3'-end. DNA was cleaved directly and almost uniformly at every nucleotide by ascorbate and Cu2+. Piperidine treatment after the reaction showed that ascorbate and Cu2+ induced another kind of DNA damage different from the direct cleavage. The damage proceeded to DNA cleavage by piperidine treatment and was sequence-specific rather than random. These results indicate that ascorbate induces two classes of DNA damage in the presence of Cu2+, one being direct strand cleavage, probably via damage to the DNA backbone, and the other being a base modification labile to alkali treatment. These two classes of DNA damage were inhibited by potassium iodide, catalase and metal chelaters, suggesting the involvement of radicals generated from ascorbate hydroperoxide.
Thompson, Larry H.; Hinz, John M.
2009-01-01
The Fanconi anemia (FA) molecular network consists of 15 “FANC” proteins, of which 13 are associated with mutations in patients with this cancer-prone chromosome instability disorder. Whereas historically the common phenotype associated with FA mutations is marked sensitivity to DNA interstrand crosslinking agents, the literature supports a more global role for FANC proteins in coping with diverse stresses encountered by replicative polymerases. We have attempted to reconcile and integrate numerous observations into a model in which FANC proteins coordinate the following physiological events during DNA crosslink repair: (a) activating a FANCM-ATR-dependent S-phase checkpoint; (b) mediating enzymatic replication-fork breakage and crosslink unhooking; (c) filling the resulting gap by translesion synthesis (TLS) by error-prone polymerase(s); and (d) restoring the resulting one-ended double-strand break by homologous recombination repair (HRR). The FANC core subcomplex (FANCA, B, C, E, F, G, L, FAAP100) promotes TLS for both crosslink and non-crosslink damage such as spontaneous oxidative base damage, UV-C photoproducts, and alkylated bases. TLS likely helps prevent stalled replication forks from breaking, thereby maintaining chromosome continuity. Diverse DNA damages and replication inhibitors result in monoubiquitination of the FANCD2-FANCI complex by the FANCL ubiquitin ligase activity of the core subcomplex upon its recruitment to chromatin by the FANCM-FAAP24 heterodimeric translocase. We speculate that this translocase activity acts as the primary damage sensor and helps remodel blocked replication forks to facilitate checkpoint activation and repair. Monoubiquitination of FANCD2-FANCI is needed for promoting HRR, in which the FANCD1/BRCA2 and FANCN/PALB2 proteins act at an early step. We conclude that the core subcomplex is required for both TLS and HRR occurring separately for non-crosslink damages and for both events during crosslink repair. The FANCJ/BRIP1/BACH1 helicase functions in association with BRCA1 and may remove structural barriers to replication, such as guanine quadruplex structures, and/or assist in crosslink unhooking. PMID:19622404
Cytosolic sensing of immuno-stimulatory DNA, the enemy within.
Dhanwani, Rekha; Takahashi, Mariko; Sharma, Sonia
2018-02-01
In the cytoplasm, DNA is sensed as a universal danger signal by the innate immune system. Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor/enzyme that catalyzes formation of 2'-5'-cGAMP, an atypical cyclic di-nucleotide second messenger that binds and activates the Stimulator of Interferon Genes (STING), resulting in recruitment of Tank Binding Kinase 1 (TBK1), activation of the transcription factor Interferon Regulatory Factor 3 (IRF3), and trans-activation of innate immune response genes, including type I Interferon cytokines (IFN-I). Activation of the pro-inflammatory cGAS-STING-IRF3 response is triggered by direct recognition of the DNA genomes of bacteria and viruses, but also during RNA virus infection, neoplastic transformation, tumor immunotherapy and systemic auto-inflammatory diseases. In these circumstances, the source of immuno-stimulatory DNA has often represented a fundamental yet poorly understood aspect of the response. This review focuses on recent findings related to cGAS activation by an array of self-derived DNA substrates, including endogenous retroviral elements, mitochondrial DNA (mtDNA) and micronuclei generated as a result of genotoxic stress and DNA damage. These findings emphasize the role of the cGAS axis as a cell-intrinsic innate immune response to a wide variety of genomic insults. Copyright © 2017. Published by Elsevier Ltd.
In vitro assembly of semi-artificial molecular machine and its use for detection of DNA damage.
Minchew, Candace L; Didenko, Vladimir V
2012-01-11
Naturally occurring bio-molecular machines work in every living cell and display a variety of designs. Yet the development of artificial molecular machines centers on devices capable of directional motion, i.e. molecular motors, and on their scaled-down mechanical parts (wheels, axels, pendants etc). This imitates the macro-machines, even though the physical properties essential for these devices, such as inertia and momentum conservation, are not usable in the nanoworld environments. Alternative designs, which do not follow the mechanical macromachines schemes and use mechanisms developed in the evolution of biological molecules, can take advantage of the specific conditions of the nanoworld. Besides, adapting actual biological molecules for the purposes of nano-design reduces potential dangers the nanotechnology products may pose. Here we demonstrate the assembly and application of one such bio-enabled construct, a semi-artificial molecular device which combines a naturally-occurring molecular machine with artificial components. From the enzymology point of view, our construct is a designer fluorescent enzyme-substrate complex put together to perform a specific useful function. This assembly is by definition a molecular machine, as it contains one. Yet, its integration with the engineered part - fluorescent dual hairpin - re-directs it to a new task of labeling DNA damage. Our construct assembles out of a 32-mer DNA and an enzyme vaccinia topoisomerase I (VACC TOPO). The machine then uses its own material to fabricate two fluorescently labeled detector units (Figure 1). One of the units (green fluorescence) carries VACC TOPO covalently attached to its 3'end and another unit (red fluorescence) is a free hairpin with a terminal 3'OH. The units are short-lived and quickly reassemble back into the original construct, which subsequently recleaves. In the absence of DNA breaks these two units continuously separate and religate in a cyclic manner. In tissue sections with DNA damage, the topoisomerase-carrying detector unit selectively attaches to blunt-ended DNA breaks with 5'OH (DNase II-type breaks), fluorescently labeling them. The second, enzyme-free hairpin formed after oligonucleotide cleavage, will ligate to a 5'PO(4) blunt-ended break (DNase I-type breaks), if T4 DNA ligase is present in the solution. When T4 DNA ligase is added to a tissue section or a solution containing DNA with 5'PO(4) blunt-ended breaks, the ligase reacts with 5'PO(4) DNA ends, forming semi-stable enzyme-DNA complexes. The blunt ended hairpins will interact with these complexes releasing ligase and covalently linking hairpins to DNA, thus labeling 5'PO(4) blunt-ended DNA breaks. This development exemplifies a new practical approach to the design of molecular machines and provides a useful sensor for detection of apoptosis and DNA damage in fixed cells and tissues. Copyright © 2012 Journal of Visualized Experiments
Treacher Collins syndrome TCOF1 protein cooperates with NBS1 in the DNA damage response.
Ciccia, Alberto; Huang, Jen-Wei; Izhar, Lior; Sowa, Mathew E; Harper, J Wade; Elledge, Stephen J
2014-12-30
The signal transduction pathway of the DNA damage response (DDR) is activated to maintain genomic integrity following DNA damage. The DDR promotes genomic integrity by regulating a large network of cellular activities that range from DNA replication and repair to transcription, RNA splicing, and metabolism. In this study we define an interaction between the DDR factor NBS1 and TCOF1, a nucleolar protein that regulates ribosomal DNA (rDNA) transcription and is mutated in Treacher Collins syndrome. We show that NBS1 relocalizes to nucleoli after DNA damage in a manner dependent on TCOF1 and on casein kinase II and ATM, which are known to modify TCOF1 by phosphorylation. Moreover, we identify a putative ATM phosphorylation site that is required for NBS1 relocalization to nucleoli in response to DNA damage. Last, we report that TCOF1 promotes cellular resistance to DNA damaging agents. Collectively, our findings identify TCOF1 as a DDR factor that could cooperate with ATM and NBS1 to suppress inappropriate rDNA transcription and maintain genomic integrity after DNA damage.
Treacher Collins syndrome TCOF1 protein cooperates with NBS1 in the DNA damage response
Ciccia, Alberto; Huang, Jen-Wei; Izhar, Lior; Sowa, Mathew E.; Harper, J. Wade; Elledge, Stephen J.
2014-01-01
The signal transduction pathway of the DNA damage response (DDR) is activated to maintain genomic integrity following DNA damage. The DDR promotes genomic integrity by regulating a large network of cellular activities that range from DNA replication and repair to transcription, RNA splicing, and metabolism. In this study we define an interaction between the DDR factor NBS1 and TCOF1, a nucleolar protein that regulates ribosomal DNA (rDNA) transcription and is mutated in Treacher Collins syndrome. We show that NBS1 relocalizes to nucleoli after DNA damage in a manner dependent on TCOF1 and on casein kinase II and ATM, which are known to modify TCOF1 by phosphorylation. Moreover, we identify a putative ATM phosphorylation site that is required for NBS1 relocalization to nucleoli in response to DNA damage. Last, we report that TCOF1 promotes cellular resistance to DNA damaging agents. Collectively, our findings identify TCOF1 as a DDR factor that could cooperate with ATM and NBS1 to suppress inappropriate rDNA transcription and maintain genomic integrity after DNA damage. PMID:25512513
SansEC: A New Dimension to Sensing Electrical Sensors with No Electrical Connections
NASA Technical Reports Server (NTRS)
2008-01-01
This DVD contains an introduction to SansEC, a new electrical sensor technology without electrical connections. This new class of sensors represents a stand-alone 2-dimensional geometric pattern of electrically open circuits without electrical connections. The sensor is powered with an external, harmonic magnetic field and as the property being sensed changes, responds to frequency, amplitude or bandwidth changes. This response is interrogated using an external antenna, a single electrical component having no electrical connections. The sensor can be encased in any nonconductive material to provide protection from its environment. If the container is nonconductive, the sensor can be placed external to the container without contacting it, making installation very simple. An encased sensor can also be placed inside a container for measuring the level of any fluid or material, including acids. Any readout device can be used with the sensor, including standard or digital gauges. SansEC sensors can be used to measure real-time fluid slosh to determine if a fuel tank's internal structural isogrid can be used to replace some of the baffles surface, thus reducing the overall baffle weight and giving a better understanding of the effect that isogrids have on fluid motion. Any SansEC sensor can also be used for damage or tamper detection. When damaged, torn or tampered with, the measured response shift in frequency is commensurate to the detected damage, with the response frequency increasing with rising damage. The unique sensor design allows it to function even if damaged, because unlike other circuits, there is no single point on the sensor that, if damaged, renders it non-functional. The broad metallic coverage of the array allows the array to be one of many thermal insulation layers. Two such arrays were tested to understand the effects of high velocity damage. Each test article was targeted with metal projectiles emulating micrometeorite or orbital debris impact. Even with the damage that the sensors received every sensor was still functional with the new response baseline, and remained capable of detecting even more damage.
Rasheed, P Abdul; Sandhyarani, N
2017-11-15
Development of a sensitive, specific and cost-effective DNA detection method is motivated by increasing demand for the early stage diagnosis of genetic diseases. Recent developments in the design and fabrication of efficient sensor platforms based on nanostructures make the highly sensitive sensors which could indicate very low detection limit to the level of few molecules, a realistic possibility. Electrochemical detection methods are widely used in DNA diagnostics as it provide simple, accurate and inexpensive platform for DNA detection. In addition, the electrochemical DNA sensors provide direct electronic signal without the use of expensive signal transduction equipment and facilitates the immobilization of single stranded DNA (ssDNA) probe sequences on a wide variety of electrode substrates. It has been found that a range of nanomaterials such as metal nanoparticles (MNPs), carbon based nanomaterials, quantum dots (QDs), magnetic nanoparticles and polymeric NPs have been introduced in the sensor design to enhance the sensing performance of electrochemical DNA sensor. In this review, we discuss recent progress in the design and fabrication of efficient electrochemical genosensors based on carbon nanostructures such as carbon nanotubes, graphene, graphene oxide and nanodiamonds. Copyright © 2017 Elsevier B.V. All rights reserved.
Lin, Jen-Jyh; Wu, Chih-Chung; Hsu, Shu-Chun; Weng, Shu-Wen; Ma, Yi-Shih; Huang, Yi-Ping; Lin, Jaung-Geng; Chung, Jing-Gung
2015-11-01
Although there are few reports regarding α-phellandrene (α-PA), a natural compound from Schinus molle L. essential oil, there is no report to show that α-PA induced DNA damage and affected DNA repair associated protein expression. Herein, we investigated the effects of α-PA on DNA damage and repair associated protein expression in murine leukemia cells. Flow cytometric assay was used to measure the effects of α-PA on total cell viability and the results indicated that α-PA induced cell death. Comet assay and 4,6-diamidino-2-phenylindole dihydrochloride staining were used for measuring DNA damage and condensation, respectively, and the results indicated that α-PA induced DNA damage and condensation in a concentration-dependent manner. DNA gel electrophoresis was used to examine the DNA damage and the results showed that α-PA induced DNA damage in WEHI-3 cells. Western blotting assay was used to measure the changes of DNA damage and repair associated protein expression and the results indicated that α-PA increased p-p53, p-H2A.X, 14-3-3-σ, and MDC1 protein expression but inhibited the protein of p53, MGMT, DNA-PK, and BRCA-1. © 2014 Wiley Periodicals, Inc.
Liu, Wei; Tan, Zhenyu; Zhang, Liming; Champion, Christophe
2018-05-01
This study presents the correlation between energy deposition and clustered DNA damage, based on a Monte Carlo simulation of the spectrum of direct DNA damage induced by low-energy electrons including the dissociative electron attachment. Clustered DNA damage is classified as simple and complex in terms of the combination of single-strand breaks (SSBs) or double-strand breaks (DSBs) and adjacent base damage (BD). The results show that the energy depositions associated with about 90% of total clustered DNA damage are below 150 eV. The simple clustered DNA damage, which is constituted of the combination of SSBs and adjacent BD, is dominant, accounting for 90% of all clustered DNA damage, and the spectra of the energy depositions correlating with them are similar for different primary energies. One type of simple clustered DNA damage is the combination of a SSB and 1-5 BD, which is denoted as SSB + BD. The average contribution of SSB + BD to total simple clustered DNA damage reaches up to about 84% for the considered primary energies. In all forms of SSB + BD, the SSB + BD including only one base damage is dominant (above 80%). In addition, for the considered primary energies, there is no obvious difference between the average energy depositions for a fixed complexity of SSB + BD determined by the number of base damage, but average energy depositions increase with the complexity of SSB + BD. In the complex clustered DNA damage constituted by the combination of DSBs and BD around them, a relatively simple type is a DSB combining adjacent BD, marked as DSB + BD, and it is of substantial contribution (on average up to about 82%). The spectrum of DSB + BD is given mainly by the DSB in combination with different numbers of base damage, from 1 to 5. For the considered primary energies, the DSB combined with only one base damage contributes about 83% of total DSB + BD, and the average energy deposition is about 106 eV. However, the energy deposition increases with the complexity of clustered DNA damage, and therefore, the clustered DNA damage with high complexity still needs to be considered in the study of radiation biological effects, in spite of their small contributions to all clustered DNA damage.
Sperm DNA damage has a negative association with live-birth rates after IVF.
Simon, L; Proutski, I; Stevenson, M; Jennings, D; McManus, J; Lutton, D; Lewis, S E M
2013-01-01
Sperm DNA damage has a negative impact on pregnancy rates following assisted reproduction treatment (ART). The aim of the present study was to examine the relationship between sperm DNA fragmentation and live-birth rates after IVF and intracytoplasmic sperm injection (ICSI). The alkaline Comet assay was employed to measure sperm DNA fragmentation in native semen and in spermatozoa following density-gradient centrifugation in semen samples from 203 couples undergoing IVF and 136 couples undergoing ICSI. Men were divided into groups according to sperm DNA damage. Following IVF, couples with <25% sperm DNA fragmentation had a live-birth rate of 33%; in contrast, couples with >50% sperm DNA fragmentation had a much lower live-birth rate of 13%. Following ICSI, no significant differences in sperm DNA damage were found between any groups of patients. Sperm DNA damage was also associated with low live-birth rates following IVF in both men and couples with idiopathic infertility: 39% of couples and 41% of men with idiopathic infertility have high sperm DNA damage. Sperm DNA damage assessed by the Comet assay has a close inverse relationship with live-birth rates after IVF. Sperm DNA damage has a negative impact on assisted reproduction treatment outcome, in particular, on pregnancy rates. The aim of the present study was to examine the relationship between sperm DNA fragmentation and live-birth rates after IVF and intracytoplasmic sperm injection (ICSI). The alkaline Comet assay was employed to measure sperm DNA fragmentation in native semen and in spermatozoa following density-gradient centrifugation in semen samples from 203 couples undergoing IVF and 136 couples undergoing ICSI. Men were divided into groups according to sperm DNA damage and treatment outcome. Following IVF, couples with <25% sperm DNA fragmentation had a live birth rate of 33%. In contrast, couples with >50% sperm DNA fragmentation had a much lower live-birth rate of 13% following IVF. Following ICSI, there were no significant differences in levels of sperm DNA damage between any groups of patients. Sperm DNA damage was also associated with the very low live-birth rates following IVF in both men and couples with idiopathic infertility: 39% of couples and 41% of men have high level of sperm DNA damage. Sperm DNA damage assessed by the Comet assay has a close inverse relationship with live-birth rates after IVF. Copyright © 2012 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Expression Profile of DNA Damage Signaling Genes in Proton Exposed Mouse Brain
NASA Astrophysics Data System (ADS)
Ramesh, Govindarajan; Wu, Honglu
Exposure of living systems to radiation results in a wide assortment of lesions, the most signif-icant of is damage to genomic DNA which induce several cellular functions such as cell cycle arrest, repair, apoptosis etc. The radiation induced DNA damage investigation is one of the im-portant area in biology, but still the information available regarding the effects of proton is very limited. In this report, we investigated the differential gene expression pattern of DNA damage signaling genes particularly, damaged DNA binding, repair, cell cycle arrest, checkpoints and apoptosis using quantitative real-time RT-PCR array in proton exposed mouse brain tissues. The expression profiles showed significant changes in DNA damage related genes in 2Gy proton exposed mouse brain tissues as compared with control brain tissues. Furthermore, we also show that significantly increased levels of apoptotic related genes, caspase-3 and 8 activities in these cells, suggesting that in addition to differential expression of DNA damage genes, the alteration of apoptosis related genes may also contribute to the radiation induced DNA damage followed by programmed cell death. In summary, our findings suggest that proton exposed brain tissue undergo severe DNA damage which in turn destabilize the chromatin stability.
Damage Detection/Locating System Providing Thermal Protection
NASA Technical Reports Server (NTRS)
Woodard, Stanley E. (Inventor); Jones, Thomas W. (Inventor); Taylor, Bryant D. (Inventor); Qamar, A. Shams (Inventor)
2010-01-01
A damage locating system also provides thermal protection. An array of sensors substantially tiles an area of interest. Each sensor is a reflective-surface conductor having operatively coupled inductance and capacitance. A magnetic field response recorder is provided to interrogate each sensor before and after a damage condition. Changes in response are indicative of damage and a corresponding location thereof.
HIPK2 restricts SIRT1 activity upon severe DNA damage by a phosphorylation-controlled mechanism
Conrad, E; Polonio-Vallon, T; Meister, M; Matt, S; Bitomsky, N; Herbel, C; Liebl, M; Greiner, V; Kriznik, B; Schumacher, S; Krieghoff-Henning, E; Hofmann, T G
2016-01-01
Upon severe DNA damage a cellular signalling network initiates a cell death response through activating tumour suppressor p53 in association with promyelocytic leukaemia (PML) nuclear bodies. The deacetylase Sirtuin 1 (SIRT1) suppresses cell death after DNA damage by antagonizing p53 acetylation. To facilitate efficient p53 acetylation, SIRT1 function needs to be restricted. How SIRT1 activity is regulated under these conditions remains largely unclear. Here we provide evidence that SIRT1 activity is limited upon severe DNA damage through phosphorylation by the DNA damage-responsive kinase HIPK2. We found that DNA damage provokes interaction of SIRT1 and HIPK2, which phosphorylates SIRT1 at Serine 682 upon lethal damage. Furthermore, upon DNA damage SIRT1 and HIPK2 colocalize at PML nuclear bodies, and PML depletion abrogates DNA damage-induced SIRT1 Ser682 phosphorylation. We show that Ser682 phosphorylation inhibits SIRT1 activity and impacts on p53 acetylation, apoptotic p53 target gene expression and cell death. Mechanistically, we found that DNA damage-induced SIRT1 Ser682 phosphorylation provokes disruption of the complex between SIRT1 and its activator AROS. Our findings indicate that phosphorylation-dependent restriction of SIRT1 activity by HIPK2 shapes the p53 response. PMID:26113041
Akkaya, Çağlayan; Yavuzer, Serap Sahin; Yavuzer, Hakan; Erkol, Gökhan; Bozluolcay, Melda; Dinçer, Yıldız
2017-07-15
The aim of the current study was to compare oxidative DNA damage, DNA susceptibility to oxidation, and ratio of GSH/GSSG in patients with Alzheimer's disease (AD) treated with acetylcholinesterase inhibitor (AChEI) and combined AChEI+memantine. The study included 67 patients with AD and 42 volunteers as control. DNA damage parameters (strand breaks, oxidized purines, H 2 O 2 -induced DNA damage) in lymphocyte DNA and GSH/GSSG ratio in erythrocytes were determined by the comet assay and spectrophotometric assay, respectively. DNA damage was found to be higher, GSH/GSSG ratio was found to be lower in the AD group than those in the control group. DNA strand breaks and H 2 O 2 -induced DNA damage were lower in the patients taking AChEI+memantine than those in the patients taking AChEI but no significant difference was determined between the groups for oxidized purines and GSH/GSSG ratio. In conclusion, increased systemic oxidative DNA damage and DNA susceptibility to oxidation may be resulted from diminished GSH/GSSG ratio in AD patients. Although DNA strand breaks and H 2 O 2 -induced DNA damage are lower in the AD patients treated with combined AChEI and memantine, this may not indicate protective effect of memantine against DNA oxidation due to similar levels of oxidized purines in the patients treated with AChEI and AChEI+memantine. Copyright © 2017 Elsevier B.V. All rights reserved.
Guzder, S N; Sung, P; Prakash, L; Prakash, S
1998-11-20
Saccharomyces cerevisiae Rad4 and Rad23 proteins are required for the nucleotide excision repair of UV light-damaged DNA. Previous studies have indicated that these two DNA repair proteins are associated in a tight complex, which we refer to as nucleotide excision repair factor 2 (NEF2). In a reconstituted nucleotide excision repair reaction, incision of UV-damaged DNA is dependent on NEF2, indicating a role of NEF2 in an early step of the repair process. NEF2 does not, however, possess an enzymatic activity, and its function in the damage-specific incision reaction has not yet been defined. Here we use a DNA mobility shift assay to demonstrate that NEF2 binds specifically to UV-damaged DNA. Elimination of cyclobutane pyrimidine dimers from the UV-damaged DNA by enzymatic photoreactivation has little effect on the affinity of NEF2 for the DNA, suggesting that NEF2 recognizes the 6-(1, 2)-dihydro-2-oxo-4-pyrimidinyl)-5-methyl-2,4-(1H,3H)-pyrimidinedione photoproducts in the damaged DNA. These results highlight the intricacy of the DNA damage-demarcation reaction during nucleotide excision repair in eukaryotes.
Visualizing the Search for Radiation-damaged DNA Bases in Real Time.
Lee, Andrea J; Wallace, Susan S
2016-11-01
The Base Excision Repair (BER) pathway removes the vast majority of damages produced by ionizing radiation, including the plethora of radiation-damaged purines and pyrimidines. The first enzymes in the BER pathway are DNA glycosylases, which are responsible for finding and removing the damaged base. Although much is known about the biochemistry of DNA glycosylases, how these enzymes locate their specific damage substrates among an excess of undamaged bases has long remained a mystery. Here we describe the use of single molecule fluorescence to observe the bacterial DNA glycosylases, Nth, Fpg and Nei, scanning along undamaged and damaged DNA. We show that all three enzymes randomly diffuse on the DNA molecule and employ a wedge residue to search for and locate damage. The search behavior of the Escherichia coli DNA glycosylases likely provides a paradigm for their homologous mammalian counterparts.
Visualizing the search for radiation-damaged DNA bases in real time
NASA Astrophysics Data System (ADS)
Lee, Andrea J.; Wallace, Susan S.
2016-11-01
The Base Excision Repair (BER) pathway removes the vast majority of damages produced by ionizing radiation, including the plethora of radiation-damaged purines and pyrimidines. The first enzymes in the BER pathway are DNA glycosylases, which are responsible for finding and removing the damaged base. Although much is known about the biochemistry of DNA glycosylases, how these enzymes locate their specific damage substrates among an excess of undamaged bases has long remained a mystery. Here we describe the use of single molecule fluorescence to observe the bacterial DNA glycosylases, Nth, Fpg and Nei, scanning along undamaged and damaged DNA. We show that all three enzymes randomly diffuse on the DNA molecule and employ a wedge residue to search for and locate damage. The search behavior of the Escherichia coli DNA glycosylases likely provides a paradigm for their homologous mammalian counterparts.
DNA Damage in Euonymus japonicus Leaf Cells Caused by Roadside Pollution in Beijing
Li, Tianxin; Zhang, Minjie; Gu, Ke; Herman, Uwizeyimana; Crittenden, John; Lu, Zhongming
2016-01-01
The inhalable particles from vehicle exhaust can cause DNA damage to exposed organisms. Research on DNA damage is primarily focused on the influence of specific pollutants on certain species or the effect of environmental pollution on human beings. To date, little research has quantitatively studied the relationship between roadside pollution and DNA damage. Based on an investigation of the roadside pollution in Beijing, Euonymus japonicus leaves of differing ages grown in heavily-polluted sections were chosen as biomonitors to detect DNA damage using the comet assay technique. The percentage of DNA in the tail and tail moment was chosen as the analysis index based on SPSS data analysis. The roadside samples showed significantly higher levels of DNA damage than non-roadside samples, which increased in older leaves, and the DNA damage to Euonymus japonicus leaf cells was positively correlated with haze-aggravated roadside pollution. The correlation between damage and the Air Quality Index (AQI) are 0.921 (one-year-old leaves), 0.894 (two-year-old leaves), and 0.878 (three-year-old leaves). Over time, the connection between DNA damage and AQI weakened, with the sensitivity coefficient for δyear 1 being larger than δyear 2 and δyear 3. These findings support the suitability and sensitivity of the comet assay for surveying plants for an estimation of DNA damage induced by environmental genotoxic agents. This study might be applied as a preliminary quantitative method for Chinese urban air pollution damage assessment caused by environmental stress. PMID:27455298
2012-08-15
Bragg grating ( FBG ) sensors within these composite structures allows one to correlate sensor response features to “critical damage events” within the...material. The unique capabilities of this identification strategy are due to the detailed information obtained from the FBG sensors and the... FBG sensors relate to damage states not merely strain amplitudes. The research objectives of this project were therefore to: demonstrate FBG
Song, Zhangfa; von Figura, Guido; Liu, Yan; Kraus, Johann M.; Torrice, Chad; Dillon, Patric; Rudolph-Watabe, Masami; Ju, Zhenyu; Kestler, Hans A.; Sanoff, Hanna; Rudolph, K. Lenhard
2010-01-01
Summary Cellular aging is characterised by telomere shortening, which can lead to uncapping of chromosome ends (telomere dysfunction) and that activation of DNA damage responses. There is some evidence the DNA damage accumulates during human aging and that lifestyle factors contribute to the accumulation of DNA damage. Recent studies have identified a set of serum markers that are induced by telomere dysfunction and DNA damage and these markers showed an increased expression in blood during human aging. Here, we investigated the influence of lifestyle factors (such as exercise, smoking, body mass) on the aging associated expression of serum markers of DNA damage (CRAMP, EF-1α, Stathmin, n-acetyl-glucosaminidase, and chitinase) in comparison to other described markers of cellular aging (p16INK4a upregulation and telomere shortening) in human peripheral blood. The study shows that lifestyle factors have an age-independent impact on the expression level of biomarkers of DNA damage. Smoking and increased body mass indices were associated with elevated levels of biomarkers of DNA damage independent of the age of the individuals. In contrast, exercise was associated with an age-independent reduction in the expression of biomarkers of DNA damage in human blood. The expression of biomarkers of DNA damage correlated positively with p16INK4a expression and negatively with telomere length in peripheral blood T-lymphocytes. Together, these data provide experimental evidence that both aging and lifestyle impact on the accumulation of DNA damage during human aging. PMID:20560902
Comparing the Properties of Electrochemical-Based DNA Sensors Employing Different Redox Tags
Kang, Di; Zuo, Xiaolei; Yang, Renqiang; Xia, Fan; Plaxco, Kevin W.; White, Ryan J.
2009-01-01
Many electrochemical biosensor approaches developed in recent years utilize redox labeled (most commonly methylene blue or ferrocene) oligonucleotide probes site-specifically attached to an interrogating electrode. Sensors in this class have been reported employing a range of probe architectures, including single- and double-stranded DNA, more complex DNA structures, DNA and RNA aptamers and, most recently, DNA-small molecule chimeras. Signaling in this class of sensors is generally predicated on binding-induced changes in the efficiency with which the covalently attached redox label transfers electrons with the interrogating electrode. Here we have investigated how the properties of the redox tag affect the performance of such sensors. Specifically, we compare the differences in signaling and stability of electrochemical DNA sensors (E-DNA sensors) fabricated using either ferrocene or methylene blue as the signaling redox moiety. We find that while both tags support efficient E-DNA signaling, ferrocene produces slightly improved signal gain and target affinity. These small advantages, however, come at a potentially significant price: the ferrocene-based sensors are far less stable than their methylene blue counterparts, particularly with regards to stability to long-term storage, repeated electrochemical interrogations, repeated sensing/regeneration iterations, and employment in complex sample matrices such as blood serum. PMID:19810694
Aldehydes with high and low toxicities inactivate cells by damaging distinct cellular targets.
Xie, Ming-Zhang; Shoulkamy, Mahmoud I; Salem, Amir M H; Oba, Shunya; Goda, Mizuki; Nakano, Toshiaki; Ide, Hiroshi
2016-04-01
Aldehydes are genotoxic and cytotoxic molecules and have received considerable attention for their associations with the pathogenesis of various human diseases. In addition, exposure to anthropogenic aldehydes increases human health risks. The general mechanism of aldehyde toxicity involves adduct formation with biomolecules such as DNA and proteins. Although the genotoxic effects of aldehydes such as mutations and chromosomal aberrations are directly related to DNA damage, the role of DNA damage in the cytotoxic effects of aldehydes is poorly understood because concurrent protein damage by aldehydes has similar effects. In this study, we have analysed how saturated and α,β-unsaturated aldehydes exert cytotoxic effects through DNA and protein damage. Interestingly, DNA repair is essential for alleviating the cytotoxic effect of weakly toxic aldehydes such as saturated aldehydes but not highly toxic aldehydes such as long α,β-unsaturated aldehydes. Thus, highly toxic aldehydes inactivate cells exclusively by protein damage. Our data suggest that DNA interstrand crosslinks, but not DNA-protein crosslinks and DNA double-strand breaks, are the critical cytotoxic DNA damage induced by aldehydes. Further, we show that the depletion of intracellular glutathione and the oxidation of thioredoxin 1 partially account for the DNA damage-independent cytotoxicity of aldehydes. On the basis of these findings, we have proposed a mechanistic model of aldehyde cytotoxicity mediated by DNA and protein damage. Copyright © 2016 Elsevier B.V. All rights reserved.
Sykora, Peter; Chiari, Ylenia; Heaton, Andrew; Moreno, Nickolas; Glaberman, Scott; Sobol, Robert W
2018-05-01
DNA damage has been linked to genomic instability and the progressive breakdown of cellular and organismal homeostasis, leading to the onset of disease and reduced longevity. Insults to DNA from endogenous sources include base deamination, base hydrolysis, base alkylation, and metabolism-induced oxidative damage that can lead to single-strand and double-strand DNA breaks. Alternatively, exposure to environmental pollutants, radiation or ultra-violet light, can also contribute to exogenously derived DNA damage. We previously validated a novel, high through-put approach to measure levels of DNA damage in cultured mammalian cells. This new CometChip Platform builds on the classical single cell gel electrophoresis or comet methodology used extensively in environmental toxicology and molecular biology. We asked whether the CometChip Platform could be used to measure DNA damage in samples derived from environmental field studies. To this end, we determined that nucleated erythrocytes from multiple species of turtle could be successfully evaluated in the CometChip Platform to quantify levels of DNA damage. In total, we compared levels of DNA damage in 40 animals from two species: the box turtle (Terrapene carolina) and the red-eared slider (Trachemys scripta elegans). Endogenous levels of DNA damage were identical between the two species, yet we did discover some sex-linked differences and changes in DNA damage accumulation. Based on these results, we confirm that the CometChip Platform allows for the measurement of DNA damage in a large number of samples quickly and accurately, and is particularly adaptable to environmental studies using field-collected samples. Environ. Mol. Mutagen. 59:322-333, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
DNA Replication Arrest and DNA Damage Responses Induced by Alkylating Minor Groove Binders
2001-05-01
We are interested in the molecular mechanisms involved in DNA replication arrest by the S phase DNA damage checkpoints. Using in vitro simian virus...40 DNA replication assays, we have found three factors that directly contribute to DNA damage-induced DNA replication arrest: Replication Protein A...trans-acting inhibitors. RPA is the major eukaryotic single-stranded DNA binding protein required for DNA replication , repair and recombination. Upon DNA
NASA Technical Reports Server (NTRS)
Marshall, Paul; Reed, Robert; Fodness, Bryan; Jordan, Tom; Pickel, Jim; Xapsos, Michael; Burke, Ed
2004-01-01
This slide presentation examines motivation for Monte Carlo methods, charge deposition in sensor arrays, displacement damage calculations, and future work. The discussion of charge deposition sensor arrays includes Si active pixel sensor APS arrays and LWIR HgCdTe FPAs. The discussion of displacement damage calculations includes nonionizing energy loss (NIEL), HgCdTe NIEL calculation results including variance, and implications for damage in HgCdTe detector arrays.
Sallustio, Benedetta C; Degraaf, Yvette C; Weekley, Josephine S; Burcham, Philip C
2006-05-01
Nonenzymatic modification of proteins by acyl glucuronides is well documented; however, little is known about their potential to damage DNA. We have previously reported that clofibric acid undergoes glucuronidation-dependent bioactivation to DNA-damaging species in cultured mouse hepatocytes. The aim of this study was to investigate the mechanisms underlying such DNA damage, and to screen chemically diverse carboxylic acid drugs for their DNA-damaging potential in glucuronidation proficient murine hepatocytes. Cells were incubated with each aglycone for 18 h, followed by assessment of compound cytotoxicity using the MTT assay and evaluation of DNA damage using the Comet assay. Relative cytotoxic potencies were ketoprofen > diclofenac, benoxaprofen, nafenopin > gemfibrozil, probenecid > bezafibrate > clofibric acid. At a noncytotoxic (0.1 mM) concentration, only benoxaprofen, nafenopin, clofibric acid, and probenecid significantly increased Comet moments (P < 0.05 Kruskal-Wallis). Clofibric acid and probenecid exhibited the greatest DNA-damaging potency, producing significant DNA damage at 0.01 mM concentrations. The two drugs produced maximal increases in Comet moment of 4.51 x and 2.57 x control, respectively. The glucuronidation inhibitor borneol (1 mM) abolished the induction of DNA damage by 0.5 mM concentrations of clofibric acid and probenecid. In an in vitro cell-free system, clofibric acid glucuronide was 10 x more potent than glucuronic acid in causing DNA strand-nicking, although both compounds showed similar rates of autoxidation to generate hydroxyl radicals. In cultured hepatocytes, the glycation inhibitor, aminoguanidine, and the iron chelator, desferrioxamine mesylate, inhibited DNA damage by clofibric acid, whereas the free radical scavengers Trolox and butylated hydroxytoluene, and the superoxide dismutase mimetic bis-3,5-diisopropylsalicylate had no effect. In conclusion, clinically relevant concentrations of two structurally unrelated carboxylic acids, probenecid and clofibric acid, induced DNA damage in isolated hepatocytes via glucuronidation- dependent pathways. These findings suggest acyl glucuronides are able to access and damage nuclear DNA via iron-catalyzed glycation/glycoxidative processes.
Wyatt, Lauren H; Luz, Anthony L; Cao, Xiou; Maurer, Laura L; Blawas, Ashley M; Aballay, Alejandro; Pan, William K Y; Meyer, Joel N
2017-04-01
Mercury toxicity mechanisms have the potential to induce DNA damage and disrupt cellular processes, like mitochondrial function. Proper mitochondrial function is important for cellular bioenergetics and immune signaling and function. Reported impacts of mercury on the nuclear genome (nDNA) are conflicting and inconclusive, and mitochondrial DNA (mtDNA) impacts are relatively unknown. In this study, we assessed genotoxic (mtDNA and nDNA), metabolic, and innate immune impacts of inorganic and organic mercury exposure in Caenorhabditis elegans. Genotoxic outcomes measured included DNA damage, DNA damage repair (nucleotide excision repair, NER; base excision repair, BER), and genomic copy number following MeHg and HgCl 2 exposure alone and in combination with known DNA damage-inducing agents ultraviolet C radiation (UVC) and hydrogen peroxide (H 2 O 2 ), which cause bulky DNA lesions and oxidative DNA damage, respectively. Following exposure to both MeHg and HgCl 2 , low-level DNA damage (∼0.25 lesions/10kb mtDNA and nDNA) was observed. Unexpectedly, a higher MeHg concentration reduced damage in both genomes compared to controls. However, this observation was likely the result of developmental delay. In co-exposure treatments, both mercury compounds increased initial DNA damage (mtDNA and nDNA) in combination with H 2 O 2 exposure, but had no impact in combination with UVC exposure. Mercury exposure both increased and decreased DNA damage removal via BER. DNA repair after H 2 O 2 exposure in mercury-exposed nematodes resulted in damage levels lower than measured in controls. Impacts to NER were not detected. mtDNA copy number was significantly decreased in the MeHg-UVC and MeHg-H 2 O 2 co-exposure treatments. Mercury exposure had metabolic impacts (steady-state ATP levels) that differed between the compounds; HgCl 2 exposure decreased these levels, while MeHg slightly increased levels or had no impact. Both mercury species reduced mRNA levels for immune signaling-related genes, but had mild or no effects on survival on pathogenic bacteria. Overall, mercury exposure disrupted mitochondrial endpoints in a mercury-compound dependent fashion. Copyright © 2017 Elsevier B.V. All rights reserved.
Wyatt, Lauren H.; Luz, Anthony L.; Cao, Xiou; Maurer, Laura L.; Blawas, Ashley M.; Aballay, Alejandro; Pan, William K.; Meyer, Joel N.
2017-01-01
Mercury toxicity mechanisms have the potential to induce DNA damage and disrupt cellular processes, like mitochondrial function. Proper mitochondrial function is important for cellular bioenergetics and immune signaling and function. Impacts of mercury on the nuclear genome (nDNA) are conflicting and inconclusive, and mitochondrial DNA (mtDNA) impacts are relatively unknown. In this study, we assessed genotoxic (mtDNA and nDNA), metabolic, and innate immune impacts of inorganic and organic mercury exposure in Caenorhabditis elegans. Genotoxic outcomes measured included DNA damage, DNA damage repair (nucleotide excision repair, NER; base excision repair, BER), and genomic copy number following MeHg and HgCl2 exposure alone and in combination with known DNA damage-inducing agents ultraviolet C radiation (UVC) and hydrogen peroxide (H2O2), which cause bulky DNA lesions and oxidative DNA damage, respectively. Following exposure to both MeHg and HgCl2, low-level DNA damage (~0.25 lesions/10 kb mtDNA and nDNA) was observed. Unexpectedly, a higher MeHg concentration reduced damage in both genomes compared to controls. However, this observation was likely the result of developmental delay. In co-exposure treatments, both mercury compounds increased initial DNA damage (mtDNA and nDNA) in combination with H2O2 exposure, but had no impact in combination with UVC exposure. Mercury exposure both increased and decreased DNA damage removal via BER. DNA repair after H2O2 exposure in mercury-exposed nematodes resulted in damage levels lower than measured in controls. Impacts to NER were not detected. mtDNA copy number was significantly decreased in the MeHg-UVC and MeHg-H2O2 co-exposure treatments. Mercury exposure had metabolic impacts (steady-state ATP levels) that differed between the compounds; HgCl2 exposure decreased these levels, while MeHg slightly increased levels or had no impact. Both mercury species reduced mRNA levels for immune signaling-related genes, but had mild or no effects on survival on pathogenic bacteria. Overall, mercury exposure disrupted mitochondrial endpoints in a mercury-compound dependent fashion. PMID:28242054
Characterization of UVC-induced DNA damage in bloodstains: forensic implications.
Hall, Ashley; Ballantyne, Jack
2004-09-01
The ability to detect DNA polymorphisms using molecular genetic techniques has revolutionized the forensic analysis of biological evidence. DNA typing now plays a critical role within the criminal justice system, but one of the limiting factors with the technology is that DNA isolated from biological stains recovered from the crime scene is sometimes so damaged as to be intractable to analysis. Potential remedies for damaged DNA are likely to be dependent upon the precise nature of the DNA damage present in any particular sample but, unfortunately, current knowledge of the biochemical nature, and the extent, of such DNA damage in dried biological stains is rudimentary. As a model for DNA damage assessment in biological stains recovered from crime scenes, we have subjected human bloodstains and naked DNA in the hydrated and dehydrated states to varying doses of UVC radiation. It was possible to damage the DNA sufficiently in a bloodstain to cause a standard autosomal short tandem repeat (STR) profile to be lost. However, a detailed analysis of the process, based upon assays developed to detect bipyrimidine photoproducts (BPPPs), single- and double-strand breaks, and DNA-DNA crosslinks, produced some unexpected findings. Contrary to the situation with living tissues or cells in culture, the predominant UVC-induced damage to DNA in bloodstains appears not to be pyrimidine dimers. Although some evidence for the presence of BPPPs and DNA crosslinks was obtained, the major form of UVC damage causing genetic profile loss appeared to be single-strand breaks. It was not possible, however, to preclude the possibility that a combination of damage types was responsible for the profile loss observed. We demonstrate here that a significant measure of protection against UVC-mediated genetic profile loss in dried biological stain material is afforded by the dehydrated state of the DNA and, to a lesser extent, the DNA cellular milieu.
House dust mite-induced asthma causes oxidative damage and DNA double-strand breaks in the lungs.
Chan, Tze Khee; Loh, Xin Yi; Peh, Hong Yong; Tan, W N Felicia; Tan, W S Daniel; Li, Na; Tay, Ian J J; Wong, W S Fred; Engelward, Bevin P
2016-07-01
Asthma is related to airway inflammation and oxidative stress. High levels of reactive oxygen and nitrogen species can induce cytotoxic DNA damage. Nevertheless, little is known about the possible role of allergen-induced DNA damage and DNA repair as modulators of asthma-associated pathology. We sought to study DNA damage and DNA damage responses induced by house dust mite (HDM) in vivo and in vitro. We measured DNA double-strand breaks (DSBs), DNA repair proteins, and apoptosis in an HDM-induced allergic asthma model and in lung samples from asthmatic patients. To study DNA repair, we treated mice with the DSB repair inhibitor NU7441. To study the direct DNA-damaging effect of HDM on human bronchial epithelial cells, we exposed BEAS-2B cells to HDM and measured DNA damage and reactive oxygen species levels. HDM challenge increased lung levels of oxidative damage to proteins (3-nitrotyrosine), lipids (8-isoprostane), and nucleic acid (8-oxoguanine). Immunohistochemical evidence for HDM-induced DNA DSBs was revealed by increased levels of the DSB marker γ Histone 2AX (H2AX) foci in bronchial epithelium. BEAS-2B cells exposed to HDM showed enhanced DNA damage, as measured by using the comet assay and γH2AX staining. In lung tissue from human patients with asthma, we observed increased levels of DNA repair proteins and apoptosis, as shown by caspase-3 cleavage, caspase-activated DNase levels, and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling staining. Notably, NU7441 augmented DNA damage and cytokine production in the bronchial epithelium and apoptosis in the allergic airway, implicating DSBs as an underlying driver of asthma pathophysiology. This work calls attention to reactive oxygen and nitrogen species and HDM-induced cytotoxicity and to a potential role for DNA repair as a modulator of asthma-associated pathophysiology. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Metal-coated optical fiber damage sensors
NASA Astrophysics Data System (ADS)
Chang, Chia-Chen; Sirkis, James S.
1993-07-01
A process which uses electroplating methods has been developed to fabricate metal coated optical fiber sensors. The elastic-plastic characteristics of the metal coatings have been exploited to develop a sensor capable of `remembering' low velocity impact damage. These sensors have been investigated under uniaxial tension testing of unembedded sensors and under low velocity impact of graphite/epoxy specimens with embedded sensors using both Michelson and polarimetric optical arrangements. The tests show that coating properties alter the optical fiber sensor performance and that the permanent deformation in the coating can be used to monitor composite delamination/impact damage.
Huang, Shar-yin N.; Murai, Junko; Dalla Rosa, Ilaria; Dexheimer, Thomas S.; Naumova, Alena; Gmeiner, William H.; Pommier, Yves
2013-01-01
Chain-terminating nucleoside analogs (CTNAs) that cause stalling or premature termination of DNA replication forks are widely used as anticancer and antiviral drugs. However, it is not well understood how cells repair the DNA damage induced by these drugs. Here, we reveal the importance of tyrosyl–DNA phosphodiesterase 1 (TDP1) in the repair of nuclear and mitochondrial DNA damage induced by CTNAs. On investigating the effects of four CTNAs—acyclovir (ACV), cytarabine (Ara-C), zidovudine (AZT) and zalcitabine (ddC)—we show that TDP1 is capable of removing the covalently linked corresponding CTNAs from DNA 3′-ends. We also show that Tdp1−/− cells are hypersensitive and accumulate more DNA damage when treated with ACV and Ara-C, implicating TDP1 in repairing CTNA-induced DNA damage. As AZT and ddC are known to cause mitochondrial dysfunction, we examined whether TDP1 repairs the mitochondrial DNA damage they induced. We find that AZT and ddC treatment leads to greater depletion of mitochondrial DNA in Tdp1−/− cells. Thus, TDP1 seems to be critical for repairing nuclear and mitochondrial DNA damage caused by CTNAs. PMID:23775789
Casorelli, Ida; Bossa, Cecilia; Bignami, Margherita
2012-01-01
Most antitumour therapies damage tumour cell DNA either directly or indirectly. Without repair, damage can result in genetic instability and eventually cancer. The strong association between the lack of DNA damage repair, mutations and cancer is dramatically demonstrated by a number of cancer-prone human syndromes, such as xeroderma pigmentosum, ataxia-telangiectasia and Fanconi anemia. Notably, DNA damage responses, and particularly DNA repair, influence the outcome of therapy. Because DNA repair normally excises lethal DNA lesions, it is intuitive that efficient repair will contribute to intrinsic drug resistance. Unexpectedly, a paradoxical relationship between DNA mismatch repair and drug sensitivity has been revealed by model studies in cell lines. This suggests that connections between DNA repair mechanism efficiency and tumour therapy might be more complex. Here, we review the evidence for the contribution of carcinogenic properties of several drugs as well as of alterations in specific mechanisms involved in drug-induced DNA damage response and repair in the pathogenesis of therapy-related cancers. PMID:23066388
Effect of Molecular Crowding on the Response of an Electrochemical DNA Sensor
Ricci, Francesco; Lai, Rebecca Y.; Heeger, Alan J.; Plaxco, Kevin W.; Sumner, James J.
2009-01-01
E-DNA sensors, the electrochemical equivalent of molecular beacons, appear to be a promising means of detecting oligonucleotides. E-DNA sensors are comprised of a redox-modified (here, methylene blue or ferrocene) DNA stem-loop covalently attached to an interrogating electrode. Because E-DNA signaling arises due to binding-induced changes in the conformation of the stem-loop probe, it is likely sensitive to the nature of the molecular packing on the electrode surface. Here we detail the effects of probe density, target length, and other aspects of molecular crowding on the signaling properties, specificity, and response time of a model E-DNA sensor. We find that the highest signal suppression is obtained at the highest probe densities investigated, and that greater suppression is observed with longer and bulkier targets. In contrast, sensor equilibration time slows monotonically with increasing probe density, and the specificity of hybridization is not significantly affected. In addition to providing insight into the optimization of electrochemical DNA sensors, these results suggest that E-DNA signaling arises due to hybridization-linked changes in the rate, and thus efficiency, with which the redox moiety collides with the electrode and transfers electrons. PMID:17488132
NASA Technical Reports Server (NTRS)
Sutherland, Betsy M.; Georgakilas, Alexandros G.; Bennett, Paula V.; Laval, Jacques; Sutherland, John C.; Gewirtz, A. M. (Principal Investigator)
2003-01-01
Assessing DNA damage induction, repair and consequences of such damages requires measurement of specific DNA lesions by methods that are independent of biological responses to such lesions. Lesions affecting one DNA strand (altered bases, abasic sites, single strand breaks (SSB)) as well as damages affecting both strands (clustered damages, double strand breaks) can be quantified by direct measurement of DNA using gel electrophoresis, gel imaging and number average length analysis. Damage frequencies as low as a few sites per gigabase pair (10(9)bp) can be quantified by this approach in about 50ng of non-radioactive DNA, and single molecule methods may allow such measurements in DNA from single cells. This review presents the theoretical basis, biochemical requirements and practical aspects of this approach, and shows examples of their applications in identification and quantitation of complex clustered damages.
Hamperl, Stephan; Cimprich, Karlene A.
2014-01-01
Accurate DNA replication and DNA repair are crucial for the maintenance of genome stability, and it is generally accepted that failure of these processes is a major source of DNA damage in cells. Intriguingly, recent evidence suggests that DNA damage is more likely to occur at genomic loci with high transcriptional activity. Furthermore, loss of certain RNA processing factors in eukaryotic cells is associated with increased formation of co-transcriptional RNA:DNA hybrid structures known as R-loops, resulting in double-strand breaks (DSBs) and DNA damage. However, the molecular mechanisms by which R-loop structures ultimately lead to DNA breaks and genome instability is not well understood. In this review, we summarize the current knowledge about the formation, recognition and processing of RNA:DNA hybrids, and discuss possible mechanisms by which these structures contribute to DNA damage and genome instability in the cell. PMID:24746923
Direct Detection and Sequencing of Damaged DNA Bases
2011-01-01
Products of various forms of DNA damage have been implicated in a variety of important biological processes, such as aging, neurodegenerative diseases, and cancer. Therefore, there exists great interest to develop methods for interrogating damaged DNA in the context of sequencing. Here, we demonstrate that single-molecule, real-time (SMRT®) DNA sequencing can directly detect damaged DNA bases in the DNA template - as a by-product of the sequencing method - through an analysis of the DNA polymerase kinetics that are altered by the presence of a modified base. We demonstrate the sequencing of several DNA templates containing products of DNA damage, including 8-oxoguanine, 8-oxoadenine, O6-methylguanine, 1-methyladenine, O4-methylthymine, 5-hydroxycytosine, 5-hydroxyuracil, 5-hydroxymethyluracil, or thymine dimers, and show that these base modifications can be readily detected with single-modification resolution and DNA strand specificity. We characterize the distinct kinetic signatures generated by these DNA base modifications. PMID:22185597
Direct detection and sequencing of damaged DNA bases.
Clark, Tyson A; Spittle, Kristi E; Turner, Stephen W; Korlach, Jonas
2011-12-20
Products of various forms of DNA damage have been implicated in a variety of important biological processes, such as aging, neurodegenerative diseases, and cancer. Therefore, there exists great interest to develop methods for interrogating damaged DNA in the context of sequencing. Here, we demonstrate that single-molecule, real-time (SMRT®) DNA sequencing can directly detect damaged DNA bases in the DNA template - as a by-product of the sequencing method - through an analysis of the DNA polymerase kinetics that are altered by the presence of a modified base. We demonstrate the sequencing of several DNA templates containing products of DNA damage, including 8-oxoguanine, 8-oxoadenine, O6-methylguanine, 1-methyladenine, O4-methylthymine, 5-hydroxycytosine, 5-hydroxyuracil, 5-hydroxymethyluracil, or thymine dimers, and show that these base modifications can be readily detected with single-modification resolution and DNA strand specificity. We characterize the distinct kinetic signatures generated by these DNA base modifications.
Electrochemical DNA Hybridization Sensors Based on Conducting Polymers
Rahman, Md. Mahbubur; Li, Xiao-Bo; Lopa, Nasrin Siraj; Ahn, Sang Jung; Lee, Jae-Joon
2015-01-01
Conducting polymers (CPs) are a group of polymeric materials that have attracted considerable attention because of their unique electronic, chemical, and biochemical properties. This is reflected in their use in a wide range of potential applications, including light-emitting diodes, anti-static coating, electrochromic materials, solar cells, chemical sensors, biosensors, and drug-release systems. Electrochemical DNA sensors based on CPs can be used in numerous areas related to human health. This review summarizes the recent progress made in the development and use of CP-based electrochemical DNA hybridization sensors. We discuss the distinct properties of CPs with respect to their use in the immobilization of probe DNA on electrode surfaces, and we describe the immobilization techniques used for developing DNA hybridization sensors together with the various transduction methods employed. In the concluding part of this review, we present some of the challenges faced in the use of CP-based DNA hybridization sensors, as well as a future perspective. PMID:25664436
DNA damage and polyploidization.
Chow, Jeremy; Poon, Randy Y C
2010-01-01
A growing body of evidence indicates that polyploidization triggers chromosomal instability and contributes to tumorigenesis. DNA damage is increasingly being recognized for its roles in promoting polyploidization. Although elegant mechanisms known as the DNA damage checkpoints are responsible for halting the cell cycle after DNA damage, agents that uncouple the checkpoints can induce unscheduled entry into mitosis. Likewise, defects of the checkpoints in several disorders permit mitotic entry even in the presence of DNA damage. Forcing cells with damaged DNA into mitosis causes severe chromosome segregation defects, including lagging chromosomes, chromosomal fragments and chromosomal bridges. The presence of these lesions in the cleavage plane is believed to abort cytokinesis. It is postulated that if cytokinesis failure is coupled with defects of the p53-dependent postmitotic checkpoint pathway, cells can enter S phase and become polyploids. Progress in the past several years has unraveled some of the underlying principles of these pathways and underscored the important role of DNA damage in polyploidization. Furthermore, polyploidization per se may also be an important determinant of sensitivity to DNA damage, thereby may offer an opportunity for novel therapies.
Folding- and Dynamics-Based Electrochemical DNA Sensors.
Lai, Rebecca Y
2017-01-01
A number of electrochemical DNA sensors based on the target-induced change in the conformation and/or flexibility of surface-bound oligonucleotides have been developed in recent years. These sensors, which are often termed E-DNA sensors, are comprised of an oligonucleotide probe modified with a redox label (e.g., methylene blue) at one terminus and attached to a gold electrode via a thiol-gold bond at the other. Binding of the target to the DNA probe changes its structure and dynamics, which, in turn, influences the efficiency of electron transfer to the interrogating electrode. Since electrochemically active contaminants are less common, these sensors are resistant to false-positive signals arising from the nonspecific adsorption of contaminants and perform well even when employed directly in serum, whole blood, and other realistically complex sample matrices. Moreover, because all of the sensor components are chemisorbed to the electrode, the E-DNA sensors are essentially label-free and readily reusable. To date, these sensors have achieved state-of-the-art sensitivity, while offering the unprecedented selectivity, reusability, and the operational convenience of direct electrochemical detection. This chapter reviews the recent advances in the development of both "signal-off" and "signal-on" E-DNA sensors. Critical aspects that dictate the stability and performance of these sensors are also addressed so as to provide a realistic overview of this oligonucleotide detection platform. © 2017 Elsevier Inc. All rights reserved.
Detection of DNA damage by using hairpin molecular beacon probes and graphene oxide.
Zhou, Jie; Lu, Qian; Tong, Ying; Wei, Wei; Liu, Songqin
2012-09-15
A hairpin molecular beacon tagged with carboxyfluorescein in combination with graphene oxide as a quencher reagent was used to detect the DNA damage by chemical reagents. The fluorescence of molecular beacon was quenched sharply by graphene oxide; while in the presence of its complementary DNA the quenching efficiency decreased because their hybridization prevented the strong adsorbability of molecular beacon on graphene oxide. If the complementary DNA was damaged by a chemical reagent and could not form intact duplex structure with molecular beacon, more molecular beacon would adsorb on graphene oxide increasing the quenching efficiency. Thus, damaged DNA could be detected based on different quenching efficiencies afforded by damaged and intact complementary DNA. The damage effects of chlorpyrifos-methyl and three metabolites of styrene such as mandelieaeids, phenylglyoxylieaeids and epoxystyrene on DNA were studied as models. The method for detection of DNA damage was reliable, rapid and simple compared to the biological methods. Copyright © 2012 Elsevier B.V. All rights reserved.
Repair of Clustered Damage and DNA Polymerase Iota.
Belousova, E A; Lavrik, O I
2015-08-01
Multiple DNA lesions occurring within one or two turns of the DNA helix known as clustered damage are a source of double-stranded DNA breaks, which represent a serious threat to the cells. Repair of clustered lesions is accomplished in several steps. If a clustered lesion contains oxidized bases, an individual DNA lesion is repaired by the base excision repair (BER) mechanism involving a specialized DNA polymerase after excising DNA damage. Here, we investigated DNA synthesis catalyzed by DNA polymerase iota using damaged DNA templates. Two types of DNA substrates were used as model DNAs: partial DNA duplexes containing breaks of different length, and DNA duplexes containing 5-formyluracil (5-foU) and uracil as a precursor of apurinic/apyrimidinic sites (AP) in opposite DNA strands. For the first time, we showed that DNA polymerase iota is able to catalyze DNA synthesis using partial DNA duplexes having breaks of different length as substrates. In addition, we found that DNA polymerase iota could catalyze DNA synthesis during repair of clustered damage via the BER system by using both undamaged and 5-foU-containing templates. We found that hPCNA (human proliferating cell nuclear antigen) increased efficacy of DNA synthesis catalyzed by DNA polymerase iota.
Noise Induced DNA Damage Within the Auditory Nerve.
Guthrie, O'neil W
2017-03-01
An understanding of the molecular pathology that underlies noise induced neurotoxicity is a prerequisite to the design of targeted therapies. The objective of the current experiment was to determine whether or not DNA damage is part of the pathophysiologic sequela of noise induced neurotoxicity. The experiment consisted of 41 hooded Long-Evans rats (2 month old males) that were randomized into control and noise exposed groups. Both the control and the noise group followed the same time schedule and therefore started and ended the experiment together. The noise dose consisted of a 6000 Hz noise band at 105 dB SPL. Temporal bones from both groups were harvested, and immunohistochemistry was used to identify neurons with DNA damage. Quantitative morphometric analyses was then employed to determine the level of DNA damage. Neural action potentials were recorded to assess the functional impact of noise induced DNA damage. Immunohistochemical reactions revealed that the noise exposure precipitated DNA damage within the nucleus of auditory neurons. Quantitative morphometry confirmed the noise induced increase in DNA damage levels and the precipitation of DNA damage was associated with a significant loss of nerve sensitivity. Therefore, DNA damage is part of the molecular pathology that drives noise induced neurotoxicity. Anat Rec, 300:520-526, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
DNA-damage response during mitosis induces whole-chromosome missegregation.
Bakhoum, Samuel F; Kabeche, Lilian; Murnane, John P; Zaki, Bassem I; Compton, Duane A
2014-11-01
Many cancers display both structural (s-CIN) and numerical (w-CIN) chromosomal instabilities. Defective chromosome segregation during mitosis has been shown to cause DNA damage that induces structural rearrangements of chromosomes (s-CIN). In contrast, whether DNA damage can disrupt mitotic processes to generate whole chromosomal instability (w-CIN) is unknown. Here, we show that activation of the DNA-damage response (DDR) during mitosis selectively stabilizes kinetochore-microtubule (k-MT) attachments to chromosomes through Aurora-A and PLK1 kinases, thereby increasing the frequency of lagging chromosomes during anaphase. Inhibition of DDR proteins, ATM or CHK2, abolishes the effect of DNA damage on k-MTs and chromosome segregation, whereas activation of the DDR in the absence of DNA damage is sufficient to induce chromosome segregation errors. Finally, inhibiting the DDR during mitosis in cancer cells with persistent DNA damage suppresses inherent chromosome segregation defects. Thus, the DDR during mitosis inappropriately stabilizes k-MTs, creating a link between s-CIN and w-CIN. The genome-protective role of the DDR depends on its ability to delay cell division until damaged DNA can be fully repaired. Here, we show that when DNA damage is induced during mitosis, the DDR unexpectedly induces errors in the segregation of entire chromosomes, thus linking structural and numerical chromosomal instabilities. ©2014 American Association for Cancer Research.
Amphetamines promote mitochondrial dysfunction and DNA damage in pulmonary hypertension
Chen, Pin-I; Cao, Aiqin; Miyagawa, Kazuya; Tojais, Nancy F.; Hennigs, Jan K.; Li, Caiyun G.; Sweeney, Nathaly M.; Inglis, Audrey S.; Wang, Lingli; Li, Dan; Ye, Matthew; Feldman, Brian J.
2017-01-01
Amphetamine (AMPH) or methamphetamine (METH) abuse can cause oxidative damage and is a risk factor for diseases including pulmonary arterial hypertension (PAH). Pulmonary artery endothelial cells (PAECs) from AMPH-associated-PAH patients show DNA damage as judged by γH2AX foci and DNA comet tails. We therefore hypothesized that AMPH induces DNA damage and vascular pathology by interfering with normal adaptation to an environmental perturbation causing oxidative stress. Consistent with this, we found that AMPH alone does not cause DNA damage in normoxic PAECs, but greatly amplifies DNA damage in hypoxic PAECs. The mechanism involves AMPH activation of protein phosphatase 2A, which potentiates inhibition of Akt. This increases sirtuin 1, causing deacetylation and degradation of HIF1α, thereby impairing its transcriptional activity, resulting in a reduction in pyruvate dehydrogenase kinase 1 and impaired cytochrome c oxidase 4 isoform switch. Mitochondrial oxidative phosphorylation is inappropriately enhanced and, as a result of impaired electron transport and mitochondrial ROS increase, caspase-3 is activated and DNA damage is induced. In mice given binge doses of METH followed by hypoxia, HIF1α is suppressed and pulmonary artery DNA damage foci are associated with worse pulmonary vascular remodeling. Thus, chronic AMPH/METH can induce DNA damage associated with vascular disease by subverting the adaptive responses to oxidative stress. PMID:28138562
Lymphocyte DNA damage and oxidative stress in patients with iron deficiency anemia.
Aslan, Mehmet; Horoz, Mehmet; Kocyigit, Abdurrahim; Ozgonül, Saadet; Celik, Hakim; Celik, Metin; Erel, Ozcan
2006-10-10
Oxidant stress has been shown to play an important role in the pathogenesis of iron deficiency anemia. The aim of this study was to investigate the association between lymphocyte DNA damage, total antioxidant capacity and the degree of anemia in patients with iron deficiency anemia. Twenty-two female with iron deficiency anemia and 22 healthy females were enrolled in the study. Peripheral DNA damage was assessed using alkaline comet assay and plasma total antioxidant capacity was determined using an automated measurement method. Lymphocyte DNA damage of patients with iron deficiency anemia was significantly higher than controls (p<0.05), while total antioxidant capacity was significantly lower (p<0.001). While there was a positive correlation between total antioxidant capacity and hemoglobin levels (r=0.706, p<0.001), both total antioxidant capacity and hemoglobin levels were negatively correlated with DNA damage (r=-0.330, p<0.05 and r=-0.323, p<0.05, respectively). In conclusion, both oxidative stress and DNA damage are increased in IDA patients. Increased oxidative stress seems as an important factor that inducing DNA damage in those IDA patients. The relationships of oxidative stress and DNA damage with the severity of anemia suggest that both oxidative stress and DNA damage may, in part, have a role in the pathogenesis of IDA.
RNF8- and Ube2S-Dependent Ubiquitin Lysine 11-Linkage Modification in Response to DNA Damage.
Paul, Atanu; Wang, Bin
2017-05-18
Ubiquitin modification of proteins plays pivotal roles in the cellular response to DNA damage. Given the complexity of ubiquitin conjugation due to the formation of poly-conjugates of different linkages, functional roles of linkage-specific ubiquitin modification at DNA damage sites are largely unclear. We identify that Lys11-linkage ubiquitin modification occurs at DNA damage sites in an ATM-dependent manner, and ubiquitin-modifying enzymes, including Ube2S E2-conjugating enzyme and RNF8 E3 ligase, are responsible for the assembly of Lys11-linkage conjugates on damaged chromatin, including histone H2A/H2AX. We show that RNF8- and Ube2S-dependent Lys11-linkage ubiquitin conjugation plays an important role in regulating DNA damage-induced transcriptional silencing, distinct from the role of Lys63-linkage ubiquitin in the recruitment of DNA damage repair proteins 53BP1 and BRCA1. Thus, our study highlights the importance of linkage-specific ubiquitination at DNA damage sites, and it reveals that Lys11-linkage ubiquitin modification plays a crucial role in the DNA damage response. Copyright © 2017 Elsevier Inc. All rights reserved.
Garaj-Vrhovac, Vera; Gajski, Goran; Trosić, Ivancica; Pavicić, Ivan
2009-05-17
The aim of this study was to assess whether microwave-induced DNA damage is basal or it is also generated through reactive oxygen species (ROS) formation. After having irradiated Wistar rats with 915MHz microwave radiation, we assessed different DNA alterations in peripheral leukocytes using standard and formamidopyrimidine DNA-glycosylase (Fpg)-modified comet assay. The first is a sensitive tool for detecting primary DNA damage, and the second is much more specific for detecting oxidative damage. The animals were irradiated for 1h a day for 2 weeks at a field power density of 2.4W/m(2), and the whole-body average specific absorption rate (SAR) of 0.6W/kg. Both the standard and the Fpg-modified comet assay detected increased DNA damage in blood leukocytes of the exposed rats. The significant increase in Fpg-detected DNA damage in the exposed rats suggests that oxidative stress is likely to be responsible. DNA damage detected by the standard comet assay indicates that some other mechanisms may also be involved. In addition, both methods served proved sensitive enough to measure basal and oxidative DNA damage after long-term exposure to 915MHz microwave radiation in vivo.
Mishra, Manish; Lillvis, John; Seyoum, Berhane; Kowluru, Renu A.
2016-01-01
Purpose In the development of diabetic retinopathy, retinal mitochondria become dysfunctional, and mitochondrial DNA (mtDNA) is damaged. Because retinopathy is a progressive disease, and circulating glucose levels are high in diabetes, our aim was to investigate if peripheral blood mtDNA damage can serve as a potential biomarker of diabetic retinopathy. Methods Peripheral blood mtDNA damage was investigated by extended-length PCR in rats and mice, diabetic for 10 to 12 months (streptozotocin-induced, type 1 model), and in 12- and 40-week-old Zucker diabetic fatty rats (ZDF, type 2). Mitochondrial copy number (in gDNA) and transcription (in cDNA) were quantified by qPCR. Similar parameters were measured in blood from diabetic patients with/without retinopathy. Results Peripheral blood from diabetic rodents had significantly increased mtDNA damage and decreased copy numbers and transcription. Lipoic acid administration in diabetic rats, or Sod2 overexpression or MMP-9 knockdown in mice, the therapies that prevent diabetic retinopathy, also ameliorated blood mtDNA damage and restored copy numbers and transcription. Although blood from 40-week-old ZDF rats had significant mtDNA damage, 12-week-old rats had normal mtDNA. Diabetic patients with retinopathy had increased blood mtDNA damage, and decreased transcription and copy numbers compared with diabetic patients without retinopathy and nondiabetic individuals. Conclusions Type 1 diabetic rodents with oxidative stress modulated by pharmacologic/genetic means, and type 2 animal model and patients with/without diabetic retinopathy, demonstrate a strong relation between peripheral blood mtDNA damage and diabetic retinopathy, and suggest the possibility of use of peripheral blood mtDNA as a noninvasive biomarker of diabetic retinopathy. PMID:27494345
Bhute, Vijesh J.; Palecek, Sean P.
2015-01-01
Genomic instability is one of the hallmarks of cancer. Several chemotherapeutic drugs and radiotherapy induce DNA damage to prevent cancer cell replication. Cells in turn activate different DNA damage response (DDR) pathways to either repair the damage or induce cell death. These DDR pathways also elicit metabolic alterations which can play a significant role in the proper functioning of the cells. The understanding of these metabolic effects resulting from different types of DNA damage and repair mechanisms is currently lacking. In this study, we used NMR metabolomics to identify metabolic pathways which are altered in response to different DNA damaging agents. By comparing the metabolic responses in MCF-7 cells, we identified the activation of poly (ADP-ribose) polymerase (PARP) in methyl methanesulfonate (MMS)-induced DNA damage. PARP activation led to a significant depletion of NAD+. PARP inhibition using veliparib (ABT-888) was able to successfully restore the NAD+ levels in MMS-treated cells. In addition, double strand break induction by MMS and veliparib exhibited similar metabolic responses as zeocin, suggesting an application of metabolomics to classify the types of DNA damage responses. This prediction was validated by studying the metabolic responses elicited by radiation. Our findings indicate that cancer cell metabolic responses depend on the type of DNA damage responses and can also be used to classify the type of DNA damage. PMID:26478723
Ionizing radiation (IR) is a commonly employed cancer treatment that kills cancer cells by damaging their DNA. While the DNA damage response (DDR) pathway may be key to determining tumor responses, radiochemical damage due to IR can target the patients’ healthy dividing cells, leading to the formation of secondary hematologic and solid tumors after DNA-damaging therapy.
Ding, Wei; Bishop, Michelle E.; Lyn-Cook, Lascelles E.; Davis, Kelly J.; Manjanatha, Mugimane G.
2016-01-01
Unrepaired DNA damage can lead to genetic instability, which in turn may enhance cancer development. Therefore, identifying potential DNA damaging agents is important for protecting public health. The in vivo alkaline comet assay, which detects DNA damage as strand breaks, is especially relevant for assessing the genotoxic hazards of xenobiotics, as its responses reflect the in vivo absorption, tissue distribution, metabolism and excretion (ADME) of chemicals, as well as DNA repair process. Compared to other in vivo DNA damage assays, the assay is rapid, sensitive, visual and inexpensive, and, by converting oxidative DNA damage into strand breaks using specific repair enzymes, the assay can measure oxidative DNA damage in an efficient and relatively artifact-free manner. Measurement of DNA damage with the comet assay can be performed using both acute and subchronic toxicology study designs, and by integrating the comet assay with other toxicological assessments, the assay addresses animal welfare requirements by making maximum use of animal resources. Another major advantage of the assays is that they only require a small amount of cells, and the cells do not have to be derived from proliferating cell populations. The assays also can be performed with a variety of human samples obtained from clinically or occupationally exposed individuals. PMID:27166647
Ding, Wei; Bishop, Michelle E; Lyn-Cook, Lascelles E; Davis, Kelly J; Manjanatha, Mugimane G
2016-05-04
Unrepaired DNA damage can lead to genetic instability, which in turn may enhance cancer development. Therefore, identifying potential DNA damaging agents is important for protecting public health. The in vivo alkaline comet assay, which detects DNA damage as strand breaks, is especially relevant for assessing the genotoxic hazards of xenobiotics, as its responses reflect the in vivo absorption, tissue distribution, metabolism and excretion (ADME) of chemicals, as well as DNA repair process. Compared to other in vivo DNA damage assays, the assay is rapid, sensitive, visual and inexpensive, and, by converting oxidative DNA damage into strand breaks using specific repair enzymes, the assay can measure oxidative DNA damage in an efficient and relatively artifact-free manner. Measurement of DNA damage with the comet assay can be performed using both acute and subchronic toxicology study designs, and by integrating the comet assay with other toxicological assessments, the assay addresses animal welfare requirements by making maximum use of animal resources. Another major advantage of the assays is that they only require a small amount of cells, and the cells do not have to be derived from proliferating cell populations. The assays also can be performed with a variety of human samples obtained from clinically or occupationally exposed individuals.
Colorimetric detection of DNA damage by using hemin-graphene nanocomposites
NASA Astrophysics Data System (ADS)
Wei, W.; Zhang, D. M.; Yin, L. H.; Pu, Y. P.; Liu, S. Q.
2013-04-01
A colorimetric method for detection of DNA damage was developed by using hemin-graphene nanosheets (H-GNs). H-GNs were skillfully synthesized by adsorping of hemin on graphene through π-π interactions. The as-prepared H-GNs possessed both the ability of graphene to differentiate the damage DNA from intact DNA and the catalytic action of hemin. The damaged DNA made H-GNs coagulated to different degrees from the intact DNA because there were different amount of negative charge exposed on their surface, which made a great impact on the solubility of H-GNs. As a result, the corresponding centrifugal supernatant of H-GNs solution showed different color in the presence of 3,3',5,5'-tetramethylbenzidine (TMB) and H2O2, which could be discriminated by naked eyes or by ultraviolet (UV)-visible spectrometer. Based on this, the damaged effects of styrene oxide (SO), NaAsO2 and UV radiation on DNA were studied. Results showed that SO exerted most serious damage effect on DNA although all of them damaged DNA seriously. The new method for detection of DNA damage showed good prospect in the evaluation of genotoxicity of new compounds, the maximum limit of pesticide residue, food additives, and so on, which is important in the fields of food science, pharmaceutical science and pesticide science.
Assessment of the role of DNA repair in damaged forensic samples.
Ambers, Angie; Turnbough, Meredith; Benjamin, Robert; King, Jonathan; Budowle, Bruce
2014-11-01
Previous studies on DNA damage and repair have involved in vitro laboratory procedures that induce a single type of lesion in naked templates. Although repair of singular, sequestered types of DNA damage has shown some success, forensic and ancient specimens likely contain a number of different types of lesions. This study sought to (1) develop protocols to damage DNA in its native state, (2) generate a pool of candidate samples for repair that more likely emulate authentic forensic samples, and (3) assess the ability of the PreCR(TM) Repair Mix to repair the resultant lesions. Complexed, native DNA is more difficult to damage than naked DNA. Modified procedures included the use of higher concentrations and longer exposure times. Three types of samples, those that demonstrated damage based on short tandem repeat (STR) profile signals, were selected for repair experiments: environmentally damaged bloodstains, bleach-damaged whole blood, and human skeletal remains. Results showed trends of improved performance of STR profiling of bleach-damaged DNA. However, the repair assay did not improve DNA profiles from environmentally damaged bloodstains or bone, and in some cases resulted in lower RFU values for STR alleles. The extensive spectrum of DNA damage and myriad combinations of lesions that can be present in forensic samples appears to pose a challenge for the in vitro PreCR(TM) assay. The data suggest that the use of PreCR in casework should be considered with caution due to the assay's varied results.
DNA Damage, DNA Repair, Aging, and Neurodegeneration
Maynard, Scott; Fang, Evandro Fei; Scheibye-Knudsen, Morten; Croteau, Deborah L.; Bohr, Vilhelm A.
2015-01-01
Aging in mammals is accompanied by a progressive atrophy of tissues and organs, and stochastic damage accumulation to the macromolecules DNA, RNA, proteins, and lipids. The sequence of the human genome represents our genetic blueprint, and accumulating evidence suggests that loss of genomic maintenance may causally contribute to aging. Distinct evidence for a role of imperfect DNA repair in aging is that several premature aging syndromes have underlying genetic DNA repair defects. Accumulation of DNA damage may be particularly prevalent in the central nervous system owing to the low DNA repair capacity in postmitotic brain tissue. It is generally believed that the cumulative effects of the deleterious changes that occur in aging, mostly after the reproductive phase, contribute to species-specific rates of aging. In addition to nuclear DNA damage contributions to aging, there is also abundant evidence for a causative link between mitochondrial DNA damage and the major phenotypes associated with aging. Understanding the mechanistic basis for the association of DNA damage and DNA repair with aging and age-related diseases, such as neurodegeneration, would give insight into contravening age-related diseases and promoting a healthy life span. PMID:26385091
Damage Detection Response Characteristics of Open Circuit Resonant (SansEC) Sensors
NASA Technical Reports Server (NTRS)
Dudley, Kenneth L.; Szatkowski, George N.; Smith, Laura J.; Koppen, Sandra V.; Ely, Jay J.; Nguyen, Truong X.; Wang, Chuantong; Ticatch, Larry A.; Mielnik, John J.
2013-01-01
The capability to assess the current or future state of the health of an aircraft to improve safety, availability, and reliability while reducing maintenance costs has been a continuous goal for decades. Many companies, commercial entities, and academic institutions have become interested in Integrated Vehicle Health Management (IVHM) and a growing effort of research into "smart" vehicle sensing systems has emerged. Methods to detect damage to aircraft materials and structures have historically relied on visual inspection during pre-flight or post-flight operations by flight and ground crews. More quantitative non-destructive investigations with various instruments and sensors have traditionally been performed when the aircraft is out of operational service during major scheduled maintenance. Through the use of reliable sensors coupled with data monitoring, data mining, and data analysis techniques, the health state of a vehicle can be detected in-situ. NASA Langley Research Center (LaRC) is developing a composite aircraft skin damage detection method and system based on open circuit SansEC (Sans Electric Connection) sensor technology. Composite materials are increasingly used in modern aircraft for reducing weight, improving fuel efficiency, and enhancing the overall design, performance, and manufacturability of airborne vehicles. Materials such as fiberglass reinforced composites (FRC) and carbon-fiber-reinforced polymers (CFRP) are being used to great advantage in airframes, wings, engine nacelles, turbine blades, fairings, fuselage structures, empennage structures, control surfaces and aircraft skins. SansEC sensor technology is a new technical framework for designing, powering, and interrogating sensors to detect various types of damage in composite materials. The source cause of the in-service damage (lightning strike, impact damage, material fatigue, etc.) to the aircraft composite is not relevant. The sensor will detect damage independent of the cause. Damage in composite material is generally associated with a localized change in material permittivity and/or conductivity. These changes are sensed using SansEC. The unique electrical signatures (amplitude, frequency, bandwidth, and phase) are used for damage detection and diagnosis. An operational system and method would incorporate a SansEC sensor array on select areas of the aircraft exterior surfaces to form a "Smart skin" sensing surface. In this paper a new method and system for aircraft in-situ damage detection and diagnosis is presented. Experimental test results on seeded fault damage coupons and computational modeling simulation results are presented. NASA LaRC has demonstrated with individual sensors that SansEC sensors can be effectively used for in-situ composite damage detection of delamination, voids, fractures, and rips. Keywords: Damage Detection, Composites, Integrated Vehicle Health Monitoring (IVHM), Aviation Safety, SansEC Sensors
Impact damage monitoring in CFRP using fiber Bragg grating ultrasound sensors
NASA Astrophysics Data System (ADS)
Tsuda, Hiroshi; Lee, Jung-Ryul; Eguchi, Shunji
2006-03-01
Impact damage in CFRP was monitored by ultrasonic inspection method using small-diameter fiber Bragg grating (FBG) sensors. The FBG ultrasound detection system consisted of broadband light source, FBG sensor and tunable optical filter. Broadband light was launched into the FBG sensor. Light reflected from the FBG sensor was transmitted through the tunable optical filter whose transmissive wavelength range is comparable to the reflected wavelength range of the FBG sensor. The operating wavelength of tunable filter was set to optimize the sensitivity of ultrasound detection. Ultrasound vibration was converted into change in intensity of light transmitted through the filter. A cross-ply carbon fiber-reinforced plastic (CFRP) plate was used as a test specimen for impact damage monitoring. A 6.3 X 9mm2 impact damage was introduced by ball dropping. Both FBG ultrasound sensor and piezoelectric ultrasound transmitter were attached on the CFRP surface. The change in responses to ultrasound excited by either spike signal or toneburst signal before and after impact damage was investigated. In response to ultrasound excited by spike signal, the response after impact damage showed a scattered behavior where the period of response signal got longer. In response to ultrasound excited by toneburst signal, damage signal features scattered and distorted waveform. Experimental results proved that the FBG inspection system could monitor a 6.3 X 9mm2 impact damage in CFRP.
The DNA damage response during mitosis.
Heijink, Anne Margriet; Krajewska, Małgorzata; van Vugt, Marcel A T M
2013-10-01
Cells are equipped with a cell-intrinsic signaling network called the DNA damage response (DDR). This signaling network recognizes DNA lesions and initiates various downstream pathways to coordinate a cell cycle arrest with the repair of the damaged DNA. Alternatively, the DDR can mediate clearance of affected cells that are beyond repair through apoptosis or senescence. The DDR can be activated in response to DNA damage throughout the cell cycle, although the extent of DDR signaling is different in each cell cycle phase. Especially in response to DNA double strand breaks, only a very marginal response was observed during mitosis. Early on it was recognized that cells which are irradiated during mitosis continued division without repairing broken chromosomes. Although these initial observations indicated diminished DNA repair and lack of an acute DNA damage-induced cell cycle arrest, insight into the mechanistic re-wiring of DDR signaling during mitosis was only recently provided. Different mechanisms appear to be at play to inactivate specific signaling axes of the DDR network in mitosis. Importantly, mitotic cells not simply inactivate the entire DDR, but appear to mark their DNA damage for repair after mitotic exit. Since the treatment of cancer frequently involves agents that induce DNA damage as well as agents that block mitotic progression, it is clinically relevant to obtain a better understanding of how cancer cells deal with DNA damage during interphase versus mitosis. In this review, the molecular details concerning DDR signaling during mitosis as well as the consequences of encountering DNA damage during mitosis for cellular fate are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.
DNA damage in an animal model of maple syrup urine disease.
Scaini, Giselli; Jeremias, Isabela C; Morais, Meline O S; Borges, Gabriela D; Munhoz, Bruna P; Leffa, Daniela D; Andrade, Vanessa M; Schuck, Patrícia F; Ferreira, Gustavo C; Streck, Emilio L
2012-06-01
Maple syrup urine disease is an inborn error of metabolism caused by a severe deficiency of the branched chain alpha-ketoacid dehydrogenase complex. Neurological dysfunction is a common finding in patients with maple syrup urine disease. However, the mechanisms underlying the neuropathology of brain damage in this disorder are poorly understood. In this study, we investigated whether acute or chronic administration of a branched chain amino acid pool (leucine, isoleucine and valine) causes transient DNA damage, as determined by the alkaline comet assay, in the brain and blood of rats during development and whether antioxidant treatment prevented the alterations induced by branched chain amino acids. Our results showed that the acute administration of branched chain amino acids increased the DNA damage frequency and damage index in the hippocampus. However, the chronic administration of branched chain amino acids increased the DNA damage frequency and damage index in both the hippocampus and the striatum, and the antioxidant treatment was able to prevent DNA damage in the hippocampus and striatum. The present study demonstrated that metabolite accumulation in MSUD induces DNA damage in the hippocampus and striatum and that it may be implicated in the neuropathology observed in the affected patients. We demonstrated that the effect of antioxidant treatment (N-acetylcysteine plus deferoxamine) prevented DNA damage, suggesting the involvement of oxidative stress in DNA damage. Copyright © 2012 Elsevier Inc. All rights reserved.
Aydin, Muhsin; Carter-Conger, Jacqueline; Gao, Ning; Gilmore, David F; Ricke, Steven C; Ahn, Soohyoun
2018-04-01
Salmonella is one of major foodborne pathogens and the leading cause of foodborne illness-related hospitalizations and deaths. It is critical to develop a sensitive and rapid detection assay that can identify Salmonella to ensure food safety. In this study, a DNA sensor-based suspension array system of high multiplexing ability was developed to identify eight Salmonella serovars commonly associated with foodborne outbreaks to the serotype level. Each DNA sensor was prepared by activating pre-encoded microspheres with oligonucleotide probes that are targeting virulence genes and serovar-specific regions. The mixture of 12 different types of DNA sensors were loaded into a 96-well microplate and used as a 12-plex DNA sensor array platform. DNA isolated from Salmonella was amplified by multiplex polymerase chain reaction (mPCR), and the presence of Salmonella was determined by reading fluorescent signals from hybridization between probes on DNA sensors and fluorescently labeled target DNA using the Bio-Plex® system. The developed multiplex array was able to detect synthetic DNA at the concentration as low as 100 fM and various Salmonella serovars as low as 100 CFU/mL within 1 h post-PCR. Sensitivity of this assay was further improved to 1 CFU/mL with 6-h enrichment. The array system also correctly and specifically identified serotype of tested Salmonella strains without any cross-reactivity with other common foodborne pathogens. Our results indicate the developed DNA sensor suspension array can be a rapid and reliable high-throughput method for simultaneous detection and molecular identification of common Salmonella serotypes.
Modulation of inflammation and disease tolerance by DNA damage response pathways.
Neves-Costa, Ana; Moita, Luis F
2017-03-01
The accurate replication and repair of DNA is central to organismal survival. This process is challenged by the many factors that can change genetic information such as replication errors and direct damage to the DNA molecule by chemical and physical agents. DNA damage can also result from microorganism invasion as an integral step of their life cycle or as collateral damage from host defense mechanisms against pathogens. Here we review the complex crosstalk of DNA damage response and immune response pathways that might be evolutionarily connected and argue that DNA damage response pathways can be explored therapeutically to induce disease tolerance through the activation of tissue damage control processes. Such approach may constitute the missing pillar in the treatment of critical illnesses caused by multiple organ failure, such as sepsis and septic shock. © 2016 Federation of European Biochemical Societies.
Tokuyama, Yuka; Furusawa, Yoshiya; Ide, Hiroshi; Yasui, Akira; Terato, Hiroaki
2015-05-01
Clustered DNA damage is a specific type of DNA damage induced by ionizing radiation. Any type of ionizing radiation traverses the target DNA molecule as a beam, inducing damage along its track. Our previous study showed that clustered DNA damage yields decreased with increased linear energy transfer (LET), leading us to investigate the importance of clustered DNA damage in the biological effects of heavy ion beam radiation. In this study, we analyzed the yield of clustered base damage (comprising multiple base lesions) in cultured cells irradiated with various heavy ion beams, and investigated isolated base damage and the repair process in post-irradiation cultured cells. Chinese hamster ovary (CHO) cells were irradiated by carbon, silicon, argon and iron ion beams with LETs of 13, 55, 90 and 200 keV µm(-1), respectively. Agarose gel electrophoresis of the cells with enzymatic treatments indicated that clustered base damage yields decreased as the LET increased. The aldehyde reactive probe procedure showed that isolated base damage yields in the irradiated cells followed the same pattern. To analyze the cellular base damage process, clustered DNA damage repair was investigated using DNA repair mutant cells. DNA double-strand breaks accumulated in CHO mutant cells lacking Xrcc1 after irradiation, and the cell viability decreased. On the other hand, mouse embryonic fibroblast (Mef) cells lacking both Nth1 and Ogg1 became more resistant than the wild type Mef. Thus, clustered base damage seems to be involved in the expression of heavy ion beam biological effects via the repair process. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Structural Health Monitoring in Composite Structures by Fiber-Optic Sensors.
Güemes, Alfredo; Fernández-López, Antonio; F Díaz-Maroto, Patricia; Lozano, Angel; Sierra-Perez, Julian
2018-04-04
Fiber-optic sensors cannot measure damage; to get information about damage from strain measurements, additional strategies are needed, and several alternatives are available in the existing literature. This paper discusses two independent procedures. The first is based on detecting new strains appearing around a damage spot. The structure does not need to be under loads, the technique is very robust, and damage detectability is high, but it requires sensors to be located very close to the damage, so it is a local technique. The second approach offers wider coverage of the structure; it is based on identifying the changes caused by damage on the strain field in the whole structure for similar external loads. Damage location does not need to be known a priori, and detectability is dependent upon the sensor's network density, the damage size, and the external loads. Examples of application to real structures are given.
Seidel, Clemens; Lautenschläger, Christine; Dunst, Jürgen; Müller, Arndt-Christian
2012-04-20
To investigate whether different conditions of DNA structure and radiation treatment could modify heterogeneity of response. Additionally to study variance as a potential parameter of heterogeneity for radiosensitivity testing. Two-hundred leukocytes per sample of healthy donors were split into four groups. I: Intact chromatin structure; II: Nucleoids of histone-depleted DNA; III: Nucleoids of histone-depleted DNA with 90 mM DMSO as antioxidant. Response to single (I-III) and twice (IV) irradiation with 4 Gy and repair kinetics were evaluated using %Tail-DNA. Heterogeneity of DNA damage was determined by calculation of variance of DNA-damage (V) and mean variance (Mvar), mutual comparisons were done by one-way analysis of variance (ANOVA). Heterogeneity of initial DNA-damage (I, 0 min repair) increased without histones (II). Absence of histones was balanced by addition of antioxidants (III). Repair reduced heterogeneity of all samples (with and without irradiation). However double irradiation plus repair led to a higher level of heterogeneity distinguishable from single irradiation and repair in intact cells. Increase of mean DNA damage was associated with a similarly elevated variance of DNA damage (r = +0.88). Heterogeneity of DNA-damage can be modified by histone level, antioxidant concentration, repair and radiation dose and was positively correlated with DNA damage. Experimental conditions might be optimized by reducing scatter of comet assay data by repair and antioxidants, potentially allowing better discrimination of small differences. Amount of heterogeneity measured by variance might be an additional useful parameter to characterize radiosensitivity.
Guided wave and damage detection in composite laminates using different fiber optic sensors.
Li, Fucai; Murayama, Hideaki; Kageyama, Kazuro; Shirai, Takehiro
2009-01-01
Guided wave detection using different fiber optic sensors and their applications in damage detection for composite laminates were systematically investigated and compared in this paper. Two types of fiber optic sensors, namely fiber Bragg gratings (FBG) and Doppler effect-based fiber optic (FOD) sensors, were addressed and guided wave detection systems were constructed for both types. Guided waves generated by a piezoelectric transducer were propagated through a quasi-isotropic carbon fiber reinforced plastic (CFRP) laminate and acquired by these fiber optic sensors. Characteristics of these fiber optic sensors in ultrasonic guided wave detection were systematically compared. Results demonstrated that both the FBG and FOD sensors can be applied in guided wave and damage detection for the CFRP laminates. The signal-to-noise ratio (SNR) of guided wave signal captured by an FOD sensor is relatively high in comparison with that of the FBG sensor because of their different physical principles in ultrasonic detection. Further, the FOD sensor is sensitive to the damage-induced fundamental shear horizontal (SH(0)) guided wave that, however, cannot be detected by using the FBG sensor, because the FOD sensor is omnidirectional in ultrasound detection and, in contrast, the FBG sensor is severely direction dependent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srinivas, L.; Shalini, V.K.
Twigs-dry leaves smoke condensate (TDS), as a source of clastogenic ROS and carcinogenic PAH, was investigated for its in vitro DNA-damaging effect in calf thymus DNA and human peripheral lymphocytes. An aqueous turmeric component--Aq.T--with an established antioxidant activity, was tested as a DNA protectant. TDS induced 13-fold damage to calf thymus DNA as judged by the emergence of a DNA damage specific, fluorescent product (em: 405 nm). Aq.T at 800 ng/microL extended 69% protection to calf thymus DNA and was comparable to the other protectants such as curcumin, BHA, vitamin E, SOD, and CAT. In human peripheral lymphocytes, TDS inducedmore » extensive DNA damage in comparison with the tumor promoter TPA, as judged by FADU. Aq.T at 300 ng/microL extended 90% protection to human lymphocyte DNA against TDS-induced damage, and was more effective than the other protectants--DABCO, D-mannitol, sodium benzoate, vitamin E (ROS quenchers), SOD, CAT (antioxidant enzymes), tannic acid, flufenamic acid, BHA, BHT, n-PG, curcumin and quercetin (antioxidants). Aq.T offered 65% protection to human lymphocyte DNA against TPA-induced damage and was comparable to SOD. The above results indicate that TDS induces substantial DNA damage in calf thymus DNA and human lymphocytes and Aq.T is an efficient protectant.« less
Viral interference with DNA repair by targeting of the single-stranded DNA binding protein RPA.
Banerjee, Pubali; DeJesus, Rowena; Gjoerup, Ole; Schaffhausen, Brian S
2013-10-01
Correct repair of damaged DNA is critical for genomic integrity. Deficiencies in DNA repair are linked with human cancer. Here we report a novel mechanism by which a virus manipulates DNA damage responses. Infection with murine polyomavirus sensitizes cells to DNA damage by UV and etoposide. Polyomavirus large T antigen (LT) alone is sufficient to sensitize cells 100 fold to UV and other kinds of DNA damage. This results in activated stress responses and apoptosis. Genetic analysis shows that LT sensitizes via the binding of its origin-binding domain (OBD) to the single-stranded DNA binding protein replication protein A (RPA). Overexpression of RPA protects cells expressing OBD from damage, and knockdown of RPA mimics the LT phenotype. LT prevents recruitment of RPA to nuclear foci after DNA damage. This leads to failure to recruit repair proteins such as Rad51 or Rad9, explaining why LT prevents repair of double strand DNA breaks by homologous recombination. A targeted intervention directed at RPA based on this viral mechanism could be useful in circumventing the resistance of cancer cells to therapy.
Preterm newborns show slower repair of oxidative damage and paternal smoking associated DNA damage.
Vande Loock, Kim; Ciardelli, Roberta; Decordier, Ilse; Plas, Gina; Haumont, Dominique; Kirsch-Volders, Micheline
2012-09-01
Newborns have to cope with hypoxia during delivery and a sudden increase in oxygen at birth. Oxygen will partly be released as reactive oxygen species having the potential to cause damage to DNA and proteins. In utero, increase of most (non)-enzymatic antioxidants occurs during last weeks of gestation, making preterm neonates probably more sensitive to oxidative stress. Moreover, it has been hypothesized that oxidative stress might be the common etiological factor for certain neonatal diseases in preterm infants. The aim of this study was to assess background DNA damage; in vitro H(2)O(2) induced oxidative DNA damage and repair capacity (residual DNA damage) in peripheral blood mononucleated cells from 25 preterm newborns and their mothers. In addition, demographic data were taken into account and repair capacity of preterm was compared with full-term newborns. Multivariate linear regression analysis revealed that preterm infants from smoking fathers have higher background DNA damage levels than those from non-smoking fathers, emphasizing the risk of paternal smoking behaviour for the progeny. Significantly higher residual DNA damage found after 15-min repair in preterm children compared to their mothers and higher residual DNA damage after 2 h compared to full-term newborns suggest a slower DNA repair capacity in preterm children. In comparison with preterm infants born by caesarean delivery, preterm infants born by vaginal delivery do repair more slowly the in vitro induced oxidative DNA damage. Final impact of passive smoking and of the slower DNA repair activity of preterm infants need to be confirmed in a larger study population combining transgenerational genetic and/or epigenetic effects, antioxidant levels, genotypes, repair enzyme efficiency/levels and infant morbidity.
Phosphorylation of human INO80 is involved in DNA damage tolerance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, Dai; Waki, Mayumi; Umezawa, Masaki
Highlights: Black-Right-Pointing-Pointer Depletion of hINO80 significantly reduced PCNA ubiquitination. Black-Right-Pointing-Pointer Depletion of hINO80 significantly reduced nuclear dots intensity of RAD18 after UV irradiation. Black-Right-Pointing-Pointer Western blot analyses showed phosphorylated hINO80 C-terminus. Black-Right-Pointing-Pointer Overexpression of phosphorylation mutant hINO80 reduced PCNA ubiquitination. -- Abstract: Double strand breaks (DSBs) are the most serious type of DNA damage. DSBs can be generated directly by exposure to ionizing radiation or indirectly by replication fork collapse. The DNA damage tolerance pathway, which is conserved from bacteria to humans, prevents this collapse by overcoming replication blockages. The INO80 chromatin remodeling complex plays an important role in themore » DNA damage response. The yeast INO80 complex participates in the DNA damage tolerance pathway. The mechanisms regulating yINO80 complex are not fully understood, but yeast INO80 complex are necessary for efficient proliferating cell nuclear antigen (PCNA) ubiquitination and for recruitment of Rad18 to replication forks. In contrast, the function of the mammalian INO80 complex in DNA damage tolerance is less clear. Here, we show that human INO80 was necessary for PCNA ubiquitination and recruitment of Rad18 to DNA damage sites. Moreover, the C-terminal region of human INO80 was phosphorylated, and overexpression of a phosphorylation-deficient mutant of human INO80 resulted in decreased ubiquitination of PCNA during DNA replication. These results suggest that the human INO80 complex, like the yeast complex, was involved in the DNA damage tolerance pathway and that phosphorylation of human INO80 was involved in the DNA damage tolerance pathway. These findings provide new insights into the DNA damage tolerance pathway in mammalian cells.« less
Effects of electrostatic discharge on three cryogenic temperature sensor models
NASA Astrophysics Data System (ADS)
Courts, S. Scott; Mott, Thomas B.
2014-01-01
Cryogenic temperature sensors are not usually thought of as electrostatic discharge (ESD) sensitive devices. However, the most common cryogenic thermometers in use today are thermally sensitive diodes or resistors - both electronic devices in their base form. As such, they are sensitive to ESD at some level above which either catastrophic or latent damage can occur. Instituting an ESD program for safe handling and installation of the sensor is costly and it is desirable to balance the risk of ESD damage against this cost. However, this risk cannot be evaluated without specific knowledge of the ESD vulnerability of the devices in question. This work examines three types of cryogenic temperature sensors for ESD sensitivity - silicon diodes, Cernox{trade mark, serif} resistors, and wire wound platinum resistors, all manufactured by Lake Shore Cryotronics, Inc. Testing was performed per TIA/EIA FOTP129 (Human Body Model). Damage was found to occur in the silicon diode sensors at discharge levels of 1,500 V. For Cernox{trade mark, serif} temperature sensors, damage was observed at 3,500 V. The platinum temperature sensors were not damaged by ESD exposure levels of 9,900 V. At the lower damage limit, both the silicon diode and the Cernox{trade mark, serif} temperature sensors showed relatively small calibration shifts of 1 to 3 K at room temperature. The diode sensors were stable with time and thermal cycling, but the long term stability of the Cernox{trade mark, serif} sensors was degraded. Catastrophic failure occurred at higher levels of ESD exposure.
DNA damage in cells exhibiting radiation-induced genomic instability
Keszenman, Deborah J.; Kolodiuk, Lucia; Baulch, Janet E.
2015-02-22
Cells exhibiting radiation induced genomic instability exhibit varied spectra of genetic and chromosomal aberrations. Even so, oxidative stress remains a common theme in the initiation and/or perpetuation of this phenomenon. Isolated oxidatively modified bases, abasic sites, DNA single strand breaks and clustered DNA damage are induced in normal mammalian cultured cells and tissues due to endogenous reactive oxygen species generated during normal cellular metabolism in an aerobic environment. While sparse DNA damage may be easily repaired, clustered DNA damage may lead to persistent cytotoxic or mutagenic events that can lead to genomic instability. In this study, we tested the hypothesismore » that DNA damage signatures characterised by altered levels of endogenous, potentially mutagenic, types of DNA damage and chromosomal breakage are related to radiation-induced genomic instability and persistent oxidative stress phenotypes observed in the chromosomally unstable progeny of irradiated cells. The measurement of oxypurine, oxypyrimidine and abasic site endogenous DNA damage showed differences in non-double-strand breaks (DSB) clusters among the three of the four unstable clones evaluated as compared to genomically stable clones and the parental cell line. These three unstable clones also had increased levels of DSB clusters. The results of this study demonstrate that each unstable cell line has a unique spectrum of persistent damage and lead us to speculate that alterations in DNA damage signaling and repair may be related to the perpetuation of genomic instability.« less
Clustered DNA damages induced in isolated DNA and in human cells by low doses of ionizing radiation
NASA Technical Reports Server (NTRS)
Sutherland, B. M.; Bennett, P. V.; Sidorkina, O.; Laval, J.; Lowenstein, D. I. (Principal Investigator)
2000-01-01
Clustered DNA damages-two or more closely spaced damages (strand breaks, abasic sites, or oxidized bases) on opposing strands-are suspects as critical lesions producing lethal and mutagenic effects of ionizing radiation. However, as a result of the lack of methods for measuring damage clusters induced by ionizing radiation in genomic DNA, neither the frequencies of their production by physiological doses of radiation, nor their repairability, nor their biological effects are known. On the basis of methods that we developed for quantitating damages in large DNAs, we have devised and validated a way of measuring ionizing radiation-induced clustered lesions in genomic DNA, including DNA from human cells. DNA is treated with an endonuclease that induces a single-strand cleavage at an oxidized base or abasic site. If there are two closely spaced damages on opposing strands, such cleavage will reduce the size of the DNA on a nondenaturing gel. We show that ionizing radiation does induce clustered DNA damages containing abasic sites, oxidized purines, or oxidized pyrimidines. Further, the frequency of each of these cluster classes is comparable to that of frank double-strand breaks; among all complex damages induced by ionizing radiation, double-strand breaks are only about 20%, with other clustered damage constituting some 80%. We also show that even low doses (0.1-1 Gy) of high linear energy transfer ionizing radiation induce clustered damages in human cells.
Son, Hokyoung; Fu, Minmin; Lee, Yoonji; Lim, Jae Yun; Min, Kyunghun; Kim, Jin-Cheol; Choi, Gyung Ja; Lee, Yin-Won
2016-01-01
Cell cycle regulation and the maintenance of genome integrity are crucial for the development and virulence of the pathogenic plant fungus Fusarium graminearum. To identify transcription factors (TFs) related to these processes, four DNA-damaging agents were applied to screen a F. graminearum TF mutant library. Sixteen TFs were identified to be likely involved in DNA damage responses. Fhs1 is a fungal specific Zn(II)2Cys6 TF that localises exclusively to nuclei. fhs1 deletion mutants were hypersensitive to hydroxyurea and defective in mitotic cell division. Moreover, deletion of FHS1 resulted in defects in perithecia production and virulence and led to the accumulation of DNA damage. Our genetic evidence demonstrated that the FHS1-associated signalling pathway for DNA damage response is independent of the ATM or ATR pathways. This study identified sixteen genes involved in the DNA damage response and is the first to characterise the novel transcription factor gene FHS1, which is involved in the DNA damage response. The results provide new insights into mechanisms underlying DNA damage responses in fungi, including F. graminearum. PMID:26888604
Polyphosphate is a key factor for cell survival after DNA damage in eukaryotic cells.
Bru, Samuel; Samper-Martín, Bàrbara; Quandt, Eva; Hernández-Ortega, Sara; Martínez-Laínez, Joan M; Garí, Eloi; Rafel, Marta; Torres-Torronteras, Javier; Martí, Ramón; Ribeiro, Mariana P C; Jiménez, Javier; Clotet, Josep
2017-09-01
Cells require extra amounts of dNTPs to repair DNA after damage. Polyphosphate (polyP) is an evolutionary conserved linear polymer of up to several hundred inorganic phosphate (Pi) residues that is involved in many functions, including Pi storage. In the present article, we report on findings demonstrating that polyP functions as a source of Pi when required to sustain the dNTP increment essential for DNA repair after damage. We show that mutant yeast cells without polyP produce less dNTPs upon DNA damage and that their survival is compromised. In contrast, when polyP levels are ectopically increased, yeast cells become more resistant to DNA damage. More importantly, we show that when polyP is reduced in HEK293 mammalian cell line cells and in human dermal primary fibroblasts (HDFa), these cells become more sensitive to DNA damage, suggesting that the protective role of polyP against DNA damage is evolutionary conserved. In conclusion, we present polyP as a molecule involved in resistance to DNA damage and suggest that polyP may be a putative target for new approaches in cancer treatment or prevention. Copyright © 2017 Elsevier B.V. All rights reserved.
Two familial ALS proteins function in prevention/repair of transcription-associated DNA damage.
Hill, Sarah J; Mordes, Daniel A; Cameron, Lisa A; Neuberg, Donna S; Landini, Serena; Eggan, Kevin; Livingston, David M
2016-11-29
Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron dysfunction disease that leads to paralysis and death. There is currently no established molecular pathogenesis pathway. Multiple proteins involved in RNA processing are linked to ALS, including FUS and TDP43, and we propose a disease mechanism in which loss of function of at least one of these proteins leads to an accumulation of transcription-associated DNA damage contributing to motor neuron cell death and progressive neurological symptoms. In support of this hypothesis, we find that FUS or TDP43 depletion leads to increased sensitivity to a transcription-arresting agent due to increased DNA damage. Thus, these proteins normally contribute to the prevention or repair of transcription-associated DNA damage. In addition, both FUS and TDP43 colocalize with active RNA polymerase II at sites of DNA damage along with the DNA damage repair protein, BRCA1, and FUS and TDP43 participate in the prevention or repair of R loop-associated DNA damage, a manifestation of aberrant transcription and/or RNA processing. Gaining a better understanding of the role(s) that FUS and TDP43 play in transcription-associated DNA damage could shed light on the mechanisms underlying ALS pathogenesis.
Two familial ALS proteins function in prevention/repair of transcription-associated DNA damage
Hill, Sarah J.; Mordes, Daniel A.; Cameron, Lisa A.; Neuberg, Donna S.; Landini, Serena; Eggan, Kevin; Livingston, David M.
2016-01-01
Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron dysfunction disease that leads to paralysis and death. There is currently no established molecular pathogenesis pathway. Multiple proteins involved in RNA processing are linked to ALS, including FUS and TDP43, and we propose a disease mechanism in which loss of function of at least one of these proteins leads to an accumulation of transcription-associated DNA damage contributing to motor neuron cell death and progressive neurological symptoms. In support of this hypothesis, we find that FUS or TDP43 depletion leads to increased sensitivity to a transcription-arresting agent due to increased DNA damage. Thus, these proteins normally contribute to the prevention or repair of transcription-associated DNA damage. In addition, both FUS and TDP43 colocalize with active RNA polymerase II at sites of DNA damage along with the DNA damage repair protein, BRCA1, and FUS and TDP43 participate in the prevention or repair of R loop-associated DNA damage, a manifestation of aberrant transcription and/or RNA processing. Gaining a better understanding of the role(s) that FUS and TDP43 play in transcription-associated DNA damage could shed light on the mechanisms underlying ALS pathogenesis. PMID:27849576
Kværner, Ane Sørlie; Minaguchi, Jun; Yamani, Naouale El; Henriksen, Christine; Ræder, Hanna; Paur, Ingvild; Henriksen, Hege Berg; Wiedswang, Gro; Smeland, Sigbjørn; Blomhoff, Rune; Collins, Andrew Richard; Bøhn, Siv Kjølsrud
2018-03-01
DNA damage can be considered as a biomarker for toxicity and response to chemotherapy. It is not known whether the chemotherapy-induced genotoxicity is associated with malnutrition. In this pilot study, we assess genotoxicity by means of DNA damage in patients with lymph-node positive colorectal cancer (CRC) and explore associations with chemotherapy treatment and nutritional status. DNA damage was compared between patients receiving chemotherapy (n = 24) and those not receiving chemotherapy (n = 20). DNA damage was measured in frozen whole blood by the comet assay. Associations between DNA damage and various indicators of malnutrition were also explored, including Patient-Generated Subjective Global Assessment (PG-SGA), bioelectrical impedance analysis (BIA) and anthropometric measurements, using multiple linear regression models. Patients on chemotherapy have higher levels of DNA damage in blood cells than patients not receiving chemotherapy (median of 16.9 and 7.9% tail DNA respectively, p = 0.001). The moderately malnourished patients (PG-SGA category B), representing 41% of the patients, have higher levels of cellular DNA damage than patients with good nutritional status (mean difference of 7.5% tail DNA, p = 0.033). In conclusion, adjuvant chemotherapy and malnutrition are both associated with increased levels of DNA damage in blood cells of CRC patients. Carefully controlled longitudinal studies or randomized controlled trials should be performed to determine whether good nutritional status may protect against chemotherapy-induced genotoxicity and enhance compliance to therapy in CRC patients. Copyright © 2018 Elsevier B.V. All rights reserved.
Gajski, Goran; Garaj-Vrhovac, Vera
2009-01-01
The aim of this study is to investigate the radioprotective effect of bee venom against DNA damage induced by 915-MHz microwave radiation (specific absorption rate of 0.6 W/kg) in Wistar rats. Whole blood lymphocytes of Wistar rats are treated with 1 microg/mL bee venom 4 hours prior to and immediately before irradiation. Standard and formamidopyrimidine-DNA glycosylase (Fpg)-modified comet assays are used to assess basal and oxidative DNA damage produced by reactive oxygen species. Bee venom shows a decrease in DNA damage compared with irradiated samples. Parameters of Fpg-modified comet assay are statistically different from controls, making this assay more sensitive and suggesting that oxidative stress is a possible mechanism of DNA damage induction. Bee venom is demonstrated to have a radioprotective effect against basal and oxidative DNA damage. Furthermore, bee venom is not genotoxic and does not produce oxidative damage in the low concentrations used in this study.
Unrepaired clustered DNA lesions induce chromosome breakage in human cells
Asaithamby, Aroumougame; Hu, Burong; Chen, David J.
2011-01-01
Clustered DNA damage induced by ionizing radiation is refractory to repair and may trigger carcinogenic events for reasons that are not well understood. Here, we used an in situ method to directly monitor induction and repair of clustered DNA lesions in individual cells. We showed, consistent with biophysical modeling, that the kinetics of loss of clustered DNA lesions was substantially compromised in human fibroblasts. The unique spatial distribution of different types of DNA lesions within the clustered damages, but not the physical location of these damages within the subnuclear domains, determined the cellular ability to repair the damage. We then examined checkpoint arrest mechanisms and yield of gross chromosomal aberrations. Induction of nonrepairable clustered damage affected only G2 accumulation but not the early G2/M checkpoint. Further, cells that were released from the G2/M checkpoint with unrepaired clustered damage manifested a spectrum of chromosome aberrations in mitosis. Difficulties associated with clustered DNA damage repair and checkpoint release before the completion of clustered DNA damage repair appear to promote genome instability that may lead to carcinogenesis. PMID:21527720
Effects of Different Buffers on the Construction of Aptamer Sensors
NASA Astrophysics Data System (ADS)
Yu, Quan; Dai, Zhao; Wu, Wenjing; Zhu, Haijia; Ji, Luyu
2017-12-01
In this paper, the effect of different buffers, PBS and TBE, on the construction of an aptamer sensor (apt sensor) for ATP was investigated. The apt sensor was based on fluorescence energy resonance transfer (FRET), when the energy donor was 5'-carboxyfluorescein (5'-FAM) and the energy receptor was Au nanoparticles (AuNPs), respectively. Both the donor and acceptor were conjugated with complementary and single stranded DNA (ssDNA). The fluorescent changes of the sensors were measured to investigate the influence of different buffers during the whole preparation and detection process. The results indicated that when the AuNPs and ssDNA (Au-DNA1) were conjugated in PBS buffer, the corresponding apt sensors would obtain a better detection ability of ATP than in TBE buffer.
Inhibition of exportin-1 function results in rapid cell cycle-associated DNA damage in cancer cells
Burke, Russell T.; Marcus, Joshua M.; Orth, James D.
2017-01-01
Selective inhibitors of nuclear export (SINE) are small molecules in development as anti-cancer agents. The first-in-class SINE, selinexor, is in clinical trials for blood and solid cancers. Selinexor forms a covalent bond with exportin-1 at cysteine-528, and blocks its ability to export cargos. Previous work has shown strong cell cycle effects and drug-induced cell death across many different cancer-derived cell lines. Here, we report strong cell cycle-associated DNA double-stranded break formation upon the treatment of cancer cells with SINE. In multiple cell models, selinexor treatment results in the formation of clustered DNA damage foci in 30-40% of cells within 8 hours that is dependent upon cysteine-528. DNA damage strongly correlates with G1/S-phase and decreased DNA replication. Live cell microscopy reveals an association between DNA damage and cell fate. Cells that form damage in G1-phase more often die or arrest, while those damaged in S/G2-phase frequently progress to cell division. Up to half of all treated cells form damage foci, and most cells that die after being damaged, were damaged in G1-phase. By comparison, non-transformed cell lines show strong cell cycle effects but little DNA damage and less death than cancer cells. Significant drug combination effects occur when selinexor is paired with different classes of agents that either cause DNA damage or that diminish DNA damage repair. These data present a novel effect of exportin-1 inhibition and provide a strong rationale for multiple combination treatments of selinexor with agents that are currently in use for the treatment of different solid cancers. PMID:28467801
Antioxidant and prooxidant effects of polyphenol compounds on copper-mediated DNA damage.
Perron, Nathan R; García, Carla R; Pinzón, Julio R; Chaur, Manuel N; Brumaghim, Julia L
2011-05-01
Inhibition of copper-mediated DNA damage has been determined for several polyphenol compounds. The 50% inhibition concentration values (IC(50)) for most of the tested polyphenols are between 8 and 480 μM for copper-mediated DNA damage prevention. Although most tested polyphenols were antioxidants under these conditions, they generally inhibited Cu(I)-mediated DNA damage less effectively than Fe(II)-mediated damage, and some polyphenols also displayed prooxidant activity. Because semiquinone radicals and hydroxyl radical adducts were detected by EPR spectroscopy in solutions of polyphenols, Cu(I), and H(2)O(2), it is likely that weak polyphenol-Cu(I) interactions permit a redox-cycling mechanism, whereby the necessary reactants to cause DNA damage (Cu(I), H(2)O(2), and reducing agents) are regenerated. The polyphenol compounds that prevent copper-mediated DNA damage likely follow a radical scavenging pathway as determined by EPR spectroscopy. Copyright © 2011 Elsevier Inc. All rights reserved.
Liu, Chun-Hsin; Finke, Andreas; Díaz, Mariana; Rozhon, Wilfried; Poppenberger, Brigitte; Baubec, Tuncay; Pecinka, Ales
2015-01-01
DNA damage repair is an essential cellular mechanism that maintains genome stability. Here, we show that the nonmethylable cytidine analog zebularine induces a DNA damage response in Arabidopsis thaliana, independent of changes in DNA methylation. In contrast to genotoxic agents that induce damage in a cell cycle stage-independent manner, zebularine induces damage specifically during strand synthesis in DNA replication. The signaling of this damage is mediated by additive activity of ATAXIA TELANGIECTASIA MUTATED AND RAD3-RELATED and ATAXIA TELANGIECTASIA MUTATED kinases, which cause postreplicative cell cycle arrest and increased endoreplication. The repair requires a functional STRUCTURAL MAINTENANCE OF CHROMOSOMES5 (SMC5)-SMC6 complex and is accomplished predominantly by synthesis-dependent strand-annealing homologous recombination. Here, we provide insight into the response mechanism for coping with the genotoxic effects of zebularine and identify several components of the zebularine-induced DNA damage repair pathway. PMID:26023162
Sam68 Is Required for DNA Damage Responses via Regulating Poly(ADP-ribosyl)ation
Hodgson, Andrea; Wier, Eric M.; Wen, Matthew G.; Kamenyeva, Olena; Xia, Xue; Koo, Lily Y.
2016-01-01
The rapid and robust synthesis of polymers of adenosine diphosphate (ADP)-ribose (PAR) chains, primarily catalyzed by poly(ADP-ribose) polymerase 1 (PARP1), is crucial for cellular responses to DNA damage. However, the precise mechanisms through which PARP1 is activated and PAR is robustly synthesized are not fully understood. Here, we identified Src-associated substrate during mitosis of 68 kDa (Sam68) as a novel signaling molecule in DNA damage responses (DDRs). In the absence of Sam68, DNA damage-triggered PAR production and PAR-dependent DNA repair signaling were dramatically diminished. With serial cellular and biochemical assays, we demonstrated that Sam68 is recruited to and significantly overlaps with PARP1 at DNA lesions and that the interaction between Sam68 and PARP1 is crucial for DNA damage-initiated and PARP1-conferred PAR production. Utilizing cell lines and knockout mice, we illustrated that Sam68-deleted cells and animals are hypersensitive to genotoxicity caused by DNA-damaging agents. Together, our findings suggest that Sam68 plays a crucial role in DDR via regulating DNA damage-initiated PAR production. PMID:27635653
A forward chemical genetic screen reveals an inhibitor of the Mre11–Rad50–Nbs1 complex
Dupré, Aude; Boyer-Chatenet, Louise; Sattler, Rose M; Modi, Ami P; Lee, Ji-Hoon; Nicolette, Matthew L; Kopelovich, Levy; Jasin, Maria; Baer, Richard; Paull, Tanya T; Gautier, Jean
2009-01-01
The MRN (Mre11-Rad50-Nbs1)-ATM (ataxia-telangiectasia mutated) pathway is essential for sensing and signaling from DNA double-strand breaks. The MRN complex acts as a DNA damage sensor, maintains genome stability during DNA replication, promotes homology-dependent DNA repair and activates ATM. MRN is essential for cell viability, which has limited functional studies of the complex. Small-molecule inhibitors of MRN could circumvent this experimental limitation and could also be used as cellular radio- and chemosensitization compounds. Using cell-free systems that recapitulate faithfully the MRN-ATM signaling pathway, we designed a forward chemical genetic screen to identify inhibitors of the pathway, and we isolated Z-5-(4-hydroxybenzylidene)-2-imino-1,3-thiazolidin-4-one (mirin, 1) as an inhibitor of MRN. Mirin prevents MRN-dependent activation of ATM without affecting ATM protein kinase activity, and it inhibits Mre11-associated exonuclease activity. Consistent with its ability to target the MRN complex, mirin abolishes the G2/M checkpoint and homology-dependent repair in mammalian cells. PMID:18176557
Mathematical Methods for Studying DNA and Protein Interactions
NASA Astrophysics Data System (ADS)
LeGresley, Sarah
Deoxyribnucleic Acid (DNA) damage can lead to health related issues such as developmental disorders, aging, and cancer. It has been estimated that damage rates may be as high as 100,000 per cell per day. Because of the devastating effects that DNA damage can have, DNA repair mechanisms are of great interest yet are not completely understood. To gain a better understanding of possible DNA repair mechanisms, my dissertation focused on mathematical methods for understanding the interactions between DNA and proteins. I developed a damaged DNA model to estimate the probabilities of damaged DNA being located at specific positions. Experiments were then performed that suggested that the damaged DNA may be repositioned. These experimental results were consistent with the model's prediction that damaged DNA has preferred locations. To study how proteins might be moving along the DNA, I studied the use of the uniform motion "n-step" model. The n-step model has been used to determine the kinetics parameters (e.g. rates at which a protein moves along the DNA, how much energy is required to move a protein along a specified amount of DNA, etc.) of proteins moving along the DNA. Monte Carlo methods were used to simulate proteins moving with different types of non-uniform motion (e.g. backward, jumping, etc.) along the DNA. Estimates for the kinetics parameters in the n-step model were found by fitting of the Monte Carlo simulation data. Analysis indicated that non-uniform motion of the protein may lead to over or underestimation of the kinetic parameters of this n-step model.
On binding specificity of (6-4) photolyase to a T(6-4)T DNA photoproduct*
NASA Astrophysics Data System (ADS)
Jepsen, Katrine Aalbæk; Solov'yov, Ilia A.
2017-06-01
Different factors lead to DNA damage and if it is not repaired in due time, the damaged DNA could initiate mutagenesis and cancer. To avoid this deadly scenario, specific enzymes can scavenge and repair the DNA, but the enzymes have to bind first to the damaged sites. We have investigated this binding for a specific enzyme called (6-4) photolyase, which is capable of repairing certain UV-induced damage in DNA. Through molecular dynamics simulations we describe the binding between photolyase and the DNA and reveal that several charged amino acid residues in the enzyme, such as arginines and lysines turn out to be important. Especially R421 is crucial, as it keeps the DNA strands at the damaged site inside the repair pocket of the enzyme separated. DNA photolyase is structurally highly homologous to a protein called cryptochrome. Both proteins are biologically activated similarly, namely through flavin co-factor photoexcitation. It is, however, striking that cryptochrome cannot repair UV-damaged DNA. The present investigation allowed us to conclude on the small but, apparently, critical differences between photolyase and cryptochrome. The performed analysis gives insight into important factors that govern the binding of UV-damaged DNA and reveal why cryptochrome cannot have this functionality.
Pang, Jie; Zhang, Ziping; Jin, Haizhu
2016-03-15
Electrochemical aptamer-based (E-AB) sensors employing electrode-immobilized, redox-tagged aptamer probes have emerged as a promising platform for the sensitive and quick detection of target analytes ranging from small molecules to proteins. Signal generation in this class of sensor is linked to change in electron transfer efficiency upon binding-induced change in flexibility/conformation of the aptamer probe. Because of this signaling mechanism, signal gains of these sensors can be improved by employing a displacement-based recognition system, which links target binding with a large-scale flexibility/conformation shift from the aptamer-DNA duplex to the single-stranded DNA or the native aptamer. Despite the relatively large number of displacement-based E-AB sensor samples, little attention has been paid to the structure variation of the aptamer-DNA duplex probe. Here we detail the effects of complementary length and position of the aptamer-DNA duplex probe on the performance of a model displacement-based E-AB sensor for ATP. We find that, greater background suppression and signal gain are observed with longer complementary length of the aptamer-DNA duplex probe. However, sensor equilibration time slows monotonically with increasing complementary length; and with too many target binding sites in aptamer sequence being occupied by the complementary DNA, the aptamer-target binding does not occur and no signal gain observed. We also demonstrate that signal gain of the displacement-based E-AB sensor is strongly dependent on the complementary position of the aptamer-DNA duplex probe, with complementary position located at the electrode-attached or redox-tagged end of the duplex probe, larger background suppression and signal increase than that of the middle position are observed. These results highlight the importance of rational structure design of the aptamer-DNA duplex probe and provide new insights into the optimization of displacement-based E-AB sensors. Copyright © 2015 Elsevier B.V. All rights reserved.
Liu, Wei; Tan, Zhenyu; Zhang, Liming; Champion, Christophe
2017-03-01
In this work, direct DNA damage induced by low-energy electrons (sub-keV) is simulated using a Monte Carlo method. The characteristics of the present simulation are to consider the new mechanism of DNA damage due to dissociative electron attachment (DEA) and to allow determining damage to specific bases (i.e., adenine, thymine, guanine, or cytosine). The electron track structure in liquid water is generated, based on the dielectric response model for describing electron inelastic scattering and on a free-parameter theoretical model and the NIST database for calculating electron elastic scattering. Ionization cross sections of DNA bases are used to generate base radicals, and available DEA cross sections of DNA components are applied for determining DNA-strand breaks and base damage induced by sub-ionization electrons. The electron elastic scattering from DNA components is simulated using cross sections from different theoretical calculations. The resulting yields of various strand breaks and base damage in cellular environment are given. Especially, the contributions of sub-ionization electrons to various strand breaks and base damage are quantitatively presented, and the correlation between complex clustered DNA damage and the corresponding damaged bases is explored. This work shows that the contribution of sub-ionization electrons to strand breaks is substantial, up to about 40-70%, and this contribution is mainly focused on single-strand break. In addition, the base damage induced by sub-ionization electrons contributes to about 20-40% of the total base damage, and there is an evident correlation between single-strand break and damaged base pair A-T.
2012-01-01
Background To investigate whether different conditions of DNA structure and radiation treatment could modify heterogeneity of response. Additionally to study variance as a potential parameter of heterogeneity for radiosensitivity testing. Methods Two-hundred leukocytes per sample of healthy donors were split into four groups. I: Intact chromatin structure; II: Nucleoids of histone-depleted DNA; III: Nucleoids of histone-depleted DNA with 90 mM DMSO as antioxidant. Response to single (I-III) and twice (IV) irradiation with 4 Gy and repair kinetics were evaluated using %Tail-DNA. Heterogeneity of DNA damage was determined by calculation of variance of DNA-damage (V) and mean variance (Mvar), mutual comparisons were done by one-way analysis of variance (ANOVA). Results Heterogeneity of initial DNA-damage (I, 0 min repair) increased without histones (II). Absence of histones was balanced by addition of antioxidants (III). Repair reduced heterogeneity of all samples (with and without irradiation). However double irradiation plus repair led to a higher level of heterogeneity distinguishable from single irradiation and repair in intact cells. Increase of mean DNA damage was associated with a similarly elevated variance of DNA damage (r = +0.88). Conclusions Heterogeneity of DNA-damage can be modified by histone level, antioxidant concentration, repair and radiation dose and was positively correlated with DNA damage. Experimental conditions might be optimized by reducing scatter of comet assay data by repair and antioxidants, potentially allowing better discrimination of small differences. Amount of heterogeneity measured by variance might be an additional useful parameter to characterize radiosensitivity. PMID:22520045
Reduction of arsenite-enhanced ultraviolet radiation-induced DNA damage by supplemental zinc
Cooper, Karen L.; King, Brenee S.; Sandoval, Monica M.; Liu, Ke Jian; Hudson, Laurie G.
2013-01-01
Arsenic is a recognized human carcinogen and there is evidence that arsenic augments the carcinogenicity of DNA damaging agents such as ultraviolet radiation (UVR) thereby acting as a co-carcinogen. Inhibition of DNA repair is one proposed mechanism to account for the co-carcinogenic actions of arsenic. We and others find that arsenite interferes with the function of certain zinc finger DNA repair proteins. Furthermore, we reported that zinc reverses the effects of arsenite in cultured cells and a DNA repair target protein, poly (ADP-ribose) polymerase-1. In order to determine whether zinc ameliorates the effects of arsenite on UVR-induced DNA damage in human keratinocytes and in an in vivo model, normal human epidermal keratinocytes and SKH-1 hairless mice were exposed to arsenite, zinc or both before solar-simulated (ss) UVR exposure. Poly (ADP-ribose) polymerase activity, DNA damage and mutation frequencies at the hprt locus were measured in each treatment group in normal human keratinocytes. DNA damage was assessed in vivo by immunohistochemical staining of skin sections isolated from SKH-1 hairless mice. Cell-based findings demonstrate that ssUVR-induced DNA damage and mutagenesis are enhanced by arsenite, and supplemental zinc partially reverses the arsenite effect. In vivo studies confirm that zinc supplementation decreases arsenite-enhanced DNA damage in response to ssUVR exposure. From these data we can conclude that zinc offsets the impact of arsenic on ssUVR-stimulated DNA damage in cells and in vivo suggesting that zinc supplementation may provide a strategy to improve DNA repair capacity in arsenic exposed human populations. PMID:23523584
Heenen, M; Giacomoni, P U; Golstein, P
2001-10-01
A linear correlation between erythema intensity and DNA damage upon exposure to UV has not been firmly established. Many of the deleterious effects of UV exposure do occur after exposure to suberythemal doses. After DNA damage, cells undergo DNA repair. It is commonly accepted that when the burden of damage is beyond the repair capacities, the cell undergoes programmed cell death or apoptosis. The aim of this study is to quantify the amount of UV-induced DNA damage (estimated via the measurement of DNA repair or unscheduled DNA synthesis or UDS) and cellular damage (estimated via the determination of the density of sunburn cells or SBC). If DNA damage and erythema are correlated, similar intensity of UDS and similar density of SBC should be found in volunteers irradiated with a UV dose equal to two minimal erythema doses (MED). Our results show that in 15 different individuals the same relative dose (2 MEDs) provokes UDS values, which vary within a factor of 4. An even larger variability affects SBC counts after the same relative dose. When DNA damage or SBC are plotted versus the absolute dose (i.e. the dose expressed in J/m(2)), there is a rough correlation (with several exceptions) between dose and extent of UDS and SBC counts. It seems possible to divide the volunteers into two subpopulations with different susceptibilities to UV damage. It is well known that UDS and SBC measurements are often affected by large experimental indeterminacy, yet, the analysis of our results makes it plausible to suggest that for the triggering of erythema, a common threshold value for DNA damage or for SBC count are not to be found. In conclusion, the erythema response seems to be loosely correlated with DNA damage. This suggests that the protection offered by the sunscreens against DNA damage, the molecular basis of UV-induced mutagenesis, might not be related to the sun protection factor (SPF) indicated on the label of sunscreens, which is evaluated using the erythema as an endpoint.
IFI16 Preferentially Binds to DNA with Quadruplex Structure and Enhances DNA Quadruplex Formation.
Hároníková, Lucia; Coufal, Jan; Kejnovská, Iva; Jagelská, Eva B; Fojta, Miroslav; Dvořáková, Petra; Muller, Petr; Vojtesek, Borivoj; Brázda, Václav
2016-01-01
Interferon-inducible protein 16 (IFI16) is a member of the HIN-200 protein family, containing two HIN domains and one PYRIN domain. IFI16 acts as a sensor of viral and bacterial DNA and is important for innate immune responses. IFI16 binds DNA and binding has been described to be DNA length-dependent, but a preference for supercoiled DNA has also been demonstrated. Here we report a specific preference of IFI16 for binding to quadruplex DNA compared to other DNA structures. IFI16 binds to quadruplex DNA with significantly higher affinity than to the same sequence in double stranded DNA. By circular dichroism (CD) spectroscopy we also demonstrated the ability of IFI16 to stabilize quadruplex structures with quadruplex-forming oligonucleotides derived from human telomere (HTEL) sequences and the MYC promotor. A novel H/D exchange mass spectrometry approach was developed to assess protein interactions with quadruplex DNA. Quadruplex DNA changed the IFI16 deuteration profile in parts of the PYRIN domain (aa 0-80) and in structurally identical parts of both HIN domains (aa 271-302 and aa 586-617) compared to single stranded or double stranded DNAs, supporting the preferential affinity of IFI16 for structured DNA. Our results reveal the importance of quadruplex DNA structure in IFI16 binding and improve our understanding of how IFI16 senses DNA. IFI16 selectivity for quadruplex structure provides a mechanistic framework for IFI16 in immunity and cellular processes including DNA damage responses and cell proliferation.
Structural damage detection-oriented multi-type sensor placement with multi-objective optimization
NASA Astrophysics Data System (ADS)
Lin, Jian-Fu; Xu, You-Lin; Law, Siu-Seong
2018-05-01
A structural damage detection-oriented multi-type sensor placement method with multi-objective optimization is developed in this study. The multi-type response covariance sensitivity-based damage detection method is first introduced. Two objective functions for optimal sensor placement are then introduced in terms of the response covariance sensitivity and the response independence. The multi-objective optimization problem is formed by using the two objective functions, and the non-dominated sorting genetic algorithm (NSGA)-II is adopted to find the solution for the optimal multi-type sensor placement to achieve the best structural damage detection. The proposed method is finally applied to a nine-bay three-dimensional frame structure. Numerical results show that the optimal multi-type sensor placement determined by the proposed method can avoid redundant sensors and provide satisfactory results for structural damage detection. The restriction on the number of each type of sensors in the optimization can reduce the searching space in the optimization to make the proposed method more effective. Moreover, how to select a most optimal sensor placement from the Pareto solutions via the utility function and the knee point method is demonstrated in the case study.
Damage Detection Sensor System for Aerospace and Multiple Applications
NASA Technical Reports Server (NTRS)
Williams, M.; Lewis, M.; Gibson, T.; Medelius, P.; Lane, J.
2017-01-01
The damage detection sensory system is an intelligent damage detection ‘skin’ that can be embedded into rigid or flexible structures, providing a lightweight capability for in-situ health monitoring for applications such as spacecraft, expandable or inflatable structures, extravehicular activities (EVA) suits, smart wearables, and other applications where diagnostic impact damage monitoring might be critical. The sensor systems can be customized for detecting location, damage size, and depth, with velocity options and can be designed for particular environments for monitoring of impact or physical damage to a structure. The operation of the sensor detection system is currently based on the use of parallel conductive traces placed on a firm or flexible surface. Several detection layers can be implemented, where alternate layers are arranged in orthogonal direction with respect to the adjacent layers allowing for location and depth calculations. Increased flexibility of the damage detection sensor system designs will also be introduced.
Integration of Biological Specificity with Solid-State Devices for Selective Chemical Sensing
2016-01-29
materials onto a single sensor chip. We demonstrate a path to combine a large number of DNA aptamers with nanoscale device arrays to achieve integrated...solid-state, sensor chips with specificity. 15. SUBJECT TERMS DNA sensors aptamers chemiresistors nanosensors LSER specificity vapor 16. SECURITY...and engineering. In particular, DNA and RNA aptamers are a class of man- made receptors with a high degree of specificity that rivals proteins. DNA
Izhar, Lior; Adamson, Britt; Ciccia, Alberto; Lewis, Jedd; Pontano-Vaites, Laura; Leng, Yumei; Liang, Anthony C.; Westbrook, Thomas F.; Harper, J. Wade; Elledge, Stephen J.
2015-01-01
Localization to sites of DNA damage is a hallmark of DNA damage response (DDR) proteins. To identify new DDR factors, we screened epitope-tagged proteins for localization to sites of chromatin damaged by UV laser microirradiation and found >120 proteins that localize to damaged chromatin. These include the BAF tumor suppressor complex and the ALS candidate protein TAF15. TAF15 contains multiple domains that bind damaged chromatin in a PARP-dependent manner, suggesting a possible role as glue that tethers multiple PAR chains together. Many positives were transcription factors and >70% of randomly tested transcription factors localized to sites of DNA damage and approximately 90% were PARP-dependent for localization. Mutational analyses showed that localization to damaged chromatin is DNA-binding domain-dependent. By examining Hoechst staining patterns at damage sites, we see evidence of chromatin decompaction that is PARP-dependent. We propose that PARP-regulated chromatin remodeling at sites of damage allows transient accessibility of DNA-binding proteins. PMID:26004182
Srinivas, Anupama R Gulur; Peng, Hui; Barker, David; Travas-Sejdic, Jadranka
2012-05-15
There has been an enormous demand for commercial label-free DNA sensors in a diverse range of fields including pre-emptive medicine, diagnostics, environmental monitoring, and food industry. Addressing the need for sensitive, selective and facile DNA sensors, we demonstrate a novel switch on/off sensor design that utilizes sandwich hybridization between photoluminescent anionic conjugated polyelectrolyte (CPE) bound captureprobe coated onto magnetic beads, target and the signaling probe. The hybridization-readout in our sensor was monitored by either fluorescence resonance energy transfer (FRET, switch-on) or superquenching (switch-off) depending on the type of signaling probe used. Moreover recent designs that utilize beads for sensing DNA have been limited towards using electrostatic interactions or intercalation of dyes to observe FRET. To our knowledge this is the first report of a switch on/off sensor utilizing either FRET or superquenching thus providing flexibility for future development of such rapid, facile and sensitive DNA sensors. The FRET-based sensor was investigated by optimizing the reaction parameters and selectivity. A low detection limit of 240 fmol in 2 mL of SSC buffer was achieved. Copyright © 2012 Elsevier B.V. All rights reserved.
Lai, Chao-Qiang; Tucker, Katherine L; Parnell, Laurence D; Adiconis, Xian; García-Bailo, Bibiana; Griffith, John; Meydani, Mohsen; Ordovás, José M
2008-04-01
Individuals with type 2 diabetes exhibit higher DNA damage and increased risk of cardiovascular disease (CVD). However, mechanisms underlying the association between DNA damage and development of type 2 diabetes and CVD are not understood. We sought to link peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PPARGC1A), a master transcriptional regulator of mitochondrial oxidative phosphorylation and cellular energy metabolism, with DNA damage, type 2 diabetes, and CVD. We measured DNA damage as urinary 8-hydroxydeoxyguanosine (8-OHdG) concentration and examined the relationship between nine PPARGC1A genetic variants, DNA damage, type 2 diabetes, and self-reported CVD in 959 participants of the Boston Puerto Rican Health Study. With respect to urinary 8-OHdG, PPARGC1A variants showed significant association, and PPARGC1A haplotypes exhibited significant association after correction for multiple testing. Two independent PPARGC1A variants associated significantly with type 2 diabetes (odds ratios [ORs] 1.35 and 2.46; P = 0.045 and <0.001). Carriers of minor alleles of two other PPARGC1A variants, both in strong linkage disequilibrium and associated with lower DNA damage, showed lower prevalence of CVD (ORs 0.53 and 0.65; P = 0.030 and 0.175). Moreover, we found that physical activity correlated negatively with DNA damage. It is plausible that low physical activity combined with risk haplotyes contribute to the high prevalence of type 2 diabetes in this population. We propose that PPARGC1A influences development of type 2 diabetes and CVD via DNA damage. Increasing physical activity, which induces PPARGC1A expression, is a potential strategy to slow DNA damage, thereby decreasing the risk of CVD for individuals with type 2 diabetes.
Wang, Zhong; Chen, Qiang; Li, Bin; Xie, Jia-Ming; Yang, Xiao-Dong; Zhao, Kui; Wu, Yong; Ye, Zhen-Yu; Chen, Zheng-Rong; Qin, Zheng-Hong; Xing, Chun-Gen
2018-05-31
Escin, a triterpene saponin isolated from horse chestnut seed, has been used to treat encephaledema, tissue swelling and chronic venous insufficiency. Recent studies show that escin induces cell cycle arrest, tumor proliferation inhibition and tumor cell apoptosis. But the relationship between escin-induced DNA damage and cell apoptosis in tumor cells remains unclear. In this study, we investigated whether and how escin-induced DNA damage contributed to escin-induced apoptosis in human colorectal cancer cells. Escin (5-80 μg/mL) dose-dependently inhibited the cell viability and colony formation in HCT116 and HCT8 cells. Escin treatment induced DNA damage, leading to p-ATM and γH2AX upregulation. Meanwhile, escin treatment increased the expression of p62, an adaptor protein, which played a crucial role in controlling cell survival and tumorigenesis, and had a protective effect against escin-induced DNA damage: knockdown of p62 apparently enhanced escin-induced DNA damage, whereas overexpression of p62 reduced escin-induced DNA damage. In addition, escin treatment induced concentration- and time-dependent apoptosis. Similarly, knockdown of p62 significantly increased escin-induced apoptosis in vitro and produced en escin-like antitumor effect in vivo. Overexpression of p62 decreased the rate of apoptosis. Further studies revealed that the functions of p62 in escin-induced DNA damage were associated with escin-induced apoptosis, and p62 knockdown combined with the ATM inhibitor KU55933 augmented escin-induced DNA damage and further increased escin-induced apoptosis. In conclusion, our results demonstrate that p62 regulates ATM/γH2AX pathway-mediated escin-induced DNA damage and apoptosis.
Markers of oxidative DNA damage in human interventions with fruit and berries.
Freese, Riitta
2006-01-01
Diets rich in fruit and vegetables are associated with a decreased risk of several cancers via numerous possible mechanisms. For example, phytochemicals may decrease oxidative DNA damage and enhance DNA repair. Markers of oxidative DNA damage in human dietary intervention trials used most frequently include oxidized nucleosides such as 7-hydro-8-oxo-2'-deoxyguanosine, which can be analyzed from isolated DNA or urine. Single-cell gel electrophoresis has been widely used to measure baseline or H2O2-induced DNA strand breaks or sites of modified bases sensitive to repair enzymes recognizing oxidized purines or pyrimidines. Recently, markers of DNA repair also have been used. Few controlled human dietary interventions have investigated the specific effects of fruit or berries. There are indications that kiwifruit can decrease H2O2 sensitivity of lymphocyte DNA ex vivo and enhance DNA repair. Carefully controlled studies with flavonoid-rich fruit or berry juices found only few significant differences; less rigorously controlled studies gave more optimistic results. Data on the effects of fruit and berries on DNA damage in humans are scarce and inconclusive; adequately controlled studies with validated markers are needed. Because levels of DNA damage are usually low in young healthy volunteers, groups with an enhanced risk of DNA damage should be studied.
Negureanu, Lacramioara; Salsbury, Freddie R
2013-11-01
DNA mismatch repair (MMR) proteins maintain genetic integrity in all organisms by recognizing and repairing DNA errors. Such alteration of hereditary information can lead to various diseases, including cancer. Besides their role in DNA repair, MMR proteins detect and initiate cellular responses to certain type of DNA damage. Its response to the damaged DNA has made the human MMR pathway a useful target for anticancer agents such as carboplatin. This study indicates that strong, specific interactions at the interface of MutSα in response to the mismatched DNA recognition are replaced by weak, non-specific interactions in response to the damaged DNA recognition. Data suggest a severe impairment of the dimerization of MutSα in response to the damaged DNA recognition. While the core of MutSα is preserved in response to the damaged DNA recognition, the loss of contact surface and the rearrangement of contacts at the protein interface suggest a different packing in response to the damaged DNA recognition. Coupled in response to the mismatched DNA recognition, interaction energies, hydrogen bonds, salt bridges, and solvent accessible surface areas at the interface of MutSα and within the subunits are uncoupled or asynchronously coupled in response to the damaged DNA recognition. These pieces of evidence suggest that the loss of a synchronous mode of response in the MutSα's surveillance for DNA errors would possibly be one of the mechanism(s) of signaling the MMR-dependent programed cell death much wanted in anticancer therapies. The analysis was drawn from dynamics simulations.
Shang, Hung-Sheng; Chang, Chuan-Hsun; Chou, Yu-Ru; Yeh, Ming-Yang; Au, Man-Kuan; Lu, Hsu-Feng; Chu, Yung-Lin; Chou, Hsiao-Min; Chou, Hsiu-Chen; Shih, Yung-Luen; Chung, Jing-Gung
2016-10-01
Cervical cancer is one of the most common cancers in women worldwide and it is a prominent cause of cancer mortality. Curcumin is one of the major compounds from Turmeric and has been shown to induce cytotoxic cell death in human cervical cancer cells. However, there is no study to show curcumin induced DNA damage action via the effect on the DNA damage and repair protein in cervical cancer cells in detail. In this study, we investigated whether or not curcumin induced cell death via DNA damage, chromatin condensation in human cervical cancer HeLa cells by using comet assay and DAPI staining, respectively, we found that curcumin induced cell death through the induction of DNA damage, and chromatin condensation. Western blotting and confocal laser microscopy examination were used to examine the effects of curcumin on protein expression associated with DNA damage, repair and translocation of proteins. We found that curcumin at 13 µM increased the protein levels associated with DNA damage and repair, such as O6-methylguanine-DNA methyltransferase, early-onset breast cancer 1 (BRCA1), mediator of DNA damage checkpoint 1, p-p53 and p-H2A.XSer140 in HeLa cells. Results from confocal laser systems microscopy indicated that curcumin increased the translocation of p-p53 and p-H2A.XSer140 from cytosol to nuclei in HeLa cells. In conclusion, curcumin induced cell death in HeLa cells via induction of DNA damage, and chromatin condensation in vitro.
Vítová, Milada; Bišová, Kateřina; Zachleder, Vilém
2011-01-01
DNA damage is a threat to genomic integrity in all living organisms. Plants and green algae are particularly susceptible to DNA damage especially that caused by UV light, due to their light dependency for photosynthesis. For survival of a plant, and other eukaryotic cells, it is essential for an organism to continuously check the integrity of its genetic material and, when damaged, to repair it immediately. Cells therefore utilize a DNA damage response pathway that is responsible for sensing, reacting to and repairing damaged DNA. We have studied the effect of 5-fluorodeoxyuridine, zeocin, caffeine and combinations of these on the cell cycle of the green alga Scenedesmus quadricauda. The cells delayed S phase and underwent a permanent G2 phase block if DNA metabolism was affected prior to S phase; the G2 phase block imposed by zeocin was partially abolished by caffeine. No cell cycle block was observed if the treatment with zeocin occurred in G2 phase and the cells divided normally. CDKA and CDKB kinases regulate mitosis in S. quadricauda; their kinase activities were inhibited by Wee1. CDKA, CDKB protein levels were stabilized in the presence of zeocin. In contrast, the protein level of Wee1 was unaffected by DNA perturbing treatments. Wee1 therefore does not appear to be involved in the DNA damage response in S. quadricauda. Our results imply a specific reaction to DNA damage in S. quadricauda, with no cell cycle arrest, after experiencing DNA damage during G2 phase. PMID:21603605
Mechanisms of free radical-induced damage to DNA.
Dizdaroglu, Miral; Jaruga, Pawel
2012-04-01
Endogenous and exogenous sources cause free radical-induced DNA damage in living organisms by a variety of mechanisms. The highly reactive hydroxyl radical reacts with the heterocyclic DNA bases and the sugar moiety near or at diffusion-controlled rates. Hydrated electron and H atom also add to the heterocyclic bases. These reactions lead to adduct radicals, further reactions of which yield numerous products. These include DNA base and sugar products, single- and double-strand breaks, 8,5'-cyclopurine-2'-deoxynucleosides, tandem lesions, clustered sites and DNA-protein cross-links. Reaction conditions and the presence or absence of oxygen profoundly affect the types and yields of the products. There is mounting evidence for an important role of free radical-induced DNA damage in the etiology of numerous diseases including cancer. Further understanding of mechanisms of free radical-induced DNA damage, and cellular repair and biological consequences of DNA damage products will be of outmost importance for disease prevention and treatment.
A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE INDUCED BY TOXIC INDUSTRIAL CHEMICALS
One of the reported effects for exposure to many of the toxic industrial chemicals is DNA damage. The present study describes a simple, rapid and innovative assay to detect DNA damage resulting from exposure of surrogate DNA to toxic industrial chemicals (acrolein, allylamine, ch...
A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE INDUCED BY STYRENE OXIDE
A rapid and simple assay to detect DNA damage to calf thymus DNA caused by styrene oxide (SO) is reported. This assay is based on changes observed in the melting and annealing behavior of the damaged DNA. The melting annealing process was monitored using a fluorescence indicat...
A Green's Function Approach to Simulate DNA Damage by the Indirect Effect
NASA Technical Reports Server (NTRS)
Plante, Ianik; Cicinotta, Francis A.
2013-01-01
The DNA damage is of fundamental importance in the understanding of the effects of ionizing radiation. DNA is damaged by the direct effect of radiation (e.g. direct ionization) and by indirect effect (e.g. damage by.OH radicals created by the radiolysis of water). Despite years of research, many questions on the DNA damage by ionizing radiation remains. In the recent years, the Green's functions of the diffusion equation (GFDE) have been used extensively in biochemistry [1], notably to simulate biochemical networks in time and space [2]. In our future work on DNA damage, we wish to use an approach based on the GFDE to refine existing models on the indirect effect of ionizing radiation on DNA. To do so, we will use the code RITRACKS [3] developed at the NASA Johnson Space Center to simulate the radiation track structure and calculate the position of radiolytic species after irradiation. We have also recently developed an efficient Monte-Carlo sampling algorithm for the GFDE of reversible reactions with an intermediate state [4], which can be modified and adapted to simulate DNA damage by free radicals. To do so, we will use the known reaction rate constants between radicals (OH, eaq, H,...) and the DNA bases, sugars and phosphates and use the sampling algorithms to simulate the diffusion of free radicals and chemical reactions with DNA. These techniques should help the understanding of the contribution of the indirect effect in the formation of DNA damage and double-strand breaks.
DNA Damage Response, Redox Status and Hematopoiesis
Weiss, Cary N.; Ito, Keisuke
2013-01-01
The ability of hematopoietic stem cells (HSCs) to self-renew and differentiate into progenitors is essential for homeostasis of the hematopoietic system. The longevity of HSCs makes them vulnerable to accumulating DNA damage, which may be leukemogenic or result in senescence and cell death. Additionally, the ability of HSCs to self-renew and differentiate allows DNA damage to spread throughout the hematologic system, leaving the organism vulnerable to disease. In this review we discuss cell fate decisions made in the face of DNA damage and other cellular stresses, and the role of reactive oxygen species in the long-term maintenance of HSCs and their DNA damage response. PMID:24041596
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Satyender; Kumar, Vivek; Vashisht, Kapil
2011-11-15
Organophosphate pesticides (OPs) are primarily metabolized by several xenobiotic metabolizing enzymes (XMEs). Very few studies have explored genetic polymorphisms of XMEs and their association with DNA damage in pesticide-exposed workers. The present study was designed to determine the role of genetic polymorphisms of CYP1A1, CYP3A5, CYP2C9, CYP2D6, and PON1 in the modulation of DNA damage in workers occupationally exposed to OPs. We examined 284 subjects including 150 workers occupationally exposed to OPs and 134 normal healthy controls. The DNA damage was evaluated using the alkaline comet assay and genotyping was done using PCR-RFLP. The results revealed that the PONase activitymore » toward paraoxonase and AChE activity was found significantly lowered in workers as compared to control subjects (p < 0.001). Workers showed significantly higher DNA damage compared to control subjects (14.37 {+-} 2.15 vs. 6.24 {+-} 1.37 tail% DNA, p < 0.001). Further, the workers with CYP2D6*3 PM and PON1 (QQ and MM) genotypes were found to have significantly higher DNA damage when compared to other genotypes (p < 0.05). In addition, significant increase in DNA damage was also observed in workers with concomitant presence of certain CYP2D6 and PON1 (Q192R and L55M) genotypes which need further extensive studies. In conclusion, the results indicate that the PON1 and CYP2D6 genotypes can modulate DNA damage elicited by some OPs possibly through gene-environment interactions. -- Highlights: Black-Right-Pointing-Pointer Role of CYP1A1, CYP3A5, CYP2C, CYP2D6 and PON1 genotypes on DNA damage. Black-Right-Pointing-Pointer Workers exposed to some OPs demonstrated increased DNA damage. Black-Right-Pointing-Pointer CYP2D6 *3 PM and PON1 (Q192R and L55M) genotypes are associated with DNA damage. Black-Right-Pointing-Pointer Concomitant presence of certain CYP2D6 and PON1 genotypes can increase DNA damage.« less
Formation of Clustered DNA Damage after High-LET Irradiation: A Review
NASA Technical Reports Server (NTRS)
Hada, Megumi; Georgakilas, Alexandros G.
2008-01-01
Radiation can cause as well as cure cancer. The risk of developing radiation-induced cancer has traditionally been estimated from cancer incidence among survivors of the atomic bombs in Hiroshima and Nagasaki. These data provide the best estimate of human cancer risk over the dose range for low linear energy transfer (LET) radiations, such as X- or gamma-rays. The situation of estimating the real biological effects becomes even more difficult in the case of high LET particles encountered in space or as the result of domestic exposure to particles from radon gas emitters or other radioactive emitters like uranium-238. Complex DNA damage, i.e., the signature of high-LET radiations comprises by closely spaced DNA lesions forming a cluster of DNA damage. The two basic groups of complex DNA damage are double strand breaks (DSBs) and non-DSB oxidative clustered DNA lesions (OCDL). Theoretical analysis and experimental evidence suggest there is increased complexity and severity of complex DNA damage with increasing LET (linear energy transfer) and a high mutagenic or carcinogenic potential. Data available on the formation of clustered DNA damage (DSBs and OCDL) by high-LET radiations are often controversial suggesting a variable response to dose and type of radiation. The chemical nature and cellular repair mechanisms of complex DNA damage have been much less characterized than those of isolated DNA lesions like an oxidized base or a single strand break especially in the case of high-LET radiation. This review will focus on the induction of clustered DNA damage by high-LET radiations presenting the earlier and recent relative data.
Pereira, G. F.; Mikkelsen, L. P.; McGugan, M.
2015-01-01
In a fibre-reinforced polymer (FRP) structure designed using the emerging damage tolerance and structural health monitoring philosophy, sensors and models that describe crack propagation will enable a structure to operate despite the presence of damage by fully exploiting the material’s mechanical properties. When applying this concept to different structures, sensor systems and damage types, a combination of damage mechanics, monitoring technology, and modelling is required. The primary objective of this article is to demonstrate such a combination. This article is divided in three main topics: the damage mechanism (delamination of FRP), the structural health monitoring technology (fibre Bragg gratings to detect delamination), and the finite element method model of the structure that incorporates these concepts into a final and integrated damage-monitoring concept. A novel method for assessing a crack growth/damage event in fibre-reinforced polymer or structural adhesive-bonded structures using embedded fibre Bragg grating (FBG) sensors is presented by combining conventional measured parameters, such as wavelength shift, with parameters associated with measurement errors, typically ignored by the end-user. Conjointly, a novel model for sensor output prediction (virtual sensor) was developed using this FBG sensor crack monitoring concept and implemented in a finite element method code. The monitoring method was demonstrated and validated using glass fibre double cantilever beam specimens instrumented with an array of FBG sensors embedded in the material and tested using an experimental fracture procedure. The digital image correlation technique was used to validate the model prediction by correlating the specific sensor response caused by the crack with the developed model. PMID:26513653
Dalrymple, Annette; Ordoñez, Patricia; Thorne, David; Dillon, Debbie; Meredith, Clive
2015-06-01
Smoking is a cause of serious diseases, including lung cancer, emphysema, chronic bronchitis and heart disease. DNA damage is thought to be one of the mechanisms by which cigarette smoke (CS) initiates disease in the lung. Indeed, CS induced DNA damage can be measured in vitro and in vivo. The potential of the Comet assay to measure DNA damage in isolated rat lung alveolar type II epithelial cells (AEC II) was explored as a means to include a genotoxicity end-point in rodent sub-chronic inhalation studies. In this study, published AEC II isolation methods were improved to yield viable cells suitable for use in the Comet assay. The improved method reduced the level of basal DNA damage and DNA repair in isolated AEC II. CS induced DNA damage could also be quantified in isolated cells following a single or 5 days CS exposure. In conclusion, the Comet assay has the potential to determine CS or other aerosol induced DNA damage in AEC II isolated from rodents used in sub-chronic inhalation studies. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Rai, Priyamvada
2010-11-28
Activation of persistent DNA damage response (DDR) signaling is associated with the induction of a permanent proliferative arrest known as cellular senescence, a phenomenon intrinsically linked to both tissue aging as well as tumor suppression. The DNA damage observed in senescent cells has been attributed to elevated levels of reactive oxygen species (ROS), failing DNA damage repair processes, and/or oncogenic activation. It is not clear how labile molecules such as ROS are able to damage chromatin-bound DNA to a sufficient extent to invoke persistent DNA damage and DDR signaling. Recent evidence suggests that the nucleotide pool is a significant target for oxidants and that oxidized nucleotides, once incorporated into genomic DNA, can lead to the induction of a DNA strand break-associated DDR that triggers senescence in normal cells and in cells sustaining oncogene activation. Evasion of this DDR and resulting senescence is a key step in tumor progression. This review will explore the role of oxidation in the nucleotide pool as a major effector of oxidative stress-induced genotoxic damage and DDR in the context of cellular senescence and tumorigenic transformation. 2010 Elsevier B.V. All rights reserved.
Remely, Marlene; Ferk, Franziska; Sterneder, Sonja; Setayesh, Tahereh; Kepcija, Tatjana; Roth, Sylvia; Noorizadeh, Rahil; Greunz, Martina; Rebhan, Irene; Wagner, Karl-Heinz; Knasmüller, Siegfried; Haslberger, Alexander
2017-06-14
Obesity is associated with low-grade inflammation, increased ROS production and DNA damage. Supplementation with antioxidants might ameliorate DNA damage and support epigenetic regulation of DNA repair. C57BL/6J male mice were fed a high-fat (HFD) or a control diet (CD) with and without vitamin E supplementation (4.5 mg/kg body weight (b.w.)) for four months. DNA damage, DNA promoter methylation and gene expression of Dnmt1 and a DNA repair gene ( MLH1 ) were assayed in liver and colon. The HFD resulted in organ specific changes in DNA damage, the epigenetically important Dnmt1 gene, and the DNA repair gene MLH1 . Vitamin E reduced DNA damage and showed organ-specific effects on MLH1 and Dnmt1 gene expression and methylation. These results suggest that interventions with antioxidants and epigenetic active food ingredients should be developed as an effective prevention for obesity-and oxidative stress-induced health risks.
Lee, Andrea J; Wallace, Susan S
2017-06-01
The first step of the base excision repair (BER) pathway responsible for removing oxidative DNA damage utilizes DNA glycosylases to find and remove the damaged DNA base. How glycosylases find the damaged base amidst a sea of undamaged bases has long been a question in the BER field. Single molecule total internal reflection fluorescence microscopy (SM TIRFM) experiments have allowed for an exciting look into this search mechanism and have found that DNA glycosylases scan along the DNA backbone in a bidirectional and random fashion. By comparing the search behavior of bacterial glycosylases from different structural families and with varying substrate specificities, it was found that glycosylases search for damage by periodically inserting a wedge residue into the DNA stack as they redundantly search tracks of DNA that are 450-600bp in length. These studies open up a wealth of possibilities for further study in real time of the interactions of DNA glycosylases and other BER enzymes with various DNA substrates. Copyright © 2016 Elsevier Inc. All rights reserved.
Margaret Pratt, M.; King, Leon C.; Adams, Linda D.; John, Kaarthik; Sirajuddin, Paul; Olivero, Ofelia A.; Manchester, David K.; Sram, Radim J.; DeMarini, David M.; Poirier, Miriam C.
2010-01-01
Three classes of DNA damage were assessed in human placentas collected (in 2000-4) from 51 women living in the Teplice region of the Czech Republic, a mining area considered to have some of the worst environmental pollution in Europe in the 1980s. Polycyclic aromatic hydrocarbon (PAH)-DNA adducts were localized and semiquantified using immunohistochemistry (IHC) and the Automated Cellular Imaging System (ACIS). More generalized DNA damage was measured both by 32P-postlabeling and by abasic (AB) site analysis. Placenta stained with antiserum elicited against DNA modified with r7, t8-dihydroxy-t-9, 10-oxy-7,8,9,10-tetrahydro-benzo[a]pyrene (BPDE) revealed PAH-DNA adduct localization in nuclei of the cytotrophoblast (CT) cells and syncytiotrophoblast (ST) knots lining the chorionic villi. The highest levels of DNA damage, 49–312 PAH-DNA adducts/108 nucleotides, were found by IHC/ACIS in 14 immediately-fixed placenta samples. An additional 37 placenta samples were stored frozen before fixation and embedding, and because PAH-DNA adducts were largely undetectable in these samples, freezing was implicated in the loss of IHC signal. The same placentas (n = 37) contained 1.7 – 8.6 stable/bulky DNA adducts/108 nucleotides and 0.6 – 47.2 AB sites/105 nucleotides. For all methods there was no correlation among types of DNA damage and no difference in extent of DNA damage between smokers and non-smokers. Therefore, the data show that DNA from placentas obtained in Teplice contained multiple types of DNA damage, which likely arose from various environmental exposures. In addition, PAH-DNA adducts were present at high concentrations in the CT cells and ST knots of the chorionic villi. PMID:20839217
Pratt, M Margaret; King, Leon C; Adams, Linda D; John, Kaarthik; Sirajuddin, Paul; Olivero, Ofelia A; Manchester, David K; Sram, Radim J; DeMarini, David M; Poirier, Miriam C
2011-01-01
Three classes of DNA damage were assessed in human placentas collected (2000-2004) from 51 women living in the Teplice region of the Czech Republic, a mining area considered to have some of the worst environmental pollution in Europe in the 1980s. Polycyclic aromatic hydrocarbon (PAH)-DNA adducts were localized and semiquantified using immunohistochemistry (IHC) and the Automated Cellular Imaging System (ACIS). More generalized DNA damage was measured both by (32)P-postlabeling and by abasic (AB) site analysis. Placenta stained with antiserum elicited against DNA modified with 7β,8α-dihydroxy-9α,10α-epoxy-7,8,9,10-tetrahydro-benzo[a]pyrene (BPDE) revealed PAH-DNA adduct localization in nuclei of the cytotrophoblast (CT) cells and syncytiotrophoblast (ST) knots lining the chorionic villi. The highest levels of DNA damage, 49-312 PAH-DNA adducts/10(8) nucleotides, were found by IHC/ACIS in 14 immediately fixed placenta samples. An additional 37 placenta samples were stored frozen before fixation and embedding, and because PAH-DNA adducts were largely undetectable in these samples, freezing was implicated in the loss of IHC signal. The same placentas (n = 37) contained 1.7-8.6 stable/bulky DNA adducts/10(8) nucleotides and 0.6-47.2 AB sites/10(5) nucleotides. For all methods, there was no correlation among types of DNA damage and no difference in extent of DNA damage between smokers and nonsmokers. Therefore, the data show that DNA from placentas obtained in Teplice contained multiple types of DNA damage, which likely arose from various environmental exposures. In addition, PAH-DNA adducts were present at high concentrations in the CT cells and ST knots of the chorionic villi. Copyright © 2010 Wiley-Liss, Inc.
MGMT hypomethylation is associated with DNA damage in workers exposed to low-dose benzene.
Li, Jie; Zhang, Xinjie; He, Zhini; Sun, Qing; Qin, Fei; Huang, Zhenlie; Zhang, Xiao; Sun, Xin; Liu, Linhua; Chen, Liping; Gao, Chen; Wang, Shan; Wang, Fangping; Li, Daochuan; Zeng, Xiaowen; Deng, Qifei; Wang, Qing; Zhang, Bo; Tang, Huanwen; Chen, Wen; Xiao, Yongmei
2017-07-01
This study aims to assess the effects of low-dose benzene on DNA damage and O 6 -methylguanine-DNA methyltransferase (MGMT) methylation in occupational workers. We recruited 96 nonsmoking male petrochemical industry workers exposed to low-dose benzene and 100 matched control workers. Urinary S-phenylmercapturic acid (SPMA) and S-benzylmercapturic acid (SBMA) were measured for indicating internal exposure of benzene and toluene. The degree of DNA damage was determined by the Comet assay. The levels of MGMT methylation were detected quantitatively by bisulphite-PCR pyrosequencing assay. The benzene-exposed workers had significantly higher levels of urinary SPMA, degree of DNA damage but decreased MGMT methylation than the controls (all p < 0.05). In contrast, the level of urinary SBMA does not differ between benzene-exposed workers and the controls. In all participants, MGMT methylation was negatively associated with the urinary SPMA and the degree of DNA damage, indicating that epigenetic regulation might be involved in response to low-dose benzene exposure-induced genetic damage. MGMT methylation could be a potent biomarker associated with low-dose benzene exposure and benzene-induced DNA damage.
Independent mechanisms recruit the cohesin loader protein NIPBL to sites of DNA damage.
Bot, Christopher; Pfeiffer, Annika; Giordano, Fosco; Manjeera, Dharani E; Dantuma, Nico P; Ström, Lena
2017-03-15
NIPBL is required to load the cohesin complex on to DNA. While the canonical role of cohesin is to couple replicated sister chromatids together until the onset of mitosis, it also promotes tolerance to DNA damage. Here, we show that NIPBL is recruited to DNA damage throughout the cell cycle via independent mechanisms, influenced by type of damage. First, the heterochromatin protein HP1γ (also known as CBX3) recruits NIPBL to DNA double-strand breaks (DSBs) through the corresponding HP1-binding motif within the N-terminus. By contrast, the C-terminal HEAT repeat domain is unable to recruit NIPBL to DSBs but independently targets NIPBL to laser microirradiation-induced DNA damage. Each mechanism is dependent on the RNF8 and RNF168 ubiquitylation pathway, while the recruitment of the HEAT repeat domain requires further ATM or ATR activity. Thus, NIPBL has evolved a sophisticated response to damaged DNA that is influenced by the form of damage, suggesting a highly dynamic role for NIPBL in maintaining genomic stability. © 2017. Published by The Company of Biologists Ltd.
Thyroid hormone-induced oxidative damage on lipids, glutathione and DNA in the mouse heart.
Gredilla, R; Barja, G; López-Torres, M
2001-10-01
Oxygen radicals of mitochondrial origin are involved in oxidative damage. In order to analyze the possible relationship between metabolic rate, oxidative stress and oxidative damage, OF1 female mice were rendered hyper- and hypothyroid by chronic administration of 0.0012% L-thyroxine (T4) and 0.05% 6-n-propyl-2-thiouracil (PTU), respectively, in their drinking water for 5 weeks. Hyperthyroidism significantly increased the sensitivity to lipid peroxidation in the heart, although the endogenous levels of lipid peroxidation were not altered. Thyroid hormone-induced oxidative stress also resulted in higher levels of GSSG and GSSG/GSH ratio. Oxidative damage to mitochondrial DNA was greater than that to genomic DNA. Hyperthyroidism decreased oxidative damage to genomic DNA. Hypothyroidism did not modify oxidative damage in the lipid fraction but significantly decreased GSSG and GSSG/GSH ratio and oxidative damage to mitochondrial DNA. These results indicate that thyroid hormones modulate oxidative damage to lipids and DNA, and cellular redox potential in the mouse heart. A higher oxidative stress in the hyperthyroid group is presumably neutralized in the case of nuclear DNA by an increase in repair activity, thus protecting this key molecule. Treatment with PTU, a thyroid hormone inhibitor, reduced oxidative damage in the different cell compartments.
Fructose-Rich Diet Affects Mitochondrial DNA Damage and Repair in Rats.
Cioffi, Federica; Senese, Rosalba; Lasala, Pasquale; Ziello, Angela; Mazzoli, Arianna; Crescenzo, Raffaella; Liverini, Giovanna; Lanni, Antonia; Goglia, Fernando; Iossa, Susanna
2017-03-24
Evidence indicates that many forms of fructose-induced metabolic disturbance are associated with oxidative stress and mitochondrial dysfunction. Mitochondria are prominent targets of oxidative damage; however, it is not clear whether mitochondrial DNA (mtDNA) damage and/or its lack of repair are events involved in metabolic disease resulting from a fructose-rich diet. In the present study, we evaluated the degree of oxidative damage to liver mtDNA and its repair, in addition to the state of oxidative stress and antioxidant defense in the liver of rats fed a high-fructose diet. We used male rats feeding on a high-fructose or control diet for eight weeks. Our results showed an increase in mtDNA damage in the liver of rats fed a high-fructose diet and this damage, as evaluated by the expression of DNA polymerase γ, was not repaired; in addition, the mtDNA copy number was found to be significantly reduced. A reduction in the mtDNA copy number is indicative of impaired mitochondrial biogenesis, as is the finding of a reduction in the expression of genes involved in mitochondrial biogenesis. In conclusion, a fructose-rich diet leads to mitochondrial and mtDNA damage, which consequently may have a role in liver dysfunction and metabolic diseases.
Aging of hematopoietic stem cells: DNA damage and mutations?
Moehrle, Bettina M; Geiger, Hartmut
2016-10-01
Aging in the hematopoietic system and the stem cell niche contributes to aging-associated phenotypes of hematopoietic stem cells (HSCs), including leukemia and aging-associated immune remodeling. Among others, the DNA damage theory of aging of HSCs is well established, based on the detection of a significantly larger amount of γH2AX foci and a higher tail moment in the comet assay, both initially thought to be associated with DNA damage in aged HSCs compared with young cells, and bone marrow failure in animals devoid of DNA repair factors. Novel data on the increase in and nature of DNA mutations in the hematopoietic system with age, the quality of the DNA damage response in aged HSCs, and the nature of γH2AX foci question a direct link between DNA damage and the DNA damage response and aging of HSCs, and rather favor changes in epigenetics, splicing-factors or three-dimensional architecture of the cell as major cell intrinsic factors of HSCs aging. Aging of HSCs is also driven by a strong contribution of aging of the niche. This review discusses the DNA damage theory of HSC aging in the light of these novel mechanisms of aging of HSCs. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.
Gajski, Goran; Domijan, Ana-Marija; Garaj-Vrhovac, Vera
2012-07-01
Bee venom (BV) has toxic effects in a variety of cell systems and oxidative stress has been proposed as a possible mechanism of its toxicity. This study investigated the in vitro effect of BV on glutathione (GSH) and malondialdehyde (MDA) levels, and their association with BV-induced DNA strand breaks and oxidative DNA damage in human peripheral blood leukocytes (HPBLs). Blood samples were treated with BV at concentrations ranging from 0.1 to 10 μg/ml over different lengths of time, and DNA damage in HPBLs was monitored with the alkaline and formamidopyrimidine glycoslyase (FPG)-modified comet assays, while GSH and MDA levels were determined in whole blood. Results showed a significant increase in overall DNA damage and FPG-sensitive sites in DNA of HPBLs exposed to BV compared with HPBLs from controls. An increase in DNA damage (assessed with both comet assays) was significantly associated with changes in MDA and GSH levels. When pretreated with N-acetyl-L-cysteine, a source of cysteine for the synthesis of the endogenous antioxidant GSH, a significant reduction of the DNA damaging effects of BV in HPBLs was noted. This suggests that oxidative stress is at least partly responsible for the DNA damaging effects of BV. Copyright © 2012 Wiley Periodicals, Inc.
Cwikel, Julie G; Gidron, Yori; Quastel, Michael
2010-01-01
Radiation causes DNA damage, increases risk of cancer, and is associated with psychological stress responses. This article proposes an evidence-based integrative model in which psychological factors could interact with radiation by either augmenting or moderating the adverse effects of radiation on DNA integrity and eventual tumorigenesis. Based on a review of the literature, we demonstrate the following: (1) the effects of low-dose radiation exposures on DNA integrity and on tumorigenesis; (2) the effects of low-dose radiation exposure on psychological distress; (3) the relationship between psychological factors and DNA damage; and (4) the possibility that psychological stress augments and that psychological resource variables moderate radiation-induced DNA damage and risk of cancer. The additional contribution of psychological processes to radiation-DNA damage-cancer relationships needs further study, and if verified, has clinical implications.
NASA Technical Reports Server (NTRS)
Ritter, Joe; Branly, R.; Theodorakis, C.; Bickham, J.; Swartz, C.; Friedfeld, R.; Ackerman, E.; Carruthers, C.; DiGirolamo, A.; Faranda, J.
1999-01-01
Because of the large amounts of cosmic radiation in the space environment relative to that on earth, the effects of radiation on the physiology of astronauts is of major concern. Doses of radiation which can cause acute or chronic biological effects are to be avoided, therefore determination of the amount of radiation exposure encountered during space flight and assessment of its impact on biological systems is critical. Quantifying the radiation dosage and damage to biological systems, especially to humans during repetitive high altitude flight and during long duration space flight is important for several reasons. Radiation can cause altered biosynthesis and long term genotoxicity resulting in cancer and birth defects etc. Radiation damage to biological systems depends in a complex way on incident radiation species and their energy spectra. Typically non-biological, i.e. film or electronic monitoring systems with narrow energy band sensitivity are used to perform dosimetry and then results are extrapolated to biological models. For this reason it may be desirable to perform radiation dosimetry by using biological molecules e.g. DNA or RNA strands as passive sensors. A lightweight genotoxicology experiment was constructed to determine the degree to which in vitro naked DNA extracted from tissues of a variety of vertebrate organisms is damaged by exposure to radiation in a space environment. The DNA is assayed by means of agarose gel electrophoresis to determine damage such as strand breakage caused by high momentum particles and photons, and base oxidation caused by free radicals. The length distribution of DNA fragments is directly correlated with the radiation dose. It is hoped that a low mass, low cost, passive biological system to determine dose response relationship (increase in strand breaks with increase in exposure) can be developed to perform radiation dosimetry in support of long duration space flight, and to predict negative effects on biological systems (e.g. astronauts and greenhouses) in space. The payload was flown in a 2.5 cubic foot Get Away Special (GAS) container through NASA's GAS program. It was subjected to the environment of the space shuttle cargo bay for the duration of the STS-91 mission (9 days). Results of the genotoxicology and radiation dosimetry experiment (GRaDEx-1) as well as the design of an improved follow on payload are presented.
NASA Technical Reports Server (NTRS)
Ritter, Joe; Branly, R.; Theodorakis, C.; Bickham, J.; Swartz, C.; Friedfeld, R.; Ackerman, E.; Carruthers, C.; DiGirolamo, A.; Faranda, J.;
1999-01-01
Because of the large amounts of cosmic radiation in the space environment relative to that on earth, the effects of radiation on the physiology of astronauts is of major concern. Doses of radiation which can cause acute or chronic biological effects are to be avoided, therefore determination of the amount of radiation exposure encountered during space flight and assessment of its impact on biological systems is critical. Quantifying the radiation dosage and damage to biological systems, especially to humans during repetitive high altitude flight and during long duration space flight is important for several reasons. Radiation can cause altered biosynthesis and long term genotoxicity resulting in cancer and birth defects, etc. Radiation damage to biological systems depends in a complex way on incident radiation species and their energy spectra. Typically non-biological, i.e. film or electronic monitoring systems with narrow energy band sensitivity are used to perform dosimetry and then results are extrapolated to biological models. For this reason it may be desirable to perform radiation dosimetry by using biological molecules e.g. DNA or RNA strands as passive sensors. A lightweight genotoxicology experiment was constructed to determine the degree to which in-vitro naked DNA extracted from tissues of a variety of vertebrate organisms is damaged by exposure to radiation in a space environment. The DNA is assayed by means of agarose gel electrophoresis to determine damage such as strand breakage caused by high momentum particles and photons, and base oxidation caused by free radicals. The length distribution of DNA fragments is directly correlated with the radiation dose. It is hoped that a low mass, low cost, passive biological system to determine dose-response relationship (increase in strand breaks with increase in exposure) can be developed to perform radiation dosimetry in support of long duration space flight, and to predict negative effects on biological systems (e.g. astronauts and greenhouses) in space. The payload was flown in a 2.5 cubic foot Get Away Special (GAS) container through NASA's GAS program. It was subjected to the environment of the space shuttle cargo bay for the duration of the STS-91 mission (9 days). Results of the genotoxicology and radiation dosimetry experiment (GRaDEx-I) as well as the design of an improved follow on payload are presented.
Yu, Xiang; Yu, Zhigang; Li, Fengqin; Xu, Yanmei; He, Xunjun; Xu, Lan; Shi, Wenbing; Zhang, Guiling; Yan, Hong
2017-05-15
A type of "signal on" displacement-based sensors named target induced signaling probe shifting DNA-based (TISPS-DNA) sensor were developed for a designated DNA detection. The signaling mechanism of the signaling probe (SP) shifting different from the classical conformation/flexibility change mode endows the sensor with high sensitivity. Through using thiolated or no thiolated capturing probe (CP), two 3-probe sensing structures, sensor-1 and sensor-2, were designed and constructed. The systematical comparing research results show that both sensors exhibit some similarities or big differences in sensing performance. On the one hand, the similarity in structures determines the similarity in some aspects of signaling mechanism, background signal, signal changing form, anti-fouling ability and versatility; on the other hand, the slight difference in structures also results in two opposite hybridization modes of gradual increasing resistance and gradual decreasing resistance which can affect the hybridization efficiency between the assistant probe (AP) and the SP, further producing some big differences in sensing performance, for example, apparently different signal enhancement (SE) change, point mutation discrimination ability and response speed. Under the optimized fabrication and detection conditions, both sensors feature high sensitivity for target DNAs with the detection limits of ∼10 fM for sensor-1 and ∼7 fM for sensor-2, respectively. Among many acquired sensing virtues, the sensor-1 shows a peculiar specificity adjustability which is also a highlight in this work. Copyright © 2017 Elsevier B.V. All rights reserved.
Mus308 Processes Oxygen and Nitrogen Ethylation DNA Damage in Germ Cells of Drosophila
Díaz-Valdés, Nancy; Comendador, Miguel A.; Sierra, L. María
2010-01-01
The D. melanogaster mus308 gene, highly conserved among higher eukaryotes, is implicated in the repair of cross-links and of O-ethylpyrimidine DNA damage, working in a DNA damage tolerance mechanism. However, despite its relevance, its possible role on the processing of different DNA ethylation damages is not clear. To obtain data on mutation frequency and on mutation spectra in mus308 deficient (mus308−) conditions, the ethylating agent diethyl sulfate (DES) was analysed in postmeiotic male germ cells. These data were compared with those corresponding to mus308 efficient conditions. Our results indicate that Mus308 is necessary for the processing of oxygen and N-ethylation damage, for the survival of fertilized eggs depending on the level of induced DNA damage, and for an influence of the DNA damage neighbouring sequence. These results support the role of mus308 in a tolerance mechanism linked to a translesion synthesis pathway and also to the alternative end-joinig system. PMID:20936147
Chromosome territories reposition during DNA damage-repair response
2013-01-01
Background Local higher-order chromatin structure, dynamics and composition of the DNA are known to determine double-strand break frequencies and the efficiency of repair. However, how DNA damage response affects the spatial organization of chromosome territories is still unexplored. Results Our report investigates the effect of DNA damage on the spatial organization of chromosome territories within interphase nuclei of human cells. We show that DNA damage induces a large-scale spatial repositioning of chromosome territories that are relatively gene dense. This response is dose dependent, and involves territories moving from the nuclear interior to the periphery and vice versa. Furthermore, we have found that chromosome territory repositioning is contingent upon double-strand break recognition and damage sensing. Importantly, our results suggest that this is a reversible process where, following repair, chromosome territories re-occupy positions similar to those in undamaged control cells. Conclusions Thus, our report for the first time highlights DNA damage-dependent spatial reorganization of whole chromosomes, which might be an integral aspect of cellular damage response. PMID:24330859
DNA damage preceding dopamine neuron degeneration in A53T human α-synuclein transgenic mice.
Wang, Degui; Yu, Tianyu; Liu, Yongqiang; Yan, Jun; Guo, Yingli; Jing, Yuhong; Yang, Xuguang; Song, Yanfeng; Tian, Yingxia
2016-12-02
Defective DNA repair has been linked with age-associated neurodegenerative disorders. Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by genetic and environmental factors. Whether damages to nuclear DNA contribute to neurodegeneration of PD still remain obscure. in this study we aim to explore whether nuclear DNA damage induce dopamine neuron degeneration in A53T human α-Synuclein over expressed mouse model. We investigated the effects of X-ray irradiation on A53T-α-Syn MEFs and A53T-α-Syn transgene mice. Our results indicate that A53T-α-Syn MEFs show a prolonged DNA damage repair process and senescense phenotype. DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenic mice and decrease the number of nigrostriatal dopaminergic neurons. Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages. Copyright © 2016 Elsevier Inc. All rights reserved.
Genotoxic effect of ethacrynic acid and impact of antioxidants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, William M.; Hoffman, Jared D.; Loo, George, E-mail: g_loo@uncg.edu
It is known that ethacrynic acid (EA) decreases the intracellular levels of glutathione. Whether the anticipated oxidative stress affects the structural integrity of DNA is unknown. Therefore, DNA damage was assessed in EA-treated HCT116 cells, and the impact of several antioxidants was also determined. EA caused both concentration-dependent and time-dependent DNA damage that eventually resulted in cell death. Unexpectedly, the DNA damage caused by EA was intensified by either ascorbic acid or trolox. In contrast, EA-induced DNA damage was reduced by N-acetylcysteine and by the iron chelator, deferoxamine. In elucidating the DNA damage, it was determined that EA increased themore » production of reactive oxygen species, which was inhibited by N-acetylcysteine and deferoxamine but not by ascorbic acid and trolox. Also, EA decreased glutathione levels, which were inhibited by N-acetylcysteine. But, ascorbic acid, trolox, and deferoxamine neither inhibited nor enhanced the capacity of EA to decrease glutathione. Interestingly, the glutathione synthesis inhibitor, buthionine sulfoxime, lowered glutathione to a similar degree as EA, but no noticeable DNA damage was found. Nevertheless, buthionine sulfoxime potentiated the glutathione-lowering effect of EA and intensified the DNA damage caused by EA. Additionally, in examining redox-sensitive stress gene expression, it was found that EA increased HO-1, GADD153, and p21mRNA expression, in association with increased nuclear localization of Nrf-2 and p53 proteins. In contrast to ascorbic acid, trolox, and deferoxamine, N-acetylcysteine suppressed the EA-induced upregulation of GADD153, although not of HO-1. Overall, it is concluded that EA has genotoxic properties that can be amplified by certain antioxidants. - Highlights: • Ethacrynic acid (EA) caused cellular DNA damage. • EA-induced DNA damage was potentiated by ascorbic acid or trolox. • EA increased ROS production, not inhibited by ascorbic acid or trolox. • EA decreased glutathione levels, not prevented by ascorbic acid or trolox. • Buthionine sulfoxime intensified the DNA damage caused by EA.« less
DNA Damage among Wood Workers Assessed with the Comet Assay
Bruschweiler, Evin Danisman; Wild, Pascal; Huynh, Cong Khanh; Savova-Bianchi, Dessislava; Danuser, Brigitta; Hopf, Nancy B.
2016-01-01
Exposure to wood dust, a human carcinogen, is common in wood-related industries, and millions of workers are occupationally exposed to wood dust worldwide. The comet assay is a rapid, simple, and sensitive method for determining DNA damage. The objective of this study was to investigate the DNA damage associated with occupational exposure to wood dust using the comet assay (peripheral blood samples) among nonsmoking wood workers (n = 31, furniture and construction workers) and controls (n = 19). DNA damage was greater in the group exposed to composite wood products compared to the group exposed to natural woods and controls (P < 0.001). No difference in DNA damage was observed between workers exposed to natural woods and controls (P = 0.13). Duration of exposure and current dust concentrations had no effect on DNA damage. In future studies, workers’ exposures should include cumulative dust concentrations and exposures originating from the binders used in composite wood products. PMID:27398027
[Study on three kinds of gasoline oxygenates-induced DNA damage in mice fibroblasts].
Song, Chonglin; Zhang, Zhifu; Chen, Xue; Zhang, Yanfeng; Wang, Chunhua; Liu, Keming
2002-10-01
To study DNA damage of three kinds of gasoline oxygenates. Single cell gel electrophoresis assay(Comet assay) was used to detect the damage effects of three gasoline oxygenates[methyl tertiary butyl ether(MTBE), ethanol anhydrous(EA) and dimethyl carbonate(DMC)] on DNA in L-929 mice fibroblasts. In certain concentation(37.500-150.000 mg/ml), MTBE could directly cause DNA damage of L-929 mice fibroblasts. There was obvious dose-effect relationship, i.e. when the concentration of MTBE was increased from 9.375 to 150.000 mg/ml, the comet rate also increased from 4% to 85%, and the length of comet tail changed correspondingly. The results of EA and DMC were negative. Under the condition of this experiment(150.000 mg/ml), MTBE could directly cause DNA damage while the effect of EA and DMC on DNA damage was not found.
DNA damage in blood cells exposed to low-level lasers.
Sergio, Luiz Philippe da Silva; Silva, Ana Paula Almeida da; Amorim, Philipi Freitas; Campos, Vera Maria Araújo; Magalhães, Luis Alexandre Gonçalves; de Paoli, Flavia; de Souza da Fonseca, Adenilson
2015-04-01
In regenerative medicine, there are increasing applications of low-level lasers in therapeutic protocols for treatment of diseases in soft and in bone tissues. However, there are doubts about effects on DNA, and an adequate dosimetry could improve the safety of clinical applications of these lasers. This work aimed to evaluate DNA damage in peripheral blood cells of Wistar rats induced by low-level red and infrared lasers at different fluences, powers, and emission modes according to therapeutic protocols. Peripheral blood samples were exposed to lasers and DNA damage was accessed by comet assay. In other experiments, DNA damage was accessed in blood cells by modified comet assay using formamidopyrimidine DNA glycosylase (Fpg) and endonuclease III enzymes. Data show that exposure to low-level red and infrared lasers induce DNA damage depending on fluence, power and emission mode, which are targeted by Fpg and endonuclease III. Oxidative DNA damage should be considered for therapeutic efficacy and patient safety in clinical applications based on low-level red and infrared lasers. © 2015 Wiley Periodicals, Inc.
ATM directs DNA damage responses and proteostasis via genetically separable pathways
Lee, Ji-Hoon; Mand, Michael R.; Kao, Chung-Hsuan; Zhou, Yi; Ryu, Seung W.; Richards, Alicia L.; Coon, Joshua J.; Paull, Tanya T.
2018-01-01
The protein kinase ATM is a master regulator of the DNA damage response but also responds directly to oxidative stress. Loss of ATM causes Ataxia telangiectasia, a neurodegenerative disorder with pleiotropic symptoms that include cerebellar dysfunction, cancer, diabetes, and premature aging. Here, we genetically separated DNA damage activation of ATM from oxidative activation using separation-of-function mutations. We found that deficiency in ATM activation by Mre11-Rad50-Nbs1 and DNA double-strand breaks resulted in loss of cell viability, checkpoint activation, and DNA end resection in response to DNA damage. In contrast, loss of oxidative activation of ATM had minimal effects on DNA damage-related outcomes but blocked ATM-mediated initiation of checkpoint responses after oxidative stress and resulted in deficiencies in mitochondrial function and autophagy. In addition, expression of ATM lacking oxidative activation generates widespread protein aggregation. These results indicate a direct relationship between the mechanism of ATM activation and its effects on cellular metabolism and DNA damage responses in human cells and implicates ATM in the control of protein homeostasis. PMID:29317520
DNA hybridization sensor based on pentacene thin film transistor.
Kim, Jung-Min; Jha, Sandeep Kumar; Chand, Rohit; Lee, Dong-Hoon; Kim, Yong-Sang
2011-01-15
A DNA hybridization sensor using pentacene thin film transistors (TFTs) is an excellent candidate for disposable sensor applications due to their low-cost fabrication process and fast detection. We fabricated pentacene TFTs on glass substrate for the sensing of DNA hybridization. The ss-DNA (polyA/polyT) or ds-DNA (polyA/polyT hybrid) were immobilized directly on the surface of the pentacene, producing a dramatic change in the electrical properties of the devices. The electrical characteristics of devices were studied as a function of DNA immobilization, single-stranded vs. double-stranded DNA, DNA length and concentration. The TFT device was further tested for detection of λ-phage genomic DNA using probe hybridization. Based on these results, we propose that a "label-free" detection technique for DNA hybridization is possible through direct measurement of electrical properties of DNA-immobilized pentacene TFTs. Copyright © 2010 Elsevier B.V. All rights reserved.
Lewis, Sheena E M; John Aitken, R; Conner, Sarah J; Iuliis, Geoffry De; Evenson, Donald P; Henkel, Ralph; Giwercman, Aleksander; Gharagozloo, Parviz
2013-10-01
Sperm DNA damage is a useful biomarker for male infertility diagnosis and prediction of assisted reproduction outcomes. It is associated with reduced fertilization rates, embryo quality and pregnancy rates, and higher rates of spontaneous miscarriage and childhood diseases. This review provides a synopsis of the most recent studies from each of the authors, all of whom have major track records in the field of sperm DNA damage in the clinical setting. It explores current laboratory tests and the accumulating body of knowledge concerning the relationship between sperm DNA damage and clinical outcomes. The paper proceeds to discuss the strengths, weaknesses and clinical applicability of current sperm DNA tests. Next, the biological significance of DNA damage in the male germ line is considered. Finally, as sperm DNA damage is often the result of oxidative stress in the male reproductive tract, the potential contribution of antioxidant therapy in the clinical management of this condition is discussed. DNA damage in human spermatozoa is an important attribute of semen quality. It should be part of the clinical work up and properly controlled trials addressing the effectiveness of antioxidant therapy should be undertaken as a matter of urgency. Sperm DNA damage is a useful biomarker for male infertility diagnosis and prediction of assisted reproduction outcomes. It is associated with reduced fertilization rates, embryo quality and pregnancy rates, and higher rates of spontaneous miscarriage and childhood diseases. With all of these fertility check points, it shows more promise than conventional semen parameters from a diagnostic perspective. Despite this, few infertility clinics use it routinely. This review provides a synopsis of the most recent studies from each of the authors, all of whom have major track records in the field of sperm DNA damage in the clinical setting. It explores current laboratory tests and the accumulating body of knowledge concerning the relationship between sperm DNA damage and clinical outcomes. The paper proceeds to discuss the strengths and weaknesses and clinical applicability of current sperm DNA fragmentation tests. Next, the biological significance of DNA damage in the male germ line is considered. Finally, as sperm DNA damage is often the result of increased oxidative stress in the male reproductive tract, the potential contribution of antioxidant therapy in the clinical management of this condition is discussed. As those working in this field of clinical research, we conclude that DNA damage in human spermatozoa is an important attribute of semen quality which should be carefully assessed in the clinical work up of infertile couples and that properly controlled trials addressing the effectiveness of antioxidant therapy should be undertaken as a matter of urgency. Copyright © 2013 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu
Phosphoramide mustard (PM), the ovotoxic metabolite of the anti-cancer agent cyclophosphamide (CPA), destroys rapidly dividing cells by forming NOR-G-OH, NOR-G and G-NOR-G adducts with DNA, potentially leading to DNA damage. A previous study demonstrated that PM induces ovarian DNA damage in rat ovaries. To investigate whether PM induces DNA adduct formation, DNA damage and induction of the DNA repair response, rat spontaneously immortalized granulosa cells (SIGCs) were treated with vehicle control (1% DMSO) or PM (3 or 6 μM) for 24 or 48 h. Cell viability was reduced (P < 0.05) after 48 h of exposure to 3 or 6more » μM PM. The NOR-G-OH DNA adduct was detected after 24 h of 6 μM PM exposure, while the more cytotoxic G-NOR-G DNA adduct was formed after 48 h by exposure to both PM concentrations. Phosphorylated H2AX (γH2AX), a marker of DNA double stranded break occurrence, was also increased by PM exposure, coincident with DNA adduct formation. Additionally, induction of genes (Atm, Parp1, Prkdc, Xrcc6, and Brca1) and proteins (ATM, γH2AX, PARP-1, PRKDC, XRCC6, and BRCA1) involved in DNA repair were observed in both a time- and dose-dependent manner. These data support that PM induces DNA adduct formation in ovarian granulosa cells, induces DNA damage and elicits the ovarian DNA repair response. - Highlights: • PM forms ovarian DNA adducts. • DNA damage marker γH2AX increased by PM exposure. • PM induces ovarian DNA double strand break repair.« less
Negureanu, Lacramioara; Salsbury, Freddie R
2013-01-01
DNA mismatch repair (MMR) proteins maintain genetic integrity in all organisms by recognizing and repairing DNA errors. Such alteration of hereditary information can lead to various diseases, including cancer. Besides their role in DNA repair, MMR proteins detect and initiate cellular responses to certain type of DNA damage. Its response to the damaged DNA has made the human MMR pathway a useful target for anticancer agents such as carboplatin. This study indicates that strong, specific interactions at the interface of MutSα in response to the mismatched DNA recognition are replaced by weak, non-specific interactions in response to the damaged DNA recognition. Data suggest a severe impairment of the dimerization of MutSα in response to the damaged DNA recognition. While the core of MutSα is preserved in response to the damaged DNA recognition, the loss of contact surface and the rearrangement of contacts at the protein interface suggest a different packing in response to the damaged DNA recognition. Coupled in response to the mismatched DNA recognition, interaction energies, hydrogen bonds, salt bridges, and solvent accessible surface areas at the interface of MutSα and within the subunits are uncoupled or asynchronously coupled in response to the damaged DNA recognition. These pieces of evidence suggest that the loss of a synchronous mode of response in the MutSα’s surveillance for DNA errors would possible be one of the mechanism(s) of signaling the MMR-dependent programed cell death much wanted in anticancer therapies. The analysis was drawn from dynamics simulations. PMID:24061854
Study on a Luminol-based Electrochemiluminescent Sensor for Label-Free DNA Sensing
Chu, Hai-Hong; Yan, Ji-Lin; Tu, Yi-Feng
2010-01-01
Automatic, inexpensive, simple and sensitive methods for DNA sensing and quantification are highly desirable for biomedical research. The rapid development of both the fundamentals and applications of electrochemiluminescence (ECL) over the past years has demonstrated its potential for analytical and bio-analytical chemistry. This paper reports the quenching effect of DNA on the ECL of luminol and the further development of a DNA sensing device. With the pre-functionalization by a composite of carbon nano-tubes (CNTs) and Au nanoparticles (AuNPs), the sensor provides a novel and valuable label-free approach for DNA sensing. Here the ECL intensity was remarkably decreased when more than 1.0 × 10−12 molar of DNA were adsorbed on the sensor. Linearity of the DNA amount with the reciprocal of ECL intensity was observed. A saturated sensor caused a 92.8% quenching effect. The research also proposes the mechanism for the quenching effect which could be attributed to the interaction between luminol and DNA and the elimination of reactive oxygen species (ROSs) by DNA. PMID:22163421
UV and ionizing radiations induced DNA damage, differences and similarities
NASA Astrophysics Data System (ADS)
Ravanat, Jean-Luc; Douki, Thierry
2016-11-01
Both UV and ionizing radiations damage DNA. Two main mechanisms, so-called direct and indirect pathways, are involved in the degradation of DNA induced by ionizing radiations. The direct effect of radiation corresponds to direct ionization of DNA (one electron ejection) whereas indirect effects are produced by reactive oxygen species generated through water radiolysis, including the highly reactive hydroxyl radicals, which damage DNA. UV (and visible) light damages DNA by again two distinct mechanisms. UVC and to a lesser extend UVB photons are directly absorbed by DNA bases, generating their excited states that are at the origin of the formation of pyrimidine dimers. UVA (and visible) light by interaction with endogenous or exogenous photosensitizers induce the formation of DNA damage through photosensitization reactions. The excited photosensitizer is able to induce either a one-electron oxidation of DNA (type I) or to produce singlet oxygen (type II) that reacts with DNA. In addition, through an energy transfer from the excited photosensitizer to DNA bases (sometime called type III mechanism) formation of pyrimidine dimers could be produced. Interestingly it has been shown recently that pyrimidine dimers are also produced by direct absorption of UVA light by DNA, even if absorption of DNA bases at these wavelengths is very low. It should be stressed that some excited photosensitizers (such as psoralens) could add directly to DNA bases to generate adducts. The review will described the differences and similarities in terms of damage formation (structure and mechanisms) between these two physical genotoxic agents.
Dose-rate effect of ultrashort electron beam radiation on DNA damage and repair in vitro.
Babayan, Nelly; Hovhannisyan, Galina; Grigoryan, Bagrat; Grigoryan, Ruzanna; Sarkisyan, Natalia; Tsakanova, Gohar; Haroutiunian, Samvel; Aroutiounian, Rouben
2017-11-01
Laser-generated electron beams are distinguished from conventional accelerated particles by ultrashort beam pulses in the femtoseconds to picoseconds duration range, and their application may elucidate primary radiobiological effects. The aim of the present study was to determine the dose-rate effect of laser-generated ultrashort pulses of 4 MeV electron beam radiation on DNA damage and repair in human cells. The dose rate was increased via changing the pulse repetition frequency, without increasing the electron energy. The human chronic myeloid leukemia K-562 cell line was used to estimate the DNA damage and repair after irradiation, via the comet assay. A distribution analysis of the DNA damage was performed. The same mean level of initial DNA damages was observed at low (3.6 Gy/min) and high (36 Gy/min) dose-rate irradiation. In the case of low-dose-rate irradiation, the detected DNA damages were completely repairable, whereas the high-dose-rate irradiation demonstrated a lower level of reparability. The distribution analysis of initial DNA damages after high-dose-rate irradiation revealed a shift towards higher amounts of damage and a broadening in distribution. Thus, increasing the dose rate via changing the pulse frequency of ultrafast electrons leads to an increase in the complexity of DNA damages, with a consequent decrease in their reparability. Since the application of an ultrashort pulsed electron beam permits us to describe the primary radiobiological effects, it can be assumed that the observed dose-rate effect on DNA damage/repair is mainly caused by primary lesions appearing at the moment of irradiation. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Bausinger, Julia; Speit, Günter
2014-11-01
The comet assay is widely used in human biomonitoring to measure DNA damage in whole blood or isolated peripheral blood mononuclear cells (PBMC) as a marker of exposure to genotoxic agents. Cytogenetic assays with phytohemagglutinin (PHA)-stimulated cultured T lymphocytes are also frequently performed in human biomonitoring. Cytogenetic effects (micronuclei, chromosome aberrations, sister chromatid exchanges) may be induced in vivo but also occur ex vivo during the cultivation of lymphocytes as a consequence of DNA damage present in lymphocytes at the time of sampling. To better understand whether DNA damage measured by the comet assay in PBMC is representative for DNA damage in T cells, we comparatively investigated DNA damage and its repair in PBMC and T cells obtained by immunomagnetic cell sorting. PBMC cultures and T cell cultures were exposed to mutagens with different modes of genotoxic action and DNA damage was measured by the comet assay after the end of a 2h exposure and after 18h post-incubation. The mutagens tested were methyl methanesulfonate (MMS), (±)-anti-B[a]P-7,8-dihydrodiol-9,10-epoxide (BPDE), 4-nitroquinoline-1-oxide (4NQO), styrene oxide and potassium bromate. MMS and potassium bromate were also tested by the modified comet assay with formamido pyrimidine glycosylase (FPG) protein. The results indicate that the mutagens tested induce DNA damage in PBMC and T cells in the same range of concentrations and removal of induced DNA lesions occurs to a comparable extent. Based on these results, we conclude that the comet assay with PBMC is suited to predict DNA damage and its removal in T cells. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu
Phosphoramide mustard (PM) is an ovotoxic metabolite of cyclophosphamide and destroys primordial and primary follicles potentially by DNA damage induction. The temporal pattern by which PM induces DNA damage and initiation of the ovarian response to DNA damage has not yet been well characterized. This study investigated DNA damage initiation, the DNA repair response, as well as induction of follicular demise using a neonatal rat ovarian culture system. Additionally, to delineate specific mechanisms involved in the ovarian response to PM exposure, utility was made of PKC delta (PKCδ) deficient mice as well as an ATM inhibitor (KU 55933; AI). Fishermore » 344 PND4 rat ovaries were cultured for 12, 24, 48 or 96 h in medium containing DMSO ± 60 μM PM or KU 55933 (48 h; 10 nM). PM-induced activation of DNA damage repair genes was observed as early as 12 h post-exposure. ATM, PARP1, E2F7, P73 and CASP3 abundance were increased but RAD51 and BCL2 protein decreased after 96 h of PM exposure. PKCδ deficiency reduced numbers of all follicular stages, but did not have an additive impact on PM-induced ovotoxicity. ATM inhibition protected all follicle stages from PM-induced depletion. In conclusion, the ovarian DNA damage repair response is active post-PM exposure, supporting that DNA damage contributes to PM-induced ovotoxicity. - Highlights: • PM exposure induces DNA damage repair gene expression. • Inhibition of ATM prevented PM-induced follicle depletion. • PKCδ deficiency did not impact PM-induced ovotoxicity.« less
McKelvey, Shauna M; Horgan, Karina A; Murphy, Richard A
2015-01-01
Lead, an environmental toxin is known to induce a broad range of physiological and biochemical dysfunctions in humans through a number of mechanisms including the deactivation of antioxidants thus leading to generation of reactive oxygen species (ROS) and subsequent DNA damage. Selenium on the other hand has been proven to play an important role in the protection of cells from free radical damage and oxidative stress, though its effects are thought to be form and dose dependent. As the liver is the primary organ required for metabolite detoxification, HepG2 cells were chosen to assess the protective effects of various selenium compounds following exposure to the genotoxic agent lead nitrate. Initially DNA damage was quantified using a comet assay, gene expression patterns associated with DNA damage and signalling were also examined using PCR arrays and the biological pathways which were most significantly affected by selenium were identified. Interestingly, the organic type selenium compounds (selenium yeast and selenomethionine) conferred protection against lead induced DNA damage in HepG2 cells; this is evident by reduction in the quantity of DNA present in the comet tail of cells cultured in their presence with lead. This trend also followed through the gene expression changes noted in DNA damage pathways analysed. These results were in contrast with those of inorganic sodium selenite which promoted lead induced DNA damage evident in both the comet assay results and the gene expression analysis. Over all this study provided valuable insights into the effects which various selenium compounds had on the DNA damage and signalling pathway indicating the potential for using organic forms of selenium such as selenium enriched yeast to protect against DNA damaging agents. Copyright © 2014 Elsevier GmbH. All rights reserved.
Epigenetic Telomere Protection by Drosophila DNA Damage Response Pathways
Oikemus, Sarah R; Queiroz-Machado, Joana; Lai, KuanJu; McGinnis, Nadine; Sunkel, Claudio; Brodsky, Michael H
2006-01-01
Analysis of terminal deletion chromosomes indicates that a sequence-independent mechanism regulates protection of Drosophila telomeres. Mutations in Drosophila DNA damage response genes such as atm/tefu, mre11, or rad50 disrupt telomere protection and localization of the telomere-associated proteins HP1 and HOAP, suggesting that recognition of chromosome ends contributes to telomere protection. However, the partial telomere protection phenotype of these mutations limits the ability to test if they act in the epigenetic telomere protection mechanism. We examined the roles of the Drosophila atm and atr-atrip DNA damage response pathways and the nbs homolog in DNA damage responses and telomere protection. As in other organisms, the atm and atr-atrip pathways act in parallel to promote telomere protection. Cells lacking both pathways exhibit severe defects in telomere protection and fail to localize the protection protein HOAP to telomeres. Drosophila nbs is required for both atm- and atr-dependent DNA damage responses and acts in these pathways during DNA repair. The telomere fusion phenotype of nbs is consistent with defects in each of these activities. Cells defective in both the atm and atr pathways were used to examine if DNA damage response pathways regulate telomere protection without affecting telomere specific sequences. In these cells, chromosome fusion sites retain telomere-specific sequences, demonstrating that loss of these sequences is not responsible for loss of protection. Furthermore, terminally deleted chromosomes also fuse in these cells, directly implicating DNA damage response pathways in the epigenetic protection of telomeres. We propose that recognition of chromosome ends and recruitment of HP1 and HOAP by DNA damage response proteins is essential for the epigenetic protection of Drosophila telomeres. Given the conserved roles of DNA damage response proteins in telomere function, related mechanisms may act at the telomeres of other organisms. PMID:16710445
Epigenetic telomere protection by Drosophila DNA damage response pathways.
Oikemus, Sarah R; Queiroz-Machado, Joana; Lai, KuanJu; McGinnis, Nadine; Sunkel, Claudio; Brodsky, Michael H
2006-05-01
Analysis of terminal deletion chromosomes indicates that a sequence-independent mechanism regulates protection of Drosophila telomeres. Mutations in Drosophila DNA damage response genes such as atm/tefu, mre11, or rad50 disrupt telomere protection and localization of the telomere-associated proteins HP1 and HOAP, suggesting that recognition of chromosome ends contributes to telomere protection. However, the partial telomere protection phenotype of these mutations limits the ability to test if they act in the epigenetic telomere protection mechanism. We examined the roles of the Drosophila atm and atr-atrip DNA damage response pathways and the nbs homolog in DNA damage responses and telomere protection. As in other organisms, the atm and atr-atrip pathways act in parallel to promote telomere protection. Cells lacking both pathways exhibit severe defects in telomere protection and fail to localize the protection protein HOAP to telomeres. Drosophila nbs is required for both atm- and atr-dependent DNA damage responses and acts in these pathways during DNA repair. The telomere fusion phenotype of nbs is consistent with defects in each of these activities. Cells defective in both the atm and atr pathways were used to examine if DNA damage response pathways regulate telomere protection without affecting telomere specific sequences. In these cells, chromosome fusion sites retain telomere-specific sequences, demonstrating that loss of these sequences is not responsible for loss of protection. Furthermore, terminally deleted chromosomes also fuse in these cells, directly implicating DNA damage response pathways in the epigenetic protection of telomeres. We propose that recognition of chromosome ends and recruitment of HP1 and HOAP by DNA damage response proteins is essential for the epigenetic protection of Drosophila telomeres. Given the conserved roles of DNA damage response proteins in telomere function, related mechanisms may act at the telomeres of other organisms.
Effects of different extenders on DNA integrity of boar spermatozoa following freezing-thawing.
Hu, Jian-hong; Li, Qing-wang; Jiang, Zhong-liang; Li, Wen-ye
2008-12-01
The sperm-rich fraction, collected from eight mature Yorkshire boars, was frozen in an extender containing 9% LDL (w/v), 100mM trehalose, or 20% yolk (v/v), respectively. Sperm DNA integrity was assessed using the single-cell gel electrophoresis (SCGE). Other sperm quality characteristics such as motility, acrosome and membrane integrity were also monitored. The results showed that freezing-thawing caused an increase in sperm DNA fragmentation, and extender containing 9% LDL could significantly protect sperm DNA integrity (P<0.05) from the damage caused by cryopreservation and decrease DNA damages compared with extender containing 100mM trehalose and 20% yolk (v/v). No significant difference in damaged DNA was detected between frozen and unfrozen semen samples for extender of 9% LDL and 100mM trehalose, but cryopreservation could increase the degree of DNA damage (P<0.05), the percentage of damaged DNA degree of grade 2 and 3 was significantly increased. The deterioration in post-thaw sperm DNA integrity was concurrent with reduced sperm characteristics. The data here demonstrated that the cryoprotectant played a fundamental role in reducing boar sperm DNA damage and protecting DNA integrity. It can be suggested that evaluation of sperm DNA integrity, coupled with correlative and basic characteristics such as motility, acrosome integrity and membrane integrity, may aid in determining the quality of frozen boar semen.
Characterization of the interactions of PARP-1 with UV-damaged DNA in vivo and in vitro
Purohit, Nupur K.; Robu, Mihaela; Shah, Rashmi G.; Geacintov, Nicholas E.; Shah, Girish M.
2016-01-01
The existing methodologies for studying robust responses of poly (ADP-ribose) polymerase-1 (PARP-1) to DNA damage with strand breaks are often not suitable for examining its subtle responses to altered DNA without strand breaks, such as UV-damaged DNA. Here we describe two novel assays with which we characterized the interaction of PARP-1 with UV-damaged DNA in vivo and in vitro. Using an in situ fractionation technique to selectively remove free PARP-1 while retaining the DNA-bound PARP-1, we demonstrate a direct recruitment of the endogenous or exogenous PARP-1 to the UV-lesion site in vivo after local irradiation. In addition, using the model oligonucleotides with single UV lesion surrounded by multiple restriction enzyme sites, we demonstrate in vitro that DDB2 and PARP-1 can simultaneously bind to UV-damaged DNA and that PARP-1 casts a bilateral asymmetric footprint from −12 to +9 nucleotides on either side of the UV-lesion. These techniques will permit characterization of different roles of PARP-1 in the repair of UV-damaged DNA and also allow the study of normal housekeeping roles of PARP-1 with undamaged DNA. PMID:26753915
A CAF-1–PCNA-Mediated Chromatin Assembly Pathway Triggered by Sensing DNA Damage
Moggs, Jonathan G.; Grandi, Paola; Quivy, Jean-Pierre; Jónsson, Zophonías O.; Hübscher, Ulrich; Becker, Peter B.; Almouzni, Geneviève
2000-01-01
Sensing DNA damage is crucial for the maintenance of genomic integrity and cell cycle progression. The participation of chromatin in these events is becoming of increasing interest. We show that the presence of single-strand breaks and gaps, formed either directly or during DNA damage processing, can trigger the propagation of nucleosomal arrays. This nucleosome assembly pathway involves the histone chaperone chromatin assembly factor 1 (CAF-1). The largest subunit (p150) of this factor interacts directly with proliferating cell nuclear antigen (PCNA), and critical regions for this interaction on both proteins have been mapped. To isolate proteins specifically recruited during DNA repair, damaged DNA linked to magnetic beads was used. The binding of both PCNA and CAF-1 to this damaged DNA was dependent on the number of DNA lesions and required ATP. Chromatin assembly linked to the repair of single-strand breaks was disrupted by depletion of PCNA from a cell-free system. This defect was rescued by complementation with recombinant PCNA, arguing for role of PCNA in mediating chromatin assembly linked to DNA repair. We discuss the importance of the PCNA–CAF-1 interaction in the context of DNA damage processing and checkpoint control. PMID:10648606
Chemical determination of free radical-induced damage to DNA.
Dizdaroglu, M
1991-01-01
Free radical-induced damage to DNA in vivo can result in deleterious biological consequences such as the initiation and promotion of cancer. Chemical characterization and quantitation of such DNA damage is essential for an understanding of its biological consequences and cellular repair. Methodologies incorporating the technique of gas chromatography/mass spectrometry (GC/MS) have been developed in recent years for measurement of free radical-induced DNA damage. The use of GC/MS with selected-ion monitoring (SIM) facilitates unequivocal identification and quantitation of a large number of products of all four DNA bases produced in DNA by reactions with hydroxyl radical, hydrated electron, and H atom. Hydroxyl radical-induced DNA-protein cross-links in mammalian chromatin, and products of the sugar moiety in DNA are also unequivocally identified and quantitated. The sensitivity and selectivity of the GC/MS-SIM technique enables the measurement of DNA base products even in isolated mammalian chromatin without the necessity of first isolating DNA, and despite the presence of histones. Recent results reviewed in this article demonstrate the usefulness of the GC/MS technique for chemical determination of free radical-induced DNA damage in DNA as well as in mammalian chromatin under a vast variety of conditions of free radical production.
Izhar, Lior; Adamson, Britt; Ciccia, Alberto; Lewis, Jedd; Pontano-Vaites, Laura; Leng, Yumei; Liang, Anthony C; Westbrook, Thomas F; Harper, J Wade; Elledge, Stephen J
2015-06-09
Localization to sites of DNA damage is a hallmark of DNA damage response (DDR) proteins. To identify DDR factors, we screened epitope-tagged proteins for localization to sites of chromatin damaged by UV laser microirradiation and found >120 proteins that localize to damaged chromatin. These include the BAF tumor suppressor complex and the amyotrophic lateral sclerosis (ALS) candidate protein TAF15. TAF15 contains multiple domains that bind damaged chromatin in a poly-(ADP-ribose) polymerase (PARP)-dependent manner, suggesting a possible role as glue that tethers multiple PAR chains together. Many positives were transcription factors; > 70% of randomly tested transcription factors localized to sites of DNA damage, and of these, ∼90% were PARP dependent for localization. Mutational analyses showed that localization to damaged chromatin is DNA-binding-domain dependent. By examining Hoechst staining patterns at damage sites, we see evidence of chromatin decompaction that is PARP dependent. We propose that PARP-regulated chromatin remodeling at sites of damage allows transient accessibility of DNA-binding proteins. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Mechanisms of DNA damage, repair and mutagenesis
Chatterjee, Nimrat; Walker, Graham C.
2017-01-01
Living organisms are continuously exposed to a myriad of DNA damaging agents that can impact health and modulate disease-states. However, robust DNA repair and damage-bypass mechanisms faithfully protect the DNA by either removing or tolerating the damage to ensure an overall survival. Deviations in this fine-tuning are known to destabilize cellular metabolic homeostasis, as exemplified in diverse cancers where disruption or deregulation of DNA repair pathways results in genome instability. Because routinely used biological, physical and chemical agents impact human health, testing their genotoxicity and regulating their use have become important. In this introductory review, we will delineate mechanisms of DNA damage and the counteracting repair/tolerance pathways to provide insights into the molecular basis of genotoxicity in cells that lays the foundation for subsequent articles in this issue. PMID:28485537
Influence of DNA Lesions on Polymerase-Mediated DNA Replication at Single-Molecule Resolution.
Gahlon, Hailey L; Romano, Louis J; Rueda, David
2017-11-20
Faithful replication of DNA is a critical aspect in maintaining genome integrity. DNA polymerases are responsible for replicating DNA, and high-fidelity polymerases do this rapidly and at low error rates. Upon exposure to exogenous or endogenous substances, DNA can become damaged and this can alter the speed and fidelity of a DNA polymerase. In this instance, DNA polymerases are confronted with an obstacle that can result in genomic instability during replication, for example, by nucleotide misinsertion or replication fork collapse. It is important to know how DNA polymerases respond to damaged DNA substrates to understand the mechanism of mutagenesis and chemical carcinogenesis. Single-molecule techniques have helped to improve our current understanding of DNA polymerase-mediated DNA replication, as they enable the dissection of mechanistic details that can otherwise be lost in ensemble-averaged experiments. These techniques have also been used to gain a deeper understanding of how single DNA polymerases behave at the site of the damage in a DNA substrate. In this review, we evaluate single-molecule studies that have examined the interaction between DNA polymerases and damaged sites on a DNA template.
DNA as Sensors and Imaging Agents for Metal Ions
Xiang, Yu
2014-01-01
Increasing interests in detecting metal ions in many chemical and biomedical fields have created demands for developing sensors and imaging agents for metal ions with high sensitivity and selectivity. This review covers recent progress in DNA-based sensors and imaging agents for metal ions. Through both combinatorial selection and rational design, a number of metal ion-dependent DNAzymes and metal ion-binding DNA structures that can selectively recognize specific metal ions have been obtained. By attaching these DNA molecules with signal reporters such as fluorophores, chromophores, electrochemical tags, and Raman tags, a number of DNA-based sensors for both diamagnetic and paramagnetic metal ions have been developed for fluorescent, colorimetric, electrochemical, and surface Raman detections. These sensors are highly sensitive (with detection limit down to 11 ppt) and selective (with selectivity up to millions-fold) toward specific metal ions. In addition, through further development to simplify the operation, such as the use of “dipstick tests”, portable fluorometers, computer-readable discs, and widely available glucose meters, these sensors have been applied for on-site and real-time environmental monitoring and point-of-care medical diagnostics. The use of these sensors for in situ cellular imaging has also been reported. The generality of the combinatorial selection to obtain DNAzymes for almost any metal ion in any oxidation state, and the ease of modification of the DNA with different signal reporters make DNA an emerging and promising class of molecules for metal ion sensing and imaging in many fields of applications. PMID:24359450
Murray, V
1999-01-01
This article reviews the literature concerning the sequence specificity of DNA-damaging agents. DNA-damaging agents are widely used in cancer chemotherapy. It is important to understand fully the determinants of DNA sequence specificity so that more effective DNA-damaging agents can be developed as antitumor drugs. There are five main methods of DNA sequence specificity analysis: cleavage of end-labeled fragments, linear amplification with Taq DNA polymerase, ligation-mediated polymerase chain reaction (PCR), single-strand ligation PCR, and footprinting. The DNA sequence specificity in purified DNA and in intact mammalian cells is reviewed for several classes of DNA-damaging agent. These include agents that form covalent adducts with DNA, free radical generators, topoisomerase inhibitors, intercalators and minor groove binders, enzymes, and electromagnetic radiation. The main sites of adduct formation are at the N-7 of guanine in the major groove of DNA and the N-3 of adenine in the minor groove, whereas free radical generators abstract hydrogen from the deoxyribose sugar and topoisomerase inhibitors cause enzyme-DNA cross-links to form. Several issues involved in the determination of the DNA sequence specificity are discussed. The future directions of the field, with respect to cancer chemotherapy, are also examined.
Biosensors for detecting stress in developing embryos
NASA Astrophysics Data System (ADS)
Purdey, Malcolm S.; Saini, Avishkar; McLennan, Hanna J.; Pullen, Benjamin J.; Schartner, Erik P.; Sutton-McDowall, Melanie L.; Thompson, Jeremy G.; Monro, Tanya M.; Nicholls, Stephen J.; Abell, Andrew D.
2016-12-01
Reactive Oxygen Species (ROS) cause DNA damage and defective function in sperm and also affects the developmental competence of embryos. It is therefore critical to monitor ROS in sperm, oocytes and developing embryos. In particular, hydrogen peroxide (H2O2) is a ROS important to normal cell function and signalling as well as its role in oxidative stress. Here we report the development of a fluorescent sensor for H2O2 using carboxyperoxyfluor-1 (CPF1) in solution and attached to a glass slide or multi-mode optical fibre. CPF1 increases in fluorescence upon reaction with H2O2 to non-invasively detect H2O2 near developing embryos. These probes are constructed by immobilising CPF1 to the optical fibre tip a polyacrylamide layer. Also reported is a new dual optical fibre sensor for detecting both H2O2 and pH that is functional at biologically concentrations of H2O2 and can sense pH to 0.1 units. This research shows promise for the use of optical fibre sensors for monitoring the health of developing embryos. Furthermore, these sensors are applicable for use beyond embryos such as detecting stress in endothelial cells involved in cardiovascular dysfunction.
NASA Astrophysics Data System (ADS)
Park, Yeunsoo
2015-09-01
It is well known that low energy electrons (LEE, especially below 10 eV) can generate DNA damage via indirect action named dissociative electron attachment (DEA). We can now explain some parts of the exact mechanism on DNA damage by LEE collision with direct ionization effect when cancer patients get the radiotherapy. It is kind of remarkable information in the field of radiation therapy. However, it is practically very difficult to directly apply this finding to human disease cure due to difficulty of LEE therapy actualization and request of further clinical studies. Recently, there is a novel challenge in plasma application, that is, how we can apply plasma technology to diagnosis and treatment of many serious diseases like cancer. Cold atmospheric pressure plasma (CAPP) is a very good source to apply to plasma medicine and bio-applications because of low temperature, low cost, and easy handling. Some scientists have already reported good results related to clinical plasma application. The purposes of this study are to further find out exact mechanisms of DNA damage by LEE at the molecular level, to verify new DNA damage like structural alteration on DNA subunits and to compare DNA damage by LEE and plasma source. We will keep expanding our study to DNA damage by plasma source to develop plasma-based new medical and biological applications. We will show some recent results, DNA damage by LEE and non-thermal plasma.
Genome-wide map of Apn1 binding sites under oxidative stress in Saccharomyces cerevisiae.
Morris, Lydia P; Conley, Andrew B; Degtyareva, Natalya; Jordan, I King; Doetsch, Paul W
2017-11-01
The DNA is cells is continuously exposed to reactive oxygen species resulting in toxic and mutagenic DNA damage. Although the repair of oxidative DNA damage occurs primarily through the base excision repair (BER) pathway, the nucleotide excision repair (NER) pathway processes some of the same lesions. In addition, damage tolerance mechanisms, such as recombination and translesion synthesis, enable cells to tolerate oxidative DNA damage, especially when BER and NER capacities are exceeded. Thus, disruption of BER alone or disruption of BER and NER in Saccharomyces cerevisiae leads to increased mutations as well as large-scale genomic rearrangements. Previous studies demonstrated that a particular region of chromosome II is susceptible to chronic oxidative stress-induced chromosomal rearrangements, suggesting the existence of DNA damage and/or DNA repair hotspots. Here we investigated the relationship between oxidative damage and genomic instability utilizing chromatin immunoprecipitation combined with DNA microarray technology to profile DNA repair sites along yeast chromosomes under different oxidative stress conditions. We targeted the major yeast AP endonuclease Apn1 as a representative BER protein. Our results indicate that Apn1 target sequences are enriched for cytosine and guanine nucleotides. We predict that BER protects these sites in the genome because guanines and cytosines are thought to be especially susceptible to oxidative attack, thereby preventing large-scale genome destabilization from chronic accumulation of DNA damage. Information from our studies should provide insight into how regional deployment of oxidative DNA damage management systems along chromosomes protects against large-scale rearrangements. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
DNA Damage Signals and Space Radiation Risk
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.
2011-01-01
Space radiation is comprised of high-energy and charge (HZE) nuclei and protons. The initial DNA damage from HZE nuclei is qualitatively different from X-rays or gamma rays due to the clustering of damage sites which increases their complexity. Clustering of DNA damage occurs on several scales. First there is clustering of single strand breaks (SSB), double strand breaks (DSB), and base damage within a few to several hundred base pairs (bp). A second form of damage clustering occurs on the scale of a few kbp where several DSB?s may be induced by single HZE nuclei. These forms of damage clusters do not occur at low to moderate doses of X-rays or gamma rays thus presenting new challenges to DNA repair systems. We review current knowledge of differences that occur in DNA repair pathways for different types of radiation and possible relationships to mutations, chromosomal aberrations and cancer risks.
In situ analysis of DNA damage response and repair using laser microirradiation.
Kim, Jong-Soo; Heale, Jason T; Zeng, Weihua; Kong, Xiangduo; Krasieva, Tatiana B; Ball, Alexander R; Yokomori, Kyoko
2007-01-01
A proper response to DNA damage is critical for the maintenance of genome integrity. However, it is difficult to study the in vivo kinetics and factor requirements of the damage recognition process in mammalian cells. In order to address how the cell reacts to DNA damage, we utilized a second harmonic (532 nm) pulsed Nd:YAG laser to induce highly concentrated damage in a small area in interphase cell nuclei and cytologically analyzed both protein recruitment and modification. Our results revealed for the first time the sequential recruitment of factors involved in two major DNA double-strand break (DSB) repair pathways, non-homologous end-joining (NHEJ) and homologous recombination (HR), and the cell cycle-specific recruitment of the sister chromatid cohesion complex cohesin to the damage site. In this chapter, the strategy developed to study the DNA damage response using the 532-nm Nd:YAG laser will be summarized.
Evaluating In Vitro DNA Damage Using Comet Assay.
Lu, Yanxin; Liu, Yang; Yang, Chunzhang
2017-10-11
DNA damage is a common phenomenon for each cell during its lifespan, and is defined as an alteration of the chemical structure of genomic DNA. Cancer therapies, such as radio- and chemotherapy, introduce enormous amount of additional DNA damage, leading to cell cycle arrest and apoptosis to limit cancer progression. Quantitative assessment of DNA damage during experimental cancer therapy is a key step to justify the effectiveness of a genotoxic agent. In this study, we focus on a single cell electrophoresis assay, also known as the comet assay, which can quantify single and double-strand DNA breaks in vitro. The comet assay is a DNA damage quantification method that is efficient and easy to perform, and has low time/budget demands and high reproducibility. Here, we highlight the utility of the comet assay for a preclinical study by evaluating the genotoxic effect of olaparib/temozolomide combination therapy to U251 glioma cells.
Dutertre, Martin; Vagner, Stéphan
2017-10-27
Upon DNA damage, cells trigger an early DNA-damage response (DDR) involving DNA repair and cell cycle checkpoints, and late responses involving gene expression regulation that determine cell fate. Screens for genes involved in the DDR have found many RNA-binding proteins (RBPs), while screens for novel RBPs have identified DDR proteins. An increasing number of RBPs are involved in early and/or late DDR. We propose to call this new class of actors of the DDR, which contain an RNA-binding activity, DNA-damage response RNA-binding proteins (DDRBPs). We then discuss how DDRBPs contribute not only to gene expression regulation in the late DDR but also to early DDR signaling, DNA repair, and chromatin modifications at DNA-damage sites through interactions with both long and short noncoding RNAs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Acoustic Emission Measurement with Fiber Bragg Gratings for Structure Health Monitoring
NASA Technical Reports Server (NTRS)
Banks, Curtis E.; Walker, James L.; Russell, Sam; Roth, Don; Mabry, Nehemiah; Wilson, Melissa
2010-01-01
Structural Health monitoring (SHM) is a way of detecting and assessing damage to large scale structures. Sensors used in SHM for aerospace structures provide real time data on new and propagating damage. One type of sensor that is typically used is an acoustic emission (AE) sensor that detects the acoustic emissions given off from a material cracking or breaking. The use of fiber Bragg grating (FBG) sensors to provide acoustic emission data for damage detection is studied. In this research, FBG sensors are used to detect acoustic emissions of a material during a tensile test. FBG sensors were placed as a strain sensor (oriented parallel to applied force) and as an AE sensor (oriented perpendicular to applied force). A traditional AE transducer was used to collect AE data to compare with the FBG data. Preliminary results show that AE with FBGs can be a viable alternative to traditional AE sensors.
Nonadiabatic tapered optical fiber sensor for measuring interaction nicotine with DNA
NASA Astrophysics Data System (ADS)
Zibaii, M. I.; Latifi, H.; Pourbeyram, H.; Gholami, M.; Taghipour, Z.; Saeedian, Z.; Hosseini, S. M.
2011-05-01
A nonadiabatic tapered optical fiber sensor was utilized for studying of bimolecular interactions including DNA-DNA and DNA-Drug interaction. This work presents a simple evanescent wave sensing system based on an interferometric approach, suitable to meet the requirements of lable-free sensor systems for detecting biomolecular interactions. We have demonstrated the measuring refractive index and the real time detection of interactions between biomolecules. Furthermore basic experiments were carried out, for detecting the hybridization of 25-mer DNA with an immobilized counterpart on the surface. The overall shift after the successful DNA hybridization was 9.5 nm. In this work, a new approach for studying DNA-drug interactions was successfully tested. Nicotine as a carcinogenic compound in cigarette smoke plays an important role in interaction with DNA. Different concentrations of nicotine were applied to observe the Longmuir interaction with DNA.
Mertens, Barbara; Nogueira, Tatiane; Stranska, Ruzena; Naesens, Lieve; Andrei, Graciela; Snoeck, Robert
2016-07-26
Human papillomavirus (HPV) causes cervical cancer and a large fraction of head and neck squamous cell carcinomas (HNSCC). Cidofovir (CDV) proved efficacious in the treatment of several HPV-induced benign and malignant hyper proliferations. To provide a better insight into how CDV selectively eradicates transformed cells, HPV+ and HPV- cervical carcinoma and HNSCC cell lines were compared to normal cells for antiproliferative effects, CDV metabolism, drug incorporation into cellular DNA, and DNA damage. Incorporation of CDV into cellular DNA was higher in tumor cells than in normal cells and correlated with CDV antiproliferative effects, which were independent of HPV status. Increase in phospho-ATM levels was detected following CDV exposure and higher levels of γ-H2AX (a quantitative marker of double-strand breaks) were measured in tumor cells compared to normal cells. A correlation between DNA damage and CDV incorporation into DNA was found but not between DNA damage and CDV antiproliferative effects. These data indicate that CDV antiproliferative effects result from incorporation of the drug into DNA causing DNA damage. However, the anti-tumor effects of CDV cannot be exclusively ascribed to DNA damage. Furthermore, CDV can be considered a promising broad spectrum anti-cancer agent, not restricted to HPV+ lesions.
Shaw, Jyoti; Chakraborty, Ayan; Nag, Arijit; Chattopadyay, Arnab; Dasgupta, Anjan K; Bhattacharyya, Maitreyee
2017-11-01
To investigate the cause and effects of intracellular iron overload in lymphocytes of thalassemia major patients. Sixty-six thalassemia major patients having iron overload and 10 age-matched controls were chosen for the study. Blood sample was collected, and serum ferritin, oxidative stress; lymphocyte DNA damage were examined, and infective episodes were also counted. Case-control analysis revealed significant oxidative stress, iron overload, DNA damage, and rate of infections in thalassemia cases as compared to controls. For cases, oxidative stress (ROS) and iron overload (serum ferritin) showed good correlation with R 2 = 0.934 and correlation between DNA damage and ROS gave R 2 = 0.961. We also demonstrated that intracellular iron overload in thalassemia caused oxidative damage of lymphocyte DNA as exhibited by DNA damage assay. The inference is further confirmed by partial inhibition of such damage by chelation of iron and the concurrent lowering of the ROS level in the presence of chelator deferasirox. Therefore, intracellular iron overload caused DNA fragmentation, which may ultimately hamper lymphocyte function, and this may contribute to immune dysfunction and increased susceptibility to infections in thalassemia patients as indicated by the good correlation (R 2 = 0.91) between lymphocyte DNA damage and rate of infection found in this study. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Differences in DNA-damage in non-smoking men and women exposed to environmental tobacco smoke (ETS).
Collier, Abby C; Dandge, Sachin D; Woodrow, James E; Pritsos, Chris A
2005-07-28
There is much data implicating environmental tobacco smoke (ETS) in the development and progression of disease, notably cancer, yet the mechanisms for this remain unclear. As ETS is both a pro-oxidant stressor and carcinogen, we investigated the relationship of ETS exposure to intracellular and serum levels of DNA-damage, both oxidative 8-hydroxy-2-deoxyguanosine (8OHdG) and general, in non-smokers from non-smoking households, occupationally exposed to ETS. General DNA-damage consisting of single and double strand breaks, alkali-labile sites and incomplete base-excision repair, increased significantly in a dose-dependent manner with ETS exposure in men (P=0.015, n=32, Pearson) but not women (P=0.736, n=17). Intracellular 8OHdG-DNA-damage and general DNA-damage were both greater in men than women (P=0.0005 and 0.016, respectively) but 8OHdG serum levels did not differ between the genders. Neither 8OHdG-DNA-damage nor serum levels correlated with increasing ETS exposure. This is the first study to demonstrate dose-dependent increases in DNA-damage from workplace ETS exposure. Perhaps most interesting was that despite equivalent ETS exposure, significantly greater DNA-damage occurred in men than women. These data may begin to provide a mechanistic rationale for the generally higher incidence of some diseases in males due to tobacco smoke and/or other genotoxic stressors.
Foster, Patricia L.; Lee, Heewook; Popodi, Ellen; Townes, Jesse P.; Tang, Haixu
2015-01-01
A complete understanding of evolutionary processes requires that factors determining spontaneous mutation rates and spectra be identified and characterized. Using mutation accumulation followed by whole-genome sequencing, we found that the mutation rates of three widely diverged commensal Escherichia coli strains differ only by about 50%, suggesting that a rate of 1–2 × 10−3 mutations per generation per genome is common for this bacterium. Four major forces are postulated to contribute to spontaneous mutations: intrinsic DNA polymerase errors, endogenously induced DNA damage, DNA damage caused by exogenous agents, and the activities of error-prone polymerases. To determine the relative importance of these factors, we studied 11 strains, each defective for a major DNA repair pathway. The striking result was that only loss of the ability to prevent or repair oxidative DNA damage significantly impacted mutation rates or spectra. These results suggest that, with the exception of oxidative damage, endogenously induced DNA damage does not perturb the overall accuracy of DNA replication in normally growing cells and that repair pathways may exist primarily to defend against exogenously induced DNA damage. The thousands of mutations caused by oxidative damage recovered across the entire genome revealed strong local-sequence biases of these mutations. Specifically, we found that the identity of the 3′ base can affect the mutability of a purine by oxidative damage by as much as eightfold. PMID:26460006
Reissig, Kathrin; Silver, Andrew; Hartig, Roland; Schinlauer, Antje; Walluscheck, Diana; Guenther, Thomas; Siedentopf, Sandra; Ross, Jochen; Vo, Diep-Khanh; Roessner, Albert; Poehlmann-Nitsche, Angela
2017-01-01
Dysregulation of c-Jun N -terminal kinase (JNK) activation promoted DNA damage response bypass and tumorigenesis in our model of hydrogen peroxide-associated ulcerative colitis (UC) and in patients with quiescent UC (QUC), UC-related dysplasia, and UC-related carcinoma (UC-CRC), thereby adapting to oxidative stress. In the UC model, we have observed features of oncogenic transformation: increased proliferation, undetected DNA damage, and apoptosis resistance. Here, we show that Chk1 was downregulated but activated in the acute and quiescent chronic phases. In both phases, Chk1 was linked to DNA damage response bypass by suppressing JNK activation following oxidative stress, promoting cell cycle progression despite DNA damage. Simultaneously, activated Chk1 was bound to chromatin. This triggered histone acetylation and the binding of histone acetyltransferases and transcription factors to chromatin. Thus, chromatin-immobilized activated Chk1 executed a dual function by suppressing DNA damage response and simultaneously inducing chromatin modulation. This caused undetected DNA damage and increased cellular proliferation through failure to transmit the appropriate DNA damage signal. Findings in vitro were corroborated by chromatin accumulation of activated Chk1, Ac-H3, Ac-H4, and c-Jun in active UC (AUC) in vivo. Targeting chromatin-bound Chk1, GCN5, PCAF, and p300/CBP could be a novel therapeutic strategy to prevent UC-related tumor progression.
Inturi, Swetha; Tewari-Singh, Neera; Gu, Mallikarjuna; Shrotriya, Sangeeta; Gomez, Joe; Agarwal, Chapla; White, Carl W; Agarwal, Rajesh
2011-12-15
Employing mouse skin epidermal JB6 cells and dermal fibroblasts, here we examined the mechanisms of DNA damage by 2-chloroethyl ethyl sulfide (CEES), a monofunctional analog of sulfur mustard (SM). CEES exposure caused H2A.X and p53 phosphorylation as well as p53 accumulation in both cell types, starting at 1h, that was sustained for 24h, indicating a DNA-damaging effect of CEES, which was also confirmed and quantified by alkaline comet assay. CEES exposure also induced oxidative stress and oxidative DNA damage in both cell types, measured by an increase in mitochondrial and cellular reactive oxygen species and 8-hydroxydeoxyguanosine levels, respectively. In the studies distinguishing between oxidative and direct DNA damage, 1h pretreatment with glutathione (GSH) or the antioxidant Trolox showed a decrease in CEES-induced oxidative stress and oxidative DNA damage. However, only GSH pretreatment decreased CEES-induced total DNA damage measured by comet assay, H2A.X and p53 phosphorylation, and total p53 levels. This was possibly due to the formation of GSH-CEES conjugates detected by LC-MS analysis. Together, our results show that CEES causes both direct and oxidative DNA damage, suggesting that to rescue SM-caused skin injuries, pleiotropic agents (or cocktails) are needed that could target multiple pathways of mustard skin toxicities. Copyright © 2011 Elsevier Inc. All rights reserved.
E2F1 and E2F2 induction in response to DNA damage preserves genomic stability in neuronal cells.
Castillo, Daniela S; Campalans, Anna; Belluscio, Laura M; Carcagno, Abel L; Radicella, J Pablo; Cánepa, Eduardo T; Pregi, Nicolás
2015-01-01
E2F transcription factors regulate a wide range of biological processes, including the cellular response to DNA damage. In the present study, we examined whether E2F family members are transcriptionally induced following treatment with several genotoxic agents, and have a role on the cell DNA damage response. We show a novel mechanism, conserved among diverse species, in which E2F1 and E2F2, the latter specifically in neuronal cells, are transcriptionally induced after DNA damage. This upregulation leads to increased E2F1 and E2F2 protein levels as a consequence of de novo protein synthesis. Ectopic expression of these E2Fs in neuronal cells reduces the level of DNA damage following genotoxic treatment, while ablation of E2F1 and E2F2 leads to the accumulation of DNA lesions and increased apoptotic response. Cell viability and DNA repair capability in response to DNA damage induction are also reduced by the E2F1 and E2F2 deficiencies. Finally, E2F1 and E2F2 accumulate at sites of oxidative and UV-induced DNA damage, and interact with γH2AX DNA repair factor. As previously reported for E2F1, E2F2 promotes Rad51 foci formation, interacts with GCN5 acetyltransferase and induces histone acetylation following genotoxic insult. The results presented here unveil a new mechanism involving E2F1 and E2F2 in the maintenance of genomic stability in response to DNA damage in neuronal cells.
E2F1 and E2F2 induction in response to DNA damage preserves genomic stability in neuronal cells
Castillo, Daniela S; Campalans, Anna; Belluscio, Laura M; Carcagno, Abel L; Radicella, J Pablo; Cánepa, Eduardo T; Pregi, Nicolás
2015-01-01
E2F transcription factors regulate a wide range of biological processes, including the cellular response to DNA damage. In the present study, we examined whether E2F family members are transcriptionally induced following treatment with several genotoxic agents, and have a role on the cell DNA damage response. We show a novel mechanism, conserved among diverse species, in which E2F1 and E2F2, the latter specifically in neuronal cells, are transcriptionally induced after DNA damage. This upregulation leads to increased E2F1 and E2F2 protein levels as a consequence of de novo protein synthesis. Ectopic expression of these E2Fs in neuronal cells reduces the level of DNA damage following genotoxic treatment, while ablation of E2F1 and E2F2 leads to the accumulation of DNA lesions and increased apoptotic response. Cell viability and DNA repair capability in response to DNA damage induction are also reduced by the E2F1 and E2F2 deficiencies. Finally, E2F1 and E2F2 accumulate at sites of oxidative and UV-induced DNA damage, and interact with γH2AX DNA repair factor. As previously reported for E2F1, E2F2 promotes Rad51 foci formation, interacts with GCN5 acetyltransferase and induces histone acetylation following genotoxic insult. The results presented here unveil a new mechanism involving E2F1 and E2F2 in the maintenance of genomic stability in response to DNA damage in neuronal cells. PMID:25892555
Alteration/deficiency in activation-3 (Ada3) plays a critical role in maintaining genomic stability
Mirza, Sameer; Katafiasz, Bryan J.; Kumar, Rakesh; Wang, Jun; Mohibi, Shakur; Jain, Smrati; Gurumurthy, Channabasavaiah Basavaraju; Pandita, Tej K.; Dave, Bhavana J.; Band, Hamid; Band, Vimla
2012-01-01
Cell cycle regulation and DNA repair following damage are essential for maintaining genome integrity. DNA damage activates checkpoints in order to repair damaged DNA prior to exit to the next phase of cell cycle. Recently, we have shown the role of Ada3, a component of various histone acetyltransferase complexes, in cell cycle regulation, and loss of Ada3 results in mouse embryonic lethality. Here, we used adenovirus-Cre-mediated Ada3 deletion in Ada3fl/fl mouse embryonic fibroblasts (MEFs) to assess the role of Ada3 in DNA damage response following exposure to ionizing radiation (IR). We report that Ada3 depletion was associated with increased levels of phospho-ATM (pATM), γH2AX, phospho-53BP1 (p53BP1) and phospho-RAD51 (pRAD51) in untreated cells; however, radiation response was intact in Ada3−/− cells. Notably, Ada3−/− cells exhibited a significant delay in disappearance of DNA damage foci for several critical proteins involved in the DNA repair process. Significantly, loss of Ada3 led to enhanced chromosomal aberrations, such as chromosome breaks, fragments, deletions and translocations, which further increased upon DNA damage. Notably, the total numbers of aberrations were more clearly observed in S-phase, as compared with G₁ or G₂ phases of cell cycle with IR. Lastly, comparison of DNA damage in Ada3fl/fl and Ada3−/− cells confirmed higher residual DNA damage in Ada3−/− cells, underscoring a critical role of Ada3 in the DNA repair process. Taken together, these findings provide evidence for a novel role for Ada3 in maintenance of the DNA repair process and genomic stability. PMID:23095635
Structural health monitoring using a hybrid network of self-powered accelerometer and strain sensors
NASA Astrophysics Data System (ADS)
Alavi, Amir H.; Hasni, Hassene; Jiao, Pengcheng; Lajnef, Nizar
2017-04-01
This paper presents a structural damage identification approach based on the analysis of the data from a hybrid network of self-powered accelerometer and strain sensors. Numerical and experimental studies are conducted on a plate with bolted connections to verify the method. Piezoelectric ceramic Lead Zirconate Titanate (PZT)-5A ceramic discs and PZT-5H bimorph accelerometers are placed on the surface of the plate to measure the voltage changes due to damage progression. Damage is defined by loosening or removing one bolt at a time from the plate. The results show that the PZT accelerometers provide a fairly more consistent behavior than the PZT strain sensors. While some of the PZT strain sensors are not sensitive to the changes of the boundary condition, the bimorph accelerometers capture the mode changes from undamaged to missing bolt conditions. The results corresponding to the strain sensors are better indicator to the location of damage compared to the accelerometers. The characteristics of the overall structure can be monitored with even one accelerometer. On the other hand, several PZT strain sensors might be needed to localize the damage.
Recombinant antibody mediated delivery of organelle-specific DNA pH sensors along endocytic pathways
NASA Astrophysics Data System (ADS)
Modi, Souvik; Halder, Saheli; Nizak, Clément; Krishnan, Yamuna
2013-12-01
DNA has been used to build nanomachines with potential in cellulo and in vivo applications. However their different in cellulo applications are limited by the lack of generalizable strategies to deliver them to precise intracellular locations. Here we describe a new molecular design of DNA pH sensors with response times that are nearly 20 fold faster. Further, by changing the sequence of the pH sensitive domain of the DNA sensor, we have been able to tune their pH sensitive regimes and create a family of DNA sensors spanning ranges from pH 4 to 7.6. To enable a generalizable targeting methodology, this new sensor design also incorporates a `handle' domain. We have identified, using a phage display screen, a set of three recombinant antibodies (scFv) that bind sequence specifically to the handle domain. Sequence analysis of these antibodies revealed several conserved residues that mediate specific interactions with the cognate DNA duplex. We also found that all three scFvs clustered into different branches indicating that their specificity arises from mutations in key residues. When one of these scFvs is fused to a membrane protein (furin) that traffics via the cell surface, the scFv-furin chimera binds the `handle' and ferries a family of DNA pH sensors along the furin endocytic pathway. Post endocytosis, all DNA nanodevices retain their functionality in cellulo and provide spatiotemporal pH maps of retrogradely trafficking furin inside living cells. This new molecular technology of DNA-scFv-protein chimeras can be used to site-specifically complex DNA nanostructures for bioanalytical applications.DNA has been used to build nanomachines with potential in cellulo and in vivo applications. However their different in cellulo applications are limited by the lack of generalizable strategies to deliver them to precise intracellular locations. Here we describe a new molecular design of DNA pH sensors with response times that are nearly 20 fold faster. Further, by changing the sequence of the pH sensitive domain of the DNA sensor, we have been able to tune their pH sensitive regimes and create a family of DNA sensors spanning ranges from pH 4 to 7.6. To enable a generalizable targeting methodology, this new sensor design also incorporates a `handle' domain. We have identified, using a phage display screen, a set of three recombinant antibodies (scFv) that bind sequence specifically to the handle domain. Sequence analysis of these antibodies revealed several conserved residues that mediate specific interactions with the cognate DNA duplex. We also found that all three scFvs clustered into different branches indicating that their specificity arises from mutations in key residues. When one of these scFvs is fused to a membrane protein (furin) that traffics via the cell surface, the scFv-furin chimera binds the `handle' and ferries a family of DNA pH sensors along the furin endocytic pathway. Post endocytosis, all DNA nanodevices retain their functionality in cellulo and provide spatiotemporal pH maps of retrogradely trafficking furin inside living cells. This new molecular technology of DNA-scFv-protein chimeras can be used to site-specifically complex DNA nanostructures for bioanalytical applications. Electronic supplementary information (ESI) available: Detailed description of all oligonucleotide sequences used in this study; list of figures that support claims from the main text. Mainly these show sensor sequences, phage display results, scFv purification and binding data, cell images clamped at different pH and co-localization studies with endocytic tracers. See DOI: 10.1039/c3nr03769j
DNA-PKcs, ATM, and ATR Interplay Maintains Genome Integrity during Neurogenesis.
Enriquez-Rios, Vanessa; Dumitrache, Lavinia C; Downing, Susanna M; Li, Yang; Brown, Eric J; Russell, Helen R; McKinnon, Peter J
2017-01-25
The DNA damage response (DDR) orchestrates a network of cellular processes that integrates cell-cycle control and DNA repair or apoptosis, which serves to maintain genome stability. DNA-PKcs (the catalytic subunit of the DNA-dependent kinase, encoded by PRKDC), ATM (ataxia telangiectasia, mutated), and ATR (ATM and Rad3-related) are related PI3K-like protein kinases and central regulators of the DDR. Defects in these kinases have been linked to neurodegenerative or neurodevelopmental syndromes. In all cases, the key neuroprotective function of these kinases is uncertain. It also remains unclear how interactions between the three DNA damage-responsive kinases coordinate genome stability, particularly in a physiological context. Here, we used a genetic approach to identify the neural function of DNA-PKcs and the interplay between ATM and ATR during neurogenesis. We found that DNA-PKcs loss in the mouse sensitized neuronal progenitors to apoptosis after ionizing radiation because of excessive DNA damage. DNA-PKcs was also required to prevent endogenous DNA damage accumulation throughout the adult brain. In contrast, ATR coordinated the DDR during neurogenesis to direct apoptosis in cycling neural progenitors, whereas ATM regulated apoptosis in both proliferative and noncycling cells. We also found that ATR controls a DNA damage-induced G 2 /M checkpoint in cortical progenitors, independent of ATM and DNA-PKcs. These nonoverlapping roles were further confirmed via sustained murine embryonic or cortical development after all three kinases were simultaneously inactivated. Thus, our results illustrate how DNA-PKcs, ATM, and ATR have unique and essential roles during the DDR, collectively ensuring comprehensive genome maintenance in the nervous system. The DNA damage response (DDR) is essential for prevention of a broad spectrum of different human neurologic diseases. However, a detailed understanding of the DDR at a physiological level is lacking. In contrast to many in vitro cellular studies, here we demonstrate independent biological roles for the DDR kinases DNA-PKcs, ATM, and ATR during neurogenesis. We show that DNA-PKcs is central to DNA repair in nonproliferating cells, and restricts DNA damage accumulation, whereas ATR controls damage-induced G 2 checkpoint control and apoptosis in proliferating cells. Conversely, ATM is critical for controlling apoptosis in immature noncycling neural cells after DNA damage. These data demonstrate functionally distinct, but cooperative, roles for each kinase in preserving genome stability in the nervous system. Copyright © 2017 the authors 0270-6474/17/370893-13$15.00/0.
Enhanced photoelectrochemical DNA sensor based on TiO2/Au hybrid structure.
Liu, Xing-Pei; Chen, Jing-Shuai; Mao, Chang-Jie; Niu, He-Lin; Song, Ji-Ming; Jin, Bao-Kang
2018-05-23
A novel enhanced photoelectrochemical DNA sensor, based on a TiO 2 /Au hybrid electrode structure, was developed to detect target DNA. The sensor was developed by successively modifying fluorine-tin oxide (FTO) electrodes with TiO 2 nanoparticles, gold (Au) nanoparticles, hairpin DNA (DNA1), and CdSe-COOH quantum dots (QDs), which acted as signal amplification factors. In the absence of target DNA, the incubated DNA1 hairpin and the CdSe-COOH QDs were in close contact with the TiO 2 /Au electrode surface, leading to an enhanced photocurrent intensity due to the sensitization effect. After incubation of the modified electrode with the target DNA, the hairpin DNA changed into a double helix structure, and the CdSe QDs moved away from the TiO 2 /Au electrode surface, leading to a decreased sensitization effect and photoelectrochemical signal intensity. This novel DNA sensor exhibited stable, sensitive and reproducible detection of DNA from 0.1 μM to 10 fM, with a lower detection limit of 3 fM. It provided good specificity, reproducibility, stability and is a promising strategy for the detection of a variety of other DNA targets, for early clinical diagnosis of various diseases. Copyright © 2018 Elsevier B.V. All rights reserved.
Highly sensitive DNA sensors based on cerium oxide nanorods
NASA Astrophysics Data System (ADS)
Nguyet, Nguyen Thi; Hai Yen, Le Thi; Van Thu, Vu; lan, Hoang; Trung, Tran; Vuong, Pham Hung; Tam, Phuong Dinh
2018-04-01
In this work, a CeO2 nanorod (NR)-based electrochemical DNA sensor was developed to identify Salmonella that causes food-borne infections. CeO2 NRs were synthesized without templates via a simple and unexpensive hydrothermal approach at 170 °C for 12 h by using CeO(NO3)3·6H2O as a Ce source. The DNA probe was immobilized onto the CeO2 NR-modified electrode through covalent attachment. The characteristics of the hybridized DNA were analyzed through electrochemical impedance spectroscopy (EIS) with [Fe(CN)6]3-/4- as a redox probe. Experimental results showed that electron transfer resistance (Ret) increased after the DNA probe was attached to the electrode surface and increased further after the DNA probe hybridized with its complementary sequence. A linear response of Ret to the target DNA concentration was found from 0.01 μM to 2 μM. The detection limit and sensitivity of the DNA sensor were 0.01 μM and 3362.1 Ω μM-1 cm-2, respectively. Various parameters, such as pH value, ionic strength, DNA probe concentration, and hybridization time, influencing DNA sensor responses were also investigated.
DNA-magnetic bead detection using disposable cards and the anisotropic magnetoresistive sensor
NASA Astrophysics Data System (ADS)
Hien, L. T.; Quynh, L. K.; Huyen, V. T.; Tu, B. D.; Hien, N. T.; Phuong, D. M.; Nhung, P. H.; Giang, D. T. H.; Duc, N. H.
2016-12-01
A disposable card incorporating specific DNA probes targeting the 16 S rRNA gene of Streptococcus suis was developed for magnetically labeled target DNA detection. A single-stranded target DNA was hybridized with the DNA probe on the SPA/APTES/PDMS/Si as-prepared card, which was subsequently magnetically labeled with superparamagnetic beads for detection using an anisotropic magnetoresistive (AMR) sensor. An almost linear response between the output signal of the AMR sensor and amount of single-stranded target DNA varied from 4.5 to 18 pmol was identified. From the sensor output signal response towards the mass of magnetic beads which were directly immobilized on the disposable card surface, the limit of detection was estimated about 312 ng ferrites, which corresponds to 3.8 μemu. In comparison with DNA detection by conventional biosensor based on magnetic bead labeling, disposable cards are featured with higher efficiency and performances, ease of use and less running cost with respects to consumables for biosensor in biomedical analysis systems operating with immobilized bioreceptor.
Assessing the Fidelity of Ancient DNA Sequences Amplified From Nuclear Genes
Binladen, Jonas; Wiuf, Carsten; Gilbert, M. Thomas P.; Bunce, Michael; Barnett, Ross; Larson, Greger; Greenwood, Alex D.; Haile, James; Ho, Simon Y. W.; Hansen, Anders J.; Willerslev, Eske
2006-01-01
To date, the field of ancient DNA has relied almost exclusively on mitochondrial DNA (mtDNA) sequences. However, a number of recent studies have reported the successful recovery of ancient nuclear DNA (nuDNA) sequences, thereby allowing the characterization of genetic loci directly involved in phenotypic traits of extinct taxa. It is well documented that postmortem damage in ancient mtDNA can lead to the generation of artifactual sequences. However, as yet no one has thoroughly investigated the damage spectrum in ancient nuDNA. By comparing clone sequences from 23 fossil specimens, recovered from environments ranging from permafrost to desert, we demonstrate the presence of miscoding lesion damage in both the mtDNA and nuDNA, resulting in insertion of erroneous bases during amplification. Interestingly, no significant differences in the frequency of miscoding lesion damage are recorded between mtDNA and nuDNA despite great differences in cellular copy numbers. For both mtDNA and nuDNA, we find significant positive correlations between total sequence heterogeneity and the rates of type 1 transitions (adenine → guanine and thymine → cytosine) and type 2 transitions (cytosine → thymine and guanine → adenine), respectively. Type 2 transitions are by far the most dominant and increase relative to those of type 1 with damage load. The results suggest that the deamination of cytosine (and 5-methyl cytosine) to uracil (and thymine) is the main cause of miscoding lesions in both ancient mtDNA and nuDNA sequences. We argue that the problems presented by postmortem damage, as well as problems with contamination from exogenous sources of conserved nuclear genes, allelic variation, and the reliance on single nucleotide polymorphisms, call for great caution in studies relying on ancient nuDNA sequences. PMID:16299392
Complex DNA Damage: A Route to Radiation-Induced Genomic Instability and Carcinogenesis
Mavragani, Ifigeneia V.; Nikitaki, Zacharenia; Souli, Maria P.; Aziz, Asef; Nowsheen, Somaira; Aziz, Khaled; Rogakou, Emmy
2017-01-01
Cellular effects of ionizing radiation (IR) are of great variety and level, but they are mainly damaging since radiation can perturb all important components of the cell, from the membrane to the nucleus, due to alteration of different biological molecules ranging from lipids to proteins or DNA. Regarding DNA damage, which is the main focus of this review, as well as its repair, all current knowledge indicates that IR-induced DNA damage is always more complex than the corresponding endogenous damage resulting from endogenous oxidative stress. Specifically, it is expected that IR will create clusters of damage comprised of a diversity of DNA lesions like double strand breaks (DSBs), single strand breaks (SSBs) and base lesions within a short DNA region of up to 15–20 bp. Recent data from our groups and others support two main notions, that these damaged clusters are: (1) repair resistant, increasing genomic instability (GI) and malignant transformation and (2) can be considered as persistent “danger” signals promoting chronic inflammation and immune response, causing detrimental effects to the organism (like radiation toxicity). Last but not least, the paradigm shift for the role of radiation-induced systemic effects is also incorporated in this picture of IR-effects and consequences of complex DNA damage induction and its erroneous repair. PMID:28718816
Complex DNA Damage: A Route to Radiation-Induced Genomic Instability and Carcinogenesis.
Mavragani, Ifigeneia V; Nikitaki, Zacharenia; Souli, Maria P; Aziz, Asef; Nowsheen, Somaira; Aziz, Khaled; Rogakou, Emmy; Georgakilas, Alexandros G
2017-07-18
Cellular effects of ionizing radiation (IR) are of great variety and level, but they are mainly damaging since radiation can perturb all important components of the cell, from the membrane to the nucleus, due to alteration of different biological molecules ranging from lipids to proteins or DNA. Regarding DNA damage, which is the main focus of this review, as well as its repair, all current knowledge indicates that IR-induced DNA damage is always more complex than the corresponding endogenous damage resulting from endogenous oxidative stress. Specifically, it is expected that IR will create clusters of damage comprised of a diversity of DNA lesions like double strand breaks (DSBs), single strand breaks (SSBs) and base lesions within a short DNA region of up to 15-20 bp. Recent data from our groups and others support two main notions, that these damaged clusters are: (1) repair resistant, increasing genomic instability (GI) and malignant transformation and (2) can be considered as persistent "danger" signals promoting chronic inflammation and immune response, causing detrimental effects to the organism (like radiation toxicity). Last but not least, the paradigm shift for the role of radiation-induced systemic effects is also incorporated in this picture of IR-effects and consequences of complex DNA damage induction and its erroneous repair.
Lisowska, Halina; Cheng, Lei; Sollazzo, Alice; Lundholm, Lovisa; Wegierek-Ciuk, Aneta; Sommer, Sylwester; Lankoff, Anna; Wojcik, Andrzej
2018-06-01
Low temperature at exposure has been shown to act in a radioprotective manner at the level of cytogenetic damage. It was suggested to be due to an effective transformation of DNA damage to chromosomal damage at low temperature. The purpose of the study was to analyze the kinetics of aberration formation during the first hours after exposing human peripheral blood lymphocytes to ionizing radiation at 0.8 °C and 37 °C. To this end, we applied the technique of premature chromosome condensation. In addition, DNA damage response was analyzed by measuring the levels of phosphorylated DNA damage responsive proteins ATM, DNA-PK and p53 and mRNA levels of the radiation-responsive genes BBC3, FDXR, GADD45A, XPC, MDM2 and CDKN1A. A consistently lower frequency of chromosomal breaks was observed in cells exposed at 0.8 °C as compared to 37 °C already after 30 minutes postexposure. This effect was accompanied by elevated levels of phosphorylated ATM and DNA-PK proteins and a reduced immediate level of phosphorylated p53 and of the responsive genes. Low temperature at exposure appears to promote DNA repair leading to reduced transformation of DNA damage to chromosomal aberrations.
Genome-Wide Requirements for Resistance to Functionally Distinct DNA-Damaging Agents
Proctor, Michael; Flaherty, Patrick; Jordan, Michael I; Arkin, Adam P; Davis, Ronald W; Nislow, Corey; Giaever, Guri
2005-01-01
The mechanistic and therapeutic differences in the cellular response to DNA-damaging compounds are not completely understood, despite intense study. To expand our knowledge of DNA damage, we assayed the effects of 12 closely related DNA-damaging agents on the complete pool of ~4,700 barcoded homozygous deletion strains of Saccharomyces cerevisiae. In our protocol, deletion strains are pooled together and grown competitively in the presence of compound. Relative strain sensitivity is determined by hybridization of PCR-amplified barcodes to an oligonucleotide array carrying the barcode complements. These screens identified genes in well-characterized DNA-damage-response pathways as well as genes whose role in the DNA-damage response had not been previously established. High-throughput individual growth analysis was used to independently confirm microarray results. Each compound produced a unique genome-wide profile. Analysis of these data allowed us to determine the relative importance of DNA-repair modules for resistance to each of the 12 profiled compounds. Clustering the data for 12 distinct compounds uncovered both known and novel functional interactions that comprise the DNA-damage response and allowed us to define the genetic determinants required for repair of interstrand cross-links. Further genetic analysis allowed determination of epistasis for one of these functional groups. PMID:16121259
Structural Basis of Mec1-Ddc2-RPA Assembly and Activation on Single-Stranded DNA at Sites of Damage.
Deshpande, Ishan; Seeber, Andrew; Shimada, Kenji; Keusch, Jeremy J; Gut, Heinz; Gasser, Susan M
2017-10-19
Mec1-Ddc2 (ATR-ATRIP) is a key DNA-damage-sensing kinase that is recruited through the single-stranded (ss) DNA-binding replication protein A (RPA) to initiate the DNA damage checkpoint response. Activation of ATR-ATRIP in the absence of DNA damage is lethal. Therefore, it is important that damage-specific recruitment precedes kinase activation, which is achieved at least in part by Mec1-Ddc2 homodimerization. Here, we report a structural, biochemical, and functional characterization of the yeast Mec1-Ddc2-RPA assembly. High-resolution co-crystal structures of Ddc2-Rfa1 and Ddc2-Rfa1-t11 (K45E mutant) N termini and of the Ddc2 coiled-coil domain (CCD) provide insight into Mec1-Ddc2 homodimerization and damage-site targeting. Based on our structural and functional findings, we present a Mec1-Ddc2-RPA-ssDNA composite structural model. By way of validation, we show that RPA-dependent recruitment of Mec1-Ddc2 is crucial for maintaining its homodimeric state at ssDNA and that Ddc2's recruitment domain and CCD are important for Mec1-dependent survival of UV-light-induced DNA damage. Copyright © 2017 Elsevier Inc. All rights reserved.
Nguyen, Jenny; Ma, Yuhan; Luo, Ting; Bristow, Robert G.; Jaffray, David A.; Lu, Qing-Bin
2011-01-01
Both water and electron-transfer reactions play important roles in chemistry, physics, biology, and the environment. Oxidative DNA damage is a well-known mechanism, whereas the relative role of reductive DNA damage is unknown. The prehydrated electron (), a novel species of electrons in water, is a fascinating species due to its fundamental importance in chemistry, biology, and the environment. is an ideal agent to observe reductive DNA damage. Here, we report both the first in situ femtosecond time-resolved laser spectroscopy measurements of ultrafast-electron-transfer (UET) reactions of with various scavengers (KNO3, isopropanol, and dimethyl sulfoxide) and the first gel electrophoresis measurements of DNA strand breaks induced by and OH• radicals co-produced by two-UV-photon photolysis of water. We strikingly found that the yield of reductive DNA strand breaks induced by each is twice the yield of oxidative DNA strand breaks induced by each OH• radical. Our results not only unravel the long-standing mystery about the relative role of radicals in inducing DNA damage under ionizing radiation, but also challenge the conventional notion that oxidative damage is the main pathway for DNA damage. The results also show the potential of femtomedicine as a new transdisciplinary frontier and the broad significance of UET reactions of in many processes in chemistry, physics, biology, and the environment. PMID:21730183
Stress-induced DNA Damage biomarkers: Applications and limitations
NASA Astrophysics Data System (ADS)
Nikitaki, Zacharenia; Hellweg, Christine; Georgakilas, Alexandros; Ravanat, Jean-Luc
2015-06-01
A variety of environmental stresses like chemicals, UV and ionizing radiation and organism’s endogenous processes like replication stress and metabolism can lead to the generation of reactive oxygen and nitrogen species (ROS/RNS) that can attack cellular vital components like DNA, proteins and lipid membranes. Among them, much attention has been focused on DNA since DNA damages play a role in several biological disorders and aging processes. Thus, DNA damage can be used as a biomarker in a reliable and accurate way to quantify for example radiation exposure and can indicate its possible long term effects and cancer risk. Based on the type of DNA lesions detected one can hypothesize on the most probable mechanisms involved in the formation of these lesions for example in the case of UV and ionizing radiation (e.g. X- or α-, γ-rays, energetic ions, neutrons). In this review we describe the most accepted chemical pathways for DNA damage induction and the different types of DNA lesions, i.e. single, complex DNA lesions etc. that can be used as biomarkers. We critically compare DNA damage detection methods and their limitations. In addition to such DNA damage products, we suggest possible gene inductions that can be used to characterize responses to different types of stresses i.e. radiation, oxidative and replication stress, based on bioinformatic approaches and stringent meta-analysis of literature data.
Qiu, Yanyan; Qu, Xiangjin; Dong, Jing; Ai, Shiyun; Han, Ruixia
2011-06-15
A new electrochemical biosensor for directly detecting DNA damage induced by acrylamide (AA) and its metabolite was presented in this work. The graphene-ionic liquid-Nafion modified pyrolytic graphite electrode (PGE) was prepared, and then horseradish peroxidase (HRP) and natural double-stranded DNA were alternately assembled on the modified electrode by the layer-by-layer method. The PGE/graphene-ionic liquid-Nafion and the construction of the (HRP/DNA)(n) film were characterized by electrochemical impedance spectroscopy. With the guanine signal in DNA as an indicator, the damage of DNA was detected by differential pulse voltammetry after PGE/graphene-ionic liquid-Nafion/(HRP/DNA)(n) was incubated in AA solution or AA+H(2)O(2) solution at 37°C. This method provides a new model to mimic and directly detect DNA damage induced by chemical pollutants and their metabolites in vitro. The results indicated that, in the presence of H(2)O(2), HRP was activated and catalyzed the transformation of AA to glycidamide, which could form DNA adducts and induce more serious damage of DNA than AA. In order to further verify these results, UV-vis spectrophotometry was also used to investigate DNA damage induced by AA and its metabolites in solution and the similar results were obtained. Copyright © 2011 Elsevier B.V. All rights reserved.
Damage mapping in structural health monitoring using a multi-grid architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathews, V. John
2015-03-31
This paper presents a multi-grid architecture for tomography-based damage mapping of composite aerospace structures. The system employs an array of piezo-electric transducers bonded on the structure. Each transducer may be used as an actuator as well as a sensor. The structure is excited sequentially using the actuators and the guided waves arriving at the sensors in response to the excitations are recorded for further analysis. The sensor signals are compared to their baseline counterparts and a damage index is computed for each actuator-sensor pair. These damage indices are then used as inputs to the tomographic reconstruction system. Preliminary damage mapsmore » are reconstructed on multiple coordinate grids defined on the structure. These grids are shifted versions of each other where the shift is a fraction of the spatial sampling interval associated with each grid. These preliminary damage maps are then combined to provide a reconstruction that is more robust to measurement noise in the sensor signals and the ill-conditioned problem formulation for single-grid algorithms. Experimental results on a composite structure with complexity that is representative of aerospace structures included in the paper demonstrate that for sufficiently high sensor densities, the algorithm of this paper is capable of providing damage detection and characterization with accuracy comparable to traditional C-scan and A-scan-based ultrasound non-destructive inspection systems quickly and without human supervision.« less
The nucleosome: orchestrating DNA damage signaling and repair within chromatin.
Agarwal, Poonam; Miller, Kyle M
2016-10-01
DNA damage occurs within the chromatin environment, which ultimately participates in regulating DNA damage response (DDR) pathways and repair of the lesion. DNA damage activates a cascade of signaling events that extensively modulates chromatin structure and organization to coordinate DDR factor recruitment to the break and repair, whilst also promoting the maintenance of normal chromatin functions within the damaged region. For example, DDR pathways must avoid conflicts between other DNA-based processes that function within the context of chromatin, including transcription and replication. The molecular mechanisms governing the recognition, target specificity, and recruitment of DDR factors and enzymes to the fundamental repeating unit of chromatin, i.e., the nucleosome, are poorly understood. Here we present our current view of how chromatin recognition by DDR factors is achieved at the level of the nucleosome. Emerging evidence suggests that the nucleosome surface, including the nucleosome acidic patch, promotes the binding and activity of several DNA damage factors on chromatin. Thus, in addition to interactions with damaged DNA and histone modifications, nucleosome recognition by DDR factors plays a key role in orchestrating the requisite chromatin response to maintain both genome and epigenome integrity.
Carreras Puigvert, Jordi; von Stechow, Louise; Siddappa, Ramakrishnaiah; Pines, Alex; Bahjat, Mahnoush; Haazen, Lizette C J M; Olsen, Jesper V; Vrieling, Harry; Meerman, John H N; Mullenders, Leon H F; van de Water, Bob; Danen, Erik H J
2013-01-22
In pluripotent stem cells, DNA damage triggers loss of pluripotency and apoptosis as a safeguard to exclude damaged DNA from the lineage. An intricate DNA damage response (DDR) signaling network ensures that the response is proportional to the severity of the damage. We combined an RNA interference screen targeting all kinases, phosphatases, and transcription factors with global transcriptomics and phosphoproteomics to map the DDR in mouse embryonic stem cells treated with the DNA cross-linker cisplatin. Networks derived from canonical pathways shared in all three data sets were implicated in DNA damage repair, cell cycle and survival, and differentiation. Experimental probing of these networks identified a mode of DNA damage-induced Wnt signaling that limited apoptosis. Silencing or deleting the p53 gene demonstrated that genotoxic stress elicited Wnt signaling in a p53-independent manner. Instead, this response occurred through reduced abundance of Csnk1a1 (CK1α), a kinase that inhibits β-catenin. Together, our findings reveal a balance between p53-mediated elimination of stem cells (through loss of pluripotency and apoptosis) and Wnt signaling that attenuates this response to tune the outcome of the DDR.
Imaging and radiation effects of gold nanoparticles in tumour cells
McQuaid, Harold N.; Muir, Mark F.; Taggart, Laura E.; McMahon, Stephen J.; Coulter, Jonathan A.; Hyland, Wendy B.; Jain, Suneil; Butterworth, Karl T.; Schettino, Giuseppe; Prise, Kevin M.; Hirst, David G.; Botchway, Stanley W.; Currell, Fred J.
2016-01-01
Gold nanoparticle radiosensitization represents a novel technique in enhancement of ionising radiation dose and its effect on biological systems. Variation between theoretical predictions and experimental measurement is significant enough that the mechanism leading to an increase in cell killing and DNA damage is still not clear. We present the first experimental results that take into account both the measured biodistribution of gold nanoparticles at the cellular level and the range of the product electrons responsible for energy deposition. Combining synchrotron-generated monoenergetic X-rays, intracellular gold particle imaging and DNA damage assays, has enabled a DNA damage model to be generated that includes the production of intermediate electrons. We can therefore show for the first time good agreement between the prediction of biological outcomes from both the Local Effect Model and a DNA damage model with experimentally observed cell killing and DNA damage induction via the combination of X-rays and GNPs. However, the requirement of two distinct models as indicated by this mechanistic study, one for short-term DNA damage and another for cell survival, indicates that, at least for nanoparticle enhancement, it is not safe to equate the lethal lesions invoked in the local effect model with DNA damage events. PMID:26787230
Protective effect of KI in mtDNA in porcine thyroid: comparison with KIO₃ and nDNA.
Karbownik-Lewinska, Malgorzata; Stepniak, Jan; Milczarek, Magdalena; Lewinski, Andrzej
2015-03-01
Iodine, bivalent iron (Fe²⁺), and hydrogen peroxide (H₂O₂), all significantly affecting the red-ox balance, are required for thyroid hormone synthesis. Intracellular iodine excess (≥10⁻³ M) transiently blocks thyroid hormonogenesis (an adaptive mechanism called Wolff-Chaikoff effect). The aim of the study was to evaluate the effects of iodine, used as potassium iodide (KI) or potassium iodate (KIO₃), in concentrations corresponding to those typical for Wolff-Chaikoff effect, on the level of oxidative damage to nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) isolated from porcine thyroid under basal conditions and in the presence of Fenton reaction (Fe²⁺+H₂O₂ → Fe³⁺+(·)OH + OH⁻) substrates. Thyroid nDNA and mtDNA were incubated in the presence of either KI or KIO₃ (2.5-50 mM), without/with FeSO₄ (30 µM) + H₂O₂ (0.5 mM). Index of DNA damage, i.e., 8-oxo-7,8-dihydro-2'-deoxyguanosine, was measured by HPLC. Neither KI nor KIO₃ increased the basal level of 8-oxodG in both nDNA and mtDNA. KI-in all used concentrations-completely prevented the damaging effect of Fenton reaction substrates in mtDNA, and it partially prevented this damage in nDNA. KIO₃ partially prevented Fe²⁺+H₂O₂-induced oxidative damage in both DNA only in its highest used concentrations (≥25 mM). Without additional prooxidative abuse, both iodine compounds, i.e., KI and KIO₃, seem to be safe in terms of their potential oxidative damage to DNA in the thyroid. The superiority of KI over KIO₃ relies on its stronger protective effects against oxidative damage to mtDNA, which constitutes an argument for its preferential utility in iodine prophylaxis.
MDC1: The art of keeping things in focus.
Jungmichel, Stephanie; Stucki, Manuel
2010-08-01
The chromatin structure is important for recognition and repair of DNA damage. Many DNA damage response proteins accumulate in large chromatin domains flanking sites of DNA double-strand breaks. The assembly of these structures-usually termed DNA damage foci-is primarily regulated by MDC1, a large nuclear mediator/adaptor protein that is composed of several distinct structural and functional domains. Here, we are summarizing the latest discoveries about the mechanisms by which MDC1 mediates DNA damage foci formation, and we are reviewing the considerable efforts taken to understand the functional implication of these structures.
MRE11 and RAD50, but not NBS1, are essential for gene targeting in the moss Physcomitrella patens.
Kamisugi, Yasuko; Schaefer, Didier G; Kozak, Jaroslav; Charlot, Florence; Vrielynck, Nathalie; Holá, Marcela; Angelis, Karel J; Cuming, Andrew C; Nogué, Fabien
2012-04-01
The moss Physcomitrella patens is unique among plant models for the high frequency with which targeted transgene insertion occurs via homologous recombination. Transgene integration is believed to utilize existing machinery for the detection and repair of DNA double-strand breaks (DSBs). We undertook targeted knockout of the Physcomitrella genes encoding components of the principal sensor of DNA DSBs, the MRN complex. Loss of function of PpMRE11 or PpRAD50 strongly and specifically inhibited gene targeting, whilst rates of untargeted transgene integration were relatively unaffected. In contrast, disruption of the PpNBS1 gene retained the wild-type capacity to integrate transforming DNA efficiently at homologous loci. Analysis of the kinetics of DNA-DSB repair in wild-type and mutant plants by single-nucleus agarose gel electrophoresis revealed that bleomycin-induced fragmentation of genomic DNA was repaired at approximately equal rates in each genotype, although both the Ppmre11 and Pprad50 mutants exhibited severely restricted growth and development and enhanced sensitivity to UV-B and bleomycin-induced DNA damage, compared with wild-type and Ppnbs1 plants. This implies that while extensive DNA repair can occur in the absence of a functional MRN complex; this is unsupervised in nature and results in the accumulation of deleterious mutations incompatible with normal growth and development.
MRE11 and RAD50, but not NBS1, are essential for gene targeting in the moss Physcomitrella patens
Kamisugi, Yasuko; Schaefer, Didier G.; Kozak, Jaroslav; Charlot, Florence; Vrielynck, Nathalie; Holá, Marcela; Angelis, Karel J.; Cuming, Andrew C.; Nogué, Fabien
2012-01-01
The moss Physcomitrella patens is unique among plant models for the high frequency with which targeted transgene insertion occurs via homologous recombination. Transgene integration is believed to utilize existing machinery for the detection and repair of DNA double-strand breaks (DSBs). We undertook targeted knockout of the Physcomitrella genes encoding components of the principal sensor of DNA DSBs, the MRN complex. Loss of function of PpMRE11 or PpRAD50 strongly and specifically inhibited gene targeting, whilst rates of untargeted transgene integration were relatively unaffected. In contrast, disruption of the PpNBS1 gene retained the wild-type capacity to integrate transforming DNA efficiently at homologous loci. Analysis of the kinetics of DNA-DSB repair in wild-type and mutant plants by single-nucleus agarose gel electrophoresis revealed that bleomycin-induced fragmentation of genomic DNA was repaired at approximately equal rates in each genotype, although both the Ppmre11 and Pprad50 mutants exhibited severely restricted growth and development and enhanced sensitivity to UV-B and bleomycin-induced DNA damage, compared with wild-type and Ppnbs1 plants. This implies that while extensive DNA repair can occur in the absence of a functional MRN complex; this is unsupervised in nature and results in the accumulation of deleterious mutations incompatible with normal growth and development. PMID:22210882
DNA damage and repair after high LET radiation
NASA Astrophysics Data System (ADS)
O'Neill, Peter; Cucinotta, Francis; Anderson, Jennifer
Predictions from biophysical models of interactions of radiation tracks with cellular DNA indicate that clustered DNA damage sites, defined as two or more lesions formed within one or two helical turns of the DNA by passage of a single radiation track, are formed in mammalian cells. These complex DNA damage sites are regarded as a signature of ionizing radiation exposure particularly as the likelihood of clustered damage sites arising endogenously is low. For instance, it was predicted from biophysical modelling that 30-40% of low LET-induced double strand breaks (DSB), a form of clustered damage, are complex with the yield increasing to >90% for high LET radiation, consistent with the reduced reparability of DSB with increasing ionization density of the radiation. The question arises whether the increased biological effects such as mutagenesis, carcinogenesis and lethality is in part related to DNA damage complexity and/or spatial distribution of the damage sites, which may lead to small DNA fragments. With particle radiation it is also important to consider not only delta-rays which may cause clustered damaged sites and may be highly mutagenic but the non-random spatial distribution of DSB which may lead to deletions. In this overview I will concentrate on the molecular aspects of the variation of the complexity of DNA damage on radiation quality and the challenges this complexity presents the DNA damage repair pathways. I will draw on data from micro-irradiations which indicate that the repair of DSBs by non-homologous end joining is highly regulated with pathway choice and kinetics of repair dependent on the chemical complexity of the DSB. In summary the aim is to emphasis the link between the spatial distribution of energy deposition events related to the track, the molecular products formed and the consequence of damage complexity contributing to biological effects and to present some of the outstanding molecular challenges with particle radiation.
Cryopreservation of human blood for alkaline and Fpg-modified comet assay.
Pu, Xinzhu; Wang, Zemin; Klaunig, James E
2016-01-01
The Comet assay is a reproducible and sensitive assay for the detection of DNA damage in eukaryotic cells and tissues. Incorporation of lesion specific, oxidative DNA damage repair enzymes (for example, Fpg, OGG1 and EndoIII) in the standard alkaline Comet assay procedure allows for the detection and measurement of oxidative DNA damage. The Comet assay using white blood cells (WBC) has proven useful in monitoring DNA damage from environmental agents in humans. However, it is often impractical to performance Comet assay immediately after blood sampling. Thus, storage of blood sample is required. In this study, we developed and tested a simple storage method for very small amount of whole blood for standard and Fpg-modified modified Comet assay. Whole blood was stored in RPMI 1640 media containing 10% FBS, 10% DMSO and 1 mM deferoxamine at a sample to media ratio of 1:50. Samples were stored at -20 °C and -80 °C for 1, 7, 14 and 28 days. Isolated lymphocytes from the same subjects were also stored under the same conditions for comparison. Direct DNA strand breakage and oxidative DNA damage in WBC and lymphocytes were analyzed using standard and Fpg-modified alkaline Comet assay and compared with freshly analyzed samples. No significant changes in either direct DNA strand breakage or oxidative DNA damage was seen in WBC and lymphocytes stored at -20 °C for 1 and 7 days compared to fresh samples. However, significant increases in both direct and oxidative DNA damage were seen in samples stored at -20 °C for 14 and 28 days. No changes in direct and oxidative DNA damage were observed in WBC and lymphocytes stored at -80 °C for up to 28 days. These results identified the proper storage conditions for storing whole blood or isolated lymphocytes to evaluate direct and oxidative DNA damage using standard and Fpg-modified alkaline Comet assay.
2014-12-03
DNA damage . It is controlled by a complex network involving the RecA and LexA proteins. We have previously shown that the SOS response to DNA damage ...Research Triangle Park, NC 27709-2211 enteric bacterium E. coli, SOS Response, DNA damage REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT...Report Title The Escherichia coli (E. coli) SOS response is the largest, most complex, and best characterized bacterial network induced by DNA damage
Binding of Substrate Locks the Electrochemistry of CRY-DASH into DNA Repair.
Gindt, Yvonne M; Messyasz, Adriana; Jumbo, Pamela I
2015-05-12
VcCry1, a member of the CRY-DASH family, may serve two diverse roles in vivo, including blue-light signaling and repair of UV-damaged DNA. We have discovered that the electrochemistry of the flavin adenine dinucleotide cofactor of VcCry1 is locked to cycle only between the hydroquinone and neutral semiquinone states when UV-damaged DNA is present. Other potential substrates, including undamaged DNA and ATP, have no discernible effect on the electrochemistry, and the kinetics of the reduction is unaffected by damaged DNA. Binding of the damaged DNA substrate determines the role of the protein and prevents the presumed photochemistry required for blue-light signaling.
Schalk, Catherine; Cognat, Valérie; Graindorge, Stéfanie; Vincent, Timothée; Voinnet, Olivier; Molinier, Jean
2017-01-01
As photosynthetic organisms, plants need to prevent irreversible UV-induced DNA lesions. Through an unbiased, genome-wide approach, we have uncovered a previously unrecognized interplay between Global Genome Repair and small interfering RNAs (siRNAs) in the recognition of DNA photoproducts, prevalently in intergenic regions. Genetic and biochemical approaches indicate that, upon UV irradiation, the DNA DAMAGE-BINDING PROTEIN 2 (DDB2) and ARGONAUTE 1 (AGO1) of Arabidopsis thaliana form a chromatin-bound complex together with 21-nt siRNAs, which likely facilitates recognition of DNA damages in an RNA/DNA complementary strand-specific manner. The biogenesis of photoproduct-associated siRNAs involves the noncanonical, concerted action of RNA POLYMERASE IV, RNA-DEPENDENT RNA POLYMERASE-2, and DICER-LIKE-4. Furthermore, the chromatin association/dissociation of the DDB2-AGO1 complex is under the control of siRNA abundance and DNA damage signaling. These findings reveal unexpected nuclear functions for DCL4 and AGO1, and shed light on the interplay between small RNAs and DNA repair recognition factors at damaged sites. PMID:28325872
Baeza, Francisco Javier; Galao, Oscar; Zornoza, Emilio; Garcés, Pedro
2013-01-01
In this research, strain-sensing and damage-sensing functional properties of cement composites have been studied on a conventional reinforced concrete (RC) beam. Carbon nanofiber (CNFCC) and fiber (CFCC) cement composites were used as sensors on a 4 m long RC beam. Different casting conditions (in situ or attached), service location (under tension or compression) and electrical contacts (embedded or superficial) were compared. Both CNFCC and CFCC were suitable as strain sensors in reversible (elastic) sensing condition testing. CNFCC showed higher sensitivities (gage factor up to 191.8), while CFCC only reached gage factors values of 178.9 (tension) or 49.5 (compression). Furthermore, damage-sensing tests were run, increasing the applied load progressively up to the RC beam failure. In these conditions, CNFCC sensors were also strain sensitive, but no damage sensing mechanism was detected for the strain levels achieved during the tests. Hence, these cement composites could act as strain sensors, even for severe damaged structures near to their collapse. PMID:28809343
Baeza, Francisco Javier; Galao, Oscar; Zornoza, Emilio; Garcés, Pedro
2013-03-06
In this research, strain-sensing and damage-sensing functional properties of cement composites have been studied on a conventional reinforced concrete (RC) beam. Carbon nanofiber (CNFCC) and fiber (CFCC) cement composites were used as sensors on a 4 m long RC beam. Different casting conditions ( in situ or attached), service location (under tension or compression) and electrical contacts (embedded or superficial) were compared. Both CNFCC and CFCC were suitable as strain sensors in reversible (elastic) sensing condition testing. CNFCC showed higher sensitivities (gage factor up to 191.8), while CFCC only reached gage factors values of 178.9 (tension) or 49.5 (compression). Furthermore, damage-sensing tests were run, increasing the applied load progressively up to the RC beam failure. In these conditions, CNFCC sensors were also strain sensitive, but no damage sensing mechanism was detected for the strain levels achieved during the tests. Hence, these cement composites could act as strain sensors, even for severe damaged structures near to their collapse.
DNA Strand Breaks in Mitotic Germ Cells of Caenorhabditis elegans Evaluated by Comet Assay
Park, Sojin; Choi, Seoyun; Ahn, Byungchan
2016-01-01
DNA damage responses are important for the maintenance of genome stability and the survival of organisms. Such responses are activated in the presence of DNA damage and lead to cell cycle arrest, apoptosis, and DNA repair. In Caenorhabditis elegans, double-strand breaks induced by DNA damaging agents have been detected indirectly by antibodies against DSB recognizing proteins. In this study we used a comet assay to detect DNA strand breaks and to measure the elimination of DNA strand breaks in mitotic germline nuclei of C. elegans. We found that C. elegans brc-1 mutants were more sensitive to ionizing radiation and camptothecin than the N2 wild-type strain and repaired DNA strand breaks less efficiently than N2. This study is the first demonstration of direct measurement of DNA strand breaks in mitotic germline nuclei of C. elegans. This newly developed assay can be applied to detect DNA strand breaks in different C. elegans mutants that are sensitive to DNA damaging agents. PMID:26903030
Effects of seven chemicals on DNA damage in the rat urinary bladder: a comet assay study.
Wada, Kunio; Yoshida, Toshinori; Takahashi, Naofumi; Matsumoto, Kyomu
2014-07-15
The in vivo comet assay has been used for the evaluation of DNA damage and repair in various tissues of rodents. However, it can give false-positive results due to non-specific DNA damage associated with cell death. In this study, we examined whether the in vivo comet assay can distinguish between genotoxic and non-genotoxic DNA damage in urinary bladder cells, by using the following seven chemicals related to urinary bladder carcinogenesis in rodents: N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN), glycidol, 2,2-bis(bromomethyl)-1,3-propanediol (BMP), 2-nitroanisole (2-NA), benzyl isothiocyanate (BITC), uracil, and melamine. BBN, glycidol, BMP, and 2-NA are known to be Ames test-positive and they are expected to produce DNA damage in the absence of cytotoxicity. BITC, uracil, and melamine are Ames test-negative with metabolic activation but have the potential to induce non-specific DNA damage due to cytotoxicity. The test chemicals were administered orally to male Sprague-Dawley rats (five per group) for each of two consecutive days. Urinary bladders were sampled 3h after the second administration and urothelial cells were analyzed by the comet assay and subjected to histopathological examination to evaluate cytotoxicity. In the urinary bladders of rats treated with BBN, glycidol, and BMP, DNA damage was detected. In contrast, 2-NA induced neither DNA damage nor cytotoxicity. The non-genotoxic chemicals (BITC, uracil, and melamine) did not induce DNA damage in the urinary bladders under conditions where some histopathological changes were observed. The results indicate that the comet assay could distinguish between genotoxic and non-genotoxic chemicals and that no false-positive responses were obtained. Copyright © 2014 Elsevier B.V. All rights reserved.
Takada, Saeko; Collins, Eric R; Kurahashi, Kayo
2015-05-15
DNA damage responses, including mitotic centrosome inactivation, cell-cycle delay in mitosis, and nuclear dropping from embryo cortex, maintain genome integrity in syncytial Drosophila embryos. A conserved signaling kinase, Chk2, known as Mnk/Loki, is essential for the responses. Here we demonstrate that functional EGFP-Mnk expressed from a transgene localizes to the nucleus, centrosomes, interkinetochore/centromere region, midbody, and pseudocleavage furrows without DNA damage and in addition forms numerous foci/aggregates on mitotic chromosomes upon DNA damage. We expressed EGFP-tagged Mnk deletion or point mutation variants and investigated domain functions of Mnk in vivo. A triple mutation in the phosphopeptide-binding site of the forkhead-associated (FHA) domain disrupted normal Mnk localization except to the nucleus. The mutation also disrupted Mnk foci formation on chromosomes upon DNA damage. FHA mutations and deletion of the SQ/TQ-cluster domain (SCD) abolished Mnk transphosphorylations and autophosphorylations, indicative of kinase activation after DNA damage. A potent NLS was found at the C-terminus, which is required for normal Mnk function. We propose that the FHA domain in Mnk plays essential dual functions in mediating embryonic DNA damage responses by means of its phosphopeptide-binding ability: activating Mnk in the nucleus upon DNA damage and recruiting Mnk to multiple subcellular structures independently of DNA damage. © 2015 Takada et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Chen, Zhongcan; Cao, Zhen; Zhang, Wei; Gu, Minxia; Zhou, Zhi Dong; Li, Baojie; Li, Jing; Tan, Eng King; Zeng, Li
2017-11-15
Pathogenic leucine-rich repeat kinase 2 (LRRK2) mutations are recognized as the most common cause of familial Parkinson's disease in certain populations. Recently, LRRK2 mutations were shown to be associated with a higher risk of hormone-related cancers. However, how LRRK2 itself contributes to cancer risk remains unknown. DNA damage causes cancer, and DNA damage responses are among the most important pathways in cancer biology. To understand the role of LRRK2 in DNA damage response pathway, we induced DNA damage by applying genotoxic stress to the cells with Adriamycin. We found that DNA damage enhances LRRK2 phosphorylation at Serine 910, Serine 935 and Serine 1292. We further showed that LRRK2 phosphorylation is abolished in the absence of ATM, suggesting that LRRK2 phosphorylation requires ATM. It should also be noted that LRRK2 interacts with ATM. In contrast, overexpression or knockdown of LRRK2 does not affect ATM phosphorylation, indicating that LRRK2 is the downstream target of ATM in response to DNA damage. Moreover, we demonstrated that LRRK2 increases the expression of p53 and p21 by increasing the Mdm2 phosphorylation in response to DNA damage. Loss-of-function in LRRK2 has the opposite effect to that of LRRK2. In addition, FACS analysis revealed that LRRK2 enhances cell cycle progression into S phase in response to DNA damage, a finding that was confirmed by 5-bromo-2'-deoxyuridine immunostaining. Taken together, our findings demonstrate that LRRK2 plays an important role in the ATM-Mdm2-p53 pathway that regulates cell proliferation in response to DNA damage. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Fetterman, Jessica L; Holbrook, Monica; Westbrook, David G; Brown, Jamelle A; Feeley, Kyle P; Bretón-Romero, Rosa; Linder, Erika A; Berk, Brittany D; Weisbrod, Robert M; Widlansky, Michael E; Gokce, Noyan; Ballinger, Scott W; Hamburg, Naomi M
2016-03-31
Prior studies demonstrate mitochondrial dysfunction with increased reactive oxygen species generation in peripheral blood mononuclear cells in diabetes mellitus. Oxidative stress-mediated damage to mitochondrial DNA promotes atherosclerosis in animal models. Thus, we evaluated the relation of mitochondrial DNA damage in peripheral blood mononuclear cells s with vascular function in patients with diabetes mellitus and with atherosclerotic cardiovascular disease. We assessed non-invasive vascular function and mitochondrial DNA damage in 275 patients (age 57 ± 9 years, 60 % women) with atherosclerotic cardiovascular disease alone (N = 55), diabetes mellitus alone (N = 74), combined atherosclerotic cardiovascular disease and diabetes mellitus (N = 48), and controls age >45 without diabetes mellitus or atherosclerotic cardiovascular disease (N = 98). Mitochondrial DNA damage measured by quantitative PCR in peripheral blood mononuclear cells was higher with clinical atherosclerosis alone (0.55 ± 0.65), diabetes mellitus alone (0.65 ± 1.0), and combined clinical atherosclerosis and diabetes mellitus (0.89 ± 1.32) as compared to control subjects (0.23 ± 0.64, P < 0.0001). In multivariable models adjusting for age, sex, and relevant cardiovascular risk factors, clinical atherosclerosis and diabetes mellitus remained associated with higher mitochondrial DNA damage levels (β = 0.14 ± 0.13, P = 0.04 and β = 0.21 ± 0.13, P = 0.002, respectively). Higher mitochondrial DNA damage was associated with higher baseline pulse amplitude, a measure of arterial pulsatility, but not with flow-mediated dilation or hyperemic response, measures of vasodilator function. We found greater mitochondrial DNA damage in patients with diabetes mellitus and clinical atherosclerosis. The association of mitochondrial DNA damage and baseline pulse amplitude may suggest a link between mitochondrial dysfunction and excessive small artery pulsatility with potentially adverse microvascular impact.
Xu, Ruijuan; Wang, Kai; Mileva, Izolda; Hannun, Yusuf A.; Obeid, Lina M.; Mao, Cungui
2016-01-01
Human cells respond to DNA damage by elevating sphingosine, a bioactive sphingolipid that induces programmed cell death (PCD) in response to various forms of stress, but its regulation and role in the DNA damage response remain obscure. Herein we demonstrate that DNA damage increases sphingosine levels in tumor cells by upregulating alkaline ceramidase 2 (ACER2) and that the upregulation of the ACER2/sphingosine pathway induces PCD in response to DNA damage by increasing the production of reactive oxygen species (ROS). Treatment with the DNA damaging agent doxorubicin increased both ACER2 expression and sphingosine levels in HCT116 cells in a dose-dependent manner. ACER2 overexpression increased sphingosine in HeLa cells whereas knocking down ACER2 inhibited the doxorubicin-induced increase in sphingosine in HCT116 cells, suggesting that DNA damage elevates sphingosine by upregulating ACER2. Knocking down ACER2 inhibited an increase in the apoptotic and necrotic cell population and the cleavage of poly ADP ribose polymerase (PARP) in HCT116 cells in response to doxorubicin as well as doxorubicin-induced release of lactate dehydrogenase (LDH) from these cells. Similar to treatment with doxorubicin, ACER2 overexpression induced an increase in the apoptotic and necrotic cell population and PARP cleavage in HeLa cells and LDH release from cells, suggesting that ACER2 upregulation mediates PCD in response to DNA damage through sphingosine. Mechanistic studies demonstrated that the upregulation of the ACER2/sphingosine pathway induces PCD by increasing ROS levels. Taken together, these results suggest that the ACER2/sphingosine pathway mediates PCD in response to DNA damage through ROS production. PMID:26943039
Detection of damaged DNA bases by DNA glycosylase enzymes.
Friedman, Joshua I; Stivers, James T
2010-06-22
A fundamental and shared process in all forms of life is the use of DNA glycosylase enzymes to excise rare damaged bases from genomic DNA. Without such enzymes, the highly ordered primary sequences of genes would rapidly deteriorate. Recent structural and biophysical studies are beginning to reveal a fascinating multistep mechanism for damaged base detection that begins with short-range sliding of the glycosylase along the DNA chain in a distinct conformation we call the search complex (SC). Sliding is frequently punctuated by the formation of a transient "interrogation" complex (IC) where the enzyme extrahelically inspects both normal and damaged bases in an exosite pocket that is distant from the active site. When normal bases are presented in the exosite, the IC rapidly collapses back to the SC, while a damaged base will efficiently partition forward into the active site to form the catalytically competent excision complex (EC). Here we review the unique problems associated with enzymatic detection of rare damaged DNA bases in the genome and emphasize how each complex must have specific dynamic properties that are tuned to optimize the rate and efficiency of damage site location.
Sowmithra, K; Shetty, N J; Jha, S K; Chaubey, R C
2015-12-01
Earthworms (Eisenia fetida) most suitable biological indicators of radioactive pollution. Radiation-induced lesions in DNA can be considered to be molecular markers for early effects of ionizing radiation. Gamma radiation produces a wide spectrum of DNA. Some of these lesions, i.e., DNA strand breaks and alkali labile sites can be detected by the single-cell gel electrophoresis (SCGE) or comet assay by measuring the migration of DNA from immobilized nuclear DNA. E. fetida were exposed to different doses of gamma radiation, i.e., 1, 5, 10, 20, 30, 40 and 50Gy, and comet assay was performed for all the doses along with control at 1, 3 and 5h post irradiation to evaluate the genotoxicity of gamma radiation in this organism. The DNA damage was measured as percentage of comet tail DNA. A significant increase in DNA damage was observed in samples exposed to 5Gy and above, and the increase in DNA damage was dose dependent i.e., DNA damage was increased with increased doses of radiation. The highest DNA damage was noticed at 1h post irradiation and gradually decreased with time, i.e., at 3 and 5h post irradiation. The present study reveals that gamma radiation induces DNA damage in E. fetida and the comet assay is a sensitive and rapid method for its detection to detect genotoxicity of gamma radiation. Copyright © 2015 Elsevier B.V. All rights reserved.
Oxidative DNA damage background estimated by a system model of base excision repair
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sokhansanj, B A; Wilson, III, D M
Human DNA can be damaged by natural metabolism through free radical production. It has been suggested that the equilibrium between innate damage and cellular DNA repair results in an oxidative DNA damage background that potentially contributes to disease and aging. Efforts to quantitatively characterize the human oxidative DNA damage background level based on measuring 8-oxoguanine lesions as a biomarker have led to estimates varying over 3-4 orders of magnitude, depending on the method of measurement. We applied a previously developed and validated quantitative pathway model of human DNA base excision repair, integrating experimentally determined endogenous damage rates and model parametersmore » from multiple sources. Our estimates of at most 100 8-oxoguanine lesions per cell are consistent with the low end of data from biochemical and cell biology experiments, a result robust to model limitations and parameter variation. Our results show the power of quantitative system modeling to interpret composite experimental data and make biologically and physiologically relevant predictions for complex human DNA repair pathway mechanisms and capacity.« less
Aflatoxin B₁-Induced Developmental and DNA Damage in Caenorhabditis elegans.
Feng, Wei-Hong; Xue, Kathy S; Tang, Lili; Williams, Phillip L; Wang, Jia-Sheng
2016-12-26
Aflatoxin B₁ (AFB₁) is a ubiquitous mycotoxin produced by toxicogenic Aspergillus species. AFB₁ has been reported to cause serious adverse health effects, such as cancers and abnormal development and reproduction, in animals and humans. AFB₁ is also a potent genotoxic mutagen that causes DNA damage in vitro and in vivo. However, the link between DNA damage and abnormal development and reproduction is unclear. To address this issue, we examined the DNA damage, germline apoptosis, growth, and reproductive toxicity following exposure to AFB₁, using Caenorhabditis elegans as a study model. Results found that AFB₁ induced DNA damage and germline apoptosis, and significantly inhibited growth and reproduction of the nematodes in a concentration-dependent manner. Exposure to AFB₁ inhibited growth or reproduction more potently in the DNA repair-deficient xpa-1 nematodes than the wild-type N2 strain. According to the relative expression level of pathway-related genes measured by real-time PCR, the DNA damage response (DDR) pathway was found to be associated with AFB₁-induced germline apoptosis, which further played an essential role in the dysfunction of growth and reproduction in C. elegans .
Measurements of DNA Damage and Repair in Bacillus anthracis Sterne Spores by UV Radiation
2014-09-18
MEASUREMENTS OF DNA DAMAGE AND REPAIR IN BACILLUS ANTHRACIS STERNE SPORES BY UV RADIATION...AFIT-ENP-T-14-S-01 MEASUREMENTS OF DNA DAMAGE AND REPAIR IN BACILLUS ANTHRACIS STERNE SPORES BY UV RADIATION THESIS Presented to the... DAMAGE AND REPAIR IN BACILLUS ANTHRACIS STERNE SPORES BY UV RADIATION Chelsea C. Marcum, BS Approved
Triple-helix molecular switch-based aptasensors and DNA sensors.
Bagheri, Elnaz; Abnous, Khalil; Alibolandi, Mona; Ramezani, Mohammad; Taghdisi, Seyed Mohammad
2018-07-15
Utilization of traditional analytical techniques is limited because they are generally time-consuming and require high consumption of reagents, complicated sample preparation and expensive equipment. Therefore, it is of great interest to achieve sensitive, rapid and simple detection methods. It is believed that nucleic acids assays, especially aptamers, are very important in modern life sciences for target detection and biological analysis. Aptamers and DNA-based sensors have been widely used for the design of various sensors owing to their unique features. In recent years, triple-helix molecular switch (THMS)-based aptasensors and DNA sensors have been broadly utilized for the detection and analysis of different targets. The THMS relies on the formation of DNA triplex via Watson-Crick and Hoogsteen base pairings under optimal conditions. This review focuses on recent progresses in the development and applications of electrochemical, colorimetric, fluorescence and SERS aptasensors and DNA sensors, which are based on THMS. Also, the advantages and drawbacks of these methods are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.
Multiple roles of the cell cycle inhibitor p21(CDKN1A) in the DNA damage response.
Cazzalini, Ornella; Scovassi, A Ivana; Savio, Monica; Stivala, Lucia A; Prosperi, Ennio
2010-01-01
Among cell cycle regulatory proteins that are activated following DNA damage, the cyclin-dependent kinase inhibitor p21(CDKN1A) plays essential roles in the DNA damage response, by inducing cell cycle arrest, direct inhibition of DNA replication, as well as by regulating fundamental processes, like apoptosis and transcription. These functions are performed through the ability of p21 to interact with a number of proteins involved in these processes. Despite an initial controversy, during the last years several lines of evidence have also indicated that p21 may be directly involved in DNA repair. In particular, the participation of p21 in nucleotide excision repair (NER), base excision repair (BER), and DNA translesion synthesis (TLS), has been suggested to occur thanks to its interaction with proliferating cell nuclear antigen (PCNA), a crucial protein involved in several aspects of DNA metabolism, and cell-cycle regulation. In this review, the multiple roles of p21 in the DNA damage response, including regulation of cell cycle, apoptosis and gene transcription, are discussed together with the most recent findings supporting the direct participation of p21 protein in DNA repair processes. In particular, spatio-temporal dynamics of p21 recruitment to sites of DNA damage will be considered together with several lines of evidence indicating a regulatory role for p21. In addition, the relevance of post-translational regulation in the fate (e.g. degradation) of p21 protein after cell exposure to DNA damaging agents will be analyzed. Both sets of evidence will be discussed in terms of the overall DNA damage response. 2010 Elsevier B.V. All rights reserved.
Differential sensitivities of cellular XPA and PARP-1 to arsenite inhibition and zinc rescue.
Ding, Xiaofeng; Zhou, Xixi; Cooper, Karen L; Huestis, Juliana; Hudson, Laurie G; Liu, Ke Jian
2017-09-15
Arsenite directly binds to the zinc finger domains of the DNA repair protein poly (ADP ribose) polymerase (PARP)-1, and inhibits PARP-1 activity in the base excision repair (BER) pathway. PARP inhibition by arsenite enhances ultraviolet radiation (UVR)-induced DNA damage in keratinocytes, and the increase in DNA damage is reduced by zinc supplementation. However, little is known about the effects of arsenite and zinc on the zinc finger nucleotide excision repair (NER) protein xeroderma pigmentosum group A (XPA). In this study, we investigated the difference in response to arsenite exposure between XPA and PARP-1, and the differential effectiveness of zinc supplementation in restoring protein DNA binding and DNA damage repair. Arsenite targeted both XPA and PARP-1 in human keratinocytes, resulting in zinc loss from each protein and a pronounced decrease in XPA and PARP-1 binding to chromatin as demonstrated by Chip-on-Western assays. Zinc effectively restored DNA binding of PARP-1 and XPA to chromatin when zinc concentrations were equal to those of arsenite. In contrast, zinc was more effective in rescuing arsenite-augmented direct UVR-induced DNA damage than oxidative DNA damage. Taken together, our findings indicate that arsenite interferes with PARP-1 and XPA binding to chromatin, and that zinc supplementation fully restores DNA binding activity to both proteins in the cellular context. Interestingly, rescue of arsenite-inhibited DNA damage repair by supplemental zinc was more sensitive for DNA damage repaired by the XPA-associated NER pathway than for the PARP-1-dependent BER pathway. This study expands our understanding of arsenite's role in DNA repair inhibition and co-carcinogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.
Ganapathy, Vengatesh; Manyanga, Jimmy; Brame, Lacy; McGuire, Dehra; Sadhasivam, Balaji; Floyd, Evan; Rubenstein, David A.; Ramachandran, Ilangovan; Wagener, Theodore
2017-01-01
Background Electronic cigarette (EC) aerosols contain unique compounds in addition to toxicants and carcinogens traditionally found in tobacco smoke. Studies are warranted to understand the public health risks of ECs. Objective The aim of this study was to determine the genotoxicity and the mechanisms induced by EC aerosol extracts on human oral and lung epithelial cells. Methods Cells were exposed to EC aerosol or mainstream smoke extracts and DNA damage was measured using the primer anchored DNA damage detection assay (q-PADDA) and 8-oxo-dG ELISA assay. Cell viability, reactive oxygen species (ROS) and total antioxidant capacity (TAC) were measured using standard methods. mRNA and protein expression were evaluated by RT-PCR and western blot, respectively. Results EC aerosol extracts induced DNA damage in a dose-dependent manner, but independently of nicotine concentration. Overall, EC aerosol extracts induced significantly less DNA damage than mainstream smoke extracts, as measured by q-PADDA. However, the levels of oxidative DNA damage, as indicated by the presence of 8-oxo-dG, a highly mutagenic DNA lesion, were similar or slightly higher after exposure to EC aerosol compared to mainstream smoke extracts. Mechanistically, while exposure to EC extracts significantly increased ROS, it decreased TAC as well as the expression of 8-oxoguanine DNA glycosylase (OGG1), an enzyme essential for the removal of oxidative DNA damage. Conclusions Exposure to EC aerosol extracts suppressed the cellular antioxidant defenses and led to significant DNA damage. These findings emphasize the urgent need to investigate the potential long-term cancer risk of exposure to EC aerosol for vapers and the general public. PMID:28542301
Perucca, Paola; Mocchi, Roberto; Guardamagna, Isabella; Bassi, Elisabetta; Sommatis, Sabrina; Nardo, Tiziana; Prosperi, Ennio; Stivala, Lucia Anna; Cazzalini, Ornella
2018-06-01
In mammalian cells, Nucleotide Excision Repair (NER) plays a role in removing DNA damage induced by UV radiation. In Global Genome-NER subpathway, DDB2 protein forms a complex with DDB1 (UV-DDB), recognizing photolesions. During DNA repair, DDB2 interacts directly with PCNA through a conserved region in N-terminal tail and this interaction is important for DDB2 degradation. In this work, we sought to investigate the role of DDB2-PCNA association in DNA repair and cell proliferation after UV-induced DNA damage. To this end, stable clones expressing DDB2 Wt and DDB2 PCNA- were used. We have found that cells expressing a mutant DDB2 show inefficient photolesions removal, and a concomitant lack of binding to damaged DNA in vitro. Unexpected cellular behaviour after DNA damage, such as UV-resistance, increased cell growth and motility were found in DDB2 PCNA- stable cell clones, in which the most significant defects in cell cycle checkpoint were observed, suggesting a role in the new cellular phenotype. Based on these findings, we propose that DDB2-PCNA interaction may contribute to a correct DNA damage response for maintaining genome integrity. Copyright © 2018 Elsevier B.V. All rights reserved.
The effects of male age on sperm DNA damage in healthy non-smokers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmid, T; Eskenazi, B; Baumgartner, A
The trend for men to have children at older ages raises concerns that advancing age may increase the production of genetically defective sperm, increasing the risks of transmitting germ-line mutations. We investigated the associations between male age and sperm DNA damage and the influence of several lifestyle factors in a healthy non-clinical group of 80 non-smokers (age: 22-80) with no known fertility problems using the sperm Comet analyses. The average percent of DNA that migrated out of the sperm nucleus under alkaline electrophoresis increased with age (0.18% per year, p=0.006); but there was no age association for damage measured undermore » neutral conditions (p=0.7). Men who consumed >3 cups coffee per day had {approx}20% higher % tail DNA under neutral but not alkaline conditions compared to men who consumed no caffeine (p=0.005). Our findings indicate that (a) older men have increased sperm DNA damage associated with alkali-labile sites or single-strand DNA breaks, and (b) independent of age, men with substantial daily caffeine consumption have increased sperm DNA damage associated with double-strand DNA breaks. DNA damage in sperm can be converted to chromosomal aberrations and gene mutations after fertilization increasing the risks for developmental defects and genetic diseases among offspring.« less
Alleva, Renata; Manzella, Nicola; Gaetani, Simona; Ciarapica, Veronica; Bracci, Massimo; Caboni, Maria Fiorenza; Pasini, Federica; Monaco, Federica; Amati, Monica; Borghi, Battista; Tomasetti, Marco
2016-10-01
Glyphosate (GLY) and organophosphorus insecticides such as chlorpyrifos (CPF) may cause DNA damage and cancer in exposed individuals through mitochondrial dysfunction. Polyphenols ubiquitously present in fruits and vegetables, have been viewed as antioxidant molecules, but also influence mitochondrial homeostasis. Here, honey containing polyphenol compounds was evaluated for its potential protective effect on pesticide-induced genotoxicity. Honey extracts from four floral organic sources were evaluated for their polyphenol content, antioxidant activity, and potential protective effects on pesticide-related mitochondrial destabilization, reactive oxygen and nitrogen species formation, and DNA damage response in human bronchial epithelial and neuronal cells. The protective effect of honey was, then evaluated in a residential population chronically exposed to pesticides. The four honey types showed a different polyphenol profile associated with a different antioxidant power. The pesticide-induced mitochondrial dysfunction parallels ROS formation from mitochondria (mtROS) and consequent DNA damage. Honey extracts efficiently inhibited pesticide-induced mtROS formation, and reduced DNA damage by upregulation of DNA repair through NFR2. Honey supplementation enhanced DNA repair activity in a residential population chronically exposed to pesticides, which resulted in a marked reduction of pesticide-induced DNA lesions. These results provide new insight regarding the effect of honey containing polyphenols on pesticide-induced DNA damage response. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wu, Wei; Yao, Ke; Wang, Kai-jun; Lu, De-qiang; He, Ji-liang; Xu, Li-hong; Sun, Wen-jun
2008-01-01
To investigate whether the exposure to the electromagnetic noise can block reactive oxygen species (ROS) production and DNA damage of lens epithelial cells induced by 1800 MHz mobile phone radiation. The DCFH-DA method and comet assay were used respectively to detect the intracellular ROS and DNA damage of cultured human lens epithelial cells induced by 4 W/kg 1800 MHz mobile phone radiation or/and 2 muT electromagnetic noise for 24 h intermittently. 1800 MHz mobile phone radiation at 4 W/kg for 24 h increased intracellular ROS and DNA damage significantly (P<0.05). However, the ROS level and DNA damage of mobile phone radiation plus noise group were not significant enhanced (P>0.05) as compared to sham exposure group. Electromagnetic noise can block intracellular ROS production and DNA damage of human lens epithelial cells induced by 1800 MHz mobile phone radiation.
DNA damage and repair in plants under ultraviolet and ionizing radiations.
Gill, Sarvajeet S; Anjum, Naser A; Gill, Ritu; Jha, Manoranjan; Tuteja, Narendra
2015-01-01
Being sessile, plants are continuously exposed to DNA-damaging agents present in the environment such as ultraviolet (UV) and ionizing radiations (IR). Sunlight acts as an energy source for photosynthetic plants; hence, avoidance of UV radiations (namely, UV-A, 315-400 nm; UV-B, 280-315 nm; and UV-C, <280 nm) is unpreventable. DNA in particular strongly absorbs UV-B; therefore, it is the most important target for UV-B induced damage. On the other hand, IR causes water radiolysis, which generates highly reactive hydroxyl radicals (OH(•)) and causes radiogenic damage to important cellular components. However, to maintain genomic integrity under UV/IR exposure, plants make use of several DNA repair mechanisms. In the light of recent breakthrough, the current minireview (a) introduces UV/IR and overviews UV/IR-mediated DNA damage products and (b) critically discusses the biochemistry and genetics of major pathways responsible for the repair of UV/IR-accrued DNA damage. The outcome of the discussion may be helpful in devising future research in the current context.
GSTM1 and GSTT1 Genes are Associated With DNA Damage of p53 Gene in Coke-oven Workers.
He, Yuefeng; Qi, Jun; He, Fang; Zhang, Yongchang; Wang, Youlian; Zhang, Ruobing; Li, Gang
2017-06-01
This study investigated whether variations in GSTT1 and GSTM1 gene are associated with the DNA damage level of p53 gene. We quantified urinary 1-hydroxypyrene using high-performance liquid chromatography, and examined the DNA damage level of p53 gene by real-time quantitative PCR in 756 coke-oven workers. Multiplex PCR was used to detect the presence or absence of genes. DNA damage levels of p53 gene in the high exposure group and intermediate exposure group were significantly higher than that of p53 gene in the low exposure group (P < 0.01). In coke-oven workers, the DNA damage levels of subjects with non-null genotype in GSTT1 or GSTM1 gene were significantly higher than that of those with the null genotype (P < 0.01). GSTT1 and GSTM1 may modulate DNA damage levels of p53 gene when exposed to polycyclic aromatic hydrocarbons.
Leucocytes DNA damage in mice exposed to JS-118 by the comet assay.
Zhang, Tao; Hu, Jiye; Zhang, Yuchao; Zhao, Qianfei; Ning, Jun
2011-09-01
JS-118 is an extensively used insecticide in China. The present study investigated the genotoxic effect of JS-118 on whole blood at 24, 48, 72 and 96 h by using alkaline comet assay. Male Kunming mice were given 6.25, 12.5, 25, 50 and 100 mg/kg BW of JS-118 intraperitoneally. A statistically significant increase in all comet parameters indicating DNA damage was observed at 24 h post-treatment (p < 0.05). A clear concentration-dependent increase of DNA damage was revealed as evident by the OTM (arbitrary units), tail length (µm) and tail DNA (%). From 48 h post-treatment, a gradual decrease in mean comet parameters was noted. By 96 h of post-treatment, the mean comet tail length reached control levels indicating repair of damaged DNA. This study on mice showed different DNA damage depending on the concentration of JS-118 and the period of treatment. The present study provided further information of the potential risk of the genetic damage caused by JS-118.
Chronic inflammation-related DNA damage response: a driving force of gastric cardia carcinogenesis
Guo, Yi; Tian, Dongping; Yun, Hailong; Chen, Donglin; Su, Min
2015-01-01
Gastric cardia cancer (GCC) is a highly aggressive disease associated with chronic inflammation. To investigate the relationship between DNA damage response (DDR) and chronic inflammation, we collected 100 non-tumor gastric cardia specimens of Chaoshan littoral, a high-risk region for esophageal and gastric cardia cancer. A significantly higher proportion of severe chronic inflammation was found in dysplastic epithelia (80.9%) in comparison with that in non-dysplastic tissues (40.7%) (P<0.001). Immunohistochemical analysis demonstrated that DNA damage response was parallel with the chronic inflammation degrees from normal to severe inflammation (P<0.05). We found that DNA damage response was progressively increased with the progression of precancerous lesions (P<0.05). These findings provide pathological evidence that persistent chronic inflammation-related DNA damage response may be a driving force of gastric cardia carcinogenesis. Based on these findings, DNA damage response in non-malignant tissues may become a promising biomedical marker for predicting malignant transformation in the gastric cardia. PMID:25650663
Chronic inflammation-related DNA damage response: a driving force of gastric cardia carcinogenesis.
Lin, Runhua; Xiao, Dejun; Guo, Yi; Tian, Dongping; Yun, Hailong; Chen, Donglin; Su, Min
2015-02-20
Gastric cardia cancer (GCC) is a highly aggressive disease associated with chronic inflammation. To investigate the relationship between DNA damage response (DDR) and chronic inflammation, we collected 100 non-tumor gastric cardia specimens of Chaoshan littoral, a high-risk region for esophageal and gastric cardia cancer. A significantly higher proportion of severe chronic inflammation was found in dysplastic epithelia (80.9%) in comparison with that in non-dysplastic tissues (40.7%) (P<0.001). Immunohistochemical analysis demonstrated that DNA damage response was parallel with the chronic inflammation degrees from normal to severe inflammation (P<0.05). We found that DNA damage response was progressively increased with the progression of precancerous lesions (P<0.05). These findings provide pathological evidence that persistent chronic inflammation-related DNA damage response may be a driving force of gastric cardia carcinogenesis. Based on these findings, DNA damage response in non-malignant tissues may become a promising biomedical marker for predicting malignant transformation in the gastric cardia.
Kreuzer, Kenneth N.
2013-01-01
Recent advances in the area of bacterial DNA damage responses are reviewed here. The SOS pathway is still the major paradigm of bacterial DNA damage response, and recent studies have clarified the mechanisms of SOS induction and key physiological roles of SOS including a very major role in genetic exchange and variation. When considering diverse bacteria, it is clear that SOS is not a uniform pathway with one purpose, but rather a platform that has evolved for differing functions in different bacteria. Relating in part to the SOS response, the field has uncovered multiple apparent cell-cycle checkpoints that assist cell survival after DNA damage and remarkable pathways that induce programmed cell death in bacteria. Bacterial DNA damage responses are also much broader than SOS, and several important examples of LexA-independent regulation will be reviewed. Finally, some recent advances that relate to the replication and repair of damaged DNA will be summarized. PMID:24097899
Detection of anthrax lef with DNA-based photonic crystal sensors
NASA Astrophysics Data System (ADS)
Zhang, Bailin; Dallo, Shatha; Peterson, Ralph; Hussain, Syed; Weitao, Tao; Ye, Jing Yong
2011-12-01
Bacillus anthracis has posed a threat of becoming biological weapons of mass destruction due to its virulence factors encoded by the plasmid-borne genes, such as lef for lethal factor. We report the development of a fast and sensitive anthrax DNA biosensor based on a photonic crystal structure used in a total-internal-reflection configuration. For the detection of the lef gene, a single-stranded DNA lef probe was biotinylated and immobilized onto the sensor via biotin-streptavidin interactions. A positive control, lef-com, was the complementary strand of the probe, while a negative control was an unrelated single-stranded DNA fragment from the 16S rRNA gene of Acinetobacter baumannii. After addition of the biotinylated lef probe onto the sensor, significant changes in the resonance wavelength of the sensor were observed, resulting from binding of the probe to streptavidin on the sensor. The addition of lef-com led to another significant increase as a result of hybridization between the two DNA strands. The detection sensitivity for the target DNA reached as low as 0.1 nM. In contrast, adding the unrelated DNAs did not cause an obvious shift in the resonant wavelength. These results demonstrate that detection of the anthrax lef by the photonic crystal structure in a total-internal-reflection sensor is highly specific and sensitive.
Dynamic maps of UV damage formation and repair for the human genome
Hu, Jinchuan; Adebali, Ogun; Adar, Sheera; Sancar, Aziz
2017-01-01
Formation and repair of UV-induced DNA damage in human cells are affected by cellular context. To study factors influencing damage formation and repair genome-wide, we developed a highly sensitive single-nucleotide resolution damage mapping method [high-sensitivity damage sequencing (HS–Damage-seq)]. Damage maps of both cyclobutane pyrimidine dimers (CPDs) and pyrimidine-pyrimidone (6-4) photoproducts [(6-4)PPs] from UV-irradiated cellular and naked DNA revealed that the effect of transcription factor binding on bulky adducts formation varies, depending on the specific transcription factor, damage type, and strand. We also generated time-resolved UV damage maps of both CPDs and (6-4)PPs by HS–Damage-seq and compared them to the complementary repair maps of the human genome obtained by excision repair sequencing to gain insight into factors that affect UV-induced DNA damage and repair and ultimately UV carcinogenesis. The combination of the two methods revealed that, whereas UV-induced damage is virtually uniform throughout the genome, repair is affected by chromatin states, transcription, and transcription factor binding, in a manner that depends on the type of DNA damage. PMID:28607063
Dynamic maps of UV damage formation and repair for the human genome.
Hu, Jinchuan; Adebali, Ogun; Adar, Sheera; Sancar, Aziz
2017-06-27
Formation and repair of UV-induced DNA damage in human cells are affected by cellular context. To study factors influencing damage formation and repair genome-wide, we developed a highly sensitive single-nucleotide resolution damage mapping method [high-sensitivity damage sequencing (HS-Damage-seq)]. Damage maps of both cyclobutane pyrimidine dimers (CPDs) and pyrimidine-pyrimidone (6-4) photoproducts [(6-4)PPs] from UV-irradiated cellular and naked DNA revealed that the effect of transcription factor binding on bulky adducts formation varies, depending on the specific transcription factor, damage type, and strand. We also generated time-resolved UV damage maps of both CPDs and (6-4)PPs by HS-Damage-seq and compared them to the complementary repair maps of the human genome obtained by excision repair sequencing to gain insight into factors that affect UV-induced DNA damage and repair and ultimately UV carcinogenesis. The combination of the two methods revealed that, whereas UV-induced damage is virtually uniform throughout the genome, repair is affected by chromatin states, transcription, and transcription factor binding, in a manner that depends on the type of DNA damage.
Negureanu, Lacramioara; Salsbury, Freddie R.
2012-01-01
The cellular response to DNA damage signaling by MMR proteins is incompletely understood. It is generally accepted that MMR-dependent apoptosis pathway in response to DNA damage detection is independent of MMR's DNA repair function. In this study we investigate correlated motions in response to the binding of mismatched and PCL DNA fragments by MutSα, as derived from 50 ns molecular dynamics simulations. The protein dynamics in response to the mismatched and damaged DNA recognition suggests that MutSα signals their recognition through independent pathways providing evidence for the molecular origin of the MMR-dependent apoptosis. MSH2 subunit is indicated to play a key role in signaling both mismatched and damaged DNA recognition; localized and collective motions within the protein allow identifying sites on the MSH2 surface possible involved in recruiting proteins responsible for downstream events. Unlike in the mismatch complex, predicted key communication sites specific for the damage recognition are on the list of known cancer causing mutations or deletions. This confirms MSH2's role in signaling DNA-damage induced apoptosis and suggests that defects in MMR alone is sufficient to trigger tumorigenesis, supporting the experimental evidence that MMR-damage response function could protect from the early occurrence of tumors. Identifying these particular communication sites may have implications for the treatment of cancers that are not defective for MMR, but are unable to function optimally for MMR-dependent responses following DNA damage such as the case of resistance to cisplatin. PMID:22712459
Biomarkers of oxidative stress and DNA damage in agricultural workers: A pilot study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muniz, Juan F.; McCauley, Linda; Scherer, J.
Oxidative stress and DNA damage have been proposed as mechanisms linking pesticide exposure to health effects such as cancer and neurological diseases. A study of pesticide applicators and farmworkers was conducted to examine the relationship between organophosphate pesticide exposure and biomarkers of oxidative stress and DNA damage. Urine samples were analyzed for OP metabolites and 8-hydroxy-2'-deoxyguanosine (8-OH-dG). Lymphocytes were analyzed for oxidative DNA repair activity and DNA damage (Comet assay), and serum was analyzed for lipid peroxides (i.e., malondialdehyde, MDA). Cellular damage in agricultural workers was validated using lymphocyte cell cultures. Urinary OP metabolites were significantly higher in farmworkers andmore » applicators (p < 0.001) when compared to controls. 8-OH-dG levels were 8.5 times and 2.3 times higher in farmworkers or applicators (respectively) than in controls. Serum MDA levels were 4.9 times and 24 times higher in farmworkers or applicators (respectively) than in controls. DNA damage (Comet assay) and oxidative DNA repair were significantly greater in lymphocytes from applicators and farmworkers when compared with controls. Markers of oxidative stress (i.e., increased reactive oxygen species and reduced glutathione levels) and DNA damage were also observed in lymphocyte cell cultures treated with an OP. The findings from these in vivo and in vitro studies indicate that organophosphate pesticides induce oxidative stress and DNA damage in agricultural workers. These biomarkers may be useful for increasing our understanding of the link between pesticides and a number of health effects.« less
DNA damage induced by the direct effect of radiation
NASA Astrophysics Data System (ADS)
Yokoya, A.; Shikazono, N.; Fujii, K.; Urushibara, A.; Akamatsu, K.; Watanabe, R.
2008-10-01
We have studied the nature of DNA damage induced by the direct effect of radiation. The yields of single- (SSB) and double-strand breaks (DSB), base lesions and clustered damage were measured using the agarose gel electrophoresis method after exposing to various kinds of radiations to a simple model DNA molecule, fully hydrated closed-circular plasmid DNA (pUC18). The yield of SSB does not show significant dependence on linear energy transfer (LET) values. On the other hand, the yields of base lesions revealed by enzymatic probes, endonuclease III (Nth) and formamidopyrimidine DNA glycosylase (Fpg), which excise base lesions and leave a nick at the damage site, strongly depend on LET values. Soft X-ray photon (150 kVp) irradiation gives a maximum yield of the base lesions detected by the enzymatic probes as SSB and clustered damage, which is composed of one base lesion and proximate other base lesions or SSBs. The clustered damage is visualized as an enzymatically induced DSB. The yields of the enzymatically additional damages strikingly decrease with increasing levels of LET. These results suggest that in higher LET regions, the repair enzymes used as probes are compromised because of the dense damage clustering. The studies using simple plasmid DNA as a irradiation sample, however, have a technical difficulty to detect multiple SSBs in a plasmid DNA. To detect the additional SSBs induced in opposite strand of the first SSB, we have also developed a novel technique of DNA-denaturation assay. This allows us to detect multiply induced SSBs in both strand of DNA, but not induced DSB.
Anetor, J I
2010-12-01
Increased reliance on chemicals in the industrializing developing countries places new demands on them, as they have limited resources to adequately regulate exposure to these chemicals. Majority of the chemicals cause mutation in DNA among others. The consequences of increased exposure to chemicals on the genome and their mitigation by Nutrigenomics, a science concerned with the prevention of genome damage by nutritional factors is poorly recognized in these countries. Growing evidence indicates that genome instability in the absence of overt exposure to genotoxicants is a sensitive marker of nutritional deficiency. Therefore, the increasing prevalence of chemicals in these countries which contribute to genome disturbances and the widespread nutritional deficiency, at least double the risk of genome instability.Environmental pollutants such polychlorobiphenyls, metal fumes, and fly ash, common in these countries are known to increase urinary level of 8-hydroxy deoxyguanosine (8-OHdG), a marker of oxidative DNA damage, precursor of genome instability.Increasing evidence emphasizes the importance of zinc in both genetic stability and function. Zinc deficiency has been linked with oxidative stress, DNA damage and impairment of repair mechanisms as well as risk of cancer. Zinc plays an important role in vitamin A metabolism from which the retinoids are derived. Zinc is also an important component of the p53 protein, a DNA damage sensor which prevents genetic lesions contributing to genome instability.Zinc deficiency ranks among the top 10 leading causes of death in developing countries. A large proportion of the population in these countries ingests less than 50% of the RDA for Zn.This makes this genome protective nutrient among others grossly inadequate. Folate now also recognized for its role in genome stability, is among the nutrients frequently cited as critical to genome stability. Folate deficiency of sub- clinical degree is common. Reduced folate intake causes as much genome damage as that induced by exposure to a high dose of ionizing radiation. Even moderate folate deficiency causes very severe damage to the genome in the general population. All these accentuate the susceptibility of populations in these nations to environmental toxic assault requiring preventive measures employing the science of Nutrigenomics, probably augmented with adaptive response pathways such as the Nrf2 signaling pathway. Human populations in developing countries are increasingly exposed to a diverse array of industrial chemicals, which adversely modify the genome, the precursor of many diseases especially cancer. Nutrigenomics encompasses nutritional factors that protect the genome from damage and is a promising new field that can be exploited, perhaps augmented with the Nrf2 signaling pathway with international collaboration in these nations as an antidote to chemical-induced genome instability.
Gear Damage Detection Using Oil Debris Analysis
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.
2001-01-01
The purpose of this paper was to verify, when using an oil debris sensor, that accumulated mass predicts gear pitting damage and to identify a method to set threshold limits for damaged gears. Oil debris data was collected from 8 experiments with no damage and 8 with pitting damage in the NASA Glenn Spur Gear Fatigue Rig. Oil debris feature analysis was performed on this data. Video images of damage progression were also collected from 6 of the experiments with pitting damage. During each test, data from an oil debris sensor was monitored and recorded for the occurrence of pitting damage. The data measured from the oil debris sensor during experiments with damage and with no damage was used to identify membership functions to build a simple fuzzy logic model. Using fuzzy logic techniques and the oil debris data, threshold limits were defined that discriminate between stages of pitting wear. Results indicate accumulated mass combined with fuzzy logic analysis techniques is a good predictor of pitting damage on spur gears.
NASA Astrophysics Data System (ADS)
Pal, Sarika; Verma, Alka; Raikwar, S.; Prajapati, Y. K.; Saini, J. P.
2018-05-01
In this paper, graphene-coated black phosphorus at the metal surface for the detection of DNA hybridization event is numerically demonstrated. The strategy consists of placing the sensing medium on top of black phosphorus-graphene-coated SPR which interfaces with phosphate-buffered saline solution carrying single-stranded DNA. Upon hybridization with its complementary DNA, desorption of the nanostructures takes place and thus enables the sensitive detection of the DNA hybridization event. The proposed sensor exhibits a sensitivity (125 ο/RIU), detection accuracy (0.95) and quality factor (13.62 RIU-1) for complementary DNA. In comparison with other reported papers, our suggested sensor provides much better performance. Thus, this label-free DNA detection platform should spur off new interest towards the use of black phosphorus-graphene-coated SPR interfaces.
A novel input-parasitic compensation technique for a nanopore-based CMOS DNA detection sensor
NASA Astrophysics Data System (ADS)
Kim, Jungsuk
2016-12-01
This paper presents a novel input-parasitic compensation (IPC) technique for a nanopore-based complementary metal-oxide-semiconductor (CMOS) DNA detection sensor. A resistive-feedback transimpedance amplifier is typically adopted as the headstage of a DNA detection sensor to amplify the minute ionic currents generated from a nanopore and convert them to a readable voltage range for digitization. But, parasitic capacitances arising from the headstage input and the nanopore often cause headstage saturation during nanopore sensing, thereby resulting in significant DNA data loss. To compensate for the unwanted saturation, in this work, we propose an area-efficient and automated IPC technique, customized for a low-noise DNA detection sensor, fabricated using a 0.35- μm CMOS process; we demonstrated this prototype in a benchtop test using an α-hemolysin ( α-HL) protein nanopore.
Effects of different levels of vitamin C on UV radiation-induced DNA damage
NASA Astrophysics Data System (ADS)
Zhou, Dianfeng; Heng, Hang; Ji, Kang; Ke, Weizhong
2005-05-01
The Raman spectra of DNA in different levels of vitamin C with 10- and 30-min ultraviolet (UV) radiations were reported. The intensity of UV radiation was 18.68 W/m2. The experimental results proved that vitamin C could alone prevent UV radiation from damaging DNA, but the effects depended on the concentration of vitamin C. When the concentration of vitamin C was about 0.08-0.4 mmol/L, vitamin C decreased UV radiation-induced DNA's damage. When the concentration of vitamin C exceeded 0.4 mmol/L, vitamin C accelerated DNA's damage instead. Maybe the reason is that when DNA in aqueous solution is radiated by UV, free radicals come into being, and vitamin C can scavenge free radicals, so vitamin C in lower concentration can protect DNA. The quantity of free radicals is finite, when vitamin C is superfluous, free radicals have been scavenged absolutely and vitamin C is residual. Vitamin C is a strong reductant. When the mixture of DNA and residual vitamin C is radiated by UV, vitamin C reacts with DNA. The more residual vitamin C and the longer time of UV radiation, the more DNA is damaged.
Salazar, J J; Van Houten, B
1997-11-01
To test the hypothesis that mitochondrial DNA (mtDNA) is more prone to reactive oxygen species (ROS) damage than nuclear DNA, a continuous flux of hydrogen peroxide (H2O2) was produced with the glucose/glucose oxidase system. Using a horse radish peroxidase (HRPO)-based colorimetric assay to detect H2O2, glucose oxidase (GO; 12 mU/ml) produced 95 microM of H2O2 in 1 h, whereas only 46 microM of hydrogen peroxide accumulated in the presence of SV40-transformed human fibroblasts ( approximately 1 x 10(6). DNA damage was assessed in the mitochondira and three nuclear regions using a quantitative PCR assay. GO (12 mU/ml) resulted in more damage to the mitochondrial DNA (2.250 +/- 0.045 lesions/10 kb) than in any one of three nuclear targets, which included the non-expressed beta-globin locus (0.436 +/- 0.029 lesions/10 kb); and the active DNA polymerase b gene (0.442 +/- 0.037 lesions/10 kb); and the active hprt gene (0.310 +/- 0.025). Damage to the mtDNA occurred within 15 min of GO treatment, whereas nuclear damage did not appear until after 30 min, and reached a maximum after 60 min. Repair of mitochondrial damage after a 15 min GO (6 mU/ml) treatment was examined. Mitochondria repaired 50% of the damage after 1 h, and by 6 h all the damage was repaired. Higher doses of GO-generated H202, or more extended treatment periods, lead to mitochondrial DNA damage which was not repaired. Mitochondrial function was monitored using the MTT (3,(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide) assay. A 15 min treatment with 6 mU/ml of GO decreased mitochondrial activity to 80% of the control; the activity recovered completely within 1 h after damage. These data show that GO-generated H202 causes acute damage to mtDNA and function, and demonstrate that this organelle is an important site for the cellular toxicity of ROS.
Link between DNA damage and centriole disengagement/reduplication in untransformed human cells.
Douthwright, Stephen; Sluder, Greenfield
2014-10-01
The radiation and radiomimetic drugs used to treat human tumors damage DNA in both cancer cells and normal proliferating cells. Centrosome amplification after DNA damage is well established for transformed cell types but is sparsely reported and not fully understood in untransformed cells. We characterize centriole behavior after DNA damage in synchronized untransformed human cells. One hour treatment of S phase cells with the radiomimetic drug, Doxorubicin, prolongs G2 by at least 72 h, though 14% of the cells eventually go through mitosis in that time. By 72 h after DNA damage we observe a 52% incidence of centriole disengagement plus a 10% incidence of extra centrioles. We find that either APC/C or Plk activities can disengage centrioles after DNA damage, though they normally work in concert. All disengaged centrioles are associated with γ-tubulin and maturation markers and thus, should in principle be capable of reduplicating and organizing spindle poles. The low incidence of reduplication of disengaged centrioles during G2 is due to the p53-dependent expression of p21 and the consequent loss of Cdk2 activity. We find that 26% of the cells going through mitosis after DNA damage contain disengaged or extra centrioles. This could produce genomic instability through transient or persistent spindle multipolarity. Thus, for cancer patients the use of DNA damaging therapies raises the chances of genomic instability and evolution of transformed characteristics in proliferating normal cell populations. © 2014 Wiley Periodicals, Inc.
Retana-Ugalde, Raquel; Altamirano-Lozano, Mario; Mendoza-Núñez, Víctor Manuel
2007-01-01
Daily alcohol consumption and ageing have been linked with DNA damage, leading to the hypothesis that chronic alcoholism causes DNA damage similar to that which occurs with ageing. Likewise, it has been suggested that chronic alcoholism is the cause of accelerated or premature ageing. The objective of this study was to evaluate the frequency and magnitude of DNA damage among adults with chronic alcoholism and healthy older adults residing in Mexico City. A cross-sectional and comparative study was carried out in a sample of 53 chronic alcoholics of 25-44 years of age (without alcohol ingestion in the past 30 days) without additional diseases, 26 healthy subjects >or=60 years of age, and 25 healthy adults of 25-44 years of age without alcohol addiction, all residents of Mexico City during the past 10 years. DNA damage was evaluated by single-cell gel electrophoresis technique (Comet assay). Our results showed a similar percentage of DNA damage between healthy elderly subjects and chronic alcoholics (62 vs 55%, P >0.05), although average DNA migration was greater in alcoholics than in the elderly (78.1 +/- 33.2 vs 58.6 +/- 26.2, P = 0.09). However, the percentage of subjects with more than six damaged cells was higher in the older adults subjects group than in the group chronic alcoholics (19 vs 35%, P = 0.16). Data suggest that DNA damage is not similar in young subjects with chronic alcoholism that which occurs with ageing.
Silver, Andrew; Guenther, Thomas; Siedentopf, Sandra; Ross, Jochen; Vo, Diep-Khanh; Roessner, Albert
2017-01-01
Dysregulation of c-Jun N-terminal kinase (JNK) activation promoted DNA damage response bypass and tumorigenesis in our model of hydrogen peroxide-associated ulcerative colitis (UC) and in patients with quiescent UC (QUC), UC-related dysplasia, and UC-related carcinoma (UC-CRC), thereby adapting to oxidative stress. In the UC model, we have observed features of oncogenic transformation: increased proliferation, undetected DNA damage, and apoptosis resistance. Here, we show that Chk1 was downregulated but activated in the acute and quiescent chronic phases. In both phases, Chk1 was linked to DNA damage response bypass by suppressing JNK activation following oxidative stress, promoting cell cycle progression despite DNA damage. Simultaneously, activated Chk1 was bound to chromatin. This triggered histone acetylation and the binding of histone acetyltransferases and transcription factors to chromatin. Thus, chromatin-immobilized activated Chk1 executed a dual function by suppressing DNA damage response and simultaneously inducing chromatin modulation. This caused undetected DNA damage and increased cellular proliferation through failure to transmit the appropriate DNA damage signal. Findings in vitro were corroborated by chromatin accumulation of activated Chk1, Ac-H3, Ac-H4, and c-Jun in active UC (AUC) in vivo. Targeting chromatin-bound Chk1, GCN5, PCAF, and p300/CBP could be a novel therapeutic strategy to prevent UC-related tumor progression. PMID:28751935
Seismic damage identification using multi-line distributed fiber optic sensor system
NASA Astrophysics Data System (ADS)
Ou, Jinping; Hou, Shuang
2005-06-01
Determination of the actual nonlinear inelastic response mechanisms developed by civil structures such as buildings and bridges during strong earthquakes and post-earthquake damage assessment of these structures represent very difficult challenges for earthquake structural engineers. One of the main reasons is that the traditional sensor can't serve for such a long period to cover an earthquake and the seismic damage location in the structure can't be predicted in advance definitely. It is thought that the seismic damage of reinforced concrete (RC) structure can be related to the maximum response the structure, which can also be related to the cracks on the concrete. A distributed fiber optic sensor was developed to detect the cracks on the reinforced concrete structure under load. Fiber optic couples were used in the sensor system to extend the sensor system's capacity from one random point detection to more. An optical time domain reflectometer (OTDR) is employed for interrogation of the sensor signal. Fiber optic sensors are attached on the surface of the concrete by the epoxy glue. By choosing the strength of epoxy, the damage state of the concrete can be responded to the occurrence of the Fresnel scattering in the fiber optic sensor. Experiments involved monotonic loading to failure. Finally, the experimental results in terms of crack detection capability are presented and discussed.
Oxidative DNA damage induced by a hydroperoxide derivative of cyclophosphamide.
Murata, Mariko; Suzuki, Toshinari; Midorikawa, Kaoru; Oikawa, Shinji; Kawanishi, Shosuke
2004-09-15
Interstrand DNA cross-linking has been considered to be the primary action mechanism of cyclophosphamide (CP) and its hydroperoxide derivative, 4-hydroperoxycyclophosphamide (4-HC). To clarify the mechanism of anti-tumor effects by 4-HC, we investigated DNA damage in a human leukemia cell line, HL-60, and its H(2)O(2)-resistant clone HP100. Apoptosis DNA ladder formation was detected in HL-60 cells treated with 4-HC, whereas it was not observed in HP100 cells. 4-HC significantly increased 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formation, a marker of oxidative DNA damage, in HL-60 cells. On the other hand, CP did not significantly induce 8-oxodG formation and apoptosis in HL-60 cells under the same conditions as did 4-HC. Using (32)P-labeled DNA fragments from the human p53 tumor suppressor gene, 4-HC was found to cause Cu(II)-mediated oxidative DNA damage, but CP did not. Catalase inhibited 4-HC-induced DNA damage, including 8-oxodG formation, suggesting the involvement of H(2)O(2). The generation of H(2)O(2) during 4-HC degradation was ascertained by procedures using scopoletin and potassium iodide. We conclude that, in addition to DNA cross-linking, oxidative DNA damage through H(2)O(2) generation may participate in the anti-tumor effects of 4-HC.
Schons-Fonseca, Luciane; da Silva, Josefa B; Milanez, Juliana S; Domingos, Renan H; Smith, Janet L; Nakaya, Helder I; Grossman, Alan D; Ho, Paulo L; da Costa, Renata M A
2016-02-18
We determined the effects of DNA damage caused by ultraviolet radiation on gene expression in Leptospira interrogans using DNA microarrays. These data were integrated with DNA binding in vivo of LexA1, a regulator of the DNA damage response, assessed by chromatin immunoprecipitation and massively parallel DNA sequencing (ChIP-seq). In response to DNA damage, Leptospira induced expression of genes involved in DNA metabolism, in mobile genetic elements and defective prophages. The DNA repair genes involved in removal of photo-damage (e.g. nucleotide excision repair uvrABC, recombinases recBCD and resolvases ruvABC) were not induced. Genes involved in various metabolic pathways were down regulated, including genes involved in cell growth, RNA metabolism and the tricarboxylic acid cycle. From ChIP-seq data, we observed 24 LexA1 binding sites located throughout chromosome 1 and one binding site in chromosome 2. Expression of many, but not all, genes near those sites was increased following DNA damage. Binding sites were found as far as 550 bp upstream from the start codon, or 1 kb into the coding sequence. Our findings indicate that there is a shift in gene expression following DNA damage that represses genes involved in cell growth and virulence, and induces genes involved in mutagenesis and recombination. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Mokra, Katarzyna; Kuźmińska-Surowaniec, Agnieszka; Woźniak, Katarzyna; Michałowicz, Jaromir
2017-02-01
In the present study, we have investigated DNA-damaging potential of BPA and its analogs, i.e. bisphenol S (BPS), bisphenol F (BPF) and bisphenol AF (BPAF) in human peripheral blood mononuclear cells (PBMCs) using the alkaline and neutral versions of the comet assay, which allowed to evaluate DNA single strand-breaks (SSBs) and double strand-breaks (DSBs). The use of the alkaline version of comet assay made also possible to analyze the kinetics of DNA repair in PBMCs after exposure of the cells to BPA or its analogs. We have observed an increase in DNA damage in PBMCs treated with BPA or its analogs in the concentrations ranging from 0.01 to 10 μg/ml after 1 and 4 h incubation. It was noted that bisphenols studied caused DNA damage mainly via SSBs, while DNA fragmentation via double DSBs was low. The strongest changes in DNA damage were provoked by BPA and particularly BPAF, which were capable of inducing SSBs even at 0.01 μg/ml, while BPS caused the lowest changes (only at 10 μg/ml). We have also observed that PBMCs significantly repaired bisphenols-induced DNA damage but they were unable (excluding cells treated with BPS) to repair totally DNA breaks. Copyright © 2016 Elsevier Ltd. All rights reserved.
Huang, Xiwei; Yu, Hao; Liu, Xu; Jiang, Yu; Yan, Mei; Wu, Dongping
2015-09-01
The existing ISFET-based DNA sequencing detects hydrogen ions released during the polymerization of DNA strands on microbeads, which are scattered into microwell array above the ISFET sensor with unknown distribution. However, false pH detection happens at empty microwells due to crosstalk from neighboring microbeads. In this paper, a dual-mode CMOS ISFET sensor is proposed to have accurate pH detection toward DNA sequencing. Dual-mode sensing, optical and chemical modes, is realized by integrating a CMOS image sensor (CIS) with ISFET pH sensor, and is fabricated in a standard 0.18-μm CIS process. With accurate determination of microbead physical locations with CIS pixel by contact imaging, the dual-mode sensor can correlate local pH for one DNA slice at one location-determined microbead, which can result in improved pH detection accuracy. Moreover, toward a high-throughput DNA sequencing, a correlated-double-sampling readout that supports large array for both modes is deployed to reduce pixel-to-pixel nonuniformity such as threshold voltage mismatch. The proposed CMOS dual-mode sensor is experimentally examined to show a well correlated pH map and optical image for microbeads with a pH sensitivity of 26.2 mV/pH, a fixed pattern noise (FPN) reduction from 4% to 0.3%, and a readout speed of 1200 frames/s. A dual-mode CMOS ISFET sensor with suppressed FPN for accurate large-arrayed pH sensing is proposed and demonstrated with state-of-the-art measured results toward accurate and high-throughput DNA sequencing. The developed dual-mode CMOS ISFET sensor has great potential for future personal genome diagnostics with high accuracy and low cost.
Multiple damage identification on a wind turbine blade using a structural neural system
NASA Astrophysics Data System (ADS)
Kirikera, Goutham R.; Schulz, Mark J.; Sundaresan, Mannur J.
2007-04-01
A large number of sensors are required to perform real-time structural health monitoring (SHM) to detect acoustic emissions (AE) produced by damage growth on large complicated structures. This requires a large number of high sampling rate data acquisition channels to analyze high frequency signals. To overcome the cost and complexity of having such a large data acquisition system, a structural neural system (SNS) was developed. The SNS reduces the required number of data acquisition channels and predicts the location of damage within a sensor grid. The sensor grid uses interconnected sensor nodes to form continuous sensors. The combination of continuous sensors and the biomimetic parallel processing of the SNS tremendously reduce the complexity of SHM. A wave simulation algorithm (WSA) was developed to understand the flexural wave propagation in composite structures and to utilize the code for developing the SNS. Simulation of AE responses in a plate and comparison with experimental results are shown in the paper. The SNS was recently tested by a team of researchers from University of Cincinnati and North Carolina A&T State University during a quasi-static proof test of a 9 meter long wind turbine blade at the National Renewable Energy Laboratory (NREL) test facility in Golden, Colorado. Twelve piezoelectric sensor nodes were used to form four continuous sensors to monitor the condition of the blade during the test. The four continuous sensors are used as inputs to the SNS. There are only two analog output channels of the SNS, and these signals are digitized and analyzed in a computer to detect damage. In the test of the wind turbine blade, multiple damages were identified and later verified by sectioning of the blade. The results of damage identification using the SNS during this proof test will be shown in this paper. Overall, the SNS is very sensitive and can detect damage on complex structures with ribs, joints, and different materials, and the system relatively inexpensive and simple to implement on large structures.
Alvarado-Cruz, Isabel; Sánchez-Guerra, Marco; Hernández-Cadena, Leticia; De Vizcaya-Ruiz, Andrea; Mugica, Violeta; Pelallo-Martínez, Nadia Azenet; Solís-Heredia, María de Jesús; Byun, Hyang-Min; Baccarelli, Andrea; Quintanilla-Vega, Betzabet
2017-01-01
DNA methylation in DNA repair genes participates in the DNA damage regulation. Particulate matter (PM), which has metals and polycyclic aromatic hydrocarbons (PAHs) adsorbed, among others has been linked to adverse health outcomes and may modify DNA methylation. To evaluate PM exposure impact on repetitive elements and gene-specific DNA methylation and DNA damage, we conducted a cross-sectional study in 150 schoolchildren (7-10 years old) from an urbanized, industrial area of the metropolitan area of Mexico City (MAMC), which frequently exhibits PM concentrations above safety standards. Methylation (5mC) of long interspersed nuclear element-1 (LINE1) and DNA repair gene (OGG1, APEX, and PARP1) was assessed by pyrosequencing in peripheral mononuclear cells, DNA damage by comet assay and DNA oxidation by 8-OHdG content. PAH and metal contents in PM 10 (≤10μm aerodynamic diameter) were determined by HPLC-MS and ICP-AES, respectively. Multiple regression analysis between DNA methylation, DNA damage, and PM 10 exposure showed that PM 10 was significantly associated with oxidative DNA damage; a 1% increase in 5mC at all CpG sites in PARP1 promoter was associated with a 35% increase in 8-OHdG, while a 1% increase at 1, 2, and 3 CpG sites resulted in 38, 9, and 56% increments, respectively. An increase of 10pg/m 3 in benzo[b]fluoranthene content of PM 10 was associated with a 6% increase in LINE1 methylation. Acenaphthene, indene [1,2,3-cd] pyrene, and pyrene concentrations correlated with higher dinucleotide methylation in OGG1, APEX and PARP1 genes, respectively. Vanadium concentration correlated with increased methylation at selected APEX and PARP1 CpG sites. DNA repair gene methylation was significantly correlated with DNA damage and with specific PM 10 -associated PAHs and Vanadium. Data suggest that exposure to PM and its components are associated with differences in DNA methylation of repair genes in children, which may contribute to DNA damage. Copyright © 2016 Elsevier B.V. All rights reserved.
Nair, Nidhi; Shoaib, Muhammad
2017-01-01
Genomic DNA is compacted into chromatin through packaging with histone and non-histone proteins. Importantly, DNA accessibility is dynamically regulated to ensure genome stability. This is exemplified in the response to DNA damage where chromatin relaxation near genomic lesions serves to promote access of relevant enzymes to specific DNA regions for signaling and repair. Furthermore, recent data highlight genome maintenance roles of chromatin through the regulation of endogenous DNA-templated processes including transcription and replication. Here, we review research that shows the importance of chromatin structure regulation in maintaining genome integrity by multiple mechanisms including facilitating DNA repair and directly suppressing endogenous DNA damage. PMID:28698521
Experimental damage detection of wind turbine blade using thin film sensor array
NASA Astrophysics Data System (ADS)
Downey, Austin; Laflamme, Simon; Ubertini, Filippo; Sarkar, Partha
2017-04-01
Damage detection of wind turbine blades is difficult due to their large sizes and complex geometries. Additionally, economic restraints limit the viability of high-cost monitoring methods. While it is possible to monitor certain global signatures through modal analysis, obtaining useful measurements over a blade's surface using off-the-shelf sensing technologies is difficult and typically not economical. A solution is to deploy dedicated sensor networks fabricated from inexpensive materials and electronics. The authors have recently developed a novel large-area electronic sensor measuring strain over very large surfaces. The sensing system is analogous to a biological skin, where local strain can be monitored over a global area. In this paper, we propose the utilization of a hybrid dense sensor network of soft elastomeric capacitors to detect, localize, and quantify damage, and resistive strain gauges to augment such dense sensor network with high accuracy data at key locations. The proposed hybrid dense sensor network is installed inside a wind turbine blade model and tested in a wind tunnel to simulate an operational environment. Damage in the form of changing boundary conditions is introduced into the monitored section of the blade. Results demonstrate the ability of the hybrid dense sensor network, and associated algorithms, to detect, localize, and quantify damage.
Fiber Optic Strain Sensor for Planetary Gear Diagnostics
NASA Technical Reports Server (NTRS)
Kiddy, Jason S.; Lewicki, David G.; LaBerge, Kelsen E.; Ehinger, Ryan T.; Fetty, Jason
2011-01-01
This paper presents a new sensing approach for helicopter damage detection in the planetary stage of a helicopter transmission based on a fiber optic strain sensor array. Complete helicopter transmission damage detection has proven itself a difficult task due to the complex geometry of the planetary reduction stage. The crowded and complex nature of the gearbox interior does not allow for attachment of sensors within the rotating frame. Hence, traditional vibration-based diagnostics are instead based on measurements from externally mounted sensors, typically accelerometers, fixed to the gearbox exterior. However, this type of sensor is susceptible to a number of external disturbances that can corrupt the data, leading to false positives or missed detection of potentially catastrophic faults. Fiber optic strain sensors represent an appealing alternative to the accelerometer. Their small size and multiplexibility allows for potentially greater sensing resolution and accuracy, as well as redundancy, when employed as an array of sensors. The work presented in this paper is focused on the detection of gear damage in the planetary stage of a helicopter transmission using a fiber optic strain sensor band. The sensor band includes an array of 13 strain sensors, and is mounted on the ring gear of a Bell Helicopter OH-58C transmission. Data collected from the sensor array is compared to accelerometer data, and the damage detection results are presented
Acevedo-Torres, Karina; Fonseca-Williams, Sharon; Ayala-Torres, Sylvette; Torres-Ramos, Carlos A.
2010-01-01
The Saccharomyces cerevisiae APN1 gene that participates in base excision repair has been localized both in the nucleus and the mitochondria. APN1 deficient cells (apn1Δ) show increased mutation frequencies in mitochondrial DNA (mtDNA) suggesting that APN1 is also important for mtDNA stability. To understand APN1-dependent mtDNA repair processes we studied the formation and repair of mtDNA lesions in cells exposed to methyl methanesulfonate (MMS). We show that MMS induces mtDNA damage in a dose-dependent fashion and that deletion of the APN1 gene enhances the susceptibility of mtDNA to MMS. Repair kinetic experiments demonstrate that in wild-type cells (WT) it takes 4 hr to repair the damage induced by 0.1% MMS, whereas in the apn1Δ strain there is a lag in mtDNA repair that results in significant differences in the repair capacity between the two yeast strains. Analysis of lesions in nuclear DNA (nDNA) after treatment with 0.1% MMS shows a significant difference in the amount of nDNA lesions between WT and apn1Δ cells. Interestingly, comparisons between nDNA and mtDNA damage show that nDNA is more sensitive to the effects of MMS treatment. However, both strains are able to repair the nDNA lesions, contrary to mtDNA repair, which is compromised in the apn1Δ mutant strain. Therefore, although nDNA is more sensitive than mtDNA to the effects of MMS, deletion of APN1 has a stronger phenotype in mtDNA repair than in nDNA. These results highlight the prominent role of APN1 in the repair of environmentally induced mtDNA damage. PMID:19197988
Impact of genomic damage and ageing on stem cell function
Behrens, Axel; van Deursen, Jan M.; Rudolph, K. Lenhard; Schumacher, Björn
2014-01-01
Impairment of stem cell function contributes to the progressive deterioration of tissue maintenance and repair with ageing. Evidence is mounting that age-dependent accumulation of DNA damage in both stem cells and cells that comprise the stem cell microenvironment are partly responsible for stem cell dysfunction with ageing. Here, we review the impact of the various types of DNA damage that accumulate with ageing on stem cell functionality, as well as the development of cancer. We discuss DNA-damage-induced cell intrinsic and extrinsic alterations that influence these processes, and review recent advances in understanding systemic adjustments to DNA damage and how they affect stem cells. PMID:24576896
Repair Mechanism of UV-damaged DNA in Xeroderma Pigmentosum | Center for Cancer Research
Xeroderma pigmentosum (XP) is a rare, inherited disorder characterized by extreme skin sensitivity to ultraviolet (UV) rays from sunlight. XP is caused by mutations in genes involved in nucleotide excision repair (NER) of damaged DNA. Normal cells are usually able to fix this damage before it leads to problems; however, the DNA damage is not repaired normally in patients with
Shamsi, M B; Venkatesh, S; Tanwar, M; Singh, G; Mukherjee, S; Malhotra, N; Kumar, R; Gupta, N P; Mittal, S; Dada, R
2010-05-01
The growing concern on transmission of genetic diseases in assisted reproduction technique (ART) and the lacunae in the conventional semen analysis to accurately predict the semen quality has led to the need for new techniques to identify the best quality sperm that can be used in assisted procreation techniques. This study analyzes the sperm parameters in the context of DNA damage in cytogenetically normal, AZF non deleted infertile men for DNA damage by comet assay. Seventy infertile men and 40 fertile controls were evaluated for the semen quality by conventional semen parameters and the sperms were also analyzed for DNA integrity by comet assay. The patients were classified into oligozoospermic (O), asthenozoospermic (A), teratozoospermic (T), oligoasthenoteratozoospermic (OAT) categories and infertile men with normal semen profile. The extent of DNA damage was assessed by visual scoring method of comets. Idiopathic infertile men with normal semen profile (n=18) according to conventional method and patients with history of spontaneous abortions and normal semen profile (n=10) had high degree of DNA damage (29 and 47% respectively) as compared to fertile controls (7%). The O, A, T and OAT categories of patients had a variably higher DNA damage load as compared to fertile controls. The normal range and threshold for DNA damage as a predictor of male fertility potential and technique which could assess the sperm DNA damage are necessary to lower the trauma of couples experiencing recurrent spontaneous abortion or failure in ART.
Increased levels of mitochondrial DNA copy number in patients with vitiligo.
Vaseghi, H; Houshmand, M; Jadali, Z
2017-10-01
Oxidative stress is known to be involved in the pathogenesis of autoimmune diseases such as vitiligo. Evidence suggests that the human mitochondrial DNA copy number (mtDNAcn) is vulnerable to damage mediated by oxidative stress. The purpose of this study was to examine and compare peripheral blood mtDNAcn and oxidative DNA damage byproducts (8-hydroxy-2-deoxyguanosine; 8-OHdG) in patients with vitiligo and healthy controls (HCs). The relative mtDNAcn and the oxidative damage (formation of 8-OHdG in mtDNA) of each sample were determined by real-time quantitative PCR. Blood samples were obtained from 56 patients with vitiligo and 46 HCs. The mean mtDNAcn and the degree of mtDNA damage were higher in patients with vitiligo than in HCs. These data suggest that increase in mtDNAcn and oxidative DNA damage may be involved in the pathogenesis of vitiligo. © 2017 British Association of Dermatologists.
A core hSSB1–INTS complex participates in the DNA damage response
Zhang, Feng; Ma, Teng; Yu, Xiaochun
2013-01-01
Summary Human single-stranded DNA-binding protein 1 (hSSB1) plays an important role in the DNA damage response and the maintenance of genomic stability. It has been shown that the core hSSB1 complex contains hSSB1, INTS3 and C9orf80. Using protein affinity purification, we have identified integrator complex subunit 6 (INTS6) as a major subunit of the core hSSB1 complex. INTS6 forms a stable complex with INTS3 and hSSB1 both in vitro and in vivo. In this complex, INTS6 directly interacts with INTS3. In response to the DNA damage response, along with INTS3 and hSSB1, INTS6 relocates to the DNA damage sites. Moreover, the hSSB1–INTS complex regulates the accumulation of RAD51 and BRCA1 at DNA damage sites and the correlated homologous recombination. PMID:23986477
Di Pietro, Angela; Baluce, Barbara; Visalli, Giuseppa; La Maestra, Sebastiano; Micale, Rosanna; Izzotti, Alberto
2011-06-01
Transition metals in fine particulate matter generated by combustion induce oxidative DNA damage and inflammation. However, there is remarkable inter-individual variability in susceptibility to these damages. To assess this variability, an ex vivo study was performed using lymphocytes of 47 Caucasian healthy subjects. Cell samples were exposed to a water solution of oil fly ash (OFA). This was formed by the distinctive transition metals vanadium, iron, and nickel. Oxidative DNA damage was evaluated by testing cell viability, intracellular ROS production and 8-oxo-dG. DNA fragmentation and DNA repair capacity were assessed by using the Alkaline-Halo assay. GSTM1, GSTT1, hOGG1, and C677T and A1298C MTHFR gene polymorphisms were tested. Demographic and behavioral factors, collected by questionnaire, were also considered. OFA induced damages showed: (a) a 20-fold variation in range among different subjects in ROS production, (b) a 7-fold variation in range of 8-oxo-dG, and (c) a 25-fold variation in range in DNA repair capacity. A significant increase in DNA damage was detected in GSTT1-deficent subjects compared with wild type genotype carriers. Increases in cytoplasmic ROS and decreases in DNA repair capacity (P<0.05) were observed in C677T and A1298C variants of MTHFR. A remarkable protective effect of high fruits and vegetable intake was observed for ROS production and DNA damage. Conversely, an adverse effect of meat intake was observed on ROS increase, DNA damage and repair capacity, probably due to the increased intake of bioavailable iron. Smoking decreased DNA repair capacity, while age increased OFA-induced DNA damage. The wide comparative analysis of the complex interactions network, between genetic and behavioral factors provides evidence of the remarkable role of several lifestyle factors. In comparison to genetic polymorphisms they seem to have a higher weight in determining individual susceptibility to the adverse effects of airborne pollutants as transition metals. Copyright © 2011 Elsevier GmbH. All rights reserved.
Origins and consequences of DNA damage in male germ cells.
Aitken, R John; De Iuliis, Geoffry N
2007-06-01
DNA damage in the male germline is associated with poor fertilization rates following IVF, defective preimplantation embryonic development, and high rates of miscarriage and morbidity in the offspring, including childhood cancer. This damage is poorly characterized, but is known to involve hypomethylation of key genes, oxidative base damage, endonuclease-mediated cleavage and the formation of adducts with xenobiotics and the products of lipid peroxidation. There are many possible causes of such DNA damage, including abortive apoptosis, the oxidative stress associated with male genital tract infection, exposure to redox cycling chemicals, and defects of spermiogenesis associated with the retention of excess residual cytoplasm. Physical factors such as exposure to radiofrequency electromagnetic radiation or mild scrotal heating can also induce DNA damage in mammalian spermatozoa, although the underlying mechanisms are unclear. Ultimately, resolving the precise nature of the DNA lesions present in the spermatozoa of infertile men will be an important step towards uncovering the aetiology of this damage and developing strategies for its clinical management.
Reactive oxygen-mediated damage to a human DNA replication and repair protein.
Montaner, Beatriz; O'Donovan, Peter; Reelfs, Olivier; Perrett, Conal M; Zhang, Xiaohong; Xu, Yao-Zhong; Ren, Xiaolin; Macpherson, Peter; Frith, David; Karran, Peter
2007-11-01
Ultraviolet A (UVA) makes up more than 90% of incident terrestrial ultraviolet radiation. Unlike shorter wavelength UVB, which damages DNA directly, UVA is absorbed poorly by DNA and is therefore considered to be less hazardous. Organ transplant patients treated with the immunosuppressant azathioprine frequently develop skin cancer. Their DNA contains 6-thioguanine-a base analogue that generates DNA-damaging singlet oxygen ((1)O(2)) when exposed to UVA. Here, we show that this (1)O(2) damages proliferating cell nuclear antigen (PCNA), the homotrimeric DNA polymerase sliding clamp. It causes covalent oxidative crosslinking between the PCNA subunits through a histidine residue in the intersubunit domain. Crosslinking also occurs after treatment with higher-although still moderate-doses of UVA alone or with chemical oxidants. Chronic accumulation of oxidized proteins is linked to neurodegenerative disorders and ageing. Our findings identify oxidative damage to an important DNA replication and repair protein as a previously unrecognized hazard of acute oxidative stress.
Karentz, Deneb
2015-01-01
The ability to repair DNA is a ubiquitous characteristic of life on Earth and all organisms possess similar mechanisms for dealing with DNA damage, an indication of a very early evolutionary origin for repair processes. James E. Cleaver's career (initiated in the early 1960s) has been devoted to the study of mammalian ultraviolet radiation (UVR) photobiology, specifically the molecular genetics of xeroderma pigmentosum and other human diseases caused by defects in DNA damage recognition and repair. This work by Jim and others has influenced the study of DNA damage and repair in a variety of taxa. Today, the field of DNA repair is enhancing our understanding of not only how to treat and prevent human disease, but is providing insights on the evolutionary history of life on Earth and how natural populations are coping with UVR-induced DNA damage from anthropogenic changes in the environment such as ozone depletion. © 2014 The American Society of Photobiology.
Tang, Jiang-bo; Goellner, Eva M.; Wang, Xiao-hong; Trivedi, Ram N.; Croix, Claudette M. St; Jelezcova, Elena; Svilar, David; Brown, Ashley R.; Sobol, Robert W.
2009-01-01
Base excision repair (BER) protein expression is important for resistance to DNA damage-induced cytotoxicity. Conversely, BER imbalance (Polß deficiency or repair inhibition) enhances cytotoxicity of radiation and chemotherapeutic DNA-damaging agents. Whereas inhibition of critical steps in the BER pathway result in the accumulation of cytotoxic DNA double-strand breaks, we report that DNA damage-induced cytotoxicity due to deficiency in the BER protein Polß triggers cell death dependent on PARP activation yet independent of poly(ADP-ribose) (PAR)-mediated AIF nuclear translocation or PARG, suggesting that cytotoxicity is not from PAR or PAR-catabolite signaling. Cell death is rescued by the NAD+ metabolite NMN and is synergistic with inhibition of NAD+ biosynthesis, demonstrating that DNA damage-induced cytotoxicity mediated via BER inhibition is primarily dependent on cellular metabolite bioavailability. We offer a mechanistic justification for the elevated alkylation-induced cytotoxicity of Polß deficient cells, suggesting a linkage between DNA repair, cell survival and cellular bioenergetics. PMID:20068071
Nakamura, Asako J.; Suzuki, Masatoshi; Redon, Christophe E.; Kuwahara, Yoshikazu; Yamashiro, Hideaki; Abe, Yasuyuki; Takahashi, Shintaro; Fukuda, Tomokazu; Isogai, Emiko; Bonner, William M.; Fukumoto, Manabu
2017-01-01
The Fukushima Daiichi Nuclear Power Plant (FNPP) accident, the largest nuclear incident since the 1986 Chernobyl disaster, occurred when the plant was hit by a tsunami triggered by the Great East Japan Earthquake on March 11, 2011. The subsequent uncontrolled release of radioactive substances resulted in massive evacuations in a 20-km zone. To better understand the biological consequences of the FNPP accident, we have been measuring DNA damage levels in cattle in the evacuation zone. DNA damage was evaluated by assessing the levels of DNA double-strand breaks in peripheral blood lymphocytes by immunocyto-fluorescence-based quantification of γ-H2AX foci. A greater than two-fold increase in the fraction of damaged lymphocytes was observed in all animal cohorts within the evacuation zone, and the levels of DNA damage decreased slightly over the 700-day sample collection period. While the extent of damage appeared to be independent of the distance from the accident site and the estimated radiation dose from radiocesium, we observed age-dependent accumulation of DNA damage. Thus, this study, which was the first to evaluate the biological impact of the FNPP accident utilizing the γ-H2AX assays, indicated the causal relation between high levels of DNA damage in animals living in the evacuation zone and the FNPP accident. PMID:28240558
Nakamura, Asako J; Suzuki, Masatoshi; Redon, Christophe E; Kuwahara, Yoshikazu; Yamashiro, Hideaki; Abe, Yasuyuki; Takahashi, Shintaro; Fukuda, Tomokazu; Isogai, Emiko; Bonner, William M; Fukumoto, Manabu
2017-05-01
The Fukushima Daiichi Nuclear Power Plant (FNPP) accident, the largest nuclear incident since the 1986 Chernobyl disaster, occurred when the plant was hit by a tsunami triggered by the Great East Japan Earthquake on March 11, 2011. The subsequent uncontrolled release of radioactive substances resulted in massive evacuations in a 20-km zone. To better understand the biological consequences of the FNPP accident, we have been measuring DNA damage levels in cattle in the evacuation zone. DNA damage was evaluated by assessing the levels of DNA double-strand breaks in peripheral blood lymphocytes by immunocytofluorescence-based quantification of γ-H2AX foci. A greater than two-fold increase in the fraction of damaged lymphocytes was observed in all animal cohorts within the evacuation zone, and the levels of DNA damage decreased slightly over the 700-day sample collection period. While the extent of damage appeared to be independent of the distance from the accident site and the estimated radiation dose from radiocesium, we observed age-dependent accumulation of DNA damage. Thus, this study, which was the first to evaluate the biological impact of the FNPP accident utilizing the γ-H2AX assays, indicated the causal relation between high levels of DNA damage in animals living in the evacuation zone and the FNPP accident.
Vialard, J E; Gilbert, C S; Green, C M; Lowndes, N F
1998-10-01
The Saccharomyces cerevisiae RAD9 checkpoint gene is required for transient cell-cycle arrests and transcriptional induction of DNA repair genes in response to DNA damage. Polyclonal antibodies raised against the Rad9 protein recognized several polypeptides in asynchronous cultures, and in cells arrested in S or G2/M phases while a single form was observed in G1-arrested cells. Treatment with various DNA damaging agents, i.e. UV, ionizing radiation or methyl methane sulfonate, resulted in the appearance of hypermodified forms of the protein. All modifications detected during a normal cell cycle and after DNA damage were sensitive to phosphatase treatment, indicating that they resulted from phosphorylation. Damage-induced hyperphosphorylation of Rad9 correlated with checkpoint functions (cell-cycle arrest and transcriptional induction) and was cell-cycle stage- and progression-independent. In asynchronous cultures, Rad9 hyperphosphorylation was dependent on MEC1 and TEL1, homologues of the ATR and ATM genes. In G1-arrested cells, damage-dependent hyperphosphorylation required functional MEC1 in addition to RAD17, RAD24, MEC3 and DDC1, demonstrating cell-cycle stage specificity of the checkpoint genes in this response to DNA damage. Analysis of checkpoint protein interactions after DNA damage revealed that Rad9 physically associates with Rad53.
Wu, Zhi-hong; Wang, Mian-rong; Yan, Qi-chang; Pu, Wei; Zhang, Jin-song
2006-11-01
To investigate the mechanism of UV-induced DNA damage and repair and the protective effects of antioxidants on DNA damage in human lens epithelial cells. Human lens epithelial cells were irradiated at UV-doses 0.0 (control group), 2.5, 5.0, 7.5, 10.0 mJ/cm(2) (treated group 1 - 4). The amounts of DNA single strand breaks (SSB) were measured with the alkaline comet assay (CA). The spontaneous repair of DNA SSB after exposure to UV at 10.0 mJ/cm(2) was also determined in human lens epithelial cells. Human lens epithelial cells were treated with different concentration of VitaminC (VitC), taurine, superoxide dismutase (SOD) and epigallocatechin gallate (EGCG) before and after ultraviolet radiation, the effects of antioxidants on DNA damage was examined with alkaline comet assay. The amount of DNA SSB in control group and treated groups 1 - 4 showed increased tendency, was dose-dependent to the dose of UV irradiation, the differences of DNA SSB in 5 group were significantly (P < 0.01). UV-induced DNA SSB at 10.0 mJ/cm(2) in human lens epithelial cells, the half repair time was 60 minutes. Human lens epithelial cells were treated with different concentrations of taurine, SOD and EGCG before ultraviolet radiation. The differences of DNA damage in control and various antioxidant treated groups was statistically significant (F = 6.591, 13.542, 4.626 in cells treated with taurine, SOD and EGCG, respectively, P < 0.01), the difference of VitC effect on DNA in control and treated group were not significantly (F = 1.451, P > 0.05). Human lens epithelial cells were treated with different concentration of VitC, taurine, SOD and EGCG after ultraviolet radiation. The differences of DNA damage between the control and treated group were statistically significant (F = 6.571, 4.810, 6.824, 9.182 in cells treated with VitC, taurine, SOD and EGCG, respectively, P < 0.01). The differences of protective effects on DNA damage in these four different kinds of antioxidants added before UV irradiation were statistically significant (P < 0.01). The differences of protective effects on DNA damage in these four different kinds of antioxidant added after UV irradiation were not significantly (P > 0.05). UV irradiation has a dose-dependent effect on the DNA SSB of lens epithelial cells. Exogenesis VitC, taurine, SOD, EGCG possess protective effective to UV-induced DNA damage. SOD is one of the most powerful antioxidants if added before the UV irradiation and followed by EGCG, taurine and VitC orderly. Four kinds of antioxidants show no apparently differences added after UV-irradiation. SOD and EGCG both are powerful antioxidants.
Casalini, C; Lodovici, M; Briani, C; Paganelli, G; Remy, S; Cheynier, V; Dolara, P
1999-08-01
Flavonoids are polyphenolic antioxidants occurring in vegetables and fruits as well as beverages such as tea and wine which have been thought to influence oxidative damage. We wanted to verify whether a complex mixture of wine tannins (wine complex polyphenols and tannins, WCPT) prevent chemically-induced oxidative DNA damage in vivo. Oxidative DNA damage was evaluated by measuring the ratio of 8-hydroxy-2'-deoxyguanosine (80HdG)/ 2-deoxyguanosine (2dG) x 10(-6) in hydrolyzed DNA using HPLC coupled with electrochemical and UV detectors. We treated rats with WCPT (57 mg/kg p.o.) for 14 d, a dose 10-fold higher than what a moderate wine drinker would be exposed to. WCPT administration significantly reduced the ratio of 80HdG/2dG x 10(-6) in liver DNA obtained from rats treated with 2-nitropropane (2NP) relative to controls administered 2NP only (33. 3 +/- 2.5 vs. 44.9 +/- 3.2 x 10(-6) 2dG; micro +/- SE; p<0.05). On the contrary, pretreatment with WCPT for 10 d did not protect the colon mucosa from oxidative DNA damage induced by 1, 2-dimethylhydrazine (DMH). 2NP and DMH are hepatic and colon carcinogens, respectively, capable of inducing oxidative DNA damage. WCPT have protective action against some types of chemically-induced oxidative DNA damage in vivo.
Radiation damage to nucleoprotein complexes in macromolecular crystallography
Bury, Charles; Garman, Elspeth F.; Ginn, Helen Mary; ...
2015-01-30
Significant progress has been made in macromolecular crystallography over recent years in both the understanding and mitigation of X-ray induced radiation damage when collecting diffraction data from crystalline proteins. Despite the large field that is productively engaged in the study of radiation chemistry of nucleic acids, particularly of DNA, there are currently very few X-ray crystallographic studies on radiation damage mechanisms in nucleic acids. Quantitative comparison of damage to protein and DNA crystals separately is challenging, but many of the issues are circumvented by studying pre-formed biological nucleoprotein complexes where direct comparison of each component can be made under themore » same controlled conditions. A model protein–DNA complex C.Esp1396I is employed to investigate specific damage mechanisms for protein and DNA in a biologically relevant complex over a large dose range (2.07–44.63 MGy). In order to allow a quantitative analysis of radiation damage sites from a complex series of macromolecular diffraction data, a computational method has been developed that is generally applicable to the field. Typical specific damage was observed for both the protein on particular amino acids and for the DNA on, for example, the cleavage of base-sugar N 1—C and sugar-phosphate C—O bonds. Strikingly the DNA component was determined to be far more resistant to specific damage than the protein for the investigated dose range. We observed the protein at low doses and found that they were susceptible to radiation damage while the DNA was far more resistant, damage only being observed at significantly higher doses.« less
Wang, Amy; Robertson, John L; Holladay, Steven D; Tennant, Alan H; Lengi, Andrea J; Ahmed, S Ansar; Huckle, William R; Kligerman, Andrew D
2007-12-01
Urinary bladder transitional epithelium is the main site of bladder cancer, and the use of transitional cells to study carcinogenesis/genotoxicity is recommended over the use of whole bladders. Because the transitional epithelium is only a small fraction of the whole bladder, the alkaline single cell gel electrophoresis assay (Comet assay), which requires only a small number of cells per sample, is especially suitable for measuring DNA damage in transitional cells. However, existed procedures of cell collection did not yield transitional cells with a high purity, and pooling of samples was needed for Comet assay. The goal of this study was to develop an optimized protocol to evaluate DNA damage in the urinary bladder transitional epithelium. This was achieved by an enzymatic stripping method (trypsin-EDTA incubation plus gentle scraping) to selectively harvest transitional cells from rat bladders, and the use of the alkaline Comet assay to detect DNA strand breaks, alkaline labile sites, and DNA-protein crosslinks. Step by step procedures are reported here. Cells collected from a single rat bladder were sufficient for multiple Comet assays. With this new protocol, increases in DNA damage were detected in transitional cells after in vitro exposure to the positive control agents, hydrogen peroxide or formaldehyde. Repair of the induced DNA damage occurred within 4h. This indicated the capacity for DNA repair was maintained in the harvested cells. The new protocol provides a simple and inexpensive method to detect various types of DNA damage and to measure DNA damage repair in urinary bladder transitional cells.
Fertilization capacity with rainbow trout DNA-damaged sperm and embryo developmental success.
Pérez-Cerezales, S; Martínez-Páramo, S; Beirão, J; Herráez, M P
2010-06-01
Mammalian spermatozoa undergo a strong selection process along the female tract to guarantee fertilization by good quality cells, but risks of fertilization with DNA-damaged spermatozoa have been reported. In contrast, most external fertilizers such as fish seem to have weaker selection procedures. This fact, together with their high prolificacy and external embryo development, indicates that fish could be useful for the study of the effects of sperm DNA damage on embryo development. We cryopreserved sperm from rainbow trout using egg yolk and low-density lipoprotein as additives to promote different rates of DNA damage. DNA fragmentation and oxidization were analyzed using comet assay with and without digestion with restriction enzymes, and fertilization trials were performed. Some embryo batches were treated with 3-aminobenzamide (3AB) to inhibit DNA repair by the poly (ADP-ribose) polymerase, which is an enzyme of the base excision repair pathway. Results showed that all the spermatozoa cryopreserved with egg yolk carried more than 10% fragmented DNA, maintaining fertilization rates of 61.1+/-2.3 but a high rate of abortions, especially during gastrulation, and only 14.5+/-4.4 hatching success. Furthermore, after 3AB treatment, hatching dropped to 3.2+/-2.2, showing that at least 10% DNA fragmentation was repaired. We conclude that trout sperm maintains its ability to fertilize in spite of having DNA damage, but that embryo survival is affected. Damage is partially repaired by the oocyte during the first cleavage. Important advantages of using rainbow trout for the study of processes related to DNA damage and repair during development have been reported.
Shih, M K; Hu, M L
1996-03-01
Calf thymus DNA was irradiated with low-intensity UVA (main output at 365 nm, 2 mW cm-2 or 36 kJ m-2 for 30 min), and the role of metal ions, hydrogen peroxide and reactive oxygen species (ROS) was examined. DNA damage was measured as thiobarbituric acid-reactive substances (possibly from degradation of deoxyribose) and as changes in ethidium bromide-DNA fluorescence due to unwinding from strand breaks. Under the present experimental conditions, UVA alone or in the presence of H2O2 had no effect on DNA but slightly enhanced the damage by iron/EDTA. Ultraviolet A strongly enhanced DNA damage (ca four- to five-fold) by the Fenton reaction system (50 microM Fe2+/100 microM EDTA + 0.5 mM H2O2). The results suggest that the Fenton reaction system was "photosensitized" to damage DNA by low-intensity UVA radiation. The enhanced damage by UVA was attributed in part to the reduction of Fe3+ to Fe2+. Ultraviolet A had no effect when iron (ferric or ferrous) ions were replaced by Cu2+, Zn2+, Mn2+ or Cd2+. The ROS involved in the UVA-enhanced damage to DNA by the Fenton reagents were OH and, to a lesser extent, superoxide anions. The UVA-potentiated DNA damage by the Fenton reaction system was then used to examine the protective effect of para-aminobenzoate (PABA), a UVB-absorbing sunscreen that protects against photocarcinogenesis in hairless mice. The results show that PABA and mannitol dose-dependently inhibited the damage with concentrations required for 50% inhibition at 0.1 mM and 3 mM, respectively. The protection by PABA was attributed to its radical-scavenging ability because PABA does not absorb light in the UVA region. These findings may be relevant to the biological damage by UVA and suggest that PABA is useful in protection against photocarcinogenesis by wide-range UV radiation.
Ceruti, Julieta M; Scassa, María E; Marazita, Mariela C; Carcagno, Abel C; Sirkin, Pablo F; Cánepa, Eduardo T
2009-06-01
p19INK4d promotes survival of several cell lines after UV irradiation due to enhanced DNA repair, independently of CDK4 inhibition. To further understand the action of p19INK4d in the cellular response to DNA damage, we aimed to elucidate whether this novel regulator plays a role only in mechanisms triggered by UV or participates in diverse mechanisms initiated by different genotoxics. We found that p19INK4d is induced in cells injured with cisplatin or beta-amyloid peptide as robustly as with UV. The mentioned genotoxics transcriptionally activate p19INK4d expression as demonstrated by run-on assay without influencing its mRNA stability and with partial requirement of protein synthesis. It is not currently known whether DNA damage-inducible genes are turned on by the DNA damage itself or by the consequences of that damage. Experiments carried out in cells transfected with distinct damaged DNA structures revealed that the damage itself is not responsible for the observed up-regulation. It is also not known whether the increased expression of DNA-damage-inducible genes is related to immediate protective responses such as DNA repair or to more delayed responses such as cell cycle arrest or apoptosis. We found that ectopic expression of p19INK4d improves DNA repair ability and protects neuroblastoma cells from apoptosis caused by cisplatin or beta-amyloid peptide. Using clonal cell lines where p19INK4d levels can be modified at will, we show that p19INK4d expression correlates with increased survival and clonogenicity. The results presented here, prompted us to suggest that p19INK4d displays an important role in an early stage of cellular DNA damage response.
NASA Astrophysics Data System (ADS)
Kuang, K. S. C.
2014-03-01
A novel application of chemiluminescence resulting from the chemical reaction in a glow-stick as sensors for structural health monitoring is demonstrated here. By detecting the presence of light emitting from these glow-sticks, it is possible to develop a low-cost sensing device with the potential to provide early warning of damage in a variety of engineering applications such as monitoring of cracks or damage in concrete shear walls, detecting of ground settlement, soil liquefaction, slope instability, liquefaction-related damage of underground structure and others. In addition, this paper demonstrates the ease of incorporating wireless capability to the sensor device and the possibility of making the sensor system self-sustaining by means of a renewable power source for the wireless module. A significant advantage of the system compared to previous work on the use of plastic optical fibre (POF) for damage detection is that here the system does not require an electrically-powered light source. Here, the sensing device, embedded in a cement host, is shown to be capable of detecting damage. A series of specimens with embedded glow-sticks have been investigated and an assessment of their damage detection capability will be reported. The specimens were loaded under flexure and the sensor responses were transmitted via a wireless connection.
Effects of atmospheric pressure plasmas on isolated and cellular DNA-a review.
Arjunan, Krishna Priya; Sharma, Virender K; Ptasinska, Sylwia
2015-01-29
Atmospheric Pressure Plasma (APP) is being used widely in a variety of biomedical applications. Extensive research in the field of plasma medicine has shown the induction of DNA damage by APP in a dose-dependent manner in both prokaryotic and eukaryotic systems. Recent evidence suggests that APP-induced DNA damage shows potential benefits in many applications, such as sterilization and cancer therapy. However, in several other applications, such as wound healing and dentistry, DNA damage can be detrimental. This review reports on the extensive investigations devoted to APP interactions with DNA, with an emphasis on the critical role of reactive species in plasma-induced damage to DNA. The review consists of three main sections dedicated to fundamental knowledge of the interactions of reactive oxygen species (ROS)/reactive nitrogen species (RNS) with DNA and its components, as well as the effects of APP on isolated and cellular DNA in prokaryotes and eukaryotes.
Electroacoustic miniaturized DNA-biosensor.
Gamby, Jean; Lazerges, Mathieu; Pernelle, Christine; Perrot, Hubert; Girault, Hubert H; Tribollet, Bernard
2007-11-01
A micrometer-sized electroacoustic DNA-biosensor was developed. The device included a thin semi-crystalline polyethylene terephthalate (PET) dielectric layer with two Ag microband electrodes on one side and a DNA thiol-labeled monolayer adsorbed on a gold surface on the other. A resonance wave was observed at 29 MHz with a network analyzer, upon AC voltage application between the two Ag electrodes, corresponding to electromechanical coupling induced by molecular dipoles of the PET polymer chain in the dielectric layer. It was found that the device size and geometry were well adapted to detect DNA hybridization, by measuring the capacity of the resonance response evolution: hybridization induced polarization of the dielectric material that affected the electromechanical coupling established in the dielectric layer. The 0.2 mm(2) sensor sensitive area allows detection in small volumes and still has higher detection levels for bioanalytical applications, the non-contact configuration adopted avoids electric faradic reactions that may damage biosensor sensitive layers, and finally, PET is a costless raw material, easy to process and well adapted for large scale production. The well-balanced technological and economic advantages of this kind of device make it a good candidate for biochip integration.
ATM-Dependent Phosphorylation of All Three Members of the MRN Complex: From Sensor to Adaptor.
Lavin, Martin F; Kozlov, Sergei; Gatei, Magtouf; Kijas, Amanda W
2015-10-23
The recognition, signalling and repair of DNA double strand breaks (DSB) involves the participation of a multitude of proteins and post-translational events that ensure maintenance of genome integrity. Amongst the proteins involved are several which when mutated give rise to genetic disorders characterised by chromosomal abnormalities, cancer predisposition, neurodegeneration and other pathologies. ATM (mutated in ataxia-telangiectasia (A-T) and members of the Mre11/Rad50/Nbs1 (MRN complex) play key roles in this process. The MRN complex rapidly recognises and locates to DNA DSB where it acts to recruit and assist in ATM activation. ATM, in the company of several other DNA damage response proteins, in turn phosphorylates all three members of the MRN complex to initiate downstream signalling. While ATM has hundreds of substrates, members of the MRN complex play a pivotal role in mediating the downstream signalling events that give rise to cell cycle control, DNA repair and ultimately cell survival or apoptosis. Here we focus on the interplay between ATM and the MRN complex in initiating signaling of breaks and more specifically on the adaptor role of the MRN complex in mediating ATM signalling to downstream substrates to control different cellular processes.
Chen, Y; Feng, H; Chen, D; Abuduwaili, K; Li, X; Zhang, H
2018-01-01
The protective effects of folic acid on DNA damage and DNA methylation induced by N-methyl- N'-nitro- N-nitrosoguanidine (MNNG) in Kazakh esophageal epithelial cells were investigated using a 3 × 3 factorial design trial. The cells were cultured in vitro and exposed to media containing different concentrations of folic acid and MNNG, after which growth indices were detected. DNA damage levels were measured using comet assays, and genome-wide DNA methylation levels (MLs) were measured using high-performance liquid chromatography. The DNA methylation of methylenetetrahydrofolate reductase (MTHFR) and folate receptor- α (FR α) genes was detected by bisulfite sequencing polymerase chain reaction (PCR). The results showed significant increases in tail DNA concentration, tail length, and Olive tail moment ( p < 0.01); a significant reduction of genome-wide DNA MLs ( p < 0.01); and an increase in the methylation frequencies of MTHFR and FR α genes. In particular, significant differences were observed in the promoter regions of both genes ( p < 0.01). Our study indicated that a reduction in folic acid concentration promotes DNA damage and DNA methylation in Kazakh esophageal epithelial cells upon MNNG exposure. Thus, sufficient folic acid levels could play a protective role against the damage induced by this compound.
Nickerson, John M.; Gao, Feng-juan; Sun, Zhongmou; Chen, Xin-ya; Zhang, Shu-jie; Gao, Feng; Chen, Jun-yi; Luo, Yi; Wang, Yan; Sun, Xing-huai
2015-01-01
Glaucoma is a chronic neurodegenerative disease characterized by the progressive loss of retinal ganglion cells (RGCs). Mitochondrial DNA (mtDNA) alterations have been documented as a key component of many neurodegenerative disorders. However, whether mtDNA alterations contribute to the progressive loss of RGCs and the mechanism whereby this phenomenon could occur are poorly understood. We investigated mtDNA alterations in RGCs using a rat model of chronic intraocular hypertension and explored the mechanisms underlying progressive RGC loss. We demonstrate that the mtDNA damage and mutations triggered by intraocular pressure (IOP) elevation are initiating, crucial events in a cascade leading to progressive RGC loss. Damage to and mutation of mtDNA, mitochondrial dysfunction, reduced levels of mtDNA repair/replication enzymes, and elevated reactive oxygen species form a positive feedback loop that produces irreversible mtDNA damage and mutation and contributes to progressive RGC loss, which occurs even after a return to normal IOP. Furthermore, we demonstrate that mtDNA damage and mutations increase the vulnerability of RGCs to elevated IOP and glutamate levels, which are among the most common glaucoma insults. This study suggests that therapeutic approaches that target mtDNA maintenance and repair and that promote energy production may prevent the progressive death of RGCs. PMID:25478814
The human intra-S checkpoint response to UVC-induced DNA damage.
Kaufmann, William K
2010-05-01
The intra-S checkpoint response to 254 nm light (UVC)-induced DNA damage appears to have dual functions to slow the rate of DNA synthesis and stabilize replication forks that become stalled at sites of UVC-induced photoproducts in DNA. These functions should provide more time for repair of damaged DNA before its replication and thereby reduce the frequencies of mutations and chromosomal aberrations in surviving cells. This review tries to summarize the history of discovery of the checkpoint, the current state of understanding of the biological features of intra-S checkpoint signaling and its mechanisms of action with a focus primarily on intra-S checkpoint responses in human cells. The differences in the intra-S checkpoint responses to UVC and ionizing radiation-induced DNA damage are emphasized. Evidence that [6-4]pyrimidine-pyrimidone photoproducts in DNA trigger the response is discussed and the relationships between cellular responses to UVC and the molecular dose of UVC-induced DNA damage are briefly summarized. The role of the intra-S checkpoint response in protecting against solar radiation carcinogenesis remains to be determined.
Taspinar, Mahmut Sinan; Aydin, Murat; Sigmaz, Burcu; Yildirim, Nalan; Agar, Guleray
2017-10-01
Picloram (4-amino-3,5,6-trichloropicolinic acid) is a liquid auxinic herbicide used to control broad-leaved weeds. Picloram is representing a possible hazard to ecosystems and human health. Therefore, in this study, DNA methylation changes and DNA damage levels in Phaseolus vulgaris exposed to picloram, as well as whether humic acid (HA) has preventive effects on these changes were investigated. Random amplified polymorphic DNA (RAPD) techniques were used for identification of DNA damage and coupled restriction enzyme digestion-random amplification (CRED-RA) techniques were used to detect the changed pattern of DNA methylation. According to the obtained results, picloram (5, 10, 20, and 40 mg/l) caused DNA damage profile changes (RAPDs) increasing, DNA hypomethylation and genomic template stability (GTS) decreasing. On the other hand, different concentrations of applied HA (2, 4, 6, 8, and 10%) reduced hazardous effects of picloram. The results of the experiment have explicitly indicated that HAs could be an alternative for reducing genetic damage in plants. In addition to the alleviate effects of humic acid on genetic damage, its epigenetic effect is hypomethylation.
A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE INDUCED BY RADIATION, CHEMICAL MUTAGENS AND ENZYMES
A simple and rapid assay to detect DNA damage is reported. This novel assay is based on changes in melting/annealing behavior and facilitated using certain dyes that increase their fluorescence upon association with double stranded (ds)DNA. Damage caused by ultraviolet (UV) ra...
The maintenance of genome integrity and function is essen-tial for the survival of cells and organisms. Any damage to our genetic material must be immediately sensed and repaired to preserve a cell’s func-tional integrity. Cells are constantly faced with the challenge of protecting their DNA from assaults by damaging chemicals and ultraviolet light. DNA damage that escapes repair can lead to a variety of genetic disorders and diseases, particularly cancer. To avoid this catastrophe, the cell employs an army of DNA repair factors that “rush to the scene” and initiate a cascade of events to repair the damage. Exactly how different repair factors sense DNA damage and orchestrate their concert-ed response is not well understood.
Aydin, Özge Z.; Marteijn, Jurgen A.; Ribeiro-Silva, Cristina; Rodríguez López, Aida; Wijgers, Nils; Smeenk, Godelieve; van Attikum, Haico; Poot, Raymond A.; Vermeulen, Wim; Lans, Hannes
2014-01-01
Chromatin compaction of deoxyribonucleic acid (DNA) presents a major challenge to the detection and removal of DNA damage. Helix-distorting DNA lesions that block transcription are specifically repaired by transcription-coupled nucleotide excision repair, which is initiated by binding of the CSB protein to lesion-stalled RNA polymerase II. Using live cell imaging, we identify a novel function for two distinct mammalian ISWI adenosine triphosphate (ATP)-dependent chromatin remodeling complexes in resolving lesion-stalled transcription. Human ISWI isoform SMARCA5/SNF2H and its binding partners ACF1 and WSTF are rapidly recruited to UV-C induced DNA damage to specifically facilitate CSB binding and to promote transcription recovery. SMARCA5 targeting to UV-C damage depends on transcription and histone modifications and requires functional SWI2/SNF2-ATPase and SLIDE domains. After initial recruitment to UV damage, SMARCA5 re-localizes away from the center of DNA damage, requiring its HAND domain. Our studies support a model in which SMARCA5 targeting to DNA damage-stalled transcription sites is controlled by an ATP-hydrolysis-dependent scanning and proofreading mechanism, highlighting how SWI2/SNF2 chromatin remodelers identify and bind nucleosomes containing damaged DNA. PMID:24990377
DNA damage in children and adolescents with cardiovascular disease risk factors.
Kliemann, Mariele; Prá, Daniel; Müller, Luiza L; Hermes, Liziane; Horta, Jorge A; Reckziegel, Miriam B; Burgos, Miria S; Maluf, Sharbel W; Franke, Silvia I R; Silva, Juliana da
2012-09-01
The risk of developing cardiovascular disease (CVD) is related to lifestyle (e.g. diet, physical activity and smoking) as well as to genetic factors. This study aimed at evaluating the association between CVD risk factors and DNA damage levels in children and adolescents. Anthropometry, diet and serum CVD risk factors were evaluated by standard procedures. DNA damage levels were accessed by the comet assay (Single cell gel electrophoresis; SCGE) and cytokinesis-blocked micronucleus (CBMN) assays in leukocytes. A total of 34 children and adolescents selected from a population sample were divided into three groups according to their level of CVD risk. Moderate and high CVD risk subjects showed significantly higher body fat and serum CVD risk markers than low risk subjects (P<0.05). High risk subjects also showed a significant increase in DNA damage, which was higher than that provided by low and moderate risk subjects according to SCGE, but not according to the CBMN assay. Vitamin C intake was inversely correlated with DNA damage by SCGE, and micronucleus (MN) was inversely correlated with folate intake. The present results indicate an increase in DNA damage that may be a consequence of oxidative stress in young individuals with risk factors for CVD, indicating that the DNA damage level can aid in evaluating the risk of CVD.
ATM-Dependent Phosphorylation of MEF2D Promotes Neuronal Survival after DNA Damage
Chan, Shing Fai; Sances, Sam; Brill, Laurence M.; Okamoto, Shu-ichi; Zaidi, Rameez; McKercher, Scott R.; Akhtar, Mohd W.; Nakanishi, Nobuki
2014-01-01
Mutations in the ataxia telangiectasia mutated (ATM) gene, which encodes a kinase critical for the normal DNA damage response, cause the neurodegenerative disorder ataxia-telangiectasia (AT). The substrates of ATM in the brain are poorly understood. Here we demonstrate that ATM phosphorylates and activates the transcription factor myocyte enhancer factor 2D (MEF2D), which plays a critical role in promoting survival of cerebellar granule cells. ATM associates with MEF2D after DNA damage and phosphorylates the transcription factor at four ATM consensus sites. Knockdown of endogenous MEF2D with a short-hairpin RNA (shRNA) increases sensitivity to etoposide-induced DNA damage and neuronal cell death. Interestingly, substitution of endogenous MEF2D with an shRNA-resistant phosphomimetic MEF2D mutant protects cerebellar granule cells from cell death after DNA damage, whereas an shRNA-resistant nonphosphorylatable MEF2D mutant does not. In vivo, cerebella in Mef2d knock-out mice manifest increased susceptibility to DNA damage. Together, our results show that MEF2D is a substrate for phosphorylation by ATM, thus promoting survival in response to DNA damage. Moreover, dysregulation of the ATM–MEF2D pathway may contribute to neurodegeneration in AT. PMID:24672010
Wu, Han; Zhang, Huina; Wang, Changjun; Wu, Yihua; Xie, Jiajun; Jin, Xiuming; Yang, Jun
2011-01-01
Purpose The aim of this study was to investigate hyaluronic acid (HA) protection on cultured human corneal epithelial cells (HCEs) against benzalkonium chloride (BAC)-induced DNA damage and intracellular reactive oxygen species (ROS) increase. Methods Cells were incubated with different concentrations of BAC with or without the presence of 0.2% HA for 30 min. DNA damage to HCEs was examined by alkaline comet assay and by immunofluorescence microscopic detection of the phosphorylated form of histone variant H2AX (γH2AX) foci. ROS production was assessed by the fluorescent probe, 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). Cell apoptosis was determined with annexin V staining by flow cytometry. Results HA significantly reduced BAC-induced DNA damage as indicated by the tail length (TL) and tail moment (TM) of alkaline comet assay and by γH2AX foci formation, respectively. Moreover, HA significantly decreased BAC-induced ROS increase and cell apoptosis. However, exposure to HA alone did not produce any significant change in DNA damage, ROS generation, or cell apoptosis. Conclusions BAC could induce DNA damage and cell apoptosis in HCEs, probably through increasing oxidative stress. Furthermore, HA was an effective protective agent that had antioxidant properties and could decrease DNA damage and cell apoptosis induced by BAC. PMID:22219631
Ollero, M; Gil-Guzman, E; Lopez, M C; Sharma, R K; Agarwal, A; Larson, K; Evenson, D; Thomas, A J; Alvarez, J G
2001-09-01
Reactive oxygen species (ROS)-induced damage of membrane phospholipids and DNA in human spermatozoa has been implicated in the pathogenesis of male infertility. In this study, variations in ROS production, DNA structure (as measured by the sperm chromatin structure assay) and lipid composition, were studied in human spermatozoa at different stages of maturation. Sperm subsets were isolated by discontinuous density gradient centrifugation of semen samples obtained from healthy donors and from infertility patients. DNA damage and ROS production were highest in immature spermatozoa with cytoplasmic retention and abnormal head morphology, and lowest in mature spermatozoa. Docosahexaenoic acid and sterol content were highest in immature germ cells and immature spermatozoa, and lowest in mature spermatozoa. The relative proportion of ROS-producing immature spermatozoa in the sample was directly correlated with DNA damage in mature spermatozoa, and inversely correlated with the recovery of motile spermatozoa. There was no correlation between DNA damage and sperm morphology in mature spermatozoa. The high levels of ROS production and DNA damage observed in immature spermatozoa may be indicative of derangements in the regulation of spermiogenesis. DNA damage in mature spermatozoa may be the result of oxidative damage by ROS-producing immature spermatozoa during sperm migration from the seminiferous tubules to the epididymis.
Zhang, Xue; Zhang, Chong; Zhou, Qian-Qian; Zhang, Xiao-Fei; Wang, Li-Yan; Chang, Hai-Bo; Li, He-Ping; Oda, Yoshimitsu; Xing, Xin-Hui
2015-07-01
DNA damage is the dominant source of mutation, which is the driving force of evolution. Therefore, it is important to quantitatively analyze the DNA damage caused by different mutagenesis methods, the subsequent mutation rates, and their relationship. Atmospheric and room temperature plasma (ARTP) mutagenesis has been used for the mutation breeding of more than 40 microorganisms. However, ARTP mutagenesis has not been quantitatively compared with conventional mutation methods. In this study, the umu test using a flow-cytometric analysis was developed to quantify the DNA damage in individual viable cells using Salmonella typhimurium NM2009 as the model strain and to determine the mutation rate. The newly developed method was used to evaluate four different mutagenesis systems: a new ARTP tool, ultraviolet radiation, 4-nitroquinoline-1-oxide (4-NQO), and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) mutagenesis. The mutation rate was proportional to the corresponding SOS response induced by DNA damage. ARTP caused greater DNA damage to individual living cells than the other conventional mutagenesis methods, and the mutation rate was also higher. By quantitatively comparing the DNA damage and consequent mutation rate after different types of mutagenesis, we have shown that ARTP is a potentially powerful mutagenesis tool with which to improve the characteristics of microbial cell factories.
Structural Health Monitoring in Composite Structures by Fiber-Optic Sensors †
Güemes, Alfredo; Díaz-Maroto, Patricia F.; Lozano, Angel; Sierra-Perez, Julian
2018-01-01
Fiber-optic sensors cannot measure damage; to get information about damage from strain measurements, additional strategies are needed, and several alternatives are available in the existing literature. This paper discusses two independent procedures. The first is based on detecting new strains appearing around a damage spot. The structure does not need to be under loads, the technique is very robust, and damage detectability is high, but it requires sensors to be located very close to the damage, so it is a local technique. The second approach offers wider coverage of the structure; it is based on identifying the changes caused by damage on the strain field in the whole structure for similar external loads. Damage location does not need to be known a priori, and detectability is dependent upon the sensor’s network density, the damage size, and the external loads. Examples of application to real structures are given. PMID:29617345
Animal Studies in the Mode of Action of Agents, That Are Antitransformers in Cell Cultures.
1987-10-28
The oel- let was hydrolysed at 90 C in 6% PCA for 30 min. The DNA content (ootical density at 260 nm and 290 nm) and the radioactivitv ( liquid ...required: DNA damage, excision of the damage and DNA-strand polimerization and ligation. The misrepair or incomplete repair of DNA damage may be an ini...with non ionic deter- gents in the ?resence of high salt concentration. The secondary and tertiary structure (supercoils) of DNA remains intact under
Banasiak, Anna; Cassidy, John; Colleran, John
2018-06-01
To date, DNA cleavage, caused by cleavage agents, has been monitored mainly by gel and capillary electrophoresis. However, these techniques are time-consuming, non-quantitative and require gel stains. In this work, a novel, simple and, importantly, a quantitative method for monitoring the DNA nuclease activity of potential anti-cancer drugs, at a DNA electrochemical sensor, is presented. The DNA sensors were prepared using thiol-modified oligonucleotides that self-assembled to create a DNA monolayer at gold electrode surfaces. The quantification of DNA double-strand breaks is based on calculating the DNA surface coverage, before and after exposure to a DNA cleavage agent. The nuclease properties of a model DNA cleavage agent, copper bis-phenanthroline ([Cu II (phen) 2 ] 2+ ), that can cleave DNA in a Fenton-type reaction, were quantified electrochemically. The DNA surface coverage decreased on average by 21% after subjecting the DNA sensor to a nuclease assay containing [Cu II (phen) 2 ] 2+ , a reductant and an oxidant. This percentage indicates that 6 base pairs were cleaved in the nuclease assay from the immobilised 30 base pair strands. The DNA cleavage can be also induced electrochemically in the absence of a chemical reductant. [Cu II (phen) 2 ] 2+ intercalates between DNA base pairs and, on application of a suitable potential, can be reduced to [Cu I (phen) 2 ] + , with dissolved oxygen acting as the required oxidant. This reduction process is facilitated through DNA strands via long-range electron transfer, resulting in DNA cleavage of 23%. The control measurements for both chemically and electrochemically induced cleavage revealed that DNA strand breaks did not occur under experimental conditions in the absence of [Cu II (phen) 2 ] 2+ . Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Singh, Swati; Kumar, Ashok; Khare, Shashi; Mulchandani, Ashok; Rajesh
2014-11-01
A specific and ultrasensitive, label free single-walled carbon nanotubes (SWNTs) based chemiresistive genosensor was fabricated for the early detection of Streptococcus pyogenes infection in human causing rheumatic heart disease. The mga gene of S. pyogenes specific 24 mer ssDNA probe was covalently immobilized on SWNT through a molecular bilinker, 1-pyrenemethylamine, using carbodiimide coupling reaction. The sensor was characterized by the current-voltage (I-V) characteristic curve and scanning electron microscopy. The sensing performance of the sensor was studied with respect to changes in conductance in SWNT channel based on hybridization of the target S. pyogenes single stranded genomic DNA (ssG-DNA) to its complementary 24 mer ssDNA probe. The sensor shows negligible response to non-complementary Staphylococcus aureus ssG-DNA, confirming the specificity of the sensor only with S. pyogenes. The genosensor exhibited a linear response to S. pyogenes G-DNA from 1 to1000 ng ml-1 with a limit of detection of 0.16 ng ml-1.
Clewell, Rebecca A; Andersen, Melvin E
2016-05-01
Assessing the shape of dose-response curves for DNA-damage in cellular systems and for the consequences of DNA damage in intact animals remains a controversial topic. This overview looks at aspects of the pharmacokinetics (PK) and pharmacodynamics (PD) of cellular DNA-damage/repair and their role in defining the shape of dose-response curves using an in vivo example with formaldehyde and in vitro examples for micronuclei (MN) formation with several test compounds. Formaldehyde is both strongly mutagenic and an endogenous metabolite in cells. With increasing inhaled concentrations, there were transitions in gene changes, from activation of selective stress pathway genes at low concentrations, to activation of pathways for cell-cycle control, p53-DNA damage, and stem cell niche pathways at higher exposures. These gene expression changes were more consistent with dose-dependent transitions in the PD responses to formaldehyde in epithelial cells in the intact rat rather than the low-dose linear extrapolation methods currently used for carcinogens. However, more complete PD explanations of non-linear dose response for creation of fixed damage in cells require detailed examination of cellular responses in vitro using measures of DNA damage and repair that are not easily accessible in the intact animal. In the second section of the article, we illustrate an approach from our laboratory that develops fit-for-purpose, in vitro assays and evaluates the PD of DNA damage and repair through studies using prototypical DNA-damaging agents. Examination of a broad range of responses in these cells showed that transcriptional upregulation of cell cycle control and DNA repair pathways only occurred at doses higher than those causing overt damage fixed damage-measured as MN formation. Lower levels of damage appear to be handled by post-translational repair process using pre-existing proteins. In depth evaluation of the PD properties of one such post-translational process (formation of DNA repair centers; DRCs) has indicated that the formation of DRCs and their ability to complete repair before replication are consistent with threshold behaviours for mutagenesis and, by extension, with chemical carcinogenesis. © The Author 2016. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Dou, Baoting; Yang, Jianmei; Shi, Kai; Yuan, Ruo; Xiang, Yun
2016-09-15
We describe here the development of a sensitive and convenient electronic sensor for the detection of antibodies in human serums. The sensor is constructed by self-assembly formation of a mixed monolayer containing the small molecule epitope conjugated double stranded DNA probes on gold electrode. The target antibody binds the epitope on the dsDNA probe and lowers the melting temperature of the duplex, which facilitates the displacement of the antibody-linked strand of the duplex probe by an invading methylene blue-tagged single stranded DNA (MB-ssDNA) through the strand displacement reaction and leads to the capture of many MB-ssDNA on the sensor surface. Subsequent electrochemical oxidation of the methylene blue labels results in amplified current response for sensitive monitoring of the antibodies. The antibody assay conditions are optimized and the sensor exhibits a linear range between 1.0 and 25.0nM with a detection limit of 0.67nM for the target antibody. The sensor is also selective and can be employed to detect the target antibodies in human serum samples. With the advantages of using small molecule epitope as the antibody recognition element over traditional antigen, the versatile manipulability of the DNA probes and the unique properties of the electrochemical transduction technique, the developed sensor thus hold great potential for simple and sensitive detection of different antibodies and other proteins in real samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Nadhman, Akhtar; Sirajuddin, Muhammad; Nazir, Samina; Yasinzai, Masoom
2016-06-01
Recently, the authors reported newly synthesised polyethylene glycol (PEG)ylated silver (9%)-doped zinc oxide nanoparticle (doped semiconductor nanoparticle (DSN)) which has high potency for killing Leishmania tropica by producing reactive oxygen species on exposure to sunlight. The current report is focused on Leishmania DNA interaction and damage caused by the DSN. Here, we showed that the damage to Leishmania DNA was indirect, as the DSN was unable to interact with the DNA in intact Leishmania cell, indicating the incapability of PEGylated DSN to cross the nucleus barrier. The DNA damage was the result of high production of singlet oxygen on exposure to sunlight. The DNA damage was successfully prevented by singlet oxygen scavenger (sodium azide) confirming involvement of the highly energetic singlet oxygen in the DNA degradation process.
Sensitivity of PZT Impedance Sensors for Damage Detection of Concrete Structures
Yang, Yaowen; Hu, Yuhang; Lu, Yong
2008-01-01
Piezoelectric ceramic Lead Zirconate Titanate (PZT) based electro-mechanical impedance (EMI) technique for structural health monitoring (SHM) has been successfully applied to various engineering systems. However, fundamental research work on the sensitivity of the PZT impedance sensors for damage detection is still in need. In the traditional EMI method, the PZT electro-mechanical (EM) admittance (inverse of the impedance) is used as damage indicator, which is difficult to specify the effect of damage on structural properties. This paper uses the structural mechanical impedance (SMI) extracted from the PZT EM admittance signature as the damage indicator. A comparison study on the sensitivity of the EM admittance and the structural mechanical impedance to the damages in a concrete structure is conducted. Results show that the SMI is more sensitive to the damage than the EM admittance thus a better indicator for damage detection. Furthermore, this paper proposes a dynamic system consisting of a number of single-degree-of-freedom elements with mass, spring and damper components to model the SMI. A genetic algorithm is employed to search for the optimal value of the unknown parameters in the dynamic system. An experiment is carried out on a two-storey concrete frame subjected to base vibrations that simulate earthquake. A number of PZT sensors are regularly arrayed and bonded to the frame structure to acquire PZT EM admittance signatures. The relationship between the damage index and the distance of the PZT sensor from the damage is studied. Consequently, the sensitivity of the PZT sensors is discussed and their sensing region in concrete is derived. PMID:27879711
2012-01-01
Background Occupational chromium exposure may induce DNA damage and lead to lung cancer and other work-related diseases. DNA repair gene polymorphisms, which may alter the efficiency of DNA repair, thus may contribute to genetic susceptibility of DNA damage. The aim of this study was to test the hypothesis that the genetic variations of 9 major DNA repair genes could modulate the hexavalent chromium (Cr (VI))-induced DNA damage. Findings The median (P25-P75) of Olive tail moment was 0.93 (0.58–1.79) for individuals carrying GG genotype of XRCC1 Arg399Gln (G/A), 0.73 (0.46–1.35) for GA heterozygote and 0.50 (0.43–0.93) for AA genotype. Significant difference was found among the subjects with three different genotypes (P = 0.048) after adjusting the confounding factors. The median of Olive tail moment of the subjects carrying A allele (the genotypes of AA and GA) was 0.66 (0.44–1.31), which was significantly lower than that of subjects with GG genotype (P = 0.043). The A allele conferred a significantly reduced risk of DNA damage with the OR of 0.39 (95% CI: 0.15–0.99, P = 0.048). No significant association was found between the XRCC1Arg194Trp, ERCC1 C8092A, ERCC5 His1104Asp, ERCC6 Gly399Asp, GSTP1 Ile105Val, OGG1 Ser326Cys, XPC Lys939Gln, XPD Lys751Gln and DNA damage. Conclusion The polymorphism of Arg399Gln in XRCC1 was associated with the Cr (VI)- induced DNA damage. XRCC1 Arg399Gln may serve as a genetic biomarker of susceptibility for Cr (VI)- induced DNA damage. PMID:22642904
AtPDCD5 Plays a Role in Programmed Cell Death after UV-B Exposure in Arabidopsis1[OPEN
Falcone Ferreyra, María Lorena; D’Andrea, Lucio; AbdElgawad, Hamada
2016-01-01
DNA damage responses have evolved to sense and react to DNA damage; the induction of DNA repair mechanisms can lead to genomic restoration or, if the damaged DNA cannot be adequately repaired, to the execution of a cell death program. In this work, we investigated the role of an Arabidopsis (Arabidopsis thaliana) protein, AtPDCD5, which is highly similar to the human PDCD5 protein; it is induced by ultraviolet (UV)-B radiation and participates in programmed cell death in the UV-B DNA damage response. Transgenic plants expressing AtPDCD5 fused to GREEN FLUORESCENT PROTEIN indicate that AtPDCD5 is localized both in the nucleus and the cytosol. By use of pdcd5 mutants, we here demonstrate that these plants have an altered antioxidant metabolism and accumulate higher levels of DNA damage after UV-B exposure, similar to levels in ham1ham2 RNA interference transgenic lines with decreased expression of acetyltransferases from the MYST family. By coimmunoprecipitation and pull-down assays, we provide evidence that AtPDCD5 interacts with HAM proteins, suggesting that both proteins participate in the same pathway of DNA damage responses. Plants overexpressing AtPDCD5 show less DNA damage but more cell death in root tips upon UV-B exposure. Finally, we here show that AtPDCD5 also participates in age-induced programmed cell death. Together, the data presented here demonstrate that AtPDCD5 plays an important role during DNA damage responses induced by UV-B radiation in Arabidopsis and also participates in programmed cell death programs. PMID:26884483
NASA Technical Reports Server (NTRS)
Ponomarev, A. L.; Huff, J. L.; Cucinotta, F. A.
2011-01-01
Future long-tem space travel will face challenges from radiation concerns as the space environment poses health risk to humans in space from radiations with high biological efficiency and adverse post-flight long-term effects. Solar particles events may dramatically affect the crew performance, while Galactic Cosmic Rays will induce a chronic exposure to high-linear-energy-transfer (LET) particles. These types of radiation, not present on the ground level, can increase the probability of a fatal cancer later in astronaut life. No feasible shielding is possible from radiation in space, especially for the heavy ion component, as suggested solutions will require a dramatic increase in the mass of the mission. Our research group focuses on fundamental research and strategic analysis leading to better shielding design and to better understanding of the biological mechanisms of radiation damage. We present our recent effort to model DNA damage and tissue damage using computational models based on the physics of heavy ion radiation, DNA structure and DNA damage and repair in human cells. Our particular area of expertise include the clustered DNA damage from high-LET radiation, the visualization of DSBs (DNA double strand breaks) via DNA damage foci, image analysis and the statistics of the foci for different experimental situations, chromosomal aberration formation through DSB misrepair, the kinetics of DSB repair leading to a model-derived spectrum of chromosomal aberrations, and, finally, the simulation of human tissue and the pattern of apoptotic cell damage. This compendium of theoretical and experimental data sheds light on the complex nature of radiation interacting with human DNA, cells and tissues, which can lead to mutagenesis and carcinogenesis later in human life after the space mission.
Lauretti, Elisabetta; Hulse, Michael; Siciliano, Micheal; Lupey-Green, Lena N.; Abraham, Aaron; Skorski, Tomasz; Tempera, Italo
2018-01-01
The enzyme Poly(ADP-ribose) polymerase 1 (PARP1) plays a very important role in the DNA damage response, but its role in numerous aspects is not fully understood. We recently showed that in the absence of DNA damage, PARP1 regulates the expression of the chromatin-modifying enzyme EZH2. Work from other groups has shown that EZH2 participates in the DNA damage response. These combined data suggest that EZH2 could be a target of PARP1 in both untreated and genotoxic agent-treated conditions. In this work we tested the hypothesis that, in response to DNA damage, PARP1 regulates EZH2 activity. Here we report that PARP1 regulates EZH2 activity after DNA damage. In particular, we find that EZH2 is a direct target of PARP1 upon induction of alkylating and UV-induced DNA damage in cells and in vitro. PARylation of EZH2 inhibits EZH2 histone methyltransferase (H3K27me) enzymatic activity. We observed in cells that the induction of PARP1 activity by DNA alkylating agents decreases the association of EZH2 with chromatin, and PARylation of histone H3 reduces EZH2 affinity for its target histone H3. Our findings establish that PARP1 and PARylation are important regulators of EZH2 function and link EZH2-mediated heterochromatin formation, DNA damage and PARylation. These findings may also have clinical implications, as they suggest that inhibitors of EZH2 can improve anti-tumor effects of PARP1 inhibitors in BRCA1/2-deficient cancers. PMID:29535829
Singh, Satyender; Kumar, Vivek; Vashisht, Kapil; Singh, Priyanka; Banerjee, Basu Dev; Rautela, Rajender Singh; Grover, Shyam Sunder; Rawat, Devendra Singh; Pasha, Syed Tazeen; Jain, Sudhir Kumar; Rai, Arvind
2011-11-15
Organophosphate pesticides (OPs) are primarily metabolized by several xenobiotic metabolizing enzymes (XMEs). Very few studies have explored genetic polymorphisms of XMEs and their association with DNA damage in pesticide-exposed workers. The present study was designed to determine the role of genetic polymorphisms of CYP1A1, CYP3A5, CYP2C9, CYP2D6, and PON1 in the modulation of DNA damage in workers occupationally exposed to OPs. We examined 284 subjects including 150 workers occupationally exposed to OPs and 134 normal healthy controls. The DNA damage was evaluated using the alkaline comet assay and genotyping was done using PCR-RFLP. The results revealed that the PONase activity toward paraoxonase and AChE activity was found significantly lowered in workers as compared to control subjects (p<0.001). Workers showed significantly higher DNA damage compared to control subjects (14.37±2.15 vs. 6.24±1.37 tail% DNA, p<0.001). Further, the workers with CYP2D6*3PM and PON1 (QQ and MM) genotypes were found to have significantly higher DNA damage when compared to other genotypes (p<0.05). In addition, significant increase in DNA damage was also observed in workers with concomitant presence of certain CYP2D6 and PON1 (Q192R and L55M) genotypes which need further extensive studies. In conclusion, the results indicate that the PON1 and CYP2D6 genotypes can modulate DNA damage elicited by some OPs possibly through gene-environment interactions. Copyright © 2011 Elsevier Inc. All rights reserved.
NF-κB inhibition delays DNA damage–induced senescence and aging in mice
Tilstra, Jeremy S.; Robinson, Andria R.; Wang, Jin; Gregg, Siobhán Q.; Clauson, Cheryl L.; Reay, Daniel P.; Nasto, Luigi A.; St Croix, Claudette M.; Usas, Arvydas; Vo, Nam; Huard, Johnny; Clemens, Paula R.; Stolz, Donna B.; Guttridge, Denis C.; Watkins, Simon C.; Garinis, George A.; Wang, Yinsheng; Niedernhofer, Laura J.; Robbins, Paul D.
2012-01-01
The accumulation of cellular damage, including DNA damage, is thought to contribute to aging-related degenerative changes, but how damage drives aging is unknown. XFE progeroid syndrome is a disease of accelerated aging caused by a defect in DNA repair. NF-κB, a transcription factor activated by cellular damage and stress, has increased activity with aging and aging-related chronic diseases. To determine whether NF-κB drives aging in response to the accumulation of spontaneous, endogenous DNA damage, we measured the activation of NF-κB in WT and progeroid model mice. As both WT and progeroid mice aged, NF-κB was activated stochastically in a variety of cell types. Genetic depletion of one allele of the p65 subunit of NF-κB or treatment with a pharmacological inhibitor of the NF-κB–activating kinase, IKK, delayed the age-related symptoms and pathologies of progeroid mice. Additionally, inhibition of NF-κB reduced oxidative DNA damage and stress and delayed cellular senescence. These results indicate that the mechanism by which DNA damage drives aging is due in part to NF-κB activation. IKK/NF-κB inhibitors are sufficient to attenuate this damage and could provide clinical benefit for degenerative changes associated with accelerated aging disorders and normal aging. PMID:22706308
Corrupting the DNA damage response: a critical role for Rad52 in tumor cell survival.
Lieberman, Rachel; You, Ming
2017-07-15
The DNA damage response enables cells to survive, maintain genome integrity, and to safeguard the transmission of high-fidelity genetic information. Upon sensing DNA damage, cells respond by activating this multi-faceted DNA damage response leading to restoration of the cell, senescence, programmed cell death, or genomic instability if the cell survives without proper repair. However, unlike normal cells, cancer cells maintain a marked level of genomic instability. Because of this enhanced propensity to accumulate DNA damage, tumor cells rely on homologous recombination repair as a means of protection from the lethal effect of both spontaneous and therapy-induced double-strand breaks (DSBs) in DNA. Thus, modulation of DNA repair pathways have important consequences for genomic instability within tumor cell biology and viability maintenance under high genotoxic stress. Efforts are underway to manipulate specific components of the DNA damage response in order to selectively induce tumor cell death by augmenting genomic instability past a viable threshold. New evidence suggests that RAD52, a component of the homologous recombination pathway, is important for the maintenance of tumor genome integrity. This review highlights recent reports indicating that reducing homologous recombination through inhibition of RAD52 may represent an important focus for cancer therapy and the specific efforts that are already demonstrating potential.
Petrović, Jelena; Stanić, Dušanka; Dmitrašinović, Gordana; Plećaš-Solarović, Bosiljka; Ignjatović, Svetlana; Batinić, Bojan; Popović, Dejana
2016-01-01
Sedentary lifestyle is highly associated with increased risk of cardiovascular disease, obesity, and type 2 diabetes. It is known that regular physical activity has positive effects on health; however several studies have shown that acute and strenuous exercise can induce oxidative stress and lead to DNA damage. As magnesium is essential in maintaining DNA integrity, the aim of this study was to determine whether four-week-long magnesium supplementation in students with sedentary lifestyle and rugby players could prevent or diminish impairment of DNA. By using the comet assay, our study demonstrated that the number of peripheral blood lymphocytes (PBL) with basal endogenous DNA damage is significantly higher in rugby players compared to students with sedentary lifestyle. On the other hand, magnesium supplementation significantly decreased the number of cells with high DNA damage, in the presence of exogenous H2O2, in PBL from both students and rugby players, and markedly reduced the number of cells with medium DNA damage in rugby players compared to corresponding control nonsupplemented group. Accordingly, the results of our study suggest that four-week-long magnesium supplementation has marked effects in protecting the DNA from oxidative damage in both rugby players and in young men with sedentary lifestyle. Clinical trial is registered at ANZCTR Trial Id: ACTRN12615001237572. PMID:27042258
Dynamic changes to survivin subcellular localization are initiated by DNA damage
Asumen, Maritess Gay; Ifeacho, Tochukwu V; Cockerham, Luke; Pfandl, Christina; Wall, Nathan R
2010-01-01
Subcellular distribution of the apoptosis inhibitor survivin and its ability to relocalize as a result of cell cycle phase or therapeutic insult has led to the hypothesis that these subcellular pools may coincide with different survivin functions. The PIK kinases (ATM, ATR and DNA-PK) phosphorylate a variety of effector substrates that propagate DNA damage signals, resulting in various biological outputs. Here we demonstrate that subcellular repartitioning of survivin in MCF-7 cells as a result of UV light-mediated DNA damage is dependent upon DNA damage-sensing proteins as treatment with the pan PIK kinase inhibitor wortmannin repartitioned survivin in the mitochondria and diminished it from the cytosol and nucleus. Mitochondrial redistribution of survivin, such as was recorded after wortmannin treatment, occurred in cells lacking any one of the three DNA damage sensing protein kinases: DNA-PK, ATM or ATR. However, failed survivin redistribution from the mitochondria in response to low-dose UV occurred only in the cells lacking ATM, implying that ATM may be the primary kinase involved in this process. Taken together, this data implicates survivian’s subcellular distribution is a dynamic physiological process that appears responsive to UV light-initiated DNA damage and that its distribution may be responsible for its multifunctionality. PMID:20856848
ATM directs DNA damage responses and proteostasis via genetically separable pathways.
Lee, Ji-Hoon; Mand, Michael R; Kao, Chung-Hsuan; Zhou, Yi; Ryu, Seung W; Richards, Alicia L; Coon, Joshua J; Paull, Tanya T
2018-01-09
The protein kinase ATM is a master regulator of the DNA damage response but also responds directly to oxidative stress. Loss of ATM causes ataxia telangiectasia, a neurodegenerative disorder with pleiotropic symptoms that include cerebellar dysfunction, cancer, diabetes, and premature aging. We genetically separated the activation of ATM by DNA damage from that by oxidative stress using separation-of-function mutations. We found that deficient activation of ATM by the Mre11-Rad50-Nbs1 complex and DNA double-strand breaks resulted in loss of cell viability, checkpoint activation, and DNA end resection in response to DNA damage. In contrast, loss of oxidative activation of ATM had minimal effects on DNA damage-related outcomes but blocked ATM-mediated initiation of checkpoint responses after oxidative stress and resulted in deficiencies in mitochondrial function and autophagy. In addition, expression of a variant ATM incapable of activation by oxidative stress resulted in widespread protein aggregation. These results indicate a direct relationship between the mechanism of ATM activation and its effects on cellular metabolism and DNA damage responses in human cells and implicate ATM in the control of protein homeostasis. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Open Circuit Resonant Sensors for Composite Damage Detection and Diagnosis
NASA Technical Reports Server (NTRS)
Mielnik, John J., Jr.
2011-01-01
Under the Integrated Vehicle Health Management (IVHM) program work was begun to investigate the feasibility of sensor systems for detecting and diagnosing damage to aircraft composite structures and materials. Specific interest for this study was in damage initiated by environmental storm hazards and the direct effect of lightning strikes on the material structures of a composite aircraft in flight. A series of open circuit resonant sensors was designed, fabricated, characterized, and determined to be a potentially viable means for damage detection and diagnosis of composite materials. The results of this research and development effort are documented in this report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiran, Shashi; Oddi, Vineesha; Ramakrishna, Gayatri, E-mail: gayatrirama1@gmail.com
2015-02-01
Maintaining the genomic integrity is a constant challenge in proliferating cells. Amongst various proteins involved in this process, Sirtuins play a key role in DNA damage repair mechanisms in yeast as well as mammals. In the present work we report the role of one of the least explored Sirtuin viz., SIRT7, under conditions of genomic stress when treated with doxorubicin. Knockdown of SIRT7 sensitized osteosarcoma (U2OS) cells to DNA damage induced cell death by doxorubicin. SIRT7 overexpression in NIH3T3 delayed cell cycle progression by causing delay in G1 to S transition. SIRT7 overexpressing cells when treated with low dose ofmore » doxorubicin (0.25 µM) showed delayed onset of senescence, lesser accumulation of DNA damage marker γH2AX and lowered levels of growth arrest markers viz., p53 and p21 when compared to doxorubicin treated control GFP expressing cells. Resistance to DNA damage following SIRT7 overexpression was also evident by EdU incorporation studies where cellular growth arrest was significantly delayed. When treated with higher dose of doxorubicin (>1 µM), SIRT7 conferred resistance to apoptosis by attenuating stress activated kinases (SAPK viz., p38 and JNK) and p53 response thereby shifting the cellular fate towards senescence. Interestingly, relocalization of SIRT7 from nucleolus to nucleoplasm together with its co-localization with SAPK was an important feature associated with DNA damage. SIRT7 mediated resistance to doxorubicin induced apoptosis and senescence was lost when p53 level was restored by nutlin treatment. Overall, we propose SIRT7 attenuates DNA damage, SAPK activation and p53 response thereby promoting cellular survival under conditions of genomic stress. - Highlights: • Knockdown of SIRT7 sensitized cells to DNA damage induced apoptosis. • SIRT7 delayed onset of premature senescence by attenuating DNA damage response. • Overexpression of SIRT7 delayed cell cycle progression by delaying G1/S transition. • Upon DNA damage SIRT7 attenuated p38/JNK activation and also p53 response. • Overall, SIRT7 promoted cellular survival in conditions of genomic stress.« less
NASA Astrophysics Data System (ADS)
Lu, Tao; Wu, Honglu; Karouia, Fathi; Stodieck, Louis; Zhang, Ye; Wong, Michael
2016-07-01
Spaceflights expose human beings to various risk factors. Among them are microgravity related physiological stresses in immune, cytoskeletal, and cardiovascular systems, and space radiation related elevation of cancer risk. Cosmic radiation consists of energetic protons and other heavier charged particles that induce DNA damages. Effective DNA damage response and repair mechanism is important to maintain genomic integrity and reduce cancer risk. There were studies on effects of spaceflight and microgravity on DNA damage response in cell and animal models, but the published results were mostly conflicting and inconsistent. To investigate effects of spaceflight on molecular and cellular responses to DNA damages, bleomycin, an anti-cancer drug and radiomimetic reagent, was used to induce DNA damages in confluent human fibroblasts flown to the International Space Station (ISS) and on ground. After exposure to 1.0 mg/ml bleomycin for 3 hours, cells were fixed for immunofluorescence assays and for RNA preparation. Extents of DNA damages were quantified by focus pattern and focus number counting of phosphorylated histone protein H2AX (γg-H2AX). The cells on the ISS showed modestly increased average focus counts per nucleus while the distribution of patterns was similar to that on the ground. PCR array analysis showed that expressions of several genes, including CDKN1A and PCNA, were significantly changed in response to DNA damages induced by bleomycin in both flight and ground control cells. However, there were no significant differences in the overall expression profiles of DNA damage response genes between the flight and ground samples. Analysis of cellular proliferation status with Ki-67 staining showed a slightly higher proliferating population in cells on the ISS than those on ground. Our results suggested that the difference in γg-H2AX focus counts between flight and ground was due to the higher percentage of proliferating cells in space, but spaceflight did not significantly affect initial transcriptional responses to bleomycin treatment in the selected genes in the DNA damage signaling pathways.
Detection of Damaged DNA Bases by DNA Glycosylase Enzymes†
Friedman, Joshua I.; Stivers, James T.
2010-01-01
A fundamental and shared process in all forms of life is the use of DNA glycosylase enzymes to excise rare damaged bases from genomic DNA. Without such enzymes, the highly-ordered primary sequences of genes would rapidly deteriorate. Recent structural and biophysical studies are beginning to reveal a fascinating multistep mechanism for damaged base detection that begins with short-range sliding of the glycosylase along the DNA chain in a distinct conformation we refer to as the search complex (SC). Sliding is frequently punctuated by the formation of a transient “interrogation” complex (IC) where the enzyme extrahelically inspects both normal and damaged bases in an exosite pocket that is distant from the active site. When normal bases are presented in the exosite, the IC rapidly collapses back to the SC, while a damaged base will efficiently partition forward into the active site to form the catalytically competent excision complex (EC). Here we review the unique problems associated with enzymatic detection of rare damaged DNA bases in the genome, and emphasize how each complex must have specific dynamic properties that are tuned to optimize the rate and efficiency of damage site location. PMID:20469926
Response to DNA damage of CHEK2 missense mutations in familial breast cancer
Roeb, Wendy; Higgins, Jake; King, Mary-Claire
2012-01-01
Comprehensive sequencing of tumor suppressor genes to evaluate inherited predisposition to cancer yields many individually rare missense alleles of unknown functional and clinical consequence. To address this problem for CHEK2 missense alleles, we developed a yeast-based assay to assess in vivo CHEK2-mediated response to DNA damage. Of 25 germline CHEK2 missense alleles detected in familial breast cancer patients, 12 alleles had complete loss of DNA damage response, 8 had partial loss and 5 exhibited a DNA damage response equivalent to that mediated by wild-type CHEK2. Variants exhibiting reduced response to DNA damage were found in all domains of the CHEK2 protein. Assay results were in agreement with epidemiologic assessments of breast cancer risk for those variants sufficiently common for case–control studies to have been undertaken. Assay results were largely concordant with consensus predictions of in silico tools, particularly for damaging alleles in the kinase domain. However, of the 25 variants, 6 were not consistently classifiable by in silico tools. An in vivo assay of cellular response to DNA damage by mutant CHEK2 alleles may complement and extend epidemiologic and genetic assessment of their clinical consequences. PMID:22419737
Response to DNA damage of CHEK2 missense mutations in familial breast cancer.
Roeb, Wendy; Higgins, Jake; King, Mary-Claire
2012-06-15
Comprehensive sequencing of tumor suppressor genes to evaluate inherited predisposition to cancer yields many individually rare missense alleles of unknown functional and clinical consequence. To address this problem for CHEK2 missense alleles, we developed a yeast-based assay to assess in vivo CHEK2-mediated response to DNA damage. Of 25 germline CHEK2 missense alleles detected in familial breast cancer patients, 12 alleles had complete loss of DNA damage response, 8 had partial loss and 5 exhibited a DNA damage response equivalent to that mediated by wild-type CHEK2. Variants exhibiting reduced response to DNA damage were found in all domains of the CHEK2 protein. Assay results were in agreement with epidemiologic assessments of breast cancer risk for those variants sufficiently common for case-control studies to have been undertaken. Assay results were largely concordant with consensus predictions of in silico tools, particularly for damaging alleles in the kinase domain. However, of the 25 variants, 6 were not consistently classifiable by in silico tools. An in vivo assay of cellular response to DNA damage by mutant CHEK2 alleles may complement and extend epidemiologic and genetic assessment of their clinical consequences.
Londoño-Velasco, Elizabeth; Martínez-Perafán, Fabián; Carvajal-Varona, Silvio; García-Vallejo, Felipe; Hoyos-Giraldo, Luz Stella
2016-05-01
Occupational exposure as a painter is associated with DNA damage and development of cancer. Comet assay has been widely adopted as a sensitive and quantitative tool for DNA damage assessment at the individual cell level in populations exposed to genotoxics. The aim of this study was to assess the application of the high-throughput comet assay, to determine the DNA damage in car spray painters. The study population included 52 car spray painters and 52 unexposed subjects. A significant increase in the %TDNA median (p < 0.001) was observed in the exposed group in comparison to the unexposed group. Neither age (%TDNA: p = 0.913) nor time of exposure (%TDNA: p = 0.398) were significantly correlated with DNA damage. The car spray painters who consumed alcohol did not show a significant increase in DNA damage compared to nonalcohol consumers (p > 0.05). The results showed an increase in DNA breaks in car spray painters exposed to organic solvents and paints; furthermore, they demonstrated the application of high-throughput comet assay in an occupational exposure study to genotoxic agents.
Assessment of DNA damage in a group of professional dancers during a 10-month dancing season.
Esteves, Filipa; Teixeira, Eduardo; Amorim, Tânia; Costa, Carla; Pereira, Cristiana; Fraga, Sónia; De Andrade, Vanessa Moraes; Teixeira, João Paulo; Costa, Solange
2017-01-01
Despite the numerous health benefits of physical activity, some studies reported that increased intensity and duration may induce oxidative stress in several cellular components including DNA. The aim of this study was to assess the level of basal DNA damage as well as oxidative DNA damage in a group of professional dancers before and after a 10-month dancing season. A group of individuals from general population was also assessed as a control. The alkaline version of the comet assay was the method selected to measure both basal DNA damage and oxidative stress, since this method quantifies both endpoints. In order to measure oxidative stress, the comet assay was coupled with a lesion-specific endonuclease (formamidopyrimidine glycosylase) to detect oxidized purines. The levels of oxidative DNA damage in dancers were significantly increased after the dancing season. Pre-season levels of oxidative DNA damage were lower in dancers than those obtained from the general population, suggesting an adaptation of antioxidant system in dancers. Results of the present biomonitoring study indicate the need for more effective measures to protect ballet dancers from potentially occupational health risks related to regular intensive physical exercise.
Omics Approaches for Identifying Physiological Adaptations to Genome Instability in Aging.
Edifizi, Diletta; Schumacher, Björn
2017-11-04
DNA damage causally contributes to aging and age-related diseases. The declining functioning of tissues and organs during aging can lead to the increased risk of succumbing to aging-associated diseases. Congenital syndromes that are caused by heritable mutations in DNA repair pathways lead to cancer susceptibility and accelerated aging, thus underlining the importance of genome maintenance for withstanding aging. High-throughput mass-spectrometry-based approaches have recently contributed to identifying signalling response networks and gaining a more comprehensive understanding of the physiological adaptations occurring upon unrepaired DNA damage. The insulin-like signalling pathway has been implicated in a DNA damage response (DDR) network that includes epidermal growth factor (EGF)-, AMP-activated protein kinases (AMPK)- and the target of rapamycin (TOR)-like signalling pathways, which are known regulators of growth, metabolism, and stress responses. The same pathways, together with the autophagy-mediated proteostatic response and the decline in energy metabolism have also been found to be similarly regulated during natural aging, suggesting striking parallels in the physiological adaptation upon persistent DNA damage due to DNA repair defects and long-term low-level DNA damage accumulation occurring during natural aging. These insights will be an important starting point to study the interplay between signalling networks involved in progeroid syndromes that are caused by DNA repair deficiencies and to gain new understanding of the consequences of DNA damage in the aging process.
Omics Approaches for Identifying Physiological Adaptations to Genome Instability in Aging
Edifizi, Diletta; Schumacher, Björn
2017-01-01
DNA damage causally contributes to aging and age-related diseases. The declining functioning of tissues and organs during aging can lead to the increased risk of succumbing to aging-associated diseases. Congenital syndromes that are caused by heritable mutations in DNA repair pathways lead to cancer susceptibility and accelerated aging, thus underlining the importance of genome maintenance for withstanding aging. High-throughput mass-spectrometry-based approaches have recently contributed to identifying signalling response networks and gaining a more comprehensive understanding of the physiological adaptations occurring upon unrepaired DNA damage. The insulin-like signalling pathway has been implicated in a DNA damage response (DDR) network that includes epidermal growth factor (EGF)-, AMP-activated protein kinases (AMPK)- and the target of rapamycin (TOR)-like signalling pathways, which are known regulators of growth, metabolism, and stress responses. The same pathways, together with the autophagy-mediated proteostatic response and the decline in energy metabolism have also been found to be similarly regulated during natural aging, suggesting striking parallels in the physiological adaptation upon persistent DNA damage due to DNA repair defects and long-term low-level DNA damage accumulation occurring during natural aging. These insights will be an important starting point to study the interplay between signalling networks involved in progeroid syndromes that are caused by DNA repair deficiencies and to gain new understanding of the consequences of DNA damage in the aging process. PMID:29113067
The effects of male age on sperm DNA damage in healthy non-smokers.
Schmid, T E; Eskenazi, B; Baumgartner, A; Marchetti, F; Young, S; Weldon, R; Anderson, D; Wyrobek, A J
2007-01-01
The trend for men to have children at older age raises concerns that advancing age may increase the production of genetically defective sperm, increasing the risks of transmitting germ-line mutations. We investigated the associations between male age and sperm DNA damage and the influence of several lifestyle factors in a healthy non-clinical group of 80 non-smokers (mean age: 46.4 years, range: 22-80 years) with no known fertility problems using the sperm Comet analyses. The average percentage of DNA that migrated out of the sperm nucleus under alkaline electrophoresis increased with age (0.18% per year, P = 0.006), but there was no age association for damage measured under neutral conditions (P = 0.7). Men who consumed >3 cups coffee per day had approximately 20% higher percentage tail DNA under neutral but not alkaline conditions compared with men who consumed no caffeine (P = 0.005). Our findings indicate that (i) older men have increased sperm DNA damage associated with alkali-labile sites or single-strand DNA breaks and (ii) independent of age, men with substantial daily caffeine consumption have increased sperm DNA damage associated with double-strand DNA breaks. DNA damage in sperm can be converted to chromosomal aberrations and gene mutations after fertilization, increasing the risks of developmental defects and genetic diseases among offspring.
Archaeal RNA polymerase arrests transcription at DNA lesions.
Gehring, Alexandra M; Santangelo, Thomas J
2017-01-01
Transcription elongation is not uniform and transcription is often hindered by protein-bound factors or DNA lesions that limit translocation and impair catalysis. Despite the high degree of sequence and structural homology of the multi-subunit RNA polymerases (RNAP), substantial differences in response to DNA lesions have been reported. Archaea encode only a single RNAP with striking structural conservation with eukaryotic RNAP II (Pol II). Here, we demonstrate that the archaeal RNAP from Thermococcus kodakarensis is sensitive to a variety of DNA lesions that pause and arrest RNAP at or adjacent to the site of DNA damage. DNA damage only halts elongation when present in the template strand, and the damage often results in RNAP arresting such that the lesion would be encapsulated with the transcription elongation complex. The strand-specific halt to archaeal transcription elongation on modified templates is supportive of RNAP recognizing DNA damage and potentially initiating DNA repair through a process akin to the well-described transcription-coupled DNA repair (TCR) pathways in Bacteria and Eukarya.
Optimised detection of mitochondrial DNA strand breaks.
Hanna, Rebecca; Crowther, Jonathan M; Bulsara, Pallav A; Wang, Xuying; Moore, David J; Birch-Machin, Mark A
2018-05-04
Intrinsic and extrinsic factors that induce cellular oxidative stress damage tissue integrity and promote ageing, resulting in accumulative strand breaks to the mitochondrial DNA (mtDNA) genome. Limited repair mechanisms and close proximity to superoxide generation make mtDNA a prominent biomarker of oxidative damage. Using human DNA we describe an optimised long-range qPCR methodology that sensitively detects mtDNA strand breaks relative to a suite of short mitochondrial and nuclear DNA housekeeping amplicons, which control for any variation in mtDNA copy number. An application is demonstrated by detecting 16-36-fold mtDNA damage in human skin cells induced by hydrogen peroxide and solar simulated radiation. Copyright © 2018 Elsevier B.V. and Mitochondria Research Society. All rights reserved.
Structural health management of aerospace hotspots under fatigue loading
NASA Astrophysics Data System (ADS)
Soni, Sunilkumar
Sustainability and life-cycle assessments of aerospace systems, such as aircraft structures and propulsion systems, represent growing challenges in engineering. Hence, there has been an increasing demand in using structural health monitoring (SHM) techniques for continuous monitoring of these systems in an effort to improve safety and reduce maintenance costs. The current research is part of an ongoing multidisciplinary effort to develop a robust SHM framework resulting in improved models for damage-state awareness and life prediction, and enhancing capability of future aircraft systems. Lug joints, a typical structural hotspot, were chosen as the test article for the current study. The thesis focuses on integrated SHM techniques for damage detection and characterization in lug joints. Piezoelectric wafer sensors (PZTs) are used to generate guided Lamb waves as they can be easily used for onboard applications. Sensor placement in certain regions of a structural component is not feasible due to the inaccessibility of the area to be monitored. Therefore, a virtual sensing concept is introduced to acquire sensor data from finite element (FE) models. A full three dimensional FE analysis of lug joints with piezoelectric transducers, accounting for piezoelectrical-mechanical coupling, was performed in Abaqus and the sensor signals were simulated. These modeled sensors are called virtual sensors. A combination of real data from PZTs and virtual sensing data from FE analysis is used to monitor and detect fatigue damage in aluminum lug joints. Experiments were conducted on lug joints under fatigue loads and sensor signals collected were used to validate the simulated sensor response. An optimal sensor placement methodology for lug joints is developed based on a detection theory framework to maximize the detection rate and minimize the false alarm rate. The placement technique is such that the sensor features can be directly correlated to damage. The technique accounts for a number of factors, such as actuation frequency and strength, minimum damage size, damage detection scheme, material damping, signal to noise ratio and sensing radius. Advanced information processing methodologies are discussed for damage diagnosis. A new, instantaneous approach for damage detection, localization and quantification is proposed for applications to practical problems associated with changes in reference states under different environmental and operational conditions. Such an approach improves feature extraction for state awareness, resulting in robust life prediction capabilities.
Jackson, J H; Schraufstatter, I U; Hyslop, P A; Vosbeck, K; Sauerheber, R; Weitzman, S A; Cochrane, C G
1987-01-01
The mechanism by which cigarette smoking and asbestos exposure synergistically increase the incidence of lung cancer is unknown. We hypothesized that cigarette smoke and asbestos might synergistically increase DNA damage. To test this hypothesis we exposed isolated bacteriophage PM2 DNA to cigarette smoke and/or asbestos, and assessed DNA strand breaks as an index of DNA damage. Our results supported our hypothesis. 78 +/- 12% of the DNA exposed to both cigarette smoke and asbestos developed strand breaks, while only 9.8 +/- 7.0 or 4.3 +/- 3.3% of the DNA exposed to cigarette smoke or asbestos, respectively, developed strand breaks under the conditions of the experiment. Our experimental evidence suggested that cigarette smoke and asbestos synergistically increased DNA damage by stimulating .OH formation. First, significant amounts of .OH were detected by electron paramagnetic resonance (EPR) in DNA mixtures containing both cigarette smoke and asbestos, but no .OH was detected in mixtures containing cigarette smoke alone or asbestos alone. Second, the .OH scavengers, dimethylsulfoxide (DMSO), mannitol, or Na benzoate decreased both .OH detection by EPR and strand breaks in DNA mixtures exposed to cigarette smoke and asbestos. Third, the H2O2 scavenger, catalase, and the iron chelators, 1,10-phenanthroline and desferrithiocin, decreased both .OH detection and strand breaks in DNA mixtures exposed to cigarette smoke and asbestos. These latter findings suggest that iron contained in asbestos may catalyze the formation of .OH from H2O2 generated by cigarette smoke. In summary, our study indicates that cigarette smoke and asbestos synergistically increase DNA damage and suggests that this synergism may involve .OH production. PMID:2821073
Klapacz, Joanna; Pottenger, Lynn H.; Engelward, Bevin P.; Heinen, Christopher D.; Johnson, George E.; Clewell, Rebecca A.; Carmichael, Paul L.; Adeleye, Yeyejide; Andersen, Melvin E.
2016-01-01
From a risk assessment perspective, DNA-reactive agents are conventionally assumed to have genotoxic risks at all exposure levels, thus applying a linear extrapolation for low-dose responses. New approaches discussed here, including more diverse and sensitive methods for assessing DNA damage and DNA repair, strongly support the existence of measurable regions where genotoxic responses with increasing doses are insignificant relative to control. Model monofunctional alkylating agents have in vitro and in vivo datasets amenable to determination of points of departure (PoDs) for genotoxic effects. A session at the 2013 Society of Toxicology meeting provided an opportunity to survey the progress in understanding the biological basis of empirically-observed PoDs for DNA alkylating agents. Together with the literature published since, this review discusses cellular pathways activated by endogenous and exogenous alkylation DNA damage. Cells have evolved conserved processes that monitor and counteract a spontaneous steady-state level of DNA damage. The ubiquitous network of DNA repair pathways serves as the first line of defense for clearing of the DNA damage and preventing mutation. Other biological pathways discussed here that are activated by genotoxic stress include post-translational activation of cell cycle networks and transcriptional networks for apoptosis/cell death. The interactions of various DNA repair and DNA damage response pathways provide biological bases for the observed PoD behaviors seen with genotoxic compounds. Thus, after formation of DNA adducts, the activation of cellular pathways can lead to the avoidance a mutagenic outcome. The understanding of the cellular mechanisms acting within the low-dose region will serve to better characterize risks from exposures to DNA-reactive agents at environmentally-relevant concentrations. PMID:27036068
Klapacz, Joanna; Pottenger, Lynn H; Engelward, Bevin P; Heinen, Christopher D; Johnson, George E; Clewell, Rebecca A; Carmichael, Paul L; Adeleye, Yeyejide; Andersen, Melvin E
2016-01-01
From a risk assessment perspective, DNA-reactive agents are conventionally assumed to have genotoxic risks at all exposure levels, thus applying a linear extrapolation for low-dose responses. New approaches discussed here, including more diverse and sensitive methods for assessing DNA damage and DNA repair, strongly support the existence of measurable regions where genotoxic responses with increasing doses are insignificant relative to control. Model monofunctional alkylating agents have in vitro and in vivo datasets amenable to determination of points of departure (PoDs) for genotoxic effects. A session at the 2013 Society of Toxicology meeting provided an opportunity to survey the progress in understanding the biological basis of empirically-observed PoDs for DNA alkylating agents. Together with the literature published since, this review discusses cellular pathways activated by endogenous and exogenous alkylation DNA damage. Cells have evolved conserved processes that monitor and counteract a spontaneous steady-state level of DNA damage. The ubiquitous network of DNA repair pathways serves as the first line of defense for clearing of the DNA damage and preventing mutation. Other biological pathways discussed here that are activated by genotoxic stress include post-translational activation of cell cycle networks and transcriptional networks for apoptosis/cell death. The interactions of various DNA repair and DNA damage response pathways provide biological bases for the observed PoD behaviors seen with genotoxic compounds. Thus, after formation of DNA adducts, the activation of cellular pathways can lead to the avoidance of a mutagenic outcome. The understanding of the cellular mechanisms acting within the low-dose region will serve to better characterize risks from exposures to DNA-reactive agents at environmentally-relevant concentrations. Copyright © 2015 Elsevier B.V. All rights reserved.
Wang, Qing-Wei; Kamiyama, Chiho; Hidema, Jun; Hikosaka, Kouki
2016-08-01
High doses of ultraviolet-B (UV-B; 280-315 nm) radiation can have detrimental effects on plants, and especially damage their DNA. Plants have DNA repair and protection mechanisms to prevent UV-B damage. However, it remains unclear how DNA damage and tolerance mechanisms vary among field species. We studied DNA damage and tolerance mechanisms in 26 species with different functional groups coexisting in two moorlands at two elevations. We collected current-year leaves in July and August, and determined accumulation of cyclobutane pyrimidine dimer (CPD) as UV-B damage and photorepair activity (PRA) and concentrations of UV-absorbing compounds (UACs) and carotenoids (CARs) as UV-B tolerance mechanisms. DNA damage was greater in dicot than in monocot species, and higher in herbaceous than in woody species. Evergreen species accumulated more CPDs than deciduous species. PRA was higher in Poaceae than in species of other families. UACs were significantly higher in woody than in herbaceous species. The CPD level was not explained by the mechanisms across species, but was significantly related to PRA and UACs when we ignored species with low CPD, PRA and UACs, implying the presence of another effective tolerance mechanism. UACs were correlated negatively with PRA and positively with CARs. Our results revealed that UV-induced DNA damage significantly varies among native species, and this variation is related to functional groups. DNA repair, rather than UV-B protection, dominates in UV-B tolerance in the field. Our findings also suggest that UV-B tolerance mechanisms vary among species under evolutionary trade-off and synergism.
Design of intelligent composites with life-cycle health management capabilities
NASA Astrophysics Data System (ADS)
Rosania, Colleen L.; Larrosa, Cecilia C.; Chang, Fu-Kuo
2015-03-01
Use of carbon fiber reinforced polymers (CFRPs) presents challenges because of their complex manufacturing processes and different damage mechanics in relation to legacy metal materials. New monitoring methods for manufacturing, quality verification, damage estimation, and prognosis are needed to use CFRPs safely and efficiently. This work evaluates the development of intelligent composite materials using integrated piezoelectric sensors to monitor the material during cure and throughout service life. These sensors are used to propagate ultrasonic waves through the structure for health monitoring. During manufacturing, data is collected at different stages during the cure cycle, detecting the changing material properties during cure and verifying quality and degree of cure. The same sensors can then be used with previously developed techniques to perform damage detection, such as impact detection and matrix crack density estimation. Real-time damage estimation can be combined with prognostic models to predict future propagation of damage in the material. In this work experimental results will be presented from composite coupons with embedded piezoelectric sensors. Cure monitoring and damage detection results derived from analysis of the ultrasonic sensor signal will be shown. Sensitive signal parameters to the different stimuli in both the time and frequency domains will be explored for this analysis. From these results, use of the same sensor networks from manufacturing throughout the life of the composite material will demonstrate the full life-cycle monitoring capability of these intelligent materials.
Ganesan, Shanthi; Keating, Aileen F
2015-02-01
Phosphoramide mustard (PM), the ovotoxic metabolite of the anti-cancer agent cyclophosphamide (CPA), destroys rapidly dividing cells by forming NOR-G-OH, NOR-G and G-NOR-G adducts with DNA, potentially leading to DNA damage. A previous study demonstrated that PM induces ovarian DNA damage in rat ovaries. To investigate whether PM induces DNA adduct formation, DNA damage and induction of the DNA repair response, rat spontaneously immortalized granulosa cells (SIGCs) were treated with vehicle control (1% DMSO) or PM (3 or 6μM) for 24 or 48h. Cell viability was reduced (P<0.05) after 48h of exposure to 3 or 6μM PM. The NOR-G-OH DNA adduct was detected after 24h of 6μM PM exposure, while the more cytotoxic G-NOR-G DNA adduct was formed after 48h by exposure to both PM concentrations. Phosphorylated H2AX (γH2AX), a marker of DNA double stranded break occurrence, was also increased by PM exposure, coincident with DNA adduct formation. Additionally, induction of genes (Atm, Parp1, Prkdc, Xrcc6, and Brca1) and proteins (ATM, γH2AX, PARP-1, PRKDC, XRCC6, and BRCA1) involved in DNA repair were observed in both a time- and dose-dependent manner. These data support that PM induces DNA adduct formation in ovarian granulosa cells, induces DNA damage and elicits the ovarian DNA repair response. Copyright © 2014 Elsevier Inc. All rights reserved.
Association of HSP70 and genotoxic damage in lymphocytes of workers exposed to coke-oven emission
Xiao, Chengfeng; Chen, Sheng; Li, Jizhao; Hai, Tao; Lu, Qiaofa; Sun, Enling; Wang, Ruibo; Tanguay, Robert M.; Wu, Tangchun
2002-01-01
Heat shock proteins (Hsps) have been reported to protect cells, tissues, and organisms against damage from a wide variety of stressful stimuli. Whether they protect against deoxyribonucleic acid (DNA) damage in individuals exposed to environmental stresses and chemical carcinogens is unknown. In the study, we investigated the association between Hsp70 levels (the most abundant mammalian Hsp) and genotoxic damage in lymphocytes of workers exposed to coke-oven emission using Western dot blot and 2 DNA damage assays, the comet assay and the micronucleus test. The data show that there is a significant increase in Hsp70 levels, DNA damage score, and micronucleus rates in lymphocytes of workers exposed to coke-oven emission as compared with the control subjects. Furthermore, there was a significant negative correlation of Hsp70 levels with DNA damage scores in the comet assay (r = −0.663, P < 0.01) and with micronucleus rates (r = −0.461, P < 0.01) in the exposed group. In the control group, there was also a light negative correlation between Hsp70 with DNA damage and micronuclei rate (r = −0.236 and r = 0.242, respectively), but it did not reach a statistically significant level (P > 0.05). Our results show that individuals who had high Hsp70 levels generally showed lower genotoxic damage than others. These results suggest a role of Hsp70 in the protection of DNA from genotoxic damage induced by coke-oven emission. PMID:12653484
Karouna-Renier, Natalie K.; White, Carl; Perkins, Christopher R.; Schmerfeld, John J.; Yates, David
2014-01-01
Historical discharges of Hg into the South River near the town of Waynesboro, VA, USA, have resulted in persistently elevated Hg concentrations in sediment, surface water, ground water, soil, and wildlife downstream of the discharge site. In the present study, we examined mercury (Hg) levels in in little brown bats (Myotis lucifugus) from this location and assessed the utility of a non-destructively collected tissue sample (wing punch) for determining mitochondrial DNA (mtDNA) damage in Hg exposed bats. Bats captured 1 and 3 km from the South River, exhibited significantly higher levels of total Hg (THg) in blood and fur than those from the reference location. We compared levels of mtDNA damage using real-time quantitative PCR (qPCR) analysis of two distinct regions of mtDNA. Genotoxicity is among the many known toxic effects of Hg, resulting from direct interactions with DNA or from oxidative damage. Because it lacks many of the protective protein structures and repair mechanisms associated with nuclear DNA, mtDNA is more sensitive to the effects of genotoxic chemicals and therefore may be a useful biomarker in chronically exposed organisms. Significantly higher levels of damage were observed in both regions of mtDNA in bats captured 3 km from the river than in controls. However, levels of mtDNA damage exhibited weak correlations with fur and blood THg levels, suggesting that other factors may play a role in the site-specific differences.
Cancers develop when cells accumulate DNA mutations that allow them to grow and divide inappropriately. Thus, proteins involved in repairing DNA damage are generally suppressors of cancer formation, and their expression is often lost in the early stages of cancer initiation. In contrast, cancer stem cells, like their normal counterparts, must retain their ability to self-renew, which necessitates maintenance of DNA integrity. In hematopoietic stem cells (HSC), for example, double strand breaks and oxidative damage exhaust their regenerative ability. André Nussenzweig, Ph.D., Chief of CCR’s Laboratory of Genome Integrity and his colleagues wondered whether leukemic stem cells might be similarly constrained by DNA damage.
DNA Damage and Repair in Plants under Ultraviolet and Ionizing Radiations
Gill, Sarvajeet S.; Gill, Ritu; Jha, Manoranjan; Tuteja, Narendra
2015-01-01
Being sessile, plants are continuously exposed to DNA-damaging agents present in the environment such as ultraviolet (UV) and ionizing radiations (IR). Sunlight acts as an energy source for photosynthetic plants; hence, avoidance of UV radiations (namely, UV-A, 315–400 nm; UV-B, 280–315 nm; and UV-C, <280 nm) is unpreventable. DNA in particular strongly absorbs UV-B; therefore, it is the most important target for UV-B induced damage. On the other hand, IR causes water radiolysis, which generates highly reactive hydroxyl radicals (OH•) and causes radiogenic damage to important cellular components. However, to maintain genomic integrity under UV/IR exposure, plants make use of several DNA repair mechanisms. In the light of recent breakthrough, the current minireview (a) introduces UV/IR and overviews UV/IR-mediated DNA damage products and (b) critically discusses the biochemistry and genetics of major pathways responsible for the repair of UV/IR-accrued DNA damage. The outcome of the discussion may be helpful in devising future research in the current context. PMID:25729769
Ma, Mingyue; Li, Shuyin; Jin, Huanrong; Zhang, Yumin; Xu, Jia; Chen, Dongmei; Kuimin, Chen; Yuan, Zhou; Xiao, Chunling
2015-09-01
Fine particulate matter (PM2.5) pollution is becoming serious in China. This study aimed to investigate the impact of PM2.5 on DNA damage in Shenyang city. The concentration and composition of PM2.5 in traffic policemen's working sites including fields and indoor offices were obtained. Blood samples of field and office policemen were collected to detect DNA damage by Comet assay. Rats were used to further analyzing the oxidative DNA damage. The average concentration of PM2.5 in exposed group was significantly higher than that in control group. Composition analysis revealed that toxic heavy metal and polycyclic aromatic hydrocarbon substances were main elements of this PM2.5. DNA damage in field policemen was significantly higher than those in non-field group. Moreover, animal studies confirmed the oxidative DNA damage induced by PM2.5. Taken together, high DNA damages are found in the Shenyang traffic policemen and rats exposed to high level of airborne PM2.5. Copyright © 2015 Elsevier B.V. All rights reserved.
Llanos, Susana; Serrano, Manuel
2010-10-01
Perturbation of ribosomal biogenesis has recently emerged as a relevant p53-activating pathway. This pathway can be initiated by depletion of certain ribosomal proteins, which is followed by the binding and inhibition of MDM2 by a different subset of ribosomal proteins that includes L11. Here, we report that depletion of L37 leads to cell cycle arrest in a L11- and p53-dependent manner. DNA damage can initiate ribosomal stress, although little is known about the mechanisms involved. We have found that some genotoxic insults, namely, UV light and cisplatin, lead to proteasomal degradation of L37 in the nucleoplasm and to the ensuing L11-dependent stabilization of p53. Moreover, ectopic L37 overexpression can attenuate the DNA damage response mediated by p53. These results support the concept that DNA damage-induced proteasomal degradation of L37 constitutes a mechanistic link between DNA damage and the ribosomal stress pathway, and is a relevant contributing signaling pathway for the activation of p53 in response to DNA damage.
The sequence specificity of UV-induced DNA damage in a systematically altered DNA sequence.
Khoe, Clairine V; Chung, Long H; Murray, Vincent
2018-06-01
The sequence specificity of UV-induced DNA damage was investigated in a specifically designed DNA plasmid using two procedures: end-labelling and linear amplification. Absorption of UV photons by DNA leads to dimerisation of pyrimidine bases and produces two major photoproducts, cyclobutane pyrimidine dimers (CPDs) and pyrimidine(6-4)pyrimidone photoproducts (6-4PPs). A previous study had determined that two hexanucleotide sequences, 5'-GCTC*AC and 5'-TATT*AA, were high intensity UV-induced DNA damage sites. The UV clone plasmid was constructed by systematically altering each nucleotide of these two hexanucleotide sequences. One of the main goals of this study was to determine the influence of single nucleotide alterations on the intensity of UV-induced DNA damage. The sequence 5'-GCTC*AC was designed to examine the sequence specificity of 6-4PPs and the highest intensity 6-4PP damage sites were found at 5'-GTTC*CC nucleotides. The sequence 5'-TATT*AA was devised to investigate the sequence specificity of CPDs and the highest intensity CPD damage sites were found at 5'-TTTT*CG nucleotides. It was proposed that the tetranucleotide DNA sequence, 5'-YTC*Y (where Y is T or C), was the consensus sequence for the highest intensity UV-induced 6-4PP adduct sites; while it was 5'-YTT*C for the highest intensity UV-induced CPD damage sites. These consensus tetranucleotides are composed entirely of consecutive pyrimidines and must have a DNA conformation that is highly productive for the absorption of UV photons. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.
Assessment of genotoxic effects of flumorph by the comet assay in mice organs.
Zhang, T; Zhao, Q; Zhang, Y; Ning, J
2014-03-01
The present study investigated the genotoxic effects of flumorph in various organs (brain, liver, spleen, kidney and sperm) of mice. The DNA damage, measured as comet tail length (µm), was determined using the alkaline comet assay. The comet assay is a sensitive assay for the detection of genotoxicity caused by flumorph using mice as a model. Statistically significant increases in comet assay for both dose-dependent and duration-dependent DNA damage were observed in all the organs assessed. The organs exhibited the maximum DNA damage in 96 h at 54 mg/kg body weight. Brain showed maximum DNA damage followed by spleen > kidney > liver > sperm. Our data demonstrated that flumorph had induced systemic genotoxicity in mammals as it caused DNA damage in all tested vital organs, especially in brain and spleen.
Wang, Zheng; Yin, Hao; Lv, Lei; Feng, Yingying; Chen, Shaopeng; Liang, Junting; Huang, Yun; Jiang, Xiaohua; Jiang, Hanwei; Bukhari, Ihtisham; Wu, Lijun; Cooke, Howard J; Shi, Qinghua
2014-01-01
Elimination of uniparental chromosomes occurs frequently in interspecific hybrid cells. For example, human chromosomes are always eliminated during clone formation when human cells are fused with mouse cells. However, the underlying mechanisms are still elusive. Here, we show that the elimination of human chromosomes in human–mouse hybrid cells is accompanied by continued cell division at the presence of DNA damage on human chromosomes. Deficiency in DNA damage repair on human chromosomes occurs after cell fusion. Furthermore, increasing the level of DNA damage on human chromosomes by irradiation accelerates human chromosome loss in hybrid cells. Our results indicate that the elimination of human chromosomes in human–mouse hybrid cells results from unrepaired DNA damage on human chromosomes. We therefore provide a novel mechanism underlying chromosome instability which may facilitate the understanding of carcinogenesis. PMID:24608870
Gannon, Hugh S.; Woda, Bruce A.; Jones, Stephen N.
2012-01-01
Summary DNA damage induced by ionizing radiation (IR) activates the ATM kinase, which subsequently stabilizes and activates the p53 tumor suppressor protein. Although phosphorylation of p53 by ATM was found previously to modulate p53 levels and transcriptional activities in vivo, it does not appear to be a major regulator of p53 stability. We have utilized mice bearing altered Mdm2 alleles to demonstrate that ATM phosphorylation of Mdm2 serine 394 is required for robust p53 stabilization and activation after DNA damage. In addition, we demonstrate that dephosphorylation of Mdm2 Ser394 regulates attenuation of the p53-mediated response to DNA damage. Therefore, the phosphorylation status of Mdm2 Ser394 governs p53 protein levels and functions in cells undergoing DNA damage. PMID:22624716
Lee, Yann-Leei; Obiako, Boniface; Gorodnya, Olena M; Ruchko, Mykhaylo V; Kuck, Jamie L; Pastukh, Viktor M; Wilson, Glenn L; Simmons, Jon D; Gillespie, Mark N
2017-07-01
Although studies in rat cultured pulmonary artery endothelial cells, perfused lungs, and intact mice support the concept that oxidative mitochondrial (mt) DNA damage triggers acute lung injury (ALI), it has not yet been determined whether enhanced mtDNA repair forestalls development of ALI and its progression to multiple organ system failure (MOSF). Accordingly, here we examined the effect of a fusion protein construct targeting the DNA glycosylase, Ogg1, to mitochondria in a rat model intra-tracheal Pseudomonas aeruginosa (strain 103; PA103)-induced ALI and MOSF. Relative to controls, animals given PA103 displayed increases in lung vascular filtration coefficient accompanied by transient lung tissue oxidative mtDNA damage and variable changes in mtDNA copy number without evidence of nuclear DNA damage. The approximate 40% of animals surviving 24 h after bacterial administration exhibited multiple organ dysfunction, manifest as increased serum and tissue-specific indices of kidney and liver failure, along with depressed heart rate and blood pressure. While administration of mt-targeted Ogg1 to control animals was innocuous, the active fusion protein, but not a DNA repair-deficient mutant, prevented bacteria-induced increases in lung tissue oxidative mtDNA damage, failed to alter mtDNA copy number, and attenuated lung endothelial barrier degradation. These changes were associated with suppression of liver, kidney, and cardiovascular dysfunction and with decreased 24 h mortality. Collectively, the present findings indicate that oxidative mtDNA damage to lung tissue initiates PA103-induced ALI and MOSF in rats.
Triplex technology in studies of DNA damage, DNA repair, and mutagenesis.
Mukherjee, Anirban; Vasquez, Karen M
2011-08-01
Triplex-forming oligonucleotides (TFOs) can bind to the major groove of homopurine-homopyrimidine stretches of double-stranded DNA in a sequence-specific manner through Hoogsteen hydrogen bonding to form DNA triplexes. TFOs by themselves or conjugated to reactive molecules can be used to direct sequence-specific DNA damage, which in turn results in the induction of several DNA metabolic activities. Triplex technology is highly utilized as a tool to study gene regulation, molecular mechanisms of DNA repair, recombination, and mutagenesis. In addition, TFO targeting of specific genes has been exploited in the development of therapeutic strategies to modulate DNA structure and function. In this review, we discuss advances made in studies of DNA damage, DNA repair, recombination, and mutagenesis by using triplex technology to target specific DNA sequences. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Study of Composite Plate Damages Using Embedded PZT Sensors with Various Center Frequency
NASA Astrophysics Data System (ADS)
Kang, Kyoung-Tak; Chun, Heoung-Jae; Son, Ju-Hyun; Byun, Joon-Hyung; Um, Moon-Kwang; Lee, Sang-Kwan
This study presents part of an experimental and analytical survey of candidate methods for damage detection of composite structural. Embedded piezoceramic (PZT) sensors were excited with the high power ultrasonic wave generator generating a propagation of stress wave along the composite plate. The same embedded piezoceramic (PZT) sensors are used as receivers for acquiring stress signals. The effects of center frequency of embedded sensor were evaluated for the damage identification capability with known localized defects. The study was carried out to assess damage in composite plate by fusing information from multiple sensing paths of the embedded network. It was based on the Hilbert transform, signal correlation and probabilistic searching. The obtained results show that satisfactory detection of defects could be achieved by proposed method.
A Binary-Encounter-Bethe Approach to Simulate DNA Damage by the Direct Effect
NASA Technical Reports Server (NTRS)
Plante, Ianik; Cucinotta, Francis A.
2013-01-01
The DNA damage is of crucial importance in the understanding of the effects of ionizing radiation. The main mechanisms of DNA damage are by the direct effect of radiation (e.g. direct ionization) and by indirect effect (e.g. damage by.OH radicals created by the radiolysis of water). Despite years of research in this area, many questions on the formation of DNA damage remains. To refine existing DNA damage models, an approach based on the Binary-Encounter-Bethe (BEB) model was developed[1]. This model calculates differential cross sections for ionization of the molecular orbitals of the DNA bases, sugars and phosphates using the electron binding energy, the mean kinetic energy and the occupancy number of the orbital. This cross section has an analytic form which is quite convenient to use and allows the sampling of the energy loss occurring during an ionization event. To simulate the radiation track structure, the code RITRACKS developed at the NASA Johnson Space Center is used[2]. This code calculates all the energy deposition events and the formation of the radiolytic species by the ion and the secondary electrons as well. We have also developed a technique to use the integrated BEB cross section for the bases, sugar and phosphates in the radiation transport code RITRACKS. These techniques should allow the simulation of DNA damage by ionizing radiation, and understanding of the formation of double-strand breaks caused by clustered damage in different conditions.
Franke, Silvia I R; Molz, Patrícia; Mai, Camila; Ellwanger, Joel H; Zenkner, Fernanda F; Horta, Jorge A; Prá, Daniel
2018-04-16
We evaluated the influence of hesperidin and vitamin C (VitC) on glycemic parameters, lipid profile, and DNA damage in male Wistar rats treated with sucrose overload. Rats were divided into six experimental groups: I-water control; II-sucrose control; III-hesperidin control; IV-VitC control; V-co-treatment of sucrose plus hesperidin; VI-co-treatment of sucrose plus VitC. We measured the levels of triglycerides, total cholesterol, HDL-c, LDL-c, fasting glucose, and glycated hemoglobin (A1C). DNA damage was evaluated in blood and brain cells using the comet assay and the micronucleus test was used to evaluate chromosomal damages in the rat bone marrow. Co-treatment with VitC, but not with hesperidin, normalized the serum glucose. No effect of co-treatments was observed on A1C. The co-treatment with VitC or hesperidin did not influence the lipid profile (p>0.05). Rats co-treated with hesperidin had a significantly lower DNA damage level in blood (p<0.05) and brain (p<0.05). Rats treated with VitC only, but not those co-treated with VitC plus sucrose, had significantly higher DNA damage in brain (p<0.05). No significant differences were observed in the results of micronucleus test (p>0.05). Hesperidin and VitC showed different effects on sucrose and DNA damage levels. While VitC lowered the serum glucose, hesperidin reduced the DNA damage.
Rodeiro, I; Delgado, R; Garrido, G
2014-02-01
Mangifera indica L. (mango) stem bark aqueous extract (MSBE) that has antioxidant, anti-inflammatory and immunomodulatory properties, can be obtained in Cuba. It is rich in polyphenols, where mangiferin is the main component. In this study, we have tested DNA damage and protection effects of MSBE and mangiferin on primary human lymphocytes and lymphoblastoid cells. Cell suspensions were incubated with the products (50-1000 μg/ml) for experiments on damage induction, and evaluation of any potential protective effects (5-100 μg/ml) for 60 min at 37 °C. Irradiation was performed using a γ-ray source, absorbed dose 5 Gy. At the end of exposure, DNA damage, protection and repair processes were evaluated using the comet assay. MSBE (100-1000 μg/ml) induced DNA damage in a concentration dependent manner in both cell types tested, primary cells being more sensitive. Mangiferin (200 μg/ml) only induced light DNA damage at higher concentrations. DNA repair capacity was not affected after MSBE or mangiferin exposure. On the other hand, MSBE (25 and 50 μg/ml) and mangiferin (5-25 ug/ml) protected against gamma radiation-induced DNA damage. These results show MSBE has protector or harmful effects on DNA in vitro depending on the experimental conditions, which suggest that the extract could be acting as an antioxidant or pro-oxidant product. Mangiferin was involved in protective effects of the extract. © 2013 John Wiley & Sons Ltd.
Marcelain, Katherine; De La Torre, Consuelo; González, Patricio; Pincheira, Juana
2005-01-01
Checkpoint response to DNA damage involves the activation of DNA repair and G2 lengthening subpathways. The roles of nibrin (NBS1) and the ATM/ATR kinases in the G2 DNA damage checkpoint, evoked by endogenous and radio-induced DNA damage, were analyzed in control, A-T and NBS lymphoblast cell lines. Short-term responses to G2 treatments were evaluated by recording changes in the yield of chromosomal aberrations in the ensuing mitosis, due to G2 checkpoint adaptation, and also in the duration of G2 itself. The role of ATM/ATR in the G2 checkpoint pathway repairing chromosomal aberrations was unveiled by caffeine inhibition of both kinases in G2. In the control cell lines, nibrin and ATM cooperated to provide optimum G2 repair for endogenous DNA damage. In the A-T cells, ATR kinase substituted successfully for ATM, even though no G2 lengthening occurred. X-ray irradiation (0.4 Gy) in G2 increased chromosomal aberrations and lengthened G2, in both mutant and control cells. However, the repair of radio-induced DNA damage took place only in the controls. It was associated with nibrin-ATM interaction, and ATR did not substitute for ATM. The absence of nibrin prevented the repair of both endogenous and radio-induced DNA damage in the NBS cells and partially affected the induction of G2 lengthening.
TopBP1-mediated DNA processing during mitosis.
Gallina, Irene; Christiansen, Signe Korbo; Pedersen, Rune Troelsgaard; Lisby, Michael; Oestergaard, Vibe H
2016-01-01
Maintenance of genome integrity is crucial to avoid cancer and other genetic diseases. Thus faced with DNA damage, cells mount a DNA damage response to avoid genome instability. The DNA damage response is partially inhibited during mitosis presumably to avoid erroneous processing of the segregating chromosomes. Yet our recent study shows that TopBP1-mediated DNA processing during mitosis is highly important to reduce transmission of DNA damage to daughter cells. (1) Here we provide an overview of the DNA damage response and DNA repair during mitosis. One role of TopBP1 during mitosis is to stimulate unscheduled DNA synthesis at underreplicated regions. We speculated that such genomic regions are likely to hold stalled replication forks or post-replicative gaps, which become the substrate for DNA synthesis upon entry into mitosis. Thus, we addressed whether the translesion pathways for fork restart or post-replicative gap filling are required for unscheduled DNA synthesis in mitosis. Using genetics in the avian DT40 cell line, we provide evidence that unscheduled DNA synthesis in mitosis does not require the translesion synthesis scaffold factor Rev1 or PCNA ubiquitylation at K164, which serve to recruit translesion polymerases to stalled forks. In line with this finding, translesion polymerase η foci do not colocalize with TopBP1 or FANCD2 in mitosis. Taken together, we conclude that TopBP1 promotes unscheduled DNA synthesis in mitosis independently of the examined translesion polymerases.
Electrophoretic and field-effect graphene for all-electrical DNA array technology.
Xu, Guangyu; Abbott, Jeffrey; Qin, Ling; Yeung, Kitty Y M; Song, Yi; Yoon, Hosang; Kong, Jing; Ham, Donhee
2014-09-05
Field-effect transistor biomolecular sensors based on low-dimensional nanomaterials boast sensitivity, label-free operation and chip-scale construction. Chemical vapour deposition graphene is especially well suited for multiplexed electronic DNA array applications, since its large two-dimensional morphology readily lends itself to top-down fabrication of transistor arrays. Nonetheless, graphene field-effect transistor DNA sensors have been studied mainly at single-device level. Here we create, from chemical vapour deposition graphene, field-effect transistor arrays with two features representing steps towards multiplexed DNA arrays. First, a robust array yield--seven out of eight transistors--is achieved with a 100-fM sensitivity, on par with optical DNA microarrays and at least 10 times higher than prior chemical vapour deposition graphene transistor DNA sensors. Second, each graphene acts as an electrophoretic electrode for site-specific probe DNA immobilization, and performs subsequent site-specific detection of target DNA as a field-effect transistor. The use of graphene as both electrode and transistor suggests a path towards all-electrical multiplexed graphene DNA arrays.
Modelling and Holographic Visualization of Space Radiation-Induced DNA Damage
NASA Technical Reports Server (NTRS)
Plante, Ianik
2017-01-01
Space radiation is composed by a mixture of ions of different energies. Among these, heavy inos are of particular importance because their health effects are poorly understood. In. the recent years, a software named RITRACKS (Relativistic Ion Tracks) was developed to simulate the detailed radiation track structure, several DNA models and DNA damage. As the DNA structure is complex due to packing, it is difficult to the damage using a regular computer screen.
Effects of Atmospheric Pressure Plasmas on Isolated and Cellular DNA—A Review
Arjunan, Krishna Priya; Sharma, Virender K.; Ptasinska, Sylwia
2015-01-01
Atmospheric Pressure Plasma (APP) is being used widely in a variety of biomedical applications. Extensive research in the field of plasma medicine has shown the induction of DNA damage by APP in a dose-dependent manner in both prokaryotic and eukaryotic systems. Recent evidence suggests that APP-induced DNA damage shows potential benefits in many applications, such as sterilization and cancer therapy. However, in several other applications, such as wound healing and dentistry, DNA damage can be detrimental. This review reports on the extensive investigations devoted to APP interactions with DNA, with an emphasis on the critical role of reactive species in plasma-induced damage to DNA. The review consists of three main sections dedicated to fundamental knowledge of the interactions of reactive oxygen species (ROS)/reactive nitrogen species (RNS) with DNA and its components, as well as the effects of APP on isolated and cellular DNA in prokaryotes and eukaryotes. PMID:25642755
Visualization of complex DNA damage along accelerated ions tracks
NASA Astrophysics Data System (ADS)
Kulikova, Elena; Boreyko, Alla; Bulanova, Tatiana; Ježková, Lucie; Zadneprianetc, Mariia; Smirnova, Elena
2018-04-01
The most deleterious DNA lesions induced by ionizing radiation are clustered DNA double-strand breaks (DSB). Clustered or complex DNA damage is a combination of a few simple lesions (single-strand breaks, base damage etc.) within one or two DNA helix turns. It is known that yield of complex DNA lesions increases with increasing linear energy transfer (LET) of radiation. For investigation of the induction and repair of complex DNA lesions, human fibroblasts were irradiated with high-LET 15N ions (LET = 183.3 keV/μm, E = 13MeV/n) and low-LET 60Co γ-rays (LET ≈ 0.3 keV/μm) radiation. DNA DSBs (γH2AX and 53BP1) and base damage (OGG1) markers were visualized by immunofluorecence staining and high-resolution microscopy. The obtained results showed slower repair kinetics of induced DSBs in cells irradiated with accelerated ions compared to 60Co γ-rays, indicating induction of more complex DNA damage. Confirming previous assumptions, detailed 3D analysis of γH2AX/53BP1 foci in 15N ions tracks revealed more complicated structure of the foci in contrast to γ-rays. It was shown that proteins 53BP1 and OGG1 involved in repair of DNA DSBs and modified bases, respectively, were colocalized in tracks of 15N ions and thus represented clustered DNA DSBs.
Wu, Ji-Hong; Zhang, Sheng-Hai; Nickerson, John M; Gao, Feng-Juan; Sun, Zhongmou; Chen, Xin-Ya; Zhang, Shu-Jie; Gao, Feng; Chen, Jun-Yi; Luo, Yi; Wang, Yan; Sun, Xing-Huai
2015-02-01
Glaucoma is a chronic neurodegenerative disease characterized by the progressive loss of retinal ganglion cells (RGCs). Mitochondrial DNA (mtDNA) alterations have been documented as a key component of many neurodegenerative disorders. However, whether mtDNA alterations contribute to the progressive loss of RGCs and the mechanism whereby this phenomenon could occur are poorly understood. We investigated mtDNA alterations in RGCs using a rat model of chronic intraocular hypertension and explored the mechanisms underlying progressive RGC loss. We demonstrate that the mtDNA damage and mutations triggered by intraocular pressure (IOP) elevation are initiating, crucial events in a cascade leading to progressive RGC loss. Damage to and mutation of mtDNA, mitochondrial dysfunction, reduced levels of mtDNA repair/replication enzymes, and elevated reactive oxygen species form a positive feedback loop that produces irreversible mtDNA damage and mutation and contributes to progressive RGC loss, which occurs even after a return to normal IOP. Furthermore, we demonstrate that mtDNA damage and mutations increase the vulnerability of RGCs to elevated IOP and glutamate levels, which are among the most common glaucoma insults. This study suggests that therapeutic approaches that target mtDNA maintenance and repair and that promote energy production may prevent the progressive death of RGCs. Copyright © 2014 Elsevier Inc. All rights reserved.
Role of the DNA Damage Response in Human Papillomavirus RNA Splicing and Polyadenylation.
Nilsson, Kersti; Wu, Chengjun; Schwartz, Stefan
2018-06-12
Human papillomaviruses (HPVs) have evolved to use the DNA repair machinery to replicate its DNA genome in differentiated cells. HPV activates the DNA damage response (DDR) in infected cells. Cellular DDR factors are recruited to the HPV DNA genome and position the cellular DNA polymerase on the HPV DNA and progeny genomes are synthesized. Following HPV DNA replication, HPV late gene expression is activated. Recent research has shown that the DDR factors also interact with RNA binding proteins and affects RNA processing. DDR factors activated by DNA damage and that associate with HPV DNA can recruit splicing factors and RNA binding proteins to the HPV DNA and induce HPV late gene expression. This induction is the result of altered alternative polyadenylation and splicing of HPV messenger RNA (mRNA). HPV uses the DDR machinery to replicate its DNA genome and to activate HPV late gene expression at the level of RNA processing.
Hasbal, Canan; Aksu, Bagdagul Y; Himmetoglu, Solen; Dincer, Yildiz; Koc, Eylem E; Hatipoglu, Sami; Akcay, Tulay
2010-06-01
When the production of reactive oxygen species (ROS) exceeds the capacity of antioxidant defences, a condition known as oxidative stress occurs and it has been implicated in many pathological conditions including asthma. Interaction of ROS with DNA may result in mutagenic oxidative base modifications such as 8-hydroxydeoxyguanosine (8-oxo-dGuo) and DNA strand breaks. Reduced glutathione (GSH) serves as a powerful antioxidant against harmful effects of ROS. The aim of this study was to describe DNA damage as level of DNA strand breaks and formamidopyrimidine DNA glycosylase (Fpg)-sensitive sites, which reflects oxidative DNA damage and GSH level in children with mild-to-moderate persistent asthma; and to examine the effect of antiasthmatic therapy on these DNA damage parameters and GSH level. Before and after 8 wk of antiasthmatic therapy blood samples were taken, DNA strand breaks and Fpg-sensitive sites in peripheral leukocytes were determined by comet assay, GSH level of whole blood was measured by spectrophotometric method. DNA strand breaks and Fpg-sensitive sites in the asthma group were found to be increased as compared with control group. GSH level in the asthma group was not significantly different from those in the control group. Levels of strand breaks, Fpg-sensitive sites and GSH were found to be decreased in the asthma group after the treatment. In conclusion, oxidative DNA damage (strand breaks and Fpg-sensitive sites) is at a high level in children with asthma. DNA damage parameters and GSH level were found to be decreased after therapy. Our findings imply that antiasthmatic therapy including glucocorticosteroids not only controls asthma but also decreases mutation risk in children with asthma bronchiale.
Yamamoto, Kimiyo N; Hirota, Kouji; Kono, Koichi; Takeda, Shunichi; Sakamuru, Srilatha; Xia, Menghang; Huang, Ruili; Austin, Christopher P; Witt, Kristine L; Tice, Raymond R
2011-08-01
Included among the quantitative high throughput screens (qHTS) conducted in support of the US Tox21 program are those being evaluated for the detection of genotoxic compounds. One such screen is based on the induction of increased cytotoxicity in seven isogenic chicken DT40 cell lines deficient in DNA repair pathways compared to the parental DNA repair-proficient cell line. To characterize the utility of this approach for detecting genotoxic compounds and identifying the type(s) of DNA damage induced, we evaluated nine of 42 compounds identified as positive for differential cytotoxicity in qHTS (actinomycin D, adriamycin, alachlor, benzotrichloride, diglycidyl resorcinol ether, lovastatin, melphalan, trans-1,4-dichloro-2-butene, tris(2,3-epoxypropyl)isocyanurate) and one non-cytotoxic genotoxic compound (2-aminothiamine) for (1) clastogenicity in mutant and wild-type cells; (2) the comparative induction of γH2AX positive foci by melphalan; (3) the extent to which a 72-hr exposure duration increased assay sensitivity or specificity; (4) the use of 10 additional DT40 DNA repair-deficient cell lines to better analyze the type(s) of DNA damage induced; and (5) the involvement of reactive oxygen species in the induction of DNA damage. All compounds but lovastatin and 2-aminothiamine were more clastogenic in at least one DNA repair-deficient cell line than the wild-type cells. The differential responses across the various DNA repair-deficient cell lines provided information on the type(s) of DNA damage induced. The results demonstrate the utility of this DT40 screen for detecting genotoxic compounds, for characterizing the nature of the DNA damage, and potentially for analyzing mechanisms of mutagenesis. Copyright © 2011 Wiley-Liss, Inc.
Yamamoto, Kimiyo N.; Hirota, Kouji; Kono, Koichi; Takeda, Shunichi; Sakamuru, Srilatha; Xia, Menghang; Huang, Ruili; Austin, Christopher P.; Witt, Kristine L.; Tice, Raymond R.
2012-01-01
Included among the quantitative high throughput screens (qHTS) conducted in support of the U.S. Tox21 program are those being evaluated for the detection of genotoxic compounds. One such screen is based on the induction of increased cytotoxicity in 7 isogenic chicken DT40 cell lines deficient in DNA repair pathways compared to the parental DNA repair-proficient cell line. To characterize the utility of this approach for detecting genotoxic compounds and identifying the type(s) of DNA damage induced, we evaluated nine of 42 compounds identified as positive for differential cytotoxicity in qHTS (actinomycin D, adriamycin, alachlor, benzotrichloride, diglycidyl resorcinol ether, lovastatin, melphalan, trans-1,4-dichloro-2-butene, tris(2,3-epoxypropyl)isocyanurate) and one non-cytotoxic genotoxic compound (2-aminothiamine) for (1) clastogenicity in mutant and wild-type cells; (2) the comparative induction of γH2AX positive foci by melphalan; (3) the extent to which a 72-hr exposure duration increased assay sensitivity or specificity; (4) the use of 10 additional DT40 DNA repair-deficient cell lines to better analyze the type(s) of DNA damage induced; and (5) the involvement of reactive oxygen species in the induction of DNA damage. All compounds but lovastatin and 2-aminothiamine were more clastogenic in at least one DNA repair-deficient cell line than the wild-type cells. The differential responses across the various DNA repair-deficient cell lines provided information on the type(s) of DNA damage induced. The results demonstrate the utility of this DT40 screen for detecting genotoxic compounds, for characterizing the nature of the DNA damage, and potentially for analyzing mechanisms of mutagenesis. PMID:21538559
Sensitivity of PZT Impedance Sensors for Damage Detection of Concrete Structures.
Yang, Yaowen; Hu, Yuhang; Lu, Yong
2008-01-21
Piezoelectric ceramic Lead Zirconate Titanate (PZT) based electro-mechanicalimpedance (EMI) technique for structural health monitoring (SHM) has been successfullyapplied to various engineering systems. However, fundamental research work on thesensitivity of the PZT impedance sensors for damage detection is still in need. In thetraditional EMI method, the PZT electro-mechanical (EM) admittance (inverse of theimpedance) is used as damage indicator, which is difficult to specify the effect of damage onstructural properties. This paper uses the structural mechanical impedance (SMI) extractedfrom the PZT EM admittance signature as the damage indicator. A comparison study on thesensitivity of the EM admittance and the structural mechanical impedance to the damages ina concrete structure is conducted. Results show that the SMI is more sensitive to the damagethan the EM admittance thus a better indicator for damage detection. Furthermore, this paperproposes a dynamic system consisting of a number of single-degree-of-freedom elementswith mass, spring and damper components to model the SMI. A genetic algorithm isemployed to search for the optimal value of the unknown parameters in the dynamic system.An experiment is carried out on a two-storey concrete frame subjected to base vibrations thatsimulate earthquake. A number of PZT sensors are regularly arrayed and bonded to the framestructure to acquire PZT EM admittance signatures. The relationship between the damageindex and the distance of the PZT sensor from the damage is studied. Consequently, thesensitivity of the PZT sensors is discussed and their sensing region in concrete is derived.
NASA Technical Reports Server (NTRS)
Wang, Chuantong; Dudley, Kenneth L.; Szatkowski, George N.
2012-01-01
Composite materials are increasingly used in modern aircraft for reducing weight, improving fuel efficiency, and enhancing the overall design, performance, and manufacturability of airborne vehicles. Materials such as fiberglass reinforced composites (FRC) and carbon-fiber-reinforced polymers (CFRP) are being used to great advantage in airframes, wings, engine nacelles, turbine blades, fairings, fuselage and empennage structures, control surfaces and coverings. However, the potential damage from the direct and indirect effects of lightning strikes is of increased concern to aircraft designers and operators. When a lightning strike occurs, the points of attachment and detachment on the aircraft surface must be found by visual inspection, and then assessed for damage by maintenance personnel to ensure continued safe flight operations. In this paper, a new method and system for aircraft in-situ damage detection and diagnosis are presented. The method and system are based on open circuit (SansEC) sensor technology developed at NASA Langley Research Center. SansEC (Sans Electric Connection) sensor technology is a new technical framework for designing, powering, and interrogating sensors to detect damage in composite materials. Damage in composite material is generally associated with a localized change in material permittivity and/or conductivity. These changes are sensed using SansEC. Unique electrical signatures are used for damage detection and diagnosis. NASA LaRC has both experimentally and theoretically demonstrated that SansEC sensors can be effectively used for in-situ composite damage detection.
Hossain, M. Zulfiquer; Patel, Kalpesh; Kern, Scott E.
2014-01-01
Potent DNA-damaging activities were seen in vitro from dietary chemicals found in coffee, tea, and liquid smoke. A survey of tea varieties confirmed genotoxic activity to be widespread. Constituent pyrogallol-like polyphenols (PLPs) such as epigallocatechin-3-gallate (EGCG), pyrogallol, and gallic acid were proposed as a major source of DNA-damaging activities, inducing DNA double-strand breaks in the p53R assay, a well characterized assay sensitive to DNA strand breaks, and comet assay. Paradoxically, their consumption does not lead to the kind of widespread cellular toxicity and acute disease that might be expected from genotoxic exposure. Existing physiological mechanisms could limit DNA damage from dietary injurants. Serum albumin and salivary α-amylase are known to bind EGCG. Salivary α-amylase, serum albumin, and myoglobin, but not salivary proline-rich proteins, reduced damage from tea, coffee, and PLPs, but did not inhibit damage from the chemotherapeutics etoposide and camptothecin. This represents a novel function for saliva in addition to its known functions including protection against tannins. Cell populations administered repeated pyrogallol exposures had abatement of measured DNA damage by two weeks, indicating an innate cellular adaptation. We suggest that layers of physiological protections may exist toward natural dietary products to which animals have had high-level exposure over evolution. PMID:24842839
Ozdemir, Zeynep Canan; Koc, Ahmet; Aycicek, Ali; Kocyigit, Abdurrahim
2014-01-01
There are several reports that increased oxidative stress and DNA damage were found in β-thalassemia major (β-TM) patients. In this study, we aimed to evaluate the effects of N-acetylcysteine (NAC) and vitamin E on total oxidative stress and DNA damage in children with β-TM. Seventy-five children with transfusion-dependent β-thalassemia (β-thal) were randomly chosen to receive 10 mg/kg/day of NAC or 10 IU/kg/day of vitamin E or no supplementation; 28 healthy controls were also included in the study. Serum total oxidant status (TOS) and total antioxidant capacity (TAC) were measured, oxidative stress index (OSI) was calculated, and mononuclear DNA damage was assessed by alkaline comet assay; they were determined before treatment and after 3 months of treatment. Total oxydent status, OSI, and DNA damage levels were significantly higher and TAC levels were significantly lower in the thalassemic children than in the healthy controls (p < 0.001). In both supplemented groups, mean TOS and OSI levels were decreased; TAC and pre transfusion hemoglobin (Hb) levels were significantly increased after 3 months (p ≤ 0.002). In the NAC group, DNA damage score decreased (p = 0.001). N-Acetylcysteine and vitamin E may be effective in reducing serum oxidative stress and increase pre transfusion Hb levels in children with β-thal. N-Acetylcysteine also can reduce DNA damage.
Hossain, M Zulfiquer; Patel, Kalpesh; Kern, Scott E
2014-08-01
Potent DNA-damaging activities were seen in vitro from dietary chemicals found in coffee, tea, and liquid smoke. A survey of tea varieties confirmed genotoxic activity to be widespread. Constituent pyrogallol-like polyphenols (PLPs) such as epigallocatechin-3-gallate (EGCG), pyrogallol, and gallic acid were proposed as a major source of DNA-damaging activities, inducing DNA double-strand breaks in the p53R assay, a well characterized assay sensitive to DNA strand breaks, and comet assay. Paradoxically, their consumption does not lead to the kind of widespread cellular toxicity and acute disease that might be expected from genotoxic exposure. Existing physiological mechanisms could limit DNA damage from dietary injurants. Serum albumin and salivary α-amylase are known to bind EGCG. Salivary α-amylase, serum albumin, and myoglobin, but not salivary proline-rich proteins, reduced damage from tea, coffee, and PLPs, but did not inhibit damage from the chemotherapeutics etoposide and camptothecin. This represents a novel function for saliva in addition to its known functions including protection against tannins. Cell populations administered repeated pyrogallol exposures had abatement of measured DNA damage by two weeks, indicating an innate cellular adaptation. We suggest that layers of physiological protections may exist toward natural dietary products to which animals have had high-level exposure over evolution. Copyright © 2014 Elsevier Ltd. All rights reserved.
Imtiaz, Muhammad; Mushtaq, Muhammad Adnan; Rizwan, Muhammad Shahid; Arif, Muhammad Saleem; Yousaf, Balal; Ashraf, Muhammad; Shuanglian, Xiong; Rizwan, Muhammad; Mehmood, Sajid; Tu, Shuxin
2016-10-01
The present study was done to elucidate the effects of vanadium (V) on photosynthetic pigments, membrane damage, antioxidant enzymes, protein, and deoxyribonucleic acid (DNA) integrity in the following chickpea genotypes: C-44 (tolerant) and Balkasar (sensitive). Changes in these parameters were strikingly dependent on levels of V, at 60 and 120 mg V L(-1) induced DNA damage in Balkasar only, while photosynthetic pigments and protein were decreased from 15 to 120 mg V L(-1) and membrane was also damaged. It was shown that photosynthetic pigments and protein production declined from 15 to 120 mg V L(-1) and the membrane was also damaged, while DNA damage was not observed at any level of V stress in C-44. Moreover, the antioxidant enzyme activities such as superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) were increased in both genotypes of chickpea against V stress; however, more activities were observed in C-44 than Balkasar. The results suggest that DNA damage in sensitive genotypes can be triggered due to exposure of higher vanadium.
Pulsewidth-dependent nature of laser-induced DNA damage in RPE cells
NASA Astrophysics Data System (ADS)
Hall, Rebecca M.; Glickman, Randolph D.; Rockwell, Benjamin A.; Kumar, Neeru; Noojin, Gary D.
2001-07-01
Ultrashort pulse laser radiation may produce cellular damage through unique mechanisms. Primary cultures of bovine retinal pigment epithelial (RPE) cells were exposed to the out put of a Ti:Sapphire laser producing 30 fs (mode-locked) pulses, 44 amplified fs pulses, or continuous wave exposures at 800 nm. Laser exposures at and below the damage threshold were studied. DNA damage was detected using single cell gel electrophoresis (comet assay). Unexposed (control) cells produced short tails with low tail moments. In contrast, all laser-exposed cells showed some degree of DNA fragmentation, but the size and shape of the resulting comets differed among the various modalities. CW-exposed cells produced generally light and relatively compact tails, suggesting fewer and larger DNA fragments, while mode-locked laser exposures (30 fs pulses) resulted in large and diffuse comets, indicating the DNA was fragmented into many very small pieces. Work is continuing to define the relationship of laser pulsewidth and intensity with the degree of DNA fragmentation. These results suggest that DNA damage may result from multiple mechanisms of laser-cell interaction, including multiphoton absorption.
Effect of cryopreservation on sperm DNA integrity in patients with teratospermia.
Kalthur, Guruprasad; Adiga, Satish Kumar; Upadhya, Dinesh; Rao, Satish; Kumar, Pratap
2008-06-01
To test whether sperm with abnormal head morphology are more likely to undergo DNA damage and/or chromatin modification during the process of freeze-thawing. In this prospective study, the semen samples from forty-four men attending the infertility clinic were included. Samples were divided into aliquots to allow direct comparison of fresh and frozen spermatozoa from the same ejaculate. The sperm morphology and the sperm DNA damage were evaluated before and after cryopreservation. The relationship between sperm head abnormalities and freeze-thaw-induced DNA modification was assessed. University hospital fertility center. Men attending infertility clinic for semen analysis. The normospermic and teratospermic semen samples were evaluated for DNA damage before and after cryopreservation by comet assay and acridine orange bindability test. Elucidation of association between sperm morphologic defect and cryodamage. A threefold increase in the amount of DNA damage was observed in teratospermic samples compared with their normospermic counterparts, indicating a higher susceptibility of morphologically abnormal sperm to cryodamage. The susceptibility of morphologically abnormal sperm to DNA damage/chromatin modification during the freeze-thaw process is significantly higher than that of sperm with normal morphology.
Acevedo, Julyana; Yan, Shan; Michael, W. Matthew
2016-01-01
A critical event for the ability of cells to tolerate DNA damage and replication stress is activation of the ATR kinase. ATR activation is dependent on the BRCT (BRCA1 C terminus) repeat-containing protein TopBP1. Previous work has shown that recruitment of TopBP1 to sites of DNA damage and stalled replication forks is necessary for downstream events in ATR activation; however, the mechanism for this recruitment was not known. Here, we use protein binding assays and functional studies in Xenopus egg extracts to show that TopBP1 makes a direct interaction, via its BRCT2 domain, with RPA-coated single-stranded DNA. We identify a point mutant that abrogates this interaction and show that this mutant fails to accumulate at sites of DNA damage and that the mutant cannot activate ATR. These data thus supply a mechanism for how the critical ATR activator, TopBP1, senses DNA damage and stalled replication forks to initiate assembly of checkpoint signaling complexes. PMID:27129245
NASA Astrophysics Data System (ADS)
Nguyen, A. D.; Page, C.; Wilson, C. L.
2016-04-01
This paper investigates a new low-power structural health monitoring (SHM) strategy where fiber Bragg grating (FBG) rosettes can be used to continuously monitor for changes in a host structure's principal strain direction, suggesting damage and thus enabling the immediate triggering of a higher power acoustic emissions (AE) sensor to provide for better characterization of the damage. Unlike traditional "always on" AE platforms, this strategy has the potential for low power, while the wireless communication between different sensor types supports the Internet of Things (IoT) approach. A combination of fiber-optic sensor rosettes for strain monitoring and a fiber-optic sensor for acoustic emissions monitoring was attached to a sample and used to monitor crack initiation. The results suggest that passive principal strain direction monitoring could be used as a damage initiation trigger for other active sensing elements such as acoustic emissions. In future work, additional AE sensors can be added to provide for damage location; and a strategy where these sensors can be powered on periodically to further establish reliability while preserving an energy efficient scheme can be incorporated.
Non-destructive evaluation of laminated composite plates using dielectrometry sensors
NASA Astrophysics Data System (ADS)
Nassr, Amr A.; El-Dakhakhni, Wael W.
2009-05-01
The use of composite materials in marine, aerospace and automotive applications is increasing; however, several kinds of damages of composite materials may influence its durability and future applications. In this paper, a methodology was presented for damage detection of laminated composite plates using dielectrometry sensors. The presence of damage in the laminated composite plate leads to changes in its dielectric characteristics, causing variation in the measured capacitance by the sensors. An analytical model was used to analyse the influence of different sensor parameters on the output signals and to optimize sensor design. Two-dimensional finite element (FE) simulations were performed to assess the validity of the analytical results and to evaluate other sensor design-related parameters. To experimentally verify the model, the dielectric permittivity of the composite plate was measured. In addition, a glass fibre reinforced polymer (GFRP) laminated plate containing pre-fabricated slots through its thickness to simulate delamination and water intrusion defects was inspected in a laboratory setting. Excellent agreements were found between the experimental capacitance response signals and those predicated from the FE simulations. This cost-effective technique can be used for rapid damage screening, regular scheduled inspection, or as a permanent sensor network within the composite system.
Development of a Corrosion Sensor for AN Aircraft Vehicle Health Monitoring System
NASA Astrophysics Data System (ADS)
Scott, D. A.; Price, D. C.; Edwards, G. C.; Batten, A. B.; Kolmeder, J.; Muster, T. H.; Corrigan, P.; Cole, I. S.
2010-02-01
A Rayleigh-wave-based sensor has been developed to measure corrosion damage in aircraft. This sensor forms an important part of a corrosion monitoring system being developed for a major aircraft manufacturer. This system measures the corrosion rate at the location of its sensors, and through a model predicts the corrosion rates in nearby places on an aircraft into which no sensors can be placed. In order to calibrate this model, which yields corrosion rates rather than the accumulated effect, an absolute measure of the damage is required. In this paper the development of a surface wave sensor capable of measuring accumulated damage will be described in detail. This sensor allows the system to measure material loss due to corrosion regardless of the possible loss of historical corrosion rate data, and can provide, at any stage, a benchmark for the predictive model that would allow a good estimate of the accumulated corrosion damage in similar locations on an aircraft. This system may obviate the need for costly inspection of difficult-to-access places in aircraft, where presently the only way to check for corrosion is by periodic dismantling and reassembly.
NASA Technical Reports Server (NTRS)
Saha, Janapriya; Wang, Minli; Hada, Megumi; Cucinotta, Francis A.
2011-01-01
The members of the phosphatidylinositol kinase-like kinase family of proteins namely ataxia-telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR) are directly responsible for the maintenance of genomic integrity by mounting DDR through signaling and facilitating the recruitment of repair factors at the sites of DNA damage along with coordinating the deployment of cell cycle checkpoints to permit repair by phosphorylating Checkpoint kinase Chk1, Chk2 and p53. High LET radiation from GCR (Galactic Cosmic Rays) consisting mainly of protons and high energy and charged (HZE) particles from SPE (Solar Particle Event) pose a major health risk for astronauts on their space flight missions. The determination of these risks and the design of potential safeguards require sound knowledge of the biological consequences of lesion induction and the capability of the cells to counter them. We here strive to determine the coordination of ATM and ATR kinases at the break sites directly affecting checkpoint signaling and DNA repair and whether differential processing of breaks induced by low and high LET radiation leads to possible augmentation of swap of these damage sensors at the sites of DNA damage. Exposure of cells to IR triggers rapid autophosphorylation of serine-1981 that causes dimer dissociation and initiates monomer formation of ATM. ATM kinase activity depends on the disruption of the dimer, which allows access and phosphorylation of downstream ATM substrates like Chk2. Evidence suggests that ATM is activated by the alterations in higher-order chromatin structure although direct binding of ATM to DSB ends may be a crucial step in its activation. On the other hand, in case of ATR, RPA (replication protein A)-coated ssDNA (single-stranded DNA) generated as a result of stalled DNA replication or during processing of chromosomal lesions is crucial for the localization of ATR to sites of DNA damage in association with ATR-interacting protein (ATRIP). Although the majority of RPA-coated ssDNA is generally present only during DNA replication, ATR activation in G1 and G2-phase might still require formation of RPA-coated ssDNA, probably initiated by the MRN-CtIP complex and then extended by the Exo1- or BLM-dependent mechanisms at the sites of DSBs. Evidence accumulates that activation of ATM and ATR are oppositely regulated by the length of single stranded overhangs generated at the break sites by processes mentioned above and these stretches of single stranded overhangs hold the clue for ATM to ATR switch at broken DNA ends. We irradiated 82-6hTERT human fibroblast cells with low LET gamma-rays and high LET Fe and Si particles. Preliminary results with cells exposed to 1Gy gamma-rays show that the kinetics of pChk2-pT68 foci formation is comparable to that of gamma-H2AX although they appear to recede quicker. The number and intensity of observed foci reaches a maximum at 30 min and 60 min post IR for Chk2-pT68 and gamma-H2AX foci respectively and all Chk2-pT68 foci colocalize with gamma-H2AX foci. The kinetics of Chk1-pS345 and ATRIP are being determined. Results of Chk2-pT68 foci kinetics was also corroborated by western blot experiments, although phosphorylation was detected as early as 10 min and started receding 30 min post IR with 2Gy of gamma-rays. On the other hand, level of ATR-pS428 reached its maximum between 60 and 120 min and was maintained until the last measured time point of 4 hours post IR as determined by western blotting. Experiments performed with high LET Fe and Si particles will be reported.