Science.gov

Sample records for dna damage signals

  1. DNA damage signalling prevents deleterious telomere addition at DNA breaks

    PubMed Central

    Makovets, Svetlana; Blackburn, Elizabeth H.

    2009-01-01

    The response to DNA damage involves regulation of multiple essential processes to maximize the accuracy of DNA damage repair and cell survival 1. Telomerase has the potential to interfere with repair by inappropriately adding telomeres to DNA breaks. It was unknown whether cells modulate telomerase in response to DNA damage, to increase the accuracy of repair. Here we report that telomerase action is regulated as a part of the cellular response to a DNA double-strand break (DSB). Using yeast, we show that the major ATR/Mec1 DNA damage signalling pathway regulates telomerase action at DSBs. Upon DNA damage, MEC1-RAD53-DUN1-dependent phosphorylation of the telomerase inhibitor Pif1 occurs. Utilizing a separation of function PIF1 mutation, we show that this phosphorylation is required for the Pif1-mediated telomerase inhibition that takes place specifically at DNA breaks, but not telomeres. Hence DNA damage signalling down-modulates telomerase action at a DNA break via Pif1 phosphorylation, thus preventing aberrant healing of broken DNA ends by telomerase. These findings uncover a novel regulatory mechanism that coordinates competing DNA end-processing activities and thereby promotes DNA repair accuracy and genome integrity. PMID:19838171

  2. DNA Damage Signals and Space Radiation Risk

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2011-01-01

    Space radiation is comprised of high-energy and charge (HZE) nuclei and protons. The initial DNA damage from HZE nuclei is qualitatively different from X-rays or gamma rays due to the clustering of damage sites which increases their complexity. Clustering of DNA damage occurs on several scales. First there is clustering of single strand breaks (SSB), double strand breaks (DSB), and base damage within a few to several hundred base pairs (bp). A second form of damage clustering occurs on the scale of a few kbp where several DSB?s may be induced by single HZE nuclei. These forms of damage clusters do not occur at low to moderate doses of X-rays or gamma rays thus presenting new challenges to DNA repair systems. We review current knowledge of differences that occur in DNA repair pathways for different types of radiation and possible relationships to mutations, chromosomal aberrations and cancer risks.

  3. An inducible long noncoding RNA amplifies DNA damage signaling.

    PubMed

    Schmitt, Adam M; Garcia, Julia T; Hung, Tiffany; Flynn, Ryan A; Shen, Ying; Qu, Kun; Payumo, Alexander Y; Peres-da-Silva, Ashwin; Broz, Daniela Kenzelmann; Baum, Rachel; Guo, Shuling; Chen, James K; Attardi, Laura D; Chang, Howard Y

    2016-11-01

    Long noncoding RNAs (lncRNAs) are prevalent genes with frequently precise regulation but mostly unknown functions. Here we demonstrate that lncRNAs guide the organismal DNA damage response. DNA damage activated transcription of the DINO (Damage Induced Noncoding) lncRNA via p53. DINO was required for p53-dependent gene expression, cell cycle arrest and apoptosis in response to DNA damage, and DINO expression was sufficient to activate damage signaling and cell cycle arrest in the absence of DNA damage. DINO bound to p53 protein and promoted its stabilization, mediating a p53 auto-amplification loop. Dino knockout or promoter inactivation in mice dampened p53 signaling and ameliorated acute radiation syndrome in vivo. Thus, inducible lncRNA can create a feedback loop with its cognate transcription factor to amplify cellular signaling networks.

  4. An inducible long noncoding RNA amplifies DNA damage signaling

    PubMed Central

    Schmitt, Adam M.; Garcia, Julia T.; Hung, Tiffany; Flynn, Ryan A.; Shen, Ying; Qu, Kun; Payumo, Alexander Y.; Peres-da-Silva, Ashwin; Broz, Daniela Kenzelmann; Baum, Rachel; Guo, Shuling; Chen, James K.; Attardi, Laura D.; Chang, Howard Y.

    2016-01-01

    Long noncoding RNAs (lncRNAs) are prevalent genes with frequently exquisite regulation but mostly unknown functions. Here we demonstrate a role of lncRNAs in guiding organismal DNA damage response. DNA damage activates transcription of DINO (Damage Induced NOncoding) via p53. DINO is required for p53-dependent gene expression, cell cycle arrest, and apoptosis in response to DNA damage, and DINO expression suffice to activate damage signaling and cell cycle arrest in the absence of DNA damage. DINO binds to and promotes p53 protein stabilization, mediating a p53 auto-amplification loop. Dino knockout or promoter inactivation in mice dampens p53 signaling and ameliorates acute radiation syndrome in vivo. Thus, inducible lncRNA can create a feedback loop with its cognate transcription factor to amplify cellular signaling networks. PMID:27668660

  5. Activation of DNA damage response signaling by condensed chromatin.

    PubMed

    Burgess, Rebecca C; Burman, Bharat; Kruhlak, Michael J; Misteli, Tom

    2014-12-11

    The DNA damage response (DDR) occurs in the context of chromatin, and architectural features of chromatin have been implicated in DNA damage signaling and repair. Whereas a role of chromatin decondensation in the DDR is well established, we show here that chromatin condensation is integral to DDR signaling. We find that, in response to DNA damage chromatin regions transiently expand before undergoing extensive compaction. Using a protein-chromatin-tethering system to create defined chromatin domains, we show that interference with chromatin condensation results in failure to fully activate DDR. Conversely, forced induction of local chromatin condensation promotes ataxia telangiectasia mutated (ATM)- and ATR-dependent activation of upstream DDR signaling in a break-independent manner. Whereas persistent chromatin compaction enhanced upstream DDR signaling from irradiation-induced breaks, it reduced recovery and survival after damage. Our results demonstrate that chromatin condensation is sufficient for activation of DDR signaling and is an integral part of physiological DDR signaling.

  6. Nuclear DNA damage signalling to mitochondria in ageing

    PubMed Central

    Fang, Evandro Fei; Scheibye-Knudsen, Morten; Chua, Katrin F.; Mattson, Mark P.; Croteau, Deborah L.; Bohr, Vilhelm A.

    2016-01-01

    Mitochondrial dysfunction is a hallmark of ageing, and mitochondrial maintenance may lead to increased healthspan. Emerging evidence suggests a crucial role for signalling from the nucleus to mitochondria (NM signalling) in regulating mitochondrial function and ageing. An important initiator of NM signalling is nuclear DNA damage, which accumulates with age and may contribute to the development of age-associated diseases. DNA damage-dependent NM signalling constitutes a network that includes nuclear sirtuins and controls genomic stability and mitochondrial integrity. Pharmacological modulation of NM signalling is a promising novel approach for the prevention and treatment of age-associated diseases. PMID:26956196

  7. The nucleosome: orchestrating DNA damage signaling and repair within chromatin.

    PubMed

    Agarwal, Poonam; Miller, Kyle M

    2016-10-01

    DNA damage occurs within the chromatin environment, which ultimately participates in regulating DNA damage response (DDR) pathways and repair of the lesion. DNA damage activates a cascade of signaling events that extensively modulates chromatin structure and organization to coordinate DDR factor recruitment to the break and repair, whilst also promoting the maintenance of normal chromatin functions within the damaged region. For example, DDR pathways must avoid conflicts between other DNA-based processes that function within the context of chromatin, including transcription and replication. The molecular mechanisms governing the recognition, target specificity, and recruitment of DDR factors and enzymes to the fundamental repeating unit of chromatin, i.e., the nucleosome, are poorly understood. Here we present our current view of how chromatin recognition by DDR factors is achieved at the level of the nucleosome. Emerging evidence suggests that the nucleosome surface, including the nucleosome acidic patch, promotes the binding and activity of several DNA damage factors on chromatin. Thus, in addition to interactions with damaged DNA and histone modifications, nucleosome recognition by DDR factors plays a key role in orchestrating the requisite chromatin response to maintain both genome and epigenome integrity.

  8. Dynamic coordination of innate immune signaling and Insulin signaling regulates systemic responses to localized DNA damage

    PubMed Central

    Karpac, Jason; Younger, Andrew; Jasper, Heinrich

    2011-01-01

    Metazoans adapt to changing environmental conditions and to harmful challenges by attenuating growth and metabolic activities systemically. Recent studies in mice and flies indicate that endocrine signaling interactions between Insulin/IGF signaling (IIS) and innate immune signaling pathways are critical for this adaptation, yet the temporal and spatial hierarchy of these signaling events remains elusive. Here we identify and characterize a program of signaling interactions that regulates the systemic response of the Drosophila larva to localized DNA damage. We provide evidence that epidermal DNA damage induces an innate immune response that is kept in check by systemic repression of IIS activity. IIS repression induces NFkB/Relish signaling in the fatbody, which is required for recovery of IIS activity in a second phase of the systemic response to DNA damage. This systemic response to localized DNA damage thus coordinates growth and metabolic activities across tissues, ensuring growth homeostasis and survival of the animal. PMID:21664581

  9. Role for DNA damage signaling in pulmonary arterial hypertension.

    PubMed

    Meloche, Jolyane; Pflieger, Aude; Vaillancourt, Mylène; Paulin, Roxane; Potus, François; Zervopoulos, Sotirios; Graydon, Colin; Courboulin, Audrey; Breuils-Bonnet, Sandra; Tremblay, Eve; Couture, Christian; Michelakis, Evangelos D; Provencher, Steeve; Bonnet, Sébastien

    2014-02-18

    Pulmonary arterial hypertension (PAH) is associated with sustained inflammation known to promote DNA damage. Despite these unfavorable environmental conditions, PAH pulmonary arterial smooth muscle cells (PASMCs) exhibit, in contrast to healthy PASMCs, a pro-proliferative and anti-apoptotic phenotype, sustained in time by the activation of miR-204, nuclear factor of activated T cells, and hypoxia-inducible factor 1-α. We hypothesized that PAH-PASMCs have increased the activation of poly(ADP-ribose) polymerase-1 (PARP-1), a critical enzyme implicated in DNA repair, allowing proliferation despite the presence of DNA-damaging insults, eventually leading to PAH. Human PAH distal pulmonary arteries and cultured PAH-PASMCs exhibit increased DNA damage markers (53BP1 and γ-H2AX) and an overexpression of PARP-1 (immunoblot and activity assay), in comparison with healthy tissues/cells. Healthy PASMCs treated with a clinically relevant dose of tumor necrosis factor-α harbored a similar phenotype, suggesting that inflammation induces DNA damage and PARP-1 activation in PAH. We also showed that PARP-1 activation accounts for miR-204 downregulation (quantitative reverse transcription polymerase chain reaction) and the subsequent activation of the transcription factors nuclear factor of activated T cells and hypoxia-inducible factor 1-α in PAH-PASMCs, previously shown to be critical for PAH in several models. These effects resulted in PASMC proliferation (Ki67, proliferating cell nuclear antigen, and WST1 assays) and resistance to apoptosis (terminal deoxynucleotidyl transferase dUTP nick end labeling and Annexin V assays). In vivo, the clinically available PARP inhibitor ABT-888 reversed PAH in 2 experimental rat models (Sugen/hypoxia and monocrotaline). These results show for the first time that the DNA damage/PARP-1 signaling pathway is important for PAH development and provide a new therapeutic target for this deadly disease with high translational potential.

  10. DNA damage response and sphingolipid signaling in liver diseases

    PubMed Central

    Matsuda, Yasunobu; Moro, Kazuki; Tsuchida, Junko; Soma, Daiki; Hirose, Yuki; Kobayashi, Takashi; Kosugi, Shin-ichi; Takabe, Kazuaki; Komatsu, Masaaki; Wakai, Toshifumi

    2016-01-01

    Patients with unresectable hepatocellular carcinoma (HCC) cannot generally be cured by systemic chemotherapy or radiotherapy due to their poor response to conventional therapeutic agents. The development of novel and efficient targeted therapies to increase their treatment options depends on the elucidation of the molecular mechanisms that underlie the pathogenesis of HCC. The DNA damage response (DDR) is a network of cell-signaling events that are triggered by DNA damage. Its dysregulation is thought to be one of the key mechanisms underlying the generation of HCC. Sphingosine-1-phosphate (S1P), a lipid mediator, has emerged as an important signaling molecule that has been found to be involved in many cellular functions. In the liver, the alteration of S1P signaling potentially affects the DDR pathways. In this review, we explore the role of the DDR in hepatocarcinogenesis of various etiologies, including hepatitis B and C infection and non-alcoholic steatohepatitis. Furthermore, we discuss the metabolism and functions of S1P that may affect the hepatic DDR. The elucidation of the pathogenic role of S1P may create new avenues of research into therapeutic strategies for patients with HCC. PMID:26514817

  11. Histone deacetylase regulation of ATM-mediated DNA damage signaling.

    PubMed

    Thurn, K Ted; Thomas, Scott; Raha, Paromita; Qureshi, Ian; Munster, Pamela N

    2013-10-01

    Ataxia-telangiectasia mutated (ATM) is a major regulator of the DNA damage response. ATM promotes the activation of BRCA1, CHK2, and p53 leading to the induction of response genes such as CDKN1A (p21), GADD45A, and RRM2B that promote cell-cycle arrest and DNA repair. The upregulation of these response genes may contribute to resistance of cancer cells to genotoxic therapies. Here, we show that histone deacetylases (HDAC) play a major role in mitigating the response of the ATM pathway to DNA damage. HDAC inhibition decreased ATM activation and expression, and attenuated the activation of p53 in vitro and in vivo. Select depletion of HDAC1 and HDAC2 was sufficient to modulate ATM activation, reduce GADD45A and RRM2B induction, and increase sensitivity to DNA strand breaks. The regulation of ATM by HDAC enzymes therefore suggests a vital role for HDAC1 and HDAC2 in the DNA damage response, and the potential use of the ATM pathway as a pharmacodynamic marker for combination therapies involving HDAC inhibitors. ©2013 AACR.

  12. Deficient DNA damage signaling leads to chemoresistance to cisplatin in oral cancer

    PubMed Central

    Wang, Ling; Mosel, Adam J.; Oakley, Gregory G.; Peng, Aimin

    2012-01-01

    Activation of the cellular DNA damage response (DDR) is an important determinant of cell sensitivity to cisplatin and other chemotherapeutic drugs that eliminate tumor cells through induction of DNA damage. It is therefore important to investigate whether alterations of the DNA damage signaling pathway confer chemoresistance in cancer cells, and whether pharmacological manipulation of the DDR pathway can re-sensitize these cells to cancer therapy. In a panel of oral/laryngeal squamous cell carcinoma (SCC) cell lines, we observed deficiencies in DNA damage signaling in correlation with cisplatin-resistance, but not with DNA repair. These deficiencies are consistent with reduced expression of components of the ATM-dependent signaling pathway and, in particular, strong up-regulation of Wip1, a negative regulator of the ATM pathway. Wip1 knockdown or inhibition enhanced DNA damage signaling and re-sensitized oral SCC cells to cisplatin. In contrast to the previously reported involvement of Wip1 in cancer, Wip1 up-regulation and function in these SCC cells is independent of p53. Finally, using xenograft tumor models, we demonstrated that Wip1 up-regulation promotes tumorigenesis and its inhibition improves the tumor response to cisplatin. Thus, this study reveals that chemoresistance in oral SCCs is partially attributed to deficiencies in DNA damage signaling, and Wip1 is an effective drug target for enhanced cancer therapy. PMID:22973056

  13. Paths from DNA damage and signaling to genome rearrangements via homologous recombination.

    PubMed

    Nickoloff, Jac A

    2017-07-24

    DNA damage is a constant threat to genome integrity. DNA repair and damage signaling networks play a central role maintaining genome stability, suppressing tumorigenesis, and determining tumor response to common cancer chemotherapeutic agents and radiotherapy. DNA double-strand breaks (DSBs) are critical lesions induced by ionizing radiation and when replication forks encounter damage. DSBs can result in mutations and large-scale genome rearrangements reflecting mis-repair by non-homologous end joining or homologous recombination. Ionizing radiation induces genetic change immediately, and it also triggers delayed events weeks or even years after exposure, long after the initial damage has been repaired or diluted through cell division. This review covers DNA damage signaling and repair pathways and cell fate following genotoxic insult, including immediate and delayed genome instability and cell survival/cell death pathways. Copyright © 2017. Published by Elsevier B.V.

  14. Regulation of the Mdm2-p53 signaling axis in the DNA damage response and tumorigenesis.

    PubMed

    Carr, Michael I; Jones, Stephen N

    2016-12-01

    The p53 tumor suppressor acts as a guardian of the genome in mammalian cells undergoing DNA double strand breaks induced by a various forms of cell stress, including inappropriate growth signals or ionizing radiation. Following damage, p53 protein levels become greatly elevated in cells and p53 functions primarily as a transcription factor to regulate the expression a wide variety of genes that coordinate this DNA damage response. In cells undergoing high amounts of DNA damage, p53 can promote apoptosis, whereas in cells undergoing less damage, p53 promotes senescence or transient cell growth arrest and the expression of genes involved in DNA repair, depending upon the cell type and level of damage. Failure of the damaged cell to undergo growth arrest or apoptosis, or to respond to the DNA damage by other p53-coordinated mechanisms, can lead to inappropriate cell growth and tumorigenesis. In cells that have successfully responded to genetic damage, the amount of p53 present in the cell must return to basal levels in order for the cell to resume normal growth and function. Although regulation of p53 levels and function is coordinated by many proteins, it is now widely accepted that the master regulator of p53 is Mdm2. In this review, we discuss the role(s) of p53 in the DNA damage response and in tumor suppression, and how post-translational modification of Mdm2 regulates the Mdm2-p53 signaling axis to govern p53 activities in the cell.

  15. The basic chemistry of exercise-induced DNA oxidation: oxidative damage, redox signaling, and their interplay.

    PubMed

    Cobley, James N; Margaritelis, Nikos V; Morton, James P; Close, Graeme L; Nikolaidis, Michalis G; Malone, John K

    2015-01-01

    Acute exercise increases reactive oxygen and nitrogen species generation. This phenomenon is associated with two major outcomes: (1) redox signaling and (2) macromolecule damage. Mechanistic knowledge of how exercise-induced redox signaling and macromolecule damage are interlinked is limited. This review focuses on the interplay between exercise-induced redox signaling and DNA damage, using hydroxyl radical ((·)OH) and hydrogen peroxide (H2O2) as exemplars. It is postulated that the biological fate of H2O2 links the two processes and thus represents a bifurcation point between redox signaling and damage. Indeed, H2O2 can participate in two electron signaling reactions but its diffusion and chemical properties permit DNA oxidation following reaction with transition metals and (·)OH generation. It is also considered that the sensing of DNA oxidation by repair proteins constitutes a non-canonical redox signaling mechanism. Further layers of interaction are provided by the redox regulation of DNA repair proteins and their capacity to modulate intracellular H2O2 levels. Overall, exercise-induced redox signaling and DNA damage may be interlinked to a greater extent than was previously thought but this requires further investigation.

  16. Expression Profile of DNA Damage Signaling Genes in Proton Exposed Mouse Brain

    NASA Astrophysics Data System (ADS)

    Ramesh, Govindarajan; Wu, Honglu

    Exposure of living systems to radiation results in a wide assortment of lesions, the most signif-icant of is damage to genomic DNA which induce several cellular functions such as cell cycle arrest, repair, apoptosis etc. The radiation induced DNA damage investigation is one of the im-portant area in biology, but still the information available regarding the effects of proton is very limited. In this report, we investigated the differential gene expression pattern of DNA damage signaling genes particularly, damaged DNA binding, repair, cell cycle arrest, checkpoints and apoptosis using quantitative real-time RT-PCR array in proton exposed mouse brain tissues. The expression profiles showed significant changes in DNA damage related genes in 2Gy proton exposed mouse brain tissues as compared with control brain tissues. Furthermore, we also show that significantly increased levels of apoptotic related genes, caspase-3 and 8 activities in these cells, suggesting that in addition to differential expression of DNA damage genes, the alteration of apoptosis related genes may also contribute to the radiation induced DNA damage followed by programmed cell death. In summary, our findings suggest that proton exposed brain tissue undergo severe DNA damage which in turn destabilize the chromatin stability.

  17. DNA Damage Signalling and Repair Inhibitors: The Long-Sought-After Achilles’ Heel of Cancer

    PubMed Central

    Velic, Denis; Couturier, Anthony M.; Ferreira, Maria Tedim; Rodrigue, Amélie; Poirier, Guy G.; Fleury, Fabrice; Masson, Jean-Yves

    2015-01-01

    For decades, radiotherapy and chemotherapy were the two only approaches exploiting DNA repair processes to fight against cancer. Nowadays, cancer therapeutics can be a major challenge when it comes to seeking personalized targeted medicine that is both effective and selective to the malignancy. Over the last decade, the discovery of new targeted therapies against DNA damage signalling and repair has offered the possibility of therapeutic improvements in oncology. In this review, we summarize the current knowledge of DNA damage signalling and repair inhibitors, their molecular and cellular effects, and future therapeutic use. PMID:26610585

  18. Evaluation of cytotoxicity and DNA damage response with analysis of intracellular ATM signaling pathways.

    PubMed

    Bandi, Sriram; Viswanathan, Preeti; Gupta, Sanjeev

    2014-06-01

    Maintenance of genome integrity by preventing and overcoming DNA damage is critical for cell survival. Deficiency or aberrancy in the DNA damage response, for example, through ataxia telangiectasia mutated (ATM) signaling, lead to pathophysiological perturbations in organs throughout the body. Therefore, control of DNA damage is of major interest for development of therapeutic agents. Such efforts will greatly benefit from convenient and simple diagnostic and/or drug development tools to demonstrate whether ATM and related genes have been activated and to then determine whether these have been returned to normal levels of activity because pathway members sense and also repair DNA damage. To overcome difficulties in analyzing differences in multitudinous ATM pathway members following DNA damage, we measured ATM promoter activity with a fluorescent td-Tomato reporter gene to interrogate the global effects of ATM signaling pathways. In cultured HuH-7 cell line derived from human hepatocellular carcinoma, cis-platinum, acetaminophen, or hydrogen peroxide caused DNA strand breaks and ATM pathway activation as shown by γH2AX expression, which in turn, led to rapid and sustained increases in ATM promoter activity. This assay of ATM promoter activity identified biological agents capable of controlling cellular DNA damage in toxin-treated HuH-7 cells and in mice after onset of drug-induced acute liver failure. Therefore, the proposed assay of ATM promoter activity in HuH-7 cells was appropriately informative for treating DNA damage. High-throughput screens using ATM promoter activation will be helpful for therapeutic development in DNA damage-associated abnormal ATM signaling in various cell types and organs.

  19. Deregulated Ras signaling compromises DNA damage checkpoint recovery in S. cerevisiae

    PubMed Central

    Wood, Matthew D

    2010-01-01

    The DNA damage checkpoint maintains genome stability by arresting the cell cycle and promoting DNA repair under genotoxic stress. Cells must downregulate the checkpoint signaling pathways in order to resume cell division after completing DNA repair. While the mechanisms of checkpoint activation have been well-characterized, the process of checkpoint recovery, and the signals regulating it, has only recently been investigated. We have identified a new role for the Ras signaling pathway as a regulator of DNA damage checkpoint recovery. Here we report that in budding yeast, deletion of the IRA1 and IRA2 genes encoding negative regulators of Ras prevents cellular recovery from a DNA damage induced arrest. the checkpoint kinase Rad53 is dephosphorylated in an IRA-deficient strain, indicating that recovery failure is not caused by constitutive checkpoint pathway activation. the ira1Δ ira2Δ recovery defect requires the checkpoint kinase Chk1 and the cAMP-dependent protein kinase (PKA) catalytic subunit Tpk2. Furthermore, PKA phosphorylation sites on the anaphase promoting complex specificity factor Cdc20 are required for the recovery defect, indicating a link between the recovery defect and PKA regulation of mitosis. This work identifies a new signaling pathway that can regulate DNA damage checkpoint recovery and implicates the Ras signaling pathway as an important regulator of mitotic events. PMID:20716966

  20. DNA damage signaling in response to double-strand breaks during mitosis

    PubMed Central

    Giunta, Simona

    2010-01-01

    The signaling cascade initiated in response to DNA double-strand breaks (DSBs) has been extensively investigated in interphase cells. Here, we show that mitotic cells treated with DSB-inducing agents activate a “primary” DNA damage response (DDR) comprised of early signaling events, including activation of the protein kinases ataxia telangiectasia mutated (ATM) and DNA-dependent protein kinase (DNA-PK), histone H2AX phosphorylation together with recruitment of mediator of DNA damage checkpoint 1 (MDC1), and the Mre11–Rad50–Nbs1 (MRN) complex to damage sites. However, mitotic cells display no detectable recruitment of the E3 ubiquitin ligases RNF8 and RNF168, or accumulation of 53BP1 and BRCA1, at DSB sites. Accordingly, we found that DNA-damage signaling is attenuated in mitotic cells, with full DDR activation only ensuing when a DSB-containing mitotic cell enters G1. Finally, we present data suggesting that induction of a primary DDR in mitosis is important because transient inactivation of ATM and DNA-PK renders mitotic cells hypersensitive to DSB-inducing agents. PMID:20660628

  1. Bidirectional coupling of splicing and ATM signaling in response to transcription-blocking DNA damage

    PubMed Central

    Tresini, Maria; Marteijn, Jurgen A.; Vermeulen, Wim

    2016-01-01

    ABSTRACT In response to DNA damage cells activate intricate protein networks to ensure genomic fidelity and tissue homeostasis. DNA damage response signaling pathways coordinate these networks and determine cellular fates, in part, by modulating RNA metabolism. Here we discuss a replication-independent pathway activated by transcription-blocking DNA lesions, which utilizes the ATM signaling kinase to regulate spliceosome function in a reciprocal manner. We present a model according to which, displacement of co-transcriptional spliceosomes from lesion-arrested RNA polymerases, culminates in R-loop formation and non-canonical ATM activation. ATM signals in a feed-forward fashion to further impede spliceosome organization and regulates UV-induced gene expression and alternative splicing genome-wide. This reciprocal coupling between ATM and the spliceosome highlights the importance of ATM signaling in the cellular response to transcription-blocking lesions and supports a key role of the splicing machinery in this process. PMID:26913497

  2. Signalling of DNA damage and cytokines across cell barriers exposed to nanoparticles depends on barrier thickness

    NASA Astrophysics Data System (ADS)

    Sood, A.; Salih, S.; Roh, D.; Lacharme-Lora, L.; Parry, M.; Hardiman, B.; Keehan, R.; Grummer, R.; Winterhager, E.; Gokhale, P. J.; Andrews, P. W.; Abbott, C.; Forbes, K.; Westwood, M.; Aplin, J. D.; Ingham, E.; Papageorgiou, I.; Berry, M.; Liu, J.; Dick, A. D.; Garland, R. J.; Williams, N.; Singh, R.; Simon, A. K.; Lewis, M.; Ham, J.; Roger, L.; Baird, D. M.; Crompton, L. A.; Caldwell, M. A.; Swalwell, H.; Birch-Machin, M.; Lopez-Castejon, G.; Randall, A.; Lin, H.; Suleiman, M.-S.; Evans, W. H.; Newson, R.; Case, C. P.

    2011-12-01

    The use of nanoparticles in medicine is ever increasing, and it is important to understand their targeted and non-targeted effects. We have previously shown that nanoparticles can cause DNA damage to cells cultured below a cellular barrier without crossing this barrier. Here, we show that this indirect DNA damage depends on the thickness of the cellular barrier, and it is mediated by signalling through gap junction proteins following the generation of mitochondrial free radicals. Indirect damage was seen across both trophoblast and corneal barriers. Signalling, including cytokine release, occurred only across bilayer and multilayer barriers, but not across monolayer barriers. Indirect toxicity was also observed in mice and using ex vivo explants of the human placenta. If the importance of barrier thickness in signalling is a general feature for all types of barriers, our results may offer a principle with which to limit the adverse effects of nanoparticle exposure and offer new therapeutic approaches.

  3. The role of poly(ADP-ribose) in the DNA damage signaling network.

    PubMed

    Malanga, Maria; Althaus, Felix R

    2005-06-01

    DNA damage signaling is crucial for the maintenance of genome integrity. In higher eukaryotes a NAD+-dependent signal transduction mechanism has evolved to protect cells against the genome destabilizing effects of DNA strand breaks. The mechanism involves 2 nuclear enzymes that sense DNA strand breaks, poly(ADP-ribose) polymerase-1 and -2 (PARP-1 and PARP-2). When activated by DNA breaks, these PARPs use NAD+ to catalyze their automodification with negatively charged, long and branched ADP-ribose polymers. Through recruitment of specific proteins at the site of damage and regulation of their activities, these polymers may either directly participate in the repair process or coordinate repair through chromatin unfolding, cell cycle progression, and cell survival-cell death pathways. A number of proteins, including histones, DNA topoisomerases, DNA methyltransferase-1 as well as DNA damage repair and checkpoint proteins (p23, p21, DNA-PK, NF-kB, XRCC1, and others) can be targeted in this manner; the interaction involves a specific poly(ADP-ribose)-binding sequence motif of 20-26 amino acids in the target domains.

  4. Methylated DNA causes a physical block to replication forks independently of damage signalling, O(6)-methylguanine or DNA single-strand breaks and results in DNA damage.

    PubMed

    Groth, Petra; Ausländer, Simon; Majumder, Muntasir Mamun; Schultz, Niklas; Johansson, Fredrik; Petermann, Eva; Helleday, Thomas

    2010-09-10

    Even though DNA alkylating agents have been used for many decades in the treatment of cancer, it remains unclear what happens when replication forks encounter alkylated DNA. Here, we used the DNA fibre assay to study the impact of alkylating agents on replication fork progression. We found that the alkylator methyl methanesulfonate (MMS) inhibits replication elongation in a manner that is dose dependent and related to the overall alkylation grade. Replication forks seem to be completely blocked as no nucleotide incorporation can be detected following 1 h of MMS treatment. A high dose of 5 mM caffeine, inhibiting most DNA damage signalling, decreases replication rates overall but does not reverse MMS-induced replication inhibition, showing that the replication block is independent of DNA damage signalling. Furthermore, the block of replication fork progression does not correlate with the level of DNA single-strand breaks. Overexpression of O(6)-methylguanine (O6meG)-DNA methyltransferase protein, responsible for removing the most toxic alkylation, O6meG, did not affect replication elongation following exposure to N-methyl-N'-nitro-N-nitrosoguanidine. This demonstrates that O6meG lesions are efficiently bypassed in mammalian cells. In addition, we find that MMS-induced gammaH2AX foci co-localise with 53BP1 foci and newly replicated areas, suggesting that DNA double-strand breaks are formed at MMS-blocked replication forks. Altogether, our data suggest that N-alkylations formed during exposure to alkylating agents physically block replication fork elongation in mammalian cells, causing formation of replication-associated DNA lesions, likely double-strand breaks. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. RNF8 Transduces the DNA-Damage Signal Via Histone Ubiquitylation And Checkpoint Protein Assembly

    SciTech Connect

    Huen, M.S.Y.; Grant, R.; Manke, I.; Minn, K.; Yu, X.; Yaffe, M.B.; Chen, J.

    2009-06-01

    DNA-damage signaling utilizes a multitude of posttranslational modifiers as molecular switches to regulate cell-cycle checkpoints, DNA repair, cellular senescence, and apoptosis. Here we show that RNF8, a FHA/RING domain-containing protein, plays a critical role in the early DNA-damage response. We have solved the X-ray crystal structure of the FHA domain structure at 1.35 {angstrom}. We have shown that RNF8 facilitates the accumulation of checkpoint mediator proteins BRCA1 and 53BP1 to the damaged chromatin, on one hand through the phospho-dependent FHA domain-mediated binding of RNF8 to MDC1, on the other hand via its role in ubiquitylating H2AX and possibly other substrates at damage sites. Moreover, RNF8-depleted cells displayed a defective G2/M checkpoint and increased IR sensitivity. Together, our study implicates RNF8 as a novel DNA-damage-responsive protein that integrates protein phosphorylation and ubiquitylation signaling and plays a critical role in the cellular response to genotoxic stress.

  6. Profiling DNA damage-induced phosphorylation in budding yeast reveals diverse signaling networks

    PubMed Central

    Zhou, Chunshui; Elia, Andrew E. H.; Naylor, Maria L.; Ballif, Bryan A.; Goel, Gautam; Xu, Qikai; Ng, Aylwin; Chou, Danny M.; Xavier, Ramnik J.; Gygi, Steven P.; Elledge, Stephen J.

    2016-01-01

    The DNA damage response (DDR) is regulated by a protein kinase signaling cascade that orchestrates DNA repair and other processes. Identifying the substrate effectors of these kinases is critical for understanding the underlying physiology and mechanism of the response. We have used quantitative mass spectrometry to profile DDR-dependent phosphorylation in budding yeast and genetically explored the dependency of these phosphorylation events on the DDR kinases MEC1, RAD53, CHK1, and DUN1. Based on these screens, a database containing many novel DDR-regulated phosphorylation events has been established. Phosphorylation of many of these proteins has been validated by quantitative peptide phospho-immunoprecipitation and examined for functional relevance to the DDR through large-scale analysis of sensitivity to DNA damage in yeast deletion strains. We reveal a link between DDR signaling and the metabolic pathways of inositol phosphate and phosphatidyl inositol synthesis, which are required for resistance to DNA damage. We also uncover links between the DDR and TOR signaling as well as translation regulation. Taken together, these data shed new light on the organization of DDR signaling in budding yeast. PMID:27298372

  7. Profiling DNA damage-induced phosphorylation in budding yeast reveals diverse signaling networks.

    PubMed

    Zhou, Chunshui; Elia, Andrew E H; Naylor, Maria L; Dephoure, Noah; Ballif, Bryan A; Goel, Gautam; Xu, Qikai; Ng, Aylwin; Chou, Danny M; Xavier, Ramnik J; Gygi, Steven P; Elledge, Stephen J

    2016-06-28

    The DNA damage response (DDR) is regulated by a protein kinase signaling cascade that orchestrates DNA repair and other processes. Identifying the substrate effectors of these kinases is critical for understanding the underlying physiology and mechanism of the response. We have used quantitative mass spectrometry to profile DDR-dependent phosphorylation in budding yeast and genetically explored the dependency of these phosphorylation events on the DDR kinases MEC1, RAD53, CHK1, and DUN1. Based on these screens, a database containing many novel DDR-regulated phosphorylation events has been established. Phosphorylation of many of these proteins has been validated by quantitative peptide phospho-immunoprecipitation and examined for functional relevance to the DDR through large-scale analysis of sensitivity to DNA damage in yeast deletion strains. We reveal a link between DDR signaling and the metabolic pathways of inositol phosphate and phosphatidyl inositol synthesis, which are required for resistance to DNA damage. We also uncover links between the DDR and TOR signaling as well as translation regulation. Taken together, these data shed new light on the organization of DDR signaling in budding yeast.

  8. Persistent DNA damage signaling triggers senescence-associated inflammatory cytokine secretion

    PubMed Central

    Rodier, Francis; Coppé, Jean-Philippe; Patil, Christopher K.; Hoeijmakers, Wieteke A. M.; Muñoz, Denise P.; Raza, Saba R.; Freund, Adam; Campeau, Eric; Davalos, Albert R.; Campisi, Judith

    2009-01-01

    Cellular senescence suppresses cancer by stably arresting the proliferation of damaged cells1. Paradoxically, senescent cells also secrete factors that alter tissue microenvironments2. The pathways regulating this secretion are unknown. We show that damaged human cells develop persistent chromatin lesions bearing hallmarks of DNA double-strand breaks (DSBs), which initiate increased secretion of inflammatory cytokines such as interleukin-6 (IL-6). Cytokine secretion occurred only after establishment of persistent DNA damage signaling, usually associated with senescence, not after transient DNA damage responses (DDR). Initiation and maintenance of this cytokine response required the DDR proteins ATM, NBS1 and CHK2, but not the cell cycle arrest enforcers p53 and pRb. ATM was also essential for IL-6 secretion during oncogene-induced senescence and by damaged cells that bypass senescence. Further, DDR activity and IL-6 were elevated in human cancers, and ATM-depletion suppressed the ability of senescent cells to stimulate IL-6-dependent cancer cell invasiveness. Thus, in addition to orchestrating cell cycle checkpoints and DNA repair, a novel and important role of the DDR is to allow damaged cells to communicate their compromised state to the surrounding tissue. PMID:19597488

  9. The multifaceted influence of histone deacetylases on DNA damage signalling and DNA repair

    PubMed Central

    Roos, Wynand Paul; Krumm, Andrea

    2016-01-01

    Histone/protein deacetylases play multiple roles in regulating gene expression and protein activation and stability. Their deregulation during cancer initiation and progression cause resistance to therapy. Here, we review the role of histone deacetylases (HDACs) and the NAD+ dependent sirtuins (SIRTs) in the DNA damage response (DDR). These lysine deacetylases contribute to DNA repair by base excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR), non-homologous end joining (NHEJ), homologous recombination (HR) and interstrand crosslink (ICL) repair. Furthermore, we discuss possible mechanisms whereby these histone/protein deacetylases facilitate the switch between DNA double-strand break (DSB) repair pathways, how SIRTs play a central role in the crosstalk between DNA repair and cell death pathways due to their dependence on NAD+, and the influence of small molecule HDAC inhibitors (HDACi) on cancer cell resistance to genotoxin based therapies. Throughout the review, we endeavor to identify the specific HDAC targeted by HDACi leading to therapy sensitization. PMID:27738139

  10. Manipulation of DNA damage checkpoint signaling in cancer cells by antioxidant biofactor (AOB).

    PubMed

    Tatewaki, Naoto; Bhilwade, Hari Narayan; Nishida, Hiroshi; Nakajima, Yuki; Konishi, Tetsuya

    2013-01-01

    Antioxidant biofactor (AOB) is one of the fermented grain food supplements commercially available in Japan and other countries. Herein, we investigated the effect of AOB on the UVC (254 nm) induced DNA damage in A549 cells. Both distilled water and MeOH extracts of AOB did not show any significant cell toxicity. However, the UV (25-75 J m(-2)) induced cell death was amplified in the presence of these extracts, especially the MeOH extract. When the DNA damage was evaluated by comet assay, the AOB water extract prevented the UV induced DNA damage at the initial stage but significantly inhibited the repair process, especially in the cells exposed to a high dose of UV. The retardation of DNA repair was significantly higher in the presence of the MeOH extract, concentrating such components as caffeine and polyphenols, and thus the damage was enhanced both in the cells irradiated by low and high doses of UV. The DNA damage profile was consistent with the inhibitory profile of ATR, a key kinase of DNA damage checkpoint signaling. The AOB MeOH extract markedly reduced the phosphorylation level of the checkpoint proteins activated by UV, such as p53, SMC1 and Chk1, together with ATR. The inhibitory effect of the AOB water extract was less effective as compared to the MeOH extract, but was dose-dependent both in the cells irradiated with high and low doses of UV. The dual role of AOB as an antioxidant and a checkpoint modulator suggests its beneficial use in complementary medicine as a potential sensitizer of anticancer treatment.

  11. Latent ClpX-recognition signals ensure LexA destruction after DNA damage

    PubMed Central

    Neher, Saskia B.; Flynn, Julia M.; Sauer, Robert T.; Baker, Tania A.

    2003-01-01

    The DNA-damage response genes in bacteria are up-regulated when LexA repressor undergoes autocatalytic cleavage stimulated by activated RecA protein. Intact LexA is stable to intracellular degradation but its auto-cleavage fragments are degraded rapidly. Here, both fragments of LexA are shown to be substrates for the ClpXP protease. ClpXP recognizes these fragments using sequence motifs that flank the auto-cleavage site but are dormant in intact LexA. Furthermore, ClpXP degradation of the LexA-DNA-binding fragment is important to cell survival after DNA damage. These results demonstrate how one protein-processing event can activate latent protease recognition signals, triggering a cascade of protein turnover in response to environmental stress. PMID:12730132

  12. TGF-β1 accelerates the DNA damage response in epithelial cells via Smad signaling

    SciTech Connect

    Lee, Jeeyong; Kim, Mi-Ra; Kim, Hyun-Ji; An, You Sun; Yi, Jae Youn

    2016-08-05

    The evidence suggests that transforming growth factor-beta (TGF-β) regulates the DNA-damage response (DDR) upon irradiation, and we previously reported that TGF-β1 induced DNA ligase IV (Lig4) expression and enhanced the nonhomologous end-joining repair pathway in irradiated cells. In the present study, we investigated the effects of TGF-β1 on the irradiation-induced DDRs of A431 and HaCaT cells. Cells were pretreated with or without TGF-β1 and irradiated. At 30 min post-irradiation, DDRs were detected by immunoblotting of phospho-ATM, phospho-Chk2, and the presence of histone foci (γH2AX). The levels of all three factors were similar right after irradiation regardless of TGF-β1 pretreatment. However, they soon thereafter exhibited downregulation in TGF-β1-pretreated cells, indicating the acceleration of the DDR. Treatment with a TGF-β type I receptor inhibitor (SB431542) or transfections with siRNAs against Smad2/3 or DNA ligase IV (Lig4) reversed this acceleration of the DDR. Furthermore, the frequency of irradiation-induced apoptosis was decreased by TGF-β1 pretreatment in vivo, but this effect was abrogated by SB431542. These results collectively suggest that TGF-β1 could enhance cell survival by accelerating the DDR via Smad signaling and Lig4 expression. -- Highlights: •TGF-β1 pretreatment accelerates γ-radiation-induced DNA damage response. •TGF-β1-accelerated DNA damage response is dependent on Smad signaling and DNA Ligase IV. •TGF-β1 pretreatment protects epithelial cells from γ-radiation in vivo.

  13. DNA damage signalling barrier, oxidative stress and treatment-relevant DNA repair factor alterations during progression of human prostate cancer.

    PubMed

    Kurfurstova, Daniela; Bartkova, Jirina; Vrtel, Radek; Mickova, Alena; Burdova, Alena; Majera, Dusana; Mistrik, Martin; Kral, Milan; Santer, Frederic R; Bouchal, Jan; Bartek, Jiri

    2016-06-01

    The DNA damage checkpoints provide an anti-cancer barrier in diverse tumour types, however this concept has remained unexplored in prostate cancer (CaP). Furthermore, targeting DNA repair defects by PARP1 inhibitors (PARPi) as a cancer treatment strategy is emerging yet requires suitable predictive biomarkers. To address these issues, we performed immunohistochemical analysis of multiple markers of DNA damage signalling, oxidative stress, DNA repair and cell cycle control pathways during progression of human prostate disease from benign hyperplasia, through intraepithelial neoplasia to CaP, complemented by genetic analyses of TMPRSS2-ERG rearrangement and NQO1, an anti-oxidant factor and p53 protector. The DNA damage checkpoint barrier (γH2AX, pATM, p53) mechanism was activated during CaP tumorigenesis, albeit less and with delayed culmination compared to other cancers, possibly reflecting lower replication stress (slow proliferation despite cases of Rb loss and cyclin D1 overexpression) and progressive loss of ATM activator NKX3.1. Oxidative stress (8-oxoguanine lesions) and NQO1 increased during disease progression. NQO1 genotypes of 390 men did not indicate predisposition to CaP, yet loss of NQO1 in CaP suggested potential progression-opposing tumour suppressor role. TMPRSS2-ERG rearrangement and PTEN loss, events sensitizing to PARPi, occurred frequently along with heterogeneous loss of DNA repair factors 53BP1, JMJD1C and Rev7 (all studied here for the first time in CaP) whose defects may cause resistance to PARPi. Overall, our results reveal an unorthodox DNA damage checkpoint barrier scenario in CaP tumorigenesis, and provide novel insights into oxidative stress and DNA repair, with implications for biomarker guidance of future targeted therapy of CaP.

  14. SUMOylation of ATRIP potentiates DNA damage signaling by boosting multiple protein interactions in the ATR pathway.

    PubMed

    Wu, Ching-Shyi; Ouyang, Jian; Mori, Eiichiro; Nguyen, Hai Dang; Maréchal, Alexandre; Hallet, Alexander; Chen, David J; Zou, Lee

    2014-07-01

    The ATR (ATM [ataxia telangiectasia-mutated]- and Rad3-related) checkpoint is a crucial DNA damage signaling pathway. While the ATR pathway is known to transmit DNA damage signals through the ATR-Chk1 kinase cascade, whether post-translational modifications other than phosphorylation are important for this pathway remains largely unknown. Here, we show that protein SUMOylation plays a key role in the ATR pathway. ATRIP, the regulatory partner of ATR, is modified by SUMO2/3 at K234 and K289. An ATRIP mutant lacking the SUMOylation sites fails to localize to DNA damage and support ATR activation efficiently. Surprisingly, the ATRIP SUMOylation mutant is compromised in the interaction with a protein group, rather than a single protein, in the ATR pathway. Multiple ATRIP-interacting proteins, including ATR, RPA70, TopBP1, and the MRE11-RAD50-NBS1 complex, exhibit reduced binding to the ATRIP SUMOylation mutant in cells and display affinity for SUMO2 chains in vitro, suggesting that they bind not only ATRIP but also SUMO. Fusion of a SUMO2 chain to the ATRIP SUMOylation mutant enhances its interaction with the protein group and partially suppresses its localization and functional defects, revealing that ATRIP SUMOylation promotes ATR activation by providing a unique type of protein glue that boosts multiple protein interactions along the ATR pathway. © 2014 Wu et al.; Published by Cold Spring Harbor Laboratory Press.

  15. Distinct Roles of FANCO/RAD51C Protein in DNA Damage Signaling and Repair

    PubMed Central

    Somyajit, Kumar; Subramanya, Shreelakshmi; Nagaraju, Ganesh

    2012-01-01

    RAD51C, a RAD51 paralog, has been implicated in homologous recombination (HR), and germ line mutations in RAD51C are known to cause Fanconi anemia (FA)-like disorder and breast and ovarian cancers. The role of RAD51C in the FA pathway of DNA interstrand cross-link (ICL) repair and as a tumor suppressor is obscure. Here, we report that RAD51C deficiency leads to ICL sensitivity, chromatid-type errors, and G2/M accumulation, which are hallmarks of the FA phenotype. We find that RAD51C is dispensable for ICL unhooking and FANCD2 monoubiquitination but is essential for HR, confirming the downstream role of RAD51C in ICL repair. Furthermore, we demonstrate that RAD51C plays a vital role in the HR-mediated repair of DNA lesions associated with replication. Finally, we show that RAD51C participates in ICL and double strand break-induced DNA damage signaling and controls intra-S-phase checkpoint through CHK2 activation. Our analyses with pathological mutants of RAD51C that were identified in FA and breast and ovarian cancers reveal that RAD51C regulates HR and DNA damage signaling distinctly. Together, these results unravel the critical role of RAD51C in the FA pathway of ICL repair and as a tumor suppressor. PMID:22167183

  16. Rac1 protein signaling is required for DNA damage response stimulated by topoisomerase II poisons.

    PubMed

    Huelsenbeck, Stefanie C; Schorr, Anne; Roos, Wynand P; Huelsenbeck, Johannes; Henninger, Christian; Kaina, Bernd; Fritz, Gerhard

    2012-11-09

    To investigate the potency of the topoisomerase II (topo II) poisons doxorubicin and etoposide to stimulate the DNA damage response (DDR), S139 phosphorylation of histone H2AX (γH2AX) was analyzed using rat cardiomyoblast cells (H9c2). Etoposide caused a dose-dependent increase in the γH2AX level as shown by Western blotting. By contrast, the doxorubicin response was bell-shaped with high doses failing to increase H2AX phosphorylation. Identical results were obtained by immunohistochemical analysis of γH2AX focus formation, comet assay-based DNA strand break analysis, and measuring the formation of the topo II-DNA cleavable complex. At low dose, doxorubicin activated ataxia telangiectasia mutated (ATM) but not ATM and Rad3-related (ATR). Both the lipid-lowering drug lovastatin and the Rac1-specific inhibitor NSC23766 attenuated doxorubicin- and etoposide-stimulated H2AX phosphorylation, induction of DNA strand breaks, and topo II-DNA complex formation. Lovastatin and NSC23766 acted in an additive manner. They did not attenuate doxorubicin-induced increase in p-ATM and p-Chk2 levels. DDR stimulated by topo II poisons was partially blocked by inhibition of type I p21-associated kinases. DDR evoked by the topoisomerase I poison topotecan remained unaffected by lovastatin. The data show that the mechanisms involved in DDR stimulated by topo II poisons are agent-specific with anthracyclines lacking DDR-stimulating activity at high doses. Pharmacological inhibition of Rac1 signaling counteracts doxorubicin- and etoposide-stimulated DDR by disabling the formation of the topo II-DNA cleavable complex. Based on the data we suggest that Rac1-regulated mechanisms are required for DNA damage induction and subsequent activation of the DDR following treatment with topo II but not topo I poisons.

  17. Rac1 Protein Signaling Is Required for DNA Damage Response Stimulated by Topoisomerase II Poisons*

    PubMed Central

    Huelsenbeck, Stefanie C.; Schorr, Anne; Roos, Wynand P.; Huelsenbeck, Johannes; Henninger, Christian; Kaina, Bernd; Fritz, Gerhard

    2012-01-01

    To investigate the potency of the topoisomerase II (topo II) poisons doxorubicin and etoposide to stimulate the DNA damage response (DDR), S139 phosphorylation of histone H2AX (γH2AX) was analyzed using rat cardiomyoblast cells (H9c2). Etoposide caused a dose-dependent increase in the γH2AX level as shown by Western blotting. By contrast, the doxorubicin response was bell-shaped with high doses failing to increase H2AX phosphorylation. Identical results were obtained by immunohistochemical analysis of γH2AX focus formation, comet assay-based DNA strand break analysis, and measuring the formation of the topo II-DNA cleavable complex. At low dose, doxorubicin activated ataxia telangiectasia mutated (ATM) but not ATM and Rad3-related (ATR). Both the lipid-lowering drug lovastatin and the Rac1-specific inhibitor NSC23766 attenuated doxorubicin- and etoposide-stimulated H2AX phosphorylation, induction of DNA strand breaks, and topo II-DNA complex formation. Lovastatin and NSC23766 acted in an additive manner. They did not attenuate doxorubicin-induced increase in p-ATM and p-Chk2 levels. DDR stimulated by topo II poisons was partially blocked by inhibition of type I p21-associated kinases. DDR evoked by the topoisomerase I poison topotecan remained unaffected by lovastatin. The data show that the mechanisms involved in DDR stimulated by topo II poisons are agent-specific with anthracyclines lacking DDR-stimulating activity at high doses. Pharmacological inhibition of Rac1 signaling counteracts doxorubicin- and etoposide-stimulated DDR by disabling the formation of the topo II-DNA cleavable complex. Based on the data we suggest that Rac1-regulated mechanisms are required for DNA damage induction and subsequent activation of the DDR following treatment with topo II but not topo I poisons. PMID:23012366

  18. CHK1 and RAD51 activation after DNA damage is regulated via urokinase receptor/TLR4 signaling

    PubMed Central

    Narayanaswamy, Pavan B; Tkachuk, Sergey; Haller, Hermann; Dumler, Inna; Kiyan, Yulia

    2016-01-01

    Mechanisms of DNA damage and repair signaling are not completely understood that hinder the efficiency of cancer therapy. Urokinase-type plasminogen activator receptor (PLAUR) is highly expressed in most solid cancers and serves as a marker of poor prognosis. We show that PLAUR actively promotes DNA repair in cancer cells. On the contrary, downregulation of PLAUR expression results in delayed DNA repair. We found PLAUR to be essential for activation of Checkpoint kinase 1 (CHK1); maintenance of cell cycle arrest after DNA damage in a TP53-dependent manner; expression, nuclear import and recruitment to DNA-damage foci of RAD51 recombinase, the principal protein involved in the homologous recombination repair pathway. Underlying mechanism implies auto-/paracrine signaling of PLAUR/TLR4 receptor complex leading to activation of CHK1 and DNA repair. The signaling is induced by a danger molecule released by DNA-damaged cells and mediates, at least partially, activation of DNA-damage response. This study describes a new mechanism of DNA repair activation initiated by auto-/paracrine signaling of membrane receptors PLAUR/TLR4. It adds to the understanding of role of PLAUR in cancer and provides a rationale for therapeutic targeting of PLAUR/TLR4 interaction in TP53-positive cancers. PMID:27685627

  19. Src Family Kinases Promote Silencing of ATR-Chk1 Signaling in Termination of DNA Damage Checkpoint*

    PubMed Central

    Fukumoto, Yasunori; Morii, Mariko; Miura, Takahito; Kubota, Sho; Ishibashi, Kenichi; Honda, Takuya; Okamoto, Aya; Yamaguchi, Noritaka; Iwama, Atsushi; Nakayama, Yuji; Yamaguchi, Naoto

    2014-01-01

    The DNA damage checkpoint arrests cell cycle progression to allow time for repair. Once DNA repair is completed, checkpoint signaling is terminated. Currently little is known about the mechanism by which checkpoint signaling is terminated, and the disappearance of DNA lesions is considered to induce the end of checkpoint signaling; however, here we show that the termination of checkpoint signaling is an active process promoted by Src family tyrosine kinases. Inhibition of Src activity delays recovery from the G2 phase DNA damage checkpoint following DNA repair. Src activity is required for the termination of checkpoint signaling, and inhibition of Src activity induces persistent activation of ataxia telangiectasia mutated (ATM)- and Rad3-related (ATR) and Chk1 kinases. Src-dependent nuclear protein tyrosine phosphorylation and v-Src expression suppress the ATR-mediated Chk1 and Rad17 phosphorylation induced by DNA double strand breaks or DNA replication stress. Thus, Src family kinases promote checkpoint recovery through termination of ATR- and Chk1-dependent G2 DNA damage checkpoint. These results suggest a model according to which Src family kinases send a termination signal between the completion of DNA repair and the initiation of checkpoint termination. PMID:24634213

  20. The danger signal plus DNA damage two-hit hypothesis for chronic inflammation in COPD.

    PubMed

    Aoshiba, Kazutetsu; Tsuji, Takao; Yamaguchi, Kazuhiro; Itoh, Masayuki; Nakamura, Hiroyuki

    2013-12-01

    Inflammation in chronic obstructive pulmonary disease (COPD) is thought to originate from the activation of innate immunity by a danger signal (first hit), although this mechanism does not readily explain why the inflammation becomes chronic. Here, we propose a two-hit hypothesis explaining why inflammation becomes chronic in patients with COPD. A more severe degree of inflammation exists in the lungs of patients who develop COPD than in the lungs of healthy smokers, and the large amounts of reactive oxygen species and reactive nitrogen species released from inflammatory cells are likely to induce DNA double-strand breaks (second hit) in the airways and pulmonary alveolar cells, causing apoptosis and cell senescence. The DNA damage response and senescence-associated secretory phenotype (SASP) are also likely to be activated, resulting in the production of pro-inflammatory cytokines. These pro-inflammatory cytokines further stimulate inflammatory cell infiltration, intensifying cell senescence and SASP through a positive-feedback mechanism. This vicious cycle, characterised by mutually reinforcing inflammation and DNA damage, may cause the inflammation in COPD patients to become chronic. Our hypothesis helps explain why COPD tends to occur in the elderly, why the inflammation worsens progressively, why inflammation continues even after smoking cessation, and why COPD is associated with lung cancer.

  1. Cell cycle-dependent DNA damage signaling induced by ICRF-193 involves ATM, ATR, CHK2, and BRCA1

    SciTech Connect

    Park, Iha; Avraham, Hava Karsenty . E-mail: havraham@bidmc.harvard.edu

    2006-07-01

    Topoisomerase II is essential for cell proliferation and survival and has been a target of various anticancer drugs. ICRF-193 has long been used as a catalytic inhibitor to study the function of topoisomerase II. Here, we show that ICRF-193 treatment induces DNA damage signaling. Treatment with ICRF-193 induced G2 arrest and DNA damage signaling involving {gamma}-H2AX foci formation and CHK2 phosphorylation. DNA damage by ICRF-193 was further demonstrated by formation of the nuclear foci of 53BP1, NBS1, BRCA1, MDC1, and FANCD2 and increased comet tail moment. The DNA damage signaling induced by ICRF-193 was mediated by ATM and ATR and was restricted to cells in specific cell cycle stages such as S, G2, and mitosis including late and early G1 phases. Downstream signaling of ATM and ATR involved the phosphorylation of CHK2 and BRCA1. Altogether, our results demonstrate that ICRF-193 induces DNA damage signaling in a cell cycle-dependent manner and suggest that topoisomerase II might be essential for the progression of the cell cycle at several stages including DNA decondensation.

  2. Renal-Retinal Ciliopathy Gene Sdccag8 Regulates DNA Damage Response Signaling

    PubMed Central

    Airik, Rannar; Slaats, Gisela G.; Guo, Zhi; Weiss, Anna-Carina; Khan, Naheed; Ghosh, Amiya; Hurd, Toby W.; Bekker-Jensen, Simon; Schrøder, Jacob M.; Elledge, Steve J.; Andersen, Jens S.; Kispert, Andreas; Castelli, Maddalena; Boletta, Alessandra; Giles, Rachel H.

    2014-01-01

    Nephronophthisis-related ciliopathies (NPHP-RCs) are developmental and degenerative kidney diseases that are frequently associated with extrarenal pathologies such as retinal degeneration, obesity, and intellectual disability. We recently identified mutations in a gene encoding the centrosomal protein SDCCAG8 as causing NPHP type 10 in humans. To study the role of Sdccag8 in disease pathogenesis, we generated a Sdccag8 gene-trap mouse line. Homozygous Sdccag8gt/gt mice lacked the wild-type Sdccag8 transcript and protein, and recapitulated the human phenotypes of NPHP and retinal degeneration. These mice exhibited early onset retinal degeneration that was associated with rhodopsin mislocalization in the photoreceptors and reduced cone cell numbers, and led to progressive loss of vision. By contrast, renal histologic changes occurred later, and no global ciliary defects were observed in the kidneys. Instead, renal pathology was associated with elevated levels of DNA damage response signaling activity. Cell culture studies confirmed the aberrant activation of DNA damage response in Sdccag8gt/gt-derived cells, characterized by elevated levels of γH2AX and phosphorylated ATM and cell cycle profile abnormalities. Our analysis of Sdccag8gt/gt mice indicates that the pleiotropic phenotypes in these mice may arise through multiple tissue-specific disease mechanisms. PMID:24722439

  3. A DNA damage signal is required for p53 to activate gadd45.

    PubMed

    Xiao, G; Chicas, A; Olivier, M; Taya, Y; Tyagi, S; Kramer, F R; Bargonetti, J

    2000-03-15

    We provide direct evidence that overexpression of p53 is not sufficient for robust p53-dependent activation of the endogenous gadd45 gene. When p53 was induced in TR9-7 cells in the absence of DNA damage, waf1/p21 and mdm2 mRNA levels were increased, but a change in gadd45 mRNA was barely detectable. Activation of the gadd45 gene was observed when camptothecin was added to cells containing p53 in the absence of a further increase in the p53 level. Phosphorylation of p53 at serine 15 and acetylation at lysine 382 were detected after drug treatment. It has been suggested that p53 posttranslational modification is critical during activation. However, inhibition of these modifications by wortmannin was not sufficient to block the transactivation of gadd45. Interestingly, after camptothecin treatment, increased DNase I sensitivity was detected at the gadd45 promoter, suggesting that an undetermined DNA damage signal is involved in inducing chromatin remodeling at the gadd45 promoter while cooperating with p53 to activate gadd45 transcription.

  4. Nonhomologous end-joining promotes resistance to DNA damage in the absence of an ADP-ribosyltransferase that signals DNA single strand breaks.

    PubMed

    Couto, C Anne-Marie; Hsu, Duen-Wei; Teo, Regina; Rakhimova, Alina; Lempidaki, Styliana; Pears, Catherine J; Lakin, Nicholas D

    2013-08-01

    ADP-ribosylation of proteins at DNA lesions by ADP-ribosyltransferases (ARTs) is an early response to DNA damage. The best defined role of ADP-ribosylation in the DNA damage response is in repair of single strand breaks (SSBs). Recently, we initiated a study of how ADP-ribosylation regulates DNA repair in Dictyostelium and found that two ARTs (Adprt1b and Adprt2) are required for tolerance of cells to SSBs, and a third ART (Adprt1a) promotes nonhomologous end-joining (NHEJ). Here we report that disruption of adprt2 results in accumulation of DNA damage throughout the cell cycle following exposure to agents that induce base damage and DNA SSBs. Although ADP-ribosylation is evident in adprt2(-) cells exposed to methylmethanesulfonate (MMS), disruption of adprt1a and adprt2 in combination abolishes this response and further sensitises cells to this agent, indicating that in the absence of Adprt2, Adprt1a signals MMS-induced DNA lesions to promote resistance of cells to DNA damage. As a consequence of defective signalling of SSBs by Adprt2, Adprt1a is required to assemble NHEJ factors in chromatin, and disruption of the NHEJ pathway in combination with adprt2 increases sensitivity of cells to MMS. Taken together, these data indicate overlapping functions of different ARTs in signalling DNA damage, and illustrate a critical requirement for NHEJ in maintaining cell viability in the absence of an effective SSB response.

  5. TGF-β1 accelerates the DNA damage response in epithelial cells via Smad signaling.

    PubMed

    Lee, Jeeyong; Kim, Mi-Ra; Kim, Hyun-Ji; An, You Sun; Yi, Jae Youn

    2016-08-05

    The evidence suggests that transforming growth factor-beta (TGF-β) regulates the DNA-damage response (DDR) upon irradiation, and we previously reported that TGF-β1 induced DNA ligase IV (Lig4) expression and enhanced the nonhomologous end-joining repair pathway in irradiated cells. In the present study, we investigated the effects of TGF-β1 on the irradiation-induced DDRs of A431 and HaCaT cells. Cells were pretreated with or without TGF-β1 and irradiated. At 30 min post-irradiation, DDRs were detected by immunoblotting of phospho-ATM, phospho-Chk2, and the presence of histone foci (γH2AX). The levels of all three factors were similar right after irradiation regardless of TGF-β1 pretreatment. However, they soon thereafter exhibited downregulation in TGF-β1-pretreated cells, indicating the acceleration of the DDR. Treatment with a TGF-β type I receptor inhibitor (SB431542) or transfections with siRNAs against Smad2/3 or DNA ligase IV (Lig4) reversed this acceleration of the DDR. Furthermore, the frequency of irradiation-induced apoptosis was decreased by TGF-β1 pretreatment in vivo, but this effect was abrogated by SB431542. These results collectively suggest that TGF-β1 could enhance cell survival by accelerating the DDR via Smad signaling and Lig4 expression.

  6. IL-1α is a DNA damage sensor linking genotoxic stress signaling to sterile inflammation and innate immunity

    PubMed Central

    Idan, Cohen; Peleg, Rider; Elena, Voronov; Martin, Tomas; Cicerone, Tudor; Mareike, Wegner; Lydia, Brondani; Marina, Freudenberg; Gerhard, Mittler; Elisa, Ferrando-May; Dinarello, Charles A.; Ron, Apte N.; Robert, Schneider

    2015-01-01

    Environmental signals can be translated into chromatin changes, which alter gene expression. Here we report a novel concept that cells can signal chromatin damage from the nucleus back to the surrounding tissue through the cytokine interleukin-1alpha (IL-1α). Thus, in addition to its role as a danger signal, which occurs when the cytokine is passively released by cell necrosis, IL-1α could directly sense DNA damage and act as signal for genotoxic stress without loss of cell integrity. Here we demonstrate localization of the cytokine to DNA-damage sites and its subsequent secretion. Interestingly, its nucleo-cytosolic shuttling after DNA damage sensing is regulated by histone deacetylases (HDAC) and IL-1α acetylation. To demonstrate the physiological significance of this newly discovered mechanism, we used IL-1α knockout mice and show that IL-1α signaling after UV skin irradiation and DNA damage is important for triggering a sterile inflammatory cascade in vivo that contributes to efficient tissue repair and wound healing. PMID:26439902

  7. IL-1α is a DNA damage sensor linking genotoxic stress signaling to sterile inflammation and innate immunity.

    PubMed

    Cohen, Idan; Idan, Cohen; Rider, Peleg; Peleg, Rider; Vornov, Elena; Elena, Voronov; Tomas, Martin; Martin, Tomas; Tudor, Cicerone; Cicerone, Tudor; Wegner, Mareike; Mareike, Wegner; Brondani, Lydia; Lydia, Brondani; Freudenberg, Marina; Marina, Freudenberg; Mittler, Gerhard; Gerhard, Mittler; Ferrando-May, Elisa; Elisa, Ferrando-May; Dinarello, Charles A; Apte, Ron N; Ron, Apte N; Schneider, Robert; Robert, Schneider

    2015-10-06

    Environmental signals can be translated into chromatin changes, which alter gene expression. Here we report a novel concept that cells can signal chromatin damage from the nucleus back to the surrounding tissue through the cytokine interleukin-1alpha (IL-1α). Thus, in addition to its role as a danger signal, which occurs when the cytokine is passively released by cell necrosis, IL-1α could directly sense DNA damage and act as signal for genotoxic stress without loss of cell integrity. Here we demonstrate localization of the cytokine to DNA-damage sites and its subsequent secretion. Interestingly, its nucleo-cytosolic shuttling after DNA damage sensing is regulated by histone deacetylases (HDAC) and IL-1α acetylation. To demonstrate the physiological significance of this newly discovered mechanism, we used IL-1α knockout mice and show that IL-1α signaling after UV skin irradiation and DNA damage is important for triggering a sterile inflammatory cascade in vivo that contributes to efficient tissue repair and wound healing.

  8. Post-translational modifications of proliferating cell nuclear antigen: A key signal integrator for DNA damage response (Review).

    PubMed

    Zhu, Qiong; Chang, Yuxiao; Yang, Jin; Wei, Quanfang

    2014-05-01

    Previous studies have shown that the post-translational modifications of proliferating cell nuclear antigen (PCNA) may be crucial in influencing the cellular choice between different pathways, such as the cell cycle checkpoint, DNA repair or apoptosis pathways, in order to maintain genomic stability. DNA damage leads to replication stress and the subsequent induction of PCNA modification by small ubiquitin (Ub)-related modifiers and Ub, which has been identified to affect multiple biological processes of genomic DNA. Thus far, much has been learned concerning the behavior of modified PCNA as a key signal integrator in response to DNA damage. In humans and yeast, modified PCNA activates DNA damage bypass via an error-prone or error-free pathway to prevent the breakage of DNA replication forks, which may potentially induce double-strand breaks and subsequent chromosomal rearrangements. However, the exact mechanisms by which these pathways work and by what means the modified PCNA is involved in these processes remain elusive. Thus, the improved understanding of PCNA modification and its implications for DNA damage response may provide us with more insight into the mechanisms by which human cells regulate aberrant recombination events, and cancer initiation and development. The present review focuses on the post-translational modifications of PCNA and its important functions in mediating mammalian cellular response to different types of DNA damage.

  9. DNA damage signaling, impairment of cell cycle progression, and apoptosis triggered by 5-ethynyl-2'-deoxyuridine incorporated into DNA.

    PubMed

    Zhao, Hong; Halicka, H Dorota; Li, Jiangwei; Biela, Ewa; Berniak, Krzysztof; Dobrucki, Jurek; Darzynkiewicz, Zbigniew

    2013-11-01

    The "click chemistry" approach utilizing 5-ethynyl-2'-deoxyuridine (EdU) as a DNA precursor was recently introduced to assess DNA replication and adapted to flow- and imaging-cytometry. In the present study, we observed that EdU, once incorporated into DNA, induces DNA damage signaling (DDS) such as phosphorylation of ATM on Ser1981, of histone H2AX on Ser139, of p53 on Ser15, and of Chk2 on Thr68. It also perturbs progression of cells through the cell cycle and subsequently induces apoptosis. These effects were observed in non-small cell lung adenocarcinoma A549 as well as in B-cell human lymphoblastoid TK6 and WTK1 cells, differing in the status of p53 (wt versus mutated). After 1 h EdU pulse-labeling, the most affected was cells progression through the S phase subsequent to that at which they had incorporated EdU. This indicates that DNA replication using the template containing incorporated EdU is protracted and triggers DDS. Furthermore, progression of cells having DNA pulse-labeled with EdU led to accumulation of cells in G2 , likely by activating G2 checkpoint. Consistent with the latter was activation of p53 and Chk2. Although a correlation was observed in A549 cells between the degree of EdU incorporation and the extent of γH2AX induction, such correlation was weak in TK6 and WTK1 cells. The degree of perturbation of the cell cycle kinetics by the incorporated EdU was different in the wt p53 TK6 cells as compared to their sister WTK1 cell line having mutated p53. The data are thus consistent with the role of p53 in modulating activation of cell cycle checkpoints in response to impaired DNA replication. The confocal microscopy analysis of the 3D images of cells exposed to EdU for 1 h pulse and then grown for 24 or 48 h revealed an increased number of colocalized γH2AX and p53BP1 foci considered to be markers of DNA double-strand breaks and enlarged nuclei.

  10. The Caenorhabditis elegans Homolog of Gen1/Yen1 Resolvases Links DNA Damage Signaling to DNA Double-Strand Break Repair

    PubMed Central

    Bailly, Aymeric P.; Alpi, Arno; Lilley, David M. J.; Ahmed, Shawn; Gartner, Anton

    2010-01-01

    DNA double-strand breaks (DSBs) can be repaired by homologous recombination (HR), which can involve Holliday junction (HJ) intermediates that are ultimately resolved by nucleolytic enzymes. An N-terminal fragment of human GEN1 has recently been shown to act as a Holliday junction resolvase, but little is known about the role of GEN-1 in vivo. Holliday junction resolution signifies the completion of DNA repair, a step that may be coupled to signaling proteins that regulate cell cycle progression in response to DNA damage. Using forward genetic approaches, we identified a Caenorhabditis elegans dual function DNA double-strand break repair and DNA damage signaling protein orthologous to the human GEN1 Holliday junction resolving enzyme. GEN-1 has biochemical activities related to the human enzyme and facilitates repair of DNA double-strand breaks, but is not essential for DNA double-strand break repair during meiotic recombination. Mutational analysis reveals that the DNA damage-signaling function of GEN-1 is separable from its role in DNA repair. GEN-1 promotes germ cell cycle arrest and apoptosis via a pathway that acts in parallel to the canonical DNA damage response pathway mediated by RPA loading, CHK1 activation, and CEP-1/p53–mediated apoptosis induction. Furthermore, GEN-1 acts redundantly with the 9-1-1 complex to ensure genome stability. Our study suggests that GEN-1 might act as a dual function Holliday junction resolvase that may coordinate DNA damage signaling with a late step in DNA double-strand break repair. PMID:20661466

  11. DNA Damage Signaling Assessed in Individual Cells in Relation to the Cell Cycle Phase and Induction of Apoptosis

    PubMed Central

    Darzynkiewicz, Zbigniew; Zhao, Hong; Halicka, H. Dorota; Rybak, Paulina; Dobrucki, Jurek; Wlodkowic, Donald

    2012-01-01

    Reviewed are the phosphorylation events reporting activation of protein kinases and the key substrates critical for the DNA damage signaling (DDS). These DDS events are detected immunocytochemically using phospho-specific Abs; flow cytometry or image-assisted cytometry provide the means to quantitatively assess them on a cell by cell basis. The multiparameter analysis of the data is used to correlate these events with each other and relate to the cell cycle phase, DNA replication and induction of apoptosis. Expression of γH2AX as a possible marker of induction of DNA double strand breaks is the most widely studied event of DDS. Reviewed are applications of this multiparameter approach to investigate constitutive DDS reporting DNA damage by endogenous oxidants byproducts of oxidative phosphorylation. Also reviewed are its applications to detect and explore mechanisms of DDS induced by variety of exogenous agents targeting DNA such as exogenous oxidants, ionizing radiation, radiomimetic drugs, UV light, DNA topoisomerase I and II inhibitors, DNA crosslinking drugs and variety of environmental genotoxins. Analysis of DDS induced by these agents provides often a wealth of information about mechanism of induction and the type of DNA damage (lesion) and is reviewed in the context of cell cycle phase specificity, DNA replication, and induction of apoptosis or cell senescence. Critically assessed is interpretation of the data as to whether the observed DDS events report induction of a particular type of DNA lesion. PMID:23137030

  12. Ultrasound-induced DNA damage and signal transductions indicated by gammaH2AX

    NASA Astrophysics Data System (ADS)

    Furusawa, Yukihiro; Fujiwara, Yoshisada; Zhao, Qing-Li; Hassan, Mariame Ali; Ogawa, Ryohei; Tabuchi, Yoshiaki; Takasaki, Ichiro; Takahashi, Akihisa; Ohnishi, Takeo; Kondo, Takashi

    2011-09-01

    Ultrasound (US) has been shown to induce cancer cell death via different forms including apoptosis. Here, we report the potential of low-intensity pulsed US (LIPUS) to induce genomic DNA damage and subsequent DNA damage response. Using the ionizing radiation-induced DNA double-strand breaks (DSBs) as the positive control, we were able to observe the induction of DSBs (as neutral comet tails) and the subsequent formation of gammaH2AX-positive foci (by immunofluorescence detection) in human leukemia cells following exposure to LIPUS. The LIPUS-induced DNA damage arose most likely from the mechanical, but not sonochemical, effect of cavitation, based on our observation that the suppression of inertial cavitation abrogated the gammH2AX foci formation, whereas scavenging of free radical formation (e.g., hydroxyl radical) had no protective effect on it. Treatment with the specific kinase inhibitor of ATM or DNA-PKcs, which can phosphorylate H2AX Ser139, revealed that US-induced gammaH2AX was inhibited more effectively by the DNA-PK inhibitor than ATM kinase inhibitor. Notably, these inhibitor effects were opposite to those with radiation-induced gammH2AX. In conclusion, we report, for the first time that US can induce DNA damage and the DNA damage response as indicated by gammaH2AX was triggered by the cavitational mechanical effects. Thus, it is expected that the data shown here may provide a better understanding of the cellular responses to US.

  13. DNA damage and breast cancer

    PubMed Central

    Davis, Jennifer D; Lin, Shiaw-Yih

    2011-01-01

    Cancer is intimately related to the accumulation of DNA damage, and repair failures (including mutation prone repair and hyperactive repair systems). This article relates current clinical categories for breast cancer and their common DNA damage repair defects. Information is included on the potential for accumulation of DNA damage in the breast tissue of a woman during her lifetime and the role of DNA damage in breast cancer development. We then cover endogenous and exogenous sources of DNA damage, types of DNA damage repair and basic signal transduction pathways for three gene products involved in the DNA damage response system; namely BRCA1, BRIT1 and PARP-1. These genes are often considered tumor suppressors because of their roles in DNA damage response and some are under clinical investigation as likely sources for effective new drugs to treat breast cancers. Finally we discuss some of the problems of DNA damage repair systems in cancer and the conundrum of hyper-active repair systems which can introduce mutations and confer a survival advantage to certain types of cancer cells. PMID:21909479

  14. MAP kinase-signaling controls nuclear translocation of tripeptidyl-peptidase II in response to DNA damage and oxidative stress

    SciTech Connect

    Preta, Giulio; Klark, Rainier de; Chakraborti, Shankhamala; Glas, Rickard

    2010-08-27

    Research highlights: {yields} Nuclear translocation of TPPII occurs in response to different DNA damage inducers. {yields} Nuclear accumulation of TPPII is linked to ROS and anti-oxidant enzyme levels. {yields} MAPKs control nuclear accumulation of TPPII. {yields} Inhibited nuclear accumulation of TPPII decreases DNA damage-induced {gamma}-H2AX expression. -- Abstract: Reactive oxygen species (ROS) are a continuous hazard in eukaroytic cells by their ability to cause damage to biomolecules, in particular to DNA. Previous data indicated that the cytosolic serine peptidase tripeptidyl-peptidase II (TPPII) translocates into the nucleus of most tumor cell lines in response to {gamma}-irradiation and ROS production; an event that promoted p53 expression as well as caspase-activation. We here observed that nuclear translocation of TPPII was dependent on signaling by MAP kinases, including p38MAPK. Further, this was caused by several types of DNA-damaging drugs, a DNA cross-linker (cisplatinum), an inhibitor of topoisomerase II (etoposide), and to some extent also by nucleoside-analogues (5-fluorouracil, hydroxyurea). In the minority of tumor cell lines where TPPII was not translocated into the nucleus in response to DNA damage we observed reduced intracellular ROS levels, and the expression levels of redox defense systems were increased. Further, treatment with the ROS-inducer {gamma}-hexa-chloro-cyclohexane ({gamma}-HCH, lindane), an inhibitor of GAP junctions, restored nuclear translocation of TPPII in these cell lines upon {gamma}-irradiation. Moreover, blocking nuclear translocation of TPPII in etoposide-treated cells, by using a peptide-derived inhibitor (Z-Gly-Leu-Ala-OH), attenuated expression of {gamma}-H2AX in {gamma}-irradiated melanoma cells. Our results indicated a role for TPPII in MAPK-dependent DNA damage signaling.

  15. Dub3 controls DNA damage signalling by direct deubiquitination of H2AX.

    PubMed

    Delgado-Díaz, M Rocío; Martín, Yusé; Berg, Anna; Freire, Raimundo; Smits, Veronique A J

    2014-07-01

    A crucial event in the DNA damage response is the phosphorylation and subsequent ubiquitination of H2AX, required for the recruitment of proteins involved in DNA repair. Here we identify a novel regulator of this process, the ubiquitin hydrolase Dub3. Overexpression of wild type, but not catalytic inactive, Dub3 decreases the DNA damage-induced mono-ubiquitination of H2A(X) whereas downregulation of Dub3 has the opposite effect. Dub3 overexpression abrogates focus formation of 53BP1 and BRCA1 in response to genotoxic stress. However, focus formation of MDC1 and γH2AX, earlier events in this response, are unaffected by Dub3 overexpression. We show that Dub3 counteracts H2AX E3 ligases RNF8 and RNF168. Moreover, Dub3 and H2AX interact and Dub3 deubiquitinates H2AX in vitro. Importantly, overexpression of Dub3 delays H2AX dephosphorylation and recovery of MDC1 focus formation at later time points after DNA damage, whereas H2AX dephosphorylation at later time points is faster after Dub3 depletion. Altogether these results show that Dub3 regulates a correct DNA damage response by controlling H2AX ubiquitination.

  16. DNA damage response and inflammatory signaling limit the MLL-ENL-induced leukemogenesis in vivo.

    PubMed

    Takacova, Sylvia; Slany, Robert; Bartkova, Jirina; Stranecky, Viktor; Dolezel, Petr; Luzna, Pavla; Bartek, Jiri; Divoky, Vladimir

    2012-04-17

    Activation of the MLL-ENL-ERtm oncogene initiates aberrant proliferation of myeloid progenitors. Here, we show induction of a fail-safe mechanism mediated by the DNA damage response (DDR) machinery that results in activation of the ATR/ATM-Chk1/Chk2-p53/p21(CIP1) checkpoint and cellular senescence at early stages of cellular transformation caused by a regulatable MLL-ENL-ERtm in mice. Furthermore, we identified the transcription program underlying this intrinsic anticancer barrier, and DDR-induced inflammatory regulators that fine-tune the signaling toward senescence, thereby modulating the fate of MLL-ENL-immortalized cells in a tissue-environment-dependent manner. Our results indicate that DDR is a rate-limiting event for acquisition of stem cell-like properties in MLL-ENL-ERtm-mediated transformation, as experimental inhibition of the barrier accelerated the transition to immature cell states and acute leukemia development. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Squalene Inhibits ATM-Dependent Signaling in γIR-Induced DNA Damage Response through Induction of Wip1 Phosphatase.

    PubMed

    Tatewaki, Naoto; Konishi, Tetsuya; Nakajima, Yuki; Nishida, Miyako; Saito, Masafumi; Eitsuka, Takahiro; Sakamaki, Toshiyuki; Ikekawa, Nobuo; Nishida, Hiroshi

    2016-01-01

    Ataxia telangiectasia mutated (ATM) kinase plays a crucial role as a master controller in the cellular DNA damage response. Inhibition of ATM leads to inhibition of the checkpoint signaling pathway. Hence, addition of checkpoint inhibitors to anticancer therapies may be an effective targeting strategy. A recent study reported that Wip1, a protein phosphatase, de-phosphorylates serine 1981 of ATM during the DNA damage response. Squalene has been proposed to complement anticancer therapies such as chemotherapy and radiotherapy; however, there is little mechanistic information supporting this idea. Here, we report the inhibitory effect of squalene on ATM-dependent DNA damage signals. Squalene itself did not affect cell viability and the cell cycle of A549 cells, but it enhanced the cytotoxicity of gamma-irradiation (γIR). The in vitro kinase activity of ATM was not altered by squalene. However, squalene increased Wip1 expression in cells and suppressed ATM activation in γIR-treated cells. Consistent with the potential inhibition of ATM by squalene, IR-induced phosphorylation of ATM effectors such as p53 (Ser15) and Chk1 (Ser317) was inhibited by cell treatment with squalene. Thus, squalene inhibits the ATM-dependent signaling pathway following DNA damage through intracellular induction of Wip1 expression.

  18. Squalene Inhibits ATM-Dependent Signaling in γIR-Induced DNA Damage Response through Induction of Wip1 Phosphatase

    PubMed Central

    Tatewaki, Naoto; Konishi, Tetsuya; Nakajima, Yuki; Nishida, Miyako; Saito, Masafumi; Eitsuka, Takahiro; Sakamaki, Toshiyuki; Ikekawa, Nobuo; Nishida, Hiroshi

    2016-01-01

    Ataxia telangiectasia mutated (ATM) kinase plays a crucial role as a master controller in the cellular DNA damage response. Inhibition of ATM leads to inhibition of the checkpoint signaling pathway. Hence, addition of checkpoint inhibitors to anticancer therapies may be an effective targeting strategy. A recent study reported that Wip1, a protein phosphatase, de-phosphorylates serine 1981 of ATM during the DNA damage response. Squalene has been proposed to complement anticancer therapies such as chemotherapy and radiotherapy; however, there is little mechanistic information supporting this idea. Here, we report the inhibitory effect of squalene on ATM-dependent DNA damage signals. Squalene itself did not affect cell viability and the cell cycle of A549 cells, but it enhanced the cytotoxicity of gamma-irradiation (γIR). The in vitro kinase activity of ATM was not altered by squalene. However, squalene increased Wip1 expression in cells and suppressed ATM activation in γIR-treated cells. Consistent with the potential inhibition of ATM by squalene, IR-induced phosphorylation of ATM effectors such as p53 (Ser15) and Chk1 (Ser317) was inhibited by cell treatment with squalene. Thus, squalene inhibits the ATM-dependent signaling pathway following DNA damage through intracellular induction of Wip1 expression. PMID:26824362

  19. Persistent activation of DNA damage signaling in response to complex mixtures of PAHs in air particulate matter

    SciTech Connect

    Jarvis, Ian W.H.; Bergvall, Christoffer; Bottai, Matteo; Westerholm, Roger; Stenius, Ulla; Dreij, Kristian

    2013-02-01

    Complex mixtures of polycyclic aromatic hydrocarbons (PAHs) are present in air particulate matter (PM) and have been associated with many adverse human health effects including cancer and respiratory disease. However, due to their complexity, the risk of exposure to mixtures is difficult to estimate. In the present study the effects of binary mixtures of benzo[a]pyrene (BP) and dibenzo[a,l]pyrene (DBP) and complex mixtures of PAHs in urban air PM extracts on DNA damage signaling was investigated. Applying a statistical model to the data we observed a more than additive response for binary mixtures of BP and DBP on activation of DNA damage signaling. Persistent activation of checkpoint kinase 1 (Chk1) was observed at significantly lower BP equivalent concentrations in air PM extracts than BP alone. Activation of DNA damage signaling was also more persistent in air PM fractions containing PAHs with more than four aromatic rings suggesting larger PAHs contribute a greater risk to human health. Altogether our data suggests that human health risk assessment based on additivity such as toxicity equivalency factor scales may significantly underestimate the risk of exposure to complex mixtures of PAHs. The data confirms our previous findings with PAH-contaminated soil (Niziolek-Kierecka et al., 2012) and suggests a possible role for Chk1 Ser317 phosphorylation as a biological marker for future analyses of complex mixtures of PAHs. -- Highlights: ► Benzo[a]pyrene (BP), dibenzo[a,l]pyrene (DBP) and air PM PAH extracts were compared. ► Binary mixture of BP and DBP induced a more than additive DNA damage response. ► Air PM PAH extracts were more potent than toxicity equivalency factor estimates. ► Larger PAHs (> 4 rings) contribute more to the genotoxicity of PAHs in air PM. ► Chk1 is a sensitive marker for persistent activation of DNA damage signaling from PAH mixtures.

  20. Potential anti-aging agents suppress the level of constitutive mTOR- and DNA damage- signaling.

    PubMed

    Halicka, H Dorota; Zhao, Hong; Li, Jiangwei; Lee, Yong-Syu; Hsieh, Tze-Chen; Wu, Joseph M; Darzynkiewicz, Zbigniew

    2012-12-01

    Two different mechanisms are considered to be the primary cause of aging. Cumulative DNA damage caused by reactive oxygen species (ROS), the by-products of oxidative phosphorylation, is one of these mechanisms (ROS concept). Constitutive stimulation of mitogen- and nutrient-sensing mTOR/S6 signaling is the second mechanism (TOR concept). The flow- and laser scanning- cytometric methods were developed to measure the level of the constitutive DNA damage/ROS- as well as of mTOR/S6- signaling in individual cells. Specifically, persistent activation of ATM and expression of γH2AX in untreated cells appears to report constitutive DNA damage induced by endogenous ROS. The level of phosphorylation of Ser235/236-ribosomal protein (RP), of Ser2448-mTOR and of Ser65-4EBP1, informs on constitutive signaling along the mTOR/S6 pathway. Potential gero-suppressive agents rapamycin, metformin, 2-deoxyglucose, berberine, resveratrol, vitamin D3 and aspirin, all decreased the level of constitutive DNA damage signaling as seen by the reduced expression of γH2AX in proliferating A549, TK6, WI-38 cells and in mitogenically stimulated human lymphocytes. They all also decreased the level of intracellular ROS and mitochondrial trans-membrane potential ΔΨm, the marker of mitochondrial energizing as well as reduced phosphorylation of mTOR, RP-S6 and 4EBP1. The most effective was rapamycin. Although the primary target of each on these agents may be different the data are consistent with the downstream mechanism in which the decline in mTOR/S6K signaling and translation rate is coupled with a decrease in oxidative phosphorylation, (revealed by ΔΨm) that leads to reduction of ROS and oxidative DNA damage. The decreased rate of translation induced by these agents may slow down cells hypertrophy and alleviate other features of cell aging/senescence. Reduction of oxidative DNA damage may lower predisposition to neoplastic transformation which otherwise may result from errors in repair of DNA

  1. The Actin Depolymerizing Factor (ADF)/Cofilin Signaling Pathway and DNA Damage Responses in Cancer

    PubMed Central

    Chang, Chun-Yuan; Leu, Jyh-Der; Lee, Yi-Jang

    2015-01-01

    The actin depolymerizing factor (ADF)/cofilin protein family is essential for actin dynamics, cell division, chemotaxis and tumor metastasis. Cofilin-1 (CFL-1) is a primary non-muscle isoform of the ADF/cofilin protein family accelerating the actin filamental turnover in vitro and in vivo. In response to environmental stimulation, CFL-1 enters the nucleus to regulate the actin dynamics. Although the purpose of this cytoplasm-nucleus transition remains unclear, it is speculated that the interaction between CFL-1 and DNA may influence various biological responses, including DNA damage repair. In this review, we will discuss the possible involvement of CFL-1 in DNA damage responses (DDR) induced by ionizing radiation (IR), and the implications for cancer radiotherapy. PMID:25689427

  2. The actin depolymerizing factor (ADF)/cofilin signaling pathway and DNA damage responses in cancer.

    PubMed

    Chang, Chun-Yuan; Leu, Jyh-Der; Lee, Yi-Jang

    2015-02-13

    The actin depolymerizing factor (ADF)/cofilin protein family is essential for actin dynamics, cell division, chemotaxis and tumor metastasis. Cofilin-1 (CFL-1) is a primary non-muscle isoform of the ADF/cofilin protein family accelerating the actin filamental turnover in vitro and in vivo. In response to environmental stimulation, CFL-1 enters the nucleus to regulate the actin dynamics. Although the purpose of this cytoplasm-nucleus transition remains unclear, it is speculated that the interaction between CFL-1 and DNA may influence various biological responses, including DNA damage repair. In this review, we will discuss the possible involvement of CFL-1 in DNA damage responses (DDR) induced by ionizing radiation (IR), and the implications for cancer radiotherapy.

  3. The p66Shc protein controls redox signaling and oxidation-dependent DNA damage in human liver cells.

    PubMed

    Perrini, Sebastio; Tortosa, Federica; Natalicchio, Annalisa; Pacelli, Consiglia; Cignarelli, Angelo; Palmieri, Vincenzo O; Caccioppoli, Cristina; De Stefano, Francesca; Porro, Stefania; Leonardini, Anna; Ficarella, Romina; De Fazio, Michele; Cocco, Tiziana; Puglisi, Francesco; Laviola, Luigi; Palasciano, Giuseppe; Giorgino, Francesco

    2015-11-15

    The p66Shc protein mediates oxidative stress-related injury in multiple tissues. Steatohepatitis is characterized by enhanced oxidative stress-mediated cell damage. The role of p66Shc in redox signaling was investigated in human liver cells and alcoholic steatohepatitis. HepG2 cells with overexpression of wild-type or mutant p66Shc, with Ser36 replacement by Ala, were obtained through infection with recombinant adenoviruses. Reactive oxygen species and oxidation-dependent DNA damage were assessed by measuring dihydroethidium oxidation and 8-hydroxy-2'-deoxyguanosine accumulation into DNA, respectively. mRNA and protein levels of signaling intermediates were evaluated in HepG2 cells and liver biopsies from control and alcoholic steatohepatitis subjects. Exposure to H2O2 increased reactive oxygen species and phosphorylation of p66Shc on Ser36 in HepG2 cells. Overexpression of p66Shc promoted reactive oxygen species synthesis and oxidation-dependent DNA damage, which were further enhanced by H2O2. p66Shc activation also resulted in increased Erk-1/2, Akt, and FoxO3a phosphorylation. Blocking of Erk-1/2 activation inhibited p66Shc phosphorylation on Ser36. Increased p66Shc expression was associated with reduced mRNA levels of antioxidant molecules, such as NF-E2-related factor 2 and its target genes. In contrast, overexpression of the phosphorylation defective p66Shc Ala36 mutant inhibited p66Shc signaling, enhanced antioxidant genes, and suppressed reactive oxygen species and oxidation-dependent DNA damage. Increased p66Shc protein levels and Akt phosphorylation were observed in liver biopsies from alcoholic steatohepatitis compared with control subjects. In human alcoholic steatohepatitis, increased hepatocyte p66Shc protein levels may enhance susceptibility to DNA damage by oxidative stress by promoting reactive oxygen species synthesis and repressing antioxidant pathways. Copyright © 2015 the American Physiological Society.

  4. Autophagy Promotes the Repair of Radiation-Induced DNA Damage in Bone Marrow Hematopoietic Cells via Enhanced STAT3 Signaling.

    PubMed

    Xu, Fei; Li, Xin; Yan, Lili; Yuan, Na; Fang, Yixuan; Cao, Yan; Xu, Li; Zhang, Xiaoying; Xu, Lan; Ge, Chaorong; An, Ni; Jiang, Gaoyue; Xie, Jialing; Zhang, Han; Jiang, Jiayi; Li, Xiaotian; Yao, Lei; Zhang, Suping; Zhou, Daohong; Wang, Jianrong

    2017-03-01

    Autophagy protects hematopoietic cells from radiation damage in part by promoting DNA damage repair. However, the molecular mechanisms by which autophagy regulates DNA damage repair remain largely elusive. Here, we report that this radioprotective effect of autophagy depends on STAT3 signaling in murine bone marrow mononuclear cells (BM-MNCs). Specifically, we found that STAT3 activation and nuclear translocation in BM-MNCs were increased by activation of autophagy with an mTOR inhibitor and decreased by knockout of the autophagy gene Atg7. The autophagic regulation of STAT3 activation is likely mediated by induction of KAP1 degradation, because we showed that KAP1 directly interacted with STAT3 in the cytoplasm and knockdown of KAP1 increased the phosphorylation and nuclear translocation of STAT3. Subsequently, activated STAT3 transcriptionally upregulated the expression of BRCA1, which increased the ability of BM-MNCs to repair radiation-induced DNA damage. This novel finding that activation of autophagy can promote DNA damage repair in BM-MNCs via the ATG-KAP1-STAT3-BRCA1 pathway suggests that autophagy plays an important role in maintaining genomic integrity of BM-MNCs and its activation may confer protection of BM-MNCs against radiation-induced genotoxic stress.

  5. USP7 deubiquitinase promotes ubiquitin-dependent DNA damage signaling by stabilizing RNF168*

    PubMed Central

    Zhu, Qianzheng; Sharma, Nidhi; He, Jinshan; Wani, Gulzar; Wani, Altaf A

    2015-01-01

    During DNA damage response (DDR), histone ubiquitination by RNF168 is a critical event, which orchestrates the recruitment of downstream DDR factors, e.g. BRCA1 and 53BP1. Here, we report USP7 deubiquitinase regulates the stability of RNF168. We showed that USP7 disruption impairs H2A and ultraviolet radiation (UVR)-induced γH2AX monoubiquitination, and decreases the levels of pBmi1, Bmi1, RNF168 and BRCA1. The effect of USP7 disruption was recapitulated by siRNA-mediated USP7 depletion. The USP7 disruption also compromises the formation of UVR-induced foci (UVRIF) and ionizing radiation-induced foci (IRIF) of monoubiquitinated H2A (uH2A) and polyubiquitinated H2AX/A, and subsequently affects UVRIF and IRIF of BRCA1 as well as the IRIF of 53BP1. USP7 was shown to physically bind RNF168 in vitro and in vivo. Overexpression of wild-type USP7, but not its interaction-defective mutant, prevents UVR-induced RNF168 degradation. The USP7 mutant is unable to cleave Ub-conjugates of RNF168 in vivo. Importantly, ectopic expression of RNF168, or both RNF8 and RNF168 together in USP7-disrupted cells, significantly rescue the formation of UVRIF and IRIF of polyubiquitinated H2A and BRCA1. Taken together, these findings reveal an important role of USP7 in regulating ubiquitin-dependent signaling via stabilization of RNF168. PMID:25894431

  6. USP7 deubiquitinase promotes ubiquitin-dependent DNA damage signaling by stabilizing RNF168.

    PubMed

    Zhu, Qianzheng; Sharma, Nidhi; He, Jinshan; Wani, Gulzar; Wani, Altaf A

    2015-01-01

    During DNA damage response (DDR), histone ubiquitination by RNF168 is a critical event, which orchestrates the recruitment of downstream DDR factors, e.g. BRCA1 and 53BP1. Here, we report USP7 deubiquitinase regulates the stability of RNF168. We showed that USP7 disruption impairs H2A and ultraviolet radiation (UVR)-induced γH2AX monoubiquitination, and decreases the levels of pBmi1, Bmi1, RNF168 and BRCA1. The effect of USP7 disruption was recapitulated by siRNA-mediated USP7 depletion. The USP7 disruption also compromises the formation of UVR-induced foci (UVRIF) and ionizing radiation-induced foci (IRIF) of monoubiquitinated H2A (uH2A) and polyubiquitinated H2AX/A, and subsequently affects UVRIF and IRIF of BRCA1 as well as the IRIF of 53BP1. USP7 was shown to physically bind RNF168 in vitro and in vivo. Overexpression of wild-type USP7, but not its interaction-defective mutant, prevents UVR-induced RNF168 degradation. The USP7 mutant is unable to cleave Ub-conjugates of RNF168 in vivo. Importantly, ectopic expression of RNF168, or both RNF8 and RNF168 together in USP7-disrupted cells, significantly rescue the formation of UVRIF and IRIF of polyubiquitinated H2A and BRCA1. Taken together, these findings reveal an important role of USP7 in regulating ubiquitin-dependent signaling via stabilization of RNF168.

  7. Genotoxicity of radiofrequency signals. I. Investigation of DNA damage and micronuclei induction in cultured human blood cells.

    PubMed

    Tice, Raymond R; Hook, Graham G; Donner, Maria; McRee, Donald I; Guy, Arthur W

    2002-02-01

    As part of a comprehensive investigation of the potential genotoxicity of radiofrequency (RF) signals emitted by cellular telephones, in vitro studies evaluated the induction of DNA and chromosomal damage in human blood leukocytes and lymphocytes, respectively. The signals were voice modulated 837 MHz produced by an analog signal generator or by a time division multiple access (TDMA) cellular telephone, 837 MHz generated by a code division multiple access (CDMA) cellular telephone (not voice modulated), and voice modulated 1909.8 MHz generated by a global system of mobile communication (GSM)-type personal communication systems (PCS) cellular telephone. DNA damage (strand breaks/alkali labile sites) was assessed in leukocytes using the alkaline (pH>13) single cell gel electrophoresis (SCG) assay. Chromosomal damage was evaluated in lymphocytes mitogenically stimulated to divide postexposure using the cytochalasin B-binucleate cell micronucleus assay. Cells were exposed at 37+/-1 degrees C, for 3 or 24 h at average specific absorption rates (SARs) of 1.0-10.0 W/kg. Exposure for either 3 or 24 h did not induce a significant increase in DNA damage in leukocytes, nor did exposure for 3 h induce a significant increase in micronucleated cells among lymphocytes. However, exposure to each of the four RF signal technologies for 24 h at an average SAR of 5.0 or 10.0 W/kg resulted in a significant and reproducible increase in the frequency of micronucleated lymphocytes. The magnitude of the response (approximately four fold) was independent of the technology, the presence or absence of voice modulation, and the frequency (837 vs. 1909.8 MHz). This research demonstrates that, under extended exposure conditions, RF signals at an average SAR of at least 5.0 W/kg are capable of inducing chromosomal damage in human lymphocytes.

  8. Development of DNA Damage Response Signaling Biomarkers using Automated, Quantitative Image Analysis

    PubMed Central

    Nikolaishvilli-Feinberg, Nana; Cohen, Stephanie M.; Midkiff, Bentley; Zhou, Yingchun; Olorvida, Mark; Ibrahim, Joseph G.; Omolo, Bernard; Shields, Janiel M.; Thomas, Nancy E.; Groben, Pamela A.; Kaufmann, William K.

    2014-01-01

    The DNA damage response (DDR) coordinates DNA repair with cell cycle checkpoints to ameliorate or mitigate the pathological effects of DNA damage. Automated quantitative analysis (AQUA) and Tissue Studio are commercial technologies that use digitized immunofluorescence microscopy images to quantify antigen expression in defined tissue compartments. Because DDR is commonly activated in cancer and may reflect genetic instability within the lesion, a method to quantify DDR in cancer offers potential diagnostic and/or prognostic value. In this study, both AQUA and Tissue Studio algorithms were used to quantify the DDR in radiation-damaged skin fibroblasts, melanoma cell lines, moles, and primary and metastatic melanomas. Digital image analysis results for three markers of DDR (γH2AX, P-ATM, P-Chk2) correlated with immunoblot data for irradiated fibroblasts, whereas only γH2AX and P-Chk2 correlated with immunoblot data in melanoma cell lines. Melanoma cell lines displayed substantial variation in γH2AX and P-Chk2 expression, and P-Chk2 expression was significantly correlated with radioresistance. Moles, primary melanomas, and melanoma metastases in brain, lung and liver displayed substantial variation in γH2AX expression, similar to that observed in melanoma cell lines. Automated digital analysis of immunofluorescent images stained for DDR biomarkers may be useful for predicting tumor response to radiation and chemotherapy. PMID:24309508

  9. Downregulation of Wip1 phosphatase modulates the cellular threshold of DNA damage signaling in mitosis

    PubMed Central

    Macurek, Libor; Benada, Jan; Müllers, Erik; Halim, Vincentius A.; Krejčíková, Kateřina; Burdová, Kamila; Pecháčková, Sona; Hodný, Zdeněk; Lindqvist, Arne; Medema, René H.; Bartek, Jiri

    2013-01-01

    Cells are constantly challenged by DNA damage and protect their genome integrity by activation of an evolutionary conserved DNA damage response pathway (DDR). A central core of DDR is composed of a spatiotemporally ordered net of post-translational modifications, among which protein phosphorylation plays a major role. Activation of checkpoint kinases ATM/ATR and Chk1/2 leads to a temporal arrest in cell cycle progression (checkpoint) and allows time for DNA repair. Following DNA repair, cells re-enter the cell cycle by checkpoint recovery. Wip1 phosphatase (also called PPM1D) dephosphorylates multiple proteins involved in DDR and is essential for timely termination of the DDR. Here we have investigated how Wip1 is regulated in the context of the cell cycle. We found that Wip1 activity is downregulated by several mechanisms during mitosis. Wip1 protein abundance increases from G1 phase to G2 and declines in mitosis. Decreased abundance of Wip1 during mitosis is caused by proteasomal degradation. In addition, Wip1 is phosphorylated at multiple residues during mitosis, and this leads to inhibition of its enzymatic activity. Importantly, ectopic expression of Wip1 reduced γH2AX staining in mitotic cells and decreased the number of 53BP1 nuclear bodies in G1 cells. We propose that the combined decrease and inhibition of Wip1 in mitosis decreases the threshold necessary for DDR activation and enables cells to react adequately even to modest levels of DNA damage encountered during unperturbed mitotic progression. PMID:23255129

  10. Persistent activation of DNA damage signaling in response to complex mixtures of PAHs in air particulate matter.

    PubMed

    Jarvis, Ian W H; Bergvall, Christoffer; Bottai, Matteo; Westerholm, Roger; Stenius, Ulla; Dreij, Kristian

    2013-02-01

    Complex mixtures of polycyclic aromatic hydrocarbons (PAHs) are present in air particulate matter (PM) and have been associated with many adverse human health effects including cancer and respiratory disease. However, due to their complexity, the risk of exposure to mixtures is difficult to estimate. In the present study the effects of binary mixtures of benzo[a]pyrene (BP) and dibenzo[a,l]pyrene (DBP) and complex mixtures of PAHs in urban air PM extracts on DNA damage signaling was investigated. Applying a statistical model to the data we observed a more than additive response for binary mixtures of BP and DBP on activation of DNA damage signaling. Persistent activation of checkpoint kinase 1 (Chk1) was observed at significantly lower BP equivalent concentrations in air PM extracts than BP alone. Activation of DNA damage signaling was also more persistent in air PM fractions containing PAHs with more than four aromatic rings suggesting larger PAHs contribute a greater risk to human health. Altogether our data suggests that human health risk assessment based on additivity such as toxicity equivalency factor scales may significantly underestimate the risk of exposure to complex mixtures of PAHs. The data confirms our previous findings with PAH-contaminated soil (Niziolek-Kierecka et al., 2012) and suggests a possible role for Chk1 Ser317 phosphorylation as a biological marker for future analyses of complex mixtures of PAHs. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. DNA Damage-Induced HSPC Malfunction Depends on ROS Accumulation Downstream of IFN-1 Signaling and Bid Mobilization.

    PubMed

    Tasdogan, Alpaslan; Kumar, Suresh; Allies, Gabriele; Bausinger, Julia; Beckel, Franziska; Hofemeister, Helmut; Mulaw, Medhanie; Madan, Vikas; Scharfetter-Kochanek, Karin; Feuring-Buske, Michaela; Doehner, Konstanze; Speit, Günter; Stewart, A Francis; Fehling, Hans Joerg

    2016-12-01

    Mouse mutants with an impaired DNA damage response frequently exhibit a set of remarkably similar defects in the HSPC compartment that are of largely unknown molecular basis. Using Mixed-Lineage-Leukemia-5 (Mll5)-deficient mice as prototypical examples, we have identified a mechanistic pathway linking DNA damage and HSPC malfunction. We show that Mll5 deficiency results in accumulation of DNA damage and reactive oxygen species (ROS) in HSPCs. Reduction of ROS efficiently reverses hematopoietic defects, establishing ROS as a major cause of impaired HSPC function. The Ink4a/Arf locus also contributes to HSPC phenotypes, at least in part via promotion of ROS. Strikingly, toxic ROS levels in Mll5(-/-) mice are critically dependent on type 1 interferon (IFN-1) signaling, which triggers mitochondrial accumulation of full-length Bid. Genetic inactivation of Bid diminishes ROS levels and reverses HSPC defects in Mll5(-/-) mice. Overall, therefore, our findings highlight an unexpected IFN-1 > Bid > ROS pathway underlying DNA damage-associated HSPC malfunction.

  12. 3-Nitrobenzanthrone and 3-aminobenzanthrone induce DNA damage and cell signalling in Hepa1c1c7 cells.

    PubMed

    Landvik, N E; Arlt, V M; Nagy, E; Solhaug, A; Tekpli, X; Schmeiser, H H; Refsnes, M; Phillips, D H; Lagadic-Gossmann, D; Holme, J A

    2010-02-03

    3-Nitrobenzanthrone (3-NBA) is a mutagenic and carcinogenic environmental pollutant found in diesel exhaust and urban air pollution. In the present work we have characterised the effects of 3-NBA and its metabolite 3-aminobenzanthrone (3-ABA) on cell death and cytokine release in mouse hepatoma Hepa1c1c7 cells. These effects were related to induced DNA damage and changes in cell signalling pathways. 3-NBA resulted in cell death and caused most DNA damage as judged by the amount of DNA adducts ((32)P-postlabelling assay), single strand (ss)DNA breaks and oxidative DNA lesions (comet assay) detected. An increased phosphorylation of H2AX, chk1, chk2 and partly ATM was observed using flow cytometry and/or Western blotting. Both compounds increased phosphorylation of p53 and MAPKs (ERK, p38 and JNK). However, only 3-NBA caused an accumulation of p53 in the nucleus and a translocation of Bax to the mitochondria. The p53 inhibitor pifithrin-alpha inhibited 3-NBA-induced apoptosis, indicating that cell death was a result of the triggering of DNA signalling pathways. The highest phosphorylation of Akt and degradation of IkappaB-alpha (suggesting activation of NF-kappaB) were also seen after treatment with 3-NBA. In contrast 3-ABA increased IL-6 release, but caused little or no toxicity. Cytokine release was inhibited by PD98059 and curcumin, suggesting that ERK and NF-kappaB play a role in this process. In conclusion, 3-NBA seems to have a higher potency to induce DNA damage compatible with its cytotoxic effects, while 3-ABA seems to have a greater effect on the immune system. Copyright 2009 Elsevier B.V. All rights reserved.

  13. DNA Damage Signaling Is Required for Replication of Human Bocavirus 1 DNA in Dividing HEK293 Cells.

    PubMed

    Deng, Xuefeng; Xu, Peng; Zou, Wei; Shen, Weiran; Peng, Jianxin; Liu, Kaiyu; Engelhardt, John F; Yan, Ziying; Qiu, Jianming

    2017-01-01

    Human bocavirus 1 (HBoV1), an emerging human-pathogenic respiratory virus, is a member of the genus Bocaparvovirus of the Parvoviridae family. In human airway epithelium air-liquid interface (HAE-ALI) cultures, HBoV1 infection initiates a DNA damage response (DDR), activating all three phosphatidylinositol 3-kinase-related kinases (PI3KKs): ATM, ATR, and DNA-PKcs. In this context, activation of PI3KKs is a requirement for amplification of the HBoV1 genome (X. Deng, Z. Yan, F. Cheng, J. F. Engelhardt, and J. Qiu, PLoS Pathog, 12:e1005399, 2016, https://doi.org/10.1371/journal.ppat.1005399), and HBoV1 replicates only in terminally differentiated, nondividing cells. This report builds on the previous discovery that the replication of HBoV1 DNA can also occur in dividing HEK293 cells, demonstrating that such replication is likewise dependent on a DDR. Transfection of HEK293 cells with the duplex DNA genome of HBoV1 induces hallmarks of DDR, including phosphorylation of H2AX and RPA32, as well as activation of all three PI3KKs. The large viral nonstructural protein NS1 is sufficient to induce the DDR and the activation of the three PI3KKs. Pharmacological inhibition or knockdown of any one of the PI3KKs significantly decreases both the replication of HBoV1 DNA and the downstream production of progeny virions. The DDR induced by the HBoV1 NS1 protein does not cause obvious damage to cellular DNA or arrest of the cell cycle. Notably, key DNA replication factors and major DNA repair DNA polymerases (polymerase η [Pol η] and polymerase κ [Pol κ]) are recruited to the viral DNA replication centers and facilitate HBoV1 DNA replication. Our study provides the first evidence of the DDR-dependent parvovirus DNA replication that occurs in dividing cells and is independent of cell cycle arrest.

  14. NF-kappaB activation by camptothecin. A linkage between nuclear DNA damage and cytoplasmic signaling events.

    PubMed

    Huang, T T; Wuerzberger-Davis, S M; Seufzer, B J; Shumway, S D; Kurama, T; Boothman, D A; Miyamoto, S

    2000-03-31

    Activation of the transcription factor NF-kappaB by extracellular signals involves its release from the inhibitor protein IkappaBalpha in the cytoplasm and subsequent nuclear translocation. NF-kappaB can also be activated by the anticancer agent camptothecin (CPT), which inhibits DNA topoisomerase (Topo) I activity and causes DNA double-strand breaks during DNA replication to induce S phase-dependent cytotoxicity. Here we show that CPT activates NF-kappaB by a mechanism that is dependent on initial nuclear DNA damage followed by cytoplasmic signaling events. NF-kappaB activation by CPT is dramatically diminished in cytoplasts and in CEM/C2 cells expressing a mutant Topo I protein that fails to bind CPT. This response is intensified in S phase cell populations and is prevented by the DNA polymerase inhibitor aphidicolin. In addition, CPT activation of NF-kappaB involves degradation of cytoplasmic IkappaBalpha by the ubiquitin-proteasome pathway in a manner that depends on the IkappaB kinase complex. Finally, inhibition of NF-kappaB activation augments CPT-induced apoptosis. These findings elucidate the progression of signaling events that initiates in the nucleus with CPT-Topo I interaction and continues in the cytoplasm resulting in degradation of IkappaBalpha and nuclear translocation of NF-kappaB to attenuate the apoptotic response.

  15. DNA damage in mammalian neural stem cells leads to astrocytic differentiation mediated by BMP2 signaling through JAK-STAT.

    PubMed

    Schneider, Leonid; Pellegatta, Serena; Favaro, Rebecca; Pisati, Federica; Roncaglia, Paola; Testa, Giuseppe; Nicolis, Silvia K; Finocchiaro, Gaetano; d'Adda di Fagagna, Fabrizio

    2013-01-01

    The consequences of DNA damage generation in mammalian somatic stem cells, including neural stem cells (NSCs), are poorly understood despite their potential relevance for tissue homeostasis. Here, we show that, following ionizing radiation-induced DNA damage, NSCs enter irreversible proliferative arrest with features of cellular senescence. This is characterized by increased cytokine secretion, loss of stem cell markers, and astrocytic differentiation. We demonstrate that BMP2 is necessary to induce expression of the astrocyte marker GFAP in irradiated NSCs via a noncanonical signaling pathway engaging JAK-STAT. This is promoted by ATM and antagonized by p53. Using a SOX2-Cre reporter mouse model for cell-lineage tracing, we demonstrate irradiation-induced NSC differentiation in vivo. Furthermore, glioblastoma assays reveal that irradiation therapy affects the tumorigenic potential of cancer stem cells by ablating self-renewal and inducing astroglial differentiation.

  16. RNF168 promotes noncanonical K27 ubiquitination to signal DNA damage.

    PubMed

    Gatti, Marco; Pinato, Sabrina; Maiolica, Alessio; Rocchio, Francesca; Prato, Maria Giulia; Aebersold, Ruedi; Penengo, Lorenza

    2015-01-13

    Ubiquitination regulates numerous cellular processes by generating a versatile communication system based on eight structurally and functionally different chains linked through distinct residues. Except for K48 and K63, the biological relevance of different linkages is largely unclear. Here, we show that RNF168 ubiquitin ligase promotes noncanonical K27-linked ubiquitination both in vivo and in vitro. We demonstrate that residue K27 of ubiquitin (UbK27) is required for RNF168-dependent chromatin ubiquitination, by targeting histones H2A/H2A.X, and that it is the major ubiquitin-based modification marking chromatin upon DNA damage. Indeed, UbK27 is strictly required for the proper activation of the DNA damage response (DDR) and is directly recognized by crucial DDR mediators, namely 53BP1, Rap80, RNF168, and RNF169. Mutation of UbK27 has dramatic consequences on DDR activation, preventing the recruitment of 53BP1 and BRCA1 to DDR foci. Similarly to the DDR, atypical ubiquitin chains could play unanticipated roles in other crucial ubiquitin-mediated biological processes. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Activation of STING-Dependent Innate Immune Signaling By S-Phase-Specific DNA Damage in Breast Cancer.

    PubMed

    Parkes, Eileen E; Walker, Steven M; Taggart, Laura E; McCabe, Nuala; Knight, Laura A; Wilkinson, Richard; McCloskey, Karen D; Buckley, Niamh E; Savage, Kienan I; Salto-Tellez, Manuel; McQuaid, Stephen; Harte, Mary T; Mullan, Paul B; Harkin, D Paul; Kennedy, Richard D

    2017-01-01

    Previously we identified a DNA damage response-deficient (DDRD) molecular subtype within breast cancer. A 44-gene assay identifying this subtype was validated as predicting benefit from DNA-damaging chemotherapy. This subtype was defined by interferon signaling. In this study, we address the mechanism of this immune response and its possible clinical significance. We used immunohistochemistry (IHC) to characterize immune infiltration in 184 breast cancer samples, of which 65 were within the DDRD subtype. Isogenic cell lines, which represent DDRD-positive and -negative, were used to study the effects of chemokine release on peripheral blood mononuclear cell (PBMC) migration and the mechanism of immune signaling activation. Finally, we studied the association between the DDRD subtype and expression of the immune-checkpoint protein PD-L1 as detected by IHC. All statistical tests were two-sided. We found that DDRD breast tumors were associated with CD4+ and CD8+ lymphocytic infiltration (Fisher's exact test P < .001) and that DDRD cells expressed the chemokines CXCL10 and CCL5 3.5- to 11.9-fold more than DNA damage response-proficient cells (P < .01). Conditioned medium from DDRD cells statistically significantly attracted PBMCs when compared with medium from DNA damage response-proficient cells (P < .05), and this was dependent on CXCL10 and CCL5. DDRD cells demonstrated increased cytosolic DNA and constitutive activation of the viral response cGAS/STING/TBK1/IRF3 pathway. Importantly, this pathway was activated in a cell cycle-specific manner. Finally, we demonstrated that S-phase DNA damage activated expression of PD-L1 in a STING-dependent manner. We propose a novel mechanism of immune infiltration in DDRD tumors, independent of neoantigen production. Activation of this pathway and associated PD-L1 expression may explain the paradoxical lack of T-cell-mediated cytotoxicity observed in DDRD tumors. We provide a rationale for exploration of DDRD in the stratification

  18. Exposure to welding fumes activates DNA damage response and redox-sensitive transcription factor signalling in Sprague-Dawley rats.

    PubMed

    Krishnaraj, Jayaraman; Kowshik, Jaganathan; Sebastian, Robin; Raghavan, Sathees C; Nagini, Siddavaram

    2017-05-15

    Occupational exposure to welding fumes containing a complex mixture of genotoxic heavy metals, radiation, gases and nanoparticles poses a serious health hazard to welders. Since their categorization as possible carcinogens, welding fumes have gained increasing attention as high priority agents for risk assessment. The present study was undertaken to investigate the effects of welding fume inhalation on oxidative stress, DNA damage response (DDR), and nuclear factor erythroid 2-related factor-2 (Nrf2) and nuclear factor kappa B (NFκB) signalling in the lung tissues of male Sprague-Dawley rats. METHODS: Animals were divided into five groups. Group 1 animals served as control. Rats in groups 2-5 were exposed to 50mg/m(3) stainless steel (SS) welding fumes for 1h for 1day, 1 week, 2 weeks, and 4 weeks respectively. Reactive oxygen species (ROS) generation, 8-oxo-2'-deoxyguanosine (8-oxodG), xenobiotic-metabolizing enzymes (XMEs) and antioxidants were analysed. DNA damage sensors, DNA repair enzymes, inflammatory mediators, cell cycle progression, apoptosis and key players in Nrf2 and NFκB signalling were assessed by flow cytometry, quantitative real-time reverse transcriptase PCR, immunoblotting, immunohistochemistry and immunofluorescence. Rats exposed to welding fumes showed increased levels of chromium and ROS in lung tissues associated with accumulation of 8-oxodG and enhanced expression of XMEs and antioxidants. This was accompanied by upregulation of DNA damage sensors, cell cycle arrest in G1/S phase, overexpression of a multitude of DNA repair enzymes and caspase-mediated apoptosis. In addition, exposure to welding fumes induced activation of Nrf2 and NFκB signalling with enhanced expression of inflammatory mediators. The results of the present study unequivocally demonstrate that exposure of rats to SS welding fumes alters the expression of 37 genes involved in oxidative stress, detoxification, inflammation, DNA repair, cell cycle progression, and apoptosis

  19. Disruption of GRM1-mediated signalling using riluzole results in DNA damage in melanoma cells

    PubMed Central

    Wall, Brian A.; Wangari-Talbot, Janet; Shin, Seung Shick; Schiff, Devora; Sierra, Jairo; Yu, Lumeng J.; Khan, Atif; Haffty, Bruce; Goydos, James S; Chen, Suzie

    2014-01-01

    Summary Gain-of-function of the neuronal receptor, metabotropic glutamate receptor 1 (Grm1), was sufficient to induce melanocytic transformation in vitro and spontaneous melanoma development in vivo when ectopically expressed in melanocytes. The human form of this receptor, GRM1, has been shown to be ectopically expressed in a subset of human melanomas but not benign nevi or normal melanocytes, suggesting that misregulation of GRM1 is involved in the pathogenesis of certain human melanomas. Sustained stimulation of Grm1 by the ligand, glutamate, is required for the maintenance of transformed phenotypes in vitro and tumorigenicity in vivo. In this study we investigate the mechanism of an inhibitor of glutamate release, riluzole, on human melanoma cells that express metabotropic glutamate receptor 1 (GRM1). Various in vitro assays conducted show that inhibition of glutamate release in several human melanoma cell lines resulted in an increase of oxidative stress and DNA damage response markers. PMID:24330389

  20. Targeting of DNA Damage Signaling Pathway Induced Senescence and Reduced Migration of Cancer cells.

    PubMed

    Gao, Ran; Singh, Rumani; Kaul, Zeenia; Kaul, Sunil C; Wadhwa, Renu

    2015-06-01

    The heat shock 70 family protein, mortalin, has pancytoplasmic distribution pattern in normal and perinuclear in cancer human cells. Cancer cells when induced to senesce by either chemicals or stress showed shift in mortalin staining pattern from perinuclear to pancytoplasmic type. Using such shift in mortalin staining as a reporter, we screened human shRNA library and identified nine senescence-inducing siRNA candidates. An independent Comparative Genomic Hybridization analysis of 35 breast cancer cell lines revealed that five (NBS1, BRCA1, TIN2, MRE11A, and KPNA2) of the nine genes located on chromosome regions identified as the gain of locus in more than 80% cell lines. By gene-specific PCR, these five genes were found to be frequently amplified in cancer cell lines. Bioinformatics revealed that the identified targets were connected to MRN (MRE11-RAD50-NBS1) complex, the DNA damage-sensing complex. We demonstrate that the identified shRNAs triggered DNA damage response and induced the expression of tumor suppressor protein p16(INK4A) causing growth arrest of cancer cells. Furthermore, cells showed decreased migration, mediated by decrease in matrix metalloproteases. Taken together, we demonstrate that the MRN complex is a potential target of cancer cell proliferation and migration, and staining pattern of mortalin could serve as an assay to identify senescence-inducing/anticancer reagents. © The Author 2014. Published by Oxford University Press on behalf of the Gerontological Society of America. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Ataxia telangiectasia-mutated-Rad3-related DNA damage checkpoint signaling pathway triggered by hepatitis B virus infection

    PubMed Central

    Zhao, Fan; Hou, Ning-Bo; Yang, Xiao-Li; He, Xiang; Liu, Yu; Zhang, Yan-Hong; Wei, Cong-Wen; Song, Ting; Li, Li; Ma, Qing-Jun; Zhong, Hui

    2008-01-01

    AIM: To explore whether acute cellular DNA damage response is induced upon hepatitis B virus (HBV) infection and the effects of the HBV infection. METHODS: We incubated HL7702 hepatocytes with HBV-positive serum, mimicking a natural HBV infection process. We used immunoblotting to evaluate protein expression levels in HBV-infected cells or in non-infected cells; immunofluorescence to show ATR foci ands Chk1 phosphorylation foci formation; flow cytometry to analyze the cell cycle and apoptosis; ultraviolet (UV) radiation and ionizing radiation (IR)-treated cells to mimic DNA damage; and Trypan blue staining to count the viable cells. RESULTS: We found that HBV infection induced an increased steady state of ATR protein and increased phosphorylation of multiple downstream targets including Chk1, p53 and H2AX. In contrast to ATR and its target, the phosphorylated form of ATM at Ser-1981 and its downstream substrate Chk2 phosphorylation at Thr-68 did not visibly increase upon infection. However, the level of Mre11 and p21 were reduced beginning at 0.5 h after HBV-positive serum addition. Also, HBV infection led to transient cell cycle arrest in the S and the G2 phases without accompanying increased apoptosis. Research on cell survival changes upon radiation following HBV infection showed that survival of UV-treated host cells was greatly increased by HBV infection, owing to the reduced apoptosis. Meanwhile, survival of IR-treated host cells was reduced by HBV infection. CONCLUSION: HBV infection activates ATR DNA damage response to replication stress and abrogates the checkpoint signaling controlled by DNA damage response. PMID:18985806

  2. Integrated Stochastic Model of DNA Damage Repair by Non-homologous End Joining and p53/p21- Mediated Early Senescence Signalling

    PubMed Central

    Nelson, Glyn; Hall, Philip; Miwa, Satomi; Kirkwood, Thomas B. L.; Shanley, Daryl P.

    2015-01-01

    Unrepaired or inaccurately repaired DNA damage can lead to a range of cell fates, such as apoptosis, cellular senescence or cancer, depending on the efficiency and accuracy of DNA damage repair and on the downstream DNA damage signalling. DNA damage repair and signalling have been studied and modelled in detail separately, but it is not yet clear how they integrate with one another to control cell fate. In this study, we have created an integrated stochastic model of DNA damage repair by non-homologous end joining and of gamma irradiation-induced cellular senescence in human cells that are not apoptosis-prone. The integrated model successfully explains the changes that occur in the dynamics of DNA damage repair after irradiation. Simulations of p53/p21 dynamics after irradiation agree well with previously published experimental studies, further validating the model. Additionally, the model predicts, and we offer some experimental support, that low-dose fractionated irradiation of cells leads to temporal patterns in p53/p21 that lead to significant cellular senescence. The integrated model is valuable for studying the processes of DNA damage induced cell fate and predicting the effectiveness of DNA damage related medical interventions at the cellular level. PMID:26020242

  3. Integrated Stochastic Model of DNA Damage Repair by Non-homologous End Joining and p53/p21-Mediated Early Senescence Signalling.

    PubMed

    Dolan, David W P; Zupanic, Anze; Nelson, Glyn; Hall, Philip; Miwa, Satomi; Kirkwood, Thomas B L; Shanley, Daryl P

    2015-05-01

    Unrepaired or inaccurately repaired DNA damage can lead to a range of cell fates, such as apoptosis, cellular senescence or cancer, depending on the efficiency and accuracy of DNA damage repair and on the downstream DNA damage signalling. DNA damage repair and signalling have been studied and modelled in detail separately, but it is not yet clear how they integrate with one another to control cell fate. In this study, we have created an integrated stochastic model of DNA damage repair by non-homologous end joining and of gamma irradiation-induced cellular senescence in human cells that are not apoptosis-prone. The integrated model successfully explains the changes that occur in the dynamics of DNA damage repair after irradiation. Simulations of p53/p21 dynamics after irradiation agree well with previously published experimental studies, further validating the model. Additionally, the model predicts, and we offer some experimental support, that low-dose fractionated irradiation of cells leads to temporal patterns in p53/p21 that lead to significant cellular senescence. The integrated model is valuable for studying the processes of DNA damage induced cell fate and predicting the effectiveness of DNA damage related medical interventions at the cellular level.

  4. Endothelin-1 protects human melanocytes from UV-induced DNA damage by activating JNK and p38 signalling pathways.

    PubMed

    von Koschembahr, Anne M; Swope, Viki B; Starner, Renny J; Abdel-Malek, Zalfa A

    2015-04-01

    Endothelin-1 is a paracrine factor with mitogenic, melanogenic and survival effects on cultured human melanocytes. We report that endothelin-1 signalling reduced the generation and enhanced the repair of ultraviolet radiation (UV)-induced DNA photoproducts, and inhibited apoptosis of human melanocytes, without increasing cAMP levels, melanin content or proliferation. Treatment with endothelin-1 activated the MAP kinases JNK and p38, as evidenced by phosphorylation of their target, activating transcription factor-2 (ATF-2). Endothelin-1 also enhanced the phosphorylation of JNK, p38 and ATF-2 by UV. The effects of endothelin-1 were dependent on increasing intracellular calcium mobilization by endothelin B receptor signalling. Activation of both JNK and p38 was required for reducing DNA photoproducts, but only JNK partially contributed to the survival effect of endothelin-1. ATF-2 activation depended mainly on JNK, yet was not sufficient for the effect of endothelin-1 on UV-induced DNA damage, suggesting the requirement for other JNK and p38 targets for this effect. Our results underscore the significance of endothelin-1 and endothelin B receptor signalling in reducing the genotoxic effects of UV via activating JNK and p38, hence restoring genomic stability of melanocytes.

  5. DNA Damage Signaling Is Induced in the Absence of Epstein-Barr Virus (EBV) Lytic DNA Replication and in Response to Expression of ZEBRA.

    PubMed

    Wang'ondu, Ruth; Teal, Stuart; Park, Richard; Heston, Lee; Delecluse, Henri; Miller, George

    2015-01-01

    Epstein Barr virus (EBV), like other oncogenic viruses, modulates the activity of cellular DNA damage responses (DDR) during its life cycle. Our aim was to characterize the role of early lytic proteins and viral lytic DNA replication in activation of DNA damage signaling during the EBV lytic cycle. Our data challenge the prevalent hypothesis that activation of DDR pathways during the EBV lytic cycle occurs solely in response to large amounts of exogenous double stranded DNA products generated during lytic viral DNA replication. In immunofluorescence or immunoblot assays, DDR activation markers, specifically phosphorylated ATM (pATM), H2AX (γH2AX), or 53BP1 (p53BP1), were induced in the presence or absence of viral DNA amplification or replication compartments during the EBV lytic cycle. In assays with an ATM inhibitor and DNA damaging reagents in Burkitt lymphoma cell lines, γH2AX induction was necessary for optimal expression of early EBV genes, but not sufficient for lytic reactivation. Studies in lytically reactivated EBV-positive cells in which early EBV proteins, BGLF4, BGLF5, or BALF2, were not expressed showed that these proteins were not necessary for DDR activation during the EBV lytic cycle. Expression of ZEBRA, a viral protein that is necessary for EBV entry into the lytic phase, induced pATM foci and γH2AX independent of other EBV gene products. ZEBRA mutants deficient in DNA binding, Z(R183E) and Z(S186E), did not induce foci of pATM. ZEBRA co-localized with HP1β, a heterochromatin associated protein involved in DNA damage signaling. We propose a model of DDR activation during the EBV lytic cycle in which ZEBRA induces ATM kinase phosphorylation, in a DNA binding dependent manner, to modulate gene expression. ATM and H2AX phosphorylation induced prior to EBV replication may be critical for creating a microenvironment of viral and cellular gene expression that enables lytic cycle progression.

  6. In search of antiaging modalities: evaluation of mTOR- and ROS/DNA damage-signaling by cytometry.

    PubMed

    Darzynkiewicz, Zbigniew; Zhao, Hong; Halicka, H Dorota; Li, Jiangwei; Lee, Yong-Syu; Hsieh, Tze-Chen; Wu, Joseph M

    2014-05-01

    This review presents the evidence in support of the IGF-1/mTOR/S6K1 signaling as the primary factor contributing to aging and cellular senescence. Reviewed are also specific interactions between mTOR/S6K1 and ROS-DNA damage signaling pathways. Outlined are critical sites along these pathways, including autophagy, as targets for potential antiaging (gero-suppressive) and/or chemopreventive agents. Presented are applications of flow- and laser scanning- cytometry utilizing phospho-specific Abs, to monitor activation along these pathways in response to the reported antiaging drugs rapamycin, metformin, berberine, resveratrol, vitamin D3, 2-deoxyglucose, and acetylsalicylic acid. Specifically, effectiveness of these agents to attenuate the level of constitutive mTOR signaling was tested by cytometry and confirmed by Western blotting through measuring phosphorylation of the mTOR-downstream targets including ribosomal protein S6. The ratiometric analysis of phosphorylated to total protein along the mTOR pathway offers a useful parameter reporting the effects of gero-suppressive agents. In parallel, their ability to suppress the level of constitutive DNA damage signaling induced by endogenous ROS was measured. While the primary target of each of these agents may be different the data obtained on several human cancer cell lines, WI-38 fibroblasts and normal lymphocytes suggest common downstream mechanism in which the decline in mTOR/S6K1 signaling and translation rate is coupled with a reduction of oxidative phosphorylation and ROS that leads to decreased oxidative DNA damage. The combined assessment of constitutive γH2AX expression, mitochondrial activity (ROS, ΔΨm), and mTOR signaling provides an adequate gamut of cell responses to test effectiveness of gero-suppressive agents. Described is also an in vitro model of induction of cellular senescence by persistent replication stress, its quantitative analysis by laser scanning cytometry, and application to detect the

  7. Differential Processing of Low and High LET Radiation Induced DNA Damage: Investigation of Switch from ATM to ATR Signaling

    NASA Technical Reports Server (NTRS)

    Saha, Janapriya; Wang, Minli; Hada, Megumi; Cucinotta, Francis A.

    2011-01-01

    The members of the phosphatidylinositol kinase-like kinase family of proteins namely ataxia-telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR) are directly responsible for the maintenance of genomic integrity by mounting DDR through signaling and facilitating the recruitment of repair factors at the sites of DNA damage along with coordinating the deployment of cell cycle checkpoints to permit repair by phosphorylating Checkpoint kinase Chk1, Chk2 and p53. High LET radiation from GCR (Galactic Cosmic Rays) consisting mainly of protons and high energy and charged (HZE) particles from SPE (Solar Particle Event) pose a major health risk for astronauts on their space flight missions. The determination of these risks and the design of potential safeguards require sound knowledge of the biological consequences of lesion induction and the capability of the cells to counter them. We here strive to determine the coordination of ATM and ATR kinases at the break sites directly affecting checkpoint signaling and DNA repair and whether differential processing of breaks induced by low and high LET radiation leads to possible augmentation of swap of these damage sensors at the sites of DNA damage. Exposure of cells to IR triggers rapid autophosphorylation of serine-1981 that causes dimer dissociation and initiates monomer formation of ATM. ATM kinase activity depends on the disruption of the dimer, which allows access and phosphorylation of downstream ATM substrates like Chk2. Evidence suggests that ATM is activated by the alterations in higher-order chromatin structure although direct binding of ATM to DSB ends may be a crucial step in its activation. On the other hand, in case of ATR, RPA (replication protein A)-coated ssDNA (single-stranded DNA) generated as a result of stalled DNA replication or during processing of chromosomal lesions is crucial for the localization of ATR to sites of DNA damage in association with ATR-interacting protein (ATRIP). Although the

  8. Association of the circadian factor Period 2 to p53 influences p53's function in DNA-damage signaling

    PubMed Central

    Gotoh, Tetsuya; Vila-Caballer, Marian; Liu, Jingjing; Schiffhauer, Samuel; Finkielstein, Carla V.

    2015-01-01

    Circadian period proteins influence cell division and death by associating with checkpoint components, although their mode of regulation has not been firmly established. hPer2 forms a trimeric complex with hp53 and its negative regulator Mdm2. In unstressed cells, this association leads to increased hp53 stability by blocking Mdm2-dependent ubiquitination and transcription of hp53 target genes. Because of the relevance of hp53 in checkpoint signaling, we hypothesize that hPer2 association with hp53 acts as a regulatory module that influences hp53's downstream response to genotoxic stress. Unlike the trimeric complex, whose distribution was confined to the nuclear compartment, hPer2/hp53 was identified in both cytosol and nucleus. At the transcriptional level, a reporter containing the hp21WAF1/CIP1 promoter, a target of hp53, remained inactive in cells expressing a stable form of the hPer2/hp53 complex even when treated with γ-radiation. Finally, we established that hPer2 directly acts on the hp53 node, as checkpoint components upstream of hp53 remained active in response to DNA damage. Quantitative transcriptional analyses of hp53 target genes demonstrated that unbound hp53 was absolutely required for activation of the DNA-damage response. Our results provide evidence of the mode by which the circadian tumor suppressor hPer2 modulates hp53 signaling in response to genotoxic stress. PMID:25411341

  9. Disruption of GRM1-mediated signalling using riluzole results in DNA damage in melanoma cells.

    PubMed

    Wall, Brian A; Wangari-Talbot, Janet; Shin, Seung S; Schiff, Devora; Sierra, Jairo; Yu, Lumeng J; Khan, Atif; Haffty, Bruce; Goydos, James S; Chen, Suzie

    2014-03-01

    Gain of function of the neuronal receptor, metabotropic glutamate receptor 1 (Grm1), was sufficient to induce melanocytic transformation in vitro and spontaneous melanoma development in vivo when ectopically expressed in melanocytes. The human form of this receptor, GRM1, has been shown to be ectopically expressed in a subset of human melanomas but not benign nevi or normal melanocytes, suggesting that misregulation of GRM1 is involved in the pathogenesis of certain human melanomas. Sustained stimulation of Grm1 by the ligand, glutamate, is required for the maintenance of transformed phenotypes in vitro and tumorigenicity in vivo. In this study, we investigate the mechanism of an inhibitor of glutamate release, riluzole, on human melanoma cells that express metabotropic glutamate receptor 1 (GRM1). Various in vitro assays conducted show that inhibition of glutamate release in several human melanoma cell lines resulted in an increase of oxidative stress and DNA damage response markers. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Diabetes-Induced Oxidative DNA Damage Alters p53-p21CIP1/Waf1 Signaling in the Rat Testis

    PubMed Central

    Al-Bader, Maie M.

    2015-01-01

    Diabetes is increasingly becoming a major cause of large-scale morbidity and mortality. Diabetes-induced oxidative stress alters numerous intracellular signaling pathways. Although testicular dysfunction is a major concern in diabetic men, the mechanistic alterations in the testes that lead to hypogonadism are not yet clear. Oxidative mitochondrial DNA damage, as indicated by 7,8-dihydro-8-oxo-2′-deoxyguanosine, and phosphorylation of p53 at ser315 residue (p-p53ser315) increased in a stage- and cell-specific manner in the testes of rats that were diabetic for 1 month (DM1). Prolongation of diabetes for 3 months (DM3) led to an increase in nuclear oxidative DNA damage in conjunction with a decrease in the expression of p-p53ser315. The nuclei of pachytene and preleptotene spermatocytes, steps 1, 11, and 12 spermatids, secondary spermatocytes and the Sertoli cells, and the meiotic figures showed an increase in the expression of p-p53ser315. An increase in the expression of a downstream target of p53 and protein 21cyclin-dependent kinase interacting protein 1/wild-type p53-activated factor 1 (p21CIP1/Waf1) in both diabetic groups did not show any time-dependent effects but occurred concurrent with an upregulation of p-p53ser315 in DM1 and a downregulation of the protein in DM3. In diabetic groups, the expression of p21CIP1/Waf1 was mainly cytoplasmic but also perinuclear in pachytene spermatocytes and round spermatids. The cytoplasmic localization of p21CIP1/Waf1 may be suggestive of an antiapoptotic role for the protein. The perinuclear localization is probably related to the cell cycle arrest meant for DNA damage repair. Diabetes upregulates p21CIP1/Waf1 signaling in testicular germ cells in association with alteration in p-p53ser315 expression, probably to counteract DNA damage-induced cell death. PMID:24828139

  11. DNA damage response signaling in lung adenocarcinoma A549 cells following gamma and carbon beam irradiation.

    PubMed

    Ghosh, Somnath; Narang, Himanshi; Sarma, Asitikantha; Krishna, Malini

    2011-11-01

    Carbon beams (5.16MeV/u, LET=290keV/μm) are high linear energy transfer (LET) radiation characterized by higher relative biological effectiveness than low LET radiation. The aim of the current study was to determine the signaling differences between γ-rays and carbon ion-irradiation. A549 cells were irradiated with 1Gy carbon or γ-rays. Carbon beam was found to be three times more cytotoxic than γ-rays despite the fact that the numbers of γ-H2AX foci were same. Percentage of cells showing ATM/ATR foci were more with γ-rays however number of foci per cell were more in case of carbon irradiation. Large BRCA1 foci were found in all carbon irradiated cells unlike γ-rays irradiated cells and prosurvival ERK pathway was activated after γ-rays irradiation but not carbon. The noteworthy finding of this study is the early phase apoptosis induction by carbon ions. In the present study in A549 lung adenocarcinoma, authors conclude that despite activation of same repair molecules such as ATM and BRCA1, differences in low and high LET damage responses might be due to their distinct macromolecular complexes rather than their individual activation and the activation of cytoplasmic pathways such as ERK, whether it applies to all the cell lines need to be further explored. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Irreparable telomeric DNA damage and persistent DDR signalling as a shared causative mechanism of cellular senescence and ageing.

    PubMed

    Rossiello, Francesca; Herbig, Utz; Longhese, Maria Pia; Fumagalli, Marzia; d'Adda di Fagagna, Fabrizio

    2014-06-01

    The DNA damage response (DDR) orchestrates DNA repair and halts cell cycle. If damage is not resolved, cells can enter into an irreversible state of proliferative arrest called cellular senescence. Organismal ageing in mammals is associated with accumulation of markers of cellular senescence and DDR persistence at telomeres. Since the vast majority of the cells in mammals are non-proliferating, how do they age? Are telomeres involved? Also oncogene activation causes cellular senescence due to altered DNA replication and DDR activation in particular at the telomeres. Is there a common mechanism shared among apparently distinct types of cellular senescence? And what is the role of telomeric DNA damage?

  13. DNA damage response and transcription.

    PubMed

    Lagerwerf, Saskia; Vrouwe, Mischa G; Overmeer, René M; Fousteri, Maria I; Mullenders, Leon H F

    2011-07-15

    A network of DNA damage surveillance systems is triggered by sensing of DNA lesions and the initiation of a signal transduction cascade that activates genome-protection pathways including nucleotide excision repair (NER). NER operates through coordinated assembly of repair factors into pre- and post-incision complexes. Recent work identifies RPA as a key regulator of the transition from dual incision to repair-synthesis in UV-irradiated non-cycling cells, thereby averting the generation of unprocessed repair intermediates. These intermediates could lead to recombinogenic events and trigger a persistent ATR-dependent checkpoint signaling. It is now evident that DNA damage signaling is not limited to NER proficient cells. ATR-dependent checkpoint activation also occurs in UV-exposed non-cycling repair deficient cells coinciding with the formation of endonuclease APE1-mediated DNA strand breaks. In addition, the encounter of elongating RNA polymerase II (RNAPIIo) with DNA damage lesions and its persistent stalling provides a strong DNA damage signaling leading to cell cycle arrest, apoptosis and increased mutagenesis. The mechanism underlying the strong and strand specific induction of UV-induced mutations in NER deficient cells has been recently resolved by the finding that gene transcription itself increases UV-induced mutagenesis in a strand specific manner via increased deamination of cytosines. The cell removes the RNAPIIo-blocking DNA lesions by transcription-coupled repair (TC-NER) without displacement of the DNA damage stalled RNAPIIo. Deficiency in TC-NER associates with mutations in the CSA and CSB genes giving rise to the rare human disorder Cockayne syndrome (CS). CSB functions as a repair coupling factor to attract NER proteins, chromatin remodelers and the CSA-E3-ubiquitin ligase complex to the stalled RNAPIIo; CSA is dispensable for attraction of NER proteins, yet in cooperation with CSB is required to recruit XAB2, the nucleosomal binding protein HMGN1

  14. Regulation of DNA damage following termination of Hedgehog (HH) survival signaling at the level of the GLI genes in human colon cancer.

    PubMed

    Agyeman, Akwasi; Mazumdar, Tapati; Houghton, Janet A

    2012-08-01

    Transcriptional regulation of the Hedgehog (HH) signaling response is mediated by GLI genes (GLI1, GLI2) downstream of SMO, that are also activated by oncogenic signaling pathways. We have demonstrated the importance of targeting GLI downstream of SMO in the induction of cell death in human colon carcinoma cells. In HT29 cells inhibition of GLI1/GLI2 by the small molecule inhibitor GANT61 induced DNA double strand breaks (DSBs) and activation of ATM, MDC1 and NBS1; γH2AX and MDC1, NBS1 and MDC1 co-localized in nuclear foci. Early activation of ATM was decreased by 24 hr, when p-NBS1(Ser343), activated by ATM, was significantly reduced in cell extracts. Bound γH2AX was detected in isolated chromatin fractions or nuclei during DNA damage but not during DNA repair. MDC1 was tightly bound to chromatin at 32 hr as cells accumulated in early S-phase prior to becoming subG1, and during DNA repair. Limited binding of NBS1 was detected at all times during DNA damage but was strongly bound during DNA repair. Transient overexpression of NBS1 protected HT29 cells from GANT61-induced cell death, while knockdown of H2AX by H2AXshRNA delayed DNA damage signaling. Data demonstrate following GLI1/GLI2 inhibition: 1) induction of DNA damage in cells that are also resistant to SMO inhibitors, 2) dynamic interactions between γH2AX, MDC1 and NBS1 in single cell nuclei and in isolated chromatin fractions, 3) expression and chromatin binding properties of key mediator proteins that mark DNA damage or DNA repair, and 4) the importance of NBS1 in the DNA damage response mechanism.

  15. Sites of acetylation on newly synthesized histone H4 are required for chromatin assembly and DNA damage response signaling.

    PubMed

    Ge, Zhongqi; Nair, Devi; Guan, Xiaoyan; Rastogi, Neha; Freitas, Michael A; Parthun, Mark R

    2013-08-01

    The best-characterized acetylation of newly synthesized histone H4 is the diacetylation of the NH2-terminal tail on lysines 5 and 12. Despite its evolutionary conservation, this pattern of modification has not been shown to be essential for either viability or chromatin assembly in any model organism. We demonstrate that mutations in histone H4 lysines 5 and 12 in yeast confer hypersensitivity to replication stress and DNA-damaging agents when combined with mutations in histone H4 lysine 91, which has also been found to be a site of acetylation on soluble histone H4. In addition, these mutations confer a dramatic decrease in cell viability when combined with mutations in histone H3 lysine 56. We also show that mutation of the sites of acetylation on newly synthesized histone H4 results in defects in the reassembly of chromatin structure that accompanies the repair of HO-mediated double-strand breaks. This defect is not due to a decrease in the level of histone H3 lysine 56 acetylation. Intriguingly, mutations that alter the sites of newly synthesized histone H4 acetylation display a marked decrease in levels of phosphorylated H2A (γ-H2AX) in chromatin surrounding the double-strand break. These results indicate that the sites of acetylation on newly synthesized histones H3 and H4 can function in nonoverlapping ways that are required for chromatin assembly, viability, and DNA damage response signaling.

  16. The DNA Damage Response Signaling Cascade Regulates Proliferation of the Phytopathogenic Fungus Ustilago maydis in Planta[W

    PubMed Central

    de Sena-Tomás, Carmen; Fernández-Álvarez, Alfonso; Holloman, William K.; Pérez-Martín, José

    2011-01-01

    In the phytopathogenic fungus Ustilago maydis, the dikaryotic state dominates the period of growth occurring during the infectious phase. Dikaryons are cells in which two nuclei, one from each parent cell, share a single cytoplasm for a period of time without undergoing nuclear fusion. In fungal cells, maintenance of the dikaryotic state requires an intricate cell division process that often involves the formation of a structure known as the clamp connection as well as the sorting of one of the nuclei to this structure to ensure that each daughter dikaryon inherits a balance of each parental genome. Here, we describe an atypical role of the DNA damage checkpoint kinases Chk1 and Atr1 during pathogenic growth of U. maydis. We found that Chk1 and Atr1 collaborate to control cell cycle arrest during the induction of the virulence program in U. maydis and that Chk1 and Atr1 work together to control the dikaryon formation. These findings uncover a link between a widely conserved signaling cascade and the virulence program in a phytopathogen. We propose a model in which adjustment of the cell cycle by the Atr1-Chk1 axis controls fidelity in dikaryon formation. Therefore, Chk1 and Atr1 emerge as critical cell type regulators in addition to their roles in the DNA damage response. PMID:21478441

  17. Polychlorinated biphenyl quinone induces oxidative DNA damage and repair responses: The activations of NHEJ, BER and NER via ATM-p53 signaling axis

    SciTech Connect

    Dong, Hui; Shi, Qiong; Song, Xiufang; Fu, Juanli; Hu, Lihua; Xu, Demei; Su, Chuanyang; Xia, Xiaomin; Song, Erqun; Song, Yang

    2015-07-01

    Our previous studies demonstrated that polychlorinated biphenyl (PCB) quinone induced oxidative DNA damage in HepG2 cells. To promote genomic integrity, DNA damage response (DDR) coordinates cell-cycle transitions, DNA repair and apoptosis. PCB quinone-induced cell cycle arrest and apoptosis have been documented, however, whether PCB quinone insult induce DNA repair signaling is still unknown. In this study, we identified the activation of DDR and corresponding signaling events in HepG2 cells upon the exposure to a synthetic PCB quinone, PCB29-pQ. Our data illustrated that PCB29-pQ induces the phosphorylation of p53, which was mediated by ataxia telangiectasia mutated (ATM) protein kinase. The observed phosphorylated histone H2AX (γ-H2AX) foci and the elevation of 8-hydroxy-2′-deoxyguanosine (8-OHdG) indicated that DDR was stimulated by PCB29-pQ treatment. Additionally, we found PCB29-pQ activates non-homologous end joining (NHEJ), base excision repair (BER) and nucleotide excision repair (NER) signalings. However, these repair pathways are not error-free processes and aberrant repair of DNA damage may cause the potential risk of carcinogenesis and mutagenesis. - Highlights: • Polychlorinated biphenyl quinone induces oxidative DNA damage in HepG2 cells. • The elevation of γ-H2AX and 8-OHdG indicates the activation of DNA damage response. • ATM-p53 signaling acts as the DNA damage sensor and effector. • Polychlorinated biphenyl quinone activates NHEJ, BER and NER signalings.

  18. The DNA damage response and immune signaling alliance: Is it good or bad? Nature decides when and where.

    PubMed

    Pateras, Ioannis S; Havaki, Sophia; Nikitopoulou, Xenia; Vougas, Konstantinos; Townsend, Paul A; Panayiotidis, Michalis I; Georgakilas, Alexandros G; Gorgoulis, Vassilis G

    2015-10-01

    The characteristic feature of healthy living organisms is the preservation of homeostasis. Compelling evidence highlight that the DNA damage response and repair (DDR/R) and immune response (ImmR) signaling networks work together favoring the harmonized function of (multi)cellular organisms. DNA and RNA viruses activate the DDR/R machinery in the host cells both directly and indirectly. Activation of DDR/R in turn favors the immunogenicity of the incipient cell. Hence, stimulation of DDR/R by exogenous or endogenous insults triggers innate and adaptive ImmR. The immunogenic properties of ionizing radiation, a prototypic DDR/R inducer, serve as suitable examples of how DDR/R stimulation alerts host immunity. Thus, critical cellular danger signals stimulate defense at the systemic level and vice versa. Disruption of DDR/R-ImmR cross talk compromises (multi)cellular integrity, leading to cell-cycle-related and immune defects. The emerging DDR/R-ImmR concept opens up a new avenue of therapeutic options, recalling the Hippocrates quote "everything in excess is opposed by nature."

  19. Improving chromatin immunoprecipitation (ChIP) by suppression of method-induced DNA-damage signaling.

    PubMed

    Beneke, Sascha

    2015-01-01

    Genomic DNA is always associated with proteins that modulate the accessibility of the genetic information. This chromatin is the essential structure in which all nuclear activity from regulation to replication, transcription, and repair takes place. This dynamic structure can be most efficiently analyzed by using the method of chromatin immunoprecipitation (ChIP), where application of cell-permeable cross-linkers to living cells induces covalent bridging between proteins and adjacent DNA in the nucleus. After fragmentation of the DNA, the complexed proteins are isolated by binding to specific antibodies. The attached DNA is isolated and can be analyzed. This method has been improved multiple times and adjusted to different experimental needs. This chapter describes a further advance based on the observation that the current standard method itself induces alterations in the chromatin.

  20. DNA damage and mutation. Types of DNA damage

    NASA Astrophysics Data System (ADS)

    Chakarov, Stoyan; Petkova, Rumena; Russev, George Ch; Zhelev, Nikolai

    2014-02-01

    This review outlines the basic types of DNA damage caused by exogenous and endogenous factors, analyses the possible consequences of each type of damage and discusses the need for different types of DNA repair. The mechanisms by which a minor damaging event to DNA may eventually result in the introduction of heritable mutation/s are reviewed. The major features of the role of DNA damage in ageing and carcinogenesis are outlined and the role of iatrogenic DNA damage in human health and disease (with curative intent as well as a long-term adverse effect of genotoxic therapies) are discussed in detail.

  1. Ribonucleotide triggered DNA damage and RNA-DNA damage responses

    PubMed Central

    Wallace, Bret D; Williams, R Scott

    2014-01-01

    Research indicates that the transient contamination of DNA with ribonucleotides exceeds all other known types of DNA damage combined. The consequences of ribose incorporation into DNA, and the identity of protein factors operating in this RNA-DNA realm to protect genomic integrity from RNA-triggered events are emerging. Left unrepaired, the presence of ribonucleotides in genomic DNA impacts cellular proliferation and is associated with chromosome instability, gross chromosomal rearrangements, mutagenesis, and production of previously unrecognized forms of ribonucleotide-triggered DNA damage. Here, we highlight recent findings on the nature and structure of DNA damage arising from ribonucleotides in DNA, and the identification of cellular factors acting in an RNA-DNA damage response (RDDR) to counter RNA-triggered DNA damage. PMID:25692233

  2. Ribonucleotide triggered DNA damage and RNA-DNA damage responses.

    PubMed

    Wallace, Bret D; Williams, R Scott

    2014-01-01

    Research indicates that the transient contamination of DNA with ribonucleotides exceeds all other known types of DNA damage combined. The consequences of ribose incorporation into DNA, and the identity of protein factors operating in this RNA-DNA realm to protect genomic integrity from RNA-triggered events are emerging. Left unrepaired, the presence of ribonucleotides in genomic DNA impacts cellular proliferation and is associated with chromosome instability, gross chromosomal rearrangements, mutagenesis, and production of previously unrecognized forms of ribonucleotide-triggered DNA damage. Here, we highlight recent findings on the nature and structure of DNA damage arising from ribonucleotides in DNA, and the identification of cellular factors acting in an RNA-DNA damage response (RDDR) to counter RNA-triggered DNA damage.

  3. The DNA damage response during mitosis.

    PubMed

    Heijink, Anne Margriet; Krajewska, Małgorzata; van Vugt, Marcel A T M

    2013-10-01

    Cells are equipped with a cell-intrinsic signaling network called the DNA damage response (DDR). This signaling network recognizes DNA lesions and initiates various downstream pathways to coordinate a cell cycle arrest with the repair of the damaged DNA. Alternatively, the DDR can mediate clearance of affected cells that are beyond repair through apoptosis or senescence. The DDR can be activated in response to DNA damage throughout the cell cycle, although the extent of DDR signaling is different in each cell cycle phase. Especially in response to DNA double strand breaks, only a very marginal response was observed during mitosis. Early on it was recognized that cells which are irradiated during mitosis continued division without repairing broken chromosomes. Although these initial observations indicated diminished DNA repair and lack of an acute DNA damage-induced cell cycle arrest, insight into the mechanistic re-wiring of DDR signaling during mitosis was only recently provided. Different mechanisms appear to be at play to inactivate specific signaling axes of the DDR network in mitosis. Importantly, mitotic cells not simply inactivate the entire DDR, but appear to mark their DNA damage for repair after mitotic exit. Since the treatment of cancer frequently involves agents that induce DNA damage as well as agents that block mitotic progression, it is clinically relevant to obtain a better understanding of how cancer cells deal with DNA damage during interphase versus mitosis. In this review, the molecular details concerning DDR signaling during mitosis as well as the consequences of encountering DNA damage during mitosis for cellular fate are discussed.

  4. Femtosecond near-infrared laser microirradiation reveals a crucial role for PARP signaling on factor assemblies at DNA damage sites

    PubMed Central

    Saquilabon Cruz, Gladys Mae; Kong, Xiangduo; Silva, Bárbara Alcaraz; Khatibzadeh, Nima; Thai, Ryan; Berns, Michael W.; Yokomori, Kyoko

    2016-01-01

    Laser microirradiation is a powerful tool for real-time single-cell analysis of the DNA damage response (DDR). It is often found, however, that factor recruitment or modification profiles vary depending on the laser system employed. This is likely due to an incomplete understanding of how laser conditions/dosages affect the amounts and types of damage and the DDR. We compared different irradiation conditions using a femtosecond near-infrared laser and found distinct damage site recruitment thresholds for 53BP1 and TRF2 correlating with the dose-dependent increase of strand breaks and damage complexity. Low input-power microirradiation that induces relatively simple strand breaks led to robust recruitment of 53BP1 but not TRF2. In contrast, increased strand breaks with complex damage including crosslinking and base damage generated by high input-power microirradiation resulted in TRF2 recruitment to damage sites with no 53BP1 clustering. We found that poly(ADP-ribose) polymerase (PARP) activation distinguishes between the two damage states and that PARP activation is essential for rapid TRF2 recruitment while suppressing 53BP1 accumulation at damage sites. Thus, our results reveal that careful titration of laser irradiation conditions allows induction of varying amounts and complexities of DNA damage that are gauged by differential PARP activation regulating protein assembly at the damage site. PMID:26424850

  5. The Small GTPase RhoA Localizes to the Nucleus and Is Activated by Net1 and DNA Damage Signals

    PubMed Central

    Srougi, Melissa C.; Boulter, Etienne; Burridge, Keith; García-Mata, Rafael

    2011-01-01

    Background Rho GTPases control many cellular processes, including cell survival, gene expression and migration. Rho proteins reside mainly in the cytosol and are targeted to the plasma membrane (PM) upon specific activation by guanine nucleotide exchange factors (GEFs). Accordingly, most GEFs are also cytosolic or associated with the PM. However, Net1, a RhoA-specific GEF predominantly localizes to the cell nucleus at steady-state. Nuclear localization for Net1 has been seen as a mechanism for sequestering the GEF away from RhoA, effectively rendering the protein inactive. However, considering the prominence of nuclear Net1 and the fact that a biological stimulus that promotes Net1 translocation out the nucleus to the cytosol has yet to be discovered, we hypothesized that Net1 might have a previously unidentified function in the nucleus of cells. Principal Findings Using an affinity precipitation method to pulldown the active form of Rho GEFs from different cellular fractions, we show here that nuclear Net1 does in fact exist in an active form, contrary to previous expectations. We further demonstrate that a fraction of RhoA resides in the nucleus, and can also be found in a GTP-bound active form and that Net1 plays a role in the activation of nuclear RhoA. In addition, we show that ionizing radiation (IR) specifically promotes the activation of the nuclear pool of RhoA in a Net1-dependent manner, while the cytoplasmic activity remains unchanged. Surprisingly, irradiating isolated nuclei alone also increases nuclear RhoA activity via Net1, suggesting that all the signals required for IR-induced nuclear RhoA signaling are contained within the nucleus. Conclusions/Significance These results demonstrate the existence of a functional Net1/RhoA signaling pathway within the nucleus of the cell and implicate them in the DNA damage response. PMID:21390328

  6. Molecular docking and 3D-QSAR studies on inhibitors of DNA damage signaling enzyme human PARP-1.

    PubMed

    Fatima, Sabiha; Bathini, Raju; Sivan, Sree Kanth; Manga, Vijjulatha

    2012-08-01

    Poly (ADP-ribose) polymerase-1 (PARP-1) operates in a DNA damage signaling network. Molecular docking and three dimensional-quantitative structure activity relationship (3D-QSAR) studies were performed on human PARP-1 inhibitors. Docked conformation obtained for each molecule was used as such for 3D-QSAR analysis. Molecules were divided into a training set and a test set randomly in four different ways, partial least square analysis was performed to obtain QSAR models using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). Derived models showed good statistical reliability that is evident from their r², q²(loo) and r²(pred) values. To obtain a consensus for predictive ability from all the models, average regression coefficient r²(avg) was calculated. CoMFA and CoMSIA models showed a value of 0.930 and 0.936, respectively. Information obtained from the best 3D-QSAR model was applied for optimization of lead molecule and design of novel potential inhibitors.

  7. Exome capture reveals ZNF423 and CEP164 mutations, linking renal ciliopathies to DNA damage response signaling

    PubMed Central

    Chaki, Moumita; Airik, Rannar; Ghosh, Amiya K.; Giles, Rachel H.; Chen, Rui; Slaats, Gisela G.; Wang, Hui; Hurd, Toby W.; Zhou, Weibin; Cluckey, Andrew; Gee, Heon-Yung; Ramaswami, Gokul; Hong, Chen-Jei; Hamilton, Bruce A.; Červenka, Igor; Ganji, Ranjani Sri; Bryja, Vitezslav; Arts, Heleen H.; van Reeuwijk, Jeroen; Oud, Machteld M.; Letteboer, Stef J.F.; Roepman, Ronald; Husson, Hervé; Ibraghimov-Beskrovnaya, Oxana; Ysunaga, Takayuki; Walz, Gerd; Eley, Lorraine; Sayer, John A.; Schermer, Bernhard; Liebau, Max C.; Benzing, Thomas; Le Corre, Stephanie; Drummond, Iain; Joles, Jaap A.; Janssen, Sabine; Allen, Susan J.; Natarajan, Sivakumar; O Toole, John F.; Attanasio, Massimo; Saunier, Sophie; Antignac, Corinne; Koenekoop, Robert K.; Ren, Huanan; Lopez, Irma; Nayir, Ahmet; Stoetzel, Corinne; Dollfus, Helene; Massoudi, Rustin; Gleeson, Joseph G.; Andreoli, Sharon P.; Doherty, Dan G.; Lindstrad, Anna; Golzio, Christelle; Katsanis, Nicholas; Pape, Lars; Abboud, Emad B.; Al-Rajhi, Ali A.; Lewis, Richard A.; Lupski, James R.; Omran, Heymut; Lee, Eva; Wang, Shaohui; Sekiguchi, JoAnn M.; Saunders, Rudel; Johnson, Colin A.; Garner, Elizabeth; Vanselow, Katja; Andersen, Jens S.; Shlomai, Joseph; Nurnberg, Gudrun; Nurnberg, Peter; Levy, Shawn; Smogorzewska, Agata; Otto, Edgar A.; Hildebrandt, Friedhelm

    2012-01-01

    SUMMARY Nephronophthisis-related ciliopathies (NPHP-RC) are degenerative recessive diseases that affect kidney, retina and brain. Genetic defects in NPHP gene products that localize to cilia and centrosomes defined them as ‘ciliopathies’. However, disease mechanisms remain poorly understood. Here we identify by whole exome resequencing, mutations of MRE11, ZNF423, and CEP164 as causing NPHP-RC. All three genes function within the DNA damage response (DDR) pathway, hitherto not implicated in ciliopathies. We demonstrate that, upon induced DNA damage, the NPHP-RC proteins ZNF423, CEP164 and NPHP10 colocalize to nuclear foci positive for TIP60, known to activate ATM at sites of DNA damage. We show that knockdown of CEP164 or ZNF423 causes sensitivity to DNA damaging agents, and that cep164 knockdown in zebrafish results in dysregulated DDR and an NPHP-RC phenotype. We identify TTBK2, CCDC92, NPHP3 and DVL3 as novel CEP164 interaction partners. Our findings link degenerative diseases of kidney and retina, disorders of increasing prevalence, to mechanisms of DDR. PMID:22863007

  8. Oxidative DNA damage and augmentation of poly(ADP-ribose) polymerase/nuclear factor-kappa B signaling in patients with type 2 diabetes and microangiopathy.

    PubMed

    Adaikalakoteswari, Antonysunil; Rema, Mohan; Mohan, Viswanathan; Balasubramanyam, Muthuswamy

    2007-01-01

    Although oxidative stress and the subsequent DNA damage is one of the obligatory signals for poly(ADP-ribose) polymerase (PARP) activation and nuclear factor-kappa B (NFkappaB) alterations, these molecular aspects have not been collectively examined in epidemiological and clinical settings. Therefore, this study attempts to assess the oxidative DNA damage and its downstream effector signals in peripheral blood lymphocytes from Type 2 diabetes subjects without and with microangiopathy along with age-matched non-diabetic subjects. The basal DNA damage, lipid peroxidation and protein carbonyl content were significantly (p<0.05) higher in patients with and without microangiopathy compared to control subjects. Formamido Pyrimidine Glycosylase (FPG)-sensitive DNA strand breaks which represents reliable indicator of oxidative DNA damage were also significantly (p<0.001) higher in diabetic patients with (19.41+/-2.5) and without microangiopathy (16.53+/-2.0) compared to control subjects (1.38+/-0.85). Oxidative DNA damage was significantly correlated to poor glycemic control. PARP mRNA expression and PARP activity were significantly (p<0.05) increased in cells from diabetic patients with (0.31+/-0.03 densitometry units; 0.22+/-0.02PARPunits/mgprotein, respectively) and without (0.35+/-0.02; 0.42+/-0.05) microangiopathy compared to control (0.19+/-0.02; 0.11+/-0.02) subjects. Diabetic subjects with and without microangiopathy exhibited a significantly (p<0.05) higher (80%) NFkappaB binding activity compared to control subjects. In diabetic patients, FPG-sensitive DNA strand breaks correlated positively with PARP gene expression, PARP activity and NFkappaB binding activity. This study provides a comprehensive molecular evidence for increased oxidative stress and genomic instability in Type 2 diabetic subjects even prior to vascular pathology and hence reveals a window of opportunity for early therapeutic intervention.

  9. A novel non-coding RNA lncRNA-JADE connects DNA damage signalling to histone H4 acetylation.

    PubMed

    Wan, Guohui; Hu, Xiaoxiao; Liu, Yunhua; Han, Cecil; Sood, Anil K; Calin, George A; Zhang, Xinna; Lu, Xiongbin

    2013-10-30

    A prompt and efficient DNA damage response (DDR) eliminates the detrimental effects of DNA lesions in eukaryotic cells. Basic and preclinical studies suggest that the DDR is one of the primary anti-cancer barriers during tumorigenesis. The DDR involves a complex network of processes that detect and repair DNA damage, in which long non-coding RNAs (lncRNAs), a new class of regulatory RNAs, may play an important role. In the current study, we identified a novel lncRNA, lncRNA-JADE, that is induced after DNA damage in an ataxia-telangiectasia mutated (ATM)-dependent manner. LncRNA-JADE transcriptionally activates Jade1, a key component in the HBO1 (human acetylase binding to ORC1) histone acetylation complex. Consequently, lncRNA-JADE induces histone H4 acetylation in the DDR. Markedly higher levels of lncRNA-JADE were observed in human breast tumours in comparison with normal breast tissues. Knockdown of lncRNA-JADE significantly inhibited breast tumour growth in vivo. On the basis of these results, we propose that lncRNA-JADE is a key functional link that connects the DDR to histone H4 acetylation, and that dysregulation of lncRNA-JADE may contribute to breast tumorigenesis.

  10. A novel non-coding RNA lncRNA-JADE connects DNA damage signalling to histone H4 acetylation

    PubMed Central

    Wan, Guohui; Hu, Xiaoxiao; Liu, Yunhua; Han, Cecil; Sood, Anil K; Calin, George A; Zhang, Xinna; Lu, Xiongbin

    2013-01-01

    A prompt and efficient DNA damage response (DDR) eliminates the detrimental effects of DNA lesions in eukaryotic cells. Basic and preclinical studies suggest that the DDR is one of the primary anti-cancer barriers during tumorigenesis. The DDR involves a complex network of processes that detect and repair DNA damage, in which long non-coding RNAs (lncRNAs), a new class of regulatory RNAs, may play an important role. In the current study, we identified a novel lncRNA, lncRNA-JADE, that is induced after DNA damage in an ataxia-telangiectasia mutated (ATM)-dependent manner. LncRNA-JADE transcriptionally activates Jade1, a key component in the HBO1 (human acetylase binding to ORC1) histone acetylation complex. Consequently, lncRNA-JADE induces histone H4 acetylation in the DDR. Markedly higher levels of lncRNA-JADE were observed in human breast tumours in comparison with normal breast tissues. Knockdown of lncRNA-JADE significantly inhibited breast tumour growth in vivo. On the basis of these results, we propose that lncRNA-JADE is a key functional link that connects the DDR to histone H4 acetylation, and that dysregulation of lncRNA-JADE may contribute to breast tumorigenesis. PMID:24097061

  11. Profiling dose-dependent activation of p53-mediated signaling pathways by chemicals with distinct mechanisms of DNA damage.

    PubMed

    Clewell, Rebecca A; Sun, Bin; Adeleye, Yeyejide; Carmichael, Paul; Efremenko, Alina; McMullen, Patrick D; Pendse, Salil; Trask, O J; White, Andy; Andersen, Melvin E

    2014-11-01

    As part of a larger effort to provide proof-of-concept in vitro-only risk assessments, we have developed a suite of high-throughput assays for key readouts in the p53 DNA damage response toxicity pathway: double-strand break DNA damage (p-H2AX), permanent chromosomal damage (micronuclei), p53 activation, p53 transcriptional activity, and cell fate (cell cycle arrest, apoptosis, micronuclei). Dose-response studies were performed with these protein and cell fate assays, together with whole genome transcriptomics, for three prototype chemicals: etoposide, quercetin, and methyl methanesulfonate. Data were collected in a human cell line expressing wild-type p53 (HT1080) and results were confirmed in a second p53 competent cell line (HCT 116). At chemical concentrations causing similar increases in p53 protein expression, p53-mediated protein expression and cellular processes showed substantial chemical-specific differences. These chemical-specific differences in the p53 transcriptional response appear to be determined by augmentation of the p53 response by co-regulators. More importantly, dose-response data for each of the chemicals indicate that the p53 transcriptional response does not prevent micronuclei induction at low concentrations. In fact, the no observed effect levels and benchmark doses for micronuclei induction were less than or equal to those for p53-mediated gene transcription regardless of the test chemical, indicating that p53's post-translational responses may be more important than transcriptional activation in the response to low dose DNA damage. This effort demonstrates the process of defining key assays required for a pathway-based, in vitro-only risk assessment, using the p53-mediated DNA damage response pathway as a prototype.

  12. Triplex-induced DNA damage response.

    PubMed

    Rogers, Faye A; Tiwari, Meetu Kaushik

    2013-12-13

    Cellular DNA damage response is critical to preserving genomic integrity following exposure to genotoxic stress. A complex series of networks and signaling pathways become activated after DNA damage and trigger the appropriate cellular response, including cell cycle arrest, DNA repair, and apoptosis. The response elicited is dependent upon the type and extent of damage sustained, with the ultimate goal of preventing propagation of the damaged DNA. A major focus of our studies is to determine the cellular pathways involved in processing damage induced by altered helical structures, specifically triplexes. Our lab has demonstrated that the TFIIH factor XPD occupies a central role in triggering apoptosis in response to triplex-induced DNA strand breaks. We have shown that XPD co-localizes with γH2AX, and its presence is required for the phosphorylation of H2AX tyrosine142, which stimulates the signaling pathway to recruit pro-apoptotic factors to the damage site. Herein, we examine the cellular pathways activated in response to triplex formation and discuss our finding that suggests that XPD-dependent apoptosis plays a role in preserving genomic integrity in the presence of excessive structurally induced DNA damage.

  13. Phosphoproteomic Profiling Reveals Epstein-Barr Virus Protein Kinase Integration of DNA Damage Response and Mitotic Signaling

    PubMed Central

    Li, Renfeng; Pinto, Sneha M.; Shaw, Patrick G.; Huang, Tai-Chung; Wan, Jun; Qian, Jiang; Gowda, Harsha; Wu, Xinyan; Lv, Dong-Wen; Zhang, Kun; Manda, Srikanth S.; Pandey, Akhilesh; Hayward, S. Diane

    2015-01-01

    Epstein-Barr virus (EBV) is etiologically linked to infectious mononucleosis and several human cancers. EBV encodes a conserved protein kinase BGLF4 that plays a key role in the viral life cycle. To provide new insight into the host proteins regulated by BGLF4, we utilized stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomics to compare site-specific phosphorylation in BGLF4-expressing Akata B cells. Our analysis revealed BGLF4-mediated hyperphosphorylation of 3,046 unique sites corresponding to 1,328 proteins. Frequency analysis of these phosphosites revealed a proline-rich motif signature downstream of BGLF4, indicating a broader substrate recognition for BGLF4 than its cellular ortholog cyclin-dependent kinase 1 (CDK1). Further, motif analysis of the hyperphosphorylated sites revealed enrichment in ATM, ATR and Aurora kinase substrates while functional analyses revealed significant enrichment of pathways related to the DNA damage response (DDR), mitosis and cell cycle. Phosphorylation of proteins associated with the mitotic spindle assembly checkpoint (SAC) indicated checkpoint activation, an event that inactivates the anaphase promoting complex/cyclosome, APC/C. Furthermore, we demonstrated that BGLF4 binds to and directly phosphorylates the key cellular proteins PP1, MPS1 and CDC20 that lie upstream of SAC activation and APC/C inhibition. Consistent with APC/C inactivation, we found that BGLF4 stabilizes the expression of many known APC/C substrates. We also noted hyperphosphorylation of 22 proteins associated the nuclear pore complex, which may contribute to nuclear pore disassembly and SAC activation. A drug that inhibits mitotic checkpoint activation also suppressed the accumulation of extracellular EBV virus. Taken together, our data reveal that, in addition to the DDR, manipulation of mitotic kinase signaling and SAC activation are mechanisms associated with lytic EBV replication. All MS data have been deposited in

  14. Interplay with the Mre11-Rad50-Nbs1 complex and phosphorylation by GSK3β implicate human B-Myb in DNA-damage signaling

    PubMed Central

    Henrich, Sarah Marie; Usadel, Clemens; Werwein, Eugen; Burdova, Kamila; Janscak, Pavel; Ferrari, Stefano; Hess, Daniel; Klempnauer, Karl-Heinz

    2017-01-01

    B-Myb, a highly conserved member of the Myb transcription factor family, is expressed ubiquitously in proliferating cells and controls the cell cycle dependent transcription of G2/M-phase genes. Deregulation of B-Myb has been implicated in oncogenesis and loss of genomic stability. We have identified B-Myb as a novel interaction partner of the Mre11-Rad50-Nbs1 (MRN) complex, a key player in the repair of DNA double strand breaks. We show that B-Myb directly interacts with the Nbs1 subunit of the MRN complex and is recruited transiently to DNA-damage sites. In response to DNA-damage B-Myb is phosphorylated by protein kinase GSK3β and released from the MRN complex. A B-Myb mutant that cannot be phosphorylated by GSK3β disturbs the regulation of pro-mitotic B-Myb target genes and leads to inappropriate mitotic entry in response to DNA-damage. Overall, our work suggests a novel function of B-Myb in the cellular DNA-damage signalling. PMID:28128338

  15. DNA Damage, DNA Repair, Aging, and Neurodegeneration.

    PubMed

    Maynard, Scott; Fang, Evandro Fei; Scheibye-Knudsen, Morten; Croteau, Deborah L; Bohr, Vilhelm A

    2015-09-18

    Aging in mammals is accompanied by a progressive atrophy of tissues and organs, and stochastic damage accumulation to the macromolecules DNA, RNA, proteins, and lipids. The sequence of the human genome represents our genetic blueprint, and accumulating evidence suggests that loss of genomic maintenance may causally contribute to aging. Distinct evidence for a role of imperfect DNA repair in aging is that several premature aging syndromes have underlying genetic DNA repair defects. Accumulation of DNA damage may be particularly prevalent in the central nervous system owing to the low DNA repair capacity in postmitotic brain tissue. It is generally believed that the cumulative effects of the deleterious changes that occur in aging, mostly after the reproductive phase, contribute to species-specific rates of aging. In addition to nuclear DNA damage contributions to aging, there is also abundant evidence for a causative link between mitochondrial DNA damage and the major phenotypes associated with aging. Understanding the mechanistic basis for the association of DNA damage and DNA repair with aging and age-related diseases, such as neurodegeneration, would give insight into contravening age-related diseases and promoting a healthy life span.

  16. DNA Damage, DNA Repair, Aging, and Neurodegeneration

    PubMed Central

    Maynard, Scott; Fang, Evandro Fei; Scheibye-Knudsen, Morten; Croteau, Deborah L.; Bohr, Vilhelm A.

    2015-01-01

    Aging in mammals is accompanied by a progressive atrophy of tissues and organs, and stochastic damage accumulation to the macromolecules DNA, RNA, proteins, and lipids. The sequence of the human genome represents our genetic blueprint, and accumulating evidence suggests that loss of genomic maintenance may causally contribute to aging. Distinct evidence for a role of imperfect DNA repair in aging is that several premature aging syndromes have underlying genetic DNA repair defects. Accumulation of DNA damage may be particularly prevalent in the central nervous system owing to the low DNA repair capacity in postmitotic brain tissue. It is generally believed that the cumulative effects of the deleterious changes that occur in aging, mostly after the reproductive phase, contribute to species-specific rates of aging. In addition to nuclear DNA damage contributions to aging, there is also abundant evidence for a causative link between mitochondrial DNA damage and the major phenotypes associated with aging. Understanding the mechanistic basis for the association of DNA damage and DNA repair with aging and age-related diseases, such as neurodegeneration, would give insight into contravening age-related diseases and promoting a healthy life span. PMID:26385091

  17. Chromosome-wide histone deacetylation by sirtuins prevents hyperactivation of DNA damage-induced signaling upon replicative stress.

    PubMed

    Simoneau, Antoine; Ricard, Étienne; Weber, Sandra; Hammond-Martel, Ian; Wong, Lai Hong; Sellam, Adnane; Giaever, Guri; Nislow, Corey; Raymond, Martine; Wurtele, Hugo

    2016-04-07

    The Saccharomyces cerevisiae genome encodes five sirtuins (Sir2 and Hst1-4), which constitute a conserved family of NAD-dependent histone deacetylases. Cells lacking any individual sirtuin display mild growth and gene silencing defects. However, hst3Δ hst4Δ double mutants are exquisitely sensitive to genotoxins, and hst3Δ hst4Δ sir2Δmutants are inviable. Our published data also indicate that pharmacological inhibition of sirtuins prevents growth of several fungal pathogens, although the biological basis is unclear. Here, we present genome-wide fitness assays conducted with nicotinamide (NAM), a pan-sirtuin inhibitor. Our data indicate that NAM treatment causes yeast to solicit specific DNA damage response pathways for survival, and that NAM-induced growth defects are mainly attributable to inhibition of Hst3 and Hst4 and consequent elevation of histone H3 lysine 56 acetylation (H3K56ac). Our results further reveal that in the presence of constitutive H3K56ac, the Slx4 scaffolding protein and PP4 phosphatase complex play essential roles in preventing hyperactivation of the DNA damage-response kinase Rad53 in response to spontaneous DNA damage caused by reactive oxygen species. Overall, our data support the concept that chromosome-wide histone deacetylation by sirtuins is critical to mitigate growth defects caused by endogenous genotoxins.

  18. Radiocontrast media affect radiation-induced DNA damage repair in vitro and in vivo by affecting Akt signalling.

    PubMed

    Toulany, Mahmoud; Kehlbach, Rainer; Rodemann, H Peter; Mozdarani, Hossein

    2010-01-01

    The study was performed to investigate cytogenetic effects of ionic and non-ionic radiocontrast media (RCM) meglumine, iohexol alone and in combination with irradiation in mouse bone marrow cells in vivo and in vitro. Micronuclei assay was performed in bone marrow cells (BMC) of Balb/C mice intraperitoneally injected with RCM in the presence or absence of whole-body irradiation of 50 mGy. DNA repair (NHEJ) signalling and efficiency were analyzed by Western blot and gammaH2AX-foci assay in normal fibroblast HSF-7 and HUVEC cells. Both compounds reduced proliferation of BMC significantly. Concentrations of 0.5, 1 and 2 ml/kg meglumine or iohexol significantly enhanced the frequency of micronucleated polychromatic erythrocytes (MnPCEs) at all doses of meglumine (p<0.01) and 2 ml/kg of iohexol (p<0.05). Combined with irradiation meglumine at 0.5 and 1 ml/kg led to a higher frequency of MnPCEs than iohexol/IR (p<0.05). Meglumine induced DNA-double strand breaks (DNA-DSB) in non-irradiated HSF and strongly increased residual DNA-DSB within 10 min to 24h after irradiation with 200 or 400 mGy (p<0.001). Iohexol did not induce DNA-DSB but blocked repair of radiation-induced DNA-DSB significantly (p<0.05). Meglumine blocked IR-induced Akt phosphorylation, phosphorylation of DNA-PKcs (S2056, T2609) and ATM (S1981). Iohexol only blocked phosphorylation of Akt and DNA-PKcs at S2056. RCM result in clastogenic effects through interference intracellular signalling cascades involved in the regulation of non-homologous end-joining repair of DNA-DSB. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  19. DNA Damage Induced Neuronal Death

    DTIC Science & Technology

    1999-10-01

    Experiments are proposed to examine the molecular mechanism by which mustard chemical warfare agents induce neuronal cell death . DNA damage is the...proposed underlying mechanism of mustard-induced neuronal cell death . We propose a novel research strategy to test this hypothesis by using mice with...perturbed DNA repair to explore the relationship between mustard-induced DNA damage and neuronal cell death . Initial in vitro studies (Years 1, 2 & 3

  20. Cytogenetic responses to ionizing radiation exposure of human fibroblasts with knocked-down expressions of various DNA damage signaling genes

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; Rohde, Larry; Wu, Honglu

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have demonstrated that genes with up-regulated expression induced by IR may play important roles in DNA damage sensing, cell cycle checkpoint and chromosomal repair, the relationship between the regulation of gene expression by IR and its impact on cytogenetic responses to ionizing radiation has not been systematically studied. Here, the expression of 25 genes selected based on their transcriptional changes in response to IR or from their known DNA repair roles were individually knocked down by siRNA transfection in human fibroblast cells. Chromosome aberrations (CA) and micronuclei (MN) formation were measured as the cytogenetic endpoints. Our results showed that the yields of MN and/or CA formation were significantly increased by suppressed expression of some of the selected genes in DSB and other DNA repair pathways. Knocked-down expression of other genes showed significant impact on cell cycle progression, possibly because of severe impairment of DNA damage repair. Of these 11 genes that affected the cytogenetic response, 9 were up-regulated in the cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulating the biological consequences after IR. Failure to express these IR-responsive genes, such as by gene mutation, could seriously change the outcome of the post IR scenario and lead to carcinogenesis.

  1. Human Longevity and Variation in GH/IGF-1/Insulin Signaling, DNA Damage Signaling and Repair and Pro/antioxidant Pathway Genes: Cross Sectional and Longitudinal Studies

    PubMed Central

    Soerensen, Mette; Dato, Serena; Tan, Qihua; Thinggaard, Mikael; Kleindorp, Rabea; Beekman, Marian; Jacobsen, Rune; Suchiman, H. Eka D.; de Craen, Anton J.M.; Westendorp, Rudi G.J.; Schreiber, Stefan; Stevnsner, Tinna; Bohr, Vilhelm A.; Slagboom, P. Eline; Nebel, Almut; Vaupel, James W.; Christensen, Kaare; McGue, Matt; Christiansen, Lene

    2012-01-01

    Here we explore association with human longevity of common genetic variation in three major candidate pathways: GH/IGF-1/insulin signaling, DNA damage signaling and repair and pro/antioxidants by investigating 1273 tagging SNPs in 148 genes composing these pathways. In a case-control study of 1089 oldest-old (age 92–93) and 736 middle-aged Danes we found 1 pro/antioxidant SNP (rs1002149 (GSR)), 5 GH/IGF-1/INS SNPs (rs1207362 (KL), rs2267723 (GHRHR), rs3842755 (INS), rs572169 (GHSR), rs9456497 (IGF2R)) and 5 DNA repair SNPs (rs11571461 (RAD52), rs13251813 (WRN), rs1805329 (RAD23B), rs2953983 (POLB), rs3211994 (NTLH1)) to be associated with longevity after correction for multiple testing. In a longitudinal study with 11 years of follow-up on survival in the oldest-old Danes we found 2 pro/antioxidant SNPs (rs10047589 (TNXRD1), rs207444 (XDH)), 1 GH/IGF-1/INS SNP (rs26802 (GHRL)) and 3 DNA repair SNPs (rs13320360 (MLH1), rs2509049 (H2AFX) and rs705649 (XRCC5)) to be associated with mortality in late life after correction for multiple testing. When examining the 11 SNPs from the case-control study in the longitudinal data, rs3842755 (INS), rs13251813 (WRN) and rs3211994 (NTHL1) demonstrated the same directions of effect (p<0.05), while rs9456497 (IGF2R) and rs1157146 (RAD52) showed non-significant tendencies, indicative of effects also in late life survival. In addition, rs207444 (XDH) presented the same direction of effect when inspecting the 6 SNPs from the longitudinal study in the case-control data, hence, suggesting an effect also in survival from middle age to old age. No formal replications were observed when investigating the 11 SNPs from the case-control study in 1613 oldest-old (age 95–110) and 1104 middle-aged Germans, although rs11571461 (RAD52) did show a supportive non-significant tendency (OR = 1.162, 95% CI = 0.927–1.457). The same was true for rs10047589 (TNXRD1) (HR = 0.758, 95%CI = 0.543–1.058) when examining the 6 SNPs from the longitudinal

  2. DNA damage and innate immunity: links and trade-offs.

    PubMed

    Chatzinikolaou, Georgia; Karakasilioti, Ismene; Garinis, George A

    2014-09-01

    To counteract DNA damage, cells employ genome maintenance pathways that are directed inward, relentlessly to scan and repair the genome. Adaptive and innate immune mechanisms are often directed outward, protecting self against pathogens. Recent work has revealed direct links between innate immune signaling and the DNA damage response (DDR). Here we review current understanding of the mechanism by which cells sense damaged and foreign DNA. We examine the functional role of DNA damage signaling in immune activation and discuss the relevance of these processes to DNA damage-driven chronic inflammation in disease and in aging. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Maternal diabetes triggers DNA damage and DNA damage response in neurulation stage embryos through oxidative stress

    PubMed Central

    Dong, Daoyin; Yu, Jingwen; Wu, Yanqing; Fu, Noah; Villela, Natalia Arias; Yang, Peixin

    2015-01-01

    DNA damage and DNA damage response (DDR) in neurulation stage embryos under maternal diabetes conditions are not well understood. The purpose of this study was to investigate whether maternal diabetes and high glucose in vitro induce DNA damage and DDR in the developing embryo through oxidative stress. In vivo experiments were conducted by mating superoxide dismutase 1 (SOD1) transgenic male mice with wild-type (WT) female mice with or without diabetes. Embryonic day 8.75 (E8.75) embryos were tested for the DNA damage markers, phosphorylated histone H2A.X (p-H2A.X) and DDR signaling intermediates, including phosphorylated checkpoint 1 (p-Chk1), phosphorylated checkpoint 2 (p-Chk2), and p53. Levels of the same DNA damage markers and DDR signaling intermediates were also determined in the mouse C17.2 neural stem cell line. Maternal diabetes and high glucose in vitro significantly increased the levels of p-H2A.X. Levels of p-Chk1, p-Chk2, and p53, were elevated under both maternal diabetic and high glucose conditions. SOD1 overexpression blocked maternal diabetes-induced DNA damage and DDR in vivo. Tempol, a SOD1 mimetic, diminished high glucose-induced DNA damage and DDR in vitro. In conclusion, maternal diabetes and high glucose in vitro induce DNA damage and activates DDR through oxidative stress, which may contribute to the pathogenesis of diabetes-associated embryopathy. PMID:26427872

  4. Eukaryotic DNA damage responses: Homologous recombination factors and ubiquitin modification.

    PubMed

    Lee, Nam Soo; Kim, Soomi; Jung, Yong Woo; Kim, Hongtae

    2017-05-06

    To prevent genomic instability disorders, cells have developed a DNA damage response. The response involves various proteins that sense damaged DNA, transduce damage signals, and effect DNA repair. In addition, ubiquitin modifications modulate the signaling pathway depending on cellular context. Among various types of DNA damage, double-stranded breaks are highly toxic to genomic integrity. Homologous recombination (HR) repair is an essential mechanism that fixes DNA damage because of its high level of accuracy. Although factors in the repair pathway are well established, pinpointing the exact mechanisms of repair and devising therapeutic applications requires more studies. Moreover, essential functions of ubiquitin modification in the DNA damage signaling pathway have emerged. In this review, to explore the eukaryotic DNA damage response, we will mention the functions of main factors in the HR repair pathway and ubiquitin modification. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Optical detection of DNA damage

    NASA Astrophysics Data System (ADS)

    Rogers, Kim R.; Apostol, A.; Cembrano, J.

    1999-02-01

    A rapid and sensitive fluorescence assay for oxidative damage to calf thymus DNA is reported. A decrease in the transition temperature for strand separation resulted from exposure of the DNA to the reactive decomposition products of 3- morpholinosydnonimine (SIN-1) (i.e., nitric oxide, superoxide, peroxynitrite, hydrogen peroxide, and hydroxyl radicals). A decrease in melting temperature of 12 degrees Celsius was indicative of oxidative damage including single strand chain breaks. Double stranded (ds) and single stranded (ss) forms of DNA were determined using the indicator dyes ethidium bromide and PicoGreen. The change in DNA 'melting' curves was dependant on the concentration of SIN-1 and was most pronounced at 75 degrees Celsius. This chemically induced damage was significantly inhibited by sodium citrate, tris(hydroxymethyl)aminomethane (Tris), and diethylenetriaminepentaacetic acid (DTPA), but was unaffected by superoxide dismutase (SOD), catalase, ethylenediamine tetraacietic acid (EDTA), or deferoxamine. Lowest observable effect level for SIN-1-induced damage was 200 (mu) M.

  6. Deciphering the DNA Damage Response.

    PubMed

    Haber, James E

    2015-09-10

    This year's Albert Lasker Basic Medical Research Award honors Evelyn Witkin and Stephen J. Elledge, two pioneers in elucidating the DNA damage response, whose contributions span more than 40 years. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Replicating damaged DNA in eukaryotes.

    PubMed

    Chatterjee, Nimrat; Siede, Wolfram

    2013-12-01

    DNA damage is one of many possible perturbations that challenge the mechanisms that preserve genetic stability during the copying of the eukaryotic genome in S phase. This short review provides, in the first part, a general introduction to the topic and an overview of checkpoint responses. In the second part, the mechanisms of error-free tolerance in response to fork-arresting DNA damage will be discussed in some detail.

  8. DNA Damage Response and Immune Defense: Links and Mechanisms.

    PubMed

    Nakad, Rania; Schumacher, Björn

    2016-01-01

    DNA damage plays a causal role in numerous human pathologies including cancer, premature aging, and chronic inflammatory conditions. In response to genotoxic insults, the DNA damage response (DDR) orchestrates DNA damage checkpoint activation and facilitates the removal of DNA lesions. The DDR can also arouse the immune system by for example inducing the expression of antimicrobial peptides as well as ligands for receptors found on immune cells. The activation of immune signaling is triggered by different components of the DDR including DNA damage sensors, transducer kinases, and effectors. In this review, we describe recent advances on the understanding of the role of DDR in activating immune signaling. We highlight evidence gained into (i) which molecular and cellular pathways of DDR activate immune signaling, (ii) how DNA damage drives chronic inflammation, and (iii) how chronic inflammation causes DNA damage and pathology in humans.

  9. DNA Damage Response and Immune Defense: Links and Mechanisms

    PubMed Central

    Nakad, Rania; Schumacher, Björn

    2016-01-01

    DNA damage plays a causal role in numerous human pathologies including cancer, premature aging, and chronic inflammatory conditions. In response to genotoxic insults, the DNA damage response (DDR) orchestrates DNA damage checkpoint activation and facilitates the removal of DNA lesions. The DDR can also arouse the immune system by for example inducing the expression of antimicrobial peptides as well as ligands for receptors found on immune cells. The activation of immune signaling is triggered by different components of the DDR including DNA damage sensors, transducer kinases, and effectors. In this review, we describe recent advances on the understanding of the role of DDR in activating immune signaling. We highlight evidence gained into (i) which molecular and cellular pathways of DDR activate immune signaling, (ii) how DNA damage drives chronic inflammation, and (iii) how chronic inflammation causes DNA damage and pathology in humans. PMID:27555866

  10. Extracellular signal-related kinase positively regulates ataxia telangiectasia mutated, homologous recombination repair, and the DNA damage response.

    PubMed

    Golding, Sarah E; Rosenberg, Elizabeth; Neill, Steven; Dent, Paul; Povirk, Lawrence F; Valerie, Kristoffer

    2007-02-01

    The accurate joining of DNA double-strand breaks by homologous recombination repair (HRR) is critical to the long-term survival of the cell. The three major mitogen-activated protein (MAP) kinase (MAPK) signaling pathways, extracellular signal-regulated kinase (ERK), p38, and c-Jun-NH(2)-kinase (JNK), regulate cell growth, survival, and apoptosis. To determine the role of MAPK signaling in HRR, we used a human in vivo I-SceI-based repair system. First, we verified that this repair platform is amenable to pharmacologic manipulation and show that the ataxia telangiectasia mutated (ATM) kinase is critical for HRR. The ATM-specific inhibitor KU-55933 compromised HRR up to 90% in growth-arrested cells, whereas this effect was less pronounced in cycling cells. Then, using well-characterized MAPK small-molecule inhibitors, we show that ERK1/2 and JNK signaling are important positive regulators of HRR in growth-arrested cells. On the other hand, inhibition of the p38 MAPK pathway generated an almost 2-fold stimulation of HRR. When ERK1/2 signaling was stimulated by oncogenic RAF-1, an approximately 2-fold increase in HRR was observed. KU-55933 partly blocked radiation-induced ERK1/2 phosphorylation, suggesting that ATM regulates ERK1/2 signaling. Furthermore, inhibition of MAP/ERK kinase (MEK)/ERK signaling resulted in severely reduced levels of phosphorylated (S1981) ATM foci but not gamma-H2AX foci, and suppressed ATM phosphorylation levels >85% throughout the cell cycle. Collectively, these results show that MAPK signaling positively and negatively regulates HRR in human cells. More specifically, ATM-dependent signaling through the RAF/MEK/ERK pathway is critical for efficient HRR and for radiation-induced ATM activation, suggestive of a regulatory feedback loop between ERK and ATM.

  11. Investigation of switch from ATM to ATR signaling at the sites of DNA damage induced by low and high LET radiation.

    PubMed

    Saha, Janapriya; Wang, Minli; Cucinotta, Francis A

    2013-12-01

    Upon induction of DNA damage by ionizing radiation (IR), members of the phosphatidylinositol 3-kinase-like kinase family of proteins namely ataxia-telangiectasia mutated (ATM), DNA-PKcs, and ATM- and Rad3-related (ATR) maintain genomic integrity by mounting DNA damage response (DDR). Recent reports suggest that activation of ATM and ATR are oppositely regulated by the length of single stranded overhangs generated during end processing by nucleases at the break sites. These stretches of single stranded overhangs hold the clue for the transition from ATM to ATR signaling at broken DNA ends. We investigated whether differential processing of breaks induced by low and high LET radiation augments the phenomenon of switching from ATM to ATR kinase and hence a concomitant NHEJ to HR transition at the sites of DNA damage. 82-6 human fibroblasts were irradiated with 1 or 2Gy of γ-rays and particle radiation of increasing LET in order to increase the complexity and variability of DNA double strand breaks (DSB) structures. The activation kinetics of ATM and ATR kinases along with their downstream substrates were determined utilizing Western blotting and immunofluorescence techniques. Our data provide evidence of a potential switch from ATM to ATR kinase signaling in cells treated with γ-rays at approximately 2h post irradiation, with induction and completion of resection denoted by Rad51 foci resolution kinetics and observed with a significant decline of phosphorylated ATR kinase 8h after IR. On the other hand, irradiation with high LET 600MeV/u (56)Fe (180keV/μm) and 170MeV/u (28)Si (99keV/μm) particles show a similar Rad51 foci decay kinetics, however, exhibiting prolonged resection, evident by the persistent phosphorylated ATM and ATR kinase until 24h post irradiation. This residual effect, however, was significantly reduced for 250MeV/u (16)O particles of moderate LET (25keV/μm) and absent for γ-rays. Hence, our results support the hypothesis that the transition

  12. DNA Repair by Reversal of DNA Damage

    PubMed Central

    Yi, Chengqi; He, Chuan

    2013-01-01

    Endogenous and exogenous factors constantly challenge cellular DNA, generating cytotoxic and/or mutagenic DNA adducts. As a result, organisms have evolved different mechanisms to defend against the deleterious effects of DNA damage. Among these diverse repair pathways, direct DNA-repair systems provide cells with simple yet efficient solutions to reverse covalent DNA adducts. In this review, we focus on recent advances in the field of direct DNA repair, namely, photolyase-, alkyltransferase-, and dioxygenase-mediated repair processes. We present specific examples to describe new findings of known enzymes and appealing discoveries of new proteins. At the end of this article, we also briefly discuss the influence of direct DNA repair on other fields of biology and its implication on the discovery of new biology. PMID:23284047

  13. DNA damage and carcinogenesis

    SciTech Connect

    Stelow, R B

    1980-01-01

    Although cancer may arise as a result of many different types of molecular changes, there is little reason to doubt that changes to DNA are one of the more important ones in cancer initiation. Although DNA repair mechanisms seem able to eliminate a very large fraction of deleterious changes to DNA, we not only have little insight into the molecular mechanisms involved in such repair, but have a negligible amount of information to permit us to estimate the shape of dose response relations at low doses. The case of skin cancer is a special one, in that the average population is exposed to sufficient solar uv so that the effects of small increments in uv dose may be estimated. An approximate 85% reduction in DNA repair increases skin cancer incidence 10/sup 4/ fold.

  14. Systems Biology Model of Interactions Between Tissue Growth Factors and DNA Damage Pathways: Low Dose Response and Cross-Talk in TGFbeta and ATM Signaling

    SciTech Connect

    O'Neill, Peter; Anderson, Jennifer

    2014-10-02

    The etiology of radiation carcinogenesis has been described in terms of aberrant changes that span several levels of biological organization. Growth factors regulate many important cellular and tissue functions including apoptosis, differentiation and proliferation. A variety of genetic and epigenetic changes of growth factors have been shown to contribute to cancer initiation and progression. It is known that cellular and tissue damage to ionizing radiation is in part initiated by the production of reactive oxygen species, which can activate cytokine signaling, and the DNA damage response pathways, most notably the ATM signaling pathway. Recently the transforming growth factor β (TGFβ) pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation. The relevance of this interaction with the ATM pathway is not known although p53 becomes phosphorylated and DNA damage responses are involved. However, growth factor interactions with DNA damage responses have not been elucidated particularly at low doses and further characterization of their relationship to cancer processes is warranted. Our goal will be to use a systems biology approach to mathematically and experimentally describe the low dose responses and cross-talk between the ATM and TGFβ pathways initiated by low and high LET radiation. We will characterize ATM and TGFβ signaling in epithelial and fibroblast cells using 2D models and ultimately extending to 3D organotypic cell culture models to begin to elucidate possible differences that may occur for different cell types and/or inter-cellular communication. We will investigate the roles of the Smad and Activating transcription factor 2 (ATF2) proteins as the potential major contributors to cross- talk between the TGFβ and ATM pathways, and links to cell cycle control and/or the DNA damage response, and potential differences in their responses at low and high doses. We have developed various experimental

  15. Systems Biology Model of Interactions between Tissue Growth Factors and DNA Damage Pathways: Low Dose Response and Cross-Talk in TGFβ and ATM Signaling

    SciTech Connect

    Cucinotta, Francis A

    2016-09-01

    The etiology of radiation carcinogenesis has been described in terms of aberrant changes that span several levels of biological organization. Growth factors regulate many important cellular and tissue functions including apoptosis, differentiation and proliferation. A variety of genetic and epigenetic changes of growth factors have been shown to contribute to cancer initiation and progression. It is known that cellular and tissue damage to ionizing radiation is in part initiated by the production of reactive oxygen species, which can activate cytokine signaling, and the DNA damage response pathways, most notably the ATM signaling pathway. Recently, the transforming growth factor β (TGFβ) pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation. The relevance of this interaction with the ATM pathway is not known although p53 becomes phosphorylated and DNA damage responses are involved. However, growth factor interactions with DNA damage responses have not been elucidated particularly at low doses, and further characterization of their relationship to cancer processes is warranted. Our goal will be to use a systems biology approach to mathematically and experimentally describe the low-dose responses and cross-talk between the ATM and TGFβ pathways initiated by low- and high-LET radiation. We will characterize ATM and TGFβ signaling in epithelial and fibroblast cells using 2D models and ultimately extending to 3D organotypic cell culture models to begin to elucidate possible differences that may occur for different cell types and/or inter-cellular communication. We will investigate the roles of the Smad and Activating transcription factor 2 (ATF2) proteins as the potential major contributors to crosstalk between the TGFβ and ATM pathways, and links to cell cycle control and/or the DNA damage response, and potential differences in their responses at low and high doses. We have developed various experimental

  16. Sperm DNA oxidative damage and DNA adducts

    PubMed Central

    Jeng, Hueiwang Anna; Pan, Chih-Hong; Chao, Mu-Rong; Lin, Wen-Yi

    2015-01-01

    The objective of this study was to investigate DNA damage and adducts in sperm from coke oven workers who have been exposed to polycyclic aromatic hydrocarbons. A longitudinal study was conducted with repeated measurements during spermatogenesis. Coke-oven workers (n=112) from a coke-oven plant served the PAH-exposed group, while administrators and security personnel (n=67) served the control. Routine semen parameters (concentration, motility, vitality, and morphology) were analyzed simultaneously; the assessment of sperm DNA integrity endpoints included DNA fragmentation, bulky DNA adducts, and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxo-dGuo). The degree of sperm DNA fragmentation was measured using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay and sperm chromatin structure assay (SCSA). The PAH-exposed group had a significant increase in bulky DNA adducts and 8-oxo-dGuo compared to the control subjects (Ps = 0.002 and 0.045, respectively). Coke oven workers' percentages of DNA fragmentation and denaturation from the PAH-exposed group were not significantly different from those of the control subjects (Ps = 0.232 and 0.245, respectively). Routine semen parameters and DNA integrity endpoints were not correlated. Concentrations of 8-oxo-dGuo were positively correlated with percentages of DNA fragmentation measured by both TUNEL and SCSA (Ps = 0.045 and 0.034, respectively). However, the concentrations of 8-oxo-dGuo and percentages of DNA fragmentation did not correlate with concentrations of bulky DNA adducts. In summary, coke oven workers with chronic exposure to PAHs experienced decreased sperm DNA integrity. Oxidative stress could contribute to the degree of DNA fragmentation. Bulky DNA adducts may be independent of the formation of DNA fragmentation and oxidative adducts in sperm. Monitoring sperm DNA integrity is recommended as a part of the process of assessing the impact of occupational and environmental toxins on

  17. Mitogen-activated protein kinase signal transduction and DNA repair network are involved in aluminum-induced DNA damage and adaptive response in root cells of Allium cepa L.

    PubMed

    Panda, Brahma B; Achary, V Mohan M

    2014-01-01

    In the current study, we studied the role of signal transduction in aluminum (Al(3+))-induced DNA damage and adaptive response in root cells of Allium cepa L. The root cells in planta were treated with Al(3+) (800 μM) for 3 h without or with 2 h pre-treatment of inhibitors of mitogen-activated protein kinase (MAPK), and protein phosphatase. Also, root cells in planta were conditioned with Al(3+) (10 μM) for 2 h and then subjected to genotoxic challenge of ethyl methane sulfonate (EMS; 5 mM) for 3 h without or with the pre-treatment of the aforementioned inhibitors as well as the inhibitors of translation, transcription, DNA replication and repair. At the end of treatments, roots cells were assayed for cell death and/or DNA damage. The results revealed that Al(3+) (800 μM)-induced significant DNA damage and cell death. On the other hand, conditioning with low dose of Al(3+) induced adaptive response conferring protection of root cells from genotoxic stress caused by EMS-challenge. Pre-treatment of roots cells with the chosen inhibitors prior to Al(3+)-conditioning prevented or reduced the adaptive response to EMS genotoxicity. The results of this study suggested the involvement of MAPK and DNA repair network underlying Al-induced DNA damage and adaptive response to genotoxic stress in root cells of A. cepa.

  18. Mitogen-activated protein kinase signal transduction and DNA repair network are involved in aluminum-induced DNA damage and adaptive response in root cells of Allium cepa L.

    PubMed Central

    Panda, Brahma B.; Achary, V. Mohan M.

    2014-01-01

    In the current study, we studied the role of signal transduction in aluminum (Al3+)-induced DNA damage and adaptive response in root cells of Allium cepa L. The root cells in planta were treated with Al3+ (800 μM) for 3 h without or with 2 h pre-treatment of inhibitors of mitogen-activated protein kinase (MAPK), and protein phosphatase. Also, root cells in planta were conditioned with Al3+ (10 μM) for 2 h and then subjected to genotoxic challenge of ethyl methane sulfonate (EMS; 5 mM) for 3 h without or with the pre-treatment of the aforementioned inhibitors as well as the inhibitors of translation, transcription, DNA replication and repair. At the end of treatments, roots cells were assayed for cell death and/or DNA damage. The results revealed that Al3+ (800 μM)-induced significant DNA damage and cell death. On the other hand, conditioning with low dose of Al3+ induced adaptive response conferring protection of root cells from genotoxic stress caused by EMS-challenge. Pre-treatment of roots cells with the chosen inhibitors prior to Al3+-conditioning prevented or reduced the adaptive response to EMS genotoxicity. The results of this study suggested the involvement of MAPK and DNA repair network underlying Al-induced DNA damage and adaptive response to genotoxic stress in root cells of A. cepa. PMID:24926302

  19. Role of autophagy in chemoresistance: regulation of the ATM-mediated DNA-damage signaling pathway through activation of DNA-PKcs and PARP-1.

    PubMed

    Yoon, Jung-Hoon; Ahn, Sang-Gun; Lee, Byung-Hoon; Jung, Sung-Hoo; Oh, Seon-Hee

    2012-03-15

    Capsaicin treatment was previously reported to reduce the sensitivity of breast cancer cells, but not normal MCF10A cells, to apoptosis. The present study shows that autophagy is involved in cellular resistance to genotoxic stress, through DNA repair. Capsaicin treatment of MCF-7 cells induced S-phase arrest and autophagy through the AMPKα-mTOR signaling pathway and the accumulation of p53 in the nucleus and cytosol, including a change in mitochondrial membrane potential. Capsaicin treatment also activated δ-H2AX, ataxia telangiectasia mutated (ATM), DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and poly(ADP-ribose) polymerase (PARP)-1. Genetic or pharmacological disruption of autophagy attenuated capsaicin-induced phospho-ATM and phospho-DNA-PKcs and enhanced apoptotic cell death. ATM inhibitors, including Ku55933 and caffeine, and the genetic or pharmacological inhibition of p53 prevented capsaicin-induced DNA-PKcs phosphorylation and stimulated PARP-1 cleavage, but had no effect on microtubule-associated protein light chain 3 (LC3)-II levels. Ly294002, a DNA-PKcs inhibitor, boosted the capsaicin-induced cleavage of PARP-1. In M059K cells, but not M059J cells, capsaicin induced ATM and DNA-PKcs phosphorylation, p53 accumulation, and the stimulation of LC3II production, all of which were attenuated by knockdown of the autophagy-related gene atg5. Ku55933 attenuated capsaicin-induced phospho-DNA-PKcs, but not LC3II, in M059K cells. In human breast tumors, but not in normal tissues, AMPKα, ATM, DNA-PKcs, and PARP-1 were activated and LC3II was induced. The induction of autophagy by genotoxic stress likely contributes to the sustained survival of breast cancer cells through DNA repair regulated by ATM-mediated activation of DNA-PKcs and PARP-1.

  20. Neuronal DNA damage response‐associated dysregulation of signalling pathways and cholesterol metabolism at the earliest stages of Alzheimer‐type pathology

    PubMed Central

    Simpson, Julie E.; Ince, Paul G.; Minett, Thais; Matthews, Fiona E.; Heath, Paul R.; Shaw, Pamela J.; Goodall, Emily; Garwood, Claire J.; Ratcliffe, Laura E.; Brayne, Carol; Rattray, Magnus

    2015-01-01

    Aims Oxidative damage and an associated DNA damage response (DDR) are evident in mild cognitive impairment and early Alzheimer's disease, suggesting that neuronal dysfunction resulting from oxidative DNA damage may account for some of the cognitive impairment not fully explained by Alzheimer‐type pathology. Methods Frontal cortex (Braak stage 0–II) was obtained from the Medical Research Council's Cognitive Function and Ageing Study cohort. Neurones were isolated from eight cases (four high and four low DDR) by laser capture microdissection and changes in the transcriptome identified by microarray analysis. Results Two thousand three hundred seventy‐eight genes were significantly differentially expressed (1690 up‐regulated, 688 down‐regulated, P < 0.001) in cases with a high neuronal DDR. Functional grouping identified dysregulation of cholesterol biosynthesis, insulin and Wnt signalling, and up‐regulation of glycogen synthase kinase 3β. Candidate genes were validated by quantitative real‐time polymerase chain reaction. Cerebrospinal fluid levels of 24(S)‐hydroxycholesterol associated with neuronal DDR across all Braak stages (r s = 0.30, P = 0.03). Conclusions A persistent neuronal DDR may result in increased cholesterol biosynthesis, impaired insulin and Wnt signalling, and increased GSK3β, thereby contributing to neuronal dysfunction independent of Alzheimer‐type pathology in the ageing brain. PMID:26095650

  1. Protection by taurine against INOS-dependent DNA damage in heavily exercised skeletal muscle by inhibition of the NF-κB signaling pathway.

    PubMed

    Sugiura, Hiromichi; Okita, Shinya; Kato, Toshihiro; Naka, Toru; Kawanishi, Shosuke; Ohnishi, Shiho; Oshida, Yoshiharu; Ma, Ning

    2013-01-01

    Taurine protects against tissue damage in a variety of models involving inflammation, especially the muscle. We set up a heavy exercise bout protocol for rats consisting of climbing ran on a treadmill to examine the effect of an intraabdominal dose of taurine (300 mg/kg/day) administered 1 h before heavy exercise for ten consecutive days. Each group ran on the treadmill at 20 m/min, 25% grade, for 20 min or until exhaustion within 20 min once each 10 days. Exhaustion was the point when an animal was unable to right itself when placed on its side. The muscle damage was associated with an increased accumulation of 8-nitroguanine and 8-OHdG in the nuclei of skeletal muscle cells. The immunoreactivities for NF-κB and iNOS were also increased in the exercise group. Taurine ameliorated heavy exercise-induced muscle DNA damage to a significant extent since it reduced the accumulation of 8-nitroguanine and 8-OHdG, possibly by down-regulating the expression of iNOS through a modulatory action on NF-κB signaling pathway. This study demonstrates for the first time that taurine can protect against intense exercise-induced nitrosative inflammation and ensuing DNA damage in the skeletal muscle of rats by preventing iNOS expression and the nitrosative stress generated by heavy exercise.

  2. Types and Consequences of DNA Damage

    EPA Science Inventory

    This review provides a concise overview of the types of DNA damage and the molecular mechanisms by which a cell senses DNA damage, repairs the damage, converts the damage into a mutation, or dies as a consequence of unrepaired DNA damage. Such information is important in consid...

  3. Types and Consequences of DNA Damage

    EPA Science Inventory

    This review provides a concise overview of the types of DNA damage and the molecular mechanisms by which a cell senses DNA damage, repairs the damage, converts the damage into a mutation, or dies as a consequence of unrepaired DNA damage. Such information is important in consid...

  4. A Cross-Cancer Genetic Association Analysis of the DNA repair and DNA Damage Signaling Pathways for Lung, Ovary, Prostate, Breast and Colorectal Cancer

    PubMed Central

    Scarbrough, Peter M.; Weber, Rachel Palmieri; Iversen, Edwin S.; Brhane, Yonathan; Amos, Christopher I.; Kraft, Peter; Hung, Rayjean J.; Sellers, Thomas A.; Witte, John S.; Pharoah, Paul; Henderson, Brian E.; Gruber, Stephen B.; Hunter, David J.; Garber, Judy E.; Joshi, Amit D.; McDonnell, Kevin; Easton, Doug F.; Eeles, Ros; Kote-Jarai, Zsofia; Muir, Kenneth; Doherty, Jennifer A.; Schildkraut, Joellen M.

    2015-01-01

    Background DNA damage is an established mediator of carcinogenesis, though GWAS have identified few significant loci. This cross-cancer site, pooled analysis was performed to increase the power to detect common variants of DNA repair genes associated with cancer susceptibility. Methods We conducted a cross-cancer analysis of 60,297 SNPs, at 229 DNA repair gene regions, using data from the NCI Genetic Associations and Mechanisms in Oncology (GAME-ON) Network. Our analysis included data from 32 GWAS and 48,734 controls and 51,537 cases across five cancer sites (breast, colon, lung, ovary, and prostate). Because of the unavailability of individual data, data were analyzed at the aggregate level. Meta-analysis was performed using the Association analysis for SubSETs (ASSET) software. To test for genetic associations that might escape individual variant testing due to small effect sizes, pathway analysis of eight DNA repair pathways was performed using hierarchical modeling. Results We identified three susceptibility DNA repair genes, RAD51B (p < 5.09 × 10−6), MSH5 (p < 5.09 × 10−6) and BRCA2 (p = 5.70 × 10−6). Hierarchical modeling identified several pleiotropic associations with cancer risk in the base excision repair, nucleotide excision repair, mismatch repair, and homologous recombination pathways. Conclusions Only three susceptibility loci were identified which had all been previously reported. In contrast, hierarchical modeling identified several pleiotropic cancer risk associations in key DNA repair pathways. Impact Results suggest that many common variants in DNA repair genes are likely associated with cancer susceptibility through small effect sizes that do not meet stringent significance testing criteria. PMID:26637267

  5. Salicylic Acid Activates DNA Damage Responses to Potentiate Plant Immunity

    PubMed Central

    Yan, Shunping; Wang, Wei; Marqués, Jorge; Mohan, Rajinikanth; Saleh, Abdelaty; Durrant, Wendy E.; Song, Junqi; Dong, Xinnian

    2013-01-01

    SUMMARY DNA damage is normally detrimental to living organisms. Here we show that it can also serve as a signal to promote immune responses in plants. We found that the plant immune hormone salicylic acid (SA) can trigger DNA damage in the absence of a genotoxic agent. The DNA damage sensor proteins, RAD17 and ATR, are required for effective immune responses. These sensor proteins are negatively regulated by a key immune regulator SNI1 (suppressor of npr1-1, inducible 1), which we discovered as a missing subunit of the Structural Maintenance of Chromosome (SMC) 5/6 complex required for controlling DNA damage. Elevated DNA damage caused by the sni1 mutation or treatment with a DNA-damaging agent markedly enhances SA-mediated defense gene expression. Our study suggests that activation of DNA damage responses is an intrinsic component of the plant immune responses. PMID:24207055

  6. The RNA Response to DNA Damage.

    PubMed

    Giono, Luciana E; Nieto Moreno, Nicolás; Cambindo Botto, Adrián E; Dujardin, Gwendal; Muñoz, Manuel J; Kornblihtt, Alberto R

    2016-06-19

    Multicellular organisms must ensure genome integrity to prevent accumulation of mutations, cell death, and cancer. The DNA damage response (DDR) is a complex network that senses, signals, and executes multiple programs including DNA repair, cell cycle arrest, senescence, and apoptosis. This entails regulation of a variety of cellular processes: DNA replication and transcription, RNA processing, mRNA translation and turnover, and post-translational modification, degradation, and relocalization of proteins. Accumulated evidence over the past decades has shown that RNAs and RNA metabolism are both regulators and regulated actors of the DDR. This review aims to present a comprehensive overview of the current knowledge on the many interactions between the DNA damage and RNA fields.

  7. DNA Damage and Pulmonary Hypertension.

    PubMed

    Ranchoux, Benoît; Meloche, Jolyane; Paulin, Roxane; Boucherat, Olivier; Provencher, Steeve; Bonnet, Sébastien

    2016-06-22

    Pulmonary hypertension (PH) is defined by a mean pulmonary arterial pressure over 25 mmHg at rest and is diagnosed by right heart catheterization. Among the different groups of PH, pulmonary arterial hypertension (PAH) is characterized by a progressive obstruction of distal pulmonary arteries, related to endothelial cell dysfunction and vascular cell proliferation, which leads to an increased pulmonary vascular resistance, right ventricular hypertrophy, and right heart failure. Although the primary trigger of PAH remains unknown, oxidative stress and inflammation have been shown to play a key role in the development and progression of vascular remodeling. These factors are known to increase DNA damage that might favor the emergence of the proliferative and apoptosis-resistant phenotype observed in PAH vascular cells. High levels of DNA damage were reported to occur in PAH lungs and remodeled arteries as well as in animal models of PH. Moreover, recent studies have demonstrated that impaired DNA-response mechanisms may lead to an increased mutagen sensitivity in PAH patients. Finally, PAH was linked with decreased breast cancer 1 protein (BRCA1) and DNA topoisomerase 2-binding protein 1 (TopBP1) expression, both involved in maintaining genome integrity. This review aims to provide an overview of recent evidence of DNA damage and DNA repair deficiency and their implication in PAH pathogenesis.

  8. DNA Damage and Pulmonary Hypertension

    PubMed Central

    Ranchoux, Benoît; Meloche, Jolyane; Paulin, Roxane; Boucherat, Olivier; Provencher, Steeve; Bonnet, Sébastien

    2016-01-01

    Pulmonary hypertension (PH) is defined by a mean pulmonary arterial pressure over 25 mmHg at rest and is diagnosed by right heart catheterization. Among the different groups of PH, pulmonary arterial hypertension (PAH) is characterized by a progressive obstruction of distal pulmonary arteries, related to endothelial cell dysfunction and vascular cell proliferation, which leads to an increased pulmonary vascular resistance, right ventricular hypertrophy, and right heart failure. Although the primary trigger of PAH remains unknown, oxidative stress and inflammation have been shown to play a key role in the development and progression of vascular remodeling. These factors are known to increase DNA damage that might favor the emergence of the proliferative and apoptosis-resistant phenotype observed in PAH vascular cells. High levels of DNA damage were reported to occur in PAH lungs and remodeled arteries as well as in animal models of PH. Moreover, recent studies have demonstrated that impaired DNA-response mechanisms may lead to an increased mutagen sensitivity in PAH patients. Finally, PAH was linked with decreased breast cancer 1 protein (BRCA1) and DNA topoisomerase 2-binding protein 1 (TopBP1) expression, both involved in maintaining genome integrity. This review aims to provide an overview of recent evidence of DNA damage and DNA repair deficiency and their implication in PAH pathogenesis. PMID:27338373

  9. DNA Damage and Repair in Vascular Disease.

    PubMed

    Uryga, Anna; Gray, Kelly; Bennett, Martin

    2016-01-01

    DNA damage affecting both genomic and mitochondrial DNA is present in a variety of both inherited and acquired vascular diseases. Multiple cell types show persistent DNA damage and a range of lesions. In turn, DNA damage activates a variety of DNA repair mechanisms, many of which are activated in vascular disease. Such DNA repair mechanisms either stall the cell cycle to allow repair to occur or trigger apoptosis or cell senescence to prevent propagation of damaged DNA. Recent evidence has indicated that DNA damage occurs early, is progressive, and is sufficient to impair function of cells composing the vascular wall. The consequences of persistent genomic and mitochondrial DNA damage, including inflammation, cell senescence, and apoptosis, are present in vascular disease. DNA damage can thus directly cause vascular disease, opening up new possibilities for both prevention and treatment. We review the evidence for and the causes, types, and consequences of DNA damage in vascular disease.

  10. Maternal diabetes triggers DNA damage and DNA damage response in neurulation stage embryos through oxidative stress.

    PubMed

    Dong, Daoyin; Yu, Jingwen; Wu, Yanqing; Fu, Noah; Villela, Natalia Arias; Yang, Peixin

    2015-11-13

    DNA damage and DNA damage response (DDR) in neurulation stage embryos under maternal diabetes conditions are not well understood. The purpose of this study was to investigate whether maternal diabetes and high glucose in vitro induce DNA damage and DDR in the developing embryo through oxidative stress. In vivo experiments were conducted by mating superoxide dismutase 1 (SOD1) transgenic male mice with wild-type (WT) female mice with or without diabetes. Embryonic day 8.75 (E8.75) embryos were tested for the DNA damage markers, phosphorylated histone H2A.X (p-H2A.X) and DDR signaling intermediates, including phosphorylated checkpoint 1 (p-Chk1), phosphorylated checkpoint 2 (p-Chk2), and p53. Levels of the same DNA damage markers and DDR signaling intermediates were also determined in the mouse C17.2 neural stem cell line. Maternal diabetes and high glucose in vitro significantly increased the levels of p-H2A.X. Levels of p-Chk1, p-Chk2, and p53, were elevated under both maternal diabetic and high glucose conditions. SOD1 overexpression blocked maternal diabetes-induced DNA damage and DDR in vivo. Tempol, a SOD1 mimetic, diminished high glucose-induced DNA damage and DDR in vitro. In conclusion, maternal diabetes and high glucose in vitro induce DNA damage and activates DDR through oxidative stress, which may contribute to the pathogenesis of diabetes-associated embryopathy.

  11. Radioactive 125I Seed Inhibits the Cell Growth, Migration, and Invasion of Nasopharyngeal Carcinoma by Triggering DNA Damage and Inactivating VEGF-A/ERK Signaling

    PubMed Central

    Tian, Yunming; Liu, Ying; Huang, Zuoping; Fan, Cundong; Hou, Bing; Sun, Dan; Yao, Kaitai; Chen, Tianfeng

    2013-01-01

    Although radiotherapy technology has progressed rapidly in the past decade, the inefficiency of radiation and cancer cell resistance mean that the 5-year survival rate of patients with nasopharyngeal carcinoma (NPC) is low. Radioactive 125I seed implantation has received increasing attention as a clinical treatment for cancers. Vascular endothelial growth factor-A (VEGF-A) is one of the most important members of the VEGF family and plays an important role in cell migration through the extracellular-signal-regulated kinase (ERK) pathway. Here we show that radioactive 125I seeds more effectively inhibit NPC cell growth through DNA damage and subsequent induction of apoptosis, compared with X-ray irradiation. Moreover, cell migration was effectively inhibited by 125I seed irradiation through VEGF-A/ERK inactivation. VEGF-A pretreatment significantly blocked 125I seed irradiation-induced inhibition of cell migration by recovering the levels of phosphorylated ERK (p-ERK) protein. Interestingly, in vivo study results confirmed that 125I seed irradiation was more effective in inhibiting tumor growth than X-ray irradiation. Taken together, these results suggest that radioactive 125I seeds exert novel anticancer activity by triggering DNA damage and inactivating VEGF-A/ERK signaling. Our finding provides evidence for the efficacy of 125I seeds for treating NPC patients, especially those with local recurrence. PMID:24040157

  12. DNA damage response inhibition at dysfunctional telomeres by modulation of telomeric DNA damage response RNAs.

    PubMed

    Rossiello, Francesca; Aguado, Julio; Sepe, Sara; Iannelli, Fabio; Nguyen, Quan; Pitchiaya, Sethuramasundaram; Carninci, Piero; d'Adda di Fagagna, Fabrizio

    2017-02-27

    The DNA damage response (DDR) is a set of cellular events that follows the generation of DNA damage. Recently, site-specific small non-coding RNAs, also termed DNA damage response RNAs (DDRNAs), have been shown to play a role in DDR signalling and DNA repair. Dysfunctional telomeres activate DDR in ageing, cancer and an increasing number of identified pathological conditions. Here we show that, in mammals, telomere dysfunction induces the transcription of telomeric DDRNAs (tDDRNAs) and their longer precursors from both DNA strands. DDR activation and maintenance at telomeres depend on the biogenesis and functions of tDDRNAs. Their functional inhibition by sequence-specific antisense oligonucleotides allows the unprecedented telomere-specific DDR inactivation in cultured cells and in vivo in mouse tissues. In summary, these results demonstrate that tDDRNAs are induced at dysfunctional telomeres and are necessary for DDR activation and they validate the viability of locus-specific DDR inhibition by targeting DDRNAs.

  13. Chromatin structure and DNA damage

    SciTech Connect

    Gale, J.M.

    1987-01-01

    This dissertation examines the structure and structural transitions of chromatin in relation to DNA damage. The ability of intact and histone H1 depleted chromatin fibers to fold into higher ordered structures in vitro was examined following DNA photodamage introduced by two different agents. (1) 254-nm UV radiation and (2) trimethylpsoralen (plus near-UV radiation). Both agents are highly specific for DNA and form adducts predicted to cause different degrees of distortion in the DNA helix. The salt-induced structural transitions of intact and histone H1 depleted chromatin fibers were monitored by both analytical ultracentrifugation and light scattering. Our results show that even in the presence of extremely large, nonphysiological amounts of photodamage by either agent the ability of chromatin to fold into higher ordered structures is not affected. The compact, 30 nm fiber must therefore be able to accommodate a large amount of DNA damage without any measurable changes in the overall size or degree of compaction of this structure. The distribution of pyrimidine dimers was mapped at the single nucleotide level in nucleosome core DNA from UV-irradiated mononucleosomes, chromatin fibers, and human cells in culture using the 3' ..-->.. 5' exonuclease activity of T4 DNA polymerase.

  14. DNA damage-induced ephrin-B2 reverse signaling promotes chemoresistance and drives EMT in colorectal carcinoma harboring mutant p53

    PubMed Central

    Alam, S K; Yadav, V K; Bajaj, S; Datta, A; Dutta, S K; Bhattacharyya, M; Bhattacharya, S; Debnath, S; Roy, S; Boardman, L A; Smyrk, T C; Molina, J R; Chakrabarti, S; Chowdhury, S; Mukhopadhyay, D; Roychoudhury, S

    2016-01-01

    Mutation in the TP53 gene positively correlates with increased incidence of chemoresistance in different cancers. In this study, we investigated the mechanism of chemoresistance and epithelial-to-mesenchymal transition (EMT) in colorectal cancer involving the gain-of-function (GOF) mutant p53/ephrin-B2 signaling axis. Bioinformatic analysis of the NCI-60 data set and subsequent hub prediction identified EFNB2 as a possible GOF mutant p53 target gene, responsible for chemoresistance. We show that the mutant p53-NF-Y complex transcriptionally upregulates EFNB2 expression in response to DNA damage. Moreover, the acetylated form of mutant p53 protein is recruited on the EFNB2 promoter and positively regulates its expression in conjunction with coactivator p300. In vitro cell line and in vivo nude mice data show that EFNB2 silencing restores chemosensitivity in mutant p53-harboring tumors. In addition, we observed high expression of EFNB2 in patients having neoadjuvant non-responder colorectal carcinoma compared with those having responder version of the disease. In the course of deciphering the drug resistance mechanism, we also show that ephrin-B2 reverse signaling induces ABCG2 expression after drug treatment that involves JNK-c-Jun signaling in mutant p53 cells. Moreover, 5-fluorouracil-induced ephrin-B2 reverse signaling promotes tumorigenesis through the Src-ERK pathway, and drives EMT via the Src-FAK pathway. We thus conclude that targeting ephrin-B2 might enhance the therapeutic potential of DNA-damaging chemotherapeutic agents in mutant p53-bearing human tumors. PMID:26494468

  15. Method for assaying clustered DNA damages

    DOEpatents

    Sutherland, Betsy M.

    2004-09-07

    Disclosed is a method for detecting and quantifying clustered damages in DNA. In this method, a first aliquot of the DNA to be tested for clustered damages with one or more lesion-specific cleaving reagents under conditions appropriate for cleavage of the DNA to produce single-strand nicks in the DNA at sites of damage lesions. The number average molecular length (Ln) of double stranded DNA is then quantitatively determined for the treated DNA. The number average molecular length (Ln) of double stranded DNA is also quantitatively determined for a second, untreated aliquot of the DNA. The frequency of clustered damages (.PHI..sub.c) in the DNA is then calculated.

  16. Loss of Urokinase Receptor Sensitizes Cells to DNA Damage and Delays DNA Repair

    PubMed Central

    Narayanaswamy, Pavan B.; Hodjat, Mahshid; Haller, Hermann; Dumler, Inna; Kiyan, Yulia

    2014-01-01

    DNA damage induced by numerous exogenous or endogenous factors may have irreversible consequences on the cell leading to cell cycle arrest, senescence and cell death. The DNA damage response (DDR) is powerful signaling machinery triggered in response to DNA damage, to provide DNA damage recognition, signaling and repair. Most anticancer drugs induce DNA damage, and DNA repair in turn attenuates therapeutic efficiency of those drugs. Approaches delaying DNA repair are often used to increase efficiency of treatment. Recent data show that ubiquitin-proteasome system is essential for signaling and repair of DNA damage. However, mechanisms providing regulation of proteasome intracellular localization, activity, and recruitment to DNA damage sites are elusive. Even less investigated are the roles of extranuclear signaling proteins in these processes. In this study, we report the involvement of the serine protease urokinase-type plasminogen activator receptor (uPAR) in DDR-associated regulation of proteasome. We show that in vascular smooth muscle cells (VSMC) uPAR activates DNA single strand break repair signaling pathway. We provide evidence that uPAR is essential for functional assembly of the 26S proteasome. We further demonstrate that uPAR mediates DNA damage-induced phosphorylation, nuclear import, and recruitment of the regulatory subunit PSMD6 to proteasome. We found that deficiency of uPAR and PSMD6 delays DNA repair and leads to decreased cell survival. These data may offer new therapeutic approaches for diseases such as cancer, cardiovascular and neurodegenerative disorders. PMID:24987841

  17. p53/TAp63 and AKT Regulate Mammalian Target of Rapamycin Complex 1 (mTORC1) Signaling through Two Independent Parallel Pathways in the Presence of DNA Damage*

    PubMed Central

    Cam, Maren; Bid, Hemant K.; Xiao, Linlin; Zambetti, Gerard P.; Houghton, Peter J.; Cam, Hakan

    2014-01-01

    Under conditions of DNA damage, the mammalian target of rapamycin complex 1 (mTORC1) is inhibited, preventing cell cycle progression and conserving cellular energy by suppressing translation. We show that suppression of mTORC1 signaling to 4E-BP1 requires the coordinated activity of two tumor suppressors, p53 and p63. In contrast, suppression of S6K1 and ribosomal protein S6 phosphorylation by DNA damage is Akt-dependent. We find that loss of either p53, required for the induction of Sestrin 1/2, or p63, required for the induction of REDD1 and activation of the tuberous sclerosis complex, prevents the DNA damage-induced suppression of mTORC1 signaling. These data indicate that the negative regulation of cap-dependent translation by mTORC1 inhibition subsequent to DNA damage is abrogated in most human cancers. PMID:24366874

  18. p53/TAp63 and AKT regulate mammalian target of rapamycin complex 1 (mTORC1) signaling through two independent parallel pathways in the presence of DNA damage.

    PubMed

    Cam, Maren; Bid, Hemant K; Xiao, Linlin; Zambetti, Gerard P; Houghton, Peter J; Cam, Hakan

    2014-02-14

    Under conditions of DNA damage, the mammalian target of rapamycin complex 1 (mTORC1) is inhibited, preventing cell cycle progression and conserving cellular energy by suppressing translation. We show that suppression of mTORC1 signaling to 4E-BP1 requires the coordinated activity of two tumor suppressors, p53 and p63. In contrast, suppression of S6K1 and ribosomal protein S6 phosphorylation by DNA damage is Akt-dependent. We find that loss of either p53, required for the induction of Sestrin 1/2, or p63, required for the induction of REDD1 and activation of the tuberous sclerosis complex, prevents the DNA damage-induced suppression of mTORC1 signaling. These data indicate that the negative regulation of cap-dependent translation by mTORC1 inhibition subsequent to DNA damage is abrogated in most human cancers.

  19. Translating DNA damage into cancer cell death-A roadmap for E2F1 apoptotic signalling and opportunities for new drug combinations to overcome chemoresistance.

    PubMed

    Engelmann, David; Pützer, Brigitte M

    2010-01-01

    The cellular transcription factor E2F1 has been identified as a tumor suppressor regulating the activities of p53 and its homologue TAp73, and promoting apoptosis by the activation of a plethora of death pathways. More than 15 years of experimentation recognized E2F1 as the key player in apoptosis induced by DNA damage in all types of human cancer. This occurs by several mechanisms that affect RB-E2F1 interaction, E2F1 stability and its binding to promoters of E2F1-regulated genes. Recent progress has been made in revealing new proapoptotic genes regulated by E2F1 and it seems that many still remain to be discovered. However, whereas in the past one focused mainly on identifying E2F1 target genes translating cellular stress signals into cell death, today the DNA damage-induced regulatory network governing E2F1's ability to induce apoptosis is rapidly gaining attention as well. Notably, the lately uncovered role of pRB and E2F3 in triggering E2F1-dependent apoptosis through chemotherapy gains our understanding of the DNA damage response in normal and tumor cells. In this context a large body of evidence indicates that nuclear cofactors targeting E2F1 seem to have a major impact on its tumor suppressor function. These new findings are discussed in the context of preclinical studies applying E2F1 overexpression in combination with genotoxic anticancer agents - called chemogene therapy, thereby providing new mechanistic links between the E2F1-induced apoptotic programming and advanced cancer phenotype. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. γH2AX foci on apparently intact mitotic chromosomes: not signatures of misrejoining events but signals of unresolved DNA damage.

    PubMed

    Martín, Marta; Terradas, Mariona; Hernández, Laia; Genescà, Anna

    2014-01-01

    The presence of γH2AX foci on apparently intact mitotic chromosomes is controversial because they challenge the assumed relationship between γH2AX foci and DNA double-strand breaks (DSBs). In this work, we show that after irradiation during interphase, a variety of γH2AX foci are scored in mitotic cells. Surprisingly, approximately 80% of the γH2AX foci spread over apparently undamaged chromatin at Terminal or Interstitial positions and they can display variable sizes, thus being classified as Small, Medium and Big foci. Chromosome and chromatid breaks that reach mitosis are spotted with Big (60%) and Medium (30%) Terminal γH2AX foci, but very rarely are they signaled with Small γH2AX foci. To evaluate if Interstitial γH2AX foci might be signatures of misrejoining, an mFISH analysis was performed on the same slides. The results show that Interstitial γH2AX foci lying on apparently intact chromatin do not mark sites of misrejoining, and that misrejoined events were never signaled by a γH2AX foci during mitosis. Finally, when analyzing the presence of other DNA-damage response (DDR) factors we found that all γH2AX foci-regardless their coincidence with a visible break-always colocalized with MRE11, but not with 53BP1. This pattern suggests that these γH2AX foci may be hallmarks of both microscopically visible and invisible DNA damage, in which an active, although incomplete or halted DDR is taking place.

  1. DNA damage by various radiations

    NASA Astrophysics Data System (ADS)

    Hasegawa, K.; Yoshioka, H.; Yoshioka, H.

    1997-01-01

    In an attempt to shed light on the influence of tritiated water on DNA we have investigated the post-irradiation damage with a simple plasmid DNA, pBR322 and pUC18. The survival of covalently closed circular (CCC) DNA form was directly followed by agarose gel electrophoresis. The survival percentage of DNA in tritiated water was almost the same as with the irradiation with X-rays at the same absorbed dose. For irradiation with γ-rays, on the other hand, the decay rate was larger than those observed with both tritiated water and X-rays. The percentages of breakage for DNA in tritiated water, X-rays and γ-rays were found to be 34, 38 and 33% at 100 Gy of absorbed dose. The effect of dose rate was not observed for irradiation with tritiated water, X-rays and γ-rays. In order to study protection of DNA against radiation, we investigated the protecting effect of tea catechin which is the main component of (-)-epigallocatechin gallate (EGCg). The protection mechanism for DNA against radiation-induced scission has been studied using ESR spin-trapping method.

  2. Could Shift Work Damage Your DNA?

    MedlinePlus

    ... fullstory_166904.html Could Shift Work Damage Your DNA? Small study raises questions about daytime sleep and ... less capacity to repair everyday damage to cells' DNA, a small study hints. The research found that ...

  3. Sphingolipids in the DNA damage response.

    PubMed

    Carroll, Brittany; Donaldson, Jane Catalina; Obeid, Lina

    2015-05-01

    Recently, sphingolipid metabolizing enzymes have emerged as important targets of many chemotherapeutics and DNA damaging agents and therefore play significant roles in mediating the physiological response of the cell to DNA damage. In this review we will highlight points of connection between the DNA damage response (DDR) and sphingolipid metabolism; specifically how certain sphingolipid enzymes are regulated in response to DNA damage and how the bioactive lipids produced by these enzymes affect cell fate. Published by Elsevier Ltd.

  4. Sphingolipids in the DNA Damage Response

    PubMed Central

    Carroll, Brittany; Donaldson, Cat; Obeid, Lina

    2014-01-01

    Recently, sphingolipid metabolizing enzymes have emerged as important targets of many chemotherapeutics and DNA damaging agents and therefore play significant roles in mediating the physiological response of the cell to DNA damage. In this review we will highlight points of connection between the DNA damage response (DDR) and sphingolipid metabolism; specifically how certain sphingolipid enzymes are regulated in response to DNA damage and how the bioactive lipids produced by these enzymes affect cell fate. PMID:25434743

  5. DNA mismatch repair and the DNA damage response

    PubMed Central

    Li, Zhongdao; Pearlman, Alexander H.; Hsieh, Peggy

    2015-01-01

    This review discusses the role of DNA mismatch repair (MMR) in the DNA damage response (DDR) that triggers cell cycle arrest and, in some cases, apoptosis. Although the focus is on findings from mammalian cells, much has been learned from studies in other organisms including bacteria and yeast [1,2]. MMR promotes a DDR mediated by a key signaling kinase, ATM and Rad3-related (ATR), in response to various types of DNA damage including some encountered in widely used chemotherapy regimes. An introduction to the DDR mediated by ATR reveals its immense complexity and highlights the many biological and mechanistic questions that remain. Recent findings and future directions are highlighted. PMID:26704428

  6. DNA mismatch repair and the DNA damage response.

    PubMed

    Li, Zhongdao; Pearlman, Alexander H; Hsieh, Peggy

    2016-02-01

    This review discusses the role of DNA mismatch repair (MMR) in the DNA damage response (DDR) that triggers cell cycle arrest and, in some cases, apoptosis. Although the focus is on findings from mammalian cells, much has been learned from studies in other organisms including bacteria and yeast [1,2]. MMR promotes a DDR mediated by a key signaling kinase, ATM and Rad3-related (ATR), in response to various types of DNA damage including some encountered in widely used chemotherapy regimes. An introduction to the DDR mediated by ATR reveals its immense complexity and highlights the many biological and mechanistic questions that remain. Recent findings and future directions are highlighted. Published by Elsevier B.V.

  7. DNA damage checkpoint recovery and cancer development

    SciTech Connect

    Wang, Haiyong; Zhang, Xiaoshan; Teng, Lisong; Legerski, Randy J.

    2015-06-10

    Cell cycle checkpoints were initially presumed to function as a regulator of cell cycle machinery in response to different genotoxic stresses, and later found to play an important role in the process of tumorigenesis by acting as a guard against DNA over-replication. As a counterpart of checkpoint activation, the checkpoint recovery machinery is working in opposition, aiming to reverse the checkpoint activation and resume the normal cell cycle. The DNA damage response (DDR) and oncogene induced senescence (OIS) are frequently found in precancerous lesions, and believed to constitute a barrier to tumorigenesis, however, the DDR and OIS have been observed to be diminished in advanced cancers of most tissue origins. These findings suggest that when progressing from pre-neoplastic lesions to cancer, DNA damage checkpoint barriers are overridden. How the DDR checkpoint is bypassed in this process remains largely unknown. Activated cytokine and growth factor-signaling pathways were very recently shown to suppress the DDR and to promote uncontrolled cell proliferation in the context of oncovirus infection. In recent decades, data from cell line and tumor models showed that a group of checkpoint recovery proteins function in promoting tumor progression; data from patient samples also showed overexpression of checkpoint recovery proteins in human cancer tissues and a correlation with patients' poor prognosis. In this review, the known cell cycle checkpoint recovery proteins and their roles in DNA damage checkpoint recovery are reviewed, as well as their implications in cancer development. This review also provides insight into the mechanism by which the DDR suppresses oncogene-driven tumorigenesis and tumor progression. - Highlights: • DNA damage checkpoint works as a barrier to cancer initiation. • DDR machinary response to genotoxic and oncogenic stress in similar way. • Checkpoint recovery pathways provide active signaling in cell cycle control. • Checkpoint

  8. DNA damage-induced cell death: from specific DNA lesions to the DNA damage response and apoptosis.

    PubMed

    Roos, Wynand P; Kaina, Bernd

    2013-05-28

    DNA damaging agents are potent inducers of cell death triggered by apoptosis. Since these agents induce a plethora of different DNA lesions, it is firstly important to identify the specific lesions responsible for initiating apoptosis before the apoptotic executing pathways can be elucidated. Here, we describe specific DNA lesions that have been identified as apoptosis triggers, their repair and the signaling provoked by them. We discuss methylating agents such as temozolomide, ionizing radiation and cisplatin, all of them are important in cancer therapy. We show that the potentially lethal events for the cell are O(6)-methylguanine adducts that are converted by mismatch repair into DNA double-strand breaks (DSBs), non-repaired N-methylpurines and abasic sites as well as bulky adducts that block DNA replication leading to DSBs that are also directly induced following ionizing radiation. Transcriptional inhibition may also contribute to apoptosis. Cells are equipped with sensors that detect DNA damage and relay the signal via kinases to executors, who on their turn evoke a process that inhibits cell cycle progression and provokes DNA repair or, if this fails, activate the receptor and/or mitochondrial apoptotic cascade. The main DNA damage recognition factors MRN and the PI3 kinases ATM, ATR and DNA-PK, which phosphorylate a multitude of proteins and thus induce the DNA damage response (DDR), will be discussed as well as the downstream players p53, NF-κB, Akt and survivin. We review data and models describing the signaling from DNA damage to the apoptosis executing machinery and discuss the complex interplay between cell survival and death. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA damage response pathways.

    PubMed Central

    Nelson, W G; Kastan, M B

    1994-01-01

    The tumor suppressor protein p53 serves as a critical regulator of a G1 cell cycle checkpoint and of apoptosis following exposure of cells to DNA-damaging agents. The mechanism by which DNA-damaging agents elevate p53 protein levels to trigger G1/S arrest or cell death remains to be elucidated. In fact, whether damage to the DNA template itself participates in transducing the signal leading to p53 induction has not yet been demonstrated. We exposed human cell lines containing wild-type p53 alleles to several different DNA-damaging agents and found that agents which rapidly induce DNA strand breaks, such as ionizing radiation, bleomycin, and DNA topoisomerase-targeted drugs, rapidly triggered p53 protein elevations. In addition, we determined that camptothecin-stimulated trapping of topoisomerase I-DNA complexes was not sufficient to elevate p53 protein levels; rather, replication-associated DNA strand breaks were required. Furthermore, treatment of cells with the antimetabolite N(phosphonoacetyl)-L-aspartate (PALA) did not cause rapid p53 protein increases but resulted in delayed increases in p53 protein levels temporally correlated with the appearance of DNA strand breaks. Finally, we concluded that DNA strand breaks were sufficient for initiating p53-dependent signal transduction after finding that introduction of nucleases into cells by electroporation stimulated rapid p53 protein elevations. While DNA strand breaks appeared to be capable of triggering p53 induction, DNA lesions other than strand breaks did not. Exposure of normal cells and excision repair-deficient xeroderma pigmentosum cells to low doses of UV light, under conditions in which thymine dimers appear but DNA replication-associated strand breaks were prevented, resulted in p53 induction attributable to DNA strand breaks associated with excision repair. Our data indicate that DNA strand breaks are sufficient and probably necessary for p53 induction in cells with wild-type p53 alleles exposed to DNA-damaging

  10. Why Human Papillomaviruses Activate the DNA Damage Response (DDR) and How Cellular and Viral Replication Persists in the Presence of DDR Signaling.

    PubMed

    Bristol, Molly L; Das, Dipon; Morgan, Iain M

    2017-09-21

    Human papillomaviruses (HPV) require the activation of the DNA damage response (DDR) in order to undergo a successful life cycle. This activation presents a challenge for the virus and the infected cell: how does viral and host replication proceed in the presence of a DDR that ordinarily arrests replication; and how do HPV16 infected cells retain the ability to proliferate in the presence of a DDR that ordinarily arrests the cell cycle? This raises a further question: why do HPV activate the DDR? The answers to these questions are only partially understood; a full understanding could identify novel therapeutic strategies to target HPV cancers. Here, we propose that the rapid replication of an 8 kb double stranded circular genome during infection creates aberrant DNA structures that attract and activate DDR proteins. Therefore, HPV replication in the presence of an active DDR is a necessity for a successful viral life cycle in order to resolve these DNA structures on viral genomes; without an active DDR, successful replication of the viral genome would not proceed. We discuss the essential role of TopBP1 in this process and also how viral and cellular replication proceeds in HPV infected cells in the presence of DDR signals.

  11. Telomere attrition induces a DNA double-strand break damage signal that reactivates p53 transcription in HTLV-I leukemic cells.

    PubMed

    Datta, A; Nicot, C

    2008-02-14

    Persistent inhibition of telomerase induces a severe telomere shortening in human T-cell leukemia virus type-1-infected cells which signals a DNA double-strand break damage response, formation of telomere dysfunction-induced foci and activates the ATM pathway. In turn, activation of ATM and its downstream effectors led to an increased phosphorylation and acetylation on specific residues of p53 known to be involved in transcriptional activation. Disruption of Mdm2-p53 complexes coupled with increased proteasomal degradation of MDMX further enhanced reactivation of p53 transcription, ultimately leading to senescence of tumor cells. Induction of senescence in these T-cells was associated with an increased expression of p21, p16 and activation of GSK3beta. Our results support the cancer-aging model and demonstrate that the halt of aging in cancer cells can be reversed through reactivation of p53.

  12. Novel tetrahydroacridine and cyclopentaquinoline derivatives with fluorobenzoic acid moiety induce cell cycle arrest and apoptosis in lung cancer cells by activation of DNA damage signaling.

    PubMed

    Szymański, Paweł; Olszewska, Paulina; Mikiciuk-Olasik, Elżbieta; Różalski, Antoni; Maszewska, Agnieszka; Markiewicz, Łukasz; Cuchra, Magda; Majsterek, Ireneusz

    2017-03-01

    Lung cancer is still the leading cause of cancer-related death worldwide, indicating a necessity to develop more effective therapy. Acridine derivatives are potential anticancer agents due to their ability to intercalate DNA as well as inhibit enzymes involved in replication and transcription. Recently, we have evaluated anticancer activity of 32 novel acridine-based compounds. We found that the most effective were tetrahydroacridine and cyclopentaquinoline derivatives with fluorobenzoic acid containing eight and nine carbon atoms in the aliphatic chain. The aim of this study was to determine the molecular mechanisms of compounds-induced cell cycle arrest and apoptosis in human lung adenocarcinoma cells. All compounds activated Ataxia telangiectasia mutated kinase and phosphorylated histone H2A.X at Ser139 indicating DNA damage. Treatment of cells with the compounds increased phosphorylation and accumulation of p53 that regulate cell cycle as well as apoptosis. All compounds induced G0/1 cell cycle arrest by phosphorylation of cyclin-dependent kinase 2 at Tyr15 resulting in attenuation of the kinase activity. In addition, cyclopentaquinoline derivatives induced expression of cyclin-dependent kinase 2 inhibitor, p21; however, tetrahydroacridine derivatives had no significant effect on p21. Moreover, all compounds decreased the mitochondrial membrane potential accompanied by increased expression of Bax and down-regulation of Bcl-2, suggesting activation of the mitochondrial pathway. All compounds also significantly attenuated the migration rates of lung cancer cells. Collectively, our findings suggest a central role of activation of DNA damage signaling in response to new acridine derivatives treatment to induce cell cycle arrest and apoptosis in cancer cells and provide support for their further development as potential drug candidates.

  13. Escherichia coli cyclomodulin Cif induces G2 arrest of the host cell cycle without activation of the DNA-damage checkpoint-signalling pathway.

    PubMed

    Taieb, Frédéric; Nougayrède, Jean-Philippe; Watrin, Claude; Samba-Louaka, Ascel; Oswald, Eric

    2006-12-01

    The cycle inhibiting factor (Cif) belongs to a family of bacterial toxins and effector proteins, the cyclomodulins, that deregulate the host cell cycle. Upon injection into HeLa cells by the enteropathogenic Escherichia coli (EPEC) type III secretion system, Cif induces a cytopathic effect characterized by the recruitment of focal adhesion plates and the formation of stress fibres, an irreversible cell cycle arrest at the G(2)/M transition, and sustained inhibitory phosphorylation of mitosis inducer, CDK1. Here, we report that the reference typical EPEC strain B171 produces a functional Cif and that lipid-mediated delivery of purified Cif into HeLa cells induces cell cycle arrest and actin stress fibres, implying that Cif is necessary and sufficient for these effects. EPEC infection of intestinal epithelial cells (Caco-2, IEC-6) also induces cell cycle arrest and CDK1 inhibition. The effect of Cif is strikingly similar to that of cytolethal distending toxin (CDT), which inhibits the G(2)/M transition by activating the DNA-damage checkpoint pathway. However, in contrast to CDT, Cif does not cause phosphorylation of histone H2AX, which is associated with DNA double-stranded breaks. Following EPEC infection, the checkpoint effectors ATM/ATR, Chk1 and Chk2 are not activated, the levels of the CDK-activating phosphatases Cdc25B and Cdc25C are not affected, and Cdc25C is not sequestered in host cell cytoplasm. Hence, Cif activates a DNA damage-independent signalling pathway that leads to inhibition of the G(2)/M transition.

  14. Immunofluorescence Imaging of DNA Damage Response Proteins

    PubMed Central

    Bennett, Brian T.; Bewersdorf, Jörg; Knight, Kendall L.

    2013-01-01

    Immunofluorescence imaging has provided captivating visual evidence for numerous cellular events, from vesicular trafficking, organelle maturation and cell division to nuclear processes including the appearance of various proteins and chromatin components in distinct foci in response to DNA damaging agents. With the advent of new super-resolution microscope technologies such as 4Pi microscopy, standard immunofluorescence protocols deserve some reevaluation in order to take full advantage of these new technological accomplishments. Here we describe several methodological considerations that will help overcome some of the limitations that may result from the use of currently applied procedures, with particular attention paid to the analysis of possible colocalization of fluorescent signals. We conclude with an example of how application of optimized methods led to a breakthrough in super-resolution imaging of nuclear events occurring in response to DNA damage. PMID:19245833

  15. Sodium tungstate modulates ATM function upon DNA damage.

    PubMed

    Rodriguez-Hernandez, C J; Llorens-Agost, M; Calbó, J; Murguia, J R; Guinovart, J J

    2013-05-21

    Both radiotherapy and most effective chemotherapeutic agents induce different types of DNA damage. Here we show that tungstate modulates cell response to DNA damaging agents. Cells treated with tungstate were more sensitive to etoposide, phleomycin and ionizing radiation (IR), all of which induce DNA double-strand breaks (DSBs). Tungstate also modulated the activation of the central DSB signalling kinase, ATM, in response to these agents. These effects required the functionality of the Mre11-Nbs1-Rad50 (MRN) complex and were mimicked by the inhibition of PP2A phosphatase. Therefore, tungstate may have adjuvant activity when combined with DNA-damaging agents in the treatment of several malignancies.

  16. DNA Damage Response and Autophagy: A Meaningful Partnership

    PubMed Central

    Eliopoulos, Aristides G.; Havaki, Sophia; Gorgoulis, Vassilis G.

    2016-01-01

    Autophagy and the DNA damage response (DDR) are biological processes essential for cellular and organismal homeostasis. Herein, we summarize and discuss emerging evidence linking DDR to autophagy. We highlight published data suggesting that autophagy is activated by DNA damage and is required for several functional outcomes of DDR signaling, including repair of DNA lesions, senescence, cell death, and cytokine secretion. Uncovering the mechanisms by which autophagy and DDR are intertwined provides novel insight into the pathobiology of conditions associated with accumulation of DNA damage, including cancer and aging, and novel concepts for the development of improved therapeutic strategies against these pathologies. PMID:27917193

  17. Interactions between DNA damage, repair, and transcription.

    PubMed

    Khobta, Andriy; Epe, Bernd

    2012-08-01

    This review addresses a variety of mechanisms by which DNA repair interacts with transcription and vice versa. Blocking of transcriptional elongation is the best studied of these mechanisms. Transcription recovery after damage therefore has often been used as a surrogate marker of DNA repair in cells. However, it has become evident that relationships between DNA damage, repair, and transcription are more complex due to various indirect effects of DNA damage on gene transcription. These include inhibition of transcription by DNA repair intermediates as well as regulation of transcription and of the epigenetic status of the genes by DNA repair-related mechanisms. In addition, since transcription is emerging as an important endogenous source of DNA damage in cells, we briefly summarise recent advances in understanding the nature of co-transcriptionally induced DNA damage and the DNA repair pathways involved. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. The cAMP signaling system inhibits the repair of {gamma}-ray-induced DNA damage by promoting Epac1-mediated proteasomal degradation of XRCC1 protein in human lung cancer cells

    SciTech Connect

    Cho, Eun-Ah; Juhnn, Yong-Sung

    2012-06-01

    Highlights: Black-Right-Pointing-Pointer cAMP signaling system inhibits repair of {gamma}-ray-induced DNA damage. Black-Right-Pointing-Pointer cAMP signaling system inhibits DNA damage repair by decreasing XRCC1 expression. Black-Right-Pointing-Pointer cAMP signaling system decreases XRCC1 expression by promoting its proteasomal degradation. Black-Right-Pointing-Pointer The promotion of XRCC1 degradation by cAMP signaling system is mediated by Epac1. -- Abstract: Cyclic AMP is involved in the regulation of metabolism, gene expression, cellular growth and proliferation. Recently, the cAMP signaling system was found to modulate DNA-damaging agent-induced apoptosis by regulating the expression of Bcl-2 family proteins and inhibitors of apoptosis. Thus, we hypothesized that the cAMP signaling may modulate DNA repair activity, and we investigated the effects of the cAMP signaling system on {gamma}-ray-induced DNA damage repair in lung cancer cells. Transient expression of a constitutively active mutant of stimulatory G protein (G{alpha}sQL) or treatment with forskolin, an adenylyl cyclase activator, augmented radiation-induced DNA damage and inhibited repair of the damage in H1299 lung cancer cells. Expression of G{alpha}sQL or treatment with forskolin or isoproterenol inhibited the radiation-induced expression of the XRCC1 protein, and exogenous expression of XRCC1 abolished the DNA repair-inhibiting effect of forskolin. Forskolin treatment promoted the ubiquitin and proteasome-dependent degradation of the XRCC1 protein, resulting in a significant decrease in the half-life of the protein after {gamma}-ray irradiation. The effect of forskolin on XRCC1 expression was not inhibited by PKA inhibitor, but 8-pCPT-2 Prime -O-Me-cAMP, an Epac-selective cAMP analog, increased ubiquitination of XRCC1 protein and decreased XRCC1 expression. Knockdown of Epac1 abolished the effect of 8-pCPT-2 Prime -O-Me-cAMP and restored XRCC1 protein level following {gamma}-ray irradiation. From

  19. Electrochemical DNA Sensors for Detection of DNA Damage

    PubMed Central

    Diculescu, Victor Constantin; Paquim, Ana-Maria Chiorcea; Brett, Ana Maria Oliveira

    2005-01-01

    Electrochemical devices have received particular attention due to their rapid detection and great sensitivity for the evaluation of DNA-hazard compounds interaction mechanisms. Several types of bioanalytical method use nucleic acids probes to detect DNA damage. This article reviews current directions and strategies in the development and applications of electrochemical DNA sensors for the detection of DNA damage.

  20. Transcription and DNA Damage: Holding Hands or Crossing Swords?

    PubMed

    D'Alessandro, Giuseppina; d'Adda di Fagagna, Fabrizio

    2016-11-05

    Transcription has classically been considered a potential threat to genome integrity. Collision between transcription and DNA replication machinery, and retention of DNA:RNA hybrids, may result in genome instability. On the other hand, it has been proposed that active genes repair faster and preferentially via homologous recombination. Moreover, while canonical transcription is inhibited in the proximity of DNA double-strand breaks, a growing body of evidence supports active non-canonical transcription at DNA damage sites. Small non-coding RNAs accumulate at DNA double-strand break sites in mammals and other organisms, and are involved in DNA damage signaling and repair. Furthermore, RNA binding proteins are recruited to DNA damage sites and participate in the DNA damage response. Here, we discuss the impact of transcription on genome stability, the role of RNA binding proteins at DNA damage sites, and the function of small non-coding RNAs generated upon damage in the signaling and repair of DNA lesions. Copyright © 2016. Published by Elsevier Ltd.

  1. Chromatin perturbations during the DNA damage response in higher eukaryotes.

    PubMed

    Bakkenist, Christopher J; Kastan, Michael B

    2015-12-01

    The DNA damage response is a widely used term that encompasses all signaling initiated at DNA lesions and damaged replication forks as it extends to orchestrate DNA repair, cell cycle checkpoints, cell death and senescence. ATM, an apical DNA damage signaling kinase, is virtually instantaneously activated following the introduction of DNA double-strand breaks (DSBs). The MRE11-RAD50-NBS1 (MRN) complex, which has a catalytic role in DNA repair, and the KAT5 (Tip60) acetyltransferase are required for maximal ATM kinase activation in cells exposed to low doses of ionizing radiation. The sensing of DNA lesions occurs within a highly complex and heterogeneous chromatin environment. Chromatin decondensation and histone eviction at DSBs may be permissive for KAT5 binding to H3K9me3 and H3K36me3, ATM kinase acetylation and activation. Furthermore, chromatin perturbation may be a prerequisite for most DNA repair. Nucleosome disassembly during DNA repair was first reported in the 1970s by Smerdon and colleagues when nucleosome rearrangement was noted during the process of nucleotide excision repair of UV-induced DNA damage in human cells. Recently, the multi-functional protein nucleolin was identified as the relevant histone chaperone required for partial nucleosome disruption at DBSs, the recruitment of repair enzymes and for DNA repair. Notably, ATM kinase is activated by chromatin perturbations induced by a variety of treatments that do not directly cause DSBs, including treatment with histone deacetylase inhibitors. Central to the mechanisms that activate ATR, the second apical DNA damage signaling kinase, outside of a stalled and collapsed replication fork in S-phase, is chromatin decondensation and histone eviction associated with DNA end resection at DSBs. Thus, a stress that is common to both ATM and ATR kinase activation is chromatin perturbations, and we argue that chromatin perturbations are both sufficient and required for induction of the DNA damage response.

  2. Reshaping chromatin after DNA damage: the choreography of histone proteins.

    PubMed

    Polo, Sophie E

    2015-02-13

    DNA damage signaling and repair machineries operate in a nuclear environment where DNA is wrapped around histone proteins and packaged into chromatin. Understanding how chromatin structure is restored together with the DNA sequence during DNA damage repair has been a topic of intense research. Indeed, chromatin integrity is central to cell functions and identity. However, chromatin shows remarkable plasticity in response to DNA damage. This review presents our current knowledge of chromatin dynamics in the mammalian cell nucleus in response to DNA double strand breaks and UV lesions. I provide an overview of the key players involved in regulating histone dynamics in damaged chromatin regions, focusing on histone chaperones and their concerted action with histone modifiers, chromatin remodelers and repair factors. I also discuss how these dynamics contribute to reshaping chromatin and, by altering the chromatin landscape, may affect the maintenance of epigenetic information.

  3. Rapid Approaches Towards DNA Damage Analysis

    PubMed Central

    Crews, N.; Paidipalli, Manasa

    2013-01-01

    The severe effects of DNA damage on human health have led to a tremendous amount of research being focused. Owing to the importance of damage detection, different approaches for the detection and quantification of the damaged DNA will be presented. In this work, we have modeled DNA damage using well-known mutagens: UV radiation to create photoproducts and restriction enzyme digestion to create double strand breaks. We will show that quantitative PCR (qPCR), a widely known measure of detecting the presence of the target DNA can be used to quantify photoproducts/intramolecular DNA damage. Our results indicate that a comparison of the initial concentration available in the undamaged and the damaged samples can be used to reveal the effect of damaged DNA in its amplification. By analyzing multiple regions using this technique, their relative susceptibility to damage can be measured. We also show that high-resolution melting analysis (HRMA), a measure of the bond energy between two DNA strands, can be used to quantify double strand breaks. The strand breaks resulted in a change in the overall distribution of the bond energy thus causing variations in the melting profile. HRMA has also been examined to compare DNA damage resulting from UV-A, UV-B and UV-C irradiation. The evaluation techniques demonstrated can potentially be extended to various types of DNA damage.

  4. Histone modifications in DNA damage response.

    PubMed

    Cao, Lin-Lin; Shen, Changchun; Zhu, Wei-Guo

    2016-03-01

    DNA damage is a relatively common event in eukaryotic cell and may lead to genetic mutation and even cancer. DNA damage induces cellular responses that enable the cell either to repair the damaged DNA or cope with the damage in an appropriate way. Histone proteins are also the fundamental building blocks of eukaryotic chromatin besides DNA, and many types of post-translational modifications often occur on tails of histones. Although the function of these modifications has remained elusive, there is ever-growing studies suggest that histone modifications play vital roles in several chromatin-based processes, such as DNA damage response. In this review, we will discuss the main histone modifications, and their functions in DNA damage response.

  5. Structural Determinants of Human FANCF Protein That Function in the Assembly of a DNA Damage Signaling Complex

    SciTech Connect

    Kowal,P.; Gurtan, A.; Stuckert, P.; D'Andrea, A.; Ellenberger, T.

    2007-01-01

    Fanconi anemia (FA) is a rare autosomal recessive and X-linked chromosomal instability disorder. At least eight FA proteins (FANCA, B, C, E, F, G, L, and M) form a nuclear core complex required for monoubiquitination of a downstream protein, FANCD2. The human FANCF protein reportedly functions as a molecular adaptor within the FA nuclear complex, bridging between the subcomplexes A:G and C:E. Our x-ray crystallographic studies of the C-terminal domain of FANCF reveal a helical repeat structure similar to the Cand1 regulator of the Cul1-Rbx1-Skp1-Fbox(Skp2) ubiquitin ligase complex. Two C-terminal loops of FANCF are essential for monoubiquitination of FANCD2 and normal cellular resistance to the DNA cross-linking agent mitomycin C. FANCF mutants bearing amino acid substitutions in this C-terminal surface fail to interact with other components of the FA complex, indicating that this surface is critical for the proper assembly of the FA core complex.

  6. DNA damage in cells exhibiting radiation-induced genomic instability

    SciTech Connect

    Keszenman, Deborah J.; Kolodiuk, Lucia; Baulch, Janet E.

    2015-02-22

    Cells exhibiting radiation induced genomic instability exhibit varied spectra of genetic and chromosomal aberrations. Even so, oxidative stress remains a common theme in the initiation and/or perpetuation of this phenomenon. Isolated oxidatively modified bases, abasic sites, DNA single strand breaks and clustered DNA damage are induced in normal mammalian cultured cells and tissues due to endogenous reactive oxygen species generated during normal cellular metabolism in an aerobic environment. While sparse DNA damage may be easily repaired, clustered DNA damage may lead to persistent cytotoxic or mutagenic events that can lead to genomic instability. In this study, we tested the hypothesis that DNA damage signatures characterised by altered levels of endogenous, potentially mutagenic, types of DNA damage and chromosomal breakage are related to radiation-induced genomic instability and persistent oxidative stress phenotypes observed in the chromosomally unstable progeny of irradiated cells. The measurement of oxypurine, oxypyrimidine and abasic site endogenous DNA damage showed differences in non-double-strand breaks (DSB) clusters among the three of the four unstable clones evaluated as compared to genomically stable clones and the parental cell line. These three unstable clones also had increased levels of DSB clusters. The results of this study demonstrate that each unstable cell line has a unique spectrum of persistent damage and lead us to speculate that alterations in DNA damage signaling and repair may be related to the perpetuation of genomic instability.

  7. DNA damage in cells exhibiting radiation-induced genomic instability

    DOE PAGES

    Keszenman, Deborah J.; Kolodiuk, Lucia; Baulch, Janet E.

    2015-02-22

    Cells exhibiting radiation induced genomic instability exhibit varied spectra of genetic and chromosomal aberrations. Even so, oxidative stress remains a common theme in the initiation and/or perpetuation of this phenomenon. Isolated oxidatively modified bases, abasic sites, DNA single strand breaks and clustered DNA damage are induced in normal mammalian cultured cells and tissues due to endogenous reactive oxygen species generated during normal cellular metabolism in an aerobic environment. While sparse DNA damage may be easily repaired, clustered DNA damage may lead to persistent cytotoxic or mutagenic events that can lead to genomic instability. In this study, we tested the hypothesismore » that DNA damage signatures characterised by altered levels of endogenous, potentially mutagenic, types of DNA damage and chromosomal breakage are related to radiation-induced genomic instability and persistent oxidative stress phenotypes observed in the chromosomally unstable progeny of irradiated cells. The measurement of oxypurine, oxypyrimidine and abasic site endogenous DNA damage showed differences in non-double-strand breaks (DSB) clusters among the three of the four unstable clones evaluated as compared to genomically stable clones and the parental cell line. These three unstable clones also had increased levels of DSB clusters. The results of this study demonstrate that each unstable cell line has a unique spectrum of persistent damage and lead us to speculate that alterations in DNA damage signaling and repair may be related to the perpetuation of genomic instability.« less

  8. Using DNA damage to monitor water environment

    NASA Astrophysics Data System (ADS)

    Zhu, Liyan; Huang, Ying; Liu, Guangxing

    2005-09-01

    DNA damage of aquatic organisms living in polluted environments can be used as a biomarker of the genotoxicity of toxic agents to organisms. This technique has been playing an important role in ecotoxicological study and environmental risk assessment. In this article, main types of DNA damage caused by pollutants in water environments were reviewed; methods of detecting DNA damage were also documented for water environmental monitoring.

  9. DNA damage response, redox status and hematopoiesis.

    PubMed

    Weiss, Cary N; Ito, Keisuke

    2014-01-01

    The ability of hematopoietic stem cells (HSCs) to self-renew and differentiate into progenitors is essential for homeostasis of the hematopoietic system. The longevity of HSCs makes them vulnerable to accumulating DNA damage, which may be leukemogenic or result in senescence and cell death. Additionally, the ability of HSCs to self-renew and differentiate allows DNA damage to spread throughout the hematologic system, leaving the organism vulnerable to disease. In this review we discuss cell fate decisions made in the face of DNA damage and other cellular stresses, and the role of reactive oxygen species in the long-term maintenance of HSCs and their DNA damage response.

  10. ISWI chromatin remodeling complexes in the DNA damage response.

    PubMed

    Aydin, Özge Z; Vermeulen, Wim; Lans, Hannes

    2014-01-01

    Regulation of chromatin structure is an essential component of the DNA damage response (DDR), which effectively preserves the integrity of DNA by a network of multiple DNA repair and associated signaling pathways. Within the DDR, chromatin is modified and remodeled to facilitate efficient DNA access, to control the activity of repair proteins and to mediate signaling. The mammalian ISWI family has recently emerged as one of the major ATP-dependent chromatin remodeling complex families that function in the DDR, as it is implicated in at least 3 major DNA repair pathways: homologous recombination, non-homologous end-joining and nucleotide excision repair. In this review, we discuss the various manners through which different ISWI complexes regulate DNA repair and how they are targeted to chromatin containing damaged DNA.

  11. p63 involvement in poly(ADP-ribose) polymerase 1 signaling of topoisomerase I-dependent DNA damage in carcinoma cells.

    PubMed

    Montariello, Daniela; Troiano, Annaelena; Malanga, Maria; Calabrò, Viola; Quesada, Piera

    2013-04-01

    Poly(ADP-ribose)polymerase 1 (PARP-1) inhibitors are thought as breakthrough for cancer treatment in solid tumors such as breast cancer through their effects on PARP's enzymatic activity. Our previous findings showed that the hydrophilic PARP inhibitor PJ34 enhances the sensitivity of p53 proficient MCF7 breast carcinoma cells to topotecan, a DNA Topoisomerase I (TOP 1) inhibitor. In the present study, we combine the classical TOP 1 poison camptothecin or its water-soluble derivative topotecan with PJ34 to investigate the potentiation of chemotherapeutic efficiency in MCF7 (p53(WT)), MDA-MB231 (p53(mut)) breast carcinoma cells and SCC022 (p53(null)) squamous carcinoma cells. We show that, following TPT-PJ34 combined treatment, MCF7 cells exhibit apoptotic death while MDA-MB231 and SCC022 cells are more resistant to these agents. Specifically, in MCF7, (i) PJ34 in combination with TPT causes a G2/M cell cycle arrest followed by massive apoptosis; (ii) PJ34 addition reverts TPT-dependent PARP-1 automodification and triggers caspase-dependent PARP-1 proteolysis; (iii) TPT, used as a single agent, stimulates p53 expression while in combination with PJ34 increases p53, TAp63α and TAp63γ protein levels with a concomitant reduction of MDM2 protein. The identification of p63 proteins as new players involved in the cancer cell response to TPT-PJ34 is relevant for a better understanding of the PARP1-dependent signaling of DNA damage. Furthermore, our data indicate that, in response to TPT-PJ34 combined chemotherapy, a functional cooperation between p53 and TAp63 proteins may occur and be essential to trigger apoptotic cell death.

  12. Guarding chromosomes from oxidative DNA damage to the very end.

    PubMed

    Tan, Rong; Lan, Li

    2016-07-01

    The ends of each chromosome are capped by the telomere assembly to protect chromosomal integrity from telomere attrition and DNA damage. In response to DNA damage, DNA repair factors are enriched at damage sites by a sophisticated signaling and recruitment cascade. However, DNA damage response at telomeres is different from non-telomeric region of genomic DNA due to specialized sequences and structures of the telomeres. In the course of normal DNA replication or DNA damage repair, both the telomere shelterin protein complex and the condensed telomeric chromatin structure in mammalian cells are modified to protect telomeres from exposing free DNA ends which are subject to both telemere shortening and chromosome end fusion. Initiation of either homologous recombination or non-homologous end joint repair at telomeres requires disassembling and/or post-translational modifications of the shelterin complex and telomeric chromatin. In addition, cancer cells utilize distinct mechanisms to maintain telomere length and cell survival upon damage. In this review, we summarize current studies that focus on telomere end protection and telomere DNA repair using different methodologies to model telomere DNA damage and disruption. These include genetic ablation of sheltering proteins, targeting endonuclease to telomeres, and delivering oxidative damage directly. These different approaches, when combined, offer better understanding of the mechanistic differences in DNA damage response between telomeric and genomic DNA, which will provide new hope to identify potential cancer therapeutic targets to curtail cancer cell proliferation via induction of telomere dysfunctions. © The Author 2016. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. DNA damage response inhibition at dysfunctional telomeres by modulation of telomeric DNA damage response RNAs

    PubMed Central

    Rossiello, Francesca; Aguado, Julio; Sepe, Sara; Iannelli, Fabio; Nguyen, Quan; Pitchiaya, Sethuramasundaram; Carninci, Piero; d’Adda di Fagagna, Fabrizio

    2017-01-01

    The DNA damage response (DDR) is a set of cellular events that follows the generation of DNA damage. Recently, site-specific small non-coding RNAs, also termed DNA damage response RNAs (DDRNAs), have been shown to play a role in DDR signalling and DNA repair. Dysfunctional telomeres activate DDR in ageing, cancer and an increasing number of identified pathological conditions. Here we show that, in mammals, telomere dysfunction induces the transcription of telomeric DDRNAs (tDDRNAs) and their longer precursors from both DNA strands. DDR activation and maintenance at telomeres depend on the biogenesis and functions of tDDRNAs. Their functional inhibition by sequence-specific antisense oligonucleotides allows the unprecedented telomere-specific DDR inactivation in cultured cells and in vivo in mouse tissues. In summary, these results demonstrate that tDDRNAs are induced at dysfunctional telomeres and are necessary for DDR activation and they validate the viability of locus-specific DDR inhibition by targeting DDRNAs. PMID:28239143

  14. DNA intercalator BMH-21 inhibits RNA polymerase I independent of DNA damage response.

    PubMed

    Colis, Laureen; Peltonen, Karita; Sirajuddin, Paul; Liu, Hester; Sanders, Sara; Ernst, Glen; Barrow, James C; Laiho, Marikki

    2014-06-30

    DNA intercalation is a major therapeutic modality for cancer therapeutic drugs. The therapeutic activity comes at a cost of normal tissue toxicity and genotoxicity. We have recently described a planar heterocyclic small molecule DNA intercalator, BMH-21, that binds ribosomal DNA and inhibits RNA polymerase I (Pol I) transcription. Despite DNA intercalation, BMH-21 does not cause phosphorylation of H2AX, a key biomarker activated in DNA damage stress. Here we assessed whether BMH-21 activity towards expression and localization of Pol I marker proteins depends on DNA damage signaling and repair pathways. We show that BMH-21 effects on the nucleolar stress response were independent of major DNA damage associated PI3-kinase pathways, ATM, ATR and DNA-PKcs. However, testing a series of BMH-21 derivatives with alterations in its N,N-dimethylaminocarboxamide arm showed that several derivatives had acquired the property to activate ATM- and DNA-PKcs -dependent damage sensing and repair pathways while their ability to cause nucleolar stress and affect cell viability was greatly reduced. The data show that BMH-21 is a chemically unique DNA intercalator that has high bioactivity towards Pol I inhibition without activation or dependence of DNA damage stress. The findings also show that interference with DNA and DNA metabolic processes can be exploited therapeutically without causing DNA damage.

  15. Generation of DNA-damaging reactive oxygen species via the autoxidation of hydrogen sulfide under physiologically relevant conditions: chemistry relevant to both the genotoxic and cell signaling properties of H(2)S.

    PubMed

    Hoffman, Marjorie; Rajapakse, Anuruddha; Shen, Xiulong; Gates, Kent S

    2012-08-20

    Hydrogen sulfide (H(2)S) has long been known for its toxic properties; however, in recent years, evidence has emerged that this small, gaseous molecule may serve as an endogenous cell-signaling agent. Though perhaps surprising in light of its potential role as an endogenous signaling agent, a number of studies have provided evidence that H(2)S is a DNA-damaging mutagen. In the work reported here, the chemical mechanisms of DNA damage by H(2)S were examined. Using a plasmid-based DNA strand cleavage assay, we found that micromolar concentrations of H(2)S generated single-strand DNA cleavage. Mechanistic studies indicate that this process involved autoxidation of H(2)S to generate superoxide, hydrogen peroxide, and, ultimately, the well-known DNA-damaging agent hydroxyl radical via a trace metal-mediated Fenton-type reaction. Strand cleavage by H(2)S proceeded in the presence of physiological thiol concentrations, and the known byproducts of H(2)S oxidation such as thiosulfate, sulfite, and sulfate do not contribute to the strand cleavage process. However, initially generated oxidation products such as persulfide (S(2)(2-)) likely undergo rapid autoxidation reactions that contribute to the generation of superoxide. The potential relevance of autoxidation processes to the genotoxic and cell signaling properties of H(2)S is discussed.

  16. HDAC inhibitors: roles of DNA damage and repair.

    PubMed

    Robert, Carine; Rassool, Feyruz V

    2012-01-01

    Histone deacetylase inhibitors (HDACis) increase gene expression through induction of histone acetylation. However, it remains unclear whether specific gene expression changes determine the apoptotic response following HDACis administration. Herein, we discuss evidence that HDACis trigger in cancer and leukemia cells not only widespread histone acetylation but also actual increases in reactive oxygen species (ROS) and DNA damage that are further increased following treatment with DNA-damaging chemotherapies. While the origins of ROS production are not completely understood, mechanisms, including inflammation and altered antioxidant signaling, have been reported. While the generation of ROS is an explanation, at least in part, for the source of DNA damage observed with HDACi treatment, DNA damage can also be independently induced by changes in the DNA repair activity and chromatin remodeling factors. Recent development of sirtuin inhibitors (SIRTis) has shown that, similar to HDACis, these drugs induce increases in ROS and DNA damage used singly, or in combination with HDACis and other drugs. Thus, induction of apoptosis by HDACis/SIRTis may result through oxidative stress and DNA damage mechanisms in addition to direct activation of apoptosis-inducing genes. Nevertheless, while DNA damage and stress responses could be of interest as markers for clinical responses, they have yet to be validated as markers for responses to HDACi treatment in clinical trials, alone, and in combination.

  17. Oxidative DNA damage & repair: An introduction.

    PubMed

    Cadet, Jean; Davies, Kelvin J A

    2017-06-01

    This introductory article should be viewed as a prologue to the Free Radical Biology & Medicine Special Issue devoted to the important topic of Oxidatively Damaged DNA and its Repair. This special issue is dedicated to Professor Tomas Lindahl, co-winner of the 2015 Nobel Prize in Chemistry for his seminal discoveries in the area repair of oxidatively damaged DNA. In the past several years it has become abundantly clear that DNA oxidation is a major consequence of life in an oxygen-rich environment. Concomitantly, survival in the presence of oxygen, with the constant threat of deleterious DNA mutations and deletions, has largely been made possible through the evolution of a vast array of DNA repair enzymes. The articles in this Oxidatively Damaged DNA & Repair special issue detail the reactions by which intracellular DNA is oxidatively damaged, and the enzymatic reactions and pathways by which living organisms survive such assaults by repair processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Graphene oxide nanosheets induce DNA damage and activate the base excision repair (BER) signaling pathway both in vitro and in vivo.

    PubMed

    Lu, Chun-Jiao; Jiang, Xue-Feng; Junaid, Muhammad; Ma, Yan-Bo; Jia, Pan-Pan; Wang, Hua-Bin; Pei, De-Sheng

    2017-10-01

    Graphene oxide (GO) has widespread concerns in the fields of biological sciences and medical applications. Currently, studies have reported that excessive GO exposure can cause cellular DNA damage through reactive oxygen species (ROS) generation. However, DNA damage mediated response of the base excision repair (BER) pathway due to GO exposure is not elucidated yet. Therefore, we exposed HEK293T cells and zebrafish embryos to different concentrations of GO for 24 h, and transcriptional profiles of BER pathway genes, DNA damage, and cell viability were analyzed both in vitro and in vivo. Moreover, the deformation of HEK293T cells before and after GO exposure was also investigated using atomic force microscopy (AFM) to identify the physical changes occurred in the cells' structure. CCK-8 and Comet assay revealed the significant decrease in cell viability and increase in DNA damage in HEK293T cells at higher GO doses (25 and 50 μg/mL). Among the investigated genetic markers in HEK293T cells, BER pathway genes (APEX1, OGG1, CREB1, UNG) were significantly up-regulated upon exposure to higher GO dose (50 μg/mL), however, low exposure concentration (5, 25 μg/mL) failed to induce significant genetic induction except for CREB1 at 25 μg/mL. Additionally, the viscosity of HEK293T cells decreased upon GO exposure. In zebrafish, the results of up-regulated gene expressions (apex1, ogg1, polb, creb1) were consistent with those in the HEK293T cells. Taken all together, the exposure to elevated GO concentration could cause DNA damage to HEK293T cells and zebrafish embryos; BER pathway could be proposed as the possible inner response mechanism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Cellular responses to environmental DNA damage

    SciTech Connect

    Not Available

    1994-08-01

    This volume contains the proceedings of the conference entitled Cellular Responses to Environmental DNA Damage held in Banff,Alberta December 1--6, 1991. The conference addresses various aspects of DNA repair in sessions titled DNA repair; Basic Mechanisms; Lesions; Systems; Inducible Responses; Mutagenesis; Human Population Response Heterogeneity; Intragenomic DNA Repair Heterogeneity; DNA Repair Gene Cloning; Aging; Human Genetic Disease; and Carcinogenesis. Individual papers are represented as abstracts of about one page in length.

  20. DNA Damage in Plant Herbarium Tissue

    PubMed Central

    Staats, Martijn; Cuenca, Argelia; Richardson, James E.; Vrielink-van Ginkel, Ria; Petersen, Gitte; Seberg, Ole; Bakker, Freek T.

    2011-01-01

    Dried plant herbarium specimens are potentially a valuable source of DNA. Efforts to obtain genetic information from this source are often hindered by an inability to obtain amplifiable DNA as herbarium DNA is typically highly degraded. DNA post-mortem damage may not only reduce the number of amplifiable template molecules, but may also lead to the generation of erroneous sequence information. A qualitative and quantitative assessment of DNA post-mortem damage is essential to determine the accuracy of molecular data from herbarium specimens. In this study we present an assessment of DNA damage as miscoding lesions in herbarium specimens using 454-sequencing of amplicons derived from plastid, mitochondrial, and nuclear DNA. In addition, we assess DNA degradation as a result of strand breaks and other types of polymerase non-bypassable damage by quantitative real-time PCR. Comparing four pairs of fresh and herbarium specimens of the same individuals we quantitatively assess post-mortem DNA damage, directly after specimen preparation, as well as after long-term herbarium storage. After specimen preparation we estimate the proportion of gene copy numbers of plastid, mitochondrial, and nuclear DNA to be 2.4–3.8% of fresh control DNA and 1.0–1.3% after long-term herbarium storage, indicating that nearly all DNA damage occurs on specimen preparation. In addition, there is no evidence of preferential degradation of organelle versus nuclear genomes. Increased levels of C→T/G→A transitions were observed in old herbarium plastid DNA, representing 21.8% of observed miscoding lesions. We interpret this type of post-mortem DNA damage-derived modification to have arisen from the hydrolytic deamination of cytosine during long-term herbarium storage. Our results suggest that reliable sequence data can be obtained from herbarium specimens. PMID:22163018

  1. DNA damage in major psychiatric diseases

    PubMed Central

    Raza, Muhammad Ummear; Tufan, Turan; Wang, Yan; Hill, Christopher; Zhu, Meng-Yang

    2016-01-01

    Human cells are exposed to exogenous insults and continuous production of different metabolites. These insults and unwanted metabolic products might interfere with the stability of genomic DNA. Recently many studies demonstrated that different psychiatric disorders show substantially high level of oxidative DNA damage in the brain accompanied with morphological and functional alterations. It reveals that damaged genomic DNA may contribute to the pathophysiology of these mental illnesses. Here we review the role of oxidative damage and reduced antioxidant ability in some vastly studied psychiatric disorders and emphasize the inclusion of treatment options involving DNA repair. In addition, while most currently used antidepressants are based on the manipulation of the neurotransmitter regulation in managing different mental abnormalities, they are able to prevent or reverse neurotoxin-induced DNA damage. Therefore, it may be plausible to target on genomic DNA alterations for psychiatric therapies, which is of pivotal importance for future anti-psychiatric drug development. PMID:27126805

  2. Global chromatin fibre compaction in response to DNA damage

    SciTech Connect

    Hamilton, Charlotte; Hayward, Richard L.; Gilbert, Nick

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Robust KAP1 phosphorylation in response to DNA damage in HCT116 cells. Black-Right-Pointing-Pointer DNA repair foci are found in soluble chromatin. Black-Right-Pointing-Pointer Biophysical analysis reveals global chromatin fibre compaction after DNA damage. Black-Right-Pointing-Pointer DNA damage is accompanied by rapid linker histone dephosphorylation. -- Abstract: DNA is protected by packaging it into higher order chromatin fibres, but this can impede nuclear processes like DNA repair. Despite considerable research into the factors required for signalling and repairing DNA damage, it is unclear if there are concomitant changes in global chromatin fibre structure. In human cells DNA double strand break (DSB) formation triggers a signalling cascade resulting in H2AX phosphorylation ({gamma}H2AX), the rapid recruitment of chromatin associated proteins and the subsequent repair of damaged sites. KAP1 is a transcriptional corepressor and in HCT116 cells we found that after DSB formation by chemicals or ionising radiation there was a wave of, predominantly ATM dependent, KAP1 phosphorylation. Both KAP1 and phosphorylated KAP1 were readily extracted from cells indicating they do not have a structural role and {gamma}H2AX was extracted in soluble chromatin indicating that sites of damage are not attached to an underlying structural matrix. After DSB formation we did not find a concomitant change in the sensitivity of chromatin fibres to micrococcal nuclease digestion. Therefore to directly investigate higher order chromatin fibre structures we used a biophysical sedimentation technique based on sucrose gradient centrifugation to compare the conformation of chromatin fibres isolated from cells before and after DNA DSB formation. After damage we found global chromatin fibre compaction, accompanied by rapid linker histone dephosphorylation, consistent with fibres being more regularly folded or fibre deformation being stabilized by

  3. Dyskeratosis congenita and the DNA damage response

    PubMed Central

    Kirwan, Michael; Beswick, Richard; Walne, Amanda J; Hossain, Upal; Casimir, Colin; Vulliamy, Tom; Dokal, Inderjeet

    2011-01-01

    Dyskeratosis congenita (DC) is a heterogeneous bone marrow failure disorder with known mutations in components of telomerase and telomere shelterin. Recent work in a mouse model with a dyskerin mutation has implicated an increased DNA damage response as part of the cellular pathology, while mouse models with Terc and Tert mutations displayed a normal response. To clarify how these contradictory results might apply to DC pathology in humans, we studied the cellular phenotype in primary cells from DC patients of several genetic subtypes, focussing on T lymphocytes to remain close to the haematopoietic system. We observed novel cell cycle abnormalities in conjunction with impaired growth and an increase in apoptosis. Using flow cytometry and confocal microscopy we examined induction of the DNA damage proteins γ-H2AX and 53BP1 and the cell cycle protein TP53 (p53). We found an increase in damage foci at telomeres in lymphocytes and an increase in the basal level of DNA damage in fibroblasts, but crucially no increased response to DNA damaging agents in either cell type. As the response to induced DNA damage was normal and levels of global DNA damage were inconsistent between cell types, DNA damage may contribute differently to the pathology in different tissues. PMID:21477209

  4. Apoptosis and DNA damage in human spermatozoa

    PubMed Central

    Aitken, R John; Koppers, Adam J

    2011-01-01

    DNA damage is frequently encountered in spermatozoa of subfertile males and is correlated with a range of adverse clinical outcomes including impaired fertilization, disrupted preimplantation embryonic development, increased rates of miscarriage and an enhanced risk of disease in the progeny. The etiology of DNA fragmentation in human spermatozoa is closely correlated with the appearance of oxidative base adducts and evidence of impaired spermiogenesis. We hypothesize that oxidative stress impedes spermiogenesis, resulting in the generation of spermatozoa with poorly remodelled chromatin. These defective cells have a tendency to default to an apoptotic pathway associated with motility loss, caspase activation, phosphatidylserine exteriorization and the activation of free radical generation by the mitochondria. The latter induces lipid peroxidation and oxidative DNA damage, which then leads to DNA fragmentation and cell death. The physical architecture of spermatozoa prevents any nucleases activated as a result of this apoptotic process from gaining access to the nuclear DNA and inducing its fragmentation. It is for this reason that a majority of the DNA damage encountered in human spermatozoa seems to be oxidative. Given the important role that oxidative stress seems to have in the etiology of DNA damage, there should be an important role for antioxidants in the treatment of this condition. If oxidative DNA damage in spermatozoa is providing a sensitive readout of systemic oxidative stress, the implications of these findings could stretch beyond our immediate goal of trying to minimize DNA damage in spermatozoa as a prelude to assisted conception therapy. PMID:20802502

  5. Oxidative DNA damage and repair in teratogenesis and neurodevelopmental deficits.

    PubMed

    Wells, Peter G; McCallum, Gordon P; Lam, Kyla C H; Henderson, Jeffrey T; Ondovcik, Stephanie L

    2010-06-01

    Several teratogenic agents, including ionizing radiation and xenobiotics such as phenytoin, benzo[a]pyrene, thalidomide, and methamphetamine, can initiate the formation of reactive oxygen species (ROS) that oxidatively damage cellular macromolecules including DNA. Oxidative DNA damage, and particularly the most prevalent 8-oxoguanine lesion, may adversely affect development, likely via alterations in gene transcription rather than via a mutational mechanism. Contributions from oxidative DNA damage do not exclude roles for alternative mechanisms of initiation like receptor-mediated processes or the formation of covalent xenobiotic-macromolecular adducts, damage to other macromolecular targets like proteins and lipids, and other effects of ROS like altered signal transduction. Even in the absence of teratogen exposure, endogenous developmental oxidative stress can have embryopathic consequences in the absence of key pathways for detoxifying ROS or repairing DNA damage. Critical proteins in pathways for DNA damage detection/repair signaling, like p53 and ataxia telangiectasia mutated, and DNA repair itself, like oxoguanine glycosylase 1 and Cockayne syndrome B, can often, but not always, protect the embryo from ROS-initiating teratogens. Protection may be variably dependent upon such factors as the nature of the teratogen and its concentration within the embryo, the stage of development, the species, strain, gender, target tissue and cell type, among other factors.

  6. Application of bifurcation theory and siRNA-based control signal to restore the proper response of cancer cells to DNA damage.

    PubMed

    Kozłowska, Emilia; Puszynski, Krzysztof

    2016-11-07

    Many diseases with a genetic background such as some types of cancer are caused by damage in the p53 signaling pathway. The damage changes the system dynamics providing cancer cells with resistance to therapy such as radiation therapy. The change can be observed as the difference in bifurcation diagrams and equilibria type and location between normal and damaged cells, and summarized as the changes of the mathematical model parameters and following changes of the eigenvalues of Jacobian matrix. Therefore a change in other model parameters, such as mRNA degradation rates, may restore the proper eigenvalues and by that proper system dynamics. From the biological point of view, the change of mRNA degradation rate can be achieved by application of the small interfering RNA (siRNA). Here, we propose a general mathematical framework based on the bifurcation theory and siRNA-based control signal in order to study how to restore the proper response of cells with damaged p53 signaling pathway to therapy by using ionizing radiation (IR) therapy as an example. We show the difference between the cells with normal p53 signaling pathway and cells with abnormalities in the negative (as observed in SJSA-1 cell line) or positive (as observed in MCF-7 or PNT1a cell lines) feedback loop. Then we show how the dynamics of these cells can be restored to normal cell dynamics by using selected siRNA.

  7. Proteins in the Nutrient-Sensing and DNA Damage Checkpoint Pathways Cooperate to Restrain Mitotic Progression following DNA Damage

    PubMed Central

    Searle, Jennifer S.; Wood, Matthew D.; Kaur, Mandeep; Tobin, David V.; Sanchez, Yolanda

    2011-01-01

    Checkpoint pathways regulate genomic integrity in part by blocking anaphase until all chromosomes have been completely replicated, repaired, and correctly aligned on the spindle. In Saccharomyces cerevisiae, DNA damage and mono-oriented or unattached kinetochores trigger checkpoint pathways that bifurcate to regulate both the metaphase to anaphase transition and mitotic exit. The sensor-associated kinase, Mec1, phosphorylates two downstream kinases, Chk1 and Rad53. Activation of Chk1 and Rad53 prevents anaphase and causes inhibition of the mitotic exit network. We have previously shown that the PKA pathway plays a role in blocking securin and Clb2 destruction following DNA damage. Here we show that the Mec1 DNA damage checkpoint regulates phosphorylation of the regulatory (R) subunit of PKA following DNA damage and that the phosphorylated R subunit has a role in restraining mitosis following DNA damage. In addition we found that proteins known to regulate PKA in response to nutrients and stress either by phosphorylation of the R subunit or regulating levels of cAMP are required for the role of PKA in the DNA damage checkpoint. Our data indicate that there is cross-talk between the DNA damage checkpoint and the proteins that integrate nutrient and stress signals to regulate PKA. PMID:21779180

  8. Surviving the breakup: the DNA damage checkpoint.

    PubMed

    Harrison, Jacob C; Haber, James E

    2006-01-01

    In response to even a single chromosomal double-strand DNA break, cells enact the DNA damage checkpoint. This checkpoint triggers cell cycle arrest, providing time for the cell to repair damaged chromosomes before entering mitosis. This mechanism helps prevent the segregation of damaged or mutated chromosomes and thus promotes genomic stability. Recent work has elucidated the molecular mechanisms underlying several critical steps in checkpoint activation, notably the recruitment of the upstream checkpoint kinases of the ATM and ATR families to different damaged DNA structures and the molecular events through which these kinases activate their effectors. Chromatin modification has emerged as one important component of checkpoint activation and maintenance. Following DNA repair, the checkpoint pathway is inactivated in a process termed recovery. A related but genetically distinct process, adaptation, controls cell cycle re-entry in the face of unrepairable damage.

  9. Mechanisms of DNA damage, repair, and mutagenesis.

    PubMed

    Chatterjee, Nimrat; Walker, Graham C

    2017-06-01

    Living organisms are continuously exposed to a myriad of DNA damaging agents that can impact health and modulate disease-states. However, robust DNA repair and damage-bypass mechanisms faithfully protect the DNA by either removing or tolerating the damage to ensure an overall survival. Deviations in this fine-tuning are known to destabilize cellular metabolic homeostasis, as exemplified in diverse cancers where disruption or deregulation of DNA repair pathways results in genome instability. Because routinely used biological, physical and chemical agents impact human health, testing their genotoxicity and regulating their use have become important. In this introductory review, we will delineate mechanisms of DNA damage and the counteracting repair/tolerance pathways to provide insights into the molecular basis of genotoxicity in cells that lays the foundation for subsequent articles in this issue. Environ. Mol. Mutagen. 58:235-263, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. DNA damage in cancer therapeutics: a boon or a curse?

    PubMed

    Khanna, Anchit

    2015-06-01

    Millions of DNA-damaging lesions occur every day in each cell of our bodies due to various stresses. The failure to detect and accurately repair these lesions can give rise to cells with high levels of endogenous DNA damage, deleterious mutations, or genomic aberrations. Such genomic instability can lead to the activation of specific signaling pathways, including the DNA damage response (DDR) pathway. Constitutive activation of DDR proteins has been observed in human tumor specimens from different cancer stages, including precancerous and metastatic cancers, although not in normal tissues. The tumor-suppressive role of DDR activity during the premalignant stage has been studied, and strong evidence is emerging for an oncogenic role for DDR proteins such as DNA-PK and CHK1 during the later stages of tumor development. However, the majority of current cancer therapies induce DNA damage, potentially exacerbating protumorigenic genomic instability and enabling the development of resistance. Therefore, elucidating the molecular basis of DNA damage-mediated genomic instability and its role in tumorigenesis is critical. Finally, I discuss the potential existence of distinct DNA damage thresholds at various stages of tumorigenesis and what the ramifications of such thresholds would be, including the ambiguous role of the DDR pathway in human cancers, therapy-induced malignancies, and enhanced therapies. ©2015 American Association for Cancer Research.

  11. The intersection between DNA damage response and cell death pathways.

    PubMed

    Nowsheen, S; Yang, E S

    2012-10-01

    Apoptosis is a finely regulated process that serves to determine the fate of cells in response to various stresses. One such stress is DNA damage, which not only can signal repair processes but is also intimately involved in regulating cell fate. In this review we examine the relationship between the DNA damage/repair response in cell survival and apoptosis following insults to the DNA. Elucidating these pathways and the crosstalk between them is of great importance, as they eventually contribute to the etiology of human disease such as cancer and may play key roles in determining therapeutic response. This article is part of a Special Issue entitled "Apoptosis: Four Decades Later".

  12. Ubiquitylation, neddylation and the DNA damage response

    PubMed Central

    Brown, Jessica S.; Jackson, Stephen P.

    2015-01-01

    Failure of accurate DNA damage sensing and repair mechanisms manifests as a variety of human diseases, including neurodegenerative disorders, immunodeficiency, infertility and cancer. The accuracy and efficiency of DNA damage detection and repair, collectively termed the DNA damage response (DDR), requires the recruitment and subsequent post-translational modification (PTM) of a complex network of proteins. Ubiquitin and the ubiquitin-like protein (UBL) SUMO have established roles in regulating the cellular response to DNA double-strand breaks (DSBs). A role for other UBLs, such as NEDD8, is also now emerging. This article provides an overview of the DDR, discusses our current understanding of the process and function of PTM by ubiquitin and NEDD8, and reviews the literature surrounding the role of ubiquitylation and neddylation in DNA repair processes, focusing particularly on DNA DSB repair. PMID:25833379

  13. Ubiquitylation, neddylation and the DNA damage response.

    PubMed

    Brown, Jessica S; Jackson, Stephen P

    2015-04-01

    Failure of accurate DNA damage sensing and repair mechanisms manifests as a variety of human diseases, including neurodegenerative disorders, immunodeficiency, infertility and cancer. The accuracy and efficiency of DNA damage detection and repair, collectively termed the DNA damage response (DDR), requires the recruitment and subsequent post-translational modification (PTM) of a complex network of proteins. Ubiquitin and the ubiquitin-like protein (UBL) SUMO have established roles in regulating the cellular response to DNA double-strand breaks (DSBs). A role for other UBLs, such as NEDD8, is also now emerging. This article provides an overview of the DDR, discusses our current understanding of the process and function of PTM by ubiquitin and NEDD8, and reviews the literature surrounding the role of ubiquitylation and neddylation in DNA repair processes, focusing particularly on DNA DSB repair.

  14. DICER, DROSHA and DNA damage response RNAs are necessary for the secondary recruitment of DNA damage response factors.

    PubMed

    Francia, Sofia; Cabrini, Matteo; Matti, Valentina; Oldani, Amanda; d'Adda di Fagagna, Fabrizio

    2016-04-01

    The DNA damage response (DDR) plays a central role in preserving genome integrity. Recently, we reported that the endoribonucleases DICER and DROSHA contribute to DDR activation by generating small non-coding RNAs, termed DNA damage response RNA (DDRNA), carrying the sequence of the damaged locus. It is presently unclear whether DDRNAs act by promoting the primary recognition of DNA lesions or the secondary recruitment of DDR factors into cytologically detectable foci and consequent signal amplification. Here, we demonstrate that DICER and DROSHA are dispensable for primary recruitment of the DDR sensor NBS1 to DNA damage sites. Instead, the accumulation of the DDR mediators MDC1 and 53BP1 (also known as TP53BP1), markers of secondary recruitment, is reduced in DICER- or DROSHA-inactivated cells. In addition, NBS1 (also known as NBN) primary recruitment is resistant to RNA degradation, consistent with the notion that RNA is dispensable for primary recognition of DNA lesions. We propose that DICER, DROSHA and DDRNAs act in the response to DNA damage after primary recognition of DNA lesions and, together with γH2AX, are essential for enabling the secondary recruitment of DDR factors and fuel the amplification of DDR signaling.

  15. PCR-based analysis of mitochondrial DNA copy number, mitochondrial DNA damage, and nuclear DNA damage

    PubMed Central

    Gonzalez-Hunt, Claudia P.; Rooney, John P.; Ryde, Ian T.; Anbalagan, Charumathi; Joglekar, Rashmi

    2016-01-01

    Because of the role DNA damage and depletion play in human disease, it is important to develop and improve tools to assess these endpoints. This unit describes PCR-based methods to measure nuclear and mitochondrial DNA damage and copy number. Long amplicon quantitative polymerase chain reaction (LA-QPCR) is used to detect DNA damage by measuring the number of polymerase-inhibiting lesions present based on the amount of PCR amplification; real-time PCR (RT-PCR) is used to calculate genome content. In this unit we provide step-by-step instructions to perform these assays in Homo sapiens, Mus musculus, Rattus norvegicus, Caenorhabditis elegans, Drosophila melanogaster, Danio rerio, Oryzias latipes, Fundulus grandis, and Fundulus heteroclitus, and discuss the advantages and disadvantages of these assays. PMID:26828332

  16. The DNA damage response kinases DNA-dependent protein kinase (DNA-PK) and ataxia telangiectasia mutated (ATM) Are stimulated by bulky adduct-containing DNA.

    PubMed

    Kemp, Michael G; Lindsey-Boltz, Laura A; Sancar, Aziz

    2011-06-03

    A variety of environmental, carcinogenic, and chemotherapeutic agents form bulky lesions on DNA that activate DNA damage checkpoint signaling pathways in human cells. To identify the mechanisms by which bulky DNA adducts induce damage signaling, we developed an in vitro assay using mammalian cell nuclear extract and plasmid DNA containing bulky adducts formed by N-acetoxy-2-acetylaminofluorene or benzo(a)pyrene diol epoxide. Using this cell-free system together with a variety of pharmacological, genetic, and biochemical approaches, we identified the DNA damage response kinases DNA-dependent protein kinase (DNA-PK) and ataxia telangiectasia mutated (ATM) as bulky DNA damage-stimulated kinases that phosphorylate physiologically important residues on the checkpoint proteins p53, Chk1, and RPA. Consistent with these results, purified DNA-PK and ATM were directly stimulated by bulky adduct-containing DNA and preferentially associated with damaged DNA in vitro. Because the DNA damage response kinase ATM and Rad3-related (ATR) is also stimulated by bulky DNA adducts, we conclude that a common biochemical mechanism exists for activation of DNA-PK, ATM, and ATR by bulky adduct-containing DNA.

  17. Immunochemical detection of glyoxal DNA damage.

    PubMed

    Mistry, N; Evans, M D; Griffiths, H R; Kasai, H; Herbert, K E; Lunec, J

    1999-05-01

    The relevance of reactive oxygen species (ROS) in the pathogenesis of inflammatory diseases is widely documented. Immunochemical detection of ROS DNA adducts has been developed, however, recognition of glyoxal-DNA adducts has not previously been described. We have generated a polyclonal antibody that has shown increased antibody binding to ROS-modified DNA in comparison to native DNA. In addition, dose-dependent antibody binding to DNA modified with ascorbate alone was shown, with significant inhibition by desferrioxamine, catalase, and ethanol. Minimal inhibition was observed with uric acid, 1,10-phenanthroline and DMSO. However, antibody binding in the presence of EDTA increased 3500-fold. The involvement of hydrogen peroxide and hydroxyl radical in ascorbate-mediated DNA damage is consistent with ascorbate acting as a reducing agent for DNA-bound metal ions. Glyoxal is known to be formed during oxidation of ascorbate. Glyoxylated DNA, that previously had been proposed as a marker of oxidative damage, was recognised in a dose dependent manner using the antibody. We describe the potential use of our anti-ROS DNA antibody, that detects predominantly Fenton-type mediated damage to DNA and report on its specificity for the recognition of glyoxal-DNA adducts.

  18. The RNA Splicing Response to DNA Damage.

    PubMed

    Shkreta, Lulzim; Chabot, Benoit

    2015-10-29

    The number of factors known to participate in the DNA damage response (DDR) has expanded considerably in recent years to include splicing and alternative splicing factors. While the binding of splicing proteins and ribonucleoprotein complexes to nascent transcripts prevents genomic instability by deterring the formation of RNA/DNA duplexes, splicing factors are also recruited to, or removed from, sites of DNA damage. The first steps of the DDR promote the post-translational modification of splicing factors to affect their localization and activity, while more downstream DDR events alter their expression. Although descriptions of molecular mechanisms remain limited, an emerging trend is that DNA damage disrupts the coupling of constitutive and alternative splicing with the transcription of genes involved in DNA repair, cell-cycle control and apoptosis. A better understanding of how changes in splice site selection are integrated into the DDR may provide new avenues to combat cancer and delay aging.

  19. The RNA Splicing Response to DNA Damage

    PubMed Central

    Shkreta, Lulzim; Chabot, Benoit

    2015-01-01

    The number of factors known to participate in the DNA damage response (DDR) has expanded considerably in recent years to include splicing and alternative splicing factors. While the binding of splicing proteins and ribonucleoprotein complexes to nascent transcripts prevents genomic instability by deterring the formation of RNA/DNA duplexes, splicing factors are also recruited to, or removed from, sites of DNA damage. The first steps of the DDR promote the post-translational modification of splicing factors to affect their localization and activity, while more downstream DDR events alter their expression. Although descriptions of molecular mechanisms remain limited, an emerging trend is that DNA damage disrupts the coupling of constitutive and alternative splicing with the transcription of genes involved in DNA repair, cell-cycle control and apoptosis. A better understanding of how changes in splice site selection are integrated into the DDR may provide new avenues to combat cancer and delay aging. PMID:26529031

  20. Aging: not all DNA damage is equal.

    PubMed

    Vermeij, Wilbert P; Hoeijmakers, Jan H J; Pothof, Joris

    2014-06-01

    Recent advances have identified accumulation of DNA damage as a major driver of aging. However, there are numerous kinds of DNA lesions each with their own characteristics and cellular outcome, which highly depends on cellular context: proliferation (cell cycle), differentiation, propensity for survival/death, cell condition and systemic hormonal and immunological parameters. In addition, DNA damage is strongly influenced by cellular metabolism, anti-oxidant status and exogenous factors, consistent with the multi-factorial nature of aging. Notably, DNA lesions interfering with replication have very different outcomes compared to transcription. These considerations provide a conceptual framework in which different types of DNA damage and their setting contribute to the aging process in differential manners.

  1. DNA DAMAGE QUANTITATION BY ALKALINE GEL ELECTROPHORESIS.

    SciTech Connect

    SUTHERLAND,B.M.; BENNETT,P.V.; SUTHERLAND, J.C.

    2004-03-24

    Physical and chemical agents in the environment, those used in clinical applications, or encountered during recreational exposures to sunlight, induce damages in DNA. Understanding the biological impact of these agents requires quantitation of the levels of such damages in laboratory test systems as well as in field or clinical samples. Alkaline gel electrophoresis provides a sensitive (down to {approx} a few lesions/5Mb), rapid method of direct quantitation of a wide variety of DNA damages in nanogram quantities of non-radioactive DNAs from laboratory, field, or clinical specimens, including higher plants and animals. This method stems from velocity sedimentation studies of DNA populations, and from the simple methods of agarose gel electrophoresis. Our laboratories have developed quantitative agarose gel methods, analytical descriptions of DNA migration during electrophoresis on agarose gels (1-6), and electronic imaging for accurate determinations of DNA mass (7-9). Although all these components improve sensitivity and throughput of large numbers of samples (7,8,10), a simple version using only standard molecular biology equipment allows routine analysis of DNA damages at moderate frequencies. We present here a description of the methods, as well as a brief description of the underlying principles, required for a simplified approach to quantitation of DNA damages by alkaline gel electrophoresis.

  2. Aberrant BLM cytoplasmic expression associates with DNA damage stress and hypersensitivity to DNA-damaging agents in colorectal cancer.

    PubMed

    Votino, Carolina; Laudanna, Carmelo; Parcesepe, Pietro; Giordano, Guido; Remo, Andrea; Manfrin, Erminia; Pancione, Massimo

    2017-03-01

    Bloom syndrome is a rare and recessive disorder characterized by loss-of-function mutations of the BLM gene, which encodes a RecQ 3'-5' DNA helicase. Despite its putative tumor suppressor function, the contribution of BLM to human sporadic colorectal cancer (CRC) remains poorly understood. The transcriptional regulation mechanism underlying BLM and related DNA damage response regulation in independent CRC subsets and a panel of derived cell lines was investigated by bioinformatics analysis, the transcriptomic profile, a CpG island promoter methylation assay, Western blot, and an immunolocalization assay. In silico analysis of gene expression data sets revealed that BLM is overexpressed in poorly differentiated CRC and exhibits a close connection with shorter relapse-free survival even after adjustment for prognostic factors and pathways that respond to DNA damage response through ataxia telangiectasia mutated (ATM) signaling. Functional characterization demonstrated that CpG island promoter hypomethylation increases BLM expression and associates with cytoplasmic BLM mislocalization and increased DNA damage response both in clinical CRC samples and in derived cancer cell lines. The DNA-damaging agent S-adenosylmethionine suppresses BLM expression, leading to the inhibition of cell growth following accumulation of DNA damage. In tumor specimens, cytoplasmic accumulation of BLM correlates with DNA damage and γH2AX and phosphorylated ATM foci and predicts long-term progression-free survival in metastatic patients treated with irinotecan. Taken together, the findings of this study provide the first evidence that cancer-linked DNA hypomethylation and cytosolic BLM mislocalization might reflect compromised levels of DNA-repair activity and enhanced hypersensitivity to DNA-damaging agents in CRC patients.

  3. MECHANISTIC AND BIOLOGICAL ASPECTS OF HELICASE ACTION ON DAMAGED DNA

    PubMed Central

    Suhasini, Avvaru N.; Brosh, Robert M.

    2010-01-01

    Helicases catalytically unwind structured nucleic acids in a nucleoside-triphosphate-dependent and directionally specific manner, and are essential for virtually all aspects of nucleic acid metabolism. ATPase-driven helicases which translocate along nucleic acids play a role in damage recognition or unwinding of a DNA tract containing the lesion. Although classical biochemical experiments provided evidence that bulky covalent adducts inhibit DNA unwinding catalyzed by certain DNA helicases in a strand-specific manner (i.e. , block to DNA unwinding restricted to adduct residence in the strand the helicase translocates), recent studies suggest more complex arrangements that may depend on the helicase under study, its assembly in a protein complex, and the type of structural DNA perturbation. Moreover, base and sugar phosphate backbone modifications exert effects on DNA helicases that suggest specialized tracking mechanisms. As a component of the replication stress response, the single-stranded DNA binding protein Replication Protein A (RPA) may serve to enable eukaryotic DNA helicases to overcome certain base lesions. Helicases play important roles in DNA damage signaling which also involve their partnership with RPA. In this review, we will discuss our current understanding of mechanistic and biological aspects of helicase action on damaged DNA. PMID:20574162

  4. The Role of the DNA Damage Response throughout the Papillomavirus Life Cycle

    PubMed Central

    McKinney, Caleb C.; Hussmann, Katherine L.; McBride, Alison A.

    2015-01-01

    The DNA damage response (DDR) maintains genomic integrity through an elaborate network of signaling pathways that sense DNA damage and recruit effector factors to repair damaged DNA. DDR signaling pathways are usurped and manipulated by the replication programs of many viruses. Here, we review the papillomavirus (PV) life cycle, highlighting current knowledge of how PVs recruit and engage the DDR to facilitate productive infection. PMID:26008695

  5. Historical Perspective on the DNA Damage Response

    PubMed Central

    Hanawalt, Philip C.

    2015-01-01

    The DNA damage response (DDR) has been broadly defined as a complex network of cellular pathways that cooperate to sense and repair lesions in DNA. Multiple types of DNA damage, some natural DNA sequences, nucleotide pool deficiencies and collisions with transcription complexes can cause replication arrest to elicit the DDR. However, in practice, the term DDR as applied to eukaryotic/mammalian cells often refers more specifically to pathways involving the activation of the ATM (ataxia-telangiectasia mutated) and ATR (ATM-Rad3-related) kinases in response to double-strand breaks or arrested replication forks, respectively. Nevertheless, there are distinct responses to particular types of DNA damage that do not involve ATM or ATR. In addition, some of the aberrations that cause replication arrest and elicit the DDR cannot be categorized as direct DNA damage. These include nucleotide pool deficiencies, nucleotide sequences that can adopt non-canonical DNA structures, and collisions between replication forks and transcription complexes. The response to these aberrations can be called the genomic stress response (GSR), a term that is meant to encompass the sensing of all types of DNA aberrations together with the mechanisms involved in coping with them. In addition to fully functional cells, the consequences of processing genomic aberrations may include mutagenesis, genomic rearrangements and lethality. PMID:26507443

  6. Historical perspective on the DNA damage response.

    PubMed

    Hanawalt, Philip C

    2015-12-01

    The DNA damage response (DDR) has been broadly defined as a complex network of cellular pathways that cooperate to sense and repair lesions in DNA. Multiple types of DNA damage, some natural DNA sequences, nucleotide pool deficiencies and collisions with transcription complexes can cause replication arrest to elicit the DDR. However, in practice, the term DDR as applied to eukaryotic/mammalian cells often refers more specifically to pathways involving the activation of the ATM (ataxia-telangiectasia mutated) and ATR (ATM-Rad3-related) kinases in response to double-strand breaks or arrested replication forks, respectively. Nevertheless, there are distinct responses to particular types of DNA damage that do not involve ATM or ATR. In addition, some of the aberrations that cause replication arrest and elicit the DDR cannot be categorized as direct DNA damage. These include nucleotide pool deficiencies, nucleotide sequences that can adopt non-canonical DNA structures, and collisions between replication forks and transcription complexes. The response to these aberrations can be called the genomic stress response (GSR), a term that is meant to encompass the sensing of all types of DNA aberrations together with the mechanisms involved in coping with them. In addition to fully functional cells, the consequences of processing genomic aberrations may include mutagenesis, genomic rearrangements and lethality.

  7. DNA damage may drive nucleosomal reorganization to facilitate damage detection

    NASA Astrophysics Data System (ADS)

    LeGresley, Sarah E.; Wilt, Jamie; Antonik, Matthew

    2014-03-01

    One issue in genome maintenance is how DNA repair proteins find lesions at rates that seem to exceed diffusion-limited search rates. We propose a phenomenon where DNA damage induces nucleosomal rearrangements which move lesions to potential rendezvous points in the chromatin structure. These rendezvous points are the dyad and the linker DNA between histones, positions in the chromatin which are more likely to be accessible by repair proteins engaged in a random search. The feasibility of this mechanism is tested by considering the statistical mechanics of DNA containing a single lesion wrapped onto the nucleosome. We consider lesions which make the DNA either more flexible or more rigid by modeling the lesion as either a decrease or an increase in the bending energy. We include this energy in a partition function model of nucleosome breathing. Our results indicate that the steady state for a breathing nucleosome will most likely position the lesion at the dyad or in the linker, depending on the energy of the lesion. A role for DNA binding proteins and chromatin remodelers is suggested based on their ability to alter the mechanical properties of the DNA and DNA-histone binding, respectively. We speculate that these positions around the nucleosome potentially serve as rendezvous points where DNA lesions may be encountered by repair proteins which may be sterically hindered from searching the rest of the nucleosomal DNA. The strength of the repositioning is strongly dependent on the structural details of the DNA lesion and the wrapping and breathing of the nucleosome. A more sophisticated evaluation of this proposed mechanism will require detailed information about breathing dynamics, the structure of partially wrapped nucleosomes, and the structural properties of damaged DNA.

  8. DNA DAMAGE BINDING PROTEIN2 Shapes the DNA Methylation Landscape

    PubMed Central

    Schalk, Catherine; Kramdi, Amira; Ahmed, Ikhlak; Cognat, Valérie; Graindorge, Stéfanie; Bergdoll, Marc; Baumberger, Nicolas; Heintz, Dimitri; Bowler, Chris; Genschik, Pascal; Barneche, Fredy; Molinier, Jean

    2016-01-01

    In eukaryotes, DNA repair pathways help to maintain genome integrity and epigenomic patterns. However, the factors at the nexus of DNA repair and chromatin modification/remodeling remain poorly characterized. Here, we uncover a previously unrecognized interplay between the DNA repair factor DNA DAMAGE BINDING PROTEIN2 (DDB2) and the DNA methylation machinery in Arabidopsis thaliana. Loss-of-function mutation in DDB2 leads to genome-wide DNA methylation alterations. Genetic and biochemical evidence indicate that at many repeat loci, DDB2 influences de novo DNA methylation by interacting with ARGONAUTE4 and by controlling the local abundance of 24-nucleotide short interfering RNAs (siRNAs). We also show that DDB2 regulates active DNA demethylation mediated by REPRESSOR OF SILENCING1 and DEMETER LIKE3. Together, these findings reveal a role for the DNA repair factor DDB2 in shaping the Arabidopsis DNA methylation landscape in the absence of applied genotoxic stress. PMID:27531226

  9. Aging processes, DNA damage, and repair.

    PubMed

    Gilchrest, B A; Bohr, V A

    1997-04-01

    The second triennial FASEB Summer Research Conference on "Clonal Senescence and Differentiation" (August 17-22, 1996) focused on the interrelationships between aging processes and DNA damage and repair. The attendees represented a cross section of senior and junior investigators working in fields ranging from classic cellular gerontology to yeast and nematode models of aging to basic mechanisms of DNA damage and repair. The meeting opened with a keynote address by Dr. Bruce Ames that emphasized the documented relationships between oxidative damage, cancer, and aging. This was followed by eight platform sessions, one poster discussion, one featured presentation, and an after-dinner address. The following sections highlight the key points discussed.

  10. SUMO boosts the DNA damage response barrier against cancer.

    PubMed

    Bartek, Jiri; Hodny, Zdenek

    2010-01-19

    Cells exposed to genotoxic insults such as ionizing radiation activate a signaling cascade to repair the damaged DNA. Two recent articles published in Nature show that such genome maintenance requires modifications of tumor suppressor proteins BRCA1 and 53BP1 by the small ubiquitin-like modifier SUMO. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  11. The RNA-Binding Proteins Zfp36l1 and Zfp36l2 Enforce the Thymic β-Selection Checkpoint by Limiting DNA Damage Response Signaling and Cell Cycle Progression.

    PubMed

    Vogel, Katharina U; Bell, Lewis S; Galloway, Alison; Ahlfors, Helena; Turner, Martin

    2016-10-01

    The RNA-binding proteins Zfp36l1 and Zfp36l2 act redundantly to enforce the β-selection checkpoint during thymopoiesis, yet their molecular targets remain largely unknown. In this study, we identify these targets on a genome-wide scale in primary mouse thymocytes and show that Zfp36l1/l2 regulate DNA damage response and cell cycle transcripts to ensure proper β-selection. Double-negative 3 thymocytes lacking Zfp36l1/l2 share a gene expression profile with postselected double-negative 3b cells despite the absence of intracellular TCRβ and reduced IL-7 signaling. Our findings show that in addition to controlling the timing of proliferation at β-selection, posttranscriptional control by Zfp36l1/l2 limits DNA damage responses, which are known to promote thymocyte differentiation. Zfp36l1/l2 therefore act as posttranscriptional safeguards against chromosomal instability and replication stress by integrating pre-TCR and IL-7 signaling with DNA damage and cell cycle control. Copyright © 2016 by The American Association of Immunologists, Inc.

  12. Roles of RNA-Binding Proteins in DNA Damage Response.

    PubMed

    Kai, Mihoko

    2016-02-27

    Living cells experience DNA damage as a result of replication errors and oxidative metabolism, exposure to environmental agents (e.g., ultraviolet light, ionizing radiation (IR)), and radiation therapies and chemotherapies for cancer treatments. Accumulation of DNA damage can lead to multiple diseases such as neurodegenerative disorders, cancers, immune deficiencies, infertility, and also aging. Cells have evolved elaborate mechanisms to deal with DNA damage. Networks of DNA damage response (DDR) pathways are coordinated to detect and repair DNA damage, regulate cell cycle and transcription, and determine the cell fate. Upstream factors of DNA damage checkpoints and repair, "sensor" proteins, detect DNA damage and send the signals to downstream factors in order to maintain genomic integrity. Unexpectedly, we have discovered that an RNA-processing factor is involved in DNA repair processes. We have identified a gene that contributes to glioblastoma multiforme (GBM)'s treatment resistance and recurrence. This gene, RBM14, is known to function in transcription and RNA splicing. RBM14 is also required for maintaining the stem-like state of GBM spheres, and it controls the DNA-PK-dependent non-homologous end-joining (NHEJ) pathway by interacting with KU80. RBM14 is a RNA-binding protein (RBP) with low complexity domains, called intrinsically disordered proteins (IDPs), and it also physically interacts with PARP1. Furthermore, RBM14 is recruited to DNA double-strand breaks (DSBs) in a poly(ADP-ribose) (PAR)-dependent manner (unpublished data). DNA-dependent PARP1 (poly-(ADP) ribose polymerase 1) makes key contributions in the DNA damage response (DDR) network. RBM14 therefore plays an important role in a PARP-dependent DSB repair process. Most recently, it was shown that the other RBPs with intrinsically disordered domains are recruited to DNA damage sites in a PAR-dependent manner, and that these RBPs form liquid compartments (also known as "liquid-demixing"). Among the

  13. Polyphenols and DNA Damage: A Mixed Blessing

    PubMed Central

    Azqueta, Amaya; Collins, Andrew

    2016-01-01

    Polyphenols are a very broad group of chemicals, widely distributed in plant foods, and endowed with antioxidant activity by virtue of their numerous phenol groups. They are widely studied as putative cancer-protective agents, potentially contributing to the cancer preventive properties of fruits and vegetables. We review recent publications relating to human trials, animal experiments and cell culture, grouping them according to whether polyphenols are investigated in whole foods and drinks, in plant extracts, or as individual compounds. A variety of assays are in use to study genetic damage endpoints. Human trials, of which there are rather few, tend to show decreases in endogenous DNA damage and protection against DNA damage induced ex vivo in blood cells. Most animal experiments have investigated the effects of polyphenols (often at high doses) in combination with known DNA-damaging agents, and generally they show protection. High concentrations can themselves induce DNA damage, as demonstrated in numerous cell culture experiments; low concentrations, on the other hand, tend to decrease DNA damage. PMID:27918471

  14. Polyphenols and DNA Damage: A Mixed Blessing.

    PubMed

    Azqueta, Amaya; Collins, Andrew

    2016-12-03

    Polyphenols are a very broad group of chemicals, widely distributed in plant foods, and endowed with antioxidant activity by virtue of their numerous phenol groups. They are widely studied as putative cancer-protective agents, potentially contributing to the cancer preventive properties of fruits and vegetables. We review recent publications relating to human trials, animal experiments and cell culture, grouping them according to whether polyphenols are investigated in whole foods and drinks, in plant extracts, or as individual compounds. A variety of assays are in use to study genetic damage endpoints. Human trials, of which there are rather few, tend to show decreases in endogenous DNA damage and protection against DNA damage induced ex vivo in blood cells. Most animal experiments have investigated the effects of polyphenols (often at high doses) in combination with known DNA-damaging agents, and generally they show protection. High concentrations can themselves induce DNA damage, as demonstrated in numerous cell culture experiments; low concentrations, on the other hand, tend to decrease DNA damage.

  15. Targeting the DNA Damage Response in Cancer.

    PubMed

    O'Connor, Mark J

    2015-11-19

    An underlying hallmark of cancers is their genomic instability, which is associated with a greater propensity to accumulate DNA damage. Historical treatment of cancer by radiotherapy and DNA-damaging chemotherapy is based on this principle, yet it is accompanied by significant collateral damage to normal tissue and unwanted side effects. Targeted therapy based on inhibiting the DNA damage response (DDR) in cancers offers the potential for a greater therapeutic window by tailoring treatment to patients with tumors lacking specific DDR functions. The recent approval of olaparib (Lynparza), the poly (ADP-ribose) polymerase (PARP) inhibitor for treating tumors harboring BRCA1 or BRCA2 mutations, represents the first medicine based on this principle, exploiting an underlying cause of tumor formation that also represents an Achilles' heel. This review highlights the different concepts behind targeting DDR in cancer and how this can provide significant opportunities for DDR-based therapies in the future.

  16. Fern spore extracts can damage DNA

    PubMed Central

    Simán, S E; Povey, A C; Ward, T H; Margison, G P; Sheffield, E

    2000-01-01

    The carcinogenicity of the vegetative tissues of bracken fern (Pteridium) has long been established. More recently, the carcinogenic effects of the spores of bracken have also been recognized. Both vegetative tissues and spores of bracken can induce adducts in DNA in animal tissues, but the possible genotoxic or carcinogenic effects of spores from fern species other than bracken are unknown. The single-cell gel electrophoresis (‘comet’) assay was used to investigate whether fern spores can cause DNA damage in vitro. Extracts of spores from six fern species were administered to cultured human premyeloid leukaemia (K562) cells. Spore extracts of five fern species: Anemia phyllitidis, Dicksonia antarctica, Pteridium aquilinum, Pteris vittata and Sadleria pallida, induced significantly more DNA strand breaks than those in the control groups. Only in one species, Osmunda regalis, was the effect no different from that in the control groups. Using extracts from A. phyllitidis and P. vittata, the extent of DNA damage was increased by increasing the original dose 10 times, whereas an experiment in which exposure times were varied suggested that the highest levels of strand breaks appear after 2 h exposure. Simultaneous incubation with human S9 liver enzyme mix ablated the damaging effect of the extracts. Our data show that fern spore extracts can cause DNA damage in human cells in vitro. Considering the strong correlation between DNA damage and carcinogenic events, the observations made in this report may well have some implications for human health. © 2000 Cancer Research Campaign PMID:10883670

  17. DNA signals at isoform promoters

    PubMed Central

    Dai, Zhiming; Xiong, Yuanyan; Dai, Xianhua

    2016-01-01

    Transcriptional heterogeneity is extensive in the genome, and most genes express variable transcript isoforms. However, whether variable transcript isoforms of one gene are regulated by common promoter elements remain to be elucidated. Here, we investigated whether isoform promoters of one gene have separated DNA signals for transcription and translation initiation. We found that TATA box and nucleosome-disfavored DNA sequences are prevalent in distinct transcript isoform promoters of one gene. These DNA signals are conserved among species. Transcript isoform has a RNA-determined unstructured region around its start site. We found that these DNA/RNA features facilitate isoform transcription and translation. These results suggest a DNA-encoded mechanism by which transcript isoform is generated. PMID:27353836

  18. NF-κB and AKT signaling prevent DNA damage in transformed pre-B cells by suppressing RAG1/2 expression and activity.

    PubMed

    Ochodnicka-Mackovicova, Katarina; Bahjat, Mahnoush; Bloedjes, Timon A; Maas, Chiel; de Bruin, Alexander M; Bende, Richard J; van Noesel, Carel J M; Guikema, Jeroen E J

    2015-09-10

    In developing lymphocytes, expression and activity of the recombination activation gene protein 1 (RAG1) and RAG2 endonuclease complex is tightly regulated to ensure ordered recombination of the immunoglobulin genes and to avoid genomic instability. Aberrant RAG activity has been implicated in the generation of secondary genetic events in human B-cell acute lymphoblastic leukemias (B-ALLs), illustrating the oncogenic potential of the RAG complex. Several layers of regulation prevent collateral genomic DNA damage by restricting RAG activity to the G1 phase of the cell cycle. In this study, we show a novel pathway that suppresses RAG expression in cycling-transformed mouse pre-B cells and human pre-B B-ALL cells that involves the negative regulation of FOXO1 by nuclear factor κB (NF-κB). Inhibition of NF-κB in cycling pre-B cells resulted in upregulation of RAG expression and recombination activity, which provoked RAG-dependent DNA damage. In agreement, we observe a negative correlation between NF-κB activity and the expression of RAG1, RAG2, and TdT in B-ALL patients. Our data suggest that targeting NF-κB in B-ALL increases the risk of RAG-dependent genomic instability.

  19. Interplay of space radiation and microgravity in DNA damage and DNA damage response.

    PubMed

    Moreno-Villanueva, María; Wong, Michael; Lu, Tao; Zhang, Ye; Wu, Honglu

    2017-01-01

    In space, multiple unique environmental factors, particularly microgravity and space radiation, pose constant threat to the DNA integrity of living organisms. Specifically, space radiation can cause damage to DNA directly, through the interaction of charged particles with the DNA molecules themselves, or indirectly through the production of free radicals. Although organisms have evolved strategies on Earth to confront such damage, space environmental conditions, especially microgravity, can impact DNA repair resulting in accumulation of severe DNA lesions. Ultimately these lesions, namely double strand breaks, chromosome aberrations, micronucleus formation, or mutations, can increase the risk for adverse health effects, such as cancer. How spaceflight factors affect DNA damage and the DNA damage response has been investigated since the early days of the human space program. Over the years, these experiments have been conducted either in space or using ground-based analogs. This review summarizes the evidence for DNA damage induction by space radiation and/or microgravity as well as spaceflight-related impacts on the DNA damage response. The review also discusses the conflicting results from studies aimed at addressing the question of potential synergies between microgravity and radiation with regard to DNA damage and cellular repair processes. We conclude that further experiments need to be performed in the true space environment in order to address this critical question.

  20. DNA Damages as a Depolymerization Process

    NASA Astrophysics Data System (ADS)

    Ochoa, Juan G. Diaz; Wulkow, Michael

    The damage of DNA chains by environmental factors like radiation or chemical pollutants is a topic that has been frequently explored from an experimental and a theoretical perspective. Such damages, like the damage of the strands of a DNA chain, are toxic for the cell and can induce mutagenesis or apoptosis. Several models make strong assumptions for the distribution of damages; for instance a frequent supposition is that these damages are Poisson distributed. [L. Ma, J. J. Wagner, W. Hu, A. J. Levine and G. A. Stolovitzki, Proc. Natl. Acad. Sci.PNAS 102, 14266 (2005).] Only few models describe in detail the damage and the mechanisms associated to the formation and evolution of this damage distribution [H. Nikjoo, P. O'neill and D. T. Goodhead, Radiat. Res. 156, 577 (2001).] Nevertheless, such models do not include the repair processes which are continuously active inside the cell. In this work we present a novel model, based on a depolymerization process, describing the distribution of damages on DNA chains coupled to the dynamics associated to its repair processes. The central aim is not to give a final and comprehensive model, but a hint to represent in more detail the complex dynamics involved in the damage and repair of DNA. We show that there are critical parameters associated to this repair process, in particular we show how critical doses can be relevant in deciding whether the cell continues its repair process or starts apoptosis. We also find out that the damage concentration is related to the dose via a power law relation.

  1. Chromatin Remodeling, DNA Damage Repair and Aging

    PubMed Central

    Liu, Baohua; Yip, Raymond KH; Zhou, Zhongjun

    2012-01-01

    Cells are constantly exposed to a variety of environmental and endogenous conditions causing DNA damage, which is detected and repaired by conserved DNA repair pathways to maintain genomic integrity. Chromatin remodeling is critical in this process, as the organization of eukaryotic DNA into compact chromatin presents a natural barrier to all DNA-related events. Studies on human premature aging syndromes together with normal aging have suggested that accumulated damages might lead to exhaustion of resources that are required for physiological functions and thus accelerate aging. In this manuscript, combining the present understandings and latest findings, we focus mainly on discussing the role of chromatin remodeling in the repair of DNA double-strand breaks (DSBs) and regulation of aging. PMID:23633913

  2. Blurring the line between the DNA damage response and transcription: the importance of chromatin dynamics.

    PubMed

    Adam, Salomé; Polo, Sophie E

    2014-11-15

    DNA damage interferes with the progression of transcription machineries. A tight coordination of transcription with signaling and repair of DNA damage is thus critical for safeguarding genome function. This coordination involves modulations of chromatin organization. Here, we focus on the central role of chromatin dynamics, in conjunction with DNA Damage Response (DDR) factors, in controlling transcription inhibition and restart at sites of DNA damage in mammalian cells. Recent work has identified chromatin modifiers and histone chaperones as key regulators of transcriptional activity in damaged chromatin regions. Conversely, the transcriptional state of chromatin before DNA damage influences both DNA damage signaling and repair. We discuss the importance of chromatin plasticity in coordinating the interplay between the DDR and transcription, with major implications for cell fate maintenance. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. IL1- and TGFβ-Nox4 signaling, oxidative stress and DNA damage response are shared features of replicative, oncogene-induced, and drug-induced paracrine ‘Bystander senescence’

    PubMed Central

    Hubackova, Sona; Krejcikova, Katerina; Bartek, Jiri; Hodny, Zdenek

    2012-01-01

    Many cancers arise at sites of infection and inflammation. Cellular senescence, a permanent state of cell cycle arrest that provides a barrier against tumorigenesis, is accompanied by elevated proinflammatory cytokines such as IL1, IL6, IL8 and TNFα. Here we demonstrate that media conditioned by cells undergoing any of the three main forms of senescence, i.e. replicative, oncogene- and drug-induced, contain high levels of IL1, IL6, and TGFb capable of inducing reactive oxygen species (ROS)-mediated DNA damage response (DDR). Persistent cytokine signaling and activated DDR evoke senescence in normal bystander cells, accompanied by activation of the JAK/STAT, TGFβ/SMAD and IL1/NFκB signaling pathways. Whereas inhibition of IL6/STAT signaling had no effect on DDR induction in bystander cells, inhibition of either TGFβ/SMAD or IL1/NFκB pathway resulted in decreased ROS production and reduced DDR in bystander cells. Simultaneous inhibition of both TGFβ/SMAD and IL1/NFκB pathways completely suppressed DDR indicating that IL1 and TGFβ cooperate to induce and/or maintain bystander senescence. Furthermore, the observed IL1- and TGFβ-induced expression of NAPDH oxidase Nox4 indicates a mechanistic link between the senescence-associated secretory phenotype (SASP) and DNA damage signaling as a feature shared by development of all major forms of paracrine bystander senescence. PMID:23385065

  4. DNA damage, oxidative mutagen sensitivity, and repair of oxidative DNA damage in nonmelanoma skin cancer patients.

    PubMed

    Bendesky, Andrés; Michel, Alejandra; Sordo, Monserrat; Calderón-Aranda, Emma S; Acosta-Saavedra, Leonor C; Salazar, Ana M; Podoswa, Nancy; Ostrosky-Wegman, Patricia

    2006-08-01

    Nonmelanoma skin cancer (NMSC) is the most frequent type of cancer in humans. Exposure to UV radiation is a major risk factor for NMSC, and oxidative DNA damage, caused either by UV radiation itself or by other agents, may be involved in its induction. Increased sensitivity to oxidative damage and an altered DNA repair capacity (DRC) increase the risk of many types of cancer; however, sensitivity to oxidizing agents has not been evaluated for NMSC, and results regarding DRC in NMSC are inconclusive. In the present study, we evaluated DNA damage and repair in leukocytes from 41 NMSC patients and 45 controls. The Comet assay was used to measure basal and H(2)O(2)-induced DNA damage, as well as the DRC, while the cytokinesis-block micronucleus assay was used to measure the basal level of chromosome damage. Although basal DNA damage was higher for the controls than for the patients, this finding was mainly due to sampling more controls in the summer, which was associated with longer comet tails. In contrast, H(2)O(2)-induced DNA damage was significantly higher in cases than in controls, and this parameter was not influenced by the season of the year. The DRC for the H(2)O(2)-induced damage was similar for cases and controls and unrelated to seasonality. Finally, the frequency of binucleated lymphocytes with micronuclei was similar for cases and controls. The results of this study indicate that NMSC patients are distinguished from controls by an increased sensitivity to oxidative DNA damage.

  5. Hyperactivation of DNA-PK by double-strand break mimicking molecules disorganizes DNA damage response.

    PubMed

    Quanz, Maria; Chassoux, Danielle; Berthault, Nathalie; Agrario, Céline; Sun, Jian-Sheng; Dutreix, Marie

    2009-07-21

    Cellular response to DNA damage involves the coordinated activation of cell cycle checkpoints and DNA repair. The early steps of DNA damage recognition and signaling in mammalian cells are not yet fully understood. To investigate the regulation of the DNA damage response (DDR), we designed short and stabilized double stranded DNA molecules (Dbait) mimicking double-strand breaks. We compared the response induced by these molecules to the response induced by ionizing radiation. We show that stable 32-bp long Dbait, induce pan-nuclear phosphorylation of DDR components such as H2AX, Rpa32, Chk1, Chk2, Nbs1 and p53 in various cell lines. However, individual cell analyses reveal that differences exist in the cellular responses to Dbait compared to irradiation. Responses to Dbait: (i) are dependent only on DNA-PK kinase activity and not on ATM, (ii) result in a phosphorylation signal lasting several days and (iii) are distributed in the treated population in an "all-or-none" pattern, in a Dbait-concentration threshold dependant manner. Moreover, despite extensive phosphorylation of the DNA-PK downstream targets, Dbait treated cells continue to proliferate without showing cell cycle delay or apoptosis. Dbait treatment prior to irradiation impaired foci formation of Nbs1, 53BP1 and Rad51 at DNA damage sites and inhibited non-homologous end joining as well as homologous recombination. Together, our results suggest that the hyperactivation of DNA-PK is insufficient for complete execution of the DDR but induces a "false" DNA damage signaling that disorganizes the DNA repair system.

  6. Reconstitution of the cellular response to DNA damage in vitro using damage-activated extracts from mammalian cells

    SciTech Connect

    Roper, Katherine; Coverley, Dawn

    2012-03-10

    In proliferating mammalian cells, DNA damage is detected by sensors that elicit a cellular response which arrests the cell cycle and repairs the damage. As part of the DNA damage response, DNA replication is inhibited and, within seconds, histone H2AX is phosphorylated. Here we describe a cell-free system that reconstitutes the cellular response to DNA double strand breaks using damage-activated cell extracts and naieve nuclei. Using this system the effect of damage signalling on nuclei that do not contain DNA lesions can be studied, thereby uncoupling signalling and repair. Soluble extracts from G1/S phase cells that were treated with etoposide before isolation, or pre-incubated with nuclei from etoposide-treated cells during an in vitro activation reaction, restrain both initiation and elongation of DNA replication in naieve nuclei. At the same time, H2AX is phosphorylated in naieve nuclei in a manner that is dependent upon the phosphatidylinositol 3-kinase-like protein kinases. Notably, phosphorylated H2AX is not focal in naieve nuclei, but is evident throughout the nucleus suggesting that in the absence of DNA lesions the signal is not amplified such that discrete foci can be detected. This system offers a novel screening approach for inhibitors of DNA damage response kinases, which we demonstrate using the inhibitors wortmannin and LY294002. -- Highlights: Black-Right-Pointing-Pointer A cell free system that reconstitutes the response to DNA damage in the absence of DNA lesions. Black-Right-Pointing-Pointer Damage-activated extracts impose the cellular response to DNA damage on naieve nuclei. Black-Right-Pointing-Pointer PIKK-dependent response impacts positively and negatively on two separate fluorescent outputs. Black-Right-Pointing-Pointer Can be used to screen for inhibitors that impact on the response to damage but not on DNA repair. Black-Right-Pointing-Pointer LY294002 and wortmannin demonstrate the system's potential as a pathway focused screening

  7. Aven-dependent activation of ATM following DNA damage

    PubMed Central

    Guo, Jessie Yanxiang; Yamada, Ayumi; Kajino, Taisuke; Wu, Judy Qiju; Tang, Wanli; Freel, Christopher D.; Feng, Junjie; Chau, B. Nelson; Wang, Michael Zhuo; Margolis, Seth; Yoo, Hae Yong; Wang, Xiao-Fan; Dunphy, William G.; Irusta, Pablo M.; Hardwick, J. Marie; Kornbluth, Sally

    2009-01-01

    Summary Background In response to DNA damage, cells either undergo cell cycle arrest or apoptosis, depending on the extent of damage and the cell’s capacity for DNA repair. Cell cycle arrest induced by double-stranded DNA breaks depends on activation of the ataxia-telangiectasia (ATM) protein kinase, which phosphorylates cell cycle effectors such as Chk2 and p53 to inhibit cell cycle progression. ATM is recruited to double stranded DNA breaks by a complex of sensor proteins including Mre11/Rad50/Nbs1, resulting in autophosphorylation, monomerization, and activation of ATM kinase. Results In characterizing Aven protein, a previously reported apoptotic inhibitor, we have found that Aven can function as an ATM activator to inhibit G2/M progression. Aven bound to ATM and Aven overexpression in cycling Xenopus egg extracts prevented mitotic entry and induced phosphorylation of ATM and its substrates. Immunodepletion of endogenous Aven allowed mitotic entry even in the presence of damaged DNA, and RNAi-mediated knock-down of Aven in human cells prevented autophosphorylation of ATM at an activating site (S1981) in response to DNA damage. Interestingly, Aven is also a substrate of the ATM kinase. Mutation of ATM-mediated phosphorylation sites on Aven reduced its ability to activate ATM, suggesting that Aven activation of ATM following DNA damage is enhanced by ATM-mediated Aven phosphorylation. Conclusions These results identify Aven as a new ATM activator and describe a positive feedback loop operating between Aven and ATM. In aggregate, these findings place Aven, a known apoptotic inhibitor, as a critical transducer of the DNA damage signal. PMID:18571408

  8. Molecular Models for DNA Damaged by Photoreaction

    NASA Astrophysics Data System (ADS)

    Pearlman, David A.; Holbrook, Stephen R.; Pirkle, David H.; Kim, Sung-Hou

    1985-03-01

    Structural models of a DNA molecule containing a radiation-induced psoralen cross-link and of a DNA containing a thymine photodimer were constructed by applying energy-minimization techniques and model-building procedures to data from x-ray crystallographic studies. The helical axes of the models show substantial kinking and unwinding at the sites of the damage, which may have long-range as well as local effects arising from the concomitant changes in the supercoiling and overall structure of the DNA. The damaged areas may also serve as recognition sites for repair enzymes. These results should help in understanding the biologic effects of radiation-induced damage on cells.

  9. Molecular models for DNA damaged by photoreaction

    SciTech Connect

    Pearlman, D.A.; Holbrook, S.R.; Pirkle, D.H.; Kim, S.H.

    1985-03-15

    Structural models of a DNA molecule containing a radiation-induced psoralen cross-link and of a DNA containing a thymine photodimer were constructed by applying energy-minimization techniques and model-building procedures to data from x-ray crystallographic studies. The helical axes of the models show substantial kinking and unwinding at the sites of the damage, which may have long-range as well as local effects arising from the concomitant changes in the supercoiling and overall structure of the DNA. The damaged areas may also serve as recognition sites for repair enzymes. These results should help in understanding the biologic effects of radiation-induced damage on cells.

  10. Epigenome Maintenance in Response to DNA Damage.

    PubMed

    Dabin, Juliette; Fortuny, Anna; Polo, Sophie E

    2016-06-02

    Organism viability relies on the stable maintenance of specific chromatin landscapes, established during development, that shape cell functions and identities by driving distinct gene expression programs. Yet epigenome maintenance is challenged during transcription, replication, and repair of DNA damage, all of which elicit dynamic changes in chromatin organization. Here, we review recent advances that have shed light on the specialized mechanisms contributing to the restoration of epigenome structure and function after DNA damage in the mammalian cell nucleus. By drawing a parallel with epigenome maintenance during replication, we explore emerging concepts and highlight open issues in this rapidly growing field. In particular, we present our current knowledge of molecular players that support the coordinated maintenance of genome and epigenome integrity in response to DNA damage, and we highlight how nuclear organization impacts genome stability. Finally, we discuss possible functional implications of epigenome plasticity in response to genotoxic stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Epigenome maintenance in response to DNA damage

    PubMed Central

    Dabin, Juliette; Fortuny, Anna; Polo, Sophie E.

    2017-01-01

    Summary Organism viability relies on the stable maintenance of specific chromatin landscapes, established during development, that shape cell functions and identities by driving distinct gene expression programs. Yet, epigenome maintenance is challenged during transcription, replication and repair of DNA damage, all of which elicit dynamic changes in chromatin organization. Here, we review recent advances that have shed light on the specialized mechanisms contributing to the restoration of epigenome structure and function after DNA damage in the mammalian cell nucleus. By drawing a parallel with epigenome maintenance during replication, we explore emerging concepts and highlight open issues in this rapidly growing field. In particular, we present our current knowledge of molecular players that support the coordinated maintenance of genome and epigenome integrity in response to DNA damage, and we highlight how nuclear organization impacts genome stability. Finally, we discuss possible functional implications of epigenome plasticity in response to genotoxic stress. PMID:27259203

  12. Coupling of human DNA excision repair and the DNA damage checkpoint in a defined in vitro system.

    PubMed

    Lindsey-Boltz, Laura A; Kemp, Michael G; Reardon, Joyce T; DeRocco, Vanessa; Iyer, Ravi R; Modrich, Paul; Sancar, Aziz

    2014-02-21

    DNA repair and DNA damage checkpoints work in concert to help maintain genomic integrity. In vivo data suggest that these two global responses to DNA damage are coupled. It has been proposed that the canonical 30 nucleotide single-stranded DNA gap generated by nucleotide excision repair is the signal that activates the ATR-mediated DNA damage checkpoint response and that the signal is enhanced by gap enlargement by EXO1 (exonuclease 1) 5' to 3' exonuclease activity. Here we have used purified core nucleotide excision repair factors (RPA, XPA, XPC, TFIIH, XPG, and XPF-ERCC1), core DNA damage checkpoint proteins (ATR-ATRIP, TopBP1, RPA), and DNA damaged by a UV-mimetic agent to analyze the basic steps of DNA damage checkpoint response in a biochemically defined system. We find that checkpoint signaling as measured by phosphorylation of target proteins by the ATR kinase requires enlargement of the excision gap generated by the excision repair system by the 5' to 3' exonuclease activity of EXO1. We conclude that, in addition to damaged DNA, RPA, XPA, XPC, TFIIH, XPG, XPF-ERCC1, ATR-ATRIP, TopBP1, and EXO1 constitute the minimum essential set of factors for ATR-mediated DNA damage checkpoint response.

  13. Damage signals in the insect immune response

    PubMed Central

    Krautz, Robert; Arefin, Badrul; Theopold, Ulrich

    2014-01-01

    Insects and mammals share an ancient innate immune system comprising both humoral and cellular responses. The insect immune system consists of the fat body, which secretes effector molecules into the hemolymph and several classes of hemocytes, which reside in the hemolymph and of protective border epithelia. Key features of wound- and immune responses are shared between insect and mammalian immune systems including the mode of activation by commonly shared microbial (non-self) patterns and the recognition of these patterns by dedicated receptors. It is unclear how metazoan parasites in insects, which lack these shared motifs, are recognized. Research in recent years has demonstrated that during entry into the insect host, many eukaryotic pathogens leave traces that alert potential hosts of the damage they have afflicted. In accordance with terminology used in the mammalian immune systems, these signals have been dubbed danger- or damage-associated signals. Damage signals are necessary byproducts generated during entering hosts either by mechanical or proteolytic damage. Here, we briefly review the current stage of knowledge on how wound closure and wound healing during mechanical damage is regulated and how damage-related signals contribute to these processes. We also discuss how sensors of proteolytic activity induce insect innate immune responses. Strikingly damage-associated signals are also released from cells that have aberrant growth, including tumor cells. These signals may induce apoptosis in the damaged cells, the recruitment of immune cells to the aberrant tissue and even activate humoral responses. Thus, this ensures the removal of aberrant cells and compensatory proliferation to replace lost tissue. Several of these pathways may have been co-opted from wound healing and developmental processes. PMID:25071815

  14. Molecular mechanisms involved in initiation of the DNA damage response

    PubMed Central

    Barnum, Kevin J; O’Connell, Matthew J

    2015-01-01

    DNA is subject to a wide variety of damage. In order to maintain genomic integrity, cells must respond to this damage by activating repair and cell cycle checkpoint pathways. The initiating events in the DNA damage response entail recognition of the lesion and the assembly of DNA damage response complexes at the DNA. Here, we review what is known about these processes for various DNA damage pathways. PMID:27308403

  15. Molecular mechanisms involved in initiation of the DNA damage response.

    PubMed

    Barnum, Kevin J; O'Connell, Matthew J

    2015-01-01

    DNA is subject to a wide variety of damage. In order to maintain genomic integrity, cells must respond to this damage by activating repair and cell cycle checkpoint pathways. The initiating events in the DNA damage response entail recognition of the lesion and the assembly of DNA damage response complexes at the DNA. Here, we review what is known about these processes for various DNA damage pathways.

  16. Involvement of DNA Damage Response Pathways in Hepatocellular Carcinoma

    PubMed Central

    Yang, Sheau-Fang; Wei, Ren-Jie; Shiue, Yow-Ling; Wang, Shen-Nien

    2014-01-01

    Hepatocellular carcinoma (HCC) has been known as one of the most lethal human malignancies, due to the difficulty of early detection, chemoresistance, and radioresistance, and is characterized by active angiogenesis and metastasis, which account for rapid recurrence and poor survival. Its development has been closely associated with multiple risk factors, including hepatitis B and C virus infection, alcohol consumption, obesity, and diet contamination. Genetic alterations and genomic instability, probably resulted from unrepaired DNA lesions, are increasingly recognized as a common feature of human HCC. Dysregulation of DNA damage repair and signaling to cell cycle checkpoints, known as the DNA damage response (DDR), is associated with a predisposition to cancer and affects responses to DNA-damaging anticancer therapy. It has been demonstrated that various HCC-associated risk factors are able to promote DNA damages, formation of DNA adducts, and chromosomal aberrations. Hence, alterations in the DDR pathways may accumulate these lesions to trigger hepatocarcinogenesis and also to facilitate advanced HCC progression. This review collects some of the most known information about the link between HCC-associated risk factors and DDR pathways in HCC. Hopefully, the review will remind the researchers and clinicians of further characterizing and validating the roles of these DDR pathways in HCC. PMID:24877058

  17. DNA Damage: From Chronic Inflammation to Age-Related Deterioration

    PubMed Central

    Ioannidou, Anna; Goulielmaki, Evi; Garinis, George A.

    2016-01-01

    To lessen the “wear and tear” of existence, cells have evolved mechanisms that continuously sense DNA lesions, repair DNA damage and restore the compromised genome back to its native form. Besides genome maintenance pathways, multicellular organisms may also employ adaptive and innate immune mechanisms to guard themselves against bacteria or viruses. Recent evidence points to reciprocal interactions between DNA repair, DNA damage responses and aspects of immunity; both self-maintenance and defense responses share a battery of common players and signaling pathways aimed at safeguarding our bodily functions over time. In the short-term, this functional interplay would allow injured cells to restore damaged DNA templates or communicate their compromised state to the microenvironment. In the long-term, however, it may result in the (premature) onset of age-related degeneration, including cancer. Here, we discuss the beneficial and unrewarding outcomes of DNA damage-driven inflammation in the context of tissue-specific pathology and disease progression. PMID:27826317

  18. Diphenylarsinic acid, a chemical warfare-related neurotoxicant, promotes liver carcinogenesis via activation of aryl hydrocarbon receptor signaling and consequent induction of oxidative DNA damage in rats.

    PubMed

    Wei, Min; Yamada, Takanori; Yamano, Shotaro; Kato, Minoru; Kakehashi, Anna; Fujioka, Masaki; Tago, Yoshiyuki; Kitano, Mistuaki; Wanibuchi, Hideki

    2013-11-15

    Diphenylarsinic acid (DPAA), a chemical warfare-related neurotoxic organic arsenical, is present in the groundwater and soil in some regions of Japan due to illegal dumping after World War II. Inorganic arsenic is carcinogenic in humans and its organic arsenic metabolites are carcinogenic in animal studies, raising serious concerns about the carcinogenicity of DPAA. However, the carcinogenic potential of DPAA has not yet been evaluated. In the present study we found that DPAA significantly enhanced the development of diethylnitrosamine-induced preneoplastic lesions in the liver in a medium-term rat liver carcinogenesis assay. Evaluation of the expression of cytochrome P450 (CYP) enzymes in the liver revealed that DPAA induced the expression of CYP1B1, but not any other CYP1, CYP2, or CYP3 enzymes, suggesting that CYP1B1 might be the enzyme responsible for the metabolic activation of DPAA. We also found increased oxidative DNA damage, possibly due to elevated CYP1B1 expression. Induction of CYP1B1 has generally been linked with the activation of AhR, and we found that DPAA activates the aryl hydrocarbon receptor (AhR). Importantly, the promotion effect of DPAA was observed only at a dose that activated the AhR, suggesting that activation of AhR and consequent induction of AhR target genes and oxidative DNA damage plays a vital role in the promotion effects of DPAA. The present study provides, for the first time, evidence regarding the carcinogenicity of DPAA and indicates the necessity of comprehensive evaluation of its carcinogenic potential using long-term carcinogenicity studies.

  19. Regulatory players of DNA damage repair mechanisms: Role in Cancer Chemoresistance.

    PubMed

    Sakthivel, Kunnathur Murugesan; Hariharan, Sreedharan

    2017-09-01

    DNA damaging agents are most common in chemotherapeutic molecules that act against cancer. However, cancer cells possess inherent biological features to overcome DNA damages by activating various distinct repair mechanisms and pathways. Importantly, various oncogenes, cancer stem cells (CSCs), hypoxic environment, transcription factors and bystander signaling that are activated in the cancer cells influence DNA repair, thereby effectively repairing the DNA damage. Repaired cancer cells often become more resistance to further therapy and results in disease recurrence. In this review, we summarize how the various signaling pathways in cancer cells regulates DNA repair and induce chemoresistance. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Schisandrin B prevents doxorubicin induced cardiac dysfunction by modulation of DNA damage, oxidative stress and inflammation through inhibition of MAPK/p53 signaling.

    PubMed

    Thandavarayan, Rajarajan A; Giridharan, Vijayasree V; Arumugam, Somasundaram; Suzuki, Kenji; Ko, Kam Ming; Krishnamurthy, Prasanna; Watanabe, Kenichi; Konishi, Tetsuya

    2015-01-01

    Doxorubicin (Dox) is a highly effective antineoplastic drug. However, Dox-induced apoptosis in cardiomyocytes leads to irreversible degenerative cardiomyopathy, which limits Dox clinical application. Schisandrin B (Sch B), a dibenzocyclooctadiene derivative isolated from the fruit of Schisandra chinensis, has been shown to protect against oxidative damage in liver, heart and brain tissues in rodents. In current study, we investigated possible protective effects of Sch B against Dox-induced cardiomyopathy in mice. Mice received a single injection of Dox (20 mg/kg IP). Five days after Dox administration, left ventricular (LV) performance was significantly depressed and was improved by Sch B treatment. Sch B prevented the Dox-induced increase in lipid peroxidation, nitrotyrosine formation, and metalloproteinase activation in the heart. In addition, the increased expression of phospho-p38 MAPK and phospho-MAPK activated mitogen kinase 2 levels by Dox were significantly suppressed by Sch B treatment. Sch B also attenuated Dox-induced higher expression of LV proinflammatory cytokines, cardiomyocyte DNA damage, myocardial apoptosis, caspase-3 positive cells and phopho-p53 levels in mice. Moreover, LV expression of NADPH oxidase subunits and reactive oxygen species were significantly less in Sch B treatment mice after Dox injection. These findings suggest that Sch B attenuates Dox-induced cardiotoxicity via antioxidative and anti-inflammatory effects.

  1. Schisandrin B Prevents Doxorubicin Induced Cardiac Dysfunction by Modulation of DNA Damage, Oxidative Stress and Inflammation through Inhibition of MAPK/p53 Signaling

    PubMed Central

    Arumugam, Somasundaram; Suzuki, Kenji; Ko, Kam Ming; Krishnamurthy, Prasanna; Watanabe, Kenichi; Konishi, Tetsuya

    2015-01-01

    Doxorubicin (Dox) is a highly effective antineoplastic drug. However, Dox-induced apoptosis in cardiomyocytes leads to irreversible degenerative cardiomyopathy, which limits Dox clinical application. Schisandrin B (Sch B), a dibenzocyclooctadiene derivative isolated from the fruit of Schisandra chinensis, has been shown to protect against oxidative damage in liver, heart and brain tissues in rodents. In current study, we investigated possible protective effects of Sch B against Dox-induced cardiomyopathy in mice. Mice received a single injection of Dox (20 mg/kg IP). Five days after Dox administration, left ventricular (LV) performance was significantly depressed and was improved by Sch B treatment. Sch B prevented the Dox-induced increase in lipid peroxidation, nitrotyrosine formation, and metalloproteinase activation in the heart. In addition, the increased expression of phospho-p38 MAPK and phospho-MAPK activated mitogen kinase 2 levels by Dox were significantly suppressed by Sch B treatment. Sch B also attenuated Dox-induced higher expression of LV proinflammatory cytokines, cardiomyocyte DNA damage, myocardial apoptosis, caspase-3 positive cells and phopho-p53 levels in mice. Moreover, LV expression of NADPH oxidase subunits and reactive oxygen species were significantly less in Sch B treatment mice after Dox injection. These findings suggest that Sch B attenuates Dox-induced cardiotoxicity via antioxidative and anti-inflammatory effects. PMID:25742619

  2. Noncatalytic, N-terminal Domains of DNA Polymerase Lambda Affect Its Cellular Localization and DNA Damage Response.

    PubMed

    Stephenson, Anthony A; Taggart, David J; Suo, Zucai

    2017-04-13

    Specialized DNA polymerases, such as DNA polymerase lambda (Polλ), are important players in DNA damage tolerance and repair pathways. Knowing how DNA polymerases are regulated and recruited to sites of DNA damage is imperative to understanding these pathways. Recent work has suggested that Polλ plays a role in several distinct DNA damage tolerance and repair pathways. In this paper, we report previously unknown roles of the N-terminal domains of human Polλ for modulating its involvement in DNA damage tolerance and repair. By using Western blot analysis, fluorescence microscopy, and cell survival assays, we found that the BRCA1 C-terminal (BRCT) and proline/serine-rich (PSR) domains of Polλ affect its cellular localization and DNA damage responses. The nuclear localization signal (NLS) of Polλ was necessary to overcome the impediment of its nuclear localization caused by its BRCT and PSR domains. Induction of DNA damage resulted in recruitment of Polλ to chromatin, which was controlled by its BRCT and PSR domains. In addition, the presence of both domains was required for Polλ-mediated tolerance of oxidative DNA damage but not DNA methylation damage. These findings suggest that the N-terminal domains of Polλ are important for regulating its responses to DNA damage.

  3. Detecting ATM-dependent chromatin modification in DNA damage response.

    PubMed

    Udayakumar, Durga; Horikoshi, Nobuo; Mishra, Lopa; Hunt, Clayton; Pandita, Tej K

    2015-01-01

    Loss of function or mutation of the ataxia-telangiectasia mutated gene product (ATM) results in inherited genetic disorders characterized by neurodegeneration, immunodeficiency, and cancer. Ataxia-telangiectasia mutated (ATM) gene product belongs to the PI3K-like protein kinase (PIKKs) family and is functionally implicated in mitogenic signal transduction, chromosome condensation, meiotic recombination, cell-cycle control, and telomere maintenance. The ATM protein kinase is primarily activated in response to DNA double strand breaks (DSBs), the most deleterious form of DNA damage produced by ionizing radiation (IR) or radiomimetic drugs. It is detected at DNA damage sites, where ATM autophosphorylation causes dissociation of the inactive homodimeric form to the activated monomeric form. Interestingly, heat shock can activate ATM independent of the presence of DNA strand breaks. ATM is an integral part of the sensory machinery that detects DSBs during meiosis, mitosis, or DNA breaks mediated by free radicals. These DNA lesions can trigger higher order chromatin reorganization fuelled by posttranslational modifications of histones and histone binding proteins. Our group, and others, have shown that ATM activation is tightly regulated by chromatin modifications. This review summarizes the multiple approaches used to discern the role of ATM and other associated proteins in chromatin modification in response to DNA damage.

  4. Detecting ATM-Dependent Chromatin Modification in DNA Damage Response

    PubMed Central

    Udayakumar, Durga; Horikoshi, Nobuo; Mishra, Lope; Hunt, Clayton; Pandita, Tej K.

    2015-01-01

    Loss of function or mutation of the ataxia–telangiectasia mutated gene product (ATM) results in inherited genetic disorders characterized by neurodegeneration, immunodeficiency, and cancer. Ataxia-telangiectasia mutated (ATM) gene product belongs to the PI3K-like protein kinase (PIKKs) family and is functionally implicated in mitogenic signal transduction, chromosome condensation, meiotic recombination, cell-cycle control, and telomere maintenance. The ATM protein kinase is primarily activated in response to DNA double strand breaks (DSBs), the most deleterious form of DNA damage produced by ionizing radiation (IR) or radiomimetic drugs. It is detected at DNA damage sites, where ATM autophosphorylation causes dissociation of the inactive homodimeric form to the activated monomeric form. Interestingly, heat shock can activate ATM independent of the presence of DNA strand breaks. ATM is an integral part of the sensory machinery that detects DSBs during meiosis, mitosis, or DNA breaks mediated by free radicals. These DNA lesions can trigger higher order chromatin reorganization fuelled by posttranslational modifications of histones and histone binding proteins. Our group, and others, have shown that ATM activation is tightly regulated by chromatin modifications. This review summarizes the multiple approaches used to discern the role of ATM and other associated proteins in chromatin modification in response to DNA damage. PMID:25827888

  5. The ATM Kinase Induces MicroRNA Biogenesis in the DNA Damage Response

    PubMed Central

    Zhang, Xinna; Wan, Guohui; Berger, Franklin G.; He, Xiaoming; Lu, Xiongbin

    2011-01-01

    SUMMARY The DNA damage response involves a complex network of processes that detect and repair DNA damage. Here we show that miRNA biogenesis is globally induced upon DNA damage in an ATM-dependent manner. About one fourth of miRNAs are significantly up-regulated after DNA damage, while loss of ATM abolishes their induction. KSRP (KH-type splicing regulatory protein) is a key player that translates DNA damage signaling to miRNA biogenesis. The ATM kinase directly binds to and phosphorylates KSRP, leading to enhanced interaction between KSRP and pri-miRNAs and increased KSRP activity in miRNA processing. Mutations of the ATM phosphorylation sites of KSRP impaired its activity in regulating miRNAs. These findings reveal a mechanism by which DNA damage signaling is linked to miRNA biogenesis. PMID:21329876

  6. DNA damage, redox changes, and associated stress-inducible signaling events underlying the apoptosis and cytotoxicity in murine alveolar macrophage cell line MH-S by methanol-extracted Stachybotrys chartarum toxins.

    PubMed

    Wang, Huiyan; Yadav, Jagjit S

    2006-08-01

    Spore-extracted toxins of the indoor mold Stachybotrys chartarum (SC) caused cytotoxicity (release of lactate dehydrogenase), inhibition of cell proliferation, and cell death in murine alveolar macrophage cell line MH-S in a dose- and time-dependent manner. Apoptotic cell death, confirmed based on morphological changes, DNA ladder formation, and caspase 3/7 activation, was detectable as early as at 3 h during treatment with a toxin concentration of 1 spore equivalent/macrophage and was preceded by DNA damage beginning at 15 min, as evidenced by DNA comet formation in single cell gel electrophoresis assay. The apoptotic dose of SC toxins did not induce detectable nitric oxide and pro-inflammatory cytokines (IL-1beta, IL-6, and TNF-alpha) but showed exacerbated cytotoxicity in presence of a non-apoptotic dose of the known pro-inflammatory agent LPS (10 ng/ml). Intracellular reduced glutathione (GSH) level showed a significant decrease beginning at 9 h of the toxin treatment whereas oxidized glutathione (GSSG) showed a corresponding significant increase, indicating a delayed onset of oxidative stress in the apoptosis process. The toxin-treated macrophages accumulated p53, an indicator of DNA damage response, and showed activation of the stress-inducible MAP kinases, JNK, and p38, in a time-dependent manner. Chemical blocking of either p38 or p53 inhibited in part the SC toxin-induced apoptosis whereas blocking of JNK did not show any such effect. This study constitutes the first report on induction of DNA damage and associated p53 activation by SC toxins, and demonstrates the involvement of p38- and p53-mediated signaling events in SC toxin-induced apoptosis of alveolar macrophages.

  7. DNA damage, redox changes, and associated stress-inducible signaling events underlying the apoptosis and cytotoxicity in murine alveolar macrophage cell line MH-S by methanol-extracted Stachybotrys chartarum toxins

    SciTech Connect

    Wang Huiyan; Yadav, Jagjit S. . E-mail: Jagjit.Yadav@uc.edu

    2006-08-01

    Spore-extracted toxins of the indoor mold Stachybotrys chartarum (SC) caused cytotoxicity (release of lactate dehydrogenase), inhibition of cell proliferation, and cell death in murine alveolar macrophage cell line MH-S in a dose- and time-dependent manner. Apoptotic cell death, confirmed based on morphological changes, DNA ladder formation, and caspase 3/7 activation, was detectable as early as at 3 h during treatment with a toxin concentration of 1 spore equivalent/macrophage and was preceded by DNA damage beginning at 15 min, as evidenced by DNA comet formation in single cell gel electrophoresis assay. The apoptotic dose of SC toxins did not induce detectable nitric oxide and pro-inflammatory cytokines (IL-1{beta}, IL-6, and TNF-{alpha}) but showed exacerbated cytotoxicity in presence of a non-apoptotic dose of the known pro-inflammatory agent LPS (10 ng/ml). Intracellular reduced glutathione (GSH) level showed a significant decrease beginning at 9 h of the toxin treatment whereas oxidized glutathione (GSSG) showed a corresponding significant increase, indicating a delayed onset of oxidative stress in the apoptosis process. The toxin-treated macrophages accumulated p53, an indicator of DNA damage response, and showed activation of the stress-inducible MAP kinases, JNK, and p38, in a time-dependent manner. Chemical blocking of either p38 or p53 inhibited in part the SC toxin-induced apoptosis whereas blocking of JNK did not show any such effect. This study constitutes the first report on induction of DNA damage and associated p53 activation by SC toxins, and demonstrates the involvement of p38- and p53-mediated signaling events in SC toxin-induced apoptosis of alveolar macrophages.

  8. FIBER OPTIC BIOSENSOR FOR DNA DAMAGE

    EPA Science Inventory

    This paper describes a fiber optic biosensor for the rapid and sensitive detection of radiation-induced or chemically-induced oxidative DNA damage. The assay is based on the hybridization and temperature-induced dissociation (melting curves) of synthetic oligonucleotides. The...

  9. FIBER OPTIC BIOSENSOR FOR DNA DAMAGE

    EPA Science Inventory

    This paper describes a fiber optic biosensor for the rapid and sensitive detection of radiation-induced or chemically-induced oxidative DNA damage. The assay is based on the hybridization and temperature-induced dissociation (melting curves) of synthetic oligonucleotides. The...

  10. Alternative DNA Damage Checkpoint Pathways in Eukaryotes

    DTIC Science & Technology

    2000-04-01

    checkpoint pathway in Saccharomyces cerevisiae. Our hypothesis is that CHES1 does so by activating an alternative DNA damage-induced checkpoint pathway. The...difficulties, therefore we also tried the candidate gene and the yeast 2-hybrid approaches but with no success. In this report, we proposed alternative

  11. Profiling DNA damage response following mitotic perturbations

    PubMed Central

    S. Pedersen, Ronni; Karemore, Gopal; Gudjonsson, Thorkell; Rask, Maj-Britt; Neumann, Beate; Hériché, Jean-Karim; Pepperkok, Rainer; Ellenberg, Jan; Gerlich, Daniel W.; Lukas, Jiri; Lukas, Claudia

    2016-01-01

    Genome integrity relies on precise coordination between DNA replication and chromosome segregation. Whereas replication stress attracted much attention, the consequences of mitotic perturbations for genome integrity are less understood. Here, we knockdown 47 validated mitotic regulators to show that a broad spectrum of mitotic errors correlates with increased DNA breakage in daughter cells. Unexpectedly, we find that only a subset of these correlations are functionally linked. We identify the genuine mitosis-born DNA damage events and sub-classify them according to penetrance of the observed phenotypes. To demonstrate the potential of this resource, we show that DNA breakage after cytokinesis failure is preceded by replication stress, which mounts during consecutive cell cycles and coincides with decreased proliferation. Together, our results provide a resource to gauge the magnitude and dynamics of DNA breakage associated with mitotic aberrations and suggest that replication stress might limit propagation of cells with abnormal karyotypes. PMID:27976684

  12. Phase resetting of the mammalian circadian clock by DNA damage.

    PubMed

    Oklejewicz, Małgorzata; Destici, Eugin; Tamanini, Filippo; Hut, Roelof A; Janssens, Roel; van der Horst, Gijsbertus T J

    2008-02-26

    To anticipate the momentum of the day, most organisms have developed an internal clock that drives circadian rhythms in metabolism, physiology, and behavior [1]. Recent studies indicate that cell-cycle progression and DNA-damage-response pathways are under circadian control [2-4]. Because circadian output processes can feed back into the clock, we investigated whether DNA damage affects the mammalian circadian clock. By using Rat-1 fibroblasts expressing an mPer2 promoter-driven luciferase reporter, we show that ionizing radiation exclusively phase advances circadian rhythms in a dose- and time-dependent manner. Notably, this in vitro finding translates to the living animal, because ionizing radiation also phase advanced behavioral rhythms in mice. The underlying mechanism involves ATM-mediated damage signaling as radiation-induced phase shifting was suppressed in fibroblasts from cancer-predisposed ataxia telangiectasia and Nijmegen breakage syndrome patients. Ionizing radiation-induced phase shifting depends on neither upregulation or downregulation of clock gene expression nor on de novo protein synthesis and, thus, differs mechanistically from dexamethasone- and forskolin-provoked clock resetting [5]. Interestingly, ultraviolet light and tert-butyl hydroperoxide also elicited a phase-advancing effect. Taken together, our data provide evidence that the mammalian circadian clock, like that of the lower eukaryote Neurospora[6], responds to DNA damage and suggest that clock resetting is a universal property of DNA damage.

  13. Immunochemical detection of oxidatively damaged DNA.

    PubMed

    Rossner, Pavel; Sram, Radim J

    2012-04-01

    Oxidatively damaged DNA is implicated in various diseases, including neurodegenerative disorders, cancer, diabetes, cardiovascular and inflammatory diseases as well as aging. Several methods have been developed to detect oxidatively damaged DNA. They include chromatographic techniques, the Comet assay, (32)P-postlabelling and immunochemical methods that use antibodies to detect oxidized lesions. In this review, we discuss the detection of 8-oxo-7,8-dihydro-29-deoxyguanosine (8-oxodG), the most abundant oxidized nucleoside. This lesion is frequently used as a marker of exposure to oxidants, including environmental pollutants, as well as a potential marker of disease progression. We concentrate on studies published between the years 2000 and 2011 that used enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry to detect 8-oxodG in humans, laboratory animals and in cell lines. Oxidative damage observed in these organisms resulted from disease, exposure to environmental pollutants or from in vitro treatment with various chemical and physical factors.

  14. Self-cytoplasmic DNA upregulates the mutator enzyme APOBEC3A leading to chromosomal DNA damage.

    PubMed

    Suspène, Rodolphe; Mussil, Bianka; Laude, Hélène; Caval, Vincent; Berry, Noémie; Bouzidi, Mohamed S; Thiers, Valérie; Wain-Hobson, Simon; Vartanian, Jean-Pierre

    2017-01-18

    Foreign and self-cytoplasmic DNA are recognized by numerous DNA sensor molecules leading to the production of type I interferons. Such DNA agonists should be degraded otherwise cells would be chronically stressed. Most human APOBEC3 cytidine deaminases can initiate catabolism of cytoplasmic mitochondrial DNA. Using the human myeloid cell line THP-1 with an interferon inducible APOBEC3A gene, we show that cytoplasmic DNA triggers interferon α and β production through the RNA polymerase III transcription/RIG-I pathway leading to massive upregulation of APOBEC3A By catalyzing C→U editing in single stranded DNA fragments, the enzyme prevents them from re-annealing so attenuating the danger signal. The price to pay is chromosomal DNA damage in the form of CG→TA mutations and double stranded DNA breaks which, in the context of chronic inflammation, could drive cells down the path toward cancer.

  15. DNA damage mediated transcription arrest: Step back to go forward.

    PubMed

    Mullenders, Leon

    2015-12-01

    The disturbance of DNA helix conformation by bulky DNA damage poses hindrance to transcription elongating due to stalling of RNA polymerase at transcription blocking lesions. Stalling of RNA polymerase provokes the formation of R-loops, i.e. the formation of a DNA-RNA hybrid and a displaced single stranded DNA strand as well as displacement of spliceosomes. R-loops are processed into DNA single and double strand breaks by NER factors depending on TC-NER factors leading to genome instability. Moreover, stalling of RNA polymerase induces a strong signal for cell cycle arrest and apoptosis. These toxic and mutagenic effects are counteracted by a rapid recruitment of DNA repair proteins to perform transcription coupled nucleotide excision repair (TC-NER) to remove the blocking DNA lesions and to restore transcription. Recent studies have highlighted the role of backtracking of RNA polymerase to facilitate TC-NER and identified novel factors that play key roles in TC-NER and in restoration of transcription. On the molecular level these factors facilitate stability of the repair complex by promotion and regulation of various post-translational modifications of NER factors and chromatin substrate. In addition, the continuous flow of new factors that emerge from screening assays hints to several regulatory levels to safeguard the integrity of transcription elongation after disturbance by DNA damage that have yet to be explored. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Oxidative and alkylating damage in DNA.

    PubMed

    Martinez, Glaucia R; Loureiro, Ana Paula M; Marques, Sabrina A; Miyamoto, Sayuri; Yamaguchi, Lydia F; Onuki, Janice; Almeida, Eduardo A; Garcia, Camila C M; Barbosa, Lívea F; Medeiros, Marisa H G; Di Mascio, Paolo

    2003-11-01

    Modification of cellular DNA upon exposure to reactive oxygen and nitrogen species is the likely initial event involved in the induction of the mutagenic and lethal effects of various oxidative stress agents. Evidence has been accumulated for the significant implication of singlet oxygen (1O(2)), generated as the result of UVA activation of endogenous photosensitizers as porphyrins and flavins. 7,8-Dihydro-8-oxo-2'-deoxyguanosine (8-oxodGuo) has been shown to be the exclusive product of the reaction of 1O(2) with the guanine moiety of cellular DNA, in contrast to the hydroxyl radical, which reacts almost indifferently with all the nucleobases and the sugar moiety of DNA. Furthermore 8-oxodGuo is also produced by other oxidants and can be used as an ubiquitous biomarker of DNA oxidation but can not be a specific marker of any particular species. The role of DNA etheno adducts in mutagenic and carcinogenic processes triggered by known occupational and environmental carcinogens has also been studied. Much interest in etheno adducts resulted from the detection of increased levels of 1,N(6)-etheno-2'-deoxyadenosine and 3,N(4)-etheno-2'-deoxycytidine in DNA from human, rat and mouse tissues under pathophysiological conditions associated with oxidative stress. A method involving on-line HPLC with electrospray tandem mass spectrometry detection has been developed for the analysis of 1,N(2)-etheno-2'-deoxyguanosine (1,N(2)-epsilondGuo) in DNA. This methodology permits direct quantification of 20 fmol (7.4 adducts/10(8) dGuo) of the etheno adduct from approximately 350 microg of crude DNA hydrolysates. This method provides the first evidence of the occurrence of 1,N(2)-epsilondGuo as a basal endogenous lesion and may be utilized to better assess the biological consequences of etheno DNA damage under normal and pathological conditions. This work addresses the importance of isotope labeling associated with mass spectrometry technique for biomolecule damage studies.

  17. Radioactive ¹²⁵I seed inhibits the cell growth, migration, and invasion of nasopharyngeal carcinoma by triggering DNA damage and inactivating VEGF-A/ERK signaling.

    PubMed

    Tian, Yunhong; Xie, Qiang; Tian, Yunming; Liu, Ying; Huang, Zuoping; Fan, Cundong; Hou, Bing; Sun, Dan; Yao, Kaitai; Chen, Tianfeng

    2013-01-01

    Although radiotherapy technology has progressed rapidly in the past decade, the inefficiency of radiation and cancer cell resistance mean that the 5-year survival rate of patients with nasopharyngeal carcinoma (NPC) is low. Radioactive (125)I seed implantation has received increasing attention as a clinical treatment for cancers. Vascular endothelial growth factor-A (VEGF-A) is one of the most important members of the VEGF family and plays an important role in cell migration through the extracellular-signal-regulated kinase (ERK) pathway. Here we show that radioactive (125)I seeds more effectively inhibit NPC cell growth through DNA damage and subsequent induction of apoptosis, compared with X-ray irradiation. Moreover, cell migration was effectively inhibited by (125)I seed irradiation through VEGF-A/ERK inactivation. VEGF-A pretreatment significantly blocked (125)I seed irradiation-induced inhibition of cell migration by recovering the levels of phosphorylated ERK (p-ERK) protein. Interestingly, in vivo study results confirmed that (125)I seed irradiation was more effective in inhibiting tumor growth than X-ray irradiation. Taken together, these results suggest that radioactive (125)I seeds exert novel anticancer activity by triggering DNA damage and inactivating VEGF-A/ERK signaling. Our finding provides evidence for the efficacy of (125)I seeds for treating NPC patients, especially those with local recurrence.

  18. Diseases Associated with Defective Responses to DNA Damage

    PubMed Central

    O’Driscoll, Mark

    2012-01-01

    Within the last decade, multiple novel congenital human disorders have been described with genetic defects in known and/or novel components of several well-known DNA repair and damage response pathways. Examples include disorders of impaired nucleotide excision repair, DNA double-strand and single-strand break repair, as well as compromised DNA damage-induced signal transduction including phosphorylation and ubiquitination. These conditions further reinforce the importance of multiple genome stability pathways for health and development in humans. Furthermore, these conditions inform our knowledge of the biology of the mechanics of genome stability and in some cases provide potential routes to help exploit these pathways therapeutically. Here, I will review a selection of these exciting findings from the perspective of the disorders themselves, describing how they were identified, how genotype informs phenotype, and how these defects contribute to our growing understanding of genome stability pathways. PMID:23209155

  19. RAD54 forms DNA repair foci in response to DNA damage in living plant cells.

    PubMed

    Hirakawa, Takeshi; Hasegawa, Junko; White, Charles I; Matsunaga, Sachihiro

    2017-02-02

    Plants have various defense mechanisms against environmental stresses that induce DNA damage. Genetic and biochemical analyses have revealed the sensing and signaling of DNA damage, but little is known about subnuclear dynamics in response to DNA damage in living plant cells. Here, we observed that the chromatin remodeling factor RAD54, which is involved in DNA repair via the homologous recombination pathway, formed subnuclear foci (termed RAD54 foci) in Arabidopsis thaliana after induction of DNA double-strand breaks. The appearance of RAD54 foci was dependent on the ATAXIA-TELANGIECTASIA MUTATED-SUPPRESSOR OF GAMMA RESPONSE 1 pathway, and RAD54 foci were co-localized with γH2AX signals. Laser irradiation of a subnuclear area demonstrated that in living cells RAD54 was specifically accumulated at the damaged site. In addition, the formation of RAD54 foci showed specificity for cell type and region. We conclude that RAD54 foci correspond to DNA repair foci in A. thaliana.

  20. Investigation of perfluorooctanoic acid induced DNA damage using electrogenerated chemiluminescence associated with charge transfer in DNA.

    PubMed

    Lu, Liping; Guo, Linqing; Li, Meng; Kang, Tianfang; Cheng, Shuiyuan; Miao, Wujian

    2016-10-01

    An electrogenerated chemiluminescence (ECL)-DNA sensor was designed and fabricated for the investigation of DNA damage by a potential environmental pollutant, perfluorooctanoic acid (PFOA). The ECL-DNA sensor consisted of a Au electrode that had a self-assembled monolayer of 15 base-pair double-stranded (ds) DNA oligonucleotides with covalently attached semiconductor CdSe quantum dots (QDs) at the distal end of the DNA. Characterization of the ECL-DNA sensor was conducted with X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS), ECL, and cyclic voltammetry before and after the exposure of the sensor to PFOA. Consistent data revealed that the dsDNA on Au was severely damaged upon the incubation of the electrode in PFOA, causing significant increase in charge (or electron) transfer (CT) resistance within DNA strands. Consequently, the cathodic coreactant ECL responses of the Au/dsDNA-QDs electrode in the presence of K2S2O8 were markedly decreased. The strong interaction between DNA and PFOA via the hydrophobic interaction, especially the formation of F···H hydrogen bonds by insertion of the difluoro-methylene group of PFOA into the DNA base pairs, was believed to be responsible for the dissociation or loosening of dsDNA structure, which inhibited the CT through DNA. A linear relationship between the ECL signal of the sensor and the logarithmical concentration of PFOA displayed a dynamic range of 1.00 × 10(-14)-1.00 × 10(-4) M, with a limit of detection of 1.00 × 10(-15) M at a signal-to-noise ratio of 3. Graphical Abstract Illustration of ECL detection of PFOA on a Au/dsDNA-QDs ECL-DNA sensor.

  1. DNA Damage: A Main Determinant of Vascular Aging

    PubMed Central

    Bautista-Niño, Paula K.; Portilla-Fernandez, Eliana; Vaughan, Douglas E.; Danser, A. H. Jan; Roks, Anton J. M.

    2016-01-01

    Vascular aging plays a central role in health problems and mortality in older people. Apart from the impact of several classical cardiovascular risk factors on the vasculature, chronological aging remains the single most important determinant of cardiovascular problems. The causative mechanisms by which chronological aging mediates its impact, independently from classical risk factors, remain to be elucidated. In recent years evidence has accumulated that unrepaired DNA damage may play an important role. Observations in animal models and in humans indicate that under conditions during which DNA damage accumulates in an accelerated rate, functional decline of the vasculature takes place in a similar but more rapid or more exaggerated way than occurs in the absence of such conditions. Also epidemiological studies suggest a relationship between DNA maintenance and age-related cardiovascular disease. Accordingly, mouse models of defective DNA repair are means to study the mechanisms involved in biological aging of the vasculature. We here review the evidence of the role of DNA damage in vascular aging, and present mechanisms by which genomic instability interferes with regulation of the vascular tone. In addition, we present potential remedies against vascular aging induced by genomic instability. Central to this review is the role of diverse types of DNA damage (telomeric, non-telomeric and mitochondrial), of cellular changes (apoptosis, senescence, autophagy), mediators of senescence and cell growth (plasminogen activator inhibitor-1 (PAI-1), cyclin-dependent kinase inhibitors, senescence-associated secretory phenotype (SASP)/senescence-messaging secretome (SMS), insulin and insulin-like growth factor 1 (IGF-1) signaling), the adenosine monophosphate-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR)-nuclear factor kappa B (NFκB) axis, reactive oxygen species (ROS) vs. endothelial nitric oxide synthase (eNOS)-cyclic guanosine monophosphate (c

  2. DNA Damage: A Main Determinant of Vascular Aging.

    PubMed

    Bautista-Niño, Paula K; Portilla-Fernandez, Eliana; Vaughan, Douglas E; Danser, A H Jan; Roks, Anton J M

    2016-05-18

    Vascular aging plays a central role in health problems and mortality in older people. Apart from the impact of several classical cardiovascular risk factors on the vasculature, chronological aging remains the single most important determinant of cardiovascular problems. The causative mechanisms by which chronological aging mediates its impact, independently from classical risk factors, remain to be elucidated. In recent years evidence has accumulated that unrepaired DNA damage may play an important role. Observations in animal models and in humans indicate that under conditions during which DNA damage accumulates in an accelerated rate, functional decline of the vasculature takes place in a similar but more rapid or more exaggerated way than occurs in the absence of such conditions. Also epidemiological studies suggest a relationship between DNA maintenance and age-related cardiovascular disease. Accordingly, mouse models of defective DNA repair are means to study the mechanisms involved in biological aging of the vasculature. We here review the evidence of the role of DNA damage in vascular aging, and present mechanisms by which genomic instability interferes with regulation of the vascular tone. In addition, we present potential remedies against vascular aging induced by genomic instability. Central to this review is the role of diverse types of DNA damage (telomeric, non-telomeric and mitochondrial), of cellular changes (apoptosis, senescence, autophagy), mediators of senescence and cell growth (plasminogen activator inhibitor-1 (PAI-1), cyclin-dependent kinase inhibitors, senescence-associated secretory phenotype (SASP)/senescence-messaging secretome (SMS), insulin and insulin-like growth factor 1 (IGF-1) signaling), the adenosine monophosphate-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR)-nuclear factor kappa B (NFκB) axis, reactive oxygen species (ROS) vs. endothelial nitric oxide synthase (eNOS)-cyclic guanosine monophosphate (c

  3. Telomeres, histone code, and DNA damage response.

    PubMed

    Misri, S; Pandita, S; Kumar, R; Pandita, T K

    2008-01-01

    Genomic stability is maintained by telomeres, the end terminal structures that protect chromosomes from fusion or degradation. Shortening or loss of telomeric repeats or altered telomere chromatin structure is correlated with telomere dysfunction such as chromosome end-to-end associations that could lead to genomic instability and gene amplification. The structure at the end of telomeres is such that its DNA differs from DNA double strand breaks (DSBs) to avoid nonhomologous end-joining (NHEJ), which is accomplished by forming a unique higher order nucleoprotein structure. Telomeres are attached to the nuclear matrix and have a unique chromatin structure. Whether this special structure is maintained by specific chromatin changes is yet to be thoroughly investigated. Chromatin modifications implicated in transcriptional regulation are thought to be the result of a code on the histone proteins (histone code). This code, involving phosphorylation, acetylation, methylation, ubiquitylation, and sumoylation of histones, is believed to regulate chromatin accessibility either by disrupting chromatin contacts or by recruiting non-histone proteins to chromatin. The histone code in which distinct histone tail-protein interactions promote engagement may be the deciding factor for choosing specific DSB repair pathways. Recent evidence suggests that such mechanisms are involved in DNA damage detection and repair. Altered telomere chromatin structure has been linked to defective DNA damage response (DDR), and eukaryotic cells have evolved DDR mechanisms utilizing proficient DNA repair and cell cycle checkpoints in order to maintain genomic stability. Recent studies suggest that chromatin modifying factors play a critical role in the maintenance of genomic stability. This review will summarize the role of DNA damage repair proteins specifically ataxia-telangiectasia mutated (ATM) and its effectors and the telomere complex in maintaining genome stability.

  4. Telomeres, histone code, and DNA damage response

    PubMed Central

    Misri, S.; Pandita, S.; Kumar, R.; Pandita, T.K.

    2009-01-01

    Genomic stability is maintained by telomeres, the end terminal structures that protect chromosomes from fusion or degradation. Shortening or loss of telomeric repeats or altered telomere chromatin structure is correlated with telomere dysfunction such as chromosome end-to-end associations that could lead to genomic instability and gene amplification. The structure at the end of telomeres is such that its DNA differs from DNA double strand breaks (DSBs) to avoid nonhomologous end-joining (NHEJ), which is accomplished by forming a unique higher order nucleoprotein structure. Telomeres are attached to the nuclear matrix and have a unique chromatin structure. Whether this special structure is maintained by specific chromatin changes is yet to be thoroughly investigated. Chromatin modifications implicated in transcriptional regulation are thought to be the result of a code on the histone proteins (histone code). This code, involving phosphorylation, acetylation, methylation, ubiquitylation, and sumoylation of histones, is believed to regulate chromatin accessibility either by disrupting chromatin contacts or by recruiting non-histone proteins to chromatin. The histone code in which distinct histone tail-protein interactions promote engagement may be the deciding factor for choosing specific DSB repair pathways. Recent evidence suggests that such mechanisms are involved in DNA damage detection and repair. Altered telomere chromatin structure has been linked to defective DNA damage response (DDR), and eukaryotic cells have evolved DDR mechanisms utilizing proficient DNA repair and cell cycle checkpoints in order to maintain genomic stability. Recent studies suggest that chromatin modifying factors play a critical role in the maintenance of genomic stability. This review will summarize the role of DNA damage repair proteins specifically ataxia-telangiectasia mutated (ATM) and its effectors and the telomere complex in maintaining genome stability. PMID:19188699

  5. Viruses and the DNA Damage Response: Activation and Antagonism.

    PubMed

    Luftig, Micah A

    2014-11-01

    Viruses must interact with their hosts in order to replicate; these interactions often provoke the evolutionarily conserved response to DNA damage, known as the DNA damage response (DDR). The DDR can be activated by incoming viral DNA, during the integration of retroviruses, or in response to the aberrant DNA structures generated upon replication of DNA viruses. Furthermore, DNA and RNA viral proteins can induce the DDR by promoting inappropriate S phase entry, by modifying cellular DDR factors directly, or by unintentionally targeting host DNA. The DDR may be antiviral, although viruses often require proximal DDR activation of repair and recombination factors to facilitate replication as well as downstream DDR signaling suppression to ensure cell survival. An unintended consequence of DDR attenuation during infection is the long-term survival and proliferation of precancerous cells. Therefore, the molecular basis for DDR activation and attenuation by viruses remains an important area of study that will likely provide key insights into how viruses have evolved with their hosts.

  6. ATP-dependent chromatin remodeling in the DNA-damage response

    PubMed Central

    2012-01-01

    The integrity of DNA is continuously challenged by metabolism-derived and environmental genotoxic agents that cause a variety of DNA lesions, including base alterations and breaks. DNA damage interferes with vital processes such as transcription and replication, and if not repaired properly, can ultimately lead to premature aging and cancer. Multiple DNA pathways signaling for DNA repair and DNA damage collectively safeguard the integrity of DNA. Chromatin plays a pivotal role in regulating DNA-associated processes, and is itself subject to regulation by the DNA-damage response. Chromatin influences access to DNA, and often serves as a docking or signaling site for repair and signaling proteins. Its structure can be adapted by post-translational histone modifications and nucleosome remodeling, catalyzed by the activity of ATP-dependent chromatin-remodeling complexes. In recent years, accumulating evidence has suggested that ATP-dependent chromatin-remodeling complexes play important, although poorly characterized, roles in facilitating the effectiveness of the DNA-damage response. In this review, we summarize the current knowledge on the involvement of ATP-dependent chromatin remodeling in three major DNA repair pathways: nucleotide excision repair, homologous recombination, and non-homologous end-joining. This shows that a surprisingly large number of different remodeling complexes display pleiotropic functions during different stages of the DNA-damage response. Moreover, several complexes seem to have multiple functions, and are implicated in various mechanistically distinct repair pathways. PMID:22289628

  7. DNA Charge Transport for Sensing and Signaling

    PubMed Central

    Sontz, Pamela A.; Muren, Natalie B.; Barton, Jacqueline K.

    2012-01-01

    Conspectus The DNA duplex is an exquisite macromolecular array that stores genetic information to encode proteins and regulate pathways, but its unique structure imparts chemical function that allows it also to mediate charge transport (CT). We have utilized diverse platforms to probe DNA CT, using spectroscopic, electrochemical, and even genetic methods. These studies have established powerful features of DNA CT chemistry. DNA CT can occur over long molecular distances as long as the bases are well stacked; perturbations in base stacking as arise with single base mismatches, DNA lesions, and the binding of some proteins that kink the DNA, all serve to inhibit DNA CT. Significantly, single molecule studies of DNA CT show that ground state CT can occur over 34 nm as long as the duplex is well stacked; one single base mismatch inhibits CT. The DNA duplex is an effective sensor for the integrity of the base pair stack. Moreover the efficiency of DNA CT is what one would expect for a stack of graphite sheets, equivalent to the stack of DNA base pairs, and independent of the sugar-phosphate backbone. Since DNA CT offers a means to carry out redox chemistry from a distance, we have considered how this chemistry might be used for long range signaling in a biological context. We have taken advantage of our chemical probes and platforms to characterize DNA CT also in the context of the cell. CT can occur over long distances, perhaps funneling damage to particular sites and insulating others from oxidative stress. Significantly, transcription factors that activate the genome to respond to oxidative stress can also be activated from a distance through DNA CT. Numerous proteins work to maintain the integrity of the genome and increasingly they have been found to contain [4Fe-4S] clusters that do not appear to carry out either structural or enzymatic roles. Using electrochemical methods, we find that DNA binding shifts the redox potentials of the clusters, activating them

  8. Dynamical signature of abasic damage in DNA.

    PubMed

    Furse, Kristina E; Corcelli, Steven A

    2011-02-02

    Time-dependent Stokes shift (TDSS) responses in proteins and DNA exhibit a broad range of long time scales (>10 ps) that are not present in bulk aqueous solution. The physical interpretation of the long TDSS time scales in biomolecular systems is a matter of considerable debate because of the many different components present in the sample (water, biomolecule, counterions), which have highly correlated motions and intrinsically different abilities to adapt to local perturbations. Here we use molecular dynamics (MD) simulations to show that the surprisingly slow (∼10 ns) TDSS response of coumarin 102 (C102), a base pair replacement, reflects a distinct dynamical signature for DNA damage. When the C102 molecule is covalently incorporated into DNA, an abasic site is created on the strand opposite the C102 probe. The abasic sugar exhibits a reversible interchange between intra- and extrahelical conformations that are kinetically stable on a nanosecond time scale. This conformational change, only possible in damaged DNA, was found to be responsible for the long time scales in the measured TDSS response. For the first time, a TDSS measurement has been attributed to a specific biomolecular motion. This finding directly contradicts the prevailing notion that the TDSS response in biomolecular contexts is dominated by hydration dynamics. It also suggests that TDSS experiments can be used to study ultrafast biomolecular dynamics that are inaccessible to other techniques.

  9. Profiling oxidative DNA damage: effects of antioxidants.

    PubMed

    Box, Harold C; Patrzyc, Helen B; Budzinski, Edwin E; Dawidzik, Jean B; Freund, Harold G; Zeitouni, Nathalie C; Mahoney, Martin C

    2012-11-01

    The goal of this research was to determine whether antioxidant usage could be correlated with changes in DNA damage levels. Liquid Chromatography-tandem Mass Spectrometry (LC-MS/MS) was used to simultaneously measure five different oxidatively-induced base modifications in the DNA of WBC. Measurements of the five modifications were made before and after an 8-week trial during which participants took the SU.VI.MAX supplement. Levels of the five DNA modifications were compared among different groupings: users versus non-users of antioxidant supplements, before versus after the supplement intervention and men versus women. The statistical significance of differences between groups was most significant for pyrimidine base modifications and the observed trends reflect trends reported in epidemiological studies of antioxidant usage. A combination of modifications derived from pyrimidine bases is suggested as a superior indicator of oxidative stress.

  10. DNA Damage, Homology-Directed Repair, and DNA Methylation

    PubMed Central

    Angrisano, Tiziana; Morano, Annalisa; Lee, Bongyong; Pardo, Alba Di; Messina, Samantha; Iuliano, Rodolfo; Fusco, Alfredo; Santillo, Maria R; Muller, Mark T; Chiariotti, Lorenzo; Gottesman, Max E; Avvedimento, Enrico V

    2007-01-01

    To explore the link between DNA damage and gene silencing, we induced a DNA double-strand break in the genome of Hela or mouse embryonic stem (ES) cells using I-SceI restriction endonuclease. The I-SceI site lies within one copy of two inactivated tandem repeated green fluorescent protein (GFP) genes (DR-GFP). A total of 2%–4% of the cells generated a functional GFP by homology-directed repair (HR) and gene conversion. However, ~50% of these recombinants expressed GFP poorly. Silencing was rapid and associated with HR and DNA methylation of the recombinant gene, since it was prevented in Hela cells by 5-aza-2′-deoxycytidine. ES cells deficient in DNA methyl transferase 1 yielded as many recombinants as wild-type cells, but most of these recombinants expressed GFP robustly. Half of the HR DNA molecules were de novo methylated, principally downstream to the double-strand break, and half were undermethylated relative to the uncut DNA. Methylation of the repaired gene was independent of the methylation status of the converting template. The methylation pattern of recombinant molecules derived from pools of cells carrying DR-GFP at different loci, or from an individual clone carrying DR-GFP at a single locus, was comparable. ClustalW analysis of the sequenced GFP molecules in Hela and ES cells distinguished recombinant and nonrecombinant DNA solely on the basis of their methylation profile and indicated that HR superimposed novel methylation profiles on top of the old patterns. Chromatin immunoprecipitation and RNA analysis revealed that DNA methyl transferase 1 was bound specifically to HR GFP DNA and that methylation of the repaired segment contributed to the silencing of GFP expression. Taken together, our data support a mechanistic link between HR and DNA methylation and suggest that DNA methylation in eukaryotes marks homologous recombined segments. PMID:17616978

  11. Regulation of the DNA Damage Response by DNA-PKcs Inhibitory Phosphorylation of ATM.

    PubMed

    Zhou, Yi; Lee, Ji-Hoon; Jiang, Wenxia; Crowe, Jennie L; Zha, Shan; Paull, Tanya T

    2017-01-05

    Ataxia-telangiectasia mutated (ATM) regulates the DNA damage response as well as DNA double-strand break repair through homologous recombination. Here we show that ATM is hyperactive when the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is chemically inhibited or when the DNA-PKcs gene is deleted in human cells. Pre-incubation of ATM protein with active DNA-PKcs also significantly reduces ATM activity in vitro. We characterize several phosphorylation sites in ATM that are targets of DNA-PKcs and show that phospho-mimetic mutations at these residues significantly inhibit ATM activity and impair ATM signaling upon DNA damage. In contrast, phospho-blocking mutations at one cluster of sites increase the frequency of apoptosis during normal cell growth. DNA-PKcs, which is integral to the non-homologous end joining pathway, thus negatively regulates ATM activity through phosphorylation of ATM. These observations illuminate an important regulatory mechanism for ATM that also controls DNA repair pathway choice. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. How to Cope with DNA Damage Induced by Ionizing Radiation and Anti-Cancer Drugs?

    NASA Astrophysics Data System (ADS)

    Enomoto, A.; Miyagawa, K.

    Ionizing radiation and chemotherapeutic agents induce many types of DNA lesions, of which DNA double-strand breaks (DSBs) are assumed to be the most deleterious. DNA damage response mechanisms encompass pathways of DNA damage signaling, DNA repair, cell cycle checkpoint arrest, and apoptosis. Increasing evidence suggests that these pathways function co-operatively to maintain genomic stability in the face of exogenous and endogenous DNA damage. The relative impact of one mechanism over another probably depends on the kinds of lesions, the cell cycle phase, and the cell or tissue type. The inability to respond properly to or to repair DSBs may lead to hypersensitivity to DNA damaging agents and genomic instability including chromosomal aberrations. Chromosomal instability, a state of continuous accumulation of chromosomal change, is a common feature of many human cancers and of chromosome instability syndromes with increased cancer susceptibility. Here, we review the DNA da mage response and the links between deficiencies in response to DSBs and chromosomal instability.

  13. Acrylonitrile-induced oxidative DNA damage in rat astrocytes.

    PubMed

    Pu, Xinzhu; Kamendulis, Lisa M; Klaunig, James E

    2006-10-01

    Chronic administration of acrylonitrile results in a dose-related increase in astrocytomas in rat brain, but the mechanism of acrylonitrile carcinogenicity is not fully understood. The potential of acrylonitrile or its metabolites to induce direct DNA damage as a mechanism for acrylonitrile carcinogenicity has been questioned, and recent studies indicate that the mechanism involves the induction of oxidative stress in rat brain. The present study examined the ability of acrylonitrile to induce DNA damage in the DI TNC1 rat astrocyte cell line using the alkaline Comet assay. Oxidized DNA damage also was evaluated using formamidopyrimidine DNA glycosylase treatment in the modified Comet assay. No increase in direct DNA damage was seen in astrocytes exposed to sublethal concentrations of acrylonitrile (0-1.0 mM) for 24 hr. However, acrylonitrile treatment resulted in a concentration-related increase in oxidative DNA damage after 24 hr. Antioxidant supplementation in the culture media (alpha-tocopherol, (-)-epigallocathechin-3 gallate, or trolox) reduced acrylonitrile-induced oxidative DNA damage. Depletion of glutathione using 0.1 mM DL-buthionine-[S,R]-sulfoximine increased acrylonitrile-induced oxidative DNA damage (22-46%), while cotreatment of acrylonitrile with 2.5 mM L-2-oxothiazolidine-4-carboxylic acid, a precursor for glutathione biosynthesis, significantly reduced acrylonitrile-induced oxidative DNA damage (7-47%). Cotreatment of acrylonitrile with 0.5 mM 1-aminobenzotriazole, a suicidal inhibitor of cytochrome P450, prevented the oxidative DNA damage produced by acrylonitrile. Cyanide (0.1-0.5 mM) increased oxidative DNA damage (44-160%) in astrocytes. These studies demonstrate that while acrylonitrile does not directly damage astrocyte DNA, it does increase oxidative DNA damage. The oxidative DNA damage following acrylonitrile exposure appears to arise mainly through the P450 metabolic pathway; moreover, glutathione depletion may contribute to the

  14. The role of DNA damage and repair in atherosclerosis: A review.

    PubMed

    Shah, Nikunj R; Mahmoudi, Michael

    2015-09-01

    The global burden of cardiovascular disease is increasing despite therapeutic advances in medication and interventional technologies. Accumulated deoxyribonucleic acid (DNA) damage and subsequent repair pathways are now increasingly recognised as a causal factor in the initiation and progression of atherosclerosis. These molecular alterations have been shown to occur within affected vasculature, plaque microenvironment as well as in circulating cells. The DNA damage response (DDR) pathway is reliant on post-translational modification of sensing proteins which activate a signalling cascade to repair, if possible, DNA damaged sites in response to various environmental and physiological insults. This review summarises the current evidence for DNA damage in atherosclerosis, the key steps involved in the DDR pathway, DNA repair and their subsequent effects on atherosclerotic plaques, as well as the therapeutic options in managing DNA damage-induced atherosclerosis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Mitochondrial DNA damage induced autophagy, cell death, and disease.

    PubMed

    Van Houten, Bennett; Hunter, Senyene E; Meyer, Joel N

    2016-01-01

    Mammalian mitochondria contain multiple small genomes. While these organelles have efficient base excision removal of oxidative DNA lesions and alkylation damage, many DNA repair systems that work on nuclear DNA damage are not active in mitochondria. What is the fate of DNA damage in the mitochondria that cannot be repaired or that overwhelms the repair system? Some forms of mitochondrial DNA damage can apparently trigger mitochondrial DNA destruction, either via direct degradation or through specific forms of autophagy, such as mitophagy. However, accumulation of certain types of mitochondrial damage, in the absence of DNA ligase III (Lig3) or exonuclease G (EXOG), can directly trigger cell death. This review examines the cellular effects of persistent damage to mitochondrial genomes and discusses the very different cell fates that occur in response to different kinds of damage.

  16. Inflammation, oxidative DNA damage, and carcinogenesis.

    PubMed Central

    Lewis, J G; Adams, D O

    1987-01-01

    Inflammation has long been associated with carcinogenesis, especially in the promotion phase. The mechanism of action of the potent inflammatory agent and skin promoter 12-tetradecanoyl phorbol-13-acetate (TPA) is unknown. It is thought that TPA selectively enhances the growth of initiated cells, and during this process, initiated cells progress to the preneoplastic state and eventually to the malignant phenotype. Many studies support the multistep nature of carcinogenesis, and a significant amount of evidence indicates that more than one genetic event is necessary for neoplastic transformation. Selective growth stimulation of initiated cells by TPA does not explain how further genetic events may occur by chronic exposure to this nongenotoxic agent. We and others have proposed that TPA may work, in part, by inciting inflammation and stimulating inflammatory cells to release powerful oxidants which then induce DNA damage in epidermal cells. Macrophages cocultured with target cells and TPA induce oxidized thymine bases in the target cells. This process is inhibited by both catalase and inhibitors of lipoxygenases, suggesting the involvement of both H2O2 and oxidized lipid products. Furthermore, macrophage populations that release both H2O2 and metabolites of arachidonic acid (AA) are more efficient at inducing oxidative DNA damage in surrounding cells than populations which only release H2O2 or metabolites of AA. In vivo studies demonstrated that SENCAR mice, which are sensitive to promotion by TPA, have a more intense inflammatory reaction in skin than C57LB/6 mice, which are resistant to promotion by TPA. In addition, macrophages from SENCAR mice release more H2O2 and metabolites of AA, and induce more oxidative DNA damage in cocultured cells than macrophages from C57LB/6 mice.(ABSTRACT TRUNCATED AT 250 WORDS) Images FIGURE 8. A FIGURE 8. B PMID:3129286

  17. DNA-damaging agents from Crypteronia paniculata.

    PubMed

    Deng, Jing-Zhen; Marshall, Rebekah; Jones, Shannon H; Johnson, Randall K; Hecht, Sidney M

    2002-12-01

    A survey of crude plant extracts using a new yeast strain designed to identify DNA-damaging agents resulted in the identification of an extract prepared from Crypteronia paniculata. Bioassay-guided fractionation resulted in the isolation of three active compounds. Two of these were ellagic acid derivatives, namely, 3,3'-di-O-methylellagic acid 4'-O-beta-d-xylopyranoside (1) and 3'-O-methyl-3,4-methylenedioxyellagic acid 4'-O-beta-d-glucopyranoside (2). The third was identified as kaempferol-3-O-alpha-l-rhamnoside (3). The three principles exhibited strong, selective cytotoxity toward the RAD52 repair-deficient yeast strain.

  18. A novel role for Greatwall kinase in recovery from DNA damage

    PubMed Central

    Yamamoto, Tomomi M; Goldberg, Michael L

    2010-01-01

    Activation of the DNA damage response (DDR) is critical for genomic integrity and tumor suppression. The occurrence of DNA damage quickly evokes the DDR through ATM/ATR-dependent signal transduction, which promotes DNA repair and activates the checkpoint to halt cell cycle progression. The shut off process of the DDR upon satisfaction of DNA repair, also known as “checkpoint recovery,” involves deactivation of DDR elements, but the mechanism is poorly understood. Greatwall kinase (Gwl) has been identified as a key element in the G2/M transition and helps maintain M phase through inhibition of PP2A/B55δ, the principal phosphatase for Cdk-phosphorylated substrates. Here, we show that Gwl also promotes recovery from DNA damage and is itself directly inhibited by the DNA damage response (DDR). In Xenopus egg extracts, immunodepletion of Gwl increased the DDR to damaged DNA, whereas addition of wild-type, but not kinase-dead Gwl, inhibited the DDR. The removal of damaged DNA from egg extracts leads to recovery from checkpoint arrest and entry into mitosis, a process impaired by Gwl depletion and enhanced by Gwl overexpression. Moreover, activation of Cdk1 after the removal of damaged DNA is regulated by Gwl. Collectively, these results defines Gwl as a new regulator of the DDR, which plays an important role in recovery from DNA damage. PMID:20980823

  19. The DNA Damage Response: Making it safe to play with knives

    PubMed Central

    Ciccia, Alberto; Elledge, Stephen J.

    2010-01-01

    Damage to our genetic material is an ongoing threat to both our ability to faithfully transmit genetic information to our offspring as well as our own survival. To respond to these threats, eukaryotes have evolved the DNA Damage Response (DDR). The DDR is a complex signal transduction pathway that has the ability to sense DNA damage and transduce this information to the cell to influence cellular responses to DNA damage. Cells possess an arsenal of enzymatic tools capable of remodeling and repairing DNA, however, their activities must be tightly regulated in a temporal, spatial and DNA lesion-appropriate fashion to optimize repair and prevent unnecessary and potentially deleterious alterations in the structure of DNA during normal cellular processes. This review will focus on how the DDR controls DNA repair and the phenotypic consequences of defects in these critical regulatory functions in mammals. PMID:20965415

  20. Possible precursory signals in damage zone foreshocks

    NASA Astrophysics Data System (ADS)

    Savage, Heather M.; Keranen, Katie M.; Schaff, David P.; Dieck, Caitlin

    2017-06-01

    Foreshocks may provide a precursory signal of an impending earthquake, but their role in nucleation of the main shock is unclear. One way to further our understanding of foreshock failure mechanisms is to determine where they occur in the fault zone. However, earthquake locations commonly include uncertainties large enough to allow rupture on either the main fault interface or on subsidiary fractures within a surrounding damage zone. Here we obtain precise earthquake locations, with 10 m uncertainty, for foreshocks and aftershocks of an Mw 5.0 near Prague, OK, USA. Repeating earthquakes imply that some precursory slow slip occurred before the main shock. In addition, we show that foreshocks initially rupture faults and fractures throughout the 300 m thick fault damage zone and later localize onto a narrower zone (<100 m thick) nearer the main shock hypocenter. Focal mechanisms corroborate that foreshocks occur in the surrounding damage zone as well as on the main shock rupture interface. These results highlight that earthquake nucleation is most likely a complex feedback between frictional failure processes on the fault interface and deformation in the surrounding damaged rock, rather than simply nucleation on a single surface.

  1. Pathophysiology of Bronchoconstriction: Role of Oxidatively Damaged DNA Repair

    PubMed Central

    Bacsi, Attila; Pan, Lang; Ba, Xueqing; Boldogh, Istvan

    2016-01-01

    Purpose of review To provide an overview on the present understanding of roles of oxidative DNA damage repair in cell signaling underlying bronchoconstriction common to, but not restricted to various forms of asthma and chronic obstructive pulmonary disease Recent findings Bronchoconstriction is a tightening of smooth muscle surrounding the bronchi and bronchioles with consequent wheezing and shortness of breath. Key stimuli include air pollutants, viral infections, allergens, thermal and osmotic changes, and shear stress of mucosal epithelium, triggering a wide range of cellular, vascular and neural events. Although activation of nerve fibers, the role of G-proteins, protein kinases and Ca++, and molecular interaction within contracting filaments of muscle are well defined, the overarching mechanisms by which a wide range of stimuli initiate these events are not fully understood. Many, if not all, stimuli increase levels of reactive oxygen species (ROS), which are signaling and oxidatively modifying macromolecules, including DNA. The primary ROS target in DNA is guanine, and 8-oxoguanine is one of the most abundant base lesions. It is repaired by 8-oxoguanine DNA glycosylase1 (OGG1) during base excision repair processes. The product, free 8-oxoG base, is bound by OGG1 with high affinity, and the complex then functions as an activator of small GTPases, triggering pathways for inducing gene expression and contraction of intracellular filaments in mast and smooth muscle cells. Summary Oxidative DNA damage repair-mediated cell activation signaling result in gene expression that “primes” the mucosal epithelium and submucosal tissues to generate mediators of airway smooth muscle contractions. PMID:26694039

  2. An Integrated Approach for Analysis of the DNA Damage Response in Mammalian Cells: NUCLEOTIDE EXCISION REPAIR, DNA DAMAGE CHECKPOINT, AND APOPTOSIS.

    PubMed

    Choi, Jun-Hyuk; Kim, So-Young; Kim, Sook-Kyung; Kemp, Michael G; Sancar, Aziz

    2015-11-27

    DNA damage by UV and UV-mimetic agents elicits a set of inter-related responses in mammalian cells, including DNA repair, DNA damage checkpoints, and apoptosis. Conventionally, these responses are analyzed separately using different methodologies. Here we describe a unified approach that is capable of quantifying all three responses in parallel using lysates from the same population of cells. We show that a highly sensitive in vivo excision repair assay is capable of detecting nucleotide excision repair of a wide spectrum of DNA lesions (UV damage, chemical carcinogens, and chemotherapeutic drugs) within minutes of damage induction. This method therefore allows for a real-time measure of nucleotide excision repair activity that can be monitored in conjunction with other components of the DNA damage response, including DNA damage checkpoint and apoptotic signaling. This approach therefore provides a convenient and reliable platform for simultaneously examining multiple aspects of the DNA damage response in a single population of cells that can be applied for a diverse array of carcinogenic and chemotherapeutic agents.

  3. DNA damage in normally and prematurely aged mice

    PubMed Central

    Maslov, Alexander Y.; Ganapathi, Shireen; Westerhof, Maaike; Quispe, Wilber; White, Ryan R.; Van Houten, Bennett; Reiling, Erwin; Dollé, Martijn E.T.; van Steeg, Harry; Hasty, Paul; Hoeijmakers, Jan H.J.; Vijg, Jan

    2013-01-01

    Summary Steady-state levels of spontaneous DNA damage, the by-product of normal metabolism and environmental exposure, are controlled by DNA repair pathways. Incomplete repair or an age-related increase in damage production and/or decline in repair could lead to an accumulation of DNA damage, increasing mutation rate, affecting transcription and/or activating programmed cell death or senescence. These consequences of DNA damage metabolism are highly conserved and the accumulation of lesions in the DNA of the genome could, therefore, provide a universal cause of aging. An important corollary of this hypothesis is that defects in DNA repair cause both premature aging and accelerated DNA damage accumulation. While the former has been well-documented, the reliable quantification of the various lesions thought to accumulate in DNA during aging has been a challenge. Here, we quantified inhibition of long distance PCR as a measure of DNA damage in liver and brain of both normal and prematurely aging, DNA repair defective mice. The results indicate a marginal, but statistically significant, increase of spontaneous DNA damage with age in normal mouse liver but not in brain. Increased levels of DNA damage were not observed in the DNA repair defective mice. We also show that oxidative lesions do not increase with age. These results indicate that neither normal nor premature aging is accompanied by a dramatic increase in DNA damage. This suggests that factors other than DNA damage per se, e.g., cellular responses to DNA damage, are responsible for the aging phenotype in mice. PMID:23496256

  4. DNA damage tolerance by recombination: Molecular pathways and DNA structures.

    PubMed

    Branzei, Dana; Szakal, Barnabas

    2016-08-01

    Replication perturbations activate DNA damage tolerance (DDT) pathways, which are crucial to promote replication completion and to prevent fork breakage, a leading cause of genome instability. One mode of DDT uses translesion synthesis polymerases, which however can also introduce mutations. The other DDT mode involves recombination-mediated mechanisms, which are generally accurate. DDT occurs prevalently postreplicatively, but in certain situations homologous recombination is needed to restart forks. Fork reversal can function to stabilize stalled forks, but may also promote error-prone outcome when used for fork restart. Recent years have witnessed important advances in our understanding of the mechanisms and DNA structures that mediate recombination-mediated damage-bypass and highlighted principles that regulate DDT pathway choice locally and temporally. In this review we summarize the current knowledge and paradoxes on recombination-mediated DDT pathways and their workings, discuss how the intermediate DNA structures may influence genome integrity, and outline key open questions for future research. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  5. Maintaining Genome Stability in Defiance of Mitotic DNA Damage

    PubMed Central

    Ferrari, Stefano; Gentili, Christian

    2016-01-01

    The implementation of decisions affecting cell viability and proliferation is based on prompt detection of the issue to be addressed, formulation and transmission of a correct set of instructions and fidelity in the execution of orders. While the first and the last are purely mechanical processes relying on the faithful functioning of single proteins or macromolecular complexes (sensors and effectors), information is the real cue, with signal amplitude, duration, and frequency ultimately determining the type of response. The cellular response to DNA damage is no exception to the rule. In this review article we focus on DNA damage responses in G2 and Mitosis. First, we set the stage describing mitosis and the machineries in charge of assembling the apparatus responsible for chromosome alignment and segregation as well as the inputs that control its function (checkpoints). Next, we examine the type of issues that a cell approaching mitosis might face, presenting the impact of post-translational modifications (PTMs) on the correct and timely functioning of pathways correcting errors or damage before chromosome segregation. We conclude this essay with a perspective on the current status of mitotic signaling pathway inhibitors and their potential use in cancer therapy. PMID:27493659

  6. Breaking the DNA damage response to improve cervical cancer treatment.

    PubMed

    Wieringa, Hylke W; van der Zee, Ate G J; de Vries, Elisabeth G E; van Vugt, Marcel A T M

    2016-01-01

    Every year, cervical cancer affects ∼500,000 women worldwide, and ∼275,000 patients die of this disease. The addition of platin-based chemotherapy to primary radiotherapy has increased 5-year survival of advanced-stage cervical cancer patients, which is, however, still only 66%. One of the factors thought to contribute to treatment failure is the ability of tumor cells to repair chemoradiotherapy-induced DNA damage. Therefore, sensitization of tumor cells for chemoradiotherapy via inhibition of the DNA damage response (DDR) as a novel strategy to improve therapy effect, is currently studied pre-clinically as well as in the clinic. Almost invariably, cervical carcinogenesis involves infection with the human papillomavirus (HPV), which inactivates part of the DNA damage response. This HPV-mediated partial inactivation of the DDR presents therapeutic targeting of the residual DDR as an interesting approach to achieve chemoradio-sensitization for cervical cancer. How the DDR can be most efficiently targeted, however, remains unclear. The fact that cisplatin and radiotherapy activate multiple signaling axes within the DDR further complicates a rational choice of therapeutic targets within the DDR. In this review, we provide an overview of the current preclinical and clinical knowledge about targeting the DDR in cervical cancer.

  7. ATM kinase: Much more than a DNA damage responsive protein.

    PubMed

    Guleria, Ayushi; Chandna, Sudhir

    2016-03-01

    ATM, mutation of which causes Ataxia telangiectasia, has emerged as a cardinal multifunctional protein kinase during past two decades as evidenced by various studies from around the globe. Further to its well established and predominant role in DNA damage response, ATM has also been understood to help in maintaining overall functional integrity of cells; since its mutation, inactivation or deficiency results in a variety of pathological manifestations besides DNA damage. These include oxidative stress, metabolic syndrome, mitochondrial dysfunction as well as neurodegeneration. Recently, high throughput screening using proteomics, metabolomics and transcriptomic studies revealed several proteins which might be acting as substrates of ATM. Studies that can help in identifying effective regulatory controls within the ATM-mediated pathways/mechanisms can help in developing better therapeutics. In fact, more in-depth understanding of ATM-dependent cellular signals could also help in the treatment of variety of other disease conditions since these pathways seem to control many critical cellular functions. In this review, we have attempted to put together a detailed yet lucid picture of the present-day understanding of ATM's role in various pathophysiological conditions involving DNA damage and beyond. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. HIPK2 restricts SIRT1 activity upon severe DNA damage by a phosphorylation-controlled mechanism

    PubMed Central

    Conrad, E; Polonio-Vallon, T; Meister, M; Matt, S; Bitomsky, N; Herbel, C; Liebl, M; Greiner, V; Kriznik, B; Schumacher, S; Krieghoff-Henning, E; Hofmann, T G

    2016-01-01

    Upon severe DNA damage a cellular signalling network initiates a cell death response through activating tumour suppressor p53 in association with promyelocytic leukaemia (PML) nuclear bodies. The deacetylase Sirtuin 1 (SIRT1) suppresses cell death after DNA damage by antagonizing p53 acetylation. To facilitate efficient p53 acetylation, SIRT1 function needs to be restricted. How SIRT1 activity is regulated under these conditions remains largely unclear. Here we provide evidence that SIRT1 activity is limited upon severe DNA damage through phosphorylation by the DNA damage-responsive kinase HIPK2. We found that DNA damage provokes interaction of SIRT1 and HIPK2, which phosphorylates SIRT1 at Serine 682 upon lethal damage. Furthermore, upon DNA damage SIRT1 and HIPK2 colocalize at PML nuclear bodies, and PML depletion abrogates DNA damage-induced SIRT1 Ser682 phosphorylation. We show that Ser682 phosphorylation inhibits SIRT1 activity and impacts on p53 acetylation, apoptotic p53 target gene expression and cell death. Mechanistically, we found that DNA damage-induced SIRT1 Ser682 phosphorylation provokes disruption of the complex between SIRT1 and its activator AROS. Our findings indicate that phosphorylation-dependent restriction of SIRT1 activity by HIPK2 shapes the p53 response. PMID:26113041

  9. Regulated in DNA damage and development 1 (REDD1) promotes cell survival during serum deprivation by sustaining repression of signaling through the mechanistic target of rapamycin in complex 1 (mTORC1).

    PubMed

    Dennis, Michael D; McGhee, Nora K; Jefferson, Leonard S; Kimball, Scot R

    2013-12-01

    Regulated in DNA damage and development 1 (REDD1) functions to repress signaling through the mechanistic target of rapamycin (mTOR) protein kinase in complex 1 (mTORC1) in response to diverse stress conditions. In the present study, we investigated the role of REDD1 in the response of cells to growth cessation induced by serum deprivation. REDD1 expression was induced within 2h of depriving cells of serum, with the induction being mediated through ER stress, as evidenced by activation of PERK, enhanced eIF2α phosphorylation, and ATF4 facilitated transcription of the REDD1 gene. In wild-type cells, signaling through mTORC1 was rapidly (within 30min) repressed in response to serum deprivation and the repression was sustained for at least 10h. In contrast, in REDD1 knockout cells mTORC1 signaling recovered toward the end of the 10h-deprivation period. Interestingly, Akt phosphorylation initially declined in response to serum deprivation and then recovered between 2 and 4h in wild-type but not REDD1 knockout cells. The recovery of mTORC1 signaling and the failure of Akt phosphorylation to do so in the REDD1 knockout cells were accompanied by a dramatic increase in caspase-3 cleavage and cell death, both of which were blocked by rapamycin. Furthermore, overexpression of constitutively active Akt rescued REDD1 knockout cells from serum deprivation induced cell death. Overall, the results implicate REDD1 as a key regulatory checkpoint that coordinates growth signaling inputs to activate pro-survival mechanisms and reduce susceptibility to cell death. © 2013.

  10. Inflammation, oxidative DNA damage, and carcinogenesis

    SciTech Connect

    Lewis, J.G.; Adams, D.O.

    1987-12-01

    Inflammation has long been associated with carcinogenesis, especially in the promotion phase. The mechanism of action of the potent inflammatory agent and skin promoter 12-tetradecanoyl phorbol-13-acetate (TPA) is unknown. It is though that TPA selectively enhances the growth of initiated cells, and during this process, initiated cells progress to the preneoplastic state and eventually to the malignant phenotype. The authors and others have proposed that TPA may work, in part, by inciting inflammation and stimulating inflammatory cells to release powerful oxidants which then induce DNA damage in epidermal cells. Macrophages cocultured with target cells and TPA induce oxidized thymine bases in the target cells. This process is inhibited by both catalase and inhibitors of lipoxygenases, suggesting the involvement of both H/sub 2/O/sub 2/ and oxidized lipid products. In vivo studies demonstrated that SENCAR mice, which are sensitive to promotion by TPA, have a more intense inflammatory reaction in skin that C57LB/6 mice, which are resistant to promotion by TPA. In addition, macrophages from SENCAR mice release more H/sub 2/O/sub 2/ and metabolites of AA, and induce more oxidative DNA damage in cocultured cells than macrophages from C57LB/6 mice. These data support the hypothesis that inflammation and the release of genotoxic oxidants may be one mechanism whereby initiated cells receive further genetic insults. They also further complicate risk assessment by suggesting that some environmental agents may work indirectly by subverting host systems to induce damage rather than maintaining homeostasis.

  11. Replication fork dynamics and the DNA damage response.

    PubMed

    Jones, Rebecca M; Petermann, Eva

    2012-04-01

    Prevention and repair of DNA damage is essential for maintenance of genomic stability and cell survival. DNA replication during S-phase can be a source of DNA damage if endogenous or exogenous stresses impair the progression of replication forks. It has become increasingly clear that DNA-damage-response pathways do not only respond to the presence of damaged DNA, but also modulate DNA replication dynamics to prevent DNA damage formation during S-phase. Such observations may help explain the developmental defects or cancer predisposition caused by mutations in DNA-damage-response genes. The present review focuses on molecular mechanisms by which DNA-damage-response pathways control and promote replication dynamics in vertebrate cells. In particular, DNA damage pathways contribute to proper replication by regulating replication initiation, stabilizing transiently stalled forks, promoting replication restart and facilitating fork movement on difficult-to-replicate templates. If replication fork progression fails to be rescued, this may lead to DNA damage and genomic instability via nuclease processing of aberrant fork structures or incomplete sister chromatid separation during mitosis.

  12. Acetylation of Werner syndrome protein (WRN): relationships with DNA damage, DNA replication and DNA metabolic activities.

    PubMed

    Lozada, Enerlyn; Yi, Jingjie; Luo, Jianyuan; Orren, David K

    2014-08-01

    Loss of Werner syndrome protein function causes Werner syndrome, characterized by increased genomic instability, elevated cancer susceptibility and premature aging. Although WRN is subject to acetylation, phosphorylation and sumoylation, the impact of these modifications on WRN's DNA metabolic function remains unclear. Here, we examined in further depth the relationship between WRN acetylation and its role in DNA metabolism, particularly in response to induced DNA damage. Our results demonstrate that endogenous WRN is acetylated somewhat under unperturbed conditions. However, levels of acetylated WRN significantly increase after treatment with certain DNA damaging agents or the replication inhibitor HU. Use of DNA repair-deficient cells or repair pathway inhibitors further increase levels of acetylated WRN, indicating that induced DNA lesions and their persistence are at least partly responsible for increased acetylation. Notably, acetylation of WRN correlates with inhibition of DNA synthesis, suggesting that replication blockage might underlie this effect. Moreover, WRN acetylation modulates its affinity for and activity on certain DNA structures, in a manner that may enhance its relative specificity for physiological substrates. Our results also show that acetylation and deacetylation of endogenous WRN is a dynamic process, with sirtuins and other histone deacetylases contributing to WRN deacetylation. These findings advance our understanding of the dynamics of WRN acetylation under unperturbed conditions and following DNA damage induction, linking this modification not only to DNA damage persistence but also potentially to replication stalling caused by specific DNA lesions. Our results are consistent with proposed metabolic roles for WRN and genomic instability phenotypes associated with WRN deficiency.

  13. Acetylation of Werner syndrome protein (WRN): relationships with DNA damage, DNA replication and DNA metabolic activities

    PubMed Central

    Lozada, Enerlyn; Yi, Jingjie; Luo, Jianyuan; Orren, David K.

    2014-01-01

    Loss of WRN function causes Werner Syndrome, characterized by increased genomic instability, elevated cancer susceptibility and premature aging. Although WRN is subject to acetylation, phosphorylation and sumoylation, the impact of these modifications on WRN’s DNA metabolic function remains unclear. Here, we examined in further depth the relationship between WRN acetylation and its role in DNA metabolism, particularly in response to induced DNA damage. Our results demonstrate that endogenous WRN is acetylated somewhat under unperturbed conditions. However, levels of acetylated WRN significantly increase after treatment with certain DNA damaging agents or the replication inhibitor hydroxyurea. Use of DNA repair-deficient cells or repair pathway inhibitors further increase levels of acetylated WRN, indicating that induced DNA lesions and their persistence are at least partly responsible for increased acetylation. Notably, acetylation of WRN correlates with inhibition of DNA synthesis, suggesting that replication blockage might underlie this effect. Moreover, WRN acetylation modulates its affinity for and activity on certain DNA structures, in a manner that may enhance its relative specificity for physiological substrates. Our results also show that acetylation and deacetylation of endogenous WRN is a dynamic process, with sirtuins and other histone deacetylases contributing to WRN deacetylation. These findings advance our understanding of the dynamics of WRN acetylation under unperturbed conditions and following DNA damage induction, linking this modification not only to DNA damage persistence but also potentially to replication stalling caused by specific DNA lesions. Our results are consistent with proposed metabolic roles for WRN and genomic instability phenotypes associated with WRN deficiency. PMID:24965941

  14. Radiation damage to DNA-protein complexes

    NASA Astrophysics Data System (ADS)

    Spotheim-Maurizot, M.; Davídková, M.

    2011-01-01

    We review here the advances in understanding the effects of ionizing radiations on DNA, proteins and their complexes, resulting from the collaboration of the authors' teams. It concerns the preponderant indirect effect of low LET ionizing radiations, thus the attack of the macromolecules in aqueous solution by the most aggressive product of water radiolysis, the hydroxyl radical. A model of simulation of the reaction of these radicals with the macromolecules (called RADACK) was developed and was used for calculating the probabilities of damage of each constituent of DNA or proteins (nucleotide or amino-acid). The calculations allowed to draw conclusions from electrophoresis, mutagenesis, spectroscopic (fluorescence, circular dichroïsm) and mass spectrometry experiments. Thus we have shown that the extent and location of the lesions are strongly dependent on the 3D structure of the macromolecules, which in turns is modulated by their sequence and by the binding of some ligands. Molecular dynamics simulation completed our studies in showing the consequences of each lesion on the stability and structure of the proteins and their complexes with DNA.

  15. A review and appraisal of the DNA damage theory of ageing.

    PubMed

    Freitas, Alex A; de Magalhães, João Pedro

    2011-01-01

    Given the central role of DNA in life, and how ageing can be seen as the gradual and irreversible breakdown of living systems, the idea that damage to the DNA is the crucial cause of ageing remains a powerful one. DNA damage and mutations of different types clearly accumulate with age in mammalian tissues. Human progeroid syndromes resulting in what appears to be accelerated ageing have been linked to defects in DNA repair or processing, suggesting that elevated levels of DNA damage can accelerate physiological decline and the development of age-related diseases not limited to cancer. Higher DNA damage may trigger cellular signalling pathways, such as apoptosis, that result in a faster depletion of stem cells, which in turn contributes to accelerated ageing. Genetic manipulations of DNA repair pathways in mice further strengthen this view and also indicate that disruption of specific pathways, such as nucleotide excision repair and non-homologous end joining, is more strongly associated with premature ageing phenotypes. Delaying ageing in mice by decreasing levels of DNA damage, however, has not been achieved yet, perhaps due to the complexity inherent to DNA repair and DNA damage response pathways. Another open question is whether DNA repair optimization is involved in the evolution of species longevity, and we suggest that the way cells from different organisms respond to DNA damage may be crucial in species differences in ageing. Taken together, the data suggest a major role of DNA damage in the modulation of longevity, possibly through effects on cell dysfunction and loss, although understanding how to modify DNA damage repair and response systems to delay ageing remains a crucial challenge.

  16. Platinum nanoparticles induce damage to DNA and inhibit DNA replication

    PubMed Central

    Nejdl, Lukas; Kudr, Jiri; Moulick, Amitava; Hegerova, Dagmar; Ruttkay-Nedecky, Branislav; Gumulec, Jaromir; Cihalova, Kristyna; Smerkova, Kristyna; Dostalova, Simona; Krizkova, Sona; Novotna, Marie; Kopel, Pavel

    2017-01-01

    Sparsely tested group of platinum nanoparticles (PtNPs) may have a comparable effect as complex platinum compounds. The aim of this study was to observe the effect of PtNPs in in vitro amplification of DNA fragment of phage λ, on the bacterial cultures (Staphylococcus aureus), human foreskin fibroblasts and erythrocytes. In vitro synthesized PtNPs were characterized by dynamic light scattering (PtNPs size range 4.8–11.7 nm), zeta potential measurements (-15 mV at pH 7.4), X-ray fluorescence, UV/vis spectrophotometry and atomic absorption spectrometry. The PtNPs inhibited the DNA replication and affected the secondary structure of DNA at higher concentrations, which was confirmed by polymerase chain reaction, DNA sequencing and DNA denaturation experiments. Further, cisplatin (CisPt), as traditional chemotherapy agent, was used in all parallel experiments. Moreover, the encapsulation of PtNPs in liposomes (LipoPtNPs) caused an approximately 2.4x higher of DNA damage in comparison with CisPt, LipoCisPt and PtNPs. The encapsulation of PtNPs in liposomes also increased their antibacterial, cytostatic and cytotoxic effect, which was determined by the method of growth curves on S. aureus and HFF cells. In addition, both the bare and encapsulated PtNPs caused lower oxidative stress (determined by GSH/GSSG ratio) in the human erythrocytes compared to the bare and encapsulated CisPt. CisPt was used in all parallel experiments as traditional chemotherapy agent. PMID:28704436

  17. DNA damage in Fabry patients: An investigation of oxidative damage and repair.

    PubMed

    Biancini, Giovana Brondani; Moura, Dinara Jaqueline; Manini, Paula Regina; Faverzani, Jéssica Lamberty; Netto, Cristina Brinckmann Oliveira; Deon, Marion; Giugliani, Roberto; Saffi, Jenifer; Vargas, Carmen Regla

    2015-06-01

    Fabry disease (FD) is a lysosomal storage disorder associated with loss of activity of the enzyme α-galactosidase A. In addition to accumulation of α-galactosidase A substrates, other mechanisms may be involved in FD pathophysiology, such as inflammation and oxidative stress. Higher levels of oxidative damage to proteins and lipids in Fabry patients were previously reported. However, DNA damage by oxidative species in FD has not yet been studied. We investigated basal DNA damage, oxidative DNA damage, DNA repair capacity, and reactive species generation in Fabry patients and controls. To measure oxidative damage to purines and pyrimidines, the alkaline version of the comet assay was used with two endonucleases, formamidopyrimidine DNA-glycosylase (FPG) and endonuclease III (EndoIII). To evaluate DNA repair, a challenge assay with hydrogen peroxide was performed. Patients presented significantly higher levels of basal DNA damage and oxidative damage to purines. Oxidative DNA damage was induced in both DNA bases by H2O2 in patients. Fabry patients presented efficient DNA repair in both assays (with and without endonucleases) as well as significantly higher levels of oxidative species (measured by dichlorofluorescein content). Even if DNA repair be induced in Fabry patients (as a consequence of continuous exposure to oxidative species), the repair is not sufficient to reduce DNA damage to control levels.

  18. Activation of DNA damage response pathways as a consequence of anthracycline-DNA adduct formation.

    PubMed

    Forrest, Robert A; Swift, Lonnie P; Rephaeli, Ada; Nudelman, Abraham; Kimura, Ken-Ichi; Phillips, Don R; Cutts, Suzanne M

    2012-06-15

    The cytotoxicity of doxorubicin, a clinically used anti-neoplastic drug, can be enhanced by formaldehyde (either endogenous or exogenous) to promote the formation of doxorubicin-DNA adducts. Formaldehyde supplies the carbon required for the covalent linkage of doxorubicin to one strand of DNA, with hydrogen bonds stabilising the doxorubicin mono-adduct to the other strand of DNA, to act much like an interstrand crosslink. Interstrand crosslinks present a major challenge for cellular repair processes, requiring the activation of numerous DNA damage response proteins for resolution of the resulting DNA intermediates and damage. This work investigates DNA damage response proteins activated by doxorubicin-DNA adducts. Although p53 was phosphorylated at Serine 15 in response to adducts, long term growth inhibition of mammalian cells was not affected by p53 status. Using siRNA technology and kinase inhibitors we observed enhanced cellular sensitivity to doxorubicin-DNA adducts when the activity of the signalling protein kinases ATM and ATR were lost. Cells synchronised using a double thymidine block were sensitised to adduct-initiated cell death upon ATR knockdown, but relatively unaffected by ATM knockdown. Loss of ATR was associated with abrogation of a drug-induced G(2)/M block and induction of mitotic catastrophe, while loss of ATM was associated with drug-induced apoptosis in non-synchronised cells. These proteins may therefore be potential drug targets to achieve synergistic cytotoxic responses to doxorubicin-DNA adduct forming therapies. The analysis of these protein kinases with respect to cell cycle progression indicates that ATR is required for G(2)/M checkpoint responses while ATM appears to function in G(1) mediated responses to anthracycline adducts. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Curcumin-Mediated HDAC Inhibition Suppresses the DNA Damage Response and Contributes to Increased DNA Damage Sensitivity

    PubMed Central

    Wang, Shu-Huei; Lin, Pei-Ya; Chiu, Ya-Chen; Huang, Ju-Sui; Kuo, Yi-Tsen; Wu, Jen-Chine; Chen, Chin-Chuan

    2015-01-01

    Chemo- and radiotherapy cause multiple forms of DNA damage and lead to the death of cancer cells. Inhibitors of the DNA damage response are candidate drugs for use in combination therapies to increase the efficacy of such treatments. In this study, we show that curcumin, a plant polyphenol, sensitizes budding yeast to DNA damage by counteracting the DNA damage response. Following DNA damage, the Mec1-dependent DNA damage checkpoint is inactivated and Rad52 recombinase is degraded by curcumin, which results in deficiencies in double-stand break repair. Additive effects on damage-induced apoptosis and the inhibition of damage-induced autophagy by curcumin were observed. Moreover, rpd3 mutants were found to mimic the curcumin-induced suppression of the DNA damage response. In contrast, hat1 mutants were resistant to DNA damage, and Rad52 degradation was impaired following curcumin treatment. These results indicate that the histone deacetylase inhibitor activity of curcumin is critical to DSB repair and DNA damage sensitivity. PMID:26218133

  20. Emerging roles of Jab1/CSN5 in DNA damage response, DNA repair, and cancer.

    PubMed

    Pan, Yunbao; Yang, Huiling; Claret, Francois X

    2014-03-01

    Jab1/CSN5 is a multifunctional protein that plays an important role in integrin signaling, cell proliferation, apoptosis, and the regulation of genomic instability and DNA repair. Dysregulation of Jab1/CSN5 activity has been shown to contribute to oncogenesis by functionally inactivating several key negative regulatory proteins and tumor suppressors. In this review, we discuss our current understanding of the relationship between Jab1/CSN5 and DNA damage and summarize recent findings regarding opportunities for and challenges to therapeutic intervention.

  1. Mitochondrial DNA Damage and its Consequences for Mitochondrial Gene Expression

    PubMed Central

    Cline, Susan D.

    2012-01-01

    How mitochondria process DNA damage and whether a change in the steady-state level of mitochondrial DNA damage (mtDNA) contributes to mitochondrial dysfunction are questions that fuel burgeoning areas of research into aging and disease pathogenesis. Over the past decade, researchers have identified and measured various forms of endogenous and environmental mtDNA damage and have elucidated mtDNA repair pathways. Interestingly, mitochondria do not appear to contain the full range of DNA repair mechanisms that operate in the nucleus, although mtDNA contains types of damage that are targets of each nuclear DNA repair pathway. The reduced repair capacity may, in part, explain the high mutation frequency of the mitochondrial chromosome. Since mtDNA replication is dependent on transcription, mtDNA damage may alter mitochondrial gene expression at three levels: by causing DNA polymerase γ nucleotide incorporation errors leading to mutations, by interfering with the priming of mtDNA replication by the mitochondrial RNA polymerase, or by inducing transcriptional mutagenesis or premature transcript termination. This review summarizes our current knowledge of mtDNA damage, its repair, and its effects on mtDNA integrity and gene expression. PMID:22728831

  2. The distribution of DNA damage is defined by region-specific susceptibility to DNA damage formation rather than repair differences.

    PubMed

    Strand, Janne M; Scheffler, Katja; Bjørås, Magnar; Eide, Lars

    2014-06-01

    The cellular genomes are continuously damaged by reactive oxygen species (ROS) from aerobic processes. The impact of DNA damage depends on the specific site as well as the cellular state. The steady-state level of DNA damage is the net result of continuous formation and subsequent repair, but it is unknown to what extent heterogeneous damage distribution is caused by variations in formation or repair of DNA damage. Here, we used a restriction enzyme/qPCR based method to analyze DNA damage in promoter and coding regions of four nuclear genes: the two house-keeping genes Gadph and Tbp, and the Ndufa9 and Ndufs2 genes encoding mitochondrial complex I subunits, as well as mt-Rnr1 encoded by mitochondrial DNA (mtDNA). The distribution of steady-state levels of damage varied in a site-specific manner. Oxidative stress induced damage in nDNA to a similar extent in promoter and coding regions, and more so in mtDNA. The subsequent removal of damage from nDNA was efficient and comparable with recovery times depending on the initial damage load, while repair of mtDNA was delayed with subsequently slower repair rate. The repair was furthermore found to be independent of transcription or the transcription-coupled repair factor CSB, but dependent on cellular ATP. Our results demonstrate that the capacity to repair DNA is sufficient to remove exogenously induced damage. Thus, we conclude that the heterogeneous steady-state level of DNA damage in promoters and coding regions is caused by site-specific DNA damage/modifications that take place under normal metabolism. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Docosahexaenoic Acid Induces Oxidative DNA Damage and Apoptosis, and Enhances the Chemosensitivity of Cancer Cells

    PubMed Central

    Song, Eun Ah; Kim, Hyeyoung

    2016-01-01

    The human diet contains low amounts of ω-3 polyunsaturated fatty acids (PUFAs) and high amounts of ω-6 PUFAs, which has been reported to contribute to the incidence of cancer. Epidemiological studies have shown that a high consumption of fish oil or ω-3 PUFAs reduced the risk of colon, pancreatic, and endometrial cancers. The ω-3 PUFA, docosahexaenoic acid (DHA), shows anticancer activity by inducing apoptosis of some human cancer cells without toxicity against normal cells. DHA induces oxidative stress and oxidative DNA adduct formation by depleting intracellular glutathione (GSH) and decreasing the mitochondrial function of cancer cells. Oxidative DNA damage and DNA strand breaks activate DNA damage responses to repair the damaged DNA. However, excessive DNA damage beyond the capacity of the DNA repair processes may initiate apoptotic signaling pathways and cell cycle arrest in cancer cells. DHA shows a variable inhibitory effect on cancer cell growth depending on the cells’ molecular properties and degree of malignancy. It has been shown to affect DNA repair processes including DNA-dependent protein kinases and mismatch repair in cancer cells. Moreover, DHA enhanced the efficacy of anticancer drugs by increasing drug uptake and suppressing survival pathways in cancer cells. In this review, DHA-induced oxidative DNA damage, apoptotic signaling, and enhancement of chemosensitivity in cancer cells will be discussed based on recent studies. PMID:27527148

  4. Docosahexaenoic Acid Induces Oxidative DNA Damage and Apoptosis, and Enhances the Chemosensitivity of Cancer Cells.

    PubMed

    Song, Eun Ah; Kim, Hyeyoung

    2016-08-03

    The human diet contains low amounts of ω-3 polyunsaturated fatty acids (PUFAs) and high amounts of ω-6 PUFAs, which has been reported to contribute to the incidence of cancer. Epidemiological studies have shown that a high consumption of fish oil or ω-3 PUFAs reduced the risk of colon, pancreatic, and endometrial cancers. The ω-3 PUFA, docosahexaenoic acid (DHA), shows anticancer activity by inducing apoptosis of some human cancer cells without toxicity against normal cells. DHA induces oxidative stress and oxidative DNA adduct formation by depleting intracellular glutathione (GSH) and decreasing the mitochondrial function of cancer cells. Oxidative DNA damage and DNA strand breaks activate DNA damage responses to repair the damaged DNA. However, excessive DNA damage beyond the capacity of the DNA repair processes may initiate apoptotic signaling pathways and cell cycle arrest in cancer cells. DHA shows a variable inhibitory effect on cancer cell growth depending on the cells' molecular properties and degree of malignancy. It has been shown to affect DNA repair processes including DNA-dependent protein kinases and mismatch repair in cancer cells. Moreover, DHA enhanced the efficacy of anticancer drugs by increasing drug uptake and suppressing survival pathways in cancer cells. In this review, DHA-induced oxidative DNA damage, apoptotic signaling, and enhancement of chemosensitivity in cancer cells will be discussed based on recent studies.

  5. Repair of Oxidative DNA Damage in Saccharomyces cerevisiae.

    PubMed

    Chalissery, Jisha; Jalal, Deena; Al-Natour, Zeina; Hassan, Ahmed H

    2017-03-01

    Malfunction of enzymes that detoxify reactive oxygen species leads to oxidative attack on biomolecules including DNA and consequently activates various DNA repair pathways. The nature of DNA damage and the cell cycle stage at which DNA damage occurs determine the appropriate repair pathway to rectify the damage. Oxidized DNA bases are primarily repaired by base excision repair and nucleotide incision repair. Nucleotide excision repair acts on lesions that distort DNA helix, mismatch repair on mispaired bases, and homologous recombination and non-homologous end joining on double stranded breaks. Post-replication repair that overcomes replication blocks caused by DNA damage also plays a crucial role in protecting the cell from the deleterious effects of oxidative DNA damage. Mitochondrial DNA is also prone to oxidative damage and is efficiently repaired by the cellular DNA repair machinery. In this review, we discuss the DNA repair pathways in relation to the nature of oxidative DNA damage in Saccharomyces cerevisiae. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Hydroxyl radical Thymine adduct induced DNA damages

    NASA Astrophysics Data System (ADS)

    Schyman, Patric; Eriksson, Leif A.; Zhang, Ru bo; Laaksonen, Aatto

    2008-06-01

    DNA damages caused by a 5-hydroxy-5,6-dihydrothymine-6-yl radical (5-OHT-6yl) abstracting a C2‧ hydrogen from a neighboring sugar (inter-H abstraction) have been theoretically investigated using hybrid DFT in gas phase and in water solution. The inter-H abstraction was here shown to be comparable in energy (24 kcal mol-1) with the intra-H abstraction in which the 5-OHT-6yl abstracts a C2‧ hydrogen from its own sugar. The effect of a neutrally or a negatively charged phosphate group was also studied and the results show no significant impact on the activation energy of the hydrogen abstraction whereas base release and strand break reactions are affected.

  7. RNF111-dependent neddylation activates DNA damage-induced ubiquitination

    PubMed Central

    Ma, Teng; Chen, Yibin; Zhang, Feng; Yang, Chao-Yie; Wang, Shaomeng; Yu, Xiaochun

    2013-01-01

    Summary Ubiquitin-like proteins have been shown to be covalently conjugated to targets. However, the functions of these ubiquitin-like proteins are largely unknown. Here, we have screened most known ubiquitin-like proteins after DNA damage and found that NEDD8 is involved in the DNA damage response. Following various DNA damage stimuli, NEDD8 accumulated at DNA damage sites, and this accumulation was dependent on an E2 enzyme UBE2M and an E3 ubiquitin ligase RNF111. We further found that histone H4 was polyneddylated in response to DNA damage, and NEDD8 was conjugated to the N-terminal lysine residues of H4. Interestingly, the DNA damage-induced polyneddylation chain could be recognized by the MIU (Motif Interacting with Ubiquitin) domain of RNF168. Loss of DNA damage-induced neddylation negatively regulated DNA damage-induced foci formation of RNF168 and its downstream functional partners, such as 53BP1 and BRCA1, thus affecting the normal DNA damage repair process. PMID:23394999

  8. Mitochondrial DNA damage by bleomycin induces AML cell death.

    PubMed

    Yeung, ManTek; Hurren, Rose; Nemr, Carine; Wang, Xiaoming; Hershenfeld, Samantha; Gronda, Marcela; Liyanage, Sanduni; Wu, Yan; Augustine, Jeevan; Lee, Eric A; Spagnuolo, Paul A; Southall, Noel; Chen, Catherine; Zheng, Wei; Jeyaraju, Danny V; Minden, Mark D; Laposa, Rebecca; Schimmer, Aaron D

    2015-06-01

    Mitochondria contain multiple copies of their own 16.6 kb circular genome. To explore the impact of mitochondrial DNA (mtDNA) damage on mitochondrial (mt) function and viability of AML cells, we screened a panel of DNA damaging chemotherapeutic agents to identify drugs that could damage mtDNA. We identified bleomycin as an agent that damaged mtDNA in AML cells at concentrations that induced cell death. Bleomycin also induced mtDNA damage in primary AML samples. Consistent with the observed mtDNA damage, bleomycin reduced mt mass and basal oxygen consumption in AML cells. We also demonstrated that the observed mtDNA damage was functionally important for bleomycin-induced cell death. Finally, bleomycin delayed tumor growth in xenograft mouse models of AML and anti-leukemic concentrations of the drug induced mtDNA damage in AML cells preferentially over normal lung tissue. Taken together, mtDNA-targeted therapy may be an effective strategy to target AML cells and bleomycin could be useful in the treatment of this disease.

  9. Detection and quantitation of single nucleotide polymorphisms, DNA sequence variations, DNA mutations, DNA damage and DNA mismatches

    DOEpatents

    McCutchen-Maloney, Sandra L.

    2002-01-01

    DNA mutation binding proteins alone and as chimeric proteins with nucleases are used with solid supports to detect DNA sequence variations, DNA mutations and single nucleotide polymorphisms. The solid supports may be flow cytometry beads, DNA chips, glass slides or DNA dips sticks. DNA molecules are coupled to solid supports to form DNA-support complexes. Labeled DNA is used with unlabeled DNA mutation binding proteins such at TthMutS to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by binding which gives an increase in signal. Unlabeled DNA is utilized with labeled chimeras to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by nuclease activity of the chimera which gives a decrease in signal.

  10. DDR-mediated crosstalk between DNA-damaged cells and their microenvironment.

    PubMed

    Malaquin, Nicolas; Carrier-Leclerc, Audrey; Dessureault, Mireille; Rodier, Francis

    2015-01-01

    The DNA damage response (DDR) is an evolutionarily conserved signaling cascade that senses and responds to double-strand DNA breaks by organizing downstream cellular events, ranging from appropriate DNA repair to cell cycle checkpoints. In higher organisms, the DDR prevents neoplastic transformation by directly protecting the information contained in the genome and by regulating cell fate decisions, like apoptosis and senescence, to ensure the removal of severely damaged cells. In addition to these well-studied cell-autonomous effects, emerging evidence now shows that the DDR signaling cascade can also function in a paracrine manner, thus influencing the biology of the surrounding cellular microenvironment. In this context, the DDR plays an emerging role in shaping the damaged tumor microenvironment through the regulation of tissue repair and local immune responses, thereby providing a promising avenue for novel therapeutic interventions. Additionally, while DDR-mediated extracellular signals can convey information to surrounding, undamaged cells, they can also feedback onto DNA-damaged cells to reinforce selected signaling pathways. Overall, these extracellular DDR signals can be subdivided into two time-specific waves: a rapid bystander effect occurring within a few hours of DNA damage; and a late, delayed, senescence-associated secretory phenotype generally requiring multiple days to establish. Here, we highlight and discuss examples of rapid and late DDR-mediated extracellular alarm signals.

  11. DDR-mediated crosstalk between DNA-damaged cells and their microenvironment

    PubMed Central

    Malaquin, Nicolas; Carrier-Leclerc, Audrey; Dessureault, Mireille; Rodier, Francis

    2015-01-01

    The DNA damage response (DDR) is an evolutionarily conserved signaling cascade that senses and responds to double-strand DNA breaks by organizing downstream cellular events, ranging from appropriate DNA repair to cell cycle checkpoints. In higher organisms, the DDR prevents neoplastic transformation by directly protecting the information contained in the genome and by regulating cell fate decisions, like apoptosis and senescence, to ensure the removal of severely damaged cells. In addition to these well-studied cell-autonomous effects, emerging evidence now shows that the DDR signaling cascade can also function in a paracrine manner, thus influencing the biology of the surrounding cellular microenvironment. In this context, the DDR plays an emerging role in shaping the damaged tumor microenvironment through the regulation of tissue repair and local immune responses, thereby providing a promising avenue for novel therapeutic interventions. Additionally, while DDR-mediated extracellular signals can convey information to surrounding, undamaged cells, they can also feedback onto DNA-damaged cells to reinforce selected signaling pathways. Overall, these extracellular DDR signals can be subdivided into two time-specific waves: a rapid bystander effect occurring within a few hours of DNA damage; and a late, delayed, senescence-associated secretory phenotype generally requiring multiple days to establish. Here, we highlight and discuss examples of rapid and late DDR–mediated extracellular alarm signals. PMID:25815006

  12. Treacher Collins syndrome TCOF1 protein cooperates with NBS1 in the DNA damage response.

    PubMed

    Ciccia, Alberto; Huang, Jen-Wei; Izhar, Lior; Sowa, Mathew E; Harper, J Wade; Elledge, Stephen J

    2014-12-30

    The signal transduction pathway of the DNA damage response (DDR) is activated to maintain genomic integrity following DNA damage. The DDR promotes genomic integrity by regulating a large network of cellular activities that range from DNA replication and repair to transcription, RNA splicing, and metabolism. In this study we define an interaction between the DDR factor NBS1 and TCOF1, a nucleolar protein that regulates ribosomal DNA (rDNA) transcription and is mutated in Treacher Collins syndrome. We show that NBS1 relocalizes to nucleoli after DNA damage in a manner dependent on TCOF1 and on casein kinase II and ATM, which are known to modify TCOF1 by phosphorylation. Moreover, we identify a putative ATM phosphorylation site that is required for NBS1 relocalization to nucleoli in response to DNA damage. Last, we report that TCOF1 promotes cellular resistance to DNA damaging agents. Collectively, our findings identify TCOF1 as a DDR factor that could cooperate with ATM and NBS1 to suppress inappropriate rDNA transcription and maintain genomic integrity after DNA damage.

  13. Treacher Collins syndrome TCOF1 protein cooperates with NBS1 in the DNA damage response

    PubMed Central

    Ciccia, Alberto; Huang, Jen-Wei; Izhar, Lior; Sowa, Mathew E.; Harper, J. Wade; Elledge, Stephen J.

    2014-01-01

    The signal transduction pathway of the DNA damage response (DDR) is activated to maintain genomic integrity following DNA damage. The DDR promotes genomic integrity by regulating a large network of cellular activities that range from DNA replication and repair to transcription, RNA splicing, and metabolism. In this study we define an interaction between the DDR factor NBS1 and TCOF1, a nucleolar protein that regulates ribosomal DNA (rDNA) transcription and is mutated in Treacher Collins syndrome. We show that NBS1 relocalizes to nucleoli after DNA damage in a manner dependent on TCOF1 and on casein kinase II and ATM, which are known to modify TCOF1 by phosphorylation. Moreover, we identify a putative ATM phosphorylation site that is required for NBS1 relocalization to nucleoli in response to DNA damage. Last, we report that TCOF1 promotes cellular resistance to DNA damaging agents. Collectively, our findings identify TCOF1 as a DDR factor that could cooperate with ATM and NBS1 to suppress inappropriate rDNA transcription and maintain genomic integrity after DNA damage. PMID:25512513

  14. Sam68 Is Required for DNA Damage Responses via Regulating Poly(ADP-ribosyl)ation

    PubMed Central

    Hodgson, Andrea; Wier, Eric M.; Wen, Matthew G.; Kamenyeva, Olena; Xia, Xue; Koo, Lily Y.

    2016-01-01

    The rapid and robust synthesis of polymers of adenosine diphosphate (ADP)-ribose (PAR) chains, primarily catalyzed by poly(ADP-ribose) polymerase 1 (PARP1), is crucial for cellular responses to DNA damage. However, the precise mechanisms through which PARP1 is activated and PAR is robustly synthesized are not fully understood. Here, we identified Src-associated substrate during mitosis of 68 kDa (Sam68) as a novel signaling molecule in DNA damage responses (DDRs). In the absence of Sam68, DNA damage-triggered PAR production and PAR-dependent DNA repair signaling were dramatically diminished. With serial cellular and biochemical assays, we demonstrated that Sam68 is recruited to and significantly overlaps with PARP1 at DNA lesions and that the interaction between Sam68 and PARP1 is crucial for DNA damage-initiated and PARP1-conferred PAR production. Utilizing cell lines and knockout mice, we illustrated that Sam68-deleted cells and animals are hypersensitive to genotoxicity caused by DNA-damaging agents. Together, our findings suggest that Sam68 plays a crucial role in DDR via regulating DNA damage-initiated PAR production. PMID:27635653

  15. Commentary: Mitochondrial DNA damage and loss in diabetes

    PubMed Central

    Gilkerson, Robert

    2017-01-01

    This commentary discusses damage and loss of mitochondrial DNA (mtDNA) in type 2 diabetes mellitus from both the clinical and experimental perspectives. Increasingly, an array of studies in experimental models and patients suggests that the cellular stresses of insulin resistance in type 2 diabetes damage mtDNA, leading to loss of mitochondrial genetic content. As such, mtDNA is emerging as both a valuable monitoring tool and translational preventive target for metabolic disease. PMID:27253402

  16. Oxidative DNA damage during night shift work.

    PubMed

    Bhatti, Parveen; Mirick, Dana K; Randolph, Timothy W; Gong, Jicheng; Buchanan, Diana Taibi; Zhang, Junfeng Jim; Davis, Scott

    2017-09-01

    We previously reported that compared with night sleep, day sleep among shift workers was associated with reduced urinary excretion of 8-hydroxydeoxyguanosine (8-OH-dG), potentially reflecting a reduced ability to repair 8-OH-dG lesions in DNA. We identified the absence of melatonin during day sleep as the likely causative factor. We now investigate whether night work is also associated with reduced urinary excretion of 8-OH-dG. For this cross-sectional study, 50 shift workers with the largest negative differences in night work versus night sleep circulating melatonin levels (measured as 6-sulfatoxymelatonin in urine) were selected from among the 223 shift workers included in our previous study. 8-OH-dG concentrations were measured in stored urine samples using high performance liquid chromatography with electrochemical detection. Mixed effects models were used to compare night work versus night sleep 8-OH-dG levels. Circulating melatonin levels during night work (mean=17.1 ng/mg creatinine/mg creatinine) were much lower than during night sleep (mean=51.7 ng/mg creatinine). In adjusted analyses, average urinary 8-OH-dG levels during the night work period were only 20% of those observed during the night sleep period (95% CI 10% to 30%; p<0.001). This study suggests that night work, relative to night sleep, is associated with reduced repair of 8-OH-dG lesions in DNA and that the effect is likely driven by melatonin suppression occurring during night work relative to night sleep. If confirmed, future studies should evaluate melatonin supplementation as a means to restore oxidative DNA damage repair capacity among shift workers. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. Impact of Alternative DNA Structures on DNA Damage, DNA Repair, and Genetic Instability

    PubMed Central

    Wang, Guliang; Vasquez, Karen M.

    2014-01-01

    Repetitive genomic sequences can adopt a number of alternative DNA structures that differ from the canonical B-form duplex (i.e. non-B DNA). These non-B DNA-forming sequences have been shown to have many important biological functions related to DNA metabolic processes; for example, they may have regulatory roles in DNA transcription and replication. In addition to these regulatory functions, non-B DNA can stimulate genetic instability in the presence or absence of DNA damage, via replication-dependent and/or replication-independent pathways. This review focuses on the interactions of non-B DNA conformations with DNA repair proteins and how these interactions impact genetic instability. PMID:24767258

  18. The DNA damage-induced cell death response: a roadmap to kill cancer cells.

    PubMed

    Matt, Sonja; Hofmann, Thomas G

    2016-08-01

    Upon massive DNA damage cells fail to undergo productive DNA repair and trigger the cell death response. Resistance to cell death is linked to cellular transformation and carcinogenesis as well as radio- and chemoresistance, making the underlying signaling pathways a promising target for therapeutic intervention. Diverse DNA damage-induced cell death pathways are operative in mammalian cells and finally culminate in the induction of programmed cell death via activation of apoptosis or necroptosis. These signaling routes affect nuclear, mitochondria- and plasma membrane-associated key molecules to activate the apoptotic or necroptotic response. In this review, we highlight the main signaling pathways, molecular players and mechanisms guiding the DNA damage-induced cell death response.

  19. β2-spectrin depletion impairs DNA damage repair

    PubMed Central

    Horikoshi, Nobuo; Pandita, Raj K.; Mujoo, Kalpana; Hambarde, Shashank; Sharma, Dharmendra; Mattoo, Abid R.; Chakraborty, Sharmistha; Charaka, Vijaya; Hunt, Clayton R.; Pandita, Tej K.

    2016-01-01

    β2-Spectrin (β2SP/SPTBN1, gene SPTBN1) is a key TGF-β/SMAD3/4 adaptor and transcriptional cofactor that regulates TGF-β signaling and can contribute to liver cancer development. Here we report that cells deficient in β2-Spectrin (β2SP) are moderately sensitive to ionizing radiation (IR) and extremely sensitive to agents that cause interstrand cross-links (ICLs) or replication stress. In response to treatment with IR or ICL agents (formaldehyde, cisplatin, camptothecin, mitomycin), β2SP deficient cells displayed a higher frequency of cells with delayed γ-H2AX removal and a higher frequency of residual chromosome aberrations. Following hydroxyurea (HU)-induced replication stress, β2SP-deficient cells displayed delayed disappearance of γ-H2AX foci along with defective repair factor recruitment (MRE11, CtIP, RAD51, RPA, and FANCD2) as well as defective restart of stalled replication forks. Repair factor recruitment is a prerequisite for initiation of DNA damage repair by the homologous recombination (HR) pathway, which was also defective in β2SP deficient cells. We propose that β2SP is required for maintaining genomic stability following replication fork stalling, whether induced by either ICL damage or replicative stress, by facilitating fork regression as well as DNA damage repair by homologous recombination. PMID:27248179

  20. Saccharomyces cerevisiae-based system for studying clustered DNA damages

    SciTech Connect

    Moscariello, M.M.; Sutherland, B.

    2010-08-01

    DNA-damaging agents can induce clustered lesions or multiply damaged sites (MDSs) on the same or opposing DNA strands. In the latter, attempts to repair MDS can generate closely opposed single-strand break intermediates that may convert non-lethal or mutagenic base damage into double-strand breaks (DSBs). We constructed a diploid S. cerevisiae yeast strain with a chromosomal context targeted by integrative DNA fragments carrying different damages to determine whether closely opposed base damages are converted to DSBs following the outcomes of the homologous recombination repair pathway. As a model of MDS, we studied clustered uracil DNA damages with a known location and a defined distance separating the lesions. The system we describe might well be extended to assessing the repair of MDSs with different compositions, and to most of the complex DNA lesions induced by physical and chemical agents.

  1. Systemic DNA damage responses in aging and diseases

    PubMed Central

    Ribezzo, Flavia; Shiloh, Yosef; Schumacher, Björn

    2016-01-01

    The genome is constantly attacked by a variety of genotoxic insults. The causal role for DNA damage in aging and cancer is exemplified by genetic defects in DNA repair that underlie a broad spectrum of acute and chronic human disorders that are characterized by developmental abnormalities, premature aging, and cancer predisposition. The disease symptoms are typically tissue-specific with uncertain genotype-phenotype correlation. The cellular DNA damage response (DDR) has been extensively investigated ever since yeast geneticists discovered DNA damage checkpoint mechanisms, several decades ago. In recent years, it has become apparent that not only cell-autonomous but also systemic DNA damage responses determine the outcome of genome instability in organisms. Understanding the mechanisms of non-cell-autonomous DNA damage responses will provide important new insights into the role of genome instability in human aging and a host of diseases including cancer and might better explain the complex phenotypes caused by genome instability. PMID:26773346

  2. Non-coding RNAs: an emerging player in DNA damage response.

    PubMed

    Zhang, Chunzhi; Peng, Guang

    2015-01-01

    Non-coding RNAs play a crucial role in maintaining genomic stability which is essential for cell survival and preventing tumorigenesis. Through an extensive crosstalk between non-coding RNAs and the canonical DNA damage response (DDR) signaling pathway, DDR-induced expression of non-coding RNAs can provide a regulatory mechanism to accurately control the expression of DNA damage responsive genes in a spatio-temporal manner. Mechanistically, DNA damage alters expression of a variety of non-coding RNAs at multiple levels including transcriptional regulation, post-transcriptional regulation, and RNA degradation. In parallel, non-coding RNAs can directly regulate cellular processes involved in DDR by altering expression of their targeting genes, with a particular emphasis on miRNAs and lncRNAs. MiRNAs are required for almost every aspect of cellular responses to DNA damage, including sensing DNA damage, transducing damage signals, repairing damaged DNA, activating cell cycle checkpoints, and inducing apoptosis. As for lncRNAs, they control transcription of DDR relevant gene by four different regulatory models, including signal, decoy, guide, and scaffold. In addition, we also highlight potential clinical applications of non-coding RNAs as biomarkers and therapeutic targets for anti-cancer treatments using DNA-damaging agents including radiation and chemotherapy. Although tremendous advances have been made to elucidate the role of non-coding RANs in genome maintenance, many key questions remain to be answered including mechanistically how non-coding RNA pathway and DNA damage response pathway is coordinated in response to genotoxic stress. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. UV and ionizing radiations induced DNA damage, differences and similarities

    NASA Astrophysics Data System (ADS)

    Ravanat, Jean-Luc; Douki, Thierry

    2016-11-01

    Both UV and ionizing radiations damage DNA. Two main mechanisms, so-called direct and indirect pathways, are involved in the degradation of DNA induced by ionizing radiations. The direct effect of radiation corresponds to direct ionization of DNA (one electron ejection) whereas indirect effects are produced by reactive oxygen species generated through water radiolysis, including the highly reactive hydroxyl radicals, which damage DNA. UV (and visible) light damages DNA by again two distinct mechanisms. UVC and to a lesser extend UVB photons are directly absorbed by DNA bases, generating their excited states that are at the origin of the formation of pyrimidine dimers. UVA (and visible) light by interaction with endogenous or exogenous photosensitizers induce the formation of DNA damage through photosensitization reactions. The excited photosensitizer is able to induce either a one-electron oxidation of DNA (type I) or to produce singlet oxygen (type II) that reacts with DNA. In addition, through an energy transfer from the excited photosensitizer to DNA bases (sometime called type III mechanism) formation of pyrimidine dimers could be produced. Interestingly it has been shown recently that pyrimidine dimers are also produced by direct absorption of UVA light by DNA, even if absorption of DNA bases at these wavelengths is very low. It should be stressed that some excited photosensitizers (such as psoralens) could add directly to DNA bases to generate adducts. The review will described the differences and similarities in terms of damage formation (structure and mechanisms) between these two physical genotoxic agents.

  4. Caspase-2 deficiency promotes aberrant DNA-damage response and genetic instability.

    PubMed

    Dorstyn, L; Puccini, J; Wilson, C H; Shalini, S; Nicola, M; Moore, S; Kumar, S

    2012-08-01

    Caspase-2 is an initiator caspase, which has been implicated to function in apoptotic and non-apoptotic signalling pathways, including cell-cycle regulation, DNA-damage signalling and tumour suppression. We previously demonstrated that caspase-2 deficiency enhances E1A/Ras oncogene-induced cell transformation and augments lymphomagenesis in the EμMyc mouse model. Caspase-2(-/-) mouse embryonic fibroblasts (casp2(-/-) MEFs) show aberrant cell-cycle checkpoint regulation and a defective apoptotic response following DNA damage. Disruption of cell-cycle checkpoints often leads to genomic instability (GIN), which is a common phenotype of cancer cells and can contribute to cellular transformation. Here we show that caspase-2 deficiency results in increased DNA damage and GIN in proliferating cells. Casp2(-/-) MEFs readily escape senescence in culture and exhibit increased micronuclei formation and sustained DNA damage during cell culture and following γ-irradiation. Metaphase analyses demonstrated that a lack of caspase-2 is associated with increased aneuploidy in both MEFs and in EμMyc lymphoma cells. In addition, casp2(-/-) MEFs and lymphoma cells exhibit significantly decreased telomere length. We also noted that loss of caspase-2 leads to defective p53-mediated signalling and decreased trans-activation of p53 target genes upon DNA damage. Our findings suggest that loss of caspase-2 serves as a key function in maintaining genomic integrity, during cell proliferation and following DNA damage.

  5. Regulation of DNA damage responses and cell cycle progression by hMOB2

    PubMed Central

    Gomez, Valenti; Gundogdu, Ramazan; Gomez, Marta; Hoa, Lily; Panchal, Neelam; O’Driscoll, Mark; Hergovich, Alexander

    2014-01-01

    Mps one binder proteins (MOBs) are conserved regulators of essential signalling pathways. Biochemically, human MOB2 (hMOB2) can inhibit NDR kinases by competing with hMOB1 for binding to NDRs. However, biological roles of hMOB2 have remained enigmatic. Here, we describe novel functions of hMOB2 in the DNA damage response (DDR) and cell cycle regulation. hMOB2 promotes DDR signalling, cell survival and cell cycle arrest after exogenously induced DNA damage. Under normal growth conditions in the absence of exogenously induced DNA damage hMOB2 plays a role in preventing the accumulation of endogenous DNA damage and a subsequent p53/p21-dependent G1/S cell cycle arrest. Unexpectedly, these molecular and cellular phenotypes are not observed upon NDR manipulations, indicating that hMOB2 performs these functions independent of NDR signalling. Thus, to gain mechanistic insight, we screened for novel binding partners of hMOB2, revealing that hMOB2 interacts with RAD50, facilitating the recruitment of the MRE11-RAD50-NBS1 (MRN) DNA damage sensor complex and activated ATM to DNA damaged chromatin. Taken together, we conclude that hMOB2 supports the DDR and cell cycle progression. PMID:25460043

  6. Regulation of DNA damage responses and cell cycle progression by hMOB2.

    PubMed

    Gomez, Valenti; Gundogdu, Ramazan; Gomez, Marta; Hoa, Lily; Panchal, Neelam; O'Driscoll, Mark; Hergovich, Alexander

    2015-02-01

    Mps one binder proteins (MOBs) are conserved regulators of essential signalling pathways. Biochemically, human MOB2 (hMOB2) can inhibit NDR kinases by competing with hMOB1 for binding to NDRs. However, biological roles of hMOB2 have remained enigmatic. Here, we describe novel functions of hMOB2 in the DNA damage response (DDR) and cell cycle regulation. hMOB2 promotes DDR signalling, cell survival and cell cycle arrest after exogenously induced DNA damage. Under normal growth conditions in the absence of exogenously induced DNA damage hMOB2 plays a role in preventing the accumulation of endogenous DNA damage and a subsequent p53/p21-dependent G1/S cell cycle arrest. Unexpectedly, these molecular and cellular phenotypes are not observed upon NDR manipulations, indicating that hMOB2 performs these functions independent of NDR signalling. Thus, to gain mechanistic insight, we screened for novel binding partners of hMOB2, revealing that hMOB2 interacts with RAD50, facilitating the recruitment of the MRE11-RAD50-NBS1 (MRN) DNA damage sensor complex and activated ATM to DNA damaged chromatin. Taken together, we conclude that hMOB2 supports the DDR and cell cycle progression. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Chimeric proteins for detection and quantitation of DNA mutations, DNA sequence variations, DNA damage and DNA mismatches

    DOEpatents

    McCutchen-Maloney, Sandra L.

    2002-01-01

    Chimeric proteins having both DNA mutation binding activity and nuclease activity are synthesized by recombinant technology. The proteins are of the general formula A-L-B and B-L-A where A is a peptide having DNA mutation binding activity, L is a linker and B is a peptide having nuclease activity. The chimeric proteins are useful for detection and identification of DNA sequence variations including DNA mutations (including DNA damage and mismatches) by binding to the DNA mutation and cutting the DNA once the DNA mutation is detected.

  8. Radiation track, DNA damage and response—a review

    NASA Astrophysics Data System (ADS)

    Nikjoo, H.; Emfietzoglou, D.; Liamsuwan, T.; Taleei, R.; Liljequist, D.; Uehara, S.

    2016-11-01

    The purpose of this paper has been to review the current status and progress of the field of radiation biophysics, and draw attention to the fact that physics, in general, and radiation physics in particular, with the aid of mathematical modeling, can help elucidate biological mechanisms and cancer therapies. We hypothesize that concepts of condensed-matter physics along with the new genomic knowledge and technologies and mechanistic mathematical modeling in conjunction with advances in experimental DNA (Deoxyrinonucleic acid molecule) repair and cell signaling have now provided us with unprecedented opportunities in radiation biophysics to address problems in targeted cancer therapy, and genetic risk estimation in humans. Obviously, one is not dealing with ‘low-hanging fruit’, but it will be a major scientific achievement if it becomes possible to state, in another decade or so, that we can link mechanistically the stages between the initial radiation-induced DNA damage; in particular, at doses of radiation less than 2 Gy and with structural changes in genomic DNA as a precursor to cell inactivation and/or mutations leading to genetic diseases. The paper presents recent development in the physics of radiation track structure contained in the computer code system KURBUC, in particular for low-energy electrons in the condensed phase of water for which we provide a comprehensive discussion of the dielectric response function approach. The state-of-the-art in the simulation of proton and carbon ion tracks in the Bragg peak region is also presented. The paper presents a critical discussion of the models used for elastic scattering, and the validity of the trajectory approach in low-electron transport. Brief discussions of mechanistic and quantitative aspects of microdosimetry, DNA damage and DNA repair are also included as developed by the authors’ work.

  9. Novel DNA damage checkpoint in mitosis: Mitotic DNA damage induces re-replication without cell division in various cancer cells.

    PubMed

    Hyun, Sun-Yi; Rosen, Eliot M; Jang, Young-Joo

    2012-07-06

    DNA damage induces multiple checkpoint pathways to arrest cell cycle progression until damage is repaired. In our previous reports, when DNA damage occurred in prometaphase, cells were accumulated in 4 N-DNA G1 phase, and mitosis-specific kinases were inactivated in dependent on ATM/Chk1 after a short incubation for repair. We investigated whether or not mitotic DNA damage causes cells to skip-over late mitotic periods under prolonged incubation in a time-lapse study. 4 N-DNA-damaged cells re-replicated without cell division and accumulated in 8 N-DNA content, and the activities of apoptotic factors were increased. The inhibition of DNA replication reduced the 8 N-DNA cell population dramatically. Induction of replication without cell division was not observed upon depletion of Chk1 or ATM. Finally, mitotic DNA damage induces mitotic slippage and that cells enter G1 phase with 4 N-DNA content and then DNA replication is occurred to 8 N-DNA content before completion of mitosis in the ATM/Chk1-dependent manner, followed by caspase-dependent apoptosis during long-term repair.

  10. Cytometric assessment of DNA damage in relation to cell cycle phase and apoptosis.

    PubMed

    Huang, Xuan; Halicka, H Dorota; Traganos, Frank; Tanaka, Toshiki; Kurose, Akira; Darzynkiewicz, Zbigniew

    2005-08-01

    Reviewed are the methods aimed to detect DNA damage in individual cells, estimate its extent and relate it to cell cycle phase and induction of apoptosis. They include the assays that reveal DNA fragmentation during apoptosis, as well as DNA damage induced by genotoxic agents. DNA fragmentation that occurs in the course of apoptosis is detected by selective extraction of degraded DNA. DNA in chromatin of apoptotic cells shows also increased propensity to undergo denaturation. The most common assay of DNA fragmentation relies on labelling DNA strand breaks with fluorochrome-tagged deoxynucleotides. The induction of double-strand DNA breaks (DSBs) by genotoxic agents provides a signal for histone H2AX phosphorylation on Ser139; the phosphorylated H2AX is named gammaH2AX. Also, ATM-kinase is activated through its autophosphorylation on Ser1981. Immunocytochemical detection of gammaH2AX and/or ATM-Ser1981(P) are sensitive probes to reveal induction of DSBs. When used concurrently with analysis of cellular DNA content and caspase-3 activation, they allow one to correlate the extent of DNA damage with the cell cycle phase and with activation of the apoptotic pathway. The presented data reveal cell cycle phase-specific patterns of H2AX phosphorylation and ATM autophosphorylation in response to induction of DSBs by ionizing radiation, topoisomerase I and II inhibitors and carcinogens. Detection of DNA damage in tumour cells during radio- or chemotherapy may provide an early marker predictive of response to treatment.

  11. DNA damage induced by low energy electron collision and new experimental setup for further studying DNA damage by plasma

    NASA Astrophysics Data System (ADS)

    Park, Yeunsoo; Sanche, Leon; Wagner, Richard

    2013-09-01

    Low energy electrons (LEEs; below 10 eV) are the most abundant among the radiolytic species generated along the high energy radiation track in living cell. And these electrons are also one of major components with ions and photon in plasma. Interestingly, it has turned out that LEEs can create DNA damages such as base release, single- and double- strand breaks (SSB and DSB) via indirect action named dissociative electron attachment (DEA). The purposes of this study are to further find out exact mechanisms of DNA damage by LEEs at the molecular level and to verify new DNA damage like structural alteration on DNA subunits. And we will expand our study to DNA damage by plasma source to develop plasma-based new medical and biological applications. We are currently setting new experimental system for reaching our goals. We will show some recent results about new finding DNA modification damage and some experimental designs and working principles.

  12. Heart Failure Protein May Signal Early Brain Damage

    MedlinePlus

    ... 162447.html Heart Failure Protein May Signal Early Brain Damage Higher levels indicated potential trouble, study showed ... a specific heart disease protein are associated with brain damage, a new study suggests. N-terminal Pro- ...

  13. Oxidative DNA damage in osteoarthritic porcine articular cartilage

    PubMed Central

    Chen, Antonia F.; Davies, Catrin M.; De Lin, Ming; Fermor, Beverley

    2008-01-01

    Purpose Osteoarthritis (OA) is associated with increased levels of reactive oxygen species. This study investigated if increased oxidative DNA damage accumulates in OA articular cartilage compared with non-OA articular cartilage from pigs with spontaneous OA. Additionally, the ability of nitric oxide (NO) or peroxynitrite (ONOO-) induced DNA damage in non-OA chondrocytes to undergo endogenous repair was investigated. Methods Porcine femoral condyles were graded for the stage of OA, macroscopically by the Collins Scale, and histologically by the modified Mankin Grade. Levels of DNA damage were determined in non-OA and OA cartilage, using the comet assay. For calibration, DNA damage was measured by exposing non-OA chondrocytes to 0-12 Gray of x-ray irradiation. Non-OA articular chondrocytes were treated with 0-500 μM of NO donors (NOC-18 or SIN-1), and DNA damage assessed after treatment and 5 days recovery. Results A significant increase (p<0.01) in oxidative DNA damage occurred in OA chondrocytes in joints with Mankin Grades 3 or greater, compared to non-OA chondrocytes. The percentage of nuclei containing DNA damage increased significantly (p<0.001) from early to late grades of OA. An increase of approximately 0.65-1.7 breaks/1000kB of DNA occurred in OA, compared to non-OA nuclei. NOC-18 or SIN-1 caused significant DNA damage (p<0.001) in non-OA chondrocytes that did not undergo full endogenous repair after 5 days (p<0.05). Conclusion Our data suggest significant levels of oxidative DNA damage occur in OA chondrocytes that accumulates with OA progression. Additionally, DNA damage induced by NO and ONOO- in non-OA chondrocytes does not undergo full endogenous repair. PMID:18720406

  14. Amphetamines promote mitochondrial dysfunction and DNA damage in pulmonary hypertension

    PubMed Central

    Chen, Pin-I; Cao, Aiqin; Miyagawa, Kazuya; Tojais, Nancy F.; Hennigs, Jan K.; Li, Caiyun G.; Sweeney, Nathaly M.; Inglis, Audrey S.; Wang, Lingli; Li, Dan; Ye, Matthew; Feldman, Brian J.

    2017-01-01

    Amphetamine (AMPH) or methamphetamine (METH) abuse can cause oxidative damage and is a risk factor for diseases including pulmonary arterial hypertension (PAH). Pulmonary artery endothelial cells (PAECs) from AMPH-associated-PAH patients show DNA damage as judged by γH2AX foci and DNA comet tails. We therefore hypothesized that AMPH induces DNA damage and vascular pathology by interfering with normal adaptation to an environmental perturbation causing oxidative stress. Consistent with this, we found that AMPH alone does not cause DNA damage in normoxic PAECs, but greatly amplifies DNA damage in hypoxic PAECs. The mechanism involves AMPH activation of protein phosphatase 2A, which potentiates inhibition of Akt. This increases sirtuin 1, causing deacetylation and degradation of HIF1α, thereby impairing its transcriptional activity, resulting in a reduction in pyruvate dehydrogenase kinase 1 and impaired cytochrome c oxidase 4 isoform switch. Mitochondrial oxidative phosphorylation is inappropriately enhanced and, as a result of impaired electron transport and mitochondrial ROS increase, caspase-3 is activated and DNA damage is induced. In mice given binge doses of METH followed by hypoxia, HIF1α is suppressed and pulmonary artery DNA damage foci are associated with worse pulmonary vascular remodeling. Thus, chronic AMPH/METH can induce DNA damage associated with vascular disease by subverting the adaptive responses to oxidative stress. PMID:28138562

  15. Endothelial IL-33 Expression Is Augmented by Adenoviral Activation of the DNA Damage Machinery.

    PubMed

    Stav-Noraas, Tor Espen; Edelmann, Reidunn J; Poulsen, Lars La Cour; Sundnes, Olav; Phung, Danh; Küchler, Axel M; Müller, Fredrik; Kamen, Amine A; Haraldsen, Guttorm; Kaarbø, Mari; Hol, Johanna

    2017-04-15

    IL-33, required for viral clearance by cytotoxic T cells, is generally expressed in vascular endothelial cells in healthy human tissues. We discovered that endothelial IL-33 expression was stimulated as a response to adenoviral transduction. This response was dependent on MRE11, a sensor of DNA damage that can also be activated by adenoviral DNA, and on IRF1, a transcriptional regulator of cellular responses to viral invasion and DNA damage. Accordingly, we observed that endothelial cells responded to adenoviral DNA by phosphorylation of ATM and CHK2 and that depletion or inhibition of MRE11, but not depletion of ATM, abrogated IL-33 stimulation. In conclusion, we show that adenoviral transduction stimulates IL-33 expression in endothelial cells in a manner that is dependent on the DNA-binding protein MRE11 and the antiviral factor IRF1 but not on downstream DNA damage response signaling. Copyright © 2017 by The American Association of Immunologists, Inc.

  16. Inflammation, DNA Damage, Helicobacter pylori and Gastric Tumorigenesis

    PubMed Central

    Kalisperati, Polyxeni; Spanou, Evangelia; Pateras, Ioannis S.; Korkolopoulou, Penelope; Varvarigou, Anastasia; Karavokyros, Ioannis; Gorgoulis, Vassilis G.; Vlachoyiannopoulos, Panayiotis G.; Sougioultzis, Stavros

    2017-01-01

    Helicobacter pylori (H. pylori) is a Gram negative bacterium that colonizes the stomach of almost half human population. It has evolved to escape immune surveillance, establishes lifelong inflammation, predisposing to genomic instability and DNA damage, notably double strand breaks. The epithelial host cell responds by activation of DNA damage repair (DDR) machinery that seems to be compromised by the infection. It is therefore now accepted that genetic damage is a major mechanism operating in cases of H. pylori induced carcinogenesis. Here, we review the data on the molecular pathways involved in DNA damage and DDR activation during H. pylori infection. PMID:28289428

  17. Biological consequences of formation and repair of complex DNA damage.

    PubMed

    Magnander, Karin; Elmroth, Kecke

    2012-12-31

    Endogenous processes or genotoxic agents can induce many types of single DNA damage (single-strand breaks, oxidized bases and abasic sites). In addition, ionizing radiation induces complex lesions such as double-strand breaks and clustered damage. To preserve the genomic stability and prevent carcinogenesis, distinct repair pathways have evolved. Despite this, complex DNA damage can cause severe problems and is believed to contribute to the biological consequences observed in cells exposed to genotoxic stress. In this review, the current knowledge of formation and repair of complex DNA damage is summarized and the risks and biological consequences associated with their repair are discussed. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Pseudo-DNA damage response in senescent cells.

    PubMed

    Pospelova, Tatyana V; Demidenko, Zoya N; Bukreeva, Elena I; Pospelov, Valery A; Gudkov, Andrei V; Blagosklonny, Mikhail V

    2009-12-15

    Cellular senescence is currently viewed as a response to DNA damage. In this report, we showed that non-damaging agents such as sodium butyrate-induced p21 and ectopic expression of either p21 or p16 cause cellular senescence without detectable DNA breaks. Nevertheless, senescent cells displayed components of DNA damage response (DDR) such as gammaH2AX foci and uniform nuclear staining for p-ATM. Importantly, there was no accumulation of 53BP1 in gammaH2AX foci of senescent cells. Consistently, comet assay failed to detect DNA damage. Rapamycin, an inhibitor of mTO R, which was shown to suppress cellular senescence, decreased gammaH2AX foci formation. Thus, cellular senescence leads to activation of atypical DDR without detectable DNA damage. Pseudo-DDR may be a marker of general over-activation of senescent cells.

  19. DNA Damage among Wood Workers Assessed with the Comet Assay

    PubMed Central

    Bruschweiler, Evin Danisman; Wild, Pascal; Huynh, Cong Khanh; Savova-Bianchi, Dessislava; Danuser, Brigitta; Hopf, Nancy B.

    2016-01-01

    Exposure to wood dust, a human carcinogen, is common in wood-related industries, and millions of workers are occupationally exposed to wood dust worldwide. The comet assay is a rapid, simple, and sensitive method for determining DNA damage. The objective of this study was to investigate the DNA damage associated with occupational exposure to wood dust using the comet assay (peripheral blood samples) among nonsmoking wood workers (n = 31, furniture and construction workers) and controls (n = 19). DNA damage was greater in the group exposed to composite wood products compared to the group exposed to natural woods and controls (P < 0.001). No difference in DNA damage was observed between workers exposed to natural woods and controls (P = 0.13). Duration of exposure and current dust concentrations had no effect on DNA damage. In future studies, workers’ exposures should include cumulative dust concentrations and exposures originating from the binders used in composite wood products. PMID:27398027

  20. Ultraviolet induced DNA damage and hereditary skin cancer

    SciTech Connect

    Regan, J.D.; Carrier, W.L.; Francis, A.A.

    1984-01-01

    Clearly, cells from normal individuals possess the ability to repair a variety of damage to DNA. Numerous studies indicate that defects in DNA repair may increase an individual's susceptibility to cancer. It is hoped that continued studies of the exact structural changes produced in the DNA by environmental insults, and the correlation of specific DNA changes with particulr cellular events, such as DNA repair, will lead to a better understanding of cell-killing, mutagenesis and carbinogenesis. 1 figure, 2 tables.

  1. Comparative Analysis of Interaction of Human and Yeast DNA Damage Recognition Complexes with Damaged DNA in Nucleotide Excision Repair*

    PubMed Central

    Krasikova, Yuliya S.; Rechkunova, Nadejda I.; Maltseva, Ekaterina A.; Pestryakov, Pavel E.; Petruseva, Irina O.; Sugasawa, Kaoru; Chen, Xuejing; Min, Jung-Hyun; Lavrik, Olga I.

    2013-01-01

    The human XPC-RAD23B complex and its yeast ortholog, Rad4-Rad23, are the primary initiators of global genome nucleotide excision repair. The interaction of these proteins with damaged DNA was analyzed using model DNA duplexes containing a single fluorescein-substituted dUMP analog as a lesion. An electrophoretic mobility shift assay revealed similarity between human and yeast proteins in DNA binding. Quantitative analyses of XPC/Rad4 binding to the model DNA structures were performed by fluorescent depolarization measurements. XPC-RAD23B and Rad4-Rad23 proteins demonstrate approximately equal binding affinity to the damaged DNA duplex (KD ∼ (0.5 ± 0.1) and (0.6 ± 0.3) nm, respectively). Using photoreactive DNA containing 5-iodo-dUMP in defined positions, XPC/Rad4 location on damaged DNA was shown. Under conditions of equimolar binding to DNA both proteins exhibited the highest level of cross-links to 5I-dUMP located exactly opposite the damaged nucleotide. The positioning of the XPC and Rad4 proteins on damaged DNA by photocross-linking footprinting is consistent with x-ray analysis of the Rad4-DNA crystal complex. The identity of the XPC and Rad4 location illustrates the common principles of structure organization of DNA damage-scanning proteins from different Eukarya organisms. PMID:23443653

  2. ARRB1 enhances the chemosensitivity of lung cancer through the mediation of DNA damage response

    PubMed Central

    Shen, Hongchang; Wang, Liguang; Zhang, Jiangang; Dong, Wei; Zhang, Tiehong; Ni, Yang; Cao, Hongxin; Wang, Kai; Li, Yun; Wang, Yibing; Du, Jiajun

    2017-01-01

    ARRB1 (also known as β-arrestin-1) serves as a multifunctional adaptor contributing to the regulation of signaling pathways. ARRB1 may be involved in DNA damage accumulation; however the underlying mechanism involved is unclear. In the present study, non-small cell lung cancer (NSCLC) cell lines (H520 and SK-MES-1) were transfected with ARRB1 plasmids or small interfering ribonucleic acid (siRNA) and received treatment with DNA-damaging agents (cisplatin and etoposide). A mouse xenograft model was used to assess the impact of ARRB1 on the efficacy of cisplatin in vivo. A total of 30 surgically resected NSCLC patients were recruited for the present study and qRT-PCR was performed to determine the mRNA levels in cancer tissues compared with para-carcinoma tissues. Our data showed that DNA damage was abrogated in the ARRB1-knockdown cells and enhanced in the ARRB1-overexpressing cells. ATR and Chk1 were more activated in the ARRB1-overexpressing cells compared to the ARRB1-knockdown cells, followed by increased H2AX phosphorylation. DNA damage and apoptosis were increased in the ARRB1-overexpressing cells treated with cisplatin. These data provided strong evidence that ARRB1 contributes to the response of NSCLC to DNA-damaging agents and is essential for DNA damage response (DDR). ARRB1 may enhance the efficacy of DNA-damaging agents in NSCLC. PMID:28035404

  3. Loss of Caenorhabditis elegans UNG-1 uracil-DNA glycosylase affects apoptosis in response to DNA damaging agents.

    PubMed

    Skjeldam, Hanne K; Kassahun, Henok; Fensgård, Oyvind; SenGupta, Tanima; Babaie, Eshrat; Lindvall, Jessica M; Arczewska, Katarzyna; Nilsen, Hilde

    2010-08-05

    The nematode Caenorhabditis elegans has been used extensively to study responses to DNA damage. In contrast, little is known about DNA repair in this organism. C. elegans is unusual in that it encodes few DNA glycosylases and the uracil-DNA glycosylase (UDG) encoded by the ung-1 gene is the only known UDG. C. elegans could therefore become a valuable model organism for studies of the genetic interaction networks involving base excision repair (BER). As a first step towards characterization of BER in C. elegans, we show that the UNG-1 protein is an active uracil-DNA glycosylase. We demonstrate that an ung-1 mutant has reduced ability to repair uracil-containing DNA but that an alternative Ugi-inhibited activity is present in ung-1 nuclear extracts. Finally, we demonstrate that ung-1 mutants show altered levels of apoptotic cell corpses formed in response to DNA damaging agents. Increased apoptosis in the ung-1 mutant in response to ionizing radiation (IR) suggests that UNG-1 contributes to repair of IR-induced DNA base damage in vivo. Following treatment with paraquat however, the apoptotic corpse-formation was reduced. Gene expression profiling suggests that this phenotype is a consequence of compensatory transcriptomic shifts that modulate oxidative stress responses in the mutant and not an effect of reduced DNA damage signaling. 2010 Elsevier B.V. All rights reserved.

  4. Stress-induced DNA damage biomarkers: applications and limitations

    PubMed Central

    Nikitaki, Zacharenia; Hellweg, Christine E.; Georgakilas, Alexandros G.; Ravanat, Jean-Luc

    2015-01-01

    A variety of environmental stresses like chemicals, UV and ionizing radiation and organism's endogenous processes such as replication stress and metabolism can lead to the generation of reactive oxygen and nitrogen species (ROS/RNS) that can attack cellular vital components like DNA, proteins and lipid membranes. Among them, much attention has been focused on DNA since DNA damage plays a role in several biological disorders and aging processes. Thus, DNA damage can be used as a biomarker in a reliable and accurate way to quantify for example radiation exposure and can indicate its possible long term effects and cancer risk. Based on the type of DNA lesions detected one can hypothesize on the most probable mechanisms involved in the formation of these lesions for example in the case of UV and ionizing radiation (e.g., X- or α-, γ-rays, energetic ions, neutrons). In this review we describe the most accepted chemical pathways for DNA damage induction and the different types of DNA lesions, i.e., single, complex DNA lesions etc. that can be used as DNA damage biomarkers. We critically compare DNA damage detection methods and their limitations. In addition, we suggest the use of DNA repair gene products as biomarkes for identification of different types of stresses i.e., radiation, oxidative, or replication stress, based on bioinformatic approaches and meta-analysis of literature data. PMID:26082923

  5. Stress-induced DNA damage biomarkers: applications and limitations.

    PubMed

    Nikitaki, Zacharenia; Hellweg, Christine E; Georgakilas, Alexandros G; Ravanat, Jean-Luc

    2015-01-01

    A variety of environmental stresses like chemicals, UV and ionizing radiation and organism's endogenous processes such as replication stress and metabolism can lead to the generation of reactive oxygen and nitrogen species (ROS/RNS) that can attack cellular vital components like DNA, proteins and lipid membranes. Among them, much attention has been focused on DNA since DNA damage plays a role in several biological disorders and aging processes. Thus, DNA damage can be used as a biomarker in a reliable and accurate way to quantify for example radiation exposure and can indicate its possible long term effects and cancer risk. Based on the type of DNA lesions detected one can hypothesize on the most probable mechanisms involved in the formation of these lesions for example in the case of UV and ionizing radiation (e.g., X- or α-, γ-rays, energetic ions, neutrons). In this review we describe the most accepted chemical pathways for DNA damage induction and the different types of DNA lesions, i.e., single, complex DNA lesions etc. that can be used as DNA damage biomarkers. We critically compare DNA damage detection methods and their limitations. In addition, we suggest the use of DNA repair gene products as biomarkes for identification of different types of stresses i.e., radiation, oxidative, or replication stress, based on bioinformatic approaches and meta-analysis of literature data.

  6. DNA damage in kidney transplant patients. Role of organ origin.

    PubMed

    Corredor, Zuray; Rodríguez-Ribera, Lara; Coll, Elisabet; Silva, Irene; Díaz, Juan Manuel; Ballarín, José; Marcos, Ricard; Pastor, Susana

    2017-08-19

    Chronic kidney disease (CKD) patients are characterized by elevated levels of genomic damage. This damage increases when kidney function decreases being maximum in hemodialysis patients. As kidney transplantation improves renal function, and it is related with better survival, the aim of our study was to evaluate potential changes in DNA damage levels after kidney transplantation, and comparing living donor recipients with cadaveric donor recipients. The alkaline comet assay was used to determine DNA breaks and oxidative damaged DNA; and the micronucleus assay was used to determine chromosomal breakage and/or aneuploidy. Fifty CKD patients were followed up after 6 and 12 months of their kidney transplantation. All patients increased their genomic damage levels after 6 and 12 months of renal transplantation, compared with those observed before transplantation, despite of the improvement of their metabolic functions. Donor advanced age correlated positively with higher DNA damage. Genomic damage was lower in living donor transplants with respect to cadaveric donor transplants. Our conclusion is that DNA damage increased in kidney transplantation patients, whereas their renal function improved. Higher levels of DNA damage were found in cadaveric donor transplants when compared to living donor transplants. Environ. Mol. Mutagen., 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Death and more: DNA damage response pathways in the nematode C. elegans.

    PubMed

    Stergiou, L; Hengartner, M O

    2004-01-01

    Genotoxic stress is a threat to our cells' genome integrity. Failure to repair DNA lesions properly after the induction of cell proliferation arrest can lead to mutations or large-scale genomic instability. Because such changes may have tumorigenic potential, damaged cells are often eliminated via apoptosis. Loss of this apoptotic response is actually one of the hallmarks of cancer. Towards the effort to elucidate the DNA damage-induced signaling steps leading to these biological events, an easily accessible model system is required, where the acquired knowledge can reveal the mechanisms underlying more complex organisms. Accumulating evidence coming from studies in Caenorhabditis elegans point to its usefulness as such. In the worm's germline, DNA damage can induce both cell cycle arrest and apoptosis, two responses that are spatially separated. The latter is a tightly controlled process that is genetically indistinguishable from developmental programmed cell death. Upstream of the central death machinery, components of the DNA damage signaling cascade lie and act either as sensors of the lesion or as transducers of the initial signal detected. This review summarizes the findings of several studies that specify the elements of the DNA damage-induced responses, as components of the cell cycle control machinery, the repairing process or the apoptotic outcome. The validity of C. elegans as a tool to further dissect the complex signaling network of these responses and the high potential for it to reveal important links to cancer and other genetic abnormalities are addressed.

  8. Chimeric Proteins to Detect DNA Damage and Mismatches

    SciTech Connect

    McCutchen-Maloney, S; Malfatti, M; Robbins, K M

    2002-01-14

    The goal of this project was to develop chimeric proteins composed of a DNA mismatch or damage binding protein and a nuclease, as well as methods to detect DNA mismatches and damage. We accomplished this through protein engineering based on using polymerase chain reactions (PCRs) to create chimeras with novel functions for damage and mismatch detection. This project addressed fundamental questions relating to disease susceptibility and radiation-induced damage in cells. It also supported and enhanced LLNL's competency in the emerging field of proteomics. In nature, DNA is constantly being subjected to damaging agents such as exposure to ultraviolet (UV) radiation and various environmental and dietary carcinogens. If DNA damage is not repaired however, mutations in DNA result that can eventually manifest in cancer and other diseases. In addition to damage-induced DNA mutations, single nucleotide polymorphisms (SNPs), which are variations in the genetic sequence between individuals, may predispose some to disease. As a result of the Human Genome Project, the integrity of a person's DNA can now be monitored. Therefore, methods to detect DNA damage, mutations, and SNPs are useful not only in basic research but also in the health and biotechnology industries. Current methods of detection often use radioactive labeling and rely on expensive instrumentation that is not readily available in many research settings. Our methods to detect DNA damage and mismatches employ simple gel electrophoresis and flow cytometry, thereby alleviating the need for radioactive labeling and expensive equipment. In FY2001, we explored SNP detection by developing methods based on the ability of the chimeric proteins to detect mismatches. Using multiplex assays with flow cytometry and fluorescent beads to which the DNA substrates where attached, we showed that several of the chimeras possess greater affinity for damaged and mismatched DNA than for native DNA. This affinity was demonstrated in

  9. Regulation of DNA Repair Mechanisms: How the Chromatin Environment Regulates the DNA Damage Response.

    PubMed

    Stadler, Jens; Richly, Holger

    2017-08-05

    Cellular DNA is constantly challenged by damage-inducing factors derived from exogenous or endogenous sources. In order to maintain genome stability and integrity, cells have evolved a wide variety of DNA repair pathways which counteract different types of DNA lesions, also referred to as the DNA damage response (DDR). However, DNA in eukaryotes is highly organized and compacted into chromatin representing major constraints for all cellular pathways, including DNA repair pathways, which require DNA as their substrate. Therefore, the chromatin configuration surrounding the lesion site undergoes dramatic remodeling to facilitate access of DNA repair factors and subsequent removal of the DNA lesion. In this review, we focus on the question of how the cellular DNA repair pathways overcome the chromatin barrier, how the chromatin environment is rearranged to facilitate efficient DNA repair, which proteins mediate this re-organization process and, consequently, how the altered chromatin landscape is involved in the regulation of DNA damage responses.

  10. Primary DNA Damage in Dry Cleaners with Perchlorethylene Exposure.

    PubMed

    Azimi, Mohammad; Bahrami, Mohammad Reza; Rezaei Hachesu, Vida; Zavar Reza, Javad; Mihanpour, Hamideh; Zare Sakhvidi, Mohammad Javad; Mostaghaci, Mehrdad

    2017-10-01

    Perchloroethylene is a halogenated solvent widely used in dry cleaning. International agency of research on cancer classified this chemical as a probable human carcinogen. To evaluate the extent of primary DNA damage in dry cleaner workers who were exposed to perchloroethylene as compared to non-exposed subjects. The effect of exposure modifying factors such as use of personal protective equipment, perceived risk, and reported safe behaviors on observed DNA damage were also studied. 59 exposed and non-exposed workers were selected from Yazd, Iran. All the 33 exposed workers had work history at least 3 months in the dry cleaning shops. Peripheral blood sampling was performed. Microscope examination was performed under fluorescent microscope (400×). Open comet software was used for image analysis. All biological analysis was performed in one laboratory. Primary DNA damage to leukocytes in dry cleaners was relatively high. The median tail length, %DNA in tail, and tail moment in exposed group were significantly higher than those in non-exposed group. There was no significant difference between smokers and nonsmokers in terms of tail length, tail moment, and %DNA in tail. There was no significant correlation between duration of employment in dry cleaning and observed DNA damage in terms of tail length, tail moment and %DNA in tail. Stratified analysis based on exposed and nonexposed category showed no significant relationship between age and observed DNA damage. Occupationally exposure to perchloroethylene can cause early DNA damage in dry cleaners.

  11. Single cell trapping and DNA damage analysis using microwell arrays

    PubMed Central

    Wood, David K.; Weingeist, David M.; Bhatia, Sangeeta N.; Engelward, Bevin P.

    2010-01-01

    With a direct link to cancer, aging, and heritable diseases as well as a critical role in cancer treatment, the importance of DNA damage is well-established. The intense interest in DNA damage in applications ranging from epidemiology to drug development drives an urgent need for robust, high throughput, and inexpensive tools for objective, quantitative DNA damage analysis. We have developed a simple method for high throughput DNA damage measurements that provides information on multiple lesions and pathways. Our method utilizes single cells captured by gravity into a microwell array with DNA damage revealed morphologically by gel electrophoresis. Spatial encoding enables simultaneous assays of multiple experimental conditions performed in parallel with fully automated analysis. This method also enables novel functionalities, including multiplexed labeling for parallel single cell assays, as well as DNA damage measurement in cell aggregates. We have also developed 24- and 96-well versions, which are applicable to high throughput screening. Using this platform, we have quantified DNA repair capacities of individuals with different genetic backgrounds, and compared the efficacy of potential cancer chemotherapeutics as inhibitors of a critical DNA repair enzyme, human AP endonuclease. This platform enables high throughput assessment of multiple DNA repair pathways and subpathways in parallel, thus enabling new strategies for drug discovery, genotoxicity testing, and environmental health. PMID:20534572

  12. Plasmid DNA damage induced by helium atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Han, Xu; Cantrell, William A.; Escobar, Erika E.; Ptasinska, Sylwia

    2014-03-01

    A helium atmospheric pressure plasma jet (APPJ) is applied to induce damage to aqueous plasmid DNA. The resulting fractions of the DNA conformers, which indicate intact molecules or DNA with single- or double-strand breaks, are determined using agarose gel electrophoresis. The DNA strand breaks increase with a decrease in the distance between the APPJ and DNA samples under two working conditions of the plasma source with different parameters of applied electric pulses. The damage level induced in the plasmid DNA is also enhanced with increased plasma irradiation time. The reactive species generated in the APPJ are characterized by optical emission spectra, and their roles in possible DNA damage processes occurring in an aqueous environment are also discussed.

  13. Facilitation of DNA damage-induced apoptosis by endoplasmic reticulum protein mitsugumin23

    SciTech Connect

    Yamazaki, Tetsuo; Sasaki, Nozomi; Nishi, Miyuki; Takeshima, Hiroshi

    2010-02-05

    The endoplasmic reticulum (ER) emanates context-dependent signals, thereby mediating cellular response to a variety of stresses. However, the underlying molecular mechanisms have been enigmatic. To better understand the signaling capacity of the ER, we focused on roles played by mitsugumin23 (MG23), a protein residing predominantly in this organelle. Overexpression of MG23 in human embryonic kidney 293T cells specifically enhanced apoptosis triggered by etoposide, a DNA-damaging anti-cancer drug. Conversely, genetic deletion of MG23 reduced susceptibility of thymocytes to DNA damage-induced apoptosis, which was demonstrated by whole-body irradiation experiments. In this setting, induction of the tumor-suppressor gene p53 was attenuated in MG23-knockout thymocytes as compared with their wild-type counterparts, consistent with the elevated radioresistance. It is therefore suggested that MG23 is an essential component of ER-generated lethal signals provoked upon DNA damage, specifying cell fate under pathophysiological conditions.

  14. DETECTION OF DNA DAMAGE USING MELTING ANALYSIS TECHNIQUES

    EPA Science Inventory

    A rapid and simple fluorescence screening assay for UV radiation-, chemical-, and enzyme-induced DNA damage is reported. This assay is based on a melting/annealing analysis technique and has been used with both calf thymus DNA and plasmid DNA (puc 19 plasmid from E. coli). DN...

  15. DETECTION OF DNA DAMAGE USING MELTING ANALYSIS TECHNIQUES

    EPA Science Inventory

    A rapid and simple fluorescence screening assay for UV radiation-, chemical-, and enzyme-induced DNA damage is reported. This assay is based on a melting/annealing analysis technique and has been used with both calf thymus DNA and plasmid DNA (puc 19 plasmid from E. coli). DN...

  16. The Yeast Copper Response Is Regulated by DNA Damage

    PubMed Central

    Dong, Kangzhen; Addinall, Stephen G.; Lydall, David

    2013-01-01

    Copper is an essential but potentially toxic redox-active metal, so the levels and distribution of this metal are carefully regulated to ensure that it binds to the correct proteins. Previous studies of copper-dependent transcription in the yeast Saccharomyces cerevisiae have focused on the response of genes to changes in the exogenous levels of copper. We now report that yeast copper genes are regulated in response to the DNA-damaging agents methyl methanesulfonate (MMS) and hydroxyurea by a mechanism(s) that requires the copper-responsive transcription factors Mac1 and AceI, copper superoxide dismutase (Sod1) activity, and the Rad53 checkpoint kinase. Furthermore, in copper-starved yeast, the response of the Rad53 pathway to MMS is compromised due to a loss of Sod1 activity, consistent with the model that yeast imports copper to ensure Sod1 activity and Rad53 signaling. Crucially, the Mac1 transcription factor undergoes changes in its redox state in response to changing levels of copper or MMS. This study has therefore identified a novel regulatory relationship between cellular redox, copper homeostasis, and the DNA damage response in yeast. PMID:23959798

  17. DNA damage as a biological sensor for environmental sunlight.

    PubMed

    Schuch, André Passaglia; Garcia, Camila Carrião Machado; Makita, Kazuo; Menck, Carlos Frederico Martins

    2013-08-01

    Solar ultraviolet (UV) radiation is widely known as an environmental genotoxic agent that affects ecosystems and the human population, generating concerns and motivating worldwide scientific efforts to better understand the role of sunlight in the induction of DNA damage, cell death, mutagenesis, and ultimately, carcinogenesis. In this review, general aspects of UV radiation at the Earth's surface are reported, considering measurements by physical and biological sensors that monitor solar UV radiation under different environmental conditions. The formation of DNA photoproducts and other types of DNA damage by different UV wavelengths are compared with the present information on their roles in inducing biological effects. Moreover, the use of DNA-based biological dosimeters is presented as a feasible molecular and cellular tool that is focused on the evaluation of DNA lesions induced by natural sunlight. Clearly, direct environmental measurements demonstrate the biological impact of sunlight in different locations worldwide and reveal how this affects the DNA damage profile at different latitudes. These tools are also valuable for the quantification of photoprotection provided by commercial sunscreens against the induction of DNA damage and cell death, employing DNA repair-deficient cells that are hypersensitive to sunlight. Collectively, the data demonstrate the applicability of DNA-based biosensors as alternative, complementary, and reliable methods for registering variations in the genotoxic impact of solar UV radiation and for determining the level of photoprotection sunscreens provided at the level of DNA damage and cell death.

  18. Stress-induced DNA Damage biomarkers: Applications and limitations

    NASA Astrophysics Data System (ADS)

    Nikitaki, Zacharenia; Hellweg, Christine; Georgakilas, Alexandros; Ravanat, Jean-Luc

    2015-06-01

    A variety of environmental stresses like chemicals, UV and ionizing radiation and organism’s endogenous processes like replication stress and metabolism can lead to the generation of reactive oxygen and nitrogen species (ROS/RNS) that can attack cellular vital components like DNA, proteins and lipid membranes. Among them, much attention has been focused on DNA since DNA damages play a role in several biological disorders and aging processes. Thus, DNA damage can be used as a biomarker in a reliable and accurate way to quantify for example radiation exposure and can indicate its possible long term effects and cancer risk. Based on the type of DNA lesions detected one can hypothesize on the most probable mechanisms involved in the formation of these lesions for example in the case of UV and ionizing radiation (e.g. X- or α-, γ-rays, energetic ions, neutrons). In this review we describe the most accepted chemical pathways for DNA damage induction and the different types of DNA lesions, i.e. single, complex DNA lesions etc. that can be used as biomarkers. We critically compare DNA damage detection methods and their limitations. In addition to such DNA damage products, we suggest possible gene inductions that can be used to characterize responses to different types of stresses i.e. radiation, oxidative and replication stress, based on bioinformatic approaches and stringent meta-analysis of literature data.

  19. Differential regulation of DNA damage response activation between somatic and germline cells in Caenorhabditis elegans

    PubMed Central

    Vermezovic, J; Stergiou, L; Hengartner, M O; d'Adda di Fagagna, F

    2012-01-01

    The germline of Caenorhabditis elegans is a well-established model for DNA damage response (DDR) studies. However, the molecular basis of the observed cell death resistance in the soma of these animals remains unknown. We established a set of techniques to study ionizing radiation-induced DNA damage generation and DDR activation in a whole intact worm. Our single-cell analyses reveal that, although germline and somatic cells show similar levels of inflicted DNA damage, somatic cells, differently from germline cells, do not activate the crucial apical DDR kinase ataxia-telengiectasia mutated (ATM). We also show that DDR signaling proteins are undetectable in all somatic cells and this is due to transcriptional repression. However, DNA repair genes are expressed and somatic cells retain the ability to efficiently repair DNA damage. Finally, we demonstrate that germline cells, when induced to transdifferentiate into somatic cells within the gonad, lose the ability to activate ATM. Overall, these observations provide a molecular mechanism for the known, but hitherto unexplained, resistance to DNA damage-induced cell death in C. elegans somatic cells. We propose that the observed lack of signaling and cell death but retention of DNA repair functions in the soma is a Caenorhabditis-specific evolutionary-selected strategy to cope with its lack of adult somatic stem cell pools and regenerative capacity. PMID:22705849

  20. Recent Advancements in DNA Damage-Transcription Crosstalk and High-Resolution Mapping of DNA Breaks.

    PubMed

    Vitelli, Valerio; Galbiati, Alessandro; Iannelli, Fabio; Pessina, Fabio; Sharma, Sheetal; d'Adda di Fagagna, Fabrizio

    2017-08-31

    Until recently, DNA damage arising from physiological DNA metabolism was considered a detrimental by-product for cells. However, an increasing amount of evidence has shown that DNA damage could have a positive role in transcription activation. In particular, DNA damage has been detected in transcriptional elements following different stimuli. These physiological DNA breaks are thought to be instrumental for the correct expression of genomic loci through different mechanisms. In this regard, although a plethora of methods are available to precisely map transcribed regions and transcription start sites, commonly used techniques for mapping DNA breaks lack sufficient resolution and sensitivity to draw a robust correlation between DNA damage generation and transcription. Recently, however, several methods have been developed to map DNA damage at single-nucleotide resolution, thus providing a new set of tools to correlate DNA damage and transcription. Here, we review how DNA damage can positively regulate transcription initiation, the current techniques for mapping DNA breaks at high resolution, and how these techniques can benefit future studies of DNA damage and transcription.

  1. Sperm DNA damage and its role in IVF and ICSI.

    PubMed

    Bach, Phil Vu; Schlegel, Peter N

    2016-01-01

    While the semen analysis has traditionally been relied upon to differentiate fertile and infertile men, its utility has been questioned in the current era of assisted reproductive technologies. The desire for more sophisticated diagnostic and predictive tools has led to increased use of sperm DNA damage in the management of male infertility. Despite the availability of numerous assays to measure sperm DNA damage, our understanding of the etiology, measurement, and clinical implications of sperm DNA damage remains incomplete. While the current evidence is fraught with heterogeneity that complicates attempts at comparison and meta-analysis, there does appear to be a role for sperm DNA damage in the development and maintenance of pregnancy in the era of in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI). However, as noted by the American Society for Reproductive Medicine, the routine and widespread use of sperm DNA damage testing is not yet supported. Further studies are needed to standardize the measurement of sperm DNA damage and to clarify the exact role of sperm DNA damage within the myriad of other male and female factors contributing to reproductive outcomes in IVF and ICSI.

  2. Chromatin Modifications during Repair of Environmental Exposure-Induced DNA Damage: A Potential Mechanism for Stable Epigenetic Alterations

    PubMed Central

    O’Hagan, Heather M.

    2014-01-01

    Exposures to environmental toxicants and toxins cause epigenetic changes that likely play a role in the development of diseases associated with exposure. The mechanism behind these exposure-induced epigenetic changes is currently unknown. One commonality between most environmental exposures is that they cause DNA damage either directly or through causing an increase in reactive oxygen species, which can damage DNA. Like transcription, DNA damage repair must occur in the context of chromatin requiring both histone modifications and ATP-dependent chromatin remodeling. These chromatin changes aid in DNA damage accessibility and signaling. Several proteins and complexes involved in epigenetic silencing during both development and cancer have been found to be localized to sites of DNA damage. The chromatin-based response to DNA damage is considered a transient event, with chromatin being restored to normal as DNA damage repair is completed. However, in individuals chronically exposed to environmental toxicants or with chronic inflammatory disease, repeated DNA damage-induced chromatin rearrangement may ultimately lead to permanent epigenetic alterations. Understanding the mechanism behind exposure-induced epigenetic changes will allow us to develop strategies to prevent or reverse these changes. This review focuses on epigenetic changes and DNA damage induced by environmental exposures, the chromatin changes that occur around sites of DNA damage, and how these transient chromatin changes may lead to heritable epigenetic alterations at sites of chronic exposure. PMID:24259318

  3. ELF alternating magnetic field decreases reproduction by DNA damage induction.

    PubMed

    Panagopoulos, Dimitris J; Karabarbounis, Andreas; Lioliousis, Constantinos

    2013-11-01

    In the present experiments, the effect of 50-Hz alternating magnetic field on Drosophila melanogaster reproduction was studied. Newly eclosed insects were separated into identical groups of ten males and ten females and exposed to three different intensities of the ELF magnetic field (1, 11, and 21 G) continuously during the first 5 days of their adult lives. The reproductive capacity was assessed by the number of F1 pupae according to a well-defined protocol of ours. The magnetic field was found to decrease reproduction by up to 4.3%. The effect increased with increasing field intensities. The decline in reproductive capacity was found to be due to severe DNA damage (DNA fragmentation) and consequent cell death induction in the reproductive cells as determined by the TUNEL assay applied during early and mid-oogenesis (from germarium to stage 10) where physiological apoptosis does not occur. The increase in DNA damage was more significant than the corresponding decrease in reproductive capacity (up to ~7.5%). The TUNEL-positive signal denoting DNA fragmentation was observed exclusively at the two most sensitive developmental stages of oogenesis: the early and mid-oogenesis checkpoints (i.e. region 2a/2b of the germarium and stages 7-8 just before the onset of vitellogenesis)-in contrast to exposure to microwave radiation of earlier work of ours in which the DNA fragmentation was induced at all developmental stages of early and mid-oogenesis. Moreover, the TUNEL-positive signal was observed in all three types of egg chamber cells, mainly in the nurse and follicle cells and also in the oocyte, in agreement with the microwave exposure of our earlier works. According to previous reports, cell death induction in the oocyte was observed only in the case of microwave exposure and not after exposure to other stress factors as toxic chemicals or food deprivation. Now it is also observed for the first time after ELF magnetic field exposure. Finally, in contrast to microwave

  4. CHK2 kinase in the DNA damage response and beyond

    PubMed Central

    Zannini, Laura; Delia, Domenico; Buscemi, Giacomo

    2014-01-01

    The serine/threonine kinase CHK2 is a key component of the DNA damage response. In human cells, following genotoxic stress, CHK2 is activated and phosphorylates >20 proteins to induce the appropriate cellular response, which, depending on the extent of damage, the cell type, and other factors, could be cell cycle checkpoint activation, induction of apoptosis or senescence, DNA repair, or tolerance of the damage. Recently, CHK2 has also been found to have cellular functions independent of the presence of nuclear DNA lesions. In particular, CHK2 participates in several molecular processes involved in DNA structure modification and cell cycle progression. In this review, we discuss the activity of CHK2 in response to DNA damage and in the maintenance of the biological functions in unstressed cells. These activities are also considered in relation to a possible role of CHK2 in tumorigenesis and, as a consequence, as a target of cancer therapy. PMID:25404613

  5. Oxidative and non-oxidative DNA damage and cardiovascular disease.

    PubMed

    Malik, Qudsia; Herbert, Karl E

    2012-04-01

    Evidence for the association of DNA damage with cardiovascular disease has been obtained from in vitro cell culture models, experimental cardiovascular disease and analysis of samples obtained from humans with disease. There is general acceptance that several factors associated with the risk of developing cardiovascular disease cause oxidative damage to DNA in cell culture models with both nuclear and mitochondrial DNA as targets. Moreover, evidence obtained over the past 10 years points to a possible mechanistic role for DNA damage in experimental atherosclerosis culminating in recent studies challenging the assumption that DNA damage is merely a biomarker of the disease process. This kind of mechanistic insight provides a renewed impetus for further studies in this area.

  6. Imaging the DNA damage response with PET and SPECT.

    PubMed

    Knight, James C; Koustoulidou, Sofia; Cornelissen, Bart

    2017-06-01

    DNA integrity is constantly challenged by endogenous and exogenous factors that can alter the DNA sequence, leading to mutagenesis, aberrant transcriptional activity, and cytotoxicity. Left unrepaired, damaged DNA can ultimately lead to the development of cancer. To overcome this threat, a series of complex mechanisms collectively known as the DNA damage response (DDR) are able to detect the various types of DNA damage that can occur and stimulate the appropriate repair process. Each DNA damage repair pathway leads to the recruitment, upregulation, or activation of specific proteins within the nucleus, which, in some cases, can represent attractive targets for molecular imaging. Given the well-established involvement of DDR during tumorigenesis and cancer therapy, the ability to monitor these repair processes non-invasively using nuclear imaging techniques may facilitate the earlier detection of cancer and may also assist in monitoring response to DNA damaging treatment. This review article aims to provide an overview of recent efforts to develop PET and SPECT radiotracers for imaging of DNA damage repair proteins.

  7. Aging of hematopoietic stem cells: DNA damage and mutations?

    PubMed

    Moehrle, Bettina M; Geiger, Hartmut

    2016-10-01

    Aging in the hematopoietic system and the stem cell niche contributes to aging-associated phenotypes of hematopoietic stem cells (HSCs), including leukemia and aging-associated immune remodeling. Among others, the DNA damage theory of aging of HSCs is well established, based on the detection of a significantly larger amount of γH2AX foci and a higher tail moment in the comet assay, both initially thought to be associated with DNA damage in aged HSCs compared with young cells, and bone marrow failure in animals devoid of DNA repair factors. Novel data on the increase in and nature of DNA mutations in the hematopoietic system with age, the quality of the DNA damage response in aged HSCs, and the nature of γH2AX foci question a direct link between DNA damage and the DNA damage response and aging of HSCs, and rather favor changes in epigenetics, splicing-factors or three-dimensional architecture of the cell as major cell intrinsic factors of HSCs aging. Aging of HSCs is also driven by a strong contribution of aging of the niche. This review discusses the DNA damage theory of HSC aging in the light of these novel mechanisms of aging of HSCs. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  8. Single-step intercalating dye strategies for DNA damage studies.

    PubMed

    Paidipalli, Manasa; Pjescic, Ilija; Hindmarsh, Patrick L; Crews, Niel D

    2013-08-01

    Many analytical protocols exist for the quantification of varied types of DNA damage, which span a range of complexity and sensitivity. As an alternative or companion to existing procedures, this article demonstrates the application of quantitative PCR (qPCR) and high-resolution DNA melting analysis (HRMA) to the detection and quantification of intramolecular DNA damage and/or strand breaks. These proven molecular biology methods are essentially single-step processes. When implemented with a third-generation saturating DNA dye, high sensitivity can be obtained. The experiments presented here demonstrate how DNA damage can inhibit amplification of the affected molecules. This corresponding decrease in the initial concentration of amplifiable DNA can be measured with qPCR. In addition, damage in the form of intramolecular dimerization and strand breaks alters the stored energy in the hydrogen bonds between the two strands in the dsDNA molecule. This significantly affects the thermal stability, which can be measured with extreme precision using HRMA. Simplified damage models were used in these experiments: UV-C irradiation to produce photoproducts, and restriction enzyme digestion to simulate double-strand breaks. The findings of this work, however, can be intuitively applied to the broad scope of DNA damage mechanisms.

  9. DNA damage and repair after high LET radiation

    NASA Astrophysics Data System (ADS)

    O'Neill, Peter; Cucinotta, Francis; Anderson, Jennifer

    Predictions from biophysical models of interactions of radiation tracks with cellular DNA indicate that clustered DNA damage sites, defined as two or more lesions formed within one or two helical turns of the DNA by passage of a single radiation track, are formed in mammalian cells. These complex DNA damage sites are regarded as a signature of ionizing radiation exposure particularly as the likelihood of clustered damage sites arising endogenously is low. For instance, it was predicted from biophysical modelling that 30-40% of low LET-induced double strand breaks (DSB), a form of clustered damage, are complex with the yield increasing to >90% for high LET radiation, consistent with the reduced reparability of DSB with increasing ionization density of the radiation. The question arises whether the increased biological effects such as mutagenesis, carcinogenesis and lethality is in part related to DNA damage complexity and/or spatial distribution of the damage sites, which may lead to small DNA fragments. With particle radiation it is also important to consider not only delta-rays which may cause clustered damaged sites and may be highly mutagenic but the non-random spatial distribution of DSB which may lead to deletions. In this overview I will concentrate on the molecular aspects of the variation of the complexity of DNA damage on radiation quality and the challenges this complexity presents the DNA damage repair pathways. I will draw on data from micro-irradiations which indicate that the repair of DSBs by non-homologous end joining is highly regulated with pathway choice and kinetics of repair dependent on the chemical complexity of the DSB. In summary the aim is to emphasis the link between the spatial distribution of energy deposition events related to the track, the molecular products formed and the consequence of damage complexity contributing to biological effects and to present some of the outstanding molecular challenges with particle radiation.

  10. Experimental and theoretical investigation effect of flavonols antioxidants on DNA damage.

    PubMed

    Ensafi, Ali A; Heydari-Soureshjani, E; Jafari-Asl, M; Rezaei, B; Ghasemi, Jahan B; Aghaee, Elham

    2015-08-05

    A new electrochemical biosensor was developed to demonstrate the effect of Acridine Orange (AO) on DNA damage. Then, the biosensor was used to check the inhibitors effect of three flavonols antioxidants (myricetin, fisetin and kaempferol) on DNA damage. Acridine Orange (AO) was used as a damaging agent because it shows a high affinity to nucleic acid and stretch of the double helical structure of DNA. Decreasing on the oxidation signals of adenine and guanine (in the DNA) in the presence of AO were used as probes to study the antioxidants power, using DNA-modified screen printed graphene electrode (DNA/SPGE). The results of our study showed that the DNA-biosensor could be suitable biosensor to investigate the inhibitors ability of the flavonols antioxidants on the DNA damage. The linear dependency was detected in the two regions in the ranges of 1.0-15.0 and 15.0-500.0 pmol L(-1). The detection limit was found 0.5 pmol L(-1) and 0.6 pmol L(-1) for guanine and adenine, respectively. To confirm the electrochemical results, Uv-Vis and fluorescence spectroscopic methods were used too. Finally molecular dynamic (MD) simulation was performed on the structure of DNA in a water box to study any interaction between the antioxidant, AO and DNA. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Complex DNA Damage: A Route to Radiation-Induced Genomic Instability and Carcinogenesis.

    PubMed

    Mavragani, Ifigeneia V; Nikitaki, Zacharenia; Souli, Maria P; Aziz, Asef; Nowsheen, Somaira; Aziz, Khaled; Rogakou, Emmy; Georgakilas, Alexandros G

    2017-07-18

    Cellular effects of ionizing radiation (IR) are of great variety and level, but they are mainly damaging since radiation can perturb all important components of the cell, from the membrane to the nucleus, due to alteration of different biological molecules ranging from lipids to proteins or DNA. Regarding DNA damage, which is the main focus of this review, as well as its repair, all current knowledge indicates that IR-induced DNA damage is always more complex than the corresponding endogenous damage resulting from endogenous oxidative stress. Specifically, it is expected that IR will create clusters of damage comprised of a diversity of DNA lesions like double strand breaks (DSBs), single strand breaks (SSBs) and base lesions within a short DNA region of up to 15-20 bp. Recent data from our groups and others support two main notions, that these damaged clusters are: (1) repair resistant, increasing genomic instability (GI) and malignant transformation and (2) can be considered as persistent "danger" signals promoting chronic inflammation and immune response, causing detrimental effects to the organism (like radiation toxicity). Last but not least, the paradigm shift for the role of radiation-induced systemic effects is also incorporated in this picture of IR-effects and consequences of complex DNA damage induction and its erroneous repair.

  12. Complex DNA Damage: A Route to Radiation-Induced Genomic Instability and Carcinogenesis

    PubMed Central

    Mavragani, Ifigeneia V.; Nikitaki, Zacharenia; Souli, Maria P.; Aziz, Asef; Nowsheen, Somaira; Aziz, Khaled; Rogakou, Emmy

    2017-01-01

    Cellular effects of ionizing radiation (IR) are of great variety and level, but they are mainly damaging since radiation can perturb all important components of the cell, from the membrane to the nucleus, due to alteration of different biological molecules ranging from lipids to proteins or DNA. Regarding DNA damage, which is the main focus of this review, as well as its repair, all current knowledge indicates that IR-induced DNA damage is always more complex than the corresponding endogenous damage resulting from endogenous oxidative stress. Specifically, it is expected that IR will create clusters of damage comprised of a diversity of DNA lesions like double strand breaks (DSBs), single strand breaks (SSBs) and base lesions within a short DNA region of up to 15–20 bp. Recent data from our groups and others support two main notions, that these damaged clusters are: (1) repair resistant, increasing genomic instability (GI) and malignant transformation and (2) can be considered as persistent “danger” signals promoting chronic inflammation and immune response, causing detrimental effects to the organism (like radiation toxicity). Last but not least, the paradigm shift for the role of radiation-induced systemic effects is also incorporated in this picture of IR-effects and consequences of complex DNA damage induction and its erroneous repair. PMID:28718816

  13. Alkaline Comet Assay for Assessing DNA Damage in Individual Cells.

    PubMed

    Pu, Xinzhu; Wang, Zemin; Klaunig, James E

    2015-08-06

    Single-cell gel electrophoresis, commonly called a comet assay, is a simple and sensitive method for assessing DNA damage at the single-cell level. It is an important technique in genetic toxicological studies. The comet assay performed under alkaline conditions (pH >13) is considered the optimal version for identifying agents with genotoxic activity. The alkaline comet assay is capable of detecting DNA double-strand breaks, single-strand breaks, alkali-labile sites, DNA-DNA/DNA-protein cross-linking, and incomplete excision repair sites. The inclusion of digestion of lesion-specific DNA repair enzymes in the procedure allows the detection of various DNA base alterations, such as oxidative base damage. This unit describes alkaline comet assay procedures for assessing DNA strand breaks and oxidative base alterations. These methods can be applied in a variety of cells from in vitro and in vivo experiments, as well as human studies.

  14. Retinoblastoma loss modulates DNA damage response favoring tumor progression.

    PubMed

    Seoane, Marcos; Iglesias, Pablo; Gonzalez, Teresa; Dominguez, Fernando; Fraga, Maximo; Aliste, Carlos; Forteza, Jeronimo; Costoya, Jose A

    2008-01-01

    Senescence is one of the main barriers against tumor progression. Oncogenic signals in primary cells result in oncogene-induced senescence (OIS), crucial for protection against cancer development. It has been described in premalignant lesions that OIS requires DNA damage response (DDR) activation, safeguard of the integrity of the genome. Here we demonstrate how the cellular mechanisms involved in oncogenic transformation in a model of glioma uncouple OIS and DDR. We use this tumor type as a paradigm of oncogenic transformation. In human gliomas most of the genetic alterations that have been previously identified result in abnormal activation of cell growth signaling pathways and deregulation of cell cycle, features recapitulated in our model by oncogenic Ras expression and retinoblastoma (Rb) inactivation respectively. In this scenario, the absence of pRb confers a proliferative advantage and activates DDR to a greater extent in a DNA lesion-independent fashion than cells that express only HRas(V12). Moreover, Rb loss inactivates the stress kinase DDR-associated p38MAPK by specific Wip1-dependent dephosphorylation. Thus, Rb loss acts as a switch mediating the transition between premalignant lesions and cancer through DDR modulation. These findings may have important implications for the understanding the biology of gliomas and anticipate a new target, Wip1 phosphatase, for novel therapeutic strategies.

  15. DNA damage recognition in the rat zygote following chronic paternal cyclophosphamide exposure.

    PubMed

    Barton, Tara S; Robaire, Bernard; Hales, Barbara F

    2007-12-01

    The detrimental effects of preconceptional paternal exposure to the alkylating anticancer agent, cyclophosphamide, include aberrant epigenetic programming, dysregulated zygotic gene activation, and abnormalities in the offspring that are transmitted to the next generation. The adverse developmental consequences of genomic instabilities transmitted via the spermatozoon emphasize the need to elucidate the mechanisms by which the early embryo recognizes DNA damage in the paternal genome. Little information exists on DNA damage detection in the zygote. We assessed the impact of paternal cyclophosphamide exposure on phosphorylated H2AX (gammaH2AX) and poly(ADP-ribose) polymerase-1(PARP-1), biomarkers of DNA damage, to determine the capacity in the rat zygote to recognize genomic damage and initiate a response to DNA lesions. An amplified biphasic gammaH2AX response was triggered in the paternal pronucleus in zygotes sired by drug-treated males; the maternal genome was not affected. PARP-1 immunoreactivity was substantially elevated in both parental genomes, coincident with the second phase of gammaH2AX induction in embryos sired by cyclophosphamide-exposed spermatozoa. Thus, paternal exposure to a DNA damaging agent rapidly activates signals implemental for DNA damage recognition in the zygote. Inefficient repair of DNA lesions may lead to persistent alterations of the histone code and chromatin integrity, resulting in aberrant embryogenesis. We propose that the response of the early embryo to disturbances in spermatozoal genomic integrity plays a vital role in determining its outcome.

  16. Comet-FISH for the evaluation of plant DNA damage after mutagenic treatments.

    PubMed

    Kwasniewska, Jolanta; Kwasniewski, Miroslaw

    2013-11-01

    The aim of this study was to perform a comparative investigation of the actions of three mutagens that are widely used in plant mutagenesis using the comet-FISH technique. The comet-FISH technique was used for the analysis of DNA damage and the kinetics of repair within specific DNA sequences. FISH with rDNA and telomeric/centromeric DNA probes was applied to comets that were obtained from an alkaline/neutral comet assay. Migration within specific DNA sequences was analysed after treatment with two chemical mutagens-maleic hydrazide (MH) and N-nitroso-N-methylurea (MNU), and γ-rays. Barley was used as a model plant in this study. The possible utility of specific DNA sequences in a comparative assessment of the distribution of DNA damage within a plant genome was evaluated. This study proved that the comet-FISH technique is suitable for a detailed quantification of DNA damage and repair within specific DNA sequences in plant mutagenesis. The analysis of FISH signals demonstrated that the involvement of specific DNA sequences in DNA damage was different and was dependent on the mutagen used. We showed that 5S rDNA and telomeric DNA sequences are more sensitive to mutagenic treatment, which was expressed by a stronger fragmentation and migration in comparison to the other probes used in the study. We found that 5S rDNA and telomeric DNA probes are more suitable for testing the genotoxicity of environmental factors. A comparison of the involvement of specific chromosome domains in direct DNA breakage/repair and in chromosome aberration formation after mutagen treatment indicates the compatibility of the results.

  17. Analysis of chromatin integrity and DNA damage of buffalo spermatozoa

    PubMed Central

    Mahmoud, K. Gh. M.; El-Sokary, A. A. E.; Abdel-Ghaffar, A. E.; Abou El-Roos, M. E. A.; Ahmed, Y. F.

    2015-01-01

    This study was conducted to determine chromatin integrity and DNA damage by DNA electrophoresis and comet assays of buffalo fresh and frozen semen. Semen samples were collected from four buffalo bulls and evaluated after freezing for semen motility, viability, sperm abnormalities, chromatin integrity and DNA damage. A significant variation was found in semen parameters after thawing. Highly significant differences (P<0.001) in chromatin integrity were observed between fresh and frozen semen. For the fresh semen, there was no significant difference between the bulls for chromatin integrity; however, a significant variation (P<0.05) was detected in their frozen semen. No DNA fragmentation was observed by agarose gel electrophoresis. The percentage of sperm with damaged DNA detected by comet assay differed significantly between fresh and frozen semen. A significant negative correlation was recorded between motility and DNA damage (r=-0.68, P<0.05). Sperm abnormalities and DNA fragmentation were significantly positively correlated (r=0.59, P<0.05). In conclusion, DNA damage evaluation can provide reassurance about genomic normalcy and guide the development of improved methods of selecting spermatozoa with intact DNA to be used in artificial insemination. PMID:27175169

  18. Host DNA damage response facilitates African swine fever virus infection.

    PubMed

    Simões, Margarida; Martins, Carlos; Ferreira, Fernando

    2013-07-26

    Studies with different viral infection models on virus interactions with the host cell nucleus have opened new perspectives on our understanding of the molecular basis of these interactions in African swine fever virus (ASFV) infection. The present study aims to characterize the host DNA damage response (DDR) occurring upon in vitro infection with the ASFV-Ba71V isolate. We evaluated protein levels during ASFV time-course infection, of several signalling cascade factors belonging to DDR pathways involved in double strand break repair - Ataxia Telangiectasia Mutated (ATM), ATM-Rad 3 related (ATR) and DNA dependent protein kinase catalytic subunit (DNA-PKcs). DDR inhibitory trials using caffeine and wortmannin and ATR inducible-expression cell lines were used to confirm specific pathway activation during viral infection. Our results show that ASFV specifically elicits ATR-mediated pathway activation from the early phase of infection with increased levels of H2AX, RPA32, p53, ATR and Chk1 phosphorylated forms. Viral p72 synthesis was abrogated by ATR kinase inhibitors and also in ATR-kd cells. Furthermore, a reduction of viral progeny was identified in these cells when compared to the outcome of infection in ATR-wt. Overall, our results strongly suggest that the ATR pathway plays an essential role for successful ASFV infection of host cells.

  19. Reactive Scattering Damage to DNA Components by Hyperthermal Secondary Ions

    SciTech Connect

    Deng Zongwu; Bald, Ilko; Illenberger, Eugen; Huels, Michael A.

    2006-06-23

    We have observed reactive scattering damage to fundamental DNA building blocks by the type of hyperthermal secondary ions that are produced along heavy ion tracks in biological media. Reactions include carbon abstraction by N{sup +}, and hydrogen abstraction by O{sup -} and N{sup +}, at collision energies down to 1 eV. Our results show that localized reactive scattering by hyperthermal secondary fragments can lead to important physicochemical damage to DNA in cells irradiated by heavy ions. This suggests a fundamentally different picture of nascent DNA damage induced by heavy ion tracks, compared to conventional (x or {gamma}) radiation tracks.

  20. Reactive Scattering Damage to DNA Components by Hyperthermal Secondary Ions

    NASA Astrophysics Data System (ADS)

    Deng, Zongwu; Bald, Ilko; Illenberger, Eugen; Huels, Michael A.

    2006-06-01

    We have observed reactive scattering damage to fundamental DNA building blocks by the type of hyperthermal secondary ions that are produced along heavy ion tracks in biological media. Reactions include carbon abstraction by N+, and hydrogen abstraction by O- and N+, at collision energies down to 1 eV. Our results show that localized reactive scattering by hyperthermal secondary fragments can lead to important physicochemical damage to DNA in cells irradiated by heavy ions. This suggests a fundamentally different picture of nascent DNA damage induced by heavy ion tracks, compared to conventional (x or γ) radiation tracks.

  1. Inducible repair of oxidative DNA damage in Escherichia coli.

    PubMed

    Demple, B; Halbrook, J

    Hydrogen peroxide is lethal to many cell types, including the bacterium Escherichia coli. Peroxides yield transient radical species that can damage DNA and cause mutations. Such partially reduced oxygen species are occasionally released during cellular respiration and are generated by lethal and mutagenic ionizing radiation. Because cells live in an environment where the threat of oxidative DNA damage is continual, cellular mechanisms may have evolved to avoid and repair this damage. Enzymes are known which evidently perform these functions. We report here that resistance to hydrogen peroxide toxicity can be induced in E. coli, that this novel induction is specific and occurs, in part, at the level of DNA repair.

  2. Hyperactivation of ATM upon DNA-PKcs inhibition modulates p53 dynamics and cell fate in response to DNA damage

    PubMed Central

    Finzel, Ana; Grybowski, Andrea; Strasen, Jette; Cristiano, Elena; Loewer, Alexander

    2016-01-01

    A functional DNA damage response is essential for maintaining genome integrity in the presence of DNA double-strand breaks. It is mainly coordinated by the kinases ATM, ATR, and DNA-PKcs, which control the repair of broken DNA strands and relay the damage signal to the tumor suppressor p53 to induce cell cycle arrest, apoptosis, or senescence. Although many functions of the individual kinases have been identified, it remains unclear how they act in concert to ensure faithful processing of the damage signal. Using specific inhibitors and quantitative analysis at the single-cell level, we systematically characterize the contribution of each kinase for regulating p53 activity. Our results reveal a new regulatory interplay in which loss of DNA-PKcs function leads to hyperactivation of ATM and amplification of the p53 response, sensitizing cells for damage-induced senescence. This interplay determines the outcome of treatment regimens combining irradiation with DNA-PKcs inhibitors in a p53-dependent manner. PMID:27280387

  3. Hyperactivation of ATM upon DNA-PKcs inhibition modulates p53 dynamics and cell fate in response to DNA damage.

    PubMed

    Finzel, Ana; Grybowski, Andrea; Strasen, Jette; Cristiano, Elena; Loewer, Alexander

    2016-08-01

    A functional DNA damage response is essential for maintaining genome integrity in the presence of DNA double-strand breaks. It is mainly coordinated by the kinases ATM, ATR, and DNA-PKcs, which control the repair of broken DNA strands and relay the damage signal to the tumor suppressor p53 to induce cell cycle arrest, apoptosis, or senescence. Although many functions of the individual kinases have been identified, it remains unclear how they act in concert to ensure faithful processing of the damage signal. Using specific inhibitors and quantitative analysis at the single-cell level, we systematically characterize the contribution of each kinase for regulating p53 activity. Our results reveal a new regulatory interplay in which loss of DNA-PKcs function leads to hyperactivation of ATM and amplification of the p53 response, sensitizing cells for damage-induced senescence. This interplay determines the outcome of treatment regimens combining irradiation with DNA-PKcs inhibitors in a p53-dependent manner. © 2016 Finzel et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. Superoxide and the production of oxidative DNA damage.

    PubMed Central

    Keyer, K; Gort, A S; Imlay, J A

    1995-01-01

    The conventional model of oxidative DNA damage posits a role for superoxide (O2-) as a reductant for iron, which subsequently generates a hydroxyl radical by transferring the electron to H2O2. The hydroxyl radical then attacks DNA. Indeed, mutants of Escherichia coli that lack superoxide dismutase (SOD) were 10-fold more vulnerable to DNA oxidation by H2O2 than were wild-type cells. Even the pace of DNA damage by endogenous oxidants was great enough that the SOD mutants could not tolerate air if enzymes that repair oxidative DNA lesions were inactive. However, DNA oxidation proceeds in SOD-proficient cells without the involvement of O2-, as evidenced by the failure of SOD overproduction or anaerobiosis to suppress damage by H2O2. Furthermore, the mechanism by which excess O2- causes damage was called into question when the hypersensitivity of SOD mutants to DNA damage persisted for at least 20 min after O2- had been dispelled through the imposition of anaerobiosis. That behavior contradicted the standard model, which requires that O2- be present to rereduce cellular iron during the period of exposure to H2O2. Evidently, DNA oxidation is driven by a reductant other than O2-, which leaves the mechanism of damage promotion by O2- unsettled. One possibility is that, through its well-established ability to leach iron from iron-sulfur clusters, O2- increases the amount of free iron that is available to catalyze hydroxyl radical production. Experiments with iron transport mutants confirmed that increases in free-iron concentration have the effect of accelerating DNA oxidation. Thus, O2- may be genotoxic only in doses that exceed those found in SOD-proficient cells, and in those limited circumstances it may promote DNA damage by increasing the amount of DNA-bound iron. PMID:7592468

  5. Radiation-induced DNA damage and chromatin structure

    NASA Technical Reports Server (NTRS)

    Rydberg, B.; Chatterjee, A. (Principal Investigator)

    2001-01-01

    DNA lesions induced by ionizing radiation in cells are clustered and not randomly distributed. For low linear energy transfer (LET) radiation this clustering occurs mainly on the small scales of DNA molecules and nucleosomes. For example, experimental evidence suggests that both strands of DNA on the nucleosomal surface can be damaged in single events and that this damage occurs with a 10-bp modulation because of protection by histones. For high LET radiation, clustering also occurs on a larger scale and depends on chromatin organization. A particularly significant clustering occurs when an ionizing particle traverses the 30 nm chromatin fiber with generation of heavily damaged DNA regions with an average size of about 2 kbp. On an even larger scale, high LET radiation can produce several DNA double-strand breaks in closer proximity than expected from randomness. It is suggested that this increases the probability of misrejoining of DNA ends and generation of lethal chromosome aberrations.

  6. DNA damage processing at telomeres: The ends justify the means.

    PubMed

    Fouquerel, Elise; Parikh, Dhvani; Opresko, Patricia

    2016-08-01

    Telomeres at chromosome ends are nucleoprotein structures consisting of tandem TTAGGG repeats and a complex of proteins termed shelterin. DNA damage and repair at telomeres is uniquely influenced by the ability of telomeric DNA to form alternate structures including loops and G-quadruplexes, coupled with the ability of shelterin proteins to interact with and regulate enzymes in every known DNA repair pathway. The role of shelterin proteins in preventing telomeric ends from being falsely recognized and processed as DNA double strand breaks is well established. Here we focus instead on recent developments in understanding the roles of shelterin proteins and telomeric DNA sequence and structure in processing genuine damage at telomeres induced by endogenous and exogenous DNA damage agents. We will highlight advances in double strand break repair, base excision repair and nucleotide excision repair at telomeres, and will discuss important questions remaining in the field. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Radiation-induced DNA damage and chromatin structure

    NASA Technical Reports Server (NTRS)

    Rydberg, B.; Chatterjee, A. (Principal Investigator)

    2001-01-01

    DNA lesions induced by ionizing radiation in cells are clustered and not randomly distributed. For low linear energy transfer (LET) radiation this clustering occurs mainly on the small scales of DNA molecules and nucleosomes. For example, experimental evidence suggests that both strands of DNA on the nucleosomal surface can be damaged in single events and that this damage occurs with a 10-bp modulation because of protection by histones. For high LET radiation, clustering also occurs on a larger scale and depends on chromatin organization. A particularly significant clustering occurs when an ionizing particle traverses the 30 nm chromatin fiber with generation of heavily damaged DNA regions with an average size of about 2 kbp. On an even larger scale, high LET radiation can produce several DNA double-strand breaks in closer proximity than expected from randomness. It is suggested that this increases the probability of misrejoining of DNA ends and generation of lethal chromosome aberrations.

  8. A fluorescence enhancement assay for cellular DNA damage. [X Radiation

    SciTech Connect

    Kanter, P.M.; Schwartz, H.S.

    1982-07-01

    A fluorescence procedure is described for quantitative measurement of DNA damage in mammalian cells. The technique is based upon the time-dependent partial alkaline unwinding of cellular DNA followed by determination of duplex:total DNA ratios with bisbenzamide, which has a differential molar fluorescence with single-stranded and duplex DNA. The method is rapid, does not require radioactive labeling of DNA, and is sufficiently sensitive to detect damage induced with 100 rads of X-irradiation. This method is standardized with respect to the alkaline unwinding unit, Mn0, and the unwinding constant, beta. Results obtained with this new technique and with hydroxylapatite chromatography for physical separation of single- and double-stranded DNA were confirmatory. The utility of the technique was demonstrated by detection of dose-related damage with X-irradiation and a variety of antineoplastic agents in unlabeled murine leukemia cells.

  9. DDRprot: a database of DNA damage response-related proteins

    PubMed Central

    Andrés-León, Eduardo; Cases, Ildefonso; Arcas, Aida; Rojas, Ana M.

    2016-01-01

    The DNA Damage Response (DDR) signalling network is an essential system that protects the genome’s integrity. The DDRprot database presented here is a resource that integrates manually curated information on the human DDR network and its sub-pathways. For each particular DDR protein, we present detailed information about its function. If involved in post-translational modifications (PTMs) with each other, we depict the position of the modified residue/s in the three-dimensional structures, when resolved structures are available for the proteins. All this information is linked to the original publication from where it was obtained. Phylogenetic information is also shown, including time of emergence and conservation across 47 selected species, family trees and sequence alignments of homologues. The DDRprot database can be queried by different criteria: pathways, species, evolutionary age or involvement in (PTM). Sequence searches using hidden Markov models can be also used. Database URL: http://ddr.cbbio.es. PMID:27577567

  10. XPC: Going where no DNA damage sensor has gone before.

    PubMed

    Nemzow, Leah; Lubin, Abigail; Zhang, Ling; Gong, Feng

    2015-12-01

    XPC has long been considered instrumental in DNA damage recognition during global genome nucleotide excision repair (GG-NER). While this recognition is crucial for organismal health and survival, as XPC's recognition of lesions stimulates global genomic repair, more recent lines of research have uncovered many new non-canonical pathways in which XPC plays a role, such as base excision repair (BER), chromatin remodeling, cell signaling, proteolytic degradation, and cellular viability. Since the first discovery of its yeast homolog, Rad4, the involvement of XPC in cellular regulation has expanded considerably. Indeed, our understanding appears to barely scratch the surface of the incredible potential influence of XPC on maintaining proper cellular function. Here, we first review the canonical role of XPC in lesion recognition and then explore the new world of XPC function. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Oxidatively induced DNA damage and its repair in cancer.

    PubMed

    Dizdaroglu, Miral

    2015-01-01

    Oxidatively induced DNA damage is caused in living organisms by endogenous and exogenous reactive species. DNA lesions resulting from this type of damage are mutagenic and cytotoxic and, if not repaired, can cause genetic instability that may lead to disease processes including carcinogenesis. Living organisms possess DNA repair mechanisms that include a variety of pathways to repair multiple DNA lesions. Mutations and polymorphisms also occur in DNA repair genes adversely affecting DNA repair systems. Cancer tissues overexpress DNA repair proteins and thus develop greater DNA repair capacity than normal tissues. Increased DNA repair in tumors that removes DNA lesions before they become toxic is a major mechanism for development of resistance to therapy, affecting patient survival. Accumulated evidence suggests that DNA repair capacity may be a predictive biomarker for patient response to therapy. Thus, knowledge of DNA protein expressions in normal and cancerous tissues may help predict and guide development of treatments and yield the best therapeutic response. DNA repair proteins constitute targets for inhibitors to overcome the resistance of tumors to therapy. Inhibitors of DNA repair for combination therapy or as single agents for monotherapy may help selectively kill tumors, potentially leading to personalized therapy. Numerous inhibitors have been developed and are being tested in clinical trials. The efficacy of some inhibitors in therapy has been demonstrated in patients. Further development of inhibitors of DNA repair proteins is globally underway to help eradicate cancer.

  12. S1219 residue of 53BP1 is phosphorylated by ATM kinase upon DNA damage and required for proper execution of DNA damage response

    SciTech Connect

    Lee, Haemi; Kwak, Hee-Jin; Cho, Il-taeg; Park, Seok Hee; Lee, Chang-Hun

    2009-01-02

    53BP1 is phosphorylated by the protein kinase ATM upon DNA damage. Even though several ATM phosphorylation sites in 53BP1 have been reported, those sites have little functional implications in the DNA damage response. Here, we show that ATM phosphorylates the S1219 residue of 53BP1 in vitro and that the residue is phosphorylated in cells exposed to ionizing radiation (IR). Transfection with siRNA targeting ATM abolished IR-induced phosphorylation at this residue, supporting the theory that this process is mediated by the kinase. To determine the functional relevance of this phosphorylation event, a U2OS cell line expressing S1219A mutant 53BP1 was established. IR-induced foci formation of MDC1 and {gamma}H2AX, DNA damage signaling molecules, was reduced in this cell line, implying that S1219 phosphorylation is required for recruitment of these molecules to DNA damage sites. Furthermore, overexpression of the mutant protein impeded IR-induced G2 arrest. In conclusion, we have shown that S1219 phosphorylation by ATM is required for proper execution of DNA damage response.

  13. S1219 residue of 53BP1 is phosphorylated by ATM kinase upon DNA damage and required for proper execution of DNA damage response.

    PubMed

    Lee, Haemi; Kwak, Hee-Jin; Cho, Il-taeg; Park, Seok Hee; Lee, Chang-Hun

    2009-01-02

    53BP1 is phosphorylated by the protein kinase ATM upon DNA damage. Even though several ATM phosphorylation sites in 53BP1 have been reported, those sites have little functional implications in the DNA damage response. Here, we show that ATM phosphorylates the S1219 residue of 53BP1 in vitro and that the residue is phosphorylated in cells exposed to ionizing radiation (IR). Transfection with siRNA targeting ATM abolished IR-induced phosphorylation at this residue, supporting the theory that this process is mediated by the kinase. To determine the functional relevance of this phosphorylation event, a U2OS cell line expressing S1219A mutant 53BP1 was established. IR-induced foci formation of MDC1 and gammaH2AX, DNA damage signaling molecules, was reduced in this cell line, implying that S1219 phosphorylation is required for recruitment of these molecules to DNA damage sites. Furthermore, overexpression of the mutant protein impeded IR-induced G2 arrest. In conclusion, we have shown that S1219 phosphorylation by ATM is required for proper execution of DNA damage response.

  14. PARP-1 mechanism for coupling DNA damage detection to poly(ADP-ribose) synthesis

    PubMed Central

    Langelier, Marie-France; Pascal, John M.

    2013-01-01

    Poly(ADP-ribose) polymerase 1 (PARP-1) regulates gene transcription, cell death signaling, and DNA repair through production of the posttranslational modification poly(ADP-ribose). During the cellular response to genotoxic stress PARP-1 rapidly associates with DNA damage, which robustly stimulates poly(ADP-ribose) production over a low basal level of PARP-1 activity. DNA damage-dependent PARP-1 activity is central to understanding PARP-1 biological function, but structural insights into the mechanisms underlying this mode of regulation have remained elusive, in part due to the highly modular six-domain architecture of PARP-1. Recent structural studies have illustrated how PARP-1 uses specialized zinc fingers to detect DNA breaks through sequence-independent interaction with exposed nucleotide bases, a common feature of damaged and abnormal DNA structures. The mechanism of coupling DNA damage detection to elevated poly(ADP-ribose) production has been elucidated based on a crystal structure of the essential domains of PARP-1 in complex with a DNA strand break. The multiple domains of PARP-1 collapse onto damaged DNA, forming a network of interdomain contacts that introduce destabilizing alterations in the catalytic domain leading to an enhanced rate of poly(ADP-ribose) production. PMID:23333033

  15. Calculation of complex DNA damage induced by ions

    NASA Astrophysics Data System (ADS)

    Surdutovich, Eugene; Gallagher, David C.; Solov'yov, Andrey V.

    2011-11-01

    This paper is devoted to the analysis of the complex damage of DNA irradiated by ions. The assessment of complex damage is important because cells in which it occurs are less likely to survive because the DNA repair mechanisms may not be sufficiently effective. We study the flux of secondary electrons through the surface of nucleosomes and calculate the radial dose and the distribution of clustered damage around the ion's path. The calculated radial dose distribution is compared to simulations. The radial distribution of the complex damage is found to be different from that of the dose. A comparison with experiments may solve the question of what is more lethal for the cell, damage complexity or absorbed energy. We suggest a way to calculate the probability of cell death based on the complexity of the damage. This work is done within the framework of the phenomenon-based multiscale approach to radiation damage by ions.

  16. Posttranscriptional regulation of gene expression-adding another layer of complexity to the DNA damage response.

    PubMed

    Boucas, Jorge; Riabinska, Arina; Jokic, Mladen; Herter-Sprie, Grit S; Chen, Shuhua; Höpker, Katja; Reinhardt, H Christian

    2012-01-01

    In response to DNA damage, cells activate a complex, kinase-based signaling network to arrest the cell cycle and allow time for DNA repair, or, if the extend of damage is beyond repair capacity, induce apoptosis. This signaling network, which is collectively referred to as the DNA damage response (DDR), is primarily thought to consist of two components-a rapid phosphorylation-driven signaling cascade that results in immediate inhibition of Cdk/cyclin complexes and a delayed transcriptional response that promotes a prolonged cell cycle arrest through the induction of Cdk inhibitors, such as p21. In recent years a third layer of complexity has emerged that involves potent posttranscriptional regulatory mechanisms that control the cellular response to DNA damage. Although much has been written on the relevance of the DDR in cancer and on the post-transcriptional role of microRNAs (miRs) in cancer, the post-transcriptional regulation of the DDR by non-coding RNAs and RNA-binding proteins (RBPs) still remains elusive in large parts. Here, we review the recent developments in this exciting new area of research in the cellular response to genotoxic stress. We put specific emphasis on the role of RBPs and the control of their function through DNA damage-activated protein kinases.

  17. ATM-dependent chromatin remodeler Rsf-1 facilitates DNA damage checkpoints and homologous recombination repair.

    PubMed

    Min, Sunwoo; Jo, Sujin; Lee, Ho-Soo; Chae, Sunyoung; Lee, Jong-Soo; Ji, Jae-Hoon; Cho, Hyeseong

    2014-01-01

    As a member of imitation switch (ISWI) family in ATP-dependent chromatin remodeling factors, RSF complex consists of SNF2h ATPase and Rsf-1. Although it has been reported that SNF2h ATPase is recruited to DNA damage sites (DSBs) in a poly(ADP-ribosyl) polymerase 1 (PARP1)-dependent manner in DNA damage response (DDR), the function of Rsf-1 is still elusive. Here we show that Rsf-1 is recruited to DSBs confirmed by various cellular analyses. Moreover, the initial recruitment of Rsf-1 and SNF2h to DSBs shows faster kinetics than that of γH2AX after micro-irradiation. Signals of Rsf-1 and SNF2h are retained over 30 min after micro-irradiation, whereas γH2AX signals are gradually reduced at 10 min. In addition, Rsf-1 is accumulated at DSBs in ATM-dependent manner, and the putative pSQ motifs of Rsf-1 by ATM are required for its accumulation at DSBs. Furtheremore, depletion of Rsf-1 attenuates the activation of DNA damage checkpoint signals and cell survival upon DNA damage. Finally, we demonstrate that Rsf-1 promotes homologous recombination repair (HRR) by recruiting resection factors RPA32 and Rad51. Thus, these findings reveal a new function of chromatin remodeler Rsf-1 as a guard in DNA damage checkpoints and homologous recombination repair.

  18. Zinc finger protein 668 interacts with Tip60 to promote H2AX acetylation after DNA damage.

    PubMed

    Hu, Ruozhen; Wang, Edward; Peng, Guang; Dai, Hui; Lin, Shiaw-Yih

    2013-07-01

    Many tumor suppressors play an important role in the DNA damage pathway. Zinc finger protein 668 (ZNF668) has recently been identified as one of the potential tumor suppressors in breast cancer, but its function in DNA damage response is unknown. Herein, we report that ZNF668 is a regulator of DNA repair. ZNF668 knockdown impairs cell survival after DNA damage without affecting the ATM/ATR DNA-damage signaling cascade. However, recruitment of repair proteins to DNA lesions is decreased. In response to IR, ZNF668 knockdown reduces Tip60-H2AX interaction and impairs IR-induced histone H2AX hyperacetylation, thus impairing chromatin relaxation. Impaired chromatin relaxation causes decreased recruitment of repair proteins to DNA lesions, defective homologous recombination (HR) repair and impaired cell survival after IR. In addition, ZNF668 knockdown decreased RPA phosphorylation and its recruitment to DNA damage foci in response to UV. In both IR and UV damage responses, chromatin relaxation counteracted the impaired loading of repair proteins and DNA repair defects in ZNF668-deficient U2OS cells, indicating that impeded chromatin accessibility at sites of DNA breaks caused the DNA repair defects observed in the absence of ZNF668. Our findings suggest that ZNF668 is a key molecule that links chromatin relaxation with DNA damage response in DNA repair control.

  19. Bayesian estimation of sequence damage in ancient DNA.

    PubMed

    Ho, Simon Y W; Heupink, Tim H; Rambaut, Andrew; Shapiro, Beth

    2007-06-01

    DNA extracted from archaeological and paleontological remains is usually damaged by biochemical processes postmortem. Some of these processes lead to changes in the structure of the DNA molecule, which can result in the incorporation of incorrect nucleotides during polymerase chain reaction. These base misincorporations, or miscoding lesions, can lead to the inclusion of spurious additional mutations in ancient DNA (aDNA) data sets. This has the potential to affect the outcome of phylogenetic and population genetic analyses, including estimates of mutation rates and genetic diversity. We present a novel model, termed the delta model, which estimates the amount of damage in DNA data and accounts for its effects in a Bayesian phylogenetic framework. The ability of the delta model to estimate damage is first investigated using a simulation study. The model is then applied to 13 aDNA data sets. The amount of damage in these data sets is shown to be significant but low (about 1 damaged base per 750 nt), suggesting that precautions for limiting the influence of damaged sites, such as cloning and enzymatic treatment, are worthwhile. The results also suggest that relatively high rates of mutation previously estimated from aDNA data are not entirely an artifact of sequence damage and are likely to be due to other factors such as the persistence of transient polymorphisms. The delta model appears to be particularly useful for placing upper credibility limits on the amount of sequence damage in an alignment, and this capacity might be beneficial for future aDNA studies or for the estimation of sequencing errors in modern DNA.

  20. A model of the cell nucleus for DNA damage calculations.

    PubMed

    Nikjoo, Hooshang; Girard, Peter

    2012-01-01

    Development of a computer model of genomic deoxyribonucleic acid (DNA) in the human cell nucleus for DNA damage and repair calculations. The model comprises the human genomic DNA, chromosomal domains, and loops attached to factories. A model of canonical B-DNA was used to build the nucleosomes and the 30-nanometer solenoidal chromatin. In turn the chromatin was used to form the loops of factories in chromosome domains. The entire human genome was placed in a spherical nucleus of 10 micrometers diameter. To test the new target model, tracks of protons and alpha-particles were generated using Monte Carlo track structure codes PITS99 (Positive Ion Track Structure) and KURBUC. Damage sites induced in the genome were located and classified according to type and complexity. The three-dimensional structure of the genome starting with a canonical B-DNA model, nucleosomes, and chromatin loops in chromosomal domains are presented. The model was used to obtain frequencies of DNA damage induced by protons and alpha-particles by direct energy deposition, including single- and double-strand breaks, base damage, and clustered lesions. This three-dimensional model of the genome is the first such model using the full human genome for the next generation of more comprehensive modelling of DNA damage and repair. The model combines simple geometrical structures at the level of domains and factories with potentially full detail at the level of atoms in particular genes, allowing damage patterns in the latter to be simulated.

  1. Commentary: Mitochondrial DNA damage and loss in diabetes.

    PubMed

    Gilkerson, Robert

    2016-10-01

    This commentary discusses damage and loss of mitochondrial DNA (mtDNA) in type 2 diabetes mellitus from both the clinical and experimental perspectives. Increasingly, an array of studies in experimental models and patients suggests that the cellular stresses of insulin resistance in type 2 diabetes damage mtDNA, leading to loss of mitochondrial genetic content. As such, mtDNA is emerging as both a valuable monitoring tool and translational preventive target for metabolic disease. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Damage-specific DNA-binding proteins from human cells

    SciTech Connect

    Kanjilal, S.

    1992-01-01

    The primary objective of the study was to detect and characterize factors from human cells that bind DNA damaged by ultraviolet radiation. An application of the gel-shift assay was devised in which a DNA probe was UV-irradiated and compared with non-irradiated probe DNA for the ability to bind to such factors in cell extracts. UV-dose dependent binding proteins were identified. Formation of the DNA-protein complexes was independent of the specific sequence, form or source of the DNA. There was a marked preference for lesions on double stranded DNA over those on single stranded DNA. DNA irradiated with gamma rays did not compete with UV-irradiated DNA for the binding activities. Cell lines from patients with genetic diseases associated with disorders of the DNA repair system were screened for the presence of damaged-DNA-binding activities. Simultaneous occurrence of the clinical symptoms of some of these diseases had been previously documented and possible links between the syndromes proposed. However, supporting biochemical or molecular evidence for such associations were lacking. The data from the present investigations indicate that some cases of Xeroderma Pigmentosum group A, Cockayne's Syndrome, Bloom's Syndrome and Ataxia Telangiectasia, all of which exhibit sensitivity to UV or gamma radiation, share an aberrant damaged-DNA-binding factor. These findings support the hypothesis that some of the repair disorder diseases are closely related and may have arisen from a common defect. Partial purification of the binding activities from HeLa cells was achieved. Size-exclusion chromatography resolved the activities into various peaks, one of which was less damage-specific than the others as determined by competition studies using native or UV-irradiated DNA. Some of the activities were further separated by ion-exchange chromatography. On using affinity chromatography methods, the major damage-binding factor could be eluted in the presence of 2 M KCl and 1% NP-40.

  3. Comet-FISH with rDNA probes for the analysis of mutagen-induced DNA damage in plant cells.

    PubMed

    Kwasniewska, Jolanta; Grabowska, Marta; Kwasniewski, Miroslaw; Kolano, Bozena

    2012-06-01

    We used comet-fluorescence in situ hybridization (FISH) in the model plant species Crepis capillaris following exposure of seedlings to maleic hydrazide (MH). FISH with 5S and 25S rDNA probes was applied to comets obtained under alkaline conditions to establish whether these DNA regions were preferentially involved in comet tail formation. MH treatment induced significant fragmentation of nuclear DNA and of rDNA loci. A 24-h post-treatment recovery period allowed a partial reversibility of MH-induced damage on nuclear and rDNA regions. Analyses of FISH signals demonstrated that rDNA sequences were always involved in tail formation and that 5S rDNA was more frequently present in the tail than 25S rDNA, regardless of treatment. The involvement of 25S rDNA in nucleolus formation and differences in chromatin structure between the two loci may explain the different susceptibility of the 25S and 5S rDNA regions to migrate into the tail. This work is the first report on the application of FISH to comet preparations from plants to analyze the distribution and repair of DNA damage within specific genomic regions after mutagenic treatment. Moreover, our work suggests that comet-FISH in plants may be a useful tool for environmental monitoring assessment. Copyright © 2012 Wiley Periodicals, Inc.

  4. Sensitive voltammetric detection of DNA damage at carbon electrodes using DNA repair enzymes and an electroactive osmium marker.

    PubMed

    Havran, Ludek; Vacek, Jan; Cahová, Katerina; Fojta, Miroslav

    2008-07-01

    This paper presents a new approach to electrochemical sensing of DNA damage, using osmium DNA markers and voltammetric detection at the pyrolytic graphite electrode. The technique is based on enzymatic digestion of DNA with a DNA repair enzyme exonuclease III (exoIII), followed by single-strand (ss) selective DNA modification by a complex of osmium tetroxide with 2,2'-bipyridine. In double-stranded DNA possessing free 3'-ends, the exoIII creates ss regions that can accommodate the electroactive osmium marker. Intensity of the marker signal measured at the pyrolytic graphite electrode responded well to the extent of DNA damage. The technique was successfully applied for the detection of (1) single-strand breaks (ssb) introduced in plasmid DNA by deoxyribonuclease I, and (2) apurinic sites generated in chromosomal calf thymus DNA upon treatment with the alkylating agent dimethyl sulfate. The apurinic sites were converted into the ssb by DNA repair endonuclease activity of the exoIII enzyme. We show that the presented technique is capable of detection of one lesion per approximately 10(5) nucleotides in supercoiled plasmid DNA.

  5. Electrochemical study of DNA damaged by oxidation stress.

    PubMed

    Zitka, Ondrej; Krizkova, Sona; Skalickova, Sylvie; Kopel, Pavel; Babula, Petr; Adam, Vojtech; Kizek, Rene

    2013-02-01

    Many compounds can interact with DNA leading to changes of DNA structure as point mutation and bases excision, which could trigger some metabolic failures, which leads to the changes in DNA structure resulting in cancer. Oxidation of nucleic acid bases belongs to the one of the mostly occurred type of DNA damaging leading to the above mentioned phenomena. The investigation of processes of DNA oxidation damage is topical and electrochemical methods include a versatile and sensitive tool for these purposes. 8-hydroxydeoxyguanosine (8-OHdG) is the most widely accepted marker of DNA damage. Oxidative damage to DNA by free radicals and exposure to ionizing radiation generate several other products within the double helix besides mentioned oxidation products of nucleic acid bases. The basic electrochemical behaviour of nucleic acids bases on various types of carbon electrodes is reviewed. Further, we address our attention on description of oxidation mechanisms and on detection of the most important products of nucleic bases oxidation. The miniaturization of detector coupled with some microfluidic devices is suggested and discussed. The main aim of this review is to report the advantages and features of the electrochemical detection of guanine oxidation product as 8-OHdG and other similarly produced molecules as markers for DNA damage.

  6. Interaction of FUS and HDAC1 Regulates DNA Damage Response and Repair in Neurons

    PubMed Central

    Wang, Wen-Yuan; Pan, Ling; Su, Susan C.; Quinn, Emma J.; Sasaki, Megumi; Jimenez, Jessica C.; Mackenzie, Ian R.A.; Huang, Eric J.; Tsai, Li-Huei

    2017-01-01

    SUMMARY Defects in DNA repair have been extensively linked to neurodegenerative diseases, but the exact mechanisms remain poorly understood. Here, we report that FUS, a RNA/DNA binding protein linked to amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), plays a pivotal role in DNA damage response (DDR). We show that the function of FUS in DDR involves a direct interaction with histone deacetylase 1 (HDAC1), and that the recruitment of FUS to double stranded break (DSB) sites is important for proper DDR signaling. Remarkably, FUS proteins carrying familial ALS (fALS) mutations are defective in DDR and DNA repair, and show a diminished interaction with HDAC1. Moreover, increased DNA damage was also observed in human ALS patients harboring FUS mutations. Our findings suggest that an impaired DDR and DNA repair may contribute to the pathogenesis of neurodegenerative diseases linked to FUS mutations. PMID:24036913

  7. Homologous recombination maintenance of genome integrity during DNA damage tolerance

    PubMed Central

    Prado, Félix

    2014-01-01

    The DNA strand exchange protein Rad51 provides a safe mechanism for the repair of DNA breaks using the information of a homologous DNA template. Homologous recombination (HR) also plays a key role in the response to DNA damage that impairs the advance of the replication forks by providing mechanisms to circumvent the lesion and fill in the tracks of single-stranded DNA that are generated during the process of lesion bypass. These activities postpone repair of the blocking lesion to ensure that DNA replication is completed in a timely manner. Experimental evidence generated over the last few years indicates that HR participates in this DNA damage tolerance response together with additional error-free (template switch) and error-prone (translesion synthesis) mechanisms through intricate connections, which are presented here. The choice between repair and tolerance, and the mechanism of tolerance, is critical to avoid increased mutagenesis and/or genome rearrangements, which are both hallmarks of cancer. PMID:27308329

  8. A constitutive damage specific DNA-binding protein is synthesized at higher levels in UV-irradiated primate cells

    SciTech Connect

    Hirschfeld, S.; Levine, A.S.; Ozato, K.; Protic, M. )

    1990-05-01

    Using a DNA band shift assay, we have identified a DNA-binding protein complex in primate cells which is present constitutively and has a high affinity for UV-irradiated, double-stranded DNA. Cells pretreated with UV light, mitomycin C, or aphidicolin have higher levels of this damage-specific DNA-binding protein complex, suggesting that the signal for induction can either be damage to the DNA or interference with cellular DNA replication. Physiochemical modifications of the DNA and competition analysis with defined substrates suggest that the most probable target site for the damage-specific DNA-binding protein complex is a 6-4'-(pyrimidine-2'-one)-pyrimidine dimer: specific binding could not be detected with probes which contain -TT- cyclobutane dimers, and damage-specific DNA binding did not decrease after photoreactivation of UV-irradiated DNA. This damage-specific DNA-binding protein complex is the first such inducible protein complex identified in primate cells. Cells from patients with the sun-sensitive cancer-prone disease, xeroderma pigmentosum (group E), are lacking both the constitutive and the induced damage-specific DNA-binding activities. These findings suggest a possible role for this DNA-binding protein complex in lesion recognition and DNA repair of UV-light-induced photoproducts.

  9. DNA damage in Wistar Kyoto rats exercised during pregnancy.

    PubMed

    Corrêa, Mikaela da Silva; Gelaleti, Rafael Bottaro; Bento, Giovana Fernanda; Damasceno, Débora Cristina; Peraçoli, José Carlos

    2017-05-01

    To evaluate DNA damage levels in pregnant rats undergoing a treadmill exercise program. Wistar Kyoto rats were allocated into two groups (n= 5 animals/group): non-exercise and exercise. The pregnant rats were underwent an exercise protocol on a treadmill throughout pregnancy. Exercise intensity was set at 50% of maximal capacity during maximal exercise testing performed before mating. Body weight, blood pressure and glucose levels, and triglyceride concentration were measured during pregnancy. At day 10 post-natal, the animals were euthanized and maternal blood samples were collected for DNA damage. Blood pressure and glucose levels and biochemical measurements showed no significant differences. Increased DNA damage levels were found in exercise group compared to those of non-exercise group (p<0.05). The exercise intensity protocol used in the study might have been exhaustive leading to maternal increased DNA damage levels, demonstrating the relevance of an adequate protocol of physical exercise.

  10. Carbamate insecticide methomyl confers cytotoxicity through DNA damage induction.

    PubMed

    Guanggang, Xiang; Diqiu, Li; Jianzhong, Yuan; Jingmin, Guan; Huifeng, Zhai; Mingan, Shi; Liming, Tao

    2013-03-01

    Carbamate insecticide methomyl could induce genotoxic effects, including micronuclei, chromosome aberrations and sister-chromatid exchanges. However, methomyl induction of cytotoxicity through DNA damage is largely unknown. Here we identify cytotoxicity and potential genotoxicity of methomyl in vitro. We have employed alkaline comet assay, γH2AX foci formation and DNA ladder assay to detected DNA damage and apoptosis of Drosophila S2, HeLa and HEK293 cells. The alkaline comet assay was used to evaluate total DNA single strand breaks (SSBs) in the target cells exposed in vitro to sublethal concentrations of methomyl. As expected, methomyl induced significant concentration-dependent increases in DNA damage of target cells compared with the negative control, as measured by increases in tail length (μm), tail DNA (percentage of the comet tail) and tail moment (arbitrary units). In agreement with the comet assay data, the percentage of γH2AX positive reaction in HeLa cells also revealed methomyl caused DNA double strand breaks (DSBs) in a time-dependent manner. Moreover, methomyl induced a significant increase of apoptosis in Drosophila S2, HeLa and HEK293 cells in a concentration- and time-dependent manner, as determined by Urea PAGE DNA fragmentation analysis. In conclusion, methomyl is a strongly genotoxic agent that induces cell DNA damage and apoptosis in vitro at these sublethal concentrations.

  11. Mechanisms of mutagenesis: DNA replication in the presence of DNA damage

    PubMed Central

    Liu, Binyan; Xue, Qizhen; Tang, Yong; Cao, Jia; Guengerich, F. Peter; Zhang, Huidong

    2017-01-01

    Environmental mutagens cause DNA damage that disturbs replication and produces mutations, leading to cancer and other diseases. We discuss mechanisms of mutagenesis resulting from DNA damage, from the level of DNA replication by a single polymerase to the complex DNA replisome of some typical model organisms (including bacteriophage T7, T4, Sulfolobus solfataricus, E. coli, yeast and human). For a single DNA polymerase, DNA damage can affect replication in three major ways: reducing replication fidelity, causing frameshift mutations, and blocking replication. For the DNA replisome, protein interactions and the functions of accessory proteins can yield rather different results even with a single DNA polymerase. The mechanism of mutation during replication performed by the DNA replisome is a long-standing question. Using new methods and techniques, the replisomes of certain organisms and human cell extracts can now be investigated with regard to the bypass of DNA damage. In this review, we consider the molecular mechanism of mutagenesis resulting from DNA damage in replication at the levels of single DNA polymerases and complex DNA replisomes, including translesion DNA synthesis. PMID:27234563

  12. Mechanisms of mutagenesis: DNA replication in the presence of DNA damage.

    PubMed

    Liu, Binyan; Xue, Qizhen; Tang, Yong; Cao, Jia; Guengerich, F Peter; Zhang, Huidong

    2016-01-01

    Environmental mutagens cause DNA damage that disturbs replication and produces mutations, leading to cancer and other diseases. We discuss mechanisms of mutagenesis resulting from DNA damage, from the level of DNA replication by a single polymerase to the complex DNA replisome of some typical model organisms (including bacteriophage T7, T4, Sulfolobus solfataricus, Escherichia coli, yeast and human). For a single DNA polymerase, DNA damage can affect replication in three major ways: reducing replication fidelity, causing frameshift mutations, and blocking replication. For the DNA replisome, protein interactions and the functions of accessory proteins can yield rather different results even with a single DNA polymerase. The mechanism of mutation during replication performed by the DNA replisome is a long-standing question. Using new methods and techniques, the replisomes of certain organisms and human cell extracts can now be investigated with regard to the bypass of DNA damage. In this review, we consider the molecular mechanism of mutagenesis resulting from DNA damage in replication at the levels of single DNA polymerases and complex DNA replisomes, including translesion DNA synthesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. MOF and H4 K16 Acetylation Play Important Roles in DNA Damage Repair by Modulating Recruitment of DNA Damage Repair Protein Mdc1 ▿

    PubMed Central

    Li, Xiangzhi; Corsa, Callie Ann Sprunger; Pan, Patricia W.; Wu, Lipeng; Ferguson, David; Yu, Xiaochun; Min, Jinrong; Dou, Yali

    2010-01-01

    MOF (MYST1) is the major enzyme to catalyze acetylation of histone H4 lysine 16 (K16) and is highly conserved through evolution. Using a conditional knockout mouse model and the derived mouse embryonic fibroblast cell lines, we showed that loss of Mof led to a global reduction of H4 K16 acetylation, severe G2/M cell cycle arrest, massive chromosome aberration, and defects in ionizing radiation-induced DNA damage repair. We further showed that although early DNA damage sensing and signaling by ATM were normal in Mof-null cells, the recruitment of repair mediator protein Mdc1 and its downstream signaling proteins 53bp1 and Brca1 to DNA damage foci was completely abolished. Mechanistic studies suggested that Mof-mediated H4 K16 acetylation and an intact acidic pocket on H2A.X were essential for the recruitment of Mdc1. Removal of Mof and its associated proteins phenocopied a charge-neutralizing mutant of H2A.X. Given the well-characterized H4-H2A trans interactions in regulating higher-order chromatin structure, our study revealed a novel chromatin-based mechanism that regulates the DNA damage repair process. PMID:20837706

  14. MOF and H4 K16 acetylation play important roles in DNA damage repair by modulating recruitment of DNA damage repair protein Mdc1.

    PubMed

    Li, Xiangzhi; Corsa, Callie Ann Sprunger; Pan, Patricia W; Wu, Lipeng; Ferguson, David; Yu, Xiaochun; Min, Jinrong; Dou, Yali

    2010-11-01

    MOF (MYST1) is the major enzyme to catalyze acetylation of histone H4 lysine 16 (K16) and is highly conserved through evolution. Using a conditional knockout mouse model and the derived mouse embryonic fibroblast cell lines, we showed that loss of Mof led to a global reduction of H4 K16 acetylation, severe G(2)/M cell cycle arrest, massive chromosome aberration, and defects in ionizing radiation-induced DNA damage repair. We further showed that although early DNA damage sensing and signaling by ATM were normal in Mof-null cells, the recruitment of repair mediator protein Mdc1 and its downstream signaling proteins 53bp1 and